Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include "dm-core.h"
  10#include "dm-rq.h"
  11#include "dm-uevent.h"
  12#include "dm-ima.h"
  13
 
  14#include <linux/init.h>
  15#include <linux/module.h>
  16#include <linux/mutex.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/signal.h>
  19#include <linux/blkpg.h>
  20#include <linux/bio.h>
  21#include <linux/mempool.h>
  22#include <linux/dax.h>
  23#include <linux/slab.h>
  24#include <linux/idr.h>
  25#include <linux/uio.h>
  26#include <linux/hdreg.h>
  27#include <linux/delay.h>
  28#include <linux/wait.h>
  29#include <linux/pr.h>
  30#include <linux/refcount.h>
  31#include <linux/part_stat.h>
  32#include <linux/blk-crypto.h>
  33#include <linux/blk-crypto-profile.h>
  34
  35#define DM_MSG_PREFIX "core"
  36
  37/*
  38 * Cookies are numeric values sent with CHANGE and REMOVE
  39 * uevents while resuming, removing or renaming the device.
  40 */
  41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  42#define DM_COOKIE_LENGTH 24
  43
  44/*
  45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
  46 * dm_io into one list, and reuse bio->bi_private as the list head. Before
  47 * ending this fs bio, we will recover its ->bi_private.
  48 */
  49#define REQ_DM_POLL_LIST	REQ_DRV
  50
  51static const char *_name = DM_NAME;
  52
  53static unsigned int major;
  54static unsigned int _major;
  55
  56static DEFINE_IDR(_minor_idr);
  57
  58static DEFINE_SPINLOCK(_minor_lock);
  59
  60static void do_deferred_remove(struct work_struct *w);
  61
  62static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  63
  64static struct workqueue_struct *deferred_remove_workqueue;
  65
  66atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  67DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  68
  69void dm_issue_global_event(void)
  70{
  71	atomic_inc(&dm_global_event_nr);
  72	wake_up(&dm_global_eventq);
  73}
  74
  75DEFINE_STATIC_KEY_FALSE(stats_enabled);
  76DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
  77DEFINE_STATIC_KEY_FALSE(zoned_enabled);
  78
  79/*
  80 * One of these is allocated (on-stack) per original bio.
  81 */
  82struct clone_info {
  83	struct dm_table *map;
  84	struct bio *bio;
  85	struct dm_io *io;
  86	sector_t sector;
  87	unsigned int sector_count;
  88	bool is_abnormal_io:1;
  89	bool submit_as_polled:1;
  90};
  91
  92static inline struct dm_target_io *clone_to_tio(struct bio *clone)
  93{
  94	return container_of(clone, struct dm_target_io, clone);
  95}
  96
  97void *dm_per_bio_data(struct bio *bio, size_t data_size)
  98{
  99	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
 100		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
 101	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
 102}
 103EXPORT_SYMBOL_GPL(dm_per_bio_data);
 104
 105struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 106{
 107	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 108
 109	if (io->magic == DM_IO_MAGIC)
 110		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
 111	BUG_ON(io->magic != DM_TIO_MAGIC);
 112	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
 113}
 114EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 115
 116unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
 117{
 118	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 119}
 120EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 121
 122#define MINOR_ALLOCED ((void *)-1)
 123
 124#define DM_NUMA_NODE NUMA_NO_NODE
 125static int dm_numa_node = DM_NUMA_NODE;
 126
 127#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 128static int swap_bios = DEFAULT_SWAP_BIOS;
 129static int get_swap_bios(void)
 130{
 131	int latch = READ_ONCE(swap_bios);
 132
 133	if (unlikely(latch <= 0))
 134		latch = DEFAULT_SWAP_BIOS;
 135	return latch;
 136}
 137
 138struct table_device {
 139	struct list_head list;
 140	refcount_t count;
 141	struct dm_dev dm_dev;
 142};
 143
 144/*
 145 * Bio-based DM's mempools' reserved IOs set by the user.
 146 */
 147#define RESERVED_BIO_BASED_IOS		16
 148static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 149
 150static int __dm_get_module_param_int(int *module_param, int min, int max)
 151{
 152	int param = READ_ONCE(*module_param);
 153	int modified_param = 0;
 154	bool modified = true;
 155
 156	if (param < min)
 157		modified_param = min;
 158	else if (param > max)
 159		modified_param = max;
 160	else
 161		modified = false;
 162
 163	if (modified) {
 164		(void)cmpxchg(module_param, param, modified_param);
 165		param = modified_param;
 166	}
 167
 168	return param;
 169}
 170
 171unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
 172{
 173	unsigned int param = READ_ONCE(*module_param);
 174	unsigned int modified_param = 0;
 175
 176	if (!param)
 177		modified_param = def;
 178	else if (param > max)
 179		modified_param = max;
 180
 181	if (modified_param) {
 182		(void)cmpxchg(module_param, param, modified_param);
 183		param = modified_param;
 184	}
 185
 186	return param;
 187}
 188
 189unsigned int dm_get_reserved_bio_based_ios(void)
 190{
 191	return __dm_get_module_param(&reserved_bio_based_ios,
 192				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 193}
 194EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 195
 196static unsigned int dm_get_numa_node(void)
 197{
 198	return __dm_get_module_param_int(&dm_numa_node,
 199					 DM_NUMA_NODE, num_online_nodes() - 1);
 200}
 201
 202static int __init local_init(void)
 203{
 204	int r;
 205
 206	r = dm_uevent_init();
 207	if (r)
 208		return r;
 209
 210	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
 211	if (!deferred_remove_workqueue) {
 212		r = -ENOMEM;
 213		goto out_uevent_exit;
 214	}
 215
 216	_major = major;
 217	r = register_blkdev(_major, _name);
 218	if (r < 0)
 219		goto out_free_workqueue;
 220
 221	if (!_major)
 222		_major = r;
 223
 224	return 0;
 225
 226out_free_workqueue:
 227	destroy_workqueue(deferred_remove_workqueue);
 228out_uevent_exit:
 229	dm_uevent_exit();
 230
 231	return r;
 232}
 233
 234static void local_exit(void)
 235{
 236	destroy_workqueue(deferred_remove_workqueue);
 237
 238	unregister_blkdev(_major, _name);
 239	dm_uevent_exit();
 240
 241	_major = 0;
 242
 243	DMINFO("cleaned up");
 244}
 245
 246static int (*_inits[])(void) __initdata = {
 247	local_init,
 248	dm_target_init,
 249	dm_linear_init,
 250	dm_stripe_init,
 251	dm_io_init,
 252	dm_kcopyd_init,
 253	dm_interface_init,
 254	dm_statistics_init,
 255};
 256
 257static void (*_exits[])(void) = {
 258	local_exit,
 259	dm_target_exit,
 260	dm_linear_exit,
 261	dm_stripe_exit,
 262	dm_io_exit,
 263	dm_kcopyd_exit,
 264	dm_interface_exit,
 265	dm_statistics_exit,
 266};
 267
 268static int __init dm_init(void)
 269{
 270	const int count = ARRAY_SIZE(_inits);
 271	int r, i;
 272
 273#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
 274	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
 275	       " Duplicate IMA measurements will not be recorded in the IMA log.");
 276#endif
 277
 278	for (i = 0; i < count; i++) {
 279		r = _inits[i]();
 280		if (r)
 281			goto bad;
 282	}
 283
 284	return 0;
 285bad:
 286	while (i--)
 287		_exits[i]();
 288
 289	return r;
 290}
 291
 292static void __exit dm_exit(void)
 293{
 294	int i = ARRAY_SIZE(_exits);
 295
 296	while (i--)
 297		_exits[i]();
 298
 299	/*
 300	 * Should be empty by this point.
 301	 */
 302	idr_destroy(&_minor_idr);
 303}
 304
 305/*
 306 * Block device functions
 307 */
 308int dm_deleting_md(struct mapped_device *md)
 309{
 310	return test_bit(DMF_DELETING, &md->flags);
 311}
 312
 313static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
 314{
 315	struct mapped_device *md;
 316
 317	spin_lock(&_minor_lock);
 318
 319	md = disk->private_data;
 320	if (!md)
 321		goto out;
 322
 323	if (test_bit(DMF_FREEING, &md->flags) ||
 324	    dm_deleting_md(md)) {
 325		md = NULL;
 326		goto out;
 327	}
 328
 329	dm_get(md);
 330	atomic_inc(&md->open_count);
 331out:
 332	spin_unlock(&_minor_lock);
 333
 334	return md ? 0 : -ENXIO;
 335}
 336
 337static void dm_blk_close(struct gendisk *disk)
 338{
 339	struct mapped_device *md;
 340
 341	spin_lock(&_minor_lock);
 342
 343	md = disk->private_data;
 344	if (WARN_ON(!md))
 345		goto out;
 346
 347	if (atomic_dec_and_test(&md->open_count) &&
 348	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 349		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 350
 351	dm_put(md);
 352out:
 353	spin_unlock(&_minor_lock);
 354}
 355
 356int dm_open_count(struct mapped_device *md)
 357{
 358	return atomic_read(&md->open_count);
 359}
 360
 361/*
 362 * Guarantees nothing is using the device before it's deleted.
 363 */
 364int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 365{
 366	int r = 0;
 367
 368	spin_lock(&_minor_lock);
 369
 370	if (dm_open_count(md)) {
 371		r = -EBUSY;
 372		if (mark_deferred)
 373			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 374	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 375		r = -EEXIST;
 376	else
 377		set_bit(DMF_DELETING, &md->flags);
 378
 379	spin_unlock(&_minor_lock);
 380
 381	return r;
 382}
 383
 384int dm_cancel_deferred_remove(struct mapped_device *md)
 385{
 386	int r = 0;
 387
 388	spin_lock(&_minor_lock);
 389
 390	if (test_bit(DMF_DELETING, &md->flags))
 391		r = -EBUSY;
 392	else
 393		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 394
 395	spin_unlock(&_minor_lock);
 396
 397	return r;
 398}
 399
 400static void do_deferred_remove(struct work_struct *w)
 401{
 402	dm_deferred_remove();
 403}
 404
 405static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 406{
 407	struct mapped_device *md = bdev->bd_disk->private_data;
 408
 409	return dm_get_geometry(md, geo);
 410}
 411
 412static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 413			    struct block_device **bdev)
 414{
 415	struct dm_target *ti;
 416	struct dm_table *map;
 417	int r;
 418
 419retry:
 420	r = -ENOTTY;
 421	map = dm_get_live_table(md, srcu_idx);
 422	if (!map || !dm_table_get_size(map))
 423		return r;
 424
 425	/* We only support devices that have a single target */
 426	if (map->num_targets != 1)
 427		return r;
 428
 429	ti = dm_table_get_target(map, 0);
 430	if (!ti->type->prepare_ioctl)
 431		return r;
 432
 433	if (dm_suspended_md(md))
 434		return -EAGAIN;
 435
 436	r = ti->type->prepare_ioctl(ti, bdev);
 437	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 438		dm_put_live_table(md, *srcu_idx);
 439		fsleep(10000);
 440		goto retry;
 441	}
 442
 443	return r;
 444}
 445
 446static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 447{
 448	dm_put_live_table(md, srcu_idx);
 449}
 450
 451static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
 452			unsigned int cmd, unsigned long arg)
 453{
 454	struct mapped_device *md = bdev->bd_disk->private_data;
 455	int r, srcu_idx;
 456
 457	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 458	if (r < 0)
 459		goto out;
 460
 461	if (r > 0) {
 462		/*
 463		 * Target determined this ioctl is being issued against a
 464		 * subset of the parent bdev; require extra privileges.
 465		 */
 466		if (!capable(CAP_SYS_RAWIO)) {
 467			DMDEBUG_LIMIT(
 468	"%s: sending ioctl %x to DM device without required privilege.",
 469				current->comm, cmd);
 470			r = -ENOIOCTLCMD;
 471			goto out;
 472		}
 473	}
 474
 475	if (!bdev->bd_disk->fops->ioctl)
 476		r = -ENOTTY;
 477	else
 478		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 479out:
 480	dm_unprepare_ioctl(md, srcu_idx);
 481	return r;
 482}
 483
 484u64 dm_start_time_ns_from_clone(struct bio *bio)
 485{
 486	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
 487}
 488EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 489
 490static inline bool bio_is_flush_with_data(struct bio *bio)
 491{
 492	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
 493}
 494
 495static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
 496{
 497	/*
 498	 * If REQ_PREFLUSH set, don't account payload, it will be
 499	 * submitted (and accounted) after this flush completes.
 500	 */
 501	if (bio_is_flush_with_data(bio))
 502		return 0;
 503	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 504		return io->sectors;
 505	return bio_sectors(bio);
 506}
 507
 508static void dm_io_acct(struct dm_io *io, bool end)
 509{
 510	struct bio *bio = io->orig_bio;
 511
 512	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
 513		if (!end)
 514			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
 515					   io->start_time);
 516		else
 517			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
 518					 dm_io_sectors(io, bio),
 519					 io->start_time);
 520	}
 521
 522	if (static_branch_unlikely(&stats_enabled) &&
 523	    unlikely(dm_stats_used(&io->md->stats))) {
 524		sector_t sector;
 525
 526		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 527			sector = bio_end_sector(bio) - io->sector_offset;
 528		else
 529			sector = bio->bi_iter.bi_sector;
 530
 531		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
 532				    sector, dm_io_sectors(io, bio),
 533				    end, io->start_time, &io->stats_aux);
 534	}
 535}
 536
 537static void __dm_start_io_acct(struct dm_io *io)
 538{
 539	dm_io_acct(io, false);
 540}
 541
 542static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
 543{
 544	/*
 545	 * Ensure IO accounting is only ever started once.
 546	 */
 547	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 548		return;
 549
 550	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
 551	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
 552		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 553	} else {
 554		unsigned long flags;
 555		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
 556		spin_lock_irqsave(&io->lock, flags);
 557		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
 558			spin_unlock_irqrestore(&io->lock, flags);
 559			return;
 560		}
 561		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 562		spin_unlock_irqrestore(&io->lock, flags);
 563	}
 564
 565	__dm_start_io_acct(io);
 566}
 567
 568static void dm_end_io_acct(struct dm_io *io)
 569{
 570	dm_io_acct(io, true);
 571}
 572
 573static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
 574{
 575	struct dm_io *io;
 576	struct dm_target_io *tio;
 577	struct bio *clone;
 578
 579	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
 580	if (unlikely(!clone))
 581		return NULL;
 582	tio = clone_to_tio(clone);
 583	tio->flags = 0;
 584	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
 585	tio->io = NULL;
 586
 587	io = container_of(tio, struct dm_io, tio);
 588	io->magic = DM_IO_MAGIC;
 589	io->status = BLK_STS_OK;
 590
 591	/* one ref is for submission, the other is for completion */
 592	atomic_set(&io->io_count, 2);
 593	this_cpu_inc(*md->pending_io);
 594	io->orig_bio = bio;
 595	io->md = md;
 596	spin_lock_init(&io->lock);
 597	io->start_time = jiffies;
 598	io->flags = 0;
 599	if (blk_queue_io_stat(md->queue))
 600		dm_io_set_flag(io, DM_IO_BLK_STAT);
 601
 602	if (static_branch_unlikely(&stats_enabled) &&
 603	    unlikely(dm_stats_used(&md->stats)))
 604		dm_stats_record_start(&md->stats, &io->stats_aux);
 605
 606	return io;
 607}
 608
 609static void free_io(struct dm_io *io)
 610{
 611	bio_put(&io->tio.clone);
 612}
 613
 614static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 615			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
 616{
 617	struct mapped_device *md = ci->io->md;
 618	struct dm_target_io *tio;
 619	struct bio *clone;
 620
 621	if (!ci->io->tio.io) {
 622		/* the dm_target_io embedded in ci->io is available */
 623		tio = &ci->io->tio;
 624		/* alloc_io() already initialized embedded clone */
 625		clone = &tio->clone;
 626	} else {
 627		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
 628					&md->mempools->bs);
 629		if (!clone)
 630			return NULL;
 631
 632		/* REQ_DM_POLL_LIST shouldn't be inherited */
 633		clone->bi_opf &= ~REQ_DM_POLL_LIST;
 634
 635		tio = clone_to_tio(clone);
 636		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
 637	}
 638
 639	tio->magic = DM_TIO_MAGIC;
 640	tio->io = ci->io;
 641	tio->ti = ti;
 642	tio->target_bio_nr = target_bio_nr;
 643	tio->len_ptr = len;
 644	tio->old_sector = 0;
 645
 646	/* Set default bdev, but target must bio_set_dev() before issuing IO */
 647	clone->bi_bdev = md->disk->part0;
 648	if (unlikely(ti->needs_bio_set_dev))
 649		bio_set_dev(clone, md->disk->part0);
 650
 651	if (len) {
 652		clone->bi_iter.bi_size = to_bytes(*len);
 653		if (bio_integrity(clone))
 654			bio_integrity_trim(clone);
 655	}
 656
 657	return clone;
 658}
 659
 660static void free_tio(struct bio *clone)
 661{
 662	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
 663		return;
 664	bio_put(clone);
 665}
 666
 667/*
 668 * Add the bio to the list of deferred io.
 669 */
 670static void queue_io(struct mapped_device *md, struct bio *bio)
 671{
 672	unsigned long flags;
 673
 674	spin_lock_irqsave(&md->deferred_lock, flags);
 675	bio_list_add(&md->deferred, bio);
 676	spin_unlock_irqrestore(&md->deferred_lock, flags);
 677	queue_work(md->wq, &md->work);
 678}
 679
 680/*
 681 * Everyone (including functions in this file), should use this
 682 * function to access the md->map field, and make sure they call
 683 * dm_put_live_table() when finished.
 684 */
 685struct dm_table *dm_get_live_table(struct mapped_device *md,
 686				   int *srcu_idx) __acquires(md->io_barrier)
 687{
 688	*srcu_idx = srcu_read_lock(&md->io_barrier);
 689
 690	return srcu_dereference(md->map, &md->io_barrier);
 691}
 692
 693void dm_put_live_table(struct mapped_device *md,
 694		       int srcu_idx) __releases(md->io_barrier)
 695{
 696	srcu_read_unlock(&md->io_barrier, srcu_idx);
 697}
 698
 699void dm_sync_table(struct mapped_device *md)
 700{
 701	synchronize_srcu(&md->io_barrier);
 702	synchronize_rcu_expedited();
 703}
 704
 705/*
 706 * A fast alternative to dm_get_live_table/dm_put_live_table.
 707 * The caller must not block between these two functions.
 708 */
 709static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 710{
 711	rcu_read_lock();
 712	return rcu_dereference(md->map);
 713}
 714
 715static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 716{
 717	rcu_read_unlock();
 718}
 719
 720static char *_dm_claim_ptr = "I belong to device-mapper";
 721
 722/*
 723 * Open a table device so we can use it as a map destination.
 724 */
 725static struct table_device *open_table_device(struct mapped_device *md,
 726		dev_t dev, blk_mode_t mode)
 727{
 728	struct table_device *td;
 729	struct bdev_handle *bdev_handle;
 
 730	u64 part_off;
 731	int r;
 732
 733	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 734	if (!td)
 735		return ERR_PTR(-ENOMEM);
 736	refcount_set(&td->count, 1);
 737
 738	bdev_handle = bdev_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
 739	if (IS_ERR(bdev_handle)) {
 740		r = PTR_ERR(bdev_handle);
 741		goto out_free_td;
 742	}
 743
 
 
 744	/*
 745	 * We can be called before the dm disk is added.  In that case we can't
 746	 * register the holder relation here.  It will be done once add_disk was
 747	 * called.
 748	 */
 749	if (md->disk->slave_dir) {
 750		r = bd_link_disk_holder(bdev_handle->bdev, md->disk);
 751		if (r)
 752			goto out_blkdev_put;
 753	}
 754
 755	td->dm_dev.mode = mode;
 756	td->dm_dev.bdev = bdev_handle->bdev;
 757	td->dm_dev.bdev_handle = bdev_handle;
 758	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev_handle->bdev, &part_off,
 759						NULL, NULL);
 760	format_dev_t(td->dm_dev.name, dev);
 761	list_add(&td->list, &md->table_devices);
 762	return td;
 763
 764out_blkdev_put:
 765	bdev_release(bdev_handle);
 766out_free_td:
 767	kfree(td);
 768	return ERR_PTR(r);
 769}
 770
 771/*
 772 * Close a table device that we've been using.
 773 */
 774static void close_table_device(struct table_device *td, struct mapped_device *md)
 775{
 776	if (md->disk->slave_dir)
 777		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
 778	bdev_release(td->dm_dev.bdev_handle);
 
 
 
 
 
