Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2 *  linux/net/sunrpc/gss_krb5_crypto.c
   3 *
   4 *  Copyright (c) 2000-2008 The Regents of the University of Michigan.
   5 *  All rights reserved.
   6 *
   7 *  Andy Adamson   <andros@umich.edu>
   8 *  Bruce Fields   <bfields@umich.edu>
   9 */
  10
  11/*
  12 * Copyright (C) 1998 by the FundsXpress, INC.
  13 *
  14 * All rights reserved.
  15 *
  16 * Export of this software from the United States of America may require
  17 * a specific license from the United States Government.  It is the
  18 * responsibility of any person or organization contemplating export to
  19 * obtain such a license before exporting.
  20 *
  21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
  22 * distribute this software and its documentation for any purpose and
  23 * without fee is hereby granted, provided that the above copyright
  24 * notice appear in all copies and that both that copyright notice and
  25 * this permission notice appear in supporting documentation, and that
  26 * the name of FundsXpress. not be used in advertising or publicity pertaining
  27 * to distribution of the software without specific, written prior
  28 * permission.  FundsXpress makes no representations about the suitability of
  29 * this software for any purpose.  It is provided "as is" without express
  30 * or implied warranty.
  31 *
  32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
  33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
  34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
  35 */
  36
  37#include <crypto/hash.h>
  38#include <crypto/skcipher.h>
  39#include <crypto/utils.h>
  40#include <linux/err.h>
  41#include <linux/types.h>
  42#include <linux/mm.h>
  43#include <linux/scatterlist.h>
 
  44#include <linux/highmem.h>
  45#include <linux/pagemap.h>
  46#include <linux/random.h>
  47#include <linux/sunrpc/gss_krb5.h>
  48#include <linux/sunrpc/xdr.h>
  49#include <kunit/visibility.h>
  50
  51#include "gss_krb5_internal.h"
  52
  53#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  54# define RPCDBG_FACILITY        RPCDBG_AUTH
  55#endif
  56
  57/**
  58 * krb5_make_confounder - Generate a confounder string
  59 * @p: memory location into which to write the string
  60 * @conflen: string length to write, in octets
  61 *
  62 * RFCs 1964 and 3961 mention only "a random confounder" without going
  63 * into detail about its function or cryptographic requirements. The
  64 * assumed purpose is to prevent repeated encryption of a plaintext with
  65 * the same key from generating the same ciphertext. It is also used to
  66 * pad minimum plaintext length to at least a single cipher block.
  67 *
  68 * However, in situations like the GSS Kerberos 5 mechanism, where the
  69 * encryption IV is always all zeroes, the confounder also effectively
  70 * functions like an IV. Thus, not only must it be unique from message
  71 * to message, but it must also be difficult to predict. Otherwise an
  72 * attacker can correlate the confounder to previous or future values,
  73 * making the encryption easier to break.
  74 *
  75 * Given that the primary consumer of this encryption mechanism is a
  76 * network storage protocol, a type of traffic that often carries
  77 * predictable payloads (eg, all zeroes when reading unallocated blocks
  78 * from a file), our confounder generation has to be cryptographically
  79 * strong.
  80 */
  81void krb5_make_confounder(u8 *p, int conflen)
  82{
  83	get_random_bytes(p, conflen);
  84}
  85
  86/**
  87 * krb5_encrypt - simple encryption of an RPCSEC GSS payload
  88 * @tfm: initialized cipher transform
  89 * @iv: pointer to an IV
  90 * @in: plaintext to encrypt
  91 * @out: OUT: ciphertext
  92 * @length: length of input and output buffers, in bytes
  93 *
  94 * @iv may be NULL to force the use of an all-zero IV.
  95 * The buffer containing the IV must be as large as the
  96 * cipher's ivsize.
  97 *
  98 * Return values:
  99 *   %0: @in successfully encrypted into @out
 100 *   negative errno: @in not encrypted
 101 */
 102u32
 103krb5_encrypt(
 104	struct crypto_sync_skcipher *tfm,
 105	void * iv,
 106	void * in,
 107	void * out,
 108	int length)
 109{
 110	u32 ret = -EINVAL;
 111	struct scatterlist sg[1];
 112	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
 113	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 114
 115	if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
 116		goto out;
 117
 118	if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
 119		dprintk("RPC:       gss_k5encrypt: tfm iv size too large %d\n",
 120			crypto_sync_skcipher_ivsize(tfm));
 121		goto out;
 122	}
 123
 124	if (iv)
 125		memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
 126
 127	memcpy(out, in, length);
 128	sg_init_one(sg, out, length);
 129
 130	skcipher_request_set_sync_tfm(req, tfm);
 131	skcipher_request_set_callback(req, 0, NULL, NULL);
 132	skcipher_request_set_crypt(req, sg, sg, length, local_iv);
 133
 134	ret = crypto_skcipher_encrypt(req);
 135	skcipher_request_zero(req);
 136out:
 137	dprintk("RPC:       krb5_encrypt returns %d\n", ret);
 138	return ret;
 139}
 140
 141/**
 142 * krb5_decrypt - simple decryption of an RPCSEC GSS payload
 143 * @tfm: initialized cipher transform
 144 * @iv: pointer to an IV
 145 * @in: ciphertext to decrypt
 146 * @out: OUT: plaintext
 147 * @length: length of input and output buffers, in bytes
 148 *
 149 * @iv may be NULL to force the use of an all-zero IV.
 150 * The buffer containing the IV must be as large as the
 151 * cipher's ivsize.
 152 *
 153 * Return values:
 154 *   %0: @in successfully decrypted into @out
 155 *   negative errno: @in not decrypted
 156 */
 157u32
 158krb5_decrypt(
 159     struct crypto_sync_skcipher *tfm,
 160     void * iv,
 161     void * in,
 162     void * out,
 163     int length)
 164{
 165	u32 ret = -EINVAL;
 166	struct scatterlist sg[1];
 167	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
 168	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 169
 170	if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
 171		goto out;
 172
 173	if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
 174		dprintk("RPC:       gss_k5decrypt: tfm iv size too large %d\n",
 175			crypto_sync_skcipher_ivsize(tfm));
 176		goto out;
 177	}
 178	if (iv)
 179		memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
 180
 181	memcpy(out, in, length);
 182	sg_init_one(sg, out, length);
 183
 184	skcipher_request_set_sync_tfm(req, tfm);
 185	skcipher_request_set_callback(req, 0, NULL, NULL);
 186	skcipher_request_set_crypt(req, sg, sg, length, local_iv);
 187
 188	ret = crypto_skcipher_decrypt(req);
 189	skcipher_request_zero(req);
 190out:
 191	dprintk("RPC:       gss_k5decrypt returns %d\n",ret);
 192	return ret;
 193}
 194
 195static int
 196checksummer(struct scatterlist *sg, void *data)
 197{
 198	struct ahash_request *req = data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199
 200	ahash_request_set_crypt(req, sg, NULL, sg->length);
 
 201
 202	return crypto_ahash_update(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203}
 204
 205/*
 206 * checksum the plaintext data and hdrlen bytes of the token header
 207 * The checksum is performed over the first 8 bytes of the
 208 * gss token header and then over the data body
 209 */
 210u32
 211make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
 212	      struct xdr_buf *body, int body_offset, u8 *cksumkey,
 213	      unsigned int usage, struct xdr_netobj *cksumout)
 214{
 215	struct crypto_ahash *tfm;
 216	struct ahash_request *req;
 217	struct scatterlist              sg[1];
 218	int err = -1;
 219	u8 *checksumdata;
 220	unsigned int checksumlen;
 221
 
 
 
 
 
 222	if (cksumout->len < kctx->gk5e->cksumlength) {
 223		dprintk("%s: checksum buffer length, %u, too small for %s\n",
 224			__func__, cksumout->len, kctx->gk5e->name);
 225		return GSS_S_FAILURE;
 226	}
 227
 228	checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_KERNEL);
 229	if (checksumdata == NULL)
 230		return GSS_S_FAILURE;
 
