Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include "dm-core.h"
  10#include "dm-rq.h"
  11#include "dm-uevent.h"
  12#include "dm-ima.h"
  13
  14#include <linux/init.h>
  15#include <linux/module.h>
  16#include <linux/mutex.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/signal.h>
  19#include <linux/blkpg.h>
  20#include <linux/bio.h>
  21#include <linux/mempool.h>
  22#include <linux/dax.h>
  23#include <linux/slab.h>
  24#include <linux/idr.h>
  25#include <linux/uio.h>
  26#include <linux/hdreg.h>
  27#include <linux/delay.h>
  28#include <linux/wait.h>
  29#include <linux/pr.h>
  30#include <linux/refcount.h>
  31#include <linux/part_stat.h>
  32#include <linux/blk-crypto.h>
  33#include <linux/blk-crypto-profile.h>
  34
  35#define DM_MSG_PREFIX "core"
  36
  37/*
  38 * Cookies are numeric values sent with CHANGE and REMOVE
  39 * uevents while resuming, removing or renaming the device.
  40 */
  41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  42#define DM_COOKIE_LENGTH 24
  43
  44/*
  45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
  46 * dm_io into one list, and reuse bio->bi_private as the list head. Before
  47 * ending this fs bio, we will recover its ->bi_private.
  48 */
  49#define REQ_DM_POLL_LIST	REQ_DRV
  50
  51static const char *_name = DM_NAME;
  52
  53static unsigned int major;
  54static unsigned int _major;
  55
  56static DEFINE_IDR(_minor_idr);
  57
  58static DEFINE_SPINLOCK(_minor_lock);
  59
  60static void do_deferred_remove(struct work_struct *w);
  61
  62static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  63
  64static struct workqueue_struct *deferred_remove_workqueue;
  65
  66atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  67DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  68
  69void dm_issue_global_event(void)
  70{
  71	atomic_inc(&dm_global_event_nr);
  72	wake_up(&dm_global_eventq);
  73}
  74
  75DEFINE_STATIC_KEY_FALSE(stats_enabled);
  76DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
  77DEFINE_STATIC_KEY_FALSE(zoned_enabled);
  78
  79/*
  80 * One of these is allocated (on-stack) per original bio.
  81 */
  82struct clone_info {
  83	struct dm_table *map;
  84	struct bio *bio;
  85	struct dm_io *io;
  86	sector_t sector;
  87	unsigned int sector_count;
  88	bool is_abnormal_io:1;
  89	bool submit_as_polled:1;
  90};
  91
  92static inline struct dm_target_io *clone_to_tio(struct bio *clone)
  93{
  94	return container_of(clone, struct dm_target_io, clone);
  95}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96
  97void *dm_per_bio_data(struct bio *bio, size_t data_size)
  98{
  99	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
 100		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
 101	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
 
 102}
 103EXPORT_SYMBOL_GPL(dm_per_bio_data);
 104
 105struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 106{
 107	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 108
 109	if (io->magic == DM_IO_MAGIC)
 110		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
 111	BUG_ON(io->magic != DM_TIO_MAGIC);
 112	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
 113}
 114EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 115
 116unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
 117{
 118	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 119}
 120EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 121
 122#define MINOR_ALLOCED ((void *)-1)
 123
 
 
 
 
 
 
 
 
 
 
 
 
 124#define DM_NUMA_NODE NUMA_NO_NODE
 125static int dm_numa_node = DM_NUMA_NODE;
 126
 127#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 128static int swap_bios = DEFAULT_SWAP_BIOS;
 129static int get_swap_bios(void)
 130{
 131	int latch = READ_ONCE(swap_bios);
 132
 133	if (unlikely(latch <= 0))
 134		latch = DEFAULT_SWAP_BIOS;
 135	return latch;
 136}
 137
 138struct table_device {
 139	struct list_head list;
 140	refcount_t count;
 141	struct dm_dev dm_dev;
 142};
 143
 
 
 
 144/*
 145 * Bio-based DM's mempools' reserved IOs set by the user.
 146 */
 147#define RESERVED_BIO_BASED_IOS		16
 148static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 149
 150static int __dm_get_module_param_int(int *module_param, int min, int max)
 151{
 152	int param = READ_ONCE(*module_param);
 153	int modified_param = 0;
 154	bool modified = true;
 155
 156	if (param < min)
 157		modified_param = min;
 158	else if (param > max)
 159		modified_param = max;
 160	else
 161		modified = false;
 162
 163	if (modified) {
 164		(void)cmpxchg(module_param, param, modified_param);
 165		param = modified_param;
 166	}
 167
 168	return param;
 169}
 170
 171unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
 
 172{
 173	unsigned int param = READ_ONCE(*module_param);
 174	unsigned int modified_param = 0;
 175
 176	if (!param)
 177		modified_param = def;
 178	else if (param > max)
 179		modified_param = max;
 180
 181	if (modified_param) {
 182		(void)cmpxchg(module_param, param, modified_param);
 183		param = modified_param;
 184	}
 185
 186	return param;
 187}
 188
 189unsigned int dm_get_reserved_bio_based_ios(void)
 190{
 191	return __dm_get_module_param(&reserved_bio_based_ios,
 192				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 193}
 194EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 195
 196static unsigned int dm_get_numa_node(void)
 197{
 198	return __dm_get_module_param_int(&dm_numa_node,
 199					 DM_NUMA_NODE, num_online_nodes() - 1);
 200}
 201
 202static int __init local_init(void)
 203{
 204	int r;
 
 
 
 
 
 
 
 
 
 205
 206	r = dm_uevent_init();
 207	if (r)
 208		return r;
 209
 210	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
 211	if (!deferred_remove_workqueue) {
 212		r = -ENOMEM;
 213		goto out_uevent_exit;
 214	}
 215
 216	_major = major;
 217	r = register_blkdev(_major, _name);
 218	if (r < 0)
 219		goto out_free_workqueue;
 220
 221	if (!_major)
 222		_major = r;
 223
 224	return 0;
 225
 226out_free_workqueue:
 227	destroy_workqueue(deferred_remove_workqueue);
 228out_uevent_exit:
 229	dm_uevent_exit();
 
 
 
 
 230
 231	return r;
 232}
 233
 234static void local_exit(void)
 235{
 
 236	destroy_workqueue(deferred_remove_workqueue);
 237
 
 
 238	unregister_blkdev(_major, _name);
 239	dm_uevent_exit();
 240
 241	_major = 0;
 242
 243	DMINFO("cleaned up");
 244}
 245
 246static int (*_inits[])(void) __initdata = {
 247	local_init,
 248	dm_target_init,
 249	dm_linear_init,
 250	dm_stripe_init,
 251	dm_io_init,
 252	dm_kcopyd_init,
 253	dm_interface_init,
 254	dm_statistics_init,
 255};
 256
 257static void (*_exits[])(void) = {
 258	local_exit,
 259	dm_target_exit,
 260	dm_linear_exit,
 261	dm_stripe_exit,
 262	dm_io_exit,
 263	dm_kcopyd_exit,
 264	dm_interface_exit,
 265	dm_statistics_exit,
 266};
 267
 268static int __init dm_init(void)
 269{
 270	const int count = ARRAY_SIZE(_inits);
 271	int r, i;
 272
 273#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
 274	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
 275	       " Duplicate IMA measurements will not be recorded in the IMA log.");
 276#endif
 277
 278	for (i = 0; i < count; i++) {
 279		r = _inits[i]();
 280		if (r)
 281			goto bad;
 282	}
 283
 284	return 0;
 285bad:
 
 286	while (i--)
 287		_exits[i]();
 288
 289	return r;
 290}
 291
 292static void __exit dm_exit(void)
 293{
 294	int i = ARRAY_SIZE(_exits);
 295
 296	while (i--)
 297		_exits[i]();
 298
 299	/*
 300	 * Should be empty by this point.
 301	 */
 302	idr_destroy(&_minor_idr);
 303}
 304
 305/*
 306 * Block device functions
 307 */
 308int dm_deleting_md(struct mapped_device *md)
 309{
 310	return test_bit(DMF_DELETING, &md->flags);
 311}
 312
 313static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
 314{
 315	struct mapped_device *md;
 316
 317	spin_lock(&_minor_lock);
 318
 319	md = disk->private_data;
 320	if (!md)
 321		goto out;
 322
 323	if (test_bit(DMF_FREEING, &md->flags) ||
 324	    dm_deleting_md(md)) {
 325		md = NULL;
 326		goto out;
 327	}
 328
 329	dm_get(md);
 330	atomic_inc(&md->open_count);
 331out:
 332	spin_unlock(&_minor_lock);
 333
 334	return md ? 0 : -ENXIO;
 335}
 336
 337static void dm_blk_close(struct gendisk *disk)
 338{
 339	struct mapped_device *md;
 340
 341	spin_lock(&_minor_lock);
 342
 343	md = disk->private_data;
 344	if (WARN_ON(!md))
 345		goto out;
 346
 347	if (atomic_dec_and_test(&md->open_count) &&
 348	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 349		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 350
 351	dm_put(md);
 352out:
 353	spin_unlock(&_minor_lock);
 354}
 355
 356int dm_open_count(struct mapped_device *md)
 357{
 358	return atomic_read(&md->open_count);
 359}
 360
 361/*
 362 * Guarantees nothing is using the device before it's deleted.
 363 */
 364int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 365{
 366	int r = 0;
 367
 368	spin_lock(&_minor_lock);
 369
 370	if (dm_open_count(md)) {
 371		r = -EBUSY;
 372		if (mark_deferred)
 373			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 374	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 375		r = -EEXIST;
 376	else
 377		set_bit(DMF_DELETING, &md->flags);
 378
 379	spin_unlock(&_minor_lock);
 380
 381	return r;
 382}
 383
 384int dm_cancel_deferred_remove(struct mapped_device *md)
 385{
 386	int r = 0;
 387
 388	spin_lock(&_minor_lock);
 389
 390	if (test_bit(DMF_DELETING, &md->flags))
 391		r = -EBUSY;
 392	else
 393		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 394
 395	spin_unlock(&_minor_lock);
 396
 397	return r;
 398}
 399
 400static void do_deferred_remove(struct work_struct *w)
 401{
 402	dm_deferred_remove();
 403}
 404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 405static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 406{
 407	struct mapped_device *md = bdev->bd_disk->private_data;
 408
 409	return dm_get_geometry(md, geo);
 410}
 411
 412static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 413			    struct block_device **bdev)
 
 414{
 415	struct dm_target *ti;
 416	struct dm_table *map;
 417	int r;
 418
 419retry:
 420	r = -ENOTTY;
 421	map = dm_get_live_table(md, srcu_idx);
 422	if (!map || !dm_table_get_size(map))
 423		return r;
 424
 425	/* We only support devices that have a single target */
 426	if (map->num_targets != 1)
 427		return r;
 428
 429	ti = dm_table_get_target(map, 0);
 430	if (!ti->type->prepare_ioctl)
 431		return r;
 432
 433	if (dm_suspended_md(md))
 434		return -EAGAIN;
 435
 436	r = ti->type->prepare_ioctl(ti, bdev);
 437	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 438		dm_put_live_table(md, *srcu_idx);
 439		fsleep(10000);
 440		goto retry;
 441	}
 442
 443	return r;
 444}
 445
 446static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 
 447{
 448	dm_put_live_table(md, srcu_idx);
 449}
 450
 451static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
 452			unsigned int cmd, unsigned long arg)
 453{
 454	struct mapped_device *md = bdev->bd_disk->private_data;
 455	int r, srcu_idx;
 456
 457	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 458	if (r < 0)
 459		goto out;
 460
 461	if (r > 0) {
 462		/*
 463		 * Target determined this ioctl is being issued against a
 464		 * subset of the parent bdev; require extra privileges.
 465		 */
 466		if (!capable(CAP_SYS_RAWIO)) {
 467			DMDEBUG_LIMIT(
 468	"%s: sending ioctl %x to DM device without required privilege.",
 469				current->comm, cmd);
 470			r = -ENOIOCTLCMD;
 471			goto out;
 472		}
 473	}
 474
 475	if (!bdev->bd_disk->fops->ioctl)
 476		r = -ENOTTY;
 477	else
 478		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 479out:
 480	dm_unprepare_ioctl(md, srcu_idx);
 481	return r;
 482}
 483
 484u64 dm_start_time_ns_from_clone(struct bio *bio)
 485{
 486	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
 487}
 488EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 489
 490static inline bool bio_is_flush_with_data(struct bio *bio)
 491{
 492	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
 493}
 494
 495static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
 496{
 497	/*
 498	 * If REQ_PREFLUSH set, don't account payload, it will be
 499	 * submitted (and accounted) after this flush completes.
 500	 */
 501	if (bio_is_flush_with_data(bio))
 502		return 0;
 503	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 504		return io->sectors;
 505	return bio_sectors(bio);
 506}
 507
 508static void dm_io_acct(struct dm_io *io, bool end)
 509{
 510	struct bio *bio = io->orig_bio;
 511
 512	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
 513		if (!end)
 514			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
 515					   io->start_time);
 516		else
 517			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
 518					 dm_io_sectors(io, bio),
 519					 io->start_time);
 520	}
 521
 522	if (static_branch_unlikely(&stats_enabled) &&
 523	    unlikely(dm_stats_used(&io->md->stats))) {
 524		sector_t sector;
 525
 526		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 527			sector = bio_end_sector(bio) - io->sector_offset;
 528		else
 529			sector = bio->bi_iter.bi_sector;
 530
 531		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
 532				    sector, dm_io_sectors(io, bio),
 533				    end, io->start_time, &io->stats_aux);
 534	}
 535}
 536
 537static void __dm_start_io_acct(struct dm_io *io)
 538{
 539	dm_io_acct(io, false);
 540}
 541
 542static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
 543{
 544	/*
 545	 * Ensure IO accounting is only ever started once.
 546	 */
 547	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 548		return;
 549
 550	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
 551	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
 552		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 553	} else {
 554		unsigned long flags;
 555		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
 556		spin_lock_irqsave(&io->lock, flags);
 557		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
 558			spin_unlock_irqrestore(&io->lock, flags);
 559			return;
 560		}
 561		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 562		spin_unlock_irqrestore(&io->lock, flags);
 563	}
 564
 565	__dm_start_io_acct(io);
 566}
 567
 568static void dm_end_io_acct(struct dm_io *io)
 569{
 570	dm_io_acct(io, true);
 571}
 572
 573static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
 574{
 575	struct dm_io *io;
 576	struct dm_target_io *tio;
 577	struct bio *clone;
 578
 579	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
 580	if (unlikely(!clone))
 581		return NULL;
 582	tio = clone_to_tio(clone);
 583	tio->flags = 0;
 584	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
 585	tio->io = NULL;
 586
 587	io = container_of(tio, struct dm_io, tio);
 588	io->magic = DM_IO_MAGIC;
 589	io->status = BLK_STS_OK;
 590
 591	/* one ref is for submission, the other is for completion */
 592	atomic_set(&io->io_count, 2);
 593	this_cpu_inc(*md->pending_io);
 594	io->orig_bio = bio;
 595	io->md = md;
 596	spin_lock_init(&io->lock);
 597	io->start_time = jiffies;
 598	io->flags = 0;
 599	if (blk_queue_io_stat(md->queue))
 600		dm_io_set_flag(io, DM_IO_BLK_STAT);
 601
 602	if (static_branch_unlikely(&stats_enabled) &&
 603	    unlikely(dm_stats_used(&md->stats)))
 604		dm_stats_record_start(&md->stats, &io->stats_aux);
 605
 606	return io;
 607}
 608
 609static void free_io(struct dm_io *io)
 610{
 611	bio_put(&io->tio.clone);
 612}
 613
 614static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 615			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
 616{
 617	struct mapped_device *md = ci->io->md;
 618	struct dm_target_io *tio;
 619	struct bio *clone;
 620
 621	if (!ci->io->tio.io) {
 622		/* the dm_target_io embedded in ci->io is available */
 623		tio = &ci->io->tio;
 624		/* alloc_io() already initialized embedded clone */
 625		clone = &tio->clone;
 626	} else {
 627		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
 628					&md->mempools->bs);
 629		if (!clone)
 630			return NULL;
 631
 632		/* REQ_DM_POLL_LIST shouldn't be inherited */
 633		clone->bi_opf &= ~REQ_DM_POLL_LIST;
 634
 635		tio = clone_to_tio(clone);
 636		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
 637	}
 638
 639	tio->magic = DM_TIO_MAGIC;
 640	tio->io = ci->io;
 641	tio->ti = ti;
 642	tio->target_bio_nr = target_bio_nr;
 643	tio->len_ptr = len;
 644	tio->old_sector = 0;
 645
 646	/* Set default bdev, but target must bio_set_dev() before issuing IO */
 647	clone->bi_bdev = md->disk->part0;
 648	if (unlikely(ti->needs_bio_set_dev))
 649		bio_set_dev(clone, md->disk->part0);
 650
 651	if (len) {
 652		clone->bi_iter.bi_size = to_bytes(*len);
 653		if (bio_integrity(clone))
 654			bio_integrity_trim(clone);
 655	}
 
 656
 657	return clone;
 
 
 
 658}
 659
 660static void free_tio(struct bio *clone)
 661{
 662	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
 663		return;
 664	bio_put(clone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665}
 666
 667/*
 668 * Add the bio to the list of deferred io.
 669 */
 670static void queue_io(struct mapped_device *md, struct bio *bio)
 671{
 672	unsigned long flags;
 673
 674	spin_lock_irqsave(&md->deferred_lock, flags);
 675	bio_list_add(&md->deferred, bio);
 676	spin_unlock_irqrestore(&md->deferred_lock, flags);
 677	queue_work(md->wq, &md->work);
 678}
 679
 680/*
 681 * Everyone (including functions in this file), should use this
 682 * function to access the md->map field, and make sure they call
 683 * dm_put_live_table() when finished.
 684 */
 685struct dm_table *dm_get_live_table(struct mapped_device *md,
 686				   int *srcu_idx) __acquires(md->io_barrier)
 687{
 688	*srcu_idx = srcu_read_lock(&md->io_barrier);
 689
 690	return srcu_dereference(md->map, &md->io_barrier);
 691}
 692
 693void dm_put_live_table(struct mapped_device *md,
 694		       int srcu_idx) __releases(md->io_barrier)
 695{
 696	srcu_read_unlock(&md->io_barrier, srcu_idx);
 697}
 698
 699void dm_sync_table(struct mapped_device *md)
 700{
 701	synchronize_srcu(&md->io_barrier);
 702	synchronize_rcu_expedited();
 703}
 704
 705/*
 706 * A fast alternative to dm_get_live_table/dm_put_live_table.
 707 * The caller must not block between these two functions.
 708 */
 709static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 710{
 711	rcu_read_lock();
 712	return rcu_dereference(md->map);
 713}
 714
 715static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 716{
 717	rcu_read_unlock();
 718}
 719
 720static char *_dm_claim_ptr = "I belong to device-mapper";
 721
 722/*
 723 * Open a table device so we can use it as a map destination.
 724 */
 725static struct table_device *open_table_device(struct mapped_device *md,
 726		dev_t dev, blk_mode_t mode)
 727{
 728	struct table_device *td;
 729	struct bdev_handle *bdev_handle;
 730	u64 part_off;
 731	int r;
 732
 733	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 734	if (!td)
 735		return ERR_PTR(-ENOMEM);
 736	refcount_set(&td->count, 1);
 737
 738	bdev_handle = bdev_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
 739	if (IS_ERR(bdev_handle)) {
 740		r = PTR_ERR(bdev_handle);
 741		goto out_free_td;
 742	}
 743
 744	/*
 745	 * We can be called before the dm disk is added.  In that case we can't
 746	 * register the holder relation here.  It will be done once add_disk was
 747	 * called.
 748	 */
 749	if (md->disk->slave_dir) {
 750		r = bd_link_disk_holder(bdev_handle->bdev, md->disk);
 751		if (r)
 752			goto out_blkdev_put;
 753	}
 754
 755	td->dm_dev.mode = mode;
 756	td->dm_dev.bdev = bdev_handle->bdev;
 757	td->dm_dev.bdev_handle = bdev_handle;
 758	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev_handle->bdev, &part_off,
 759						NULL, NULL);
 760	format_dev_t(td->dm_dev.name, dev);
 761	list_add(&td->list, &md->table_devices);
 762	return td;
 763
 764out_blkdev_put:
 765	bdev_release(bdev_handle);
 766out_free_td:
 767	kfree(td);
 768	return ERR_PTR(r);
 769}
 770
 771/*
 772 * Close a table device that we've been using.
 773 */
 774static void close_table_device(struct table_device *td, struct mapped_device *md)
 775{
 776	if (md->disk->slave_dir)
 777		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
 778	bdev_release(td->dm_dev.bdev_handle);
 
 
 779	put_dax(td->dm_dev.dax_dev);
 780	list_del(&td->list);
 781	kfree(td);
 782}
 783
 784static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 785					      blk_mode_t mode)
 786{
 787	struct table_device *td;
 788
 789	list_for_each_entry(td, l, list)
 790		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 791			return td;
 792
 793	return NULL;
 794}
 795
 796int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
 797			struct dm_dev **result)
 798{
 799	struct table_device *td;
 800
 801	mutex_lock(&md->table_devices_lock);
 802	td = find_table_device(&md->table_devices, dev, mode);
 803	if (!td) {
 804		td = open_table_device(md, dev, mode);
 805		if (IS_ERR(td)) {
 806			mutex_unlock(&md->table_devices_lock);
 807			return PTR_ERR(td);
 808		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809	} else {
 810		refcount_inc(&td->count);
 811	}
 812	mutex_unlock(&md->table_devices_lock);
 813
 814	*result = &td->dm_dev;
 815	return 0;
 816}
 
 817
 818void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 819{
 820	struct table_device *td = container_of(d, struct table_device, dm_dev);
 821
 822	mutex_lock(&md->table_devices_lock);
 823	if (refcount_dec_and_test(&td->count))
 824		close_table_device(td, md);
 
 
 
