Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include "dm-core.h"
  10#include "dm-rq.h"
  11#include "dm-uevent.h"
  12#include "dm-ima.h"
  13
  14#include <linux/init.h>
  15#include <linux/module.h>
  16#include <linux/mutex.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/signal.h>
  19#include <linux/blkpg.h>
  20#include <linux/bio.h>
  21#include <linux/mempool.h>
  22#include <linux/dax.h>
  23#include <linux/slab.h>
  24#include <linux/idr.h>
  25#include <linux/uio.h>
  26#include <linux/hdreg.h>
  27#include <linux/delay.h>
  28#include <linux/wait.h>
  29#include <linux/pr.h>
  30#include <linux/refcount.h>
  31#include <linux/part_stat.h>
  32#include <linux/blk-crypto.h>
  33#include <linux/blk-crypto-profile.h>
  34
  35#define DM_MSG_PREFIX "core"
  36
 
 
 
 
 
 
 
 
 
 
  37/*
  38 * Cookies are numeric values sent with CHANGE and REMOVE
  39 * uevents while resuming, removing or renaming the device.
  40 */
  41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  42#define DM_COOKIE_LENGTH 24
  43
  44/*
  45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
  46 * dm_io into one list, and reuse bio->bi_private as the list head. Before
  47 * ending this fs bio, we will recover its ->bi_private.
  48 */
  49#define REQ_DM_POLL_LIST	REQ_DRV
  50
  51static const char *_name = DM_NAME;
  52
  53static unsigned int major;
  54static unsigned int _major;
  55
  56static DEFINE_IDR(_minor_idr);
  57
  58static DEFINE_SPINLOCK(_minor_lock);
  59
  60static void do_deferred_remove(struct work_struct *w);
  61
  62static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  63
  64static struct workqueue_struct *deferred_remove_workqueue;
  65
  66atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  67DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  68
  69void dm_issue_global_event(void)
  70{
  71	atomic_inc(&dm_global_event_nr);
  72	wake_up(&dm_global_eventq);
  73}
  74
  75DEFINE_STATIC_KEY_FALSE(stats_enabled);
  76DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
  77DEFINE_STATIC_KEY_FALSE(zoned_enabled);
  78
  79/*
  80 * One of these is allocated (on-stack) per original bio.
  81 */
  82struct clone_info {
  83	struct dm_table *map;
 
 
  84	struct bio *bio;
  85	struct dm_io *io;
  86	sector_t sector;
  87	unsigned int sector_count;
  88	bool is_abnormal_io:1;
  89	bool submit_as_polled:1;
  90};
  91
  92static inline struct dm_target_io *clone_to_tio(struct bio *clone)
  93{
  94	return container_of(clone, struct dm_target_io, clone);
  95}
  96
  97void *dm_per_bio_data(struct bio *bio, size_t data_size)
  98{
  99	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
 100		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
 101	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
 102}
 103EXPORT_SYMBOL_GPL(dm_per_bio_data);
 104
 105struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 106{
 107	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 108
 109	if (io->magic == DM_IO_MAGIC)
 110		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
 111	BUG_ON(io->magic != DM_TIO_MAGIC);
 112	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
 113}
 114EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 115
 116unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
 117{
 118	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 119}
 120EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 121
 122#define MINOR_ALLOCED ((void *)-1)
 123
 
 
 
 
 
 
 
 
 
 
 
 
 124#define DM_NUMA_NODE NUMA_NO_NODE
 125static int dm_numa_node = DM_NUMA_NODE;
 126
 127#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 128static int swap_bios = DEFAULT_SWAP_BIOS;
 129static int get_swap_bios(void)
 130{
 131	int latch = READ_ONCE(swap_bios);
 132
 133	if (unlikely(latch <= 0))
 134		latch = DEFAULT_SWAP_BIOS;
 135	return latch;
 136}
 137
 138struct table_device {
 139	struct list_head list;
 140	refcount_t count;
 141	struct dm_dev dm_dev;
 142};
 143
 
 
 
 
 144/*
 145 * Bio-based DM's mempools' reserved IOs set by the user.
 146 */
 147#define RESERVED_BIO_BASED_IOS		16
 148static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 149
 150static int __dm_get_module_param_int(int *module_param, int min, int max)
 151{
 152	int param = READ_ONCE(*module_param);
 153	int modified_param = 0;
 154	bool modified = true;
 155
 156	if (param < min)
 157		modified_param = min;
 158	else if (param > max)
 159		modified_param = max;
 160	else
 161		modified = false;
 162
 163	if (modified) {
 164		(void)cmpxchg(module_param, param, modified_param);
 165		param = modified_param;
 166	}
 167
 168	return param;
 169}
 170
 171unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
 
 172{
 173	unsigned int param = READ_ONCE(*module_param);
 174	unsigned int modified_param = 0;
 175
 176	if (!param)
 177		modified_param = def;
 178	else if (param > max)
 179		modified_param = max;
 180
 181	if (modified_param) {
 182		(void)cmpxchg(module_param, param, modified_param);
 183		param = modified_param;
 184	}
 185
 186	return param;
 187}
 188
 189unsigned int dm_get_reserved_bio_based_ios(void)
 190{
 191	return __dm_get_module_param(&reserved_bio_based_ios,
 192				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 193}
 194EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 195
 196static unsigned int dm_get_numa_node(void)
 197{
 198	return __dm_get_module_param_int(&dm_numa_node,
 199					 DM_NUMA_NODE, num_online_nodes() - 1);
 200}
 201
 202static int __init local_init(void)
 203{
 204	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205
 206	r = dm_uevent_init();
 207	if (r)
 208		return r;
 209
 210	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
 211	if (!deferred_remove_workqueue) {
 212		r = -ENOMEM;
 213		goto out_uevent_exit;
 214	}
 215
 216	_major = major;
 217	r = register_blkdev(_major, _name);
 218	if (r < 0)
 219		goto out_free_workqueue;
 220
 221	if (!_major)
 222		_major = r;
 223
 224	return 0;
 225
 226out_free_workqueue:
 227	destroy_workqueue(deferred_remove_workqueue);
 228out_uevent_exit:
 229	dm_uevent_exit();
 
 
 
 
 
 
 230
 231	return r;
 232}
 233
 234static void local_exit(void)
 235{
 
 236	destroy_workqueue(deferred_remove_workqueue);
 237
 
 
 
 238	unregister_blkdev(_major, _name);
 239	dm_uevent_exit();
 240
 241	_major = 0;
 242
 243	DMINFO("cleaned up");
 244}
 245
 246static int (*_inits[])(void) __initdata = {
 247	local_init,
 248	dm_target_init,
 249	dm_linear_init,
 250	dm_stripe_init,
 251	dm_io_init,
 252	dm_kcopyd_init,
 253	dm_interface_init,
 254	dm_statistics_init,
 255};
 256
 257static void (*_exits[])(void) = {
 258	local_exit,
 259	dm_target_exit,
 260	dm_linear_exit,
 261	dm_stripe_exit,
 262	dm_io_exit,
 263	dm_kcopyd_exit,
 264	dm_interface_exit,
 265	dm_statistics_exit,
 266};
 267
 268static int __init dm_init(void)
 269{
 270	const int count = ARRAY_SIZE(_inits);
 271	int r, i;
 272
 273#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
 274	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
 275	       " Duplicate IMA measurements will not be recorded in the IMA log.");
 276#endif
 277
 278	for (i = 0; i < count; i++) {
 279		r = _inits[i]();
 280		if (r)
 281			goto bad;
 282	}
 283
 284	return 0;
 285bad:
 
 286	while (i--)
 287		_exits[i]();
 288
 289	return r;
 290}
 291
 292static void __exit dm_exit(void)
 293{
 294	int i = ARRAY_SIZE(_exits);
 295
 296	while (i--)
 297		_exits[i]();
 298
 299	/*
 300	 * Should be empty by this point.
 301	 */
 302	idr_destroy(&_minor_idr);
 303}
 304
 305/*
 306 * Block device functions
 307 */
 308int dm_deleting_md(struct mapped_device *md)
 309{
 310	return test_bit(DMF_DELETING, &md->flags);
 311}
 312
 313static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
 314{
 315	struct mapped_device *md;
 316
 317	spin_lock(&_minor_lock);
 318
 319	md = disk->private_data;
 320	if (!md)
 321		goto out;
 322
 323	if (test_bit(DMF_FREEING, &md->flags) ||
 324	    dm_deleting_md(md)) {
 325		md = NULL;
 326		goto out;
 327	}
 328
 329	dm_get(md);
 330	atomic_inc(&md->open_count);
 331out:
 332	spin_unlock(&_minor_lock);
 333
 334	return md ? 0 : -ENXIO;
 335}
 336
 337static void dm_blk_close(struct gendisk *disk)
 338{
 339	struct mapped_device *md;
 340
 341	spin_lock(&_minor_lock);
 342
 343	md = disk->private_data;
 344	if (WARN_ON(!md))
 345		goto out;
 346
 347	if (atomic_dec_and_test(&md->open_count) &&
 348	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 349		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 350
 351	dm_put(md);
 352out:
 353	spin_unlock(&_minor_lock);
 354}
 355
 356int dm_open_count(struct mapped_device *md)
 357{
 358	return atomic_read(&md->open_count);
 359}
 360
 361/*
 362 * Guarantees nothing is using the device before it's deleted.
 363 */
 364int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 365{
 366	int r = 0;
 367
 368	spin_lock(&_minor_lock);
 369
 370	if (dm_open_count(md)) {
 371		r = -EBUSY;
 372		if (mark_deferred)
 373			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 374	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 375		r = -EEXIST;
 376	else
 377		set_bit(DMF_DELETING, &md->flags);
 378
 379	spin_unlock(&_minor_lock);
 380
 381	return r;
 382}
 383
 384int dm_cancel_deferred_remove(struct mapped_device *md)
 385{
 386	int r = 0;
 387
 388	spin_lock(&_minor_lock);
 389
 390	if (test_bit(DMF_DELETING, &md->flags))
 391		r = -EBUSY;
 392	else
 393		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 394
 395	spin_unlock(&_minor_lock);
 396
 397	return r;
 398}
 399
 400static void do_deferred_remove(struct work_struct *w)
 401{
 402	dm_deferred_remove();
 403}
 404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 405static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 406{
 407	struct mapped_device *md = bdev->bd_disk->private_data;
 408
 409	return dm_get_geometry(md, geo);
 410}
 411
 412static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 413			    struct block_device **bdev)
 
 414{
 415	struct dm_target *ti;
 416	struct dm_table *map;
 417	int r;
 418
 419retry:
 420	r = -ENOTTY;
 421	map = dm_get_live_table(md, srcu_idx);
 422	if (!map || !dm_table_get_size(map))
 423		return r;
 424
 425	/* We only support devices that have a single target */
 426	if (map->num_targets != 1)
 427		return r;
 428
 429	ti = dm_table_get_target(map, 0);
 430	if (!ti->type->prepare_ioctl)
 431		return r;
 432
 433	if (dm_suspended_md(md))
 434		return -EAGAIN;
 
 435
 436	r = ti->type->prepare_ioctl(ti, bdev);
 437	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 438		dm_put_live_table(md, *srcu_idx);
 439		fsleep(10000);
 440		goto retry;
 441	}
 442
 
 
 
 
 
 
 443	return r;
 444}
 445
 446static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 447{
 448	dm_put_live_table(md, srcu_idx);
 
 
 
 
 
 449}
 450
 451static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
 452			unsigned int cmd, unsigned long arg)
 453{
 454	struct mapped_device *md = bdev->bd_disk->private_data;
 455	int r, srcu_idx;
 456
 457	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 458	if (r < 0)
 459		goto out;
 460
 461	if (r > 0) {
 462		/*
 463		 * Target determined this ioctl is being issued against a
 464		 * subset of the parent bdev; require extra privileges.
 
 465		 */
 466		if (!capable(CAP_SYS_RAWIO)) {
 467			DMDEBUG_LIMIT(
 468	"%s: sending ioctl %x to DM device without required privilege.",
 469				current->comm, cmd);
 470			r = -ENOIOCTLCMD;
 471			goto out;
 472		}
 473	}
 474
 475	if (!bdev->bd_disk->fops->ioctl)
 476		r = -ENOTTY;
 477	else
 478		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 479out:
 480	dm_unprepare_ioctl(md, srcu_idx);
 481	return r;
 482}
 483
 484u64 dm_start_time_ns_from_clone(struct bio *bio)
 485{
 486	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
 487}
 488EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 489
 490static inline bool bio_is_flush_with_data(struct bio *bio)
 491{
 492	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
 493}
 494
 495static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
 496{
 497	/*
 498	 * If REQ_PREFLUSH set, don't account payload, it will be
 499	 * submitted (and accounted) after this flush completes.
 500	 */
 501	if (bio_is_flush_with_data(bio))
 502		return 0;
 503	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 504		return io->sectors;
 505	return bio_sectors(bio);
 506}
 507
 508static void dm_io_acct(struct dm_io *io, bool end)
 509{
 510	struct bio *bio = io->orig_bio;
 511
 512	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
 513		if (!end)
 514			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
 515					   io->start_time);
 516		else
 517			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
 518					 dm_io_sectors(io, bio),
 519					 io->start_time);
 520	}
 521
 522	if (static_branch_unlikely(&stats_enabled) &&
 523	    unlikely(dm_stats_used(&io->md->stats))) {
 524		sector_t sector;
 525
 526		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 527			sector = bio_end_sector(bio) - io->sector_offset;
 528		else
 529			sector = bio->bi_iter.bi_sector;
 530
 531		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
 532				    sector, dm_io_sectors(io, bio),
 533				    end, io->start_time, &io->stats_aux);
 534	}
 535}
 536
 537static void __dm_start_io_acct(struct dm_io *io)
 538{
 539	dm_io_acct(io, false);
 540}
 541
 542static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
 543{
 544	/*
 545	 * Ensure IO accounting is only ever started once.
 546	 */
 547	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 548		return;
 549
 550	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
 551	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
 552		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 553	} else {
 554		unsigned long flags;
 555		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
 556		spin_lock_irqsave(&io->lock, flags);
 557		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
 558			spin_unlock_irqrestore(&io->lock, flags);
 559			return;
 560		}
 561		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 562		spin_unlock_irqrestore(&io->lock, flags);
 563	}
 564
 565	__dm_start_io_acct(io);
 566}
 567
 568static void dm_end_io_acct(struct dm_io *io)
 569{
 570	dm_io_acct(io, true);
 
 571}
 572
 573static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
 574{
 575	struct dm_io *io;
 576	struct dm_target_io *tio;
 577	struct bio *clone;
 
 578
 579	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
 580	if (unlikely(!clone))
 581		return NULL;
 582	tio = clone_to_tio(clone);
 583	tio->flags = 0;
 584	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
 585	tio->io = NULL;
 586
 587	io = container_of(tio, struct dm_io, tio);
 588	io->magic = DM_IO_MAGIC;
 589	io->status = BLK_STS_OK;
 590
 591	/* one ref is for submission, the other is for completion */
 592	atomic_set(&io->io_count, 2);
 593	this_cpu_inc(*md->pending_io);
 594	io->orig_bio = bio;
 595	io->md = md;
 596	spin_lock_init(&io->lock);
 597	io->start_time = jiffies;
 598	io->flags = 0;
 599	if (blk_queue_io_stat(md->queue))
 600		dm_io_set_flag(io, DM_IO_BLK_STAT);
 601
 602	if (static_branch_unlikely(&stats_enabled) &&
 603	    unlikely(dm_stats_used(&md->stats)))
 604		dm_stats_record_start(&md->stats, &io->stats_aux);
 605
 606	return io;
 607}
 608
 609static void free_io(struct dm_io *io)
 610{
 611	bio_put(&io->tio.clone);
 
 
 
 
 612}
 613
 614static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 615			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
 616{
 617	struct mapped_device *md = ci->io->md;
 618	struct dm_target_io *tio;
 619	struct bio *clone;
 620
 621	if (!ci->io->tio.io) {
 622		/* the dm_target_io embedded in ci->io is available */
 623		tio = &ci->io->tio;
 624		/* alloc_io() already initialized embedded clone */
 625		clone = &tio->clone;
 626	} else {
 627		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
 628					&md->mempools->bs);
 629		if (!clone)
 630			return NULL;
 631
 632		/* REQ_DM_POLL_LIST shouldn't be inherited */
 633		clone->bi_opf &= ~REQ_DM_POLL_LIST;
 634
 635		tio = clone_to_tio(clone);
 636		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
 637	}
 638
 639	tio->magic = DM_TIO_MAGIC;
 640	tio->io = ci->io;
 641	tio->ti = ti;
 642	tio->target_bio_nr = target_bio_nr;
 643	tio->len_ptr = len;
 644	tio->old_sector = 0;
 645
 646	/* Set default bdev, but target must bio_set_dev() before issuing IO */
 647	clone->bi_bdev = md->disk->part0;
 648	if (unlikely(ti->needs_bio_set_dev))
 649		bio_set_dev(clone, md->disk->part0);
 650
 651	if (len) {
 652		clone->bi_iter.bi_size = to_bytes(*len);
 653		if (bio_integrity(clone))
 654			bio_integrity_trim(clone);
 655	}
 656
 657	return clone;
 658}
 
 
 
 
 
 659
 660static void free_tio(struct bio *clone)
 661{
 662	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
 663		return;
 664	bio_put(clone);
 665}
 666
 667/*
 668 * Add the bio to the list of deferred io.
 669 */
 670static void queue_io(struct mapped_device *md, struct bio *bio)
 671{
 672	unsigned long flags;
 673
 674	spin_lock_irqsave(&md->deferred_lock, flags);
 675	bio_list_add(&md->deferred, bio);
 676	spin_unlock_irqrestore(&md->deferred_lock, flags);
 677	queue_work(md->wq, &md->work);
 678}
 679
 680/*
 681 * Everyone (including functions in this file), should use this
 682 * function to access the md->map field, and make sure they call
 683 * dm_put_live_table() when finished.
 684 */
 685struct dm_table *dm_get_live_table(struct mapped_device *md,
 686				   int *srcu_idx) __acquires(md->io_barrier)
 687{
 688	*srcu_idx = srcu_read_lock(&md->io_barrier);
 689
 690	return srcu_dereference(md->map, &md->io_barrier);
 691}
 692
 693void dm_put_live_table(struct mapped_device *md,
 694		       int srcu_idx) __releases(md->io_barrier)
 695{
 696	srcu_read_unlock(&md->io_barrier, srcu_idx);
 697}
 698
 699void dm_sync_table(struct mapped_device *md)
 700{
 701	synchronize_srcu(&md->io_barrier);
 702	synchronize_rcu_expedited();
 703}
 704
 705/*
 706 * A fast alternative to dm_get_live_table/dm_put_live_table.
 707 * The caller must not block between these two functions.
 708 */
 709static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 710{
 711	rcu_read_lock();
 712	return rcu_dereference(md->map);
 713}
 714
 715static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 716{
 717	rcu_read_unlock();
 718}
 719
 720static char *_dm_claim_ptr = "I belong to device-mapper";
 721
 722/*
 723 * Open a table device so we can use it as a map destination.
 724 */
 725static struct table_device *open_table_device(struct mapped_device *md,
 726		dev_t dev, blk_mode_t mode)
 727{
 728	struct table_device *td;
 729	struct bdev_handle *bdev_handle;
 730	u64 part_off;
 731	int r;
 732
 733	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 734	if (!td)
 735		return ERR_PTR(-ENOMEM);
 736	refcount_set(&td->count, 1);
 737
 738	bdev_handle = bdev_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
 739	if (IS_ERR(bdev_handle)) {
 740		r = PTR_ERR(bdev_handle);
 741		goto out_free_td;
 742	}
 743
 744	/*
 745	 * We can be called before the dm disk is added.  In that case we can't
 746	 * register the holder relation here.  It will be done once add_disk was
 747	 * called.
 748	 */
 749	if (md->disk->slave_dir) {
 750		r = bd_link_disk_holder(bdev_handle->bdev, md->disk);
 751		if (r)
 752			goto out_blkdev_put;
 753	}
 754
 755	td->dm_dev.mode = mode;
 756	td->dm_dev.bdev = bdev_handle->bdev;
 757	td->dm_dev.bdev_handle = bdev_handle;
 758	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev_handle->bdev, &part_off,
 759						NULL, NULL);
 760	format_dev_t(td->dm_dev.name, dev);
 761	list_add(&td->list, &md->table_devices);
 762	return td;
 763
 764out_blkdev_put:
 765	bdev_release(bdev_handle);
 766out_free_td:
 767	kfree(td);
 768	return ERR_PTR(r);
 769}
 770
 771/*
 772 * Close a table device that we've been using.
 773 */
 774static void close_table_device(struct table_device *td, struct mapped_device *md)
 775{
 776	if (md->disk->slave_dir)
 777		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
 778	bdev_release(td->dm_dev.bdev_handle);
 779	put_dax(td->dm_dev.dax_dev);
 780	list_del(&td->list);
 781	kfree(td);
 782}
 783
 784static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 785					      blk_mode_t mode)
 786{
 787	struct table_device *td;
 788
 789	list_for_each_entry(td, l, list)
 790		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 791			return td;
 792
 793	return NULL;
 794}
 795
 796int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
 797			struct dm_dev **result)
 798{
 799	struct table_device *td;
 800
 801	mutex_lock(&md->table_devices_lock);
 802	td = find_table_device(&md->table_devices, dev, mode);
 803	if (!td) {
 804		td = open_table_device(md, dev, mode);
 805		if (IS_ERR(td)) {
 806			mutex_unlock(&md->table_devices_lock);
 807			return PTR_ERR(td);
 808		}
 809	} else {
 810		refcount_inc(&td->count);
 
 
 
 
 
 
 
 
 
 
 
 
 811	}
 
 812	mutex_unlock(&md->table_devices_lock);
 813
 814	*result = &td->dm_dev;
 815	return 0;
 816}
 
 817
 818void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 819{
 820	struct table_device *td = container_of(d, struct table_device, dm_dev);
 821
 822	mutex_lock(&md->table_devices_lock);
 823	if (refcount_dec_and_test(&td->count))
 824		close_table_device(td, md);
 
 
 
