Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
/*
 *  linux/net/sunrpc/gss_krb5_crypto.c
 *
 *  Copyright (c) 2000-2008 The Regents of the University of Michigan.
 *  All rights reserved.
 *
 *  Andy Adamson   <andros@umich.edu>
 *  Bruce Fields   <bfields@umich.edu>
 */

/*
 * Copyright (C) 1998 by the FundsXpress, INC.
 *
 * All rights reserved.
 *
 * Export of this software from the United States of America may require
 * a specific license from the United States Government.  It is the
 * responsibility of any person or organization contemplating export to
 * obtain such a license before exporting.
 *
 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
 * distribute this software and its documentation for any purpose and
 * without fee is hereby granted, provided that the above copyright
 * notice appear in all copies and that both that copyright notice and
 * this permission notice appear in supporting documentation, and that
 * the name of FundsXpress. not be used in advertising or publicity pertaining
 * to distribution of the software without specific, written prior
 * permission.  FundsXpress makes no representations about the suitability of
 * this software for any purpose.  It is provided "as is" without express
 * or implied warranty.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 */

#include <crypto/hash.h>
#include <crypto/skcipher.h>
#include <crypto/utils.h>
#include <linux/err.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/scatterlist.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/random.h>
#include <linux/sunrpc/gss_krb5.h>
#include <linux/sunrpc/xdr.h>
#include <kunit/visibility.h>

#include "gss_krb5_internal.h"

#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
# define RPCDBG_FACILITY        RPCDBG_AUTH
#endif

/**
 * krb5_make_confounder - Generate a confounder string
 * @p: memory location into which to write the string
 * @conflen: string length to write, in octets
 *
 * RFCs 1964 and 3961 mention only "a random confounder" without going
 * into detail about its function or cryptographic requirements. The
 * assumed purpose is to prevent repeated encryption of a plaintext with
 * the same key from generating the same ciphertext. It is also used to
 * pad minimum plaintext length to at least a single cipher block.
 *
 * However, in situations like the GSS Kerberos 5 mechanism, where the
 * encryption IV is always all zeroes, the confounder also effectively
 * functions like an IV. Thus, not only must it be unique from message
 * to message, but it must also be difficult to predict. Otherwise an
 * attacker can correlate the confounder to previous or future values,
 * making the encryption easier to break.
 *
 * Given that the primary consumer of this encryption mechanism is a
 * network storage protocol, a type of traffic that often carries
 * predictable payloads (eg, all zeroes when reading unallocated blocks
 * from a file), our confounder generation has to be cryptographically
 * strong.
 */
void krb5_make_confounder(u8 *p, int conflen)
{
	get_random_bytes(p, conflen);
}

/**
 * krb5_encrypt - simple encryption of an RPCSEC GSS payload
 * @tfm: initialized cipher transform
 * @iv: pointer to an IV
 * @in: plaintext to encrypt
 * @out: OUT: ciphertext
 * @length: length of input and output buffers, in bytes
 *
 * @iv may be NULL to force the use of an all-zero IV.
 * The buffer containing the IV must be as large as the
 * cipher's ivsize.
 *
 * Return values:
 *   %0: @in successfully encrypted into @out
 *   negative errno: @in not encrypted
 */
u32
krb5_encrypt(
	struct crypto_sync_skcipher *tfm,
	void * iv,
	void * in,
	void * out,
	int length)
{
	u32 ret = -EINVAL;
	struct scatterlist sg[1];
	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);

	if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
		goto out;

	if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
		dprintk("RPC:       gss_k5encrypt: tfm iv size too large %d\n",
			crypto_sync_skcipher_ivsize(tfm));
		goto out;
	}

	if (iv)
		memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));

	memcpy(out, in, length);
	sg_init_one(sg, out, length);

	skcipher_request_set_sync_tfm(req, tfm);
	skcipher_request_set_callback(req, 0, NULL, NULL);
	skcipher_request_set_crypt(req, sg, sg, length, local_iv);

	ret = crypto_skcipher_encrypt(req);
	skcipher_request_zero(req);
out:
	dprintk("RPC:       krb5_encrypt returns %d\n", ret);
	return ret;
}