 
 779	put_dax(td->dm_dev.dax_dev);
 780	list_del(&td->list);
 781	kfree(td);
 782}
 783
 784static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 785					      blk_mode_t mode)
 786{
 787	struct table_device *td;
 788
 789	list_for_each_entry(td, l, list)
 790		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 791			return td;
 792
 793	return NULL;
 794}
 795
 796int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
 797			struct dm_dev **result)
 798{
 799	struct table_device *td;
 800
 801	mutex_lock(&md->table_devices_lock);
 802	td = find_table_device(&md->table_devices, dev, mode);
 803	if (!td) {
 804		td = open_table_device(md, dev, mode);
 805		if (IS_ERR(td)) {
 806			mutex_unlock(&md->table_devices_lock);
 807			return PTR_ERR(td);
 808		}
 809	} else {
 810		refcount_inc(&td->count);
 811	}
 812	mutex_unlock(&md->table_devices_lock);
 813
 814	*result = &td->dm_dev;
 815	return 0;
 816}
 817
 818void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 819{
 820	struct table_device *td = container_of(d, struct table_device, dm_dev);
 821
 822	mutex_lock(&md->table_devices_lock);
 823	if (refcount_dec_and_test(&td->count))
 824		close_table_device(td, md);
 825	mutex_unlock(&md->table_devices_lock);
 826}
 827
 828/*
 829 * Get the geometry associated with a dm device
 830 */
 831int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 832{
 833	*geo = md->geometry;
 834
 835	return 0;
 836}
 837
 838/*
 839 * Set the geometry of a device.
 840 */
 841int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 842{
 843	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 844
 845	if (geo->start > sz) {
 846		DMERR("Start sector is beyond the geometry limits.");
 847		return -EINVAL;
 848	}
 849
 850	md->geometry = *geo;
 851
 852	return 0;
 853}
 854
 855static int __noflush_suspending(struct mapped_device *md)
 856{
 857	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 858}
 859
 860static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
 861{
 862	struct mapped_device *md = io->md;
 863
 864	if (first_stage) {
 865		struct dm_io *next = md->requeue_list;
 866
 867		md->requeue_list = io;
 868		io->next = next;
 869	} else {
 870		bio_list_add_head(&md->deferred, io->orig_bio);
 871	}
 872}
 873
 874static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
 875{
 876	if (first_stage)
 877		queue_work(md->wq, &md->requeue_work);
 878	else
 879		queue_work(md->wq, &md->work);
 880}
 881
 882/*
 883 * Return true if the dm_io's original bio is requeued.
 884 * io->status is updated with error if requeue disallowed.
 885 */
 886static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
 887{
 888	struct bio *bio = io->orig_bio;
 889	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
 890	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
 891				     (bio->bi_opf & REQ_POLLED));
 892	struct mapped_device *md = io->md;
 893	bool requeued = false;
 894
 895	if (handle_requeue || handle_polled_eagain) {
 896		unsigned long flags;
 897
 898		if (bio->bi_opf & REQ_POLLED) {
 899			/*
 900			 * Upper layer won't help us poll split bio
 901			 * (io->orig_bio may only reflect a subset of the
 902			 * pre-split original) so clear REQ_POLLED.
 903			 */
 904			bio_clear_polled(bio);
 905		}
 906
 907		/*
 908		 * Target requested pushing back the I/O or
 909		 * polled IO hit BLK_STS_AGAIN.
 910		 */
 911		spin_lock_irqsave(&md->deferred_lock, flags);
 912		if ((__noflush_suspending(md) &&
 913		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
 914		    handle_polled_eagain || first_stage) {
 915			dm_requeue_add_io(io, first_stage);
 916			requeued = true;
 917		} else {
 918			/*
 919			 * noflush suspend was interrupted or this is
 920			 * a write to a zoned target.
 921			 */
 922			io->status = BLK_STS_IOERR;
 923		}
 924		spin_unlock_irqrestore(&md->deferred_lock, flags);
 925	}
 926
 927	if (requeued)
 928		dm_kick_requeue(md, first_stage);
 929
 930	return requeued;
 931}
 932
 933static void __dm_io_complete(struct dm_io *io, bool first_stage)
 934{
 935	struct bio *bio = io->orig_bio;
 936	struct mapped_device *md = io->md;
 937	blk_status_t io_error;
 938	bool requeued;
 939
 940	requeued = dm_handle_requeue(io, first_stage);
 941	if (requeued && first_stage)
 942		return;
 943
 944	io_error = io->status;
 945	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 946		dm_end_io_acct(io);
 947	else if (!io_error) {
 948		/*
 949		 * Must handle target that DM_MAPIO_SUBMITTED only to
 950		 * then bio_endio() rather than dm_submit_bio_remap()
 951		 */
 952		__dm_start_io_acct(io);
 953		dm_end_io_acct(io);
 954	}
 955	free_io(io);
 956	smp_wmb();
 957	this_cpu_dec(*md->pending_io);
 958
 959	/* nudge anyone waiting on suspend queue */
 960	if (unlikely(wq_has_sleeper(&md->wait)))
 961		wake_up(&md->wait);
 962
 963	/* Return early if the original bio was requeued */
 964	if (requeued)
 965		return;
 966
 967	if (bio_is_flush_with_data(bio)) {
 968		/*
 969		 * Preflush done for flush with data, reissue
 970		 * without REQ_PREFLUSH.
 971		 */
 972		bio->bi_opf &= ~REQ_PREFLUSH;
 973		queue_io(md, bio);
 974	} else {
 975		/* done with normal IO or empty flush */
 976		if (io_error)
 977			bio->bi_status = io_error;
 978		bio_endio(bio);
 979	}
 980}
 981
 982static void dm_wq_requeue_work(struct work_struct *work)
 983{
 984	struct mapped_device *md = container_of(work, struct mapped_device,
 985						requeue_work);
 986	unsigned long flags;
 987	struct dm_io *io;
 988
 989	/* reuse deferred lock to simplify dm_handle_requeue */
 990	spin_lock_irqsave(&md->deferred_lock, flags);
 991	io = md->requeue_list;
 992	md->requeue_list = NULL;
 993	spin_unlock_irqrestore(&md->deferred_lock, flags);
 994
 995	while (io) {
 996		struct dm_io *next = io->next;
 997
 998		dm_io_rewind(io, &md->disk->bio_split);
 999
1000		io->next = NULL;
1001		__dm_io_complete(io, false);
1002		io = next;
1003		cond_resched();
1004	}
1005}
1006
1007/*
1008 * Two staged requeue:
1009 *
1010 * 1) io->orig_bio points to the real original bio, and the part mapped to
1011 *    this io must be requeued, instead of other parts of the original bio.
1012 *
1013 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1014 */
1015static void dm_io_complete(struct dm_io *io)
1016{
1017	bool first_requeue;
1018
1019	/*
1020	 * Only dm_io that has been split needs two stage requeue, otherwise
1021	 * we may run into long bio clone chain during suspend and OOM could
1022	 * be triggered.
1023	 *
1024	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1025	 * also aren't handled via the first stage requeue.
1026	 */
1027	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1028		first_requeue = true;
1029	else
1030		first_requeue = false;
1031
1032	__dm_io_complete(io, first_requeue);
1033}
1034
1035/*
1036 * Decrements the number of outstanding ios that a bio has been
1037 * cloned into, completing the original io if necc.
1038 */
1039static inline void __dm_io_dec_pending(struct dm_io *io)
1040{
1041	if (atomic_dec_and_test(&io->io_count))
1042		dm_io_complete(io);
1043}
1044
1045static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1046{
1047	unsigned long flags;
1048
1049	/* Push-back supersedes any I/O errors */
1050	spin_lock_irqsave(&io->lock, flags);
1051	if (!(io->status == BLK_STS_DM_REQUEUE &&
1052	      __noflush_suspending(io->md))) {
1053		io->status = error;
1054	}
1055	spin_unlock_irqrestore(&io->lock, flags);
1056}
1057
1058static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1059{
1060	if (unlikely(error))
1061		dm_io_set_error(io, error);
1062
1063	__dm_io_dec_pending(io);
1064}
1065
1066/*
1067 * The queue_limits are only valid as long as you have a reference
1068 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1069 */
1070static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1071{
1072	return &md->queue->limits;
1073}
1074
1075void disable_discard(struct mapped_device *md)
1076{
1077	struct queue_limits *limits = dm_get_queue_limits(md);
1078
1079	/* device doesn't really support DISCARD, disable it */
1080	limits->max_discard_sectors = 0;
1081}
1082
1083void disable_write_zeroes(struct mapped_device *md)
1084{
1085	struct queue_limits *limits = dm_get_queue_limits(md);
1086
1087	/* device doesn't really support WRITE ZEROES, disable it */
1088	limits->max_write_zeroes_sectors = 0;
1089}
1090
1091static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1092{
1093	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1094}
1095
1096static void clone_endio(struct bio *bio)
1097{
1098	blk_status_t error = bio->bi_status;
1099	struct dm_target_io *tio = clone_to_tio(bio);
1100	struct dm_target *ti = tio->ti;
1101	dm_endio_fn endio = ti->type->end_io;
1102	struct dm_io *io = tio->io;
1103	struct mapped_device *md = io->md;
1104
1105	if (unlikely(error == BLK_STS_TARGET)) {
1106		if (bio_op(bio) == REQ_OP_DISCARD &&
1107		    !bdev_max_discard_sectors(bio->bi_bdev))
1108			disable_discard(md);
1109		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1110			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1111			disable_write_zeroes(md);
1112	}
1113
1114	if (static_branch_unlikely(&zoned_enabled) &&
1115	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1116		dm_zone_endio(io, bio);
1117
1118	if (endio) {
1119		int r = endio(ti, bio, &error);
1120
1121		switch (r) {
1122		case DM_ENDIO_REQUEUE:
1123			if (static_branch_unlikely(&zoned_enabled)) {
1124				/*
1125				 * Requeuing writes to a sequential zone of a zoned
1126				 * target will break the sequential write pattern:
1127				 * fail such IO.
1128				 */
1129				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1130					error = BLK_STS_IOERR;
1131				else
1132					error = BLK_STS_DM_REQUEUE;
1133			} else
1134				error = BLK_STS_DM_REQUEUE;
1135			fallthrough;
1136		case DM_ENDIO_DONE:
1137			break;
1138		case DM_ENDIO_INCOMPLETE:
1139			/* The target will handle the io */
1140			return;
1141		default:
1142			DMCRIT("unimplemented target endio return value: %d", r);
1143			BUG();
1144		}
1145	}
1146
1147	if (static_branch_unlikely(&swap_bios_enabled) &&
1148	    unlikely(swap_bios_limit(ti, bio)))
1149		up(&md->swap_bios_semaphore);
1150
1151	free_tio(bio);
1152	dm_io_dec_pending(io, error);
1153}
1154
1155/*
1156 * Return maximum size of I/O possible at the supplied sector up to the current
1157 * target boundary.
1158 */
1159static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1160						  sector_t target_offset)
1161{
1162	return ti->len - target_offset;
1163}
1164
1165static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1166			     unsigned int max_granularity,
1167			     unsigned int max_sectors)
1168{
1169	sector_t target_offset = dm_target_offset(ti, sector);
1170	sector_t len = max_io_len_target_boundary(ti, target_offset);
1171
1172	/*
1173	 * Does the target need to split IO even further?
1174	 * - varied (per target) IO splitting is a tenet of DM; this
1175	 *   explains why stacked chunk_sectors based splitting via
1176	 *   bio_split_to_limits() isn't possible here.
1177	 */
1178	if (!max_granularity)
1179		return len;
1180	return min_t(sector_t, len,
1181		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1182		    blk_chunk_sectors_left(target_offset, max_granularity)));
1183}
1184
1185static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1186{
1187	return __max_io_len(ti, sector, ti->max_io_len, 0);
1188}
1189
1190int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1191{
1192	if (len > UINT_MAX) {
1193		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1194		      (unsigned long long)len, UINT_MAX);
1195		ti->error = "Maximum size of target IO is too large";
1196		return -EINVAL;
1197	}
1198
1199	ti->max_io_len = (uint32_t) len;
1200
1201	return 0;
1202}
1203EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1204
1205static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1206						sector_t sector, int *srcu_idx)
1207	__acquires(md->io_barrier)
1208{
1209	struct dm_table *map;
1210	struct dm_target *ti;
1211
1212	map = dm_get_live_table(md, srcu_idx);
1213	if (!map)
1214		return NULL;
1215
1216	ti = dm_table_find_target(map, sector);
1217	if (!ti)
1218		return NULL;
1219
1220	return ti;
1221}
1222
1223static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1224		long nr_pages, enum dax_access_mode mode, void **kaddr,
1225		pfn_t *pfn)
1226{
1227	struct mapped_device *md = dax_get_private(dax_dev);
1228	sector_t sector = pgoff * PAGE_SECTORS;
1229	struct dm_target *ti;
1230	long len, ret = -EIO;
1231	int srcu_idx;
1232
1233	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1234
1235	if (!ti)
1236		goto out;
1237	if (!ti->type->direct_access)
1238		goto out;
1239	len = max_io_len(ti, sector) / PAGE_SECTORS;
1240	if (len < 1)
1241		goto out;
1242	nr_pages = min(len, nr_pages);
1243	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1244
1245 out:
1246	dm_put_live_table(md, srcu_idx);
1247
1248	return ret;
1249}
1250
1251static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1252				  size_t nr_pages)
1253{
1254	struct mapped_device *md = dax_get_private(dax_dev);
1255	sector_t sector = pgoff * PAGE_SECTORS;
1256	struct dm_target *ti;
1257	int ret = -EIO;
1258	int srcu_idx;
1259
1260	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1261
1262	if (!ti)
1263		goto out;
1264	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1265		/*
1266		 * ->zero_page_range() is mandatory dax operation. If we are
1267		 *  here, something is wrong.
1268		 */
1269		goto out;
1270	}
1271	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1272 out:
1273	dm_put_live_table(md, srcu_idx);
1274
1275	return ret;
1276}
1277
1278static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1279		void *addr, size_t bytes, struct iov_iter *i)
1280{
1281	struct mapped_device *md = dax_get_private(dax_dev);
1282	sector_t sector = pgoff * PAGE_SECTORS;
1283	struct dm_target *ti;
1284	int srcu_idx;
1285	long ret = 0;
1286
1287	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1288	if (!ti || !ti->type->dax_recovery_write)
1289		goto out;
1290
1291	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1292out:
1293	dm_put_live_table(md, srcu_idx);
1294	return ret;
1295}
1296
1297/*
1298 * A target may call dm_accept_partial_bio only from the map routine.  It is
1299 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1300 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1301 * __send_duplicate_bios().
1302 *
1303 * dm_accept_partial_bio informs the dm that the target only wants to process
1304 * additional n_sectors sectors of the bio and the rest of the data should be
1305 * sent in a next bio.
1306 *
1307 * A diagram that explains the arithmetics:
1308 * +--------------------+---------------+-------+
1309 * |         1          |       2       |   3   |
1310 * +--------------------+---------------+-------+
1311 *
1312 * <-------------- *tio->len_ptr --------------->
1313 *                      <----- bio_sectors ----->
1314 *                      <-- n_sectors -->
1315 *
1316 * Region 1 was already iterated over with bio_advance or similar function.
1317 *	(it may be empty if the target doesn't use bio_advance)
1318 * Region 2 is the remaining bio size that the target wants to process.
1319 *	(it may be empty if region 1 is non-empty, although there is no reason
1320 *	 to make it empty)
1321 * The target requires that region 3 is to be sent in the next bio.
1322 *
1323 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1324 * the partially processed part (the sum of regions 1+2) must be the same for all
1325 * copies of the bio.
1326 */
1327void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1328{
1329	struct dm_target_io *tio = clone_to_tio(bio);
1330	struct dm_io *io = tio->io;
1331	unsigned int bio_sectors = bio_sectors(bio);
1332
1333	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1334	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1335	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1336	BUG_ON(bio_sectors > *tio->len_ptr);
1337	BUG_ON(n_sectors > bio_sectors);
1338
1339	*tio->len_ptr -= bio_sectors - n_sectors;
1340	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1341
1342	/*
1343	 * __split_and_process_bio() may have already saved mapped part
1344	 * for accounting but it is being reduced so update accordingly.
1345	 */
1346	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1347	io->sectors = n_sectors;
1348	io->sector_offset = bio_sectors(io->orig_bio);
1349}
1350EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1351
1352/*
1353 * @clone: clone bio that DM core passed to target's .map function
1354 * @tgt_clone: clone of @clone bio that target needs submitted
1355 *
1356 * Targets should use this interface to submit bios they take
1357 * ownership of when returning DM_MAPIO_SUBMITTED.
1358 *
1359 * Target should also enable ti->accounts_remapped_io
1360 */
1361void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1362{
1363	struct dm_target_io *tio = clone_to_tio(clone);
1364	struct dm_io *io = tio->io;
1365
1366	/* establish bio that will get submitted */
1367	if (!tgt_clone)
1368		tgt_clone = clone;
1369
1370	/*
1371	 * Account io->origin_bio to DM dev on behalf of target
1372	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1373	 */
1374	dm_start_io_acct(io, clone);
1375
1376	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1377			      tio->old_sector);
1378	submit_bio_noacct(tgt_clone);
1379}
1380EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1381
1382static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1383{
1384	mutex_lock(&md->swap_bios_lock);
1385	while (latch < md->swap_bios) {
1386		cond_resched();
1387		down(&md->swap_bios_semaphore);
1388		md->swap_bios--;
1389	}
1390	while (latch > md->swap_bios) {
1391		cond_resched();
1392		up(&md->swap_bios_semaphore);
1393		md->swap_bios++;
1394	}
1395	mutex_unlock(&md->swap_bios_lock);
1396}
1397
1398static void __map_bio(struct bio *clone)
1399{
1400	struct dm_target_io *tio = clone_to_tio(clone);
1401	struct dm_target *ti = tio->ti;
1402	struct dm_io *io = tio->io;
1403	struct mapped_device *md = io->md;
1404	int r;
1405
1406	clone->bi_end_io = clone_endio;
1407
1408	/*
1409	 * Map the clone.
1410	 */
1411	tio->old_sector = clone->bi_iter.bi_sector;
1412
1413	if (static_branch_unlikely(&swap_bios_enabled) &&
1414	    unlikely(swap_bios_limit(ti, clone))) {
1415		int latch = get_swap_bios();
1416
1417		if (unlikely(latch != md->swap_bios))
1418			__set_swap_bios_limit(md, latch);
1419		down(&md->swap_bios_semaphore);
1420	}
1421
1422	if (static_branch_unlikely(&zoned_enabled)) {
1423		/*
1424		 * Check if the IO needs a special mapping due to zone append
1425		 * emulation on zoned target. In this case, dm_zone_map_bio()
1426		 * calls the target map operation.
1427		 */
1428		if (unlikely(dm_emulate_zone_append(md)))
1429			r = dm_zone_map_bio(tio);
1430		else
1431			goto do_map;
1432	} else {
1433do_map:
1434		if (likely(ti->type->map == linear_map))
1435			r = linear_map(ti, clone);
1436		else if (ti->type->map == stripe_map)
1437			r = stripe_map(ti, clone);
1438		else
1439			r = ti->type->map(ti, clone);
1440	}
1441
1442	switch (r) {
1443	case DM_MAPIO_SUBMITTED:
1444		/* target has assumed ownership of this io */
1445		if (!ti->accounts_remapped_io)
1446			dm_start_io_acct(io, clone);
1447		break;
1448	case DM_MAPIO_REMAPPED:
1449		dm_submit_bio_remap(clone, NULL);
1450		break;
1451	case DM_MAPIO_KILL:
1452	case DM_MAPIO_REQUEUE:
1453		if (static_branch_unlikely(&swap_bios_enabled) &&
1454		    unlikely(swap_bios_limit(ti, clone)))
1455			up(&md->swap_bios_semaphore);
1456		free_tio(clone);
1457		if (r == DM_MAPIO_KILL)
1458			dm_io_dec_pending(io, BLK_STS_IOERR);
1459		else
1460			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1461		break;
1462	default:
1463		DMCRIT("unimplemented target map return value: %d", r);
1464		BUG();
1465	}
1466}
1467
1468static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1469{
1470	struct dm_io *io = ci->io;
1471
1472	if (ci->sector_count > len) {
1473		/*
1474		 * Split needed, save the mapped part for accounting.
1475		 * NOTE: dm_accept_partial_bio() will update accordingly.
1476		 */
1477		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1478		io->sectors = len;
1479		io->sector_offset = bio_sectors(ci->bio);
1480	}
1481}
1482
1483static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1484				struct dm_target *ti, unsigned int num_bios,
1485				unsigned *len, gfp_t gfp_flag)
1486{
1487	struct bio *bio;
1488	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1489
1490	for (; try < 2; try++) {
1491		int bio_nr;
1492
1493		if (try && num_bios > 1)
1494			mutex_lock(&ci->io->md->table_devices_lock);
1495		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1496			bio = alloc_tio(ci, ti, bio_nr, len,
1497					try ? GFP_NOIO : GFP_NOWAIT);
1498			if (!bio)
1499				break;
1500
1501			bio_list_add(blist, bio);
1502		}
1503		if (try && num_bios > 1)
1504			mutex_unlock(&ci->io->md->table_devices_lock);
1505		if (bio_nr == num_bios)
1506			return;
1507
1508		while ((bio = bio_list_pop(blist)))
1509			free_tio(bio);
1510	}
1511}
1512
1513static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1514					  unsigned int num_bios, unsigned int *len,
1515					  gfp_t gfp_flag)
1516{
1517	struct bio_list blist = BIO_EMPTY_LIST;
1518	struct bio *clone;
1519	unsigned int ret = 0;
1520
1521	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1522		return 0;
1523
1524	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1525	if (len)
1526		setup_split_accounting(ci, *len);
1527
1528	/*
1529	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1530	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1531	 */
1532	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1533	while ((clone = bio_list_pop(&blist))) {
1534		if (num_bios > 1)
1535			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1536		__map_bio(clone);
1537		ret += 1;
1538	}
1539
1540	return ret;
1541}
1542
1543static void __send_empty_flush(struct clone_info *ci)
1544{
1545	struct dm_table *t = ci->map;
1546	struct bio flush_bio;
1547
1548	/*
1549	 * Use an on-stack bio for this, it's safe since we don't
1550	 * need to reference it after submit. It's just used as
1551	 * the basis for the clone(s).
1552	 */
1553	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1554		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1555
1556	ci->bio = &flush_bio;
1557	ci->sector_count = 0;
1558	ci->io->tio.clone.bi_iter.bi_size = 0;
1559
1560	for (unsigned int i = 0; i < t->num_targets; i++) {
1561		unsigned int bios;
1562		struct dm_target *ti = dm_table_get_target(t, i);
1563
1564		if (unlikely(ti->num_flush_bios == 0))
1565			continue;
1566
1567		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1568		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1569					     NULL, GFP_NOWAIT);
1570		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1571	}
1572
1573	/*
1574	 * alloc_io() takes one extra reference for submission, so the
1575	 * reference won't reach 0 without the following subtraction
1576	 */
1577	atomic_sub(1, &ci->io->io_count);
1578
1579	bio_uninit(ci->bio);
1580}
1581
1582static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1583			       unsigned int num_bios, unsigned int max_granularity,
1584			       unsigned int max_sectors)
1585{
1586	unsigned int len, bios;
1587
1588	len = min_t(sector_t, ci->sector_count,
1589		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1590
1591	atomic_add(num_bios, &ci->io->io_count);
1592	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1593	/*
1594	 * alloc_io() takes one extra reference for submission, so the
1595	 * reference won't reach 0 without the following (+1) subtraction
1596	 */
1597	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1598
1599	ci->sector += len;
1600	ci->sector_count -= len;
1601}
1602
1603static bool is_abnormal_io(struct bio *bio)
1604{
1605	enum req_op op = bio_op(bio);
1606
1607	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1608		switch (op) {
1609		case REQ_OP_DISCARD:
1610		case REQ_OP_SECURE_ERASE:
1611		case REQ_OP_WRITE_ZEROES:
1612			return true;
1613		default:
1614			break;
1615		}
 
1616	}
1617
1618	return false;
1619}
1620
1621static blk_status_t __process_abnormal_io(struct clone_info *ci,
1622					  struct dm_target *ti)
1623{
1624	unsigned int num_bios = 0;
1625	unsigned int max_granularity = 0;
1626	unsigned int max_sectors = 0;
1627	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1628
1629	switch (bio_op(ci->bio)) {
1630	case REQ_OP_DISCARD:
1631		num_bios = ti->num_discard_bios;
1632		max_sectors = limits->max_discard_sectors;
1633		if (ti->max_discard_granularity)
1634			max_granularity = max_sectors;
1635		break;
1636	case REQ_OP_SECURE_ERASE:
1637		num_bios = ti->num_secure_erase_bios;
1638		max_sectors = limits->max_secure_erase_sectors;
1639		if (ti->max_secure_erase_granularity)
1640			max_granularity = max_sectors;
1641		break;
1642	case REQ_OP_WRITE_ZEROES:
1643		num_bios = ti->num_write_zeroes_bios;
1644		max_sectors = limits->max_write_zeroes_sectors;
1645		if (ti->max_write_zeroes_granularity)
1646			max_granularity = max_sectors;
1647		break;
1648	default:
1649		break;
1650	}
1651
1652	/*
1653	 * Even though the device advertised support for this type of
1654	 * request, that does not mean every target supports it, and
1655	 * reconfiguration might also have changed that since the
1656	 * check was performed.
1657	 */
1658	if (unlikely(!num_bios))
1659		return BLK_STS_NOTSUPP;
1660
1661	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1662
1663	return BLK_STS_OK;
1664}
1665
1666/*
1667 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1668 * associated with this bio, and this bio's bi_private needs to be
1669 * stored in dm_io->data before the reuse.
1670 *
1671 * bio->bi_private is owned by fs or upper layer, so block layer won't
1672 * touch it after splitting. Meantime it won't be changed by anyone after
1673 * bio is submitted. So this reuse is safe.
1674 */
1675static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1676{
1677	return (struct dm_io **)&bio->bi_private;
1678}
1679
1680static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1681{
1682	struct dm_io **head = dm_poll_list_head(bio);
1683
1684	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1685		bio->bi_opf |= REQ_DM_POLL_LIST;
1686		/*
1687		 * Save .bi_private into dm_io, so that we can reuse
1688		 * .bi_private as dm_io list head for storing dm_io list
1689		 */
1690		io->data = bio->bi_private;
1691
1692		/* tell block layer to poll for completion */
1693		bio->bi_cookie = ~BLK_QC_T_NONE;
1694
1695		io->next = NULL;
1696	} else {
1697		/*
1698		 * bio recursed due to split, reuse original poll list,
1699		 * and save bio->bi_private too.
1700		 */
1701		io->data = (*head)->data;
1702		io->next = *head;
1703	}
1704
1705	*head = io;
1706}
1707
1708/*
1709 * Select the correct strategy for processing a non-flush bio.
1710 */
1711static blk_status_t __split_and_process_bio(struct clone_info *ci)
1712{
1713	struct bio *clone;
1714	struct dm_target *ti;
1715	unsigned int len;
1716
1717	ti = dm_table_find_target(ci->map, ci->sector);
1718	if (unlikely(!ti))
1719		return BLK_STS_IOERR;
1720
1721	if (unlikely(ci->is_abnormal_io))
1722		return __process_abnormal_io(ci, ti);
1723
1724	/*
1725	 * Only support bio polling for normal IO, and the target io is
1726	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1727	 */
1728	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1729
1730	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1731	setup_split_accounting(ci, len);
1732
1733	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1734		if (unlikely(!dm_target_supports_nowait(ti->type)))
1735			return BLK_STS_NOTSUPP;
1736
1737		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1738		if (unlikely(!clone))
1739			return BLK_STS_AGAIN;
1740	} else {
1741		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1742	}
1743	__map_bio(clone);
1744
1745	ci->sector += len;
1746	ci->sector_count -= len;
1747
1748	return BLK_STS_OK;
1749}
1750
1751static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1752			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1753{
1754	ci->map = map;
1755	ci->io = io;
1756	ci->bio = bio;
1757	ci->is_abnormal_io = is_abnormal;
1758	ci->submit_as_polled = false;
1759	ci->sector = bio->bi_iter.bi_sector;
1760	ci->sector_count = bio_sectors(bio);
1761
1762	/* Shouldn't happen but sector_count was being set to 0 so... */
1763	if (static_branch_unlikely(&zoned_enabled) &&
1764	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1765		ci->sector_count = 0;
1766}
1767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768/*
1769 * Entry point to split a bio into clones and submit them to the targets.
1770 */
1771static void dm_split_and_process_bio(struct mapped_device *md,
1772				     struct dm_table *map, struct bio *bio)
1773{
1774	struct clone_info ci;
1775	struct dm_io *io;
1776	blk_status_t error = BLK_STS_OK;
1777	bool is_abnormal;
1778
1779	is_abnormal = is_abnormal_io(bio);
1780	if (unlikely(is_abnormal)) {
 
 
 
 
 
 
 
 
1781		/*
1782		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1783		 * otherwise associated queue_limits won't be imposed.
 
