Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 *  linux/net/sunrpc/gss_krb5_crypto.c
   3 *
   4 *  Copyright (c) 2000-2008 The Regents of the University of Michigan.
   5 *  All rights reserved.
   6 *
   7 *  Andy Adamson   <andros@umich.edu>
   8 *  Bruce Fields   <bfields@umich.edu>
   9 */
  10
  11/*
  12 * Copyright (C) 1998 by the FundsXpress, INC.
  13 *
  14 * All rights reserved.
  15 *
  16 * Export of this software from the United States of America may require
  17 * a specific license from the United States Government.  It is the
  18 * responsibility of any person or organization contemplating export to
  19 * obtain such a license before exporting.
  20 *
  21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
  22 * distribute this software and its documentation for any purpose and
  23 * without fee is hereby granted, provided that the above copyright
  24 * notice appear in all copies and that both that copyright notice and
  25 * this permission notice appear in supporting documentation, and that
  26 * the name of FundsXpress. not be used in advertising or publicity pertaining
  27 * to distribution of the software without specific, written prior
  28 * permission.  FundsXpress makes no representations about the suitability of
  29 * this software for any purpose.  It is provided "as is" without express
  30 * or implied warranty.
  31 *
  32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
  33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
  34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
  35 */
  36
  37#include <crypto/hash.h>
  38#include <crypto/skcipher.h>
  39#include <crypto/utils.h>
  40#include <linux/err.h>
  41#include <linux/types.h>
  42#include <linux/mm.h>
  43#include <linux/scatterlist.h>
  44#include <linux/highmem.h>
  45#include <linux/pagemap.h>
  46#include <linux/random.h>
  47#include <linux/sunrpc/gss_krb5.h>
  48#include <linux/sunrpc/xdr.h>
  49#include <kunit/visibility.h>
  50
  51#include "gss_krb5_internal.h"
  52
  53#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  54# define RPCDBG_FACILITY        RPCDBG_AUTH
  55#endif
  56
  57/**
  58 * krb5_make_confounder - Generate a confounder string
  59 * @p: memory location into which to write the string
  60 * @conflen: string length to write, in octets
  61 *
  62 * RFCs 1964 and 3961 mention only "a random confounder" without going
  63 * into detail about its function or cryptographic requirements. The
  64 * assumed purpose is to prevent repeated encryption of a plaintext with
  65 * the same key from generating the same ciphertext. It is also used to
  66 * pad minimum plaintext length to at least a single cipher block.
  67 *
  68 * However, in situations like the GSS Kerberos 5 mechanism, where the
  69 * encryption IV is always all zeroes, the confounder also effectively
  70 * functions like an IV. Thus, not only must it be unique from message
  71 * to message, but it must also be difficult to predict. Otherwise an
  72 * attacker can correlate the confounder to previous or future values,
  73 * making the encryption easier to break.
  74 *
  75 * Given that the primary consumer of this encryption mechanism is a
  76 * network storage protocol, a type of traffic that often carries
  77 * predictable payloads (eg, all zeroes when reading unallocated blocks
  78 * from a file), our confounder generation has to be cryptographically
  79 * strong.
  80 */
  81void krb5_make_confounder(u8 *p, int conflen)
  82{
  83	get_random_bytes(p, conflen);
  84}
  85
  86/**
  87 * krb5_encrypt - simple encryption of an RPCSEC GSS payload
  88 * @tfm: initialized cipher transform
  89 * @iv: pointer to an IV
  90 * @in: plaintext to encrypt
  91 * @out: OUT: ciphertext
  92 * @length: length of input and output buffers, in bytes
  93 *
  94 * @iv may be NULL to force the use of an all-zero IV.
  95 * The buffer containing the IV must be as large as the
  96 * cipher's ivsize.
  97 *
  98 * Return values:
  99 *   %0: @in successfully encrypted into @out
 100 *   negative errno: @in not encrypted
 101 */
 102u32
 103krb5_encrypt(
 104	struct crypto_sync_skcipher *tfm,
 105	void * iv,
 106	void * in,
 107	void * out,
 108	int length)
 109{
 110	u32 ret = -EINVAL;
 111	struct scatterlist sg[1];
 112	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
 113	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 114
 115	if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
 116		goto out;
 117
 118	if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
 119		dprintk("RPC:       gss_k5encrypt: tfm iv size too large %d\n",
 120			crypto_sync_skcipher_ivsize(tfm));
 121		goto out;
 122	}
 123
 124	if (iv)
 125		memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
 126
 127	memcpy(out, in, length);
 128	sg_init_one(sg, out, length);
 129
 130	skcipher_request_set_sync_tfm(req, tfm);
 131	skcipher_request_set_callback(req, 0, NULL, NULL);
 132	skcipher_request_set_crypt(req, sg, sg, length, local_iv);
 133
 134	ret = crypto_skcipher_encrypt(req);
 135	skcipher_request_zero(req);
 136out:
 137	dprintk("RPC:       krb5_encrypt returns %d\n", ret);
 138	return ret;
 139}
 140
 141/**
 142 * krb5_decrypt - simple decryption of an RPCSEC GSS payload
 143 * @tfm: initialized cipher transform
 144 * @iv: pointer to an IV
 145 * @in: ciphertext to decrypt
 146 * @out: OUT: plaintext
 147 * @length: length of input and output buffers, in bytes
 148 *
 149 * @iv may be NULL to force the use of an all-zero IV.
 150 * The buffer containing the IV must be as large as the
 151 * cipher's ivsize.
 152 *
 153 * Return values:
 154 *   %0: @in successfully decrypted into @out
 155 *   negative errno: @in not decrypted
 156 */
 157u32
 158krb5_decrypt(
 159     struct crypto_sync_skcipher *tfm,
 160     void * iv,
 161     void * in,
 162     void * out,
 163     int length)
 164{
 165	u32 ret = -EINVAL;
 166	struct scatterlist sg[1];
 167	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
 168	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 169
 170	if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
 171		goto out;
 172
 173	if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
 174		dprintk("RPC:       gss_k5decrypt: tfm iv size too large %d\n",
 175			crypto_sync_skcipher_ivsize(tfm));
 176		goto out;
 177	}
 178	if (iv)
 179		memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
 180
 181	memcpy(out, in, length);
 182	sg_init_one(sg, out, length);
 183
 184	skcipher_request_set_sync_tfm(req, tfm);
 185	skcipher_request_set_callback(req, 0, NULL, NULL);
 186	skcipher_request_set_crypt(req, sg, sg, length, local_iv);
 187
 188	ret = crypto_skcipher_decrypt(req);
 189	skcipher_request_zero(req);
 190out:
 191	dprintk("RPC:       gss_k5decrypt returns %d\n",ret);
 192	return ret;
 193}
 194
 195static int
 196checksummer(struct scatterlist *sg, void *data)
 197{
 198	struct ahash_request *req = data;
 199
 200	ahash_request_set_crypt(req, sg, NULL, sg->length);
 201
 202	return crypto_ahash_update(req);
 203}
 204
 205/*
 206 * checksum the plaintext data and hdrlen bytes of the token header
 207 * The checksum is performed over the first 8 bytes of the
 208 * gss token header and then over the data body
 209 */
 210u32
 211make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
 212	      struct xdr_buf *body, int body_offset, u8 *cksumkey,
 213	      unsigned int usage, struct xdr_netobj *cksumout)
 214{
 215	struct crypto_ahash *tfm;
 216	struct ahash_request *req;
 217	struct scatterlist              sg[1];
 218	int err = -1;
 219	u8 *checksumdata;
 220	unsigned int checksumlen;
 221
 222	if (cksumout->len < kctx->gk5e->cksumlength) {
 223		dprintk("%s: checksum buffer length, %u, too small for %s\n",
 224			__func__, cksumout->len, kctx->gk5e->name);
 225		return GSS_S_FAILURE;
 226	}
 227
 228	checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_KERNEL);
 229	if (checksumdata == NULL)
 230		return GSS_S_FAILURE;
 231
 232	tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
 233	if (IS_ERR(tfm))
 234		goto out_free_cksum;
 235
 236	req = ahash_request_alloc(tfm, GFP_KERNEL);
 237	if (!req)
 238		goto out_free_ahash;
 239
 240	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 241
 242	checksumlen = crypto_ahash_digestsize(tfm);
 243
 244	if (cksumkey != NULL) {
 245		err = crypto_ahash_setkey(tfm, cksumkey,
 246					  kctx->gk5e->keylength);
 247		if (err)
 248			goto out;
 249	}
 250
 251	err = crypto_ahash_init(req);
 252	if (err)
 253		goto out;
 254	sg_init_one(sg, header, hdrlen);
 255	ahash_request_set_crypt(req, sg, NULL, hdrlen);
 256	err = crypto_ahash_update(req);
 257	if (err)
 258		goto out;
 259	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 260			      checksummer, req);
 261	if (err)
 262		goto out;
 263	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 264	err = crypto_ahash_final(req);
 265	if (err)
 266		goto out;
 267
 268	switch (kctx->gk5e->ctype) {
 269	case CKSUMTYPE_RSA_MD5:
 270		err = krb5_encrypt(kctx->seq, NULL, checksumdata,
 271				   checksumdata, checksumlen);
 272		if (err)
 273			goto out;
 274		memcpy(cksumout->data,
 275		       checksumdata + checksumlen - kctx->gk5e->cksumlength,
 276		       kctx->gk5e->cksumlength);
 277		break;
 278	case CKSUMTYPE_HMAC_SHA1_DES3:
 279		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 280		break;
 281	default:
 282		BUG();
 283		break;
 284	}
 285	cksumout->len = kctx->gk5e->cksumlength;
 286out:
 287	ahash_request_free(req);
 288out_free_ahash:
 289	crypto_free_ahash(tfm);
 290out_free_cksum:
 291	kfree(checksumdata);
 292	return err ? GSS_S_FAILURE : 0;
 293}
 294
 295/**
 296 * gss_krb5_checksum - Compute the MAC for a GSS Wrap or MIC token
 297 * @tfm: an initialized hash transform
 298 * @header: pointer to a buffer containing the token header, or NULL
 299 * @hdrlen: number of octets in @header
 300 * @body: xdr_buf containing an RPC message (body.len is the message length)
 301 * @body_offset: byte offset into @body to start checksumming
 302 * @cksumout: OUT: a buffer to be filled in with the computed HMAC
 303 *
 304 * Usually expressed as H = HMAC(K, message)[1..h] .