 825	mutex_unlock(&md->table_devices_lock);
 826}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827
 828/*
 829 * Get the geometry associated with a dm device
 830 */
 831int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 832{
 833	*geo = md->geometry;
 834
 835	return 0;
 836}
 837
 838/*
 839 * Set the geometry of a device.
 840 */
 841int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 842{
 843	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 844
 845	if (geo->start > sz) {
 846		DMERR("Start sector is beyond the geometry limits.");
 847		return -EINVAL;
 848	}
 849
 850	md->geometry = *geo;
 851
 852	return 0;
 853}
 854
 
 
 
 
 
 
 
 
 
 855static int __noflush_suspending(struct mapped_device *md)
 856{
 857	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 858}
 859
 860static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
 861{
 862	struct mapped_device *md = io->md;
 863
 864	if (first_stage) {
 865		struct dm_io *next = md->requeue_list;
 866
 867		md->requeue_list = io;
 868		io->next = next;
 869	} else {
 870		bio_list_add_head(&md->deferred, io->orig_bio);
 871	}
 872}
 873
 874static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
 875{
 876	if (first_stage)
 877		queue_work(md->wq, &md->requeue_work);
 878	else
 879		queue_work(md->wq, &md->work);
 880}
 881
 882/*
 883 * Return true if the dm_io's original bio is requeued.
 884 * io->status is updated with error if requeue disallowed.
 885 */
 886static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
 887{
 888	struct bio *bio = io->orig_bio;
 889	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
 890	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
 891				     (bio->bi_opf & REQ_POLLED));
 892	struct mapped_device *md = io->md;
 893	bool requeued = false;
 894
 895	if (handle_requeue || handle_polled_eagain) {
 896		unsigned long flags;
 
 
 
 
 
 897
 898		if (bio->bi_opf & REQ_POLLED) {
 
 899			/*
 900			 * Upper layer won't help us poll split bio
 901			 * (io->orig_bio may only reflect a subset of the
 902			 * pre-split original) so clear REQ_POLLED.
 903			 */
 904			bio_clear_polled(bio);
 
 
 
 
 
 
 905		}
 906
 907		/*
 908		 * Target requested pushing back the I/O or
 909		 * polled IO hit BLK_STS_AGAIN.
 910		 */
 911		spin_lock_irqsave(&md->deferred_lock, flags);
 912		if ((__noflush_suspending(md) &&
 913		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
 914		    handle_polled_eagain || first_stage) {
 915			dm_requeue_add_io(io, first_stage);
 916			requeued = true;
 917		} else {
 918			/*
 919			 * noflush suspend was interrupted or this is
 920			 * a write to a zoned target.
 921			 */
 922			io->status = BLK_STS_IOERR;
 
 
 
 
 
 
 923		}
 924		spin_unlock_irqrestore(&md->deferred_lock, flags);
 925	}
 926
 927	if (requeued)
 928		dm_kick_requeue(md, first_stage);
 929
 930	return requeued;
 931}
 932
 933static void __dm_io_complete(struct dm_io *io, bool first_stage)
 934{
 935	struct bio *bio = io->orig_bio;
 936	struct mapped_device *md = io->md;
 937	blk_status_t io_error;
 938	bool requeued;
 939
 940	requeued = dm_handle_requeue(io, first_stage);
 941	if (requeued && first_stage)
 942		return;
 943
 944	io_error = io->status;
 945	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 946		dm_end_io_acct(io);
 947	else if (!io_error) {
 948		/*
 949		 * Must handle target that DM_MAPIO_SUBMITTED only to
 950		 * then bio_endio() rather than dm_submit_bio_remap()
 951		 */
 952		__dm_start_io_acct(io);
 953		dm_end_io_acct(io);
 954	}
 955	free_io(io);
 956	smp_wmb();
 957	this_cpu_dec(*md->pending_io);
 958
 959	/* nudge anyone waiting on suspend queue */
 960	if (unlikely(wq_has_sleeper(&md->wait)))
 961		wake_up(&md->wait);
 962
 963	/* Return early if the original bio was requeued */
 964	if (requeued)
 965		return;
 966
 967	if (bio_is_flush_with_data(bio)) {
 968		/*
 969		 * Preflush done for flush with data, reissue
 970		 * without REQ_PREFLUSH.
 971		 */
 972		bio->bi_opf &= ~REQ_PREFLUSH;
 973		queue_io(md, bio);
 974	} else {
 975		/* done with normal IO or empty flush */
 976		if (io_error)
 977			bio->bi_status = io_error;
 978		bio_endio(bio);
 979	}
 980}
 981
 982static void dm_wq_requeue_work(struct work_struct *work)
 983{
 984	struct mapped_device *md = container_of(work, struct mapped_device,
 985						requeue_work);
 986	unsigned long flags;
 987	struct dm_io *io;
 988
 989	/* reuse deferred lock to simplify dm_handle_requeue */
 990	spin_lock_irqsave(&md->deferred_lock, flags);
 991	io = md->requeue_list;
 992	md->requeue_list = NULL;
 993	spin_unlock_irqrestore(&md->deferred_lock, flags);
 994
 995	while (io) {
 996		struct dm_io *next = io->next;
 997
 998		dm_io_rewind(io, &md->disk->bio_split);
 999
1000		io->next = NULL;
1001		__dm_io_complete(io, false);
1002		io = next;
1003		cond_resched();
1004	}
1005}
1006
1007/*
1008 * Two staged requeue:
1009 *
1010 * 1) io->orig_bio points to the real original bio, and the part mapped to
1011 *    this io must be requeued, instead of other parts of the original bio.
1012 *
1013 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1014 */
1015static void dm_io_complete(struct dm_io *io)
1016{
1017	bool first_requeue;
1018
1019	/*
1020	 * Only dm_io that has been split needs two stage requeue, otherwise
1021	 * we may run into long bio clone chain during suspend and OOM could
1022	 * be triggered.
1023	 *
1024	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1025	 * also aren't handled via the first stage requeue.
1026	 */
1027	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1028		first_requeue = true;
1029	else
1030		first_requeue = false;
1031
1032	__dm_io_complete(io, first_requeue);
1033}
1034
1035/*
1036 * Decrements the number of outstanding ios that a bio has been
1037 * cloned into, completing the original io if necc.
1038 */
1039static inline void __dm_io_dec_pending(struct dm_io *io)
1040{
1041	if (atomic_dec_and_test(&io->io_count))
1042		dm_io_complete(io);
1043}
1044
1045static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1046{
1047	unsigned long flags;
1048
1049	/* Push-back supersedes any I/O errors */
1050	spin_lock_irqsave(&io->lock, flags);
1051	if (!(io->status == BLK_STS_DM_REQUEUE &&
1052	      __noflush_suspending(io->md))) {
1053		io->status = error;
1054	}
1055	spin_unlock_irqrestore(&io->lock, flags);
1056}
1057
1058static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1059{
1060	if (unlikely(error))
1061		dm_io_set_error(io, error);
1062
1063	__dm_io_dec_pending(io);
1064}
1065
1066/*
1067 * The queue_limits are only valid as long as you have a reference
1068 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1069 */
1070static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1071{
1072	return &md->queue->limits;
1073}
1074
1075void disable_discard(struct mapped_device *md)
1076{
1077	struct queue_limits *limits = dm_get_queue_limits(md);
1078
1079	/* device doesn't really support DISCARD, disable it */
1080	limits->max_discard_sectors = 0;
1081}
1082
1083void disable_write_zeroes(struct mapped_device *md)
1084{
1085	struct queue_limits *limits = dm_get_queue_limits(md);
1086
1087	/* device doesn't really support WRITE ZEROES, disable it */
1088	limits->max_write_zeroes_sectors = 0;
1089}
1090
1091static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1092{
1093	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1094}
1095
1096static void clone_endio(struct bio *bio)
1097{
1098	blk_status_t error = bio->bi_status;
1099	struct dm_target_io *tio = clone_to_tio(bio);
1100	struct dm_target *ti = tio->ti;
1101	dm_endio_fn endio = ti->type->end_io;
1102	struct dm_io *io = tio->io;
1103	struct mapped_device *md = io->md;
1104
1105	if (unlikely(error == BLK_STS_TARGET)) {
1106		if (bio_op(bio) == REQ_OP_DISCARD &&
1107		    !bdev_max_discard_sectors(bio->bi_bdev))
1108			disable_discard(md);
1109		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1110			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1111			disable_write_zeroes(md);
1112	}
1113
1114	if (static_branch_unlikely(&zoned_enabled) &&
1115	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1116		dm_zone_endio(io, bio);
1117
1118	if (endio) {
1119		int r = endio(ti, bio, &error);
1120
1121		switch (r) {
1122		case DM_ENDIO_REQUEUE:
1123			if (static_branch_unlikely(&zoned_enabled)) {
1124				/*
1125				 * Requeuing writes to a sequential zone of a zoned
1126				 * target will break the sequential write pattern:
1127				 * fail such IO.
1128				 */
1129				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1130					error = BLK_STS_IOERR;
1131				else
1132					error = BLK_STS_DM_REQUEUE;
1133			} else
1134				error = BLK_STS_DM_REQUEUE;
1135			fallthrough;
1136		case DM_ENDIO_DONE:
1137			break;
1138		case DM_ENDIO_INCOMPLETE:
1139			/* The target will handle the io */
1140			return;
1141		default:
1142			DMCRIT("unimplemented target endio return value: %d", r);
1143			BUG();
1144		}
1145	}
1146
1147	if (static_branch_unlikely(&swap_bios_enabled) &&
1148	    unlikely(swap_bios_limit(ti, bio)))
1149		up(&md->swap_bios_semaphore);
1150
1151	free_tio(bio);
1152	dm_io_dec_pending(io, error);
1153}
1154
1155/*
1156 * Return maximum size of I/O possible at the supplied sector up to the current
1157 * target boundary.
1158 */
1159static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1160						  sector_t target_offset)
1161{
 
 
1162	return ti->len - target_offset;
1163}
1164
1165static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1166			     unsigned int max_granularity,
1167			     unsigned int max_sectors)
1168{
1169	sector_t target_offset = dm_target_offset(ti, sector);
1170	sector_t len = max_io_len_target_boundary(ti, target_offset);
1171
1172	/*
1173	 * Does the target need to split IO even further?
1174	 * - varied (per target) IO splitting is a tenet of DM; this
1175	 *   explains why stacked chunk_sectors based splitting via
1176	 *   bio_split_to_limits() isn't possible here.
1177	 */
1178	if (!max_granularity)
1179		return len;
1180	return min_t(sector_t, len,
1181		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1182		    blk_chunk_sectors_left(target_offset, max_granularity)));
1183}
 
1184
1185static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1186{
1187	return __max_io_len(ti, sector, ti->max_io_len, 0);
 
 
1188}
1189
1190int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1191{
1192	if (len > UINT_MAX) {
1193		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1194		      (unsigned long long)len, UINT_MAX);
1195		ti->error = "Maximum size of target IO is too large";
1196		return -EINVAL;
1197	}
1198
1199	ti->max_io_len = (uint32_t) len;
1200
1201	return 0;
1202}
1203EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1204
1205static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1206						sector_t sector, int *srcu_idx)
1207	__acquires(md->io_barrier)
1208{
 
1209	struct dm_table *map;
1210	struct dm_target *ti;
1211
1212	map = dm_get_live_table(md, srcu_idx);
1213	if (!map)
1214		return NULL;
1215
1216	ti = dm_table_find_target(map, sector);
1217	if (!ti)
1218		return NULL;
1219
1220	return ti;
1221}
1222
1223static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1224		long nr_pages, enum dax_access_mode mode, void **kaddr,
1225		pfn_t *pfn)
1226{
1227	struct mapped_device *md = dax_get_private(dax_dev);
1228	sector_t sector = pgoff * PAGE_SECTORS;
1229	struct dm_target *ti;
1230	long len, ret = -EIO;
1231	int srcu_idx;
 
1232
1233	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1234
1235	if (!ti)
1236		goto out;
1237	if (!ti->type->direct_access)
1238		goto out;
1239	len = max_io_len(ti, sector) / PAGE_SECTORS;
1240	if (len < 1)
1241		goto out;
1242	nr_pages = min(len, nr_pages);
1243	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1244
1245 out:
1246	dm_put_live_table(md, srcu_idx);
1247
1248	return ret;
1249}
1250
1251static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1252				  size_t nr_pages)
1253{
1254	struct mapped_device *md = dax_get_private(dax_dev);
1255	sector_t sector = pgoff * PAGE_SECTORS;
1256	struct dm_target *ti;
1257	int ret = -EIO;
1258	int srcu_idx;
1259
1260	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1261
1262	if (!ti)
1263		goto out;
1264	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1265		/*
1266		 * ->zero_page_range() is mandatory dax operation. If we are
1267		 *  here, something is wrong.
1268		 */
1269		goto out;
1270	}
1271	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1272 out:
1273	dm_put_live_table(md, srcu_idx);
1274
1275	return ret;
1276}
1277
1278static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1279		void *addr, size_t bytes, struct iov_iter *i)
1280{
1281	struct mapped_device *md = dax_get_private(dax_dev);
1282	sector_t sector = pgoff * PAGE_SECTORS;
1283	struct dm_target *ti;
1284	int srcu_idx;
1285	long ret = 0;
1286
1287	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1288	if (!ti || !ti->type->dax_recovery_write)
1289		goto out;
1290
1291	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
 
1292out:
1293	dm_put_live_table(md, srcu_idx);
1294	return ret;
1295}
1296
1297/*
1298 * A target may call dm_accept_partial_bio only from the map routine.  It is
1299 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1300 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1301 * __send_duplicate_bios().
1302 *
1303 * dm_accept_partial_bio informs the dm that the target only wants to process
1304 * additional n_sectors sectors of the bio and the rest of the data should be
1305 * sent in a next bio.
1306 *
1307 * A diagram that explains the arithmetics:
1308 * +--------------------+---------------+-------+
1309 * |         1          |       2       |   3   |
1310 * +--------------------+---------------+-------+
1311 *
1312 * <-------------- *tio->len_ptr --------------->
1313 *                      <----- bio_sectors ----->
1314 *                      <-- n_sectors -->
1315 *
1316 * Region 1 was already iterated over with bio_advance or similar function.
1317 *	(it may be empty if the target doesn't use bio_advance)
1318 * Region 2 is the remaining bio size that the target wants to process.
1319 *	(it may be empty if region 1 is non-empty, although there is no reason
1320 *	 to make it empty)
1321 * The target requires that region 3 is to be sent in the next bio.
1322 *
1323 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1324 * the partially processed part (the sum of regions 1+2) must be the same for all
1325 * copies of the bio.
1326 */
1327void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1328{
1329	struct dm_target_io *tio = clone_to_tio(bio);
1330	struct dm_io *io = tio->io;
1331	unsigned int bio_sectors = bio_sectors(bio);
1332
1333	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1334	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1335	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1336	BUG_ON(bio_sectors > *tio->len_ptr);
1337	BUG_ON(n_sectors > bio_sectors);
1338
1339	*tio->len_ptr -= bio_sectors - n_sectors;
1340	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1341
1342	/*
1343	 * __split_and_process_bio() may have already saved mapped part
1344	 * for accounting but it is being reduced so update accordingly.
1345	 */
1346	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1347	io->sectors = n_sectors;
1348	io->sector_offset = bio_sectors(io->orig_bio);
1349}
1350EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1351
1352/*
1353 * @clone: clone bio that DM core passed to target's .map function
1354 * @tgt_clone: clone of @clone bio that target needs submitted
1355 *
1356 * Targets should use this interface to submit bios they take
1357 * ownership of when returning DM_MAPIO_SUBMITTED.
1358 *
1359 * Target should also enable ti->accounts_remapped_io
1360 */
1361void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
 
 
 
 
 
1362{
1363	struct dm_target_io *tio = clone_to_tio(clone);
1364	struct dm_io *io = tio->io;
 
 
1365
1366	/* establish bio that will get submitted */
1367	if (!tgt_clone)
1368		tgt_clone = clone;
1369
1370	/*
1371	 * Account io->origin_bio to DM dev on behalf of target
1372	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1373	 */
1374	dm_start_io_acct(io, clone);
 
 
 
 
 
 
 
 
1375
1376	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1377			      tio->old_sector);
1378	submit_bio_noacct(tgt_clone);
 
 
 
1379}
1380EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1381
1382static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1383{
1384	mutex_lock(&md->swap_bios_lock);
1385	while (latch < md->swap_bios) {
1386		cond_resched();
1387		down(&md->swap_bios_semaphore);
1388		md->swap_bios--;
1389	}
1390	while (latch > md->swap_bios) {
1391		cond_resched();
1392		up(&md->swap_bios_semaphore);
1393		md->swap_bios++;
1394	}
1395	mutex_unlock(&md->swap_bios_lock);
1396}
1397
1398static void __map_bio(struct bio *clone)
 
 
 
 
 
 
1399{
1400	struct dm_target_io *tio = clone_to_tio(clone);
1401	struct dm_target *ti = tio->ti;
1402	struct dm_io *io = tio->io;
1403	struct mapped_device *md = io->md;
1404	int r;
 
 
 
 
1405
1406	clone->bi_end_io = clone_endio;
1407
1408	/*
1409	 * Map the clone.
1410	 */
1411	tio->old_sector = clone->bi_iter.bi_sector;
1412
1413	if (static_branch_unlikely(&swap_bios_enabled) &&
1414	    unlikely(swap_bios_limit(ti, clone))) {
1415		int latch = get_swap_bios();
1416
1417		if (unlikely(latch != md->swap_bios))
1418			__set_swap_bios_limit(md, latch);
1419		down(&md->swap_bios_semaphore);
1420	}
1421
1422	if (static_branch_unlikely(&zoned_enabled)) {
1423		/*
1424		 * Check if the IO needs a special mapping due to zone append
1425		 * emulation on zoned target. In this case, dm_zone_map_bio()
1426		 * calls the target map operation.
1427		 */
1428		if (unlikely(dm_emulate_zone_append(md)))
1429			r = dm_zone_map_bio(tio);
1430		else
1431			goto do_map;
1432	} else {
1433do_map:
1434		if (likely(ti->type->map == linear_map))
1435			r = linear_map(ti, clone);
1436		else if (ti->type->map == stripe_map)
1437			r = stripe_map(ti, clone);
1438		else
1439			r = ti->type->map(ti, clone);
1440	}
1441
1442	switch (r) {
1443	case DM_MAPIO_SUBMITTED:
1444		/* target has assumed ownership of this io */
1445		if (!ti->accounts_remapped_io)
1446			dm_start_io_acct(io, clone);
1447		break;
1448	case DM_MAPIO_REMAPPED:
1449		dm_submit_bio_remap(clone, NULL);
1450		break;
1451	case DM_MAPIO_KILL:
1452	case DM_MAPIO_REQUEUE:
1453		if (static_branch_unlikely(&swap_bios_enabled) &&
1454		    unlikely(swap_bios_limit(ti, clone)))
1455			up(&md->swap_bios_semaphore);
1456		free_tio(clone);
1457		if (r == DM_MAPIO_KILL)
1458			dm_io_dec_pending(io, BLK_STS_IOERR);
1459		else
1460			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1461		break;
1462	default:
1463		DMCRIT("unimplemented target map return value: %d", r);
1464		BUG();
1465	}
1466}
1467
1468static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1469{
1470	struct dm_io *io = ci->io;
 
 
 
 
 
1471
1472	if (ci->sector_count > len) {
1473		/*
1474		 * Split needed, save the mapped part for accounting.
1475		 * NOTE: dm_accept_partial_bio() will update accordingly.
1476		 */
1477		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1478		io->sectors = len;
1479		io->sector_offset = bio_sectors(ci->bio);
1480	}
1481}
1482
1483static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1484				struct dm_target *ti, unsigned int num_bios,
1485				unsigned *len, gfp_t gfp_flag)
 
 
1486{
1487	struct bio *bio;
1488	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
 
1489
1490	for (; try < 2; try++) {
1491		int bio_nr;
 
 
 
1492
1493		if (try && num_bios > 1)
1494			mutex_lock(&ci->io->md->table_devices_lock);
1495		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1496			bio = alloc_tio(ci, ti, bio_nr, len,
1497					try ? GFP_NOIO : GFP_NOWAIT);
1498			if (!bio)
1499				break;
1500
1501			bio_list_add(blist, bio);
1502		}
1503		if (try && num_bios > 1)
1504			mutex_unlock(&ci->io->md->table_devices_lock);
1505		if (bio_nr == num_bios)
1506			return;
1507
1508		while ((bio = bio_list_pop(blist)))
1509			free_tio(bio);
1510	}
1511}
1512
1513static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1514					  unsigned int num_bios, unsigned int *len,
1515					  gfp_t gfp_flag)
1516{
1517	struct bio_list blist = BIO_EMPTY_LIST;
1518	struct bio *clone;
1519	unsigned int ret = 0;
1520
1521	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1522		return 0;
1523
1524	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1525	if (len)
1526		setup_split_accounting(ci, *len);
1527
1528	/*
1529	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1530	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1531	 */
1532	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1533	while ((clone = bio_list_pop(&blist))) {
1534		if (num_bios > 1)
1535			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1536		__map_bio(clone);
1537		ret += 1;
1538	}
1539
1540	return ret;
1541}
1542
1543static void __send_empty_flush(struct clone_info *ci)
 
 
1544{
1545	struct dm_table *t = ci->map;
1546	struct bio flush_bio;
1547
1548	/*
1549	 * Use an on-stack bio for this, it's safe since we don't
1550	 * need to reference it after submit. It's just used as
1551	 * the basis for the clone(s).
1552	 */
1553	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1554		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1555
1556	ci->bio = &flush_bio;
1557	ci->sector_count = 0;
1558	ci->io->tio.clone.bi_iter.bi_size = 0;
1559
1560	for (unsigned int i = 0; i < t->num_targets; i++) {
1561		unsigned int bios;
1562		struct dm_target *ti = dm_table_get_target(t, i);
1563
1564		if (unlikely(ti->num_flush_bios == 0))
1565			continue;
 
1566
1567		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1568		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1569					     NULL, GFP_NOWAIT);
1570		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1571	}
1572
1573	/*
1574	 * alloc_io() takes one extra reference for submission, so the
1575	 * reference won't reach 0 without the following subtraction
1576	 */
1577	atomic_sub(1, &ci->io->io_count);
1578
1579	bio_uninit(ci->bio);
 