/**
 * krb5_decrypt - simple decryption of an RPCSEC GSS payload
 * @tfm: initialized cipher transform
 * @iv: pointer to an IV
 * @in: ciphertext to decrypt
 * @out: OUT: plaintext
 * @length: length of input and output buffers, in bytes
 *
 * @iv may be NULL to force the use of an all-zero IV.
 * The buffer containing the IV must be as large as the
 * cipher's ivsize.
 *
 * Return values:
 *   %0: @in successfully decrypted into @out
 *   negative errno: @in not decrypted
 */
u32
krb5_decrypt(
     struct crypto_sync_skcipher *tfm,
     void * iv,
     void * in,
     void * out,
     int length)
{
	u32 ret = -EINVAL;
	struct scatterlist sg[1];
	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);

	if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
		goto out;

	if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
		dprintk("RPC:       gss_k5decrypt: tfm iv size too large %d\n",
			crypto_sync_skcipher_ivsize(tfm));
		goto out;
	}
	if (iv)
		memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));

	memcpy(out, in, length);
	sg_init_one(sg, out, length);

	skcipher_request_set_sync_tfm(req, tfm);
	skcipher_request_set_callback(req, 0, NULL, NULL);
	skcipher_request_set_crypt(req, sg, sg, length, local_iv);

	ret = crypto_skcipher_decrypt(req);
	skcipher_request_zero(req);
out:
	dprintk("RPC:       gss_k5decrypt returns %d\n",ret);
	return ret;
}

static int
checksummer(struct scatterlist *sg, void *data)
{
	struct ahash_request *req = data;

	ahash_request_set_crypt(req, sg, NULL, sg->length);

	return crypto_ahash_update(req);
}

/*
 * checksum the plaintext data and hdrlen bytes of the token header
 * The checksum is performed over the first 8 bytes of the
 * gss token header and then over the data body
 */
u32
make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
	      struct xdr_buf *body, int body_offset, u8 *cksumkey,
	      unsigned int usage, struct xdr_netobj *cksumout)
{
	struct crypto_ahash *tfm;
	struct ahash_request *req;
	struct scatterlist              sg[1];
	int err = -1;
	u8 *checksumdata;
	unsigned int checksumlen;

	if (cksumout->len < kctx->gk5e->cksumlength) {
		dprintk("%s: checksum buffer length, %u, too small for %s\n",
			__func__, cksumout->len, kctx->gk5e->name);
		return GSS_S_FAILURE;
	}

	checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_KERNEL);
	if (checksumdata == NULL)
		return GSS_S_FAILURE;

	tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
	if (IS_ERR(tfm))
		goto out_free_cksum;

	req = ahash_request_alloc(tfm, GFP_KERNEL);
	if (!req)
		goto out_free_ahash;

	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);

	checksumlen = crypto_ahash_digestsize(tfm);

	if (cksumkey != NULL) {
		err = crypto_ahash_setkey(tfm, cksumkey,
					  kctx->gk5e->keylength);
		if (err)
			goto out;
	}

	err = crypto_ahash_init(req);
	if (err)
		goto out;
	sg_init_one(sg, header, hdrlen);
	ahash_request_set_crypt(req, sg, NULL, hdrlen);
	err = crypto_ahash_update(req);
	if (err)
		goto out;
	err = xdr_process_buf(body, body_offset, body->len - body_offset,
			      checksummer, req);
	if (err)
		goto out;
	ahash_request_set_crypt(req, NULL, checksumdata, 0);
	err = crypto_ahash_final(req);
	if (err)
		goto out;

	switch (kctx->gk5e->ctype) {
	case CKSUMTYPE_RSA_MD5:
		err = krb5_encrypt(kctx->seq, NULL, checksumdata,
				   checksumdata, checksumlen);
		if (err)
			goto out;
		memcpy(cksumout->data,
		       checksumdata + checksumlen - kctx->gk5e->cksumlength,
		       kctx->gk5e->cksumlength);
		break;
	case CKSUMTYPE_HMAC_SHA1_DES3:
		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
		break;
	default:
		BUG();
		break;
	}
	cksumout->len = kctx->gk5e->cksumlength;
out:
	ahash_request_free(req);
out_free_ahash:
	crypto_free_ahash(tfm);
out_free_cksum:
	kfree(checksumdata);
	return err ? GSS_S_FAILURE : 0;
}