 305 *
 306 * Caller provides the truncation length of the output token (h) in
 307 * cksumout.len.
 308 *
 309 * Return values:
 310 *   %GSS_S_COMPLETE: Digest computed, @cksumout filled in
 311 *   %GSS_S_FAILURE: Call failed
 312 */
 313u32
 314gss_krb5_checksum(struct crypto_ahash *tfm, char *header, int hdrlen,
 315		  const struct xdr_buf *body, int body_offset,
 316		  struct xdr_netobj *cksumout)
 317{
 318	struct ahash_request *req;
 319	int err = -ENOMEM;
 320	u8 *checksumdata;
 321
 322	checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL);
 323	if (!checksumdata)
 324		return GSS_S_FAILURE;
 325
 326	req = ahash_request_alloc(tfm, GFP_KERNEL);
 327	if (!req)
 328		goto out_free_cksum;
 329	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 330	err = crypto_ahash_init(req);
 331	if (err)
 332		goto out_free_ahash;
 333
 334	/*
 335	 * Per RFC 4121 Section 4.2.4, the checksum is performed over the
 336	 * data body first, then over the octets in "header".
 337	 */
 338	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 339			      checksummer, req);
 340	if (err)
 341		goto out_free_ahash;
 342	if (header) {
 343		struct scatterlist sg[1];
 344
 345		sg_init_one(sg, header, hdrlen);
 346		ahash_request_set_crypt(req, sg, NULL, hdrlen);
 347		err = crypto_ahash_update(req);
 348		if (err)
 349			goto out_free_ahash;
 350	}
 351
 352	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 353	err = crypto_ahash_final(req);
 354	if (err)
 355		goto out_free_ahash;
 356
 357	memcpy(cksumout->data, checksumdata,
 358	       min_t(int, cksumout->len, crypto_ahash_digestsize(tfm)));
 359
 360out_free_ahash:
 361	ahash_request_free(req);
 362out_free_cksum:
 363	kfree_sensitive(checksumdata);
 364	return err ? GSS_S_FAILURE : GSS_S_COMPLETE;
 365}
 366EXPORT_SYMBOL_IF_KUNIT(gss_krb5_checksum);
 367
 368struct encryptor_desc {
 369	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 370	struct skcipher_request *req;
 371	int pos;
 372	struct xdr_buf *outbuf;
 373	struct page **pages;
 374	struct scatterlist infrags[4];
 375	struct scatterlist outfrags[4];
 376	int fragno;
 377	int fraglen;
 378};
 379
 380static int
 381encryptor(struct scatterlist *sg, void *data)
 382{
 383	struct encryptor_desc *desc = data;
 384	struct xdr_buf *outbuf = desc->outbuf;
 385	struct crypto_sync_skcipher *tfm =
 386		crypto_sync_skcipher_reqtfm(desc->req);
 387	struct page *in_page;
 388	int thislen = desc->fraglen + sg->length;
 389	int fraglen, ret;
 390	int page_pos;
 391
 392	/* Worst case is 4 fragments: head, end of page 1, start
 393	 * of page 2, tail.  Anything more is a bug. */
 394	BUG_ON(desc->fragno > 3);
 395
 396	page_pos = desc->pos - outbuf->head[0].iov_len;
 397	if (page_pos >= 0 && page_pos < outbuf->page_len) {
 398		/* pages are not in place: */
 399		int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
 400		in_page = desc->pages[i];
 401	} else {
 402		in_page = sg_page(sg);
 403	}
 404	sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
 405		    sg->offset);
 406	sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
 407		    sg->offset);
 408	desc->fragno++;
 409	desc->fraglen += sg->length;
 410	desc->pos += sg->length;
 411
 412	fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
 413	thislen -= fraglen;
 414
 415	if (thislen == 0)
 416		return 0;
 417
 418	sg_mark_end(&desc->infrags[desc->fragno - 1]);
 419	sg_mark_end(&desc->outfrags[desc->fragno - 1]);
 420
 421	skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
 422				   thislen, desc->iv);
 423
 424	ret = crypto_skcipher_encrypt(desc->req);
 425	if (ret)
 426		return ret;
 427
 428	sg_init_table(desc->infrags, 4);
 429	sg_init_table(desc->outfrags, 4);
 430
 431	if (fraglen) {
 432		sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
 433				sg->offset + sg->length - fraglen);
 434		desc->infrags[0] = desc->outfrags[0];
 435		sg_assign_page(&desc->infrags[0], in_page);
 436		desc->fragno = 1;
 437		desc->fraglen = fraglen;
 438	} else {
 439		desc->fragno = 0;
 440		desc->fraglen = 0;
 441	}
 442	return 0;
 443}
 444
 445int
 446gss_encrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
 447		    int offset, struct page **pages)
 448{
 449	int ret;
 450	struct encryptor_desc desc;
 451	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 452
 453	BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
 454
 455	skcipher_request_set_sync_tfm(req, tfm);
 456	skcipher_request_set_callback(req, 0, NULL, NULL);
 457
 458	memset(desc.iv, 0, sizeof(desc.iv));
 459	desc.req = req;
 460	desc.pos = offset;
 461	desc.outbuf = buf;
 462	desc.pages = pages;
 463	desc.fragno = 0;
 464	desc.fraglen = 0;
 465
 466	sg_init_table(desc.infrags, 4);
 467	sg_init_table(desc.outfrags, 4);
 468
 469	ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
 470	skcipher_request_zero(req);
 471	return ret;
 472}
 473
 474struct decryptor_desc {
 475	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 476	struct skcipher_request *req;
 477	struct scatterlist frags[4];
 478	int fragno;
 479	int fraglen;
 480};
 481
 482static int
 483decryptor(struct scatterlist *sg, void *data)
 484{
 485	struct decryptor_desc *desc = data;
 486	int thislen = desc->fraglen + sg->length;
 487	struct crypto_sync_skcipher *tfm =
 488		crypto_sync_skcipher_reqtfm(desc->req);
 489	int fraglen, ret;
 490
 491	/* Worst case is 4 fragments: head, end of page 1, start
 492	 * of page 2, tail.  Anything more is a bug. */
 493	BUG_ON(desc->fragno > 3);
 494	sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
 495		    sg->offset);
 496	desc->fragno++;
 497	desc->fraglen += sg->length;
 498
 499	fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
 500	thislen -= fraglen;
 501
 502	if (thislen == 0)
 503		return 0;
 504
 505	sg_mark_end(&desc->frags[desc->fragno - 1]);
 506
 507	skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
 508				   thislen, desc->iv);
 509
 510	ret = crypto_skcipher_decrypt(desc->req);
 511	if (ret)
 512		return ret;
 513
 514	sg_init_table(desc->frags, 4);
 515
 516	if (fraglen) {
 517		sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
 518				sg->offset + sg->length - fraglen);
 519		desc->fragno = 1;
 520		desc->fraglen = fraglen;
 521	} else {
 522		desc->fragno = 0;
 523		desc->fraglen = 0;
 524	}
 525	return 0;
 526}
 527
 528int
 529gss_decrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
 530		    int offset)
 531{
 532	int ret;
 533	struct decryptor_desc desc;
 534	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 535
 536	/* XXXJBF: */
 537	BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
 538
 539	skcipher_request_set_sync_tfm(req, tfm);
 540	skcipher_request_set_callback(req, 0, NULL, NULL);
 541
 542	memset(desc.iv, 0, sizeof(desc.iv));
 543	desc.req = req;
 544	desc.fragno = 0;
 545	desc.fraglen = 0;
 546
 547	sg_init_table(desc.frags, 4);
 548
 549	ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
 550	skcipher_request_zero(req);
 551	return ret;
 552}
 553
 554/*
 555 * This function makes the assumption that it was ultimately called
 556 * from gss_wrap().
 557 *
 558 * The client auth_gss code moves any existing tail data into a
 559 * separate page before calling gss_wrap.
 560 * The server svcauth_gss code ensures that both the head and the
 561 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
 562 *
 563 * Even with that guarantee, this function may be called more than
 564 * once in the processing of gss_wrap().  The best we can do is
 565 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
 566 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
 567 * At run-time we can verify that a single invocation of this
 568 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
 569 */
 570
 571int
 572xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
 573{
 574	u8 *p;
 575
 576	if (shiftlen == 0)
 577		return 0;
 578
 579	BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
 580
 581	p = buf->head[0].iov_base + base;
 582
 583	memmove(p + shiftlen, p, buf->head[0].iov_len - base);
 584
 585	buf->head[0].iov_len += shiftlen;
 586	buf->len += shiftlen;
 587
 588	return 0;
 589}
 590
 591static u32
 592gss_krb5_cts_crypt(struct crypto_sync_skcipher *cipher, struct xdr_buf *buf,
 593		   u32 offset, u8 *iv, struct page **pages, int encrypt)
 594{
 595	u32 ret;
 596	struct scatterlist sg[1];
 597	SYNC_SKCIPHER_REQUEST_ON_STACK(req, cipher);
 598	u8 *data;
 599	struct page **save_pages;
 600	u32 len = buf->len - offset;
 601
 602	if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
 603		WARN_ON(0);
 604		return -ENOMEM;
 605	}
 606	data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_KERNEL);
 607	if (!data)
 608		return -ENOMEM;
 609
 610	/*
 611	 * For encryption, we want to read from the cleartext
 612	 * page cache pages, and write the encrypted data to
 613	 * the supplied xdr_buf pages.