1580}
1581
1582static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1583			       unsigned int num_bios, unsigned int max_granularity,
1584			       unsigned int max_sectors)
1585{
1586	unsigned int len, bios;
1587
1588	len = min_t(sector_t, ci->sector_count,
1589		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1590
1591	atomic_add(num_bios, &ci->io->io_count);
1592	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1593	/*
1594	 * alloc_io() takes one extra reference for submission, so the
1595	 * reference won't reach 0 without the following (+1) subtraction
1596	 */
1597	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1598
1599	ci->sector += len;
1600	ci->sector_count -= len;
1601}
1602
1603static bool is_abnormal_io(struct bio *bio)
 
1604{
1605	enum req_op op = bio_op(bio);
 
 
 
 
 
 
 
 
 
 
1606
1607	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1608		switch (op) {
1609		case REQ_OP_DISCARD:
1610		case REQ_OP_SECURE_ERASE:
1611		case REQ_OP_WRITE_ZEROES:
1612			return true;
1613		default:
1614			break;
1615		}
 
1616	}
1617
1618	return false;
1619}
1620
1621static blk_status_t __process_abnormal_io(struct clone_info *ci,
1622					  struct dm_target *ti)
1623{
1624	unsigned int num_bios = 0;
1625	unsigned int max_granularity = 0;
1626	unsigned int max_sectors = 0;
1627	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1628
1629	switch (bio_op(ci->bio)) {
1630	case REQ_OP_DISCARD:
1631		num_bios = ti->num_discard_bios;
1632		max_sectors = limits->max_discard_sectors;
1633		if (ti->max_discard_granularity)
1634			max_granularity = max_sectors;
1635		break;
1636	case REQ_OP_SECURE_ERASE:
1637		num_bios = ti->num_secure_erase_bios;
1638		max_sectors = limits->max_secure_erase_sectors;
1639		if (ti->max_secure_erase_granularity)
1640			max_granularity = max_sectors;
1641		break;
1642	case REQ_OP_WRITE_ZEROES:
1643		num_bios = ti->num_write_zeroes_bios;
1644		max_sectors = limits->max_write_zeroes_sectors;
1645		if (ti->max_write_zeroes_granularity)
1646			max_granularity = max_sectors;
1647		break;
1648	default:
1649		break;
1650	}
1651
1652	/*
1653	 * Even though the device advertised support for this type of
1654	 * request, that does not mean every target supports it, and
1655	 * reconfiguration might also have changed that since the
1656	 * check was performed.
1657	 */
1658	if (unlikely(!num_bios))
1659		return BLK_STS_NOTSUPP;
1660
1661	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
 
 
 
1662
1663	return BLK_STS_OK;
 
 
1664}
1665
1666/*
1667 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1668 * associated with this bio, and this bio's bi_private needs to be
1669 * stored in dm_io->data before the reuse.
1670 *
1671 * bio->bi_private is owned by fs or upper layer, so block layer won't
1672 * touch it after splitting. Meantime it won't be changed by anyone after
1673 * bio is submitted. So this reuse is safe.
1674 */
1675static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1676{
1677	return (struct dm_io **)&bio->bi_private;
1678}
1679
1680static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
 
 
1681{
1682	struct dm_io **head = dm_poll_list_head(bio);
 
 
 
 
 
 
 
1683
1684	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1685		bio->bi_opf |= REQ_DM_POLL_LIST;
1686		/*
1687		 * Save .bi_private into dm_io, so that we can reuse
1688		 * .bi_private as dm_io list head for storing dm_io list
 
 
1689		 */
1690		io->data = bio->bi_private;
 
 
1691
1692		/* tell block layer to poll for completion */
1693		bio->bi_cookie = ~BLK_QC_T_NONE;
 
 
1694
1695		io->next = NULL;
1696	} else {
1697		/*
1698		 * bio recursed due to split, reuse original poll list,
1699		 * and save bio->bi_private too.
1700		 */
1701		io->data = (*head)->data;
1702		io->next = *head;
1703	}
1704
1705	*head = io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1706}
1707
1708/*
1709 * Select the correct strategy for processing a non-flush bio.
1710 */
1711static blk_status_t __split_and_process_bio(struct clone_info *ci)
1712{
1713	struct bio *clone;
1714	struct dm_target *ti;
1715	unsigned int len;
1716
1717	ti = dm_table_find_target(ci->map, ci->sector);
1718	if (unlikely(!ti))
1719		return BLK_STS_IOERR;
1720
1721	if (unlikely(ci->is_abnormal_io))
1722		return __process_abnormal_io(ci, ti);
1723
1724	/*
1725	 * Only support bio polling for normal IO, and the target io is
1726	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1727	 */
1728	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1729
1730	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1731	setup_split_accounting(ci, len);
 
1732
1733	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1734		if (unlikely(!dm_target_supports_nowait(ti->type)))
1735			return BLK_STS_NOTSUPP;
1736
1737		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1738		if (unlikely(!clone))
1739			return BLK_STS_AGAIN;
1740	} else {
1741		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1742	}
1743	__map_bio(clone);
1744
1745	ci->sector += len;
1746	ci->sector_count -= len;
1747
1748	return BLK_STS_OK;
1749}
1750
1751static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1752			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1753{
1754	ci->map = map;
1755	ci->io = io;
1756	ci->bio = bio;
1757	ci->is_abnormal_io = is_abnormal;
1758	ci->submit_as_polled = false;
1759	ci->sector = bio->bi_iter.bi_sector;
1760	ci->sector_count = bio_sectors(bio);
1761
1762	/* Shouldn't happen but sector_count was being set to 0 so... */
1763	if (static_branch_unlikely(&zoned_enabled) &&
1764	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1765		ci->sector_count = 0;
1766}
1767
1768/*
1769 * Entry point to split a bio into clones and submit them to the targets.
1770 */
1771static void dm_split_and_process_bio(struct mapped_device *md,
1772				     struct dm_table *map, struct bio *bio)
1773{
1774	struct clone_info ci;
1775	struct dm_io *io;
1776	blk_status_t error = BLK_STS_OK;
1777	bool is_abnormal;
1778
1779	is_abnormal = is_abnormal_io(bio);
1780	if (unlikely(is_abnormal)) {
1781		/*
1782		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1783		 * otherwise associated queue_limits won't be imposed.
1784		 */
1785		bio = bio_split_to_limits(bio);
1786		if (!bio)
1787			return;
1788	}
1789
1790	/* Only support nowait for normal IO */
1791	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1792		io = alloc_io(md, bio, GFP_NOWAIT);
1793		if (unlikely(!io)) {
1794			/* Unable to do anything without dm_io. */
1795			bio_wouldblock_error(bio);
1796			return;
1797		}
1798	} else {
1799		io = alloc_io(md, bio, GFP_NOIO);
1800	}
1801	init_clone_info(&ci, io, map, bio, is_abnormal);
1802
1803	if (bio->bi_opf & REQ_PREFLUSH) {
1804		__send_empty_flush(&ci);
1805		/* dm_io_complete submits any data associated with flush */
1806		goto out;
 
 
 
 
 
 
1807	}
1808
1809	error = __split_and_process_bio(&ci);
1810	if (error || !ci.sector_count)
1811		goto out;
1812	/*
1813	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1814	 * *after* bios already submitted have been completely processed.
1815	 */
1816	bio_trim(bio, io->sectors, ci.sector_count);
1817	trace_block_split(bio, bio->bi_iter.bi_sector);
1818	bio_inc_remaining(bio);
1819	submit_bio_noacct(bio);
1820out:
1821	/*
1822	 * Drop the extra reference count for non-POLLED bio, and hold one
1823	 * reference for POLLED bio, which will be released in dm_poll_bio
1824	 *
1825	 * Add every dm_io instance into the dm_io list head which is stored
1826	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1827	 */
1828	if (error || !ci.submit_as_polled) {
1829		/*
1830		 * In case of submission failure, the extra reference for
1831		 * submitting io isn't consumed yet
1832		 */
1833		if (error)
1834			atomic_dec(&io->io_count);
1835		dm_io_dec_pending(io, error);
1836	} else
1837		dm_queue_poll_io(bio, io);
1838}
 
 
 
1839
1840static void dm_submit_bio(struct bio *bio)
 
 
 
 
1841{
1842	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
 
1843	int srcu_idx;
1844	struct dm_table *map;
1845
1846	map = dm_get_live_table(md, &srcu_idx);
1847
1848	/* If suspended, or map not yet available, queue this IO for later */
1849	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1850	    unlikely(!map)) {
1851		if (bio->bi_opf & REQ_NOWAIT)
1852			bio_wouldblock_error(bio);
1853		else if (bio->bi_opf & REQ_RAHEAD)
1854			bio_io_error(bio);
1855		else
1856			queue_io(md, bio);
1857		goto out;
 
 
1858	}
1859
1860	dm_split_and_process_bio(md, map, bio);
1861out:
1862	dm_put_live_table(md, srcu_idx);
 
1863}
1864
1865static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1866			  unsigned int flags)
1867{
1868	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1869
1870	/* don't poll if the mapped io is done */
1871	if (atomic_read(&io->io_count) > 1)
1872		bio_poll(&io->tio.clone, iob, flags);
1873
1874	/* bio_poll holds the last reference */
1875	return atomic_read(&io->io_count) == 1;
1876}
1877
1878static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1879		       unsigned int flags)
1880{
1881	struct dm_io **head = dm_poll_list_head(bio);
1882	struct dm_io *list = *head;
1883	struct dm_io *tmp = NULL;
1884	struct dm_io *curr, *next;
1885
1886	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1887	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1888		return 0;
1889
1890	WARN_ON_ONCE(!list);
1891
1892	/*
1893	 * Restore .bi_private before possibly completing dm_io.
1894	 *
1895	 * bio_poll() is only possible once @bio has been completely
1896	 * submitted via submit_bio_noacct()'s depth-first submission.
1897	 * So there is no dm_queue_poll_io() race associated with
1898	 * clearing REQ_DM_POLL_LIST here.
1899	 */
1900	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1901	bio->bi_private = list->data;
1902
1903	for (curr = list, next = curr->next; curr; curr = next, next =
1904			curr ? curr->next : NULL) {
1905		if (dm_poll_dm_io(curr, iob, flags)) {
1906			/*
1907			 * clone_endio() has already occurred, so no
1908			 * error handling is needed here.
1909			 */
1910			__dm_io_dec_pending(curr);
1911		} else {
1912			curr->next = tmp;
1913			tmp = curr;
 
 
1914		}
1915	}
1916
1917	/* Not done? */
1918	if (tmp) {
1919		bio->bi_opf |= REQ_DM_POLL_LIST;
1920		/* Reset bio->bi_private to dm_io list head */
1921		*head = tmp;
1922		return 0;
1923	}
1924	return 1;
1925}
1926
1927/*
1928 *---------------------------------------------------------------
1929 * An IDR is used to keep track of allocated minor numbers.
1930 *---------------------------------------------------------------
1931 */
1932static void free_minor(int minor)
1933{
1934	spin_lock(&_minor_lock);
1935	idr_remove(&_minor_idr, minor);
1936	spin_unlock(&_minor_lock);
1937}
1938
1939/*
1940 * See if the device with a specific minor # is free.
1941 */
1942static int specific_minor(int minor)
1943{
1944	int r;
1945
1946	if (minor >= (1 << MINORBITS))
1947		return -EINVAL;
1948
1949	idr_preload(GFP_KERNEL);
1950	spin_lock(&_minor_lock);
1951
1952	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1953
1954	spin_unlock(&_minor_lock);
1955	idr_preload_end();
1956	if (r < 0)
1957		return r == -ENOSPC ? -EBUSY : r;
1958	return 0;
1959}
1960
1961static int next_free_minor(int *minor)
1962{
1963	int r;
1964
1965	idr_preload(GFP_KERNEL);
1966	spin_lock(&_minor_lock);
1967
1968	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1969
1970	spin_unlock(&_minor_lock);
1971	idr_preload_end();
1972	if (r < 0)
1973		return r;
1974	*minor = r;
1975	return 0;
1976}
1977
1978static const struct block_device_operations dm_blk_dops;
1979static const struct block_device_operations dm_rq_blk_dops;
1980static const struct dax_operations dm_dax_ops;
1981
1982static void dm_wq_work(struct work_struct *work);
1983
1984#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1985static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1986{
1987	dm_destroy_crypto_profile(q->crypto_profile);
1988}
 
 
 
 
 
 
 
 
1989
1990#else /* CONFIG_BLK_INLINE_ENCRYPTION */
 
 
 
 
 
 
1991
1992static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1993{
 
 
 
 
 
 
 
 
1994}
1995#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1996
1997static void cleanup_mapped_device(struct mapped_device *md)
1998{
1999	if (md->wq)
2000		destroy_workqueue(md->wq);
2001	dm_free_md_mempools(md->mempools);
2002
2003	if (md->dax_dev) {
2004		dax_remove_host(md->disk);
2005		kill_dax(md->dax_dev);
2006		put_dax(md->dax_dev);
2007		md->dax_dev = NULL;
2008	}
2009
2010	dm_cleanup_zoned_dev(md);
2011	if (md->disk) {
2012		spin_lock(&_minor_lock);
2013		md->disk->private_data = NULL;
2014		spin_unlock(&_minor_lock);
2015		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2016			struct table_device *td;
2017
2018			dm_sysfs_exit(md);
2019			list_for_each_entry(td, &md->table_devices, list) {
2020				bd_unlink_disk_holder(td->dm_dev.bdev,
2021						      md->disk);
2022			}
2023
2024			/*
2025			 * Hold lock to make sure del_gendisk() won't concurrent
2026			 * with open/close_table_device().
2027			 */
2028			mutex_lock(&md->table_devices_lock);
2029			del_gendisk(md->disk);
2030			mutex_unlock(&md->table_devices_lock);
2031		}
2032		dm_queue_destroy_crypto_profile(md->queue);
2033		put_disk(md->disk);
2034	}
2035
2036	if (md->pending_io) {
2037		free_percpu(md->pending_io);
2038		md->pending_io = NULL;
2039	}
2040
2041	cleanup_srcu_struct(&md->io_barrier);
2042
2043	mutex_destroy(&md->suspend_lock);
2044	mutex_destroy(&md->type_lock);
2045	mutex_destroy(&md->table_devices_lock);
2046	mutex_destroy(&md->swap_bios_lock);
2047
2048	dm_mq_cleanup_mapped_device(md);
2049}
2050
2051/*
2052 * Allocate and initialise a blank device with a given minor.
2053 */
2054static struct mapped_device *alloc_dev(int minor)
2055{
2056	int r, numa_node_id = dm_get_numa_node();
2057	struct mapped_device *md;
2058	void *old_md;
2059
2060	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2061	if (!md) {
2062		DMERR("unable to allocate device, out of memory.");
2063		return NULL;
2064	}
2065
2066	if (!try_module_get(THIS_MODULE))
2067		goto bad_module_get;
2068
2069	/* get a minor number for the dev */
2070	if (minor == DM_ANY_MINOR)
2071		r = next_free_minor(&minor);
2072	else
2073		r = specific_minor(minor);
2074	if (r < 0)
2075		goto bad_minor;
2076
2077	r = init_srcu_struct(&md->io_barrier);
2078	if (r < 0)
2079		goto bad_io_barrier;
2080
2081	md->numa_node_id = numa_node_id;
 
2082	md->init_tio_pdu = false;
2083	md->type = DM_TYPE_NONE;
2084	mutex_init(&md->suspend_lock);
2085	mutex_init(&md->type_lock);
2086	mutex_init(&md->table_devices_lock);
2087	spin_lock_init(&md->deferred_lock);
2088	atomic_set(&md->holders, 1);
2089	atomic_set(&md->open_count, 0);
2090	atomic_set(&md->event_nr, 0);
2091	atomic_set(&md->uevent_seq, 0);
2092	INIT_LIST_HEAD(&md->uevent_list);
2093	INIT_LIST_HEAD(&md->table_devices);
2094	spin_lock_init(&md->uevent_lock);
2095
2096	/*
2097	 * default to bio-based until DM table is loaded and md->type
2098	 * established. If request-based table is loaded: blk-mq will
2099	 * override accordingly.
2100	 */
2101	md->disk = blk_alloc_disk(md->numa_node_id);
 
2102	if (!md->disk)
2103		goto bad;
2104	md->queue = md->disk->queue;
2105
 
 
2106	init_waitqueue_head(&md->wait);
2107	INIT_WORK(&md->work, dm_wq_work);
2108	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2109	init_waitqueue_head(&md->eventq);
2110	init_completion(&md->kobj_holder.completion);
2111
2112	md->requeue_list = NULL;
2113	md->swap_bios = get_swap_bios();
2114	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2115	mutex_init(&md->swap_bios_lock);
2116
2117	md->disk->major = _major;
2118	md->disk->first_minor = minor;
2119	md->disk->minors = 1;
2120	md->disk->flags |= GENHD_FL_NO_PART;
2121	md->disk->fops = &dm_blk_dops;
 
2122	md->disk->private_data = md;
2123	sprintf(md->disk->disk_name, "dm-%d", minor);
2124
2125	if (IS_ENABLED(CONFIG_FS_DAX)) {
2126		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2127		if (IS_ERR(md->dax_dev)) {
2128			md->dax_dev = NULL;
2129			goto bad;
2130		}
2131		set_dax_nocache(md->dax_dev);
2132		set_dax_nomc(md->dax_dev);
2133		if (dax_add_host(md->dax_dev, md->disk))
2134			goto bad;
2135	}
2136
2137	format_dev_t(md->name, MKDEV(_major, minor));
2138
2139	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2140	if (!md->wq)
2141		goto bad;
2142
2143	md->pending_io = alloc_percpu(unsigned long);
2144	if (!md->pending_io)
2145		goto bad;
2146
2147	r = dm_stats_init(&md->stats);
2148	if (r < 0)
2149		goto bad;
 
 
2150
2151	/* Populate the mapping, nobody knows we exist yet */
2152	spin_lock(&_minor_lock);
2153	old_md = idr_replace(&_minor_idr, md, minor);
2154	spin_unlock(&_minor_lock);
2155
2156	BUG_ON(old_md != MINOR_ALLOCED);
2157
2158	return md;
2159
2160bad:
2161	cleanup_mapped_device(md);
2162bad_io_barrier:
2163	free_minor(minor);
2164bad_minor:
2165	module_put(THIS_MODULE);
2166bad_module_get:
2167	kvfree(md);
2168	return NULL;
2169}
2170
2171static void unlock_fs(struct mapped_device *md);
2172
2173static void free_dev(struct mapped_device *md)
2174{
2175	int minor = MINOR(disk_devt(md->disk));
2176
2177	unlock_fs(md);
2178
2179	cleanup_mapped_device(md);
2180
2181	WARN_ON_ONCE(!list_empty(&md->table_devices));
2182	dm_stats_cleanup(&md->stats);
2183	free_minor(minor);
2184
2185	module_put(THIS_MODULE);
2186	kvfree(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2187}
2188
2189/*
2190 * Bind a table to the device.
2191 */
2192static void event_callback(void *context)
2193{
2194	unsigned long flags;
2195	LIST_HEAD(uevents);
2196	struct mapped_device *md = context;
2197
2198	spin_lock_irqsave(&md->uevent_lock, flags);
2199	list_splice_init(&md->uevent_list, &uevents);
2200	spin_unlock_irqrestore(&md->uevent_lock, flags);
2201
2202	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2203
2204	atomic_inc(&md->event_nr);
2205	wake_up(&md->eventq);
2206	dm_issue_global_event();
 
 
 
 
 
 
 
 
 
2207}
2208
2209/*
2210 * Returns old map, which caller must destroy.
2211 */
2212static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2213			       struct queue_limits *limits)
2214{
2215	struct dm_table *old_map;
 
2216	sector_t size;
2217	int ret;
2218
2219	lockdep_assert_held(&md->suspend_lock);
2220
2221	size = dm_table_get_size(t);
2222
2223	/*
2224	 * Wipe any geometry if the size of the table changed.
2225	 */
2226	if (size != dm_get_size(md))
2227		memset(&md->geometry, 0, sizeof(md->geometry));
2228
2229	set_capacity(md->disk, size);
2230
2231	dm_table_event_callback(t, event_callback, md);
2232
 
 
 
 
 
 
 
2233	if (dm_table_request_based(t)) {
 
2234		/*
2235		 * Leverage the fact that request-based DM targets are
2236		 * immutable singletons - used to optimize dm_mq_queue_rq.
 