 231
 232	tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
 233	if (IS_ERR(tfm))
 234		goto out_free_cksum;
 235
 236	req = ahash_request_alloc(tfm, GFP_KERNEL);
 237	if (!req)
 238		goto out_free_ahash;
 239
 240	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 241
 242	checksumlen = crypto_ahash_digestsize(tfm);
 243
 244	if (cksumkey != NULL) {
 245		err = crypto_ahash_setkey(tfm, cksumkey,
 246					  kctx->gk5e->keylength);
 247		if (err)
 248			goto out;
 249	}
 250
 251	err = crypto_ahash_init(req);
 252	if (err)
 253		goto out;
 254	sg_init_one(sg, header, hdrlen);
 255	ahash_request_set_crypt(req, sg, NULL, hdrlen);
 256	err = crypto_ahash_update(req);
 257	if (err)
 258		goto out;
 259	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 260			      checksummer, req);
 261	if (err)
 262		goto out;
 263	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 264	err = crypto_ahash_final(req);
 265	if (err)
 266		goto out;
 267
 268	switch (kctx->gk5e->ctype) {
 269	case CKSUMTYPE_RSA_MD5:
 270		err = krb5_encrypt(kctx->seq, NULL, checksumdata,
 271				   checksumdata, checksumlen);
 272		if (err)
 273			goto out;
 274		memcpy(cksumout->data,
 275		       checksumdata + checksumlen - kctx->gk5e->cksumlength,
 276		       kctx->gk5e->cksumlength);
 277		break;
 278	case CKSUMTYPE_HMAC_SHA1_DES3:
 279		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 280		break;
 281	default:
 282		BUG();
 283		break;
 284	}
 285	cksumout->len = kctx->gk5e->cksumlength;
 286out:
 287	ahash_request_free(req);
 288out_free_ahash:
 289	crypto_free_ahash(tfm);
 290out_free_cksum:
 291	kfree(checksumdata);
 292	return err ? GSS_S_FAILURE : 0;
 293}
 294
 295/**
 296 * gss_krb5_checksum - Compute the MAC for a GSS Wrap or MIC token
 297 * @tfm: an initialized hash transform
 298 * @header: pointer to a buffer containing the token header, or NULL
 299 * @hdrlen: number of octets in @header
 300 * @body: xdr_buf containing an RPC message (body.len is the message length)
 301 * @body_offset: byte offset into @body to start checksumming
 302 * @cksumout: OUT: a buffer to be filled in with the computed HMAC
 303 *
 304 * Usually expressed as H = HMAC(K, message)[1..h] .
 305 *
 306 * Caller provides the truncation length of the output token (h) in
 307 * cksumout.len.
 308 *
 309 * Return values:
 310 *   %GSS_S_COMPLETE: Digest computed, @cksumout filled in
 311 *   %GSS_S_FAILURE: Call failed
 312 */
 313u32
 314gss_krb5_checksum(struct crypto_ahash *tfm, char *header, int hdrlen,
 315		  const struct xdr_buf *body, int body_offset,
 316		  struct xdr_netobj *cksumout)
 317{
 318	struct ahash_request *req;
 319	int err = -ENOMEM;
 320	u8 *checksumdata;
 
 
 321
 322	checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL);
 323	if (!checksumdata)
 
 324		return GSS_S_FAILURE;
 
 
 
 
 
 
 325
 326	req = ahash_request_alloc(tfm, GFP_KERNEL);
 327	if (!req)
 328		goto out_free_cksum;
 329	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 330	err = crypto_ahash_init(req);
 
 
 
 331	if (err)
 332		goto out_free_ahash;
 333
 334	/*
 335	 * Per RFC 4121 Section 4.2.4, the checksum is performed over the
 336	 * data body first, then over the octets in "header".
 337	 */
 338	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 339			      checksummer, req);
 340	if (err)
 341		goto out_free_ahash;
 342	if (header) {
 343		struct scatterlist sg[1];
 344
 345		sg_init_one(sg, header, hdrlen);
 346		ahash_request_set_crypt(req, sg, NULL, hdrlen);
 347		err = crypto_ahash_update(req);
 348		if (err)
 349			goto out_free_ahash;
 350	}
 351
 352	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 353	err = crypto_ahash_final(req);
 354	if (err)
 355		goto out_free_ahash;
 356
 357	memcpy(cksumout->data, checksumdata,
 358	       min_t(int, cksumout->len, crypto_ahash_digestsize(tfm)));
 359
 360out_free_ahash:
 361	ahash_request_free(req);
 362out_free_cksum:
 363	kfree_sensitive(checksumdata);
 364	return err ? GSS_S_FAILURE : GSS_S_COMPLETE;
 
 
 
 
 
 
 
 
 365}
 366EXPORT_SYMBOL_IF_KUNIT(gss_krb5_checksum);
 367
 368struct encryptor_desc {
 369	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 370	struct skcipher_request *req;
 371	int pos;
 372	struct xdr_buf *outbuf;
 373	struct page **pages;
 374	struct scatterlist infrags[4];
 375	struct scatterlist outfrags[4];
 376	int fragno;
 377	int fraglen;
 378};
 379
 380static int
 381encryptor(struct scatterlist *sg, void *data)
 382{
 383	struct encryptor_desc *desc = data;
 384	struct xdr_buf *outbuf = desc->outbuf;
 385	struct crypto_sync_skcipher *tfm =
 386		crypto_sync_skcipher_reqtfm(desc->req);
 387	struct page *in_page;
 388	int thislen = desc->fraglen + sg->length;
 389	int fraglen, ret;
 390	int page_pos;
 391
 392	/* Worst case is 4 fragments: head, end of page 1, start
 393	 * of page 2, tail.  Anything more is a bug. */
 394	BUG_ON(desc->fragno > 3);
 395
 396	page_pos = desc->pos - outbuf->head[0].iov_len;
 397	if (page_pos >= 0 && page_pos < outbuf->page_len) {
 398		/* pages are not in place: */
 399		int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
 400		in_page = desc->pages[i];
 401	} else {
 402		in_page = sg_page(sg);
 403	}
 404	sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
 405		    sg->offset);
 406	sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
 407		    sg->offset);
 408	desc->fragno++;
 409	desc->fraglen += sg->length;
 410	desc->pos += sg->length;
 411
 412	fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
 413	thislen -= fraglen;
 414
 415	if (thislen == 0)
 416		return 0;
 417
 418	sg_mark_end(&desc->infrags[desc->fragno - 1]);
 419	sg_mark_end(&desc->outfrags[desc->fragno - 1]);
 420
 421	skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
 422				   thislen, desc->iv);
 423
 424	ret = crypto_skcipher_encrypt(desc->req);
 425	if (ret)
 426		return ret;
 427
 428	sg_init_table(desc->infrags, 4);
 429	sg_init_table(desc->outfrags, 4);
 430
 431	if (fraglen) {
 432		sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
 433				sg->offset + sg->length - fraglen);
 434		desc->infrags[0] = desc->outfrags[0];
 435		sg_assign_page(&desc->infrags[0], in_page);
 436		desc->fragno = 1;
 437		desc->fraglen = fraglen;
 438	} else {
 439		desc->fragno = 0;
 440		desc->fraglen = 0;
 441	}
 442	return 0;
 443}
 444
 445int
 446gss_encrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
 447		    int offset, struct page **pages)
 448{
 449	int ret;
 450	struct encryptor_desc desc;
 451	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 452
 453	BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
 454
 455	skcipher_request_set_sync_tfm(req, tfm);
 456	skcipher_request_set_callback(req, 0, NULL, NULL);
 457
 458	memset(desc.iv, 0, sizeof(desc.iv));
 459	desc.req = req;
 
 
 460	desc.pos = offset;
 461	desc.outbuf = buf;
 462	desc.pages = pages;
 463	desc.fragno = 0;
 464	desc.fraglen = 0;
 465
 466	sg_init_table(desc.infrags, 4);
 467	sg_init_table(desc.outfrags, 4);
 468
 469	ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
 470	skcipher_request_zero(req);
 471	return ret;
 472}
 473
 474struct decryptor_desc {
 475	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 476	struct skcipher_request *req;
 477	struct scatterlist frags[4];
 478	int fragno;
 479	int fraglen;
 480};
 481
 482static int
 483decryptor(struct scatterlist *sg, void *data)
 484{
 485	struct decryptor_desc *desc = data;
 486	int thislen = desc->fraglen + sg->length;
 487	struct crypto_sync_skcipher *tfm =
 488		crypto_sync_skcipher_reqtfm(desc->req);
 489	int fraglen, ret;
 490
 491	/* Worst case is 4 fragments: head, end of page 1, start
 492	 * of page 2, tail.  Anything more is a bug. */
 493	BUG_ON(desc->fragno > 3);
 494	sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
 495		    sg->offset);
 496	desc->fragno++;
 497	desc->fraglen += sg->length;
 498
 499	fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
 500	thislen -= fraglen;
 501
 502	if (thislen == 0)
 503		return 0;
 504
 505	sg_mark_end(&desc->frags[desc->fragno - 1]);
 506
 507	skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
 508				   thislen, desc->iv);
 509
 510	ret = crypto_skcipher_decrypt(desc->req);
 511	if (ret)
 512		return ret;
 513
 514	sg_init_table(desc->frags, 4);
 515
 516	if (fraglen) {
 517		sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
 518				sg->offset + sg->length - fraglen);
 519		desc->fragno = 1;
 520		desc->fraglen = fraglen;
 521	} else {
 522		desc->fragno = 0;
 523		desc->fraglen = 0;
 524	}
 525	return 0;
 526}
 527
 528int
 529gss_decrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
 530		    int offset)
 531{
 532	int ret;
 533	struct decryptor_desc desc;
 534	SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 535
 536	/* XXXJBF: */
 537	BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
 538
 539	skcipher_request_set_sync_tfm(req, tfm);
 540	skcipher_request_set_callback(req, 0, NULL, NULL);
 541
 542	memset(desc.iv, 0, sizeof(desc.iv));
 543	desc.req = req;
 
