Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include "dm-core.h"
  10#include "dm-rq.h"
  11#include "dm-uevent.h"
  12#include "dm-ima.h"
  13
  14#include <linux/init.h>
  15#include <linux/module.h>
  16#include <linux/mutex.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/signal.h>
  19#include <linux/blkpg.h>
  20#include <linux/bio.h>
  21#include <linux/mempool.h>
  22#include <linux/dax.h>
  23#include <linux/slab.h>
  24#include <linux/idr.h>
  25#include <linux/uio.h>
  26#include <linux/hdreg.h>
  27#include <linux/delay.h>
  28#include <linux/wait.h>
  29#include <linux/pr.h>
  30#include <linux/refcount.h>
  31#include <linux/part_stat.h>
  32#include <linux/blk-crypto.h>
  33#include <linux/blk-crypto-profile.h>
  34
  35#define DM_MSG_PREFIX "core"
  36
  37/*
  38 * Cookies are numeric values sent with CHANGE and REMOVE
  39 * uevents while resuming, removing or renaming the device.
  40 */
  41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  42#define DM_COOKIE_LENGTH 24
  43
  44/*
  45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
  46 * dm_io into one list, and reuse bio->bi_private as the list head. Before
  47 * ending this fs bio, we will recover its ->bi_private.
  48 */
  49#define REQ_DM_POLL_LIST	REQ_DRV
  50
  51static const char *_name = DM_NAME;
  52
  53static unsigned int major;
  54static unsigned int _major;
  55
  56static DEFINE_IDR(_minor_idr);
  57
  58static DEFINE_SPINLOCK(_minor_lock);
  59
  60static void do_deferred_remove(struct work_struct *w);
  61
  62static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  63
  64static struct workqueue_struct *deferred_remove_workqueue;
  65
  66atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  67DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  68
  69void dm_issue_global_event(void)
  70{
  71	atomic_inc(&dm_global_event_nr);
  72	wake_up(&dm_global_eventq);
  73}
  74
  75DEFINE_STATIC_KEY_FALSE(stats_enabled);
  76DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
  77DEFINE_STATIC_KEY_FALSE(zoned_enabled);
  78
  79/*
  80 * One of these is allocated (on-stack) per original bio.
  81 */
  82struct clone_info {
  83	struct dm_table *map;
  84	struct bio *bio;
  85	struct dm_io *io;
  86	sector_t sector;
  87	unsigned int sector_count;
  88	bool is_abnormal_io:1;
  89	bool submit_as_polled:1;
  90};
  91
  92static inline struct dm_target_io *clone_to_tio(struct bio *clone)
  93{
  94	return container_of(clone, struct dm_target_io, clone);
  95}
  96
  97void *dm_per_bio_data(struct bio *bio, size_t data_size)
  98{
  99	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
 100		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
 101	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
 102}
 103EXPORT_SYMBOL_GPL(dm_per_bio_data);
 104
 105struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 106{
 107	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 108
 109	if (io->magic == DM_IO_MAGIC)
 110		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
 111	BUG_ON(io->magic != DM_TIO_MAGIC);
 112	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
 113}
 114EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 115
 116unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
 117{
 118	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 119}
 120EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 121
 122#define MINOR_ALLOCED ((void *)-1)
 123
 124#define DM_NUMA_NODE NUMA_NO_NODE
 125static int dm_numa_node = DM_NUMA_NODE;
 126
 127#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 128static int swap_bios = DEFAULT_SWAP_BIOS;
 129static int get_swap_bios(void)
 130{
 131	int latch = READ_ONCE(swap_bios);
 132
 133	if (unlikely(latch <= 0))
 134		latch = DEFAULT_SWAP_BIOS;
 135	return latch;
 136}
 137
 138struct table_device {
 139	struct list_head list;
 140	refcount_t count;
 141	struct dm_dev dm_dev;
 142};
 143
 144/*
 145 * Bio-based DM's mempools' reserved IOs set by the user.
 146 */
 147#define RESERVED_BIO_BASED_IOS		16
 148static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 149
 150static int __dm_get_module_param_int(int *module_param, int min, int max)
 151{
 152	int param = READ_ONCE(*module_param);
 153	int modified_param = 0;
 154	bool modified = true;
 155
 156	if (param < min)
 157		modified_param = min;
 158	else if (param > max)
 159		modified_param = max;
 160	else
 161		modified = false;
 162
 163	if (modified) {
 164		(void)cmpxchg(module_param, param, modified_param);
 165		param = modified_param;
 166	}
 167
 168	return param;
 169}
 170
 171unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
 172{
 173	unsigned int param = READ_ONCE(*module_param);
 174	unsigned int modified_param = 0;
 175
 176	if (!param)
 177		modified_param = def;
 178	else if (param > max)
 179		modified_param = max;
 180
 181	if (modified_param) {
 182		(void)cmpxchg(module_param, param, modified_param);
 183		param = modified_param;
 184	}
 185
 186	return param;
 187}
 188
 189unsigned int dm_get_reserved_bio_based_ios(void)
 190{
 191	return __dm_get_module_param(&reserved_bio_based_ios,
 192				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 193}
 194EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 195
 196static unsigned int dm_get_numa_node(void)
 197{
 198	return __dm_get_module_param_int(&dm_numa_node,
 199					 DM_NUMA_NODE, num_online_nodes() - 1);
 200}
 201
 202static int __init local_init(void)
 203{
 204	int r;
 205
 206	r = dm_uevent_init();
 207	if (r)
 208		return r;
 209
 210	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
 211	if (!deferred_remove_workqueue) {
 212		r = -ENOMEM;
 213		goto out_uevent_exit;
 214	}
 215
 216	_major = major;
 217	r = register_blkdev(_major, _name);
 218	if (r < 0)
 219		goto out_free_workqueue;
 220
 221	if (!_major)
 222		_major = r;
 223
 224	return 0;
 225
 226out_free_workqueue:
 227	destroy_workqueue(deferred_remove_workqueue);
 228out_uevent_exit:
 229	dm_uevent_exit();
 230
 231	return r;
 232}
 233
 234static void local_exit(void)
 235{
 236	destroy_workqueue(deferred_remove_workqueue);
 237
 238	unregister_blkdev(_major, _name);
 239	dm_uevent_exit();
 240
 241	_major = 0;
 242
 243	DMINFO("cleaned up");
 244}
 245
 246static int (*_inits[])(void) __initdata = {
 247	local_init,
 248	dm_target_init,
 249	dm_linear_init,
 250	dm_stripe_init,
 251	dm_io_init,
 252	dm_kcopyd_init,
 253	dm_interface_init,
 254	dm_statistics_init,
 255};
 256
 257static void (*_exits[])(void) = {
 258	local_exit,
 259	dm_target_exit,
 260	dm_linear_exit,
 261	dm_stripe_exit,
 262	dm_io_exit,
 263	dm_kcopyd_exit,
 264	dm_interface_exit,
 265	dm_statistics_exit,
 266};
 267
 268static int __init dm_init(void)
 269{
 270	const int count = ARRAY_SIZE(_inits);
 271	int r, i;
 272
 273#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
 274	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
 275	       " Duplicate IMA measurements will not be recorded in the IMA log.");
 276#endif
 277
 278	for (i = 0; i < count; i++) {
 279		r = _inits[i]();
 280		if (r)
 281			goto bad;
 282	}
 283
 284	return 0;
 285bad:
 286	while (i--)
 287		_exits[i]();
 288
 289	return r;
 290}
 291
 292static void __exit dm_exit(void)
 293{
 294	int i = ARRAY_SIZE(_exits);
 295
 296	while (i--)
 297		_exits[i]();
 298
 299	/*
 300	 * Should be empty by this point.
 301	 */
 302	idr_destroy(&_minor_idr);
 303}
 304
 305/*
 306 * Block device functions
 307 */
 308int dm_deleting_md(struct mapped_device *md)
 309{
 310	return test_bit(DMF_DELETING, &md->flags);
 311}
 312
 313static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
 314{
 315	struct mapped_device *md;
 316
 317	spin_lock(&_minor_lock);
 318
 319	md = disk->private_data;
 320	if (!md)
 321		goto out;
 322
 323	if (test_bit(DMF_FREEING, &md->flags) ||
 324	    dm_deleting_md(md)) {
 325		md = NULL;
 326		goto out;
 327	}
 328
 329	dm_get(md);
 330	atomic_inc(&md->open_count);
 331out:
 332	spin_unlock(&_minor_lock);
 333
 334	return md ? 0 : -ENXIO;
 335}
 336
 337static void dm_blk_close(struct gendisk *disk)
 338{
 339	struct mapped_device *md;
 340
 341	spin_lock(&_minor_lock);
 342
 343	md = disk->private_data;
 344	if (WARN_ON(!md))
 345		goto out;
 346
 347	if (atomic_dec_and_test(&md->open_count) &&
 348	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 349		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 350
 351	dm_put(md);
 352out:
 353	spin_unlock(&_minor_lock);
 354}
 355
 356int dm_open_count(struct mapped_device *md)
 357{
 358	return atomic_read(&md->open_count);
 359}
 360
 361/*
 362 * Guarantees nothing is using the device before it's deleted.
 363 */
 364int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 365{
 366	int r = 0;
 367
 368	spin_lock(&_minor_lock);
 369
 370	if (dm_open_count(md)) {
 371		r = -EBUSY;
 372		if (mark_deferred)
 373			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 374	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 375		r = -EEXIST;
 376	else
 377		set_bit(DMF_DELETING, &md->flags);
 378
 379	spin_unlock(&_minor_lock);
 380
 381	return r;
 382}
 383
 384int dm_cancel_deferred_remove(struct mapped_device *md)
 385{
 386	int r = 0;
 387
 388	spin_lock(&_minor_lock);
 389
 390	if (test_bit(DMF_DELETING, &md->flags))
 391		r = -EBUSY;
 392	else
 393		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 394
 395	spin_unlock(&_minor_lock);
 396
 397	return r;
 398}
 399
 400static void do_deferred_remove(struct work_struct *w)
 401{
 402	dm_deferred_remove();
 403}
 404
 405static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 406{
 407	struct mapped_device *md = bdev->bd_disk->private_data;
 408
 409	return dm_get_geometry(md, geo);
 410}
 411
 412static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 413			    struct block_device **bdev)
 414{
 415	struct dm_target *ti;
 416	struct dm_table *map;
 417	int r;
 418
 419retry:
 420	r = -ENOTTY;
 421	map = dm_get_live_table(md, srcu_idx);
 422	if (!map || !dm_table_get_size(map))
 423		return r;
 424
 425	/* We only support devices that have a single target */
 426	if (map->num_targets != 1)
 427		return r;
 428
 429	ti = dm_table_get_target(map, 0);
 430	if (!ti->type->prepare_ioctl)
 431		return r;
 432
 433	if (dm_suspended_md(md))
 434		return -EAGAIN;
 435
 436	r = ti->type->prepare_ioctl(ti, bdev);
 437	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 438		dm_put_live_table(md, *srcu_idx);
 439		fsleep(10000);
 440		goto retry;
 441	}
 442
 443	return r;
 444}
 445
 446static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 447{
 448	dm_put_live_table(md, srcu_idx);
 449}
 450
 451static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
 452			unsigned int cmd, unsigned long arg)
 453{
 454	struct mapped_device *md = bdev->bd_disk->private_data;
 455	int r, srcu_idx;
 456
 457	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 458	if (r < 0)
 459		goto out;
 460
 461	if (r > 0) {
 462		/*
 463		 * Target determined this ioctl is being issued against a
 464		 * subset of the parent bdev; require extra privileges.
 465		 */
 466		if (!capable(CAP_SYS_RAWIO)) {
 467			DMDEBUG_LIMIT(
 468	"%s: sending ioctl %x to DM device without required privilege.",
 469				current->comm, cmd);
 470			r = -ENOIOCTLCMD;
 471			goto out;
 472		}
 473	}
 474
 475	if (!bdev->bd_disk->fops->ioctl)
 476		r = -ENOTTY;
 477	else
 478		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 479out:
 480	dm_unprepare_ioctl(md, srcu_idx);
 481	return r;
 482}
 483
 484u64 dm_start_time_ns_from_clone(struct bio *bio)
 485{
 486	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
 487}
 488EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 489
 490static inline bool bio_is_flush_with_data(struct bio *bio)
 491{
 492	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
 493}
 494
 495static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
 496{
 497	/*
 498	 * If REQ_PREFLUSH set, don't account payload, it will be
 499	 * submitted (and accounted) after this flush completes.
 500	 */
 501	if (bio_is_flush_with_data(bio))
 502		return 0;
 503	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 504		return io->sectors;
 505	return bio_sectors(bio);
 506}
 507
 508static void dm_io_acct(struct dm_io *io, bool end)
 509{
 510	struct bio *bio = io->orig_bio;
 511
 512	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
 513		if (!end)
 514			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
 515					   io->start_time);
 516		else
 517			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
 518					 dm_io_sectors(io, bio),
 519					 io->start_time);
 520	}
 521
 522	if (static_branch_unlikely(&stats_enabled) &&
 523	    unlikely(dm_stats_used(&io->md->stats))) {
 524		sector_t sector;
 525
 526		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 527			sector = bio_end_sector(bio) - io->sector_offset;
 528		else
 529			sector = bio->bi_iter.bi_sector;
 530
 531		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
 532				    sector, dm_io_sectors(io, bio),
 533				    end, io->start_time, &io->stats_aux);
 534	}
 535}
 536
 537static void __dm_start_io_acct(struct dm_io *io)
 538{
 539	dm_io_acct(io, false);
 540}
 541
 542static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
 543{
 544	/*
 545	 * Ensure IO accounting is only ever started once.
 546	 */
 547	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 548		return;
 549
 550	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
 551	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
 552		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 553	} else {
 554		unsigned long flags;
 555		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
 556		spin_lock_irqsave(&io->lock, flags);
 557		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
 558			spin_unlock_irqrestore(&io->lock, flags);
 559			return;
 560		}
 561		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 562		spin_unlock_irqrestore(&io->lock, flags);
 563	}
 564
 565	__dm_start_io_acct(io);
 566}
 567
 568static void dm_end_io_acct(struct dm_io *io)
 569{
 570	dm_io_acct(io, true);
 571}
 572
 573static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
 574{
 575	struct dm_io *io;
 576	struct dm_target_io *tio;
 577	struct bio *clone;
 578
 579	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
 580	if (unlikely(!clone))
 581		return NULL;
 582	tio = clone_to_tio(clone);
 583	tio->flags = 0;
 584	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
 585	tio->io = NULL;
 586
 587	io = container_of(tio, struct dm_io, tio);
 588	io->magic = DM_IO_MAGIC;
 589	io->status = BLK_STS_OK;
 590
 591	/* one ref is for submission, the other is for completion */
 592	atomic_set(&io->io_count, 2);
 593	this_cpu_inc(*md->pending_io);
 594	io->orig_bio = bio;
 595	io->md = md;
 596	spin_lock_init(&io->lock);
 597	io->start_time = jiffies;
 598	io->flags = 0;
 599	if (blk_queue_io_stat(md->queue))
 600		dm_io_set_flag(io, DM_IO_BLK_STAT);
 601
 602	if (static_branch_unlikely(&stats_enabled) &&
 603	    unlikely(dm_stats_used(&md->stats)))
 604		dm_stats_record_start(&md->stats, &io->stats_aux);
 605
 606	return io;
 607}
 608
 609static void free_io(struct dm_io *io)
 610{
 611	bio_put(&io->tio.clone);
 612}
 613
 614static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 615			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
 616{
 617	struct mapped_device *md = ci->io->md;
 618	struct dm_target_io *tio;
 619	struct bio *clone;
 620
 621	if (!ci->io->tio.io) {
 622		/* the dm_target_io embedded in ci->io is available */
 623		tio = &ci->io->tio;
 624		/* alloc_io() already initialized embedded clone */
 625		clone = &tio->clone;
 626	} else {
 627		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
 628					&md->mempools->bs);
 629		if (!clone)
 630			return NULL;
 631
 632		/* REQ_DM_POLL_LIST shouldn't be inherited */
 633		clone->bi_opf &= ~REQ_DM_POLL_LIST;
 634
 635		tio = clone_to_tio(clone);
 636		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
 637	}
 638
 639	tio->magic = DM_TIO_MAGIC;
 640	tio->io = ci->io;
 641	tio->ti = ti;
 642	tio->target_bio_nr = target_bio_nr;
 643	tio->len_ptr = len;
 644	tio->old_sector = 0;
 645
 646	/* Set default bdev, but target must bio_set_dev() before issuing IO */
 647	clone->bi_bdev = md->disk->part0;
 648	if (unlikely(ti->needs_bio_set_dev))
 649		bio_set_dev(clone, md->disk->part0);
 650
 651	if (len) {
 652		clone->bi_iter.bi_size = to_bytes(*len);
 653		if (bio_integrity(clone))
 654			bio_integrity_trim(clone);
 655	}
 656
 657	return clone;
 658}
 659
 660static void free_tio(struct bio *clone)
 661{
 662	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
 663		return;
 664	bio_put(clone);
 665}
 666
 667/*
 668 * Add the bio to the list of deferred io.
 669 */
 670static void queue_io(struct mapped_device *md, struct bio *bio)
 671{
 672	unsigned long flags;
 673
 674	spin_lock_irqsave(&md->deferred_lock, flags);
 675	bio_list_add(&md->deferred, bio);
 676	spin_unlock_irqrestore(&md->deferred_lock, flags);
 677	queue_work(md->wq, &md->work);
 678}
 679
 680/*
 681 * Everyone (including functions in this file), should use this
 682 * function to access the md->map field, and make sure they call
 683 * dm_put_live_table() when finished.
 684 */
 685struct dm_table *dm_get_live_table(struct mapped_device *md,
 686				   int *srcu_idx) __acquires(md->io_barrier)
 687{
 688	*srcu_idx = srcu_read_lock(&md->io_barrier);
 689
 690	return srcu_dereference(md->map, &md->io_barrier);
 691}
 692
 693void dm_put_live_table(struct mapped_device *md,
 694		       int srcu_idx) __releases(md->io_barrier)
 695{
 696	srcu_read_unlock(&md->io_barrier, srcu_idx);
 697}
 698
 699void dm_sync_table(struct mapped_device *md)
 700{
 701	synchronize_srcu(&md->io_barrier);
 702	synchronize_rcu_expedited();
 703}
 704
 705/*
 706 * A fast alternative to dm_get_live_table/dm_put_live_table.
 707 * The caller must not block between these two functions.
 708 */
 709static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 710{
 711	rcu_read_lock();
 712	return rcu_dereference(md->map);
 713}
 714
 715static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 716{
 717	rcu_read_unlock();
 718}
 719
 720static char *_dm_claim_ptr = "I belong to device-mapper";
 721
 722/*
 723 * Open a table device so we can use it as a map destination.
 724 */
 725static struct table_device *open_table_device(struct mapped_device *md,
 726		dev_t dev, blk_mode_t mode)
 727{
 728	struct table_device *td;
 729	struct bdev_handle *bdev_handle;
 
 730	u64 part_off;
 731	int r;
 732
 733	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 734	if (!td)
 735		return ERR_PTR(-ENOMEM);
 736	refcount_set(&td->count, 1);
 737
 738	bdev_handle = bdev_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
 739	if (IS_ERR(bdev_handle)) {
 740		r = PTR_ERR(bdev_handle);
 741		goto out_free_td;
 742	}
 743
 
 
 744	/*
 745	 * We can be called before the dm disk is added.  In that case we can't
 746	 * register the holder relation here.  It will be done once add_disk was
 747	 * called.
 748	 */
 749	if (md->disk->slave_dir) {
 750		r = bd_link_disk_holder(bdev_handle->bdev, md->disk);
 751		if (r)
 752			goto out_blkdev_put;
 753	}
 754
 755	td->dm_dev.mode = mode;
 756	td->dm_dev.bdev = bdev_handle->bdev;
 757	td->dm_dev.bdev_handle = bdev_handle;
 758	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev_handle->bdev, &part_off,
 759						NULL, NULL);
 760	format_dev_t(td->dm_dev.name, dev);
 761	list_add(&td->list, &md->table_devices);
 762	return td;
 763
 764out_blkdev_put:
 765	bdev_release(bdev_handle);
 766out_free_td:
 767	kfree(td);
 768	return ERR_PTR(r);
 769}
 770
 771/*
 772 * Close a table device that we've been using.
 773 */
 774static void close_table_device(struct table_device *td, struct mapped_device *md)
 775{
 776	if (md->disk->slave_dir)
 777		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
 778	bdev_release(td->dm_dev.bdev_handle);
 
 
 
 
 
