Loading...
1/*
2 * linux/net/sunrpc/gss_krb5_crypto.c
3 *
4 * Copyright (c) 2000-2008 The Regents of the University of Michigan.
5 * All rights reserved.
6 *
7 * Andy Adamson <andros@umich.edu>
8 * Bruce Fields <bfields@umich.edu>
9 */
10
11/*
12 * Copyright (C) 1998 by the FundsXpress, INC.
13 *
14 * All rights reserved.
15 *
16 * Export of this software from the United States of America may require
17 * a specific license from the United States Government. It is the
18 * responsibility of any person or organization contemplating export to
19 * obtain such a license before exporting.
20 *
21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
22 * distribute this software and its documentation for any purpose and
23 * without fee is hereby granted, provided that the above copyright
24 * notice appear in all copies and that both that copyright notice and
25 * this permission notice appear in supporting documentation, and that
26 * the name of FundsXpress. not be used in advertising or publicity pertaining
27 * to distribution of the software without specific, written prior
28 * permission. FundsXpress makes no representations about the suitability of
29 * this software for any purpose. It is provided "as is" without express
30 * or implied warranty.
31 *
32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
35 */
36
37#include <crypto/hash.h>
38#include <crypto/skcipher.h>
39#include <crypto/utils.h>
40#include <linux/err.h>
41#include <linux/types.h>
42#include <linux/mm.h>
43#include <linux/scatterlist.h>
44#include <linux/highmem.h>
45#include <linux/pagemap.h>
46#include <linux/random.h>
47#include <linux/sunrpc/gss_krb5.h>
48#include <linux/sunrpc/xdr.h>
49#include <kunit/visibility.h>
50
51#include "gss_krb5_internal.h"
52
53#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
54# define RPCDBG_FACILITY RPCDBG_AUTH
55#endif
56
57/**
58 * krb5_make_confounder - Generate a confounder string
59 * @p: memory location into which to write the string
60 * @conflen: string length to write, in octets
61 *
62 * RFCs 1964 and 3961 mention only "a random confounder" without going
63 * into detail about its function or cryptographic requirements. The
64 * assumed purpose is to prevent repeated encryption of a plaintext with
65 * the same key from generating the same ciphertext. It is also used to
66 * pad minimum plaintext length to at least a single cipher block.
67 *
68 * However, in situations like the GSS Kerberos 5 mechanism, where the
69 * encryption IV is always all zeroes, the confounder also effectively
70 * functions like an IV. Thus, not only must it be unique from message
71 * to message, but it must also be difficult to predict. Otherwise an
72 * attacker can correlate the confounder to previous or future values,
73 * making the encryption easier to break.
74 *
75 * Given that the primary consumer of this encryption mechanism is a
76 * network storage protocol, a type of traffic that often carries
77 * predictable payloads (eg, all zeroes when reading unallocated blocks
78 * from a file), our confounder generation has to be cryptographically
79 * strong.
80 */
81void krb5_make_confounder(u8 *p, int conflen)
82{
83 get_random_bytes(p, conflen);
84}
85
86/**
87 * krb5_encrypt - simple encryption of an RPCSEC GSS payload
88 * @tfm: initialized cipher transform
89 * @iv: pointer to an IV
90 * @in: plaintext to encrypt
91 * @out: OUT: ciphertext
92 * @length: length of input and output buffers, in bytes
93 *
94 * @iv may be NULL to force the use of an all-zero IV.
95 * The buffer containing the IV must be as large as the
96 * cipher's ivsize.
97 *
98 * Return values:
99 * %0: @in successfully encrypted into @out
100 * negative errno: @in not encrypted
101 */
102u32
103krb5_encrypt(
104 struct crypto_sync_skcipher *tfm,
105 void * iv,
106 void * in,
107 void * out,
108 int length)
109{
110 u32 ret = -EINVAL;
111 struct scatterlist sg[1];
112 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
113 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
114
115 if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
116 goto out;
117
118 if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
119 dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n",
120 crypto_sync_skcipher_ivsize(tfm));
121 goto out;
122 }
123
124 if (iv)
125 memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
126
127 memcpy(out, in, length);
128 sg_init_one(sg, out, length);
129
130 skcipher_request_set_sync_tfm(req, tfm);
131 skcipher_request_set_callback(req, 0, NULL, NULL);
132 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
133
134 ret = crypto_skcipher_encrypt(req);
135 skcipher_request_zero(req);
136out:
137 dprintk("RPC: krb5_encrypt returns %d\n", ret);
138 return ret;
139}
140
141/**
142 * krb5_decrypt - simple decryption of an RPCSEC GSS payload
143 * @tfm: initialized cipher transform
144 * @iv: pointer to an IV
145 * @in: ciphertext to decrypt
146 * @out: OUT: plaintext
147 * @length: length of input and output buffers, in bytes
148 *
149 * @iv may be NULL to force the use of an all-zero IV.
150 * The buffer containing the IV must be as large as the
151 * cipher's ivsize.
152 *
153 * Return values:
154 * %0: @in successfully decrypted into @out
155 * negative errno: @in not decrypted
156 */
157u32
158krb5_decrypt(
159 struct crypto_sync_skcipher *tfm,
160 void * iv,
161 void * in,
162 void * out,
163 int length)
164{
165 u32 ret = -EINVAL;
166 struct scatterlist sg[1];
167 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
168 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
169
170 if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
171 goto out;
172
173 if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
174 dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n",
175 crypto_sync_skcipher_ivsize(tfm));
176 goto out;
177 }
178 if (iv)
179 memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
180
181 memcpy(out, in, length);
182 sg_init_one(sg, out, length);
183
184 skcipher_request_set_sync_tfm(req, tfm);
185 skcipher_request_set_callback(req, 0, NULL, NULL);
186 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
187
188 ret = crypto_skcipher_decrypt(req);
189 skcipher_request_zero(req);
190out:
191 dprintk("RPC: gss_k5decrypt returns %d\n",ret);
192 return ret;
193}
194
195static int
196checksummer(struct scatterlist *sg, void *data)
197{
198 struct ahash_request *req = data;
199
200 ahash_request_set_crypt(req, sg, NULL, sg->length);
201
202 return crypto_ahash_update(req);
203}
204
205/*
206 * checksum the plaintext data and hdrlen bytes of the token header
207 * The checksum is performed over the first 8 bytes of the
208 * gss token header and then over the data body
209 */
210u32
211make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
212 struct xdr_buf *body, int body_offset, u8 *cksumkey,
213 unsigned int usage, struct xdr_netobj *cksumout)
214{
215 struct crypto_ahash *tfm;
216 struct ahash_request *req;
217 struct scatterlist sg[1];
218 int err = -1;
219 u8 *checksumdata;
220 unsigned int checksumlen;
221
222 if (cksumout->len < kctx->gk5e->cksumlength) {
223 dprintk("%s: checksum buffer length, %u, too small for %s\n",
224 __func__, cksumout->len, kctx->gk5e->name);
225 return GSS_S_FAILURE;
226 }
227
228 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_KERNEL);
229 if (checksumdata == NULL)
230 return GSS_S_FAILURE;
231
232 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
233 if (IS_ERR(tfm))
234 goto out_free_cksum;
235
236 req = ahash_request_alloc(tfm, GFP_KERNEL);
237 if (!req)
238 goto out_free_ahash;
239
240 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
241
242 checksumlen = crypto_ahash_digestsize(tfm);
243
244 if (cksumkey != NULL) {
245 err = crypto_ahash_setkey(tfm, cksumkey,
246 kctx->gk5e->keylength);
247 if (err)
248 goto out;
249 }
250
251 err = crypto_ahash_init(req);
252 if (err)
253 goto out;
254 sg_init_one(sg, header, hdrlen);
255 ahash_request_set_crypt(req, sg, NULL, hdrlen);
256 err = crypto_ahash_update(req);
257 if (err)
258 goto out;
259 err = xdr_process_buf(body, body_offset, body->len - body_offset,
260 checksummer, req);
261 if (err)
262 goto out;
263 ahash_request_set_crypt(req, NULL, checksumdata, 0);
264 err = crypto_ahash_final(req);
265 if (err)
266 goto out;
267
268 switch (kctx->gk5e->ctype) {
269 case CKSUMTYPE_RSA_MD5:
270 err = krb5_encrypt(kctx->seq, NULL, checksumdata,
271 checksumdata, checksumlen);
272 if (err)
273 goto out;
274 memcpy(cksumout->data,
275 checksumdata + checksumlen - kctx->gk5e->cksumlength,
276 kctx->gk5e->cksumlength);
277 break;
278 case CKSUMTYPE_HMAC_SHA1_DES3:
279 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
280 break;
281 default:
282 BUG();
283 break;
284 }
285 cksumout->len = kctx->gk5e->cksumlength;
286out:
287 ahash_request_free(req);
288out_free_ahash:
289 crypto_free_ahash(tfm);
290out_free_cksum:
291 kfree(checksumdata);
292 return err ? GSS_S_FAILURE : 0;
293}
294
295/**
296 * gss_krb5_checksum - Compute the MAC for a GSS Wrap or MIC token
297 * @tfm: an initialized hash transform
298 * @header: pointer to a buffer containing the token header, or NULL
299 * @hdrlen: number of octets in @header
300 * @body: xdr_buf containing an RPC message (body.len is the message length)
301 * @body_offset: byte offset into @body to start checksumming
302 * @cksumout: OUT: a buffer to be filled in with the computed HMAC
303 *
304 * Usually expressed as H = HMAC(K, message)[1..h] .
