Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 | /* * linux/net/sunrpc/gss_krb5_crypto.c * * Copyright (c) 2000-2008 The Regents of the University of Michigan. * All rights reserved. * * Andy Adamson <andros@umich.edu> * Bruce Fields <bfields@umich.edu> */ /* * Copyright (C) 1998 by the FundsXpress, INC. * * All rights reserved. * * Export of this software from the United States of America may require * a specific license from the United States Government. It is the * responsibility of any person or organization contemplating export to * obtain such a license before exporting. * * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and * distribute this software and its documentation for any purpose and * without fee is hereby granted, provided that the above copyright * notice appear in all copies and that both that copyright notice and * this permission notice appear in supporting documentation, and that * the name of FundsXpress. not be used in advertising or publicity pertaining * to distribution of the software without specific, written prior * permission. FundsXpress makes no representations about the suitability of * this software for any purpose. It is provided "as is" without express * or implied warranty. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. */ #include <crypto/hash.h> #include <crypto/skcipher.h> #include <crypto/utils.h> #include <linux/err.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/scatterlist.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/random.h> #include <linux/sunrpc/gss_krb5.h> #include <linux/sunrpc/xdr.h> #include <kunit/visibility.h> #include "gss_krb5_internal.h" #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) # define RPCDBG_FACILITY RPCDBG_AUTH #endif /** * krb5_make_confounder - Generate a confounder string * @p: memory location into which to write the string * @conflen: string length to write, in octets * * RFCs 1964 and 3961 mention only "a random confounder" without going * into detail about its function or cryptographic requirements. The * assumed purpose is to prevent repeated encryption of a plaintext with * the same key from generating the same ciphertext. It is also used to * pad minimum plaintext length to at least a single cipher block. * * However, in situations like the GSS Kerberos 5 mechanism, where the * encryption IV is always all zeroes, the confounder also effectively * functions like an IV. Thus, not only must it be unique from message * to message, but it must also be difficult to predict. Otherwise an * attacker can correlate the confounder to previous or future values, * making the encryption easier to break. * * Given that the primary consumer of this encryption mechanism is a * network storage protocol, a type of traffic that often carries * predictable payloads (eg, all zeroes when reading unallocated blocks * from a file), our confounder generation has to be cryptographically * strong. */ void krb5_make_confounder(u8 *p, int conflen) { get_random_bytes(p, conflen); } /** * krb5_encrypt - simple encryption of an RPCSEC GSS payload * @tfm: initialized cipher transform * @iv: pointer to an IV * @in: plaintext to encrypt * @out: OUT: ciphertext * @length: length of input and output buffers, in bytes * * @iv may be NULL to force the use of an all-zero IV. * The buffer containing the IV must be as large as the * cipher's ivsize. * * Return values: * %0: @in successfully encrypted into @out * negative errno: @in not encrypted */ u32 krb5_encrypt( struct crypto_sync_skcipher *tfm, void * iv, void * in, void * out, int length) { u32 ret = -EINVAL; struct scatterlist sg[1]; u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0}; SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm); if (length % crypto_sync_skcipher_blocksize(tfm) != 0) goto out; if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) { dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n", crypto_sync_skcipher_ivsize(tfm)); goto out; } if (iv) memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm)); memcpy(out, in, length); sg_init_one(sg, out, length); skcipher_request_set_sync_tfm(req, tfm); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, sg, sg, length, local_iv); ret = crypto_skcipher_encrypt(req); skcipher_request_zero(req); out: dprintk("RPC: krb5_encrypt returns %d\n", ret); return ret; } /** * krb5_decrypt - simple decryption of an RPCSEC GSS payload * @tfm: initialized cipher transform * @iv: pointer to an IV * @in: ciphertext to decrypt * @out: OUT: plaintext * @length: length of input and output buffers, in bytes * * @iv may be NULL to force the use of an all-zero IV. * The buffer containing the IV must be as large as the * cipher's ivsize. * * Return values: * %0: @in successfully decrypted into @out * negative errno: @in not decrypted */ u32 krb5_decrypt( struct crypto_sync_skcipher *tfm, void * iv, void * in, void * out, int length) { u32 ret = -EINVAL; struct scatterlist sg[1]; u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0}; SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm); if (length % crypto_sync_skcipher_blocksize(tfm) != 0) goto out; if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) { dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n", crypto_sync_skcipher_ivsize(tfm)); goto out; } if (iv) memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm)); memcpy(out, in, length); sg_init_one(sg, out, length); skcipher_request_set_sync_tfm(req, tfm); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, sg, sg, length, local_iv); ret = crypto_skcipher_decrypt(req); skcipher_request_zero(req); out: dprintk("RPC: gss_k5decrypt returns %d\n",ret); return ret; } static int checksummer(struct scatterlist *sg, void *data) { struct ahash_request *req = data; ahash_request_set_crypt(req, sg, NULL, sg->length); return crypto_ahash_update(req); } /* * checksum the plaintext data and hdrlen bytes of the token header * The checksum is performed over the first 8 bytes of the * gss token header and then over the data body */ u32 make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen, struct xdr_buf *body, int body_offset, u8 *cksumkey, unsigned int usage, struct xdr_netobj *cksumout) { struct crypto_ahash *tfm; struct ahash_request *req; struct scatterlist sg[1]; int err = -1; u8 *checksumdata; unsigned int checksumlen; if (cksumout->len < kctx->gk5e->cksumlength) { dprintk("%s: checksum buffer length, %u, too small for %s\n", __func__, cksumout->len, kctx->gk5e->name); return GSS_S_FAILURE; } checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_KERNEL); if (checksumdata == NULL) return GSS_S_FAILURE; tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) goto out_free_cksum; req = ahash_request_alloc(tfm, GFP_KERNEL); if (!req) goto out_free_ahash; ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); checksumlen = crypto_ahash_digestsize(tfm); if (cksumkey != NULL) { err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength); if (err) goto out; } err = crypto_ahash_init(req); if (err) goto out; sg_init_one(sg, header, hdrlen); ahash_request_set_crypt(req, sg, NULL, hdrlen); err = crypto_ahash_update(req); if (err) goto out; err = xdr_process_buf(body, body_offset, body->len - body_offset, checksummer, req); if (err) goto out; ahash_request_set_crypt(req, NULL, checksumdata, 0); err = crypto_ahash_final(req); if (err) goto out; switch (kctx->gk5e->ctype) { case CKSUMTYPE_RSA_MD5: err = krb5_encrypt(kctx->seq, NULL, checksumdata, checksumdata, checksumlen); if (err) goto out; memcpy(cksumout->data, checksumdata + checksumlen - kctx->gk5e->cksumlength, kctx->gk5e->cksumlength); break; case CKSUMTYPE_HMAC_SHA1_DES3: memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength); break; default: BUG(); break; } cksumout->len = kctx->gk5e->cksumlength; out: ahash_request_free(req); out_free_ahash: crypto_free_ahash(tfm); out_free_cksum: kfree(checksumdata); return err ? GSS_S_FAILURE : 0; } /** * gss_krb5_checksum - Compute the MAC for a GSS Wrap or MIC token * @tfm: an initialized hash transform * @header: pointer to a buffer containing the token header, or NULL * @hdrlen: number of octets in @header * @body: xdr_buf containing an RPC message (body.len is the message length) * @body_offset: byte offset into @body to start checksumming * @cksumout: OUT: a buffer to be filled in with the computed HMAC * * Usually expressed as H = HMAC(K, message)[1..h] . * * Caller provides the truncation length of the output token (h) in * cksumout.len. * * Return values: * %GSS_S_COMPLETE: Digest computed, @cksumout filled in * %GSS_S_FAILURE: Call failed */ u32 gss_krb5_checksum(struct crypto_ahash *tfm, char *header, int hdrlen, const struct xdr_buf *body, int body_offset, struct xdr_netobj *cksumout) { struct ahash_request *req; int err = -ENOMEM; u8 *checksumdata; checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL); if (!checksumdata) return GSS_S_FAILURE; req = ahash_request_alloc(tfm, GFP_KERNEL); if (!req) goto out_free_cksum; ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); err = crypto_ahash_init(req); if (err) goto out_free_ahash; /* * Per RFC 4121 Section 4.2.4, the checksum is performed over the * data body first, then over the octets in "header". */ err = xdr_process_buf(body, body_offset, body->len - body_offset, checksummer, req); if (err) goto out_free_ahash; if (header) { struct scatterlist sg[1]; sg_init_one(sg, header, hdrlen); ahash_request_set_crypt(req, sg, NULL, hdrlen); err = crypto_ahash_update(req); if (err) goto out_free_ahash; } ahash_request_set_crypt(req, NULL, checksumdata, 0); err = crypto_ahash_final(req); if (err) goto out_free_ahash; memcpy(cksumout->data, checksumdata, min_t(int, cksumout->len, crypto_ahash_digestsize(tfm))); out_free_ahash: ahash_request_free(req); out_free_cksum: kfree_sensitive(checksumdata); return err ? GSS_S_FAILURE : GSS_S_COMPLETE; } EXPORT_SYMBOL_IF_KUNIT(gss_krb5_checksum); struct encryptor_desc { u8 iv[GSS_KRB5_MAX_BLOCKSIZE]; struct skcipher_request *req; int pos; struct xdr_buf *outbuf; struct page **pages; struct scatterlist infrags[4]; struct scatterlist outfrags[4]; int fragno; int fraglen; }; static int encryptor(struct scatterlist *sg, void *data) { struct encryptor_desc *desc = data; struct xdr_buf *outbuf = desc->outbuf; struct crypto_sync_skcipher *tfm = crypto_sync_skcipher_reqtfm(desc->req); struct page *in_page; int thislen = desc->fraglen + sg->length; int fraglen, ret; int page_pos; /* Worst case is 4 fragments: head, end of page 1, start * of page 2, tail. Anything more is a bug. */ BUG_ON(desc->fragno > 3); page_pos = desc->pos - outbuf->head[0].iov_len; if (page_pos >= 0 && page_pos < outbuf->page_len) { /* pages are not in place: */ int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT; in_page = desc->pages[i]; } else { in_page = sg_page(sg); } sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length, sg->offset); sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length, sg->offset); desc->fragno++; desc->fraglen += sg->length; desc->pos += sg->length; fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1); thislen -= fraglen; if (thislen == 0) return 0; sg_mark_end(&desc->infrags[desc->fragno - 