2237		 */
2238		md->immutable_target = dm_table_get_immutable_target(t);
2239
2240		/*
2241		 * There is no need to reload with request-based dm because the
2242		 * size of front_pad doesn't change.
2243		 *
2244		 * Note for future: If you are to reload bioset, prep-ed
2245		 * requests in the queue may refer to bio from the old bioset,
2246		 * so you must walk through the queue to unprep.
2247		 */
2248		if (!md->mempools) {
2249			md->mempools = t->mempools;
2250			t->mempools = NULL;
2251		}
2252	} else {
2253		/*
2254		 * The md may already have mempools that need changing.
2255		 * If so, reload bioset because front_pad may have changed
2256		 * because a different table was loaded.
2257		 */
2258		dm_free_md_mempools(md->mempools);
2259		md->mempools = t->mempools;
2260		t->mempools = NULL;
2261	}
2262
2263	ret = dm_table_set_restrictions(t, md->queue, limits);
2264	if (ret) {
2265		old_map = ERR_PTR(ret);
2266		goto out;
2267	}
2268
2269	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2270	rcu_assign_pointer(md->map, (void *)t);
2271	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2272
 
2273	if (old_map)
2274		dm_sync_table(md);
2275out:
2276	return old_map;
2277}
2278
2279/*
2280 * Returns unbound table for the caller to free.
2281 */
2282static struct dm_table *__unbind(struct mapped_device *md)
2283{
2284	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2285
2286	if (!map)
2287		return NULL;
2288
2289	dm_table_event_callback(map, NULL, NULL);
2290	RCU_INIT_POINTER(md->map, NULL);
2291	dm_sync_table(md);
2292
2293	return map;
2294}
2295
2296/*
2297 * Constructor for a new device.
2298 */
2299int dm_create(int minor, struct mapped_device **result)
2300{
2301	struct mapped_device *md;
2302
2303	md = alloc_dev(minor);
2304	if (!md)
2305		return -ENXIO;
2306
2307	dm_ima_reset_data(md);
2308
2309	*result = md;
2310	return 0;
2311}
2312
2313/*
2314 * Functions to manage md->type.
2315 * All are required to hold md->type_lock.
2316 */
2317void dm_lock_md_type(struct mapped_device *md)
2318{
2319	mutex_lock(&md->type_lock);
2320}
2321
2322void dm_unlock_md_type(struct mapped_device *md)
2323{
2324	mutex_unlock(&md->type_lock);
2325}
2326
2327void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2328{
2329	BUG_ON(!mutex_is_locked(&md->type_lock));
2330	md->type = type;
2331}
2332
2333enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2334{
2335	return md->type;
2336}
2337
2338struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2339{
2340	return md->immutable_target_type;
2341}
2342
2343/*
 
 
 
 
 
 
 
 
 
 
 
2344 * Setup the DM device's queue based on md's type
2345 */
2346int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2347{
2348	enum dm_queue_mode type = dm_table_get_type(t);
2349	struct queue_limits limits;
2350	struct table_device *td;
2351	int r;
 
2352
2353	switch (type) {
2354	case DM_TYPE_REQUEST_BASED:
2355		md->disk->fops = &dm_rq_blk_dops;
 
 
 
 
 
 
2356		r = dm_mq_init_request_queue(md, t);
2357		if (r) {
2358			DMERR("Cannot initialize queue for request-based dm mapped device");
2359			return r;
2360		}
2361		break;
2362	case DM_TYPE_BIO_BASED:
2363	case DM_TYPE_DAX_BIO_BASED:
2364		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
2365		break;
2366	case DM_TYPE_NONE:
2367		WARN_ON_ONCE(true);
2368		break;
2369	}
2370
2371	r = dm_calculate_queue_limits(t, &limits);
2372	if (r) {
2373		DMERR("Cannot calculate initial queue limits");
2374		return r;
2375	}
2376	r = dm_table_set_restrictions(t, md->queue, &limits);
2377	if (r)
2378		return r;
2379
2380	/*
2381	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2382	 * with open_table_device() and close_table_device().
2383	 */
2384	mutex_lock(&md->table_devices_lock);
2385	r = add_disk(md->disk);
2386	mutex_unlock(&md->table_devices_lock);
2387	if (r)
2388		return r;
2389
2390	/*
2391	 * Register the holder relationship for devices added before the disk
2392	 * was live.
2393	 */
2394	list_for_each_entry(td, &md->table_devices, list) {
2395		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2396		if (r)
2397			goto out_undo_holders;
2398	}
2399
2400	r = dm_sysfs_init(md);
2401	if (r)
2402		goto out_undo_holders;
2403
2404	md->type = type;
2405	return 0;
2406
2407out_undo_holders:
2408	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2409		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2410	mutex_lock(&md->table_devices_lock);
2411	del_gendisk(md->disk);
2412	mutex_unlock(&md->table_devices_lock);
2413	return r;
2414}
2415
2416struct mapped_device *dm_get_md(dev_t dev)
2417{
2418	struct mapped_device *md;
2419	unsigned int minor = MINOR(dev);
2420
2421	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2422		return NULL;
2423
2424	spin_lock(&_minor_lock);
2425
2426	md = idr_find(&_minor_idr, minor);
2427	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2428	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2429		md = NULL;
2430		goto out;
 
 
 
 
 
2431	}
2432	dm_get(md);
2433out:
2434	spin_unlock(&_minor_lock);
2435
2436	return md;
2437}
2438EXPORT_SYMBOL_GPL(dm_get_md);
2439
2440void *dm_get_mdptr(struct mapped_device *md)
2441{
2442	return md->interface_ptr;
2443}
2444
2445void dm_set_mdptr(struct mapped_device *md, void *ptr)
2446{
2447	md->interface_ptr = ptr;
2448}
2449
2450void dm_get(struct mapped_device *md)
2451{
2452	atomic_inc(&md->holders);
2453	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2454}
2455
2456int dm_hold(struct mapped_device *md)
2457{
2458	spin_lock(&_minor_lock);
2459	if (test_bit(DMF_FREEING, &md->flags)) {
2460		spin_unlock(&_minor_lock);
2461		return -EBUSY;
2462	}
2463	dm_get(md);
2464	spin_unlock(&_minor_lock);
2465	return 0;
2466}
2467EXPORT_SYMBOL_GPL(dm_hold);
2468
2469const char *dm_device_name(struct mapped_device *md)
2470{
2471	return md->name;
2472}
2473EXPORT_SYMBOL_GPL(dm_device_name);
2474
2475static void __dm_destroy(struct mapped_device *md, bool wait)
2476{
 
2477	struct dm_table *map;
2478	int srcu_idx;
2479
2480	might_sleep();
2481
2482	spin_lock(&_minor_lock);
2483	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2484	set_bit(DMF_FREEING, &md->flags);
2485	spin_unlock(&_minor_lock);
2486
2487	blk_mark_disk_dead(md->disk);
 
 
 
2488
2489	/*
2490	 * Take suspend_lock so that presuspend and postsuspend methods
2491	 * do not race with internal suspend.
2492	 */
2493	mutex_lock(&md->suspend_lock);
2494	map = dm_get_live_table(md, &srcu_idx);
2495	if (!dm_suspended_md(md)) {
2496		dm_table_presuspend_targets(map);
2497		set_bit(DMF_SUSPENDED, &md->flags);
2498		set_bit(DMF_POST_SUSPENDING, &md->flags);
2499		dm_table_postsuspend_targets(map);
2500	}
2501	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2502	dm_put_live_table(md, srcu_idx);
2503	mutex_unlock(&md->suspend_lock);
2504
2505	/*
2506	 * Rare, but there may be I/O requests still going to complete,
2507	 * for example.  Wait for all references to disappear.
2508	 * No one should increment the reference count of the mapped_device,
2509	 * after the mapped_device state becomes DMF_FREEING.
2510	 */
2511	if (wait)
2512		while (atomic_read(&md->holders))
2513			fsleep(1000);
2514	else if (atomic_read(&md->holders))
2515		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2516		       dm_device_name(md), atomic_read(&md->holders));
2517
 
2518	dm_table_destroy(__unbind(md));
2519	free_dev(md);
2520}
2521
2522void dm_destroy(struct mapped_device *md)
2523{
2524	__dm_destroy(md, true);
2525}
2526
2527void dm_destroy_immediate(struct mapped_device *md)
2528{
2529	__dm_destroy(md, false);
2530}
2531
2532void dm_put(struct mapped_device *md)
2533{
2534	atomic_dec(&md->holders);
2535}
2536EXPORT_SYMBOL_GPL(dm_put);
2537
2538static bool dm_in_flight_bios(struct mapped_device *md)
2539{
2540	int cpu;
2541	unsigned long sum = 0;
2542
2543	for_each_possible_cpu(cpu)
2544		sum += *per_cpu_ptr(md->pending_io, cpu);
2545
2546	return sum != 0;
2547}
2548
2549static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2550{
2551	int r = 0;
2552	DEFINE_WAIT(wait);
2553
2554	while (true) {
2555		prepare_to_wait(&md->wait, &wait, task_state);
2556
2557		if (!dm_in_flight_bios(md))
2558			break;
2559
2560		if (signal_pending_state(task_state, current)) {
2561			r = -EINTR;
2562			break;
2563		}
2564
2565		io_schedule();
2566	}
2567	finish_wait(&md->wait, &wait);
2568
2569	smp_rmb();
2570
2571	return r;
2572}
2573
2574static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2575{
2576	int r = 0;
2577
2578	if (!queue_is_mq(md->queue))
2579		return dm_wait_for_bios_completion(md, task_state);
2580
2581	while (true) {
2582		if (!blk_mq_queue_inflight(md->queue))
2583			break;
2584
2585		if (signal_pending_state(task_state, current)) {
2586			r = -EINTR;
2587			break;
2588		}
2589
2590		fsleep(5000);
2591	}
2592
2593	return r;
2594}
2595
2596/*
2597 * Process the deferred bios
2598 */
2599static void dm_wq_work(struct work_struct *work)
2600{
2601	struct mapped_device *md = container_of(work, struct mapped_device, work);
2602	struct bio *bio;
 
 
 
 
 
2603
2604	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2605		spin_lock_irq(&md->deferred_lock);
2606		bio = bio_list_pop(&md->deferred);
2607		spin_unlock_irq(&md->deferred_lock);
2608
2609		if (!bio)
2610			break;
2611
2612		submit_bio_noacct(bio);
2613		cond_resched();
 
 
2614	}
 
 
2615}
2616
2617static void dm_queue_flush(struct mapped_device *md)
2618{
2619	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2620	smp_mb__after_atomic();
2621	queue_work(md->wq, &md->work);
2622}
2623
2624/*
2625 * Swap in a new table, returning the old one for the caller to destroy.
2626 */
2627struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2628{
2629	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2630	struct queue_limits limits;
2631	int r;
2632
2633	mutex_lock(&md->suspend_lock);
2634
2635	/* device must be suspended */
2636	if (!dm_suspended_md(md))
2637		goto out;
2638
2639	/*
2640	 * If the new table has no data devices, retain the existing limits.
2641	 * This helps multipath with queue_if_no_path if all paths disappear,
2642	 * then new I/O is queued based on these limits, and then some paths
2643	 * reappear.
2644	 */
2645	if (dm_table_has_no_data_devices(table)) {
2646		live_map = dm_get_live_table_fast(md);
2647		if (live_map)
2648			limits = md->queue->limits;
2649		dm_put_live_table_fast(md);
2650	}
2651
2652	if (!live_map) {
2653		r = dm_calculate_queue_limits(table, &limits);
2654		if (r) {
2655			map = ERR_PTR(r);
2656			goto out;
2657		}
2658	}
2659
2660	map = __bind(md, table, &limits);
2661	dm_issue_global_event();
2662
2663out:
2664	mutex_unlock(&md->suspend_lock);
2665	return map;
2666}
2667
2668/*
2669 * Functions to lock and unlock any filesystem running on the
2670 * device.
2671 */
2672static int lock_fs(struct mapped_device *md)
2673{
2674	int r;
2675
2676	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2677
2678	r = bdev_freeze(md->disk->part0);
2679	if (!r)
2680		set_bit(DMF_FROZEN, &md->flags);
2681	return r;
 
 
 
 
 
 
2682}
2683
2684static void unlock_fs(struct mapped_device *md)
2685{
2686	if (!test_bit(DMF_FROZEN, &md->flags))
2687		return;
2688	bdev_thaw(md->disk->part0);
 
 
2689	clear_bit(DMF_FROZEN, &md->flags);
2690}
2691
2692/*
2693 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2694 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2695 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2696 *
2697 * If __dm_suspend returns 0, the device is completely quiescent
2698 * now. There is no request-processing activity. All new requests
2699 * are being added to md->deferred list.
 
 
2700 */
2701static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2702			unsigned int suspend_flags, unsigned int task_state,
2703			int dmf_suspended_flag)
2704{
2705	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2706	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2707	int r;
2708
2709	lockdep_assert_held(&md->suspend_lock);
2710
2711	/*
2712	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2713	 * This flag is cleared before dm_suspend returns.
2714	 */
2715	if (noflush)
2716		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2717	else
2718		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2719
2720	/*
2721	 * This gets reverted if there's an error later and the targets
2722	 * provide the .presuspend_undo hook.
2723	 */
2724	dm_table_presuspend_targets(map);
2725
2726	/*
2727	 * Flush I/O to the device.
2728	 * Any I/O submitted after lock_fs() may not be flushed.
2729	 * noflush takes precedence over do_lockfs.
2730	 * (lock_fs() flushes I/Os and waits for them to complete.)
2731	 */
2732	if (!noflush && do_lockfs) {
2733		r = lock_fs(md);
2734		if (r) {
2735			dm_table_presuspend_undo_targets(map);
2736			return r;
2737		}
2738	}
2739
2740	/*
2741	 * Here we must make sure that no processes are submitting requests
2742	 * to target drivers i.e. no one may be executing
2743	 * dm_split_and_process_bio from dm_submit_bio.
 
2744	 *
2745	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2746	 * we take the write lock. To prevent any process from reentering
2747	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2748	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2749	 * flush_workqueue(md->wq).
2750	 */
2751	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2752	if (map)
2753		synchronize_srcu(&md->io_barrier);
2754
2755	/*
2756	 * Stop md->queue before flushing md->wq in case request-based
2757	 * dm defers requests to md->wq from md->queue.
2758	 */
2759	if (dm_request_based(md))
2760		dm_stop_queue(md->queue);
 
 
 
2761
2762	flush_workqueue(md->wq);
2763
2764	/*
2765	 * At this point no more requests are entering target request routines.
2766	 * We call dm_wait_for_completion to wait for all existing requests
2767	 * to finish.
2768	 */
2769	r = dm_wait_for_completion(md, task_state);
2770	if (!r)
2771		set_bit(dmf_suspended_flag, &md->flags);
2772
2773	if (noflush)
2774		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2775	if (map)
2776		synchronize_srcu(&md->io_barrier);
2777
2778	/* were we interrupted ? */
2779	if (r < 0) {
2780		dm_queue_flush(md);
2781
2782		if (dm_request_based(md))
2783			dm_start_queue(md->queue);
2784
2785		unlock_fs(md);
2786		dm_table_presuspend_undo_targets(map);
2787		/* pushback list is already flushed, so skip flush */
2788	}
2789
2790	return r;
2791}
2792
2793/*
2794 * We need to be able to change a mapping table under a mounted
2795 * filesystem.  For example we might want to move some data in
2796 * the background.  Before the table can be swapped with
2797 * dm_bind_table, dm_suspend must be called to flush any in
2798 * flight bios and ensure that any further io gets deferred.
2799 */
2800/*
2801 * Suspend mechanism in request-based dm.
2802 *
2803 * 1. Flush all I/Os by lock_fs() if needed.
2804 * 2. Stop dispatching any I/O by stopping the request_queue.
2805 * 3. Wait for all in-flight I/Os to be completed or requeued.
2806 *
2807 * To abort suspend, start the request_queue.
2808 */
2809int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2810{
2811	struct dm_table *map = NULL;
2812	int r = 0;
2813
2814retry:
2815	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2816
2817	if (dm_suspended_md(md)) {
2818		r = -EINVAL;
2819		goto out_unlock;
2820	}
2821
2822	if (dm_suspended_internally_md(md)) {
2823		/* already internally suspended, wait for internal resume */
2824		mutex_unlock(&md->suspend_lock);
2825		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2826		if (r)
2827			return r;
2828		goto retry;
2829	}
2830
2831	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2832	if (!map) {
2833		/* avoid deadlock with fs/namespace.c:do_mount() */
2834		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2835	}
2836
2837	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2838	if (r)
2839		goto out_unlock;
2840
2841	set_bit(DMF_POST_SUSPENDING, &md->flags);
2842	dm_table_postsuspend_targets(map);
2843	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2844
2845out_unlock:
2846	mutex_unlock(&md->suspend_lock);
2847	return r;
2848}
2849
2850static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2851{
2852	if (map) {
2853		int r = dm_table_resume_targets(map);
2854
2855		if (r)
2856			return r;
2857	}
2858
2859	dm_queue_flush(md);
2860
2861	/*
2862	 * Flushing deferred I/Os must be done after targets are resumed
2863	 * so that mapping of targets can work correctly.
2864	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2865	 */
2866	if (dm_request_based(md))
2867		dm_start_queue(md->queue);
2868
2869	unlock_fs(md);
2870
2871	return 0;
2872}
2873
2874int dm_resume(struct mapped_device *md)
2875{
2876	int r;
2877	struct dm_table *map = NULL;
2878
2879retry:
2880	r = -EINVAL;
2881	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2882
2883	if (!dm_suspended_md(md))
2884		goto out;
2885
2886	if (dm_suspended_internally_md(md)) {
2887		/* already internally suspended, wait for internal resume */
2888		mutex_unlock(&md->suspend_lock);
2889		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2890		if (r)
2891			return r;
2892		goto retry;
2893	}
2894
2895	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2896	if (!map || !dm_table_get_size(map))
2897		goto out;
2898
2899	r = __dm_resume(md, map);
2900	if (r)
2901		goto out;
2902
2903	clear_bit(DMF_SUSPENDED, &md->flags);
2904out:
2905	mutex_unlock(&md->suspend_lock);
2906
2907	return r;
2908}
2909
2910/*
2911 * Internal suspend/resume works like userspace-driven suspend. It waits
2912 * until all bios finish and prevents issuing new bios to the target drivers.
2913 * It may be used only from the kernel.
2914 */
2915
2916static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2917{
2918	struct dm_table *map = NULL;
2919
2920	lockdep_assert_held(&md->suspend_lock);
2921
2922	if (md->internal_suspend_count++)
2923		return; /* nested internal suspend */
2924
2925	if (dm_suspended_md(md)) {
2926		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2927		return; /* nest suspend */
2928	}
2929
2930	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2931
2932	/*
2933	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2934	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2935	 * would require changing .presuspend to return an error -- avoid this
2936	 * until there is a need for more elaborate variants of internal suspend.
2937	 */
2938	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2939			    DMF_SUSPENDED_INTERNALLY);
2940
2941	set_bit(DMF_POST_SUSPENDING, &md->flags);
2942	dm_table_postsuspend_targets(map);
2943	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2944}
2945
2946static void __dm_internal_resume(struct mapped_device *md)
2947{
2948	BUG_ON(!md->internal_suspend_count);
2949
2950	if (--md->internal_suspend_count)
2951		return; /* resume from nested internal suspend */
2952
2953	if (dm_suspended_md(md))
2954		goto done; /* resume from nested suspend */
2955
2956	/*
2957	 * NOTE: existing callers don't need to call dm_table_resume_targets
2958	 * (which may fail -- so best to avoid it for now by passing NULL map)
2959	 */
2960	(void) __dm_resume(md, NULL);
2961
2962done:
2963	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2964	smp_mb__after_atomic();
2965	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2966}
2967
2968void dm_internal_suspend_noflush(struct mapped_device *md)
2969{
2970	mutex_lock(&md->suspend_lock);
2971	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2972	mutex_unlock(&md->suspend_lock);
2973}
2974EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2975
2976void dm_internal_resume(struct mapped_device *md)
2977{
2978	mutex_lock(&md->suspend_lock);
2979	__dm_internal_resume(md);
2980	mutex_unlock(&md->suspend_lock);
2981}
2982EXPORT_SYMBOL_GPL(dm_internal_resume);
2983
2984/*
2985 * Fast variants of internal suspend/resume hold md->suspend_lock,
2986 * which prevents interaction with userspace-driven suspend.
2987 */
2988
2989void dm_internal_suspend_fast(struct mapped_device *md)
2990{
2991	mutex_lock(&md->suspend_lock);
2992	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2993		return;
2994
2995	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2996	synchronize_srcu(&md->io_barrier);
2997	flush_workqueue(md->wq);
2998	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2999}
3000EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3001
3002void dm_internal_resume_fast(struct mapped_device *md)
3003{
3004	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3005		goto done;
3006
3007	dm_queue_flush(md);
3008
3009done:
3010	mutex_unlock(&md->suspend_lock);
3011}
3012EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3013
3014/*
3015 *---------------------------------------------------------------
3016 * Event notification.
3017 *---------------------------------------------------------------
3018 */
3019int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3020		      unsigned int cookie, bool need_resize_uevent)
3021{
3022	int r;
3023	unsigned int noio_flag;
3024	char udev_cookie[DM_COOKIE_LENGTH];
3025	char *envp[3] = { NULL, NULL, NULL };
3026	char **envpp = envp;
3027	if (cookie) {
 
 
3028		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3029			 DM_COOKIE_ENV_VAR_NAME, cookie);
3030		*envpp++ = udev_cookie;
3031	}
3032	if (need_resize_uevent) {
3033		*envpp++ = "RESIZE=1";
3034	}
3035
3036	noio_flag = memalloc_noio_save();
3037
3038	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3039
3040	memalloc_noio_restore(noio_flag);
3041
3042	return r;
3043}
3044
3045uint32_t dm_next_uevent_seq(struct mapped_device *md)
3046{
3047	return atomic_add_return(1, &md->uevent_seq);
3048}
3049
3050uint32_t dm_get_event_nr(struct mapped_device *md)
3051{
3052	return atomic_read(&md->event_nr);
3053}
3054
3055int dm_wait_event(struct mapped_device *md, int event_nr)
3056{
3057	return wait_event_interruptible(md->eventq,
3058			(event_nr != atomic_read(&md->event_nr)));
3059}
3060
3061void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3062{
3063	unsigned long flags;
3064
3065	spin_lock_irqsave(&md->uevent_lock, flags);
3066	list_add(elist, &md->uevent_list);
3067	spin_unlock_irqrestore(&md->uevent_lock, flags);
3068}
3069
3070/*
3071 * The gendisk is only valid as long as you have a reference
3072 * count on 'md'.
3073 */
3074struct gendisk *dm_disk(struct mapped_device *md)
3075{
3076	return md->disk;
3077}
3078EXPORT_SYMBOL_GPL(dm_disk);
3079
3080struct kobject *dm_kobject(struct mapped_device *md)
3081{
3082	return &md->kobj_holder.kobj;
3083}
3084
3085struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3086{
3087	struct mapped_device *md;
3088
3089	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3090
3091	spin_lock(&_minor_lock);
3092	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3093		md = NULL;
3094		goto out;
3095	}
3096	dm_get(md);
3097out:
3098	spin_unlock(&_minor_lock);
3099
 
3100	return md;
3101}
3102
3103int dm_suspended_md(struct mapped_device *md)
3104{
3105	return test_bit(DMF_SUSPENDED, &md->flags);
3106}
3107
3108static int dm_post_suspending_md(struct mapped_device *md)
3109{
3110	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3111}
3112
3113int dm_suspended_internally_md(struct mapped_device *md)
3114{
3115	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3116}
3117
3118int dm_test_deferred_remove_flag(struct mapped_device *md)
3119{
3120	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3121}
3122
3123int dm_suspended(struct dm_target *ti)
3124{
3125	return dm_suspended_md(ti->table->md);
3126}
3127EXPORT_SYMBOL_GPL(dm_suspended);
3128
3129int dm_post_suspending(struct dm_target *ti)
3130{
3131	return dm_post_suspending_md(ti->table->md);
3132}
3133EXPORT_SYMBOL_GPL(dm_post_suspending);
3134
3135int dm_noflush_suspending(struct dm_target *ti)
 
3136{
3137	return __noflush_suspending(ti->table->md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3138}
3139EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3140
3141void dm_free_md_mempools(struct dm_md_mempools *pools)
3142{
3143	if (!pools)
3144		return;
3145
3146	bioset_exit(&pools->bs);
3147	bioset_exit(&pools->io_bs);
 