305 *
306 * Caller provides the truncation length of the output token (h) in
307 * cksumout.len.
308 *
309 * Return values:
310 * %GSS_S_COMPLETE: Digest computed, @cksumout filled in
311 * %GSS_S_FAILURE: Call failed
312 */
313u32
314gss_krb5_checksum(struct crypto_ahash *tfm, char *header, int hdrlen,
315 const struct xdr_buf *body, int body_offset,
316 struct xdr_netobj *cksumout)
317{
318 struct ahash_request *req;
319 int err = -ENOMEM;
320 u8 *checksumdata;
321
322 checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL);
323 if (!checksumdata)
324 return GSS_S_FAILURE;
325
326 req = ahash_request_alloc(tfm, GFP_KERNEL);
327 if (!req)
328 goto out_free_cksum;
329 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
330 err = crypto_ahash_init(req);
331 if (err)
332 goto out_free_ahash;
333
334 /*
335 * Per RFC 4121 Section 4.2.4, the checksum is performed over the
336 * data body first, then over the octets in "header".
337 */
338 err = xdr_process_buf(body, body_offset, body->len - body_offset,
339 checksummer, req);
340 if (err)
341 goto out_free_ahash;
342 if (header) {
343 struct scatterlist sg[1];
344
345 sg_init_one(sg, header, hdrlen);
346 ahash_request_set_crypt(req, sg, NULL, hdrlen);
347 err = crypto_ahash_update(req);
348 if (err)
349 goto out_free_ahash;
350 }
351
352 ahash_request_set_crypt(req, NULL, checksumdata, 0);
353 err = crypto_ahash_final(req);
354 if (err)
355 goto out_free_ahash;
356
357 memcpy(cksumout->data, checksumdata,
358 min_t(int, cksumout->len, crypto_ahash_digestsize(tfm)));
359
360out_free_ahash:
361 ahash_request_free(req);
362out_free_cksum:
363 kfree_sensitive(checksumdata);
364 return err ? GSS_S_FAILURE : GSS_S_COMPLETE;
365}
366EXPORT_SYMBOL_IF_KUNIT(gss_krb5_checksum);
367
368struct encryptor_desc {
369 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
370 struct skcipher_request *req;
371 int pos;
372 struct xdr_buf *outbuf;
373 struct page **pages;
374 struct scatterlist infrags[4];
375 struct scatterlist outfrags[4];
376 int fragno;
377 int fraglen;
378};
379
380static int
381encryptor(struct scatterlist *sg, void *data)
382{
383 struct encryptor_desc *desc = data;
384 struct xdr_buf *outbuf = desc->outbuf;
385 struct crypto_sync_skcipher *tfm =
386 crypto_sync_skcipher_reqtfm(desc->req);
387 struct page *in_page;
388 int thislen = desc->fraglen + sg->length;
389 int fraglen, ret;
390 int page_pos;
391
392 /* Worst case is 4 fragments: head, end of page 1, start
393 * of page 2, tail. Anything more is a bug. */
394 BUG_ON(desc->fragno > 3);
395
396 page_pos = desc->pos - outbuf->head[0].iov_len;
397 if (page_pos >= 0 && page_pos < outbuf->page_len) {
398 /* pages are not in place: */
399 int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
400 in_page = desc->pages[i];
401 } else {
402 in_page = sg_page(sg);
403 }
404 sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
405 sg->offset);
406 sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
407 sg->offset);
408 desc->fragno++;
409 desc->fraglen += sg->length;
410 desc->pos += sg->length;
411
412 fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
413 thislen -= fraglen;
414
415 if (thislen == 0)
416 return 0;
417
418 sg_mark_end(&desc->infrags[desc->fragno - 1]);
419 sg_mark_end(&desc->outfrags[desc->fragno - 1]);
420
421 skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
422 thislen, desc->iv);
423
424 ret = crypto_skcipher_encrypt(desc->req);
425 if (ret)
426 return ret;
427
428 sg_init_table(desc->infrags, 4);
429 sg_init_table(desc->outfrags, 4);
430
431 if (fraglen) {
432 sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
433 sg->offset + sg->length - fraglen);
434 desc->infrags[0] = desc->outfrags[0];
435 sg_assign_page(&desc->infrags[0], in_page);
436 desc->fragno = 1;
437 desc->fraglen = fraglen;
438 } else {
439 desc->fragno = 0;
440 desc->fraglen = 0;
441 }
442 return 0;
443}
444
445int
446gss_encrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
447 int offset, struct page **pages)
448{
449 int ret;
450 struct encryptor_desc desc;
451 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
452
453 BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
454
455 skcipher_request_set_sync_tfm(req, tfm);
456 skcipher_request_set_callback(req, 0, NULL, NULL);
457
458 memset(desc.iv, 0, sizeof(desc.iv));
459 desc.req = req;
460 desc.pos = offset;
461 desc.outbuf = buf;
462 desc.pages = pages;
463 desc.fragno = 0;
464 desc.fraglen = 0;
465
466 sg_init_table(desc.infrags, 4);
467 sg_init_table(desc.outfrags, 4);
468
469 ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
470 skcipher_request_zero(req);
471 return ret;
472}
473
474struct decryptor_desc {
475 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
476 struct skcipher_request *req;
477 struct scatterlist frags[4];
478 int fragno;
479 int fraglen;
480};
481
482static int
483decryptor(struct scatterlist *sg, void *data)
484{
485 struct decryptor_desc *desc = data;
486 int thislen = desc->fraglen + sg->length;
487 struct crypto_sync_skcipher *tfm =
488 crypto_sync_skcipher_reqtfm(desc->req);
489 int fraglen, ret;
490
491 /* Worst case is 4 fragments: head, end of page 1, start
492 * of page 2, tail. Anything more is a bug. */
493 BUG_ON(desc->fragno > 3);
494 sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
495 sg->offset);
496 desc->fragno++;
497 desc->fraglen += sg->length;
498
499 fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
500 thislen -= fraglen;
501
502 if (thislen == 0)
503 return 0;
504
505 sg_mark_end(&desc->frags[desc->fragno - 1]);
506
507 skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
508 thislen, desc->iv);
509
510 ret = crypto_skcipher_decrypt(desc->req);
511 if (ret)
512 return ret;
513
514 sg_init_table(desc->frags, 4);
515
516 if (fraglen) {
517 sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
518 sg->offset + sg->length - fraglen);
519 desc->fragno = 1;
520 desc->fraglen = fraglen;
521 } else {
522 desc->fragno = 0;
523 desc->fraglen = 0;
524 }
525 return 0;
526}
527
528int
529gss_decrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
530 int offset)
531{
532 int ret;
533 struct decryptor_desc desc;
534 SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
535
536 /* XXXJBF: */
537 BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
538
539 skcipher_request_set_sync_tfm(req, tfm);
540 skcipher_request_set_callback(req, 0, NULL, NULL);
541
542 memset(desc.iv, 0, sizeof(desc.iv));
543 desc.req = req;
544 desc.fragno = 0;
545 desc.fraglen = 0;
546
547 sg_init_table(desc.frags, 4);
548
549 ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
550 skcipher_request_zero(req);
551 return ret;
552}
553
554/*
555 * This function makes the assumption that it was ultimately called
556 * from gss_wrap().
557 *
558 * The client auth_gss code moves any existing tail data into a
559 * separate page before calling gss_wrap.