 614	 */
 615	save_pages = buf->pages;
 616	if (encrypt)
 617		buf->pages = pages;
 618
 619	ret = read_bytes_from_xdr_buf(buf, offset, data, len);
 620	buf->pages = save_pages;
 621	if (ret)
 622		goto out;
 623
 624	sg_init_one(sg, data, len);
 625
 626	skcipher_request_set_sync_tfm(req, cipher);
 627	skcipher_request_set_callback(req, 0, NULL, NULL);
 628	skcipher_request_set_crypt(req, sg, sg, len, iv);
 629
 630	if (encrypt)
 631		ret = crypto_skcipher_encrypt(req);
 632	else
 633		ret = crypto_skcipher_decrypt(req);
 634
 635	skcipher_request_zero(req);
 636
 637	if (ret)
 638		goto out;
 639
 640	ret = write_bytes_to_xdr_buf(buf, offset, data, len);
 641
 642#if IS_ENABLED(CONFIG_KUNIT)
 643	/*
 644	 * CBC-CTS does not define an output IV but RFC 3962 defines it as the
 645	 * penultimate block of ciphertext, so copy that into the IV buffer
 646	 * before returning.
 647	 */
 648	if (encrypt)
 649		memcpy(iv, data, crypto_sync_skcipher_ivsize(cipher));
 650#endif
 651
 652out:
 653	kfree(data);
 654	return ret;
 655}
 656
 657/**
 658 * krb5_cbc_cts_encrypt - encrypt in CBC mode with CTS
 659 * @cts_tfm: CBC cipher with CTS
 660 * @cbc_tfm: base CBC cipher
 661 * @offset: starting byte offset for plaintext
 662 * @buf: OUT: output buffer
 663 * @pages: plaintext
 664 * @iv: output CBC initialization vector, or NULL
 665 * @ivsize: size of @iv, in octets
 666 *
 667 * To provide confidentiality, encrypt using cipher block chaining
 668 * with ciphertext stealing. Message integrity is handled separately.
 669 *
 670 * Return values:
 671 *   %0: encryption successful
 672 *   negative errno: encryption could not be completed
 673 */
 674VISIBLE_IF_KUNIT
 675int krb5_cbc_cts_encrypt(struct crypto_sync_skcipher *cts_tfm,
 676			 struct crypto_sync_skcipher *cbc_tfm,
 677			 u32 offset, struct xdr_buf *buf, struct page **pages,
 678			 u8 *iv, unsigned int ivsize)
 679{
 680	u32 blocksize, nbytes, nblocks, cbcbytes;
 681	struct encryptor_desc desc;
 682	int err;
 683
 684	blocksize = crypto_sync_skcipher_blocksize(cts_tfm);
 685	nbytes = buf->len - offset;
 686	nblocks = (nbytes + blocksize - 1) / blocksize;
 687	cbcbytes = 0;
 688	if (nblocks > 2)
 689		cbcbytes = (nblocks - 2) * blocksize;
 690
 691	memset(desc.iv, 0, sizeof(desc.iv));
 692
 693	/* Handle block-sized chunks of plaintext with CBC. */
 694	if (cbcbytes) {
 695		SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm);
 696
 697		desc.pos = offset;
 698		desc.fragno = 0;
 699		desc.fraglen = 0;
 700		desc.pages = pages;
 701		desc.outbuf = buf;
 702		desc.req = req;
 703
 704		skcipher_request_set_sync_tfm(req, cbc_tfm);
 705		skcipher_request_set_callback(req, 0, NULL, NULL);
 706
 707		sg_init_table(desc.infrags, 4);
 708		sg_init_table(desc.outfrags, 4);
 709
 710		err = xdr_process_buf(buf, offset, cbcbytes, encryptor, &desc);
 711		skcipher_request_zero(req);
 712		if (err)
 713			return err;
 714	}
 715
 716	/* Remaining plaintext is handled with CBC-CTS. */
 717	err = gss_krb5_cts_crypt(cts_tfm, buf, offset + cbcbytes,
 718				 desc.iv, pages, 1);
 719	if (err)
 720		return err;
 721
 722	if (unlikely(iv))
 723		memcpy(iv, desc.iv, ivsize);
 724	return 0;
 725}
 726EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_encrypt);
 727
 728/**
 729 * krb5_cbc_cts_decrypt - decrypt in CBC mode with CTS
 730 * @cts_tfm: CBC cipher with CTS
 731 * @cbc_tfm: base CBC cipher
 732 * @offset: starting byte offset for plaintext
 733 * @buf: OUT: output buffer
 734 *
 735 * Return values:
 736 *   %0: decryption successful
 737 *   negative errno: decryption could not be completed
 738 */
 739VISIBLE_IF_KUNIT
 740int krb5_cbc_cts_decrypt(struct crypto_sync_skcipher *cts_tfm,
 741			 struct crypto_sync_skcipher *cbc_tfm,
 742			 u32 offset, struct xdr_buf *buf)
 743{
 744	u32 blocksize, nblocks, cbcbytes;
 745	struct decryptor_desc desc;
 746	int err;
 747
 748	blocksize = crypto_sync_skcipher_blocksize(cts_tfm);
 749	nblocks = (buf->len + blocksize - 1) / blocksize;
 750	cbcbytes = 0;
 751	if (nblocks > 2)
 752		cbcbytes = (nblocks - 2) * blocksize;
 753
 754	memset(desc.iv, 0, sizeof(desc.iv));
 755
 756	/* Handle block-sized chunks of plaintext with CBC. */
 757	if (cbcbytes) {
 758		SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm);
 759
 760		desc.fragno = 0;
 761		desc.fraglen = 0;
 762		desc.req = req;
 763
 764		skcipher_request_set_sync_tfm(req, cbc_tfm);
 765		skcipher_request_set_callback(req, 0, NULL, NULL);
 766
 767		sg_init_table(desc.frags, 4);
 768
 769		err = xdr_process_buf(buf, 0, cbcbytes, decryptor, &desc);
 770		skcipher_request_zero(req);
 771		if (err)
 772			return err;
 773	}
 774
 775	/* Remaining plaintext is handled with CBC-CTS. */
 776	return gss_krb5_cts_crypt(cts_tfm, buf, cbcbytes, desc.iv, NULL, 0);
 777}
 778EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_decrypt);
 779
 780u32
 781gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
 782		     struct xdr_buf *buf, struct page **pages)
 783{
 784	u32 err;
 785	struct xdr_netobj hmac;
 786	u8 *ecptr;
 787	struct crypto_sync_skcipher *cipher, *aux_cipher;
 788	struct crypto_ahash *ahash;
 789	struct page **save_pages;
 790	unsigned int conflen;
 791
 792	if (kctx->initiate) {
 793		cipher = kctx->initiator_enc;
 794		aux_cipher = kctx->initiator_enc_aux;
 795		ahash = kctx->initiator_integ;
 796	} else {
 797		cipher = kctx->acceptor_enc;
 798		aux_cipher = kctx->acceptor_enc_aux;
 799		ahash = kctx->acceptor_integ;
 800	}
 801	conflen = crypto_sync_skcipher_blocksize(cipher);
 802
 803	/* hide the gss token header and insert the confounder */
 804	offset += GSS_KRB5_TOK_HDR_LEN;
 805	if (xdr_extend_head(buf, offset, conflen))
 806		return GSS_S_FAILURE;
 807	krb5_make_confounder(buf->head[0].iov_base + offset, conflen);
 808	offset -= GSS_KRB5_TOK_HDR_LEN;
 809
 810	if (buf->tail[0].iov_base != NULL) {
 811		ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
 812	} else {
 813		buf->tail[0].iov_base = buf->head[0].iov_base
 814							+ buf->head[0].iov_len;
 815		buf->tail[0].iov_len = 0;
 816		ecptr = buf->tail[0].iov_base;
 817	}
 818
 819	/* copy plaintext gss token header after filler (if any) */
 820	memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
 821	buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
 822	buf->len += GSS_KRB5_TOK_HDR_LEN;
 823
 824	hmac.len = kctx->gk5e->cksumlength;
 825	hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
 826
 827	/*
 828	 * When we are called, pages points to the real page cache
 829	 * data -- which we can't go and encrypt!  buf->pages points
 830	 * to scratch pages which we are going to send off to the
 831	 * client/server.  Swap in the plaintext pages to calculate
 832	 * the hmac.
 833	 */
 834	save_pages = buf->pages;
 835	buf->pages = pages;
 836
 837	err = gss_krb5_checksum(ahash, NULL, 0, buf,
 838				offset + GSS_KRB5_TOK_HDR_LEN, &hmac);
 839	buf->pages = save_pages;
 840	if (err)
 841		return GSS_S_FAILURE;
 842
 843	err = krb5_cbc_cts_encrypt(cipher, aux_cipher,
 844				   offset + GSS_KRB5_TOK_HDR_LEN,
 845				   buf, pages, NULL, 0);
 846	if (err)
 847		return GSS_S_FAILURE;
 848
 849	/* Now update buf to account for HMAC */
 850	buf->tail[0].iov_len += kctx->gk5e->cksumlength;
 851	buf->len += kctx->gk5e->cksumlength;
 852
 853	return GSS_S_COMPLETE;
 854}
 855
 856u32
 857gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
 858		     struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
 859{
 860	struct crypto_sync_skcipher *cipher, *aux_cipher;
 861	struct crypto_ahash *ahash;
 862	struct xdr_netobj our_hmac_obj;
 863	u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 864	u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 865	struct xdr_buf subbuf;
 866	u32 ret = 0;
 867
 868	if (kctx->initiate) {
 869		cipher = kctx->acceptor_enc;
 870		aux_cipher = kctx->acceptor_enc_aux;
 871		ahash = kctx->acceptor_integ;
 872	} else {
 873		cipher = kctx->initiator_enc;
 874		aux_cipher = kctx->initiator_enc_aux;
 875		ahash = kctx->initiator_integ;
 876	}
 877
 878	/* create a segment skipping the header and leaving out the checksum */
 879	xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
 880				    (len - offset - GSS_KRB5_TOK_HDR_LEN -
 881				     kctx->gk5e->cksumlength));
 882
 883	ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf);
 884	if (ret)
 885		goto out_err;
 886
 887	our_hmac_obj.len = kctx->gk5e->cksumlength;
 888	our_hmac_obj.data = our_hmac;
 889	ret = gss_krb5_checksum(ahash, NULL, 0, &subbuf, 0, &our_hmac_obj);
 890	if (ret)
 891		goto out_err;
 892
 893	/* Get the packet's hmac value */
 894	ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
 895				      pkt_hmac, kctx->gk5e->cksumlength);
 896	if (ret)
 897		goto out_err;
 898
 899	if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
 900		ret = GSS_S_BAD_SIG;
 901		goto out_err;
 902	}
 903	*headskip = crypto_sync_skcipher_blocksize(cipher);
 904	*tailskip = kctx->gk5e->cksumlength;
 905out_err:
 906	if (ret && ret != GSS_S_BAD_SIG)
 907		ret = GSS_S_FAILURE;
 908	return ret;
 909}
 910
 911/**
 912 * krb5_etm_checksum - Compute a MAC for a GSS Wrap token
 913 * @cipher: an initialized cipher transform
 914 * @tfm: an initialized hash transform
 915 * @body: xdr_buf containing an RPC message (body.len is the message length)
 916 * @body_offset: byte offset into @body to start checksumming
 917 * @cksumout: OUT: a buffer to be filled in with the computed HMAC
 918 *
 919 * Usually expressed as H = HMAC(K, IV | ciphertext)[1..h] .