 
 544	desc.fragno = 0;
 545	desc.fraglen = 0;
 546
 547	sg_init_table(desc.frags, 4);
 548
 549	ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
 550	skcipher_request_zero(req);
 551	return ret;
 552}
 553
 554/*
 555 * This function makes the assumption that it was ultimately called
 556 * from gss_wrap().
 557 *
 558 * The client auth_gss code moves any existing tail data into a
 559 * separate page before calling gss_wrap.
 560 * The server svcauth_gss code ensures that both the head and the
 561 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
 562 *
 563 * Even with that guarantee, this function may be called more than
 564 * once in the processing of gss_wrap().  The best we can do is
 565 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
 566 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
 567 * At run-time we can verify that a single invocation of this
 568 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
 569 */
 570
 571int
 572xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
 573{
 574	u8 *p;
 575
 576	if (shiftlen == 0)
 577		return 0;
 578
 
 579	BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
 580
 581	p = buf->head[0].iov_base + base;
 582
 583	memmove(p + shiftlen, p, buf->head[0].iov_len - base);
 584
 585	buf->head[0].iov_len += shiftlen;
 586	buf->len += shiftlen;
 587
 588	return 0;
 589}
 590
 591static u32
 592gss_krb5_cts_crypt(struct crypto_sync_skcipher *cipher, struct xdr_buf *buf,
 593		   u32 offset, u8 *iv, struct page **pages, int encrypt)
 594{
 595	u32 ret;
 596	struct scatterlist sg[1];
 597	SYNC_SKCIPHER_REQUEST_ON_STACK(req, cipher);
 598	u8 *data;
 599	struct page **save_pages;
 600	u32 len = buf->len - offset;
 601
 602	if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
 603		WARN_ON(0);
 604		return -ENOMEM;
 605	}
 606	data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_KERNEL);
 607	if (!data)
 608		return -ENOMEM;
 609
 610	/*
 611	 * For encryption, we want to read from the cleartext
 612	 * page cache pages, and write the encrypted data to
 613	 * the supplied xdr_buf pages.
 614	 */
 615	save_pages = buf->pages;
 616	if (encrypt)
 617		buf->pages = pages;
 618
 619	ret = read_bytes_from_xdr_buf(buf, offset, data, len);
 620	buf->pages = save_pages;
 621	if (ret)
 622		goto out;
 623
 624	sg_init_one(sg, data, len);
 625
 626	skcipher_request_set_sync_tfm(req, cipher);
 627	skcipher_request_set_callback(req, 0, NULL, NULL);
 628	skcipher_request_set_crypt(req, sg, sg, len, iv);
 629
 630	if (encrypt)
 631		ret = crypto_skcipher_encrypt(req);
 632	else
 633		ret = crypto_skcipher_decrypt(req);
 634
 635	skcipher_request_zero(req);
 636
 637	if (ret)
 638		goto out;
 639
 640	ret = write_bytes_to_xdr_buf(buf, offset, data, len);
 641
 642#if IS_ENABLED(CONFIG_KUNIT)
 643	/*
 644	 * CBC-CTS does not define an output IV but RFC 3962 defines it as the
 645	 * penultimate block of ciphertext, so copy that into the IV buffer
 646	 * before returning.
 647	 */
 648	if (encrypt)
 649		memcpy(iv, data, crypto_sync_skcipher_ivsize(cipher));
 650#endif
 651
 652out:
 653	kfree(data);
 654	return ret;
 655}
 656
 657/**
 658 * krb5_cbc_cts_encrypt - encrypt in CBC mode with CTS
 659 * @cts_tfm: CBC cipher with CTS
 660 * @cbc_tfm: base CBC cipher
 661 * @offset: starting byte offset for plaintext
 662 * @buf: OUT: output buffer
 663 * @pages: plaintext
 664 * @iv: output CBC initialization vector, or NULL
 665 * @ivsize: size of @iv, in octets
 666 *
 667 * To provide confidentiality, encrypt using cipher block chaining
 668 * with ciphertext stealing. Message integrity is handled separately.
 669 *
 670 * Return values:
 671 *   %0: encryption successful
 672 *   negative errno: encryption could not be completed
 673 */
 674VISIBLE_IF_KUNIT
 675int krb5_cbc_cts_encrypt(struct crypto_sync_skcipher *cts_tfm,
 676			 struct crypto_sync_skcipher *cbc_tfm,
 677			 u32 offset, struct xdr_buf *buf, struct page **pages,
 678			 u8 *iv, unsigned int ivsize)
 679{
 680	u32 blocksize, nbytes, nblocks, cbcbytes;
 681	struct encryptor_desc desc;
 682	int err;
 683
 684	blocksize = crypto_sync_skcipher_blocksize(cts_tfm);
 685	nbytes = buf->len - offset;
 686	nblocks = (nbytes + blocksize - 1) / blocksize;
 687	cbcbytes = 0;
 688	if (nblocks > 2)
 689		cbcbytes = (nblocks - 2) * blocksize;
 690
 691	memset(desc.iv, 0, sizeof(desc.iv));
 692
 693	/* Handle block-sized chunks of plaintext with CBC. */
 694	if (cbcbytes) {
 695		SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm);
 696
 697		desc.pos = offset;
 698		desc.fragno = 0;
 699		desc.fraglen = 0;
 700		desc.pages = pages;
 701		desc.outbuf = buf;
 702		desc.req = req;
 703
 704		skcipher_request_set_sync_tfm(req, cbc_tfm);
 705		skcipher_request_set_callback(req, 0, NULL, NULL);
 706
 707		sg_init_table(desc.infrags, 4);
 708		sg_init_table(desc.outfrags, 4);
 709
 710		err = xdr_process_buf(buf, offset, cbcbytes, encryptor, &desc);
 711		skcipher_request_zero(req);
 712		if (err)
 713			return err;
 714	}
 715
 716	/* Remaining plaintext is handled with CBC-CTS. */
 717	err = gss_krb5_cts_crypt(cts_tfm, buf, offset + cbcbytes,
 718				 desc.iv, pages, 1);
 719	if (err)
 720		return err;
 721
 722	if (unlikely(iv))
 723		memcpy(iv, desc.iv, ivsize);
 724	return 0;
 725}
 726EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_encrypt);
 727
 728/**
 729 * krb5_cbc_cts_decrypt - decrypt in CBC mode with CTS
 730 * @cts_tfm: CBC cipher with CTS
 731 * @cbc_tfm: base CBC cipher
 732 * @offset: starting byte offset for plaintext
 733 * @buf: OUT: output buffer
 734 *
 735 * Return values:
 736 *   %0: decryption successful
 737 *   negative errno: decryption could not be completed
 738 */
 739VISIBLE_IF_KUNIT
 740int krb5_cbc_cts_decrypt(struct crypto_sync_skcipher *cts_tfm,
 741			 struct crypto_sync_skcipher *cbc_tfm,
 742			 u32 offset, struct xdr_buf *buf)
 743{
 744	u32 blocksize, nblocks, cbcbytes;
 745	struct decryptor_desc desc;
 746	int err;
 747
 748	blocksize = crypto_sync_skcipher_blocksize(cts_tfm);
 749	nblocks = (buf->len + blocksize - 1) / blocksize;
 750	cbcbytes = 0;
 751	if (nblocks > 2)
 752		cbcbytes = (nblocks - 2) * blocksize;
 753
 754	memset(desc.iv, 0, sizeof(desc.iv));
 755
 756	/* Handle block-sized chunks of plaintext with CBC. */
 757	if (cbcbytes) {
 758		SYNC_SKCIPHER_REQUEST_ON_STACK(req, cbc_tfm);
 759
 760		desc.fragno = 0;
 761		desc.fraglen = 0;
 762		desc.req = req;
 763
 764		skcipher_request_set_sync_tfm(req, cbc_tfm);
 765		skcipher_request_set_callback(req, 0, NULL, NULL);
 766
 767		sg_init_table(desc.frags, 4);
 768
 769		err = xdr_process_buf(buf, 0, cbcbytes, decryptor, &desc);
 770		skcipher_request_zero(req);
 771		if (err)
 772			return err;
 773	}
 774
 775	/* Remaining plaintext is handled with CBC-CTS. */
 776	return gss_krb5_cts_crypt(cts_tfm, buf, cbcbytes, desc.iv, NULL, 0);
 777}
 778EXPORT_SYMBOL_IF_KUNIT(krb5_cbc_cts_decrypt);
 779
 780u32
 781gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
 782		     struct xdr_buf *buf, struct page **pages)
 783{
 784	u32 err;
 785	struct xdr_netobj hmac;
 
 786	u8 *ecptr;
 787	struct crypto_sync_skcipher *cipher, *aux_cipher;
 788	struct crypto_ahash *ahash;
 789	struct page **save_pages;
 790	unsigned int conflen;
 
 
 
 791
 792	if (kctx->initiate) {
 793		cipher = kctx->initiator_enc;
 794		aux_cipher = kctx->initiator_enc_aux;
 795		ahash = kctx->initiator_integ;
 
 796	} else {
 797		cipher = kctx->acceptor_enc;
 798		aux_cipher = kctx->acceptor_enc_aux;
 799		ahash = kctx->acceptor_integ;
 