 825	mutex_unlock(&md->table_devices_lock);
 826}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827
 828/*
 829 * Get the geometry associated with a dm device
 830 */
 831int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 832{
 833	*geo = md->geometry;
 834
 835	return 0;
 836}
 837
 838/*
 839 * Set the geometry of a device.
 840 */
 841int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 842{
 843	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 844
 845	if (geo->start > sz) {
 846		DMERR("Start sector is beyond the geometry limits.");
 847		return -EINVAL;
 848	}
 849
 850	md->geometry = *geo;
 851
 852	return 0;
 853}
 854
 855static int __noflush_suspending(struct mapped_device *md)
 856{
 857	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 858}
 859
 860static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
 861{
 862	struct mapped_device *md = io->md;
 863
 864	if (first_stage) {
 865		struct dm_io *next = md->requeue_list;
 866
 867		md->requeue_list = io;
 868		io->next = next;
 869	} else {
 870		bio_list_add_head(&md->deferred, io->orig_bio);
 871	}
 872}
 873
 874static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
 875{
 876	if (first_stage)
 877		queue_work(md->wq, &md->requeue_work);
 878	else
 879		queue_work(md->wq, &md->work);
 880}
 881
 882/*
 883 * Return true if the dm_io's original bio is requeued.
 884 * io->status is updated with error if requeue disallowed.
 885 */
 886static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
 887{
 888	struct bio *bio = io->orig_bio;
 889	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
 890	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
 891				     (bio->bi_opf & REQ_POLLED));
 892	struct mapped_device *md = io->md;
 893	bool requeued = false;
 894
 895	if (handle_requeue || handle_polled_eagain) {
 896		unsigned long flags;
 
 
 
 
 
 897
 898		if (bio->bi_opf & REQ_POLLED) {
 
 899			/*
 900			 * Upper layer won't help us poll split bio
 901			 * (io->orig_bio may only reflect a subset of the
 902			 * pre-split original) so clear REQ_POLLED.
 903			 */
 904			bio_clear_polled(bio);
 
 
 
 
 
 
 
 905		}
 906
 907		/*
 908		 * Target requested pushing back the I/O or
 909		 * polled IO hit BLK_STS_AGAIN.
 910		 */
 911		spin_lock_irqsave(&md->deferred_lock, flags);
 912		if ((__noflush_suspending(md) &&
 913		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
 914		    handle_polled_eagain || first_stage) {
 915			dm_requeue_add_io(io, first_stage);
 916			requeued = true;
 917		} else {
 918			/*
 919			 * noflush suspend was interrupted or this is
 920			 * a write to a zoned target.
 921			 */
 922			io->status = BLK_STS_IOERR;
 
 
 
 
 
 
 923		}
 924		spin_unlock_irqrestore(&md->deferred_lock, flags);
 925	}
 926
 927	if (requeued)
 928		dm_kick_requeue(md, first_stage);
 929
 930	return requeued;
 931}
 932
 933static void __dm_io_complete(struct dm_io *io, bool first_stage)
 934{
 935	struct bio *bio = io->orig_bio;
 936	struct mapped_device *md = io->md;
 937	blk_status_t io_error;
 938	bool requeued;
 939
 940	requeued = dm_handle_requeue(io, first_stage);
 941	if (requeued && first_stage)
 942		return;
 943
 944	io_error = io->status;
 945	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 946		dm_end_io_acct(io);
 947	else if (!io_error) {
 948		/*
 949		 * Must handle target that DM_MAPIO_SUBMITTED only to
 950		 * then bio_endio() rather than dm_submit_bio_remap()
 951		 */
 952		__dm_start_io_acct(io);
 953		dm_end_io_acct(io);
 954	}
 955	free_io(io);
 956	smp_wmb();
 957	this_cpu_dec(*md->pending_io);
 958
 959	/* nudge anyone waiting on suspend queue */
 960	if (unlikely(wq_has_sleeper(&md->wait)))
 961		wake_up(&md->wait);
 962
 963	/* Return early if the original bio was requeued */
 964	if (requeued)
 965		return;
 966
 967	if (bio_is_flush_with_data(bio)) {
 968		/*
 969		 * Preflush done for flush with data, reissue
 970		 * without REQ_PREFLUSH.
 971		 */
 972		bio->bi_opf &= ~REQ_PREFLUSH;
 973		queue_io(md, bio);
 974	} else {
 975		/* done with normal IO or empty flush */
 976		if (io_error)
 977			bio->bi_status = io_error;
 978		bio_endio(bio);
 979	}
 980}
 981
 982static void dm_wq_requeue_work(struct work_struct *work)
 983{
 984	struct mapped_device *md = container_of(work, struct mapped_device,
 985						requeue_work);
 986	unsigned long flags;
 987	struct dm_io *io;
 988
 989	/* reuse deferred lock to simplify dm_handle_requeue */
 990	spin_lock_irqsave(&md->deferred_lock, flags);
 991	io = md->requeue_list;
 992	md->requeue_list = NULL;
 993	spin_unlock_irqrestore(&md->deferred_lock, flags);
 994
 995	while (io) {
 996		struct dm_io *next = io->next;
 997
 998		dm_io_rewind(io, &md->disk->bio_split);
 999
1000		io->next = NULL;
1001		__dm_io_complete(io, false);
1002		io = next;
1003		cond_resched();
1004	}
1005}
1006
1007/*
1008 * Two staged requeue:
1009 *
1010 * 1) io->orig_bio points to the real original bio, and the part mapped to
1011 *    this io must be requeued, instead of other parts of the original bio.
1012 *
1013 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1014 */
1015static void dm_io_complete(struct dm_io *io)
1016{
1017	bool first_requeue;
1018
1019	/*
1020	 * Only dm_io that has been split needs two stage requeue, otherwise
1021	 * we may run into long bio clone chain during suspend and OOM could
1022	 * be triggered.
1023	 *
1024	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1025	 * also aren't handled via the first stage requeue.
1026	 */
1027	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1028		first_requeue = true;
1029	else
1030		first_requeue = false;
1031
1032	__dm_io_complete(io, first_requeue);
1033}
1034
1035/*
1036 * Decrements the number of outstanding ios that a bio has been
1037 * cloned into, completing the original io if necc.
1038 */
1039static inline void __dm_io_dec_pending(struct dm_io *io)
1040{
1041	if (atomic_dec_and_test(&io->io_count))
1042		dm_io_complete(io);
1043}
1044
1045static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1046{
1047	unsigned long flags;
1048
1049	/* Push-back supersedes any I/O errors */
1050	spin_lock_irqsave(&io->lock, flags);
1051	if (!(io->status == BLK_STS_DM_REQUEUE &&
1052	      __noflush_suspending(io->md))) {
1053		io->status = error;
1054	}
1055	spin_unlock_irqrestore(&io->lock, flags);
1056}
1057
1058static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1059{
1060	if (unlikely(error))
1061		dm_io_set_error(io, error);
1062
1063	__dm_io_dec_pending(io);
1064}
1065
1066/*
1067 * The queue_limits are only valid as long as you have a reference
1068 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1069 */
1070static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1071{
1072	return &md->queue->limits;
1073}
1074
1075void disable_discard(struct mapped_device *md)
1076{
1077	struct queue_limits *limits = dm_get_queue_limits(md);
1078
1079	/* device doesn't really support DISCARD, disable it */
1080	limits->max_discard_sectors = 0;
1081}
1082
1083void disable_write_zeroes(struct mapped_device *md)
1084{
1085	struct queue_limits *limits = dm_get_queue_limits(md);
1086
1087	/* device doesn't really support WRITE ZEROES, disable it */
1088	limits->max_write_zeroes_sectors = 0;
1089}
1090
1091static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1092{
1093	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1094}
1095
1096static void clone_endio(struct bio *bio)
1097{
1098	blk_status_t error = bio->bi_status;
1099	struct dm_target_io *tio = clone_to_tio(bio);
1100	struct dm_target *ti = tio->ti;
1101	dm_endio_fn endio = ti->type->end_io;
1102	struct dm_io *io = tio->io;
1103	struct mapped_device *md = io->md;
 
1104
1105	if (unlikely(error == BLK_STS_TARGET)) {
1106		if (bio_op(bio) == REQ_OP_DISCARD &&
1107		    !bdev_max_discard_sectors(bio->bi_bdev))
1108			disable_discard(md);
1109		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1110			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1111			disable_write_zeroes(md);
1112	}
1113
1114	if (static_branch_unlikely(&zoned_enabled) &&
1115	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1116		dm_zone_endio(io, bio);
1117
1118	if (endio) {
1119		int r = endio(ti, bio, &error);
1120
1121		switch (r) {
1122		case DM_ENDIO_REQUEUE:
1123			if (static_branch_unlikely(&zoned_enabled)) {
1124				/*
1125				 * Requeuing writes to a sequential zone of a zoned
1126				 * target will break the sequential write pattern:
1127				 * fail such IO.
1128				 */
1129				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1130					error = BLK_STS_IOERR;
1131				else
1132					error = BLK_STS_DM_REQUEUE;
1133			} else
1134				error = BLK_STS_DM_REQUEUE;
1135			fallthrough;
1136		case DM_ENDIO_DONE:
1137			break;
1138		case DM_ENDIO_INCOMPLETE:
1139			/* The target will handle the io */
1140			return;
1141		default:
1142			DMCRIT("unimplemented target endio return value: %d", r);
1143			BUG();
1144		}
1145	}
1146
1147	if (static_branch_unlikely(&swap_bios_enabled) &&
1148	    unlikely(swap_bios_limit(ti, bio)))
1149		up(&md->swap_bios_semaphore);
1150
1151	free_tio(bio);
1152	dm_io_dec_pending(io, error);
1153}
1154
1155/*
1156 * Return maximum size of I/O possible at the supplied sector up to the current
1157 * target boundary.
1158 */
1159static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1160						  sector_t target_offset)
1161{
 
 
1162	return ti->len - target_offset;
1163}
1164
1165static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1166			     unsigned int max_granularity,
1167			     unsigned int max_sectors)
1168{
1169	sector_t target_offset = dm_target_offset(ti, sector);
1170	sector_t len = max_io_len_target_boundary(ti, target_offset);
1171
1172	/*
1173	 * Does the target need to split IO even further?
1174	 * - varied (per target) IO splitting is a tenet of DM; this
1175	 *   explains why stacked chunk_sectors based splitting via
1176	 *   bio_split_to_limits() isn't possible here.
1177	 */
1178	if (!max_granularity)
1179		return len;
1180	return min_t(sector_t, len,
1181		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1182		    blk_chunk_sectors_left(target_offset, max_granularity)));
1183}
 
1184
1185static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1186{
1187	return __max_io_len(ti, sector, ti->max_io_len, 0);
 
 
1188}
1189
1190int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1191{
1192	if (len > UINT_MAX) {
1193		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1194		      (unsigned long long)len, UINT_MAX);
1195		ti->error = "Maximum size of target IO is too large";
1196		return -EINVAL;
1197	}
1198
1199	ti->max_io_len = (uint32_t) len;
 
 
 
 
 
 
 
 
1200
1201	return 0;
1202}
1203EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1204
1205static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1206						sector_t sector, int *srcu_idx)
1207	__acquires(md->io_barrier)
1208{
1209	struct dm_table *map;
1210	struct dm_target *ti;
1211
1212	map = dm_get_live_table(md, srcu_idx);
1213	if (!map)
1214		return NULL;
1215
1216	ti = dm_table_find_target(map, sector);
1217	if (!ti)
1218		return NULL;
1219
1220	return ti;
1221}
1222
1223static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1224		long nr_pages, enum dax_access_mode mode, void **kaddr,
1225		pfn_t *pfn)
1226{
1227	struct mapped_device *md = dax_get_private(dax_dev);
1228	sector_t sector = pgoff * PAGE_SECTORS;
1229	struct dm_target *ti;
1230	long len, ret = -EIO;
1231	int srcu_idx;
1232
1233	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1234
1235	if (!ti)
1236		goto out;
1237	if (!ti->type->direct_access)
1238		goto out;
1239	len = max_io_len(ti, sector) / PAGE_SECTORS;
1240	if (len < 1)
1241		goto out;
1242	nr_pages = min(len, nr_pages);
1243	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
 
1244
1245 out:
1246	dm_put_live_table(md, srcu_idx);
1247
1248	return ret;
1249}
1250
1251static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1252				  size_t nr_pages)
1253{
1254	struct mapped_device *md = dax_get_private(dax_dev);
1255	sector_t sector = pgoff * PAGE_SECTORS;
1256	struct dm_target *ti;
1257	int ret = -EIO;
1258	int srcu_idx;
1259
1260	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1261
1262	if (!ti)
1263		goto out;
1264	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1265		/*
1266		 * ->zero_page_range() is mandatory dax operation. If we are
1267		 *  here, something is wrong.
1268		 */
1269		goto out;
1270	}
1271	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1272 out:
1273	dm_put_live_table(md, srcu_idx);
1274
1275	return ret;
1276}
1277
1278static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1279		void *addr, size_t bytes, struct iov_iter *i)
1280{
1281	struct mapped_device *md = dax_get_private(dax_dev);
1282	sector_t sector = pgoff * PAGE_SECTORS;
1283	struct dm_target *ti;
1284	int srcu_idx;
1285	long ret = 0;
1286
1287	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1288	if (!ti || !ti->type->dax_recovery_write)
1289		goto out;
1290
1291	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1292out:
1293	dm_put_live_table(md, srcu_idx);
1294	return ret;
1295}
1296
1297/*
1298 * A target may call dm_accept_partial_bio only from the map routine.  It is
1299 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1300 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1301 * __send_duplicate_bios().
1302 *
1303 * dm_accept_partial_bio informs the dm that the target only wants to process
1304 * additional n_sectors sectors of the bio and the rest of the data should be
1305 * sent in a next bio.
1306 *
1307 * A diagram that explains the arithmetics:
1308 * +--------------------+---------------+-------+
1309 * |         1          |       2       |   3   |
1310 * +--------------------+---------------+-------+
1311 *
1312 * <-------------- *tio->len_ptr --------------->
1313 *                      <----- bio_sectors ----->
1314 *                      <-- n_sectors -->
1315 *
1316 * Region 1 was already iterated over with bio_advance or similar function.
1317 *	(it may be empty if the target doesn't use bio_advance)
1318 * Region 2 is the remaining bio size that the target wants to process.
1319 *	(it may be empty if region 1 is non-empty, although there is no reason
1320 *	 to make it empty)
1321 * The target requires that region 3 is to be sent in the next bio.
1322 *
1323 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1324 * the partially processed part (the sum of regions 1+2) must be the same for all
1325 * copies of the bio.
1326 */
1327void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1328{
1329	struct dm_target_io *tio = clone_to_tio(bio);
1330	struct dm_io *io = tio->io;
1331	unsigned int bio_sectors = bio_sectors(bio);
1332
1333	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1334	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1335	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1336	BUG_ON(bio_sectors > *tio->len_ptr);
1337	BUG_ON(n_sectors > bio_sectors);
1338
1339	*tio->len_ptr -= bio_sectors - n_sectors;
1340	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1341
1342	/*
1343	 * __split_and_process_bio() may have already saved mapped part
1344	 * for accounting but it is being reduced so update accordingly.
1345	 */
1346	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1347	io->sectors = n_sectors;
1348	io->sector_offset = bio_sectors(io->orig_bio);
1349}
1350EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1351
1352/*
1353 * @clone: clone bio that DM core passed to target's .map function
1354 * @tgt_clone: clone of @clone bio that target needs submitted
1355 *
1356 * Targets should use this interface to submit bios they take
1357 * ownership of when returning DM_MAPIO_SUBMITTED.
1358 *
1359 * Target should also enable ti->accounts_remapped_io
1360 */
1361void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1362{
1363	struct dm_target_io *tio = clone_to_tio(clone);
1364	struct dm_io *io = tio->io;
 
 
 
 
 
 
 
1365
1366	/* establish bio that will get submitted */
1367	if (!tgt_clone)
1368		tgt_clone = clone;
1369
1370	/*
1371	 * Account io->origin_bio to DM dev on behalf of target
1372	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1373	 */
1374	dm_start_io_acct(io, clone);
 
1375
1376	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1377			      tio->old_sector);
1378	submit_bio_noacct(tgt_clone);
1379}
1380EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1381
1382static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1383{
1384	mutex_lock(&md->swap_bios_lock);
1385	while (latch < md->swap_bios) {
1386		cond_resched();
1387		down(&md->swap_bios_semaphore);
1388		md->swap_bios--;
1389	}
1390	while (latch > md->swap_bios) {
1391		cond_resched();
1392		up(&md->swap_bios_semaphore);
1393		md->swap_bios++;
1394	}
1395	mutex_unlock(&md->swap_bios_lock);
 
 
 
 
 
1396}
 
1397
1398static void __map_bio(struct bio *clone)
1399{
1400	struct dm_target_io *tio = clone_to_tio(clone);
1401	struct dm_target *ti = tio->ti;
 
1402	struct dm_io *io = tio->io;
1403	struct mapped_device *md = io->md;
1404	int r;
 
1405
1406	clone->bi_end_io = clone_endio;
1407
1408	/*
1409	 * Map the clone.
 
 
1410	 */
1411	tio->old_sector = clone->bi_iter.bi_sector;
1412
1413	if (static_branch_unlikely(&swap_bios_enabled) &&
1414	    unlikely(swap_bios_limit(ti, clone))) {
1415		int latch = get_swap_bios();
1416
1417		if (unlikely(latch != md->swap_bios))
1418			__set_swap_bios_limit(md, latch);
1419		down(&md->swap_bios_semaphore);
1420	}
1421
1422	if (static_branch_unlikely(&zoned_enabled)) {
1423		/*
1424		 * Check if the IO needs a special mapping due to zone append
1425		 * emulation on zoned target. In this case, dm_zone_map_bio()
1426		 * calls the target map operation.
1427		 */
1428		if (unlikely(dm_emulate_zone_append(md)))
1429			r = dm_zone_map_bio(tio);
1430		else
1431			goto do_map;
1432	} else {
1433do_map:
1434		if (likely(ti->type->map == linear_map))
1435			r = linear_map(ti, clone);
1436		else if (ti->type->map == stripe_map)
1437			r = stripe_map(ti, clone);
1438		else
1439			r = ti->type->map(ti, clone);
1440	}
1441
 
1442	switch (r) {
1443	case DM_MAPIO_SUBMITTED:
1444		/* target has assumed ownership of this io */
1445		if (!ti->accounts_remapped_io)
1446			dm_start_io_acct(io, clone);
1447		break;
1448	case DM_MAPIO_REMAPPED:
1449		dm_submit_bio_remap(clone, NULL);
 
 
 
 
 
 
1450		break;
1451	case DM_MAPIO_KILL:
 
 
 
1452	case DM_MAPIO_REQUEUE:
1453		if (static_branch_unlikely(&swap_bios_enabled) &&
1454		    unlikely(swap_bios_limit(ti, clone)))
1455			up(&md->swap_bios_semaphore);
1456		free_tio(clone);
1457		if (r == DM_MAPIO_KILL)
1458			dm_io_dec_pending(io, BLK_STS_IOERR);
1459		else
1460			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1461		break;
1462	default:
1463		DMCRIT("unimplemented target map return value: %d", r);
1464		BUG();
1465	}
 
 
1466}
1467
1468static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1469{
1470	struct dm_io *io = ci->io;
 
 
1471
1472	if (ci->sector_count > len) {
1473		/*
1474		 * Split needed, save the mapped part for accounting.
1475		 * NOTE: dm_accept_partial_bio() will update accordingly.
1476		 */
1477		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1478		io->sectors = len;
1479		io->sector_offset = bio_sectors(ci->bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1480	}
 
 
 
 
 
 
 
 
 
1481}
1482
1483static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1484				struct dm_target *ti, unsigned int num_bios,
1485				unsigned *len, gfp_t gfp_flag)
1486{
1487	struct bio *bio;
1488	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
 
 
 
 
 
 
 
 
 
1489
1490	for (; try < 2; try++) {
1491		int bio_nr;
 
1492
1493		if (try && num_bios > 1)
1494			mutex_lock(&ci->io->md->table_devices_lock);
1495		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1496			bio = alloc_tio(ci, ti, bio_nr, len,
1497					try ? GFP_NOIO : GFP_NOWAIT);
1498			if (!bio)
1499				break;
1500
1501			bio_list_add(blist, bio);
1502		}
1503		if (try && num_bios > 1)
1504			mutex_unlock(&ci->io->md->table_devices_lock);
1505		if (bio_nr == num_bios)
1506			return;
1507
1508		while ((bio = bio_list_pop(blist)))
1509			free_tio(bio);
 
 
1510	}
1511}
1512
1513static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1514					  unsigned int num_bios, unsigned int *len,
1515					  gfp_t gfp_flag)
1516{
1517	struct bio_list blist = BIO_EMPTY_LIST;
1518	struct bio *clone;
1519	unsigned int ret = 0;
1520
1521	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1522		return 0;
1523
1524	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1525	if (len)
1526		setup_split_accounting(ci, *len);
1527
1528	/*
1529	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1530	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1531	 */
1532	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1533	while ((clone = bio_list_pop(&blist))) {
1534		if (num_bios > 1)
1535			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1536		__map_bio(clone);
1537		ret += 1;
1538	}
1539
1540	return ret;
1541}
1542
1543static void __send_empty_flush(struct clone_info *ci)
 
1544{
1545	struct dm_table *t = ci->map;
1546	struct bio flush_bio;
 
1547
1548	/*
1549	 * Use an on-stack bio for this, it's safe since we don't
1550	 * need to reference it after submit. It's just used as
1551	 * the basis for the clone(s).
1552	 */
1553	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1554		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1555
1556	ci->bio = &flush_bio;
1557	ci->sector_count = 0;
1558	ci->io->tio.clone.bi_iter.bi_size = 0;
 
 
1559
1560	for (unsigned int i = 0; i < t->num_targets; i++) {
1561		unsigned int bios;
1562		struct dm_target *ti = dm_table_get_target(t, i);
 
1563
1564		if (unlikely(ti->num_flush_bios == 0))
1565			continue;
 
1566
1567		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1568		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1569					     NULL, GFP_NOWAIT);
1570		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1571	}
1572
1573	/*
1574	 * alloc_io() takes one extra reference for submission, so the
1575	 * reference won't reach 0 without the following subtraction
1576	 */
1577	atomic_sub(1, &ci->io->io_count);
 
1578
1579	bio_uninit(ci->bio);
 
 
 
 
 
 
 
 
 
1580}
1581
1582static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1583			       unsigned int num_bios, unsigned int max_granularity,
1584			       unsigned int max_sectors)
1585{
1586	unsigned int len, bios;
1587
1588	len = min_t(sector_t, ci->sector_count,
1589		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
 
 
1590
1591	atomic_add(num_bios, &ci->io->io_count);
1592	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1593	/*
1594	 * alloc_io() takes one extra reference for submission, so the
1595	 * reference won't reach 0 without the following (+1) subtraction
1596	 */
1597	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1598
1599	ci->sector += len;
1600	ci->sector_count -= len;
 
1601}
1602
1603static bool is_abnormal_io(struct bio *bio)
1604{
1605	enum req_op op = bio_op(bio);
 