1]); sg_mark_end(&desc->outfrags[desc->fragno - 1]); skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags, thislen, desc->iv); ret = crypto_skcipher_encrypt(desc->req); if (ret) return ret; sg_init_table(desc->infrags, 4); sg_init_table(desc->outfrags, 4); if (fraglen) { sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen, sg->offset + sg->length - fraglen); desc->infrags[0] = desc->outfrags[0]; sg_assign_page(&desc->infrags[0], in_page); desc->fragno = 1; desc->fraglen = fraglen; } else { desc->fragno = 0; desc->fraglen = 0; } return 0; } int gss_encrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf, int offset, struct page **pages) { int ret; struct encryptor_desc desc; SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm); BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0); skcipher_request_set_sync_tfm(req, tfm); skcipher_request_set_callback(req, 0, NULL, NULL); memset(desc.iv, 0, sizeof(desc.iv)); desc.req = req; desc.pos = offset; desc.outbuf = buf; desc.pages = pages; desc.fragno = 0; desc.fraglen = 0; sg_init_table(desc.infrags, 4); sg_init_table(desc.outfrags, 4); ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc); skcipher_request_zero(req); return ret; } struct decryptor_desc { u8 iv[GSS_KRB5_MAX_BLOCKSIZE]; struct skcipher_request *req; struct scatterlist frags[4]; int fragno; int fraglen; }; static int decryptor(struct scatterlist *sg, void *data) { struct decryptor_desc *desc = data; int thislen = desc->fraglen + sg->length; struct crypto_sync_skcipher *tfm = crypto_sync_skcipher_reqtfm(desc->req); int fraglen, ret; /* Worst case is 4 fragments: head, end of page 1, start * of page 2, tail. Anything more is a bug. */ BUG_ON(desc->fragno > 3); sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length, sg->offset); desc->fragno++; desc->fraglen += sg->length; fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1); thislen -= fraglen; if (thislen == 0) return 0; sg_mark_end(&desc->frags[desc->fragno - 1]); skcipher_request_set_crypt(desc->req, desc->frags, desc->frags, thislen, desc->iv); ret = crypto_skcipher_decrypt(desc->req); if (ret) return ret; sg_init_table(desc->frags, 4); if (fraglen) { sg_set_page(&desc->frags[0], sg_page(sg), fraglen, sg->offset + sg->length - fraglen); desc->fragno = 1; desc->fraglen = fraglen; } else { desc->fragno = 0; desc->fraglen = 0; } return 0; } int gss_decrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf, int offset) { int ret; struct decryptor_desc desc; SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm); /* XXXJBF: */ BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0); skcipher_request_set_sync_tfm(req, tfm); skcipher_request_set_callback(req, 0, NULL, NULL); memset(desc.iv, 0, sizeof(desc.iv)); desc.req = req; desc.fragno = 0; desc.fraglen = 0; sg_init_table(desc.frags, 4); ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc); skcipher_request_zero(req); return ret; } /* * This function makes the assumption that it was ultimately called * from gss_wrap(). * * The client auth_gss code moves any existing tail data into a * separate page before calling gss_wrap. * The server svcauth_gss code ensures that both the head and the * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap. * * Even with that guarantee, this function may be called more than * once in the processing of gss_wrap(). The best we can do is * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the * largest expected shift will fit within RPC_MAX_AUTH_SIZE. * At run-time we can verify that a single invocation of this * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE. */ int xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen) { u8 *p; if (shiftlen == 0) return 0; BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE); p = buf->head[0].iov_base + base; memmove(p + shiftlen, p, buf->head[0].iov_len - base); buf->head[0].iov_len += shiftlen; buf->len += shiftlen; return 0; } static u32 gss_krb5_cts_crypt(struct crypto_sync_skcipher *cipher, struct xdr_buf *buf, u32 offset, u8 *iv, struct page **pages, int encrypt) { u32 ret; struct scatterlist sg[1]; SYNC_SKCIPHER_REQUEST_ON_STACK(req, cipher); u8 *data; struct page **save_pages; u32 len = buf->len - offset; if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) { WARN_ON(0); return -ENOMEM; } data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_KERNEL); if (!data) return -ENOMEM; /* * For encryption, we want to read from the cleartext * page cache pages, and write the encrypted data to * the supplied xdr_buf pages. */ save_pages = buf->pages; if (encrypt) buf->pages = pages; ret = read_bytes_from_xdr_buf(buf, offset, data, len); buf->pages = save_pages; if (ret) goto out; sg_init_one(sg, data, len); skcipher_request_set_sync_tfm(req, cipher); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, sg, sg, len, iv); if (encrypt) ret = crypto_skcipher_encrypt(req); else ret = crypto_skcipher_decrypt(req); skcipher_request_zero(req); if (ret) goto out; ret = write_bytes_to_xdr_buf(buf, offset, data, len); #if IS_ENABLED(CONFIG_KUNIT) /* * CBC-CTS does not define an output IV but RFC 3962 defines it as the * penultimate block of ciphertext, so copy that into the IV buffer * before returning. */ if (encrypt) memcpy(iv, data, crypto_sync_skcipher_ivsize(cipher)); #endif out: kfree(data); return ret; } /** * krb5_cbc_cts_encrypt - encrypt in CBC mode with CTS * @cts_tfm: CBC cipher with CTS * @cbc_tfm: base CBC cipher * @offset: starting byte offset for plaintext * @buf: OUT: output buffer * @pages: plaintext * @iv: output CBC initialization vector, or NULL * @ivsize: size of @iv, in octets * * To provide confidentiality, encrypt using cipher block chaining * with ciphertext stealing. Message integrity is handled separately. * * Return values: * %0: encryption successful * negative errno: encryption could not be completed */ VISIBLE_IF_KUNIT int krb5_cbc_cts_encrypt(struct crypto_sync_skcipher *cts_tfm, struct crypto_sync_skcipher *cbc_tfm, u32 offset, struct xdr_buf *buf, struct page **pages, u8 *iv, unsigned int ivsize) { u32 blocksize, nbytes, nblocks, cbcbytes; struct encryptor_desc desc; int err; blocksize = crypto_sync_skcipher_blocksize(cts_tfm); nbytes = buf->len - offset; nblocks = (nbytes + blocksize - 1) / blocksize; cbcbytes = 0; if (nblocks > 2) cbcbytes = (nblocks - 2) * blocksize; memset(desc.iv, 0, sizeof(desc.iv)); /* Handle block-sized chunks of plaintext with CBC. */ if (cbcbytes) { SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm); desc.pos = offset; desc.fragno = 0; desc.fraglen = 0; desc.pages = pages; desc.outbuf = buf; desc.req = req; skcipher_request_set_sync_tfm(req, cbc_tfm); skcipher_request_set_callback(req, 0, NULL, NULL); sg_init_table(desc.infrags, 4); sg_init_table(desc.outfrags, 4); err = xdr_process_buf(buf, offset, cbcbytes, encryptor, &desc); skcipher_request_zero(req); if (err) return err; } /* Remaining plaintext is handled with CBC-CTS. */ err = gss_krb5_cts_crypt(cts_tfm, buf, offset + cbcbytes, desc.iv, pages, 1); if (err) return err; if (unlikely(iv)) memcpy(iv, desc.iv, ivsize); return 0; } EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_encrypt); /** * krb5_cbc_cts_decrypt - decrypt in CBC mode with CTS * @cts_tfm: CBC cipher with CTS * @cbc_tfm: base CBC cipher * @offset: starting byte offset for plaintext * @buf: OUT: output buffer * * Return values: * %0: decryption successful * negative errno: decryption could not be completed */ VISIBLE_IF_KUNIT int krb5_cbc_cts_decrypt(struct