 
 
1784		 */
1785		bio = bio_split_to_limits(bio);
1786		if (!bio)
1787			return;
1788	}
1789
 
 
 
 
 
 
 
1790	/* Only support nowait for normal IO */
1791	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1792		io = alloc_io(md, bio, GFP_NOWAIT);
1793		if (unlikely(!io)) {
1794			/* Unable to do anything without dm_io. */
1795			bio_wouldblock_error(bio);
1796			return;
1797		}
1798	} else {
1799		io = alloc_io(md, bio, GFP_NOIO);
1800	}
1801	init_clone_info(&ci, io, map, bio, is_abnormal);
1802
1803	if (bio->bi_opf & REQ_PREFLUSH) {
1804		__send_empty_flush(&ci);
1805		/* dm_io_complete submits any data associated with flush */
1806		goto out;
1807	}
1808
 
 
 
 
 
 
1809	error = __split_and_process_bio(&ci);
1810	if (error || !ci.sector_count)
1811		goto out;
1812	/*
1813	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1814	 * *after* bios already submitted have been completely processed.
1815	 */
1816	bio_trim(bio, io->sectors, ci.sector_count);
1817	trace_block_split(bio, bio->bi_iter.bi_sector);
1818	bio_inc_remaining(bio);
1819	submit_bio_noacct(bio);
1820out:
1821	/*
1822	 * Drop the extra reference count for non-POLLED bio, and hold one
1823	 * reference for POLLED bio, which will be released in dm_poll_bio
1824	 *
1825	 * Add every dm_io instance into the dm_io list head which is stored
1826	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1827	 */
1828	if (error || !ci.submit_as_polled) {
1829		/*
1830		 * In case of submission failure, the extra reference for
1831		 * submitting io isn't consumed yet
1832		 */
1833		if (error)
1834			atomic_dec(&io->io_count);
1835		dm_io_dec_pending(io, error);
1836	} else
1837		dm_queue_poll_io(bio, io);
1838}
1839
1840static void dm_submit_bio(struct bio *bio)
1841{
1842	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1843	int srcu_idx;
1844	struct dm_table *map;
1845
1846	map = dm_get_live_table(md, &srcu_idx);
 
 
 
 
 
 
1847
1848	/* If suspended, or map not yet available, queue this IO for later */
1849	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1850	    unlikely(!map)) {
1851		if (bio->bi_opf & REQ_NOWAIT)
1852			bio_wouldblock_error(bio);
1853		else if (bio->bi_opf & REQ_RAHEAD)
1854			bio_io_error(bio);
1855		else
1856			queue_io(md, bio);
1857		goto out;
1858	}
1859
1860	dm_split_and_process_bio(md, map, bio);
1861out:
1862	dm_put_live_table(md, srcu_idx);
1863}
1864
1865static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1866			  unsigned int flags)
1867{
1868	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1869
1870	/* don't poll if the mapped io is done */
1871	if (atomic_read(&io->io_count) > 1)
1872		bio_poll(&io->tio.clone, iob, flags);
1873
1874	/* bio_poll holds the last reference */
1875	return atomic_read(&io->io_count) == 1;
1876}
1877
1878static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1879		       unsigned int flags)
1880{
1881	struct dm_io **head = dm_poll_list_head(bio);
1882	struct dm_io *list = *head;
1883	struct dm_io *tmp = NULL;
1884	struct dm_io *curr, *next;
1885
1886	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1887	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1888		return 0;
1889
1890	WARN_ON_ONCE(!list);
1891
1892	/*
1893	 * Restore .bi_private before possibly completing dm_io.
1894	 *
1895	 * bio_poll() is only possible once @bio has been completely
1896	 * submitted via submit_bio_noacct()'s depth-first submission.
1897	 * So there is no dm_queue_poll_io() race associated with
1898	 * clearing REQ_DM_POLL_LIST here.
1899	 */
1900	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1901	bio->bi_private = list->data;
1902
1903	for (curr = list, next = curr->next; curr; curr = next, next =
1904			curr ? curr->next : NULL) {
1905		if (dm_poll_dm_io(curr, iob, flags)) {
1906			/*
1907			 * clone_endio() has already occurred, so no
1908			 * error handling is needed here.
1909			 */
1910			__dm_io_dec_pending(curr);
1911		} else {
1912			curr->next = tmp;
1913			tmp = curr;
1914		}
1915	}
1916
1917	/* Not done? */
1918	if (tmp) {
1919		bio->bi_opf |= REQ_DM_POLL_LIST;
1920		/* Reset bio->bi_private to dm_io list head */
1921		*head = tmp;
1922		return 0;
1923	}
1924	return 1;
1925}
1926
1927/*
1928 *---------------------------------------------------------------
1929 * An IDR is used to keep track of allocated minor numbers.
1930 *---------------------------------------------------------------
1931 */
1932static void free_minor(int minor)
1933{
1934	spin_lock(&_minor_lock);
1935	idr_remove(&_minor_idr, minor);
1936	spin_unlock(&_minor_lock);
1937}
1938
1939/*
1940 * See if the device with a specific minor # is free.
1941 */
1942static int specific_minor(int minor)
1943{
1944	int r;
1945
1946	if (minor >= (1 << MINORBITS))
1947		return -EINVAL;
1948
1949	idr_preload(GFP_KERNEL);
1950	spin_lock(&_minor_lock);
1951
1952	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1953
1954	spin_unlock(&_minor_lock);
1955	idr_preload_end();
1956	if (r < 0)
1957		return r == -ENOSPC ? -EBUSY : r;
1958	return 0;
1959}
1960
1961static int next_free_minor(int *minor)
1962{
1963	int r;
1964
1965	idr_preload(GFP_KERNEL);
1966	spin_lock(&_minor_lock);
1967
1968	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1969
1970	spin_unlock(&_minor_lock);
1971	idr_preload_end();
1972	if (r < 0)
1973		return r;
1974	*minor = r;
1975	return 0;
1976}
1977
1978static const struct block_device_operations dm_blk_dops;
1979static const struct block_device_operations dm_rq_blk_dops;
1980static const struct dax_operations dm_dax_ops;
1981
1982static void dm_wq_work(struct work_struct *work);
1983
1984#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1985static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1986{
1987	dm_destroy_crypto_profile(q->crypto_profile);
1988}
1989
1990#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1991
1992static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1993{
1994}
1995#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1996
1997static void cleanup_mapped_device(struct mapped_device *md)
1998{
1999	if (md->wq)
2000		destroy_workqueue(md->wq);
2001	dm_free_md_mempools(md->mempools);
2002
2003	if (md->dax_dev) {
2004		dax_remove_host(md->disk);
2005		kill_dax(md->dax_dev);
2006		put_dax(md->dax_dev);
2007		md->dax_dev = NULL;
2008	}
2009
2010	dm_cleanup_zoned_dev(md);
2011	if (md->disk) {
2012		spin_lock(&_minor_lock);
2013		md->disk->private_data = NULL;
2014		spin_unlock(&_minor_lock);
2015		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2016			struct table_device *td;
2017
2018			dm_sysfs_exit(md);
2019			list_for_each_entry(td, &md->table_devices, list) {
2020				bd_unlink_disk_holder(td->dm_dev.bdev,
2021						      md->disk);
2022			}
2023
2024			/*
2025			 * Hold lock to make sure del_gendisk() won't concurrent
2026			 * with open/close_table_device().
2027			 */
2028			mutex_lock(&md->table_devices_lock);
2029			del_gendisk(md->disk);
2030			mutex_unlock(&md->table_devices_lock);
2031		}
2032		dm_queue_destroy_crypto_profile(md->queue);
2033		put_disk(md->disk);
2034	}
2035
2036	if (md->pending_io) {
2037		free_percpu(md->pending_io);
2038		md->pending_io = NULL;
2039	}
2040
2041	cleanup_srcu_struct(&md->io_barrier);
2042
2043	mutex_destroy(&md->suspend_lock);
2044	mutex_destroy(&md->type_lock);
2045	mutex_destroy(&md->table_devices_lock);
2046	mutex_destroy(&md->swap_bios_lock);
2047
2048	dm_mq_cleanup_mapped_device(md);
2049}
2050
2051/*
2052 * Allocate and initialise a blank device with a given minor.
2053 */
2054static struct mapped_device *alloc_dev(int minor)
2055{
2056	int r, numa_node_id = dm_get_numa_node();
 
2057	struct mapped_device *md;
2058	void *old_md;
2059
2060	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2061	if (!md) {
2062		DMERR("unable to allocate device, out of memory.");
2063		return NULL;
2064	}
2065
2066	if (!try_module_get(THIS_MODULE))
2067		goto bad_module_get;
2068
2069	/* get a minor number for the dev */
2070	if (minor == DM_ANY_MINOR)
2071		r = next_free_minor(&minor);
2072	else
2073		r = specific_minor(minor);
2074	if (r < 0)
2075		goto bad_minor;
2076
2077	r = init_srcu_struct(&md->io_barrier);
2078	if (r < 0)
2079		goto bad_io_barrier;
2080
2081	md->numa_node_id = numa_node_id;
2082	md->init_tio_pdu = false;
2083	md->type = DM_TYPE_NONE;
2084	mutex_init(&md->suspend_lock);
2085	mutex_init(&md->type_lock);
2086	mutex_init(&md->table_devices_lock);
2087	spin_lock_init(&md->deferred_lock);
2088	atomic_set(&md->holders, 1);
2089	atomic_set(&md->open_count, 0);
2090	atomic_set(&md->event_nr, 0);
2091	atomic_set(&md->uevent_seq, 0);
2092	INIT_LIST_HEAD(&md->uevent_list);
2093	INIT_LIST_HEAD(&md->table_devices);
2094	spin_lock_init(&md->uevent_lock);
2095
2096	/*
2097	 * default to bio-based until DM table is loaded and md->type
2098	 * established. If request-based table is loaded: blk-mq will
2099	 * override accordingly.
2100	 */
2101	md->disk = blk_alloc_disk(md->numa_node_id);
2102	if (!md->disk)
 
2103		goto bad;
 
2104	md->queue = md->disk->queue;
2105
2106	init_waitqueue_head(&md->wait);
2107	INIT_WORK(&md->work, dm_wq_work);
2108	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2109	init_waitqueue_head(&md->eventq);
2110	init_completion(&md->kobj_holder.completion);
2111
2112	md->requeue_list = NULL;
2113	md->swap_bios = get_swap_bios();
2114	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2115	mutex_init(&md->swap_bios_lock);
2116
2117	md->disk->major = _major;
2118	md->disk->first_minor = minor;
2119	md->disk->minors = 1;
2120	md->disk->flags |= GENHD_FL_NO_PART;
2121	md->disk->fops = &dm_blk_dops;
2122	md->disk->private_data = md;
2123	sprintf(md->disk->disk_name, "dm-%d", minor);
2124
2125	if (IS_ENABLED(CONFIG_FS_DAX)) {
2126		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2127		if (IS_ERR(md->dax_dev)) {
2128			md->dax_dev = NULL;
2129			goto bad;
2130		}
2131		set_dax_nocache(md->dax_dev);
2132		set_dax_nomc(md->dax_dev);
2133		if (dax_add_host(md->dax_dev, md->disk))
 
2134			goto bad;
2135	}
2136
2137	format_dev_t(md->name, MKDEV(_major, minor));
2138
2139	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2140	if (!md->wq)
2141		goto bad;
2142
2143	md->pending_io = alloc_percpu(unsigned long);
2144	if (!md->pending_io)
2145		goto bad;
2146
2147	r = dm_stats_init(&md->stats);
2148	if (r < 0)
2149		goto bad;
2150
2151	/* Populate the mapping, nobody knows we exist yet */
2152	spin_lock(&_minor_lock);
2153	old_md = idr_replace(&_minor_idr, md, minor);
2154	spin_unlock(&_minor_lock);
2155
2156	BUG_ON(old_md != MINOR_ALLOCED);
2157
2158	return md;
2159
2160bad:
2161	cleanup_mapped_device(md);
2162bad_io_barrier:
2163	free_minor(minor);
2164bad_minor:
2165	module_put(THIS_MODULE);
2166bad_module_get:
2167	kvfree(md);
2168	return NULL;
2169}
2170
2171static void unlock_fs(struct mapped_device *md);
2172
2173static void free_dev(struct mapped_device *md)
2174{
2175	int minor = MINOR(disk_devt(md->disk));
2176
2177	unlock_fs(md);
2178
2179	cleanup_mapped_device(md);
2180
2181	WARN_ON_ONCE(!list_empty(&md->table_devices));
2182	dm_stats_cleanup(&md->stats);
2183	free_minor(minor);
2184
2185	module_put(THIS_MODULE);
2186	kvfree(md);
2187}
2188
2189/*
2190 * Bind a table to the device.
2191 */
2192static void event_callback(void *context)
2193{
2194	unsigned long flags;
2195	LIST_HEAD(uevents);
2196	struct mapped_device *md = context;
2197
2198	spin_lock_irqsave(&md->uevent_lock, flags);
2199	list_splice_init(&md->uevent_list, &uevents);
2200	spin_unlock_irqrestore(&md->uevent_lock, flags);
2201
2202	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2203
2204	atomic_inc(&md->event_nr);
2205	wake_up(&md->eventq);
2206	dm_issue_global_event();
2207}
2208
2209/*
2210 * Returns old map, which caller must destroy.
2211 */
2212static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2213			       struct queue_limits *limits)
2214{
2215	struct dm_table *old_map;
2216	sector_t size;
2217	int ret;
2218
2219	lockdep_assert_held(&md->suspend_lock);
2220
2221	size = dm_table_get_size(t);
2222
2223	/*
2224	 * Wipe any geometry if the size of the table changed.
2225	 */
2226	if (size != dm_get_size(md))
2227		memset(&md->geometry, 0, sizeof(md->geometry));
2228
2229	set_capacity(md->disk, size);
2230
2231	dm_table_event_callback(t, event_callback, md);
2232
2233	if (dm_table_request_based(t)) {
2234		/*
2235		 * Leverage the fact that request-based DM targets are
2236		 * immutable singletons - used to optimize dm_mq_queue_rq.
2237		 */
2238		md->immutable_target = dm_table_get_immutable_target(t);
2239
2240		/*
2241		 * There is no need to reload with request-based dm because the
2242		 * size of front_pad doesn't change.
2243		 *
2244		 * Note for future: If you are to reload bioset, prep-ed
2245		 * requests in the queue may refer to bio from the old bioset,
2246		 * so you must walk through the queue to unprep.
2247		 */
2248		if (!md->mempools) {
2249			md->mempools = t->mempools;
2250			t->mempools = NULL;
2251		}
2252	} else {
2253		/*
2254		 * The md may already have mempools that need changing.
2255		 * If so, reload bioset because front_pad may have changed
2256		 * because a different table was loaded.
2257		 */
2258		dm_free_md_mempools(md->mempools);
2259		md->mempools = t->mempools;
2260		t->mempools = NULL;
2261	}
2262
2263	ret = dm_table_set_restrictions(t, md->queue, limits);
2264	if (ret) {
2265		old_map = ERR_PTR(ret);
2266		goto out;
2267	}
2268
2269	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2270	rcu_assign_pointer(md->map, (void *)t);
2271	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2272
2273	if (old_map)
2274		dm_sync_table(md);
2275out:
2276	return old_map;
2277}
2278
2279/*
2280 * Returns unbound table for the caller to free.
2281 */
2282static struct dm_table *__unbind(struct mapped_device *md)
2283{
2284	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2285
2286	if (!map)
2287		return NULL;
2288
2289	dm_table_event_callback(map, NULL, NULL);
2290	RCU_INIT_POINTER(md->map, NULL);
2291	dm_sync_table(md);
2292
2293	return map;
2294}
2295
2296/*
2297 * Constructor for a new device.
2298 */
2299int dm_create(int minor, struct mapped_device **result)
2300{
2301	struct mapped_device *md;
2302
2303	md = alloc_dev(minor);
2304	if (!md)
2305		return -ENXIO;
2306
2307	dm_ima_reset_data(md);
2308
2309	*result = md;
2310	return 0;
2311}
2312
2313/*
2314 * Functions to manage md->type.
2315 * All are required to hold md->type_lock.
2316 */
2317void dm_lock_md_type(struct mapped_device *md)
2318{
2319	mutex_lock(&md->type_lock);
2320}
2321
2322void dm_unlock_md_type(struct mapped_device *md)
2323{
2324	mutex_unlock(&md->type_lock);
2325}
2326
2327void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2328{
2329	BUG_ON(!mutex_is_locked(&md->type_lock));
2330	md->type = type;
2331}
2332
2333enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2334{
2335	return md->type;
2336}
2337
2338struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2339{
2340	return md->immutable_target_type;
2341}
2342
2343/*
2344 * Setup the DM device's queue based on md's type
2345 */
2346int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2347{
2348	enum dm_queue_mode type = dm_table_get_type(t);
2349	struct queue_limits limits;
2350	struct table_device *td;
2351	int r;
2352
2353	switch (type) {
2354	case DM_TYPE_REQUEST_BASED:
 
2355		md->disk->fops = &dm_rq_blk_dops;
2356		r = dm_mq_init_request_queue(md, t);
2357		if (r) {
2358			DMERR("Cannot initialize queue for request-based dm mapped device");
2359			return r;
2360		}
2361		break;
2362	case DM_TYPE_BIO_BASED:
2363	case DM_TYPE_DAX_BIO_BASED:
2364		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
2365		break;
2366	case DM_TYPE_NONE:
2367		WARN_ON_ONCE(true);
2368		break;
2369	}
2370
2371	r = dm_calculate_queue_limits(t, &limits);
2372	if (r) {
2373		DMERR("Cannot calculate initial queue limits");
2374		return r;
2375	}
2376	r = dm_table_set_restrictions(t, md->queue, &limits);
2377	if (r)
2378		return r;
2379
2380	/*
2381	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2382	 * with open_table_device() and close_table_device().
2383	 */
2384	mutex_lock(&md->table_devices_lock);
2385	r = add_disk(md->disk);
2386	mutex_unlock(&md->table_devices_lock);
2387	if (r)
2388		return r;
2389
2390	/*
2391	 * Register the holder relationship for devices added before the disk
2392	 * was live.
2393	 */
2394	list_for_each_entry(td, &md->table_devices, list) {
2395		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2396		if (r)
2397			goto out_undo_holders;
2398	}
2399
2400	r = dm_sysfs_init(md);
2401	if (r)
2402		goto out_undo_holders;
2403
2404	md->type = type;
2405	return 0;
2406
2407out_undo_holders:
2408	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2409		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2410	mutex_lock(&md->table_devices_lock);
2411	del_gendisk(md->disk);
2412	mutex_unlock(&md->table_devices_lock);
2413	return r;
2414}
2415
2416struct mapped_device *dm_get_md(dev_t dev)
2417{
2418	struct mapped_device *md;
2419	unsigned int minor = MINOR(dev);
2420
2421	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2422		return NULL;
2423
2424	spin_lock(&_minor_lock);
2425
2426	md = idr_find(&_minor_idr, minor);
2427	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2428	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2429		md = NULL;
2430		goto out;
2431	}
2432	dm_get(md);
2433out:
2434	spin_unlock(&_minor_lock);
2435
2436	return md;
2437}
2438EXPORT_SYMBOL_GPL(dm_get_md);
2439
2440void *dm_get_mdptr(struct mapped_device *md)
2441{
2442	return md->interface_ptr;
2443}
2444
2445void dm_set_mdptr(struct mapped_device *md, void *ptr)
2446{
2447	md->interface_ptr = ptr;
2448}
2449
2450void dm_get(struct mapped_device *md)
2451{
2452	atomic_inc(&md->holders);
2453	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2454}
2455
2456int dm_hold(struct mapped_device *md)
2457{
2458	spin_lock(&_minor_lock);
2459	if (test_bit(DMF_FREEING, &md->flags)) {
2460		spin_unlock(&_minor_lock);
2461		return -EBUSY;
2462	}
2463	dm_get(md);
2464	spin_unlock(&_minor_lock);
2465	return 0;
2466}
2467EXPORT_SYMBOL_GPL(dm_hold);
2468
2469const char *dm_device_name(struct mapped_device *md)
2470{
2471	return md->name;
2472}
2473EXPORT_SYMBOL_GPL(dm_device_name);
2474
2475static void __dm_destroy(struct mapped_device *md, bool wait)
2476{
2477	struct dm_table *map;
2478	int srcu_idx;
2479
2480	might_sleep();
2481
2482	spin_lock(&_minor_lock);
2483	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2484	set_bit(DMF_FREEING, &md->flags);
2485	spin_unlock(&_minor_lock);
2486
2487	blk_mark_disk_dead(md->disk);
2488
2489	/*
2490	 * Take suspend_lock so that presuspend and postsuspend methods
2491	 * do not race with internal suspend.
2492	 */
2493	mutex_lock(&md->suspend_lock);
2494	map = dm_get_live_table(md, &srcu_idx);
2495	if (!dm_suspended_md(md)) {
2496		dm_table_presuspend_targets(map);
2497		set_bit(DMF_SUSPENDED, &md->flags);
2498		set_bit(DMF_POST_SUSPENDING, &md->flags);
2499		dm_table_postsuspend_targets(map);
2500	}
2501	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2502	dm_put_live_table(md, srcu_idx);
2503	mutex_unlock(&md->suspend_lock);
2504
2505	/*
2506	 * Rare, but there may be I/O requests still going to complete,
2507	 * for example.  Wait for all references to disappear.
2508	 * No one should increment the reference count of the mapped_device,
2509	 * after the mapped_device state becomes DMF_FREEING.
2510	 */
2511	if (wait)
2512		while (atomic_read(&md->holders))
2513			fsleep(1000);
2514	else if (atomic_read(&md->holders))
2515		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2516		       dm_device_name(md), atomic_read(&md->holders));
2517
2518	dm_table_destroy(__unbind(md));
2519	free_dev(md);
2520}
2521
2522void dm_destroy(struct mapped_device *md)
2523{
2524	__dm_destroy(md, true);
2525}
2526
2527void dm_destroy_immediate(struct mapped_device *md)
2528{
2529	__dm_destroy(md, false);
2530}
2531
2532void dm_put(struct mapped_device *md)
2533{
2534	atomic_dec(&md->holders);
2535}
2536EXPORT_SYMBOL_GPL(dm_put);
2537
2538static bool dm_in_flight_bios(struct mapped_device *md)
2539{
2540	int cpu;
2541	unsigned long sum = 0;
2542
2543	for_each_possible_cpu(cpu)
2544		sum += *per_cpu_ptr(md->pending_io, cpu);
2545
2546	return sum != 0;
2547}
2548
2549static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2550{
2551	int r = 0;
2552	DEFINE_WAIT(wait);
2553
2554	while (true) {
2555		prepare_to_wait(&md->wait, &wait, task_state);
2556
2557		if (!dm_in_flight_bios(md))
2558			break;
2559
2560		if (signal_pending_state(task_state, current)) {
2561			r = -EINTR;
2562			break;
2563		}
2564
2565		io_schedule();
2566	}
2567	finish_wait(&md->wait, &wait);
2568
2569	smp_rmb();
2570
2571	return r;
2572}
2573
2574static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2575{
2576	int r = 0;
2577
2578	if (!queue_is_mq(md->queue))
2579		return dm_wait_for_bios_completion(md, task_state);
2580
2581	while (true) {
2582		if (!blk_mq_queue_inflight(md->queue))
2583			break;
2584
2585		if (signal_pending_state(task_state, current)) {
2586			r = -EINTR;
2587			break;
2588		}
2589
2590		fsleep(5000);
2591	}
2592
2593	return r;
2594}
2595
2596/*
2597 * Process the deferred bios
2598 */
2599static void dm_wq_work(struct work_struct *work)
2600{
2601	struct mapped_device *md = container_of(work, struct mapped_device, work);
2602	struct bio *bio;
2603
2604	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2605		spin_lock_irq(&md->deferred_lock);
2606		bio = bio_list_pop(&md->deferred);
2607		spin_unlock_irq(&md->deferred_lock);
2608
2609		if (!bio)
2610			break;
2611
2612		submit_bio_noacct(bio);
2613		cond_resched();
2614	}
2615}
2616
2617static void dm_queue_flush(struct mapped_device *md)
2618{
2619	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2620	smp_mb__after_atomic();
2621	queue_work(md->wq, &md->work);
2622}
2623
2624/*
2625 * Swap in a new table, returning the old one for the caller to destroy.
2626 */
2627struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2628{
2629	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2630	struct queue_limits limits;
2631	int r;
2632
2633	mutex_lock(&md->suspend_lock);
2634
2635	/* device must be suspended */
2636	if (!dm_suspended_md(md))
2637		goto out;
2638
2639	/*
2640	 * If the new table has no data devices, retain the existing limits.
2641	 * This helps multipath with queue_if_no_path if all paths disappear,
2642	 * then new I/O is queued based on these limits, and then some paths
2643	 * reappear.
2644	 */
2645	if (dm_table_has_no_data_devices(table)) {
2646		live_map = dm_get_live_table_fast(md);
2647		if (live_map)
2648			limits = md->queue->limits;
2649		dm_put_live_table_fast(md);
2650	}
2651
2652	if (!live_map) {
2653		r = dm_calculate_queue_limits(table, &limits);
2654		if (r) {
2655			map = ERR_PTR(r);
2656			goto out;
2657		}
2658	}
2659
2660	map = __bind(md, table, &limits);
2661	dm_issue_global_event();
2662
2663out:
2664	mutex_unlock(&md->suspend_lock);
2665	return map;
2666}
2667
2668/*
2669 * Functions to lock and unlock any filesystem running on the
2670 * device.
2671 */
2672static int lock_fs(struct mapped_device *md)
2673{
2674	int r;
2675
2676	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2677
2678	r = bdev_freeze(md->disk->part0);
2679	if (!r)
2680		set_bit(DMF_FROZEN, &md->flags);
2681	return r;
2682}
2683
2684static void unlock_fs(struct mapped_device *md)
2685{
2686	if (!test_bit(DMF_FROZEN, &md->flags))
2687		return;
2688	bdev_thaw(md->disk->part0);
2689	clear_bit(DMF_FROZEN, &md->flags);
2690}
2691
2692/*
2693 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2694 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2695 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2696 *
2697 * If __dm_suspend returns 0, the device is completely quiescent
2698 * now. There is no request-processing activity. All new requests
2699 * are being added to md->deferred list.
2700 */
2701static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2702			unsigned int suspend_flags, unsigned int task_state,
2703			int dmf_suspended_flag)
2704{
2705	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2706	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2707	int r;
2708
2709	lockdep_assert_held(&md->suspend_lock);
2710
2711	/*
2712	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2713	 * This flag is cleared before dm_suspend returns.
2714	 */
2715	if (noflush)
2716		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2717	else
2718		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2719
2720	/*
2721	 * This gets reverted if there's an error later and the targets
2722	 * provide the .presuspend_undo hook.
2723	 */
2724	dm_table_presuspend_targets(map);
2725
2726	/*
2727	 * Flush I/O to the device.
2728	 * Any I/O submitted after lock_fs() may not be flushed.
2729	 * noflush takes precedence over do_lockfs.
2730	 * (lock_fs() flushes I/Os and waits for them to complete.)
2731	 */
2732	if (!noflush && do_lockfs) {
2733		r = lock_fs(md);
2734		if (r) {
2735			dm_table_presuspend_undo_targets(map);
2736			return r;
2737		}
2738	}
2739
2740	/*
2741	 * Here we must make sure that no processes are submitting requests
2742	 * to target drivers i.e. no one may be executing
2743	 * dm_split_and_process_bio from dm_submit_bio.
2744	 *
2745	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2746	 * we take the write lock. To prevent any process from reentering
2747	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2748	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2749	 * flush_workqueue(md->wq).
2750	 */
2751	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2752	if (map)
2753		synchronize_srcu(&md->io_barrier);
2754
2755	/*
2756	 * Stop md->queue before flushing md->wq in case request-based
2757	 * dm defers requests to md->wq from md->queue.
2758	 */
2759	if (dm_request_based(md))
2760		dm_stop_queue(md->queue);
2761
2762	flush_workqueue(md->wq);
2763
2764	/*
2765	 * At this point no more requests are entering target request routines.
2766	 * We call dm_wait_for_completion to wait for all existing requests
2767	 * to finish.
2768	 */
2769	r = dm_wait_for_completion(md, task_state);
2770	if (!r)
2771		set_bit(dmf_suspended_flag, &md->flags);
2772
2773	if (noflush)
2774		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2775	if (map)
2776		synchronize_srcu(&md->io_barrier);
2777
2778	/* were we interrupted ? */
2779	if (r < 0) {
2780		dm_queue_flush(md);
2781
2782		if (dm_request_based(md))
2783			dm_start_queue(md->queue);
2784
2785		unlock_fs(md);
2786		dm_table_presuspend_undo_targets(map);
2787		/* pushback list is already flushed, so skip flush */
2788	}
2789
2790	return r;
2791}
2792
2793/*
2794 * We need to be able to change a mapping table under a mounted
2795 * filesystem.  For example we might want to move some data in
2796 * the background.  Before the table can be swapped with
2797 * dm_bind_table, dm_suspend must be called to flush any in
2798 * flight bios and ensure that any further io gets deferred.
2799 */
2800/*
2801 * Suspend mechanism in request-based dm.
2802 *
2803 * 1. Flush all I/Os by lock_fs() if needed.
2804 * 2. Stop dispatching any I/O by stopping the request_queue.
2805 * 3. Wait for all in-flight I/Os to be completed or requeued.
2806 *
2807 * To abort suspend, start the request_queue.
2808 */
2809int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2810{
2811	struct dm_table *map = NULL;
2812	int r = 0;
2813
2814retry:
2815	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2816
2817	if (dm_suspended_md(md)) {
2818		r = -EINVAL;
2819		goto out_unlock;
2820	}
2821
2822	if (dm_suspended_internally_md(md)) {
2823		/* already internally suspended, wait for internal resume */
2824		mutex_unlock(&md->suspend_lock);
2825		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2826		if (r)
2827			return r;
2828		goto retry;
2829	}
2830
2831	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2832	if (!map) {
2833		/* avoid deadlock with fs/namespace.c:do_mount() */
2834		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2835	}
2836
2837	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2838	if (r)
2839		goto out_unlock;
2840
2841	set_bit(DMF_POST_SUSPENDING, &md->flags);
2842	dm_table_postsuspend_targets(map);
2843	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2844
2845out_unlock:
2846	mutex_unlock(&md->suspend_lock);
2847	return r;
2848}
2849
2850static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2851{
2852	if (map) {
2853		int r = dm_table_resume_targets(map);
2854
2855		if (r)
2856			return r;
2857	}
2858
2859	dm_queue_flush(md);
2860
2861	/*
2862	 * Flushing deferred I/Os must be done after targets are resumed
2863	 * so that mapping of targets can work correctly.
2864	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2865	 */
2866	if (dm_request_based(md))
2867		dm_start_queue(md->queue);
2868
2869	unlock_fs(md);
2870
2871	return 0;
2872}
2873
2874int dm_resume(struct mapped_device *md)
2875{
2876	int r;
2877	struct dm_table *map = NULL;
2878
2879retry:
2880	r = -EINVAL;
2881	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2882
2883	if (!dm_suspended_md(md))
2884		goto out;
2885
2886	if (dm_suspended_internally_md(md)) {
2887		/* already internally suspended, wait for internal resume */
2888		mutex_unlock(&md->suspend_lock);
2889		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2890		if (r)
2891			return r;
2892		goto retry;
2893	}
2894
2895	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2896	if (!map || !dm_table_get_size(map))
2897		goto out;
2898
2899	r = __dm_resume(md, map);
2900	if (r)
2901		goto out;
2902
2903	clear_bit(DMF_SUSPENDED, &md->flags);
2904out:
2905	mutex_unlock(&md->suspend_lock);
2906
2907	return r;
2908}
2909
2910/*
2911 * Internal suspend/resume works like userspace-driven suspend. It waits
2912 * until all bios finish and prevents issuing new bios to the target drivers.
2913 * It may be used only from the kernel.
2914 */
2915
2916static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2917{
2918	struct dm_table *map = NULL;
2919
2920	lockdep_assert_held(&md->suspend_lock);
2921
2922	if (md->internal_suspend_count++)
2923		return; /* nested internal suspend */
2924
2925	if (dm_suspended_md(md)) {
2926		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2927		return; /* nest suspend */
2928	}
2929
2930	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2931
2932	/*
2933	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2934	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2935	 * would require changing .presuspend to return an error -- avoid this
2936	 * until there is a need for more elaborate variants of internal suspend.
2937	 */
2938	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2939			    DMF_SUSPENDED_INTERNALLY);
2940
2941	set_bit(DMF_POST_SUSPENDING, &md->flags);
2942	dm_table_postsuspend_targets(map);
2943	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2944}
2945
2946static void __dm_internal_resume(struct mapped_device *md)
2947{
 