 
 779	put_dax(td->dm_dev.dax_dev);
 780	list_del(&td->list);
 781	kfree(td);
 782}
 783
 784static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 785					      blk_mode_t mode)
 786{
 787	struct table_device *td;
 788
 789	list_for_each_entry(td, l, list)
 790		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 791			return td;
 792
 793	return NULL;
 794}
 795
 796int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
 797			struct dm_dev **result)
 798{
 799	struct table_device *td;
 800
 801	mutex_lock(&md->table_devices_lock);
 802	td = find_table_device(&md->table_devices, dev, mode);
 803	if (!td) {
 804		td = open_table_device(md, dev, mode);
 805		if (IS_ERR(td)) {
 806			mutex_unlock(&md->table_devices_lock);
 807			return PTR_ERR(td);
 808		}
 809	} else {
 810		refcount_inc(&td->count);
 811	}
 812	mutex_unlock(&md->table_devices_lock);
 813
 814	*result = &td->dm_dev;
 815	return 0;
 816}
 817
 818void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 819{
 820	struct table_device *td = container_of(d, struct table_device, dm_dev);
 821
 822	mutex_lock(&md->table_devices_lock);
 823	if (refcount_dec_and_test(&td->count))
 824		close_table_device(td, md);
 825	mutex_unlock(&md->table_devices_lock);
 826}
 827
 828/*
 829 * Get the geometry associated with a dm device
 830 */
 831int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 832{
 833	*geo = md->geometry;
 834
 835	return 0;
 836}
 837
 838/*
 839 * Set the geometry of a device.
 840 */
 841int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 842{
 843	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 844
 845	if (geo->start > sz) {
 846		DMERR("Start sector is beyond the geometry limits.");
 847		return -EINVAL;
 848	}
 849
 850	md->geometry = *geo;
 851
 852	return 0;
 853}
 854
 855static int __noflush_suspending(struct mapped_device *md)
 856{
 857	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 858}
 859
 860static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
 861{
 862	struct mapped_device *md = io->md;
 863
 864	if (first_stage) {
 865		struct dm_io *next = md->requeue_list;
 866
 867		md->requeue_list = io;
 868		io->next = next;
 869	} else {
 870		bio_list_add_head(&md->deferred, io->orig_bio);
 871	}
 872}
 873
 874static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
 875{
 876	if (first_stage)
 877		queue_work(md->wq, &md->requeue_work);
 878	else
 879		queue_work(md->wq, &md->work);
 880}
 881
 882/*
 883 * Return true if the dm_io's original bio is requeued.
 884 * io->status is updated with error if requeue disallowed.
 885 */
 886static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
 887{
 888	struct bio *bio = io->orig_bio;
 889	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
 890	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
 891				     (bio->bi_opf & REQ_POLLED));
 892	struct mapped_device *md = io->md;
 893	bool requeued = false;
 894
 895	if (handle_requeue || handle_polled_eagain) {
 896		unsigned long flags;
 897
 898		if (bio->bi_opf & REQ_POLLED) {
 899			/*
 900			 * Upper layer won't help us poll split bio
 901			 * (io->orig_bio may only reflect a subset of the
 902			 * pre-split original) so clear REQ_POLLED.
 903			 */
 904			bio_clear_polled(bio);
 905		}
 906
 907		/*
 908		 * Target requested pushing back the I/O or
 909		 * polled IO hit BLK_STS_AGAIN.
 910		 */
 911		spin_lock_irqsave(&md->deferred_lock, flags);
 912		if ((__noflush_suspending(md) &&
 913		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
 914		    handle_polled_eagain || first_stage) {
 915			dm_requeue_add_io(io, first_stage);
 916			requeued = true;
 917		} else {
 918			/*
 919			 * noflush suspend was interrupted or this is
 920			 * a write to a zoned target.
 921			 */
 922			io->status = BLK_STS_IOERR;
 923		}
 924		spin_unlock_irqrestore(&md->deferred_lock, flags);
 925	}
 926
 927	if (requeued)
 928		dm_kick_requeue(md, first_stage);
 929
 930	return requeued;
 931}
 932
 933static void __dm_io_complete(struct dm_io *io, bool first_stage)
 934{
 935	struct bio *bio = io->orig_bio;
 936	struct mapped_device *md = io->md;
 937	blk_status_t io_error;
 938	bool requeued;
 939
 940	requeued = dm_handle_requeue(io, first_stage);
 941	if (requeued && first_stage)
 942		return;
 943
 944	io_error = io->status;
 945	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 946		dm_end_io_acct(io);
 947	else if (!io_error) {
 948		/*
 949		 * Must handle target that DM_MAPIO_SUBMITTED only to
 950		 * then bio_endio() rather than dm_submit_bio_remap()
 951		 */
 952		__dm_start_io_acct(io);
 953		dm_end_io_acct(io);
 954	}
 955	free_io(io);
 956	smp_wmb();
 957	this_cpu_dec(*md->pending_io);
 958
 959	/* nudge anyone waiting on suspend queue */
 960	if (unlikely(wq_has_sleeper(&md->wait)))
 961		wake_up(&md->wait);
 962
 963	/* Return early if the original bio was requeued */
 964	if (requeued)
 965		return;
 966
 967	if (bio_is_flush_with_data(bio)) {
 968		/*
 969		 * Preflush done for flush with data, reissue
 970		 * without REQ_PREFLUSH.
 971		 */
 972		bio->bi_opf &= ~REQ_PREFLUSH;
 973		queue_io(md, bio);
 974	} else {
 975		/* done with normal IO or empty flush */
 976		if (io_error)
 977			bio->bi_status = io_error;
 978		bio_endio(bio);
 979	}
 980}
 981
 982static void dm_wq_requeue_work(struct work_struct *work)
 983{
 984	struct mapped_device *md = container_of(work, struct mapped_device,
 985						requeue_work);
 986	unsigned long flags;
 987	struct dm_io *io;
 988
 989	/* reuse deferred lock to simplify dm_handle_requeue */
 990	spin_lock_irqsave(&md->deferred_lock, flags);
 991	io = md->requeue_list;
 992	md->requeue_list = NULL;
 993	spin_unlock_irqrestore(&md->deferred_lock, flags);
 994
 995	while (io) {
 996		struct dm_io *next = io->next;
 997
 998		dm_io_rewind(io, &md->disk->bio_split);
 999
1000		io->next = NULL;
1001		__dm_io_complete(io, false);
1002		io = next;
1003		cond_resched();
1004	}
1005}
1006
1007/*
1008 * Two staged requeue:
1009 *
1010 * 1) io->orig_bio points to the real original bio, and the part mapped to
1011 *    this io must be requeued, instead of other parts of the original bio.
1012 *
1013 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1014 */
1015static void dm_io_complete(struct dm_io *io)
1016{
1017	bool first_requeue;
1018
1019	/*
1020	 * Only dm_io that has been split needs two stage requeue, otherwise
1021	 * we may run into long bio clone chain during suspend and OOM could
1022	 * be triggered.
1023	 *
1024	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1025	 * also aren't handled via the first stage requeue.
1026	 */
1027	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1028		first_requeue = true;
1029	else
1030		first_requeue = false;
1031
1032	__dm_io_complete(io, first_requeue);
1033}
1034
1035/*
1036 * Decrements the number of outstanding ios that a bio has been
1037 * cloned into, completing the original io if necc.
1038 */
1039static inline void __dm_io_dec_pending(struct dm_io *io)
1040{
1041	if (atomic_dec_and_test(&io->io_count))
1042		dm_io_complete(io);
1043}
1044
1045static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1046{
1047	unsigned long flags;
1048
1049	/* Push-back supersedes any I/O errors */
1050	spin_lock_irqsave(&io->lock, flags);
1051	if (!(io->status == BLK_STS_DM_REQUEUE &&
1052	      __noflush_suspending(io->md))) {
1053		io->status = error;
1054	}
1055	spin_unlock_irqrestore(&io->lock, flags);
1056}
1057
1058static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1059{
1060	if (unlikely(error))
1061		dm_io_set_error(io, error);
1062
1063	__dm_io_dec_pending(io);
1064}
1065
1066/*
1067 * The queue_limits are only valid as long as you have a reference
1068 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1069 */
1070static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1071{
1072	return &md->queue->limits;
1073}
1074
1075void disable_discard(struct mapped_device *md)
1076{
1077	struct queue_limits *limits = dm_get_queue_limits(md);
1078
1079	/* device doesn't really support DISCARD, disable it */
1080	limits->max_discard_sectors = 0;
1081}
1082
1083void disable_write_zeroes(struct mapped_device *md)
1084{
1085	struct queue_limits *limits = dm_get_queue_limits(md);
1086
1087	/* device doesn't really support WRITE ZEROES, disable it */
1088	limits->max_write_zeroes_sectors = 0;
1089}
1090
1091static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1092{
1093	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1094}
1095
1096static void clone_endio(struct bio *bio)
1097{
1098	blk_status_t error = bio->bi_status;
1099	struct dm_target_io *tio = clone_to_tio(bio);
1100	struct dm_target *ti = tio->ti;
1101	dm_endio_fn endio = ti->type->end_io;
1102	struct dm_io *io = tio->io;
1103	struct mapped_device *md = io->md;
1104
1105	if (unlikely(error == BLK_STS_TARGET)) {
1106		if (bio_op(bio) == REQ_OP_DISCARD &&
1107		    !bdev_max_discard_sectors(bio->bi_bdev))
1108			disable_discard(md);
1109		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1110			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1111			disable_write_zeroes(md);
1112	}
1113
1114	if (static_branch_unlikely(&zoned_enabled) &&
1115	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1116		dm_zone_endio(io, bio);
1117
1118	if (endio) {
1119		int r = endio(ti, bio, &error);
1120
1121		switch (r) {
1122		case DM_ENDIO_REQUEUE:
1123			if (static_branch_unlikely(&zoned_enabled)) {
1124				/*
1125				 * Requeuing writes to a sequential zone of a zoned
1126				 * target will break the sequential write pattern:
1127				 * fail such IO.
1128				 */
1129				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1130					error = BLK_STS_IOERR;
1131				else
1132					error = BLK_STS_DM_REQUEUE;
1133			} else
1134				error = BLK_STS_DM_REQUEUE;
1135			fallthrough;
1136		case DM_ENDIO_DONE:
1137			break;
1138		case DM_ENDIO_INCOMPLETE:
1139			/* The target will handle the io */
1140			return;
1141		default:
1142			DMCRIT("unimplemented target endio return value: %d", r);
1143			BUG();
1144		}
1145	}
1146
1147	if (static_branch_unlikely(&swap_bios_enabled) &&
1148	    unlikely(swap_bios_limit(ti, bio)))
1149		up(&md->swap_bios_semaphore);
1150
1151	free_tio(bio);
1152	dm_io_dec_pending(io, error);
1153}
1154
1155/*
1156 * Return maximum size of I/O possible at the supplied sector up to the current
1157 * target boundary.
1158 */
1159static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1160						  sector_t target_offset)
1161{
1162	return ti->len - target_offset;
1163}
1164
1165static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1166			     unsigned int max_granularity,
1167			     unsigned int max_sectors)
1168{
1169	sector_t target_offset = dm_target_offset(ti, sector);
1170	sector_t len = max_io_len_target_boundary(ti, target_offset);
1171
1172	/*
1173	 * Does the target need to split IO even further?
1174	 * - varied (per target) IO splitting is a tenet of DM; this
1175	 *   explains why stacked chunk_sectors based splitting via
1176	 *   bio_split_to_limits() isn't possible here.
1177	 */
1178	if (!max_granularity)
1179		return len;
1180	return min_t(sector_t, len,
1181		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1182		    blk_chunk_sectors_left(target_offset, max_granularity)));
1183}
1184
1185static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1186{
1187	return __max_io_len(ti, sector, ti->max_io_len, 0);
1188}
1189
1190int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1191{
1192	if (len > UINT_MAX) {
1193		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1194		      (unsigned long long)len, UINT_MAX);
1195		ti->error = "Maximum size of target IO is too large";
1196		return -EINVAL;
1197	}
1198
1199	ti->max_io_len = (uint32_t) len;
1200
1201	return 0;
1202}
1203EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1204
1205static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1206						sector_t sector, int *srcu_idx)
1207	__acquires(md->io_barrier)
1208{
1209	struct dm_table *map;
1210	struct dm_target *ti;
1211
1212	map = dm_get_live_table(md, srcu_idx);
1213	if (!map)
1214		return NULL;
1215
1216	ti = dm_table_find_target(map, sector);
1217	if (!ti)
1218		return NULL;
1219
1220	return ti;
1221}
1222
1223static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1224		long nr_pages, enum dax_access_mode mode, void **kaddr,
1225		pfn_t *pfn)
1226{
1227	struct mapped_device *md = dax_get_private(dax_dev);
1228	sector_t sector = pgoff * PAGE_SECTORS;
1229	struct dm_target *ti;
1230	long len, ret = -EIO;
1231	int srcu_idx;
1232
1233	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1234
1235	if (!ti)
1236		goto out;
1237	if (!ti->type->direct_access)
1238		goto out;
1239	len = max_io_len(ti, sector) / PAGE_SECTORS;
1240	if (len < 1)
1241		goto out;
1242	nr_pages = min(len, nr_pages);
1243	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1244
1245 out:
1246	dm_put_live_table(md, srcu_idx);
1247
1248	return ret;
1249}
1250
1251static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1252				  size_t nr_pages)
1253{
1254	struct mapped_device *md = dax_get_private(dax_dev);
1255	sector_t sector = pgoff * PAGE_SECTORS;
1256	struct dm_target *ti;
1257	int ret = -EIO;
1258	int srcu_idx;
1259
1260	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1261
1262	if (!ti)
1263		goto out;
1264	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1265		/*
1266		 * ->zero_page_range() is mandatory dax operation. If we are
1267		 *  here, something is wrong.
1268		 */
1269		goto out;
1270	}
1271	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1272 out:
1273	dm_put_live_table(md, srcu_idx);
1274
1275	return ret;
1276}
1277
1278static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1279		void *addr, size_t bytes, struct iov_iter *i)
1280{
1281	struct mapped_device *md = dax_get_private(dax_dev);
1282	sector_t sector = pgoff * PAGE_SECTORS;
1283	struct dm_target *ti;
1284	int srcu_idx;
1285	long ret = 0;
1286
1287	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1288	if (!ti || !ti->type->dax_recovery_write)
1289		goto out;
1290
1291	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1292out:
1293	dm_put_live_table(md, srcu_idx);
1294	return ret;
1295}
1296
1297/*
1298 * A target may call dm_accept_partial_bio only from the map routine.  It is
1299 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1300 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1301 * __send_duplicate_bios().
1302 *
1303 * dm_accept_partial_bio informs the dm that the target only wants to process
1304 * additional n_sectors sectors of the bio and the rest of the data should be
1305 * sent in a next bio.
1306 *
1307 * A diagram that explains the arithmetics:
1308 * +--------------------+---------------+-------+
1309 * |         1          |       2       |   3   |
1310 * +--------------------+---------------+-------+
1311 *
1312 * <-------------- *tio->len_ptr --------------->
1313 *                      <----- bio_sectors ----->
1314 *                      <-- n_sectors -->
1315 *
1316 * Region 1 was already iterated over with bio_advance or similar function.
1317 *	(it may be empty if the target doesn't use bio_advance)
1318 * Region 2 is the remaining bio size that the target wants to process.
1319 *	(it may be empty if region 1 is non-empty, although there is no reason
1320 *	 to make it empty)
1321 * The target requires that region 3 is to be sent in the next bio.
1322 *
1323 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1324 * the partially processed part (the sum of regions 1+2) must be the same for all
1325 * copies of the bio.
1326 */
1327void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1328{
1329	struct dm_target_io *tio = clone_to_tio(bio);
1330	struct dm_io *io = tio->io;
1331	unsigned int bio_sectors = bio_sectors(bio);
1332
1333	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1334	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1335	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1336	BUG_ON(bio_sectors > *tio->len_ptr);
1337	BUG_ON(n_sectors > bio_sectors);
1338
1339	*tio->len_ptr -= bio_sectors - n_sectors;
1340	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1341
1342	/*
1343	 * __split_and_process_bio() may have already saved mapped part
1344	 * for accounting but it is being reduced so update accordingly.
1345	 */
1346	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1347	io->sectors = n_sectors;
1348	io->sector_offset = bio_sectors(io->orig_bio);
1349}
1350EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1351
1352/*
1353 * @clone: clone bio that DM core passed to target's .map function
1354 * @tgt_clone: clone of @clone bio that target needs submitted
1355 *
1356 * Targets should use this interface to submit bios they take
1357 * ownership of when returning DM_MAPIO_SUBMITTED.
1358 *
1359 * Target should also enable ti->accounts_remapped_io
1360 */
1361void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1362{
1363	struct dm_target_io *tio = clone_to_tio(clone);
1364	struct dm_io *io = tio->io;
1365
1366	/* establish bio that will get submitted */
1367	if (!tgt_clone)
1368		tgt_clone = clone;
1369
1370	/*
1371	 * Account io->origin_bio to DM dev on behalf of target
1372	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1373	 */
1374	dm_start_io_acct(io, clone);
1375
1376	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1377			      tio->old_sector);
1378	submit_bio_noacct(tgt_clone);
1379}
1380EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1381
1382static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1383{
1384	mutex_lock(&md->swap_bios_lock);
1385	while (latch < md->swap_bios) {
1386		cond_resched();
1387		down(&md->swap_bios_semaphore);
1388		md->swap_bios--;
1389	}
1390	while (latch > md->swap_bios) {
1391		cond_resched();
1392		up(&md->swap_bios_semaphore);
1393		md->swap_bios++;
1394	}
1395	mutex_unlock(&md->swap_bios_lock);
1396}
1397
1398static void __map_bio(struct bio *clone)
1399{
1400	struct dm_target_io *tio = clone_to_tio(clone);
1401	struct dm_target *ti = tio->ti;
1402	struct dm_io *io = tio->io;
1403	struct mapped_device *md = io->md;
1404	int r;
1405
1406	clone->bi_end_io = clone_endio;
1407
1408	/*
1409	 * Map the clone.
1410	 */
1411	tio->old_sector = clone->bi_iter.bi_sector;
1412
1413	if (static_branch_unlikely(&swap_bios_enabled) &&
1414	    unlikely(swap_bios_limit(ti, clone))) {