 920 *
 921 * Caller provides the truncation length of the output token (h) in
 922 * cksumout.len.
 923 *
 924 * Return values:
 925 *   %GSS_S_COMPLETE: Digest computed, @cksumout filled in
 926 *   %GSS_S_FAILURE: Call failed
 927 */
 928VISIBLE_IF_KUNIT
 929u32 krb5_etm_checksum(struct crypto_sync_skcipher *cipher,
 930		      struct crypto_ahash *tfm, const struct xdr_buf *body,
 931		      int body_offset, struct xdr_netobj *cksumout)
 932{
 933	unsigned int ivsize = crypto_sync_skcipher_ivsize(cipher);
 934	struct ahash_request *req;
 935	struct scatterlist sg[1];
 936	u8 *iv, *checksumdata;
 937	int err = -ENOMEM;
 938
 939	checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL);
 940	if (!checksumdata)
 941		return GSS_S_FAILURE;
 942	/* For RPCSEC, the "initial cipher state" is always all zeroes. */
 943	iv = kzalloc(ivsize, GFP_KERNEL);
 944	if (!iv)
 945		goto out_free_mem;
 946
 947	req = ahash_request_alloc(tfm, GFP_KERNEL);
 948	if (!req)
 949		goto out_free_mem;
 950	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 951	err = crypto_ahash_init(req);
 952	if (err)
 953		goto out_free_ahash;
 954
 955	sg_init_one(sg, iv, ivsize);
 956	ahash_request_set_crypt(req, sg, NULL, ivsize);
 957	err = crypto_ahash_update(req);
 958	if (err)
 959		goto out_free_ahash;
 960	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 961			      checksummer, req);
 962	if (err)
 963		goto out_free_ahash;
 964
 965	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 966	err = crypto_ahash_final(req);
 967	if (err)
 968		goto out_free_ahash;
 969	memcpy(cksumout->data, checksumdata, cksumout->len);
 970
 971out_free_ahash:
 972	ahash_request_free(req);
 973out_free_mem:
 974	kfree(iv);
 975	kfree_sensitive(checksumdata);
 976	return err ? GSS_S_FAILURE : GSS_S_COMPLETE;
 977}
 978EXPORT_SYMBOL_IF_KUNIT(krb5_etm_checksum);
 979
 980/**
 981 * krb5_etm_encrypt - Encrypt using the RFC 8009 rules
 982 * @kctx: Kerberos context
 983 * @offset: starting offset of the payload, in bytes
 984 * @buf: OUT: send buffer to contain the encrypted payload
 985 * @pages: plaintext payload
 986 *
 987 * The main difference with aes_encrypt is that "The HMAC is
 988 * calculated over the cipher state concatenated with the AES
 989 * output, instead of being calculated over the confounder and
 990 * plaintext.  This allows the message receiver to verify the
 991 * integrity of the message before decrypting the message."
 992 *
 993 * RFC 8009 Section 5:
 994 *
 995 * encryption function: as follows, where E() is AES encryption in
 996 * CBC-CS3 mode, and h is the size of truncated HMAC (128 bits or
 997 * 192 bits as described above).
 998 *
 999 *    N = random value of length 128 bits (the AES block size)
1000 *    IV = cipher state
1001 *    C = E(Ke, N | plaintext, IV)
1002 *    H = HMAC(Ki, IV | C)
1003 *    ciphertext = C | H[1..h]
1004 *
1005 * This encryption formula provides AEAD EtM with key separation.
1006 *
1007 * Return values:
1008 *   %GSS_S_COMPLETE: Encryption successful
1009 *   %GSS_S_FAILURE: Encryption failed
1010 */
1011u32
1012krb5_etm_encrypt(struct krb5_ctx *kctx, u32 offset,
1013		 struct xdr_buf *buf, struct page **pages)
1014{
1015	struct crypto_sync_skcipher *cipher, *aux_cipher;
1016	struct crypto_ahash *ahash;
1017	struct xdr_netobj hmac;
1018	unsigned int conflen;
1019	u8 *ecptr;
1020	u32 err;
1021
1022	if (kctx->initiate) {
1023		cipher = kctx->initiator_enc;
1024		aux_cipher = kctx->initiator_enc_aux;
1025		ahash = kctx->initiator_integ;
1026	} else {
1027		cipher = kctx->acceptor_enc;
1028		aux_cipher = kctx->acceptor_enc_aux;
1029		ahash = kctx->acceptor_integ;
1030	}
1031	conflen = crypto_sync_skcipher_blocksize(cipher);
1032
1033	offset += GSS_KRB5_TOK_HDR_LEN;
1034	if (xdr_extend_head(buf, offset, conflen))
1035		return GSS_S_FAILURE;
1036	krb5_make_confounder(buf->head[0].iov_base + offset, conflen);
1037	offset -= GSS_KRB5_TOK_HDR_LEN;
1038
1039	if (buf->tail[0].iov_base) {
1040		ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
1041	} else {
1042		buf->tail[0].iov_base = buf->head[0].iov_base
1043							+ buf->head[0].iov_len;
1044		buf->tail[0].iov_len = 0;
1045		ecptr = buf->tail[0].iov_base;
1046	}
1047
1048	memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
1049	buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
1050	buf->len += GSS_KRB5_TOK_HDR_LEN;
1051
1052	err = krb5_cbc_cts_encrypt(cipher, aux_cipher,
1053				   offset + GSS_KRB5_TOK_HDR_LEN,
1054				   buf, pages, NULL, 0);
1055	if (err)
1056		return GSS_S_FAILURE;
1057
1058	hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
1059	hmac.len = kctx->gk5e->cksumlength;
1060	err = krb5_etm_checksum(cipher, ahash,
1061				buf, offset + GSS_KRB5_TOK_HDR_LEN, &hmac);
1062	if (err)
1063		goto out_err;
1064	buf->tail[0].iov_len += kctx->gk5e->cksumlength;
1065	buf->len += kctx->gk5e->cksumlength;
1066
1067	return GSS_S_COMPLETE;
1068
1069out_err:
1070	return GSS_S_FAILURE;
1071}
1072
1073/**
1074 * krb5_etm_decrypt - Decrypt using the RFC 8009 rules
1075 * @kctx: Kerberos context
1076 * @offset: starting offset of the ciphertext, in bytes
1077 * @len:
1078 * @buf:
1079 * @headskip: OUT: the enctype's confounder length, in octets
1080 * @tailskip: OUT: the enctype's HMAC length, in octets
1081 *
1082 * RFC 8009 Section 5:
1083 *
1084 * decryption function: as follows, where D() is AES decryption in
1085 * CBC-CS3 mode, and h is the size of truncated HMAC.
1086 *
1087 *    (C, H) = ciphertext
1088 *        (Note: H is the last h bits of the ciphertext.)
1089 *    IV = cipher state
1090 *    if H != HMAC(Ki, IV | C)[1..h]
1091 *        stop, report error
1092 *    (N, P) = D(Ke, C, IV)
1093 *
1094 * Return values:
1095 *   %GSS_S_COMPLETE: Decryption successful
1096 *   %GSS_S_BAD_SIG: computed HMAC != received HMAC
1097 *   %GSS_S_FAILURE: Decryption failed
1098 */
1099u32
1100krb5_etm_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
1101		 struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
1102{
1103	struct crypto_sync_skcipher *cipher, *aux_cipher;
1104	u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
1105	u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
1106	struct xdr_netobj our_hmac_obj;
1107	struct crypto_ahash *ahash;
1108	struct xdr_buf subbuf;
1109	u32 ret = 0;
1110
1111	if (kctx->initiate) {
1112		cipher = kctx->acceptor_enc;
1113		aux_cipher = kctx->acceptor_enc_aux;
1114		ahash = kctx->acceptor_integ;
1115	} else {
1116		cipher = kctx->initiator_enc;
1117		aux_cipher = kctx->initiator_enc_aux;
1118		ahash = kctx->initiator_integ;
1119	}
1120
1121	/* Extract the ciphertext into @subbuf. */
1122	xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
1123			   (len - offset - GSS_KRB5_TOK_HDR_LEN -
1124			    kctx->gk5e->cksumlength));
1125
1126	our_hmac_obj.data = our_hmac;
1127	our_hmac_obj.len = kctx->gk5e->cksumlength;
1128	ret = krb5_etm_checksum(cipher, ahash, &subbuf, 0, &our_hmac_obj);
1129	if (ret)
1130		goto out_err;
1131	ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
1132				      pkt_hmac, kctx->gk5e->cksumlength);
1133	if (ret)
1134		goto out_err;
1135	if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
1136		ret = GSS_S_BAD_SIG;
1137		goto out_err;
1138	}
1139
1140	ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf);
1141	if (ret) {
1142		ret = GSS_S_FAILURE;
1143		goto out_err;
1144	}
1145
1146	*headskip = crypto_sync_skcipher_blocksize(cipher);
1147	*tailskip = kctx->gk5e->cksumlength;
1148	return GSS_S_COMPLETE;
1149
1150out_err:
1151	if (ret != GSS_S_BAD_SIG)
1152		ret = GSS_S_FAILURE;
1153	return ret;
1154}
v6.13.7
   1/*
   2 *  linux/net/sunrpc/gss_krb5_crypto.c
   3 *
   4 *  Copyright (c) 2000-2008 The Regents of the University of Michigan.