 
 
2948	BUG_ON(!md->internal_suspend_count);
2949
2950	if (--md->internal_suspend_count)
2951		return; /* resume from nested internal suspend */
2952
2953	if (dm_suspended_md(md))
2954		goto done; /* resume from nested suspend */
2955
2956	/*
2957	 * NOTE: existing callers don't need to call dm_table_resume_targets
2958	 * (which may fail -- so best to avoid it for now by passing NULL map)
2959	 */
2960	(void) __dm_resume(md, NULL);
2961
 
 
 
 
 
 
 
 
 
 
 
2962done:
2963	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2964	smp_mb__after_atomic();
2965	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2966}
2967
2968void dm_internal_suspend_noflush(struct mapped_device *md)
2969{
2970	mutex_lock(&md->suspend_lock);
2971	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2972	mutex_unlock(&md->suspend_lock);
2973}
2974EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2975
2976void dm_internal_resume(struct mapped_device *md)
2977{
2978	mutex_lock(&md->suspend_lock);
2979	__dm_internal_resume(md);
2980	mutex_unlock(&md->suspend_lock);
2981}
2982EXPORT_SYMBOL_GPL(dm_internal_resume);
2983
2984/*
2985 * Fast variants of internal suspend/resume hold md->suspend_lock,
2986 * which prevents interaction with userspace-driven suspend.
2987 */
2988
2989void dm_internal_suspend_fast(struct mapped_device *md)
2990{
2991	mutex_lock(&md->suspend_lock);
2992	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2993		return;
2994
2995	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2996	synchronize_srcu(&md->io_barrier);
2997	flush_workqueue(md->wq);
2998	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2999}
3000EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3001
3002void dm_internal_resume_fast(struct mapped_device *md)
3003{
3004	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3005		goto done;
3006
3007	dm_queue_flush(md);
3008
3009done:
3010	mutex_unlock(&md->suspend_lock);
3011}
3012EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3013
3014/*
3015 *---------------------------------------------------------------
3016 * Event notification.
3017 *---------------------------------------------------------------
3018 */
3019int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3020		      unsigned int cookie, bool need_resize_uevent)
3021{
3022	int r;
3023	unsigned int noio_flag;
3024	char udev_cookie[DM_COOKIE_LENGTH];
3025	char *envp[3] = { NULL, NULL, NULL };
3026	char **envpp = envp;
3027	if (cookie) {
3028		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3029			 DM_COOKIE_ENV_VAR_NAME, cookie);
3030		*envpp++ = udev_cookie;
3031	}
3032	if (need_resize_uevent) {
3033		*envpp++ = "RESIZE=1";
3034	}
3035
3036	noio_flag = memalloc_noio_save();
3037
3038	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3039
3040	memalloc_noio_restore(noio_flag);
3041
3042	return r;
3043}
3044
3045uint32_t dm_next_uevent_seq(struct mapped_device *md)
3046{
3047	return atomic_add_return(1, &md->uevent_seq);
3048}
3049
3050uint32_t dm_get_event_nr(struct mapped_device *md)
3051{
3052	return atomic_read(&md->event_nr);
3053}
3054
3055int dm_wait_event(struct mapped_device *md, int event_nr)
3056{
3057	return wait_event_interruptible(md->eventq,
3058			(event_nr != atomic_read(&md->event_nr)));
3059}
3060
3061void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3062{
3063	unsigned long flags;
3064
3065	spin_lock_irqsave(&md->uevent_lock, flags);
3066	list_add(elist, &md->uevent_list);
3067	spin_unlock_irqrestore(&md->uevent_lock, flags);
3068}
3069
3070/*
3071 * The gendisk is only valid as long as you have a reference
3072 * count on 'md'.
3073 */
3074struct gendisk *dm_disk(struct mapped_device *md)
3075{
3076	return md->disk;
3077}
3078EXPORT_SYMBOL_GPL(dm_disk);
3079
3080struct kobject *dm_kobject(struct mapped_device *md)
3081{
3082	return &md->kobj_holder.kobj;
3083}
3084
3085struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3086{
3087	struct mapped_device *md;
3088
3089	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3090
3091	spin_lock(&_minor_lock);
3092	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3093		md = NULL;
3094		goto out;
3095	}
3096	dm_get(md);
3097out:
3098	spin_unlock(&_minor_lock);
3099
3100	return md;
3101}
3102
3103int dm_suspended_md(struct mapped_device *md)
3104{
3105	return test_bit(DMF_SUSPENDED, &md->flags);
3106}
3107
3108static int dm_post_suspending_md(struct mapped_device *md)
3109{
3110	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3111}
3112
3113int dm_suspended_internally_md(struct mapped_device *md)
3114{
3115	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3116}
3117
3118int dm_test_deferred_remove_flag(struct mapped_device *md)
3119{
3120	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3121}
3122
3123int dm_suspended(struct dm_target *ti)
3124{
3125	return dm_suspended_md(ti->table->md);
3126}
3127EXPORT_SYMBOL_GPL(dm_suspended);
3128
3129int dm_post_suspending(struct dm_target *ti)
3130{
3131	return dm_post_suspending_md(ti->table->md);
3132}
3133EXPORT_SYMBOL_GPL(dm_post_suspending);
3134
3135int dm_noflush_suspending(struct dm_target *ti)
3136{
3137	return __noflush_suspending(ti->table->md);
3138}
3139EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3140
3141void dm_free_md_mempools(struct dm_md_mempools *pools)
3142{
3143	if (!pools)
3144		return;
3145
3146	bioset_exit(&pools->bs);
3147	bioset_exit(&pools->io_bs);
3148
3149	kfree(pools);
3150}
3151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3152struct dm_pr {
3153	u64	old_key;
3154	u64	new_key;
3155	u32	flags;
3156	bool	abort;
3157	bool	fail_early;
3158	int	ret;
3159	enum pr_type type;
3160	struct pr_keys *read_keys;
3161	struct pr_held_reservation *rsv;
3162};
3163
3164static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3165		      struct dm_pr *pr)
3166{
3167	struct mapped_device *md = bdev->bd_disk->private_data;
3168	struct dm_table *table;
3169	struct dm_target *ti;
3170	int ret = -ENOTTY, srcu_idx;
3171
3172	table = dm_get_live_table(md, &srcu_idx);
3173	if (!table || !dm_table_get_size(table))
3174		goto out;
3175
3176	/* We only support devices that have a single target */
3177	if (table->num_targets != 1)
3178		goto out;
3179	ti = dm_table_get_target(table, 0);
3180
3181	if (dm_suspended_md(md)) {
3182		ret = -EAGAIN;
3183		goto out;
3184	}
3185
3186	ret = -EINVAL;
3187	if (!ti->type->iterate_devices)
3188		goto out;
3189
3190	ti->type->iterate_devices(ti, fn, pr);
3191	ret = 0;
3192out:
3193	dm_put_live_table(md, srcu_idx);
3194	return ret;
3195}
3196
3197/*
3198 * For register / unregister we need to manually call out to every path.
3199 */
3200static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3201			    sector_t start, sector_t len, void *data)
3202{
3203	struct dm_pr *pr = data;
3204	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3205	int ret;
3206
3207	if (!ops || !ops->pr_register) {
3208		pr->ret = -EOPNOTSUPP;
3209		return -1;
3210	}
3211
3212	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3213	if (!ret)
3214		return 0;
3215
3216	if (!pr->ret)
3217		pr->ret = ret;
3218
3219	if (pr->fail_early)
3220		return -1;
3221
3222	return 0;
3223}
3224
3225static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3226			  u32 flags)
3227{
3228	struct dm_pr pr = {
3229		.old_key	= old_key,
3230		.new_key	= new_key,
3231		.flags		= flags,
3232		.fail_early	= true,
3233		.ret		= 0,
3234	};
3235	int ret;
3236
3237	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3238	if (ret) {
3239		/* Didn't even get to register a path */
3240		return ret;
3241	}
3242
3243	if (!pr.ret)
3244		return 0;
3245	ret = pr.ret;
3246
3247	if (!new_key)
3248		return ret;
3249
3250	/* unregister all paths if we failed to register any path */
3251	pr.old_key = new_key;
3252	pr.new_key = 0;
3253	pr.flags = 0;
3254	pr.fail_early = false;
3255	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3256	return ret;
3257}
3258
3259
3260static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3261			   sector_t start, sector_t len, void *data)
3262{
3263	struct dm_pr *pr = data;
3264	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3265
3266	if (!ops || !ops->pr_reserve) {
3267		pr->ret = -EOPNOTSUPP;
3268		return -1;
3269	}
3270
3271	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3272	if (!pr->ret)
3273		return -1;
3274
3275	return 0;
3276}
3277
3278static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3279			 u32 flags)
3280{
3281	struct dm_pr pr = {
3282		.old_key	= key,
3283		.flags		= flags,
3284		.type		= type,
3285		.fail_early	= false,
3286		.ret		= 0,
3287	};
3288	int ret;
3289
3290	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3291	if (ret)
3292		return ret;
3293
3294	return pr.ret;
3295}
3296
3297/*
3298 * If there is a non-All Registrants type of reservation, the release must be
3299 * sent down the holding path. For the cases where there is no reservation or
3300 * the path is not the holder the device will also return success, so we must
3301 * try each path to make sure we got the correct path.
3302 */
3303static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3304			   sector_t start, sector_t len, void *data)
3305{
3306	struct dm_pr *pr = data;
3307	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3308
3309	if (!ops || !ops->pr_release) {
3310		pr->ret = -EOPNOTSUPP;
3311		return -1;
3312	}
3313
3314	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3315	if (pr->ret)
3316		return -1;
3317
3318	return 0;
3319}
3320
3321static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3322{
3323	struct dm_pr pr = {
3324		.old_key	= key,
3325		.type		= type,
3326		.fail_early	= false,
3327	};
3328	int ret;
3329
3330	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3331	if (ret)
3332		return ret;
3333
3334	return pr.ret;
3335}
3336
3337static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3338			   sector_t start, sector_t len, void *data)
3339{
3340	struct dm_pr *pr = data;
3341	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3342
3343	if (!ops || !ops->pr_preempt) {
3344		pr->ret = -EOPNOTSUPP;
3345		return -1;
3346	}
3347
3348	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3349				  pr->abort);
3350	if (!pr->ret)
3351		return -1;
3352
3353	return 0;
3354}
3355
3356static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3357			 enum pr_type type, bool abort)
3358{
3359	struct dm_pr pr = {
3360		.new_key	= new_key,
3361		.old_key	= old_key,
3362		.type		= type,
3363		.fail_early	= false,
3364	};
3365	int ret;
3366
3367	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3368	if (ret)
3369		return ret;
3370
3371	return pr.ret;
3372}
3373
3374static int dm_pr_clear(struct block_device *bdev, u64 key)
3375{
3376	struct mapped_device *md = bdev->bd_disk->private_data;
3377	const struct pr_ops *ops;
3378	int r, srcu_idx;
3379
3380	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3381	if (r < 0)
3382		goto out;
3383
3384	ops = bdev->bd_disk->fops->pr_ops;
3385	if (ops && ops->pr_clear)
3386		r = ops->pr_clear(bdev, key);
3387	else
3388		r = -EOPNOTSUPP;
3389out:
3390	dm_unprepare_ioctl(md, srcu_idx);
3391	return r;
3392}
3393
3394static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3395			     sector_t start, sector_t len, void *data)
3396{
3397	struct dm_pr *pr = data;
3398	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3399
3400	if (!ops || !ops->pr_read_keys) {
3401		pr->ret = -EOPNOTSUPP;
3402		return -1;
3403	}
3404
3405	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3406	if (!pr->ret)
3407		return -1;
3408
3409	return 0;
3410}
3411
3412static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3413{
3414	struct dm_pr pr = {
3415		.read_keys = keys,
3416	};
3417	int ret;
3418
3419	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3420	if (ret)
3421		return ret;
3422
3423	return pr.ret;
3424}
3425
3426static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3427				    sector_t start, sector_t len, void *data)
3428{
3429	struct dm_pr *pr = data;
3430	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3431
3432	if (!ops || !ops->pr_read_reservation) {
3433		pr->ret = -EOPNOTSUPP;
3434		return -1;
3435	}
3436
3437	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3438	if (!pr->ret)
3439		return -1;
3440
3441	return 0;
3442}
3443
3444static int dm_pr_read_reservation(struct block_device *bdev,
3445				  struct pr_held_reservation *rsv)
3446{
3447	struct dm_pr pr = {
3448		.rsv = rsv,
3449	};
3450	int ret;
3451
3452	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3453	if (ret)
3454		return ret;
3455
3456	return pr.ret;
3457}
3458
3459static const struct pr_ops dm_pr_ops = {
3460	.pr_register	= dm_pr_register,
3461	.pr_reserve	= dm_pr_reserve,
3462	.pr_release	= dm_pr_release,
3463	.pr_preempt	= dm_pr_preempt,
3464	.pr_clear	= dm_pr_clear,
3465	.pr_read_keys	= dm_pr_read_keys,
3466	.pr_read_reservation = dm_pr_read_reservation,
3467};
3468
3469static const struct block_device_operations dm_blk_dops = {
3470	.submit_bio = dm_submit_bio,
3471	.poll_bio = dm_poll_bio,
3472	.open = dm_blk_open,
3473	.release = dm_blk_close,
3474	.ioctl = dm_blk_ioctl,
3475	.getgeo = dm_blk_getgeo,
3476	.report_zones = dm_blk_report_zones,
 
3477	.pr_ops = &dm_pr_ops,
3478	.owner = THIS_MODULE
3479};
3480
3481static const struct block_device_operations dm_rq_blk_dops = {
3482	.open = dm_blk_open,
3483	.release = dm_blk_close,
3484	.ioctl = dm_blk_ioctl,
3485	.getgeo = dm_blk_getgeo,
 