/**
 * gss_krb5_checksum - Compute the MAC for a GSS Wrap or MIC token
 * @tfm: an initialized hash transform
 * @header: pointer to a buffer containing the token header, or NULL
 * @hdrlen: number of octets in @header
 * @body: xdr_buf containing an RPC message (body.len is the message length)
 * @body_offset: byte offset into @body to start checksumming
 * @cksumout: OUT: a buffer to be filled in with the computed HMAC
 *
 * Usually expressed as H = HMAC(K, message)[1..h] .
 *
 * Caller provides the truncation length of the output token (h) in
 * cksumout.len.
 *
 * Return values:
 *   %GSS_S_COMPLETE: Digest computed, @cksumout filled in
 *   %GSS_S_FAILURE: Call failed
 */
u32
gss_krb5_checksum(struct crypto_ahash *tfm, char *header, int hdrlen,
		  const struct xdr_buf *body, int body_offset,
		  struct xdr_netobj *cksumout)
{
	struct ahash_request *req;
	int err = -ENOMEM;
	u8 *checksumdata;

	checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL);
	if (!checksumdata)
		return GSS_S_FAILURE;

	req = ahash_request_alloc(tfm, GFP_KERNEL);
	if (!req)
		goto out_free_cksum;
	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
	err = crypto_ahash_init(req);
	if (err)
		goto out_free_ahash;

	/*
	 * Per RFC 4121 Section 4.2.4, the checksum is performed over the
	 * data body first, then over the octets in "header".
	 */
	err = xdr_process_buf(body, body_offset, body->len - body_offset,
			      checksummer, req);
	if (err)
		goto out_free_ahash;
	if (header) {
		struct scatterlist sg[1];

		sg_init_one(sg, header, hdrlen);
		ahash_request_set_crypt(req, sg, NULL, hdrlen);
		err = crypto_ahash_update(req);
		if (err)
			goto out_free_ahash;
	}

	ahash_request_set_crypt(req, NULL, checksumdata, 0);
	err = crypto_ahash_final(req);
	if (err)
		goto out_free_ahash;

	memcpy(cksumout->data, checksumdata,
	       min_t(int, cksumout->len, crypto_ahash_digestsize(tfm)));

out_free_ahash:
	ahash_request_free(req);
out_free_cksum:
	kfree_sensitive(checksumdata);
	return err ? GSS_S_FAILURE : GSS_S_COMPLETE;
}
EXPORT_SYMBOL_IF_KUNIT(gss_krb5_checksum);

struct encryptor_desc {
	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
	struct skcipher_request *req;
	int pos;
	struct xdr_buf *outbuf;
	struct page **pages;
	struct scatterlist infrags[4];
	struct scatterlist outfrags[4];
	int fragno;
	int fraglen;
};

static int
encryptor(struct scatterlist *sg, void *data)
{
	struct encryptor_desc *desc = data;
	struct xdr_buf *outbuf = desc->outbuf;
	struct crypto_sync_skcipher *tfm =
		crypto_sync_skcipher_reqtfm(desc->req);
	struct page *in_page;
	int thislen = desc->fraglen + sg->length;
	int fraglen, ret;
	int page_pos;

	/* Worst case is 4 fragments: head, end of page 1, start
	 * of page 2, tail.  Anything more is a bug. */
	BUG_ON(desc->fragno > 3);

	page_pos = desc->pos - outbuf->head[0].iov_len;
	if (page_pos >= 0 && page_pos < outbuf->page_len) {
		/* pages are not in place: */
		int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
		in_page = desc->pages[i];
	} else {
		in_page = sg_page(sg);
	}
	sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
		    sg->offset);
	sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
		    sg->offset);
	desc->fragno++;
	desc->fraglen += sg->length;
	desc->pos += sg->length;

	fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
	thislen -= fraglen;

	if (thislen == 0)
		return 0;

	sg_mark_end(&desc->infrags[desc->fragno - 1]);
	sg_mark_end(&desc->outfrags[desc->fragno - 1]);

	skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
				   thislen, desc->iv);

	ret = crypto_skcipher_encrypt(desc->req);
	if (ret)
		return ret;

	sg_init_table(desc->infrags, 4);
	sg_init_table(desc->outfrags, 4);

	if (fraglen) {
		sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
				sg->offset + sg->length - fraglen);
		desc->infrags[0] = desc->outfrags[0];
		sg_assign_page(&desc->infrags[0], in_page);
		desc->fragno = 1;
		desc->fraglen = fraglen;
	} else {
		desc->fragno = 0;
		desc->fraglen = 0;
	}
	return 0;
}

int
gss_encrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
		    int offset, struct page **pages)
{
	int ret;
	struct encryptor_desc desc;
	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);

	BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);

	skcipher_request_set_sync_tfm(req, tfm);
	skcipher_request_set_callback(req, 0, NULL, NULL);

	memset(desc.iv, 0, sizeof(desc.iv));
	desc.req = req;
	desc.pos = offset;
	desc.outbuf = buf;
	desc.pages = pages;
	desc.fragno = 0;
	desc.fraglen = 0;

	sg_init_table(desc.infrags, 4);
	sg_init_table(desc.outfrags, 4);

	ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
	skcipher_request_zero(req);
	return ret;
}

struct decryptor_desc {
	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
	struct skcipher_request *req;
	struct scatterlist frags[4];
	int fragno;
	int fraglen;
};

static int
decryptor(struct scatterlist *sg, void *data)
{
	struct decryptor_desc *desc = data;
	int thislen = desc->fraglen + sg->length;
	struct crypto_sync_skcipher *tfm =
		crypto_sync_skcipher_reqtfm(desc->req);
	int fraglen, ret;

	/* Worst case is 4 fragments: head, end of page 1, start
	 * of page 2, tail.  Anything more is a bug. */
	BUG_ON(desc->fragno > 3);
	sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
		    sg->offset);
	desc->fragno++;
	desc->fraglen += sg->length;

	fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
	thislen -= fraglen;

	if (thislen == 0)
		return 0;

	sg_mark_end(&desc->frags[desc->fragno - 1]);

	skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
				   thislen, desc->iv);

	ret = crypto_skcipher_decrypt(desc->req);
	if (ret)
		return ret;

	sg_init_table(desc->frags, 4);

	if (fraglen) {
		sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
				sg->offset + sg->length - fraglen);
		desc->fragno = 1;
		desc->fraglen = fraglen;
	} else {
		desc->fragno = 0;
		desc->fraglen = 0;
	}
	return 0;
}

int
gss_decrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
		    int offset)
{
	int ret;
	struct decryptor_desc desc;
	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);

	/* XXXJBF: */
	BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);

	skcipher_request_set_sync_tfm(req, tfm);
	skcipher_request_set_callback(req, 0, NULL, NULL);

	memset(desc.iv, 0, sizeof(desc.iv));
	desc.req = req;
	desc.fragno = 0;
	desc.fraglen = 0;

	sg_init_table(desc.frags, 4);

	ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
	skcipher_request_zero(req);
	return ret;
}

/*
 * This function makes the assumption that it was ultimately called
 * from gss_wrap().
 *
 * The client auth_gss code moves any existing tail data into a
 * separate page before calling gss_wrap.
 * The server svcauth_gss code ensures that both the head and the
 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
 *
 * Even with that guarantee, this function may be called more than
 * once in the processing of gss_wrap().  The best we can do is
 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
 * At run-time we can verify that a single invocation of this
 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
 */

int
xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
{
	u8 *p;

	if (shiftlen == 0)
		return 0;

	BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);

	p = buf->head[0].iov_base + base;

	memmove(p + shiftlen, p, buf->head[0].iov_len - base);

	buf->head[0].iov_len += shiftlen;
	buf->len += shiftlen;

	return 0;
}

static u32
gss_krb5_cts_crypt(struct crypto_sync_skcipher *cipher, struct xdr_buf *buf,
		   u32 offset, u8 *iv, struct page **pages, int encrypt)
{
	u32 ret;
	struct scatterlist sg[1];
	SYNC_SKCIPHER_REQUEST_ON_STACK(req, cipher);
	u8 *data;
	struct page **save_pages;
	u32 len = buf->len - offset;

	if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
		WARN_ON(0);
		return -ENOMEM;
	}
	data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	/*
	 * For encryption, we want to read from the cleartext
	 * page cache pages, and write the encrypted data to
	 * the supplied xdr_buf pages.
	 */
	save_pages = buf->pages;
	if (encrypt)
		buf->pages = pages;

	ret = read_bytes_from_xdr_buf(buf, offset, data, len);
	buf->pages = save_pages;
	if (ret)
		goto out;

	sg_init_one(sg, data, len);

	skcipher_request_set_sync_tfm(req, cipher);
	skcipher_request_set_callback(req, 0, NULL, NULL);
	skcipher_request_set_crypt(req, sg, sg, len, iv);

	if (encrypt)
		ret = crypto_skcipher_encrypt(req);
	else
		ret = crypto_skcipher_decrypt(req);

	skcipher_request_zero(req);

	if (ret)
		goto out;

	ret = write_bytes_to_xdr_buf(buf, offset, data, len);