   5 *  All rights reserved.
   6 *
   7 *  Andy Adamson   <andros@umich.edu>
   8 *  Bruce Fields   <bfields@umich.edu>
   9 */
  10
  11/*
  12 * Copyright (C) 1998 by the FundsXpress, INC.
  13 *
  14 * All rights reserved.
  15 *
  16 * Export of this software from the United States of America may require
  17 * a specific license from the United States Government.  It is the
  18 * responsibility of any person or organization contemplating export to
  19 * obtain such a license before exporting.
  20 *
  21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
  22 * distribute this software and its documentation for any purpose and
  23 * without fee is hereby granted, provided that the above copyright
  24 * notice appear in all copies and that both that copyright notice and
  25 * this permission notice appear in supporting documentation, and that
  26 * the name of FundsXpress. not be used in advertising or publicity pertaining
  27 * to distribution of the software without specific, written prior
  28 * permission.  FundsXpress makes no representations about the suitability of
  29 * this software for any purpose.  It is provided "as is" without express
  30 * or implied warranty.
  31 *
  32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
  33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
  34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
  35 */
  36
  37#include <crypto/hash.h>
  38#include <crypto/skcipher.h>
  39#include <crypto/utils.h>
  40#include <linux/err.h>
  41#include <linux/types.h>
  42#include <linux/mm.h>
  43#include <linux/scatterlist.h>
  44#include <linux/highmem.h>
  45#include <linux/pagemap.h>
  46#include <linux/random.h>
  47#include <linux/sunrpc/gss_krb5.h>
  48#include <linux/sunrpc/xdr.h>
  49#include <kunit/visibility.h>
  50
  51#include "gss_krb5_internal.h"
  52
  53#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  54# define RPCDBG_FACILITY        RPCDBG_AUTH
  55#endif
  56
  57/**
  58 * krb5_make_confounder - Generate a confounder string
  59 * @p: memory location into which to write the string
  60 * @conflen: string length to write, in octets
  61 *
  62 * RFCs 1964 and 3961 mention only "a random confounder" without going
  63 * into detail about its function or cryptographic requirements. The
  64 * assumed purpose is to prevent repeated encryption of a plaintext with
  65 * the same key from generating the same ciphertext. It is also used to
  66 * pad minimum plaintext length to at least a single cipher block.
  67 *
  68 * However, in situations like the GSS Kerberos 5 mechanism, where the
  69 * encryption IV is always all zeroes, the confounder also effectively
  70 * functions like an IV. Thus, not only must it be unique from message
  71 * to message, but it must also be difficult to predict. Otherwise an
  72 * attacker can correlate the confounder to previous or future values,
  73 * making the encryption easier to break.
  74 *
  75 * Given that the primary consumer of this encryption mechanism is a
  76 * network storage protocol, a type of traffic that often carries
  77 * predictable payloads (eg, all zeroes when reading unallocated blocks
  78 * from a file), our confounder generation has to be cryptographically
  79 * strong.
  80 */
  81void krb5_make_confounder(u8 *p, int conflen)
  82{
  83	get_random_bytes(p, conflen);
  84}
  85
  86/**
  87 * krb5_encrypt - simple encryption of an RPCSEC GSS payload
  88 * @tfm: initialized cipher transform
  89 * @iv: pointer to an IV
  90 * @in: plaintext to encrypt
  91 * @out: OUT: ciphertext
  92 * @length: length of input and output buffers, in bytes
  93 *
  94 * @iv may be NULL to force the use of an all-zero IV.
  95 * The buffer containing the IV must be as large as the
  96 * cipher's ivsize.
  97 *
  98 * Return values:
  99 *   %0: @in successfully encrypted into @out
 100 *   negative errno: @in not encrypted
 101 */
 102u32
 103krb5_encrypt(
 104	struct crypto_sync_skcipher *tfm,
 105	void * iv,
 106	void * in,
 107	void * out,
 108	int length)
 109{
 110	u32 ret = -EINVAL;
 111	struct scatterlist sg[1];
 112	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
 113	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 114
 115	if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
 116		goto out;
 117
 118	if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
 119		dprintk("RPC:       gss_k5encrypt: tfm iv size too large %d\n",
 120			crypto_sync_skcipher_ivsize(tfm));
 121		goto out;
 122	}
 123
 124	if (iv)
 125		memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
 126
 127	memcpy(out, in, length);
 128	sg_init_one(sg, out, length);
 129
 130	skcipher_request_set_sync_tfm(req, tfm);
 131	skcipher_request_set_callback(req, 0, NULL, NULL);
 132	skcipher_request_set_crypt(req, sg, sg, length, local_iv);
 133
 134	ret = crypto_skcipher_encrypt(req);
 135	skcipher_request_zero(req);
 136out:
 137	dprintk("RPC:       krb5_encrypt returns %d\n", ret);
 138	return ret;
 139}
 140
 141/**
 142 * krb5_decrypt - simple decryption of an RPCSEC GSS payload
 143 * @tfm: initialized cipher transform
 144 * @iv: pointer to an IV
 145 * @in: ciphertext to decrypt
 146 * @out: OUT: plaintext
 147 * @length: length of input and output buffers, in bytes
 148 *
 149 * @iv may be NULL to force the use of an all-zero IV.
 150 * The buffer containing the IV must be as large as the
 151 * cipher's ivsize.
 152 *
 153 * Return values:
 154 *   %0: @in successfully decrypted into @out
 155 *   negative errno: @in not decrypted
 156 */
 157u32
 158krb5_decrypt(
 159     struct crypto_sync_skcipher *tfm,
 160     void * iv,
 161     void * in,
 162     void * out,
 163     int length)
 164{
 165	u32 ret = -EINVAL;
 166	struct scatterlist sg[1];
 167	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
 168	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 169
 170	if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
 171		goto out;
 172
 173	if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
 174		dprintk("RPC:       gss_k5decrypt: tfm iv size too large %d\n",
 175			crypto_sync_skcipher_ivsize(tfm));
 176		goto out;
 177	}
 178	if (iv)
 179		memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
 180
 181	memcpy(out, in, length);
 182	sg_init_one(sg, out, length);
 183
 184	skcipher_request_set_sync_tfm(req, tfm);
 185	skcipher_request_set_callback(req, 0, NULL, NULL);
 186	skcipher_request_set_crypt(req, sg, sg, length, local_iv);
 187
 188	ret = crypto_skcipher_decrypt(req);
 189	skcipher_request_zero(req);
 190out:
 191	dprintk("RPC:       gss_k5decrypt returns %d\n",ret);
 192	return ret;
 193}
 194
 195static int
 196checksummer(struct scatterlist *sg, void *data)
 197{
 198	struct ahash_request *req = data;
 199
 200	ahash_request_set_crypt(req, sg, NULL, sg->length);
 201
 202	return crypto_ahash_update(req);
 203}
 204
 205/*
 206 * checksum the plaintext data and hdrlen bytes of the token header
 207 * The checksum is performed over the first 8 bytes of the
 208 * gss token header and then over the data body
 209 */
 210u32
 211make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
 212	      struct xdr_buf *body, int body_offset, u8 *cksumkey,
 213	      unsigned int usage, struct xdr_netobj *cksumout)
 214{
 215	struct crypto_ahash *tfm;
 216	struct ahash_request *req;
 217	struct scatterlist              sg[1];
 218	int err = -1;
 219	u8 *checksumdata;
 220	unsigned int checksumlen;
 221
 222	if (cksumout->len < kctx->gk5e->cksumlength) {
 223		dprintk("%s: checksum buffer length, %u, too small for %s\n",
 224			__func__, cksumout->len, kctx->gk5e->name);
 225		return GSS_S_FAILURE;
 226	}
 227
 228	checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_KERNEL);
 229	if (checksumdata == NULL)
 230		return GSS_S_FAILURE;
 231
 232	tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
 233	if (IS_ERR(tfm))
 234		goto out_free_cksum;
 235
 236	req = ahash_request_alloc(tfm, GFP_KERNEL);
 237	if (!req)
 238		goto out_free_ahash;
 239
 240	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 241
 242	checksumlen = crypto_ahash_digestsize(tfm);
 243
 244	if (cksumkey != NULL) {
 245		err = crypto_ahash_setkey(tfm, cksumkey,
 246					  kctx->gk5e->keylength);
 247		if (err)
 248			goto out;
 249	}
 250
 251	err = crypto_ahash_init(req);
 252	if (err)
 253		goto out;
 254	sg_init_one(sg, header, hdrlen);
 255	ahash_request_set_crypt(req, sg, NULL, hdrlen);
 256	err = crypto_ahash_update(req);
 257	if (err)
 258		goto out;
 259	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 260			      checksummer, req);
 261	if (err)
 262		goto out;
 263	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 264	err = crypto_ahash_final(req);
 265	if (err)
 266		goto out;
 267
 268	switch (kctx->gk5e->ctype) {
 269	case CKSUMTYPE_RSA_MD5:
 270		err = krb5_encrypt(kctx->seq, NULL, checksumdata,
 271				   checksumdata, checksumlen);
 272		if (err)
 273			goto out;
 274		memcpy(cksumout->data,
 275		       checksumdata + checksumlen - kctx->gk5e->cksumlength,
 276		       kctx->gk5e->cksumlength);
 277		break;
 278	case CKSUMTYPE_HMAC_SHA1_DES3:
 279		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 280		break;
 281	default:
 282		BUG();
 283		break;
 284	}
 285	cksumout->len = kctx->gk5e->cksumlength;
 286out:
 287	ahash_request_free(req);
 288out_free_ahash:
 289	crypto_free_ahash(tfm);
 290out_free_cksum:
 291	kfree(checksumdata);
 292	return err ? GSS_S_FAILURE : 0;
 293}
 294
 295/**
 296 * gss_krb5_checksum - Compute the MAC for a GSS Wrap or MIC token
 297 * @tfm: an initialized hash transform
 298 * @header: pointer to a buffer containing the token header, or NULL
 299 * @hdrlen: number of octets in @header
 300 * @body: xdr_buf containing an RPC message (body.len is the message length)
 301 * @body_offset: byte offset into @body to start checksumming
 302 * @cksumout: OUT: a buffer to be filled in with the computed HMAC
 303 *
 304 * Usually expressed as H = HMAC(K, message)[1..h] .