3486	.pr_ops = &dm_pr_ops,
3487	.owner = THIS_MODULE
3488};
3489
3490static const struct dax_operations dm_dax_ops = {
3491	.direct_access = dm_dax_direct_access,
3492	.zero_page_range = dm_dax_zero_page_range,
3493	.recovery_write = dm_dax_recovery_write,
3494};
3495
3496/*
3497 * module hooks
3498 */
3499module_init(dm_init);
3500module_exit(dm_exit);
3501
3502module_param(major, uint, 0);
3503MODULE_PARM_DESC(major, "The major number of the device mapper");
3504
3505module_param(reserved_bio_based_ios, uint, 0644);
3506MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3507
3508module_param(dm_numa_node, int, 0644);
3509MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3510
3511module_param(swap_bios, int, 0644);
3512MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3513
3514MODULE_DESCRIPTION(DM_NAME " driver");
3515MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3516MODULE_LICENSE("GPL");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include "dm-core.h"
  10#include "dm-rq.h"
  11#include "dm-uevent.h"
  12#include "dm-ima.h"
  13
  14#include <linux/bio-integrity.h>
  15#include <linux/init.h>
  16#include <linux/module.h>
  17#include <linux/mutex.h>
  18#include <linux/sched/mm.h>
  19#include <linux/sched/signal.h>
  20#include <linux/blkpg.h>
  21#include <linux/bio.h>
  22#include <linux/mempool.h>
  23#include <linux/dax.h>
  24#include <linux/slab.h>
  25#include <linux/idr.h>
  26#include <linux/uio.h>
  27#include <linux/hdreg.h>
  28#include <linux/delay.h>
  29#include <linux/wait.h>
  30#include <linux/pr.h>
  31#include <linux/refcount.h>
  32#include <linux/part_stat.h>
  33#include <linux/blk-crypto.h>
  34#include <linux/blk-crypto-profile.h>
  35
  36#define DM_MSG_PREFIX "core"
  37
  38/*
  39 * Cookies are numeric values sent with CHANGE and REMOVE
  40 * uevents while resuming, removing or renaming the device.
  41 */
  42#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  43#define DM_COOKIE_LENGTH 24
  44
  45/*
  46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
  47 * dm_io into one list, and reuse bio->bi_private as the list head. Before
  48 * ending this fs bio, we will recover its ->bi_private.
  49 */
  50#define REQ_DM_POLL_LIST	REQ_DRV
  51
  52static const char *_name = DM_NAME;
  53
  54static unsigned int major;
  55static unsigned int _major;
  56
  57static DEFINE_IDR(_minor_idr);
  58
  59static DEFINE_SPINLOCK(_minor_lock);
  60
  61static void do_deferred_remove(struct work_struct *w);
  62
  63static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  64
  65static struct workqueue_struct *deferred_remove_workqueue;
  66
  67atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  68DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  69
  70void dm_issue_global_event(void)
  71{
  72	atomic_inc(&dm_global_event_nr);
  73	wake_up(&dm_global_eventq);
  74}
  75
  76DEFINE_STATIC_KEY_FALSE(stats_enabled);
  77DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
  78DEFINE_STATIC_KEY_FALSE(zoned_enabled);
  79
  80/*
  81 * One of these is allocated (on-stack) per original bio.
  82 */
  83struct clone_info {
  84	struct dm_table *map;
  85	struct bio *bio;
  86	struct dm_io *io;
  87	sector_t sector;
  88	unsigned int sector_count;
  89	bool is_abnormal_io:1;
  90	bool submit_as_polled:1;
  91};
  92
  93static inline struct dm_target_io *clone_to_tio(struct bio *clone)
  94{
  95	return container_of(clone, struct dm_target_io, clone);
  96}
  97
  98void *dm_per_bio_data(struct bio *bio, size_t data_size)
  99{
 100	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
 101		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
 102	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
 103}
 104EXPORT_SYMBOL_GPL(dm_per_bio_data);
 105
 106struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 107{
 108	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 109
 110	if (io->magic == DM_IO_MAGIC)
 111		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
 112	BUG_ON(io->magic != DM_TIO_MAGIC);
 113	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
 114}
 115EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 116
 117unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
 118{
 119	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 120}
 121EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 122
 123#define MINOR_ALLOCED ((void *)-1)
 124
 125#define DM_NUMA_NODE NUMA_NO_NODE
 126static int dm_numa_node = DM_NUMA_NODE;
 127
 128#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 129static int swap_bios = DEFAULT_SWAP_BIOS;
 130static int get_swap_bios(void)
 131{
 132	int latch = READ_ONCE(swap_bios);
 133
 134	if (unlikely(latch <= 0))
 135		latch = DEFAULT_SWAP_BIOS;
 136	return latch;
 137}
 138
 139struct table_device {
 140	struct list_head list;
 141	refcount_t count;
 142	struct dm_dev dm_dev;
 143};
 144
 145/*
 146 * Bio-based DM's mempools' reserved IOs set by the user.
 147 */
 148#define RESERVED_BIO_BASED_IOS		16
 149static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 150
 151static int __dm_get_module_param_int(int *module_param, int min, int max)
 152{
 153	int param = READ_ONCE(*module_param);
 154	int modified_param = 0;
 155	bool modified = true;
 156
 157	if (param < min)
 158		modified_param = min;
 159	else if (param > max)
 160		modified_param = max;
 161	else
 162		modified = false;
 163
 164	if (modified) {
 165		(void)cmpxchg(module_param, param, modified_param);
 166		param = modified_param;
 167	}
 168
 169	return param;
 170}
 171
 172unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
 173{
 174	unsigned int param = READ_ONCE(*module_param);
 175	unsigned int modified_param = 0;
 176
 177	if (!param)
 178		modified_param = def;
 179	else if (param > max)
 180		modified_param = max;
 181
 182	if (modified_param) {
 183		(void)cmpxchg(module_param, param, modified_param);
 184		param = modified_param;
 185	}
 186
 187	return param;
 188}
 189
 190unsigned int dm_get_reserved_bio_based_ios(void)
 191{
 192	return __dm_get_module_param(&reserved_bio_based_ios,
 193				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 194}
 195EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 196
 197static unsigned int dm_get_numa_node(void)
 198{
 199	return __dm_get_module_param_int(&dm_numa_node,
 200					 DM_NUMA_NODE, num_online_nodes() - 1);
 201}
 202
 203static int __init local_init(void)
 204{
 205	int r;
 206
 207	r = dm_uevent_init();
 208	if (r)
 209		return r;
 210
 211	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
 212	if (!deferred_remove_workqueue) {
 213		r = -ENOMEM;
 214		goto out_uevent_exit;
 215	}
 216
 217	_major = major;
 218	r = register_blkdev(_major, _name);
 219	if (r < 0)
 220		goto out_free_workqueue;
 221
 222	if (!_major)
 223		_major = r;
 224
 225	return 0;
 226
 227out_free_workqueue:
 228	destroy_workqueue(deferred_remove_workqueue);
 229out_uevent_exit:
 230	dm_uevent_exit();
 231
 232	return r;
 233}
 234
 235static void local_exit(void)
 236{
 237	destroy_workqueue(deferred_remove_workqueue);
 238
 239	unregister_blkdev(_major, _name);
 240	dm_uevent_exit();
 241
 242	_major = 0;
 243
 244	DMINFO("cleaned up");
 245}
 246
 247static int (*_inits[])(void) __initdata = {
 248	local_init,
 249	dm_target_init,
 250	dm_linear_init,
 251	dm_stripe_init,
 252	dm_io_init,
 253	dm_kcopyd_init,
 254	dm_interface_init,
 255	dm_statistics_init,
 256};
 257
 258static void (*_exits[])(void) = {
 259	local_exit,
 260	dm_target_exit,
 261	dm_linear_exit,
 262	dm_stripe_exit,
 263	dm_io_exit,
 264	dm_kcopyd_exit,
 265	dm_interface_exit,
 266	dm_statistics_exit,
 267};
 268
 269static int __init dm_init(void)
 270{
 271	const int count = ARRAY_SIZE(_inits);
 272	int r, i;
 273
 274#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
 275	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
 276	       " Duplicate IMA measurements will not be recorded in the IMA log.");
 277#endif
 278
 279	for (i = 0; i < count; i++) {
 280		r = _inits[i]();
 281		if (r)
 282			goto bad;
 283	}
 284
 285	return 0;
 286bad:
 287	while (i--)
 288		_exits[i]();
 289
 290	return r;
 291}
 292
 293static void __exit dm_exit(void)
 294{
 295	int i = ARRAY_SIZE(_exits);
 296
 297	while (i--)
 298		_exits[i]();
 299
 300	/*
 301	 * Should be empty by this point.
 302	 */
 303	idr_destroy(&_minor_idr);
 304}
 305
 306/*
 307 * Block device functions
 308 */
 309int dm_deleting_md(struct mapped_device *md)
 310{
 311	return test_bit(DMF_DELETING, &md->flags);
 312}
 313
 314static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
 315{
 316	struct mapped_device *md;
 317
 318	spin_lock(&_minor_lock);
 319
 320	md = disk->private_data;
 321	if (!md)
 322		goto out;
 323
 324	if (test_bit(DMF_FREEING, &md->flags) ||
 325	    dm_deleting_md(md)) {
 326		md = NULL;
 327		goto out;
 328	}
 329
 330	dm_get(md);
 331	atomic_inc(&md->open_count);
 332out:
 333	spin_unlock(&_minor_lock);
 334
 335	return md ? 0 : -ENXIO;
 336}
 337
 338static void dm_blk_close(struct gendisk *disk)
 339{
 340	struct mapped_device *md;
 341
 342	spin_lock(&_minor_lock);
 343
 344	md = disk->private_data;
 345	if (WARN_ON(!md))
 346		goto out;
 347
 348	if (atomic_dec_and_test(&md->open_count) &&
 349	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 350		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 351
 352	dm_put(md);
 353out:
 354	spin_unlock(&_minor_lock);
 355}
 356
 357int dm_open_count(struct mapped_device *md)
 358{
 359	return atomic_read(&md->open_count);
 360}
 361
 362/*
 363 * Guarantees nothing is using the device before it's deleted.
 364 */
 365int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 366{
 367	int r = 0;
 368
 369	spin_lock(&_minor_lock);
 370
 371	if (dm_open_count(md)) {
 372		r = -EBUSY;
 373		if (mark_deferred)
 374			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 375	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 376		r = -EEXIST;
 377	else
 378		set_bit(DMF_DELETING, &md->flags);
 379
 380	spin_unlock(&_minor_lock);
 381
 382	return r;
 383}
 384
 385int dm_cancel_deferred_remove(struct mapped_device *md)
 386{
 387	int r = 0;
 388
 389	spin_lock(&_minor_lock);
 390
 391	if (test_bit(DMF_DELETING, &md->flags))
 392		r = -EBUSY;
 393	else
 394		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 395
 396	spin_unlock(&_minor_lock);
 397
 398	return r;
 399}
 400
 401static void do_deferred_remove(struct work_struct *w)
 402{
 403	dm_deferred_remove();
 404}
 405
 406static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 407{
 408	struct mapped_device *md = bdev->bd_disk->private_data;
 409
 410	return dm_get_geometry(md, geo);
 411}
 412
 413static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 414			    struct block_device **bdev)
 415{
 416	struct dm_target *ti;
 417	struct dm_table *map;
 418	int r;
 419
 420retry:
 421	r = -ENOTTY;
 422	map = dm_get_live_table(md, srcu_idx);
 423	if (!map || !dm_table_get_size(map))
 424		return r;
 425
 426	/* We only support devices that have a single target */
 427	if (map->num_targets != 1)
 428		return r;
 429
 430	ti = dm_table_get_target(map, 0);
 431	if (!ti->type->prepare_ioctl)
 432		return r;
 433
 434	if (dm_suspended_md(md))
 435		return -EAGAIN;
 436
 437	r = ti->type->prepare_ioctl(ti, bdev);
 438	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 439		dm_put_live_table(md, *srcu_idx);
 440		fsleep(10000);
 441		goto retry;
 442	}
 443
 444	return r;
 445}
 446
 447static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 448{
 449	dm_put_live_table(md, srcu_idx);
 450}
 451
 452static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
 453			unsigned int cmd, unsigned long arg)
 454{
 455	struct mapped_device *md = bdev->bd_disk->private_data;
 456	int r, srcu_idx;
 457
 458	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 459	if (r < 0)
 460		goto out;
 461
 462	if (r > 0) {
 463		/*
 464		 * Target determined this ioctl is being issued against a
 465		 * subset of the parent bdev; require extra privileges.
 466		 */
 467		if (!capable(CAP_SYS_RAWIO)) {
 468			DMDEBUG_LIMIT(
 469	"%s: sending ioctl %x to DM device without required privilege.",
 470				current->comm, cmd);
 471			r = -ENOIOCTLCMD;
 472			goto out;
 473		}
 474	}
 475
 476	if (!bdev->bd_disk->fops->ioctl)
 477		r = -ENOTTY;
 478	else
 479		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 480out:
 481	dm_unprepare_ioctl(md, srcu_idx);
 482	return r;
 483}
 484
 485u64 dm_start_time_ns_from_clone(struct bio *bio)
 486{
 487	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
 488}
 489EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 490
 491static inline bool bio_is_flush_with_data(struct bio *bio)
 492{
 493	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
 494}
 495
 496static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
 497{
 498	/*
 499	 * If REQ_PREFLUSH set, don't account payload, it will be
 500	 * submitted (and accounted) after this flush completes.
 501	 */
 502	if (bio_is_flush_with_data(bio))
 503		return 0;
 504	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 505		return io->sectors;
 506	return bio_sectors(bio);
 507}
 508
 509static void dm_io_acct(struct dm_io *io, bool end)
 510{
 511	struct bio *bio = io->orig_bio;
 512
 513	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
 514		if (!end)
 515			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
 516					   io->start_time);
 517		else
 518			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
 519					 dm_io_sectors(io, bio),
 520					 io->start_time);
 521	}
 522
 523	if (static_branch_unlikely(&stats_enabled) &&
 524	    unlikely(dm_stats_used(&io->md->stats))) {
 525		sector_t sector;
 526
 527		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 528			sector = bio_end_sector(bio) - io->sector_offset;
 529		else
 530			sector = bio->bi_iter.bi_sector;
 531
 532		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
 533				    sector, dm_io_sectors(io, bio),
 534				    end, io->start_time, &io->stats_aux);
 535	}
 536}
 537
 538static void __dm_start_io_acct(struct dm_io *io)
 539{
 540	dm_io_acct(io, false);
 541}
 542
 543static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
 544{
 545	/*
 546	 * Ensure IO accounting is only ever started once.
 547	 */
 548	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 549		return;
 550
 551	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
 552	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
 553		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 554	} else {
 555		unsigned long flags;
 556		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
 557		spin_lock_irqsave(&io->lock, flags);
 558		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
 559			spin_unlock_irqrestore(&io->lock, flags);
 560			return;
 561		}
 562		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 563		spin_unlock_irqrestore(&io->lock, flags);
 564	}
 565
 566	__dm_start_io_acct(io);
 567}
 568
 569static void dm_end_io_acct(struct dm_io *io)
 570{
 571	dm_io_acct(io, true);
 572}
 573
 574static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
 575{
 576	struct dm_io *io;
 577	struct dm_target_io *tio;
 578	struct bio *clone;
 579
 580	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
 581	if (unlikely(!clone))
 582		return NULL;
 583	tio = clone_to_tio(clone);
 584	tio->flags = 0;
 585	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
 586	tio->io = NULL;
 587
 588	io = container_of(tio, struct dm_io, tio);
 589	io->magic = DM_IO_MAGIC;
 590	io->status = BLK_STS_OK;
 591
 592	/* one ref is for submission, the other is for completion */
 593	atomic_set(&io->io_count, 2);
 594	this_cpu_inc(*md->pending_io);
 595	io->orig_bio = bio;
 596	io->md = md;
 597	spin_lock_init(&io->lock);
 598	io->start_time = jiffies;
 599	io->flags = 0;
 600	if (blk_queue_io_stat(md->queue))
 601		dm_io_set_flag(io, DM_IO_BLK_STAT);
 602
 603	if (static_branch_unlikely(&stats_enabled) &&
 604	    unlikely(dm_stats_used(&md->stats)))
 605		dm_stats_record_start(&md->stats, &io->stats_aux);
 606
 607	return io;
 608}
 609
 610static void free_io(struct dm_io *io)
 611{
 612	bio_put(&io->tio.clone);
 613}
 614
 615static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 616			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
 617{
 618	struct mapped_device *md = ci->io->md;
 619	struct dm_target_io *tio;
 620	struct bio *clone;
 621
 622	if (!ci->io->tio.io) {
 623		/* the dm_target_io embedded in ci->io is available */
 624		tio = &ci->io->tio;
 625		/* alloc_io() already initialized embedded clone */
 626		clone = &tio->clone;
 627	} else {
 628		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
 629					&md->mempools->bs);
 630		if (!clone)
 631			return NULL;
 632
 633		/* REQ_DM_POLL_LIST shouldn't be inherited */
 634		clone->bi_opf &= ~REQ_DM_POLL_LIST;
 635
 636		tio = clone_to_tio(clone);
 637		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
 638	}
 639
 640	tio->magic = DM_TIO_MAGIC;
 641	tio->io = ci->io;
 642	tio->ti = ti;
 643	tio->target_bio_nr = target_bio_nr;
 644	tio->len_ptr = len;
 645	tio->old_sector = 0;
 646
 647	/* Set default bdev, but target must bio_set_dev() before issuing IO */
 648	clone->bi_bdev = md->disk->part0;
 649	if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
 650		bio_set_dev(clone, md->disk->part0);
 651
 652	if (len) {
 653		clone->bi_iter.bi_size = to_bytes(*len);
 654		if (bio_integrity(clone))
 655			bio_integrity_trim(clone);
 656	}
 657
 658	return clone;
 659}
 660
 661static void free_tio(struct bio *clone)
 662{
 663	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
 664		return;
 665	bio_put(clone);
 666}
 667
 668/*
 669 * Add the bio to the list of deferred io.
 670 */
 671static void queue_io(struct mapped_device *md, struct bio *bio)
 672{
 673	unsigned long flags;
 674
 675	spin_lock_irqsave(&md->deferred_lock, flags);
 676	bio_list_add(&md->deferred, bio);
 677	spin_unlock_irqrestore(&md->deferred_lock, flags);
 678	queue_work(md->wq, &md->work);
 679}
 680
 681/*
 682 * Everyone (including functions in this file), should use this
 683 * function to access the md->map field, and make sure they call
 684 * dm_put_live_table() when finished.
 685 */
 686struct dm_table *dm_get_live_table(struct mapped_device *md,
 687				   int *srcu_idx) __acquires(md->io_barrier)
 688{
 689	*srcu_idx = srcu_read_lock(&md->io_barrier);
 690
 691	return srcu_dereference(md->map, &md->io_barrier);
 692}
 693
 694void dm_put_live_table(struct mapped_device *md,
 695		       int srcu_idx) __releases(md->io_barrier)
 696{
 697	srcu_read_unlock(&md->io_barrier, srcu_idx);
 698}
 699
 700void dm_sync_table(struct mapped_device *md)
 701{
 702	synchronize_srcu(&md->io_barrier);
 703	synchronize_rcu_expedited();
 704}
 705
 706/*
 707 * A fast alternative to dm_get_live_table/dm_put_live_table.
 708 * The caller must not block between these two functions.
 709 */
 710static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 711{
 712	rcu_read_lock();
 713	return rcu_dereference(md->map);
 714}
 715
 716static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 717{
 718	rcu_read_unlock();
 719}
 720
 721static char *_dm_claim_ptr = "I belong to device-mapper";
 722
 723/*
 724 * Open a table device so we can use it as a map destination.
 725 */
 726static struct table_device *open_table_device(struct mapped_device *md,
 727		dev_t dev, blk_mode_t mode)
 728{
 729	struct table_device *td;
 730	struct file *bdev_file;
 731	struct block_device *bdev;
 732	u64 part_off;
 733	int r;
 734
 735	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 736	if (!td)
 737		return ERR_PTR(-ENOMEM);
 738	refcount_set(&td->count, 1);
 739
 740	bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
 741	if (IS_ERR(bdev_file)) {
 742		r = PTR_ERR(bdev_file);
 743		goto out_free_td;
 744	}
 745
 746	bdev = file_bdev(bdev_file);
 747
 748	/*
 749	 * We can be called before the dm disk is added.  In that case we can't
 750	 * register the holder relation here.  It will be done once add_disk was
 751	 * called.
 752	 */
 753	if (md->disk->slave_dir) {
 754		r = bd_link_disk_holder(bdev, md->disk);
 755		if (r)
 756			goto out_blkdev_put;
 757	}
 758
 759	td->dm_dev.mode = mode;
 760	td->dm_dev.bdev = bdev;
 761	td->dm_dev.bdev_file = bdev_file;
 762	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
 763						NULL, NULL);
 764	format_dev_t(td->dm_dev.name, dev);
 765	list_add(&td->list, &md->table_devices);
 766	return td;
 767
 768out_blkdev_put:
 769	__fput_sync(bdev_file);
 770out_free_td:
 771	kfree(td);
 772	return ERR_PTR(r);
 773}
 774
 775/*
 776 * Close a table device that we've been using.
 777 */
 778static void close_table_device(struct table_device *td, struct mapped_device *md)
 779{
 780	if (md->disk->slave_dir)
 781		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
 782
 783	/* Leverage async fput() if DMF_DEFERRED_REMOVE set */
 784	if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 785		fput(td->dm_dev.bdev_file);
 786	else
 787		__fput_sync(td->dm_dev.bdev_file);
 788
 789	put_dax(td->dm_dev.dax_dev);
 790	list_del(&td->list);
 791	kfree(td);
 792}
 793
 794static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 795					      blk_mode_t mode)
 796{
 797	struct table_device *td;
 798
 799	list_for_each_entry(td, l, list)
 800		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 801			return td;
 802
 803	return NULL;
 804}
 805
 806int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
 807			struct dm_dev **result)
 808{
 809	struct table_device *td;
 810
 811	mutex_lock(&md->table_devices_lock);
 812	td = find_table_device(&md->table_devices, dev, mode);
 813	if (!td) {
 814		td = open_table_device(md, dev, mode);
 815		if (IS_ERR(td)) {
 816			mutex_unlock(&md->table_devices_lock);
 817			return PTR_ERR(td);
 818		}
 819	} else {
 820		refcount_inc(&td->count);
 821	}
 822	mutex_unlock(&md->table_devices_lock);
 823
 824	*result = &td->dm_dev;
 825	return 0;
 826}
 827
 828void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 829{
 830	struct table_device *td = container_of(d, struct table_device, dm_dev);
 831
 832	mutex_lock(&md->table_devices_lock);
 833	if (refcount_dec_and_test(&td->count))
 834		close_table_device(td, md);
 835	mutex_unlock(&md->table_devices_lock);
 836}
 837
 838/*
 839 * Get the geometry associated with a dm device
 840 */
 841int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 842{
 843	*geo = md->geometry;
 844
 845	return 0;
 846}
 847
 848/*
 849 * Set the geometry of a device.
 850 */
 851int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 852{
 853	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 854
 855	if (geo->start > sz) {
 856		DMERR("Start sector is beyond the geometry limits.");
 857		return -EINVAL;
 858	}
 859
 860	md->geometry = *geo;
 861
 862	return 0;
 863}
 864
 865static int __noflush_suspending(struct mapped_device *md)
 866{
 867	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 868}
 869
 870static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
 871{
 872	struct mapped_device *md = io->md;
 873
 874	if (first_stage) {
 875		struct dm_io *next = md->requeue_list;
 876
 877		md->requeue_list = io;
 878		io->next = next;
 879	} else {
 880		bio_list_add_head(&md->deferred, io->orig_bio);
 881	}
 882}
 883
 884static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
 885{
 886	if (first_stage)
 887		queue_work(md->wq, &md->requeue_work);
 888	else
 889		queue_work(md->wq, &md->work);
 890}
 891
 892/*
 893 * Return true if the dm_io's original bio is requeued.
 894 * io->status is updated with error if requeue disallowed.
 895 */
 896static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
 897{
 898	struct bio *bio = io->orig_bio;
 899	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
 900	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
 901				     (bio->bi_opf & REQ_POLLED));
 902	struct mapped_device *md = io->md;
 903	bool requeued = false;
 904
 905	if (handle_requeue || handle_polled_eagain) {
 906		unsigned long flags;
 907
 908		if (bio->bi_opf & REQ_POLLED) {
 909			/*
 910			 * Upper layer won't help us poll split bio
 911			 * (io->orig_bio may only reflect a subset of the
 912			 * pre-split original) so clear REQ_POLLED.
 913			 */
 914			bio_clear_polled(bio);
 915		}
 916
 917		/*
 918		 * Target requested pushing back the I/O or
 919		 * polled IO hit BLK_STS_AGAIN.
 920		 */
 921		spin_lock_irqsave(&md->deferred_lock, flags);
 922		if ((__noflush_suspending(md) &&
 923		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
 924		    handle_polled_eagain || first_stage) {
 925			dm_requeue_add_io(io, first_stage);
 926			requeued = true;
 927		} else {
 928			/*
 929			 * noflush suspend was interrupted or this is
 930			 * a write to a zoned target.
 931			 */
 932			io->status = BLK_STS_IOERR;
 933		}
 934		spin_unlock_irqrestore(&md->deferred_lock, flags);
 935	}
 936
 937	if (requeued)
 938		dm_kick_requeue(md, first_stage);
 939
 940	return requeued;
 941}
 942
 943static void __dm_io_complete(struct dm_io *io, bool first_stage)
 944{
 945	struct bio *bio = io->orig_bio;
 946	struct mapped_device *md = io->md;
 947	blk_status_t io_error;
 948	bool requeued;
 949
 950	requeued = dm_handle_requeue(io, first_stage);
 951	if (requeued && first_stage)
 952		return;
 953
 954	io_error = io->status;
 955	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 956		dm_end_io_acct(io);
 957	else if (!io_error) {
 958		/*
 959		 * Must handle target that DM_MAPIO_SUBMITTED only to
 960		 * then bio_endio() rather than dm_submit_bio_remap()
 961		 */
 962		__dm_start_io_acct(io);
 963		dm_end_io_acct(io);
 964	}
 965	free_io(io);
 966	smp_wmb();
 967	this_cpu_dec(*md->pending_io);
 968
 969	/* nudge anyone waiting on suspend queue */
 970	if (unlikely(wq_has_sleeper(&md->wait)))
 971		wake_up(&md->wait);
 972
 973	/* Return early if the original bio was requeued */
 974	if (requeued)
 975		return;
 976
 977	if (bio_is_flush_with_data(bio)) {
 978		/*
 979		 * Preflush done for flush with data, reissue
 980		 * without REQ_PREFLUSH.
 981		 */
 982		bio->bi_opf &= ~REQ_PREFLUSH;
 983		queue_io(md, bio);
 984	} else {
 985		/* done with normal IO or empty flush */
 986		if (io_error)
 987			bio->bi_status = io_error;
 988		bio_endio(bio);
 989	}
 990}
 991
 992static void dm_wq_requeue_work(struct work_struct *work)
 993{
 994	struct mapped_device *md = container_of(work, struct mapped_device,
 995						requeue_work);
 996	unsigned long flags;
 997	struct dm_io *io;
 998
 999	/* reuse deferred lock to simplify dm_handle_requeue */
1000	spin_lock_irqsave(&md->deferred_lock, flags);
1001	io = md->requeue_list;
1002	md->requeue_list = NULL;
1003	spin_unlock_irqrestore(&md->deferred_lock, flags);
1004
1005	while (io) {
1006		struct dm_io *next = io->next;
1007
1008		dm_io_rewind(io, &md->disk->bio_split);
1009
1010		io->next = NULL;
1011		__dm_io_complete(io, false);
1012		io = next;
1013		cond_resched();
1014	}
1015}
1016
1017/*
1018 * Two staged requeue:
1019 *
1020 * 1) io->orig_bio points to the real original bio, and the part mapped to
1021 *    this io must be requeued, instead of other parts of the original bio.
1022 *
1023 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1024 */
1025static void dm_io_complete(struct dm_io *io)
1026{
1027	bool first_requeue;
1028
1029	/*
1030	 * Only dm_io that has been split needs two stage requeue, otherwise
1031	 * we may run into long bio clone chain during suspend and OOM could
1032	 * be triggered.
1033	 *
1034	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1035	 * also aren't handled via the first stage requeue.
1036	 */
1037	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1038		first_requeue = true;
1039	else
1040		first_requeue = false;
1041
1042	__dm_io_complete(io, first_requeue);
1043}
1044
1045/*
1046 * Decrements the number of outstanding ios that a bio has been
1047 * cloned into, completing the original io if necc.
1048 */
1049static inline void __dm_io_dec_pending(struct dm_io *io)
1050{
1051	if (atomic_dec_and_test(&io->io_count))
1052		dm_io_complete(io);
1053}
1054
1055static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1056{
1057	unsigned long flags;
1058
1059	/* Push-back supersedes any I/O errors */
1060	spin_lock_irqsave(&io->lock, flags);
1061	if (!(io->status == BLK_STS_DM_REQUEUE &&
1062	      __noflush_suspending(io->md))) {
1063		io->status = error;
1064	}
1065	spin_unlock_irqrestore(&io->lock, flags);
1066}
1067
1068static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1069{
1070	if (unlikely(error))
1071		dm_io_set_error(io, error);
1072
1073	__dm_io_dec_pending(io);
1074}
1075
1076/*
1077 * The queue_limits are only valid as long as you have a reference
1078 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1079 */
1080static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1081{
1082	return &md->queue->limits;
1083}
1084
1085void disable_discard(struct mapped_device *md)
1086{
1087	struct queue_limits *limits = dm_get_queue_limits(md);
1088
1089	/* device doesn't really support DISCARD, disable it */
1090	limits->max_hw_discard_sectors = 0;
1091}
1092
1093void disable_write_zeroes(struct mapped_device *md)
1094{
1095	struct queue_limits *limits = dm_get_queue_limits(md);
1096
1097	/* device doesn't really support WRITE ZEROES, disable it */
1098	limits->max_write_zeroes_sectors = 0;
1099}
1100
1101static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1102{
1103	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1104}
1105
1106static void clone_endio(struct bio *bio)
1107{
1108	blk_status_t error = bio->bi_status;
1109	struct dm_target_io *tio = clone_to_tio(bio);
1110	struct dm_target *ti = tio->ti;
1111	dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
1112	struct dm_io *io = tio->io;
1113	struct mapped_device *md = io->md;
1114
1115	if (unlikely(error == BLK_STS_TARGET)) {
1116		if (bio_op(bio) == REQ_OP_DISCARD &&
1117		    !bdev_max_discard_sectors(bio->bi_bdev))
1118			disable_discard(md);
1119		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1120			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1121			disable_write_zeroes(md);
1122	}
1123
1124	if (static_branch_unlikely(&zoned_enabled) &&
1125	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1126		dm_zone_endio(io, bio);
1127
1128	if (endio) {
1129		int r = endio(ti, bio, &error);
1130
1131		switch (r) {
1132		case DM_ENDIO_REQUEUE:
1133			if (static_branch_unlikely(&zoned_enabled)) {
1134				/*
1135				 * Requeuing writes to a sequential zone of a zoned
1136				 * target will break the sequential write pattern:
1137				 * fail such IO.
1138				 */
1139				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1140					error = BLK_STS_IOERR;
1141				else
1142					error = BLK_STS_DM_REQUEUE;
1143			} else
1144				error = BLK_STS_DM_REQUEUE;
1145			fallthrough;
1146		case DM_ENDIO_DONE:
1147			break;
1148		case DM_ENDIO_INCOMPLETE:
1149			/* The target will handle the io */
1150			return;
1151		default:
1152			DMCRIT("unimplemented target endio return value: %d", r);
1153			BUG();
1154		}
1155	}
1156
1157	if (static_branch_unlikely(&swap_bios_enabled) &&
1158	    likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
1159		up(&md->swap_bios_semaphore);
1160
1161	free_tio(bio);
1162	dm_io_dec_pending(io, error);
1163}
1164
1165/*
1166 * Return maximum size of I/O possible at the supplied sector up to the current
1167 * target boundary.
1168 */
1169static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1170						  sector_t target_offset)
1171{
1172	return ti->len - target_offset;
1173}
1174
1175static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1176			     unsigned int max_granularity,
1177			     unsigned int max_sectors)
1178{
1179	sector_t target_offset = dm_target_offset(ti, sector);
1180	sector_t len = max_io_len_target_boundary(ti, target_offset);
1181
1182	/*
1183	 * Does the target need to split IO even further?
1184	 * - varied (per target) IO splitting is a tenet of DM; this
1185	 *   explains why stacked chunk_sectors based splitting via
1186	 *   bio_split_to_limits() isn't possible here.
1187	 */
1188	if (!max_granularity)
1189		return len;
1190	return min_t(sector_t, len,
1191		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1192		    blk_boundary_sectors_left(target_offset, max_granularity)));
1193}
1194
1195static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1196{
1197	return __max_io_len(ti, sector, ti->max_io_len, 0);
1198}
1199
1200int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1201{
1202	if (len > UINT_MAX) {
1203		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1204		      (unsigned long long)len, UINT_MAX);
1205		ti->error = "Maximum size of target IO is too large";
1206		return -EINVAL;
1207	}
1208
1209	ti->max_io_len = (uint32_t) len;
1210
1211	return 0;
1212}
1213EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1214
1215static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1216						sector_t sector, int *srcu_idx)
1217	__acquires(md->io_barrier)
1218{
1219	struct dm_table *map;
1220	struct dm_target *ti;
1221
1222	map = dm_get_live_table(md, srcu_idx);
1223	if (!map)
1224		return NULL;
1225
1226	ti = dm_table_find_target(map, sector);
1227	if (!ti)
1228		return NULL;
1229
1230	return ti;
1231}
1232
1233static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1234		long nr_pages, enum dax_access_mode mode, void **kaddr,
1235		pfn_t *pfn)
1236{
1237	struct mapped_device *md = dax_get_private(dax_dev);
1238	sector_t sector = pgoff * PAGE_SECTORS;
1239	struct dm_target *ti;
1240	long len, ret = -EIO;
1241	int srcu_idx;
1242
1243	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1244
1245	if (!ti)
1246		goto out;
1247	if (!ti->type->direct_access)
1248		goto out;
1249	len = max_io_len(ti, sector) / PAGE_SECTORS;
1250	if (len < 1)
1251		goto out;
1252	nr_pages = min(len, nr_pages);
1253	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1254
1255 out:
1256	dm_put_live_table(md, srcu_idx);
1257
1258	return ret;
1259}
1260
1261static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1262				  size_t nr_pages)
1263{
1264	struct mapped_device *md = dax_get_private(dax_dev);
1265	sector_t sector = pgoff * PAGE_SECTORS;
1266	struct dm_target *ti;
1267	int ret = -EIO;
1268	int srcu_idx;
1269
1270	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1271
1272	if (!ti)
1273		goto out;
1274	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1275		/*
1276		 * ->zero_page_range() is mandatory dax operation. If we are
1277		 *  here, something is wrong.
1278		 */
1279		goto out;
1280	}
1281	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1282 out:
1283	dm_put_live_table(md, srcu_idx);
1284
1285	return ret;
1286}
1287
1288static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1289		void *addr, size_t bytes, struct iov_iter *i)
1290{
1291	struct mapped_device *md = dax_get_private(dax_dev);
1292	sector_t sector = pgoff * PAGE_SECTORS;
1293	struct dm_target *ti;
1294	int srcu_idx;
1295	long ret = 0;
1296
1297	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1298	if (!ti || !ti->type->dax_recovery_write)
1299		goto out;
1300
1301	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1302out:
1303	dm_put_live_table(md, srcu_idx);
1304	return ret;
1305}
1306
1307/*
1308 * A target may call dm_accept_partial_bio only from the map routine.  It is
1309 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1310 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1311 * __send_duplicate_bios().
1312 *
1313 * dm_accept_partial_bio informs the dm that the target only wants to process
1314 * additional n_sectors sectors of the bio and the rest of the data should be
1315 * sent in a next bio.
1316 *
1317 * A diagram that explains the arithmetics:
1318 * +--------------------+---------------+-------+
1319 * |         1          |       2       |   3   |
1320 * +--------------------+---------------+-------+
1321 *
1322 * <-------------- *tio->len_ptr --------------->
1323 *                      <----- bio_sectors ----->
1324 *                      <-- n_sectors -->
1325 *
1326 * Region 1 was already iterated over with bio_advance or similar function.
1327 *	(it may be empty if the target doesn't use bio_advance)
1328 * Region 2 is the remaining bio size that the target wants to process.
1329 *	(it may be empty if region 1 is non-empty, although there is no reason
1330 *	 to make it empty)
1331 * The target requires that region 3 is to be sent in the next bio.
1332 *
1333 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1334 * the partially processed part (the sum of regions 1+2) must be the same for all
1335 * copies of the bio.
1336 */
1337void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1338{
1339	struct dm_target_io *tio = clone_to_tio(bio);
1340	struct dm_io *io = tio->io;
1341	unsigned int bio_sectors = bio_sectors(bio);
1342
1343	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1344	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1345	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1346	BUG_ON(bio_sectors > *tio->len_ptr);
1347	BUG_ON(n_sectors > bio_sectors);
1348
1349	*tio->len_ptr -= bio_sectors - n_sectors;
1350	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1351
1352	/*
1353	 * __split_and_process_bio() may have already saved mapped part
1354	 * for accounting but it is being reduced so update accordingly.
1355	 */
1356	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1357	io->sectors = n_sectors;
1358	io->sector_offset = bio_sectors(io->orig_bio);
1359}
1360EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1361
1362/*
1363 * @clone: clone bio that DM core passed to target's .map function
1364 * @tgt_clone: clone of @clone bio that target needs submitted
1365 *
1366 * Targets should use this interface to submit bios they take
1367 * ownership of when returning DM_MAPIO_SUBMITTED.
1368 *
1369 * Target should also enable ti->accounts_remapped_io
1370 */
1371void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1372{
1373	struct dm_target_io *tio = clone_to_tio(clone);
1374	struct dm_io *io = tio->io;
1375
1376	/* establish bio that will get submitted */
1377	if (!tgt_clone)
1378		tgt_clone = clone;
1379
1380	/*
1381	 * Account io->origin_bio to DM dev on behalf of target
1382	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1383	 */
1384	dm_start_io_acct(io, clone);
1385
1386	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1387			      tio->old_sector);
1388	submit_bio_noacct(tgt_clone);
1389}
1390EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1391
1392static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1393{
1394	mutex_lock(&md->swap_bios_lock);
1395	while (latch < md->swap_bios) {
1396		cond_resched();
1397		down(&md->swap_bios_semaphore);
1398		md->swap_bios--;
1399	}
1400	while (latch > md->swap_bios) {
1401		cond_resched();
1402		up(&md->swap_bios_semaphore);
1403		md->swap_bios++;
1404	}
1405	mutex_unlock(&md->swap_bios_lock);
1406}
1407
1408static void __map_bio(struct bio *clone)
1409{
1410	struct dm_target_io *tio = clone_to_tio(clone);
1411	struct dm_target *ti = tio->ti;
1412	struct dm_io *io = tio->io;
1413	struct mapped_device *md = io->md;
1414	int r;
1415
1416	clone->bi_end_io = clone_endio;
1417
1418	/*
1419	 * Map the clone.
1420	 */
1421	tio->old_sector = clone->bi_iter.bi_sector;
1422
1423	if (static_branch_unlikely(&swap_bios_enabled) &&
1424	    unlikely(swap_bios_limit(ti, clone))) {
1425		int latch = get_swap_bios();
1426
1427		if (unlikely(latch != md->swap_bios))
1428			__set_swap_bios_limit(md, latch);
1429		down(&md->swap_bios_semaphore);
1430	}
1431
1432	if (likely(ti->type->map == linear_map))
1433		r = linear_map(ti, clone);
1434	else if (ti->type->map == stripe_map)
1435		r = stripe_map(ti, clone);
1436	else
1437		r = ti->type->map(ti, clone);
 