560 * The server svcauth_gss code ensures that both the head and the
561 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
562 *
563 * Even with that guarantee, this function may be called more than
564 * once in the processing of gss_wrap(). The best we can do is
565 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
566 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
567 * At run-time we can verify that a single invocation of this
568 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
569 */
570
571int
572xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
573{
574 u8 *p;
575
576 if (shiftlen == 0)
577 return 0;
578
579 BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
580
581 p = buf->head[0].iov_base + base;
582
583 memmove(p + shiftlen, p, buf->head[0].iov_len - base);
584
585 buf->head[0].iov_len += shiftlen;
586 buf->len += shiftlen;
587
588 return 0;
589}
590
591static u32
592gss_krb5_cts_crypt(struct crypto_sync_skcipher *cipher, struct xdr_buf *buf,
593 u32 offset, u8 *iv, struct page **pages, int encrypt)
594{
595 u32 ret;
596 struct scatterlist sg[1];
597 SYNC_SKCIPHER_REQUEST_ON_STACK(req, cipher);
598 u8 *data;
599 struct page **save_pages;
600 u32 len = buf->len - offset;
601
602 if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
603 WARN_ON(0);
604 return -ENOMEM;
605 }
606 data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_KERNEL);
607 if (!data)
608 return -ENOMEM;
609
610 /*
611 * For encryption, we want to read from the cleartext
612 * page cache pages, and write the encrypted data to
613 * the supplied xdr_buf pages.
614 */
615 save_pages = buf->pages;
616 if (encrypt)
617 buf->pages = pages;
618
619 ret = read_bytes_from_xdr_buf(buf, offset, data, len);
620 buf->pages = save_pages;
621 if (ret)
622 goto out;
623
624 sg_init_one(sg, data, len);
625
626 skcipher_request_set_sync_tfm(req, cipher);
627 skcipher_request_set_callback(req, 0, NULL, NULL);
628 skcipher_request_set_crypt(req, sg, sg, len, iv);
629
630 if (encrypt)
631 ret = crypto_skcipher_encrypt(req);
632 else
633 ret = crypto_skcipher_decrypt(req);
634
635 skcipher_request_zero(req);
636
637 if (ret)
638 goto out;
639
640 ret = write_bytes_to_xdr_buf(buf, offset, data, len);
641
642#if IS_ENABLED(CONFIG_KUNIT)
643 /*
644 * CBC-CTS does not define an output IV but RFC 3962 defines it as the
645 * penultimate block of ciphertext, so copy that into the IV buffer
646 * before returning.
647 */
648 if (encrypt)
649 memcpy(iv, data, crypto_sync_skcipher_ivsize(cipher));
650#endif
651
652out:
653 kfree(data);
654 return ret;
655}
656
657/**
658 * krb5_cbc_cts_encrypt - encrypt in CBC mode with CTS
659 * @cts_tfm: CBC cipher with CTS
660 * @cbc_tfm: base CBC cipher
661 * @offset: starting byte offset for plaintext
662 * @buf: OUT: output buffer
663 * @pages: plaintext
664 * @iv: output CBC initialization vector, or NULL
665 * @ivsize: size of @iv, in octets
666 *
667 * To provide confidentiality, encrypt using cipher block chaining
668 * with ciphertext stealing. Message integrity is handled separately.
669 *
670 * Return values:
671 * %0: encryption successful
672 * negative errno: encryption could not be completed
673 */
674VISIBLE_IF_KUNIT
675int krb5_cbc_cts_encrypt(struct crypto_sync_skcipher *cts_tfm,
676 struct crypto_sync_skcipher *cbc_tfm,
677 u32 offset, struct xdr_buf *buf, struct page **pages,
678 u8 *iv, unsigned int ivsize)
679{
680 u32 blocksize, nbytes, nblocks, cbcbytes;
681 struct encryptor_desc desc;
682 int err;
683
684 blocksize = crypto_sync_skcipher_blocksize(cts_tfm);
685 nbytes = buf->len - offset;
686 nblocks = (nbytes + blocksize - 1) / blocksize;
687 cbcbytes = 0;
688 if (nblocks > 2)
689 cbcbytes = (nblocks - 2) * blocksize;
690
691 memset(desc.iv, 0, sizeof(desc.iv));
692
693 /* Handle block-sized chunks of plaintext with CBC. */
694 if (cbcbytes) {
695 SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm);
696
697 desc.pos = offset;
698 desc.fragno = 0;
699 desc.fraglen = 0;
700 desc.pages = pages;
701 desc.outbuf = buf;
702 desc.req = req;
703
704 skcipher_request_set_sync_tfm(req, cbc_tfm);
705 skcipher_request_set_callback(req, 0, NULL, NULL);
706
707 sg_init_table(desc.infrags, 4);
708 sg_init_table(desc.outfrags, 4);
709
710 err = xdr_process_buf(buf, offset, cbcbytes, encryptor, &desc);
711 skcipher_request_zero(req);
712 if (err)
713 return err;
714 }
715
716 /* Remaining plaintext is handled with CBC-CTS. */
717 err = gss_krb5_cts_crypt(cts_tfm, buf, offset + cbcbytes,
718 desc.iv, pages, 1);
719 if (err)
720 return err;
721
722 if (unlikely(iv))
723 memcpy(iv, desc.iv, ivsize);
724 return 0;
725}
726EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_encrypt);
727
728/**
729 * krb5_cbc_cts_decrypt - decrypt in CBC mode with CTS
730 * @cts_tfm: CBC cipher with CTS
731 * @cbc_tfm: base CBC cipher
732 * @offset: starting byte offset for plaintext
733 * @buf: OUT: output buffer
734 *
735 * Return values:
736 * %0: decryption successful
737 * negative errno: decryption could not be completed
738 */
739VISIBLE_IF_KUNIT
740int krb5_cbc_cts_decrypt(struct crypto_sync_skcipher *cts_tfm,
741 struct crypto_sync_skcipher *cbc_tfm,
742 u32 offset, struct xdr_buf *buf)
743{
744 u32 blocksize, nblocks, cbcbytes;
745 struct decryptor_desc desc;
746 int err;
747
748 blocksize = crypto_sync_skcipher_blocksize(cts_tfm);
749 nblocks = (buf->len + blocksize - 1) / blocksize;
750 cbcbytes = 0;
751 if (nblocks > 2)
752 cbcbytes = (nblocks - 2) * blocksize;
753
754 memset(desc.iv, 0, sizeof(desc.iv));
755
756 /* Handle block-sized chunks of plaintext with CBC. */
757 if (cbcbytes) {
758 SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm);
759
760 desc.fragno = 0;
761 desc.fraglen = 0;
762 desc.req = req;
763
764 skcipher_request_set_sync_tfm(req, cbc_tfm);
765 skcipher_request_set_callback(req, 0, NULL, NULL);
766
767 sg_init_table(desc.frags, 4);
768
769 err = xdr_process_buf(buf, 0, cbcbytes, decryptor, &desc);
770 skcipher_request_zero(req);
771 if (err)
772 return err;
773 }
774
775 /* Remaining plaintext is handled with CBC-CTS. */
776 return gss_krb5_cts_crypt(cts_tfm, buf, cbcbytes, desc.iv, NULL, 0);
777}
778EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_decrypt);
779
780u32
781gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
782 struct xdr_buf *buf, struct page **pages)
783{
784 u32 err;
785 struct xdr_netobj hmac;
786 u8 *ecptr;
787 struct crypto_sync_skcipher *cipher, *aux_cipher;
788 struct crypto_ahash *ahash;
789 struct page **save_pages;
790 unsigned int conflen;
791
792 if (kctx->initiate) {
793 cipher = kctx->initiator_enc;
794 aux_cipher = kctx->initiator_enc_aux;
795 ahash = kctx->initiator_integ;
796 } else {
797 cipher = kctx->acceptor_enc;
798 aux_cipher = kctx->acceptor_enc_aux;
799 ahash = kctx->acceptor_integ;
800 }
801 conflen = crypto_sync_skcipher_blocksize(cipher);
802
803 /* hide the gss token header and insert the confounder */
804 offset += GSS_KRB5_TOK_HDR_LEN;
805 if (xdr_extend_head(buf, offset, conflen))
806 return GSS_S_FAILURE;
807 krb5_make_confounder(buf->head[0].iov_base + offset, conflen);
808 offset -= GSS_KRB5_TOK_HDR_LEN;
809
810 if (buf->tail[0].iov_base != NULL) {
811 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
812 } else {
813 buf->tail[0].iov_base = buf->head[0].iov_base
814 + buf->head[0].iov_len;
815 buf->tail[0].iov_len = 0;
816 ecptr = buf->tail[0].iov_base;
817 }
818
819 /* copy plaintext gss token header after filler (if any) */
820 memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
821 buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
822 buf->len += GSS_KRB5_TOK_HDR_LEN;
823
824 hmac.len = kctx->gk5e->cksumlength;
825 hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
826
827 /*
828 * When we are called, pages points to the real page cache
829 * data -- which we can't go and encrypt! buf->pages points
830 * to scratch pages which we are going to send off to the
831 * client/server. Swap in the plaintext pages to calculate
832 * the hmac.