 
 
3148
3149	kfree(pools);
3150}
3151
3152struct dm_pr {
3153	u64	old_key;
3154	u64	new_key;
3155	u32	flags;
3156	bool	abort;
3157	bool	fail_early;
3158	int	ret;
3159	enum pr_type type;
3160	struct pr_keys *read_keys;
3161	struct pr_held_reservation *rsv;
3162};
3163
3164static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3165		      struct dm_pr *pr)
3166{
3167	struct mapped_device *md = bdev->bd_disk->private_data;
3168	struct dm_table *table;
3169	struct dm_target *ti;
3170	int ret = -ENOTTY, srcu_idx;
3171
3172	table = dm_get_live_table(md, &srcu_idx);
3173	if (!table || !dm_table_get_size(table))
3174		goto out;
3175
3176	/* We only support devices that have a single target */
3177	if (table->num_targets != 1)
3178		goto out;
3179	ti = dm_table_get_target(table, 0);
3180
3181	if (dm_suspended_md(md)) {
3182		ret = -EAGAIN;
3183		goto out;
3184	}
3185
3186	ret = -EINVAL;
3187	if (!ti->type->iterate_devices)
3188		goto out;
3189
3190	ti->type->iterate_devices(ti, fn, pr);
3191	ret = 0;
3192out:
3193	dm_put_live_table(md, srcu_idx);
3194	return ret;
3195}
3196
3197/*
3198 * For register / unregister we need to manually call out to every path.
3199 */
3200static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3201			    sector_t start, sector_t len, void *data)
3202{
3203	struct dm_pr *pr = data;
3204	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3205	int ret;
3206
3207	if (!ops || !ops->pr_register) {
3208		pr->ret = -EOPNOTSUPP;
3209		return -1;
3210	}
3211
3212	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3213	if (!ret)
3214		return 0;
3215
3216	if (!pr->ret)
3217		pr->ret = ret;
3218
3219	if (pr->fail_early)
3220		return -1;
3221
3222	return 0;
3223}
3224
3225static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3226			  u32 flags)
3227{
3228	struct dm_pr pr = {
3229		.old_key	= old_key,
3230		.new_key	= new_key,
3231		.flags		= flags,
3232		.fail_early	= true,
3233		.ret		= 0,
3234	};
3235	int ret;
3236
3237	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3238	if (ret) {
3239		/* Didn't even get to register a path */
3240		return ret;
3241	}
3242
3243	if (!pr.ret)
3244		return 0;
3245	ret = pr.ret;
3246
3247	if (!new_key)
3248		return ret;
3249
3250	/* unregister all paths if we failed to register any path */
3251	pr.old_key = new_key;
3252	pr.new_key = 0;
3253	pr.flags = 0;
3254	pr.fail_early = false;
3255	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3256	return ret;
3257}
3258
3259
3260static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3261			   sector_t start, sector_t len, void *data)
3262{
3263	struct dm_pr *pr = data;
3264	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3265
3266	if (!ops || !ops->pr_reserve) {
3267		pr->ret = -EOPNOTSUPP;
3268		return -1;
3269	}
3270
3271	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3272	if (!pr->ret)
3273		return -1;
3274
3275	return 0;
3276}
3277
3278static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3279			 u32 flags)
3280{
3281	struct dm_pr pr = {
3282		.old_key	= key,
3283		.flags		= flags,
3284		.type		= type,
3285		.fail_early	= false,
3286		.ret		= 0,
3287	};
3288	int ret;
3289
3290	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3291	if (ret)
3292		return ret;
3293
3294	return pr.ret;
3295}
3296
3297/*
3298 * If there is a non-All Registrants type of reservation, the release must be
3299 * sent down the holding path. For the cases where there is no reservation or
3300 * the path is not the holder the device will also return success, so we must
3301 * try each path to make sure we got the correct path.
3302 */
3303static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3304			   sector_t start, sector_t len, void *data)
3305{
3306	struct dm_pr *pr = data;
3307	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3308
3309	if (!ops || !ops->pr_release) {
3310		pr->ret = -EOPNOTSUPP;
3311		return -1;
3312	}
3313
3314	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3315	if (pr->ret)
3316		return -1;
 
 
3317
3318	return 0;
 
3319}
3320
3321static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3322{
3323	struct dm_pr pr = {
3324		.old_key	= key,
3325		.type		= type,
3326		.fail_early	= false,
3327	};
3328	int ret;
3329
3330	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3331	if (ret)
3332		return ret;
3333
3334	return pr.ret;
3335}
3336
3337static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3338			   sector_t start, sector_t len, void *data)
3339{
3340	struct dm_pr *pr = data;
3341	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3342
3343	if (!ops || !ops->pr_preempt) {
3344		pr->ret = -EOPNOTSUPP;
3345		return -1;
3346	}
3347
3348	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3349				  pr->abort);
3350	if (!pr->ret)
3351		return -1;
 
3352
3353	return 0;
 
3354}
3355
3356static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3357			 enum pr_type type, bool abort)
3358{
3359	struct dm_pr pr = {
3360		.new_key	= new_key,
3361		.old_key	= old_key,
3362		.type		= type,
3363		.fail_early	= false,
3364	};
3365	int ret;
 
3366
3367	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3368	if (ret)
3369		return ret;
 
 
3370
3371	return pr.ret;
 
3372}
3373
3374static int dm_pr_clear(struct block_device *bdev, u64 key)
3375{
3376	struct mapped_device *md = bdev->bd_disk->private_data;
3377	const struct pr_ops *ops;
3378	int r, srcu_idx;
 
3379
3380	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3381	if (r < 0)
3382		goto out;
3383
3384	ops = bdev->bd_disk->fops->pr_ops;
3385	if (ops && ops->pr_clear)
3386		r = ops->pr_clear(bdev, key);
3387	else
3388		r = -EOPNOTSUPP;
3389out:
3390	dm_unprepare_ioctl(md, srcu_idx);
3391	return r;
3392}
3393
3394static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3395			     sector_t start, sector_t len, void *data)
3396{
3397	struct dm_pr *pr = data;
3398	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3399
3400	if (!ops || !ops->pr_read_keys) {
3401		pr->ret = -EOPNOTSUPP;
3402		return -1;
3403	}
3404
3405	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3406	if (!pr->ret)
3407		return -1;
3408
3409	return 0;
3410}
3411
3412static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3413{
3414	struct dm_pr pr = {
3415		.read_keys = keys,
3416	};
3417	int ret;
3418
3419	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3420	if (ret)
3421		return ret;
3422
3423	return pr.ret;
3424}
3425
3426static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3427				    sector_t start, sector_t len, void *data)
3428{
3429	struct dm_pr *pr = data;
3430	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3431
3432	if (!ops || !ops->pr_read_reservation) {
3433		pr->ret = -EOPNOTSUPP;
3434		return -1;
3435	}
3436
3437	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3438	if (!pr->ret)
3439		return -1;
3440
3441	return 0;
3442}
3443
3444static int dm_pr_read_reservation(struct block_device *bdev,
3445				  struct pr_held_reservation *rsv)
3446{
3447	struct dm_pr pr = {
3448		.rsv = rsv,
3449	};
3450	int ret;
3451
3452	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3453	if (ret)
3454		return ret;
3455
3456	return pr.ret;
3457}
3458
3459static const struct pr_ops dm_pr_ops = {
3460	.pr_register	= dm_pr_register,
3461	.pr_reserve	= dm_pr_reserve,
3462	.pr_release	= dm_pr_release,
3463	.pr_preempt	= dm_pr_preempt,
3464	.pr_clear	= dm_pr_clear,
3465	.pr_read_keys	= dm_pr_read_keys,
3466	.pr_read_reservation = dm_pr_read_reservation,
3467};
3468
3469static const struct block_device_operations dm_blk_dops = {
3470	.submit_bio = dm_submit_bio,
3471	.poll_bio = dm_poll_bio,
3472	.open = dm_blk_open,
3473	.release = dm_blk_close,
3474	.ioctl = dm_blk_ioctl,
3475	.getgeo = dm_blk_getgeo,
3476	.report_zones = dm_blk_report_zones,
3477	.pr_ops = &dm_pr_ops,
3478	.owner = THIS_MODULE
3479};
3480
3481static const struct block_device_operations dm_rq_blk_dops = {
3482	.open = dm_blk_open,
3483	.release = dm_blk_close,
3484	.ioctl = dm_blk_ioctl,
 
3485	.getgeo = dm_blk_getgeo,
3486	.pr_ops = &dm_pr_ops,
3487	.owner = THIS_MODULE
3488};
3489
3490static const struct dax_operations dm_dax_ops = {
3491	.direct_access = dm_dax_direct_access,
3492	.zero_page_range = dm_dax_zero_page_range,
3493	.recovery_write = dm_dax_recovery_write,
3494};
3495
3496/*
3497 * module hooks
3498 */
3499module_init(dm_init);
3500module_exit(dm_exit);
3501
3502module_param(major, uint, 0);
3503MODULE_PARM_DESC(major, "The major number of the device mapper");
3504
3505module_param(reserved_bio_based_ios, uint, 0644);
3506MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3507
3508module_param(dm_numa_node, int, 0644);
3509MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3510
3511module_param(swap_bios, int, 0644);
3512MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3513
3514MODULE_DESCRIPTION(DM_NAME " driver");
3515MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3516MODULE_LICENSE("GPL");
v4.10.11
 
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
 
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
 
 
  15#include <linux/blkpg.h>
  16#include <linux/bio.h>
  17#include <linux/mempool.h>
 
  18#include <linux/slab.h>
  19#include <linux/idr.h>
 
  20#include <linux/hdreg.h>
  21#include <linux/delay.h>
  22#include <linux/wait.h>
  23#include <linux/pr.h>
 
 
 
 
  24
  25#define DM_MSG_PREFIX "core"
  26
  27#ifdef CONFIG_PRINTK
  28/*
  29 * ratelimit state to be used in DMXXX_LIMIT().
  30 */
  31DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
  32		       DEFAULT_RATELIMIT_INTERVAL,
  33		       DEFAULT_RATELIMIT_BURST);
  34EXPORT_SYMBOL(dm_ratelimit_state);
  35#endif
  36
  37/*
  38 * Cookies are numeric values sent with CHANGE and REMOVE
  39 * uevents while resuming, removing or renaming the device.
  40 */
  41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  42#define DM_COOKIE_LENGTH 24
  43
 
 
 
 
 
 
 
  44static const char *_name = DM_NAME;
  45
  46static unsigned int major = 0;
  47static unsigned int _major = 0;
  48
  49static DEFINE_IDR(_minor_idr);
  50
  51static DEFINE_SPINLOCK(_minor_lock);
  52
  53static void do_deferred_remove(struct work_struct *w);
  54
  55static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  56
  57static struct workqueue_struct *deferred_remove_workqueue;
  58
 
 
 
 
 
 
 
 
 
 
 
 
 
  59/*
  60 * One of these is allocated per bio.
  61 */
  62struct dm_io {
  63	struct mapped_device *md;
  64	int error;
  65	atomic_t io_count;
  66	struct bio *bio;
  67	unsigned long start_time;
  68	spinlock_t endio_lock;
  69	struct dm_stats_aux stats_aux;
 
 
  70};
  71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  72#define MINOR_ALLOCED ((void *)-1)
  73
  74/*
  75 * Bits for the md->flags field.
  76 */
  77#define DMF_BLOCK_IO_FOR_SUSPEND 0
  78#define DMF_SUSPENDED 1
  79#define DMF_FROZEN 2
  80#define DMF_FREEING 3
  81#define DMF_DELETING 4
  82#define DMF_NOFLUSH_SUSPENDING 5
  83#define DMF_DEFERRED_REMOVE 6
  84#define DMF_SUSPENDED_INTERNALLY 7
  85
  86#define DM_NUMA_NODE NUMA_NO_NODE
  87static int dm_numa_node = DM_NUMA_NODE;
  88
  89/*
  90 * For mempools pre-allocation at the table loading time.
  91 */
  92struct dm_md_mempools {
  93	mempool_t *io_pool;
  94	mempool_t *rq_pool;
  95	struct bio_set *bs;
  96};
 
 
  97
  98struct table_device {
  99	struct list_head list;
 100	atomic_t count;
 101	struct dm_dev dm_dev;
 102};
 103
 104static struct kmem_cache *_io_cache;
 105static struct kmem_cache *_rq_tio_cache;
 106static struct kmem_cache *_rq_cache;
 107
 108/*
 109 * Bio-based DM's mempools' reserved IOs set by the user.
 110 */
 111#define RESERVED_BIO_BASED_IOS		16
 112static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 113
 114static int __dm_get_module_param_int(int *module_param, int min, int max)
 115{
 116	int param = ACCESS_ONCE(*module_param);
 117	int modified_param = 0;
 118	bool modified = true;
 119
 120	if (param < min)
 121		modified_param = min;
 122	else if (param > max)
 123		modified_param = max;
 124	else
 125		modified = false;
 126
 127	if (modified) {
 128		(void)cmpxchg(module_param, param, modified_param);
 129		param = modified_param;
 130	}
 131
 132	return param;
 133}
 134
 135unsigned __dm_get_module_param(unsigned *module_param,
 136			       unsigned def, unsigned max)
 137{
 138	unsigned param = ACCESS_ONCE(*module_param);
 139	unsigned modified_param = 0;
 140
 141	if (!param)
 142		modified_param = def;
 143	else if (param > max)
 144		modified_param = max;
 145
 146	if (modified_param) {
 147		(void)cmpxchg(module_param, param, modified_param);
 148		param = modified_param;
 149	}
 150
 151	return param;
 152}
 153
 154unsigned dm_get_reserved_bio_based_ios(void)
 155{
 156	return __dm_get_module_param(&reserved_bio_based_ios,
 157				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 158}
 159EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 160
 161static unsigned dm_get_numa_node(void)
 162{
 163	return __dm_get_module_param_int(&dm_numa_node,
 164					 DM_NUMA_NODE, num_online_nodes() - 1);
 165}
 166
 167static int __init local_init(void)
 168{
 169	int r = -ENOMEM;
 170
 171	/* allocate a slab for the dm_ios */
 172	_io_cache = KMEM_CACHE(dm_io, 0);
 173	if (!_io_cache)
 174		return r;
 175
 176	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 177	if (!_rq_tio_cache)
 178		goto out_free_io_cache;
 179
 180	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
 181				      __alignof__(struct request), 0, NULL);
 182	if (!_rq_cache)
 183		goto out_free_rq_tio_cache;
 184
 185	r = dm_uevent_init();
 186	if (r)
 187		goto out_free_rq_cache;
 188
 189	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 190	if (!deferred_remove_workqueue) {
 191		r = -ENOMEM;
 192		goto out_uevent_exit;
 193	}
 194
 195	_major = major;
 196	r = register_blkdev(_major, _name);
 197	if (r < 0)
 198		goto out_free_workqueue;
 199
 200	if (!_major)
 201		_major = r;
 202
 203	return 0;
 204
 205out_free_workqueue:
 206	destroy_workqueue(deferred_remove_workqueue);
 207out_uevent_exit:
 208	dm_uevent_exit();
 209out_free_rq_cache:
 210	kmem_cache_destroy(_rq_cache);
 211out_free_rq_tio_cache:
 212	kmem_cache_destroy(_rq_tio_cache);
 213out_free_io_cache:
 214	kmem_cache_destroy(_io_cache);
 215
 216	return r;
 217}
 218
 219static void local_exit(void)
 220{
 221	flush_scheduled_work();
 222	destroy_workqueue(deferred_remove_workqueue);
 223
 224	kmem_cache_destroy(_rq_cache);
 225	kmem_cache_destroy(_rq_tio_cache);
 226	kmem_cache_destroy(_io_cache);
 227	unregister_blkdev(_major, _name);
 228	dm_uevent_exit();
 229
 230	_major = 0;
 231
 232	DMINFO("cleaned up");
 233}
 234
 235static int (*_inits[])(void) __initdata = {
 236	local_init,
 237	dm_target_init,
 238	dm_linear_init,
 239	dm_stripe_init,
 240	dm_io_init,
 241	dm_kcopyd_init,
 242	dm_interface_init,
 243	dm_statistics_init,
 244};
 245
 246static void (*_exits[])(void) = {
 247	local_exit,
 248	dm_target_exit,
 249	dm_linear_exit,
 250	dm_stripe_exit,
 251	dm_io_exit,
 252	dm_kcopyd_exit,
 253	dm_interface_exit,
 254	dm_statistics_exit,
 255};
 256
 257static int __init dm_init(void)
 258{
 259	const int count = ARRAY_SIZE(_inits);
 
 260
 261	int r, i;
 
 
 
 262
 263	for (i = 0; i < count; i++) {
 264		r = _inits[i]();
 265		if (r)
 266			goto bad;
 267	}
 268
 269	return 0;
 270
 271      bad:
 272	while (i--)
 273		_exits[i]();
 274
 275	return r;
 276}
 277
 278static void __exit dm_exit(void)
 279{
 280	int i = ARRAY_SIZE(_exits);
 281
 282	while (i--)
 283		_exits[i]();
 284
 285	/*
 286	 * Should be empty by this point.
 287	 */
 288	idr_destroy(&_minor_idr);
 289}
 290
 291/*
 292 * Block device functions
 293 */
 294int dm_deleting_md(struct mapped_device *md)
 295{
 296	return test_bit(DMF_DELETING, &md->flags);
 297}
 298
 299static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 300{
 301	struct mapped_device *md;
 302
 303	spin_lock(&_minor_lock);
 304
 305	md = bdev->bd_disk->private_data;
 306	if (!md)
 307		goto out;
 308
 309	if (test_bit(DMF_FREEING, &md->flags) ||
 310	    dm_deleting_md(md)) {
 311		md = NULL;
 312		goto out;
 313	}
 314
 315	dm_get(md);
 316	atomic_inc(&md->open_count);
 317out:
 318	spin_unlock(&_minor_lock);
 319
 320	return md ? 0 : -ENXIO;
 321}
 322
 323static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 324{
 325	struct mapped_device *md;
 326
 327	spin_lock(&_minor_lock);
 328
 329	md = disk->private_data;
 330	if (WARN_ON(!md))
 331		goto out;
 332
 333	if (atomic_dec_and_test(&md->open_count) &&
 334	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 335		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 336
 337	dm_put(md);
 338out:
 339	spin_unlock(&_minor_lock);
 340}
 341
 342int dm_open_count(struct mapped_device *md)
 343{
 344	return atomic_read(&md->open_count);
 345}
 346
 347/*
 348 * Guarantees nothing is using the device before it's deleted.
 349 */
 350int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 351{
 352	int r = 0;
 353
 354	spin_lock(&_minor_lock);
 355
 356	if (dm_open_count(md)) {
 357		r = -EBUSY;
 358		if (mark_deferred)
 359			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 360	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 361		r = -EEXIST;
 362	else
 363		set_bit(DMF_DELETING, &md->flags);
 364
 365	spin_unlock(&_minor_lock);
 366
 367	return r;
 368}
 369
 370int dm_cancel_deferred_remove(struct mapped_device *md)
 371{
 372	int r = 0;
 373
 374	spin_lock(&_minor_lock);
 375
 376	if (test_bit(DMF_DELETING, &md->flags))
 377		r = -EBUSY;
 378	else
 379		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 380
 381	spin_unlock(&_minor_lock);
 382
 383	return r;
 384}
 385
 386static void do_deferred_remove(struct work_struct *w)
 387{
 388	dm_deferred_remove();
 389}
 390
 391sector_t dm_get_size(struct mapped_device *md)
 392{
 393	return get_capacity(md->disk);
 394}
 395
 396struct request_queue *dm_get_md_queue(struct mapped_device *md)
 397{
 398	return md->queue;
 399}
 400
 401struct dm_stats *dm_get_stats(struct mapped_device *md)
 402{
 403	return &md->stats;
 404}
 405
 406static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 407{
 408	struct mapped_device *md = bdev->bd_disk->private_data;
 409
 410	return dm_get_geometry(md, geo);
 411}
 412
 413static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
 414				  struct block_device **bdev,
 415				  fmode_t *mode)
 416{
 417	struct dm_target *tgt;
 418	struct dm_table *map;
 419	int srcu_idx, r;
 420
 421retry:
 422	r = -ENOTTY;
 423	map = dm_get_live_table(md, &srcu_idx);
 424	if (!map || !dm_table_get_size(map))
 425		goto out;
 426
 427	/* We only support devices that have a single target */
 428	if (dm_table_get_num_targets(map) != 1)
 429		goto out;
 
 
 
 
 430
 431	tgt = dm_table_get_target(map, 0);
 432	if (!tgt->type->prepare_ioctl)
 433		goto out;
 434
 435	if (dm_suspended_md(md)) {
 436		r = -EAGAIN;
 437		goto out;
 
 
 438	}
 439
 440	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
 441	if (r < 0)
 442		goto out;
 443
 444	bdgrab(*bdev);
 445	dm_put_live_table(md, srcu_idx);
 446	return r;
 
 447
 448out:
 
 449	dm_put_live_table(md, srcu_idx);
 450	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 451		msleep(10);
 452		goto retry;
 453	}
 454	return r;
 455}
 456
 457static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 458			unsigned int cmd, unsigned long arg)
 459{
 460	struct mapped_device *md = bdev->bd_disk->private_data;
 461	int r;
 462
 463	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
 464	if (r < 0)
 465		return r;
 466
 467	if (r > 0) {
 468		/*
 469		 * Target determined this ioctl is being issued against
 470		 * a logical partition of the parent bdev; so extra
 471		 * validation is needed.
 472		 */
 473		r = scsi_verify_blk_ioctl(NULL, cmd);
 474		if (r)
 
 
 
 475			goto out;
 
 476	}
 477
 478	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 
 
 
 479out:
 480	bdput(bdev);
 481	return r;
 482}
 483
 484static struct dm_io *alloc_io(struct mapped_device *md)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485{
 486	return mempool_alloc(md->io_pool, GFP_NOIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487}
 488
 489static void free_io(struct mapped_device *md, struct dm_io *io)
 490{
 491	mempool_free(io, md->io_pool);
 492}
 493
 494static void free_tio(struct dm_target_io *tio)
 495{
 496	bio_put(&tio->clone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497}
 498
 499int md_in_flight(struct mapped_device *md)
 500{
 501	return atomic_read(&md->pending[READ]) +
 502	       atomic_read(&md->pending[WRITE]);
 503}
 504
 505static void start_io_acct(struct dm_io *io)
 506{
 507	struct mapped_device *md = io->md;
 508	struct bio *bio = io->bio;
 509	int cpu;
 510	int rw = bio_data_dir(bio);
 511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512	io->start_time = jiffies;
 