 800	}
 801	conflen = crypto_sync_skcipher_blocksize(cipher);
 802
 803	/* hide the gss token header and insert the confounder */
 804	offset += GSS_KRB5_TOK_HDR_LEN;
 805	if (xdr_extend_head(buf, offset, conflen))
 806		return GSS_S_FAILURE;
 807	krb5_make_confounder(buf->head[0].iov_base + offset, conflen);
 808	offset -= GSS_KRB5_TOK_HDR_LEN;
 809
 810	if (buf->tail[0].iov_base != NULL) {
 811		ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
 812	} else {
 813		buf->tail[0].iov_base = buf->head[0].iov_base
 814							+ buf->head[0].iov_len;
 815		buf->tail[0].iov_len = 0;
 816		ecptr = buf->tail[0].iov_base;
 817	}
 818
 
 
 
 
 819	/* copy plaintext gss token header after filler (if any) */
 820	memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
 
 821	buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
 822	buf->len += GSS_KRB5_TOK_HDR_LEN;
 823
 824	hmac.len = kctx->gk5e->cksumlength;
 
 825	hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
 826
 827	/*
 828	 * When we are called, pages points to the real page cache
 829	 * data -- which we can't go and encrypt!  buf->pages points
 830	 * to scratch pages which we are going to send off to the
 831	 * client/server.  Swap in the plaintext pages to calculate
 832	 * the hmac.
 833	 */
 834	save_pages = buf->pages;
 835	buf->pages = pages;
 836
 837	err = gss_krb5_checksum(ahash, NULL, 0, buf,
 838				offset + GSS_KRB5_TOK_HDR_LEN, &hmac);
 
 839	buf->pages = save_pages;
 840	if (err)
 841		return GSS_S_FAILURE;
 842
 843	err = krb5_cbc_cts_encrypt(cipher, aux_cipher,
 844				   offset + GSS_KRB5_TOK_HDR_LEN,
 845				   buf, pages, NULL, 0);
 846	if (err)
 847		return GSS_S_FAILURE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 848
 849	/* Now update buf to account for HMAC */
 850	buf->tail[0].iov_len += kctx->gk5e->cksumlength;
 851	buf->len += kctx->gk5e->cksumlength;
 852
 853	return GSS_S_COMPLETE;
 
 
 
 854}
 855
 856u32
 857gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
 858		     struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
 859{
 860	struct crypto_sync_skcipher *cipher, *aux_cipher;
 861	struct crypto_ahash *ahash;
 
 
 862	struct xdr_netobj our_hmac_obj;
 863	u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 864	u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 865	struct xdr_buf subbuf;
 866	u32 ret = 0;
 
 867
 868	if (kctx->initiate) {
 869		cipher = kctx->acceptor_enc;
 870		aux_cipher = kctx->acceptor_enc_aux;
 871		ahash = kctx->acceptor_integ;
 
 872	} else {
 873		cipher = kctx->initiator_enc;
 874		aux_cipher = kctx->initiator_enc_aux;
 875		ahash = kctx->initiator_integ;
 
 876	}
 
 
 877
 878	/* create a segment skipping the header and leaving out the checksum */
 879	xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
 880				    (len - offset - GSS_KRB5_TOK_HDR_LEN -
 881				     kctx->gk5e->cksumlength));
 882
 883	ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884	if (ret)
 885		goto out_err;
 886
 887	our_hmac_obj.len = kctx->gk5e->cksumlength;
 
 
 888	our_hmac_obj.data = our_hmac;
 889	ret = gss_krb5_checksum(ahash, NULL, 0, &subbuf, 0, &our_hmac_obj);
 
 
 890	if (ret)
 891		goto out_err;
 892
 893	/* Get the packet's hmac value */
 894	ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
 895				      pkt_hmac, kctx->gk5e->cksumlength);
 896	if (ret)
 897		goto out_err;
 898
 899	if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
 900		ret = GSS_S_BAD_SIG;
 901		goto out_err;
 902	}
 903	*headskip = crypto_sync_skcipher_blocksize(cipher);
 904	*tailskip = kctx->gk5e->cksumlength;
 905out_err:
 906	if (ret && ret != GSS_S_BAD_SIG)
 907		ret = GSS_S_FAILURE;
 908	return ret;
 909}
 910
 911/**
 912 * krb5_etm_checksum - Compute a MAC for a GSS Wrap token
 913 * @cipher: an initialized cipher transform
 914 * @tfm: an initialized hash transform
 915 * @body: xdr_buf containing an RPC message (body.len is the message length)
 916 * @body_offset: byte offset into @body to start checksumming
 917 * @cksumout: OUT: a buffer to be filled in with the computed HMAC
 918 *
 919 * Usually expressed as H = HMAC(K, IV | ciphertext)[1..h] .
 920 *
 921 * Caller provides the truncation length of the output token (h) in
 922 * cksumout.len.
 923 *
 924 * Return values:
 925 *   %GSS_S_COMPLETE: Digest computed, @cksumout filled in
 926 *   %GSS_S_FAILURE: Call failed
 927 */
 928VISIBLE_IF_KUNIT
 929u32 krb5_etm_checksum(struct crypto_sync_skcipher *cipher,
 930		      struct crypto_ahash *tfm, const struct xdr_buf *body,
 931		      int body_offset, struct xdr_netobj *cksumout)
 932{
 933	unsigned int ivsize = crypto_sync_skcipher_ivsize(cipher);
 934	struct ahash_request *req;
 935	struct scatterlist sg[1];
 936	u8 *iv, *checksumdata;
 937	int err = -ENOMEM;
 
 938
 939	checksumdata = kmalloc(crypto_ahash_digestsize(tfm), GFP_KERNEL);
 940	if (!checksumdata)
 941		return GSS_S_FAILURE;
 942	/* For RPCSEC, the "initial cipher state" is always all zeroes. */
 943	iv = kzalloc(ivsize, GFP_KERNEL);
 944	if (!iv)
 945		goto out_free_mem;
 946
 947	req = ahash_request_alloc(tfm, GFP_KERNEL);
 948	if (!req)
 949		goto out_free_mem;
 950	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 951	err = crypto_ahash_init(req);
 952	if (err)
 953		goto out_free_ahash;
 954
 955	sg_init_one(sg, iv, ivsize);
 956	ahash_request_set_crypt(req, sg, NULL, ivsize);
 957	err = crypto_ahash_update(req);
 958	if (err)
 959		goto out_free_ahash;
 960	err = xdr_process_buf(body, body_offset, body->len - body_offset,
 961			      checksummer, req);
 962	if (err)
 963		goto out_free_ahash;
 964
 965	ahash_request_set_crypt(req, NULL, checksumdata, 0);
 966	err = crypto_ahash_final(req);
 
 
 
 
 
 
 
 
 
 967	if (err)
 968		goto out_free_ahash;
 969	memcpy(cksumout->data, checksumdata, cksumout->len);
 970
 971out_free_ahash:
 972	ahash_request_free(req);
 973out_free_mem:
 974	kfree(iv);
 975	kfree_sensitive(checksumdata);
 976	return err ? GSS_S_FAILURE : GSS_S_COMPLETE;
 977}
 978EXPORT_SYMBOL_IF_KUNIT(krb5_etm_checksum);
 979
 980/**
 981 * krb5_etm_encrypt - Encrypt using the RFC 8009 rules
 982 * @kctx: Kerberos context
 983 * @offset: starting offset of the payload, in bytes
 984 * @buf: OUT: send buffer to contain the encrypted payload
 985 * @pages: plaintext payload
 986 *
 987 * The main difference with aes_encrypt is that "The HMAC is
 988 * calculated over the cipher state concatenated with the AES
 989 * output, instead of being calculated over the confounder and
 990 * plaintext.  This allows the message receiver to verify the
 991 * integrity of the message before decrypting the message."
 992 *
 993 * RFC 8009 Section 5:
 994 *
 995 * encryption function: as follows, where E() is AES encryption in
 996 * CBC-CS3 mode, and h is the size of truncated HMAC (128 bits or
 997 * 192 bits as described above).
 998 *
 999 *    N = random value of length 128 bits (the AES block size)
1000 *    IV = cipher state
1001 *    C = E(Ke, N | plaintext, IV)
1002 *    H = HMAC(Ki, IV | C)
1003 *    ciphertext = C | H[1..h]
1004 *
1005 * This encryption formula provides AEAD EtM with key separation.
1006 *
1007 * Return values:
1008 *   %GSS_S_COMPLETE: Encryption successful
1009 *   %GSS_S_FAILURE: Encryption failed
1010 */
1011u32
1012krb5_etm_encrypt(struct krb5_ctx *kctx, u32 offset,
1013		 struct xdr_buf *buf, struct page **pages)
1014{
1015	struct crypto_sync_skcipher *cipher, *aux_cipher;
1016	struct crypto_ahash *ahash;
1017	struct xdr_netobj hmac;
1018	unsigned int conflen;
1019	u8 *ecptr;
1020	u32 err;
1021
1022	if (kctx->initiate) {
1023		cipher = kctx->initiator_enc;
1024		aux_cipher = kctx->initiator_enc_aux;
1025		ahash = kctx->initiator_integ;
1026	} else {
1027		cipher = kctx->acceptor_enc;
1028		aux_cipher = kctx->acceptor_enc_aux;
1029		ahash = kctx->acceptor_integ;
1030	}
1031	conflen = crypto_sync_skcipher_blocksize(cipher);
1032
1033	offset += GSS_KRB5_TOK_HDR_LEN;
1034	if (xdr_extend_head(buf, offset, conflen))
1035		return GSS_S_FAILURE;
1036	krb5_make_confounder(buf->head[0].iov_base + offset, conflen);
1037	offset -= GSS_KRB5_TOK_HDR_LEN;
1038
1039	if (buf->tail[0].iov_base) {
1040		ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
1041	} else {
1042		buf->tail[0].iov_base = buf->head[0].iov_base
1043							+ buf->head[0].iov_len;
1044		buf->tail[0].iov_len = 0;
1045		ecptr = buf->tail[0].iov_base;
1046	}
1047
1048	memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
1049	buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
1050	buf->len += GSS_KRB5_TOK_HDR_LEN;
1051
1052	err = krb5_cbc_cts_encrypt(cipher, aux_cipher,
1053				   offset + GSS_KRB5_TOK_HDR_LEN,
1054				   buf, pages, NULL, 0);
1055	if (err)
1056		return GSS_S_FAILURE;
1057
1058	hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
1059	hmac.len = kctx->gk5e->cksumlength;
1060	err = krb5_etm_checksum(cipher, ahash,
1061				buf, offset + GSS_KRB5_TOK_HDR_LEN, &hmac);
1062	if (err)
1063		goto out_err;
1064	buf->tail[0].iov_len += kctx->gk5e->cksumlength;
1065	buf->len += kctx->gk5e->cksumlength;
1066
1067	return GSS_S_COMPLETE;
1068
1069out_err:
1070	return GSS_S_FAILURE;
 