833 */
834 save_pages = buf->pages;
835 buf->pages = pages;
836
837 err = gss_krb5_checksum(ahash, NULL, 0, buf,
838 offset + GSS_KRB5_TOK_HDR_LEN, &hmac);
839 buf->pages = save_pages;
840 if (err)
841 return GSS_S_FAILURE;
842
843 err = krb5_cbc_cts_encrypt(cipher, aux_cipher,
844 offset + GSS_KRB5_TOK_HDR_LEN,
845 buf, pages, NULL, 0);
846 if (err)
847 return GSS_S_FAILURE;
848
849 /* Now update buf to account for HMAC */
850 buf->tail[0].iov_len += kctx->gk5e->cksumlength;
851 buf->len += kctx->gk5e->cksumlength;
852
853 return GSS_S_COMPLETE;
854}
855
856u32
857gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
858 struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
859{
860 struct crypto_sync_skcipher *cipher, *aux_cipher;
861 struct crypto_ahash *ahash;
862 struct xdr_netobj our_hmac_obj;
863 u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
864 u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
865 struct xdr_buf subbuf;
866 u32 ret = 0;
867
868 if (kctx->initiate) {
869 cipher = kctx->acceptor_enc;
870 aux_cipher = kctx->acceptor_enc_aux;
871 ahash = kctx->acceptor_integ;
872 } else {
873 cipher = kctx->initiator_enc;
874 aux_cipher = kctx->initiator_enc_aux;
875 ahash = kctx->initiator_integ;
876 }
877
878 /* create a segment skipping the header and leaving out the checksum */
879 xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
880 (len - offset - GSS_KRB5_TOK_HDR_LEN -
881 kctx->gk5e->cksumlength));
882
883 ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf);
884 if (ret)
885 goto out_err;
886
887 our_hmac_obj.len = kctx->gk5e->cksumlength;
888 our_hmac_obj.data = our_hmac;
889 ret = gss_krb5_checksum(ahash, NULL, 0, &subbuf, 0, &our_hmac_obj);
890 if (ret)
891 goto out_err;
892
893 /* Get the packet's hmac value */
894 ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
895 pkt_hmac, kctx->gk5e->cksumlength);
896 if (ret)
897 goto out_err;
898
899 if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
900 ret = GSS_S_BAD_SIG;
901 goto out_err;
902 }
903 *headskip = crypto_sync_skcipher_blocksize(cipher);
904 *tailskip = kctx->gk5e->cksumlength;
905out_err:
906 if (ret && ret != GSS_S_BAD_SIG)
907 ret = GSS_S_FAILURE;
908 return ret;
909}
910
911/**
912 * krb5_etm_checksum - Compute a MAC for a GSS Wrap token
913 * @cipher: an initialized cipher transform
914 * @tfm: an initialized hash transform
915 * @body: xdr_buf containing an RPC message (body.len is the message length)
916 * @body_offset: byte offset into @body to start checksumming
917 * @cksumout: OUT: a buffer to be filled in with the computed HMAC
918 *
919 * Usually expressed as H = HMAC(K, IV | ciphertext)[1..h] .
920 *
921 * Caller provides the truncation length of the output token (h) in
922 * cksumout.len.
923 *
924 * Return values:
925 * %GSS_S_COMPLETE: Digest computed, @cksumout filled in
926 * %GSS_S_FAILURE: Call failed
927 */
928VISIBLE_IF_KUNIT
929u32 krb5_etm_checksum(struct crypto_sync_skcipher *cipher,
930 struct crypto_ahash *tfm, const struct xdr_buf *body,
931 int body_offset, struct xdr_netobj *cksumout)
932{
933 unsigned int ivsize = crypto_sync_skcipher_ivsize(cipher);
934 struct ahash_request *req;
935 struct scatterlist sg[1];
936 u8 *iv, *checksumdata;
937 int err = -ENOMEM;
938
939 checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL);
940 if (!checksumdata)
941 return GSS_S_FAILURE;
942 /* For RPCSEC, the "initial cipher state" is always all zeroes. */
943 iv = kzalloc(ivsize, GFP_KERNEL);
944 if (!iv)
945 goto out_free_mem;
946
947 req = ahash_request_alloc(tfm, GFP_KERNEL);
948 if (!req)
949 goto out_free_mem;
950 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
951 err = crypto_ahash_init(req);
952 if (err)
953 goto out_free_ahash;
954
955 sg_init_one(sg, iv, ivsize);
956 ahash_request_set_crypt(req, sg, NULL, ivsize);
957 err = crypto_ahash_update(req);
958 if (err)
959 goto out_free_ahash;
960 err = xdr_process_buf(body, body_offset, body->len - body_offset,
961 checksummer, req);
962 if (err)
963 goto out_free_ahash;
964
965 ahash_request_set_crypt(req, NULL, checksumdata, 0);
966 err = crypto_ahash_final(req);
967 if (err)
968 goto out_free_ahash;
969 memcpy(cksumout->data, checksumdata, cksumout->len);
970
971out_free_ahash:
972 ahash_request_free(req);
973out_free_mem:
974 kfree(iv);
975 kfree_sensitive(checksumdata);
976 return err ? GSS_S_FAILURE : GSS_S_COMPLETE;
977}
978EXPORT_SYMBOL_IF_KUNIT(krb5_etm_checksum);
979
980/**
981 * krb5_etm_encrypt - Encrypt using the RFC 8009 rules
982 * @kctx: Kerberos context
983 * @offset: starting offset of the payload, in bytes
984 * @buf: OUT: send buffer to contain the encrypted payload
985 * @pages: plaintext payload
986 *
987 * The main difference with aes_encrypt is that "The HMAC is
988 * calculated over the cipher state concatenated with the AES
989 * output, instead of being calculated over the confounder and
990 * plaintext. This allows the message receiver to verify the
991 * integrity of the message before decrypting the message."
992 *
993 * RFC 8009 Section 5:
994 *
995 * encryption function: as follows, where E() is AES encryption in
996 * CBC-CS3 mode, and h is the size of truncated HMAC (128 bits or
997 * 192 bits as described above).
998 *
999 * N = random value of length 128 bits (the AES block size)
1000 * IV = cipher state
1001 * C = E(Ke, N | plaintext, IV)
1002 * H = HMAC(Ki, IV | C)
1003 * ciphertext = C | H[1..h]
1004 *
1005 * This encryption formula provides AEAD EtM with key separation.
1006 *
1007 * Return values:
1008 * %GSS_S_COMPLETE: Encryption successful
1009 * %GSS_S_FAILURE: Encryption failed
1010 */
1011u32
1012krb5_etm_encrypt(struct krb5_ctx *kctx, u32 offset,
1013 struct xdr_buf *buf, struct page **pages)
1014{
1015 struct crypto_sync_skcipher *cipher, *aux_cipher;
1016 struct crypto_ahash *ahash;
1017 struct xdr_netobj hmac;
1018 unsigned int conflen;
1019 u8 *ecptr;
1020 u32 err;
1021
1022 if (kctx->initiate) {
1023 cipher = kctx->initiator_enc;
1024 aux_cipher = kctx->initiator_enc_aux;
1025 ahash = kctx->initiator_integ;
1026 } else {
1027 cipher = kctx->acceptor_enc;
1028 aux_cipher = kctx->acceptor_enc_aux;
1029 ahash = kctx->acceptor_integ;
1030 }
1031 conflen = crypto_sync_skcipher_blocksize(cipher);
1032
1033 offset += GSS_KRB5_TOK_HDR_LEN;
1034 if (xdr_extend_head(buf, offset, conflen))
1035 return GSS_S_FAILURE;
1036 krb5_make_confounder(buf->head[0].iov_base + offset, conflen);
1037 offset -= GSS_KRB5_TOK_HDR_LEN;
1038
1039 if (buf->tail[0].iov_base) {
1040 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
1041 } else {
1042 buf->tail[0].iov_base = buf->head[0].iov_base
1043 + buf->head[0].iov_len;
1044 buf->tail[0].iov_len = 0;
1045 ecptr = buf->tail[0].iov_base;
1046 }
1047
1048 memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
1049 buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
1050 buf->len += GSS_KRB5_TOK_HDR_LEN;
1051
1052 err = krb5_cbc_cts_encrypt(cipher, aux_cipher,
1053 offset + GSS_KRB5_TOK_HDR_LEN,
1054 buf, pages, NULL, 0);
1055 if (err)
1056 return GSS_S_FAILURE;
1057
1058 hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
1059 hmac.len = kctx->gk5e->cksumlength;
1060 err = krb5_etm_checksum(cipher, ahash,
1061 buf, offset + GSS_KRB5_TOK_HDR_LEN, &hmac);
1062 if (err)
1063 goto out_err;
1064 buf->tail[0].iov_len += kctx->gk5e->cksumlength;
1065 buf->len += kctx->gk5e->cksumlength;
1066
1067 return GSS_S_COMPLETE;
1068
1069out_err:
1070 return GSS_S_FAILURE;
1071}
1072
1073/**
1074 * krb5_etm_decrypt - Decrypt using the RFC 8009 rules
1075 * @kctx: Kerberos context
1076 * @offset: starting offset of the ciphertext, in bytes
1077 * @len:
1078 * @buf:
1079 * @headskip: OUT: the enctype's confounder length, in octets
1080 * @tailskip: OUT: the enctype's HMAC length, in octets
1081 *
1082 * RFC 8009 Section 5:
1083 *
1084 * decryption function: as follows, where D() is AES decryption in
1085 * CBC-CS3 mode, and h is the size of truncated HMAC.