 
 
 
 
 
 
 
 
 
 
 
 
1438
1439	switch (r) {
1440	case DM_MAPIO_SUBMITTED:
1441		/* target has assumed ownership of this io */
1442		if (!ti->accounts_remapped_io)
1443			dm_start_io_acct(io, clone);
1444		break;
1445	case DM_MAPIO_REMAPPED:
1446		dm_submit_bio_remap(clone, NULL);
1447		break;
1448	case DM_MAPIO_KILL:
1449	case DM_MAPIO_REQUEUE:
1450		if (static_branch_unlikely(&swap_bios_enabled) &&
1451		    unlikely(swap_bios_limit(ti, clone)))
1452			up(&md->swap_bios_semaphore);
1453		free_tio(clone);
1454		if (r == DM_MAPIO_KILL)
1455			dm_io_dec_pending(io, BLK_STS_IOERR);
1456		else
1457			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1458		break;
1459	default:
1460		DMCRIT("unimplemented target map return value: %d", r);
1461		BUG();
1462	}
1463}
1464
1465static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1466{
1467	struct dm_io *io = ci->io;
1468
1469	if (ci->sector_count > len) {
1470		/*
1471		 * Split needed, save the mapped part for accounting.
1472		 * NOTE: dm_accept_partial_bio() will update accordingly.
1473		 */
1474		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1475		io->sectors = len;
1476		io->sector_offset = bio_sectors(ci->bio);
1477	}
1478}
1479
1480static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1481				struct dm_target *ti, unsigned int num_bios,
1482				unsigned *len, gfp_t gfp_flag)
1483{
1484	struct bio *bio;
1485	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1486
1487	for (; try < 2; try++) {
1488		int bio_nr;
1489
1490		if (try && num_bios > 1)
1491			mutex_lock(&ci->io->md->table_devices_lock);
1492		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1493			bio = alloc_tio(ci, ti, bio_nr, len,
1494					try ? GFP_NOIO : GFP_NOWAIT);
1495			if (!bio)
1496				break;
1497
1498			bio_list_add(blist, bio);
1499		}
1500		if (try && num_bios > 1)
1501			mutex_unlock(&ci->io->md->table_devices_lock);
1502		if (bio_nr == num_bios)
1503			return;
1504
1505		while ((bio = bio_list_pop(blist)))
1506			free_tio(bio);
1507	}
1508}
1509
1510static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1511					  unsigned int num_bios, unsigned int *len,
1512					  gfp_t gfp_flag)
1513{
1514	struct bio_list blist = BIO_EMPTY_LIST;
1515	struct bio *clone;
1516	unsigned int ret = 0;
1517
1518	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1519		return 0;
1520
1521	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1522	if (len)
1523		setup_split_accounting(ci, *len);
1524
1525	/*
1526	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1527	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1528	 */
1529	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1530	while ((clone = bio_list_pop(&blist))) {
1531		if (num_bios > 1)
1532			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1533		__map_bio(clone);
1534		ret += 1;
1535	}
1536
1537	return ret;
1538}
1539
1540static void __send_empty_flush(struct clone_info *ci)
1541{
1542	struct dm_table *t = ci->map;
1543	struct bio flush_bio;
1544
1545	/*
1546	 * Use an on-stack bio for this, it's safe since we don't
1547	 * need to reference it after submit. It's just used as
1548	 * the basis for the clone(s).
1549	 */
1550	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1551		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1552
1553	ci->bio = &flush_bio;
1554	ci->sector_count = 0;
1555	ci->io->tio.clone.bi_iter.bi_size = 0;
1556
1557	if (!t->flush_bypasses_map) {
1558		for (unsigned int i = 0; i < t->num_targets; i++) {
1559			unsigned int bios;
1560			struct dm_target *ti = dm_table_get_target(t, i);
1561
1562			if (unlikely(ti->num_flush_bios == 0))
1563				continue;
1564
1565			atomic_add(ti->num_flush_bios, &ci->io->io_count);
1566			bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1567						     NULL, GFP_NOWAIT);
1568			atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1569		}
1570	} else {
1571		/*
1572		 * Note that there's no need to grab t->devices_lock here
1573		 * because the targets that support flush optimization don't
1574		 * modify the list of devices.
1575		 */
1576		struct list_head *devices = dm_table_get_devices(t);
1577		unsigned int len = 0;
1578		struct dm_dev_internal *dd;
1579		list_for_each_entry(dd, devices, list) {
1580			struct bio *clone;
1581			/*
1582			 * Note that the structure dm_target_io is not
1583			 * associated with any target (because the device may be
1584			 * used by multiple targets), so we set tio->ti = NULL.
1585			 * We must check for NULL in the I/O processing path, to
1586			 * avoid NULL pointer dereference.
1587			 */
1588			clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
1589			atomic_add(1, &ci->io->io_count);
1590			bio_set_dev(clone, dd->dm_dev->bdev);
1591			clone->bi_end_io = clone_endio;
1592			dm_submit_bio_remap(clone, NULL);
1593		}
1594	}
1595
1596	/*
1597	 * alloc_io() takes one extra reference for submission, so the
1598	 * reference won't reach 0 without the following subtraction
1599	 */
1600	atomic_sub(1, &ci->io->io_count);
1601
1602	bio_uninit(ci->bio);
1603}
1604
1605static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1606			       unsigned int num_bios, unsigned int max_granularity,
1607			       unsigned int max_sectors)
1608{
1609	unsigned int len, bios;
1610
1611	len = min_t(sector_t, ci->sector_count,
1612		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1613
1614	atomic_add(num_bios, &ci->io->io_count);
1615	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1616	/*
1617	 * alloc_io() takes one extra reference for submission, so the
1618	 * reference won't reach 0 without the following (+1) subtraction
1619	 */
1620	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1621
1622	ci->sector += len;
1623	ci->sector_count -= len;
1624}
1625
1626static bool is_abnormal_io(struct bio *bio)
1627{
1628	switch (bio_op(bio)) {
1629	case REQ_OP_READ:
1630	case REQ_OP_WRITE:
1631	case REQ_OP_FLUSH:
1632		return false;
1633	case REQ_OP_DISCARD:
1634	case REQ_OP_SECURE_ERASE:
1635	case REQ_OP_WRITE_ZEROES:
1636	case REQ_OP_ZONE_RESET_ALL:
1637		return true;
1638	default:
1639		return false;
1640	}
 
 
1641}
1642
1643static blk_status_t __process_abnormal_io(struct clone_info *ci,
1644					  struct dm_target *ti)
1645{
1646	unsigned int num_bios = 0;
1647	unsigned int max_granularity = 0;
1648	unsigned int max_sectors = 0;
1649	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1650
1651	switch (bio_op(ci->bio)) {
1652	case REQ_OP_DISCARD:
1653		num_bios = ti->num_discard_bios;
1654		max_sectors = limits->max_discard_sectors;
1655		if (ti->max_discard_granularity)
1656			max_granularity = max_sectors;
1657		break;
1658	case REQ_OP_SECURE_ERASE:
1659		num_bios = ti->num_secure_erase_bios;
1660		max_sectors = limits->max_secure_erase_sectors;
 
 
1661		break;
1662	case REQ_OP_WRITE_ZEROES:
1663		num_bios = ti->num_write_zeroes_bios;
1664		max_sectors = limits->max_write_zeroes_sectors;
 
 
1665		break;
1666	default:
1667		break;
1668	}
1669
1670	/*
1671	 * Even though the device advertised support for this type of
1672	 * request, that does not mean every target supports it, and
1673	 * reconfiguration might also have changed that since the
1674	 * check was performed.
1675	 */
1676	if (unlikely(!num_bios))
1677		return BLK_STS_NOTSUPP;
1678
1679	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1680
1681	return BLK_STS_OK;
1682}
1683
1684/*
1685 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1686 * associated with this bio, and this bio's bi_private needs to be
1687 * stored in dm_io->data before the reuse.
1688 *
1689 * bio->bi_private is owned by fs or upper layer, so block layer won't
1690 * touch it after splitting. Meantime it won't be changed by anyone after
1691 * bio is submitted. So this reuse is safe.
1692 */
1693static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1694{
1695	return (struct dm_io **)&bio->bi_private;
1696}
1697
1698static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1699{
1700	struct dm_io **head = dm_poll_list_head(bio);
1701
1702	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1703		bio->bi_opf |= REQ_DM_POLL_LIST;
1704		/*
1705		 * Save .bi_private into dm_io, so that we can reuse
1706		 * .bi_private as dm_io list head for storing dm_io list
1707		 */
1708		io->data = bio->bi_private;
1709
1710		/* tell block layer to poll for completion */
1711		bio->bi_cookie = ~BLK_QC_T_NONE;
1712
1713		io->next = NULL;
1714	} else {
1715		/*
1716		 * bio recursed due to split, reuse original poll list,
1717		 * and save bio->bi_private too.
1718		 */
1719		io->data = (*head)->data;
1720		io->next = *head;
1721	}
1722
1723	*head = io;
1724}
1725
1726/*
1727 * Select the correct strategy for processing a non-flush bio.
1728 */
1729static blk_status_t __split_and_process_bio(struct clone_info *ci)
1730{
1731	struct bio *clone;
1732	struct dm_target *ti;
1733	unsigned int len;
1734
1735	ti = dm_table_find_target(ci->map, ci->sector);
1736	if (unlikely(!ti))
1737		return BLK_STS_IOERR;
1738
1739	if (unlikely(ci->is_abnormal_io))
1740		return __process_abnormal_io(ci, ti);
1741
1742	/*
1743	 * Only support bio polling for normal IO, and the target io is
1744	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1745	 */
1746	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1747
1748	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1749	setup_split_accounting(ci, len);
1750
1751	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1752		if (unlikely(!dm_target_supports_nowait(ti->type)))
1753			return BLK_STS_NOTSUPP;
1754
1755		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1756		if (unlikely(!clone))
1757			return BLK_STS_AGAIN;
1758	} else {
1759		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1760	}
1761	__map_bio(clone);
1762
1763	ci->sector += len;
1764	ci->sector_count -= len;
1765
1766	return BLK_STS_OK;
1767}
1768
1769static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1770			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1771{
1772	ci->map = map;
1773	ci->io = io;
1774	ci->bio = bio;
1775	ci->is_abnormal_io = is_abnormal;
1776	ci->submit_as_polled = false;
1777	ci->sector = bio->bi_iter.bi_sector;
1778	ci->sector_count = bio_sectors(bio);
1779
1780	/* Shouldn't happen but sector_count was being set to 0 so... */
1781	if (static_branch_unlikely(&zoned_enabled) &&
1782	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1783		ci->sector_count = 0;
1784}
1785
1786#ifdef CONFIG_BLK_DEV_ZONED
1787static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1788					   struct bio *bio)
1789{
1790	/*
1791	 * For mapped device that need zone append emulation, we must
1792	 * split any large BIO that straddles zone boundaries.
1793	 */
1794	return dm_emulate_zone_append(md) && bio_straddles_zones(bio) &&
1795		!bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
1796}
1797static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1798{
1799	return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0);
1800}
1801
1802static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
1803						   struct dm_target *ti)
1804{
1805	struct bio_list blist = BIO_EMPTY_LIST;
1806	struct mapped_device *md = ci->io->md;
1807	unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
1808	unsigned long *need_reset;
1809	unsigned int i, nr_zones, nr_reset;
1810	unsigned int num_bios = 0;
1811	blk_status_t sts = BLK_STS_OK;
1812	sector_t sector = ti->begin;
1813	struct bio *clone;
1814	int ret;
1815
1816	nr_zones = ti->len >> ilog2(zone_sectors);
1817	need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
1818	if (!need_reset)
1819		return BLK_STS_RESOURCE;
1820
1821	ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
1822				       nr_zones, need_reset);
1823	if (ret) {
1824		sts = BLK_STS_IOERR;
1825		goto free_bitmap;
1826	}
1827
1828	/* If we have no zone to reset, we are done. */
1829	nr_reset = bitmap_weight(need_reset, nr_zones);
1830	if (!nr_reset)
1831		goto free_bitmap;
1832
1833	atomic_add(nr_zones, &ci->io->io_count);
1834
1835	for (i = 0; i < nr_zones; i++) {
1836
1837		if (!test_bit(i, need_reset)) {
1838			sector += zone_sectors;
1839			continue;
1840		}
1841
1842		if (bio_list_empty(&blist)) {
1843			/* This may take a while, so be nice to others */
1844			if (num_bios)
1845				cond_resched();
1846
1847			/*
1848			 * We may need to reset thousands of zones, so let's
1849			 * not go crazy with the clone allocation.
1850			 */
1851			alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
1852					    NULL, GFP_NOIO);
1853		}
1854
1855		/* Get a clone and change it to a regular reset operation. */
1856		clone = bio_list_pop(&blist);
1857		clone->bi_opf &= ~REQ_OP_MASK;
1858		clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
1859		clone->bi_iter.bi_sector = sector;
1860		clone->bi_iter.bi_size = 0;
1861		__map_bio(clone);
1862
1863		sector += zone_sectors;
1864		num_bios++;
1865		nr_reset--;
1866	}
1867
1868	WARN_ON_ONCE(!bio_list_empty(&blist));
1869	atomic_sub(nr_zones - num_bios, &ci->io->io_count);
1870	ci->sector_count = 0;
1871
1872free_bitmap:
1873	bitmap_free(need_reset);
1874
1875	return sts;
1876}
1877
1878static void __send_zone_reset_all_native(struct clone_info *ci,
1879					 struct dm_target *ti)
1880{
1881	unsigned int bios;
1882
1883	atomic_add(1, &ci->io->io_count);
1884	bios = __send_duplicate_bios(ci, ti, 1, NULL, GFP_NOIO);
1885	atomic_sub(1 - bios, &ci->io->io_count);
1886
1887	ci->sector_count = 0;
1888}
1889
1890static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1891{
1892	struct dm_table *t = ci->map;
1893	blk_status_t sts = BLK_STS_OK;
1894
1895	for (unsigned int i = 0; i < t->num_targets; i++) {
1896		struct dm_target *ti = dm_table_get_target(t, i);
1897
1898		if (ti->zone_reset_all_supported) {
1899			__send_zone_reset_all_native(ci, ti);
1900			continue;
1901		}
1902
1903		sts = __send_zone_reset_all_emulated(ci, ti);
1904		if (sts != BLK_STS_OK)
1905			break;
1906	}
1907
1908	/* Release the reference that alloc_io() took for submission. */
1909	atomic_sub(1, &ci->io->io_count);
1910
1911	return sts;
1912}
1913
1914#else
1915static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1916					   struct bio *bio)
1917{
1918	return false;
1919}
1920static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1921{
1922	return false;
1923}
1924static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1925{
1926	return BLK_STS_NOTSUPP;
1927}
1928#endif
1929
1930/*
1931 * Entry point to split a bio into clones and submit them to the targets.
1932 */
1933static void dm_split_and_process_bio(struct mapped_device *md,
1934				     struct dm_table *map, struct bio *bio)
1935{
1936	struct clone_info ci;
1937	struct dm_io *io;
1938	blk_status_t error = BLK_STS_OK;
1939	bool is_abnormal, need_split;
1940
1941	is_abnormal = is_abnormal_io(bio);
1942	if (static_branch_unlikely(&zoned_enabled)) {
1943		/* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */
1944		need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) &&
1945			(is_abnormal || dm_zone_bio_needs_split(md, bio));
1946	} else {
1947		need_split = is_abnormal;
1948	}
1949
1950	if (unlikely(need_split)) {
1951		/*
1952		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1953		 * otherwise associated queue_limits won't be imposed.
1954		 * Also split the BIO for mapped devices needing zone append
1955		 * emulation to ensure that the BIO does not cross zone
1956		 * boundaries.
1957		 */
1958		bio = bio_split_to_limits(bio);
1959		if (!bio)
1960			return;
1961	}
1962
1963	/*
1964	 * Use the block layer zone write plugging for mapped devices that
1965	 * need zone append emulation (e.g. dm-crypt).
1966	 */
1967	if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1968		return;
1969
1970	/* Only support nowait for normal IO */
1971	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1972		io = alloc_io(md, bio, GFP_NOWAIT);
1973		if (unlikely(!io)) {
1974			/* Unable to do anything without dm_io. */
1975			bio_wouldblock_error(bio);
1976			return;
1977		}
1978	} else {
1979		io = alloc_io(md, bio, GFP_NOIO);
1980	}
1981	init_clone_info(&ci, io, map, bio, is_abnormal);
1982
1983	if (bio->bi_opf & REQ_PREFLUSH) {
1984		__send_empty_flush(&ci);
1985		/* dm_io_complete submits any data associated with flush */
1986		goto out;
1987	}
1988
1989	if (static_branch_unlikely(&zoned_enabled) &&
1990	    (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
1991		error = __send_zone_reset_all(&ci);
1992		goto out;
1993	}
1994
1995	error = __split_and_process_bio(&ci);
1996	if (error || !ci.sector_count)
1997		goto out;
1998	/*
1999	 * Remainder must be passed to submit_bio_noacct() so it gets handled
2000	 * *after* bios already submitted have been completely processed.
2001	 */
2002	bio_trim(bio, io->sectors, ci.sector_count);
2003	trace_block_split(bio, bio->bi_iter.bi_sector);
2004	bio_inc_remaining(bio);
2005	submit_bio_noacct(bio);
2006out:
2007	/*
2008	 * Drop the extra reference count for non-POLLED bio, and hold one
2009	 * reference for POLLED bio, which will be released in dm_poll_bio
2010	 *
2011	 * Add every dm_io instance into the dm_io list head which is stored
2012	 * in bio->bi_private, so that dm_poll_bio can poll them all.
2013	 */
2014	if (error || !ci.submit_as_polled) {
2015		/*
2016		 * In case of submission failure, the extra reference for
2017		 * submitting io isn't consumed yet
2018		 */
2019		if (error)
2020			atomic_dec(&io->io_count);
2021		dm_io_dec_pending(io, error);
2022	} else
2023		dm_queue_poll_io(bio, io);
2024}
2025
2026static void dm_submit_bio(struct bio *bio)
2027{
2028	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
2029	int srcu_idx;
2030	struct dm_table *map;
2031
2032	map = dm_get_live_table(md, &srcu_idx);
2033	if (unlikely(!map)) {
2034		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
2035			    dm_device_name(md));
2036		bio_io_error(bio);
2037		goto out;
2038	}
2039
2040	/* If suspended, queue this IO for later */
2041	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
 