1415		int latch = get_swap_bios();
1416
1417		if (unlikely(latch != md->swap_bios))
1418			__set_swap_bios_limit(md, latch);
1419		down(&md->swap_bios_semaphore);
1420	}
1421
1422	if (static_branch_unlikely(&zoned_enabled)) {
1423		/*
1424		 * Check if the IO needs a special mapping due to zone append
1425		 * emulation on zoned target. In this case, dm_zone_map_bio()
1426		 * calls the target map operation.
1427		 */
1428		if (unlikely(dm_emulate_zone_append(md)))
1429			r = dm_zone_map_bio(tio);
1430		else
1431			goto do_map;
1432	} else {
1433do_map:
1434		if (likely(ti->type->map == linear_map))
1435			r = linear_map(ti, clone);
1436		else if (ti->type->map == stripe_map)
1437			r = stripe_map(ti, clone);
1438		else
1439			r = ti->type->map(ti, clone);
1440	}
1441
1442	switch (r) {
1443	case DM_MAPIO_SUBMITTED:
1444		/* target has assumed ownership of this io */
1445		if (!ti->accounts_remapped_io)
1446			dm_start_io_acct(io, clone);
1447		break;
1448	case DM_MAPIO_REMAPPED:
1449		dm_submit_bio_remap(clone, NULL);
1450		break;
1451	case DM_MAPIO_KILL:
1452	case DM_MAPIO_REQUEUE:
1453		if (static_branch_unlikely(&swap_bios_enabled) &&
1454		    unlikely(swap_bios_limit(ti, clone)))
1455			up(&md->swap_bios_semaphore);
1456		free_tio(clone);
1457		if (r == DM_MAPIO_KILL)
1458			dm_io_dec_pending(io, BLK_STS_IOERR);
1459		else
1460			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1461		break;
1462	default:
1463		DMCRIT("unimplemented target map return value: %d", r);
1464		BUG();
1465	}
1466}
1467
1468static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1469{
1470	struct dm_io *io = ci->io;
1471
1472	if (ci->sector_count > len) {
1473		/*
1474		 * Split needed, save the mapped part for accounting.
1475		 * NOTE: dm_accept_partial_bio() will update accordingly.
1476		 */
1477		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1478		io->sectors = len;
1479		io->sector_offset = bio_sectors(ci->bio);
1480	}
1481}
1482
1483static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1484				struct dm_target *ti, unsigned int num_bios,
1485				unsigned *len, gfp_t gfp_flag)
1486{
1487	struct bio *bio;
1488	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1489
1490	for (; try < 2; try++) {
1491		int bio_nr;
1492
1493		if (try && num_bios > 1)
1494			mutex_lock(&ci->io->md->table_devices_lock);
1495		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1496			bio = alloc_tio(ci, ti, bio_nr, len,
1497					try ? GFP_NOIO : GFP_NOWAIT);
1498			if (!bio)
1499				break;
1500
1501			bio_list_add(blist, bio);
1502		}
1503		if (try && num_bios > 1)
1504			mutex_unlock(&ci->io->md->table_devices_lock);
1505		if (bio_nr == num_bios)
1506			return;
1507
1508		while ((bio = bio_list_pop(blist)))
1509			free_tio(bio);
1510	}
1511}
1512
1513static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1514					  unsigned int num_bios, unsigned int *len,
1515					  gfp_t gfp_flag)
1516{
1517	struct bio_list blist = BIO_EMPTY_LIST;
1518	struct bio *clone;
1519	unsigned int ret = 0;
1520
1521	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1522		return 0;
1523
1524	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1525	if (len)
1526		setup_split_accounting(ci, *len);
1527
1528	/*
1529	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1530	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1531	 */
1532	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1533	while ((clone = bio_list_pop(&blist))) {
1534		if (num_bios > 1)
1535			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1536		__map_bio(clone);
1537		ret += 1;
1538	}
1539
1540	return ret;
1541}
1542
1543static void __send_empty_flush(struct clone_info *ci)
1544{
1545	struct dm_table *t = ci->map;
1546	struct bio flush_bio;
1547
1548	/*
1549	 * Use an on-stack bio for this, it's safe since we don't
1550	 * need to reference it after submit. It's just used as
1551	 * the basis for the clone(s).
1552	 */
1553	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1554		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1555
1556	ci->bio = &flush_bio;
1557	ci->sector_count = 0;
1558	ci->io->tio.clone.bi_iter.bi_size = 0;
1559
1560	for (unsigned int i = 0; i < t->num_targets; i++) {
1561		unsigned int bios;
1562		struct dm_target *ti = dm_table_get_target(t, i);
1563
1564		if (unlikely(ti->num_flush_bios == 0))
1565			continue;
1566
1567		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1568		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1569					     NULL, GFP_NOWAIT);
1570		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1571	}
1572
1573	/*
1574	 * alloc_io() takes one extra reference for submission, so the
1575	 * reference won't reach 0 without the following subtraction
1576	 */
1577	atomic_sub(1, &ci->io->io_count);
1578
1579	bio_uninit(ci->bio);
1580}
1581
1582static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1583			       unsigned int num_bios, unsigned int max_granularity,
1584			       unsigned int max_sectors)
1585{
1586	unsigned int len, bios;
1587
1588	len = min_t(sector_t, ci->sector_count,
1589		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1590
1591	atomic_add(num_bios, &ci->io->io_count);
1592	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1593	/*
1594	 * alloc_io() takes one extra reference for submission, so the
1595	 * reference won't reach 0 without the following (+1) subtraction
1596	 */
1597	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1598
1599	ci->sector += len;
1600	ci->sector_count -= len;
1601}
1602
1603static bool is_abnormal_io(struct bio *bio)
1604{
1605	enum req_op op = bio_op(bio);
1606
1607	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1608		switch (op) {
1609		case REQ_OP_DISCARD:
1610		case REQ_OP_SECURE_ERASE:
1611		case REQ_OP_WRITE_ZEROES:
1612			return true;
1613		default:
1614			break;
1615		}
1616	}
1617
1618	return false;
1619}
1620
1621static blk_status_t __process_abnormal_io(struct clone_info *ci,
1622					  struct dm_target *ti)
1623{
1624	unsigned int num_bios = 0;
1625	unsigned int max_granularity = 0;
1626	unsigned int max_sectors = 0;
1627	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1628
1629	switch (bio_op(ci->bio)) {
1630	case REQ_OP_DISCARD:
1631		num_bios = ti->num_discard_bios;
1632		max_sectors = limits->max_discard_sectors;
1633		if (ti->max_discard_granularity)
1634			max_granularity = max_sectors;
1635		break;
1636	case REQ_OP_SECURE_ERASE:
1637		num_bios = ti->num_secure_erase_bios;
1638		max_sectors = limits->max_secure_erase_sectors;
1639		if (ti->max_secure_erase_granularity)
1640			max_granularity = max_sectors;
1641		break;
1642	case REQ_OP_WRITE_ZEROES:
1643		num_bios = ti->num_write_zeroes_bios;
1644		max_sectors = limits->max_write_zeroes_sectors;
1645		if (ti->max_write_zeroes_granularity)
1646			max_granularity = max_sectors;
1647		break;
1648	default:
1649		break;
1650	}
1651
1652	/*
1653	 * Even though the device advertised support for this type of
1654	 * request, that does not mean every target supports it, and
1655	 * reconfiguration might also have changed that since the
1656	 * check was performed.
1657	 */
1658	if (unlikely(!num_bios))
1659		return BLK_STS_NOTSUPP;
1660
1661	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1662
1663	return BLK_STS_OK;
1664}
1665
1666/*
1667 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1668 * associated with this bio, and this bio's bi_private needs to be
1669 * stored in dm_io->data before the reuse.
1670 *
1671 * bio->bi_private is owned by fs or upper layer, so block layer won't
1672 * touch it after splitting. Meantime it won't be changed by anyone after
1673 * bio is submitted. So this reuse is safe.
1674 */
1675static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1676{
1677	return (struct dm_io **)&bio->bi_private;
1678}
1679
1680static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1681{
1682	struct dm_io **head = dm_poll_list_head(bio);
1683
1684	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1685		bio->bi_opf |= REQ_DM_POLL_LIST;
1686		/*
1687		 * Save .bi_private into dm_io, so that we can reuse
1688		 * .bi_private as dm_io list head for storing dm_io list
1689		 */
1690		io->data = bio->bi_private;
1691
1692		/* tell block layer to poll for completion */
1693		bio->bi_cookie = ~BLK_QC_T_NONE;
1694
1695		io->next = NULL;
1696	} else {
1697		/*
1698		 * bio recursed due to split, reuse original poll list,
1699		 * and save bio->bi_private too.
1700		 */
1701		io->data = (*head)->data;
1702		io->next = *head;
1703	}
1704
1705	*head = io;
1706}
1707
1708/*
1709 * Select the correct strategy for processing a non-flush bio.
1710 */
1711static blk_status_t __split_and_process_bio(struct clone_info *ci)
1712{
1713	struct bio *clone;
1714	struct dm_target *ti;
1715	unsigned int len;
1716
1717	ti = dm_table_find_target(ci->map, ci->sector);
1718	if (unlikely(!ti))
1719		return BLK_STS_IOERR;
1720
1721	if (unlikely(ci->is_abnormal_io))
1722		return __process_abnormal_io(ci, ti);
1723
1724	/*
1725	 * Only support bio polling for normal IO, and the target io is
1726	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1727	 */
1728	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1729
1730	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1731	setup_split_accounting(ci, len);
1732
1733	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1734		if (unlikely(!dm_target_supports_nowait(ti->type)))
1735			return BLK_STS_NOTSUPP;
1736
1737		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1738		if (unlikely(!clone))
1739			return BLK_STS_AGAIN;
1740	} else {
1741		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1742	}
1743	__map_bio(clone);
1744
1745	ci->sector += len;
1746	ci->sector_count -= len;
1747
1748	return BLK_STS_OK;
1749}
1750
1751static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1752			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1753{
1754	ci->map = map;
1755	ci->io = io;
1756	ci->bio = bio;
1757	ci->is_abnormal_io = is_abnormal;
1758	ci->submit_as_polled = false;
1759	ci->sector = bio->bi_iter.bi_sector;
1760	ci->sector_count = bio_sectors(bio);
1761
1762	/* Shouldn't happen but sector_count was being set to 0 so... */
1763	if (static_branch_unlikely(&zoned_enabled) &&
1764	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1765		ci->sector_count = 0;
1766}
1767
1768/*
1769 * Entry point to split a bio into clones and submit them to the targets.
1770 */
1771static void dm_split_and_process_bio(struct mapped_device *md,
1772				     struct dm_table *map, struct bio *bio)
1773{
1774	struct clone_info ci;
1775	struct dm_io *io;
1776	blk_status_t error = BLK_STS_OK;
1777	bool is_abnormal;
1778
1779	is_abnormal = is_abnormal_io(bio);
1780	if (unlikely(is_abnormal)) {
1781		/*
1782		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1783		 * otherwise associated queue_limits won't be imposed.
1784		 */
1785		bio = bio_split_to_limits(bio);
1786		if (!bio)
1787			return;
1788	}
1789
1790	/* Only support nowait for normal IO */
1791	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1792		io = alloc_io(md, bio, GFP_NOWAIT);
1793		if (unlikely(!io)) {
1794			/* Unable to do anything without dm_io. */
1795			bio_wouldblock_error(bio);
1796			return;
1797		}
1798	} else {
1799		io = alloc_io(md, bio, GFP_NOIO);
1800	}
1801	init_clone_info(&ci, io, map, bio, is_abnormal);
1802
1803	if (bio->bi_opf & REQ_PREFLUSH) {
1804		__send_empty_flush(&ci);
1805		/* dm_io_complete submits any data associated with flush */
1806		goto out;
1807	}
1808
1809	error = __split_and_process_bio(&ci);
1810	if (error || !ci.sector_count)
1811		goto out;
1812	/*
1813	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1814	 * *after* bios already submitted have been completely processed.
1815	 */
1816	bio_trim(bio, io->sectors, ci.sector_count);
1817	trace_block_split(bio, bio->bi_iter.bi_sector);
1818	bio_inc_remaining(bio);
1819	submit_bio_noacct(bio);
1820out:
1821	/*
1822	 * Drop the extra reference count for non-POLLED bio, and hold one
1823	 * reference for POLLED bio, which will be released in dm_poll_bio
1824	 *
1825	 * Add every dm_io instance into the dm_io list head which is stored
1826	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1827	 */
1828	if (error || !ci.submit_as_polled) {
1829		/*
1830		 * In case of submission failure, the extra reference for
1831		 * submitting io isn't consumed yet
1832		 */
1833		if (error)
1834			atomic_dec(&io->io_count);
1835		dm_io_dec_pending(io, error);
1836	} else
1837		dm_queue_poll_io(bio, io);
1838}
1839
1840static void dm_submit_bio(struct bio *bio)
1841{
1842	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1843	int srcu_idx;
1844	struct dm_table *map;
1845
1846	map = dm_get_live_table(md, &srcu_idx);
1847
1848	/* If suspended, or map not yet available, queue this IO for later */
1849	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1850	    unlikely(!map)) {
1851		if (bio->bi_opf & REQ_NOWAIT)
1852			bio_wouldblock_error(bio);
1853		else if (bio->bi_opf & REQ_RAHEAD)
1854			bio_io_error(bio);
1855		else
1856			queue_io(md, bio);
1857		goto out;
1858	}
1859
1860	dm_split_and_process_bio(md, map, bio);
1861out:
1862	dm_put_live_table(md, srcu_idx);
1863}
1864
1865static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1866			  unsigned int flags)
1867{
1868	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1869
1870	/* don't poll if the mapped io is done */
1871	if (atomic_read(&io->io_count) > 1)
1872		bio_poll(&io->tio.clone, iob, flags);
1873
1874	/* bio_poll holds the last reference */
1875	return atomic_read(&io->io_count) == 1;
1876}
1877
1878static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1879		       unsigned int flags)
1880{
1881	struct dm_io **head = dm_poll_list_head(bio);
1882	struct dm_io *list = *head;
1883	struct dm_io *tmp = NULL;
1884	struct dm_io *curr, *next;
1885
1886	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1887	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1888		return 0;
1889
1890	WARN_ON_ONCE(!list);
1891
1892	/*
1893	 * Restore .bi_private before possibly completing dm_io.
1894	 *
1895	 * bio_poll() is only possible once @bio has been completely
1896	 * submitted via submit_bio_noacct()'s depth-first submission.
1897	 * So there is no dm_queue_poll_io() race associated with
1898	 * clearing REQ_DM_POLL_LIST here.
1899	 */
1900	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1901	bio->bi_private = list->data;
1902
1903	for (curr = list, next = curr->next; curr; curr = next, next =
1904			curr ? curr->next : NULL) {
1905		if (dm_poll_dm_io(curr, iob, flags)) {
1906			/*
1907			 * clone_endio() has already occurred, so no
1908			 * error handling is needed here.
1909			 */
1910			__dm_io_dec_pending(curr);
1911		} else {
1912			curr->next = tmp;
1913			tmp = curr;
1914		}
1915	}
1916
1917	/* Not done? */
1918	if (tmp) {
1919		bio->bi_opf |= REQ_DM_POLL_LIST;
1920		/* Reset bio->bi_private to dm_io list head */
1921		*head = tmp;
1922		return 0;
1923	}
1924	return 1;
1925}
1926
1927/*
1928 *---------------------------------------------------------------
1929 * An IDR is used to keep track of allocated minor numbers.
1930 *---------------------------------------------------------------
1931 */
1932static void free_minor(int minor)
1933{
1934	spin_lock(&_minor_lock);
1935	idr_remove(&_minor_idr, minor);
1936	spin_unlock(&_minor_lock);
1937}
1938
1939/*
1940 * See if the device with a specific minor # is free.
1941 */
1942static int specific_minor(int minor)
1943{
1944	int r;
1945
1946	if (minor >= (1 << MINORBITS))
1947		return -EINVAL;
1948
1949	idr_preload(GFP_KERNEL);
1950	spin_lock(&_minor_lock);
1951
1952	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1953
1954	spin_unlock(&_minor_lock);
1955	idr_preload_end();
1956	if (r < 0)
1957		return r == -ENOSPC ? -EBUSY : r;
1958	return 0;
1959}
1960
1961static int next_free_minor(int *minor)
1962{
1963	int r;
1964
1965	idr_preload(GFP_KERNEL);
1966	spin_lock(&_minor_lock);
1967
1968	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1969
1970	spin_unlock(&_minor_lock);
1971	idr_preload_end();
1972	if (r < 0)
1973		return r;
1974	*minor = r;
1975	return 0;
1976}
1977
1978static const struct block_device_operations dm_blk_dops;
1979static const struct block_device_operations dm_rq_blk_dops;
1980static const struct dax_operations dm_dax_ops;
1981
1982static void dm_wq_work(struct work_struct *work);
1983
1984#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1985static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1986{
1987	dm_destroy_crypto_profile(q->crypto_profile);
1988}
1989
1990#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1991
1992static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1993{
1994}
1995#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1996
1997static void cleanup_mapped_device(struct mapped_device *md)
1998{
1999	if (md->wq)
2000		destroy_workqueue(md->wq);
2001	dm_free_md_mempools(md->mempools);
2002
2003	if (md->dax_dev) {
2004		dax_remove_host(md->disk);
2005		kill_dax(md->dax_dev);
2006		put_dax(md->dax_dev);
2007		md->dax_dev = NULL;
2008	}
2009
2010	dm_cleanup_zoned_dev(md);
2011	if (md->disk) {
2012		spin_lock(&_minor_lock);
2013		md->disk->private_data = NULL;
2014		spin_unlock(&_minor_lock);
2015		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2016			struct table_device *td;
2017
2018			dm_sysfs_exit(md);
2019			list_for_each_entry(td, &md->table_devices, list) {
2020				bd_unlink_disk_holder(td->dm_dev.bdev,
2021						      md->disk);
2022			}
2023
2024			/*
2025			 * Hold lock to make sure del_gendisk() won't concurrent
2026			 * with open/close_table_device().
2027			 */
2028			mutex_lock(&md->table_devices_lock);
2029			del_gendisk(md->disk);
2030			mutex_unlock(&md->table_devices_lock);
2031		}
2032		dm_queue_destroy_crypto_profile(md->queue);
2033		put_disk(md->disk);
2034	}
2035
2036	if (md->pending_io) {
2037		free_percpu(md->pending_io);
2038		md->pending_io = NULL;
2039	}
2040
2041	cleanup_srcu_struct(&md->io_barrier);
2042
2043	mutex_destroy(&md->suspend_lock);
2044	mutex_destroy(&md->type_lock);
2045	mutex_destroy(&md->table_devices_lock);
2046	mutex_destroy(&md->swap_bios_lock);
2047
2048	dm_mq_cleanup_mapped_device(md);
2049}
2050
2051/*
2052 * Allocate and initialise a blank device with a given minor.
2053 */
2054static struct mapped_device *alloc_dev(int minor)
2055{
2056	int r, numa_node_id = dm_get_numa_node();
 