#if IS_ENABLED(CONFIG_KUNIT)
	/*
	 * CBC-CTS does not define an output IV but RFC 3962 defines it as the
	 * penultimate block of ciphertext, so copy that into the IV buffer
	 * before returning.
	 */
	if (encrypt)
		memcpy(iv, data, crypto_sync_skcipher_ivsize(cipher));
#endif

out:
	kfree(data);
	return ret;
}

/**
 * krb5_cbc_cts_encrypt - encrypt in CBC mode with CTS
 * @cts_tfm: CBC cipher with CTS
 * @cbc_tfm: base CBC cipher
 * @offset: starting byte offset for plaintext
 * @buf: OUT: output buffer
 * @pages: plaintext
 * @iv: output CBC initialization vector, or NULL
 * @ivsize: size of @iv, in octets
 *
 * To provide confidentiality, encrypt using cipher block chaining
 * with ciphertext stealing. Message integrity is handled separately.
 *
 * Return values:
 *   %0: encryption successful
 *   negative errno: encryption could not be completed
 */
VISIBLE_IF_KUNIT
int krb5_cbc_cts_encrypt(struct crypto_sync_skcipher *cts_tfm,
			 struct crypto_sync_skcipher *cbc_tfm,
			 u32 offset, struct xdr_buf *buf, struct page **pages,
			 u8 *iv, unsigned int ivsize)
{
	u32 blocksize, nbytes, nblocks, cbcbytes;
	struct encryptor_desc desc;
	int err;

	blocksize = crypto_sync_skcipher_blocksize(cts_tfm);
	nbytes = buf->len - offset;
	nblocks = (nbytes + blocksize - 1) / blocksize;
	cbcbytes = 0;
	if (nblocks > 2)
		cbcbytes = (nblocks - 2) * blocksize;

	memset(desc.iv, 0, sizeof(desc.iv));

	/* Handle block-sized chunks of plaintext with CBC. */
	if (cbcbytes) {
		SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm);

		desc.pos = offset;
		desc.fragno = 0;
		desc.fraglen = 0;
		desc.pages = pages;
		desc.outbuf = buf;
		desc.req = req;

		skcipher_request_set_sync_tfm(req, cbc_tfm);
		skcipher_request_set_callback(req, 0, NULL, NULL);

		sg_init_table(desc.infrags, 4);
		sg_init_table(desc.outfrags, 4);

		err = xdr_process_buf(buf, offset, cbcbytes, encryptor, &desc);
		skcipher_request_zero(req);
		if (err)
			return err;
	}

	/* Remaining plaintext is handled with CBC-CTS. */
	err = gss_krb5_cts_crypt(cts_tfm, buf, offset + cbcbytes,
				 desc.iv, pages, 1);
	if (err)
		return err;

	if (unlikely(iv))
		memcpy(iv, desc.iv, ivsize);
	return 0;
}
EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_encrypt);

/**
 * krb5_cbc_cts_decrypt - decrypt in CBC mode with CTS
 * @cts_tfm: CBC cipher with CTS
 * @cbc_tfm: base CBC cipher
 * @offset: starting byte offset for plaintext
 * @buf: OUT: output buffer
 *
 * Return values:
 *   %0: decryption successful
 *   negative errno: decryption could not be completed
 */
VISIBLE_IF_KUNIT
int krb5_cbc_cts_decrypt(struct crypto_sync_skcipher *cts_tfm,
			 struct crypto_sync_skcipher *cbc_tfm,
			 u32 offset, struct xdr_buf *buf)
{
	u32 blocksize, nblocks, cbcbytes;
	struct decryptor_desc desc;
	int err;

	blocksize = crypto_sync_skcipher_blocksize(cts_tfm);
	nblocks = (buf->len + blocksize - 1) / blocksize;
	cbcbytes = 0;
	if (nblocks > 2)
		cbcbytes = (nblocks - 2) * blocksize;

	memset(desc.iv, 0, sizeof(desc.iv));

	/* Handle block-sized chunks of plaintext with CBC. */
	if (cbcbytes) {
		SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm);

		desc.fragno = 0;
		desc.fraglen = 0;
		desc.req = req;

		skcipher_request_set_sync_tfm(req, cbc_tfm);
		skcipher_request_set_callback(req, 0, NULL, NULL);

		sg_init_table(desc.frags, 4);

		err = xdr_process_buf(buf, 0, cbcbytes, decryptor, &desc);
		skcipher_request_zero(req);
		if (err)
			return err;
	}