2042		if (bio->bi_opf & REQ_NOWAIT)
2043			bio_wouldblock_error(bio);
2044		else if (bio->bi_opf & REQ_RAHEAD)
2045			bio_io_error(bio);
2046		else
2047			queue_io(md, bio);
2048		goto out;
2049	}
2050
2051	dm_split_and_process_bio(md, map, bio);
2052out:
2053	dm_put_live_table(md, srcu_idx);
2054}
2055
2056static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
2057			  unsigned int flags)
2058{
2059	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
2060
2061	/* don't poll if the mapped io is done */
2062	if (atomic_read(&io->io_count) > 1)
2063		bio_poll(&io->tio.clone, iob, flags);
2064
2065	/* bio_poll holds the last reference */
2066	return atomic_read(&io->io_count) == 1;
2067}
2068
2069static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
2070		       unsigned int flags)
2071{
2072	struct dm_io **head = dm_poll_list_head(bio);
2073	struct dm_io *list = *head;
2074	struct dm_io *tmp = NULL;
2075	struct dm_io *curr, *next;
2076
2077	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2078	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
2079		return 0;
2080
2081	WARN_ON_ONCE(!list);
2082
2083	/*
2084	 * Restore .bi_private before possibly completing dm_io.
2085	 *
2086	 * bio_poll() is only possible once @bio has been completely
2087	 * submitted via submit_bio_noacct()'s depth-first submission.
2088	 * So there is no dm_queue_poll_io() race associated with
2089	 * clearing REQ_DM_POLL_LIST here.
2090	 */
2091	bio->bi_opf &= ~REQ_DM_POLL_LIST;
2092	bio->bi_private = list->data;
2093
2094	for (curr = list, next = curr->next; curr; curr = next, next =
2095			curr ? curr->next : NULL) {
2096		if (dm_poll_dm_io(curr, iob, flags)) {
2097			/*
2098			 * clone_endio() has already occurred, so no
2099			 * error handling is needed here.
2100			 */
2101			__dm_io_dec_pending(curr);
2102		} else {
2103			curr->next = tmp;
2104			tmp = curr;
2105		}
2106	}
2107
2108	/* Not done? */
2109	if (tmp) {
2110		bio->bi_opf |= REQ_DM_POLL_LIST;
2111		/* Reset bio->bi_private to dm_io list head */
2112		*head = tmp;
2113		return 0;
2114	}
2115	return 1;
2116}
2117
2118/*
2119 *---------------------------------------------------------------
2120 * An IDR is used to keep track of allocated minor numbers.
2121 *---------------------------------------------------------------
2122 */
2123static void free_minor(int minor)
2124{
2125	spin_lock(&_minor_lock);
2126	idr_remove(&_minor_idr, minor);
2127	spin_unlock(&_minor_lock);
2128}
2129
2130/*
2131 * See if the device with a specific minor # is free.
2132 */
2133static int specific_minor(int minor)
2134{
2135	int r;
2136
2137	if (minor >= (1 << MINORBITS))
2138		return -EINVAL;
2139
2140	idr_preload(GFP_KERNEL);
2141	spin_lock(&_minor_lock);
2142
2143	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2144
2145	spin_unlock(&_minor_lock);
2146	idr_preload_end();
2147	if (r < 0)
2148		return r == -ENOSPC ? -EBUSY : r;
2149	return 0;
2150}
2151
2152static int next_free_minor(int *minor)
2153{
2154	int r;
2155
2156	idr_preload(GFP_KERNEL);
2157	spin_lock(&_minor_lock);
2158
2159	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2160
2161	spin_unlock(&_minor_lock);
2162	idr_preload_end();
2163	if (r < 0)
2164		return r;
2165	*minor = r;
2166	return 0;
2167}
2168
2169static const struct block_device_operations dm_blk_dops;
2170static const struct block_device_operations dm_rq_blk_dops;
2171static const struct dax_operations dm_dax_ops;
2172
2173static void dm_wq_work(struct work_struct *work);
2174
2175#ifdef CONFIG_BLK_INLINE_ENCRYPTION
2176static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2177{
2178	dm_destroy_crypto_profile(q->crypto_profile);
2179}
2180
2181#else /* CONFIG_BLK_INLINE_ENCRYPTION */
2182
2183static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2184{
2185}
2186#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2187
2188static void cleanup_mapped_device(struct mapped_device *md)
2189{
2190	if (md->wq)
2191		destroy_workqueue(md->wq);
2192	dm_free_md_mempools(md->mempools);
2193
2194	if (md->dax_dev) {
2195		dax_remove_host(md->disk);
2196		kill_dax(md->dax_dev);
2197		put_dax(md->dax_dev);
2198		md->dax_dev = NULL;
2199	}
2200
 
2201	if (md->disk) {
2202		spin_lock(&_minor_lock);
2203		md->disk->private_data = NULL;
2204		spin_unlock(&_minor_lock);
2205		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2206			struct table_device *td;
2207
2208			dm_sysfs_exit(md);
2209			list_for_each_entry(td, &md->table_devices, list) {
2210				bd_unlink_disk_holder(td->dm_dev.bdev,
2211						      md->disk);
2212			}
2213
2214			/*
2215			 * Hold lock to make sure del_gendisk() won't concurrent
2216			 * with open/close_table_device().
2217			 */
2218			mutex_lock(&md->table_devices_lock);
2219			del_gendisk(md->disk);
2220			mutex_unlock(&md->table_devices_lock);
2221		}
2222		dm_queue_destroy_crypto_profile(md->queue);
2223		put_disk(md->disk);
2224	}
2225
2226	if (md->pending_io) {
2227		free_percpu(md->pending_io);
2228		md->pending_io = NULL;
2229	}
2230
2231	cleanup_srcu_struct(&md->io_barrier);
2232
2233	mutex_destroy(&md->suspend_lock);
2234	mutex_destroy(&md->type_lock);
2235	mutex_destroy(&md->table_devices_lock);
2236	mutex_destroy(&md->swap_bios_lock);
2237
2238	dm_mq_cleanup_mapped_device(md);
2239}
2240
2241/*
2242 * Allocate and initialise a blank device with a given minor.
2243 */
2244static struct mapped_device *alloc_dev(int minor)
2245{
2246	int r, numa_node_id = dm_get_numa_node();
2247	struct dax_device *dax_dev;
2248	struct mapped_device *md;
2249	void *old_md;
2250
2251	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2252	if (!md) {
2253		DMERR("unable to allocate device, out of memory.");
2254		return NULL;
2255	}
2256
2257	if (!try_module_get(THIS_MODULE))
2258		goto bad_module_get;
2259
2260	/* get a minor number for the dev */
2261	if (minor == DM_ANY_MINOR)
2262		r = next_free_minor(&minor);
2263	else
2264		r = specific_minor(minor);
2265	if (r < 0)
2266		goto bad_minor;
2267
2268	r = init_srcu_struct(&md->io_barrier);
2269	if (r < 0)
2270		goto bad_io_barrier;
2271
2272	md->numa_node_id = numa_node_id;
2273	md->init_tio_pdu = false;
2274	md->type = DM_TYPE_NONE;
2275	mutex_init(&md->suspend_lock);
2276	mutex_init(&md->type_lock);
2277	mutex_init(&md->table_devices_lock);
2278	spin_lock_init(&md->deferred_lock);
2279	atomic_set(&md->holders, 1);
2280	atomic_set(&md->open_count, 0);
2281	atomic_set(&md->event_nr, 0);
2282	atomic_set(&md->uevent_seq, 0);
2283	INIT_LIST_HEAD(&md->uevent_list);
2284	INIT_LIST_HEAD(&md->table_devices);
2285	spin_lock_init(&md->uevent_lock);
2286
2287	/*
2288	 * default to bio-based until DM table is loaded and md->type
2289	 * established. If request-based table is loaded: blk-mq will
2290	 * override accordingly.
2291	 */
2292	md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2293	if (IS_ERR(md->disk)) {
2294		md->disk = NULL;
2295		goto bad;
2296	}
2297	md->queue = md->disk->queue;
2298
2299	init_waitqueue_head(&md->wait);
2300	INIT_WORK(&md->work, dm_wq_work);
2301	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2302	init_waitqueue_head(&md->eventq);
2303	init_completion(&md->kobj_holder.completion);
2304
2305	md->requeue_list = NULL;
2306	md->swap_bios = get_swap_bios();
2307	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2308	mutex_init(&md->swap_bios_lock);
2309
2310	md->disk->major = _major;
2311	md->disk->first_minor = minor;
2312	md->disk->minors = 1;
2313	md->disk->flags |= GENHD_FL_NO_PART;
2314	md->disk->fops = &dm_blk_dops;
2315	md->disk->private_data = md;
2316	sprintf(md->disk->disk_name, "dm-%d", minor);
2317
2318	dax_dev = alloc_dax(md, &dm_dax_ops);
2319	if (IS_ERR(dax_dev)) {
2320		if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
 
2321			goto bad;
2322	} else {
2323		set_dax_nocache(dax_dev);
2324		set_dax_nomc(dax_dev);
2325		md->dax_dev = dax_dev;
2326		if (dax_add_host(dax_dev, md->disk))
2327			goto bad;
2328	}
2329
2330	format_dev_t(md->name, MKDEV(_major, minor));
2331
2332	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2333	if (!md->wq)
2334		goto bad;
2335
2336	md->pending_io = alloc_percpu(unsigned long);
2337	if (!md->pending_io)
2338		goto bad;
2339
2340	r = dm_stats_init(&md->stats);
2341	if (r < 0)
2342		goto bad;
2343
2344	/* Populate the mapping, nobody knows we exist yet */
2345	spin_lock(&_minor_lock);
2346	old_md = idr_replace(&_minor_idr, md, minor);
2347	spin_unlock(&_minor_lock);
2348
2349	BUG_ON(old_md != MINOR_ALLOCED);
2350
2351	return md;
2352
2353bad:
2354	cleanup_mapped_device(md);
2355bad_io_barrier:
2356	free_minor(minor);
2357bad_minor:
2358	module_put(THIS_MODULE);
2359bad_module_get:
2360	kvfree(md);
2361	return NULL;
2362}
2363
2364static void unlock_fs(struct mapped_device *md);
2365
2366static void free_dev(struct mapped_device *md)
2367{
2368	int minor = MINOR(disk_devt(md->disk));
2369
2370	unlock_fs(md);
2371
2372	cleanup_mapped_device(md);
2373
2374	WARN_ON_ONCE(!list_empty(&md->table_devices));
2375	dm_stats_cleanup(&md->stats);
2376	free_minor(minor);
2377
2378	module_put(THIS_MODULE);
2379	kvfree(md);
2380}
2381
2382/*
2383 * Bind a table to the device.
2384 */
2385static void event_callback(void *context)
2386{
2387	unsigned long flags;
2388	LIST_HEAD(uevents);
2389	struct mapped_device *md = context;
2390
2391	spin_lock_irqsave(&md->uevent_lock, flags);
2392	list_splice_init(&md->uevent_list, &uevents);
2393	spin_unlock_irqrestore(&md->uevent_lock, flags);
2394
2395	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2396
2397	atomic_inc(&md->event_nr);
2398	wake_up(&md->eventq);
2399	dm_issue_global_event();
2400}
2401
2402/*
2403 * Returns old map, which caller must destroy.
2404 */
2405static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2406			       struct queue_limits *limits)
2407{
2408	struct dm_table *old_map;
2409	sector_t size;
2410	int ret;
2411
2412	lockdep_assert_held(&md->suspend_lock);
2413
2414	size = dm_table_get_size(t);
2415
2416	/*
2417	 * Wipe any geometry if the size of the table changed.
2418	 */
2419	if (size != dm_get_size(md))
2420		memset(&md->geometry, 0, sizeof(md->geometry));
2421
2422	set_capacity(md->disk, size);
2423
2424	dm_table_event_callback(t, event_callback, md);
2425
2426	if (dm_table_request_based(t)) {
2427		/*
2428		 * Leverage the fact that request-based DM targets are
2429		 * immutable singletons - used to optimize dm_mq_queue_rq.
2430		 */
2431		md->immutable_target = dm_table_get_immutable_target(t);
2432
2433		/*
2434		 * There is no need to reload with request-based dm because the
2435		 * size of front_pad doesn't change.
2436		 *
2437		 * Note for future: If you are to reload bioset, prep-ed
2438		 * requests in the queue may refer to bio from the old bioset,
2439		 * so you must walk through the queue to unprep.
2440		 */
2441		if (!md->mempools) {
2442			md->mempools = t->mempools;
2443			t->mempools = NULL;
2444		}
2445	} else {
2446		/*
2447		 * The md may already have mempools that need changing.
2448		 * If so, reload bioset because front_pad may have changed
2449		 * because a different table was loaded.
2450		 */
2451		dm_free_md_mempools(md->mempools);
2452		md->mempools = t->mempools;
2453		t->mempools = NULL;
2454	}
2455
2456	ret = dm_table_set_restrictions(t, md->queue, limits);
2457	if (ret) {
2458		old_map = ERR_PTR(ret);
2459		goto out;
2460	}
2461
2462	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2463	rcu_assign_pointer(md->map, (void *)t);
2464	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2465
2466	if (old_map)
2467		dm_sync_table(md);
2468out:
2469	return old_map;
2470}
2471
2472/*
2473 * Returns unbound table for the caller to free.
2474 */
2475static struct dm_table *__unbind(struct mapped_device *md)
2476{
2477	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2478
2479	if (!map)
2480		return NULL;
2481
2482	dm_table_event_callback(map, NULL, NULL);
2483	RCU_INIT_POINTER(md->map, NULL);
2484	dm_sync_table(md);
2485
2486	return map;
2487}
2488
2489/*
2490 * Constructor for a new device.
2491 */
2492int dm_create(int minor, struct mapped_device **result)
2493{
2494	struct mapped_device *md;
2495
2496	md = alloc_dev(minor);
2497	if (!md)
2498		return -ENXIO;
2499
2500	dm_ima_reset_data(md);
2501
2502	*result = md;
2503	return 0;
2504}
2505
2506/*
2507 * Functions to manage md->type.
2508 * All are required to hold md->type_lock.
2509 */
2510void dm_lock_md_type(struct mapped_device *md)
2511{
2512	mutex_lock(&md->type_lock);
2513}
2514
2515void dm_unlock_md_type(struct mapped_device *md)
2516{
2517	mutex_unlock(&md->type_lock);
2518}
2519
 
 
 
 
 
 
2520enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2521{
2522	return md->type;
2523}
2524
2525struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2526{
2527	return md->immutable_target_type;
2528}
2529
2530/*
2531 * Setup the DM device's queue based on md's type
2532 */
2533int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2534{
2535	enum dm_queue_mode type = dm_table_get_type(t);
2536	struct queue_limits limits;
2537	struct table_device *td;
2538	int r;
2539
2540	WARN_ON_ONCE(type == DM_TYPE_NONE);
2541
2542	if (type == DM_TYPE_REQUEST_BASED) {
2543		md->disk->fops = &dm_rq_blk_dops;
2544		r = dm_mq_init_request_queue(md, t);
2545		if (r) {
2546			DMERR("Cannot initialize queue for request-based dm mapped device");
2547			return r;
2548		}
 
 
 
 
 
 
 