2057	struct mapped_device *md;
2058	void *old_md;
2059
2060	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2061	if (!md) {
2062		DMERR("unable to allocate device, out of memory.");
2063		return NULL;
2064	}
2065
2066	if (!try_module_get(THIS_MODULE))
2067		goto bad_module_get;
2068
2069	/* get a minor number for the dev */
2070	if (minor == DM_ANY_MINOR)
2071		r = next_free_minor(&minor);
2072	else
2073		r = specific_minor(minor);
2074	if (r < 0)
2075		goto bad_minor;
2076
2077	r = init_srcu_struct(&md->io_barrier);
2078	if (r < 0)
2079		goto bad_io_barrier;
2080
2081	md->numa_node_id = numa_node_id;
2082	md->init_tio_pdu = false;
2083	md->type = DM_TYPE_NONE;
2084	mutex_init(&md->suspend_lock);
2085	mutex_init(&md->type_lock);
2086	mutex_init(&md->table_devices_lock);
2087	spin_lock_init(&md->deferred_lock);
2088	atomic_set(&md->holders, 1);
2089	atomic_set(&md->open_count, 0);
2090	atomic_set(&md->event_nr, 0);
2091	atomic_set(&md->uevent_seq, 0);
2092	INIT_LIST_HEAD(&md->uevent_list);
2093	INIT_LIST_HEAD(&md->table_devices);
2094	spin_lock_init(&md->uevent_lock);
2095
2096	/*
2097	 * default to bio-based until DM table is loaded and md->type
2098	 * established. If request-based table is loaded: blk-mq will
2099	 * override accordingly.
2100	 */
2101	md->disk = blk_alloc_disk(md->numa_node_id);
2102	if (!md->disk)
2103		goto bad;
2104	md->queue = md->disk->queue;
2105
2106	init_waitqueue_head(&md->wait);
2107	INIT_WORK(&md->work, dm_wq_work);
2108	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2109	init_waitqueue_head(&md->eventq);
2110	init_completion(&md->kobj_holder.completion);
2111
2112	md->requeue_list = NULL;
2113	md->swap_bios = get_swap_bios();
2114	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2115	mutex_init(&md->swap_bios_lock);
2116
2117	md->disk->major = _major;
2118	md->disk->first_minor = minor;
2119	md->disk->minors = 1;
2120	md->disk->flags |= GENHD_FL_NO_PART;
2121	md->disk->fops = &dm_blk_dops;
2122	md->disk->private_data = md;
2123	sprintf(md->disk->disk_name, "dm-%d", minor);
2124
2125	if (IS_ENABLED(CONFIG_FS_DAX)) {
2126		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2127		if (IS_ERR(md->dax_dev)) {
2128			md->dax_dev = NULL;
2129			goto bad;
2130		}
2131		set_dax_nocache(md->dax_dev);
2132		set_dax_nomc(md->dax_dev);
2133		if (dax_add_host(md->dax_dev, md->disk))
 
2134			goto bad;
2135	}
2136
2137	format_dev_t(md->name, MKDEV(_major, minor));
2138
2139	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2140	if (!md->wq)
2141		goto bad;
2142
2143	md->pending_io = alloc_percpu(unsigned long);
2144	if (!md->pending_io)
2145		goto bad;
2146
2147	r = dm_stats_init(&md->stats);
2148	if (r < 0)
2149		goto bad;
2150
2151	/* Populate the mapping, nobody knows we exist yet */
2152	spin_lock(&_minor_lock);
2153	old_md = idr_replace(&_minor_idr, md, minor);
2154	spin_unlock(&_minor_lock);
2155
2156	BUG_ON(old_md != MINOR_ALLOCED);
2157
2158	return md;
2159
2160bad:
2161	cleanup_mapped_device(md);
2162bad_io_barrier:
2163	free_minor(minor);
2164bad_minor:
2165	module_put(THIS_MODULE);
2166bad_module_get:
2167	kvfree(md);
2168	return NULL;
2169}
2170
2171static void unlock_fs(struct mapped_device *md);
2172
2173static void free_dev(struct mapped_device *md)
2174{
2175	int minor = MINOR(disk_devt(md->disk));
2176
2177	unlock_fs(md);
2178
2179	cleanup_mapped_device(md);
2180
2181	WARN_ON_ONCE(!list_empty(&md->table_devices));
2182	dm_stats_cleanup(&md->stats);
2183	free_minor(minor);
2184
2185	module_put(THIS_MODULE);
2186	kvfree(md);
2187}
2188
2189/*
2190 * Bind a table to the device.
2191 */
2192static void event_callback(void *context)
2193{
2194	unsigned long flags;
2195	LIST_HEAD(uevents);
2196	struct mapped_device *md = context;
2197
2198	spin_lock_irqsave(&md->uevent_lock, flags);
2199	list_splice_init(&md->uevent_list, &uevents);
2200	spin_unlock_irqrestore(&md->uevent_lock, flags);
2201
2202	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2203
2204	atomic_inc(&md->event_nr);
2205	wake_up(&md->eventq);
2206	dm_issue_global_event();
2207}
2208
2209/*
2210 * Returns old map, which caller must destroy.
2211 */
2212static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2213			       struct queue_limits *limits)
2214{
2215	struct dm_table *old_map;
2216	sector_t size;
2217	int ret;
2218
2219	lockdep_assert_held(&md->suspend_lock);
2220
2221	size = dm_table_get_size(t);
2222
2223	/*
2224	 * Wipe any geometry if the size of the table changed.
2225	 */
2226	if (size != dm_get_size(md))
2227		memset(&md->geometry, 0, sizeof(md->geometry));
2228
2229	set_capacity(md->disk, size);
2230
2231	dm_table_event_callback(t, event_callback, md);
2232
2233	if (dm_table_request_based(t)) {
2234		/*
2235		 * Leverage the fact that request-based DM targets are
2236		 * immutable singletons - used to optimize dm_mq_queue_rq.
2237		 */
2238		md->immutable_target = dm_table_get_immutable_target(t);
2239
2240		/*
2241		 * There is no need to reload with request-based dm because the
2242		 * size of front_pad doesn't change.
2243		 *
2244		 * Note for future: If you are to reload bioset, prep-ed
2245		 * requests in the queue may refer to bio from the old bioset,
2246		 * so you must walk through the queue to unprep.
2247		 */
2248		if (!md->mempools) {
2249			md->mempools = t->mempools;
2250			t->mempools = NULL;
2251		}
2252	} else {
2253		/*
2254		 * The md may already have mempools that need changing.
2255		 * If so, reload bioset because front_pad may have changed
2256		 * because a different table was loaded.
2257		 */
2258		dm_free_md_mempools(md->mempools);
2259		md->mempools = t->mempools;
2260		t->mempools = NULL;
2261	}
2262
2263	ret = dm_table_set_restrictions(t, md->queue, limits);
2264	if (ret) {
2265		old_map = ERR_PTR(ret);
2266		goto out;
2267	}
2268
2269	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2270	rcu_assign_pointer(md->map, (void *)t);
2271	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2272
2273	if (old_map)
2274		dm_sync_table(md);
2275out:
2276	return old_map;
2277}
2278
2279/*
2280 * Returns unbound table for the caller to free.
2281 */
2282static struct dm_table *__unbind(struct mapped_device *md)
2283{
2284	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2285
2286	if (!map)
2287		return NULL;
2288
2289	dm_table_event_callback(map, NULL, NULL);
2290	RCU_INIT_POINTER(md->map, NULL);
2291	dm_sync_table(md);
2292
2293	return map;
2294}
2295
2296/*
2297 * Constructor for a new device.
2298 */
2299int dm_create(int minor, struct mapped_device **result)
2300{
2301	struct mapped_device *md;
2302
2303	md = alloc_dev(minor);
2304	if (!md)
2305		return -ENXIO;
2306
2307	dm_ima_reset_data(md);
2308
2309	*result = md;
2310	return 0;
2311}
2312
2313/*
2314 * Functions to manage md->type.
2315 * All are required to hold md->type_lock.
2316 */
2317void dm_lock_md_type(struct mapped_device *md)
2318{
2319	mutex_lock(&md->type_lock);
2320}
2321
2322void dm_unlock_md_type(struct mapped_device *md)
2323{
2324	mutex_unlock(&md->type_lock);
2325}
2326
2327void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2328{
2329	BUG_ON(!mutex_is_locked(&md->type_lock));
2330	md->type = type;
2331}
2332
2333enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2334{
2335	return md->type;
2336}
2337
2338struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2339{
2340	return md->immutable_target_type;
2341}
2342
2343/*
2344 * Setup the DM device's queue based on md's type
2345 */
2346int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2347{
2348	enum dm_queue_mode type = dm_table_get_type(t);
2349	struct queue_limits limits;
2350	struct table_device *td;
2351	int r;
2352
2353	switch (type) {
2354	case DM_TYPE_REQUEST_BASED:
2355		md->disk->fops = &dm_rq_blk_dops;
2356		r = dm_mq_init_request_queue(md, t);
2357		if (r) {
2358			DMERR("Cannot initialize queue for request-based dm mapped device");
2359			return r;
2360		}
2361		break;
2362	case DM_TYPE_BIO_BASED:
2363	case DM_TYPE_DAX_BIO_BASED:
2364		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
2365		break;
2366	case DM_TYPE_NONE:
2367		WARN_ON_ONCE(true);
2368		break;
2369	}
2370
2371	r = dm_calculate_queue_limits(t, &limits);
2372	if (r) {
2373		DMERR("Cannot calculate initial queue limits");
2374		return r;
2375	}
2376	r = dm_table_set_restrictions(t, md->queue, &limits);
2377	if (r)
2378		return r;
2379
2380	/*
2381	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2382	 * with open_table_device() and close_table_device().
2383	 */
2384	mutex_lock(&md->table_devices_lock);
2385	r = add_disk(md->disk);
2386	mutex_unlock(&md->table_devices_lock);
2387	if (r)
2388		return r;
2389
2390	/*
2391	 * Register the holder relationship for devices added before the disk
2392	 * was live.
2393	 */
2394	list_for_each_entry(td, &md->table_devices, list) {
2395		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2396		if (r)
2397			goto out_undo_holders;
2398	}
2399
2400	r = dm_sysfs_init(md);
2401	if (r)
2402		goto out_undo_holders;
2403
2404	md->type = type;
2405	return 0;
2406
2407out_undo_holders:
2408	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2409		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2410	mutex_lock(&md->table_devices_lock);
2411	del_gendisk(md->disk);
2412	mutex_unlock(&md->table_devices_lock);
2413	return r;
2414}
2415
2416struct mapped_device *dm_get_md(dev_t dev)
2417{
2418	struct mapped_device *md;
2419	unsigned int minor = MINOR(dev);
2420
2421	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2422		return NULL;
2423
2424	spin_lock(&_minor_lock);
2425
2426	md = idr_find(&_minor_idr, minor);
2427	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2428	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2429		md = NULL;
2430		goto out;
2431	}
2432	dm_get(md);
2433out:
2434	spin_unlock(&_minor_lock);
2435
2436	return md;
2437}
2438EXPORT_SYMBOL_GPL(dm_get_md);
2439
2440void *dm_get_mdptr(struct mapped_device *md)
2441{
2442	return md->interface_ptr;
2443}
2444
2445void dm_set_mdptr(struct mapped_device *md, void *ptr)
2446{
2447	md->interface_ptr = ptr;
2448}
2449
2450void dm_get(struct mapped_device *md)
2451{
2452	atomic_inc(&md->holders);
2453	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2454}
2455
2456int dm_hold(struct mapped_device *md)
2457{
2458	spin_lock(&_minor_lock);
2459	if (test_bit(DMF_FREEING, &md->flags)) {
2460		spin_unlock(&_minor_lock);
2461		return -EBUSY;
2462	}
2463	dm_get(md);
2464	spin_unlock(&_minor_lock);
2465	return 0;
2466}
2467EXPORT_SYMBOL_GPL(dm_hold);
2468
2469const char *dm_device_name(struct mapped_device *md)
2470{
2471	return md->name;
2472}
2473EXPORT_SYMBOL_GPL(dm_device_name);
2474
2475static void __dm_destroy(struct mapped_device *md, bool wait)
2476{
2477	struct dm_table *map;
2478	int srcu_idx;
2479
2480	might_sleep();
2481
2482	spin_lock(&_minor_lock);
2483	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2484	set_bit(DMF_FREEING, &md->flags);
2485	spin_unlock(&_minor_lock);
2486
2487	blk_mark_disk_dead(md->disk);
2488
2489	/*
2490	 * Take suspend_lock so that presuspend and postsuspend methods
2491	 * do not race with internal suspend.
2492	 */
2493	mutex_lock(&md->suspend_lock);
2494	map = dm_get_live_table(md, &srcu_idx);
2495	if (!dm_suspended_md(md)) {
2496		dm_table_presuspend_targets(map);
2497		set_bit(DMF_SUSPENDED, &md->flags);
2498		set_bit(DMF_POST_SUSPENDING, &md->flags);
2499		dm_table_postsuspend_targets(map);
2500	}
2501	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2502	dm_put_live_table(md, srcu_idx);
2503	mutex_unlock(&md->suspend_lock);
2504
2505	/*
2506	 * Rare, but there may be I/O requests still going to complete,
2507	 * for example.  Wait for all references to disappear.
2508	 * No one should increment the reference count of the mapped_device,
2509	 * after the mapped_device state becomes DMF_FREEING.
2510	 */
2511	if (wait)
2512		while (atomic_read(&md->holders))
2513			fsleep(1000);
2514	else if (atomic_read(&md->holders))
2515		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2516		       dm_device_name(md), atomic_read(&md->holders));
2517
2518	dm_table_destroy(__unbind(md));
2519	free_dev(md);
2520}
2521
2522void dm_destroy(struct mapped_device *md)
2523{
2524	__dm_destroy(md, true);
2525}
2526
2527void dm_destroy_immediate(struct mapped_device *md)
2528{
2529	__dm_destroy(md, false);
2530}
2531
2532void dm_put(struct mapped_device *md)
2533{
2534	atomic_dec(&md->holders);
2535}
2536EXPORT_SYMBOL_GPL(dm_put);
2537
2538static bool dm_in_flight_bios(struct mapped_device *md)
2539{
2540	int cpu;
2541	unsigned long sum = 0;
2542
2543	for_each_possible_cpu(cpu)
2544		sum += *per_cpu_ptr(md->pending_io, cpu);
2545
2546	return sum != 0;
2547}
2548
2549static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2550{
2551	int r = 0;
2552	DEFINE_WAIT(wait);
2553
2554	while (true) {
2555		prepare_to_wait(&md->wait, &wait, task_state);
2556
2557		if (!dm_in_flight_bios(md))
2558			break;
2559
2560		if (signal_pending_state(task_state, current)) {
2561			r = -EINTR;
2562			break;
2563		}
2564
2565		io_schedule();
2566	}
2567	finish_wait(&md->wait, &wait);
2568
2569	smp_rmb();
2570
2571	return r;
2572}
2573
2574static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2575{
2576	int r = 0;
2577
2578	if (!queue_is_mq(md->queue))
2579		return dm_wait_for_bios_completion(md, task_state);
2580
2581	while (true) {
2582		if (!blk_mq_queue_inflight(md->queue))
2583			break;
2584
2585		if (signal_pending_state(task_state, current)) {
2586			r = -EINTR;
2587			break;
2588		}
2589
2590		fsleep(5000);
2591	}
2592
2593	return r;
2594}
2595
2596/*
2597 * Process the deferred bios
2598 */
2599static void dm_wq_work(struct work_struct *work)
2600{
2601	struct mapped_device *md = container_of(work, struct mapped_device, work);
2602	struct bio *bio;
2603
2604	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2605		spin_lock_irq(&md->deferred_lock);
2606		bio = bio_list_pop(&md->deferred);
2607		spin_unlock_irq(&md->deferred_lock);
2608
2609		if (!bio)
2610			break;
2611
2612		submit_bio_noacct(bio);
2613		cond_resched();
2614	}
2615}
2616
2617static void dm_queue_flush(struct mapped_device *md)
2618{
2619	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2620	smp_mb__after_atomic();
2621	queue_work(md->wq, &md->work);
2622}
2623
2624/*
2625 * Swap in a new table, returning the old one for the caller to destroy.
2626 */
2627struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2628{
2629	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2630	struct queue_limits limits;
2631	int r;
2632
2633	mutex_lock(&md->suspend_lock);
2634
2635	/* device must be suspended */
2636	if (!dm_suspended_md(md))
2637		goto out;
2638
2639	/*
2640	 * If the new table has no data devices, retain the existing limits.
2641	 * This helps multipath with queue_if_no_path if all paths disappear,
2642	 * then new I/O is queued based on these limits, and then some paths
2643	 * reappear.
2644	 */
2645	if (dm_table_has_no_data_devices(table)) {
2646		live_map = dm_get_live_table_fast(md);
2647		if (live_map)
2648			limits = md->queue->limits;
2649		dm_put_live_table_fast(md);
2650	}
2651
2652	if (!live_map) {
2653		r = dm_calculate_queue_limits(table, &limits);
2654		if (r) {
2655			map = ERR_PTR(r);
2656			goto out;
2657		}
2658	}
2659
2660	map = __bind(md, table, &limits);
2661	dm_issue_global_event();
2662
2663out:
2664	mutex_unlock(&md->suspend_lock);
2665	return map;
2666}
2667
2668/*
2669 * Functions to lock and unlock any filesystem running on the
2670 * device.
2671 */
2672static int lock_fs(struct mapped_device *md)
2673{
2674	int r;
2675
2676	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2677
2678	r = bdev_freeze(md->disk->part0);
2679	if (!r)
2680		set_bit(DMF_FROZEN, &md->flags);
2681	return r;
2682}
2683
2684static void unlock_fs(struct mapped_device *md)
2685{
2686	if (!test_bit(DMF_FROZEN, &md->flags))
2687		return;
2688	bdev_thaw(md->disk->part0);
2689	clear_bit(DMF_FROZEN, &md->flags);
2690}
2691
2692/*
2693 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2694 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2695 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2696 *
2697 * If __dm_suspend returns 0, the device is completely quiescent
2698 * now. There is no request-processing activity. All new requests
2699 * are being added to md->deferred list.
2700 */
2701static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2702			unsigned int suspend_flags, unsigned int task_state,
2703			int dmf_suspended_flag)
2704{
2705	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2706	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2707	int r;
2708
2709	lockdep_assert_held(&md->suspend_lock);
2710
2711	/*
2712	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2713	 * This flag is cleared before dm_suspend returns.
2714	 */
2715	if (noflush)
2716		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2717	else
2718		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2719
2720	/*
2721	 * This gets reverted if there's an error later and the targets
2722	 * provide the .presuspend_undo hook.
2723	 */
2724	dm_table_presuspend_targets(map);
2725
2726	/*
2727	 * Flush I/O to the device.
2728	 * Any I/O submitted after lock_fs() may not be flushed.
2729	 * noflush takes precedence over do_lockfs.
2730	 * (lock_fs() flushes I/Os and waits for them to complete.)
2731	 */
2732	if (!noflush && do_lockfs) {
2733		r = lock_fs(md);
2734		if (r) {
2735			dm_table_presuspend_undo_targets(map);
2736			return r;
2737		}
2738	}
2739
2740	/*
2741	 * Here we must make sure that no processes are submitting requests
2742	 * to target drivers i.e. no one may be executing
2743	 * dm_split_and_process_bio from dm_submit_bio.
2744	 *
2745	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2746	 * we take the write lock. To prevent any process from reentering
2747	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2748	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2749	 * flush_workqueue(md->wq).
2750	 */
2751	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2752	if (map)
2753		synchronize_srcu(&md->io_barrier);
2754
2755	/*
2756	 * Stop md->queue before flushing md->wq in case request-based
2757	 * dm defers requests to md->wq from md->queue.
2758	 */
2759	if (dm_request_based(md))
2760		dm_stop_queue(md->queue);
2761
2762	flush_workqueue(md->wq);
2763
2764	/*
2765	 * At this point no more requests are entering target request routines.
2766	 * We call dm_wait_for_completion to wait for all existing requests
2767	 * to finish.
2768	 */
2769	r = dm_wait_for_completion(md, task_state);
2770	if (!r)
2771		set_bit(dmf_suspended_flag, &md->flags);
2772
2773	if (noflush)
2774		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2775	if (map)
2776		synchronize_srcu(&md->io_barrier);
2777
2778	/* were we interrupted ? */
2779	if (r < 0) {
2780		dm_queue_flush(md);
2781
2782		if (dm_request_based(md))
2783			dm_start_queue(md->queue);
2784
2785		unlock_fs(md);
2786		dm_table_presuspend_undo_targets(map);
2787		/* pushback list is already flushed, so skip flush */
2788	}
2789
2790	return r;
2791}
2792
2793/*
2794 * We need to be able to change a mapping table under a mounted
2795 * filesystem.  For example we might want to move some data in
2796 * the background.  Before the table can be swapped with
2797 * dm_bind_table, dm_suspend must be called to flush any in
2798 * flight bios and ensure that any further io gets deferred.
2799 */
2800/*
2801 * Suspend mechanism in request-based dm.
2802 *
2803 * 1. Flush all I/Os by lock_fs() if needed.
2804 * 2. Stop dispatching any I/O by stopping the request_queue.
2805 * 3. Wait for all in-flight I/Os to be completed or requeued.
2806 *
2807 * To abort suspend, start the request_queue.
2808 */
2809int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2810{
2811	struct dm_table *map = NULL;
2812	int r = 0;
2813
2814retry:
2815	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2816
2817	if (dm_suspended_md(md)) {
2818		r = -EINVAL;
2819		goto out_unlock;
2820	}
2821
2822	if (dm_suspended_internally_md(md)) {
2823		/* already internally suspended, wait for internal resume */
2824		mutex_unlock(&md->suspend_lock);
2825		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2826		if (r)
2827			return r;
2828		goto retry;
2829	}
2830
2831	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2832	if (!map) {
2833		/* avoid deadlock with fs/namespace.c:do_mount() */
2834		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2835	}
2836
2837	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2838	if (r)
2839		goto out_unlock;
2840
2841	set_bit(DMF_POST_SUSPENDING, &md->flags);
2842	dm_table_postsuspend_targets(map);
2843	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2844
2845out_unlock:
2846	mutex_unlock(&md->suspend_lock);
2847	return r;
2848}
2849
2850static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2851{
2852	if (map) {
2853		int r = dm_table_resume_targets(map);
2854
2855		if (r)
2856			return r;
2857	}
2858
2859	dm_queue_flush(md);
2860
2861	/*
2862	 * Flushing deferred I/Os must be done after targets are resumed
2863	 * so that mapping of targets can work correctly.
2864	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2865	 */
2866	if (dm_request_based(md))
2867		dm_start_queue(md->queue);
2868
2869	unlock_fs(md);
2870
2871	return 0;
2872}
2873
2874int dm_resume(struct mapped_device *md)
2875{
2876	int r;
2877	struct dm_table *map = NULL;
2878
2879retry:
2880	r = -EINVAL;
2881	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2882
2883	if (!dm_suspended_md(md))
2884		goto out;
2885
2886	if (dm_suspended_internally_md(md)) {
2887		/* already internally suspended, wait for internal resume */
2888		mutex_unlock(&md->suspend_lock);
2889		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2890		if (r)
2891			return r;
2892		goto retry;
2893	}
2894
2895	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2896	if (!map || !dm_table_get_size(map))
2897		goto out;
2898
2899	r = __dm_resume(md, map);
2900	if (r)
2901		goto out;
2902
2903	clear_bit(DMF_SUSPENDED, &md->flags);
2904out:
2905	mutex_unlock(&md->suspend_lock);
2906
2907	return r;
2908}
2909
2910/*
2911 * Internal suspend/resume works like userspace-driven suspend. It waits
2912 * until all bios finish and prevents issuing new bios to the target drivers.
2913 * It may be used only from the kernel.
2914 */
2915
2916static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2917{
2918	struct dm_table *map = NULL;
2919
2920	lockdep_assert_held(&md->suspend_lock);
2921
2922	if (md->internal_suspend_count++)
2923		return; /* nested internal suspend */
2924
2925	if (dm_suspended_md(md)) {
2926		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2927		return; /* nest suspend */
2928	}
2929
2930	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2931
2932	/*
2933	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2934	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2935	 * would require changing .presuspend to return an error -- avoid this
2936	 * until there is a need for more elaborate variants of internal suspend.
2937	 */
2938	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2939			    DMF_SUSPENDED_INTERNALLY);
2940
2941	set_bit(DMF_POST_SUSPENDING, &md->flags);
2942	dm_table_postsuspend_targets(map);
2943	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2944}
2945
2946static void __dm_internal_resume(struct mapped_device *md)
2947{
 