1606
1607	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1608		switch (op) {
1609		case REQ_OP_DISCARD:
1610		case REQ_OP_SECURE_ERASE:
1611		case REQ_OP_WRITE_ZEROES:
1612			return true;
1613		default:
1614			break;
1615		}
1616	}
1617
1618	return false;
 
 
1619}
1620
1621static blk_status_t __process_abnormal_io(struct clone_info *ci,
1622					  struct dm_target *ti)
 
1623{
1624	unsigned int num_bios = 0;
1625	unsigned int max_granularity = 0;
1626	unsigned int max_sectors = 0;
1627	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1628
1629	switch (bio_op(ci->bio)) {
1630	case REQ_OP_DISCARD:
1631		num_bios = ti->num_discard_bios;
1632		max_sectors = limits->max_discard_sectors;
1633		if (ti->max_discard_granularity)
1634			max_granularity = max_sectors;
1635		break;
1636	case REQ_OP_SECURE_ERASE:
1637		num_bios = ti->num_secure_erase_bios;
1638		max_sectors = limits->max_secure_erase_sectors;
1639		if (ti->max_secure_erase_granularity)
1640			max_granularity = max_sectors;
1641		break;
1642	case REQ_OP_WRITE_ZEROES:
1643		num_bios = ti->num_write_zeroes_bios;
1644		max_sectors = limits->max_write_zeroes_sectors;
1645		if (ti->max_write_zeroes_granularity)
1646			max_granularity = max_sectors;
1647		break;
1648	default:
1649		break;
1650	}
1651
1652	/*
1653	 * Even though the device advertised support for this type of
1654	 * request, that does not mean every target supports it, and
1655	 * reconfiguration might also have changed that since the
1656	 * check was performed.
1657	 */
1658	if (unlikely(!num_bios))
1659		return BLK_STS_NOTSUPP;
 
 
 
 
 
 
1660
1661	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1662
1663	return BLK_STS_OK;
 
 
 
1664}
1665
1666/*
1667 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1668 * associated with this bio, and this bio's bi_private needs to be
1669 * stored in dm_io->data before the reuse.
1670 *
1671 * bio->bi_private is owned by fs or upper layer, so block layer won't
1672 * touch it after splitting. Meantime it won't be changed by anyone after
1673 * bio is submitted. So this reuse is safe.
1674 */
1675static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1676{
1677	return (struct dm_io **)&bio->bi_private;
 
1678}
1679
1680static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1681{
1682	struct dm_io **head = dm_poll_list_head(bio);
 
1683
1684	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1685		bio->bi_opf |= REQ_DM_POLL_LIST;
1686		/*
1687		 * Save .bi_private into dm_io, so that we can reuse
1688		 * .bi_private as dm_io list head for storing dm_io list
1689		 */
1690		io->data = bio->bi_private;
1691
1692		/* tell block layer to poll for completion */
1693		bio->bi_cookie = ~BLK_QC_T_NONE;
 
 
1694
1695		io->next = NULL;
1696	} else {
1697		/*
1698		 * bio recursed due to split, reuse original poll list,
1699		 * and save bio->bi_private too.
1700		 */
1701		io->data = (*head)->data;
1702		io->next = *head;
1703	}
 
 
 
 
 
 
1704
1705	*head = io;
1706}
1707
1708/*
1709 * Select the correct strategy for processing a non-flush bio.
1710 */
1711static blk_status_t __split_and_process_bio(struct clone_info *ci)
1712{
1713	struct bio *clone;
1714	struct dm_target *ti;
1715	unsigned int len;
 
1716
1717	ti = dm_table_find_target(ci->map, ci->sector);
1718	if (unlikely(!ti))
1719		return BLK_STS_IOERR;
1720
1721	if (unlikely(ci->is_abnormal_io))
1722		return __process_abnormal_io(ci, ti);
1723
1724	/*
1725	 * Only support bio polling for normal IO, and the target io is
1726	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1727	 */
1728	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1729
1730	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1731	setup_split_accounting(ci, len);
1732
1733	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1734		if (unlikely(!dm_target_supports_nowait(ti->type)))
1735			return BLK_STS_NOTSUPP;
 
 
1736
1737		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1738		if (unlikely(!clone))
1739			return BLK_STS_AGAIN;
1740	} else {
1741		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1742	}
1743	__map_bio(clone);
1744
1745	ci->sector += len;
1746	ci->sector_count -= len;
1747
1748	return BLK_STS_OK;
1749}
1750
1751static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1752			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1753{
1754	ci->map = map;
1755	ci->io = io;
1756	ci->bio = bio;
1757	ci->is_abnormal_io = is_abnormal;
1758	ci->submit_as_polled = false;
1759	ci->sector = bio->bi_iter.bi_sector;
1760	ci->sector_count = bio_sectors(bio);
1761
1762	/* Shouldn't happen but sector_count was being set to 0 so... */
1763	if (static_branch_unlikely(&zoned_enabled) &&
1764	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1765		ci->sector_count = 0;
1766}
1767
1768/*
1769 * Entry point to split a bio into clones and submit them to the targets.
1770 */
1771static void dm_split_and_process_bio(struct mapped_device *md,
1772				     struct dm_table *map, struct bio *bio)
1773{
1774	struct clone_info ci;
1775	struct dm_io *io;
1776	blk_status_t error = BLK_STS_OK;
1777	bool is_abnormal;
1778
1779	is_abnormal = is_abnormal_io(bio);
1780	if (unlikely(is_abnormal)) {
1781		/*
1782		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1783		 * otherwise associated queue_limits won't be imposed.
1784		 */
1785		bio = bio_split_to_limits(bio);
1786		if (!bio)
1787			return;
1788	}
1789
1790	/* Only support nowait for normal IO */
1791	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1792		io = alloc_io(md, bio, GFP_NOWAIT);
1793		if (unlikely(!io)) {
1794			/* Unable to do anything without dm_io. */
1795			bio_wouldblock_error(bio);
1796			return;
1797		}
 
 
 
1798	} else {
1799		io = alloc_io(md, bio, GFP_NOIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800	}
1801	init_clone_info(&ci, io, map, bio, is_abnormal);
1802
1803	if (bio->bi_opf & REQ_PREFLUSH) {
1804		__send_empty_flush(&ci);
1805		/* dm_io_complete submits any data associated with flush */
1806		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1807	}
1808
1809	error = __split_and_process_bio(&ci);
1810	if (error || !ci.sector_count)
1811		goto out;
1812	/*
1813	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1814	 * *after* bios already submitted have been completely processed.
1815	 */
1816	bio_trim(bio, io->sectors, ci.sector_count);
1817	trace_block_split(bio, bio->bi_iter.bi_sector);
1818	bio_inc_remaining(bio);
1819	submit_bio_noacct(bio);
1820out:
1821	/*
1822	 * Drop the extra reference count for non-POLLED bio, and hold one
1823	 * reference for POLLED bio, which will be released in dm_poll_bio
1824	 *
1825	 * Add every dm_io instance into the dm_io list head which is stored
1826	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1827	 */
1828	if (error || !ci.submit_as_polled) {
1829		/*
1830		 * In case of submission failure, the extra reference for
1831		 * submitting io isn't consumed yet
1832		 */
1833		if (error)
1834			atomic_dec(&io->io_count);
1835		dm_io_dec_pending(io, error);
1836	} else
1837		dm_queue_poll_io(bio, io);
 
 
 
 
 
 
 
 
 
 
 
 
1838}
1839
1840static void dm_submit_bio(struct bio *bio)
 
 
 
1841{
1842	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
 
1843	int srcu_idx;
1844	struct dm_table *map;
1845
1846	map = dm_get_live_table(md, &srcu_idx);
1847
1848	/* If suspended, or map not yet available, queue this IO for later */
1849	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1850	    unlikely(!map)) {
1851		if (bio->bi_opf & REQ_NOWAIT)
1852			bio_wouldblock_error(bio);
1853		else if (bio->bi_opf & REQ_RAHEAD)
1854			bio_io_error(bio);
1855		else
1856			queue_io(md, bio);
1857		goto out;
 
 
1858	}
1859
1860	dm_split_and_process_bio(md, map, bio);
1861out:
1862	dm_put_live_table(md, srcu_idx);
 
1863}
1864
1865static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1866			  unsigned int flags)
 
 
 
1867{
1868	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1869
1870	/* don't poll if the mapped io is done */
1871	if (atomic_read(&io->io_count) > 1)
1872		bio_poll(&io->tio.clone, iob, flags);
1873
1874	/* bio_poll holds the last reference */
1875	return atomic_read(&io->io_count) == 1;
1876}
1877
1878static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1879		       unsigned int flags)
1880{
1881	struct dm_io **head = dm_poll_list_head(bio);
1882	struct dm_io *list = *head;
1883	struct dm_io *tmp = NULL;
1884	struct dm_io *curr, *next;
1885
1886	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1887	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1888		return 0;
1889
1890	WARN_ON_ONCE(!list);
 
 
 
 
1891
1892	/*
1893	 * Restore .bi_private before possibly completing dm_io.
1894	 *
1895	 * bio_poll() is only possible once @bio has been completely
1896	 * submitted via submit_bio_noacct()'s depth-first submission.
1897	 * So there is no dm_queue_poll_io() race associated with
1898	 * clearing REQ_DM_POLL_LIST here.
1899	 */
1900	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1901	bio->bi_private = list->data;
1902
1903	for (curr = list, next = curr->next; curr; curr = next, next =
1904			curr ? curr->next : NULL) {
1905		if (dm_poll_dm_io(curr, iob, flags)) {
1906			/*
1907			 * clone_endio() has already occurred, so no
1908			 * error handling is needed here.
1909			 */
1910			__dm_io_dec_pending(curr);
1911		} else {
1912			curr->next = tmp;
1913			tmp = curr;
 
 
1914		}
1915	}
1916
1917	/* Not done? */
1918	if (tmp) {
1919		bio->bi_opf |= REQ_DM_POLL_LIST;
1920		/* Reset bio->bi_private to dm_io list head */
1921		*head = tmp;
1922		return 0;
1923	}
1924	return 1;
1925}
1926
1927/*
1928 *---------------------------------------------------------------
1929 * An IDR is used to keep track of allocated minor numbers.
1930 *---------------------------------------------------------------
1931 */
1932static void free_minor(int minor)
1933{
1934	spin_lock(&_minor_lock);
1935	idr_remove(&_minor_idr, minor);
1936	spin_unlock(&_minor_lock);
1937}
1938
1939/*
1940 * See if the device with a specific minor # is free.
1941 */
1942static int specific_minor(int minor)
1943{
1944	int r;
1945
1946	if (minor >= (1 << MINORBITS))
1947		return -EINVAL;
1948
1949	idr_preload(GFP_KERNEL);
1950	spin_lock(&_minor_lock);
1951
1952	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1953
1954	spin_unlock(&_minor_lock);
1955	idr_preload_end();
1956	if (r < 0)
1957		return r == -ENOSPC ? -EBUSY : r;
1958	return 0;
1959}
1960
1961static int next_free_minor(int *minor)
1962{
1963	int r;
1964
1965	idr_preload(GFP_KERNEL);
1966	spin_lock(&_minor_lock);
1967
1968	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1969
1970	spin_unlock(&_minor_lock);
1971	idr_preload_end();
1972	if (r < 0)
1973		return r;
1974	*minor = r;
1975	return 0;
1976}
1977
1978static const struct block_device_operations dm_blk_dops;
1979static const struct block_device_operations dm_rq_blk_dops;
1980static const struct dax_operations dm_dax_ops;
1981
1982static void dm_wq_work(struct work_struct *work);
1983
1984#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1985static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1986{
1987	dm_destroy_crypto_profile(q->crypto_profile);
1988}
1989
1990#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1991
1992static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1993{
 
 
1994}
1995#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1996
1997static void cleanup_mapped_device(struct mapped_device *md)
1998{
1999	if (md->wq)
2000		destroy_workqueue(md->wq);
2001	dm_free_md_mempools(md->mempools);
 
 
 
 
 
2002
2003	if (md->dax_dev) {
2004		dax_remove_host(md->disk);
2005		kill_dax(md->dax_dev);
2006		put_dax(md->dax_dev);
2007		md->dax_dev = NULL;
2008	}
2009
2010	dm_cleanup_zoned_dev(md);
2011	if (md->disk) {
2012		spin_lock(&_minor_lock);
2013		md->disk->private_data = NULL;
2014		spin_unlock(&_minor_lock);
2015		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2016			struct table_device *td;
2017
2018			dm_sysfs_exit(md);
2019			list_for_each_entry(td, &md->table_devices, list) {
2020				bd_unlink_disk_holder(td->dm_dev.bdev,
2021						      md->disk);
2022			}
2023
2024			/*
2025			 * Hold lock to make sure del_gendisk() won't concurrent
2026			 * with open/close_table_device().
2027			 */
2028			mutex_lock(&md->table_devices_lock);
2029			del_gendisk(md->disk);
2030			mutex_unlock(&md->table_devices_lock);
2031		}
2032		dm_queue_destroy_crypto_profile(md->queue);
2033		put_disk(md->disk);
2034	}
2035
2036	if (md->pending_io) {
2037		free_percpu(md->pending_io);
2038		md->pending_io = NULL;
2039	}
2040
2041	cleanup_srcu_struct(&md->io_barrier);
2042
 
 
 
 
 
2043	mutex_destroy(&md->suspend_lock);
2044	mutex_destroy(&md->type_lock);
2045	mutex_destroy(&md->table_devices_lock);
2046	mutex_destroy(&md->swap_bios_lock);
2047
2048	dm_mq_cleanup_mapped_device(md);
2049}
2050
2051/*
2052 * Allocate and initialise a blank device with a given minor.
2053 */
2054static struct mapped_device *alloc_dev(int minor)
2055{
2056	int r, numa_node_id = dm_get_numa_node();
 
2057	struct mapped_device *md;
2058	void *old_md;
2059
2060	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2061	if (!md) {
2062		DMERR("unable to allocate device, out of memory.");
2063		return NULL;
2064	}
2065
2066	if (!try_module_get(THIS_MODULE))
2067		goto bad_module_get;
2068
2069	/* get a minor number for the dev */
2070	if (minor == DM_ANY_MINOR)
2071		r = next_free_minor(&minor);
2072	else
2073		r = specific_minor(minor);
2074	if (r < 0)
2075		goto bad_minor;
2076
2077	r = init_srcu_struct(&md->io_barrier);
2078	if (r < 0)
2079		goto bad_io_barrier;
2080
2081	md->numa_node_id = numa_node_id;
 
2082	md->init_tio_pdu = false;
2083	md->type = DM_TYPE_NONE;
2084	mutex_init(&md->suspend_lock);
2085	mutex_init(&md->type_lock);
2086	mutex_init(&md->table_devices_lock);
2087	spin_lock_init(&md->deferred_lock);
2088	atomic_set(&md->holders, 1);
2089	atomic_set(&md->open_count, 0);
2090	atomic_set(&md->event_nr, 0);
2091	atomic_set(&md->uevent_seq, 0);
2092	INIT_LIST_HEAD(&md->uevent_list);
2093	INIT_LIST_HEAD(&md->table_devices);
2094	spin_lock_init(&md->uevent_lock);
2095
2096	/*
2097	 * default to bio-based until DM table is loaded and md->type
2098	 * established. If request-based table is loaded: blk-mq will
2099	 * override accordingly.
2100	 */
2101	md->disk = blk_alloc_disk(md->numa_node_id);
 
2102	if (!md->disk)
2103		goto bad;
2104	md->queue = md->disk->queue;
2105
 
 
2106	init_waitqueue_head(&md->wait);
2107	INIT_WORK(&md->work, dm_wq_work);
2108	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2109	init_waitqueue_head(&md->eventq);
2110	init_completion(&md->kobj_holder.completion);
2111
2112	md->requeue_list = NULL;
2113	md->swap_bios = get_swap_bios();
2114	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2115	mutex_init(&md->swap_bios_lock);
2116
2117	md->disk->major = _major;
2118	md->disk->first_minor = minor;
2119	md->disk->minors = 1;
2120	md->disk->flags |= GENHD_FL_NO_PART;
2121	md->disk->fops = &dm_blk_dops;
 
2122	md->disk->private_data = md;
2123	sprintf(md->disk->disk_name, "dm-%d", minor);
2124
2125	if (IS_ENABLED(CONFIG_FS_DAX)) {
2126		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2127		if (IS_ERR(md->dax_dev)) {
2128			md->dax_dev = NULL;
2129			goto bad;
2130		}
2131		set_dax_nocache(md->dax_dev);
2132		set_dax_nomc(md->dax_dev);
2133		if (dax_add_host(md->dax_dev, md->disk))
2134			goto bad;
2135	}
 
2136
 
2137	format_dev_t(md->name, MKDEV(_major, minor));
2138
2139	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2140	if (!md->wq)
2141		goto bad;
2142
2143	md->pending_io = alloc_percpu(unsigned long);
2144	if (!md->pending_io)
2145		goto bad;
2146
2147	r = dm_stats_init(&md->stats);
2148	if (r < 0)
2149		goto bad;
 
 
2150
2151	/* Populate the mapping, nobody knows we exist yet */
2152	spin_lock(&_minor_lock);
2153	old_md = idr_replace(&_minor_idr, md, minor);
2154	spin_unlock(&_minor_lock);
2155
2156	BUG_ON(old_md != MINOR_ALLOCED);
2157
2158	return md;
2159
2160bad:
2161	cleanup_mapped_device(md);
2162bad_io_barrier:
2163	free_minor(minor);
2164bad_minor:
2165	module_put(THIS_MODULE);
2166bad_module_get:
2167	kvfree(md);
2168	return NULL;
2169}
2170
2171static void unlock_fs(struct mapped_device *md);
2172
2173static void free_dev(struct mapped_device *md)
2174{
2175	int minor = MINOR(disk_devt(md->disk));
2176
2177	unlock_fs(md);
2178
2179	cleanup_mapped_device(md);
2180
2181	WARN_ON_ONCE(!list_empty(&md->table_devices));
2182	dm_stats_cleanup(&md->stats);
2183	free_minor(minor);
2184
2185	module_put(THIS_MODULE);
2186	kvfree(md);
2187}
2188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2189/*
2190 * Bind a table to the device.
2191 */
2192static void event_callback(void *context)
2193{
2194	unsigned long flags;
2195	LIST_HEAD(uevents);
2196	struct mapped_device *md = context;
2197
2198	spin_lock_irqsave(&md->uevent_lock, flags);
2199	list_splice_init(&md->uevent_list, &uevents);
2200	spin_unlock_irqrestore(&md->uevent_lock, flags);
2201
2202	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2203
2204	atomic_inc(&md->event_nr);
2205	wake_up(&md->eventq);
2206	dm_issue_global_event();
2207}
2208
2209/*
 
 
 
 
 
 
 
 
 
 
 
 
2210 * Returns old map, which caller must destroy.
2211 */
2212static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2213			       struct queue_limits *limits)
2214{
2215	struct dm_table *old_map;
 
 
2216	sector_t size;
2217	int ret;
2218
2219	lockdep_assert_held(&md->suspend_lock);
2220
2221	size = dm_table_get_size(t);
2222
2223	/*
2224	 * Wipe any geometry if the size of the table changed.
2225	 */
2226	if (size != dm_get_size(md))
2227		memset(&md->geometry, 0, sizeof(md->geometry));
2228
2229	set_capacity(md->disk, size);
2230
2231	dm_table_event_callback(t, event_callback, md);
2232
2233	if (dm_table_request_based(t)) {
2234		/*
2235		 * Leverage the fact that request-based DM targets are
2236		 * immutable singletons - used to optimize dm_mq_queue_rq.
2237		 */
2238		md->immutable_target = dm_table_get_immutable_target(t);
 
 
 
2239
 
2240		/*
2241		 * There is no need to reload with request-based dm because the
2242		 * size of front_pad doesn't change.
2243		 *
2244		 * Note for future: If you are to reload bioset, prep-ed
2245		 * requests in the queue may refer to bio from the old bioset,
2246		 * so you must walk through the queue to unprep.
2247		 */
2248		if (!md->mempools) {
2249			md->mempools = t->mempools;
2250			t->mempools = NULL;
2251		}
2252	} else {
2253		/*
2254		 * The md may already have mempools that need changing.
2255		 * If so, reload bioset because front_pad may have changed
2256		 * because a different table was loaded.
2257		 */
2258		dm_free_md_mempools(md->mempools);
2259		md->mempools = t->mempools;
2260		t->mempools = NULL;
2261	}
2262
2263	ret = dm_table_set_restrictions(t, md->queue, limits);
2264	if (ret) {
2265		old_map = ERR_PTR(ret);
2266		goto out;
2267	}
2268
2269	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2270	rcu_assign_pointer(md->map, (void *)t);
2271	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2272
 
2273	if (old_map)
2274		dm_sync_table(md);
2275out:
2276	return old_map;
2277}
2278
2279/*
2280 * Returns unbound table for the caller to free.
2281 */
2282static struct dm_table *__unbind(struct mapped_device *md)
2283{
2284	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2285
2286	if (!map)
2287		return NULL;
2288
2289	dm_table_event_callback(map, NULL, NULL);
2290	RCU_INIT_POINTER(md->map, NULL);
2291	dm_sync_table(md);
2292
2293	return map;
2294}
2295
2296/*
2297 * Constructor for a new device.
2298 */
2299int dm_create(int minor, struct mapped_device **result)
2300{
 
2301	struct mapped_device *md;
2302
2303	md = alloc_dev(minor);
2304	if (!md)
2305		return -ENXIO;
2306
2307	dm_ima_reset_data(md);
 
 
 
 
2308
2309	*result = md;
2310	return 0;
2311}
2312
2313/*
2314 * Functions to manage md->type.
2315 * All are required to hold md->type_lock.
2316 */
2317void dm_lock_md_type(struct mapped_device *md)
2318{
2319	mutex_lock(&md->type_lock);
2320}
2321
2322void dm_unlock_md_type(struct mapped_device *md)
2323{
2324	mutex_unlock(&md->type_lock);
2325}
2326
2327void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2328{
2329	BUG_ON(!mutex_is_locked(&md->type_lock));
2330	md->type = type;
2331}
2332
2333enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2334{
2335	return md->type;
2336}
2337
2338struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2339{
2340	return md->immutable_target_type;
2341}
2342
2343/*
 
 
 
 
 
 
 
 
 
 
 
2344 * Setup the DM device's queue based on md's type
2345 */
2346int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2347{
2348	enum dm_queue_mode type = dm_table_get_type(t);
2349	struct queue_limits limits;
2350	struct table_device *td;
2351	int r;
 