 
2549	}
2550
2551	r = dm_calculate_queue_limits(t, &limits);
2552	if (r) {
2553		DMERR("Cannot calculate initial queue limits");
2554		return r;
2555	}
2556	r = dm_table_set_restrictions(t, md->queue, &limits);
2557	if (r)
2558		return r;
2559
2560	/*
2561	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2562	 * with open_table_device() and close_table_device().
2563	 */
2564	mutex_lock(&md->table_devices_lock);
2565	r = add_disk(md->disk);
2566	mutex_unlock(&md->table_devices_lock);
2567	if (r)
2568		return r;
2569
2570	/*
2571	 * Register the holder relationship for devices added before the disk
2572	 * was live.
2573	 */
2574	list_for_each_entry(td, &md->table_devices, list) {
2575		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2576		if (r)
2577			goto out_undo_holders;
2578	}
2579
2580	r = dm_sysfs_init(md);
2581	if (r)
2582		goto out_undo_holders;
2583
2584	md->type = type;
2585	return 0;
2586
2587out_undo_holders:
2588	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2589		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2590	mutex_lock(&md->table_devices_lock);
2591	del_gendisk(md->disk);
2592	mutex_unlock(&md->table_devices_lock);
2593	return r;
2594}
2595
2596struct mapped_device *dm_get_md(dev_t dev)
2597{
2598	struct mapped_device *md;
2599	unsigned int minor = MINOR(dev);
2600
2601	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2602		return NULL;
2603
2604	spin_lock(&_minor_lock);
2605
2606	md = idr_find(&_minor_idr, minor);
2607	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2608	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2609		md = NULL;
2610		goto out;
2611	}
2612	dm_get(md);
2613out:
2614	spin_unlock(&_minor_lock);
2615
2616	return md;
2617}
2618EXPORT_SYMBOL_GPL(dm_get_md);
2619
2620void *dm_get_mdptr(struct mapped_device *md)
2621{
2622	return md->interface_ptr;
2623}
2624
2625void dm_set_mdptr(struct mapped_device *md, void *ptr)
2626{
2627	md->interface_ptr = ptr;
2628}
2629
2630void dm_get(struct mapped_device *md)
2631{
2632	atomic_inc(&md->holders);
2633	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2634}
2635
2636int dm_hold(struct mapped_device *md)
2637{
2638	spin_lock(&_minor_lock);
2639	if (test_bit(DMF_FREEING, &md->flags)) {
2640		spin_unlock(&_minor_lock);
2641		return -EBUSY;
2642	}
2643	dm_get(md);
2644	spin_unlock(&_minor_lock);
2645	return 0;
2646}
2647EXPORT_SYMBOL_GPL(dm_hold);
2648
2649const char *dm_device_name(struct mapped_device *md)
2650{
2651	return md->name;
2652}
2653EXPORT_SYMBOL_GPL(dm_device_name);
2654
2655static void __dm_destroy(struct mapped_device *md, bool wait)
2656{
2657	struct dm_table *map;
2658	int srcu_idx;
2659
2660	might_sleep();
2661
2662	spin_lock(&_minor_lock);
2663	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2664	set_bit(DMF_FREEING, &md->flags);
2665	spin_unlock(&_minor_lock);
2666
2667	blk_mark_disk_dead(md->disk);
2668
2669	/*
2670	 * Take suspend_lock so that presuspend and postsuspend methods
2671	 * do not race with internal suspend.
2672	 */
2673	mutex_lock(&md->suspend_lock);
2674	map = dm_get_live_table(md, &srcu_idx);
2675	if (!dm_suspended_md(md)) {
2676		dm_table_presuspend_targets(map);
2677		set_bit(DMF_SUSPENDED, &md->flags);
2678		set_bit(DMF_POST_SUSPENDING, &md->flags);
2679		dm_table_postsuspend_targets(map);
2680	}
2681	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2682	dm_put_live_table(md, srcu_idx);
2683	mutex_unlock(&md->suspend_lock);
2684
2685	/*
2686	 * Rare, but there may be I/O requests still going to complete,
2687	 * for example.  Wait for all references to disappear.
2688	 * No one should increment the reference count of the mapped_device,
2689	 * after the mapped_device state becomes DMF_FREEING.
2690	 */
2691	if (wait)
2692		while (atomic_read(&md->holders))
2693			fsleep(1000);
2694	else if (atomic_read(&md->holders))
2695		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2696		       dm_device_name(md), atomic_read(&md->holders));
2697
2698	dm_table_destroy(__unbind(md));
2699	free_dev(md);
2700}
2701
2702void dm_destroy(struct mapped_device *md)
2703{
2704	__dm_destroy(md, true);
2705}
2706
2707void dm_destroy_immediate(struct mapped_device *md)
2708{
2709	__dm_destroy(md, false);
2710}
2711
2712void dm_put(struct mapped_device *md)
2713{
2714	atomic_dec(&md->holders);
2715}
2716EXPORT_SYMBOL_GPL(dm_put);
2717
2718static bool dm_in_flight_bios(struct mapped_device *md)
2719{
2720	int cpu;
2721	unsigned long sum = 0;
2722
2723	for_each_possible_cpu(cpu)
2724		sum += *per_cpu_ptr(md->pending_io, cpu);
2725
2726	return sum != 0;
2727}
2728
2729static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2730{
2731	int r = 0;
2732	DEFINE_WAIT(wait);
2733
2734	while (true) {
2735		prepare_to_wait(&md->wait, &wait, task_state);
2736
2737		if (!dm_in_flight_bios(md))
2738			break;
2739
2740		if (signal_pending_state(task_state, current)) {
2741			r = -ERESTARTSYS;
2742			break;
2743		}
2744
2745		io_schedule();
2746	}
2747	finish_wait(&md->wait, &wait);
2748
2749	smp_rmb();
2750
2751	return r;
2752}
2753
2754static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2755{
2756	int r = 0;
2757
2758	if (!queue_is_mq(md->queue))
2759		return dm_wait_for_bios_completion(md, task_state);
2760
2761	while (true) {
2762		if (!blk_mq_queue_inflight(md->queue))
2763			break;
2764
2765		if (signal_pending_state(task_state, current)) {
2766			r = -ERESTARTSYS;
2767			break;
2768		}
2769
2770		fsleep(5000);
2771	}
2772
2773	return r;
2774}
2775
2776/*
2777 * Process the deferred bios
2778 */
2779static void dm_wq_work(struct work_struct *work)
2780{
2781	struct mapped_device *md = container_of(work, struct mapped_device, work);
2782	struct bio *bio;
2783
2784	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2785		spin_lock_irq(&md->deferred_lock);
2786		bio = bio_list_pop(&md->deferred);
2787		spin_unlock_irq(&md->deferred_lock);
2788
2789		if (!bio)
2790			break;
2791
2792		submit_bio_noacct(bio);
2793		cond_resched();
2794	}
2795}
2796
2797static void dm_queue_flush(struct mapped_device *md)
2798{
2799	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2800	smp_mb__after_atomic();
2801	queue_work(md->wq, &md->work);
2802}
2803
2804/*
2805 * Swap in a new table, returning the old one for the caller to destroy.
2806 */
2807struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2808{
2809	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2810	struct queue_limits limits;
2811	int r;
2812
2813	mutex_lock(&md->suspend_lock);
2814
2815	/* device must be suspended */
2816	if (!dm_suspended_md(md))
2817		goto out;
2818
2819	/*
2820	 * If the new table has no data devices, retain the existing limits.
2821	 * This helps multipath with queue_if_no_path if all paths disappear,
2822	 * then new I/O is queued based on these limits, and then some paths
2823	 * reappear.
2824	 */
2825	if (dm_table_has_no_data_devices(table)) {
2826		live_map = dm_get_live_table_fast(md);
2827		if (live_map)
2828			limits = md->queue->limits;
2829		dm_put_live_table_fast(md);
2830	}
2831
2832	if (!live_map) {
2833		r = dm_calculate_queue_limits(table, &limits);
2834		if (r) {
2835			map = ERR_PTR(r);
2836			goto out;
2837		}
2838	}
2839
2840	map = __bind(md, table, &limits);
2841	dm_issue_global_event();
2842
2843out:
2844	mutex_unlock(&md->suspend_lock);
2845	return map;
2846}
2847
2848/*
2849 * Functions to lock and unlock any filesystem running on the
2850 * device.
2851 */
2852static int lock_fs(struct mapped_device *md)
2853{
2854	int r;
2855
2856	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2857
2858	r = bdev_freeze(md->disk->part0);
2859	if (!r)
2860		set_bit(DMF_FROZEN, &md->flags);
2861	return r;
2862}
2863
2864static void unlock_fs(struct mapped_device *md)
2865{
2866	if (!test_bit(DMF_FROZEN, &md->flags))
2867		return;
2868	bdev_thaw(md->disk->part0);
2869	clear_bit(DMF_FROZEN, &md->flags);
2870}
2871
2872/*
2873 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2874 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2875 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2876 *
2877 * If __dm_suspend returns 0, the device is completely quiescent
2878 * now. There is no request-processing activity. All new requests
2879 * are being added to md->deferred list.
2880 */
2881static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2882			unsigned int suspend_flags, unsigned int task_state,
2883			int dmf_suspended_flag)
2884{
2885	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2886	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2887	int r;
2888
2889	lockdep_assert_held(&md->suspend_lock);
2890
2891	/*
2892	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2893	 * This flag is cleared before dm_suspend returns.
2894	 */
2895	if (noflush)
2896		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2897	else
2898		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2899
2900	/*
2901	 * This gets reverted if there's an error later and the targets
2902	 * provide the .presuspend_undo hook.
2903	 */
2904	dm_table_presuspend_targets(map);
2905
2906	/*
2907	 * Flush I/O to the device.
2908	 * Any I/O submitted after lock_fs() may not be flushed.
2909	 * noflush takes precedence over do_lockfs.
2910	 * (lock_fs() flushes I/Os and waits for them to complete.)
2911	 */
2912	if (!noflush && do_lockfs) {
2913		r = lock_fs(md);
2914		if (r) {
2915			dm_table_presuspend_undo_targets(map);
2916			return r;
2917		}
2918	}
2919
2920	/*
2921	 * Here we must make sure that no processes are submitting requests
2922	 * to target drivers i.e. no one may be executing
2923	 * dm_split_and_process_bio from dm_submit_bio.
2924	 *
2925	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2926	 * we take the write lock. To prevent any process from reentering
2927	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2928	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2929	 * flush_workqueue(md->wq).
2930	 */
2931	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2932	if (map)
2933		synchronize_srcu(&md->io_barrier);
2934
2935	/*
2936	 * Stop md->queue before flushing md->wq in case request-based
2937	 * dm defers requests to md->wq from md->queue.
2938	 */
2939	if (dm_request_based(md))
2940		dm_stop_queue(md->queue);
2941
2942	flush_workqueue(md->wq);
2943
2944	/*
2945	 * At this point no more requests are entering target request routines.
2946	 * We call dm_wait_for_completion to wait for all existing requests
2947	 * to finish.
2948	 */
2949	r = dm_wait_for_completion(md, task_state);
2950	if (!r)
2951		set_bit(dmf_suspended_flag, &md->flags);
2952
2953	if (noflush)
2954		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2955	if (map)
2956		synchronize_srcu(&md->io_barrier);
2957
2958	/* were we interrupted ? */
2959	if (r < 0) {
2960		dm_queue_flush(md);
2961
2962		if (dm_request_based(md))
2963			dm_start_queue(md->queue);
2964
2965		unlock_fs(md);
2966		dm_table_presuspend_undo_targets(map);
2967		/* pushback list is already flushed, so skip flush */
2968	}
2969
2970	return r;
2971}
2972
2973/*
2974 * We need to be able to change a mapping table under a mounted
2975 * filesystem.  For example we might want to move some data in
2976 * the background.  Before the table can be swapped with
2977 * dm_bind_table, dm_suspend must be called to flush any in
2978 * flight bios and ensure that any further io gets deferred.
2979 */
2980/*
2981 * Suspend mechanism in request-based dm.
2982 *
2983 * 1. Flush all I/Os by lock_fs() if needed.
2984 * 2. Stop dispatching any I/O by stopping the request_queue.
2985 * 3. Wait for all in-flight I/Os to be completed or requeued.
2986 *
2987 * To abort suspend, start the request_queue.
2988 */
2989int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2990{
2991	struct dm_table *map = NULL;
2992	int r = 0;
2993
2994retry:
2995	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2996
2997	if (dm_suspended_md(md)) {
2998		r = -EINVAL;
2999		goto out_unlock;
3000	}
3001
3002	if (dm_suspended_internally_md(md)) {
3003		/* already internally suspended, wait for internal resume */
3004		mutex_unlock(&md->suspend_lock);
3005		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3006		if (r)
3007			return r;
3008		goto retry;
3009	}
3010
3011	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3012	if (!map) {
3013		/* avoid deadlock with fs/namespace.c:do_mount() */
3014		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
3015	}
3016
3017	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3018	if (r)
3019		goto out_unlock;
3020
3021	set_bit(DMF_POST_SUSPENDING, &md->flags);
3022	dm_table_postsuspend_targets(map);
3023	clear_bit(DMF_POST_SUSPENDING, &md->flags);
3024
3025out_unlock:
3026	mutex_unlock(&md->suspend_lock);
3027	return r;
3028}
3029
3030static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3031{
3032	if (map) {
3033		int r = dm_table_resume_targets(map);
3034
3035		if (r)
3036			return r;
3037	}
3038
3039	dm_queue_flush(md);
3040
3041	/*
3042	 * Flushing deferred I/Os must be done after targets are resumed
3043	 * so that mapping of targets can work correctly.
3044	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3045	 */
3046	if (dm_request_based(md))
3047		dm_start_queue(md->queue);
3048
3049	unlock_fs(md);
3050
3051	return 0;
3052}
3053
3054int dm_resume(struct mapped_device *md)
3055{
3056	int r;
3057	struct dm_table *map = NULL;
3058
3059retry:
3060	r = -EINVAL;
3061	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3062
3063	if (!dm_suspended_md(md))
3064		goto out;
3065
3066	if (dm_suspended_internally_md(md)) {
3067		/* already internally suspended, wait for internal resume */
3068		mutex_unlock(&md->suspend_lock);
3069		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3070		if (r)
3071			return r;
3072		goto retry;
3073	}
3074
3075	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3076	if (!map || !dm_table_get_size(map))
3077		goto out;
3078
3079	r = __dm_resume(md, map);
3080	if (r)
3081		goto out;
3082
3083	clear_bit(DMF_SUSPENDED, &md->flags);
3084out:
3085	mutex_unlock(&md->suspend_lock);
3086
3087	return r;
3088}
3089
3090/*
3091 * Internal suspend/resume works like userspace-driven suspend. It waits
3092 * until all bios finish and prevents issuing new bios to the target drivers.
3093 * It may be used only from the kernel.
3094 */
3095
3096static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
3097{
3098	struct dm_table *map = NULL;
3099
3100	lockdep_assert_held(&md->suspend_lock);
3101
3102	if (md->internal_suspend_count++)
3103		return; /* nested internal suspend */
3104
3105	if (dm_suspended_md(md)) {
3106		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3107		return; /* nest suspend */
3108	}
3109
3110	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3111
3112	/*
3113	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3114	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3115	 * would require changing .presuspend to return an error -- avoid this
3116	 * until there is a need for more elaborate variants of internal suspend.
3117	 */
3118	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3119			    DMF_SUSPENDED_INTERNALLY);
3120
3121	set_bit(DMF_POST_SUSPENDING, &md->flags);
3122	dm_table_postsuspend_targets(map);
3123	clear_bit(DMF_POST_SUSPENDING, &md->flags);
3124}
3125
3126static void __dm_internal_resume(struct mapped_device *md)
3127{
3128	int r;
3129	struct dm_table *map;
3130
3131	BUG_ON(!md->internal_suspend_count);
3132
3133	if (--md->internal_suspend_count)
3134		return; /* resume from nested internal suspend */
3135
3136	if (dm_suspended_md(md))
3137		goto done; /* resume from nested suspend */
3138
3139	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3140	r = __dm_resume(md, map);
3141	if (r) {
3142		/*
3143		 * If a preresume method of some target failed, we are in a
3144		 * tricky situation. We can't return an error to the caller. We
3145		 * can't fake success because then the "resume" and
3146		 * "postsuspend" methods would not be paired correctly, and it
3147		 * would break various targets, for example it would cause list
3148		 * corruption in the "origin" target.
3149		 *
3150		 * So, we fake normal suspend here, to make sure that the
3151		 * "resume" and "postsuspend" methods will be paired correctly.
3152		 */
3153		DMERR("Preresume method failed: %d", r);
3154		set_bit(DMF_SUSPENDED, &md->flags);
3155	}
3156done:
3157	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3158	smp_mb__after_atomic();
3159	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3160}
3161
3162void dm_internal_suspend_noflush(struct mapped_device *md)
3163{
3164	mutex_lock(&md->suspend_lock);
3165	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3166	mutex_unlock(&md->suspend_lock);
3167}
3168EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3169
3170void dm_internal_resume(struct mapped_device *md)
3171{
3172	mutex_lock(&md->suspend_lock);
3173	__dm_internal_resume(md);
3174	mutex_unlock(&md->suspend_lock);
3175}
3176EXPORT_SYMBOL_GPL(dm_internal_resume);
3177
3178/*
3179 * Fast variants of internal suspend/resume hold md->suspend_lock,
3180 * which prevents interaction with userspace-driven suspend.
3181 */
3182
3183void dm_internal_suspend_fast(struct mapped_device *md)
3184{
3185	mutex_lock(&md->suspend_lock);
3186	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3187		return;
3188
3189	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3190	synchronize_srcu(&md->io_barrier);
3191	flush_workqueue(md->wq);
3192	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3193}
3194EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3195
3196void dm_internal_resume_fast(struct mapped_device *md)
3197{
3198	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3199		goto done;
3200
3201	dm_queue_flush(md);
3202
3203done:
3204	mutex_unlock(&md->suspend_lock);
3205}
3206EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3207
3208/*
3209 *---------------------------------------------------------------
3210 * Event notification.
3211 *---------------------------------------------------------------
3212 */
3213int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3214		      unsigned int cookie, bool need_resize_uevent)
3215{
3216	int r;
3217	unsigned int noio_flag;
3218	char udev_cookie[DM_COOKIE_LENGTH];
3219	char *envp[3] = { NULL, NULL, NULL };
3220	char **envpp = envp;
3221	if (cookie) {
3222		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3223			 DM_COOKIE_ENV_VAR_NAME, cookie);
3224		*envpp++ = udev_cookie;
3225	}
3226	if (need_resize_uevent) {
3227		*envpp++ = "RESIZE=1";
3228	}
3229
3230	noio_flag = memalloc_noio_save();
3231
3232	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3233
3234	memalloc_noio_restore(noio_flag);
3235
3236	return r;
3237}
3238
3239uint32_t dm_next_uevent_seq(struct mapped_device *md)
3240{
3241	return atomic_add_return(1, &md->uevent_seq);
3242}
3243
3244uint32_t dm_get_event_nr(struct mapped_device *md)
3245{
3246	return atomic_read(&md->event_nr);
3247}
3248
3249int dm_wait_event(struct mapped_device *md, int event_nr)
3250{
3251	return wait_event_interruptible(md->eventq,
3252			(event_nr != atomic_read(&md->event_nr)));
3253}
3254
3255void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3256{
3257	unsigned long flags;
3258
3259	spin_lock_irqsave(&md->uevent_lock, flags);
3260	list_add(elist, &md->uevent_list);
3261	spin_unlock_irqrestore(&md->uevent_lock, flags);
3262}
3263
3264/*
3265 * The gendisk is only valid as long as you have a reference
3266 * count on 'md'.
3267 */
3268struct gendisk *dm_disk(struct mapped_device *md)
3269{
3270	return md->disk;
3271}
3272EXPORT_SYMBOL_GPL(dm_disk);
3273
3274struct kobject *dm_kobject(struct mapped_device *md)
3275{
3276	return &md->kobj_holder.kobj;
3277}
3278
3279struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3280{
3281	struct mapped_device *md;
3282
3283	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3284
3285	spin_lock(&_minor_lock);
3286	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3287		md = NULL;
3288		goto out;
3289	}
3290	dm_get(md);
3291out:
3292	spin_unlock(&_minor_lock);
3293
3294	return md;
3295}
3296
3297int dm_suspended_md(struct mapped_device *md)
3298{
3299	return test_bit(DMF_SUSPENDED, &md->flags);
3300}
3301
3302static int dm_post_suspending_md(struct mapped_device *md)
3303{
3304	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3305}
3306
3307int dm_suspended_internally_md(struct mapped_device *md)
3308{
3309	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3310}
3311
3312int dm_test_deferred_remove_flag(struct mapped_device *md)
3313{
3314	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3315}
3316
3317int dm_suspended(struct dm_target *ti)
3318{
3319	return dm_suspended_md(ti->table->md);
3320}
3321EXPORT_SYMBOL_GPL(dm_suspended);
3322
3323int dm_post_suspending(struct dm_target *ti)
3324{
3325	return dm_post_suspending_md(ti->table->md);
3326}
3327EXPORT_SYMBOL_GPL(dm_post_suspending);
3328
3329int dm_noflush_suspending(struct dm_target *ti)
3330{
3331	return __noflush_suspending(ti->table->md);
3332}
3333EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3334
3335void dm_free_md_mempools(struct dm_md_mempools *pools)
3336{
3337	if (!pools)
3338		return;
3339
3340	bioset_exit(&pools->bs);
3341	bioset_exit(&pools->io_bs);
3342
3343	kfree(pools);
3344}
3345
3346struct dm_blkdev_id {
3347	u8 *id;
3348	enum blk_unique_id type;
3349};
3350
3351static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev,
3352				sector_t start, sector_t len, void *data)
3353{
3354	struct dm_blkdev_id *dm_id = data;
3355	const struct block_device_operations *fops = dev->bdev->bd_disk->fops;
3356
3357	if (!fops->get_unique_id)
3358		return 0;
3359
3360	return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type);
3361}
3362
3363/*
3364 * Allow access to get_unique_id() for the first device returning a
3365 * non-zero result.  Reasonable use expects all devices to have the
3366 * same unique id.
3367 */
3368static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id,
3369		enum blk_unique_id type)
3370{
3371	struct mapped_device *md = disk->private_data;
3372	struct dm_table *table;
3373	struct dm_target *ti;
3374	int ret = 0, srcu_idx;
3375
3376	struct dm_blkdev_id dm_id = {
3377		.id = id,
3378		.type = type,
3379	};
3380
3381	table = dm_get_live_table(md, &srcu_idx);
3382	if (!table || !dm_table_get_size(table))
3383		goto out;
3384
3385	/* We only support devices that have a single target */
3386	if (table->num_targets != 1)
3387		goto out;
3388	ti = dm_table_get_target(table, 0);
3389
3390	if (!ti->type->iterate_devices)
3391		goto out;
3392
3393	ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id);
3394out:
3395	dm_put_live_table(md, srcu_idx);
3396	return ret;
3397}
3398
3399struct dm_pr {
3400	u64	old_key;
3401	u64	new_key;
3402	u32	flags;
3403	bool	abort;
3404	bool	fail_early;
3405	int	ret;
3406	enum pr_type type;
3407	struct pr_keys *read_keys;
3408	struct pr_held_reservation *rsv;
3409};
3410
3411static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3412		      struct dm_pr *pr)
3413{
3414	struct mapped_device *md = bdev->bd_disk->private_data;
3415	struct dm_table *table;
3416	struct dm_target *ti;
3417	int ret = -ENOTTY, srcu_idx;
3418
3419	table = dm_get_live_table(md, &srcu_idx);
3420	if (!table || !dm_table_get_size(table))
3421		goto out;
3422
3423	/* We only support devices that have a single target */
3424	if (table->num_targets != 1)
3425		goto out;
3426	ti = dm_table_get_target(table, 0);
3427
3428	if (dm_suspended_md(md)) {
3429		ret = -EAGAIN;
3430		goto out;
3431	}
3432
3433	ret = -EINVAL;
3434	if (!ti->type->iterate_devices)
3435		goto out;
3436
3437	ti->type->iterate_devices(ti, fn, pr);
3438	ret = 0;
3439out:
3440	dm_put_live_table(md, srcu_idx);
3441	return ret;
3442}
3443
3444/*
3445 * For register / unregister we need to manually call out to every path.
3446 */
3447static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3448			    sector_t start, sector_t len, void *data)
3449{
3450	struct dm_pr *pr = data;
3451	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3452	int ret;
3453
3454	if (!ops || !ops->pr_register) {
3455		pr->ret = -EOPNOTSUPP;
3456		return -1;
3457	}
3458
3459	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3460	if (!ret)
3461		return 0;
3462
3463	if (!pr->ret)
3464		pr->ret = ret;
3465
3466	if (pr->fail_early)
3467		return -1;
3468
3469	return 0;
3470}
3471
3472static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3473			  u32 flags)
3474{
3475	struct dm_pr pr = {
3476		.old_key	= old_key,
3477		.new_key	= new_key,
3478		.flags		= flags,
3479		.fail_early	= true,
3480		.ret		= 0,
3481	};
3482	int ret;
3483
3484	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3485	if (ret) {
3486		/* Didn't even get to register a path */
3487		return ret;
3488	}
3489
3490	if (!pr.ret)
3491		return 0;
3492	ret = pr.ret;
3493
3494	if (!new_key)
3495		return ret;
3496
3497	/* unregister all paths if we failed to register any path */
3498	pr.old_key = new_key;
3499	pr.new_key = 0;
3500	pr.flags = 0;
3501	pr.fail_early = false;
3502	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3503	return ret;
3504}
3505
3506
3507static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3508			   sector_t start, sector_t len, void *data)
3509{
3510	struct dm_pr *pr = data;
3511	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3512
3513	if (!ops || !ops->pr_reserve) {
3514		pr->ret = -EOPNOTSUPP;
3515		return -1;
3516	}
3517
3518	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3519	if (!pr->ret)
3520		return -1;
3521
3522	return 0;
3523}
3524
3525static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3526			 u32 flags)
3527{
3528	struct dm_pr pr = {
3529		.old_key	= key,
3530		.flags		= flags,
3531		.type		= type,
3532		.fail_early	= false,
3533		.ret		= 0,
3534	};
3535	int ret;
3536
3537	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3538	if (ret)
3539		return ret;
3540
3541	return pr.ret;
3542}
3543
3544/*
3545 * If there is a non-All Registrants type of reservation, the release must be
3546 * sent down the holding path. For the cases where there is no reservation or
3547 * the path is not the holder the device will also return success, so we must
3548 * try each path to make sure we got the correct path.
3549 */
3550static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3551			   sector_t start, sector_t len, void *data)
3552{
3553	struct dm_pr *pr = data;
3554	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3555
3556	if (!ops || !ops->pr_release) {
3557		pr->ret = -EOPNOTSUPP;
3558		return -1;
3559	}
3560
3561	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3562	if (pr->ret)
3563		return -1;
3564
3565	return 0;
3566}
3567
3568static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3569{
3570	struct dm_pr pr = {
3571		.old_key	= key,
3572		.type		= type,
3573		.fail_early	= false,
3574	};
3575	int ret;
3576
3577	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3578	if (ret)
3579		return ret;
3580
3581	return pr.ret;
3582}
3583
3584static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3585			   sector_t start, sector_t len, void *data)
3586{
3587	struct dm_pr *pr = data;
3588	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3589
3590	if (!ops || !ops->pr_preempt) {
3591		pr->ret = -EOPNOTSUPP;
3592		return -1;
3593	}
3594
3595	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3596				  pr->abort);
3597	if (!pr->ret)
3598		return -1;
3599
3600	return 0;
3601}
3602
3603static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3604			 enum pr_type type, bool abort)
3605{
3606	struct dm_pr pr = {
3607		.new_key	= new_key,
3608		.old_key	= old_key,
3609		.type		= type,
3610		.fail_early	= false,
3611	};
3612	int ret;
3613
3614	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3615	if (ret)
3616		return ret;
3617
3618	return pr.ret;
3619}
3620
3621static int dm_pr_clear(struct block_device *bdev, u64 key)
3622{
3623	struct mapped_device *md = bdev->bd_disk->private_data;
3624	const struct pr_ops *ops;
3625	int r, srcu_idx;
3626
3627	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3628	if (r < 0)
3629		goto out;
3630
3631	ops = bdev->bd_disk->fops->pr_ops;
3632	if (ops && ops->pr_clear)
3633		r = ops->pr_clear(bdev, key);
3634	else
3635		r = -EOPNOTSUPP;
3636out:
3637	dm_unprepare_ioctl(md, srcu_idx);
3638	return r;
3639}
3640
3641static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3642			     sector_t start, sector_t len, void *data)
3643{
3644	struct dm_pr *pr = data;
3645	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3646
3647	if (!ops || !ops->pr_read_keys) {
3648		pr->ret = -EOPNOTSUPP;
3649		return -1;
3650	}
3651
3652	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3653	if (!pr->ret)
3654		return -1;
3655
3656	return 0;
3657}
3658
3659static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3660{
3661	struct dm_pr pr = {
3662		.read_keys = keys,
3663	};
3664	int ret;
3665
3666	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3667	if (ret)
3668		return ret;
3669
3670	return pr.ret;
3671}
3672
3673static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3674				    sector_t start, sector_t len, void *data)
3675{
3676	struct dm_pr *pr = data;
3677	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3678
3679	if (!ops || !ops->pr_read_reservation) {
3680		pr->ret = -EOPNOTSUPP;
3681		return -1;
3682	}
3683
3684	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3685	if (!pr->ret)
3686		return -1;
3687
3688	return 0;
3689}
3690
3691static int dm_pr_read_reservation(struct block_device *bdev,
3692				  struct pr_held_reservation *rsv)
3693{
3694	struct dm_pr pr = {
3695		.rsv = rsv,
3696	};
3697	int ret;
3698
3699	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3700	if (ret)
3701		return ret;
3702
3703	return pr.ret;
3704}
3705
3706static const struct pr_ops dm_pr_ops = {
3707	.pr_register	= dm_pr_register,
3708	.pr_reserve	= dm_pr_reserve,
3709	.pr_release	= dm_pr_release,
3710	.pr_preempt	= dm_pr_preempt,
3711	.pr_clear	= dm_pr_clear,
3712	.pr_read_keys	= dm_pr_read_keys,
3713	.pr_read_reservation = dm_pr_read_reservation,
3714};
3715
3716static const struct block_device_operations dm_blk_dops = {
3717	.submit_bio = dm_submit_bio,
3718	.poll_bio = dm_poll_bio,
3719	.open = dm_blk_open,
3720	.release = dm_blk_close,
3721	.ioctl = dm_blk_ioctl,
3722	.getgeo = dm_blk_getgeo,
3723	.report_zones = dm_blk_report_zones,
3724	.get_unique_id = dm_blk_get_unique_id,
3725	.pr_ops = &dm_pr_ops,
3726	.owner = THIS_MODULE
3727};
3728
3729static const struct block_device_operations dm_rq_blk_dops = {
3730	.open = dm_blk_open,
3731	.release = dm_blk_close,
3732	.ioctl = dm_blk_ioctl,
3733	.getgeo = dm_blk_getgeo,
3734	.get_unique_id = dm_blk_get_unique_id,
3735	.pr_ops = &dm_pr_ops,
3736	.owner = THIS_MODULE
3737};
3738
3739static const struct dax_operations dm_dax_ops = {
3740	.direct_access = dm_dax_direct_access,
3741	.zero_page_range = dm_dax_zero_page_range,
3742	.recovery_write = dm_dax_recovery_write,
3743};
3744
3745/*
3746 * module hooks
3747 */
3748module_init(dm_init);
3749module_exit(dm_exit);
3750
3751module_param(major, uint, 0);
3752MODULE_PARM_DESC(major, "The major number of the device mapper");
3753
3754module_param(reserved_bio_based_ios, uint, 0644);
3755MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3756
3757module_param(dm_numa_node, int, 0644);
3758MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3759
3760module_param(swap_bios, int, 0644);
3761MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3762
3763MODULE_DESCRIPTION(DM_NAME " driver");
3764MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3765MODULE_LICENSE("GPL");