 
 
2948	BUG_ON(!md->internal_suspend_count);
2949
2950	if (--md->internal_suspend_count)
2951		return; /* resume from nested internal suspend */
2952
2953	if (dm_suspended_md(md))
2954		goto done; /* resume from nested suspend */
2955
2956	/*
2957	 * NOTE: existing callers don't need to call dm_table_resume_targets
2958	 * (which may fail -- so best to avoid it for now by passing NULL map)
2959	 */
2960	(void) __dm_resume(md, NULL);
2961
 
 
 
 
 
 
 
 
 
 
 
2962done:
2963	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2964	smp_mb__after_atomic();
2965	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2966}
2967
2968void dm_internal_suspend_noflush(struct mapped_device *md)
2969{
2970	mutex_lock(&md->suspend_lock);
2971	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2972	mutex_unlock(&md->suspend_lock);
2973}
2974EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2975
2976void dm_internal_resume(struct mapped_device *md)
2977{
2978	mutex_lock(&md->suspend_lock);
2979	__dm_internal_resume(md);
2980	mutex_unlock(&md->suspend_lock);
2981}
2982EXPORT_SYMBOL_GPL(dm_internal_resume);
2983
2984/*
2985 * Fast variants of internal suspend/resume hold md->suspend_lock,
2986 * which prevents interaction with userspace-driven suspend.
2987 */
2988
2989void dm_internal_suspend_fast(struct mapped_device *md)
2990{
2991	mutex_lock(&md->suspend_lock);
2992	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2993		return;
2994
2995	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2996	synchronize_srcu(&md->io_barrier);
2997	flush_workqueue(md->wq);
2998	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2999}
3000EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3001
3002void dm_internal_resume_fast(struct mapped_device *md)
3003{
3004	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3005		goto done;
3006
3007	dm_queue_flush(md);
3008
3009done:
3010	mutex_unlock(&md->suspend_lock);
3011}
3012EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3013
3014/*
3015 *---------------------------------------------------------------
3016 * Event notification.
3017 *---------------------------------------------------------------
3018 */
3019int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3020		      unsigned int cookie, bool need_resize_uevent)
3021{
3022	int r;
3023	unsigned int noio_flag;
3024	char udev_cookie[DM_COOKIE_LENGTH];
3025	char *envp[3] = { NULL, NULL, NULL };
3026	char **envpp = envp;
3027	if (cookie) {
3028		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3029			 DM_COOKIE_ENV_VAR_NAME, cookie);
3030		*envpp++ = udev_cookie;
3031	}
3032	if (need_resize_uevent) {
3033		*envpp++ = "RESIZE=1";
3034	}
3035
3036	noio_flag = memalloc_noio_save();
3037
3038	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3039
3040	memalloc_noio_restore(noio_flag);
3041
3042	return r;
3043}
3044
3045uint32_t dm_next_uevent_seq(struct mapped_device *md)
3046{
3047	return atomic_add_return(1, &md->uevent_seq);
3048}
3049
3050uint32_t dm_get_event_nr(struct mapped_device *md)
3051{
3052	return atomic_read(&md->event_nr);
3053}
3054
3055int dm_wait_event(struct mapped_device *md, int event_nr)
3056{
3057	return wait_event_interruptible(md->eventq,
3058			(event_nr != atomic_read(&md->event_nr)));
3059}
3060
3061void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3062{
3063	unsigned long flags;
3064
3065	spin_lock_irqsave(&md->uevent_lock, flags);
3066	list_add(elist, &md->uevent_list);
3067	spin_unlock_irqrestore(&md->uevent_lock, flags);
3068}
3069
3070/*
3071 * The gendisk is only valid as long as you have a reference
3072 * count on 'md'.
3073 */
3074struct gendisk *dm_disk(struct mapped_device *md)
3075{
3076	return md->disk;
3077}
3078EXPORT_SYMBOL_GPL(dm_disk);
3079
3080struct kobject *dm_kobject(struct mapped_device *md)
3081{
3082	return &md->kobj_holder.kobj;
3083}
3084
3085struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3086{
3087	struct mapped_device *md;
3088
3089	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3090
3091	spin_lock(&_minor_lock);
3092	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3093		md = NULL;
3094		goto out;
3095	}
3096	dm_get(md);
3097out:
3098	spin_unlock(&_minor_lock);
3099
3100	return md;
3101}
3102
3103int dm_suspended_md(struct mapped_device *md)
3104{
3105	return test_bit(DMF_SUSPENDED, &md->flags);
3106}
3107
3108static int dm_post_suspending_md(struct mapped_device *md)
3109{
3110	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3111}
3112
3113int dm_suspended_internally_md(struct mapped_device *md)
3114{
3115	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3116}
3117
3118int dm_test_deferred_remove_flag(struct mapped_device *md)
3119{
3120	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3121}
3122
3123int dm_suspended(struct dm_target *ti)
3124{
3125	return dm_suspended_md(ti->table->md);
3126}
3127EXPORT_SYMBOL_GPL(dm_suspended);
3128
3129int dm_post_suspending(struct dm_target *ti)
3130{
3131	return dm_post_suspending_md(ti->table->md);
3132}
3133EXPORT_SYMBOL_GPL(dm_post_suspending);
3134
3135int dm_noflush_suspending(struct dm_target *ti)
3136{
3137	return __noflush_suspending(ti->table->md);
3138}
3139EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3140
3141void dm_free_md_mempools(struct dm_md_mempools *pools)
3142{
3143	if (!pools)
3144		return;
3145
3146	bioset_exit(&pools->bs);
3147	bioset_exit(&pools->io_bs);
3148
3149	kfree(pools);
3150}
3151
3152struct dm_pr {
3153	u64	old_key;
3154	u64	new_key;
3155	u32	flags;
3156	bool	abort;
3157	bool	fail_early;
3158	int	ret;
3159	enum pr_type type;
3160	struct pr_keys *read_keys;
3161	struct pr_held_reservation *rsv;
3162};
3163
3164static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3165		      struct dm_pr *pr)
3166{
3167	struct mapped_device *md = bdev->bd_disk->private_data;
3168	struct dm_table *table;
3169	struct dm_target *ti;
3170	int ret = -ENOTTY, srcu_idx;
3171
3172	table = dm_get_live_table(md, &srcu_idx);
3173	if (!table || !dm_table_get_size(table))
3174		goto out;
3175
3176	/* We only support devices that have a single target */
3177	if (table->num_targets != 1)
3178		goto out;
3179	ti = dm_table_get_target(table, 0);
3180
3181	if (dm_suspended_md(md)) {
3182		ret = -EAGAIN;
3183		goto out;
3184	}
3185
3186	ret = -EINVAL;
3187	if (!ti->type->iterate_devices)
3188		goto out;
3189
3190	ti->type->iterate_devices(ti, fn, pr);
3191	ret = 0;
3192out:
3193	dm_put_live_table(md, srcu_idx);
3194	return ret;
3195}
3196
3197/*
3198 * For register / unregister we need to manually call out to every path.
3199 */
3200static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3201			    sector_t start, sector_t len, void *data)
3202{
3203	struct dm_pr *pr = data;
3204	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3205	int ret;
3206
3207	if (!ops || !ops->pr_register) {
3208		pr->ret = -EOPNOTSUPP;
3209		return -1;
3210	}
3211
3212	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3213	if (!ret)
3214		return 0;
3215
3216	if (!pr->ret)
3217		pr->ret = ret;
3218
3219	if (pr->fail_early)
3220		return -1;
3221
3222	return 0;
3223}
3224
3225static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3226			  u32 flags)
3227{
3228	struct dm_pr pr = {
3229		.old_key	= old_key,
3230		.new_key	= new_key,
3231		.flags		= flags,
3232		.fail_early	= true,
3233		.ret		= 0,
3234	};
3235	int ret;
3236
3237	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3238	if (ret) {
3239		/* Didn't even get to register a path */
3240		return ret;
3241	}
3242
3243	if (!pr.ret)
3244		return 0;
3245	ret = pr.ret;
3246
3247	if (!new_key)
3248		return ret;
3249
3250	/* unregister all paths if we failed to register any path */
3251	pr.old_key = new_key;
3252	pr.new_key = 0;
3253	pr.flags = 0;
3254	pr.fail_early = false;
3255	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3256	return ret;
3257}
3258
3259
3260static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3261			   sector_t start, sector_t len, void *data)
3262{
3263	struct dm_pr *pr = data;
3264	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3265
3266	if (!ops || !ops->pr_reserve) {
3267		pr->ret = -EOPNOTSUPP;
3268		return -1;
3269	}
3270
3271	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3272	if (!pr->ret)
3273		return -1;
3274
3275	return 0;
3276}
3277
3278static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3279			 u32 flags)
3280{
3281	struct dm_pr pr = {
3282		.old_key	= key,
3283		.flags		= flags,
3284		.type		= type,
3285		.fail_early	= false,
3286		.ret		= 0,
3287	};
3288	int ret;
3289
3290	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3291	if (ret)
3292		return ret;
3293
3294	return pr.ret;
3295}
3296
3297/*
3298 * If there is a non-All Registrants type of reservation, the release must be
3299 * sent down the holding path. For the cases where there is no reservation or
3300 * the path is not the holder the device will also return success, so we must
3301 * try each path to make sure we got the correct path.
3302 */
3303static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3304			   sector_t start, sector_t len, void *data)
3305{
3306	struct dm_pr *pr = data;
3307	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3308
3309	if (!ops || !ops->pr_release) {
3310		pr->ret = -EOPNOTSUPP;
3311		return -1;
3312	}
3313
3314	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3315	if (pr->ret)
3316		return -1;
3317
3318	return 0;
3319}
3320
3321static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3322{
3323	struct dm_pr pr = {
3324		.old_key	= key,
3325		.type		= type,
3326		.fail_early	= false,
3327	};
3328	int ret;
3329
3330	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3331	if (ret)
3332		return ret;
3333
3334	return pr.ret;
3335}
3336
3337static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3338			   sector_t start, sector_t len, void *data)
3339{
3340	struct dm_pr *pr = data;
3341	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3342
3343	if (!ops || !ops->pr_preempt) {
3344		pr->ret = -EOPNOTSUPP;
3345		return -1;
3346	}
3347
3348	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3349				  pr->abort);
3350	if (!pr->ret)
3351		return -1;
3352
3353	return 0;
3354}
3355
3356static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3357			 enum pr_type type, bool abort)
3358{
3359	struct dm_pr pr = {
3360		.new_key	= new_key,
3361		.old_key	= old_key,
3362		.type		= type,
3363		.fail_early	= false,
3364	};
3365	int ret;
3366
3367	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3368	if (ret)
3369		return ret;
3370
3371	return pr.ret;
3372}
3373
3374static int dm_pr_clear(struct block_device *bdev, u64 key)
3375{
3376	struct mapped_device *md = bdev->bd_disk->private_data;
3377	const struct pr_ops *ops;
3378	int r, srcu_idx;
3379
3380	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3381	if (r < 0)
3382		goto out;
3383
3384	ops = bdev->bd_disk->fops->pr_ops;
3385	if (ops && ops->pr_clear)
3386		r = ops->pr_clear(bdev, key);
3387	else
3388		r = -EOPNOTSUPP;
3389out:
3390	dm_unprepare_ioctl(md, srcu_idx);
3391	return r;
3392}
3393
3394static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3395			     sector_t start, sector_t len, void *data)
3396{
3397	struct dm_pr *pr = data;
3398	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3399
3400	if (!ops || !ops->pr_read_keys) {
3401		pr->ret = -EOPNOTSUPP;
3402		return -1;
3403	}
3404
3405	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3406	if (!pr->ret)
3407		return -1;
3408
3409	return 0;
3410}
3411
3412static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3413{
3414	struct dm_pr pr = {
3415		.read_keys = keys,
3416	};
3417	int ret;
3418
3419	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3420	if (ret)
3421		return ret;
3422
3423	return pr.ret;
3424}
3425
3426static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3427				    sector_t start, sector_t len, void *data)
3428{
3429	struct dm_pr *pr = data;
3430	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3431
3432	if (!ops || !ops->pr_read_reservation) {
3433		pr->ret = -EOPNOTSUPP;
3434		return -1;
3435	}
3436
3437	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3438	if (!pr->ret)
3439		return -1;
3440
3441	return 0;
3442}
3443
3444static int dm_pr_read_reservation(struct block_device *bdev,
3445				  struct pr_held_reservation *rsv)
3446{
3447	struct dm_pr pr = {
3448		.rsv = rsv,
3449	};
3450	int ret;
3451
3452	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3453	if (ret)
3454		return ret;
3455
3456	return pr.ret;
3457}
3458
3459static const struct pr_ops dm_pr_ops = {
3460	.pr_register	= dm_pr_register,
3461	.pr_reserve	= dm_pr_reserve,
3462	.pr_release	= dm_pr_release,
3463	.pr_preempt	= dm_pr_preempt,
3464	.pr_clear	= dm_pr_clear,
3465	.pr_read_keys	= dm_pr_read_keys,
3466	.pr_read_reservation = dm_pr_read_reservation,
3467};
3468
3469static const struct block_device_operations dm_blk_dops = {
3470	.submit_bio = dm_submit_bio,
3471	.poll_bio = dm_poll_bio,
3472	.open = dm_blk_open,
3473	.release = dm_blk_close,
3474	.ioctl = dm_blk_ioctl,
3475	.getgeo = dm_blk_getgeo,
3476	.report_zones = dm_blk_report_zones,
3477	.pr_ops = &dm_pr_ops,
3478	.owner = THIS_MODULE
3479};
3480
3481static const struct block_device_operations dm_rq_blk_dops = {
3482	.open = dm_blk_open,
3483	.release = dm_blk_close,
3484	.ioctl = dm_blk_ioctl,
3485	.getgeo = dm_blk_getgeo,
3486	.pr_ops = &dm_pr_ops,
3487	.owner = THIS_MODULE
3488};
3489
3490static const struct dax_operations dm_dax_ops = {
3491	.direct_access = dm_dax_direct_access,
3492	.zero_page_range = dm_dax_zero_page_range,
3493	.recovery_write = dm_dax_recovery_write,
3494};
3495
3496/*
3497 * module hooks
3498 */
3499module_init(dm_init);
3500module_exit(dm_exit);
3501
3502module_param(major, uint, 0);
3503MODULE_PARM_DESC(major, "The major number of the device mapper");
3504
3505module_param(reserved_bio_based_ios, uint, 0644);
3506MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3507
3508module_param(dm_numa_node, int, 0644);
3509MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3510
3511module_param(swap_bios, int, 0644);
3512MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3513
3514MODULE_DESCRIPTION(DM_NAME " driver");
3515MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3516MODULE_LICENSE("GPL");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include "dm-core.h"
  10#include "dm-rq.h"
  11#include "dm-uevent.h"
  12#include "dm-ima.h"
  13
  14#include <linux/init.h>
  15#include <linux/module.h>
  16#include <linux/mutex.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/signal.h>
  19#include <linux/blkpg.h>
  20#include <linux/bio.h>
  21#include <linux/mempool.h>
  22#include <linux/dax.h>
  23#include <linux/slab.h>
  24#include <linux/idr.h>
  25#include <linux/uio.h>
  26#include <linux/hdreg.h>
  27#include <linux/delay.h>
  28#include <linux/wait.h>
  29#include <linux/pr.h>
  30#include <linux/refcount.h>
  31#include <linux/part_stat.h>
  32#include <linux/blk-crypto.h>
  33#include <linux/blk-crypto-profile.h>
  34
  35#define DM_MSG_PREFIX "core"
  36
  37/*
  38 * Cookies are numeric values sent with CHANGE and REMOVE
  39 * uevents while resuming, removing or renaming the device.
  40 */
  41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  42#define DM_COOKIE_LENGTH 24
  43
  44/*
  45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
  46 * dm_io into one list, and reuse bio->bi_private as the list head. Before
  47 * ending this fs bio, we will recover its ->bi_private.
  48 */
  49#define REQ_DM_POLL_LIST	REQ_DRV
  50
  51static const char *_name = DM_NAME;
  52
  53static unsigned int major;
  54static unsigned int _major;
  55
  56static DEFINE_IDR(_minor_idr);
  57
  58static DEFINE_SPINLOCK(_minor_lock);
  59
  60static void do_deferred_remove(struct work_struct *w);
  61
  62static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  63
  64static struct workqueue_struct *deferred_remove_workqueue;
  65
  66atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  67DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  68
  69void dm_issue_global_event(void)
  70{
  71	atomic_inc(&dm_global_event_nr);
  72	wake_up(&dm_global_eventq);
  73}
  74
  75DEFINE_STATIC_KEY_FALSE(stats_enabled);
  76DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
  77DEFINE_STATIC_KEY_FALSE(zoned_enabled);
  78
  79/*
  80 * One of these is allocated (on-stack) per original bio.
  81 */
  82struct clone_info {
  83	struct dm_table *map;
  84	struct bio *bio;
  85	struct dm_io *io;
  86	sector_t sector;
  87	unsigned int sector_count;
  88	bool is_abnormal_io:1;
  89	bool submit_as_polled:1;
  90};
  91
  92static inline struct dm_target_io *clone_to_tio(struct bio *clone)
  93{
  94	return container_of(clone, struct dm_target_io, clone);
  95}
  96
  97void *dm_per_bio_data(struct bio *bio, size_t data_size)
  98{
  99	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
 100		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
 101	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
 102}
 103EXPORT_SYMBOL_GPL(dm_per_bio_data);
 104
 105struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 106{
 107	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 108
 109	if (io->magic == DM_IO_MAGIC)
 110		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
 111	BUG_ON(io->magic != DM_TIO_MAGIC);
 112	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
 113}
 114EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 115
 116unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
 117{
 118	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 119}
 120EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 121
 122#define MINOR_ALLOCED ((void *)-1)
 123
 124#define DM_NUMA_NODE NUMA_NO_NODE
 125static int dm_numa_node = DM_NUMA_NODE;
 126
 127#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 128static int swap_bios = DEFAULT_SWAP_BIOS;
 129static int get_swap_bios(void)
 130{
 131	int latch = READ_ONCE(swap_bios);
 132
 133	if (unlikely(latch <= 0))
 134		latch = DEFAULT_SWAP_BIOS;
 135	return latch;
 136}
 137
 138struct table_device {
 139	struct list_head list;
 140	refcount_t count;
 141	struct dm_dev dm_dev;
 142};
 143
 144/*
 145 * Bio-based DM's mempools' reserved IOs set by the user.
 146 */
 147#define RESERVED_BIO_BASED_IOS		16
 148static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 149
 150static int __dm_get_module_param_int(int *module_param, int min, int max)
 151{
 152	int param = READ_ONCE(*module_param);
 153	int modified_param = 0;
 154	bool modified = true;
 155
 156	if (param < min)
 157		modified_param = min;
 158	else if (param > max)
 159		modified_param = max;
 160	else
 161		modified = false;
 162
 163	if (modified) {
 164		(void)cmpxchg(module_param, param, modified_param);
 165		param = modified_param;
 166	}
 167
 168	return param;
 169}
 170
 171unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
 172{
 173	unsigned int param = READ_ONCE(*module_param);
 174	unsigned int modified_param = 0;
 175
 176	if (!param)
 177		modified_param = def;
 178	else if (param > max)
 179		modified_param = max;
 180
 181	if (modified_param) {
 182		(void)cmpxchg(module_param, param, modified_param);
 183		param = modified_param;
 184	}
 185
 186	return param;
 187}
 188
 189unsigned int dm_get_reserved_bio_based_ios(void)
 190{
 191	return __dm_get_module_param(&reserved_bio_based_ios,
 192				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 193}
 194EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 195
 196static unsigned int dm_get_numa_node(void)
 197{
 198	return __dm_get_module_param_int(&dm_numa_node,
 199					 DM_NUMA_NODE, num_online_nodes() - 1);
 200}
 201
 202static int __init local_init(void)
 203{
 204	int r;
 205
 206	r = dm_uevent_init();
 207	if (r)
 208		return r;
 209
 210	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
 211	if (!deferred_remove_workqueue) {
 212		r = -ENOMEM;
 213		goto out_uevent_exit;
 214	}
 215
 216	_major = major;
 217	r = register_blkdev(_major, _name);
 218	if (r < 0)
 219		goto out_free_workqueue;
 220
 221	if (!_major)
 222		_major = r;
 223
 224	return 0;
 225
 226out_free_workqueue:
 227	destroy_workqueue(deferred_remove_workqueue);
 228out_uevent_exit:
 229	dm_uevent_exit();
 230
 231	return r;
 232}
 233
 234static void local_exit(void)
 235{
 236	destroy_workqueue(deferred_remove_workqueue);
 237
 238	unregister_blkdev(_major, _name);
 239	dm_uevent_exit();
 240
 241	_major = 0;
 242
 243	DMINFO("cleaned up");
 244}
 245
 246static int (*_inits[])(void) __initdata = {
 247	local_init,
 248	dm_target_init,
 249	dm_linear_init,
 250	dm_stripe_init,
 251	dm_io_init,
 252	dm_kcopyd_init,
 253	dm_interface_init,
 254	dm_statistics_init,
 255};
 256
 257static void (*_exits[])(void) = {
 258	local_exit,
 259	dm_target_exit,
 260	dm_linear_exit,
 261	dm_stripe_exit,
 262	dm_io_exit,
 263	dm_kcopyd_exit,
 264	dm_interface_exit,
 265	dm_statistics_exit,
 266};
 267
 268static int __init dm_init(void)
 269{
 270	const int count = ARRAY_SIZE(_inits);
 271	int r, i;
 272
 273#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
 274	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
 275	       " Duplicate IMA measurements will not be recorded in the IMA log.");
 276#endif
 277
 278	for (i = 0; i < count; i++) {
 279		r = _inits[i]();
 280		if (r)
 281			goto bad;
 282	}
 283
 284	return 0;
 285bad:
 286	while (i--)
 287		_exits[i]();
 288
 289	return r;
 290}
 291
 292static void __exit dm_exit(void)
 293{
 294	int i = ARRAY_SIZE(_exits);
 295
 296	while (i--)
 297		_exits[i]();
 298
 299	/*
 300	 * Should be empty by this point.
 301	 */
 302	idr_destroy(&_minor_idr);
 303}
 304
 305/*
 306 * Block device functions
 307 */
 308int dm_deleting_md(struct mapped_device *md)
 309{
 310	return test_bit(DMF_DELETING, &md->flags);
 311}
 312
 313static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
 314{
 315	struct mapped_device *md;
 316
 317	spin_lock(&_minor_lock);
 318
 319	md = disk->private_data;
 320	if (!md)
 321		goto out;
 322
 323	if (test_bit(DMF_FREEING, &md->flags) ||
 324	    dm_deleting_md(md)) {
 325		md = NULL;
 326		goto out;
 327	}
 328
 329	dm_get(md);
 330	atomic_inc(&md->open_count);
 331out:
 332	spin_unlock(&_minor_lock);
 333
 334	return md ? 0 : -ENXIO;
 335}
 336
 337static void dm_blk_close(struct gendisk *disk)
 338{
 339	struct mapped_device *md;
 340
 341	spin_lock(&_minor_lock);
 342
 343	md = disk->private_data;
 344	if (WARN_ON(!md))
 345		goto out;
 346
 347	if (atomic_dec_and_test(&md->open_count) &&
 348	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 349		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 350
 351	dm_put(md);
 352out:
 353	spin_unlock(&_minor_lock);
 354}
 355
 356int dm_open_count(struct mapped_device *md)
 357{
 358	return atomic_read(&md->open_count);
 359}
 360
 361/*
 362 * Guarantees nothing is using the device before it's deleted.
 363 */
 364int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 365{
 366	int r = 0;
 367
 368	spin_lock(&_minor_lock);
 369
 370	if (dm_open_count(md)) {
 371		r = -EBUSY;
 372		if (mark_deferred)
 373			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 374	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 375		r = -EEXIST;
 376	else
 377		set_bit(DMF_DELETING, &md->flags);
 378
 379	spin_unlock(&_minor_lock);
 380
 381	return r;
 382}
 383
 384int dm_cancel_deferred_remove(struct mapped_device *md)
 385{
 386	int r = 0;
 387
 388	spin_lock(&_minor_lock);
 389
 390	if (test_bit(DMF_DELETING, &md->flags))
 391		r = -EBUSY;
 392	else
 393		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 394
 395	spin_unlock(&_minor_lock);
 396
 397	return r;
 398}
 399
 400static void do_deferred_remove(struct work_struct *w)
 401{
 402	dm_deferred_remove();
 403}
 404
 405static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 406{
 407	struct mapped_device *md = bdev->bd_disk->private_data;
 408
 409	return dm_get_geometry(md, geo);
 410}
 411
 412static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 413			    struct block_device **bdev)
 414{
 415	struct dm_target *ti;
 416	struct dm_table *map;
 417	int r;
 418
 419retry:
 420	r = -ENOTTY;
 421	map = dm_get_live_table(md, srcu_idx);
 422	if (!map || !dm_table_get_size(map))
 423		return r;
 424
 425	/* We only support devices that have a single target */
 426	if (map->num_targets != 1)
 427		return r;
 428
 429	ti = dm_table_get_target(map, 0);
 430	if (!ti->type->prepare_ioctl)