 
 
 
 
 
 
 513
 514	cpu = part_stat_lock();
 515	part_round_stats(cpu, &dm_disk(md)->part0);
 516	part_stat_unlock();
 517	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 518		atomic_inc_return(&md->pending[rw]));
 519
 520	if (unlikely(dm_stats_used(&md->stats)))
 521		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 522				    bio->bi_iter.bi_sector, bio_sectors(bio),
 523				    false, 0, &io->stats_aux);
 524}
 525
 526static void end_io_acct(struct dm_io *io)
 
 527{
 528	struct mapped_device *md = io->md;
 529	struct bio *bio = io->bio;
 530	unsigned long duration = jiffies - io->start_time;
 531	int pending;
 532	int rw = bio_data_dir(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533
 534	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
 
 
 
 535
 536	if (unlikely(dm_stats_used(&md->stats)))
 537		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 538				    bio->bi_iter.bi_sector, bio_sectors(bio),
 539				    true, duration, &io->stats_aux);
 
 540
 541	/*
 542	 * After this is decremented the bio must not be touched if it is
 543	 * a flush.
 544	 */
 545	pending = atomic_dec_return(&md->pending[rw]);
 546	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 547	pending += atomic_read(&md->pending[rw^0x1]);
 548
 549	/* nudge anyone waiting on suspend queue */
 550	if (!pending)
 551		wake_up(&md->wait);
 
 
 552}
 553
 554/*
 555 * Add the bio to the list of deferred io.
 556 */
 557static void queue_io(struct mapped_device *md, struct bio *bio)
 558{
 559	unsigned long flags;
 560
 561	spin_lock_irqsave(&md->deferred_lock, flags);
 562	bio_list_add(&md->deferred, bio);
 563	spin_unlock_irqrestore(&md->deferred_lock, flags);
 564	queue_work(md->wq, &md->work);
 565}
 566
 567/*
 568 * Everyone (including functions in this file), should use this
 569 * function to access the md->map field, and make sure they call
 570 * dm_put_live_table() when finished.
 571 */
 572struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 
 573{
 574	*srcu_idx = srcu_read_lock(&md->io_barrier);
 575
 576	return srcu_dereference(md->map, &md->io_barrier);
 577}
 578
 579void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 
 580{
 581	srcu_read_unlock(&md->io_barrier, srcu_idx);
 582}
 583
 584void dm_sync_table(struct mapped_device *md)
 585{
 586	synchronize_srcu(&md->io_barrier);
 587	synchronize_rcu_expedited();
 588}
 589
 590/*
 591 * A fast alternative to dm_get_live_table/dm_put_live_table.
 592 * The caller must not block between these two functions.
 593 */
 594static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 595{
 596	rcu_read_lock();
 597	return rcu_dereference(md->map);
 598}
 599
 600static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 601{
 602	rcu_read_unlock();
 603}
 604
 
 
 605/*
 606 * Open a table device so we can use it as a map destination.
 607 */
 608static int open_table_device(struct table_device *td, dev_t dev,
 609			     struct mapped_device *md)
 610{
 611	static char *_claim_ptr = "I belong to device-mapper";
 612	struct block_device *bdev;
 613
 614	int r;
 615
 616	BUG_ON(td->dm_dev.bdev);
 
 
 
 617
 618	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 619	if (IS_ERR(bdev))
 620		return PTR_ERR(bdev);
 
 
 621
 622	r = bd_link_disk_holder(bdev, dm_disk(md));
 623	if (r) {
 624		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 625		return r;
 
 
 
 
 
 626	}
 627
 628	td->dm_dev.bdev = bdev;
 629	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 630}
 631
 632/*
 633 * Close a table device that we've been using.
 634 */
 635static void close_table_device(struct table_device *td, struct mapped_device *md)
 636{
 637	if (!td->dm_dev.bdev)
 638		return;
 639
 640	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 641	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 642	td->dm_dev.bdev = NULL;
 643}
 644
 645static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 646					      fmode_t mode) {
 
 647	struct table_device *td;
 648
 649	list_for_each_entry(td, l, list)
 650		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 651			return td;
 652
 653	return NULL;
 654}
 655
 656int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 657			struct dm_dev **result) {
 658	int r;
 659	struct table_device *td;
 660
 661	mutex_lock(&md->table_devices_lock);
 662	td = find_table_device(&md->table_devices, dev, mode);
 663	if (!td) {
 664		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 665		if (!td) {
 666			mutex_unlock(&md->table_devices_lock);
 667			return -ENOMEM;
 668		}
 669
 670		td->dm_dev.mode = mode;
 671		td->dm_dev.bdev = NULL;
 672
 673		if ((r = open_table_device(td, dev, md))) {
 674			mutex_unlock(&md->table_devices_lock);
 675			kfree(td);
 676			return r;
 677		}
 678
 679		format_dev_t(td->dm_dev.name, dev);
 680
 681		atomic_set(&td->count, 0);
 682		list_add(&td->list, &md->table_devices);
 683	}
 684	atomic_inc(&td->count);
 685	mutex_unlock(&md->table_devices_lock);
 686
 687	*result = &td->dm_dev;
 688	return 0;
 689}
 690EXPORT_SYMBOL_GPL(dm_get_table_device);
 691
 692void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 693{
 694	struct table_device *td = container_of(d, struct table_device, dm_dev);
 695
 696	mutex_lock(&md->table_devices_lock);
 697	if (atomic_dec_and_test(&td->count)) {
 698		close_table_device(td, md);
 699		list_del(&td->list);
 700		kfree(td);
 701	}
 702	mutex_unlock(&md->table_devices_lock);
 703}
 704EXPORT_SYMBOL(dm_put_table_device);
 705
 706static void free_table_devices(struct list_head *devices)
 707{
 708	struct list_head *tmp, *next;
 709
 710	list_for_each_safe(tmp, next, devices) {
 711		struct table_device *td = list_entry(tmp, struct table_device, list);
 712
 713		DMWARN("dm_destroy: %s still exists with %d references",
 714		       td->dm_dev.name, atomic_read(&td->count));
 715		kfree(td);
 716	}
 717}
 718
 719/*
 720 * Get the geometry associated with a dm device
 721 */
 722int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 723{
 724	*geo = md->geometry;
 725
 726	return 0;
 727}
 728
 729/*
 730 * Set the geometry of a device.
 731 */
 732int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 733{
 734	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 735
 736	if (geo->start > sz) {
 737		DMWARN("Start sector is beyond the geometry limits.");
 738		return -EINVAL;
 739	}
 740
 741	md->geometry = *geo;
 742
 743	return 0;
 744}
 745
 746/*-----------------------------------------------------------------
 747 * CRUD START:
 748 *   A more elegant soln is in the works that uses the queue
 749 *   merge fn, unfortunately there are a couple of changes to
 750 *   the block layer that I want to make for this.  So in the
 751 *   interests of getting something for people to use I give
 752 *   you this clearly demarcated crap.
 753 *---------------------------------------------------------------*/
 754
 755static int __noflush_suspending(struct mapped_device *md)
 756{
 757	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 758}
 759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760/*
 761 * Decrements the number of outstanding ios that a bio has been
 762 * cloned into, completing the original io if necc.
 763 */
 764static void dec_pending(struct dm_io *io, int error)
 765{
 766	unsigned long flags;
 767	int io_error;
 768	struct bio *bio;
 
 769	struct mapped_device *md = io->md;
 
 770
 771	/* Push-back supersedes any I/O errors */
 772	if (unlikely(error)) {
 773		spin_lock_irqsave(&io->endio_lock, flags);
 774		if (!(io->error > 0 && __noflush_suspending(md)))
 775			io->error = error;
 776		spin_unlock_irqrestore(&io->endio_lock, flags);
 777	}
 778
 779	if (atomic_dec_and_test(&io->io_count)) {
 780		if (io->error == DM_ENDIO_REQUEUE) {
 781			/*
 782			 * Target requested pushing back the I/O.
 
 
 783			 */
 784			spin_lock_irqsave(&md->deferred_lock, flags);
 785			if (__noflush_suspending(md))
 786				bio_list_add_head(&md->deferred, io->bio);
 787			else
 788				/* noflush suspend was interrupted. */
 789				io->error = -EIO;
 790			spin_unlock_irqrestore(&md->deferred_lock, flags);
 791		}
 792
 793		io_error = io->error;
 794		bio = io->bio;
 795		end_io_acct(io);
 796		free_io(md, io);
 797
 798		if (io_error == DM_ENDIO_REQUEUE)
 799			return;
 800
 801		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 
 
 802			/*
 803			 * Preflush done for flush with data, reissue
 804			 * without REQ_PREFLUSH.
 805			 */
 806			bio->bi_opf &= ~REQ_PREFLUSH;
 807			queue_io(md, bio);
 808		} else {
 809			/* done with normal IO or empty flush */
 810			trace_block_bio_complete(md->queue, bio, io_error);
 811			bio->bi_error = io_error;
 812			bio_endio(bio);
 813		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814	}
 815}
 816
 817void disable_write_same(struct mapped_device *md)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818{
 819	struct queue_limits *limits = dm_get_queue_limits(md);
 820
 821	/* device doesn't really support WRITE SAME, disable it */
 822	limits->max_write_same_sectors = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 823}
 824
 825static void clone_endio(struct bio *bio)
 826{
 827	int error = bio->bi_error;
 828	int r = error;
 829	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 
 830	struct dm_io *io = tio->io;
 831	struct mapped_device *md = tio->io->md;
 832	dm_endio_fn endio = tio->ti->type->end_io;
 
 
 
 
 
 
 
 
 
 
 
 
 833
 834	if (endio) {
 835		r = endio(tio->ti, bio, error);
 836		if (r < 0 || r == DM_ENDIO_REQUEUE)
 837			/*
 838			 * error and requeue request are handled
 839			 * in dec_pending().
 840			 */
 841			error = r;
 842		else if (r == DM_ENDIO_INCOMPLETE)
 
 
 
 
 
 
 
 
 
 
 
 
 843			/* The target will handle the io */
 844			return;
 845		else if (r) {
 846			DMWARN("unimplemented target endio return value: %d", r);
 847			BUG();
 848		}
 849	}
 850
 851	if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) &&
 852		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
 853		disable_write_same(md);
 854
 855	free_tio(tio);
 856	dec_pending(io, error);
 857}
 858
 859/*
 860 * Return maximum size of I/O possible at the supplied sector up to the current
 861 * target boundary.
 862 */
 863static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 
 864{
 865	sector_t target_offset = dm_target_offset(ti, sector);
 866
 867	return ti->len - target_offset;
 868}
 869
 870static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 
 
 871{
 872	sector_t len = max_io_len_target_boundary(sector, ti);
 873	sector_t offset, max_len;
 874
 875	/*
 876	 * Does the target need to split even further?
 
 
 
 877	 */
 878	if (ti->max_io_len) {
 879		offset = dm_target_offset(ti, sector);
 880		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
 881			max_len = sector_div(offset, ti->max_io_len);
 882		else
 883			max_len = offset & (ti->max_io_len - 1);
 884		max_len = ti->max_io_len - max_len;
 885
 886		if (len > max_len)
 887			len = max_len;
 888	}
 889
 890	return len;
 891}
 892
 893int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 894{
 895	if (len > UINT_MAX) {
 896		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
 897		      (unsigned long long)len, UINT_MAX);
 898		ti->error = "Maximum size of target IO is too large";
 899		return -EINVAL;
 900	}
 901
 902	ti->max_io_len = (uint32_t) len;
 903
 904	return 0;
 905}
 906EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
 907
 908static long dm_blk_direct_access(struct block_device *bdev, sector_t sector,
 909				 void **kaddr, pfn_t *pfn, long size)
 
 910{
 911	struct mapped_device *md = bdev->bd_disk->private_data;
 912	struct dm_table *map;
 913	struct dm_target *ti;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914	int srcu_idx;
 915	long len, ret = -EIO;
 916
 917	map = dm_get_live_table(md, &srcu_idx);
 918	if (!map)
 
 
 
 
 
 
 919		goto out;
 
 
 
 
 
 920
 921	ti = dm_table_find_target(map, sector);
 922	if (!dm_target_is_valid(ti))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923		goto out;
 
 
 
 
 924
 925	len = max_io_len(sector, ti) << SECTOR_SHIFT;
 926	size = min(len, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 927
 928	if (ti->type->direct_access)
 929		ret = ti->type->direct_access(ti, sector, kaddr, pfn, size);
 930out:
 931	dm_put_live_table(md, srcu_idx);
 932	return min(ret, size);
 933}
 934
 935/*
 936 * A target may call dm_accept_partial_bio only from the map routine.  It is
 937 * allowed for all bio types except REQ_PREFLUSH.
 
 
 938 *
 939 * dm_accept_partial_bio informs the dm that the target only wants to process
 940 * additional n_sectors sectors of the bio and the rest of the data should be
 941 * sent in a next bio.
 942 *
 943 * A diagram that explains the arithmetics:
 944 * +--------------------+---------------+-------+
 945 * |         1          |       2       |   3   |
 946 * +--------------------+---------------+-------+
 947 *
 948 * <-------------- *tio->len_ptr --------------->
 949 *                      <------- bi_size ------->
 950 *                      <-- n_sectors -->
 951 *
 952 * Region 1 was already iterated over with bio_advance or similar function.
 953 *	(it may be empty if the target doesn't use bio_advance)
 954 * Region 2 is the remaining bio size that the target wants to process.
 955 *	(it may be empty if region 1 is non-empty, although there is no reason
 956 *	 to make it empty)
 957 * The target requires that region 3 is to be sent in the next bio.
 958 *
 959 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
 960 * the partially processed part (the sum of regions 1+2) must be the same for all
 961 * copies of the bio.
 962 */
 963void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
 964{
 965	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 966	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
 967	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
 968	BUG_ON(bi_size > *tio->len_ptr);
 969	BUG_ON(n_sectors > bi_size);
 970	*tio->len_ptr -= bi_size - n_sectors;
 
 
 
 
 
 971	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
 
 
 
 
 
 
 
 
 972}
 973EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
 974
 975/*
 976 * Flush current->bio_list when the target map method blocks.
 977 * This fixes deadlocks in snapshot and possibly in other targets.
 
 
 
 
 
 978 */
 979struct dm_offload {
 980	struct blk_plug plug;
 981	struct blk_plug_cb cb;
 982};
 983
 984static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
 985{
 986	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
 987	struct bio_list list;
 988	struct bio *bio;
 989	int i;
 990
 991	INIT_LIST_HEAD(&o->cb.list);
 
 
 992
 993	if (unlikely(!current->bio_list))
 994		return;
 995
 996	for (i = 0; i < 2; i++) {
 997		list = current->bio_list[i];
 998		bio_list_init(&current->bio_list[i]);
 999
1000		while ((bio = bio_list_pop(&list))) {
1001			struct bio_set *bs = bio->bi_pool;
1002			if (unlikely(!bs) || bs == fs_bio_set) {
1003				bio_list_add(&current->bio_list[i], bio);
1004				continue;
1005			}
1006
1007			spin_lock(&bs->rescue_lock);
1008			bio_list_add(&bs->rescue_list, bio);
1009			queue_work(bs->rescue_workqueue, &bs->rescue_work);
1010			spin_unlock(&bs->rescue_lock);
1011		}
1012	}
1013}
 
1014
1015static void dm_offload_start(struct dm_offload *o)
1016{
1017	blk_start_plug(&o->plug);
1018	o->cb.callback = flush_current_bio_list;
1019	list_add(&o->cb.list, &current->plug->cb_list);
 
 
 
 
 
 
 
 
 
1020}
1021
1022static void dm_offload_end(struct dm_offload *o)
1023{
1024	list_del(&o->cb.list);
1025	blk_finish_plug(&o->plug);
1026}
1027
1028static void __map_bio(struct dm_target_io *tio)
1029{
 
 
 
 
1030	int r;
1031	sector_t sector;
1032	struct dm_offload o;
1033	struct bio *clone = &tio->clone;
1034	struct dm_target *ti = tio->ti;
1035
1036	clone->bi_end_io = clone_endio;
1037
1038	/*
1039	 * Map the clone.  If r == 0 we don't need to do
1040	 * anything, the target has assumed ownership of
1041	 * this io.
1042	 */
1043	atomic_inc(&tio->io->io_count);
1044	sector = clone->bi_iter.bi_sector;
1045
1046	dm_offload_start(&o);
1047	r = ti->type->map(ti, clone);
1048	dm_offload_end(&o);
1049
1050	if (r == DM_MAPIO_REMAPPED) {
1051		/* the bio has been remapped so dispatch it */
1052
1053		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1054				      tio->io->bio->bi_bdev->bd_dev, sector);
1055
1056		generic_make_request(clone);
1057	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1058		/* error the io and bail out, or requeue it if needed */
1059		dec_pending(tio->io, r);
1060		free_tio(tio);
1061	} else if (r != DM_MAPIO_SUBMITTED) {
1062		DMWARN("unimplemented target map return value: %d", r);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063		BUG();
1064	}
1065}
1066
1067struct clone_info {
1068	struct mapped_device *md;
1069	struct dm_table *map;
1070	struct bio *bio;
1071	struct dm_io *io;
1072	sector_t sector;
1073	unsigned sector_count;
1074};
1075
1076static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1077{
1078	bio->bi_iter.bi_sector = sector;
1079	bio->bi_iter.bi_size = to_bytes(len);
 
 
 
 
 
1080}
1081
1082/*
1083 * Creates a bio that consists of range of complete bvecs.
1084 */
1085static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1086		     sector_t sector, unsigned len)
1087{
1088	struct bio *clone = &tio->clone;
1089
1090	__bio_clone_fast(clone, bio);
1091
1092	if (bio_integrity(bio)) {
1093		int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1094		if (r < 0)
1095			return r;
1096	}
1097
1098	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1099	clone->bi_iter.bi_size = to_bytes(len);
 
 
 
 
 
1100
1101	if (bio_integrity(bio))
1102		bio_integrity_trim(clone, 0, len);
 
 
 
 
1103
1104	return 0;
 
 
1105}
1106
1107static struct dm_target_io *alloc_tio(struct clone_info *ci,
1108				      struct dm_target *ti,
1109				      unsigned target_bio_nr)
1110{
1111	struct dm_target_io *tio;
1112	struct bio *clone;
 
1113
1114	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1115	tio = container_of(clone, struct dm_target_io, clone);
1116
1117	tio->io = ci->io;
1118	tio->ti = ti;
1119	tio->target_bio_nr = target_bio_nr;
 
 
 
 
 
 
 
 
 
 
 
 
1120
1121	return tio;
1122}
1123
1124static void __clone_and_map_simple_bio(struct clone_info *ci,
1125				       struct dm_target *ti,
1126				       unsigned target_bio_nr, unsigned *len)
1127{
1128	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1129	struct bio *clone = &tio->clone;
1130
1131	tio->len_ptr = len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132
1133	__bio_clone_fast(clone, ci->bio);
1134	if (len)
1135		bio_setup_sector(clone, ci->sector, *len);
1136
1137	__map_bio(tio);
1138}
 
 
 
1139
1140static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1141				  unsigned num_bios, unsigned *len)
1142{
1143	unsigned target_bio_nr;
 
1144
1145	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1146		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1147}
1148
1149static int __send_empty_flush(struct clone_info *ci)
 
 
1150{
1151	unsigned target_nr = 0;
1152	struct dm_target *ti;
 
 
1153
1154	BUG_ON(bio_has_data(ci->bio));
1155	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1156		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
 
 
 
 
1157
1158	return 0;
 
1159}
1160
1161static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1162				     sector_t sector, unsigned *len)
1163{
1164	struct bio *bio = ci->bio;
1165	struct dm_target_io *tio;
1166	unsigned target_bio_nr;
1167	unsigned num_target_bios = 1;
1168	int r = 0;
1169
1170	/*
1171	 * Does the target want to receive duplicate copies of the bio?
1172	 */
1173	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1174		num_target_bios = ti->num_write_bios(ti, bio);
1175
1176	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1177		tio = alloc_tio(ci, ti, target_bio_nr);
1178		tio->len_ptr = len;
1179		r = clone_bio(tio, bio, sector, *len);
1180		if (r < 0) {
1181			free_tio(tio);
 
1182			break;
1183		}
1184		__map_bio(tio);
1185	}
1186
1187	return r;
1188}
1189
1190typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191
1192static unsigned get_num_discard_bios(struct dm_target *ti)
1193{
1194	return ti->num_discard_bios;
1195}
1196
1197static unsigned get_num_write_same_bios(struct dm_target *ti)
1198{
1199	return ti->num_write_same_bios;
1200}
1201
1202typedef bool (*is_split_required_fn)(struct dm_target *ti);
1203
1204static bool is_split_required_for_discard(struct dm_target *ti)
 
 
 
 
 
 
 
1205{
1206	return ti->split_discard_bios;
1207}
1208
1209static int __send_changing_extent_only(struct clone_info *ci,
1210				       get_num_bios_fn get_num_bios,
1211				       is_split_required_fn is_split_required)
1212{
1213	struct dm_target *ti;
1214	unsigned len;
1215	unsigned num_bios;
1216
1217	do {
1218		ti = dm_table_find_target(ci->map, ci->sector);
1219		if (!dm_target_is_valid(ti))
1220			return -EIO;
1221
 
 
1222		/*
1223		 * Even though the device advertised support for this type of
1224		 * request, that does not mean every target supports it, and
1225		 * reconfiguration might also have changed that since the
1226		 * check was performed.
1227		 */
1228		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1229		if (!num_bios)
1230			return -EOPNOTSUPP;
1231
1232		if (is_split_required && !is_split_required(ti))
1233			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1234		else
1235			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1236
1237		__send_duplicate_bios(ci, ti, num_bios, &len);
 
 
 
 
 
 
 