 
2352
2353	switch (type) {
2354	case DM_TYPE_REQUEST_BASED:
2355		md->disk->fops = &dm_rq_blk_dops;
 
 
 
 
 
 
 
2356		r = dm_mq_init_request_queue(md, t);
2357		if (r) {
2358			DMERR("Cannot initialize queue for request-based dm mapped device");
2359			return r;
2360		}
2361		break;
2362	case DM_TYPE_BIO_BASED:
2363	case DM_TYPE_DAX_BIO_BASED:
2364		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
 
 
 
 
 
2365		break;
2366	case DM_TYPE_NONE:
2367		WARN_ON_ONCE(true);
2368		break;
2369	}
2370
2371	r = dm_calculate_queue_limits(t, &limits);
2372	if (r) {
2373		DMERR("Cannot calculate initial queue limits");
2374		return r;
2375	}
2376	r = dm_table_set_restrictions(t, md->queue, &limits);
2377	if (r)
2378		return r;
2379
2380	/*
2381	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2382	 * with open_table_device() and close_table_device().
2383	 */
2384	mutex_lock(&md->table_devices_lock);
2385	r = add_disk(md->disk);
2386	mutex_unlock(&md->table_devices_lock);
2387	if (r)
2388		return r;
2389
2390	/*
2391	 * Register the holder relationship for devices added before the disk
2392	 * was live.
2393	 */
2394	list_for_each_entry(td, &md->table_devices, list) {
2395		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2396		if (r)
2397			goto out_undo_holders;
2398	}
2399
2400	r = dm_sysfs_init(md);
2401	if (r)
2402		goto out_undo_holders;
2403
2404	md->type = type;
2405	return 0;
2406
2407out_undo_holders:
2408	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2409		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2410	mutex_lock(&md->table_devices_lock);
2411	del_gendisk(md->disk);
2412	mutex_unlock(&md->table_devices_lock);
2413	return r;
2414}
2415
2416struct mapped_device *dm_get_md(dev_t dev)
2417{
2418	struct mapped_device *md;
2419	unsigned int minor = MINOR(dev);
2420
2421	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2422		return NULL;
2423
2424	spin_lock(&_minor_lock);
2425
2426	md = idr_find(&_minor_idr, minor);
2427	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2428	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2429		md = NULL;
2430		goto out;
2431	}
2432	dm_get(md);
2433out:
2434	spin_unlock(&_minor_lock);
2435
2436	return md;
2437}
2438EXPORT_SYMBOL_GPL(dm_get_md);
2439
2440void *dm_get_mdptr(struct mapped_device *md)
2441{
2442	return md->interface_ptr;
2443}
2444
2445void dm_set_mdptr(struct mapped_device *md, void *ptr)
2446{
2447	md->interface_ptr = ptr;
2448}
2449
2450void dm_get(struct mapped_device *md)
2451{
2452	atomic_inc(&md->holders);
2453	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2454}
2455
2456int dm_hold(struct mapped_device *md)
2457{
2458	spin_lock(&_minor_lock);
2459	if (test_bit(DMF_FREEING, &md->flags)) {
2460		spin_unlock(&_minor_lock);
2461		return -EBUSY;
2462	}
2463	dm_get(md);
2464	spin_unlock(&_minor_lock);
2465	return 0;
2466}
2467EXPORT_SYMBOL_GPL(dm_hold);
2468
2469const char *dm_device_name(struct mapped_device *md)
2470{
2471	return md->name;
2472}
2473EXPORT_SYMBOL_GPL(dm_device_name);
2474
2475static void __dm_destroy(struct mapped_device *md, bool wait)
2476{
2477	struct dm_table *map;
2478	int srcu_idx;
2479
2480	might_sleep();
2481
2482	spin_lock(&_minor_lock);
2483	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2484	set_bit(DMF_FREEING, &md->flags);
2485	spin_unlock(&_minor_lock);
2486
2487	blk_mark_disk_dead(md->disk);
 
 
 
2488
2489	/*
2490	 * Take suspend_lock so that presuspend and postsuspend methods
2491	 * do not race with internal suspend.
2492	 */
2493	mutex_lock(&md->suspend_lock);
2494	map = dm_get_live_table(md, &srcu_idx);
2495	if (!dm_suspended_md(md)) {
2496		dm_table_presuspend_targets(map);
2497		set_bit(DMF_SUSPENDED, &md->flags);
2498		set_bit(DMF_POST_SUSPENDING, &md->flags);
2499		dm_table_postsuspend_targets(map);
2500	}
2501	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2502	dm_put_live_table(md, srcu_idx);
2503	mutex_unlock(&md->suspend_lock);
2504
2505	/*
2506	 * Rare, but there may be I/O requests still going to complete,
2507	 * for example.  Wait for all references to disappear.
2508	 * No one should increment the reference count of the mapped_device,
2509	 * after the mapped_device state becomes DMF_FREEING.
2510	 */
2511	if (wait)
2512		while (atomic_read(&md->holders))
2513			fsleep(1000);
2514	else if (atomic_read(&md->holders))
2515		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2516		       dm_device_name(md), atomic_read(&md->holders));
2517
 
2518	dm_table_destroy(__unbind(md));
2519	free_dev(md);
2520}
2521
2522void dm_destroy(struct mapped_device *md)
2523{
2524	__dm_destroy(md, true);
2525}
2526
2527void dm_destroy_immediate(struct mapped_device *md)
2528{
2529	__dm_destroy(md, false);
2530}
2531
2532void dm_put(struct mapped_device *md)
2533{
2534	atomic_dec(&md->holders);
2535}
2536EXPORT_SYMBOL_GPL(dm_put);
2537
2538static bool dm_in_flight_bios(struct mapped_device *md)
2539{
2540	int cpu;
2541	unsigned long sum = 0;
2542
2543	for_each_possible_cpu(cpu)
2544		sum += *per_cpu_ptr(md->pending_io, cpu);
2545
2546	return sum != 0;
2547}
2548
2549static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2550{
2551	int r = 0;
2552	DEFINE_WAIT(wait);
2553
2554	while (true) {
2555		prepare_to_wait(&md->wait, &wait, task_state);
2556
2557		if (!dm_in_flight_bios(md))
2558			break;
2559
2560		if (signal_pending_state(task_state, current)) {
2561			r = -EINTR;
2562			break;
2563		}
2564
2565		io_schedule();
2566	}
2567	finish_wait(&md->wait, &wait);
2568
2569	smp_rmb();
2570
2571	return r;
2572}
2573
2574static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2575{
2576	int r = 0;
2577
2578	if (!queue_is_mq(md->queue))
2579		return dm_wait_for_bios_completion(md, task_state);
2580
2581	while (true) {
2582		if (!blk_mq_queue_inflight(md->queue))
2583			break;
2584
2585		if (signal_pending_state(task_state, current)) {
2586			r = -EINTR;
2587			break;
2588		}
2589
2590		fsleep(5000);
2591	}
2592
2593	return r;
2594}
2595
2596/*
2597 * Process the deferred bios
2598 */
2599static void dm_wq_work(struct work_struct *work)
2600{
2601	struct mapped_device *md = container_of(work, struct mapped_device, work);
2602	struct bio *bio;
 
 
 
 
 
2603
2604	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2605		spin_lock_irq(&md->deferred_lock);
2606		bio = bio_list_pop(&md->deferred);
2607		spin_unlock_irq(&md->deferred_lock);
2608
2609		if (!bio)
2610			break;
2611
2612		submit_bio_noacct(bio);
2613		cond_resched();
 
 
2614	}
 
 
2615}
2616
2617static void dm_queue_flush(struct mapped_device *md)
2618{
2619	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2620	smp_mb__after_atomic();
2621	queue_work(md->wq, &md->work);
2622}
2623
2624/*
2625 * Swap in a new table, returning the old one for the caller to destroy.
2626 */
2627struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2628{
2629	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2630	struct queue_limits limits;
2631	int r;
2632
2633	mutex_lock(&md->suspend_lock);
2634
2635	/* device must be suspended */
2636	if (!dm_suspended_md(md))
2637		goto out;
2638
2639	/*
2640	 * If the new table has no data devices, retain the existing limits.
2641	 * This helps multipath with queue_if_no_path if all paths disappear,
2642	 * then new I/O is queued based on these limits, and then some paths
2643	 * reappear.
2644	 */
2645	if (dm_table_has_no_data_devices(table)) {
2646		live_map = dm_get_live_table_fast(md);
2647		if (live_map)
2648			limits = md->queue->limits;
2649		dm_put_live_table_fast(md);
2650	}
2651
2652	if (!live_map) {
2653		r = dm_calculate_queue_limits(table, &limits);
2654		if (r) {
2655			map = ERR_PTR(r);
2656			goto out;
2657		}
2658	}
2659
2660	map = __bind(md, table, &limits);
2661	dm_issue_global_event();
2662
2663out:
2664	mutex_unlock(&md->suspend_lock);
2665	return map;
2666}
2667
2668/*
2669 * Functions to lock and unlock any filesystem running on the
2670 * device.
2671 */
2672static int lock_fs(struct mapped_device *md)
2673{
2674	int r;
2675
2676	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2677
2678	r = bdev_freeze(md->disk->part0);
2679	if (!r)
2680		set_bit(DMF_FROZEN, &md->flags);
2681	return r;
 
 
 
 
 
 
2682}
2683
2684static void unlock_fs(struct mapped_device *md)
2685{
2686	if (!test_bit(DMF_FROZEN, &md->flags))
2687		return;
2688	bdev_thaw(md->disk->part0);
 
 
2689	clear_bit(DMF_FROZEN, &md->flags);
2690}
2691
2692/*
2693 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2694 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2695 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2696 *
2697 * If __dm_suspend returns 0, the device is completely quiescent
2698 * now. There is no request-processing activity. All new requests
2699 * are being added to md->deferred list.
2700 */
2701static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2702			unsigned int suspend_flags, unsigned int task_state,
2703			int dmf_suspended_flag)
2704{
2705	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2706	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2707	int r;
2708
2709	lockdep_assert_held(&md->suspend_lock);
2710
2711	/*
2712	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2713	 * This flag is cleared before dm_suspend returns.
2714	 */
2715	if (noflush)
2716		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2717	else
2718		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2719
2720	/*
2721	 * This gets reverted if there's an error later and the targets
2722	 * provide the .presuspend_undo hook.
2723	 */
2724	dm_table_presuspend_targets(map);
2725
2726	/*
2727	 * Flush I/O to the device.
2728	 * Any I/O submitted after lock_fs() may not be flushed.
2729	 * noflush takes precedence over do_lockfs.
2730	 * (lock_fs() flushes I/Os and waits for them to complete.)
2731	 */
2732	if (!noflush && do_lockfs) {
2733		r = lock_fs(md);
2734		if (r) {
2735			dm_table_presuspend_undo_targets(map);
2736			return r;
2737		}
2738	}
2739
2740	/*
2741	 * Here we must make sure that no processes are submitting requests
2742	 * to target drivers i.e. no one may be executing
2743	 * dm_split_and_process_bio from dm_submit_bio.
 
2744	 *
2745	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2746	 * we take the write lock. To prevent any process from reentering
2747	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2748	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2749	 * flush_workqueue(md->wq).
2750	 */
2751	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2752	if (map)
2753		synchronize_srcu(&md->io_barrier);
2754
2755	/*
2756	 * Stop md->queue before flushing md->wq in case request-based
2757	 * dm defers requests to md->wq from md->queue.
2758	 */
2759	if (dm_request_based(md))
2760		dm_stop_queue(md->queue);
 
 
 
2761
2762	flush_workqueue(md->wq);
2763
2764	/*
2765	 * At this point no more requests are entering target request routines.
2766	 * We call dm_wait_for_completion to wait for all existing requests
2767	 * to finish.
2768	 */
2769	r = dm_wait_for_completion(md, task_state);
2770	if (!r)
2771		set_bit(dmf_suspended_flag, &md->flags);
2772
2773	if (noflush)
2774		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2775	if (map)
2776		synchronize_srcu(&md->io_barrier);
2777
2778	/* were we interrupted ? */
2779	if (r < 0) {
2780		dm_queue_flush(md);
2781
2782		if (dm_request_based(md))
2783			dm_start_queue(md->queue);
2784
2785		unlock_fs(md);
2786		dm_table_presuspend_undo_targets(map);
2787		/* pushback list is already flushed, so skip flush */
2788	}
2789
2790	return r;
2791}
2792
2793/*
2794 * We need to be able to change a mapping table under a mounted
2795 * filesystem.  For example we might want to move some data in
2796 * the background.  Before the table can be swapped with
2797 * dm_bind_table, dm_suspend must be called to flush any in
2798 * flight bios and ensure that any further io gets deferred.
2799 */
2800/*
2801 * Suspend mechanism in request-based dm.
2802 *
2803 * 1. Flush all I/Os by lock_fs() if needed.
2804 * 2. Stop dispatching any I/O by stopping the request_queue.
2805 * 3. Wait for all in-flight I/Os to be completed or requeued.
2806 *
2807 * To abort suspend, start the request_queue.
2808 */
2809int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2810{
2811	struct dm_table *map = NULL;
2812	int r = 0;
2813
2814retry:
2815	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2816
2817	if (dm_suspended_md(md)) {
2818		r = -EINVAL;
2819		goto out_unlock;
2820	}
2821
2822	if (dm_suspended_internally_md(md)) {
2823		/* already internally suspended, wait for internal resume */
2824		mutex_unlock(&md->suspend_lock);
2825		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2826		if (r)
2827			return r;
2828		goto retry;
2829	}
2830
2831	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2832	if (!map) {
2833		/* avoid deadlock with fs/namespace.c:do_mount() */
2834		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2835	}
2836
2837	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2838	if (r)
2839		goto out_unlock;
2840
2841	set_bit(DMF_POST_SUSPENDING, &md->flags);
2842	dm_table_postsuspend_targets(map);
2843	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2844
2845out_unlock:
2846	mutex_unlock(&md->suspend_lock);
2847	return r;
2848}
2849
2850static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2851{
2852	if (map) {
2853		int r = dm_table_resume_targets(map);
2854
2855		if (r)
2856			return r;
2857	}
2858
2859	dm_queue_flush(md);
2860
2861	/*
2862	 * Flushing deferred I/Os must be done after targets are resumed
2863	 * so that mapping of targets can work correctly.
2864	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2865	 */
2866	if (dm_request_based(md))
2867		dm_start_queue(md->queue);
2868
2869	unlock_fs(md);
2870
2871	return 0;
2872}
2873
2874int dm_resume(struct mapped_device *md)
2875{
2876	int r;
2877	struct dm_table *map = NULL;
2878
2879retry:
2880	r = -EINVAL;
2881	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2882
2883	if (!dm_suspended_md(md))
2884		goto out;
2885
2886	if (dm_suspended_internally_md(md)) {
2887		/* already internally suspended, wait for internal resume */
2888		mutex_unlock(&md->suspend_lock);
2889		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2890		if (r)
2891			return r;
2892		goto retry;
2893	}
2894
2895	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2896	if (!map || !dm_table_get_size(map))
2897		goto out;
2898
2899	r = __dm_resume(md, map);
2900	if (r)
2901		goto out;
2902
2903	clear_bit(DMF_SUSPENDED, &md->flags);
2904out:
2905	mutex_unlock(&md->suspend_lock);
2906
2907	return r;
2908}
2909
2910/*
2911 * Internal suspend/resume works like userspace-driven suspend. It waits
2912 * until all bios finish and prevents issuing new bios to the target drivers.
2913 * It may be used only from the kernel.
2914 */
2915
2916static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2917{
2918	struct dm_table *map = NULL;
2919
2920	lockdep_assert_held(&md->suspend_lock);
2921
2922	if (md->internal_suspend_count++)
2923		return; /* nested internal suspend */
2924
2925	if (dm_suspended_md(md)) {
2926		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2927		return; /* nest suspend */
2928	}
2929
2930	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2931
2932	/*
2933	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2934	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2935	 * would require changing .presuspend to return an error -- avoid this
2936	 * until there is a need for more elaborate variants of internal suspend.
2937	 */
2938	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2939			    DMF_SUSPENDED_INTERNALLY);
2940
2941	set_bit(DMF_POST_SUSPENDING, &md->flags);
2942	dm_table_postsuspend_targets(map);
2943	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2944}
2945
2946static void __dm_internal_resume(struct mapped_device *md)
2947{
2948	BUG_ON(!md->internal_suspend_count);
2949
2950	if (--md->internal_suspend_count)
2951		return; /* resume from nested internal suspend */
2952
2953	if (dm_suspended_md(md))
2954		goto done; /* resume from nested suspend */
2955
2956	/*
2957	 * NOTE: existing callers don't need to call dm_table_resume_targets
2958	 * (which may fail -- so best to avoid it for now by passing NULL map)
2959	 */
2960	(void) __dm_resume(md, NULL);
2961
2962done:
2963	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2964	smp_mb__after_atomic();
2965	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2966}
2967
2968void dm_internal_suspend_noflush(struct mapped_device *md)
2969{
2970	mutex_lock(&md->suspend_lock);
2971	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2972	mutex_unlock(&md->suspend_lock);
2973}
2974EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2975
2976void dm_internal_resume(struct mapped_device *md)
2977{
2978	mutex_lock(&md->suspend_lock);
2979	__dm_internal_resume(md);
2980	mutex_unlock(&md->suspend_lock);
2981}
2982EXPORT_SYMBOL_GPL(dm_internal_resume);
2983
2984/*
2985 * Fast variants of internal suspend/resume hold md->suspend_lock,
2986 * which prevents interaction with userspace-driven suspend.
2987 */
2988
2989void dm_internal_suspend_fast(struct mapped_device *md)
2990{
2991	mutex_lock(&md->suspend_lock);
2992	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2993		return;
2994
2995	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2996	synchronize_srcu(&md->io_barrier);
2997	flush_workqueue(md->wq);
2998	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2999}
3000EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3001
3002void dm_internal_resume_fast(struct mapped_device *md)
3003{
3004	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3005		goto done;
3006
3007	dm_queue_flush(md);
3008
3009done:
3010	mutex_unlock(&md->suspend_lock);
3011}
3012EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3013
3014/*
3015 *---------------------------------------------------------------
3016 * Event notification.
3017 *---------------------------------------------------------------
3018 */
3019int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3020		      unsigned int cookie, bool need_resize_uevent)
3021{
3022	int r;
3023	unsigned int noio_flag;
3024	char udev_cookie[DM_COOKIE_LENGTH];
3025	char *envp[3] = { NULL, NULL, NULL };
3026	char **envpp = envp;
3027	if (cookie) {
 
 
3028		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3029			 DM_COOKIE_ENV_VAR_NAME, cookie);
3030		*envpp++ = udev_cookie;
3031	}
3032	if (need_resize_uevent) {
3033		*envpp++ = "RESIZE=1";
3034	}
3035
3036	noio_flag = memalloc_noio_save();
3037
3038	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3039
3040	memalloc_noio_restore(noio_flag);
3041
3042	return r;
3043}
3044
3045uint32_t dm_next_uevent_seq(struct mapped_device *md)
3046{
3047	return atomic_add_return(1, &md->uevent_seq);
3048}
3049
3050uint32_t dm_get_event_nr(struct mapped_device *md)
3051{
3052	return atomic_read(&md->event_nr);
3053}
3054
3055int dm_wait_event(struct mapped_device *md, int event_nr)
3056{
3057	return wait_event_interruptible(md->eventq,
3058			(event_nr != atomic_read(&md->event_nr)));
3059}
3060
3061void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3062{
3063	unsigned long flags;
3064
3065	spin_lock_irqsave(&md->uevent_lock, flags);
3066	list_add(elist, &md->uevent_list);
3067	spin_unlock_irqrestore(&md->uevent_lock, flags);
3068}
3069
3070/*
3071 * The gendisk is only valid as long as you have a reference
3072 * count on 'md'.
3073 */
3074struct gendisk *dm_disk(struct mapped_device *md)
3075{
3076	return md->disk;
3077}
3078EXPORT_SYMBOL_GPL(dm_disk);
3079
3080struct kobject *dm_kobject(struct mapped_device *md)
3081{
3082	return &md->kobj_holder.kobj;
3083}
3084
3085struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3086{
3087	struct mapped_device *md;
3088
3089	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3090
3091	spin_lock(&_minor_lock);
3092	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3093		md = NULL;
3094		goto out;
3095	}
3096	dm_get(md);
3097out:
3098	spin_unlock(&_minor_lock);
3099
3100	return md;
3101}
3102
3103int dm_suspended_md(struct mapped_device *md)
3104{
3105	return test_bit(DMF_SUSPENDED, &md->flags);
3106}
3107
3108static int dm_post_suspending_md(struct mapped_device *md)
3109{
3110	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3111}
3112
3113int dm_suspended_internally_md(struct mapped_device *md)
3114{
3115	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3116}
3117
3118int dm_test_deferred_remove_flag(struct mapped_device *md)
3119{
3120	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3121}
3122
3123int dm_suspended(struct dm_target *ti)
3124{
3125	return dm_suspended_md(ti->table->md);
3126}
3127EXPORT_SYMBOL_GPL(dm_suspended);
3128
3129int dm_post_suspending(struct dm_target *ti)
3130{
3131	return dm_post_suspending_md(ti->table->md);
3132}
3133EXPORT_SYMBOL_GPL(dm_post_suspending);
3134
3135int dm_noflush_suspending(struct dm_target *ti)
3136{
3137	return __noflush_suspending(ti->table->md);
3138}
3139EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3141void dm_free_md_mempools(struct dm_md_mempools *pools)
3142{
3143	if (!pools)
3144		return;
3145
3146	bioset_exit(&pools->bs);
3147	bioset_exit(&pools->io_bs);
 