 431		return r;
 432
 433	if (dm_suspended_md(md))
 434		return -EAGAIN;
 435
 436	r = ti->type->prepare_ioctl(ti, bdev);
 437	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 438		dm_put_live_table(md, *srcu_idx);
 439		fsleep(10000);
 440		goto retry;
 441	}
 442
 443	return r;
 444}
 445
 446static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 447{
 448	dm_put_live_table(md, srcu_idx);
 449}
 450
 451static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
 452			unsigned int cmd, unsigned long arg)
 453{
 454	struct mapped_device *md = bdev->bd_disk->private_data;
 455	int r, srcu_idx;
 456
 457	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 458	if (r < 0)
 459		goto out;
 460
 461	if (r > 0) {
 462		/*
 463		 * Target determined this ioctl is being issued against a
 464		 * subset of the parent bdev; require extra privileges.
 465		 */
 466		if (!capable(CAP_SYS_RAWIO)) {
 467			DMDEBUG_LIMIT(
 468	"%s: sending ioctl %x to DM device without required privilege.",
 469				current->comm, cmd);
 470			r = -ENOIOCTLCMD;
 471			goto out;
 472		}
 473	}
 474
 475	if (!bdev->bd_disk->fops->ioctl)
 476		r = -ENOTTY;
 477	else
 478		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 479out:
 480	dm_unprepare_ioctl(md, srcu_idx);
 481	return r;
 482}
 483
 484u64 dm_start_time_ns_from_clone(struct bio *bio)
 485{
 486	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
 487}
 488EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 489
 490static inline bool bio_is_flush_with_data(struct bio *bio)
 491{
 492	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
 493}
 494
 495static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
 496{
 497	/*
 498	 * If REQ_PREFLUSH set, don't account payload, it will be
 499	 * submitted (and accounted) after this flush completes.
 500	 */
 501	if (bio_is_flush_with_data(bio))
 502		return 0;
 503	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 504		return io->sectors;
 505	return bio_sectors(bio);
 506}
 507
 508static void dm_io_acct(struct dm_io *io, bool end)
 509{
 510	struct bio *bio = io->orig_bio;
 511
 512	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
 513		if (!end)
 514			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
 515					   io->start_time);
 516		else
 517			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
 518					 dm_io_sectors(io, bio),
 519					 io->start_time);
 520	}
 521
 522	if (static_branch_unlikely(&stats_enabled) &&
 523	    unlikely(dm_stats_used(&io->md->stats))) {
 524		sector_t sector;
 525
 526		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 527			sector = bio_end_sector(bio) - io->sector_offset;
 528		else
 529			sector = bio->bi_iter.bi_sector;
 530
 531		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
 532				    sector, dm_io_sectors(io, bio),
 533				    end, io->start_time, &io->stats_aux);
 534	}
 535}
 536
 537static void __dm_start_io_acct(struct dm_io *io)
 538{
 539	dm_io_acct(io, false);
 540}
 541
 542static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
 543{
 544	/*
 545	 * Ensure IO accounting is only ever started once.
 546	 */
 547	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 548		return;
 549
 550	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
 551	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
 552		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 553	} else {
 554		unsigned long flags;
 555		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
 556		spin_lock_irqsave(&io->lock, flags);
 557		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
 558			spin_unlock_irqrestore(&io->lock, flags);
 559			return;
 560		}
 561		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 562		spin_unlock_irqrestore(&io->lock, flags);
 563	}
 564
 565	__dm_start_io_acct(io);
 566}
 567
 568static void dm_end_io_acct(struct dm_io *io)
 569{
 570	dm_io_acct(io, true);
 571}
 572
 573static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
 574{
 575	struct dm_io *io;
 576	struct dm_target_io *tio;
 577	struct bio *clone;
 578
 579	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
 580	if (unlikely(!clone))
 581		return NULL;
 582	tio = clone_to_tio(clone);
 583	tio->flags = 0;
 584	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
 585	tio->io = NULL;
 586
 587	io = container_of(tio, struct dm_io, tio);
 588	io->magic = DM_IO_MAGIC;
 589	io->status = BLK_STS_OK;
 590
 591	/* one ref is for submission, the other is for completion */
 592	atomic_set(&io->io_count, 2);
 593	this_cpu_inc(*md->pending_io);
 594	io->orig_bio = bio;
 595	io->md = md;
 596	spin_lock_init(&io->lock);
 597	io->start_time = jiffies;
 598	io->flags = 0;
 599	if (blk_queue_io_stat(md->queue))
 600		dm_io_set_flag(io, DM_IO_BLK_STAT);
 601
 602	if (static_branch_unlikely(&stats_enabled) &&
 603	    unlikely(dm_stats_used(&md->stats)))
 604		dm_stats_record_start(&md->stats, &io->stats_aux);
 605
 606	return io;
 607}
 608
 609static void free_io(struct dm_io *io)
 610{
 611	bio_put(&io->tio.clone);
 612}
 613
 614static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 615			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
 616{
 617	struct mapped_device *md = ci->io->md;
 618	struct dm_target_io *tio;
 619	struct bio *clone;
 620
 621	if (!ci->io->tio.io) {
 622		/* the dm_target_io embedded in ci->io is available */
 623		tio = &ci->io->tio;
 624		/* alloc_io() already initialized embedded clone */
 625		clone = &tio->clone;
 626	} else {
 627		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
 628					&md->mempools->bs);
 629		if (!clone)
 630			return NULL;
 631
 632		/* REQ_DM_POLL_LIST shouldn't be inherited */
 633		clone->bi_opf &= ~REQ_DM_POLL_LIST;
 634
 635		tio = clone_to_tio(clone);
 636		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
 637	}
 638
 639	tio->magic = DM_TIO_MAGIC;
 640	tio->io = ci->io;
 641	tio->ti = ti;
 642	tio->target_bio_nr = target_bio_nr;
 643	tio->len_ptr = len;
 644	tio->old_sector = 0;
 645
 646	/* Set default bdev, but target must bio_set_dev() before issuing IO */
 647	clone->bi_bdev = md->disk->part0;
 648	if (unlikely(ti->needs_bio_set_dev))
 649		bio_set_dev(clone, md->disk->part0);
 650
 651	if (len) {
 652		clone->bi_iter.bi_size = to_bytes(*len);
 653		if (bio_integrity(clone))
 654			bio_integrity_trim(clone);
 655	}
 656
 657	return clone;
 658}
 659
 660static void free_tio(struct bio *clone)
 661{
 662	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
 663		return;
 664	bio_put(clone);
 665}
 666
 667/*
 668 * Add the bio to the list of deferred io.
 669 */
 670static void queue_io(struct mapped_device *md, struct bio *bio)
 671{
 672	unsigned long flags;
 673
 674	spin_lock_irqsave(&md->deferred_lock, flags);
 675	bio_list_add(&md->deferred, bio);
 676	spin_unlock_irqrestore(&md->deferred_lock, flags);
 677	queue_work(md->wq, &md->work);
 678}
 679
 680/*
 681 * Everyone (including functions in this file), should use this
 682 * function to access the md->map field, and make sure they call
 683 * dm_put_live_table() when finished.
 684 */
 685struct dm_table *dm_get_live_table(struct mapped_device *md,
 686				   int *srcu_idx) __acquires(md->io_barrier)
 687{
 688	*srcu_idx = srcu_read_lock(&md->io_barrier);
 689
 690	return srcu_dereference(md->map, &md->io_barrier);
 691}
 692
 693void dm_put_live_table(struct mapped_device *md,
 694		       int srcu_idx) __releases(md->io_barrier)
 695{
 696	srcu_read_unlock(&md->io_barrier, srcu_idx);
 697}
 698
 699void dm_sync_table(struct mapped_device *md)
 700{
 701	synchronize_srcu(&md->io_barrier);
 702	synchronize_rcu_expedited();
 703}
 704
 705/*
 706 * A fast alternative to dm_get_live_table/dm_put_live_table.
 707 * The caller must not block between these two functions.
 708 */
 709static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 710{
 711	rcu_read_lock();
 712	return rcu_dereference(md->map);
 713}
 714
 715static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 716{
 717	rcu_read_unlock();
 718}
 719
 720static char *_dm_claim_ptr = "I belong to device-mapper";
 721
 722/*
 723 * Open a table device so we can use it as a map destination.
 724 */
 725static struct table_device *open_table_device(struct mapped_device *md,
 726		dev_t dev, blk_mode_t mode)
 727{
 728	struct table_device *td;
 729	struct file *bdev_file;
 730	struct block_device *bdev;
 731	u64 part_off;
 732	int r;
 733
 734	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 735	if (!td)
 736		return ERR_PTR(-ENOMEM);
 737	refcount_set(&td->count, 1);
 738
 739	bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
 740	if (IS_ERR(bdev_file)) {
 741		r = PTR_ERR(bdev_file);
 742		goto out_free_td;
 743	}
 744
 745	bdev = file_bdev(bdev_file);
 746
 747	/*
 748	 * We can be called before the dm disk is added.  In that case we can't
 749	 * register the holder relation here.  It will be done once add_disk was
 750	 * called.
 751	 */
 752	if (md->disk->slave_dir) {
 753		r = bd_link_disk_holder(bdev, md->disk);
 754		if (r)
 755			goto out_blkdev_put;
 756	}
 757
 758	td->dm_dev.mode = mode;
 759	td->dm_dev.bdev = bdev;
 760	td->dm_dev.bdev_file = bdev_file;
 761	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
 762						NULL, NULL);
 763	format_dev_t(td->dm_dev.name, dev);
 764	list_add(&td->list, &md->table_devices);
 765	return td;
 766
 767out_blkdev_put:
 768	__fput_sync(bdev_file);
 769out_free_td:
 770	kfree(td);
 771	return ERR_PTR(r);
 772}
 773
 774/*
 775 * Close a table device that we've been using.
 776 */
 777static void close_table_device(struct table_device *td, struct mapped_device *md)
 778{
 779	if (md->disk->slave_dir)
 780		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
 781
 782	/* Leverage async fput() if DMF_DEFERRED_REMOVE set */
 783	if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 784		fput(td->dm_dev.bdev_file);
 785	else
 786		__fput_sync(td->dm_dev.bdev_file);
 787
 788	put_dax(td->dm_dev.dax_dev);
 789	list_del(&td->list);
 790	kfree(td);
 791}
 792
 793static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 794					      blk_mode_t mode)
 795{
 796	struct table_device *td;
 797
 798	list_for_each_entry(td, l, list)
 799		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 800			return td;
 801
 802	return NULL;
 803}
 804
 805int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
 806			struct dm_dev **result)
 807{
 808	struct table_device *td;
 809
 810	mutex_lock(&md->table_devices_lock);
 811	td = find_table_device(&md->table_devices, dev, mode);
 812	if (!td) {
 813		td = open_table_device(md, dev, mode);
 814		if (IS_ERR(td)) {
 815			mutex_unlock(&md->table_devices_lock);
 816			return PTR_ERR(td);
 817		}
 818	} else {
 819		refcount_inc(&td->count);
 820	}
 821	mutex_unlock(&md->table_devices_lock);
 822
 823	*result = &td->dm_dev;
 824	return 0;
 825}
 826
 827void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 828{
 829	struct table_device *td = container_of(d, struct table_device, dm_dev);
 830
 831	mutex_lock(&md->table_devices_lock);
 832	if (refcount_dec_and_test(&td->count))
 833		close_table_device(td, md);
 834	mutex_unlock(&md->table_devices_lock);
 835}
 836
 837/*
 838 * Get the geometry associated with a dm device
 839 */
 840int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 841{
 842	*geo = md->geometry;
 843
 844	return 0;
 845}
 846
 847/*
 848 * Set the geometry of a device.
 849 */
 850int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 851{
 852	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 853
 854	if (geo->start > sz) {
 855		DMERR("Start sector is beyond the geometry limits.");
 856		return -EINVAL;
 857	}
 858
 859	md->geometry = *geo;
 860
 861	return 0;
 862}
 863
 864static int __noflush_suspending(struct mapped_device *md)
 865{
 866	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 867}
 868
 869static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
 870{
 871	struct mapped_device *md = io->md;
 872
 873	if (first_stage) {
 874		struct dm_io *next = md->requeue_list;
 875
 876		md->requeue_list = io;
 877		io->next = next;
 878	} else {
 879		bio_list_add_head(&md->deferred, io->orig_bio);
 880	}
 881}
 882
 883static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
 884{
 885	if (first_stage)
 886		queue_work(md->wq, &md->requeue_work);
 887	else
 888		queue_work(md->wq, &md->work);
 889}
 890
 891/*
 892 * Return true if the dm_io's original bio is requeued.
 893 * io->status is updated with error if requeue disallowed.
 894 */
 895static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
 896{
 897	struct bio *bio = io->orig_bio;
 898	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
 899	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
 900				     (bio->bi_opf & REQ_POLLED));
 901	struct mapped_device *md = io->md;
 902	bool requeued = false;
 903
 904	if (handle_requeue || handle_polled_eagain) {
 905		unsigned long flags;
 906
 907		if (bio->bi_opf & REQ_POLLED) {
 908			/*
 909			 * Upper layer won't help us poll split bio
 910			 * (io->orig_bio may only reflect a subset of the
 911			 * pre-split original) so clear REQ_POLLED.
 912			 */
 913			bio_clear_polled(bio);
 914		}
 915
 916		/*
 917		 * Target requested pushing back the I/O or
 918		 * polled IO hit BLK_STS_AGAIN.
 919		 */
 920		spin_lock_irqsave(&md->deferred_lock, flags);
 921		if ((__noflush_suspending(md) &&
 922		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
 923		    handle_polled_eagain || first_stage) {
 924			dm_requeue_add_io(io, first_stage);
 925			requeued = true;
 926		} else {
 927			/*
 928			 * noflush suspend was interrupted or this is
 929			 * a write to a zoned target.
 930			 */
 931			io->status = BLK_STS_IOERR;
 932		}
 933		spin_unlock_irqrestore(&md->deferred_lock, flags);
 934	}
 935
 936	if (requeued)
 937		dm_kick_requeue(md, first_stage);
 938
 939	return requeued;
 940}
 941
 942static void __dm_io_complete(struct dm_io *io, bool first_stage)
 943{
 944	struct bio *bio = io->orig_bio;
 945	struct mapped_device *md = io->md;
 946	blk_status_t io_error;
 947	bool requeued;
 948
 949	requeued = dm_handle_requeue(io, first_stage);
 950	if (requeued && first_stage)
 951		return;
 952
 953	io_error = io->status;
 954	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 955		dm_end_io_acct(io);
 956	else if (!io_error) {
 957		/*
 958		 * Must handle target that DM_MAPIO_SUBMITTED only to
 959		 * then bio_endio() rather than dm_submit_bio_remap()
 960		 */
 961		__dm_start_io_acct(io);
 962		dm_end_io_acct(io);
 963	}
 964	free_io(io);
 965	smp_wmb();
 966	this_cpu_dec(*md->pending_io);
 967
 968	/* nudge anyone waiting on suspend queue */
 969	if (unlikely(wq_has_sleeper(&md->wait)))
 970		wake_up(&md->wait);
 971
 972	/* Return early if the original bio was requeued */
 973	if (requeued)
 974		return;
 975
 976	if (bio_is_flush_with_data(bio)) {
 977		/*
 978		 * Preflush done for flush with data, reissue
 979		 * without REQ_PREFLUSH.
 980		 */
 981		bio->bi_opf &= ~REQ_PREFLUSH;
 982		queue_io(md, bio);
 983	} else {
 984		/* done with normal IO or empty flush */
 985		if (io_error)
 986			bio->bi_status = io_error;
 987		bio_endio(bio);
 988	}
 989}
 990
 991static void dm_wq_requeue_work(struct work_struct *work)
 992{
 993	struct mapped_device *md = container_of(work, struct mapped_device,
 994						requeue_work);
 995	unsigned long flags;
 996	struct dm_io *io;
 997
 998	/* reuse deferred lock to simplify dm_handle_requeue */
 999	spin_lock_irqsave(&md->deferred_lock, flags);
1000	io = md->requeue_list;
1001	md->requeue_list = NULL;
1002	spin_unlock_irqrestore(&md->deferred_lock, flags);
1003
1004	while (io) {
1005		struct dm_io *next = io->next;
1006
1007		dm_io_rewind(io, &md->disk->bio_split);
1008
1009		io->next = NULL;
1010		__dm_io_complete(io, false);
1011		io = next;
1012		cond_resched();
1013	}
1014}
1015
1016/*
1017 * Two staged requeue:
1018 *
1019 * 1) io->orig_bio points to the real original bio, and the part mapped to
1020 *    this io must be requeued, instead of other parts of the original bio.
1021 *
1022 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1023 */
1024static void dm_io_complete(struct dm_io *io)
1025{
1026	bool first_requeue;
1027
1028	/*
1029	 * Only dm_io that has been split needs two stage requeue, otherwise
1030	 * we may run into long bio clone chain during suspend and OOM could
1031	 * be triggered.
1032	 *
1033	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1034	 * also aren't handled via the first stage requeue.
1035	 */
1036	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1037		first_requeue = true;
1038	else
1039		first_requeue = false;
1040
1041	__dm_io_complete(io, first_requeue);
1042}
1043
1044/*
1045 * Decrements the number of outstanding ios that a bio has been
1046 * cloned into, completing the original io if necc.
1047 */
1048static inline void __dm_io_dec_pending(struct dm_io *io)
1049{
1050	if (atomic_dec_and_test(&io->io_count))
1051		dm_io_complete(io);
1052}
1053
1054static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1055{
1056	unsigned long flags;
1057
1058	/* Push-back supersedes any I/O errors */
1059	spin_lock_irqsave(&io->lock, flags);
1060	if (!(io->status == BLK_STS_DM_REQUEUE &&
1061	      __noflush_suspending(io->md))) {
1062		io->status = error;
1063	}
1064	spin_unlock_irqrestore(&io->lock, flags);
1065}
1066
1067static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1068{
1069	if (unlikely(error))
1070		dm_io_set_error(io, error);
1071
1072	__dm_io_dec_pending(io);
1073}
1074
1075/*
1076 * The queue_limits are only valid as long as you have a reference
1077 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1078 */
1079static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1080{
1081	return &md->queue->limits;
1082}
1083
1084void disable_discard(struct mapped_device *md)
1085{
1086	struct queue_limits *limits = dm_get_queue_limits(md);
1087
1088	/* device doesn't really support DISCARD, disable it */
1089	limits->max_discard_sectors = 0;
1090}
1091
1092void disable_write_zeroes(struct mapped_device *md)
1093{
1094	struct queue_limits *limits = dm_get_queue_limits(md);
1095
1096	/* device doesn't really support WRITE ZEROES, disable it */
1097	limits->max_write_zeroes_sectors = 0;
1098}
1099
1100static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1101{
1102	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1103}
1104
1105static void clone_endio(struct bio *bio)
1106{
1107	blk_status_t error = bio->bi_status;
1108	struct dm_target_io *tio = clone_to_tio(bio);
1109	struct dm_target *ti = tio->ti;
1110	dm_endio_fn endio = ti->type->end_io;
1111	struct dm_io *io = tio->io;
1112	struct mapped_device *md = io->md;
1113
1114	if (unlikely(error == BLK_STS_TARGET)) {
1115		if (bio_op(bio) == REQ_OP_DISCARD &&
1116		    !bdev_max_discard_sectors(bio->bi_bdev))
1117			disable_discard(md);
1118		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1119			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1120			disable_write_zeroes(md);
1121	}
1122
1123	if (static_branch_unlikely(&zoned_enabled) &&
1124	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1125		dm_zone_endio(io, bio);
1126
1127	if (endio) {
1128		int r = endio(ti, bio, &error);
1129
1130		switch (r) {
1131		case DM_ENDIO_REQUEUE:
1132			if (static_branch_unlikely(&zoned_enabled)) {
1133				/*
1134				 * Requeuing writes to a sequential zone of a zoned
1135				 * target will break the sequential write pattern:
1136				 * fail such IO.
1137				 */
1138				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1139					error = BLK_STS_IOERR;
1140				else
1141					error = BLK_STS_DM_REQUEUE;
1142			} else
1143				error = BLK_STS_DM_REQUEUE;
1144			fallthrough;
1145		case DM_ENDIO_DONE:
1146			break;
1147		case DM_ENDIO_INCOMPLETE:
1148			/* The target will handle the io */
1149			return;
1150		default:
1151			DMCRIT("unimplemented target endio return value: %d", r);
1152			BUG();
1153		}
1154	}
1155
1156	if (static_branch_unlikely(&swap_bios_enabled) &&
1157	    unlikely(swap_bios_limit(ti, bio)))
1158		up(&md->swap_bios_semaphore);
1159
1160	free_tio(bio);
1161	dm_io_dec_pending(io, error);
1162}
1163
1164/*
1165 * Return maximum size of I/O possible at the supplied sector up to the current
1166 * target boundary.
1167 */
1168static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1169						  sector_t target_offset)
1170{
1171	return ti->len - target_offset;
1172}
1173
1174static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1175			     unsigned int max_granularity,
1176			     unsigned int max_sectors)
1177{
1178	sector_t target_offset = dm_target_offset(ti, sector);
1179	sector_t len = max_io_len_target_boundary(ti, target_offset);
1180
1181	/*
1182	 * Does the target need to split IO even further?
1183	 * - varied (per target) IO splitting is a tenet of DM; this
1184	 *   explains why stacked chunk_sectors based splitting via
1185	 *   bio_split_to_limits() isn't possible here.
1186	 */
1187	if (!max_granularity)
1188		return len;
1189	return min_t(sector_t, len,
1190		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1191		    blk_chunk_sectors_left(target_offset, max_granularity)));
1192}
1193
1194static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1195{
1196	return __max_io_len(ti, sector, ti->max_io_len, 0);
1197}
1198
1199int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1200{
1201	if (len > UINT_MAX) {
1202		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1203		      (unsigned long long)len, UINT_MAX);
1204		ti->error = "Maximum size of target IO is too large";
1205		return -EINVAL;
1206	}
1207
1208	ti->max_io_len = (uint32_t) len;
1209
1210	return 0;
1211}
1212EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1213
1214static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1215						sector_t sector, int *srcu_idx)
1216	__acquires(md->io_barrier)
1217{
1218	struct dm_table *map;
1219	struct dm_target *ti;
1220
1221	map = dm_get_live_table(md, srcu_idx);
1222	if (!map)
1223		return NULL;
1224
1225	ti = dm_table_find_target(map, sector);
1226	if (!ti)
1227		return NULL;
1228
1229	return ti;
1230}
1231
1232static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1233		long nr_pages, enum dax_access_mode mode, void **kaddr,
1234		pfn_t *pfn)
1235{
1236	struct mapped_device *md = dax_get_private(dax_dev);
1237	sector_t sector = pgoff * PAGE_SECTORS;
1238	struct dm_target *ti;
1239	long len, ret = -EIO;
1240	int srcu_idx;
1241
1242	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1243
1244	if (!ti)
1245		goto out;
1246	if (!ti->type->direct_access)
1247		goto out;
1248	len = max_io_len(ti, sector) / PAGE_SECTORS;
1249	if (len < 1)
1250		goto out;
1251	nr_pages = min(len, nr_pages);
1252	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1253
1254 out:
1255	dm_put_live_table(md, srcu_idx);
1256
1257	return ret;
1258}
1259
1260static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1261				  size_t nr_pages)
1262{
1263	struct mapped_device *md = dax_get_private(dax_dev);
1264	sector_t sector = pgoff * PAGE_SECTORS;
1265	struct dm_target *ti;
1266	int ret = -EIO;
1267	int srcu_idx;
1268
1269	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1270
1271	if (!ti)
1272		goto out;
1273	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1274		/*
1275		 * ->zero_page_range() is mandatory dax operation. If we are
1276		 *  here, something is wrong.
1277		 */
1278		goto out;
1279	}
1280	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1281 out:
1282	dm_put_live_table(md, srcu_idx);
1283
1284	return ret;
1285}
1286
1287static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1288		void *addr, size_t bytes, struct iov_iter *i)
1289{
1290	struct mapped_device *md = dax_get_private(dax_dev);
1291	sector_t sector = pgoff * PAGE_SECTORS;
1292	struct dm_target *ti;
1293	int srcu_idx;
1294	long ret = 0;
1295
1296	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1297	if (!ti || !ti->type->dax_recovery_write)
1298		goto out;
1299
1300	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1301out:
1302	dm_put_live_table(md, srcu_idx);
1303	return ret;
1304}
1305
1306/*
1307 * A target may call dm_accept_partial_bio only from the map routine.  It is
1308 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1309 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1310 * __send_duplicate_bios().
1311 *
1312 * dm_accept_partial_bio informs the dm that the target only wants to process