 
1071}
1072
1073/**
1074 * krb5_etm_decrypt - Decrypt using the RFC 8009 rules
1075 * @kctx: Kerberos context
1076 * @offset: starting offset of the ciphertext, in bytes
1077 * @len:
1078 * @buf:
1079 * @headskip: OUT: the enctype's confounder length, in octets
1080 * @tailskip: OUT: the enctype's HMAC length, in octets
1081 *
1082 * RFC 8009 Section 5:
1083 *
1084 * decryption function: as follows, where D() is AES decryption in
1085 * CBC-CS3 mode, and h is the size of truncated HMAC.
1086 *
1087 *    (C, H) = ciphertext
1088 *        (Note: H is the last h bits of the ciphertext.)
1089 *    IV = cipher state
1090 *    if H != HMAC(Ki, IV | C)[1..h]
1091 *        stop, report error
1092 *    (N, P) = D(Ke, C, IV)
1093 *
1094 * Return values:
1095 *   %GSS_S_COMPLETE: Decryption successful
1096 *   %GSS_S_BAD_SIG: computed HMAC != received HMAC
1097 *   %GSS_S_FAILURE: Decryption failed
1098 */
1099u32
1100krb5_etm_decrypt(struct krb5_ctx *kctx, u32 offset, u32 len,
1101		 struct xdr_buf *buf, u32 *headskip, u32 *tailskip)
1102{
1103	struct crypto_sync_skcipher *cipher, *aux_cipher;
1104	u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
1105	u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
1106	struct xdr_netobj our_hmac_obj;
1107	struct crypto_ahash *ahash;
1108	struct xdr_buf subbuf;
1109	u32 ret = 0;
1110
1111	if (kctx->initiate) {
1112		cipher = kctx->acceptor_enc;
1113		aux_cipher = kctx->acceptor_enc_aux;
1114		ahash = kctx->acceptor_integ;
1115	} else {
1116		cipher = kctx->initiator_enc;
1117		aux_cipher = kctx->initiator_enc_aux;
1118		ahash = kctx->initiator_integ;
1119	}
1120
1121	/* Extract the ciphertext into @subbuf. */
1122	xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
1123			   (len - offset - GSS_KRB5_TOK_HDR_LEN -
1124			    kctx->gk5e->cksumlength));
1125
1126	our_hmac_obj.data = our_hmac;
1127	our_hmac_obj.len = kctx->gk5e->cksumlength;
1128	ret = krb5_etm_checksum(cipher, ahash, &subbuf, 0, &our_hmac_obj);
1129	if (ret)
1130		goto out_err;
1131	ret = read_bytes_from_xdr_buf(buf, len - kctx->gk5e->cksumlength,
1132				      pkt_hmac, kctx->gk5e->cksumlength);
1133	if (ret)
 
 
 
 
1134		goto out_err;
1135	if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
1136		ret = GSS_S_BAD_SIG;
 
 
 
 
1137		goto out_err;
1138	}
1139
1140	ret = krb5_cbc_cts_decrypt(cipher, aux_cipher, 0, &subbuf);
1141	if (ret) {
1142		ret = GSS_S_FAILURE;
1143		goto out_err;
1144	}
1145
1146	*headskip = crypto_sync_skcipher_blocksize(cipher);
1147	*tailskip = kctx->gk5e->cksumlength;
1148	return GSS_S_COMPLETE;
 
 
 
 
 
 
 
 
 
 
 
 
 
1149
1150out_err:
1151	if (ret != GSS_S_BAD_SIG)
1152		ret = GSS_S_FAILURE;
1153	return ret;
1154}
v3.15
  1/*
  2 *  linux/net/sunrpc/gss_krb5_crypto.c
  3 *
  4 *  Copyright (c) 2000-2008 The Regents of the University of Michigan.
  5 *  All rights reserved.
  6 *
  7 *  Andy Adamson   <andros@umich.edu>
  8 *  Bruce Fields   <bfields@umich.edu>
  9 */
 10
 11/*
 12 * Copyright (C) 1998 by the FundsXpress, INC.
 13 *
 14 * All rights reserved.
 15 *
 16 * Export of this software from the United States of America may require
 17 * a specific license from the United States Government.  It is the
 18 * responsibility of any person or organization contemplating export to
 19 * obtain such a license before exporting.
 20 *
 21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
 22 * distribute this software and its documentation for any purpose and
 23 * without fee is hereby granted, provided that the above copyright
 24 * notice appear in all copies and that both that copyright notice and
 25 * this permission notice appear in supporting documentation, and that
 26 * the name of FundsXpress. not be used in advertising or publicity pertaining
 27 * to distribution of the software without specific, written prior
 28 * permission.  FundsXpress makes no representations about the suitability of
 29 * this software for any purpose.  It is provided "as is" without express
 30 * or implied warranty.
 31 *
 32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
 33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
 34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 35 */
 36
 
 
 
 37#include <linux/err.h>
 38#include <linux/types.h>
 39#include <linux/mm.h>
 40#include <linux/scatterlist.h>
 41#include <linux/crypto.h>
 42#include <linux/highmem.h>
 43#include <linux/pagemap.h>
 44#include <linux/random.h>
 45#include <linux/sunrpc/gss_krb5.h>
 46#include <linux/sunrpc/xdr.h>
 
 47
 48#ifdef RPC_DEBUG
 
 
 49# define RPCDBG_FACILITY        RPCDBG_AUTH
 50#endif
 51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 52u32
 53krb5_encrypt(
 54	struct crypto_blkcipher *tfm,
 55	void * iv,
 56	void * in,
 57	void * out,
 58	int length)
 59{
 60	u32 ret = -EINVAL;
 61	struct scatterlist sg[1];
 62	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
 63	struct blkcipher_desc desc = { .tfm = tfm, .info = local_iv };
 64
 65	if (length % crypto_blkcipher_blocksize(tfm) != 0)
 66		goto out;
 67
 68	if (crypto_blkcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
 69		dprintk("RPC:       gss_k5encrypt: tfm iv size too large %d\n",
 70			crypto_blkcipher_ivsize(tfm));
 71		goto out;
 72	}
 73
 74	if (iv)
 75		memcpy(local_iv, iv, crypto_blkcipher_ivsize(tfm));
 76
 77	memcpy(out, in, length);
 78	sg_init_one(sg, out, length);
 79
 80	ret = crypto_blkcipher_encrypt_iv(&desc, sg, sg, length);
 
 
 
 
 
 81out:
 82	dprintk("RPC:       krb5_encrypt returns %d\n", ret);
 83	return ret;
 84}
 85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 86u32
 87krb5_decrypt(
 88     struct crypto_blkcipher *tfm,
 89     void * iv,
 90     void * in,
 91     void * out,
 92     int length)
 93{
 94	u32 ret = -EINVAL;
 95	struct scatterlist sg[1];
 96	u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
 97	struct blkcipher_desc desc = { .tfm = tfm, .info = local_iv };
 98
 99	if (length % crypto_blkcipher_blocksize(tfm) != 0)
100		goto out;
101
102	if (crypto_blkcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
103		dprintk("RPC:       gss_k5decrypt: tfm iv size too large %d\n",
104			crypto_blkcipher_ivsize(tfm));
105		goto out;
106	}
107	if (iv)
108		memcpy(local_iv,iv, crypto_blkcipher_ivsize(tfm));
109
110	memcpy(out, in, length);
111	sg_init_one(sg, out, length);
112
113	ret = crypto_blkcipher_decrypt_iv(&desc, sg, sg, length);
 