 305 *
 306 * Caller provides the truncation length of the output token (h) in
 307 * cksumout.len.
 308 *
 309 * Return values:
 310 *   %GSS_S_COMPLETE: Digest computed, @cksumout filled in
 311 *   %GSS_S_FAILURE: Call failed
 312 */
 313u32
 314gss_krb5_checksum(struct crypto_ahash *tfm, char *header, int hdrlen,
 315		  const struct xdr_buf *body, int body_offset,
 316		  struct xdr_netobj *cksumout)
 317{
 318	struct ahash_request *req;
 319	int err = -ENOMEM;
 320	u8 *checksumdata;
 321
 322	checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL);
 323	if (!checksumdata)
 324		return GSS_S_FAILURE;
 325
 326	req = ahash_request_alloc(tfm, GFP_KERNEL);
 327	if (!req)
 328		goto out_free_cksum;
 329	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 330	err = crypto_ahash_init(req);
 331	if (err)
 332		goto out_free_ahash;
 333
 334	/*
 335	 * Per RFC 4121 Section 4.2.4, the checksum is performed over the
 336	 * data body first, then over the octets in "header".
 337	 */
 338	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 339			      checksummer, req);
 340	if (err)
 341		goto out_free_ahash;
 342	if (header) {
 343		struct scatterlist sg[1];
 344
 345		sg_init_one(sg, header, hdrlen);
 346		ahash_request_set_crypt(req, sg, NULL, hdrlen);
 347		err = crypto_ahash_update(req);
 348		if (err)
 349			goto out_free_ahash;
 350	}
 351
 352	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 353	err = crypto_ahash_final(req);
 354	if (err)
 355		goto out_free_ahash;
 356
 357	memcpy(cksumout->data, checksumdata,
 358	       min_t(int, cksumout->len, crypto_ahash_digestsize(tfm)));
 359
 360out_free_ahash:
 361	ahash_request_free(req);
 362out_free_cksum:
 363	kfree_sensitive(checksumdata);
 364	return err ? GSS_S_FAILURE : GSS_S_COMPLETE;
 365}
 366EXPORT_SYMBOL_IF_KUNIT(gss_krb5_checksum);
 367
 368struct encryptor_desc {
 369	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 370	struct skcipher_request *req;
 371	int pos;
 372	struct xdr_buf *outbuf;
 373	struct page **pages;
 374	struct scatterlist infrags[4];
 375	struct scatterlist outfrags[4];
 376	int fragno;
 377	int fraglen;
 378};
 379
 380static int
 381encryptor(struct scatterlist *sg, void *data)
 382{
 383	struct encryptor_desc *desc = data;
 384	struct xdr_buf *outbuf = desc->outbuf;
 385	struct crypto_sync_skcipher *tfm =
 386		crypto_sync_skcipher_reqtfm(desc->req);
 387	struct page *in_page;
 388	int thislen = desc->fraglen + sg->length;
 389	int fraglen, ret;
 390	int page_pos;
 391
 392	/* Worst case is 4 fragments: head, end of page 1, start
 393	 * of page 2, tail.  Anything more is a bug. */
 394	BUG_ON(desc->fragno > 3);
 395
 396	page_pos = desc->pos - outbuf->head[0].iov_len;
 397	if (page_pos >= 0 && page_pos < outbuf->page_len) {
 398		/* pages are not in place: */
 399		int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
 400		in_page = desc->pages[i];
 401	} else {
 402		in_page = sg_page(sg);
 403	}
 404	sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
 405		    sg->offset);
 406	sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
 407		    sg->offset);
 408	desc->fragno++;
 409	desc->fraglen += sg->length;
 410	desc->pos += sg->length;
 411
 412	fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
 413	thislen -= fraglen;
 414
 415	if (thislen == 0)
 416		return 0;
 417
 418	sg_mark_end(&desc->infrags[desc->fragno - 1]);
 419	sg_mark_end(&desc->outfrags[desc->fragno - 1]);
 420
 421	skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
 422				   thislen, desc->iv);
 423
 424	ret = crypto_skcipher_encrypt(desc->req);
 425	if (ret)
 426		return ret;
 427
 428	sg_init_table(desc->infrags, 4);
 429	sg_init_table(desc->outfrags, 4);
 430
 431	if (fraglen) {
 432		sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
 433				sg->offset + sg->length - fraglen);
 434		desc->infrags[0] = desc->outfrags[0];
 435		sg_assign_page(&desc->infrags[0], in_page);
 436		desc->fragno = 1;
 437		desc->fraglen = fraglen;
 438	} else {
 439		desc->fragno = 0;
 440		desc->fraglen = 0;
 441	}
 442	return 0;
 443}
 444
 445int
 446gss_encrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
 447		    int offset, struct page **pages)
 448{
 449	int ret;
 450	struct encryptor_desc desc;
 451	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 452
 453	BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
 454
 455	skcipher_request_set_sync_tfm(req, tfm);
 456	skcipher_request_set_callback(req, 0, NULL, NULL);
 457
 458	memset(desc.iv, 0, sizeof(desc.iv));
 459	desc.req = req;
 460	desc.pos = offset;
 461	desc.outbuf = buf;
 462	desc.pages = pages;
 463	desc.fragno = 0;
 464	desc.fraglen = 0;
 465
 466	sg_init_table(desc.infrags, 4);
 467	sg_init_table(desc.outfrags, 4);
 468
 469	ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
 470	skcipher_request_zero(req);
 471	return ret;
 472}
 473
 474struct decryptor_desc {
 475	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 476	struct skcipher_request *req;
 477	struct scatterlist frags[4];
 478	int fragno;
 479	int fraglen;
 480};
 481
 482static int
 483decryptor(struct scatterlist *sg, void *data)
 484{
 485	struct decryptor_desc *desc = data;
 486	int thislen = desc->fraglen + sg->length;
 487	struct crypto_sync_skcipher *tfm =
 488		crypto_sync_skcipher_reqtfm(desc->req);
 489	int fraglen, ret;
 490
 491	/* Worst case is 4 fragments: head, end of page 1, start
 492	 * of page 2, tail.  Anything more is a bug. */
 493	BUG_ON(desc->fragno > 3);
 494	sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
 495		    sg->offset);
 496	desc->fragno++;
 497	desc->fraglen += sg->length;
 498
 499	fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
 500	thislen -= fraglen;
 501
 502	if (thislen == 0)
 503		return 0;
 504
 505	sg_mark_end(&desc->frags[desc->fragno - 1]);
 506
 507	skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
 508				   thislen, desc->iv);
 509
 510	ret = crypto_skcipher_decrypt(desc->req);
 511	if (ret)
 512		return ret;
 513
 514	sg_init_table(desc->frags, 4);
 515
 516	if (fraglen) {
 517		sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
 518				sg->offset + sg->length - fraglen);
 519		desc->fragno = 1;
 520		desc->fraglen = fraglen;
 521	} else {
 522		desc->fragno = 0;
 523		desc->fraglen = 0;
 524	}
 525	return 0;
 526}
 527
 528int
 529gss_decrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
 530		    int offset)
 531{
 532	int ret;
 533	struct decryptor_desc desc;
 534	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 535
 536	/* XXXJBF: */
 537	BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
 538
 539	skcipher_request_set_sync_tfm(req, tfm);
 540	skcipher_request_set_callback(req, 0, NULL, NULL);
 541
 542	memset(desc.iv, 0, sizeof(desc.iv));
 543	desc.req = req;
 544	desc.fragno = 0;
 545	desc.fraglen = 0;
 546
 547	sg_init_table(desc.frags, 4);
 548
 549	ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
 550	skcipher_request_zero(req);
 551	return ret;
 552}
 553
 554/*
 555 * This function makes the assumption that it was ultimately called
 556 * from gss_wrap().
 557 *
 558 * The client auth_gss code moves any existing tail data into a
 559 * separate page before calling gss_wrap.
 560 * The server svcauth_gss code ensures that both the head and the
 561 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
 562 *
 563 * Even with that guarantee, this function may be called more than
 564 * once in the processing of gss_wrap().  The best we can do is
 565 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
 566 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
 567 * At run-time we can verify that a single invocation of this
 568 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
 569 */
 570
 571int
 572xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
 573{
 574	u8 *p;
 575
 576	if (shiftlen == 0)
 577		return 0;
 578
 579	BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
 580
 581	p = buf->head[0].iov_base + base;
 582
 583	memmove(p + shiftlen, p, buf->head[0].iov_len - base);
 584
 585	buf->head[0].iov_len += shiftlen;
 586	buf->len += shiftlen;
 587
 588	return 0;
 589}
 590
 591static u32
 592gss_krb5_cts_crypt(struct crypto_sync_skcipher *cipher, struct xdr_buf *buf,
 593		   u32 offset, u8 *iv, struct page **pages, int encrypt)
 594{
 595	u32 ret;
 596	struct scatterlist sg[1];
 597	SYNC_SKCIPHER_REQUEST_ON_STACK(req, cipher);
 598	u8 *data;
 599	struct page **save_pages;
 600	u32 len = buf->len - offset;
 601
 602	if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
 603		WARN_ON(0);
 604		return -ENOMEM;
 605	}
 606	data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_KERNEL);
 607	if (!data)
 608		return -ENOMEM;
 609
 610	/*
 611	 * For encryption, we want to read from the cleartext
 612	 * page cache pages, and write the encrypted data to
 613	 * the supplied xdr_buf pages.