	/* Remaining plaintext is handled with CBC-CTS. */
	return gss_krb5_cts_crypt(cts_tfm, buf, cbcbytes, desc.iv, NULL, 0);
}
EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_decrypt);

u32
gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
		     struct xdr_buf *buf, struct page **pages)
{
	u32 err;
	struct xdr_netobj hmac;
	u8 *ecptr;
	struct crypto_sync_skcipher *cipher, *aux_cipher;
	struct crypto_ahash *ahash;
	struct page **save_pages;
	unsigned int conflen;

	if (kctx->initiate) {
		cipher = kctx->initiator_enc;
		aux_cipher = kctx->initiator_enc_aux;
		ahash = kctx->initiator_integ;
	} else {
		cipher = kctx->acceptor_enc;
		aux_cipher = kctx->acceptor_enc_aux;
		ahash = kctx->acceptor_integ;
	}
	conflen = crypto_sync_skcipher_blocksize(cipher);

	/* hide the gss token header and insert the confounder */
	offset += GSS_KRB5_TOK_HDR_LEN;
	if (xdr_extend_head(buf, offset, conflen))
		return GSS_S_FAILURE;
	krb5_make_confounder(buf->head[0].iov_base + offset, conflen);
	offset -= GSS_KRB5_TOK_HDR_LEN;

	if (buf->tail[0].iov_base != NULL) {
		ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
	} else {
		buf->tail[0].iov_base = buf->head[0].iov_base
							+ buf->head[0].iov_len;
		buf->tail[0].iov_len = 0;
		ecptr = buf->tail[0].iov_base;
	}

	/* copy plaintext gss token header after filler (if any) */
	memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
	buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
	buf->len += GSS_KRB5_TOK_HDR_LEN;

	hmac.len = kctx->gk5e->cksumlength;
	hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;

	/*
	 * When we are called, pages points to the real page cache
	 * data -- which we can't go and encrypt!  buf->pages points
	 * to scratch pages which we are going to send off to the
	 * client/server.  Swap in the plaintext pages to calculate
	 * the hmac.
	 */
	save_pages = buf->pages;
	buf->pages = pages;

	err = gss_krb5_checksum(ahash, NULL, 0, buf,
				offset + GSS_KRB5_TOK_HDR_LEN, &hmac);
	buf->pages = save_pages;
	if (err)
		return GSS_S_FAILURE;

	err = krb5_cbc_cts_encrypt(cipher, aux_cipher,
				   offset + GSS_KRB5_TOK_HDR_LEN,
				   buf, pages, NULL, 0);
	if (err)
		return GSS_S_FAILURE;

	/* Now update buf to account for HMAC */
	buf->tail[0].iov_len += kctx->gk5e->cksumlength;
	buf->len += kctx->gk5e->cksumlength;

	return GSS_S_COMPLETE;
}

u32
gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
		     struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
{
	struct crypto_sync_skcipher *cipher, *aux_cipher;
	struct crypto_ahash *ahash;
	struct xdr_netobj our_hmac_obj;
	u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
	u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
	struct xdr_buf subbuf;
	u32 ret = 0;

	if (kctx->initiate) {
		cipher = kctx->acceptor_enc;
		aux_cipher = kctx->acceptor_enc_aux;
		ahash = kctx->acceptor_integ;
	} else {
		cipher = kctx->initiator_enc;
		aux_cipher = kctx->initiator_enc_aux;
		ahash = kctx->initiator_integ;
	}

	/* create a segment skipping the header and leaving out the checksum */
	xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
				    (len - offset - GSS_KRB5_TOK_HDR_LEN -
				     kctx->gk5e->cksumlength));

	ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf);
	if (ret)
		goto out_err;

	our_hmac_obj.len = kctx->gk5e->cksumlength;
	our_hmac_obj.data = our_hmac;
	ret = gss_krb5_checksum(ahash, NULL, 0, &subbuf, 0, &our_hmac_obj);
	if (ret)
		goto out_err;

	/* Get the packet's hmac value */
	ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
				      pkt_hmac, kctx->gk5e->cksumlength);
	if (ret)
		goto out_err;

	if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
		ret = GSS_S_BAD_SIG;
		goto out_err;
	}
	*headskip = crypto_sync_skcipher_blocksize(cipher);
	*tailskip = kctx->gk5e->cksumlength;
out_err:
	if (ret && ret != GSS_S_BAD_SIG)
		ret = GSS_S_FAILURE;
	return ret;
}