 
 
 
 
114out:
115	dprintk("RPC:       gss_k5decrypt returns %d\n",ret);
116	return ret;
117}
118
119static int
120checksummer(struct scatterlist *sg, void *data)
121{
122	struct hash_desc *desc = data;
123
124	return crypto_hash_update(desc, sg, sg->length);
125}
126
127static int
128arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
129{
130	unsigned int ms_usage;
131
132	switch (usage) {
133	case KG_USAGE_SIGN:
134		ms_usage = 15;
135		break;
136	case KG_USAGE_SEAL:
137		ms_usage = 13;
138		break;
139	default:
140		return -EINVAL;
141	}
142	salt[0] = (ms_usage >> 0) & 0xff;
143	salt[1] = (ms_usage >> 8) & 0xff;
144	salt[2] = (ms_usage >> 16) & 0xff;
145	salt[3] = (ms_usage >> 24) & 0xff;
146
147	return 0;
148}
149
150static u32
151make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
152		       struct xdr_buf *body, int body_offset, u8 *cksumkey,
153		       unsigned int usage, struct xdr_netobj *cksumout)
154{
155	struct hash_desc                desc;
156	struct scatterlist              sg[1];
157	int err;
158	u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
159	u8 rc4salt[4];
160	struct crypto_hash *md5;
161	struct crypto_hash *hmac_md5;
162
163	if (cksumkey == NULL)
164		return GSS_S_FAILURE;
165
166	if (cksumout->len < kctx->gk5e->cksumlength) {
167		dprintk("%s: checksum buffer length, %u, too small for %s\n",
168			__func__, cksumout->len, kctx->gk5e->name);
169		return GSS_S_FAILURE;
170	}
171
172	if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
173		dprintk("%s: invalid usage value %u\n", __func__, usage);
174		return GSS_S_FAILURE;
175	}
176
177	md5 = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
178	if (IS_ERR(md5))
179		return GSS_S_FAILURE;
180
181	hmac_md5 = crypto_alloc_hash(kctx->gk5e->cksum_name, 0,
182				     CRYPTO_ALG_ASYNC);
183	if (IS_ERR(hmac_md5)) {
184		crypto_free_hash(md5);
185		return GSS_S_FAILURE;
186	}
187
188	desc.tfm = md5;
189	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
190
191	err = crypto_hash_init(&desc);
192	if (err)
193		goto out;
194	sg_init_one(sg, rc4salt, 4);
195	err = crypto_hash_update(&desc, sg, 4);
196	if (err)
197		goto out;
198
199	sg_init_one(sg, header, hdrlen);
200	err = crypto_hash_update(&desc, sg, hdrlen);
201	if (err)
202		goto out;
203	err = xdr_process_buf(body, body_offset, body->len - body_offset,
204			      checksummer, &desc);
205	if (err)
206		goto out;
207	err = crypto_hash_final(&desc, checksumdata);
208	if (err)
209		goto out;
210
211	desc.tfm = hmac_md5;
212	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
213
214	err = crypto_hash_init(&desc);
215	if (err)
216		goto out;
217	err = crypto_hash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
218	if (err)
219		goto out;
220
221	sg_init_one(sg, checksumdata, crypto_hash_digestsize(md5));
222	err = crypto_hash_digest(&desc, sg, crypto_hash_digestsize(md5),
223				 checksumdata);
224	if (err)
225		goto out;
226
227	memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
228	cksumout->len = kctx->gk5e->cksumlength;
229out:
230	crypto_free_hash(md5);
231	crypto_free_hash(hmac_md5);
232	return err ? GSS_S_FAILURE : 0;
233}
234
235/*
236 * checksum the plaintext data and hdrlen bytes of the token header
237 * The checksum is performed over the first 8 bytes of the
238 * gss token header and then over the data body
239 */
240u32
241make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
242	      struct xdr_buf *body, int body_offset, u8 *cksumkey,
243	      unsigned int usage, struct xdr_netobj *cksumout)
244{
245	struct hash_desc                desc;
 
246	struct scatterlist              sg[1];
247	int err;
248	u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
249	unsigned int checksumlen;
250
251	if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
252		return make_checksum_hmac_md5(kctx, header, hdrlen,
253					      body, body_offset,
254					      cksumkey, usage, cksumout);
255
256	if (cksumout->len < kctx->gk5e->cksumlength) {
257		dprintk("%s: checksum buffer length, %u, too small for %s\n",
258			__func__, cksumout->len, kctx->gk5e->name);
259		return GSS_S_FAILURE;
260	}
261
262	desc.tfm = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
263	if (IS_ERR(desc.tfm))
264		return GSS_S_FAILURE;
265	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
266
267	checksumlen = crypto_hash_digestsize(desc.tfm);
 
 
 
 
 
 
 
 
 
 
268
269	if (cksumkey != NULL) {
270		err = crypto_hash_setkey(desc.tfm, cksumkey,
271					 kctx->gk5e->keylength);
272		if (err)
273			goto out;
274	}
275
276	err = crypto_hash_init(&desc);
277	if (err)
278		goto out;
279	sg_init_one(sg, header, hdrlen);
280	err = crypto_hash_update(&desc, sg, hdrlen);
 
281	if (err)
282		goto out;
283	err = xdr_process_buf(body, body_offset, body->len - body_offset,
284			      checksummer, &desc);
285	if (err)
286		goto out;
287	err = crypto_hash_final(&desc, checksumdata);
 
288	if (err)
289		goto out;
290
291	switch (kctx->gk5e->ctype) {
292	case CKSUMTYPE_RSA_MD5:
293		err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
294					  checksumdata, checksumlen);
295		if (err)
296			goto out;
297		memcpy(cksumout->data,
298		       checksumdata + checksumlen - kctx->gk5e->cksumlength,
299		       kctx->gk5e->cksumlength);
300		break;
301	case CKSUMTYPE_HMAC_SHA1_DES3:
302		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
303		break;
304	default:
305		BUG();
306		break;
307	}
308	cksumout->len = kctx->gk5e->cksumlength;
309out:
310	crypto_free_hash(desc.tfm);
 
 
 
 
311	return err ? GSS_S_FAILURE : 0;
312}
313
314/*
315 * checksum the plaintext data and hdrlen bytes of the token header
316 * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
317 * body then over the first 16 octets of the MIC token
318 * Inclusion of the header data in the calculation of the
319 * checksum is optional.
 
 
 
 
 
 
 
 
 
 
 
320 */
321u32
322make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
323		 struct xdr_buf *body, int body_offset, u8 *cksumkey,
324		 unsigned int usage, struct xdr_netobj *cksumout)
325{
326	struct hash_desc desc;
327	struct scatterlist sg[1];
328	int err;
329	u8 checksumdata[GSS_KRB5_MAX_CKSUM_LEN];
330	unsigned int checksumlen;
331
332	if (kctx->gk5e->keyed_cksum == 0) {
333		dprintk("%s: expected keyed hash for %s\n",
334			__func__, kctx->gk5e->name);
335		return GSS_S_FAILURE;
336	}
337	if (cksumkey == NULL) {
338		dprintk("%s: no key supplied for %s\n",
339			__func__, kctx->gk5e->name);
340		return GSS_S_FAILURE;
341	}
342
343	desc.tfm = crypto_alloc_hash(kctx->gk5e->cksum_name, 0,
344							CRYPTO_ALG_ASYNC);
345	if (IS_ERR(desc.tfm))
346		return GSS_S_FAILURE;
347	checksumlen = crypto_hash_digestsize(desc.tfm);
348	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
349
350	err = crypto_hash_setkey(desc.tfm, cksumkey, kctx->gk5e->keylength);
351	if (err)
352		goto out;
353
354	err = crypto_hash_init(&desc);
355	if (err)
356		goto out;
 
357	err = xdr_process_buf(body, body_offset, body->len - body_offset,
358			      checksummer, &desc);
359	if (err)
360		goto out;
361	if (header != NULL) {
 
 
362		sg_init_one(sg, header, hdrlen);
363		err = crypto_hash_update(&desc, sg, hdrlen);
 
364		if (err)
365			goto out;
366	}
367	err = crypto_hash_final(&desc, checksumdata);
 
 
368	if (err)
369		goto out;
370
371	cksumout->len = kctx->gk5e->cksumlength;
 
372
373	switch (kctx->gk5e->ctype) {
374	case CKSUMTYPE_HMAC_SHA1_96_AES128:
375	case CKSUMTYPE_HMAC_SHA1_96_AES256:
376		/* note that this truncates the hash */
377		memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
378		break;
379	default:
380		BUG();
381		break;
382	}
383out:
384	crypto_free_hash(desc.tfm);
385	return err ? GSS_S_FAILURE : 0;
386}
 
387
388struct encryptor_desc {
389	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
390	struct blkcipher_desc desc;
391	int pos;
392	struct xdr_buf *outbuf;
393	struct page **pages;
394	struct scatterlist infrags[4];
395	struct scatterlist outfrags[4];
396	int fragno;
397	int fraglen;
398};
399
400static int
401encryptor(struct scatterlist *sg, void *data)
402{
403	struct encryptor_desc *desc = data;
404	struct xdr_buf *outbuf = desc->outbuf;
 