 614	 */
 615	save_pages = buf->pages;
 616	if (encrypt)
 617		buf->pages = pages;
 618
 619	ret = read_bytes_from_xdr_buf(buf, offset, data, len);
 620	buf->pages = save_pages;
 621	if (ret)
 622		goto out;
 623
 624	sg_init_one(sg, data, len);
 625
 626	skcipher_request_set_sync_tfm(req, cipher);
 627	skcipher_request_set_callback(req, 0, NULL, NULL);
 628	skcipher_request_set_crypt(req, sg, sg, len, iv);
 629
 630	if (encrypt)
 631		ret = crypto_skcipher_encrypt(req);
 632	else
 633		ret = crypto_skcipher_decrypt(req);
 634
 635	skcipher_request_zero(req);
 636
 637	if (ret)
 638		goto out;
 639
 640	ret = write_bytes_to_xdr_buf(buf, offset, data, len);
 641
 642#if IS_ENABLED(CONFIG_KUNIT)
 643	/*
 644	 * CBC-CTS does not define an output IV but RFC 3962 defines it as the
 645	 * penultimate block of ciphertext, so copy that into the IV buffer
 646	 * before returning.
 647	 */
 648	if (encrypt)
 649		memcpy(iv, data, crypto_sync_skcipher_ivsize(cipher));
 650#endif
 651
 652out:
 653	kfree(data);
 654	return ret;
 655}
 656
 657/**
 658 * krb5_cbc_cts_encrypt - encrypt in CBC mode with CTS
 659 * @cts_tfm: CBC cipher with CTS
 660 * @cbc_tfm: base CBC cipher
 661 * @offset: starting byte offset for plaintext
 662 * @buf: OUT: output buffer
 663 * @pages: plaintext
 664 * @iv: output CBC initialization vector, or NULL
 665 * @ivsize: size of @iv, in octets
 666 *
 667 * To provide confidentiality, encrypt using cipher block chaining
 668 * with ciphertext stealing. Message integrity is handled separately.
 669 *
 670 * Return values:
 671 *   %0: encryption successful
 672 *   negative errno: encryption could not be completed
 673 */
 674VISIBLE_IF_KUNIT
 675int krb5_cbc_cts_encrypt(struct crypto_sync_skcipher *cts_tfm,
 676			 struct crypto_sync_skcipher *cbc_tfm,
 677			 u32 offset, struct xdr_buf *buf, struct page **pages,
 678			 u8 *iv, unsigned int ivsize)
 679{
 680	u32 blocksize, nbytes, nblocks, cbcbytes;
 681	struct encryptor_desc desc;
 682	int err;
 683
 684	blocksize = crypto_sync_skcipher_blocksize(cts_tfm);
 685	nbytes = buf->len - offset;
 686	nblocks = (nbytes + blocksize - 1) / blocksize;
 687	cbcbytes = 0;
 688	if (nblocks > 2)
 689		cbcbytes = (nblocks - 2) * blocksize;
 690
 691	memset(desc.iv, 0, sizeof(desc.iv));
 692
 693	/* Handle block-sized chunks of plaintext with CBC. */
 694	if (cbcbytes) {
 695		SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm);
 696
 697		desc.pos = offset;
 698		desc.fragno = 0;
 699		desc.fraglen = 0;
 700		desc.pages = pages;
 701		desc.outbuf = buf;
 702		desc.req = req;
 703
 704		skcipher_request_set_sync_tfm(req, cbc_tfm);
 705		skcipher_request_set_callback(req, 0, NULL, NULL);
 706
 707		sg_init_table(desc.infrags, 4);
 708		sg_init_table(desc.outfrags, 4);
 709
 710		err = xdr_process_buf(buf, offset, cbcbytes, encryptor, &desc);
 711		skcipher_request_zero(req);
 712		if (err)
 713			return err;
 714	}
 715
 716	/* Remaining plaintext is handled with CBC-CTS. */
 717	err = gss_krb5_cts_crypt(cts_tfm, buf, offset + cbcbytes,
 718				 desc.iv, pages, 1);
 719	if (err)
 720		return err;
 721
 722	if (unlikely(iv))
 723		memcpy(iv, desc.iv, ivsize);
 724	return 0;
 725}
 726EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_encrypt);
 727
 728/**
 729 * krb5_cbc_cts_decrypt - decrypt in CBC mode with CTS
 730 * @cts_tfm: CBC cipher with CTS
 731 * @cbc_tfm: base CBC cipher
 732 * @offset: starting byte offset for plaintext
 733 * @buf: OUT: output buffer
 734 *
 735 * Return values:
 736 *   %0: decryption successful
 737 *   negative errno: decryption could not be completed
 738 */
 739VISIBLE_IF_KUNIT
 740int krb5_cbc_cts_decrypt(struct crypto_sync_skcipher *cts_tfm,
 741			 struct crypto_sync_skcipher *cbc_tfm,
 742			 u32 offset, struct xdr_buf *buf)
 743{
 744	u32 blocksize, nblocks, cbcbytes;
 745	struct decryptor_desc desc;
 746	int err;
 747
 748	blocksize = crypto_sync_skcipher_blocksize(cts_tfm);
 749	nblocks = (buf->len + blocksize - 1) / blocksize;
 750	cbcbytes = 0;
 751	if (nblocks > 2)
 752		cbcbytes = (nblocks - 2) * blocksize;
 753
 754	memset(desc.iv, 0, sizeof(desc.iv));
 755
 756	/* Handle block-sized chunks of plaintext with CBC. */
 757	if (cbcbytes) {
 758		SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm);
 759
 760		desc.fragno = 0;
 761		desc.fraglen = 0;
 762		desc.req = req;
 763
 764		skcipher_request_set_sync_tfm(req, cbc_tfm);
 765		skcipher_request_set_callback(req, 0, NULL, NULL);
 766
 767		sg_init_table(desc.frags, 4);
 768
 769		err = xdr_process_buf(buf, 0, cbcbytes, decryptor, &desc);
 770		skcipher_request_zero(req);
 771		if (err)
 772			return err;
 773	}
 774
 775	/* Remaining plaintext is handled with CBC-CTS. */
 776	return gss_krb5_cts_crypt(cts_tfm, buf, cbcbytes, desc.iv, NULL, 0);
 777}
 778EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_decrypt);
 779
 780u32
 781gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
 782		     struct xdr_buf *buf, struct page **pages)
 783{
 784	u32 err;
 785	struct xdr_netobj hmac;
 786	u8 *ecptr;
 787	struct crypto_sync_skcipher *cipher, *aux_cipher;
 788	struct crypto_ahash *ahash;
 789	struct page **save_pages;
 790	unsigned int conflen;
 791
 792	if (kctx->initiate) {
 793		cipher = kctx->initiator_enc;
 794		aux_cipher = kctx->initiator_enc_aux;
 795		ahash = kctx->initiator_integ;
 796	} else {
 797		cipher = kctx->acceptor_enc;
 798		aux_cipher = kctx->acceptor_enc_aux;
 799		ahash = kctx->acceptor_integ;
 800	}
 801	conflen = crypto_sync_skcipher_blocksize(cipher);
 802
 803	/* hide the gss token header and insert the confounder */
 804	offset += GSS_KRB5_TOK_HDR_LEN;
 805	if (xdr_extend_head(buf, offset, conflen))
 806		return GSS_S_FAILURE;
 807	krb5_make_confounder(buf->head[0].iov_base + offset, conflen);
 808	offset -= GSS_KRB5_TOK_HDR_LEN;
 809
 810	if (buf->tail[0].iov_base != NULL) {
 811		ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
 812	} else {
 813		buf->tail[0].iov_base = buf->head[0].iov_base
 814							+ buf->head[0].iov_len;
 815		buf->tail[0].iov_len = 0;
 816		ecptr = buf->tail[0].iov_base;
 817	}
 818
 819	/* copy plaintext gss token header after filler (if any) */
 820	memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
 821	buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
 822	buf->len += GSS_KRB5_TOK_HDR_LEN;
 823
 824	hmac.len = kctx->gk5e->cksumlength;
 825	hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
 826
 827	/*
 828	 * When we are called, pages points to the real page cache
 829	 * data -- which we can't go and encrypt!  buf->pages points
 830	 * to scratch pages which we are going to send off to the
 831	 * client/server.  Swap in the plaintext pages to calculate
 832	 * the hmac.
 833	 */
 834	save_pages = buf->pages;
 835	buf->pages = pages;
 836
 837	err = gss_krb5_checksum(ahash, NULL, 0, buf,
 838				offset + GSS_KRB5_TOK_HDR_LEN, &hmac);
 839	buf->pages = save_pages;
 840	if (err)
 841		return GSS_S_FAILURE;
 842
 843	err = krb5_cbc_cts_encrypt(cipher, aux_cipher,
 844				   offset + GSS_KRB5_TOK_HDR_LEN,
 845				   buf, pages, NULL, 0);
 846	if (err)
 847		return GSS_S_FAILURE;
 848
 849	/* Now update buf to account for HMAC */
 850	buf->tail[0].iov_len += kctx->gk5e->cksumlength;
 851	buf->len += kctx->gk5e->cksumlength;
 852
 853	return GSS_S_COMPLETE;
 854}
 855
 856u32
 857gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
 858		     struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
 859{
 860	struct crypto_sync_skcipher *cipher, *aux_cipher;
 861	struct crypto_ahash *ahash;
 862	struct xdr_netobj our_hmac_obj;
 863	u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 864	u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 865	struct xdr_buf subbuf;
 866	u32 ret = 0;
 867
 868	if (kctx->initiate) {
 869		cipher = kctx->acceptor_enc;
 870		aux_cipher = kctx->acceptor_enc_aux;
 871		ahash = kctx->acceptor_integ;
 872	} else {
 873		cipher = kctx->initiator_enc;
 874		aux_cipher = kctx->initiator_enc_aux;
 875		ahash = kctx->initiator_integ;
 876	}
 877
 878	/* create a segment skipping the header and leaving out the checksum */
 879	xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
 880				    (len - offset - GSS_KRB5_TOK_HDR_LEN -
 881				     kctx->gk5e->cksumlength));
 882
 883	ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf);
 884	if (ret)
 885		goto out_err;
 886
 887	our_hmac_obj.len = kctx->gk5e->cksumlength;
 888	our_hmac_obj.data = our_hmac;
 889	ret = gss_krb5_checksum(ahash, NULL, 0, &subbuf, 0, &our_hmac_obj);
 890	if (ret)
 891		goto out_err;
 892
 893	/* Get the packet's hmac value */
 894	ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
 895				      pkt_hmac, kctx->gk5e->cksumlength);
 896	if (ret)
 897		goto out_err;
 898
 899	if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
 900		ret = GSS_S_BAD_SIG;
 901		goto out_err;
 902	}
 903	*headskip = crypto_sync_skcipher_blocksize(cipher);
 904	*tailskip = kctx->gk5e->cksumlength;
 905out_err:
 906	if (ret && ret != GSS_S_BAD_SIG)
 907		ret = GSS_S_FAILURE;
 908	return ret;
 909}
 910
 911/**
 912 * krb5_etm_checksum - Compute a MAC for a GSS Wrap token
 913 * @cipher: an initialized cipher transform
 914 * @tfm: an initialized hash transform
 915 * @body: xdr_buf containing an RPC message (body.len is the message length)
 916 * @body_offset: byte offset into @body to start checksumming
 917 * @cksumout: OUT: a buffer to be filled in with the computed HMAC
 918 *
 919 * Usually expressed as H = HMAC(K, IV | ciphertext)[1..h] .