/**
 * krb5_etm_checksum - Compute a MAC for a GSS Wrap token
 * @cipher: an initialized cipher transform
 * @tfm: an initialized hash transform
 * @body: xdr_buf containing an RPC message (body.len is the message length)
 * @body_offset: byte offset into @body to start checksumming
 * @cksumout: OUT: a buffer to be filled in with the computed HMAC
 *
 * Usually expressed as H = HMAC(K, IV | ciphertext)[1..h] .
 *
 * Caller provides the truncation length of the output token (h) in
 * cksumout.len.
 *
 * Return values:
 *   %GSS_S_COMPLETE: Digest computed, @cksumout filled in
 *   %GSS_S_FAILURE: Call failed
 */
VISIBLE_IF_KUNIT
u32 krb5_etm_checksum(struct crypto_sync_skcipher *cipher,
		      struct crypto_ahash *tfm, const struct xdr_buf *body,
		      int body_offset, struct xdr_netobj *cksumout)
{
	unsigned int ivsize = crypto_sync_skcipher_ivsize(cipher);
	struct ahash_request *req;
	struct scatterlist sg[1];
	u8 *iv, *checksumdata;
	int err = -ENOMEM;

	checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL);
	if (!checksumdata)
		return GSS_S_FAILURE;
	/* For RPCSEC, the "initial cipher state" is always all zeroes. */
	iv = kzalloc(ivsize, GFP_KERNEL);
	if (!iv)
		goto out_free_mem;

	req = ahash_request_alloc(tfm, GFP_KERNEL);
	if (!req)
		goto out_free_mem;
	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
	err = crypto_ahash_init(req);
	if (err)
		goto out_free_ahash;

	sg_init_one(sg, iv, ivsize);
	ahash_request_set_crypt(req, sg, NULL, ivsize);
	err = crypto_ahash_update(req);
	if (err)
		goto out_free_ahash;
	err = xdr_process_buf(body, body_offset, body->len - body_offset,
			      checksummer, req);
	if (err)
		goto out_free_ahash;

	ahash_request_set_crypt(req, NULL, checksumdata, 0);
	err = crypto_ahash_final(req);
	if (err)
		goto out_free_ahash;
	memcpy(cksumout->data, checksumdata, cksumout->len);

out_free_ahash:
	ahash_request_free(req);
out_free_mem:
	kfree(iv);
	kfree_sensitive(checksumdata);
	return err ? GSS_S_FAILURE : GSS_S_COMPLETE;
}
EXPORT_SYMBOL_IF_KUNIT(krb5_etm_checksum);

/**
 * krb5_etm_encrypt - Encrypt using the RFC 8009 rules
 * @kctx: Kerberos context
 * @offset: starting offset of the payload, in bytes
 * @buf: OUT: send buffer to contain the encrypted payload
 * @pages: plaintext payload
 *
 * The main difference with aes_encrypt is that "The HMAC is
 * calculated over the cipher state concatenated with the AES
 * output, instead of being calculated over the confounder and
 * plaintext.  This allows the message receiver to verify the
 * integrity of the message before decrypting the message."
 *
 * RFC 8009 Section 5:
 *
 * encryption function: as follows, where E() is AES encryption in
 * CBC-CS3 mode, and h is the size of truncated HMAC (128 bits or
 * 192 bits as described above).
 *
 *    N = random value of length 128 bits (the AES block size)
 *    IV = cipher state
 *    C = E(Ke, N | plaintext, IV)
 *    H = HMAC(Ki, IV | C)
 *    ciphertext = C | H[1..h]
 *
 * This encryption formula provides AEAD EtM with key separation.
 *
 * Return values:
 *   %GSS_S_COMPLETE: Encryption successful
 *   %GSS_S_FAILURE: Encryption failed
 */
u32
krb5_etm_encrypt(struct krb5_ctx *kctx, u32 offset,
		 struct xdr_buf *buf, struct page **pages)
{
	struct crypto_sync_skcipher *cipher, *aux_cipher;
	struct crypto_ahash *ahash;
	struct xdr_netobj hmac;
	unsigned int conflen;
	u8 *ecptr;
	u32 err;