 
1238
1239		ci->sector += len;
1240	} while (ci->sector_count -= len);
1241
1242	return 0;
1243}
1244
1245static int __send_discard(struct clone_info *ci)
1246{
1247	return __send_changing_extent_only(ci, get_num_discard_bios,
1248					   is_split_required_for_discard);
1249}
1250
1251static int __send_write_same(struct clone_info *ci)
1252{
1253	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1254}
1255
1256/*
1257 * Select the correct strategy for processing a non-flush bio.
1258 */
1259static int __split_and_process_non_flush(struct clone_info *ci)
1260{
1261	struct bio *bio = ci->bio;
1262	struct dm_target *ti;
1263	unsigned len;
1264	int r;
 
 
 
 
 
 
1265
1266	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1267		return __send_discard(ci);
1268	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1269		return __send_write_same(ci);
 
1270
1271	ti = dm_table_find_target(ci->map, ci->sector);
1272	if (!dm_target_is_valid(ti))
1273		return -EIO;
1274
1275	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
 
 
1276
1277	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1278	if (r < 0)
1279		return r;
 
 
 
 
1280
1281	ci->sector += len;
1282	ci->sector_count -= len;
1283
1284	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285}
1286
1287/*
1288 * Entry point to split a bio into clones and submit them to the targets.
1289 */
1290static void __split_and_process_bio(struct mapped_device *md,
1291				    struct dm_table *map, struct bio *bio)
1292{
1293	struct clone_info ci;
1294	int error = 0;
 
 
1295
1296	if (unlikely(!map)) {
1297		bio_io_error(bio);
1298		return;
 
 
 
 
 
 
1299	}
1300
1301	ci.map = map;
1302	ci.md = md;
1303	ci.io = alloc_io(md);
1304	ci.io->error = 0;
1305	atomic_set(&ci.io->io_count, 1);
1306	ci.io->bio = bio;
1307	ci.io->md = md;
1308	spin_lock_init(&ci.io->endio_lock);
1309	ci.sector = bio->bi_iter.bi_sector;
1310
1311	start_io_acct(ci.io);
 
1312
1313	if (bio->bi_opf & REQ_PREFLUSH) {
1314		ci.bio = &ci.md->flush_bio;
1315		ci.sector_count = 0;
1316		error = __send_empty_flush(&ci);
1317		/* dec_pending submits any data associated with flush */
1318	} else {
1319		ci.bio = bio;
1320		ci.sector_count = bio_sectors(bio);
1321		while (ci.sector_count && !error)
1322			error = __split_and_process_non_flush(&ci);
1323	}
1324
1325	/* drop the extra reference count */
1326	dec_pending(ci.io, error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1327}
1328/*-----------------------------------------------------------------
1329 * CRUD END
1330 *---------------------------------------------------------------*/
1331
1332/*
1333 * The request function that just remaps the bio built up by
1334 * dm_merge_bvec.
1335 */
1336static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1337{
1338	int rw = bio_data_dir(bio);
1339	struct mapped_device *md = q->queuedata;
1340	int srcu_idx;
1341	struct dm_table *map;
1342
1343	map = dm_get_live_table(md, &srcu_idx);
1344
1345	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1346
1347	/* if we're suspended, we have to queue this io for later */
1348	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1349		dm_put_live_table(md, srcu_idx);
1350
1351		if (!(bio->bi_opf & REQ_RAHEAD))
 
1352			queue_io(md, bio);
1353		else
1354			bio_io_error(bio);
1355		return BLK_QC_T_NONE;
1356	}
1357
1358	__split_and_process_bio(md, map, bio);
 
1359	dm_put_live_table(md, srcu_idx);
1360	return BLK_QC_T_NONE;
1361}
1362
1363static int dm_any_congested(void *congested_data, int bdi_bits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1364{
1365	int r = bdi_bits;
1366	struct mapped_device *md = congested_data;
1367	struct dm_table *map;
 
 
 
 
 
 
 
1368
1369	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1370		if (dm_request_based(md)) {
 
 
 
 
 
 
 
 
 
 
 
 
1371			/*
1372			 * With request-based DM we only need to check the
1373			 * top-level queue for congestion.
1374			 */
1375			r = md->queue->backing_dev_info.wb.state & bdi_bits;
1376		} else {
1377			map = dm_get_live_table_fast(md);
1378			if (map)
1379				r = dm_table_any_congested(map, bdi_bits);
1380			dm_put_live_table_fast(md);
1381		}
1382	}
1383
1384	return r;
 
 
 
 
 
 
 
1385}
1386
1387/*-----------------------------------------------------------------
 
1388 * An IDR is used to keep track of allocated minor numbers.
1389 *---------------------------------------------------------------*/
 
1390static void free_minor(int minor)
1391{
1392	spin_lock(&_minor_lock);
1393	idr_remove(&_minor_idr, minor);
1394	spin_unlock(&_minor_lock);
1395}
1396
1397/*
1398 * See if the device with a specific minor # is free.
1399 */
1400static int specific_minor(int minor)
1401{
1402	int r;
1403
1404	if (minor >= (1 << MINORBITS))
1405		return -EINVAL;
1406
1407	idr_preload(GFP_KERNEL);
1408	spin_lock(&_minor_lock);
1409
1410	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1411
1412	spin_unlock(&_minor_lock);
1413	idr_preload_end();
1414	if (r < 0)
1415		return r == -ENOSPC ? -EBUSY : r;
1416	return 0;
1417}
1418
1419static int next_free_minor(int *minor)
1420{
1421	int r;
1422
1423	idr_preload(GFP_KERNEL);
1424	spin_lock(&_minor_lock);
1425
1426	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1427
1428	spin_unlock(&_minor_lock);
1429	idr_preload_end();
1430	if (r < 0)
1431		return r;
1432	*minor = r;
1433	return 0;
1434}
1435
1436static const struct block_device_operations dm_blk_dops;
 
 
1437
1438static void dm_wq_work(struct work_struct *work);
1439
1440void dm_init_md_queue(struct mapped_device *md)
 
1441{
1442	/*
1443	 * Request-based dm devices cannot be stacked on top of bio-based dm
1444	 * devices.  The type of this dm device may not have been decided yet.
1445	 * The type is decided at the first table loading time.
1446	 * To prevent problematic device stacking, clear the queue flag
1447	 * for request stacking support until then.
1448	 *
1449	 * This queue is new, so no concurrency on the queue_flags.
1450	 */
1451	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1452
1453	/*
1454	 * Initialize data that will only be used by a non-blk-mq DM queue
1455	 * - must do so here (in alloc_dev callchain) before queue is used
1456	 */
1457	md->queue->queuedata = md;
1458	md->queue->backing_dev_info.congested_data = md;
1459}
1460
1461void dm_init_normal_md_queue(struct mapped_device *md)
1462{
1463	md->use_blk_mq = false;
1464	dm_init_md_queue(md);
1465
1466	/*
1467	 * Initialize aspects of queue that aren't relevant for blk-mq
1468	 */
1469	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1470	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1471}
 
1472
1473static void cleanup_mapped_device(struct mapped_device *md)
1474{
1475	if (md->wq)
1476		destroy_workqueue(md->wq);
1477	if (md->kworker_task)
1478		kthread_stop(md->kworker_task);
1479	mempool_destroy(md->io_pool);
1480	mempool_destroy(md->rq_pool);
1481	if (md->bs)
1482		bioset_free(md->bs);
 
 
1483
 
1484	if (md->disk) {
1485		spin_lock(&_minor_lock);
1486		md->disk->private_data = NULL;
1487		spin_unlock(&_minor_lock);
1488		del_gendisk(md->disk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1489		put_disk(md->disk);
1490	}
1491
1492	if (md->queue)
1493		blk_cleanup_queue(md->queue);
 
 
1494
1495	cleanup_srcu_struct(&md->io_barrier);
1496
1497	if (md->bdev) {
1498		bdput(md->bdev);
1499		md->bdev = NULL;
1500	}
1501
1502	dm_mq_cleanup_mapped_device(md);
1503}
1504
1505/*
1506 * Allocate and initialise a blank device with a given minor.
1507 */
1508static struct mapped_device *alloc_dev(int minor)
1509{
1510	int r, numa_node_id = dm_get_numa_node();
1511	struct mapped_device *md;
1512	void *old_md;
1513
1514	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1515	if (!md) {
1516		DMWARN("unable to allocate device, out of memory.");
1517		return NULL;
1518	}
1519
1520	if (!try_module_get(THIS_MODULE))
1521		goto bad_module_get;
1522
1523	/* get a minor number for the dev */
1524	if (minor == DM_ANY_MINOR)
1525		r = next_free_minor(&minor);
1526	else
1527		r = specific_minor(minor);
1528	if (r < 0)
1529		goto bad_minor;
1530
1531	r = init_srcu_struct(&md->io_barrier);
1532	if (r < 0)
1533		goto bad_io_barrier;
1534
1535	md->numa_node_id = numa_node_id;
1536	md->use_blk_mq = dm_use_blk_mq_default();
1537	md->init_tio_pdu = false;
1538	md->type = DM_TYPE_NONE;
1539	mutex_init(&md->suspend_lock);
1540	mutex_init(&md->type_lock);
1541	mutex_init(&md->table_devices_lock);
1542	spin_lock_init(&md->deferred_lock);
1543	atomic_set(&md->holders, 1);
1544	atomic_set(&md->open_count, 0);
1545	atomic_set(&md->event_nr, 0);
1546	atomic_set(&md->uevent_seq, 0);
1547	INIT_LIST_HEAD(&md->uevent_list);
1548	INIT_LIST_HEAD(&md->table_devices);
1549	spin_lock_init(&md->uevent_lock);
1550
1551	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1552	if (!md->queue)
1553		goto bad;
1554
1555	dm_init_md_queue(md);
1556
1557	md->disk = alloc_disk_node(1, numa_node_id);
1558	if (!md->disk)
1559		goto bad;
 
1560
1561	atomic_set(&md->pending[0], 0);
1562	atomic_set(&md->pending[1], 0);
1563	init_waitqueue_head(&md->wait);
1564	INIT_WORK(&md->work, dm_wq_work);
 
1565	init_waitqueue_head(&md->eventq);
1566	init_completion(&md->kobj_holder.completion);
1567	md->kworker_task = NULL;
 
 
 
 
1568
1569	md->disk->major = _major;
1570	md->disk->first_minor = minor;
 
 
1571	md->disk->fops = &dm_blk_dops;
1572	md->disk->queue = md->queue;
1573	md->disk->private_data = md;
1574	sprintf(md->disk->disk_name, "dm-%d", minor);
1575	add_disk(md->disk);
 
 
 
 
 
 
 
 
 
 
 
 
1576	format_dev_t(md->name, MKDEV(_major, minor));
1577
1578	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1579	if (!md->wq)
1580		goto bad;
1581
1582	md->bdev = bdget_disk(md->disk, 0);
1583	if (!md->bdev)
1584		goto bad;
1585
1586	bio_init(&md->flush_bio, NULL, 0);
1587	md->flush_bio.bi_bdev = md->bdev;
1588	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1589
1590	dm_stats_init(&md->stats);
1591
1592	/* Populate the mapping, nobody knows we exist yet */
1593	spin_lock(&_minor_lock);
1594	old_md = idr_replace(&_minor_idr, md, minor);
1595	spin_unlock(&_minor_lock);
1596
1597	BUG_ON(old_md != MINOR_ALLOCED);
1598
1599	return md;
1600
1601bad:
1602	cleanup_mapped_device(md);
1603bad_io_barrier:
1604	free_minor(minor);
1605bad_minor:
1606	module_put(THIS_MODULE);
1607bad_module_get:
1608	kfree(md);
1609	return NULL;
1610}
1611
1612static void unlock_fs(struct mapped_device *md);
1613
1614static void free_dev(struct mapped_device *md)
1615{
1616	int minor = MINOR(disk_devt(md->disk));
1617
1618	unlock_fs(md);
1619
1620	cleanup_mapped_device(md);
1621
1622	free_table_devices(&md->table_devices);
1623	dm_stats_cleanup(&md->stats);
1624	free_minor(minor);
1625
1626	module_put(THIS_MODULE);
1627	kfree(md);
1628}
1629
1630static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1631{
1632	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1633
1634	if (md->bs) {
1635		/* The md already has necessary mempools. */
1636		if (dm_table_bio_based(t)) {
1637			/*
1638			 * Reload bioset because front_pad may have changed
1639			 * because a different table was loaded.
1640			 */
1641			bioset_free(md->bs);
1642			md->bs = p->bs;
1643			p->bs = NULL;
1644		}
1645		/*
1646		 * There's no need to reload with request-based dm
1647		 * because the size of front_pad doesn't change.
1648		 * Note for future: If you are to reload bioset,
1649		 * prep-ed requests in the queue may refer
1650		 * to bio from the old bioset, so you must walk
1651		 * through the queue to unprep.
1652		 */
1653		goto out;
1654	}
1655
1656	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
1657
1658	md->io_pool = p->io_pool;
1659	p->io_pool = NULL;
1660	md->rq_pool = p->rq_pool;
1661	p->rq_pool = NULL;
1662	md->bs = p->bs;
1663	p->bs = NULL;
1664
1665out:
1666	/* mempool bind completed, no longer need any mempools in the table */
1667	dm_table_free_md_mempools(t);
1668}
1669
1670/*
1671 * Bind a table to the device.
1672 */
1673static void event_callback(void *context)
1674{
1675	unsigned long flags;
1676	LIST_HEAD(uevents);
1677	struct mapped_device *md = (struct mapped_device *) context;
1678
1679	spin_lock_irqsave(&md->uevent_lock, flags);
1680	list_splice_init(&md->uevent_list, &uevents);
1681	spin_unlock_irqrestore(&md->uevent_lock, flags);
1682
1683	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1684
1685	atomic_inc(&md->event_nr);
1686	wake_up(&md->eventq);
1687}
1688
1689/*
1690 * Protected by md->suspend_lock obtained by dm_swap_table().
1691 */
1692static void __set_size(struct mapped_device *md, sector_t size)
1693{
1694	set_capacity(md->disk, size);
1695
1696	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1697}
1698
1699/*
1700 * Returns old map, which caller must destroy.
1701 */
1702static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1703			       struct queue_limits *limits)
1704{
1705	struct dm_table *old_map;
1706	struct request_queue *q = md->queue;
1707	sector_t size;
 
1708
1709	lockdep_assert_held(&md->suspend_lock);
1710
1711	size = dm_table_get_size(t);
1712
1713	/*
1714	 * Wipe any geometry if the size of the table changed.
1715	 */
1716	if (size != dm_get_size(md))
1717		memset(&md->geometry, 0, sizeof(md->geometry));
1718
1719	__set_size(md, size);
1720
1721	dm_table_event_callback(t, event_callback, md);
1722
1723	/*
1724	 * The queue hasn't been stopped yet, if the old table type wasn't
1725	 * for request-based during suspension.  So stop it to prevent
1726	 * I/O mapping before resume.
1727	 * This must be done before setting the queue restrictions,
1728	 * because request-based dm may be run just after the setting.
1729	 */
1730	if (dm_table_request_based(t)) {
1731		dm_stop_queue(q);
1732		/*
1733		 * Leverage the fact that request-based DM targets are
1734		 * immutable singletons and establish md->immutable_target
1735		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1736		 */
1737		md->immutable_target = dm_table_get_immutable_target(t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1738	}
1739
1740	__bind_mempools(md, t);
 
 
 
 
1741
1742	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1743	rcu_assign_pointer(md->map, (void *)t);
1744	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1745
1746	dm_table_set_restrictions(t, q, limits);
1747	if (old_map)
1748		dm_sync_table(md);
1749
1750	return old_map;
1751}
1752
1753/*
1754 * Returns unbound table for the caller to free.
1755 */
1756static struct dm_table *__unbind(struct mapped_device *md)
1757{
1758	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1759
1760	if (!map)
1761		return NULL;
1762
1763	dm_table_event_callback(map, NULL, NULL);
1764	RCU_INIT_POINTER(md->map, NULL);
1765	dm_sync_table(md);
1766
1767	return map;
1768}
1769
1770/*
1771 * Constructor for a new device.
1772 */
1773int dm_create(int minor, struct mapped_device **result)
1774{
1775	struct mapped_device *md;
1776
1777	md = alloc_dev(minor);
1778	if (!md)
1779		return -ENXIO;
1780
1781	dm_sysfs_init(md);
1782
1783	*result = md;
1784	return 0;
1785}
1786
1787/*
1788 * Functions to manage md->type.
1789 * All are required to hold md->type_lock.
1790 */
1791void dm_lock_md_type(struct mapped_device *md)
1792{
1793	mutex_lock(&md->type_lock);
1794}
1795
1796void dm_unlock_md_type(struct mapped_device *md)
1797{
1798	mutex_unlock(&md->type_lock);
1799}
1800
1801void dm_set_md_type(struct mapped_device *md, unsigned type)
1802{
1803	BUG_ON(!mutex_is_locked(&md->type_lock));
1804	md->type = type;
1805}
1806
1807unsigned dm_get_md_type(struct mapped_device *md)
1808{
1809	return md->type;
1810}
1811
1812struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1813{
1814	return md->immutable_target_type;
1815}
1816
1817/*
1818 * The queue_limits are only valid as long as you have a reference
1819 * count on 'md'.
1820 */
1821struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1822{
1823	BUG_ON(!atomic_read(&md->holders));
1824	return &md->queue->limits;
1825}
1826EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1827
1828/*
1829 * Setup the DM device's queue based on md's type
1830 */
1831int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1832{
 
 
 
1833	int r;
1834	unsigned type = dm_get_md_type(md);
1835
1836	switch (type) {
1837	case DM_TYPE_REQUEST_BASED:
1838		r = dm_old_init_request_queue(md);
1839		if (r) {
1840			DMERR("Cannot initialize queue for request-based mapped device");
1841			return r;
1842		}
1843		break;
1844	case DM_TYPE_MQ_REQUEST_BASED:
1845		r = dm_mq_init_request_queue(md, t);
1846		if (r) {
1847			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1848			return r;
1849		}
1850		break;
1851	case DM_TYPE_BIO_BASED:
1852	case DM_TYPE_DAX_BIO_BASED:
1853		dm_init_normal_md_queue(md);
1854		blk_queue_make_request(md->queue, dm_make_request);
1855		/*
1856		 * DM handles splitting bios as needed.  Free the bio_split bioset
1857		 * since it won't be used (saves 1 process per bio-based DM device).
1858		 */
1859		bioset_free(md->queue->bio_split);
1860		md->queue->bio_split = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1861
1862		if (type == DM_TYPE_DAX_BIO_BASED)
1863			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1864		break;
 
 
 
 
 
1865	}
1866
 
 
 
 
 
1867	return 0;
 
 
 
 
 
 
 
 
1868}
1869
1870struct mapped_device *dm_get_md(dev_t dev)
1871{
1872	struct mapped_device *md;
1873	unsigned minor = MINOR(dev);
1874
1875	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1876		return NULL;
1877
1878	spin_lock(&_minor_lock);
1879
1880	md = idr_find(&_minor_idr, minor);
1881	if (md) {
1882		if ((md == MINOR_ALLOCED ||
1883		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
1884		     dm_deleting_md(md) ||
1885		     test_bit(DMF_FREEING, &md->flags))) {
1886			md = NULL;
1887			goto out;
1888		}
1889		dm_get(md);
1890	}
1891
1892out:
1893	spin_unlock(&_minor_lock);
1894
1895	return md;
1896}
1897EXPORT_SYMBOL_GPL(dm_get_md);
1898
1899void *dm_get_mdptr(struct mapped_device *md)
1900{
1901	return md->interface_ptr;
1902}
1903
1904void dm_set_mdptr(struct mapped_device *md, void *ptr)
1905{
1906	md->interface_ptr = ptr;
1907}
1908
1909void dm_get(struct mapped_device *md)
1910{
1911	atomic_inc(&md->holders);
1912	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1913}
1914
1915int dm_hold(struct mapped_device *md)
1916{
1917	spin_lock(&_minor_lock);
1918	if (test_bit(DMF_FREEING, &md->flags)) {
1919		spin_unlock(&_minor_lock);
1920		return -EBUSY;
1921	}
1922	dm_get(md);
1923	spin_unlock(&_minor_lock);
1924	return 0;
1925}
1926EXPORT_SYMBOL_GPL(dm_hold);
1927
1928const char *dm_device_name(struct mapped_device *md)
1929{
1930	return md->name;
1931}
1932EXPORT_SYMBOL_GPL(dm_device_name);
1933
1934static void __dm_destroy(struct mapped_device *md, bool wait)
1935{
1936	struct request_queue *q = dm_get_md_queue(md);
1937	struct dm_table *map;
1938	int srcu_idx;
1939
1940	might_sleep();
1941
1942	spin_lock(&_minor_lock);
1943	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1944	set_bit(DMF_FREEING, &md->flags);
1945	spin_unlock(&_minor_lock);
1946
1947	blk_set_queue_dying(q);
1948
1949	if (dm_request_based(md) && md->kworker_task)
1950		kthread_flush_worker(&md->kworker);
1951
1952	/*
1953	 * Take suspend_lock so that presuspend and postsuspend methods
1954	 * do not race with internal suspend.
1955	 */
1956	mutex_lock(&md->suspend_lock);
1957	map = dm_get_live_table(md, &srcu_idx);
1958	if (!dm_suspended_md(md)) {
1959		dm_table_presuspend_targets(map);
 
 
1960		dm_table_postsuspend_targets(map);
1961	}
1962	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1963	dm_put_live_table(md, srcu_idx);
1964	mutex_unlock(&md->suspend_lock);
1965
1966	/*
1967	 * Rare, but there may be I/O requests still going to complete,
1968	 * for example.  Wait for all references to disappear.
1969	 * No one should increment the reference count of the mapped_device,
1970	 * after the mapped_device state becomes DMF_FREEING.
1971	 */
1972	if (wait)
1973		while (atomic_read(&md->holders))
1974			msleep(1);
1975	else if (atomic_read(&md->holders))
1976		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
1977		       dm_device_name(md), atomic_read(&md->holders));
1978
1979	dm_sysfs_exit(md);
1980	dm_table_destroy(__unbind(md));
1981	free_dev(md);
1982}
1983
1984void dm_destroy(struct mapped_device *md)
1985{
1986	__dm_destroy(md, true);
1987}
1988
1989void dm_destroy_immediate(struct mapped_device *md)
1990{
1991	__dm_destroy(md, false);
1992}
1993
1994void dm_put(struct mapped_device *md)
1995{
1996	atomic_dec(&md->holders);
1997}
1998EXPORT_SYMBOL_GPL(dm_put);
1999
2000static int dm_wait_for_completion(struct mapped_device *md, long task_state)
 