1313 * additional n_sectors sectors of the bio and the rest of the data should be
1314 * sent in a next bio.
1315 *
1316 * A diagram that explains the arithmetics:
1317 * +--------------------+---------------+-------+
1318 * |         1          |       2       |   3   |
1319 * +--------------------+---------------+-------+
1320 *
1321 * <-------------- *tio->len_ptr --------------->
1322 *                      <----- bio_sectors ----->
1323 *                      <-- n_sectors -->
1324 *
1325 * Region 1 was already iterated over with bio_advance or similar function.
1326 *	(it may be empty if the target doesn't use bio_advance)
1327 * Region 2 is the remaining bio size that the target wants to process.
1328 *	(it may be empty if region 1 is non-empty, although there is no reason
1329 *	 to make it empty)
1330 * The target requires that region 3 is to be sent in the next bio.
1331 *
1332 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1333 * the partially processed part (the sum of regions 1+2) must be the same for all
1334 * copies of the bio.
1335 */
1336void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1337{
1338	struct dm_target_io *tio = clone_to_tio(bio);
1339	struct dm_io *io = tio->io;
1340	unsigned int bio_sectors = bio_sectors(bio);
1341
1342	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1343	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1344	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1345	BUG_ON(bio_sectors > *tio->len_ptr);
1346	BUG_ON(n_sectors > bio_sectors);
1347
1348	*tio->len_ptr -= bio_sectors - n_sectors;
1349	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1350
1351	/*
1352	 * __split_and_process_bio() may have already saved mapped part
1353	 * for accounting but it is being reduced so update accordingly.
1354	 */
1355	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1356	io->sectors = n_sectors;
1357	io->sector_offset = bio_sectors(io->orig_bio);
1358}
1359EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1360
1361/*
1362 * @clone: clone bio that DM core passed to target's .map function
1363 * @tgt_clone: clone of @clone bio that target needs submitted
1364 *
1365 * Targets should use this interface to submit bios they take
1366 * ownership of when returning DM_MAPIO_SUBMITTED.
1367 *
1368 * Target should also enable ti->accounts_remapped_io
1369 */
1370void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1371{
1372	struct dm_target_io *tio = clone_to_tio(clone);
1373	struct dm_io *io = tio->io;
1374
1375	/* establish bio that will get submitted */
1376	if (!tgt_clone)
1377		tgt_clone = clone;
1378
1379	/*
1380	 * Account io->origin_bio to DM dev on behalf of target
1381	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1382	 */
1383	dm_start_io_acct(io, clone);
1384
1385	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1386			      tio->old_sector);
1387	submit_bio_noacct(tgt_clone);
1388}
1389EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1390
1391static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1392{
1393	mutex_lock(&md->swap_bios_lock);
1394	while (latch < md->swap_bios) {
1395		cond_resched();
1396		down(&md->swap_bios_semaphore);
1397		md->swap_bios--;
1398	}
1399	while (latch > md->swap_bios) {
1400		cond_resched();
1401		up(&md->swap_bios_semaphore);
1402		md->swap_bios++;
1403	}
1404	mutex_unlock(&md->swap_bios_lock);
1405}
1406
1407static void __map_bio(struct bio *clone)
1408{
1409	struct dm_target_io *tio = clone_to_tio(clone);
1410	struct dm_target *ti = tio->ti;
1411	struct dm_io *io = tio->io;
1412	struct mapped_device *md = io->md;
1413	int r;
1414
1415	clone->bi_end_io = clone_endio;
1416
1417	/*
1418	 * Map the clone.
1419	 */
1420	tio->old_sector = clone->bi_iter.bi_sector;
1421
1422	if (static_branch_unlikely(&swap_bios_enabled) &&
1423	    unlikely(swap_bios_limit(ti, clone))) {
1424		int latch = get_swap_bios();
1425
1426		if (unlikely(latch != md->swap_bios))
1427			__set_swap_bios_limit(md, latch);
1428		down(&md->swap_bios_semaphore);
1429	}
1430
1431	if (static_branch_unlikely(&zoned_enabled)) {
1432		/*
1433		 * Check if the IO needs a special mapping due to zone append
1434		 * emulation on zoned target. In this case, dm_zone_map_bio()
1435		 * calls the target map operation.
1436		 */
1437		if (unlikely(dm_emulate_zone_append(md)))
1438			r = dm_zone_map_bio(tio);
1439		else
1440			goto do_map;
1441	} else {
1442do_map:
1443		if (likely(ti->type->map == linear_map))
1444			r = linear_map(ti, clone);
1445		else if (ti->type->map == stripe_map)
1446			r = stripe_map(ti, clone);
1447		else
1448			r = ti->type->map(ti, clone);
1449	}
1450
1451	switch (r) {
1452	case DM_MAPIO_SUBMITTED:
1453		/* target has assumed ownership of this io */
1454		if (!ti->accounts_remapped_io)
1455			dm_start_io_acct(io, clone);
1456		break;
1457	case DM_MAPIO_REMAPPED:
1458		dm_submit_bio_remap(clone, NULL);
1459		break;
1460	case DM_MAPIO_KILL:
1461	case DM_MAPIO_REQUEUE:
1462		if (static_branch_unlikely(&swap_bios_enabled) &&
1463		    unlikely(swap_bios_limit(ti, clone)))
1464			up(&md->swap_bios_semaphore);
1465		free_tio(clone);
1466		if (r == DM_MAPIO_KILL)
1467			dm_io_dec_pending(io, BLK_STS_IOERR);
1468		else
1469			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1470		break;
1471	default:
1472		DMCRIT("unimplemented target map return value: %d", r);
1473		BUG();
1474	}
1475}
1476
1477static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1478{
1479	struct dm_io *io = ci->io;
1480
1481	if (ci->sector_count > len) {
1482		/*
1483		 * Split needed, save the mapped part for accounting.
1484		 * NOTE: dm_accept_partial_bio() will update accordingly.
1485		 */
1486		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1487		io->sectors = len;
1488		io->sector_offset = bio_sectors(ci->bio);
1489	}
1490}
1491
1492static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1493				struct dm_target *ti, unsigned int num_bios,
1494				unsigned *len, gfp_t gfp_flag)
1495{
1496	struct bio *bio;
1497	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1498
1499	for (; try < 2; try++) {
1500		int bio_nr;
1501
1502		if (try && num_bios > 1)
1503			mutex_lock(&ci->io->md->table_devices_lock);
1504		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1505			bio = alloc_tio(ci, ti, bio_nr, len,
1506					try ? GFP_NOIO : GFP_NOWAIT);
1507			if (!bio)
1508				break;
1509
1510			bio_list_add(blist, bio);
1511		}
1512		if (try && num_bios > 1)
1513			mutex_unlock(&ci->io->md->table_devices_lock);
1514		if (bio_nr == num_bios)
1515			return;
1516
1517		while ((bio = bio_list_pop(blist)))
1518			free_tio(bio);
1519	}
1520}
1521
1522static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1523					  unsigned int num_bios, unsigned int *len,
1524					  gfp_t gfp_flag)
1525{
1526	struct bio_list blist = BIO_EMPTY_LIST;
1527	struct bio *clone;
1528	unsigned int ret = 0;
1529
1530	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1531		return 0;
1532
1533	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1534	if (len)
1535		setup_split_accounting(ci, *len);
1536
1537	/*
1538	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1539	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1540	 */
1541	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1542	while ((clone = bio_list_pop(&blist))) {
1543		if (num_bios > 1)
1544			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1545		__map_bio(clone);
1546		ret += 1;
1547	}
1548
1549	return ret;
1550}
1551
1552static void __send_empty_flush(struct clone_info *ci)
1553{
1554	struct dm_table *t = ci->map;
1555	struct bio flush_bio;
1556
1557	/*
1558	 * Use an on-stack bio for this, it's safe since we don't
1559	 * need to reference it after submit. It's just used as
1560	 * the basis for the clone(s).
1561	 */
1562	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1563		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1564
1565	ci->bio = &flush_bio;
1566	ci->sector_count = 0;
1567	ci->io->tio.clone.bi_iter.bi_size = 0;
1568
1569	for (unsigned int i = 0; i < t->num_targets; i++) {
1570		unsigned int bios;
1571		struct dm_target *ti = dm_table_get_target(t, i);
1572
1573		if (unlikely(ti->num_flush_bios == 0))
1574			continue;
1575
1576		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1577		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1578					     NULL, GFP_NOWAIT);
1579		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1580	}
1581
1582	/*
1583	 * alloc_io() takes one extra reference for submission, so the
1584	 * reference won't reach 0 without the following subtraction
1585	 */
1586	atomic_sub(1, &ci->io->io_count);
1587
1588	bio_uninit(ci->bio);
1589}
1590
1591static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1592			       unsigned int num_bios, unsigned int max_granularity,
1593			       unsigned int max_sectors)
1594{
1595	unsigned int len, bios;
1596
1597	len = min_t(sector_t, ci->sector_count,
1598		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1599
1600	atomic_add(num_bios, &ci->io->io_count);
1601	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1602	/*
1603	 * alloc_io() takes one extra reference for submission, so the
1604	 * reference won't reach 0 without the following (+1) subtraction
1605	 */
1606	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1607
1608	ci->sector += len;
1609	ci->sector_count -= len;
1610}
1611
1612static bool is_abnormal_io(struct bio *bio)
1613{
1614	enum req_op op = bio_op(bio);
1615
1616	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1617		switch (op) {
1618		case REQ_OP_DISCARD:
1619		case REQ_OP_SECURE_ERASE:
1620		case REQ_OP_WRITE_ZEROES:
1621			return true;
1622		default:
1623			break;
1624		}
1625	}
1626
1627	return false;
1628}
1629
1630static blk_status_t __process_abnormal_io(struct clone_info *ci,
1631					  struct dm_target *ti)
1632{
1633	unsigned int num_bios = 0;
1634	unsigned int max_granularity = 0;
1635	unsigned int max_sectors = 0;
1636	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1637
1638	switch (bio_op(ci->bio)) {
1639	case REQ_OP_DISCARD:
1640		num_bios = ti->num_discard_bios;
1641		max_sectors = limits->max_discard_sectors;
1642		if (ti->max_discard_granularity)
1643			max_granularity = max_sectors;
1644		break;
1645	case REQ_OP_SECURE_ERASE:
1646		num_bios = ti->num_secure_erase_bios;
1647		max_sectors = limits->max_secure_erase_sectors;
1648		if (ti->max_secure_erase_granularity)
1649			max_granularity = max_sectors;
1650		break;
1651	case REQ_OP_WRITE_ZEROES:
1652		num_bios = ti->num_write_zeroes_bios;
1653		max_sectors = limits->max_write_zeroes_sectors;
1654		if (ti->max_write_zeroes_granularity)
1655			max_granularity = max_sectors;
1656		break;
1657	default:
1658		break;
1659	}
1660
1661	/*
1662	 * Even though the device advertised support for this type of
1663	 * request, that does not mean every target supports it, and
1664	 * reconfiguration might also have changed that since the
1665	 * check was performed.
1666	 */
1667	if (unlikely(!num_bios))
1668		return BLK_STS_NOTSUPP;
1669
1670	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1671
1672	return BLK_STS_OK;
1673}
1674
1675/*
1676 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1677 * associated with this bio, and this bio's bi_private needs to be
1678 * stored in dm_io->data before the reuse.
1679 *
1680 * bio->bi_private is owned by fs or upper layer, so block layer won't
1681 * touch it after splitting. Meantime it won't be changed by anyone after
1682 * bio is submitted. So this reuse is safe.
1683 */
1684static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1685{
1686	return (struct dm_io **)&bio->bi_private;
1687}
1688
1689static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1690{
1691	struct dm_io **head = dm_poll_list_head(bio);
1692
1693	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1694		bio->bi_opf |= REQ_DM_POLL_LIST;
1695		/*
1696		 * Save .bi_private into dm_io, so that we can reuse
1697		 * .bi_private as dm_io list head for storing dm_io list
1698		 */
1699		io->data = bio->bi_private;
1700
1701		/* tell block layer to poll for completion */
1702		bio->bi_cookie = ~BLK_QC_T_NONE;
1703
1704		io->next = NULL;
1705	} else {
1706		/*
1707		 * bio recursed due to split, reuse original poll list,
1708		 * and save bio->bi_private too.
1709		 */
1710		io->data = (*head)->data;
1711		io->next = *head;
1712	}
1713
1714	*head = io;
1715}
1716
1717/*
1718 * Select the correct strategy for processing a non-flush bio.
1719 */
1720static blk_status_t __split_and_process_bio(struct clone_info *ci)
1721{
1722	struct bio *clone;
1723	struct dm_target *ti;
1724	unsigned int len;
1725
1726	ti = dm_table_find_target(ci->map, ci->sector);
1727	if (unlikely(!ti))
1728		return BLK_STS_IOERR;
1729
1730	if (unlikely(ci->is_abnormal_io))
1731		return __process_abnormal_io(ci, ti);
1732
1733	/*
1734	 * Only support bio polling for normal IO, and the target io is
1735	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1736	 */
1737	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1738
1739	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1740	setup_split_accounting(ci, len);
1741
1742	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1743		if (unlikely(!dm_target_supports_nowait(ti->type)))
1744			return BLK_STS_NOTSUPP;
1745
1746		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1747		if (unlikely(!clone))
1748			return BLK_STS_AGAIN;
1749	} else {
1750		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1751	}
1752	__map_bio(clone);
1753
1754	ci->sector += len;
1755	ci->sector_count -= len;
1756
1757	return BLK_STS_OK;
1758}
1759
1760static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1761			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1762{
1763	ci->map = map;
1764	ci->io = io;
1765	ci->bio = bio;
1766	ci->is_abnormal_io = is_abnormal;
1767	ci->submit_as_polled = false;
1768	ci->sector = bio->bi_iter.bi_sector;
1769	ci->sector_count = bio_sectors(bio);
1770
1771	/* Shouldn't happen but sector_count was being set to 0 so... */
1772	if (static_branch_unlikely(&zoned_enabled) &&
1773	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1774		ci->sector_count = 0;
1775}
1776
1777/*
1778 * Entry point to split a bio into clones and submit them to the targets.
1779 */
1780static void dm_split_and_process_bio(struct mapped_device *md,
1781				     struct dm_table *map, struct bio *bio)
1782{
1783	struct clone_info ci;
1784	struct dm_io *io;
1785	blk_status_t error = BLK_STS_OK;
1786	bool is_abnormal;
1787
1788	is_abnormal = is_abnormal_io(bio);
1789	if (unlikely(is_abnormal)) {
1790		/*
1791		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1792		 * otherwise associated queue_limits won't be imposed.
1793		 */
1794		bio = bio_split_to_limits(bio);
1795		if (!bio)
1796			return;
1797	}
1798
1799	/* Only support nowait for normal IO */
1800	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1801		io = alloc_io(md, bio, GFP_NOWAIT);
1802		if (unlikely(!io)) {
1803			/* Unable to do anything without dm_io. */
1804			bio_wouldblock_error(bio);
1805			return;
1806		}
1807	} else {
1808		io = alloc_io(md, bio, GFP_NOIO);
1809	}
1810	init_clone_info(&ci, io, map, bio, is_abnormal);
1811
1812	if (bio->bi_opf & REQ_PREFLUSH) {
1813		__send_empty_flush(&ci);
1814		/* dm_io_complete submits any data associated with flush */
1815		goto out;
1816	}
1817
1818	error = __split_and_process_bio(&ci);
1819	if (error || !ci.sector_count)
1820		goto out;
1821	/*
1822	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1823	 * *after* bios already submitted have been completely processed.
1824	 */
1825	bio_trim(bio, io->sectors, ci.sector_count);
1826	trace_block_split(bio, bio->bi_iter.bi_sector);
1827	bio_inc_remaining(bio);
1828	submit_bio_noacct(bio);
1829out:
1830	/*
1831	 * Drop the extra reference count for non-POLLED bio, and hold one
1832	 * reference for POLLED bio, which will be released in dm_poll_bio
1833	 *
1834	 * Add every dm_io instance into the dm_io list head which is stored
1835	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1836	 */
1837	if (error || !ci.submit_as_polled) {
1838		/*
1839		 * In case of submission failure, the extra reference for
1840		 * submitting io isn't consumed yet
1841		 */
1842		if (error)
1843			atomic_dec(&io->io_count);
1844		dm_io_dec_pending(io, error);
1845	} else
1846		dm_queue_poll_io(bio, io);
1847}
1848
1849static void dm_submit_bio(struct bio *bio)
1850{
1851	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1852	int srcu_idx;
1853	struct dm_table *map;
1854
1855	map = dm_get_live_table(md, &srcu_idx);
1856
1857	/* If suspended, or map not yet available, queue this IO for later */
1858	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1859	    unlikely(!map)) {
1860		if (bio->bi_opf & REQ_NOWAIT)
1861			bio_wouldblock_error(bio);
1862		else if (bio->bi_opf & REQ_RAHEAD)
1863			bio_io_error(bio);
1864		else
1865			queue_io(md, bio);
1866		goto out;
1867	}
1868
1869	dm_split_and_process_bio(md, map, bio);
1870out:
1871	dm_put_live_table(md, srcu_idx);
1872}
1873
1874static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1875			  unsigned int flags)
1876{
1877	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1878
1879	/* don't poll if the mapped io is done */
1880	if (atomic_read(&io->io_count) > 1)
1881		bio_poll(&io->tio.clone, iob, flags);
1882
1883	/* bio_poll holds the last reference */
1884	return atomic_read(&io->io_count) == 1;
1885}
1886
1887static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1888		       unsigned int flags)
1889{
1890	struct dm_io **head = dm_poll_list_head(bio);
1891	struct dm_io *list = *head;
1892	struct dm_io *tmp = NULL;
1893	struct dm_io *curr, *next;
1894
1895	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1896	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1897		return 0;
1898
1899	WARN_ON_ONCE(!list);
1900
1901	/*
1902	 * Restore .bi_private before possibly completing dm_io.
1903	 *
1904	 * bio_poll() is only possible once @bio has been completely
1905	 * submitted via submit_bio_noacct()'s depth-first submission.
1906	 * So there is no dm_queue_poll_io() race associated with
1907	 * clearing REQ_DM_POLL_LIST here.
1908	 */
1909	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1910	bio->bi_private = list->data;
1911
1912	for (curr = list, next = curr->next; curr; curr = next, next =
1913			curr ? curr->next : NULL) {
1914		if (dm_poll_dm_io(curr, iob, flags)) {
1915			/*
1916			 * clone_endio() has already occurred, so no
1917			 * error handling is needed here.
1918			 */
1919			__dm_io_dec_pending(curr);
1920		} else {
1921			curr->next = tmp;
1922			tmp = curr;
1923		}
1924	}
1925
1926	/* Not done? */
1927	if (tmp) {
1928		bio->bi_opf |= REQ_DM_POLL_LIST;
1929		/* Reset bio->bi_private to dm_io list head */
1930		*head = tmp;
1931		return 0;
1932	}
1933	return 1;
1934}
1935
1936/*
1937 *---------------------------------------------------------------
1938 * An IDR is used to keep track of allocated minor numbers.
1939 *---------------------------------------------------------------
1940 */
1941static void free_minor(int minor)
1942{
1943	spin_lock(&_minor_lock);
1944	idr_remove(&_minor_idr, minor);
1945	spin_unlock(&_minor_lock);
1946}
1947
1948/*
1949 * See if the device with a specific minor # is free.
1950 */
1951static int specific_minor(int minor)
1952{
1953	int r;
1954
1955	if (minor >= (1 << MINORBITS))
1956		return -EINVAL;
1957
1958	idr_preload(GFP_KERNEL);
1959	spin_lock(&_minor_lock);
1960
1961	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1962
1963	spin_unlock(&_minor_lock);
1964	idr_preload_end();
1965	if (r < 0)
1966		return r == -ENOSPC ? -EBUSY : r;
1967	return 0;
1968}
1969
1970static int next_free_minor(int *minor)
1971{
1972	int r;
1973
1974	idr_preload(GFP_KERNEL);
1975	spin_lock(&_minor_lock);
1976
1977	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1978
1979	spin_unlock(&_minor_lock);
1980	idr_preload_end();
1981	if (r < 0)
1982		return r;
1983	*minor = r;
1984	return 0;
1985}
1986
1987static const struct block_device_operations dm_blk_dops;
1988static const struct block_device_operations dm_rq_blk_dops;
1989static const struct dax_operations dm_dax_ops;
1990
1991static void dm_wq_work(struct work_struct *work);
1992
1993#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1994static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1995{
1996	dm_destroy_crypto_profile(q->crypto_profile);
1997}
1998
1999#else /* CONFIG_BLK_INLINE_ENCRYPTION */
2000
2001static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2002{
2003}
2004#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2005
2006static void cleanup_mapped_device(struct mapped_device *md)
2007{
2008	if (md->wq)
2009		destroy_workqueue(md->wq);
2010	dm_free_md_mempools(md->mempools);
2011
2012	if (md->dax_dev) {
2013		dax_remove_host(md->disk);
2014		kill_dax(md->dax_dev);
2015		put_dax(md->dax_dev);
2016		md->dax_dev = NULL;
2017	}
2018
2019	dm_cleanup_zoned_dev(md);
2020	if (md->disk) {
2021		spin_lock(&_minor_lock);
2022		md->disk->private_data = NULL;
2023		spin_unlock(&_minor_lock);
2024		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2025			struct table_device *td;
2026
2027			dm_sysfs_exit(md);
2028			list_for_each_entry(td, &md->table_devices, list) {
2029				bd_unlink_disk_holder(td->dm_dev.bdev,
2030						      md->disk);
2031			}
2032
2033			/*
2034			 * Hold lock to make sure del_gendisk() won't concurrent
2035			 * with open/close_table_device().
2036			 */
2037			mutex_lock(&md->table_devices_lock);
2038			del_gendisk(md->disk);
2039			mutex_unlock(&md->table_devices_lock);
2040		}
2041		dm_queue_destroy_crypto_profile(md->queue);
2042		put_disk(md->disk);
2043	}
2044
2045	if (md->pending_io) {
2046		free_percpu(md->pending_io);
2047		md->pending_io = NULL;
2048	}
2049
2050	cleanup_srcu_struct(&md->io_barrier);
2051
2052	mutex_destroy(&md->suspend_lock);
2053	mutex_destroy(&md->type_lock);
2054	mutex_destroy(&md->table_devices_lock);
2055	mutex_destroy(&md->swap_bios_lock);
2056
2057	dm_mq_cleanup_mapped_device(md);
2058}
2059
2060/*
2061 * Allocate and initialise a blank device with a given minor.
2062 */
2063static struct mapped_device *alloc_dev(int minor)
2064{
2065	int r, numa_node_id = dm_get_numa_node();
2066	struct dax_device *dax_dev;
2067	struct mapped_device *md;
2068	void *old_md;
2069
2070	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2071	if (!md) {
2072		DMERR("unable to allocate device, out of memory.");
2073		return NULL;
2074	}
2075
2076	if (!try_module_get(THIS_MODULE))
2077		goto bad_module_get;
2078
2079	/* get a minor number for the dev */
2080	if (minor == DM_ANY_MINOR)
2081		r = next_free_minor(&minor);
2082	else
2083		r = specific_minor(minor);
2084	if (r < 0)
2085		goto bad_minor;
2086
2087	r = init_srcu_struct(&md->io_barrier);
2088	if (r < 0)
2089		goto bad_io_barrier;
2090
2091	md->numa_node_id = numa_node_id;
2092	md->init_tio_pdu = false;
2093	md->type = DM_TYPE_NONE;
2094	mutex_init(&md->suspend_lock);
2095	mutex_init(&md->type_lock);
2096	mutex_init(&md->table_devices_lock);
2097	spin_lock_init(&md->deferred_lock);
2098	atomic_set(&md->holders, 1);
2099	atomic_set(&md->open_count, 0);
2100	atomic_set(&md->event_nr, 0);
2101	atomic_set(&md->uevent_seq, 0);
2102	INIT_LIST_HEAD(&md->uevent_list);
2103	INIT_LIST_HEAD(&md->table_devices);
2104	spin_lock_init(&md->uevent_lock);
2105
2106	/*
2107	 * default to bio-based until DM table is loaded and md->type
2108	 * established. If request-based table is loaded: blk-mq will
2109	 * override accordingly.
2110	 */
2111	md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2112	if (IS_ERR(md->disk))
2113		goto bad;
2114	md->queue = md->disk->queue;
2115
2116	init_waitqueue_head(&md->wait);
2117	INIT_WORK(&md->work, dm_wq_work);
2118	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2119	init_waitqueue_head(&md->eventq);
2120	init_completion(&md->kobj_holder.completion);
2121
2122	md->requeue_list = NULL;
2123	md->swap_bios = get_swap_bios();
2124	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2125	mutex_init(&md->swap_bios_lock);
2126
2127	md->disk->major = _major;
2128	md->disk->first_minor = minor;
2129	md->disk->minors = 1;
2130	md->disk->flags |= GENHD_FL_NO_PART;
2131	md->disk->fops = &dm_blk_dops;
2132	md->disk->private_data = md;
2133	sprintf(md->disk->disk_name, "dm-%d", minor);
2134
2135	dax_dev = alloc_dax(md, &dm_dax_ops);
2136	if (IS_ERR(dax_dev)) {
2137		if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
 