	if (kctx->initiate) {
		cipher = kctx->initiator_enc;
		aux_cipher = kctx->initiator_enc_aux;
		ahash = kctx->initiator_integ;
	} else {
		cipher = kctx->acceptor_enc;
		aux_cipher = kctx->acceptor_enc_aux;
		ahash = kctx->acceptor_integ;
	}
	conflen = crypto_sync_skcipher_blocksize(cipher);

	offset += GSS_KRB5_TOK_HDR_LEN;
	if (xdr_extend_head(buf, offset, conflen))
		return GSS_S_FAILURE;
	krb5_make_confounder(buf->head[0].iov_base + offset, conflen);
	offset -= GSS_KRB5_TOK_HDR_LEN;

	if (buf->tail[0].iov_base) {
		ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
	} else {
		buf->tail[0].iov_base = buf->head[0].iov_base
							+ buf->head[0].iov_len;
		buf->tail[0].iov_len = 0;
		ecptr = buf->tail[0].iov_base;
	}

	memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
	buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
	buf->len += GSS_KRB5_TOK_HDR_LEN;

	err = krb5_cbc_cts_encrypt(cipher, aux_cipher,
				   offset + GSS_KRB5_TOK_HDR_LEN,
				   buf, pages, NULL, 0);
	if (err)
		return GSS_S_FAILURE;

	hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
	hmac.len = kctx->gk5e->cksumlength;
	err = krb5_etm_checksum(cipher, ahash,
				buf, offset + GSS_KRB5_TOK_HDR_LEN, &hmac);
	if (err)
		goto out_err;
	buf->tail[0].iov_len += kctx->gk5e->cksumlength;
	buf->len += kctx->gk5e->cksumlength;

	return GSS_S_COMPLETE;

out_err:
	return GSS_S_FAILURE;
}

/**
 * krb5_etm_decrypt - Decrypt using the RFC 8009 rules
 * @kctx: Kerberos context
 * @offset: starting offset of the ciphertext, in bytes
 * @len:
 * @buf:
 * @headskip: OUT: the enctype's confounder length, in octets
 * @tailskip: OUT: the enctype's HMAC length, in octets
 *
 * RFC 8009 Section 5:
 *
 * decryption function: as follows, where D() is AES decryption in
 * CBC-CS3 mode, and h is the size of truncated HMAC.
 *
 *    (C, H) = ciphertext
 *        (Note: H is the last h bits of the ciphertext.)
 *    IV = cipher state
 *    if H != HMAC(Ki, IV | C)[1..h]
 *        stop, report error
 *    (N, P) = D(Ke, C, IV)
 *
 * Return values:
 *   %GSS_S_COMPLETE: Decryption successful
 *   %GSS_S_BAD_SIG: computed HMAC != received HMAC
 *   %GSS_S_FAILURE: Decryption failed
 */
u32
krb5_etm_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
		 struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
{
	struct crypto_sync_skcipher *cipher, *aux_cipher;
	u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
	u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
	struct xdr_netobj our_hmac_obj;
	struct crypto_ahash *ahash;
	struct xdr_buf subbuf;
	u32 ret = 0;

	if (kctx->initiate) {
		cipher = kctx->acceptor_enc;
		aux_cipher = kctx->acceptor_enc_aux;
		ahash = kctx->acceptor_integ;
	} else {
		cipher = kctx->initiator_enc;
		aux_cipher = kctx->initiator_enc_aux;
		ahash = kctx->initiator_integ;
	}

	/* Extract the ciphertext into @subbuf. */
	xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
			   (len - offset - GSS_KRB5_TOK_HDR_LEN -
			    kctx->gk5e->cksumlength));

	our_hmac_obj.data = our_hmac;
	our_hmac_obj.len = kctx->gk5e->cksumlength;
	ret = krb5_etm_checksum(cipher, ahash, &subbuf, 0, &our_hmac_obj);
	if (ret)
		goto out_err;
	ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
				      pkt_hmac, kctx->gk5e->cksumlength);
	if (ret)
		goto out_err;
	if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
		ret = GSS_S_BAD_SIG;
		goto out_err;
	}

	ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf);
	if (ret) {
		ret = GSS_S_FAILURE;
		goto out_err;
	}

	*headskip = crypto_sync_skcipher_blocksize(cipher);
	*tailskip = kctx->gk5e->cksumlength;
	return GSS_S_COMPLETE;

out_err:
	if (ret != GSS_S_BAD_SIG)
		ret = GSS_S_FAILURE;
	return ret;
}