 920 *
 921 * Caller provides the truncation length of the output token (h) in
 922 * cksumout.len.
 923 *
 924 * Return values:
 925 *   %GSS_S_COMPLETE: Digest computed, @cksumout filled in
 926 *   %GSS_S_FAILURE: Call failed
 927 */
 928VISIBLE_IF_KUNIT
 929u32 krb5_etm_checksum(struct crypto_sync_skcipher *cipher,
 930		      struct crypto_ahash *tfm, const struct xdr_buf *body,
 931		      int body_offset, struct xdr_netobj *cksumout)
 932{
 933	unsigned int ivsize = crypto_sync_skcipher_ivsize(cipher);
 934	struct ahash_request *req;
 935	struct scatterlist sg[1];
 936	u8 *iv, *checksumdata;
 937	int err = -ENOMEM;
 938
 939	checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL);
 940	if (!checksumdata)
 941		return GSS_S_FAILURE;
 942	/* For RPCSEC, the "initial cipher state" is always all zeroes. */
 943	iv = kzalloc(ivsize, GFP_KERNEL);
 944	if (!iv)
 945		goto out_free_mem;
 946
 947	req = ahash_request_alloc(tfm, GFP_KERNEL);
 948	if (!req)
 949		goto out_free_mem;
 950	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 951	err = crypto_ahash_init(req);
 952	if (err)
 953		goto out_free_ahash;
 954
 955	sg_init_one(sg, iv, ivsize);
 956	ahash_request_set_crypt(req, sg, NULL, ivsize);
 957	err = crypto_ahash_update(req);
 958	if (err)
 959		goto out_free_ahash;
 960	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 961			      checksummer, req);
 962	if (err)
 963		goto out_free_ahash;
 964
 965	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 966	err = crypto_ahash_final(req);
 967	if (err)
 968		goto out_free_ahash;
 969	memcpy(cksumout->data, checksumdata, cksumout->len);
 970
 971out_free_ahash:
 972	ahash_request_free(req);
 973out_free_mem:
 974	kfree(iv);
 975	kfree_sensitive(checksumdata);
 976	return err ? GSS_S_FAILURE : GSS_S_COMPLETE;
 977}
 978EXPORT_SYMBOL_IF_KUNIT(krb5_etm_checksum);
 979
 980/**
 981 * krb5_etm_encrypt - Encrypt using the RFC 8009 rules
 982 * @kctx: Kerberos context
 983 * @offset: starting offset of the payload, in bytes
 984 * @buf: OUT: send buffer to contain the encrypted payload
 985 * @pages: plaintext payload
 986 *
 987 * The main difference with aes_encrypt is that "The HMAC is
 988 * calculated over the cipher state concatenated with the AES
 989 * output, instead of being calculated over the confounder and
 990 * plaintext.  This allows the message receiver to verify the
 991 * integrity of the message before decrypting the message."
 992 *
 993 * RFC 8009 Section 5:
 994 *
 995 * encryption function: as follows, where E() is AES encryption in
 996 * CBC-CS3 mode, and h is the size of truncated HMAC (128 bits or
 997 * 192 bits as described above).
 998 *
 999 *    N = random value of length 128 bits (the AES block size)
1000 *    IV = cipher state
1001 *    C = E(Ke, N | plaintext, IV)
1002 *    H = HMAC(Ki, IV | C)
1003 *    ciphertext = C | H[1..h]
1004 *
1005 * This encryption formula provides AEAD EtM with key separation.
1006 *
1007 * Return values:
1008 *   %GSS_S_COMPLETE: Encryption successful
1009 *   %GSS_S_FAILURE: Encryption failed
1010 */
1011u32
1012krb5_etm_encrypt(struct krb5_ctx *kctx, u32 offset,
1013		 struct xdr_buf *buf, struct page **pages)
1014{
1015	struct crypto_sync_skcipher *cipher, *aux_cipher;
1016	struct crypto_ahash *ahash;
1017	struct xdr_netobj hmac;
1018	unsigned int conflen;
1019	u8 *ecptr;
1020	u32 err;
1021
1022	if (kctx->initiate) {
1023		cipher = kctx->initiator_enc;
1024		aux_cipher = kctx->initiator_enc_aux;
1025		ahash = kctx->initiator_integ;
1026	} else {
1027		cipher = kctx->acceptor_enc;
1028		aux_cipher = kctx->acceptor_enc_aux;
1029		ahash = kctx->acceptor_integ;
1030	}
1031	conflen = crypto_sync_skcipher_blocksize(cipher);
1032
1033	offset += GSS_KRB5_TOK_HDR_LEN;
1034	if (xdr_extend_head(buf, offset, conflen))
1035		return GSS_S_FAILURE;
1036	krb5_make_confounder(buf->head[0].iov_base + offset, conflen);
1037	offset -= GSS_KRB5_TOK_HDR_LEN;
1038
1039	if (buf->tail[0].iov_base) {
1040		ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
1041	} else {
1042		buf->tail[0].iov_base = buf->head[0].iov_base
1043							+ buf->head[0].iov_len;
1044		buf->tail[0].iov_len = 0;
1045		ecptr = buf->tail[0].iov_base;
1046	}
1047
1048	memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
1049	buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
1050	buf->len += GSS_KRB5_TOK_HDR_LEN;
1051
1052	err = krb5_cbc_cts_encrypt(cipher, aux_cipher,
1053				   offset + GSS_KRB5_TOK_HDR_LEN,
1054				   buf, pages, NULL, 0);
1055	if (err)
1056		return GSS_S_FAILURE;
1057
1058	hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
1059	hmac.len = kctx->gk5e->cksumlength;
1060	err = krb5_etm_checksum(cipher, ahash,
1061				buf, offset + GSS_KRB5_TOK_HDR_LEN, &hmac);
1062	if (err)
1063		goto out_err;
1064	buf->tail[0].iov_len += kctx->gk5e->cksumlength;
1065	buf->len += kctx->gk5e->cksumlength;
1066
1067	return GSS_S_COMPLETE;
1068
1069out_err:
1070	return GSS_S_FAILURE;
1071}
1072
1073/**
1074 * krb5_etm_decrypt - Decrypt using the RFC 8009 rules
1075 * @kctx: Kerberos context
1076 * @offset: starting offset of the ciphertext, in bytes
1077 * @len:
1078 * @buf:
1079 * @headskip: OUT: the enctype's confounder length, in octets
1080 * @tailskip: OUT: the enctype's HMAC length, in octets
1081 *
1082 * RFC 8009 Section 5:
1083 *
1084 * decryption function: as follows, where D() is AES decryption in
1085 * CBC-CS3 mode, and h is the size of truncated HMAC.
1086 *
1087 *    (C, H) = ciphertext
1088 *        (Note: H is the last h bits of the ciphertext.)
1089 *    IV = cipher state
1090 *    if H != HMAC(Ki, IV | C)[1..h]
1091 *        stop, report error
1092 *    (N, P) = D(Ke, C, IV)
1093 *
1094 * Return values:
1095 *   %GSS_S_COMPLETE: Decryption successful
1096 *   %GSS_S_BAD_SIG: computed HMAC != received HMAC
1097 *   %GSS_S_FAILURE: Decryption failed
1098 */
1099u32
1100krb5_etm_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
1101		 struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
1102{
1103	struct crypto_sync_skcipher *cipher, *aux_cipher;
1104	u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
1105	u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
1106	struct xdr_netobj our_hmac_obj;
1107	struct crypto_ahash *ahash;
1108	struct xdr_buf subbuf;
1109	u32 ret = 0;
1110
1111	if (kctx->initiate) {
1112		cipher = kctx->acceptor_enc;
1113		aux_cipher = kctx->acceptor_enc_aux;
1114		ahash = kctx->acceptor_integ;
1115	} else {
1116		cipher = kctx->initiator_enc;
1117		aux_cipher = kctx->initiator_enc_aux;
1118		ahash = kctx->initiator_integ;
1119	}
1120
1121	/* Extract the ciphertext into @subbuf. */
1122	xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
1123			   (len - offset - GSS_KRB5_TOK_HDR_LEN -
1124			    kctx->gk5e->cksumlength));
1125
1126	our_hmac_obj.data = our_hmac;
1127	our_hmac_obj.len = kctx->gk5e->cksumlength;
1128	ret = krb5_etm_checksum(cipher, ahash, &subbuf, 0, &our_hmac_obj);
1129	if (ret)
1130		goto out_err;
1131	ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
1132				      pkt_hmac, kctx->gk5e->cksumlength);
1133	if (ret)
1134		goto out_err;
1135	if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
1136		ret = GSS_S_BAD_SIG;
1137		goto out_err;
1138	}
1139
1140	ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf);
1141	if (ret) {
1142		ret = GSS_S_FAILURE;
1143		goto out_err;
1144	}
1145
1146	*headskip = crypto_sync_skcipher_blocksize(cipher);
1147	*tailskip = kctx->gk5e->cksumlength;
1148	return GSS_S_COMPLETE;
1149
1150out_err:
1151	if (ret != GSS_S_BAD_SIG)
1152		ret = GSS_S_FAILURE;
1153	return ret;
1154}