 
405	struct page *in_page;
406	int thislen = desc->fraglen + sg->length;
407	int fraglen, ret;
408	int page_pos;
409
410	/* Worst case is 4 fragments: head, end of page 1, start
411	 * of page 2, tail.  Anything more is a bug. */
412	BUG_ON(desc->fragno > 3);
413
414	page_pos = desc->pos - outbuf->head[0].iov_len;
415	if (page_pos >= 0 && page_pos < outbuf->page_len) {
416		/* pages are not in place: */
417		int i = (page_pos + outbuf->page_base) >> PAGE_CACHE_SHIFT;
418		in_page = desc->pages[i];
419	} else {
420		in_page = sg_page(sg);
421	}
422	sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
423		    sg->offset);
424	sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
425		    sg->offset);
426	desc->fragno++;
427	desc->fraglen += sg->length;
428	desc->pos += sg->length;
429
430	fraglen = thislen & (crypto_blkcipher_blocksize(desc->desc.tfm) - 1);
431	thislen -= fraglen;
432
433	if (thislen == 0)
434		return 0;
435
436	sg_mark_end(&desc->infrags[desc->fragno - 1]);
437	sg_mark_end(&desc->outfrags[desc->fragno - 1]);
438
439	ret = crypto_blkcipher_encrypt_iv(&desc->desc, desc->outfrags,
440					  desc->infrags, thislen);
 
 
441	if (ret)
442		return ret;
443
444	sg_init_table(desc->infrags, 4);
445	sg_init_table(desc->outfrags, 4);
446
447	if (fraglen) {
448		sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
449				sg->offset + sg->length - fraglen);
450		desc->infrags[0] = desc->outfrags[0];
451		sg_assign_page(&desc->infrags[0], in_page);
452		desc->fragno = 1;
453		desc->fraglen = fraglen;
454	} else {
455		desc->fragno = 0;
456		desc->fraglen = 0;
457	}
458	return 0;
459}
460
461int
462gss_encrypt_xdr_buf(struct crypto_blkcipher *tfm, struct xdr_buf *buf,
463		    int offset, struct page **pages)
464{
465	int ret;
466	struct encryptor_desc desc;
 
 
 
467
468	BUG_ON((buf->len - offset) % crypto_blkcipher_blocksize(tfm) != 0);
 
469
470	memset(desc.iv, 0, sizeof(desc.iv));
471	desc.desc.tfm = tfm;
472	desc.desc.info = desc.iv;
473	desc.desc.flags = 0;
474	desc.pos = offset;
475	desc.outbuf = buf;
476	desc.pages = pages;
477	desc.fragno = 0;
478	desc.fraglen = 0;
479
480	sg_init_table(desc.infrags, 4);
481	sg_init_table(desc.outfrags, 4);
482
483	ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
 
484	return ret;
485}
486
487struct decryptor_desc {
488	u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
489	struct blkcipher_desc desc;
490	struct scatterlist frags[4];
491	int fragno;
492	int fraglen;
493};
494
495static int
496decryptor(struct scatterlist *sg, void *data)
497{
498	struct decryptor_desc *desc = data;
499	int thislen = desc->fraglen + sg->length;
 
 
500	int fraglen, ret;
501
502	/* Worst case is 4 fragments: head, end of page 1, start
503	 * of page 2, tail.  Anything more is a bug. */
504	BUG_ON(desc->fragno > 3);
505	sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
506		    sg->offset);
507	desc->fragno++;
508	desc->fraglen += sg->length;
509
510	fraglen = thislen & (crypto_blkcipher_blocksize(desc->desc.tfm) - 1);
511	thislen -= fraglen;
512
513	if (thislen == 0)
514		return 0;
515
516	sg_mark_end(&desc->frags[desc->fragno - 1]);
517
518	ret = crypto_blkcipher_decrypt_iv(&desc->desc, desc->frags,
519					  desc->frags, thislen);
 
 
520	if (ret)
521		return ret;
522
523	sg_init_table(desc->frags, 4);
524
525	if (fraglen) {
526		sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
527				sg->offset + sg->length - fraglen);
528		desc->fragno = 1;
529		desc->fraglen = fraglen;
530	} else {
531		desc->fragno = 0;
532		desc->fraglen = 0;
533	}
534	return 0;
535}
536
537int
538gss_decrypt_xdr_buf(struct crypto_blkcipher *tfm, struct xdr_buf *buf,
539		    int offset)
540{
 
541	struct decryptor_desc desc;
 
542
543	/* XXXJBF: */
544	BUG_ON((buf->len - offset) % crypto_blkcipher_blocksize(tfm) != 0);
 
 
 
545
546	memset(desc.iv, 0, sizeof(desc.iv));
547	desc.desc.tfm = tfm;
548	desc.desc.info = desc.iv;
549	desc.desc.flags = 0;
550	desc.fragno = 0;
551	desc.fraglen = 0;
552
553	sg_init_table(desc.frags, 4);
554
555	return xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
 
 
556}
557
558/*
559 * This function makes the assumption that it was ultimately called
560 * from gss_wrap().
561 *
562 * The client auth_gss code moves any existing tail data into a
563 * separate page before calling gss_wrap.
564 * The server svcauth_gss code ensures that both the head and the
565 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
566 *
567 * Even with that guarantee, this function may be called more than
568 * once in the processing of gss_wrap().  The best we can do is
569 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
570 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
571 * At run-time we can verify that a single invocation of this
572 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
573 */
574
575int
576xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
577{
578	u8 *p;
579
580	if (shiftlen == 0)
581		return 0;
582
583	BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
584	BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
585
586	p = buf->head[0].iov_base + base;
587
588	memmove(p + shiftlen, p, buf->head[0].iov_len - base);
589
590	buf->head[0].iov_len += shiftlen;
591	buf->len += shiftlen;
592
593	return 0;
594}
595
596static u32
597gss_krb5_cts_crypt(struct crypto_blkcipher *cipher, struct xdr_buf *buf,
598		   u32 offset, u8 *iv, struct page **pages, int encrypt)
599{
600	u32 ret;
601	struct scatterlist sg[1];
602	struct blkcipher_desc desc = { .tfm = cipher, .info = iv };
603	u8 data[GSS_KRB5_MAX_BLOCKSIZE * 2];
604	struct page **save_pages;
605	u32 len = buf->len - offset;
606
607	if (len > ARRAY_SIZE(data)) {
608		WARN_ON(0);
609		return -ENOMEM;
610	}
 
 
 
611
612	/*
613	 * For encryption, we want to read from the cleartext
614	 * page cache pages, and write the encrypted data to
615	 * the supplied xdr_buf pages.
616	 */
617	save_pages = buf->pages;
618	if (encrypt)
619		buf->pages = pages;
620
621	ret = read_bytes_from_xdr_buf(buf, offset, data, len);
622	buf->pages = save_pages;
623	if (ret)
624		goto out;
625
626	sg_init_one(sg, data, len);
627
 
 
 
 
628	if (encrypt)
629		ret = crypto_blkcipher_encrypt_iv(&desc, sg, sg, len);
630	else
631		ret = crypto_blkcipher_decrypt_iv(&desc, sg, sg, len);
 
 
632
633	if (ret)
634		goto out;
635
636	ret = write_bytes_to_xdr_buf(buf, offset, data, len);
637
 
 
 
 
 
 
 
 
 
 
638out:
 