1086 *
1087 * (C, H) = ciphertext
1088 * (Note: H is the last h bits of the ciphertext.)
1089 * IV = cipher state
1090 * if H != HMAC(Ki, IV | C)[1..h]
1091 * stop, report error
1092 * (N, P) = D(Ke, C, IV)
1093 *
1094 * Return values:
1095 * %GSS_S_COMPLETE: Decryption successful
1096 * %GSS_S_BAD_SIG: computed HMAC != received HMAC
1097 * %GSS_S_FAILURE: Decryption failed
1098 */
1099u32
1100krb5_etm_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
1101 struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
1102{
1103 struct crypto_sync_skcipher *cipher, *aux_cipher;
1104 u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
1105 u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
1106 struct xdr_netobj our_hmac_obj;
1107 struct crypto_ahash *ahash;
1108 struct xdr_buf subbuf;
1109 u32 ret = 0;
1110
1111 if (kctx->initiate) {
1112 cipher = kctx->acceptor_enc;
1113 aux_cipher = kctx->acceptor_enc_aux;
1114 ahash = kctx->acceptor_integ;
1115 } else {
1116 cipher = kctx->initiator_enc;
1117 aux_cipher = kctx->initiator_enc_aux;
1118 ahash = kctx->initiator_integ;
1119 }
1120
1121 /* Extract the ciphertext into @subbuf. */
1122 xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
1123 (len - offset - GSS_KRB5_TOK_HDR_LEN -
1124 kctx->gk5e->cksumlength));
1125
1126 our_hmac_obj.data = our_hmac;
1127 our_hmac_obj.len = kctx->gk5e->cksumlength;
1128 ret = krb5_etm_checksum(cipher, ahash, &subbuf, 0, &our_hmac_obj);
1129 if (ret)
1130 goto out_err;
1131 ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
1132 pkt_hmac, kctx->gk5e->cksumlength);
1133 if (ret)
1134 goto out_err;
1135 if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
1136 ret = GSS_S_BAD_SIG;
1137 goto out_err;
1138 }
1139
1140 ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf);
1141 if (ret) {
1142 ret = GSS_S_FAILURE;
1143 goto out_err;
1144 }
1145
1146 *headskip = crypto_sync_skcipher_blocksize(cipher);
1147 *tailskip = kctx->gk5e->cksumlength;
1148 return GSS_S_COMPLETE;
1149
1150out_err:
1151 if (ret != GSS_S_BAD_SIG)
1152 ret = GSS_S_FAILURE;
1153 return ret;
1154}
1/*
2 * linux/net/sunrpc/gss_krb5_crypto.c
3 *
4 * Copyright (c) 2000-2008 The Regents of the University of Michigan.
5 * All rights reserved.
6 *
7 * Andy Adamson <andros@umich.edu>
8 * Bruce Fields <bfields@umich.edu>
9 */
10
11/*
12 * Copyright (C) 1998 by the FundsXpress, INC.
13 *
14 * All rights reserved.
15 *
16 * Export of this software from the United States of America may require
17 * a specific license from the United States Government. It is the
18 * responsibility of any person or organization contemplating export to
19 * obtain such a license before exporting.
20 *
21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
22 * distribute this software and its documentation for any purpose and
23 * without fee is hereby granted, provided that the above copyright
24 * notice appear in all copies and that both that copyright notice and
25 * this permission notice appear in supporting documentation, and that
26 * the name of FundsXpress. not be used in advertising or publicity pertaining
27 * to distribution of the software without specific, written prior
28 * permission. FundsXpress makes no representations about the suitability of
29 * this software for any purpose. It is provided "as is" without express
30 * or implied warranty.
31 *
32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
35 */
36
37#include <crypto/hash.h>
38#include <crypto/skcipher.h>
39#include <linux/err.h>
40#include <linux/types.h>
41#include <linux/mm.h>
42#include <linux/scatterlist.h>
43#include <linux/highmem.h>
44#include <linux/pagemap.h>
45#include <linux/random.h>
46#include <linux/sunrpc/gss_krb5.h>
47#include <linux/sunrpc/xdr.h>
48
49#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
50# define RPCDBG_FACILITY RPCDBG_AUTH
51#endif
52
53u32
54krb5_encrypt(
55 struct crypto_skcipher *tfm,
56 void * iv,
57 void * in,
58 void * out,
59 int length)
60{
61 u32 ret = -EINVAL;
62 struct scatterlist sg[1];
63 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
64 SKCIPHER_REQUEST_ON_STACK(req, tfm);
65
66 if (length % crypto_skcipher_blocksize(tfm) != 0)
67 goto out;
68
69 if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
70 dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n",
71 crypto_skcipher_ivsize(tfm));
72 goto out;
73 }
74
75 if (iv)
76 memcpy(local_iv, iv, crypto_skcipher_ivsize(tfm));
77
78 memcpy(out, in, length);
79 sg_init_one(sg, out, length);
80
81 skcipher_request_set_tfm(req, tfm);
82 skcipher_request_set_callback(req, 0, NULL, NULL);
83 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
84
85 ret = crypto_skcipher_encrypt(req);
86 skcipher_request_zero(req);
87out:
88 dprintk("RPC: krb5_encrypt returns %d\n", ret);
89 return ret;
90}
91
92u32
93krb5_decrypt(
94 struct crypto_skcipher *tfm,
95 void * iv,
96 void * in,
97 void * out,
98 int length)
99{
100 u32 ret = -EINVAL;
101 struct scatterlist sg[1];
102 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
103 SKCIPHER_REQUEST_ON_STACK(req, tfm);
104
105 if (length % crypto_skcipher_blocksize(tfm) != 0)
106 goto out;
107
108 if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
109 dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n",
110 crypto_skcipher_ivsize(tfm));
111 goto out;
112 }
113 if (iv)
114 memcpy(local_iv,iv, crypto_skcipher_ivsize(tfm));
115
116 memcpy(out, in, length);
117 sg_init_one(sg, out, length);
118
119 skcipher_request_set_tfm(req, tfm);
120 skcipher_request_set_callback(req, 0, NULL, NULL);
121 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
122
123 ret = crypto_skcipher_decrypt(req);
124 skcipher_request_zero(req);
125out:
126 dprintk("RPC: gss_k5decrypt returns %d\n",ret);
127 return ret;
128}
129
130static int
131checksummer(struct scatterlist *sg, void *data)
132{
133 struct ahash_request *req = data;
134
135 ahash_request_set_crypt(req, sg, NULL, sg->length);
136
137 return crypto_ahash_update(req);
138}
139
140static int
141arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
142{
143 unsigned int ms_usage;
144
145 switch (usage) {
146 case KG_USAGE_SIGN:
147 ms_usage = 15;
148 break;
149 case KG_USAGE_SEAL:
150 ms_usage = 13;
151 break;
152 default:
153 return -EINVAL;
154 }
155 salt[0] = (ms_usage >> 0) & 0xff;
156 salt[1] = (ms_usage >> 8) & 0xff;
157 salt[2] = (ms_usage >> 16) & 0xff;
158 salt[3] = (ms_usage >> 24) & 0xff;
159
160 return 0;
161}
162
163static u32
164make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
165 struct xdr_buf *body, int body_offset, u8 *cksumkey,
166 unsigned int usage, struct xdr_netobj *cksumout)
167{
168 struct scatterlist sg[1];
169 int err = -1;
170 u8 *checksumdata;
171 u8 rc4salt[4];
172 struct crypto_ahash *md5;
173 struct crypto_ahash *hmac_md5;
174 struct ahash_request *req;
175
176 if (cksumkey == NULL)
177 return GSS_S_FAILURE;
178
179 if (cksumout->len < kctx->gk5e->cksumlength) {
180 dprintk("%s: checksum buffer length, %u, too small for %s\n",
181 __func__, cksumout->len, kctx->gk5e->name);
182 return GSS_S_FAILURE;
183 }
184
185 if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
186 dprintk("%s: invalid usage value %u\n", __func__, usage);
187 return GSS_S_FAILURE;
188 }
189
190 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
191 if (!checksumdata)
192 return GSS_S_FAILURE;
193
194 md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
195 if (IS_ERR(md5))
196 goto out_free_cksum;
197
198 hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
199 CRYPTO_ALG_ASYNC);
200 if (IS_ERR(hmac_md5))
201 goto out_free_md5;
202
203 req = ahash_request_alloc(md5, GFP_NOFS);
204 if (!req)
205 goto out_free_hmac_md5;
206
207 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
208
209 err = crypto_ahash_init(req);
210 if (err)
211 goto out;
212 sg_init_one(sg, rc4salt, 4);
213 ahash_request_set_crypt(req, sg, NULL, 4);