 
3148
3149	kfree(pools);
3150}
3151
3152struct dm_pr {
3153	u64	old_key;
3154	u64	new_key;
3155	u32	flags;
3156	bool	abort;
3157	bool	fail_early;
3158	int	ret;
3159	enum pr_type type;
3160	struct pr_keys *read_keys;
3161	struct pr_held_reservation *rsv;
3162};
3163
3164static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3165		      struct dm_pr *pr)
3166{
3167	struct mapped_device *md = bdev->bd_disk->private_data;
3168	struct dm_table *table;
3169	struct dm_target *ti;
3170	int ret = -ENOTTY, srcu_idx;
3171
3172	table = dm_get_live_table(md, &srcu_idx);
3173	if (!table || !dm_table_get_size(table))
3174		goto out;
3175
3176	/* We only support devices that have a single target */
3177	if (table->num_targets != 1)
3178		goto out;
3179	ti = dm_table_get_target(table, 0);
3180
3181	if (dm_suspended_md(md)) {
3182		ret = -EAGAIN;
3183		goto out;
3184	}
3185
3186	ret = -EINVAL;
3187	if (!ti->type->iterate_devices)
3188		goto out;
3189
3190	ti->type->iterate_devices(ti, fn, pr);
3191	ret = 0;
3192out:
3193	dm_put_live_table(md, srcu_idx);
3194	return ret;
3195}
3196
3197/*
3198 * For register / unregister we need to manually call out to every path.
3199 */
3200static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3201			    sector_t start, sector_t len, void *data)
3202{
3203	struct dm_pr *pr = data;
3204	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3205	int ret;
3206
3207	if (!ops || !ops->pr_register) {
3208		pr->ret = -EOPNOTSUPP;
3209		return -1;
3210	}
3211
3212	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3213	if (!ret)
3214		return 0;
3215
3216	if (!pr->ret)
3217		pr->ret = ret;
3218
3219	if (pr->fail_early)
3220		return -1;
3221
3222	return 0;
3223}
3224
3225static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3226			  u32 flags)
3227{
3228	struct dm_pr pr = {
3229		.old_key	= old_key,
3230		.new_key	= new_key,
3231		.flags		= flags,
3232		.fail_early	= true,
3233		.ret		= 0,
3234	};
3235	int ret;
3236
3237	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3238	if (ret) {
3239		/* Didn't even get to register a path */
3240		return ret;
 
 
 
 
3241	}
3242
3243	if (!pr.ret)
3244		return 0;
3245	ret = pr.ret;
3246
3247	if (!new_key)
3248		return ret;
3249
3250	/* unregister all paths if we failed to register any path */
3251	pr.old_key = new_key;
3252	pr.new_key = 0;
3253	pr.flags = 0;
3254	pr.fail_early = false;
3255	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3256	return ret;
3257}
3258
3259
3260static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3261			   sector_t start, sector_t len, void *data)
3262{
3263	struct dm_pr *pr = data;
3264	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3265
3266	if (!ops || !ops->pr_reserve) {
3267		pr->ret = -EOPNOTSUPP;
3268		return -1;
3269	}
3270
3271	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3272	if (!pr->ret)
3273		return -1;
3274
3275	return 0;
3276}
3277
3278static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3279			 u32 flags)
3280{
3281	struct dm_pr pr = {
3282		.old_key	= key,
3283		.flags		= flags,
3284		.type		= type,
3285		.fail_early	= false,
3286		.ret		= 0,
3287	};
3288	int ret;
3289
3290	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3291	if (ret)
3292		return ret;
3293
3294	return pr.ret;
3295}
3296
3297/*
3298 * If there is a non-All Registrants type of reservation, the release must be
3299 * sent down the holding path. For the cases where there is no reservation or
3300 * the path is not the holder the device will also return success, so we must
3301 * try each path to make sure we got the correct path.
3302 */
3303static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3304			   sector_t start, sector_t len, void *data)
3305{
3306	struct dm_pr *pr = data;
3307	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3308
3309	if (!ops || !ops->pr_release) {
3310		pr->ret = -EOPNOTSUPP;
3311		return -1;
3312	}
3313
3314	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3315	if (pr->ret)
3316		return -1;
3317
3318	return 0;
 
 
 
 
 
 
 
3319}
3320
3321static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3322{
3323	struct dm_pr pr = {
3324		.old_key	= key,
3325		.type		= type,
3326		.fail_early	= false,
3327	};
3328	int ret;
3329
3330	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3331	if (ret)
3332		return ret;
3333
3334	return pr.ret;
3335}
3336
3337static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3338			   sector_t start, sector_t len, void *data)
3339{
3340	struct dm_pr *pr = data;
3341	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3342
3343	if (!ops || !ops->pr_preempt) {
3344		pr->ret = -EOPNOTSUPP;
3345		return -1;
3346	}
3347
3348	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3349				  pr->abort);
3350	if (!pr->ret)
3351		return -1;
3352
3353	return 0;
 
 
 
 
 
 
 
3354}
3355
3356static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3357			 enum pr_type type, bool abort)
3358{
3359	struct dm_pr pr = {
3360		.new_key	= new_key,
3361		.old_key	= old_key,
3362		.type		= type,
3363		.fail_early	= false,
3364	};
3365	int ret;
3366
3367	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3368	if (ret)
3369		return ret;
3370
3371	return pr.ret;
 
 
 
 
 
 
 
3372}
3373
3374static int dm_pr_clear(struct block_device *bdev, u64 key)
3375{
3376	struct mapped_device *md = bdev->bd_disk->private_data;
3377	const struct pr_ops *ops;
3378	int r, srcu_idx;
3379
3380	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3381	if (r < 0)
3382		goto out;
3383
3384	ops = bdev->bd_disk->fops->pr_ops;
3385	if (ops && ops->pr_clear)
3386		r = ops->pr_clear(bdev, key);
3387	else
3388		r = -EOPNOTSUPP;
3389out:
3390	dm_unprepare_ioctl(md, srcu_idx);
3391	return r;
3392}
3393
3394static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3395			     sector_t start, sector_t len, void *data)
3396{
3397	struct dm_pr *pr = data;
3398	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3399
3400	if (!ops || !ops->pr_read_keys) {
3401		pr->ret = -EOPNOTSUPP;
3402		return -1;
3403	}
3404
3405	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3406	if (!pr->ret)
3407		return -1;
3408
3409	return 0;
3410}
3411
3412static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3413{
3414	struct dm_pr pr = {
3415		.read_keys = keys,
3416	};
3417	int ret;
3418
3419	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3420	if (ret)
3421		return ret;
3422
3423	return pr.ret;
3424}
3425
3426static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3427				    sector_t start, sector_t len, void *data)
3428{
3429	struct dm_pr *pr = data;
3430	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3431
3432	if (!ops || !ops->pr_read_reservation) {
3433		pr->ret = -EOPNOTSUPP;
3434		return -1;
3435	}
3436
3437	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3438	if (!pr->ret)
3439		return -1;
3440
3441	return 0;
3442}
3443
3444static int dm_pr_read_reservation(struct block_device *bdev,
3445				  struct pr_held_reservation *rsv)
3446{
3447	struct dm_pr pr = {
3448		.rsv = rsv,
3449	};
3450	int ret;
3451
3452	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3453	if (ret)
3454		return ret;
3455
3456	return pr.ret;
3457}
3458
3459static const struct pr_ops dm_pr_ops = {
3460	.pr_register	= dm_pr_register,
3461	.pr_reserve	= dm_pr_reserve,
3462	.pr_release	= dm_pr_release,
3463	.pr_preempt	= dm_pr_preempt,
3464	.pr_clear	= dm_pr_clear,
3465	.pr_read_keys	= dm_pr_read_keys,
3466	.pr_read_reservation = dm_pr_read_reservation,
3467};
3468
3469static const struct block_device_operations dm_blk_dops = {
3470	.submit_bio = dm_submit_bio,
3471	.poll_bio = dm_poll_bio,
3472	.open = dm_blk_open,
3473	.release = dm_blk_close,
3474	.ioctl = dm_blk_ioctl,
3475	.getgeo = dm_blk_getgeo,
3476	.report_zones = dm_blk_report_zones,
3477	.pr_ops = &dm_pr_ops,
3478	.owner = THIS_MODULE
3479};
3480
3481static const struct block_device_operations dm_rq_blk_dops = {
3482	.open = dm_blk_open,
3483	.release = dm_blk_close,
3484	.ioctl = dm_blk_ioctl,
3485	.getgeo = dm_blk_getgeo,
3486	.pr_ops = &dm_pr_ops,
3487	.owner = THIS_MODULE
3488};
3489
3490static const struct dax_operations dm_dax_ops = {
3491	.direct_access = dm_dax_direct_access,
3492	.zero_page_range = dm_dax_zero_page_range,
3493	.recovery_write = dm_dax_recovery_write,
3494};
3495
3496/*
3497 * module hooks
3498 */
3499module_init(dm_init);
3500module_exit(dm_exit);
3501
3502module_param(major, uint, 0);
3503MODULE_PARM_DESC(major, "The major number of the device mapper");
3504
3505module_param(reserved_bio_based_ios, uint, 0644);
3506MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3507
3508module_param(dm_numa_node, int, 0644);
3509MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3510
3511module_param(swap_bios, int, 0644);
3512MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3513
3514MODULE_DESCRIPTION(DM_NAME " driver");
3515MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3516MODULE_LICENSE("GPL");
v4.17
 
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
 
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
 
  15#include <linux/sched/signal.h>
  16#include <linux/blkpg.h>
  17#include <linux/bio.h>
  18#include <linux/mempool.h>
  19#include <linux/dax.h>
  20#include <linux/slab.h>
  21#include <linux/idr.h>
  22#include <linux/uio.h>
  23#include <linux/hdreg.h>
  24#include <linux/delay.h>
  25#include <linux/wait.h>
  26#include <linux/pr.h>
  27#include <linux/refcount.h>
 
 
 
  28
  29#define DM_MSG_PREFIX "core"
  30
  31/*
  32 * Cookies are numeric values sent with CHANGE and REMOVE
  33 * uevents while resuming, removing or renaming the device.
  34 */
  35#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  36#define DM_COOKIE_LENGTH 24
  37
 
 
 
 
 
 
 
  38static const char *_name = DM_NAME;
  39
  40static unsigned int major = 0;
  41static unsigned int _major = 0;
  42
  43static DEFINE_IDR(_minor_idr);
  44
  45static DEFINE_SPINLOCK(_minor_lock);
  46
  47static void do_deferred_remove(struct work_struct *w);
  48
  49static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  50
  51static struct workqueue_struct *deferred_remove_workqueue;
  52
  53atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  54DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  55
  56void dm_issue_global_event(void)
  57{
  58	atomic_inc(&dm_global_event_nr);
  59	wake_up(&dm_global_eventq);
  60}
  61
 
 
 
 
  62/*
  63 * One of these is allocated (on-stack) per original bio.
  64 */
  65struct clone_info {
  66	struct dm_table *map;
  67	struct bio *bio;
  68	struct dm_io *io;
  69	sector_t sector;
  70	unsigned sector_count;
 
 
  71};
  72
  73/*
  74 * One of these is allocated per clone bio.
  75 */
  76#define DM_TIO_MAGIC 7282014
  77struct dm_target_io {
  78	unsigned magic;
  79	struct dm_io *io;
  80	struct dm_target *ti;
  81	unsigned target_bio_nr;
  82	unsigned *len_ptr;
  83	bool inside_dm_io;
  84	struct bio clone;
  85};
  86
  87/*
  88 * One of these is allocated per original bio.
  89 * It contains the first clone used for that original.
  90 */
  91#define DM_IO_MAGIC 5191977
  92struct dm_io {
  93	unsigned magic;
  94	struct mapped_device *md;
  95	blk_status_t status;
  96	atomic_t io_count;
  97	struct bio *orig_bio;
  98	unsigned long start_time;
  99	spinlock_t endio_lock;
 100	struct dm_stats_aux stats_aux;
 101	/* last member of dm_target_io is 'struct bio' */
 102	struct dm_target_io tio;
 103};
 104
 105void *dm_per_bio_data(struct bio *bio, size_t data_size)
 106{
 107	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 108	if (!tio->inside_dm_io)
 109		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 110	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 111}
 112EXPORT_SYMBOL_GPL(dm_per_bio_data);
 113
 114struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 115{
 116	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 
 117	if (io->magic == DM_IO_MAGIC)
 118		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 119	BUG_ON(io->magic != DM_TIO_MAGIC);
 120	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 121}
 122EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 123
 124unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 125{
 126	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 127}
 128EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 129
 130#define MINOR_ALLOCED ((void *)-1)
 131
 132/*
 133 * Bits for the md->flags field.
 134 */
 135#define DMF_BLOCK_IO_FOR_SUSPEND 0
 136#define DMF_SUSPENDED 1
 137#define DMF_FROZEN 2
 138#define DMF_FREEING 3
 139#define DMF_DELETING 4
 140#define DMF_NOFLUSH_SUSPENDING 5
 141#define DMF_DEFERRED_REMOVE 6
 142#define DMF_SUSPENDED_INTERNALLY 7
 143
 144#define DM_NUMA_NODE NUMA_NO_NODE
 145static int dm_numa_node = DM_NUMA_NODE;
 146
 147/*
 148 * For mempools pre-allocation at the table loading time.
 149 */
 150struct dm_md_mempools {
 151	struct bio_set *bs;
 152	struct bio_set *io_bs;
 153};
 
 
 
 154
 155struct table_device {
 156	struct list_head list;
 157	refcount_t count;
 158	struct dm_dev dm_dev;
 159};
 160
 161static struct kmem_cache *_rq_tio_cache;
 162static struct kmem_cache *_rq_cache;
 163
 164/*
 165 * Bio-based DM's mempools' reserved IOs set by the user.
 166 */
 167#define RESERVED_BIO_BASED_IOS		16
 168static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 169
 170static int __dm_get_module_param_int(int *module_param, int min, int max)
 171{
 172	int param = READ_ONCE(*module_param);
 173	int modified_param = 0;
 174	bool modified = true;
 175
 176	if (param < min)
 177		modified_param = min;
 178	else if (param > max)
 179		modified_param = max;
 180	else
 181		modified = false;
 182
 183	if (modified) {
 184		(void)cmpxchg(module_param, param, modified_param);
 185		param = modified_param;
 186	}
 187
 188	return param;
 189}
 190
 191unsigned __dm_get_module_param(unsigned *module_param,
 192			       unsigned def, unsigned max)
 193{
 194	unsigned param = READ_ONCE(*module_param);
 195	unsigned modified_param = 0;
 196
 197	if (!param)
 198		modified_param = def;
 199	else if (param > max)
 200		modified_param = max;
 201
 202	if (modified_param) {
 203		(void)cmpxchg(module_param, param, modified_param);
 204		param = modified_param;
 205	}
 206
 207	return param;
 208}
 209
 210unsigned dm_get_reserved_bio_based_ios(void)
 211{
 212	return __dm_get_module_param(&reserved_bio_based_ios,
 213				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 214}
 215EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 216
 217static unsigned dm_get_numa_node(void)
 218{
 219	return __dm_get_module_param_int(&dm_numa_node,
 220					 DM_NUMA_NODE, num_online_nodes() - 1);
 221}
 222
 223static int __init local_init(void)
 224{
 225	int r = -ENOMEM;
 226
 227	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 228	if (!_rq_tio_cache)
 229		return r;
 230
 231	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
 232				      __alignof__(struct request), 0, NULL);
 233	if (!_rq_cache)
 234		goto out_free_rq_tio_cache;
 235
 236	r = dm_uevent_init();
 237	if (r)
 238		goto out_free_rq_cache;
 239
 240	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 241	if (!deferred_remove_workqueue) {
 242		r = -ENOMEM;
 243		goto out_uevent_exit;
 244	}
 245
 246	_major = major;
 247	r = register_blkdev(_major, _name);
 248	if (r < 0)
 249		goto out_free_workqueue;
 250
 251	if (!_major)
 252		_major = r;
 253
 254	return 0;
 255
 256out_free_workqueue:
 257	destroy_workqueue(deferred_remove_workqueue);
 258out_uevent_exit:
 259	dm_uevent_exit();
 260out_free_rq_cache:
 261	kmem_cache_destroy(_rq_cache);
 262out_free_rq_tio_cache:
 263	kmem_cache_destroy(_rq_tio_cache);
 264
 265	return r;
 266}
 267
 268static void local_exit(void)
 269{
 270	flush_scheduled_work();
 271	destroy_workqueue(deferred_remove_workqueue);
 272
 273	kmem_cache_destroy(_rq_cache);
 274	kmem_cache_destroy(_rq_tio_cache);
 275	unregister_blkdev(_major, _name);
 276	dm_uevent_exit();
 277
 278	_major = 0;
 279
 280	DMINFO("cleaned up");
 281}
 282
 283static int (*_inits[])(void) __initdata = {
 284	local_init,
 285	dm_target_init,
 286	dm_linear_init,
 287	dm_stripe_init,
 288	dm_io_init,
 289	dm_kcopyd_init,
 290	dm_interface_init,
 291	dm_statistics_init,
 292};
 293
 294static void (*_exits[])(void) = {
 295	local_exit,
 296	dm_target_exit,
 297	dm_linear_exit,
 298	dm_stripe_exit,
 299	dm_io_exit,
 300	dm_kcopyd_exit,
 301	dm_interface_exit,
 302	dm_statistics_exit,
 303};
 304
 305static int __init dm_init(void)
 306{
 307	const int count = ARRAY_SIZE(_inits);
 
 308
 309	int r, i;
 
 
 
 310
 311	for (i = 0; i < count; i++) {
 312		r = _inits[i]();
 313		if (r)
 314			goto bad;
 315	}
 316
 317	return 0;
 318
 319      bad:
 320	while (i--)
 321		_exits[i]();
 322
 323	return r;
 324}
 325
 326static void __exit dm_exit(void)
 327{
 328	int i = ARRAY_SIZE(_exits);
 329
 330	while (i--)
 331		_exits[i]();
 332
 333	/*
 334	 * Should be empty by this point.
 335	 */
 336	idr_destroy(&_minor_idr);
 337}
 338
 339/*
 340 * Block device functions
 341 */
 342int dm_deleting_md(struct mapped_device *md)
 343{
 344	return test_bit(DMF_DELETING, &md->flags);
 345}
 346
 347static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 348{
 349	struct mapped_device *md;
 350
 351	spin_lock(&_minor_lock);
 352
 353	md = bdev->bd_disk->private_data;
 354	if (!md)
 355		goto out;
 356
 357	if (test_bit(DMF_FREEING, &md->flags) ||
 358	    dm_deleting_md(md)) {
 359		md = NULL;
 360		goto out;
 361	}
 362
 363	dm_get(md);
 364	atomic_inc(&md->open_count);
 365out:
 366	spin_unlock(&_minor_lock);
 367
 368	return md ? 0 : -ENXIO;
 369}
 370
 371static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 372{
 373	struct mapped_device *md;
 374
 375	spin_lock(&_minor_lock);
 376
 377	md = disk->private_data;
 378	if (WARN_ON(!md))
 379		goto out;
 380
 381	if (atomic_dec_and_test(&md->open_count) &&
 382	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 383		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 384
 385	dm_put(md);
 386out:
 387	spin_unlock(&_minor_lock);
 388}
 389
 390int dm_open_count(struct mapped_device *md)
 391{
 392	return atomic_read(&md->open_count);
 393}
 394
 395/*
 396 * Guarantees nothing is using the device before it's deleted.
 397 */
 398int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 399{
 400	int r = 0;
 401
 402	spin_lock(&_minor_lock);
 403
 404	if (dm_open_count(md)) {
 405		r = -EBUSY;
 406		if (mark_deferred)
 407			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 408	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 409		r = -EEXIST;
 410	else
 411		set_bit(DMF_DELETING, &md->flags);
 412
 413	spin_unlock(&_minor_lock);
 414
 415	return r;
 416}
 417
 418int dm_cancel_deferred_remove(struct mapped_device *md)
 419{
 420	int r = 0;
 421
 422	spin_lock(&_minor_lock);
 423
 424	if (test_bit(DMF_DELETING, &md->flags))
 425		r = -EBUSY;
 426	else
 427		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 428
 429	spin_unlock(&_minor_lock);
 430
 431	return r;
 432}
 433
 434static void do_deferred_remove(struct work_struct *w)
 435{
 436	dm_deferred_remove();
 437}
 438
 439sector_t dm_get_size(struct mapped_device *md)
 440{
 441	return get_capacity(md->disk);
 442}
 443
 444struct request_queue *dm_get_md_queue(struct mapped_device *md)
 445{
 446	return md->queue;
 447}
 448
 449struct dm_stats *dm_get_stats(struct mapped_device *md)
 450{
 451	return &md->stats;
 452}
 453
 454static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 455{
 456	struct mapped_device *md = bdev->bd_disk->private_data;
 457
 458	return dm_get_geometry(md, geo);
 459}
 460
 461static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 462			    struct block_device **bdev)
 463	__acquires(md->io_barrier)
 464{
 465	struct dm_target *tgt;
 466	struct dm_table *map;
 467	int r;
 468
 469retry:
 470	r = -ENOTTY;
 471	map = dm_get_live_table(md, srcu_idx);
 472	if (!map || !dm_table_get_size(map))
 473		return r;
 474
 475	/* We only support devices that have a single target */
 476	if (dm_table_get_num_targets(map) != 1)
 477		return r;
 478
 479	tgt = dm_table_get_target(map, 0);
 480	if (!tgt->type->prepare_ioctl)
 481		return r;
 482
 483	if (dm_suspended_md(md))
 484		return -EAGAIN;
 485
 486	r = tgt->type->prepare_ioctl(tgt, bdev);
 487	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 488		dm_put_live_table(md, *srcu_idx);
 489		msleep(10);
 490		goto retry;
 491	}
 492
 493	return r;
 494}
 495
 496static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 497	__releases(md->io_barrier)
 498{
 499	dm_put_live_table(md, srcu_idx);
 500}
 501
 502static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 503			unsigned int cmd, unsigned long arg)
 504{
 505	struct mapped_device *md = bdev->bd_disk->private_data;
 506	int r, srcu_idx;
 507
 508	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 509	if (r < 0)
 510		goto out;
 511
 512	if (r > 0) {
 513		/*
 514		 * Target determined this ioctl is being issued against a
 515		 * subset of the parent bdev; require extra privileges.
 516		 */
 517		if (!capable(CAP_SYS_RAWIO)) {
 518			DMWARN_LIMIT(
 519	"%s: sending ioctl %x to DM device without required privilege.",
 520				current->comm, cmd);
 521			r = -ENOIOCTLCMD;
 522			goto out;
 523		}
 524	}
 525
 526	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 
 
 
 527out:
 528	dm_unprepare_ioctl(md, srcu_idx);
 529	return r;
 530}
 531
 532static void start_io_acct(struct dm_io *io);
 
 
 
 
 
 
 
 
 
 533
 534static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 535{
 536	struct dm_io *io;
 537	struct dm_target_io *tio;
 538	struct bio *clone;
 539
 540	clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs);
 541	if (!clone)
 542		return NULL;
 543
 544	tio = container_of(clone, struct dm_target_io, clone);
 545	tio->inside_dm_io = true;
 546	tio->io = NULL;
 547
 548	io = container_of(tio, struct dm_io, tio);
 549	io->magic = DM_IO_MAGIC;
 550	io->status = 0;
 551	atomic_set(&io->io_count, 1);
 
 
 
 552	io->orig_bio = bio;
 553	io->md = md;
 554	spin_lock_init(&io->endio_lock);
 555
 556	start_io_acct(io);
 