 
 
 
 
 
 
 
 
 
 
2001{
2002	int r = 0;
2003	DEFINE_WAIT(wait);
2004
2005	while (1) {
2006		prepare_to_wait(&md->wait, &wait, task_state);
2007
2008		if (!md_in_flight(md))
2009			break;
2010
2011		if (signal_pending_state(task_state, current)) {
2012			r = -EINTR;
2013			break;
2014		}
2015
2016		io_schedule();
2017	}
2018	finish_wait(&md->wait, &wait);
2019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2020	return r;
2021}
2022
2023/*
2024 * Process the deferred bios
2025 */
2026static void dm_wq_work(struct work_struct *work)
2027{
2028	struct mapped_device *md = container_of(work, struct mapped_device,
2029						work);
2030	struct bio *c;
2031	int srcu_idx;
2032	struct dm_table *map;
2033
2034	map = dm_get_live_table(md, &srcu_idx);
2035
2036	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2037		spin_lock_irq(&md->deferred_lock);
2038		c = bio_list_pop(&md->deferred);
2039		spin_unlock_irq(&md->deferred_lock);
2040
2041		if (!c)
2042			break;
2043
2044		if (dm_request_based(md))
2045			generic_make_request(c);
2046		else
2047			__split_and_process_bio(md, map, c);
2048	}
2049
2050	dm_put_live_table(md, srcu_idx);
2051}
2052
2053static void dm_queue_flush(struct mapped_device *md)
2054{
2055	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2056	smp_mb__after_atomic();
2057	queue_work(md->wq, &md->work);
2058}
2059
2060/*
2061 * Swap in a new table, returning the old one for the caller to destroy.
2062 */
2063struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2064{
2065	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2066	struct queue_limits limits;
2067	int r;
2068
2069	mutex_lock(&md->suspend_lock);
2070
2071	/* device must be suspended */
2072	if (!dm_suspended_md(md))
2073		goto out;
2074
2075	/*
2076	 * If the new table has no data devices, retain the existing limits.
2077	 * This helps multipath with queue_if_no_path if all paths disappear,
2078	 * then new I/O is queued based on these limits, and then some paths
2079	 * reappear.
2080	 */
2081	if (dm_table_has_no_data_devices(table)) {
2082		live_map = dm_get_live_table_fast(md);
2083		if (live_map)
2084			limits = md->queue->limits;
2085		dm_put_live_table_fast(md);
2086	}
2087
2088	if (!live_map) {
2089		r = dm_calculate_queue_limits(table, &limits);
2090		if (r) {
2091			map = ERR_PTR(r);
2092			goto out;
2093		}
2094	}
2095
2096	map = __bind(md, table, &limits);
 
2097
2098out:
2099	mutex_unlock(&md->suspend_lock);
2100	return map;
2101}
2102
2103/*
2104 * Functions to lock and unlock any filesystem running on the
2105 * device.
2106 */
2107static int lock_fs(struct mapped_device *md)
2108{
2109	int r;
2110
2111	WARN_ON(md->frozen_sb);
2112
2113	md->frozen_sb = freeze_bdev(md->bdev);
2114	if (IS_ERR(md->frozen_sb)) {
2115		r = PTR_ERR(md->frozen_sb);
2116		md->frozen_sb = NULL;
2117		return r;
2118	}
2119
2120	set_bit(DMF_FROZEN, &md->flags);
2121
2122	return 0;
2123}
2124
2125static void unlock_fs(struct mapped_device *md)
2126{
2127	if (!test_bit(DMF_FROZEN, &md->flags))
2128		return;
2129
2130	thaw_bdev(md->bdev, md->frozen_sb);
2131	md->frozen_sb = NULL;
2132	clear_bit(DMF_FROZEN, &md->flags);
2133}
2134
2135/*
2136 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2137 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2138 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2139 *
2140 * If __dm_suspend returns 0, the device is completely quiescent
2141 * now. There is no request-processing activity. All new requests
2142 * are being added to md->deferred list.
2143 *
2144 * Caller must hold md->suspend_lock
2145 */
2146static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2147			unsigned suspend_flags, long task_state,
2148			int dmf_suspended_flag)
2149{
2150	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2151	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2152	int r;
2153
2154	lockdep_assert_held(&md->suspend_lock);
2155
2156	/*
2157	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2158	 * This flag is cleared before dm_suspend returns.
2159	 */
2160	if (noflush)
2161		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 
 
2162
2163	/*
2164	 * This gets reverted if there's an error later and the targets
2165	 * provide the .presuspend_undo hook.
2166	 */
2167	dm_table_presuspend_targets(map);
2168
2169	/*
2170	 * Flush I/O to the device.
2171	 * Any I/O submitted after lock_fs() may not be flushed.
2172	 * noflush takes precedence over do_lockfs.
2173	 * (lock_fs() flushes I/Os and waits for them to complete.)
2174	 */
2175	if (!noflush && do_lockfs) {
2176		r = lock_fs(md);
2177		if (r) {
2178			dm_table_presuspend_undo_targets(map);
2179			return r;
2180		}
2181	}
2182
2183	/*
2184	 * Here we must make sure that no processes are submitting requests
2185	 * to target drivers i.e. no one may be executing
2186	 * __split_and_process_bio. This is called from dm_request and
2187	 * dm_wq_work.
2188	 *
2189	 * To get all processes out of __split_and_process_bio in dm_request,
2190	 * we take the write lock. To prevent any process from reentering
2191	 * __split_and_process_bio from dm_request and quiesce the thread
2192	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2193	 * flush_workqueue(md->wq).
2194	 */
2195	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2196	if (map)
2197		synchronize_srcu(&md->io_barrier);
2198
2199	/*
2200	 * Stop md->queue before flushing md->wq in case request-based
2201	 * dm defers requests to md->wq from md->queue.
2202	 */
2203	if (dm_request_based(md)) {
2204		dm_stop_queue(md->queue);
2205		if (md->kworker_task)
2206			kthread_flush_worker(&md->kworker);
2207	}
2208
2209	flush_workqueue(md->wq);
2210
2211	/*
2212	 * At this point no more requests are entering target request routines.
2213	 * We call dm_wait_for_completion to wait for all existing requests
2214	 * to finish.
2215	 */
2216	r = dm_wait_for_completion(md, task_state);
2217	if (!r)
2218		set_bit(dmf_suspended_flag, &md->flags);
2219
2220	if (noflush)
2221		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2222	if (map)
2223		synchronize_srcu(&md->io_barrier);
2224
2225	/* were we interrupted ? */
2226	if (r < 0) {
2227		dm_queue_flush(md);
2228
2229		if (dm_request_based(md))
2230			dm_start_queue(md->queue);
2231
2232		unlock_fs(md);
2233		dm_table_presuspend_undo_targets(map);
2234		/* pushback list is already flushed, so skip flush */
2235	}
2236
2237	return r;
2238}
2239
2240/*
2241 * We need to be able to change a mapping table under a mounted
2242 * filesystem.  For example we might want to move some data in
2243 * the background.  Before the table can be swapped with
2244 * dm_bind_table, dm_suspend must be called to flush any in
2245 * flight bios and ensure that any further io gets deferred.
2246 */
2247/*
2248 * Suspend mechanism in request-based dm.
2249 *
2250 * 1. Flush all I/Os by lock_fs() if needed.
2251 * 2. Stop dispatching any I/O by stopping the request_queue.
2252 * 3. Wait for all in-flight I/Os to be completed or requeued.
2253 *
2254 * To abort suspend, start the request_queue.
2255 */
2256int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2257{
2258	struct dm_table *map = NULL;
2259	int r = 0;
2260
2261retry:
2262	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2263
2264	if (dm_suspended_md(md)) {
2265		r = -EINVAL;
2266		goto out_unlock;
2267	}
2268
2269	if (dm_suspended_internally_md(md)) {
2270		/* already internally suspended, wait for internal resume */
2271		mutex_unlock(&md->suspend_lock);
2272		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2273		if (r)
2274			return r;
2275		goto retry;
2276	}
2277
2278	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
 
 
 
 
2279
2280	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2281	if (r)
2282		goto out_unlock;
2283
 
2284	dm_table_postsuspend_targets(map);
 
2285
2286out_unlock:
2287	mutex_unlock(&md->suspend_lock);
2288	return r;
2289}
2290
2291static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2292{
2293	if (map) {
2294		int r = dm_table_resume_targets(map);
 
2295		if (r)
2296			return r;
2297	}
2298
2299	dm_queue_flush(md);
2300
2301	/*
2302	 * Flushing deferred I/Os must be done after targets are resumed
2303	 * so that mapping of targets can work correctly.
2304	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2305	 */
2306	if (dm_request_based(md))
2307		dm_start_queue(md->queue);
2308
2309	unlock_fs(md);
2310
2311	return 0;
2312}
2313
2314int dm_resume(struct mapped_device *md)
2315{
2316	int r;
2317	struct dm_table *map = NULL;
2318
2319retry:
2320	r = -EINVAL;
2321	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2322
2323	if (!dm_suspended_md(md))
2324		goto out;
2325
2326	if (dm_suspended_internally_md(md)) {
2327		/* already internally suspended, wait for internal resume */
2328		mutex_unlock(&md->suspend_lock);
2329		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2330		if (r)
2331			return r;
2332		goto retry;
2333	}
2334
2335	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2336	if (!map || !dm_table_get_size(map))
2337		goto out;
2338
2339	r = __dm_resume(md, map);
2340	if (r)
2341		goto out;
2342
2343	clear_bit(DMF_SUSPENDED, &md->flags);
2344out:
2345	mutex_unlock(&md->suspend_lock);
2346
2347	return r;
2348}
2349
2350/*
2351 * Internal suspend/resume works like userspace-driven suspend. It waits
2352 * until all bios finish and prevents issuing new bios to the target drivers.
2353 * It may be used only from the kernel.
2354 */
2355
2356static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2357{
2358	struct dm_table *map = NULL;
2359
 
 
2360	if (md->internal_suspend_count++)
2361		return; /* nested internal suspend */
2362
2363	if (dm_suspended_md(md)) {
2364		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2365		return; /* nest suspend */
2366	}
2367
2368	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2369
2370	/*
2371	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2372	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2373	 * would require changing .presuspend to return an error -- avoid this
2374	 * until there is a need for more elaborate variants of internal suspend.
2375	 */
2376	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2377			    DMF_SUSPENDED_INTERNALLY);
2378
 
2379	dm_table_postsuspend_targets(map);
 
2380}
2381
2382static void __dm_internal_resume(struct mapped_device *md)
2383{
2384	BUG_ON(!md->internal_suspend_count);
2385
2386	if (--md->internal_suspend_count)
2387		return; /* resume from nested internal suspend */
2388
2389	if (dm_suspended_md(md))
2390		goto done; /* resume from nested suspend */
2391
2392	/*
2393	 * NOTE: existing callers don't need to call dm_table_resume_targets
2394	 * (which may fail -- so best to avoid it for now by passing NULL map)
2395	 */
2396	(void) __dm_resume(md, NULL);
2397
2398done:
2399	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2400	smp_mb__after_atomic();
2401	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2402}
2403
2404void dm_internal_suspend_noflush(struct mapped_device *md)
2405{
2406	mutex_lock(&md->suspend_lock);
2407	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2408	mutex_unlock(&md->suspend_lock);
2409}
2410EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2411
2412void dm_internal_resume(struct mapped_device *md)
2413{
2414	mutex_lock(&md->suspend_lock);
2415	__dm_internal_resume(md);
2416	mutex_unlock(&md->suspend_lock);
2417}
2418EXPORT_SYMBOL_GPL(dm_internal_resume);
2419
2420/*
2421 * Fast variants of internal suspend/resume hold md->suspend_lock,
2422 * which prevents interaction with userspace-driven suspend.
2423 */
2424
2425void dm_internal_suspend_fast(struct mapped_device *md)
2426{
2427	mutex_lock(&md->suspend_lock);
2428	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2429		return;
2430
2431	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2432	synchronize_srcu(&md->io_barrier);
2433	flush_workqueue(md->wq);
2434	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2435}
2436EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2437
2438void dm_internal_resume_fast(struct mapped_device *md)
2439{
2440	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2441		goto done;
2442
2443	dm_queue_flush(md);
2444
2445done:
2446	mutex_unlock(&md->suspend_lock);
2447}
2448EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2449
2450/*-----------------------------------------------------------------
 
2451 * Event notification.
2452 *---------------------------------------------------------------*/
 
2453int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2454		       unsigned cookie)
2455{
 
 
2456	char udev_cookie[DM_COOKIE_LENGTH];
2457	char *envp[] = { udev_cookie, NULL };
2458
2459	if (!cookie)
2460		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2461	else {
2462		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2463			 DM_COOKIE_ENV_VAR_NAME, cookie);
2464		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2465					  action, envp);
 
 
2466	}
 
 
 
 
 
 
 
 
2467}
2468
2469uint32_t dm_next_uevent_seq(struct mapped_device *md)
2470{
2471	return atomic_add_return(1, &md->uevent_seq);
2472}
2473
2474uint32_t dm_get_event_nr(struct mapped_device *md)
2475{
2476	return atomic_read(&md->event_nr);
2477}
2478
2479int dm_wait_event(struct mapped_device *md, int event_nr)
2480{
2481	return wait_event_interruptible(md->eventq,
2482			(event_nr != atomic_read(&md->event_nr)));
2483}
2484
2485void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2486{
2487	unsigned long flags;
2488
2489	spin_lock_irqsave(&md->uevent_lock, flags);
2490	list_add(elist, &md->uevent_list);
2491	spin_unlock_irqrestore(&md->uevent_lock, flags);
2492}
2493
2494/*
2495 * The gendisk is only valid as long as you have a reference
2496 * count on 'md'.
2497 */
2498struct gendisk *dm_disk(struct mapped_device *md)
2499{
2500	return md->disk;
2501}
2502EXPORT_SYMBOL_GPL(dm_disk);
2503
2504struct kobject *dm_kobject(struct mapped_device *md)
2505{
2506	return &md->kobj_holder.kobj;
2507}
2508
2509struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2510{
2511	struct mapped_device *md;
2512
2513	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2514
2515	if (test_bit(DMF_FREEING, &md->flags) ||
2516	    dm_deleting_md(md))
2517		return NULL;
 
 
 
 
 
2518
2519	dm_get(md);
2520	return md;
2521}
2522
2523int dm_suspended_md(struct mapped_device *md)
2524{
2525	return test_bit(DMF_SUSPENDED, &md->flags);
2526}
2527
 
 
 
 
 
2528int dm_suspended_internally_md(struct mapped_device *md)
2529{
2530	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2531}
2532
2533int dm_test_deferred_remove_flag(struct mapped_device *md)
2534{
2535	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2536}
2537
2538int dm_suspended(struct dm_target *ti)
2539{
2540	return dm_suspended_md(dm_table_get_md(ti->table));
2541}
2542EXPORT_SYMBOL_GPL(dm_suspended);
2543
2544int dm_noflush_suspending(struct dm_target *ti)
2545{
2546	return __noflush_suspending(dm_table_get_md(ti->table));
2547}
2548EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2549
2550struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
2551					    unsigned integrity, unsigned per_io_data_size)
2552{
2553	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2554	struct kmem_cache *cachep = NULL;
2555	unsigned int pool_size = 0;
2556	unsigned int front_pad;
2557
2558	if (!pools)
2559		return NULL;
2560
2561	switch (type) {
2562	case DM_TYPE_BIO_BASED:
2563	case DM_TYPE_DAX_BIO_BASED:
2564		cachep = _io_cache;
2565		pool_size = dm_get_reserved_bio_based_ios();
2566		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2567		break;
2568	case DM_TYPE_REQUEST_BASED:
2569		cachep = _rq_tio_cache;
2570		pool_size = dm_get_reserved_rq_based_ios();
2571		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
2572		if (!pools->rq_pool)
2573			goto out;
2574		/* fall through to setup remaining rq-based pools */
2575	case DM_TYPE_MQ_REQUEST_BASED:
2576		if (!pool_size)
2577			pool_size = dm_get_reserved_rq_based_ios();
2578		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2579		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2580		break;
2581	default:
2582		BUG();
2583	}
2584
2585	if (cachep) {
2586		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
2587		if (!pools->io_pool)
2588			goto out;
2589	}
2590
2591	pools->bs = bioset_create_nobvec(pool_size, front_pad);
2592	if (!pools->bs)
2593		goto out;
2594
2595	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2596		goto out;
2597
2598	return pools;
2599
2600out:
2601	dm_free_md_mempools(pools);
2602
2603	return NULL;
2604}
 
2605
2606void dm_free_md_mempools(struct dm_md_mempools *pools)
2607{
2608	if (!pools)
2609		return;
2610
2611	mempool_destroy(pools->io_pool);
2612	mempool_destroy(pools->rq_pool);
2613
2614	if (pools->bs)
2615		bioset_free(pools->bs);
2616
2617	kfree(pools);
2618}
2619
2620struct dm_pr {
2621	u64	old_key;
2622	u64	new_key;
2623	u32	flags;
 
2624	bool	fail_early;
 
 
 
 
2625};
2626
2627static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2628		      void *data)
2629{
2630	struct mapped_device *md = bdev->bd_disk->private_data;
2631	struct dm_table *table;
2632	struct dm_target *ti;
2633	int ret = -ENOTTY, srcu_idx;
2634
2635	table = dm_get_live_table(md, &srcu_idx);
2636	if (!table || !dm_table_get_size(table))
2637		goto out;
2638
2639	/* We only support devices that have a single target */
2640	if (dm_table_get_num_targets(table) != 1)
2641		goto out;
2642	ti = dm_table_get_target(table, 0);
2643
 
 
 
 
 
2644	ret = -EINVAL;
2645	if (!ti->type->iterate_devices)
2646		goto out;
2647
2648	ret = ti->type->iterate_devices(ti, fn, data);
 
2649out:
2650	dm_put_live_table(md, srcu_idx);
2651	return ret;
2652}
2653
2654/*
2655 * For register / unregister we need to manually call out to every path.
2656 */
2657static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2658			    sector_t start, sector_t len, void *data)
2659{
2660	struct dm_pr *pr = data;
2661	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
 
 
 
 
 
 
 
 
 
 
2662
2663	if (!ops || !ops->pr_register)
2664		return -EOPNOTSUPP;
2665	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
 
 
 
 
2666}
2667
2668static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2669			  u32 flags)
2670{
2671	struct dm_pr pr = {
2672		.old_key	= old_key,
2673		.new_key	= new_key,
2674		.flags		= flags,
2675		.fail_early	= true,
 
2676	};
2677	int ret;
2678
2679	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2680	if (ret && new_key) {
2681		/* unregister all paths if we failed to register any path */
2682		pr.old_key = new_key;
2683		pr.new_key = 0;
2684		pr.flags = 0;
2685		pr.fail_early = false;
2686		dm_call_pr(bdev, __dm_pr_register, &pr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2687	}
2688
2689	return ret;
 
 
 
 
2690}
2691
2692static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2693			 u32 flags)
2694{
2695	struct mapped_device *md = bdev->bd_disk->private_data;
2696	const struct pr_ops *ops;
2697	fmode_t mode;
2698	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699
2700	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2701	if (r < 0)
2702		return r;
 
2703
2704	ops = bdev->bd_disk->fops->pr_ops;
2705	if (ops && ops->pr_reserve)
2706		r = ops->pr_reserve(bdev, key, type, flags);
2707	else
2708		r = -EOPNOTSUPP;
2709
2710	bdput(bdev);
2711	return r;
2712}
2713
2714static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2715{
2716	struct mapped_device *md = bdev->bd_disk->private_data;
2717	const struct pr_ops *ops;
2718	fmode_t mode;
2719	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2720
2721	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2722	if (r < 0)
2723		return r;
 
2724
2725	ops = bdev->bd_disk->fops->pr_ops;
2726	if (ops && ops->pr_release)
2727		r = ops->pr_release(bdev, key, type);
2728	else
2729		r = -EOPNOTSUPP;
2730
2731	bdput(bdev);
2732	return r;
2733}
2734
2735static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2736			 enum pr_type type, bool abort)
2737{
2738	struct mapped_device *md = bdev->bd_disk->private_data;
2739	const struct pr_ops *ops;
2740	fmode_t mode;
2741	int r;
2742
2743	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2744	if (r < 0)
2745		return r;
2746
2747	ops = bdev->bd_disk->fops->pr_ops;
2748	if (ops && ops->pr_preempt)
2749		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2750	else
2751		r = -EOPNOTSUPP;
2752
2753	bdput(bdev);
2754	return r;
2755}
2756
2757static int dm_pr_clear(struct block_device *bdev, u64 key)
2758{
2759	struct mapped_device *md = bdev->bd_disk->private_data;
2760	const struct pr_ops *ops;
2761	fmode_t mode;
2762	int r;
2763
2764	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2765	if (r < 0)
2766		return r;
2767
2768	ops = bdev->bd_disk->fops->pr_ops;
2769	if (ops && ops->pr_clear)
2770		r = ops->pr_clear(bdev, key);
2771	else
2772		r = -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2773
2774	bdput(bdev);
2775	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2776}
2777
2778static const struct pr_ops dm_pr_ops = {
2779	.pr_register	= dm_pr_register,
2780	.pr_reserve	= dm_pr_reserve,
2781	.pr_release	= dm_pr_release,
2782	.pr_preempt	= dm_pr_preempt,
2783	.pr_clear	= dm_pr_clear,
 
 
2784};
2785
2786static const struct block_device_operations dm_blk_dops = {
 
 
 
 
 
 
 
 
 
 
 
 
2787	.open = dm_blk_open,
2788	.release = dm_blk_close,
2789	.ioctl = dm_blk_ioctl,
2790	.direct_access = dm_blk_direct_access,
2791	.getgeo = dm_blk_getgeo,
2792	.pr_ops = &dm_pr_ops,
2793	.owner = THIS_MODULE
2794};
2795
 
 
 
 
 
 
2796/*
2797 * module hooks
2798 */
2799module_init(dm_init);
2800module_exit(dm_exit);
2801
2802module_param(major, uint, 0);
2803MODULE_PARM_DESC(major, "The major number of the device mapper");
2804
2805module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2806MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2807
2808module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2809MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
 
 
 
2810
2811MODULE_DESCRIPTION(DM_NAME " driver");
2812MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2813MODULE_LICENSE("GPL");