crypto_sync_skcipher *cts_tfm, struct crypto_sync_skcipher *cbc_tfm, u32 offset, struct xdr_buf *buf) { u32 blocksize, nblocks, cbcbytes; struct decryptor_desc desc; int err; blocksize = crypto_sync_skcipher_blocksize(cts_tfm); nblocks = (buf->len + blocksize - 1) / blocksize; cbcbytes = 0; if (nblocks > 2) cbcbytes = (nblocks - 2) * blocksize; memset(desc.iv, 0, sizeof(desc.iv)); /* Handle block-sized chunks of plaintext with CBC. */ if (cbcbytes) { SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm); desc.fragno = 0; desc.fraglen = 0; desc.req = req; skcipher_request_set_sync_tfm(req, cbc_tfm); skcipher_request_set_callback(req, 0, NULL, NULL); sg_init_table(desc.frags, 4); err = xdr_process_buf(buf, 0, cbcbytes, decryptor, &desc); skcipher_request_zero(req); if (err) return err; } /* Remaining plaintext is handled with CBC-CTS. */ return gss_krb5_cts_crypt(cts_tfm, buf, cbcbytes, desc.iv, NULL, 0); } EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_decrypt); u32 gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf, struct page **pages) { u32 err; struct xdr_netobj hmac; u8 *ecptr; struct crypto_sync_skcipher *cipher, *aux_cipher; struct crypto_ahash *ahash; struct page **save_pages; unsigned int conflen; if (kctx->initiate) { cipher = kctx->initiator_enc; aux_cipher = kctx->initiator_enc_aux; ahash = kctx->initiator_integ; } else { cipher = kctx->acceptor_enc; aux_cipher = kctx->acceptor_enc_aux; ahash = kctx->acceptor_integ; } conflen = crypto_sync_skcipher_blocksize(cipher); /* hide the gss token header and insert the confounder */ offset += GSS_KRB5_TOK_HDR_LEN; if (xdr_extend_head(buf, offset, conflen)) return GSS_S_FAILURE; krb5_make_confounder(buf->head[0].iov_base + offset, conflen); offset -= GSS_KRB5_TOK_HDR_LEN; if (buf->tail[0].iov_base != NULL) { ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len; } else { buf->tail[0].iov_base = buf->head[0].iov_base + buf->head[0].iov_len; buf->tail[0].iov_len = 0; ecptr = buf->tail[0].iov_base; } /* copy plaintext gss token header after filler (if any) */ memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN); buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN; buf->len += GSS_KRB5_TOK_HDR_LEN; hmac.len = kctx->gk5e->cksumlength; hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len; /* * When we are called, pages points to the real page cache * data -- which we can't go and encrypt! buf->pages points * to scratch pages which we are going to send off to the * client/server. Swap in the plaintext pages to calculate * the hmac. */ save_pages = buf->pages; buf->pages = pages; err = gss_krb5_checksum(ahash, NULL, 0, buf, offset + GSS_KRB5_TOK_HDR_LEN, &hmac); buf->pages = save_pages; if (err) return GSS_S_FAILURE; err = krb5_cbc_cts_encrypt(cipher, aux_cipher, offset + GSS_KRB5_TOK_HDR_LEN, buf, pages, NULL, 0); if (err) return GSS_S_FAILURE; /* Now update buf to account for HMAC */ buf->tail[0].iov_len += kctx->gk5e->cksumlength; buf->len += kctx->gk5e->cksumlength; return GSS_S_COMPLETE; } u32 gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len, struct xdr_buf *buf, u32 *headskip, u32 *tailskip) { struct crypto_sync_skcipher *cipher, *aux_cipher; struct crypto_ahash *ahash; struct xdr_netobj our_hmac_obj; u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN]; u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN]; struct xdr_buf subbuf; u32 ret = 0; if (kctx->initiate) { cipher = kctx->acceptor_enc; aux_cipher = kctx->acceptor_enc_aux; ahash = kctx->acceptor_integ; } else { cipher = kctx->initiator_enc; aux_cipher = kctx->initiator_enc_aux; ahash = kctx->initiator_integ; } /* create a segment skipping the header and leaving out the checksum */ xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN, (len - offset - GSS_KRB5_TOK_HDR_LEN - kctx->gk5e->cksumlength)); ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf); if (ret) goto out_err; our_hmac_obj.len = kctx->gk5e->cksumlength; our_hmac_obj.data = our_hmac; ret = gss_krb5_checksum(ahash, NULL, 0, &subbuf, 0, &our_hmac_obj); if (ret) goto out_err; /* Get the packet's hmac value */ ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength, pkt_hmac, kctx->gk5e->cksumlength); if (ret) goto out_err; if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) { ret = GSS_S_BAD_SIG; goto out_err; } *headskip = crypto_sync_skcipher_blocksize(cipher); *tailskip = kctx->gk5e->cksumlength; out_err: if (ret && ret != GSS_S_BAD_SIG) ret = GSS_S_FAILURE; return ret; } /** * krb5_etm_checksum - Compute a MAC for a GSS Wrap token * @cipher: an initialized cipher transform * @tfm: an initialized hash transform * @body: xdr_buf containing an RPC message (body.len is the message length) * @body_offset: byte offset into @body to start checksumming * @cksumout: OUT: a buffer to be filled in with the computed HMAC * * Usually expressed as H = HMAC(K, IV | ciphertext)[1..h] . * * Caller provides the truncation length of the output token (h) in * cksumout.len. * * Return values: * %GSS_S_COMPLETE: Digest computed, @cksumout filled in * %GSS_S_FAILURE: Call failed */ VISIBLE_IF_KUNIT u32 krb5_etm_checksum(struct crypto_sync_skcipher *cipher, struct crypto_ahash *tfm, const struct xdr_buf *body, int body_offset, struct xdr_netobj *cksumout) { unsigned int ivsize = crypto_sync_skcipher_ivsize(cipher); struct ahash_request *req; struct scatterlist sg[1]; u8 *iv, *checksumdata; int err = -ENOMEM; checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL); if (!checksumdata) return GSS_S_FAILURE; /* For RPCSEC, the "initial cipher state" is always all zeroes. */ iv = kzalloc(ivsize, GFP_KERNEL); if (!iv) goto out_free_mem; req = ahash_request_alloc(tfm, GFP_KERNEL); if (!req) goto out_free_mem; ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); err = crypto_ahash_init(req); if (err) goto out_free_ahash; sg_init_one(sg, iv, ivsize); ahash_request_set_crypt(req, sg, NULL, ivsize); err = crypto_ahash_update(req); if (err) goto out_free_ahash; err = xdr_process_buf(body, body_offset, body->len - body_offset, checksummer, req); if (err) goto out_free_ahash; ahash_request_set_crypt(req, NULL, checksumdata, 0); err = crypto_ahash_final(req); if (err) goto out_free_ahash; memcpy(cksumout->data, checksumdata, cksumout->len); out_free_ahash: ahash_request_free(req); out_free_mem: kfree(iv); kfree_sensitive(checksumdata); return err ? GSS_S_FAILURE : GSS_S_COMPLETE; } EXPORT_SYMBOL_IF_KUNIT(krb5_etm_checksum); /** * krb5_etm_encrypt - Encrypt using the RFC 8009 rules * @kctx: Kerberos context * @offset: starting offset of the payload, in bytes * @buf: OUT: send buffer to contain the encrypted payload * @pages: plaintext payload * * The main difference with aes_encrypt is that "The HMAC is * calculated over the cipher state concatenated with the AES * output, instead of being calculated over the confounder and * plaintext. This allows the message receiver to verify the * integrity of the message before decrypting the message." * * RFC 8009 Section 5: * * encryption function: as follows, where E() is AES encryption in * CBC-CS3 mode, and h is the size of truncated HMAC (128 bits or * 192 bits as described above). * * N = random value of length 128 bits (the AES block size) * IV = cipher state * C = E(Ke, N | plaintext, IV) * H = HMAC(Ki, IV | C) * ciphertext = C | H[1..h] * * This encryption formula provides AEAD EtM with key separation. * * Return values: * %GSS_S_COMPLETE: Encryption successful * %GSS_S_FAILURE: Encryption failed */ u32 krb5_etm_encrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf, struct page **pages) { struct crypto_sync_skcipher *cipher, *aux_cipher; struct crypto_ahash *ahash; struct xdr_netobj hmac; unsigned int conflen; u8 *ecptr; u32 err; if (kctx->initiate) { cipher = kctx->initiator_enc; aux_cipher = kctx->initiator_enc_aux; ahash = kctx->initiator_integ; } else { cipher = kctx->acceptor_enc; aux_cipher = kctx->acceptor_enc_aux; ahash = kctx->acceptor_integ; } conflen = crypto_sync_skcipher_blocksize(cipher); offset += GSS_KRB5_TOK_HDR_LEN; if (xdr_extend_head(buf, offset, conflen)) return GSS_S_FAILURE; krb5_make_confounder(buf->head[0].iov_base + offset, conflen); offset -= GSS_KRB5_TOK_HDR_LEN; if (buf->tail[0].iov_base) { ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len; } else { buf->tail[0].iov_base = buf->head[0].iov_base + buf->head[0].iov_len; buf->tail[0].iov_len = 0; ecptr = buf->tail[0].iov_base; } memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN); buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN; buf->len += GSS_KRB5_TOK_HDR_LEN; err = krb5_cbc_cts_encrypt(cipher, aux_cipher, offset + GSS_KRB5_TOK_HDR_LEN, buf, pages, NULL, 0); if (err) return GSS_S_FAILURE; hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len; hmac.len = kctx->gk5e->cksumlength; err = krb5_etm_checksum(cipher, ahash, buf, offset + GSS_KRB5_TOK_HDR_LEN, &hmac); if (err) goto out_err; buf->tail[0].iov_len += kctx->gk5e->cksumlength; buf->len += kctx->gk5e->cksumlength; return GSS_S_COMPLETE; out_err: return GSS_S_FAILURE; } /** * krb5_etm_decrypt - Decrypt using the RFC 8009 rules * @kctx: Kerberos context * @offset: starting offset of the ciphertext, in bytes * @len: * @buf: * @headskip: OUT: the enctype's confounder length, in octets * @tailskip: OUT: the enctype's HMAC length, in octets * * RFC 8009 Section 5: * * decryption function: as follows, where D() is AES decryption in * CBC-CS3 mode, and h is the size of truncated HMAC. * * (C, H) = ciphertext * (Note: H is the last h bits of the ciphertext.) * IV = cipher state * if H != HMAC(Ki, IV | C)[1..h] * stop, report error * (N, P) = D(Ke, C, IV) * * Return values: * %GSS_S_COMPLETE: Decryption successful * %GSS_S_BAD_SIG: computed HMAC != received HMAC * %GSS_S_FAILURE: Decryption failed */ u32 krb5_etm_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len, struct xdr_buf *buf, u32 *headskip, u32 *tailskip) { struct crypto_sync_skcipher *cipher, *aux_cipher; u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN]; u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN]; struct xdr_netobj our_hmac_obj; struct crypto_ahash *ahash; struct xdr_buf subbuf; u32 ret = 0; if (kctx->initiate) { cipher = kctx->acceptor_enc; aux_cipher = kctx->acceptor_enc_aux; ahash = kctx->acceptor_integ; } else { cipher = kctx->initiator_enc; aux_cipher = kctx->initiator_enc_aux; ahash = kctx->initiator_integ; } /* Extract the ciphertext into @subbuf. */ xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN, (len - offset - GSS_KRB5_TOK_HDR_LEN - kctx->gk5e->cksumlength)); our_hmac_obj.data = our_hmac; our_hmac_obj.len = kctx->gk5e->cksumlength; ret = krb5_etm_checksum(cipher, ahash, &subbuf, 0, &our_hmac_obj); if (ret) goto out_err; ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength, pkt_hmac, kctx->gk5e->cksumlength); if (ret) goto out_err; if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) { ret = GSS_S_BAD_SIG; goto out_err; } ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf); if (ret) { ret = GSS_S_FAILURE; goto out_err; } *headskip = crypto_sync_skcipher_blocksize(cipher); *tailskip = kctx->gk5e->cksumlength; return GSS_S_COMPLETE; out_err: if (ret != GSS_S_BAD_SIG) ret = GSS_S_FAILURE; return ret; } |