214 err = crypto_ahash_update(req);
215 if (err)
216 goto out;
217
218 sg_init_one(sg, header, hdrlen);
219 ahash_request_set_crypt(req, sg, NULL, hdrlen);
220 err = crypto_ahash_update(req);
221 if (err)
222 goto out;
223 err = xdr_process_buf(body, body_offset, body->len - body_offset,
224 checksummer, req);
225 if (err)
226 goto out;
227 ahash_request_set_crypt(req, NULL, checksumdata, 0);
228 err = crypto_ahash_final(req);
229 if (err)
230 goto out;
231
232 ahash_request_free(req);
233 req = ahash_request_alloc(hmac_md5, GFP_NOFS);
234 if (!req)
235 goto out_free_hmac_md5;
236
237 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
238
239 err = crypto_ahash_init(req);
240 if (err)
241 goto out;
242 err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
243 if (err)
244 goto out;
245
246 sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
247 ahash_request_set_crypt(req, sg, checksumdata,
248 crypto_ahash_digestsize(md5));
249 err = crypto_ahash_digest(req);
250 if (err)
251 goto out;
252
253 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
254 cksumout->len = kctx->gk5e->cksumlength;
255out:
256 ahash_request_free(req);
257out_free_hmac_md5:
258 crypto_free_ahash(hmac_md5);
259out_free_md5:
260 crypto_free_ahash(md5);
261out_free_cksum:
262 kfree(checksumdata);
263 return err ? GSS_S_FAILURE : 0;
264}
265
266/*
267 * checksum the plaintext data and hdrlen bytes of the token header
268 * The checksum is performed over the first 8 bytes of the
269 * gss token header and then over the data body
270 */
271u32
272make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
273 struct xdr_buf *body, int body_offset, u8 *cksumkey,
274 unsigned int usage, struct xdr_netobj *cksumout)
275{
276 struct crypto_ahash *tfm;
277 struct ahash_request *req;
278 struct scatterlist sg[1];
279 int err = -1;
280 u8 *checksumdata;
281 unsigned int checksumlen;
282
283 if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
284 return make_checksum_hmac_md5(kctx, header, hdrlen,
285 body, body_offset,
286 cksumkey, usage, cksumout);
287
288 if (cksumout->len < kctx->gk5e->cksumlength) {
289 dprintk("%s: checksum buffer length, %u, too small for %s\n",
290 __func__, cksumout->len, kctx->gk5e->name);
291 return GSS_S_FAILURE;
292 }
293
294 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
295 if (checksumdata == NULL)
296 return GSS_S_FAILURE;
297
298 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
299 if (IS_ERR(tfm))
300 goto out_free_cksum;
301
302 req = ahash_request_alloc(tfm, GFP_NOFS);
303 if (!req)
304 goto out_free_ahash;
305
306 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
307
308 checksumlen = crypto_ahash_digestsize(tfm);
309
310 if (cksumkey != NULL) {
311 err = crypto_ahash_setkey(tfm, cksumkey,
312 kctx->gk5e->keylength);
313 if (err)
314 goto out;
315 }
316
317 err = crypto_ahash_init(req);
318 if (err)
319 goto out;
320 sg_init_one(sg, header, hdrlen);
321 ahash_request_set_crypt(req, sg, NULL, hdrlen);
322 err = crypto_ahash_update(req);
323 if (err)
324 goto out;
325 err = xdr_process_buf(body, body_offset, body->len - body_offset,
326 checksummer, req);
327 if (err)
328 goto out;
329 ahash_request_set_crypt(req, NULL, checksumdata, 0);
330 err = crypto_ahash_final(req);
331 if (err)
332 goto out;
333
334 switch (kctx->gk5e->ctype) {
335 case CKSUMTYPE_RSA_MD5:
336 err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
337 checksumdata, checksumlen);
338 if (err)
339 goto out;
340 memcpy(cksumout->data,
341 checksumdata + checksumlen - kctx->gk5e->cksumlength,
342 kctx->gk5e->cksumlength);
343 break;
344 case CKSUMTYPE_HMAC_SHA1_DES3:
345 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
346 break;
347 default:
348 BUG();
349 break;
350 }
351 cksumout->len = kctx->gk5e->cksumlength;
352out:
353 ahash_request_free(req);
354out_free_ahash:
355 crypto_free_ahash(tfm);
356out_free_cksum:
357 kfree(checksumdata);
358 return err ? GSS_S_FAILURE : 0;
359}
360
361/*
362 * checksum the plaintext data and hdrlen bytes of the token header
363 * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
364 * body then over the first 16 octets of the MIC token
365 * Inclusion of the header data in the calculation of the
366 * checksum is optional.
367 */
368u32
369make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
370 struct xdr_buf *body, int body_offset, u8 *cksumkey,
371 unsigned int usage, struct xdr_netobj *cksumout)
372{
373 struct crypto_ahash *tfm;
374 struct ahash_request *req;
375 struct scatterlist sg[1];
376 int err = -1;
377 u8 *checksumdata;
378 unsigned int checksumlen;
379
380 if (kctx->gk5e->keyed_cksum == 0) {
381 dprintk("%s: expected keyed hash for %s\n",
382 __func__, kctx->gk5e->name);
383 return GSS_S_FAILURE;
384 }
385 if (cksumkey == NULL) {
386 dprintk("%s: no key supplied for %s\n",
387 __func__, kctx->gk5e->name);
388 return GSS_S_FAILURE;
389 }
390
391 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
392 if (!checksumdata)
393 return GSS_S_FAILURE;
394
395 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
396 if (IS_ERR(tfm))
397 goto out_free_cksum;
398 checksumlen = crypto_ahash_digestsize(tfm);
399
400 req = ahash_request_alloc(tfm, GFP_NOFS);
401 if (!req)
402 goto out_free_ahash;
403
404 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
405
406 err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
407 if (err)
408 goto out;
409
410 err = crypto_ahash_init(req);
411 if (err)
412 goto out;
413 err = xdr_process_buf(body, body_offset, body->len - body_offset,
414 checksummer, req);
415 if (err)
416 goto out;
417 if (header != NULL) {
418 sg_init_one(sg, header, hdrlen);
419 ahash_request_set_crypt(req, sg, NULL, hdrlen);
420 err = crypto_ahash_update(req);
421 if (err)
422 goto out;
423 }
424 ahash_request_set_crypt(req, NULL, checksumdata, 0);
425 err = crypto_ahash_final(req);
426 if (err)
427 goto out;
428
429 cksumout->len = kctx->gk5e->cksumlength;
430
431 switch (kctx->gk5e->ctype) {
432 case CKSUMTYPE_HMAC_SHA1_96_AES128:
433 case CKSUMTYPE_HMAC_SHA1_96_AES256:
434 /* note that this truncates the hash */
435 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
436 break;
437 default:
438 BUG();
439 break;
440 }
441out:
442 ahash_request_free(req);
443out_free_ahash:
444 crypto_free_ahash(tfm);
445out_free_cksum:
446 kfree(checksumdata);
447 return err ? GSS_S_FAILURE : 0;
448}
449
450struct encryptor_desc {
451 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
452 struct skcipher_request *req;
453 int pos;
454 struct xdr_buf *outbuf;
455 struct page **pages;
456 struct scatterlist infrags[4];
457 struct scatterlist outfrags[4];
458 int fragno;
459 int fraglen;
460};
461
462static int
463encryptor(struct scatterlist *sg, void *data)
464{
465 struct encryptor_desc *desc = data;
466 struct xdr_buf *outbuf = desc->outbuf;
467 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
468 struct page *in_page;
469 int thislen = desc->fraglen + sg->length;
470 int fraglen, ret;
471 int page_pos;
472
473 /* Worst case is 4 fragments: head, end of page 1, start
474 * of page 2, tail. Anything more is a bug. */
475 BUG_ON(desc->fragno > 3);
476
477 page_pos = desc->pos - outbuf->head[0].iov_len;
478 if (page_pos >= 0 && page_pos < outbuf->page_len) {
479 /* pages are not in place: */
480 int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
481 in_page = desc->pages[i];
482 } else {
483 in_page = sg_page(sg);
484 }
485 sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
486 sg->offset);
487 sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
488 sg->offset);
489 desc->fragno++;
490 desc->fraglen += sg->length;
491 desc->pos += sg->length;
492
493 fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
494 thislen -= fraglen;
495
496 if (thislen == 0)
497 return 0;
498
499 sg_mark_end(&desc->infrags[desc->fragno - 1]);