639	return ret;
640}
641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
642u32
643gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
644		     struct xdr_buf *buf, int ec, struct page **pages)
645{
646	u32 err;
647	struct xdr_netobj hmac;
648	u8 *cksumkey;
649	u8 *ecptr;
650	struct crypto_blkcipher *cipher, *aux_cipher;
651	int blocksize;
652	struct page **save_pages;
653	int nblocks, nbytes;
654	struct encryptor_desc desc;
655	u32 cbcbytes;
656	unsigned int usage;
657
658	if (kctx->initiate) {
659		cipher = kctx->initiator_enc;
660		aux_cipher = kctx->initiator_enc_aux;
661		cksumkey = kctx->initiator_integ;
662		usage = KG_USAGE_INITIATOR_SEAL;
663	} else {
664		cipher = kctx->acceptor_enc;
665		aux_cipher = kctx->acceptor_enc_aux;
666		cksumkey = kctx->acceptor_integ;
667		usage = KG_USAGE_ACCEPTOR_SEAL;
668	}
669	blocksize = crypto_blkcipher_blocksize(cipher);
670
671	/* hide the gss token header and insert the confounder */
672	offset += GSS_KRB5_TOK_HDR_LEN;
673	if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
674		return GSS_S_FAILURE;
675	gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
676	offset -= GSS_KRB5_TOK_HDR_LEN;
677
678	if (buf->tail[0].iov_base != NULL) {
679		ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
680	} else {
681		buf->tail[0].iov_base = buf->head[0].iov_base
682							+ buf->head[0].iov_len;
683		buf->tail[0].iov_len = 0;
684		ecptr = buf->tail[0].iov_base;
685	}
686
687	memset(ecptr, 'X', ec);
688	buf->tail[0].iov_len += ec;
689	buf->len += ec;
690
691	/* copy plaintext gss token header after filler (if any) */
692	memcpy(ecptr + ec, buf->head[0].iov_base + offset,
693						GSS_KRB5_TOK_HDR_LEN);
694	buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
695	buf->len += GSS_KRB5_TOK_HDR_LEN;
696
697	/* Do the HMAC */
698	hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
699	hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
700
701	/*
702	 * When we are called, pages points to the real page cache
703	 * data -- which we can't go and encrypt!  buf->pages points
704	 * to scratch pages which we are going to send off to the
705	 * client/server.  Swap in the plaintext pages to calculate
706	 * the hmac.
707	 */
708	save_pages = buf->pages;
709	buf->pages = pages;
710
711	err = make_checksum_v2(kctx, NULL, 0, buf,
712			       offset + GSS_KRB5_TOK_HDR_LEN,
713			       cksumkey, usage, &hmac);
714	buf->pages = save_pages;
715	if (err)
716		return GSS_S_FAILURE;
717
718	nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
719	nblocks = (nbytes + blocksize - 1) / blocksize;
720	cbcbytes = 0;
721	if (nblocks > 2)
722		cbcbytes = (nblocks - 2) * blocksize;
723
724	memset(desc.iv, 0, sizeof(desc.iv));
725
726	if (cbcbytes) {
727		desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
728		desc.fragno = 0;
729		desc.fraglen = 0;
730		desc.pages = pages;
731		desc.outbuf = buf;
732		desc.desc.info = desc.iv;
733		desc.desc.flags = 0;
734		desc.desc.tfm = aux_cipher;
735
736		sg_init_table(desc.infrags, 4);
737		sg_init_table(desc.outfrags, 4);
738
739		err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
740				      cbcbytes, encryptor, &desc);
741		if (err)
742			goto out_err;
743	}
744
745	/* Make sure IV carries forward from any CBC results. */
746	err = gss_krb5_cts_crypt(cipher, buf,
747				 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
748				 desc.iv, pages, 1);
749	if (err) {
750		err = GSS_S_FAILURE;
751		goto out_err;
752	}
753
754	/* Now update buf to account for HMAC */
755	buf->tail[0].iov_len += kctx->gk5e->cksumlength;
756	buf->len += kctx->gk5e->cksumlength;
757
758out_err:
759	if (err)
760		err = GSS_S_FAILURE;
761	return err;
762}
763
764u32
765gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
766		     u32 *headskip, u32 *tailskip)
767{
768	struct xdr_buf subbuf;
769	u32 ret = 0;
770	u8 *cksum_key;
771	struct crypto_blkcipher *cipher, *aux_cipher;
772	struct xdr_netobj our_hmac_obj;
773	u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
774	u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
775	int nblocks, blocksize, cbcbytes;
776	struct decryptor_desc desc;
777	unsigned int usage;
778
779	if (kctx->initiate) {
780		cipher = kctx->acceptor_enc;
781		aux_cipher = kctx->acceptor_enc_aux;
782		cksum_key = kctx->acceptor_integ;
783		usage = KG_USAGE_ACCEPTOR_SEAL;
784	} else {
785		cipher = kctx->initiator_enc;
786		aux_cipher = kctx->initiator_enc_aux;
787		cksum_key = kctx->initiator_integ;
788		usage = KG_USAGE_INITIATOR_SEAL;
789	}
790	blocksize = crypto_blkcipher_blocksize(cipher);
791
792
793	/* create a segment skipping the header and leaving out the checksum */
794	xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
795				    (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
796				     kctx->gk5e->cksumlength));
797
798	nblocks = (subbuf.len + blocksize - 1) / blocksize;
799
800	cbcbytes = 0;
801	if (nblocks > 2)
802		cbcbytes = (nblocks - 2) * blocksize;
803
804	memset(desc.iv, 0, sizeof(desc.iv));
805
806	if (cbcbytes) {
807		desc.fragno = 0;
808		desc.fraglen = 0;
809		desc.desc.info = desc.iv;
810		desc.desc.flags = 0;
811		desc.desc.tfm = aux_cipher;
812
813		sg_init_table(desc.frags, 4);
814
815		ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
816		if (ret)
817			goto out_err;
818	}
819
820	/* Make sure IV carries forward from any CBC results. */
821	ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
822	if (ret)
823		goto out_err;
824
825
826	/* Calculate our hmac over the plaintext data */
827	our_hmac_obj.len = sizeof(our_hmac);
828	our_hmac_obj.data = our_hmac;
829
830	ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
831			       cksum_key, usage, &our_hmac_obj);
832	if (ret)
833		goto out_err;
834
835	/* Get the packet's hmac value */
836	ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
837				      pkt_hmac, kctx->gk5e->cksumlength);
838	if (ret)
839		goto out_err;
840
841	if (memcmp(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
842		ret = GSS_S_BAD_SIG;
843		goto out_err;
844	}
845	*headskip = kctx->gk5e->conflen;
846	*tailskip = kctx->gk5e->cksumlength;
847out_err:
848	if (ret && ret != GSS_S_BAD_SIG)
849		ret = GSS_S_FAILURE;
850	return ret;
851}
852
853/*
854 * Compute Kseq given the initial session key and the checksum.
855 * Set the key of the given cipher.
 
 
 
 
 
 
 
 
 
 
 
 
 
856 */
857int
858krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_blkcipher *cipher,
859		       unsigned char *cksum)
 
860{
861	struct crypto_hash *hmac;
862	struct hash_desc desc;
863	struct scatterlist sg[1];
864	u8 Kseq[GSS_KRB5_MAX_KEYLEN];
865	u32 zeroconstant = 0;
866	int err;
867
868	dprintk("%s: entered\n", __func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
869
870	hmac = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
871	if (IS_ERR(hmac)) {
872		dprintk("%s: error %ld, allocating hash '%s'\n",
873			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
874		return PTR_ERR(hmac);
875	}
876
877	desc.tfm = hmac;
878	desc.flags = 0;
879
880	err = crypto_hash_init(&desc);
881	if (err)
882		goto out_err;
 
 
 
 
 
 
 
 
 
 
883
884	/* Compute intermediate Kseq from session key */
885	err = crypto_hash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
886	if (err)
887		goto out_err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
888
889	sg_init_table(sg, 1);
890	sg_set_buf(sg, &zeroconstant, 4);
 
 
 
 
 
 
 
 
891
892	err = crypto_hash_digest(&desc, sg, 4, Kseq);
893	if (err)
894		goto out_err;
 
 
895
896	/* Compute final Kseq from the checksum and intermediate Kseq */
897	err = crypto_hash_setkey(hmac, Kseq, kctx->gk5e->keylength);
898	if (err)
899		goto out_err;
 
 
 
 
900
901	sg_set_buf(sg, cksum, 8);
 
 
902
903	err = crypto_hash_digest(&desc, sg, 8, Kseq);
 
 
904	if (err)
905		goto out_err;
906
907	err = crypto_blkcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
 
 
 
908	if (err)
909		goto out_err;
 
 
910
911	err = 0;
912
913out_err:
914	crypto_free_hash(hmac);
915	dprintk("%s: returning %d\n", __func__, err);
916	return err;
917}
918
919/*
920 * Compute Kcrypt given the initial session key and the plaintext seqnum.
921 * Set the key of cipher kctx->enc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
922 */
923int
924krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_blkcipher *cipher,
925		       s32 seqnum)
926{
927	struct crypto_hash *hmac;
928	struct hash_desc desc;
929	struct scatterlist sg[1];
930	u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
931	u8 zeroconstant[4] = {0};
932	u8 seqnumarray[4];
933	int err, i;
934
935	dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
936
937	hmac = crypto_alloc_hash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
938	if (IS_ERR(hmac)) {
939		dprintk("%s: error %ld, allocating hash '%s'\n",
940			__func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
941		return PTR_ERR(hmac);
 
942	}
943
944	desc.tfm = hmac;
945	desc.flags = 0;
 
 
946
947	err = crypto_hash_init(&desc);
948	if (err)
 
 
949		goto out_err;
950
951	/* Compute intermediate Kcrypt from session key */
952	for (i = 0; i < kctx->gk5e->keylength; i++)
953		Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
954
955	err = crypto_hash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
956	if (err)
957		goto out_err;
958
959	sg_init_table(sg, 1);
960	sg_set_buf(sg, zeroconstant, 4);
961
962	err = crypto_hash_digest(&desc, sg, 4, Kcrypt);
963	if (err)
964		goto out_err;
 
965
966	/* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
967	err = crypto_hash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
968	if (err)
969		goto out_err;
 
970
971	seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
972	seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
973	seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
974	seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
975
976	sg_set_buf(sg, seqnumarray, 4);
977
978	err = crypto_hash_digest(&desc, sg, 4, Kcrypt);
979	if (err)
980		goto out_err;
981
982	err = crypto_blkcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
983	if (err)
984		goto out_err;
985
986	err = 0;
987
988out_err:
989	crypto_free_hash(hmac);
990	dprintk("%s: returning %d\n", __func__, err);
991	return err;
992}
993