 
 
 
 
 
 557
 558	return io;
 559}
 560
 561static void free_io(struct mapped_device *md, struct dm_io *io)
 562{
 563	bio_put(&io->tio.clone);
 564}
 565
 566static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 567				      unsigned target_bio_nr, gfp_t gfp_mask)
 568{
 
 569	struct dm_target_io *tio;
 
 570
 571	if (!ci->io->tio.io) {
 572		/* the dm_target_io embedded in ci->io is available */
 573		tio = &ci->io->tio;
 
 
 574	} else {
 575		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs);
 
 576		if (!clone)
 577			return NULL;
 578
 579		tio = container_of(clone, struct dm_target_io, clone);
 580		tio->inside_dm_io = false;
 
 
 
 581	}
 582
 583	tio->magic = DM_TIO_MAGIC;
 584	tio->io = ci->io;
 585	tio->ti = ti;
 586	tio->target_bio_nr = target_bio_nr;
 
 
 587
 588	return tio;
 589}
 
 
 590
 591static void free_tio(struct dm_target_io *tio)
 592{
 593	if (tio->inside_dm_io)
 594		return;
 595	bio_put(&tio->clone);
 596}
 597
 598int md_in_flight(struct mapped_device *md)
 599{
 600	return atomic_read(&md->pending[READ]) +
 601	       atomic_read(&md->pending[WRITE]);
 602}
 603
 604static void start_io_acct(struct dm_io *io)
 605{
 606	struct mapped_device *md = io->md;
 607	struct bio *bio = io->orig_bio;
 608	int rw = bio_data_dir(bio);
 609
 610	io->start_time = jiffies;
 611
 612	generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
 613
 614	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 615		   atomic_inc_return(&md->pending[rw]));
 616
 617	if (unlikely(dm_stats_used(&md->stats)))
 618		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 619				    bio->bi_iter.bi_sector, bio_sectors(bio),
 620				    false, 0, &io->stats_aux);
 621}
 622
 623static void end_io_acct(struct dm_io *io)
 624{
 625	struct mapped_device *md = io->md;
 626	struct bio *bio = io->orig_bio;
 627	unsigned long duration = jiffies - io->start_time;
 628	int pending;
 629	int rw = bio_data_dir(bio);
 630
 631	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
 632
 633	if (unlikely(dm_stats_used(&md->stats)))
 634		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 635				    bio->bi_iter.bi_sector, bio_sectors(bio),
 636				    true, duration, &io->stats_aux);
 637
 638	/*
 639	 * After this is decremented the bio must not be touched if it is
 640	 * a flush.
 641	 */
 642	pending = atomic_dec_return(&md->pending[rw]);
 643	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 644	pending += atomic_read(&md->pending[rw^0x1]);
 645
 646	/* nudge anyone waiting on suspend queue */
 647	if (!pending)
 648		wake_up(&md->wait);
 649}
 650
 651/*
 652 * Add the bio to the list of deferred io.
 653 */
 654static void queue_io(struct mapped_device *md, struct bio *bio)
 655{
 656	unsigned long flags;
 657
 658	spin_lock_irqsave(&md->deferred_lock, flags);
 659	bio_list_add(&md->deferred, bio);
 660	spin_unlock_irqrestore(&md->deferred_lock, flags);
 661	queue_work(md->wq, &md->work);
 662}
 663
 664/*
 665 * Everyone (including functions in this file), should use this
 666 * function to access the md->map field, and make sure they call
 667 * dm_put_live_table() when finished.
 668 */
 669struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 
 670{
 671	*srcu_idx = srcu_read_lock(&md->io_barrier);
 672
 673	return srcu_dereference(md->map, &md->io_barrier);
 674}
 675
 676void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 
 677{
 678	srcu_read_unlock(&md->io_barrier, srcu_idx);
 679}
 680
 681void dm_sync_table(struct mapped_device *md)
 682{
 683	synchronize_srcu(&md->io_barrier);
 684	synchronize_rcu_expedited();
 685}
 686
 687/*
 688 * A fast alternative to dm_get_live_table/dm_put_live_table.
 689 * The caller must not block between these two functions.
 690 */
 691static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 692{
 693	rcu_read_lock();
 694	return rcu_dereference(md->map);
 695}
 696
 697static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 698{
 699	rcu_read_unlock();
 700}
 701
 702static char *_dm_claim_ptr = "I belong to device-mapper";
 703
 704/*
 705 * Open a table device so we can use it as a map destination.
 706 */
 707static int open_table_device(struct table_device *td, dev_t dev,
 708			     struct mapped_device *md)
 709{
 710	struct block_device *bdev;
 711
 
 712	int r;
 713
 714	BUG_ON(td->dm_dev.bdev);
 
 
 
 715
 716	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 717	if (IS_ERR(bdev))
 718		return PTR_ERR(bdev);
 
 
 719
 720	r = bd_link_disk_holder(bdev, dm_disk(md));
 721	if (r) {
 722		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 723		return r;
 
 
 
 
 
 724	}
 725
 726	td->dm_dev.bdev = bdev;
 727	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 728	return 0;
 
 
 
 
 
 
 
 
 
 
 
 729}
 730
 731/*
 732 * Close a table device that we've been using.
 733 */
 734static void close_table_device(struct table_device *td, struct mapped_device *md)
 735{
 736	if (!td->dm_dev.bdev)
 737		return;
 738
 739	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 740	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 741	put_dax(td->dm_dev.dax_dev);
 742	td->dm_dev.bdev = NULL;
 743	td->dm_dev.dax_dev = NULL;
 744}
 745
 746static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 747					      fmode_t mode) {
 
 748	struct table_device *td;
 749
 750	list_for_each_entry(td, l, list)
 751		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 752			return td;
 753
 754	return NULL;
 755}
 756
 757int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 758			struct dm_dev **result) {
 759	int r;
 760	struct table_device *td;
 761
 762	mutex_lock(&md->table_devices_lock);
 763	td = find_table_device(&md->table_devices, dev, mode);
 764	if (!td) {
 765		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 766		if (!td) {
 767			mutex_unlock(&md->table_devices_lock);
 768			return -ENOMEM;
 769		}
 770
 771		td->dm_dev.mode = mode;
 772		td->dm_dev.bdev = NULL;
 773
 774		if ((r = open_table_device(td, dev, md))) {
 775			mutex_unlock(&md->table_devices_lock);
 776			kfree(td);
 777			return r;
 778		}
 779
 780		format_dev_t(td->dm_dev.name, dev);
 781
 782		refcount_set(&td->count, 1);
 783		list_add(&td->list, &md->table_devices);
 784	} else {
 785		refcount_inc(&td->count);
 786	}
 787	mutex_unlock(&md->table_devices_lock);
 788
 789	*result = &td->dm_dev;
 790	return 0;
 791}
 792EXPORT_SYMBOL_GPL(dm_get_table_device);
 793
 794void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 795{
 796	struct table_device *td = container_of(d, struct table_device, dm_dev);
 797
 798	mutex_lock(&md->table_devices_lock);
 799	if (refcount_dec_and_test(&td->count)) {
 800		close_table_device(td, md);
 801		list_del(&td->list);
 802		kfree(td);
 803	}
 804	mutex_unlock(&md->table_devices_lock);
 805}
 806EXPORT_SYMBOL(dm_put_table_device);
 807
 808static void free_table_devices(struct list_head *devices)
 809{
 810	struct list_head *tmp, *next;
 811
 812	list_for_each_safe(tmp, next, devices) {
 813		struct table_device *td = list_entry(tmp, struct table_device, list);
 814
 815		DMWARN("dm_destroy: %s still exists with %d references",
 816		       td->dm_dev.name, refcount_read(&td->count));
 817		kfree(td);
 818	}
 819}
 820
 821/*
 822 * Get the geometry associated with a dm device
 823 */
 824int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 825{
 826	*geo = md->geometry;
 827
 828	return 0;
 829}
 830
 831/*
 832 * Set the geometry of a device.
 833 */
 834int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 835{
 836	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 837
 838	if (geo->start > sz) {
 839		DMWARN("Start sector is beyond the geometry limits.");
 840		return -EINVAL;
 841	}
 842
 843	md->geometry = *geo;
 844
 845	return 0;
 846}
 847
 848static int __noflush_suspending(struct mapped_device *md)
 849{
 850	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 851}
 852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853/*
 854 * Decrements the number of outstanding ios that a bio has been
 855 * cloned into, completing the original io if necc.
 856 */
 857static void dec_pending(struct dm_io *io, blk_status_t error)
 858{
 859	unsigned long flags;
 860	blk_status_t io_error;
 861	struct bio *bio;
 
 862	struct mapped_device *md = io->md;
 
 863
 864	/* Push-back supersedes any I/O errors */
 865	if (unlikely(error)) {
 866		spin_lock_irqsave(&io->endio_lock, flags);
 867		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 868			io->status = error;
 869		spin_unlock_irqrestore(&io->endio_lock, flags);
 870	}
 871
 872	if (atomic_dec_and_test(&io->io_count)) {
 873		if (io->status == BLK_STS_DM_REQUEUE) {
 874			/*
 875			 * Target requested pushing back the I/O.
 
 
 876			 */
 877			spin_lock_irqsave(&md->deferred_lock, flags);
 878			if (__noflush_suspending(md))
 879				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
 880				bio_list_add_head(&md->deferred, io->orig_bio);
 881			else
 882				/* noflush suspend was interrupted. */
 883				io->status = BLK_STS_IOERR;
 884			spin_unlock_irqrestore(&md->deferred_lock, flags);
 885		}
 886
 887		io_error = io->status;
 888		bio = io->orig_bio;
 889		end_io_acct(io);
 890		free_io(md, io);
 891
 892		if (io_error == BLK_STS_DM_REQUEUE)
 893			return;
 894
 895		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 
 
 896			/*
 897			 * Preflush done for flush with data, reissue
 898			 * without REQ_PREFLUSH.
 899			 */
 900			bio->bi_opf &= ~REQ_PREFLUSH;
 901			queue_io(md, bio);
 902		} else {
 903			/* done with normal IO or empty flush */
 904			if (io_error)
 905				bio->bi_status = io_error;
 906			bio_endio(bio);
 907		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908	}
 909}
 910
 911void disable_write_same(struct mapped_device *md)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912{
 913	struct queue_limits *limits = dm_get_queue_limits(md);
 914
 915	/* device doesn't really support WRITE SAME, disable it */
 916	limits->max_write_same_sectors = 0;
 917}
 918
 919void disable_write_zeroes(struct mapped_device *md)
 920{
 921	struct queue_limits *limits = dm_get_queue_limits(md);
 922
 923	/* device doesn't really support WRITE ZEROES, disable it */
 924	limits->max_write_zeroes_sectors = 0;
 925}
 926
 
 
 
 
 
 927static void clone_endio(struct bio *bio)
 928{
 929	blk_status_t error = bio->bi_status;
 930	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 
 
 931	struct dm_io *io = tio->io;
 932	struct mapped_device *md = tio->io->md;
 933	dm_endio_fn endio = tio->ti->type->end_io;
 934
 935	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
 936		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 937		    !bio->bi_disk->queue->limits.max_write_same_sectors)
 938			disable_write_same(md);
 939		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 940		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
 941			disable_write_zeroes(md);
 942	}
 943
 
 
 
 
 944	if (endio) {
 945		int r = endio(tio->ti, bio, &error);
 
 946		switch (r) {
 947		case DM_ENDIO_REQUEUE:
 948			error = BLK_STS_DM_REQUEUE;
 949			/*FALLTHRU*/
 
 
 
 
 
 
 
 
 
 
 
 950		case DM_ENDIO_DONE:
 951			break;
 952		case DM_ENDIO_INCOMPLETE:
 953			/* The target will handle the io */
 954			return;
 955		default:
 956			DMWARN("unimplemented target endio return value: %d", r);
 957			BUG();
 958		}
 959	}
 960
 961	free_tio(tio);
 962	dec_pending(io, error);
 
 
 
 
 963}
 964
 965/*
 966 * Return maximum size of I/O possible at the supplied sector up to the current
 967 * target boundary.
 968 */
 969static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 
 970{
 971	sector_t target_offset = dm_target_offset(ti, sector);
 972
 973	return ti->len - target_offset;
 974}
 975
 976static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 
 
 977{
 978	sector_t len = max_io_len_target_boundary(sector, ti);
 979	sector_t offset, max_len;
 980
 981	/*
 982	 * Does the target need to split even further?
 
 
 
 983	 */
 984	if (ti->max_io_len) {
 985		offset = dm_target_offset(ti, sector);
 986		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
 987			max_len = sector_div(offset, ti->max_io_len);
 988		else
 989			max_len = offset & (ti->max_io_len - 1);
 990		max_len = ti->max_io_len - max_len;
 991
 992		if (len > max_len)
 993			len = max_len;
 994	}
 995
 996	return len;
 997}
 998
 999int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1000{
1001	if (len > UINT_MAX) {
1002		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1003		      (unsigned long long)len, UINT_MAX);
1004		ti->error = "Maximum size of target IO is too large";
1005		return -EINVAL;
1006	}
1007
1008	/*
1009	 * BIO based queue uses its own splitting. When multipage bvecs
1010	 * is switched on, size of the incoming bio may be too big to
1011	 * be handled in some targets, such as crypt.
1012	 *
1013	 * When these targets are ready for the big bio, we can remove
1014	 * the limit.
1015	 */
1016	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1017
1018	return 0;
1019}
1020EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1021
1022static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1023						sector_t sector, int *srcu_idx)
1024	__acquires(md->io_barrier)
1025{
1026	struct dm_table *map;
1027	struct dm_target *ti;
1028
1029	map = dm_get_live_table(md, srcu_idx);
1030	if (!map)
1031		return NULL;
1032
1033	ti = dm_table_find_target(map, sector);
1034	if (!dm_target_is_valid(ti))
1035		return NULL;
1036
1037	return ti;
1038}
1039
1040static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1041				 long nr_pages, void **kaddr, pfn_t *pfn)
 
1042{
1043	struct mapped_device *md = dax_get_private(dax_dev);
1044	sector_t sector = pgoff * PAGE_SECTORS;
1045	struct dm_target *ti;
1046	long len, ret = -EIO;
1047	int srcu_idx;
1048
1049	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1050
1051	if (!ti)
1052		goto out;
1053	if (!ti->type->direct_access)
1054		goto out;
1055	len = max_io_len(sector, ti) / PAGE_SECTORS;
1056	if (len < 1)
1057		goto out;
1058	nr_pages = min(len, nr_pages);
1059	if (ti->type->direct_access)
1060		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1061
1062 out:
1063	dm_put_live_table(md, srcu_idx);
1064
1065	return ret;
1066}
1067
1068static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1069				    void *addr, size_t bytes, struct iov_iter *i)
1070{
1071	struct mapped_device *md = dax_get_private(dax_dev);
1072	sector_t sector = pgoff * PAGE_SECTORS;
1073	struct dm_target *ti;
1074	long ret = 0;
1075	int srcu_idx;
1076
1077	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1078
1079	if (!ti)
1080		goto out;
1081	if (!ti->type->dax_copy_from_iter) {
1082		ret = copy_from_iter(addr, bytes, i);
 
 
 
1083		goto out;
1084	}
1085	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1086 out:
1087	dm_put_live_table(md, srcu_idx);
1088
1089	return ret;
1090}
1091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092/*
1093 * A target may call dm_accept_partial_bio only from the map routine.  It is
1094 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
 
 
1095 *
1096 * dm_accept_partial_bio informs the dm that the target only wants to process
1097 * additional n_sectors sectors of the bio and the rest of the data should be
1098 * sent in a next bio.
1099 *
1100 * A diagram that explains the arithmetics:
1101 * +--------------------+---------------+-------+
1102 * |         1          |       2       |   3   |
1103 * +--------------------+---------------+-------+
1104 *
1105 * <-------------- *tio->len_ptr --------------->
1106 *                      <------- bi_size ------->
1107 *                      <-- n_sectors -->
1108 *
1109 * Region 1 was already iterated over with bio_advance or similar function.
1110 *	(it may be empty if the target doesn't use bio_advance)
1111 * Region 2 is the remaining bio size that the target wants to process.
1112 *	(it may be empty if region 1 is non-empty, although there is no reason
1113 *	 to make it empty)
1114 * The target requires that region 3 is to be sent in the next bio.
1115 *
1116 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1117 * the partially processed part (the sum of regions 1+2) must be the same for all
1118 * copies of the bio.
1119 */
1120void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1121{
1122	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1123	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1124	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1125	BUG_ON(bi_size > *tio->len_ptr);
1126	BUG_ON(n_sectors > bi_size);
1127	*tio->len_ptr -= bi_size - n_sectors;
 
 
 
 
 
1128	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
 
 
 
 
 
 
 
 
1129}
1130EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1131
1132/*
1133 * The zone descriptors obtained with a zone report indicate
1134 * zone positions within the target device. The zone descriptors
1135 * must be remapped to match their position within the dm device.
1136 * A target may call dm_remap_zone_report after completion of a
1137 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1138 * from the target device mapping to the dm device.
1139 */
1140void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1141{
1142#ifdef CONFIG_BLK_DEV_ZONED
1143	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1144	struct bio *report_bio = tio->io->orig_bio;
1145	struct blk_zone_report_hdr *hdr = NULL;
1146	struct blk_zone *zone;
1147	unsigned int nr_rep = 0;
1148	unsigned int ofst;
1149	struct bio_vec bvec;
1150	struct bvec_iter iter;
1151	void *addr;
1152
1153	if (bio->bi_status)
1154		return;
 
1155
1156	/*
1157	 * Remap the start sector of the reported zones. For sequential zones,
1158	 * also remap the write pointer position.
1159	 */
1160	bio_for_each_segment(bvec, report_bio, iter) {
1161		addr = kmap_atomic(bvec.bv_page);
1162
1163		/* Remember the report header in the first page */
1164		if (!hdr) {
1165			hdr = addr;
1166			ofst = sizeof(struct blk_zone_report_hdr);
1167		} else
1168			ofst = 0;
1169
1170		/* Set zones start sector */
1171		while (hdr->nr_zones && ofst < bvec.bv_len) {
1172			zone = addr + ofst;
1173			if (zone->start >= start + ti->len) {
1174				hdr->nr_zones = 0;
1175				break;
1176			}
1177			zone->start = zone->start + ti->begin - start;
1178			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1179				if (zone->cond == BLK_ZONE_COND_FULL)
1180					zone->wp = zone->start + zone->len;
1181				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1182					zone->wp = zone->start;
1183				else
1184					zone->wp = zone->wp + ti->begin - start;
1185			}
1186			ofst += sizeof(struct blk_zone);
1187			hdr->nr_zones--;
1188			nr_rep++;
1189		}
1190
1191		if (addr != hdr)
1192			kunmap_atomic(addr);
1193
1194		if (!hdr->nr_zones)
1195			break;
 
 
1196	}
1197
1198	if (hdr) {
1199		hdr->nr_zones = nr_rep;
1200		kunmap_atomic(hdr);
1201	}
1202
1203	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1204
1205#else /* !CONFIG_BLK_DEV_ZONED */
1206	bio->bi_status = BLK_STS_NOTSUPP;
1207#endif
1208}
1209EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1210
1211static blk_qc_t __map_bio(struct dm_target_io *tio)
1212{
1213	int r;
1214	sector_t sector;
1215	struct bio *clone = &tio->clone;
1216	struct dm_io *io = tio->io;
1217	struct mapped_device *md = io->md;
1218	struct dm_target *ti = tio->ti;
1219	blk_qc_t ret = BLK_QC_T_NONE;
1220
1221	clone->bi_end_io = clone_endio;
1222
1223	/*
1224	 * Map the clone.  If r == 0 we don't need to do
1225	 * anything, the target has assumed ownership of
1226	 * this io.
1227	 */
1228	atomic_inc(&io->io_count);
1229	sector = clone->bi_iter.bi_sector;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1230
1231	r = ti->type->map(ti, clone);
1232	switch (r) {
1233	case DM_MAPIO_SUBMITTED:
 
 
 
1234		break;
1235	case DM_MAPIO_REMAPPED:
1236		/* the bio has been remapped so dispatch it */
1237		trace_block_bio_remap(clone->bi_disk->queue, clone,
1238				      bio_dev(io->orig_bio), sector);
1239		if (md->type == DM_TYPE_NVME_BIO_BASED)
1240			ret = direct_make_request(clone);
1241		else
1242			ret = generic_make_request(clone);
1243		break;
1244	case DM_MAPIO_KILL:
1245		free_tio(tio);
1246		dec_pending(io, BLK_STS_IOERR);
1247		break;
1248	case DM_MAPIO_REQUEUE:
1249		free_tio(tio);
1250		dec_pending(io, BLK_STS_DM_REQUEUE);
 
 
 
 
 
 
1251		break;
1252	default:
1253		DMWARN("unimplemented target map return value: %d", r);
1254		BUG();
1255	}
1256
1257	return ret;
1258}
1259
1260static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1261{
1262	bio->bi_iter.bi_sector = sector;
1263	bio->bi_iter.bi_size = to_bytes(len);
1264}
1265
1266/*
1267 * Creates a bio that consists of range of complete bvecs.
1268 */
1269static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1270		     sector_t sector, unsigned len)
1271{
1272	struct bio *clone = &tio->clone;
1273
1274	__bio_clone_fast(clone, bio);
1275
1276	if (unlikely(bio_integrity(bio) != NULL)) {
1277		int r;
1278
1279		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1280			     !dm_target_passes_integrity(tio->ti->type))) {
1281			DMWARN("%s: the target %s doesn't support integrity data.",
1282				dm_device_name(tio->io->md),
1283				tio->ti->type->name);
1284			return -EIO;
1285		}
1286
1287		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1288		if (r < 0)
1289			return r;
1290	}
1291
1292	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1293		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1294	clone->bi_iter.bi_size = to_bytes(len);
1295
1296	if (unlikely(bio_integrity(bio) != NULL))
1297		bio_integrity_trim(clone);
1298
1299	return 0;
1300}
1301
1302static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1303				struct dm_target *ti, unsigned num_bios)
 
1304{
1305	struct dm_target_io *tio;
1306	int try;
1307
1308	if (!num_bios)
1309		return;
1310
1311	if (num_bios == 1) {
1312		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1313		bio_list_add(blist, &tio->clone);
1314		return;
1315	}
1316
1317	for (try = 0; try < 2; try++) {
1318		int bio_nr;
1319		struct bio *bio;
1320
1321		if (try)
1322			mutex_lock(&ci->io->md->table_devices_lock);
1323		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1324			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1325			if (!tio)
 