500 sg_mark_end(&desc->outfrags[desc->fragno - 1]);
501
502 skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
503 thislen, desc->iv);
504
505 ret = crypto_skcipher_encrypt(desc->req);
506 if (ret)
507 return ret;
508
509 sg_init_table(desc->infrags, 4);
510 sg_init_table(desc->outfrags, 4);
511
512 if (fraglen) {
513 sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
514 sg->offset + sg->length - fraglen);
515 desc->infrags[0] = desc->outfrags[0];
516 sg_assign_page(&desc->infrags[0], in_page);
517 desc->fragno = 1;
518 desc->fraglen = fraglen;
519 } else {
520 desc->fragno = 0;
521 desc->fraglen = 0;
522 }
523 return 0;
524}
525
526int
527gss_encrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
528 int offset, struct page **pages)
529{
530 int ret;
531 struct encryptor_desc desc;
532 SKCIPHER_REQUEST_ON_STACK(req, tfm);
533
534 BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
535
536 skcipher_request_set_tfm(req, tfm);
537 skcipher_request_set_callback(req, 0, NULL, NULL);
538
539 memset(desc.iv, 0, sizeof(desc.iv));
540 desc.req = req;
541 desc.pos = offset;
542 desc.outbuf = buf;
543 desc.pages = pages;
544 desc.fragno = 0;
545 desc.fraglen = 0;
546
547 sg_init_table(desc.infrags, 4);
548 sg_init_table(desc.outfrags, 4);
549
550 ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
551 skcipher_request_zero(req);
552 return ret;
553}
554
555struct decryptor_desc {
556 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
557 struct skcipher_request *req;
558 struct scatterlist frags[4];
559 int fragno;
560 int fraglen;
561};
562
563static int
564decryptor(struct scatterlist *sg, void *data)
565{
566 struct decryptor_desc *desc = data;
567 int thislen = desc->fraglen + sg->length;
568 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
569 int fraglen, ret;
570
571 /* Worst case is 4 fragments: head, end of page 1, start
572 * of page 2, tail. Anything more is a bug. */
573 BUG_ON(desc->fragno > 3);
574 sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
575 sg->offset);
576 desc->fragno++;
577 desc->fraglen += sg->length;
578
579 fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
580 thislen -= fraglen;
581
582 if (thislen == 0)
583 return 0;
584
585 sg_mark_end(&desc->frags[desc->fragno - 1]);
586
587 skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
588 thislen, desc->iv);
589
590 ret = crypto_skcipher_decrypt(desc->req);
591 if (ret)
592 return ret;
593
594 sg_init_table(desc->frags, 4);
595
596 if (fraglen) {
597 sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
598 sg->offset + sg->length - fraglen);
599 desc->fragno = 1;
600 desc->fraglen = fraglen;
601 } else {
602 desc->fragno = 0;
603 desc->fraglen = 0;
604 }
605 return 0;
606}
607
608int
609gss_decrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
610 int offset)
611{
612 int ret;
613 struct decryptor_desc desc;
614 SKCIPHER_REQUEST_ON_STACK(req, tfm);
615
616 /* XXXJBF: */
617 BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
618
619 skcipher_request_set_tfm(req, tfm);
620 skcipher_request_set_callback(req, 0, NULL, NULL);
621
622 memset(desc.iv, 0, sizeof(desc.iv));
623 desc.req = req;
624 desc.fragno = 0;
625 desc.fraglen = 0;
626
627 sg_init_table(desc.frags, 4);
628
629 ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
630 skcipher_request_zero(req);
631 return ret;
632}
633
634/*
635 * This function makes the assumption that it was ultimately called
636 * from gss_wrap().
637 *
638 * The client auth_gss code moves any existing tail data into a
639 * separate page before calling gss_wrap.
640 * The server svcauth_gss code ensures that both the head and the
641 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
642 *
643 * Even with that guarantee, this function may be called more than
644 * once in the processing of gss_wrap(). The best we can do is
645 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
646 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
647 * At run-time we can verify that a single invocation of this
648 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
649 */
650
651int
652xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
653{
654 u8 *p;
655
656 if (shiftlen == 0)
657 return 0;
658
659 BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
660 BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
661
662 p = buf->head[0].iov_base + base;
663
664 memmove(p + shiftlen, p, buf->head[0].iov_len - base);
665
666 buf->head[0].iov_len += shiftlen;
667 buf->len += shiftlen;
668
669 return 0;
670}
671
672static u32
673gss_krb5_cts_crypt(struct crypto_skcipher *cipher, struct xdr_buf *buf,
674 u32 offset, u8 *iv, struct page **pages, int encrypt)
675{
676 u32 ret;
677 struct scatterlist sg[1];
678 SKCIPHER_REQUEST_ON_STACK(req, cipher);
679 u8 *data;
680 struct page **save_pages;
681 u32 len = buf->len - offset;
682
683 if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
684 WARN_ON(0);
685 return -ENOMEM;
686 }
687 data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_NOFS);
688 if (!data)
689 return -ENOMEM;
690
691 /*
692 * For encryption, we want to read from the cleartext
693 * page cache pages, and write the encrypted data to
694 * the supplied xdr_buf pages.
695 */
696 save_pages = buf->pages;
697 if (encrypt)
698 buf->pages = pages;
699
700 ret = read_bytes_from_xdr_buf(buf, offset, data, len);
701 buf->pages = save_pages;
702 if (ret)
703 goto out;
704
705 sg_init_one(sg, data, len);
706
707 skcipher_request_set_tfm(req, cipher);
708 skcipher_request_set_callback(req, 0, NULL, NULL);
709 skcipher_request_set_crypt(req, sg, sg, len, iv);
710
711 if (encrypt)
712 ret = crypto_skcipher_encrypt(req);
713 else
714 ret = crypto_skcipher_decrypt(req);
715
716 skcipher_request_zero(req);
717
718 if (ret)
719 goto out;
720
721 ret = write_bytes_to_xdr_buf(buf, offset, data, len);
722
723out:
724 kfree(data);
725 return ret;
726}
727
728u32
729gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
730 struct xdr_buf *buf, struct page **pages)
731{
732 u32 err;
733 struct xdr_netobj hmac;
734 u8 *cksumkey;
735 u8 *ecptr;
736 struct crypto_skcipher *cipher, *aux_cipher;
737 int blocksize;
738 struct page **save_pages;
739 int nblocks, nbytes;
740 struct encryptor_desc desc;
741 u32 cbcbytes;
742 unsigned int usage;
743
744 if (kctx->initiate) {
745 cipher = kctx->initiator_enc;
746 aux_cipher = kctx->initiator_enc_aux;
747 cksumkey = kctx->initiator_integ;
748 usage = KG_USAGE_INITIATOR_SEAL;
749 } else {
750 cipher = kctx->acceptor_enc;
751 aux_cipher = kctx->acceptor_enc_aux;
752 cksumkey = kctx->acceptor_integ;
753 usage = KG_USAGE_ACCEPTOR_SEAL;
754 }
755 blocksize = crypto_skcipher_blocksize(cipher);
756
757 /* hide the gss token header and insert the confounder */
758 offset += GSS_KRB5_TOK_HDR_LEN;
759 if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
760 return GSS_S_FAILURE;
761 gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
762 offset -= GSS_KRB5_TOK_HDR_LEN;
763
764 if (buf->tail[0].iov_base != NULL) {
765 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
766 } else {
767 buf->tail[0].iov_base = buf->head[0].iov_base
768 + buf->head[0].iov_len;
769 buf->tail[0].iov_len = 0;
770 ecptr = buf->tail[0].iov_base;
771 }
772
773 /* copy plaintext gss token header after filler (if any) */
774 memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
775 buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
776 buf->len += GSS_KRB5_TOK_HDR_LEN;
777
778 /* Do the HMAC */
779 hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
780 hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
781
782 /*
783 * When we are called, pages points to the real page cache
784 * data -- which we can't go and encrypt! buf->pages points
785 * to scratch pages which we are going to send off to the
786 * client/server. Swap in the plaintext pages to calculate
787 * the hmac.