2138			goto bad;
2139	} else {
2140		set_dax_nocache(dax_dev);
2141		set_dax_nomc(dax_dev);
2142		md->dax_dev = dax_dev;
2143		if (dax_add_host(dax_dev, md->disk))
2144			goto bad;
2145	}
2146
2147	format_dev_t(md->name, MKDEV(_major, minor));
2148
2149	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2150	if (!md->wq)
2151		goto bad;
2152
2153	md->pending_io = alloc_percpu(unsigned long);
2154	if (!md->pending_io)
2155		goto bad;
2156
2157	r = dm_stats_init(&md->stats);
2158	if (r < 0)
2159		goto bad;
2160
2161	/* Populate the mapping, nobody knows we exist yet */
2162	spin_lock(&_minor_lock);
2163	old_md = idr_replace(&_minor_idr, md, minor);
2164	spin_unlock(&_minor_lock);
2165
2166	BUG_ON(old_md != MINOR_ALLOCED);
2167
2168	return md;
2169
2170bad:
2171	cleanup_mapped_device(md);
2172bad_io_barrier:
2173	free_minor(minor);
2174bad_minor:
2175	module_put(THIS_MODULE);
2176bad_module_get:
2177	kvfree(md);
2178	return NULL;
2179}
2180
2181static void unlock_fs(struct mapped_device *md);
2182
2183static void free_dev(struct mapped_device *md)
2184{
2185	int minor = MINOR(disk_devt(md->disk));
2186
2187	unlock_fs(md);
2188
2189	cleanup_mapped_device(md);
2190
2191	WARN_ON_ONCE(!list_empty(&md->table_devices));
2192	dm_stats_cleanup(&md->stats);
2193	free_minor(minor);
2194
2195	module_put(THIS_MODULE);
2196	kvfree(md);
2197}
2198
2199/*
2200 * Bind a table to the device.
2201 */
2202static void event_callback(void *context)
2203{
2204	unsigned long flags;
2205	LIST_HEAD(uevents);
2206	struct mapped_device *md = context;
2207
2208	spin_lock_irqsave(&md->uevent_lock, flags);
2209	list_splice_init(&md->uevent_list, &uevents);
2210	spin_unlock_irqrestore(&md->uevent_lock, flags);
2211
2212	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2213
2214	atomic_inc(&md->event_nr);
2215	wake_up(&md->eventq);
2216	dm_issue_global_event();
2217}
2218
2219/*
2220 * Returns old map, which caller must destroy.
2221 */
2222static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2223			       struct queue_limits *limits)
2224{
2225	struct dm_table *old_map;
2226	sector_t size;
2227	int ret;
2228
2229	lockdep_assert_held(&md->suspend_lock);
2230
2231	size = dm_table_get_size(t);
2232
2233	/*
2234	 * Wipe any geometry if the size of the table changed.
2235	 */
2236	if (size != dm_get_size(md))
2237		memset(&md->geometry, 0, sizeof(md->geometry));
2238
2239	set_capacity(md->disk, size);
2240
2241	dm_table_event_callback(t, event_callback, md);
2242
2243	if (dm_table_request_based(t)) {
2244		/*
2245		 * Leverage the fact that request-based DM targets are
2246		 * immutable singletons - used to optimize dm_mq_queue_rq.
2247		 */
2248		md->immutable_target = dm_table_get_immutable_target(t);
2249
2250		/*
2251		 * There is no need to reload with request-based dm because the
2252		 * size of front_pad doesn't change.
2253		 *
2254		 * Note for future: If you are to reload bioset, prep-ed
2255		 * requests in the queue may refer to bio from the old bioset,
2256		 * so you must walk through the queue to unprep.
2257		 */
2258		if (!md->mempools) {
2259			md->mempools = t->mempools;
2260			t->mempools = NULL;
2261		}
2262	} else {
2263		/*
2264		 * The md may already have mempools that need changing.
2265		 * If so, reload bioset because front_pad may have changed
2266		 * because a different table was loaded.
2267		 */
2268		dm_free_md_mempools(md->mempools);
2269		md->mempools = t->mempools;
2270		t->mempools = NULL;
2271	}
2272
2273	ret = dm_table_set_restrictions(t, md->queue, limits);
2274	if (ret) {
2275		old_map = ERR_PTR(ret);
2276		goto out;
2277	}
2278
2279	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2280	rcu_assign_pointer(md->map, (void *)t);
2281	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2282
2283	if (old_map)
2284		dm_sync_table(md);
2285out:
2286	return old_map;
2287}
2288
2289/*
2290 * Returns unbound table for the caller to free.
2291 */
2292static struct dm_table *__unbind(struct mapped_device *md)
2293{
2294	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2295
2296	if (!map)
2297		return NULL;
2298
2299	dm_table_event_callback(map, NULL, NULL);
2300	RCU_INIT_POINTER(md->map, NULL);
2301	dm_sync_table(md);
2302
2303	return map;
2304}
2305
2306/*
2307 * Constructor for a new device.
2308 */
2309int dm_create(int minor, struct mapped_device **result)
2310{
2311	struct mapped_device *md;
2312
2313	md = alloc_dev(minor);
2314	if (!md)
2315		return -ENXIO;
2316
2317	dm_ima_reset_data(md);
2318
2319	*result = md;
2320	return 0;
2321}
2322
2323/*
2324 * Functions to manage md->type.
2325 * All are required to hold md->type_lock.
2326 */
2327void dm_lock_md_type(struct mapped_device *md)
2328{
2329	mutex_lock(&md->type_lock);
2330}
2331
2332void dm_unlock_md_type(struct mapped_device *md)
2333{
2334	mutex_unlock(&md->type_lock);
2335}
2336
2337void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2338{
2339	BUG_ON(!mutex_is_locked(&md->type_lock));
2340	md->type = type;
2341}
2342
2343enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2344{
2345	return md->type;
2346}
2347
2348struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2349{
2350	return md->immutable_target_type;
2351}
2352
2353/*
2354 * Setup the DM device's queue based on md's type
2355 */
2356int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2357{
2358	enum dm_queue_mode type = dm_table_get_type(t);
2359	struct queue_limits limits;
2360	struct table_device *td;
2361	int r;
2362
2363	switch (type) {
2364	case DM_TYPE_REQUEST_BASED:
2365		md->disk->fops = &dm_rq_blk_dops;
2366		r = dm_mq_init_request_queue(md, t);
2367		if (r) {
2368			DMERR("Cannot initialize queue for request-based dm mapped device");
2369			return r;
2370		}
2371		break;
2372	case DM_TYPE_BIO_BASED:
2373	case DM_TYPE_DAX_BIO_BASED:
2374		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
2375		break;
2376	case DM_TYPE_NONE:
2377		WARN_ON_ONCE(true);
2378		break;
2379	}
2380
2381	r = dm_calculate_queue_limits(t, &limits);
2382	if (r) {
2383		DMERR("Cannot calculate initial queue limits");
2384		return r;
2385	}
2386	r = dm_table_set_restrictions(t, md->queue, &limits);
2387	if (r)
2388		return r;
2389
2390	/*
2391	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2392	 * with open_table_device() and close_table_device().
2393	 */
2394	mutex_lock(&md->table_devices_lock);
2395	r = add_disk(md->disk);
2396	mutex_unlock(&md->table_devices_lock);
2397	if (r)
2398		return r;
2399
2400	/*
2401	 * Register the holder relationship for devices added before the disk
2402	 * was live.
2403	 */
2404	list_for_each_entry(td, &md->table_devices, list) {
2405		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2406		if (r)
2407			goto out_undo_holders;
2408	}
2409
2410	r = dm_sysfs_init(md);
2411	if (r)
2412		goto out_undo_holders;
2413
2414	md->type = type;
2415	return 0;
2416
2417out_undo_holders:
2418	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2419		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2420	mutex_lock(&md->table_devices_lock);
2421	del_gendisk(md->disk);
2422	mutex_unlock(&md->table_devices_lock);
2423	return r;
2424}
2425
2426struct mapped_device *dm_get_md(dev_t dev)
2427{
2428	struct mapped_device *md;
2429	unsigned int minor = MINOR(dev);
2430
2431	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2432		return NULL;
2433
2434	spin_lock(&_minor_lock);
2435
2436	md = idr_find(&_minor_idr, minor);
2437	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2438	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2439		md = NULL;
2440		goto out;
2441	}
2442	dm_get(md);
2443out:
2444	spin_unlock(&_minor_lock);
2445
2446	return md;
2447}
2448EXPORT_SYMBOL_GPL(dm_get_md);
2449
2450void *dm_get_mdptr(struct mapped_device *md)
2451{
2452	return md->interface_ptr;
2453}
2454
2455void dm_set_mdptr(struct mapped_device *md, void *ptr)
2456{
2457	md->interface_ptr = ptr;
2458}
2459
2460void dm_get(struct mapped_device *md)
2461{
2462	atomic_inc(&md->holders);
2463	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2464}
2465
2466int dm_hold(struct mapped_device *md)
2467{
2468	spin_lock(&_minor_lock);
2469	if (test_bit(DMF_FREEING, &md->flags)) {
2470		spin_unlock(&_minor_lock);
2471		return -EBUSY;
2472	}
2473	dm_get(md);
2474	spin_unlock(&_minor_lock);
2475	return 0;
2476}
2477EXPORT_SYMBOL_GPL(dm_hold);
2478
2479const char *dm_device_name(struct mapped_device *md)
2480{
2481	return md->name;
2482}
2483EXPORT_SYMBOL_GPL(dm_device_name);
2484
2485static void __dm_destroy(struct mapped_device *md, bool wait)
2486{
2487	struct dm_table *map;
2488	int srcu_idx;
2489
2490	might_sleep();
2491
2492	spin_lock(&_minor_lock);
2493	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2494	set_bit(DMF_FREEING, &md->flags);
2495	spin_unlock(&_minor_lock);
2496
2497	blk_mark_disk_dead(md->disk);
2498
2499	/*
2500	 * Take suspend_lock so that presuspend and postsuspend methods
2501	 * do not race with internal suspend.
2502	 */
2503	mutex_lock(&md->suspend_lock);
2504	map = dm_get_live_table(md, &srcu_idx);
2505	if (!dm_suspended_md(md)) {
2506		dm_table_presuspend_targets(map);
2507		set_bit(DMF_SUSPENDED, &md->flags);
2508		set_bit(DMF_POST_SUSPENDING, &md->flags);
2509		dm_table_postsuspend_targets(map);
2510	}
2511	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2512	dm_put_live_table(md, srcu_idx);
2513	mutex_unlock(&md->suspend_lock);
2514
2515	/*
2516	 * Rare, but there may be I/O requests still going to complete,
2517	 * for example.  Wait for all references to disappear.
2518	 * No one should increment the reference count of the mapped_device,
2519	 * after the mapped_device state becomes DMF_FREEING.
2520	 */
2521	if (wait)
2522		while (atomic_read(&md->holders))
2523			fsleep(1000);
2524	else if (atomic_read(&md->holders))
2525		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2526		       dm_device_name(md), atomic_read(&md->holders));
2527
2528	dm_table_destroy(__unbind(md));
2529	free_dev(md);
2530}
2531
2532void dm_destroy(struct mapped_device *md)
2533{
2534	__dm_destroy(md, true);
2535}
2536
2537void dm_destroy_immediate(struct mapped_device *md)
2538{
2539	__dm_destroy(md, false);
2540}
2541
2542void dm_put(struct mapped_device *md)
2543{
2544	atomic_dec(&md->holders);
2545}
2546EXPORT_SYMBOL_GPL(dm_put);
2547
2548static bool dm_in_flight_bios(struct mapped_device *md)
2549{
2550	int cpu;
2551	unsigned long sum = 0;
2552
2553	for_each_possible_cpu(cpu)
2554		sum += *per_cpu_ptr(md->pending_io, cpu);
2555
2556	return sum != 0;
2557}
2558
2559static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2560{
2561	int r = 0;
2562	DEFINE_WAIT(wait);
2563
2564	while (true) {
2565		prepare_to_wait(&md->wait, &wait, task_state);
2566
2567		if (!dm_in_flight_bios(md))
2568			break;
2569
2570		if (signal_pending_state(task_state, current)) {
2571			r = -EINTR;
2572			break;
2573		}
2574
2575		io_schedule();
2576	}
2577	finish_wait(&md->wait, &wait);
2578
2579	smp_rmb();
2580
2581	return r;
2582}
2583
2584static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2585{
2586	int r = 0;
2587
2588	if (!queue_is_mq(md->queue))
2589		return dm_wait_for_bios_completion(md, task_state);
2590
2591	while (true) {
2592		if (!blk_mq_queue_inflight(md->queue))
2593			break;
2594
2595		if (signal_pending_state(task_state, current)) {
2596			r = -EINTR;
2597			break;
2598		}
2599
2600		fsleep(5000);
2601	}
2602
2603	return r;
2604}
2605
2606/*
2607 * Process the deferred bios
2608 */
2609static void dm_wq_work(struct work_struct *work)
2610{
2611	struct mapped_device *md = container_of(work, struct mapped_device, work);
2612	struct bio *bio;
2613
2614	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2615		spin_lock_irq(&md->deferred_lock);
2616		bio = bio_list_pop(&md->deferred);
2617		spin_unlock_irq(&md->deferred_lock);
2618
2619		if (!bio)
2620			break;
2621
2622		submit_bio_noacct(bio);
2623		cond_resched();
2624	}
2625}
2626
2627static void dm_queue_flush(struct mapped_device *md)
2628{
2629	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2630	smp_mb__after_atomic();
2631	queue_work(md->wq, &md->work);
2632}
2633
2634/*
2635 * Swap in a new table, returning the old one for the caller to destroy.
2636 */
2637struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2638{
2639	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2640	struct queue_limits limits;
2641	int r;
2642
2643	mutex_lock(&md->suspend_lock);
2644
2645	/* device must be suspended */
2646	if (!dm_suspended_md(md))
2647		goto out;
2648
2649	/*
2650	 * If the new table has no data devices, retain the existing limits.
2651	 * This helps multipath with queue_if_no_path if all paths disappear,
2652	 * then new I/O is queued based on these limits, and then some paths
2653	 * reappear.
2654	 */
2655	if (dm_table_has_no_data_devices(table)) {
2656		live_map = dm_get_live_table_fast(md);
2657		if (live_map)
2658			limits = md->queue->limits;
2659		dm_put_live_table_fast(md);
2660	}
2661
2662	if (!live_map) {
2663		r = dm_calculate_queue_limits(table, &limits);
2664		if (r) {
2665			map = ERR_PTR(r);
2666			goto out;
2667		}
2668	}
2669
2670	map = __bind(md, table, &limits);
2671	dm_issue_global_event();
2672
2673out:
2674	mutex_unlock(&md->suspend_lock);
2675	return map;
2676}
2677
2678/*
2679 * Functions to lock and unlock any filesystem running on the
2680 * device.
2681 */
2682static int lock_fs(struct mapped_device *md)
2683{
2684	int r;
2685
2686	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2687
2688	r = bdev_freeze(md->disk->part0);
2689	if (!r)
2690		set_bit(DMF_FROZEN, &md->flags);
2691	return r;
2692}
2693
2694static void unlock_fs(struct mapped_device *md)
2695{
2696	if (!test_bit(DMF_FROZEN, &md->flags))
2697		return;
2698	bdev_thaw(md->disk->part0);
2699	clear_bit(DMF_FROZEN, &md->flags);
2700}
2701
2702/*
2703 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2704 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2705 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2706 *
2707 * If __dm_suspend returns 0, the device is completely quiescent
2708 * now. There is no request-processing activity. All new requests
2709 * are being added to md->deferred list.
2710 */
2711static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2712			unsigned int suspend_flags, unsigned int task_state,
2713			int dmf_suspended_flag)
2714{
2715	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2716	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2717	int r;
2718
2719	lockdep_assert_held(&md->suspend_lock);
2720
2721	/*
2722	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2723	 * This flag is cleared before dm_suspend returns.
2724	 */
2725	if (noflush)
2726		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2727	else
2728		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2729
2730	/*
2731	 * This gets reverted if there's an error later and the targets
2732	 * provide the .presuspend_undo hook.
2733	 */
2734	dm_table_presuspend_targets(map);
2735
2736	/*
2737	 * Flush I/O to the device.
2738	 * Any I/O submitted after lock_fs() may not be flushed.
2739	 * noflush takes precedence over do_lockfs.
2740	 * (lock_fs() flushes I/Os and waits for them to complete.)
2741	 */
2742	if (!noflush && do_lockfs) {
2743		r = lock_fs(md);
2744		if (r) {
2745			dm_table_presuspend_undo_targets(map);
2746			return r;
2747		}
2748	}
2749
2750	/*
2751	 * Here we must make sure that no processes are submitting requests
2752	 * to target drivers i.e. no one may be executing
2753	 * dm_split_and_process_bio from dm_submit_bio.
2754	 *
2755	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2756	 * we take the write lock. To prevent any process from reentering
2757	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2758	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2759	 * flush_workqueue(md->wq).
2760	 */
2761	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2762	if (map)
2763		synchronize_srcu(&md->io_barrier);
2764
2765	/*
2766	 * Stop md->queue before flushing md->wq in case request-based
2767	 * dm defers requests to md->wq from md->queue.
2768	 */
2769	if (dm_request_based(md))
2770		dm_stop_queue(md->queue);
2771
2772	flush_workqueue(md->wq);
2773
2774	/*
2775	 * At this point no more requests are entering target request routines.
2776	 * We call dm_wait_for_completion to wait for all existing requests
2777	 * to finish.
2778	 */
2779	r = dm_wait_for_completion(md, task_state);
2780	if (!r)
2781		set_bit(dmf_suspended_flag, &md->flags);
2782
2783	if (noflush)
2784		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2785	if (map)
2786		synchronize_srcu(&md->io_barrier);
2787
2788	/* were we interrupted ? */
2789	if (r < 0) {
2790		dm_queue_flush(md);
2791
2792		if (dm_request_based(md))
2793			dm_start_queue(md->queue);
2794
2795		unlock_fs(md);
2796		dm_table_presuspend_undo_targets(map);
2797		/* pushback list is already flushed, so skip flush */
2798	}
2799
2800	return r;
2801}
2802
2803/*
2804 * We need to be able to change a mapping table under a mounted
2805 * filesystem.  For example we might want to move some data in
2806 * the background.  Before the table can be swapped with
2807 * dm_bind_table, dm_suspend must be called to flush any in
2808 * flight bios and ensure that any further io gets deferred.
2809 */
2810/*
2811 * Suspend mechanism in request-based dm.
2812 *
2813 * 1. Flush all I/Os by lock_fs() if needed.
2814 * 2. Stop dispatching any I/O by stopping the request_queue.
2815 * 3. Wait for all in-flight I/Os to be completed or requeued.
2816 *
2817 * To abort suspend, start the request_queue.
2818 */
2819int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2820{
2821	struct dm_table *map = NULL;
2822	int r = 0;
2823
2824retry:
2825	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2826
2827	if (dm_suspended_md(md)) {
2828		r = -EINVAL;
2829		goto out_unlock;
2830	}
2831
2832	if (dm_suspended_internally_md(md)) {
2833		/* already internally suspended, wait for internal resume */
2834		mutex_unlock(&md->suspend_lock);
2835		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2836		if (r)
2837			return r;
2838		goto retry;
2839	}
2840
2841	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2842	if (!map) {
2843		/* avoid deadlock with fs/namespace.c:do_mount() */
2844		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2845	}
2846
2847	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2848	if (r)
2849		goto out_unlock;
2850
2851	set_bit(DMF_POST_SUSPENDING, &md->flags);
2852	dm_table_postsuspend_targets(map);
2853	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2854
2855out_unlock:
2856	mutex_unlock(&md->suspend_lock);
2857	return r;
2858}
2859
2860static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2861{
2862	if (map) {
2863		int r = dm_table_resume_targets(map);
2864
2865		if (r)
2866			return r;
2867	}
2868
2869	dm_queue_flush(md);
2870
2871	/*
2872	 * Flushing deferred I/Os must be done after targets are resumed
2873	 * so that mapping of targets can work correctly.
2874	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2875	 */
2876	if (dm_request_based(md))
2877		dm_start_queue(md->queue);
2878
2879	unlock_fs(md);
2880
2881	return 0;
2882}
2883
2884int dm_resume(struct mapped_device *md)
2885{
2886	int r;
2887	struct dm_table *map = NULL;
2888
2889retry:
2890	r = -EINVAL;
2891	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2892
2893	if (!dm_suspended_md(md))
2894		goto out;
2895
2896	if (dm_suspended_internally_md(md)) {
2897		/* already internally suspended, wait for internal resume */
2898		mutex_unlock(&md->suspend_lock);
2899		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2900		if (r)
2901			return r;
2902		goto retry;
2903	}
2904
2905	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2906	if (!map || !dm_table_get_size(map))
2907		goto out;
2908
2909	r = __dm_resume(md, map);
2910	if (r)
2911		goto out;
2912
2913	clear_bit(DMF_SUSPENDED, &md->flags);
2914out:
2915	mutex_unlock(&md->suspend_lock);
2916
2917	return r;
2918}
2919
2920/*
2921 * Internal suspend/resume works like userspace-driven suspend. It waits
2922 * until all bios finish and prevents issuing new bios to the target drivers.
2923 * It may be used only from the kernel.
2924 */
2925
2926static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2927{
2928	struct dm_table *map = NULL;
2929
2930	lockdep_assert_held(&md->suspend_lock);
2931
2932	if (md->internal_suspend_count++)
2933		return; /* nested internal suspend */
2934
2935	if (dm_suspended_md(md)) {
2936		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2937		return; /* nest suspend */
2938	}
2939
2940	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2941
2942	/*
2943	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2944	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2945	 * would require changing .presuspend to return an error -- avoid this
2946	 * until there is a need for more elaborate variants of internal suspend.
2947	 */
2948	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2949			    DMF_SUSPENDED_INTERNALLY);
2950
2951	set_bit(DMF_POST_SUSPENDING, &md->flags);
2952	dm_table_postsuspend_targets(map);
2953	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2954}
2955
2956static void __dm_internal_resume(struct mapped_device *md)
2957{
2958	int r;
2959	struct dm_table *map;
2960
2961	BUG_ON(!md->internal_suspend_count);
2962
2963	if (--md->internal_suspend_count)
2964		return; /* resume from nested internal suspend */
2965
2966	if (dm_suspended_md(md))
2967		goto done; /* resume from nested suspend */
2968
2969	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2970	r = __dm_resume(md, map);
2971	if (r) {
2972		/*
2973		 * If a preresume method of some target failed, we are in a
2974		 * tricky situation. We can't return an error to the caller. We
2975		 * can't fake success because then the "resume" and
2976		 * "postsuspend" methods would not be paired correctly, and it
2977		 * would break various targets, for example it would cause list
2978		 * corruption in the "origin" target.
2979		 *
2980		 * So, we fake normal suspend here, to make sure that the
2981		 * "resume" and "postsuspend" methods will be paired correctly.
2982		 */
2983		DMERR("Preresume method failed: %d", r);
2984		set_bit(DMF_SUSPENDED, &md->flags);
2985	}
2986done:
2987	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2988	smp_mb__after_atomic();
2989	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2990}
2991
2992void dm_internal_suspend_noflush(struct mapped_device *md)
2993{
2994	mutex_lock(&md->suspend_lock);
2995	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2996	mutex_unlock(&md->suspend_lock);
2997}
2998EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2999
3000void dm_internal_resume(struct mapped_device *md)
3001{
3002	mutex_lock(&md->suspend_lock);
3003	__dm_internal_resume(md);
3004	mutex_unlock(&md->suspend_lock);
3005}
3006EXPORT_SYMBOL_GPL(dm_internal_resume);
3007
3008/*
3009 * Fast variants of internal suspend/resume hold md->suspend_lock,
3010 * which prevents interaction with userspace-driven suspend.
3011 */
3012
3013void dm_internal_suspend_fast(struct mapped_device *md)
3014{
3015	mutex_lock(&md->suspend_lock);
3016	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3017		return;
3018
3019	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3020	synchronize_srcu(&md->io_barrier);
3021	flush_workqueue(md->wq);
3022	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3023}
3024EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3025
3026void dm_internal_resume_fast(struct mapped_device *md)
3027{
3028	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3029		goto done;
3030
3031	dm_queue_flush(md);
3032
3033done:
3034	mutex_unlock(&md->suspend_lock);
3035}
3036EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3037
3038/*
3039 *---------------------------------------------------------------
3040 * Event notification.
3041 *---------------------------------------------------------------
3042 */
3043int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3044		      unsigned int cookie, bool need_resize_uevent)
3045{
3046	int r;
3047	unsigned int noio_flag;
3048	char udev_cookie[DM_COOKIE_LENGTH];
3049	char *envp[3] = { NULL, NULL, NULL };
3050	char **envpp = envp;
3051	if (cookie) {
3052		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3053			 DM_COOKIE_ENV_VAR_NAME, cookie);
3054		*envpp++ = udev_cookie;
3055	}
3056	if (need_resize_uevent) {
3057		*envpp++ = "RESIZE=1";
3058	}
3059
3060	noio_flag = memalloc_noio_save();
3061
3062	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3063
3064	memalloc_noio_restore(noio_flag);
3065
3066	return r;
3067}
3068
3069uint32_t dm_next_uevent_seq(struct mapped_device *md)
3070{
3071	return atomic_add_return(1, &md->uevent_seq);
3072}
3073
3074uint32_t dm_get_event_nr(struct mapped_device *md)
3075{
3076	return atomic_read(&md->event_nr);
3077}
3078
3079int dm_wait_event(struct mapped_device *md, int event_nr)
3080{
3081	return wait_event_interruptible(md->eventq,
3082			(event_nr != atomic_read(&md->event_nr)));
3083}
3084
3085void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3086{
3087	unsigned long flags;
3088
3089	spin_lock_irqsave(&md->uevent_lock, flags);
3090	list_add(elist, &md->uevent_list);
3091	spin_unlock_irqrestore(&md->uevent_lock, flags);
3092}
3093
3094/*
3095 * The gendisk is only valid as long as you have a reference
3096 * count on 'md'.
3097 */
3098struct gendisk *dm_disk(struct mapped_device *md)
3099{
3100	return md->disk;
3101}
3102EXPORT_SYMBOL_GPL(dm_disk);
3103
3104struct kobject *dm_kobject(struct mapped_device *md)
3105{
3106	return &md->kobj_holder.kobj;
3107}
3108
3109struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3110{
3111	struct mapped_device *md;
3112
3113	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3114
3115	spin_lock(&_minor_lock);
3116	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3117		md = NULL;
3118		goto out;
3119	}
3120	dm_get(md);
3121out:
3122	spin_unlock(&_minor_lock);
3123
3124	return md;
3125}
3126
3127int dm_suspended_md(struct mapped_device *md)
3128{
3129	return test_bit(DMF_SUSPENDED, &md->flags);
3130}
3131
3132static int dm_post_suspending_md(struct mapped_device *md)
3133{
3134	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3135}
3136
3137int dm_suspended_internally_md(struct mapped_device *md)
3138{
3139	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3140}
3141
3142int dm_test_deferred_remove_flag(struct mapped_device *md)
3143{
3144	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3145}
3146
3147int dm_suspended(struct dm_target *ti)
3148{
3149	return dm_suspended_md(ti->table->md);
3150}
3151EXPORT_SYMBOL_GPL(dm_suspended);
3152
3153int dm_post_suspending(struct dm_target *ti)
3154{
3155	return dm_post_suspending_md(ti->table->md);
3156}
3157EXPORT_SYMBOL_GPL(dm_post_suspending);
3158
3159int dm_noflush_suspending(struct dm_target *ti)
3160{
3161	return __noflush_suspending(ti->table->md);
3162}
3163EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3164
3165void dm_free_md_mempools(struct dm_md_mempools *pools)
3166{
3167	if (!pools)
3168		return;
3169
3170	bioset_exit(&pools->bs);
3171	bioset_exit(&pools->io_bs);
3172
3173	kfree(pools);
3174}
3175
3176struct dm_pr {
3177	u64	old_key;
3178	u64	new_key;
3179	u32	flags;
3180	bool	abort;
3181	bool	fail_early;
3182	int	ret;
3183	enum pr_type type;
3184	struct pr_keys *read_keys;
3185	struct pr_held_reservation *rsv;
3186};
3187
3188static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3189		      struct dm_pr *pr)
3190{
3191	struct mapped_device *md = bdev->bd_disk->private_data;
3192	struct dm_table *table;
3193	struct dm_target *ti;
3194	int ret = -ENOTTY, srcu_idx;
3195
3196	table = dm_get_live_table(md, &srcu_idx);
3197	if (!table || !dm_table_get_size(table))
3198		goto out;
3199
3200	/* We only support devices that have a single target */
3201	if (table->num_targets != 1)
3202		goto out;
3203	ti = dm_table_get_target(table, 0);
3204
3205	if (dm_suspended_md(md)) {
3206		ret = -EAGAIN;
3207		goto out;
3208	}
3209
3210	ret = -EINVAL;
3211	if (!ti->type->iterate_devices)
3212		goto out;
3213
3214	ti->type->iterate_devices(ti, fn, pr);
3215	ret = 0;
3216out:
3217	dm_put_live_table(md, srcu_idx);
3218	return ret;
3219}
3220
3221/*
3222 * For register / unregister we need to manually call out to every path.
3223 */
3224static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3225			    sector_t start, sector_t len, void *data)
3226{
3227	struct dm_pr *pr = data;
3228	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3229	int ret;
3230
3231	if (!ops || !ops->pr_register) {
3232		pr->ret = -EOPNOTSUPP;
3233		return -1;
3234	}
3235
3236	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3237	if (!ret)
3238		return 0;
3239
3240	if (!pr->ret)
3241		pr->ret = ret;
3242
3243	if (pr->fail_early)
3244		return -1;
3245
3246	return 0;
3247}
3248
3249static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3250			  u32 flags)
3251{
3252	struct dm_pr pr = {
3253		.old_key	= old_key,
3254		.new_key	= new_key,
3255		.flags		= flags,
3256		.fail_early	= true,
3257		.ret		= 0,
3258	};
3259	int ret;
3260
3261	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3262	if (ret) {
3263		/* Didn't even get to register a path */
3264		return ret;
3265	}
3266
3267	if (!pr.ret)
3268		return 0;
3269	ret = pr.ret;
3270
3271	if (!new_key)
3272		return ret;
3273
3274	/* unregister all paths if we failed to register any path */
3275	pr.old_key = new_key;
3276	pr.new_key = 0;
3277	pr.flags = 0;
3278	pr.fail_early = false;
3279	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3280	return ret;
3281}
3282
3283
3284static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3285			   sector_t start, sector_t len, void *data)
3286{
3287	struct dm_pr *pr = data;
3288	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3289
3290	if (!ops || !ops->pr_reserve) {
3291		pr->ret = -EOPNOTSUPP;
3292		return -1;
3293	}
3294
3295	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3296	if (!pr->ret)
3297		return -1;
3298
3299	return 0;
3300}
3301
3302static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3303			 u32 flags)
3304{
3305	struct dm_pr pr = {
3306		.old_key	= key,
3307		.flags		= flags,
3308		.type		= type,
3309		.fail_early	= false,
3310		.ret		= 0,
3311	};
3312	int ret;
3313
3314	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3315	if (ret)
3316		return ret;
3317
3318	return pr.ret;
3319}
3320
3321/*
3322 * If there is a non-All Registrants type of reservation, the release must be
3323 * sent down the holding path. For the cases where there is no reservation or
3324 * the path is not the holder the device will also return success, so we must
3325 * try each path to make sure we got the correct path.
3326 */
3327static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3328			   sector_t start, sector_t len, void *data)
3329{
3330	struct dm_pr *pr = data;
3331	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3332
3333	if (!ops || !ops->pr_release) {
3334		pr->ret = -EOPNOTSUPP;
3335		return -1;
3336	}
3337
3338	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3339	if (pr->ret)
3340		return -1;
3341
3342	return 0;
3343}
3344
3345static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3346{
3347	struct dm_pr pr = {
3348		.old_key	= key,
3349		.type		= type,
3350		.fail_early	= false,
3351	};
3352	int ret;
3353
3354	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3355	if (ret)
3356		return ret;
3357
3358	return pr.ret;
3359}
3360
3361static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3362			   sector_t start, sector_t len, void *data)
3363{
3364	struct dm_pr *pr = data;
3365	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3366
3367	if (!ops || !ops->pr_preempt) {
3368		pr->ret = -EOPNOTSUPP;
3369		return -1;
3370	}
3371
3372	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3373				  pr->abort);
3374	if (!pr->ret)
3375		return -1;
3376
3377	return 0;
3378}
3379
3380static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3381			 enum pr_type type, bool abort)
3382{
3383	struct dm_pr pr = {
3384		.new_key	= new_key,
3385		.old_key	= old_key,
3386		.type		= type,
3387		.fail_early	= false,
3388	};
3389	int ret;
3390
3391	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3392	if (ret)
3393		return ret;
3394
3395	return pr.ret;
3396}
3397
3398static int dm_pr_clear(struct block_device *bdev, u64 key)
3399{
3400	struct mapped_device *md = bdev->bd_disk->private_data;
3401	const struct pr_ops *ops;
3402	int r, srcu_idx;
3403
3404	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3405	if (r < 0)
3406		goto out;
3407
3408	ops = bdev->bd_disk->fops->pr_ops;
3409	if (ops && ops->pr_clear)
3410		r = ops->pr_clear(bdev, key);
3411	else
3412		r = -EOPNOTSUPP;
3413out:
3414	dm_unprepare_ioctl(md, srcu_idx);
3415	return r;
3416}
3417
3418static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3419			     sector_t start, sector_t len, void *data)
3420{
3421	struct dm_pr *pr = data;
3422	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3423
3424	if (!ops || !ops->pr_read_keys) {
3425		pr->ret = -EOPNOTSUPP;
3426		return -1;
3427	}
3428
3429	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3430	if (!pr->ret)
3431		return -1;
3432
3433	return 0;
3434}
3435
3436static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3437{
3438	struct dm_pr pr = {
3439		.read_keys = keys,
3440	};
3441	int ret;
3442
3443	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3444	if (ret)
3445		return ret;
3446
3447	return pr.ret;
3448}
3449
3450static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3451				    sector_t start, sector_t len, void *data)
3452{
3453	struct dm_pr *pr = data;
3454	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3455
3456	if (!ops || !ops->pr_read_reservation) {
3457		pr->ret = -EOPNOTSUPP;
3458		return -1;
3459	}
3460
3461	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3462	if (!pr->ret)
3463		return -1;
3464
3465	return 0;
3466}
3467
3468static int dm_pr_read_reservation(struct block_device *bdev,
3469				  struct pr_held_reservation *rsv)
3470{
3471	struct dm_pr pr = {
3472		.rsv = rsv,
3473	};
3474	int ret;
3475
3476	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3477	if (ret)
3478		return ret;
3479
3480	return pr.ret;
3481}
3482
3483static const struct pr_ops dm_pr_ops = {
3484	.pr_register	= dm_pr_register,
3485	.pr_reserve	= dm_pr_reserve,
3486	.pr_release	= dm_pr_release,
3487	.pr_preempt	= dm_pr_preempt,
3488	.pr_clear	= dm_pr_clear,
3489	.pr_read_keys	= dm_pr_read_keys,
3490	.pr_read_reservation = dm_pr_read_reservation,
3491};
3492
3493static const struct block_device_operations dm_blk_dops = {
3494	.submit_bio = dm_submit_bio,
3495	.poll_bio = dm_poll_bio,
3496	.open = dm_blk_open,
3497	.release = dm_blk_close,
3498	.ioctl = dm_blk_ioctl,
3499	.getgeo = dm_blk_getgeo,
3500	.report_zones = dm_blk_report_zones,
3501	.pr_ops = &dm_pr_ops,
3502	.owner = THIS_MODULE
3503};
3504
3505static const struct block_device_operations dm_rq_blk_dops = {
3506	.open = dm_blk_open,
3507	.release = dm_blk_close,
3508	.ioctl = dm_blk_ioctl,
3509	.getgeo = dm_blk_getgeo,
3510	.pr_ops = &dm_pr_ops,
3511	.owner = THIS_MODULE
3512};
3513
3514static const struct dax_operations dm_dax_ops = {
3515	.direct_access = dm_dax_direct_access,
3516	.zero_page_range = dm_dax_zero_page_range,
3517	.recovery_write = dm_dax_recovery_write,
3518};
3519
3520/*
3521 * module hooks
3522 */
3523module_init(dm_init);
3524module_exit(dm_exit);
3525
3526module_param(major, uint, 0);
3527MODULE_PARM_DESC(major, "The major number of the device mapper");
3528
3529module_param(reserved_bio_based_ios, uint, 0644);
3530MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3531
3532module_param(dm_numa_node, int, 0644);
3533MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3534
3535module_param(swap_bios, int, 0644);
3536MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3537
3538MODULE_DESCRIPTION(DM_NAME " driver");
3539MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3540MODULE_LICENSE("GPL");