1326				break;
1327
1328			bio_list_add(blist, &tio->clone);
1329		}
1330		if (try)
1331			mutex_unlock(&ci->io->md->table_devices_lock);
1332		if (bio_nr == num_bios)
1333			return;
1334
1335		while ((bio = bio_list_pop(blist))) {
1336			tio = container_of(bio, struct dm_target_io, clone);
1337			free_tio(tio);
1338		}
1339	}
1340}
1341
1342static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1343					   struct dm_target_io *tio, unsigned *len)
 
1344{
1345	struct bio *clone = &tio->clone;
 
 
1346
1347	tio->len_ptr = len;
 
1348
1349	__bio_clone_fast(clone, ci->bio);
1350	if (len)
1351		bio_setup_sector(clone, ci->sector, *len);
1352
1353	return __map_bio(tio);
 
 
 
 
 
 
 
 
 
 
 
 
1354}
1355
1356static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1357				  unsigned num_bios, unsigned *len)
1358{
1359	struct bio_list blist = BIO_EMPTY_LIST;
1360	struct bio *bio;
1361	struct dm_target_io *tio;
1362
1363	alloc_multiple_bios(&blist, ci, ti, num_bios);
 
 
 
 
 
 
1364
1365	while ((bio = bio_list_pop(&blist))) {
1366		tio = container_of(bio, struct dm_target_io, clone);
1367		(void) __clone_and_map_simple_bio(ci, tio, len);
1368	}
1369}
1370
1371static int __send_empty_flush(struct clone_info *ci)
1372{
1373	unsigned target_nr = 0;
1374	struct dm_target *ti;
1375
1376	BUG_ON(bio_has_data(ci->bio));
1377	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1378		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1379
1380	return 0;
1381}
 
 
 
1382
1383static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1384				    sector_t sector, unsigned *len)
1385{
1386	struct bio *bio = ci->bio;
1387	struct dm_target_io *tio;
1388	int r;
1389
1390	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1391	tio->len_ptr = len;
1392	r = clone_bio(tio, bio, sector, *len);
1393	if (r < 0) {
1394		free_tio(tio);
1395		return r;
1396	}
1397	(void) __map_bio(tio);
1398
1399	return 0;
1400}
1401
1402typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
 
 
 
 
1403
1404static unsigned get_num_discard_bios(struct dm_target *ti)
1405{
1406	return ti->num_discard_bios;
1407}
1408
1409static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1410{
1411	return ti->num_secure_erase_bios;
1412}
 
 
 
1413
1414static unsigned get_num_write_same_bios(struct dm_target *ti)
1415{
1416	return ti->num_write_same_bios;
1417}
1418
1419static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1420{
1421	return ti->num_write_zeroes_bios;
1422}
1423
1424typedef bool (*is_split_required_fn)(struct dm_target *ti);
 
 
 
 
 
 
 
 
 
1425
1426static bool is_split_required_for_discard(struct dm_target *ti)
1427{
1428	return ti->split_discard_bios;
1429}
1430
1431static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1432				       get_num_bios_fn get_num_bios,
1433				       is_split_required_fn is_split_required)
1434{
1435	unsigned len;
1436	unsigned num_bios;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437
1438	/*
1439	 * Even though the device advertised support for this type of
1440	 * request, that does not mean every target supports it, and
1441	 * reconfiguration might also have changed that since the
1442	 * check was performed.
1443	 */
1444	num_bios = get_num_bios ? get_num_bios(ti) : 0;
1445	if (!num_bios)
1446		return -EOPNOTSUPP;
1447
1448	if (is_split_required && !is_split_required(ti))
1449		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1450	else
1451		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1452
1453	__send_duplicate_bios(ci, ti, num_bios, &len);
1454
1455	ci->sector += len;
1456	ci->sector_count -= len;
1457
1458	return 0;
1459}
1460
1461static int __send_discard(struct clone_info *ci, struct dm_target *ti)
 
 
 
 
 
 
 
 
 
1462{
1463	return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1464					   is_split_required_for_discard);
1465}
1466
1467static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1468{
1469	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL);
1470}
1471
1472static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1473{
1474	return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1475}
 
 
 
1476
1477static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1478{
1479	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1480}
1481
1482static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1483				  int *result)
1484{
1485	struct bio *bio = ci->bio;
1486
1487	if (bio_op(bio) == REQ_OP_DISCARD)
1488		*result = __send_discard(ci, ti);
1489	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1490		*result = __send_secure_erase(ci, ti);
1491	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1492		*result = __send_write_same(ci, ti);
1493	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1494		*result = __send_write_zeroes(ci, ti);
1495	else
1496		return false;
1497
1498	return true;
1499}
1500
1501/*
1502 * Select the correct strategy for processing a non-flush bio.
1503 */
1504static int __split_and_process_non_flush(struct clone_info *ci)
1505{
1506	struct bio *bio = ci->bio;
1507	struct dm_target *ti;
1508	unsigned len;
1509	int r;
1510
1511	ti = dm_table_find_target(ci->map, ci->sector);
1512	if (!dm_target_is_valid(ti))
1513		return -EIO;
 
 
 
1514
1515	if (unlikely(__process_abnormal_io(ci, ti, &r)))
1516		return r;
 
 
 
 
 
 
1517
1518	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1519		len = ci->sector_count;
1520	else
1521		len = min_t(sector_t, max_io_len(ci->sector, ti),
1522			    ci->sector_count);
1523
1524	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1525	if (r < 0)
1526		return r;
 
 
 
 
1527
1528	ci->sector += len;
1529	ci->sector_count -= len;
1530
1531	return 0;
1532}
1533
1534static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1535			    struct dm_table *map, struct bio *bio)
1536{
1537	ci->map = map;
1538	ci->io = alloc_io(md, bio);
 
 
 
1539	ci->sector = bio->bi_iter.bi_sector;
 
 
 
 
 
 
1540}
1541
1542/*
1543 * Entry point to split a bio into clones and submit them to the targets.
1544 */
1545static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1546					struct dm_table *map, struct bio *bio)
1547{
1548	struct clone_info ci;
1549	blk_qc_t ret = BLK_QC_T_NONE;
1550	int error = 0;
 
1551
1552	if (unlikely(!map)) {
1553		bio_io_error(bio);
1554		return ret;
 
 
 
 
 
 
1555	}
1556
1557	init_clone_info(&ci, md, map, bio);
1558
1559	if (bio->bi_opf & REQ_PREFLUSH) {
1560		ci.bio = &ci.io->md->flush_bio;
1561		ci.sector_count = 0;
1562		error = __send_empty_flush(&ci);
1563		/* dec_pending submits any data associated with flush */
1564	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1565		ci.bio = bio;
1566		ci.sector_count = 0;
1567		error = __split_and_process_non_flush(&ci);
1568	} else {
1569		ci.bio = bio;
1570		ci.sector_count = bio_sectors(bio);
1571		while (ci.sector_count && !error) {
1572			error = __split_and_process_non_flush(&ci);
1573			if (current->bio_list && ci.sector_count && !error) {
1574				/*
1575				 * Remainder must be passed to generic_make_request()
1576				 * so that it gets handled *after* bios already submitted
1577				 * have been completely processed.
1578				 * We take a clone of the original to store in
1579				 * ci.io->orig_bio to be used by end_io_acct() and
1580				 * for dec_pending to use for completion handling.
1581				 * As this path is not used for REQ_OP_ZONE_REPORT,
1582				 * the usage of io->orig_bio in dm_remap_zone_report()
1583				 * won't be affected by this reassignment.
1584				 */
1585				struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1586								 md->queue->bio_split);
1587				ci.io->orig_bio = b;
1588				bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1589				bio_chain(b, bio);
1590				ret = generic_make_request(bio);
1591				break;
1592			}
1593		}
1594	}
 
1595
1596	/* drop the extra reference count */
1597	dec_pending(ci.io, errno_to_blk_status(error));
1598	return ret;
1599}
1600
1601/*
1602 * Optimized variant of __split_and_process_bio that leverages the
1603 * fact that targets that use it do _not_ have a need to split bios.
1604 */
1605static blk_qc_t __process_bio(struct mapped_device *md,
1606			      struct dm_table *map, struct bio *bio)
1607{
1608	struct clone_info ci;
1609	blk_qc_t ret = BLK_QC_T_NONE;
1610	int error = 0;
1611
1612	if (unlikely(!map)) {
1613		bio_io_error(bio);
1614		return ret;
1615	}
1616
1617	init_clone_info(&ci, md, map, bio);
1618
1619	if (bio->bi_opf & REQ_PREFLUSH) {
1620		ci.bio = &ci.io->md->flush_bio;
1621		ci.sector_count = 0;
1622		error = __send_empty_flush(&ci);
1623		/* dec_pending submits any data associated with flush */
1624	} else {
1625		struct dm_target *ti = md->immutable_target;
1626		struct dm_target_io *tio;
1627
 
 
 
 
 
 
 
 
 
1628		/*
1629		 * Defend against IO still getting in during teardown
1630		 * - as was seen for a time with nvme-fcloop
1631		 */
1632		if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1633			error = -EIO;
1634			goto out;
1635		}
1636
1637		ci.bio = bio;
1638		ci.sector_count = bio_sectors(bio);
1639		if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1640			goto out;
1641
1642		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1643		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1644	}
1645out:
1646	/* drop the extra reference count */
1647	dec_pending(ci.io, errno_to_blk_status(error));
1648	return ret;
1649}
1650
1651typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1652
1653static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1654				  process_bio_fn process_bio)
1655{
1656	struct mapped_device *md = q->queuedata;
1657	blk_qc_t ret = BLK_QC_T_NONE;
1658	int srcu_idx;
1659	struct dm_table *map;
1660
1661	map = dm_get_live_table(md, &srcu_idx);
1662
1663	/* if we're suspended, we have to queue this io for later */
1664	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1665		dm_put_live_table(md, srcu_idx);
1666
1667		if (!(bio->bi_opf & REQ_RAHEAD))
 
 
 
1668			queue_io(md, bio);
1669		else
1670			bio_io_error(bio);
1671		return ret;
1672	}
1673
1674	ret = process_bio(md, map, bio);
1675
1676	dm_put_live_table(md, srcu_idx);
1677	return ret;
1678}
1679
1680/*
1681 * The request function that remaps the bio to one target and
1682 * splits off any remainder.
1683 */
1684static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1685{
1686	return __dm_make_request(q, bio, __split_and_process_bio);
 
 
 
 
 
 
 
1687}
1688
1689static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
 
1690{
1691	return __dm_make_request(q, bio, __process_bio);
1692}
 
 
 
 
 
 
1693
1694static int dm_any_congested(void *congested_data, int bdi_bits)
1695{
1696	int r = bdi_bits;
1697	struct mapped_device *md = congested_data;
1698	struct dm_table *map;
1699
1700	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1701		if (dm_request_based(md)) {
 
 
 
 
 
 
 
 
 
 
 
 
1702			/*
1703			 * With request-based DM we only need to check the
1704			 * top-level queue for congestion.
1705			 */
1706			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1707		} else {
1708			map = dm_get_live_table_fast(md);
1709			if (map)
1710				r = dm_table_any_congested(map, bdi_bits);
1711			dm_put_live_table_fast(md);
1712		}
1713	}
1714
1715	return r;
 
 
 
 
 
 
 
1716}
1717
1718/*-----------------------------------------------------------------
 
1719 * An IDR is used to keep track of allocated minor numbers.
1720 *---------------------------------------------------------------*/
 
1721static void free_minor(int minor)
1722{
1723	spin_lock(&_minor_lock);
1724	idr_remove(&_minor_idr, minor);
1725	spin_unlock(&_minor_lock);
1726}
1727
1728/*
1729 * See if the device with a specific minor # is free.
1730 */
1731static int specific_minor(int minor)
1732{
1733	int r;
1734
1735	if (minor >= (1 << MINORBITS))
1736		return -EINVAL;
1737
1738	idr_preload(GFP_KERNEL);
1739	spin_lock(&_minor_lock);
1740
1741	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1742
1743	spin_unlock(&_minor_lock);
1744	idr_preload_end();
1745	if (r < 0)
1746		return r == -ENOSPC ? -EBUSY : r;
1747	return 0;
1748}
1749
1750static int next_free_minor(int *minor)
1751{
1752	int r;
1753
1754	idr_preload(GFP_KERNEL);
1755	spin_lock(&_minor_lock);
1756
1757	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1758
1759	spin_unlock(&_minor_lock);
1760	idr_preload_end();
1761	if (r < 0)
1762		return r;
1763	*minor = r;
1764	return 0;
1765}
1766
1767static const struct block_device_operations dm_blk_dops;
 
1768static const struct dax_operations dm_dax_ops;
1769
1770static void dm_wq_work(struct work_struct *work);
1771
1772static void dm_init_normal_md_queue(struct mapped_device *md)
 
1773{
1774	md->use_blk_mq = false;
 
 
 
1775
1776	/*
1777	 * Initialize aspects of queue that aren't relevant for blk-mq
1778	 */
1779	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1780}
 
1781
1782static void cleanup_mapped_device(struct mapped_device *md)
1783{
1784	if (md->wq)
1785		destroy_workqueue(md->wq);
1786	if (md->kworker_task)
1787		kthread_stop(md->kworker_task);
1788	if (md->bs)
1789		bioset_free(md->bs);
1790	if (md->io_bs)
1791		bioset_free(md->io_bs);
1792
1793	if (md->dax_dev) {
 
1794		kill_dax(md->dax_dev);
1795		put_dax(md->dax_dev);
1796		md->dax_dev = NULL;
1797	}
1798
 
1799	if (md->disk) {
1800		spin_lock(&_minor_lock);
1801		md->disk->private_data = NULL;
1802		spin_unlock(&_minor_lock);
1803		del_gendisk(md->disk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1804		put_disk(md->disk);
1805	}
1806
1807	if (md->queue)
1808		blk_cleanup_queue(md->queue);
 
 
1809
1810	cleanup_srcu_struct(&md->io_barrier);
1811
1812	if (md->bdev) {
1813		bdput(md->bdev);
1814		md->bdev = NULL;
1815	}
1816
1817	mutex_destroy(&md->suspend_lock);
1818	mutex_destroy(&md->type_lock);
1819	mutex_destroy(&md->table_devices_lock);
 
1820
1821	dm_mq_cleanup_mapped_device(md);
1822}
1823
1824/*
1825 * Allocate and initialise a blank device with a given minor.
1826 */
1827static struct mapped_device *alloc_dev(int minor)
1828{
1829	int r, numa_node_id = dm_get_numa_node();
1830	struct dax_device *dax_dev = NULL;
1831	struct mapped_device *md;
1832	void *old_md;
1833
1834	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1835	if (!md) {
1836		DMWARN("unable to allocate device, out of memory.");
1837		return NULL;
1838	}
1839
1840	if (!try_module_get(THIS_MODULE))
1841		goto bad_module_get;
1842
1843	/* get a minor number for the dev */
1844	if (minor == DM_ANY_MINOR)
1845		r = next_free_minor(&minor);
1846	else
1847		r = specific_minor(minor);
1848	if (r < 0)
1849		goto bad_minor;
1850
1851	r = init_srcu_struct(&md->io_barrier);
1852	if (r < 0)
1853		goto bad_io_barrier;
1854
1855	md->numa_node_id = numa_node_id;
1856	md->use_blk_mq = dm_use_blk_mq_default();
1857	md->init_tio_pdu = false;
1858	md->type = DM_TYPE_NONE;
1859	mutex_init(&md->suspend_lock);
1860	mutex_init(&md->type_lock);
1861	mutex_init(&md->table_devices_lock);
1862	spin_lock_init(&md->deferred_lock);
1863	atomic_set(&md->holders, 1);
1864	atomic_set(&md->open_count, 0);
1865	atomic_set(&md->event_nr, 0);
1866	atomic_set(&md->uevent_seq, 0);
1867	INIT_LIST_HEAD(&md->uevent_list);
1868	INIT_LIST_HEAD(&md->table_devices);
1869	spin_lock_init(&md->uevent_lock);
1870
1871	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL);
1872	if (!md->queue)
1873		goto bad;
1874	md->queue->queuedata = md;
1875	md->queue->backing_dev_info->congested_data = md;
1876
1877	md->disk = alloc_disk_node(1, md->numa_node_id);
1878	if (!md->disk)
1879		goto bad;
 
1880
1881	atomic_set(&md->pending[0], 0);
1882	atomic_set(&md->pending[1], 0);
1883	init_waitqueue_head(&md->wait);
1884	INIT_WORK(&md->work, dm_wq_work);
 
1885	init_waitqueue_head(&md->eventq);
1886	init_completion(&md->kobj_holder.completion);
1887	md->kworker_task = NULL;
 
 
 
 
1888
1889	md->disk->major = _major;
1890	md->disk->first_minor = minor;
 
 
1891	md->disk->fops = &dm_blk_dops;
1892	md->disk->queue = md->queue;
1893	md->disk->private_data = md;
1894	sprintf(md->disk->disk_name, "dm-%d", minor);
1895
1896	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1897		dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1898		if (!dax_dev)
 
 
 
 
 
 
1899			goto bad;
1900	}
1901	md->dax_dev = dax_dev;
1902
1903	add_disk_no_queue_reg(md->disk);
1904	format_dev_t(md->name, MKDEV(_major, minor));
1905
1906	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1907	if (!md->wq)
1908		goto bad;
1909
1910	md->bdev = bdget_disk(md->disk, 0);
1911	if (!md->bdev)
1912		goto bad;
1913
1914	bio_init(&md->flush_bio, NULL, 0);
1915	bio_set_dev(&md->flush_bio, md->bdev);
1916	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1917
1918	dm_stats_init(&md->stats);
1919
1920	/* Populate the mapping, nobody knows we exist yet */
1921	spin_lock(&_minor_lock);
1922	old_md = idr_replace(&_minor_idr, md, minor);
1923	spin_unlock(&_minor_lock);
1924
1925	BUG_ON(old_md != MINOR_ALLOCED);
1926
1927	return md;
1928
1929bad:
1930	cleanup_mapped_device(md);
1931bad_io_barrier:
1932	free_minor(minor);
1933bad_minor:
1934	module_put(THIS_MODULE);
1935bad_module_get:
1936	kvfree(md);
1937	return NULL;
1938}
1939
1940static void unlock_fs(struct mapped_device *md);
1941
1942static void free_dev(struct mapped_device *md)
1943{
1944	int minor = MINOR(disk_devt(md->disk));
1945
1946	unlock_fs(md);
1947
1948	cleanup_mapped_device(md);
1949
1950	free_table_devices(&md->table_devices);
1951	dm_stats_cleanup(&md->stats);
1952	free_minor(minor);
1953
1954	module_put(THIS_MODULE);
1955	kvfree(md);
1956}
1957
1958static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1959{
1960	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1961
1962	if (dm_table_bio_based(t)) {
1963		/*
1964		 * The md may already have mempools that need changing.
1965		 * If so, reload bioset because front_pad may have changed
1966		 * because a different table was loaded.
1967		 */
1968		if (md->bs) {
1969			bioset_free(md->bs);
1970			md->bs = NULL;
1971		}
1972		if (md->io_bs) {
1973			bioset_free(md->io_bs);
1974			md->io_bs = NULL;
1975		}
1976
1977	} else if (md->bs) {
1978		/*
1979		 * There's no need to reload with request-based dm
1980		 * because the size of front_pad doesn't change.
1981		 * Note for future: If you are to reload bioset,
1982		 * prep-ed requests in the queue may refer
1983		 * to bio from the old bioset, so you must walk
1984		 * through the queue to unprep.
1985		 */
1986		goto out;
1987	}
1988
1989	BUG_ON(!p || md->bs || md->io_bs);
1990
1991	md->bs = p->bs;
1992	p->bs = NULL;
1993	md->io_bs = p->io_bs;
1994	p->io_bs = NULL;
1995out:
1996	/* mempool bind completed, no longer need any mempools in the table */
1997	dm_table_free_md_mempools(t);
1998}
1999
2000/*
2001 * Bind a table to the device.
2002 */
2003static void event_callback(void *context)
2004{
2005	unsigned long flags;
2006	LIST_HEAD(uevents);
2007	struct mapped_device *md = (struct mapped_device *) context;
2008
2009	spin_lock_irqsave(&md->uevent_lock, flags);
2010	list_splice_init(&md->uevent_list, &uevents);
2011	spin_unlock_irqrestore(&md->uevent_lock, flags);
2012
2013	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2014
2015	atomic_inc(&md->event_nr);
2016	wake_up(&md->eventq);
2017	dm_issue_global_event();
2018}
2019
2020/*
2021 * Protected by md->suspend_lock obtained by dm_swap_table().
2022 */
2023static void __set_size(struct mapped_device *md, sector_t size)
2024{
2025	lockdep_assert_held(&md->suspend_lock);
2026
2027	set_capacity(md->disk, size);
2028
2029	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2030}
2031
2032/*
2033 * Returns old map, which caller must destroy.
2034 */
2035static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2036			       struct queue_limits *limits)
2037{
2038	struct dm_table *old_map;
2039	struct request_queue *q = md->queue;
2040	bool request_based = dm_table_request_based(t);
2041	sector_t size;
 
2042
2043	lockdep_assert_held(&md->suspend_lock);
2044
2045	size = dm_table_get_size(t);
2046
2047	/*
2048	 * Wipe any geometry if the size of the table changed.
2049	 */
2050	if (size != dm_get_size(md))
2051		memset(&md->geometry, 0, sizeof(md->geometry));
2052
2053	__set_size(md, size);
2054
2055	dm_table_event_callback(t, event_callback, md);
2056
2057	/*
2058	 * The queue hasn't been stopped yet, if the old table type wasn't
2059	 * for request-based during suspension.  So stop it to prevent
2060	 * I/O mapping before resume.
2061	 * This must be done before setting the queue restrictions,
2062	 * because request-based dm may be run just after the setting.
2063	 */
2064	if (request_based)
2065		dm_stop_queue(q);
2066
2067	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2068		/*
2069		 * Leverage the fact that request-based DM targets and
2070		 * NVMe bio based targets are immutable singletons
2071		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2072		 *   and __process_bio.
 