788 */
789 save_pages = buf->pages;
790 buf->pages = pages;
791
792 err = make_checksum_v2(kctx, NULL, 0, buf,
793 offset + GSS_KRB5_TOK_HDR_LEN,
794 cksumkey, usage, &hmac);
795 buf->pages = save_pages;
796 if (err)
797 return GSS_S_FAILURE;
798
799 nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
800 nblocks = (nbytes + blocksize - 1) / blocksize;
801 cbcbytes = 0;
802 if (nblocks > 2)
803 cbcbytes = (nblocks - 2) * blocksize;
804
805 memset(desc.iv, 0, sizeof(desc.iv));
806
807 if (cbcbytes) {
808 SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
809
810 desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
811 desc.fragno = 0;
812 desc.fraglen = 0;
813 desc.pages = pages;
814 desc.outbuf = buf;
815 desc.req = req;
816
817 skcipher_request_set_tfm(req, aux_cipher);
818 skcipher_request_set_callback(req, 0, NULL, NULL);
819
820 sg_init_table(desc.infrags, 4);
821 sg_init_table(desc.outfrags, 4);
822
823 err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
824 cbcbytes, encryptor, &desc);
825 skcipher_request_zero(req);
826 if (err)
827 goto out_err;
828 }
829
830 /* Make sure IV carries forward from any CBC results. */
831 err = gss_krb5_cts_crypt(cipher, buf,
832 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
833 desc.iv, pages, 1);
834 if (err) {
835 err = GSS_S_FAILURE;
836 goto out_err;
837 }
838
839 /* Now update buf to account for HMAC */
840 buf->tail[0].iov_len += kctx->gk5e->cksumlength;
841 buf->len += kctx->gk5e->cksumlength;
842
843out_err:
844 if (err)
845 err = GSS_S_FAILURE;
846 return err;
847}
848
849u32
850gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
851 u32 *headskip, u32 *tailskip)
852{
853 struct xdr_buf subbuf;
854 u32 ret = 0;
855 u8 *cksum_key;
856 struct crypto_skcipher *cipher, *aux_cipher;
857 struct xdr_netobj our_hmac_obj;
858 u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
859 u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
860 int nblocks, blocksize, cbcbytes;
861 struct decryptor_desc desc;
862 unsigned int usage;
863
864 if (kctx->initiate) {
865 cipher = kctx->acceptor_enc;
866 aux_cipher = kctx->acceptor_enc_aux;
867 cksum_key = kctx->acceptor_integ;
868 usage = KG_USAGE_ACCEPTOR_SEAL;
869 } else {
870 cipher = kctx->initiator_enc;
871 aux_cipher = kctx->initiator_enc_aux;
872 cksum_key = kctx->initiator_integ;
873 usage = KG_USAGE_INITIATOR_SEAL;
874 }
875 blocksize = crypto_skcipher_blocksize(cipher);
876
877
878 /* create a segment skipping the header and leaving out the checksum */
879 xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
880 (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
881 kctx->gk5e->cksumlength));
882
883 nblocks = (subbuf.len + blocksize - 1) / blocksize;
884
885 cbcbytes = 0;
886 if (nblocks > 2)
887 cbcbytes = (nblocks - 2) * blocksize;
888
889 memset(desc.iv, 0, sizeof(desc.iv));
890
891 if (cbcbytes) {
892 SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
893
894 desc.fragno = 0;
895 desc.fraglen = 0;
896 desc.req = req;
897
898 skcipher_request_set_tfm(req, aux_cipher);
899 skcipher_request_set_callback(req, 0, NULL, NULL);
900
901 sg_init_table(desc.frags, 4);
902
903 ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
904 skcipher_request_zero(req);
905 if (ret)
906 goto out_err;
907 }
908
909 /* Make sure IV carries forward from any CBC results. */
910 ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
911 if (ret)
912 goto out_err;
913
914
915 /* Calculate our hmac over the plaintext data */
916 our_hmac_obj.len = sizeof(our_hmac);
917 our_hmac_obj.data = our_hmac;
918
919 ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
920 cksum_key, usage, &our_hmac_obj);
921 if (ret)
922 goto out_err;
923
924 /* Get the packet's hmac value */
925 ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
926 pkt_hmac, kctx->gk5e->cksumlength);
927 if (ret)
928 goto out_err;
929
930 if (memcmp(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
931 ret = GSS_S_BAD_SIG;
932 goto out_err;
933 }
934 *headskip = kctx->gk5e->conflen;
935 *tailskip = kctx->gk5e->cksumlength;
936out_err:
937 if (ret && ret != GSS_S_BAD_SIG)
938 ret = GSS_S_FAILURE;
939 return ret;
940}
941
942/*
943 * Compute Kseq given the initial session key and the checksum.
944 * Set the key of the given cipher.
945 */
946int
947krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
948 unsigned char *cksum)
949{
950 struct crypto_shash *hmac;
951 struct shash_desc *desc;
952 u8 Kseq[GSS_KRB5_MAX_KEYLEN];
953 u32 zeroconstant = 0;
954 int err;
955
956 dprintk("%s: entered\n", __func__);
957
958 hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
959 if (IS_ERR(hmac)) {
960 dprintk("%s: error %ld, allocating hash '%s'\n",
961 __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
962 return PTR_ERR(hmac);
963 }
964
965 desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
966 GFP_NOFS);
967 if (!desc) {
968 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
969 __func__, kctx->gk5e->cksum_name);
970 crypto_free_shash(hmac);
971 return -ENOMEM;
972 }
973
974 desc->tfm = hmac;
975 desc->flags = 0;
976
977 /* Compute intermediate Kseq from session key */
978 err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
979 if (err)
980 goto out_err;
981
982 err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
983 if (err)
984 goto out_err;
985
986 /* Compute final Kseq from the checksum and intermediate Kseq */
987 err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
988 if (err)
989 goto out_err;
990
991 err = crypto_shash_digest(desc, cksum, 8, Kseq);
992 if (err)
993 goto out_err;
994
995 err = crypto_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
996 if (err)
997 goto out_err;
998
999 err = 0;
1000
1001out_err:
1002 kzfree(desc);
1003 crypto_free_shash(hmac);
1004 dprintk("%s: returning %d\n", __func__, err);
1005 return err;
1006}
1007
1008/*
1009 * Compute Kcrypt given the initial session key and the plaintext seqnum.
1010 * Set the key of cipher kctx->enc.
1011 */
1012int
1013krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
1014 s32 seqnum)
1015{
1016 struct crypto_shash *hmac;
1017 struct shash_desc *desc;
1018 u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
1019 u8 zeroconstant[4] = {0};
1020 u8 seqnumarray[4];
1021 int err, i;
1022
1023 dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
1024
1025 hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
1026 if (IS_ERR(hmac)) {
1027 dprintk("%s: error %ld, allocating hash '%s'\n",
1028 __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
1029 return PTR_ERR(hmac);
1030 }
1031
1032 desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
1033 GFP_NOFS);
1034 if (!desc) {
1035 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
1036 __func__, kctx->gk5e->cksum_name);
1037 crypto_free_shash(hmac);
1038 return -ENOMEM;
1039 }
1040
1041 desc->tfm = hmac;
1042 desc->flags = 0;
1043
1044 /* Compute intermediate Kcrypt from session key */
1045 for (i = 0; i < kctx->gk5e->keylength; i++)
1046 Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
1047
1048 err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1049 if (err)
1050 goto out_err;
1051
1052 err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
1053 if (err)
1054 goto out_err;
1055
1056 /* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
1057 err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1058 if (err)
1059 goto out_err;
1060
1061 seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
1062 seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
1063 seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
1064 seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
1065
1066 err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
1067 if (err)
1068 goto out_err;
1069
1070 err = crypto_skcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
1071 if (err)
1072 goto out_err;
1073
1074 err = 0;
1075
1076out_err:
1077 kzfree(desc);
1078 crypto_free_shash(hmac);
1079 dprintk("%s: returning %d\n", __func__, err);
1080 return err;
1081}
1082