 
2073		 */
2074		md->immutable_target = dm_table_get_immutable_target(t);
 
 
 
 
 
 
 
 
 
 
 
 
2075	}
2076
2077	__bind_mempools(md, t);
 
 
 
 
2078
2079	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2080	rcu_assign_pointer(md->map, (void *)t);
2081	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2082
2083	dm_table_set_restrictions(t, q, limits);
2084	if (old_map)
2085		dm_sync_table(md);
2086
2087	return old_map;
2088}
2089
2090/*
2091 * Returns unbound table for the caller to free.
2092 */
2093static struct dm_table *__unbind(struct mapped_device *md)
2094{
2095	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2096
2097	if (!map)
2098		return NULL;
2099
2100	dm_table_event_callback(map, NULL, NULL);
2101	RCU_INIT_POINTER(md->map, NULL);
2102	dm_sync_table(md);
2103
2104	return map;
2105}
2106
2107/*
2108 * Constructor for a new device.
2109 */
2110int dm_create(int minor, struct mapped_device **result)
2111{
2112	int r;
2113	struct mapped_device *md;
2114
2115	md = alloc_dev(minor);
2116	if (!md)
2117		return -ENXIO;
2118
2119	r = dm_sysfs_init(md);
2120	if (r) {
2121		free_dev(md);
2122		return r;
2123	}
2124
2125	*result = md;
2126	return 0;
2127}
2128
2129/*
2130 * Functions to manage md->type.
2131 * All are required to hold md->type_lock.
2132 */
2133void dm_lock_md_type(struct mapped_device *md)
2134{
2135	mutex_lock(&md->type_lock);
2136}
2137
2138void dm_unlock_md_type(struct mapped_device *md)
2139{
2140	mutex_unlock(&md->type_lock);
2141}
2142
2143void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2144{
2145	BUG_ON(!mutex_is_locked(&md->type_lock));
2146	md->type = type;
2147}
2148
2149enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2150{
2151	return md->type;
2152}
2153
2154struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2155{
2156	return md->immutable_target_type;
2157}
2158
2159/*
2160 * The queue_limits are only valid as long as you have a reference
2161 * count on 'md'.
2162 */
2163struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2164{
2165	BUG_ON(!atomic_read(&md->holders));
2166	return &md->queue->limits;
2167}
2168EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2169
2170/*
2171 * Setup the DM device's queue based on md's type
2172 */
2173int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2174{
 
 
 
2175	int r;
2176	struct queue_limits limits;
2177	enum dm_queue_mode type = dm_get_md_type(md);
2178
2179	switch (type) {
2180	case DM_TYPE_REQUEST_BASED:
2181		dm_init_normal_md_queue(md);
2182		r = dm_old_init_request_queue(md, t);
2183		if (r) {
2184			DMERR("Cannot initialize queue for request-based mapped device");
2185			return r;
2186		}
2187		break;
2188	case DM_TYPE_MQ_REQUEST_BASED:
2189		r = dm_mq_init_request_queue(md, t);
2190		if (r) {
2191			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2192			return r;
2193		}
2194		break;
2195	case DM_TYPE_BIO_BASED:
2196	case DM_TYPE_DAX_BIO_BASED:
2197		dm_init_normal_md_queue(md);
2198		blk_queue_make_request(md->queue, dm_make_request);
2199		break;
2200	case DM_TYPE_NVME_BIO_BASED:
2201		dm_init_normal_md_queue(md);
2202		blk_queue_make_request(md->queue, dm_make_request_nvme);
2203		break;
2204	case DM_TYPE_NONE:
2205		WARN_ON_ONCE(true);
2206		break;
2207	}
2208
2209	r = dm_calculate_queue_limits(t, &limits);
2210	if (r) {
2211		DMERR("Cannot calculate initial queue limits");
2212		return r;
2213	}
2214	dm_table_set_restrictions(t, md->queue, &limits);
2215	blk_register_queue(md->disk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2216
 
 
 
 
 
2217	return 0;
 
 
 
 
 
 
 
 
2218}
2219
2220struct mapped_device *dm_get_md(dev_t dev)
2221{
2222	struct mapped_device *md;
2223	unsigned minor = MINOR(dev);
2224
2225	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2226		return NULL;
2227
2228	spin_lock(&_minor_lock);
2229
2230	md = idr_find(&_minor_idr, minor);
2231	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2232	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2233		md = NULL;
2234		goto out;
2235	}
2236	dm_get(md);
2237out:
2238	spin_unlock(&_minor_lock);
2239
2240	return md;
2241}
2242EXPORT_SYMBOL_GPL(dm_get_md);
2243
2244void *dm_get_mdptr(struct mapped_device *md)
2245{
2246	return md->interface_ptr;
2247}
2248
2249void dm_set_mdptr(struct mapped_device *md, void *ptr)
2250{
2251	md->interface_ptr = ptr;
2252}
2253
2254void dm_get(struct mapped_device *md)
2255{
2256	atomic_inc(&md->holders);
2257	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2258}
2259
2260int dm_hold(struct mapped_device *md)
2261{
2262	spin_lock(&_minor_lock);
2263	if (test_bit(DMF_FREEING, &md->flags)) {
2264		spin_unlock(&_minor_lock);
2265		return -EBUSY;
2266	}
2267	dm_get(md);
2268	spin_unlock(&_minor_lock);
2269	return 0;
2270}
2271EXPORT_SYMBOL_GPL(dm_hold);
2272
2273const char *dm_device_name(struct mapped_device *md)
2274{
2275	return md->name;
2276}
2277EXPORT_SYMBOL_GPL(dm_device_name);
2278
2279static void __dm_destroy(struct mapped_device *md, bool wait)
2280{
2281	struct dm_table *map;
2282	int srcu_idx;
2283
2284	might_sleep();
2285
2286	spin_lock(&_minor_lock);
2287	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2288	set_bit(DMF_FREEING, &md->flags);
2289	spin_unlock(&_minor_lock);
2290
2291	blk_set_queue_dying(md->queue);
2292
2293	if (dm_request_based(md) && md->kworker_task)
2294		kthread_flush_worker(&md->kworker);
2295
2296	/*
2297	 * Take suspend_lock so that presuspend and postsuspend methods
2298	 * do not race with internal suspend.
2299	 */
2300	mutex_lock(&md->suspend_lock);
2301	map = dm_get_live_table(md, &srcu_idx);
2302	if (!dm_suspended_md(md)) {
2303		dm_table_presuspend_targets(map);
 
 
2304		dm_table_postsuspend_targets(map);
2305	}
2306	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2307	dm_put_live_table(md, srcu_idx);
2308	mutex_unlock(&md->suspend_lock);
2309
2310	/*
2311	 * Rare, but there may be I/O requests still going to complete,
2312	 * for example.  Wait for all references to disappear.
2313	 * No one should increment the reference count of the mapped_device,
2314	 * after the mapped_device state becomes DMF_FREEING.
2315	 */
2316	if (wait)
2317		while (atomic_read(&md->holders))
2318			msleep(1);
2319	else if (atomic_read(&md->holders))
2320		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2321		       dm_device_name(md), atomic_read(&md->holders));
2322
2323	dm_sysfs_exit(md);
2324	dm_table_destroy(__unbind(md));
2325	free_dev(md);
2326}
2327
2328void dm_destroy(struct mapped_device *md)
2329{
2330	__dm_destroy(md, true);
2331}
2332
2333void dm_destroy_immediate(struct mapped_device *md)
2334{
2335	__dm_destroy(md, false);
2336}
2337
2338void dm_put(struct mapped_device *md)
2339{
2340	atomic_dec(&md->holders);
2341}
2342EXPORT_SYMBOL_GPL(dm_put);
2343
2344static int dm_wait_for_completion(struct mapped_device *md, long task_state)
 
 
 
 
 
 
 
 
 
 
 
2345{
2346	int r = 0;
2347	DEFINE_WAIT(wait);
2348
2349	while (1) {
2350		prepare_to_wait(&md->wait, &wait, task_state);
2351
2352		if (!md_in_flight(md))
2353			break;
2354
2355		if (signal_pending_state(task_state, current)) {
2356			r = -EINTR;
2357			break;
2358		}
2359
2360		io_schedule();
2361	}
2362	finish_wait(&md->wait, &wait);
2363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2364	return r;
2365}
2366
2367/*
2368 * Process the deferred bios
2369 */
2370static void dm_wq_work(struct work_struct *work)
2371{
2372	struct mapped_device *md = container_of(work, struct mapped_device,
2373						work);
2374	struct bio *c;
2375	int srcu_idx;
2376	struct dm_table *map;
2377
2378	map = dm_get_live_table(md, &srcu_idx);
2379
2380	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2381		spin_lock_irq(&md->deferred_lock);
2382		c = bio_list_pop(&md->deferred);
2383		spin_unlock_irq(&md->deferred_lock);
2384
2385		if (!c)
2386			break;
2387
2388		if (dm_request_based(md))
2389			generic_make_request(c);
2390		else
2391			__split_and_process_bio(md, map, c);
2392	}
2393
2394	dm_put_live_table(md, srcu_idx);
2395}
2396
2397static void dm_queue_flush(struct mapped_device *md)
2398{
2399	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2400	smp_mb__after_atomic();
2401	queue_work(md->wq, &md->work);
2402}
2403
2404/*
2405 * Swap in a new table, returning the old one for the caller to destroy.
2406 */
2407struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2408{
2409	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2410	struct queue_limits limits;
2411	int r;
2412
2413	mutex_lock(&md->suspend_lock);
2414
2415	/* device must be suspended */
2416	if (!dm_suspended_md(md))
2417		goto out;
2418
2419	/*
2420	 * If the new table has no data devices, retain the existing limits.
2421	 * This helps multipath with queue_if_no_path if all paths disappear,
2422	 * then new I/O is queued based on these limits, and then some paths
2423	 * reappear.
2424	 */
2425	if (dm_table_has_no_data_devices(table)) {
2426		live_map = dm_get_live_table_fast(md);
2427		if (live_map)
2428			limits = md->queue->limits;
2429		dm_put_live_table_fast(md);
2430	}
2431
2432	if (!live_map) {
2433		r = dm_calculate_queue_limits(table, &limits);
2434		if (r) {
2435			map = ERR_PTR(r);
2436			goto out;
2437		}
2438	}
2439
2440	map = __bind(md, table, &limits);
2441	dm_issue_global_event();
2442
2443out:
2444	mutex_unlock(&md->suspend_lock);
2445	return map;
2446}
2447
2448/*
2449 * Functions to lock and unlock any filesystem running on the
2450 * device.
2451 */
2452static int lock_fs(struct mapped_device *md)
2453{
2454	int r;
2455
2456	WARN_ON(md->frozen_sb);
2457
2458	md->frozen_sb = freeze_bdev(md->bdev);
2459	if (IS_ERR(md->frozen_sb)) {
2460		r = PTR_ERR(md->frozen_sb);
2461		md->frozen_sb = NULL;
2462		return r;
2463	}
2464
2465	set_bit(DMF_FROZEN, &md->flags);
2466
2467	return 0;
2468}
2469
2470static void unlock_fs(struct mapped_device *md)
2471{
2472	if (!test_bit(DMF_FROZEN, &md->flags))
2473		return;
2474
2475	thaw_bdev(md->bdev, md->frozen_sb);
2476	md->frozen_sb = NULL;
2477	clear_bit(DMF_FROZEN, &md->flags);
2478}
2479
2480/*
2481 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2482 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2483 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2484 *
2485 * If __dm_suspend returns 0, the device is completely quiescent
2486 * now. There is no request-processing activity. All new requests
2487 * are being added to md->deferred list.
2488 */
2489static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2490			unsigned suspend_flags, long task_state,
2491			int dmf_suspended_flag)
2492{
2493	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2494	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2495	int r;
2496
2497	lockdep_assert_held(&md->suspend_lock);
2498
2499	/*
2500	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2501	 * This flag is cleared before dm_suspend returns.
2502	 */
2503	if (noflush)
2504		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2505	else
2506		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2507
2508	/*
2509	 * This gets reverted if there's an error later and the targets
2510	 * provide the .presuspend_undo hook.
2511	 */
2512	dm_table_presuspend_targets(map);
2513
2514	/*
2515	 * Flush I/O to the device.
2516	 * Any I/O submitted after lock_fs() may not be flushed.
2517	 * noflush takes precedence over do_lockfs.
2518	 * (lock_fs() flushes I/Os and waits for them to complete.)
2519	 */
2520	if (!noflush && do_lockfs) {
2521		r = lock_fs(md);
2522		if (r) {
2523			dm_table_presuspend_undo_targets(map);
2524			return r;
2525		}
2526	}
2527
2528	/*
2529	 * Here we must make sure that no processes are submitting requests
2530	 * to target drivers i.e. no one may be executing
2531	 * __split_and_process_bio. This is called from dm_request and
2532	 * dm_wq_work.
2533	 *
2534	 * To get all processes out of __split_and_process_bio in dm_request,
2535	 * we take the write lock. To prevent any process from reentering
2536	 * __split_and_process_bio from dm_request and quiesce the thread
2537	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2538	 * flush_workqueue(md->wq).
2539	 */
2540	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2541	if (map)
2542		synchronize_srcu(&md->io_barrier);
2543
2544	/*
2545	 * Stop md->queue before flushing md->wq in case request-based
2546	 * dm defers requests to md->wq from md->queue.
2547	 */
2548	if (dm_request_based(md)) {
2549		dm_stop_queue(md->queue);
2550		if (md->kworker_task)
2551			kthread_flush_worker(&md->kworker);
2552	}
2553
2554	flush_workqueue(md->wq);
2555
2556	/*
2557	 * At this point no more requests are entering target request routines.
2558	 * We call dm_wait_for_completion to wait for all existing requests
2559	 * to finish.
2560	 */
2561	r = dm_wait_for_completion(md, task_state);
2562	if (!r)
2563		set_bit(dmf_suspended_flag, &md->flags);
2564
2565	if (noflush)
2566		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2567	if (map)
2568		synchronize_srcu(&md->io_barrier);
2569
2570	/* were we interrupted ? */
2571	if (r < 0) {
2572		dm_queue_flush(md);
2573
2574		if (dm_request_based(md))
2575			dm_start_queue(md->queue);
2576
2577		unlock_fs(md);
2578		dm_table_presuspend_undo_targets(map);
2579		/* pushback list is already flushed, so skip flush */
2580	}
2581
2582	return r;
2583}
2584
2585/*
2586 * We need to be able to change a mapping table under a mounted
2587 * filesystem.  For example we might want to move some data in
2588 * the background.  Before the table can be swapped with
2589 * dm_bind_table, dm_suspend must be called to flush any in
2590 * flight bios and ensure that any further io gets deferred.
2591 */
2592/*
2593 * Suspend mechanism in request-based dm.
2594 *
2595 * 1. Flush all I/Os by lock_fs() if needed.
2596 * 2. Stop dispatching any I/O by stopping the request_queue.
2597 * 3. Wait for all in-flight I/Os to be completed or requeued.
2598 *
2599 * To abort suspend, start the request_queue.
2600 */
2601int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2602{
2603	struct dm_table *map = NULL;
2604	int r = 0;
2605
2606retry:
2607	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2608
2609	if (dm_suspended_md(md)) {
2610		r = -EINVAL;
2611		goto out_unlock;
2612	}
2613
2614	if (dm_suspended_internally_md(md)) {
2615		/* already internally suspended, wait for internal resume */
2616		mutex_unlock(&md->suspend_lock);
2617		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2618		if (r)
2619			return r;
2620		goto retry;
2621	}
2622
2623	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
 
 
 
 
2624
2625	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2626	if (r)
2627		goto out_unlock;
2628
 
2629	dm_table_postsuspend_targets(map);
 
2630
2631out_unlock:
2632	mutex_unlock(&md->suspend_lock);
2633	return r;
2634}
2635
2636static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2637{
2638	if (map) {
2639		int r = dm_table_resume_targets(map);
 
2640		if (r)
2641			return r;
2642	}
2643
2644	dm_queue_flush(md);
2645
2646	/*
2647	 * Flushing deferred I/Os must be done after targets are resumed
2648	 * so that mapping of targets can work correctly.
2649	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2650	 */
2651	if (dm_request_based(md))
2652		dm_start_queue(md->queue);
2653
2654	unlock_fs(md);
2655
2656	return 0;
2657}
2658
2659int dm_resume(struct mapped_device *md)
2660{
2661	int r;
2662	struct dm_table *map = NULL;
2663
2664retry:
2665	r = -EINVAL;
2666	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2667
2668	if (!dm_suspended_md(md))
2669		goto out;
2670
2671	if (dm_suspended_internally_md(md)) {
2672		/* already internally suspended, wait for internal resume */
2673		mutex_unlock(&md->suspend_lock);
2674		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2675		if (r)
2676			return r;
2677		goto retry;
2678	}
2679
2680	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2681	if (!map || !dm_table_get_size(map))
2682		goto out;
2683
2684	r = __dm_resume(md, map);
2685	if (r)
2686		goto out;
2687
2688	clear_bit(DMF_SUSPENDED, &md->flags);
2689out:
2690	mutex_unlock(&md->suspend_lock);
2691
2692	return r;
2693}
2694
2695/*
2696 * Internal suspend/resume works like userspace-driven suspend. It waits
2697 * until all bios finish and prevents issuing new bios to the target drivers.
2698 * It may be used only from the kernel.
2699 */
2700
2701static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2702{
2703	struct dm_table *map = NULL;
2704
2705	lockdep_assert_held(&md->suspend_lock);
2706
2707	if (md->internal_suspend_count++)
2708		return; /* nested internal suspend */
2709
2710	if (dm_suspended_md(md)) {
2711		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2712		return; /* nest suspend */
2713	}
2714
2715	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2716
2717	/*
2718	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2719	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2720	 * would require changing .presuspend to return an error -- avoid this
2721	 * until there is a need for more elaborate variants of internal suspend.
2722	 */
2723	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2724			    DMF_SUSPENDED_INTERNALLY);
2725
 
2726	dm_table_postsuspend_targets(map);
 
2727}
2728
2729static void __dm_internal_resume(struct mapped_device *md)
2730{
2731	BUG_ON(!md->internal_suspend_count);
2732
2733	if (--md->internal_suspend_count)
2734		return; /* resume from nested internal suspend */
2735
2736	if (dm_suspended_md(md))
2737		goto done; /* resume from nested suspend */
2738
2739	/*
2740	 * NOTE: existing callers don't need to call dm_table_resume_targets
2741	 * (which may fail -- so best to avoid it for now by passing NULL map)
2742	 */
2743	(void) __dm_resume(md, NULL);
2744
2745done:
2746	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2747	smp_mb__after_atomic();
2748	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2749}
2750
2751void dm_internal_suspend_noflush(struct mapped_device *md)
2752{
2753	mutex_lock(&md->suspend_lock);
2754	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2755	mutex_unlock(&md->suspend_lock);
2756}
2757EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2758
2759void dm_internal_resume(struct mapped_device *md)
2760{
2761	mutex_lock(&md->suspend_lock);
2762	__dm_internal_resume(md);
2763	mutex_unlock(&md->suspend_lock);
2764}
2765EXPORT_SYMBOL_GPL(dm_internal_resume);
2766
2767/*
2768 * Fast variants of internal suspend/resume hold md->suspend_lock,
2769 * which prevents interaction with userspace-driven suspend.
2770 */
2771
2772void dm_internal_suspend_fast(struct mapped_device *md)
2773{
2774	mutex_lock(&md->suspend_lock);
2775	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2776		return;
2777
2778	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2779	synchronize_srcu(&md->io_barrier);
2780	flush_workqueue(md->wq);
2781	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2782}
2783EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2784
2785void dm_internal_resume_fast(struct mapped_device *md)
2786{
2787	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2788		goto done;
2789
2790	dm_queue_flush(md);
2791
2792done:
2793	mutex_unlock(&md->suspend_lock);
2794}
2795EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2796
2797/*-----------------------------------------------------------------
 
2798 * Event notification.
2799 *---------------------------------------------------------------*/
 
2800int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2801		       unsigned cookie)
2802{
 
 
2803	char udev_cookie[DM_COOKIE_LENGTH];
2804	char *envp[] = { udev_cookie, NULL };
2805
2806	if (!cookie)
2807		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2808	else {
2809		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2810			 DM_COOKIE_ENV_VAR_NAME, cookie);
2811		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2812					  action, envp);
 
 
2813	}
 
 
 
 
 
 
 
 
2814}
2815
2816uint32_t dm_next_uevent_seq(struct mapped_device *md)
2817{
2818	return atomic_add_return(1, &md->uevent_seq);
2819}
2820
2821uint32_t dm_get_event_nr(struct mapped_device *md)
2822{
2823	return atomic_read(&md->event_nr);
2824}
2825
2826int dm_wait_event(struct mapped_device *md, int event_nr)
2827{
2828	return wait_event_interruptible(md->eventq,
2829			(event_nr != atomic_read(&md->event_nr)));
2830}
2831
2832void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2833{
2834	unsigned long flags;
2835
2836	spin_lock_irqsave(&md->uevent_lock, flags);
2837	list_add(elist, &md->uevent_list);
2838	spin_unlock_irqrestore(&md->uevent_lock, flags);
2839}
2840
2841/*
2842 * The gendisk is only valid as long as you have a reference
2843 * count on 'md'.
2844 */
2845struct gendisk *dm_disk(struct mapped_device *md)
2846{
2847	return md->disk;
2848}
2849EXPORT_SYMBOL_GPL(dm_disk);
2850
2851struct kobject *dm_kobject(struct mapped_device *md)
2852{
2853	return &md->kobj_holder.kobj;
2854}
2855
2856struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2857{
2858	struct mapped_device *md;
2859
2860	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2861
2862	spin_lock(&_minor_lock);
2863	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2864		md = NULL;
2865		goto out;
2866	}
2867	dm_get(md);
2868out:
2869	spin_unlock(&_minor_lock);
2870
2871	return md;
2872}
2873
2874int dm_suspended_md(struct mapped_device *md)
2875{
2876	return test_bit(DMF_SUSPENDED, &md->flags);
2877}
2878
 
 
 
 
 
2879int dm_suspended_internally_md(struct mapped_device *md)
2880{
2881	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2882}
2883
2884int dm_test_deferred_remove_flag(struct mapped_device *md)
2885{
2886	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2887}
2888
2889int dm_suspended(struct dm_target *ti)
2890{
2891	return dm_suspended_md(dm_table_get_md(ti->table));
2892}
2893EXPORT_SYMBOL_GPL(dm_suspended);
2894
 
 
 
 
 
 
2895int dm_noflush_suspending(struct dm_target *ti)
2896{
2897	return __noflush_suspending(dm_table_get_md(ti->table));
2898}
2899EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2900
2901struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2902					    unsigned integrity, unsigned per_io_data_size,
2903					    unsigned min_pool_size)
2904{
2905	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2906	unsigned int pool_size = 0;
2907	unsigned int front_pad, io_front_pad;
2908
2909	if (!pools)
2910		return NULL;
2911
2912	switch (type) {
2913	case DM_TYPE_BIO_BASED:
2914	case DM_TYPE_DAX_BIO_BASED:
2915	case DM_TYPE_NVME_BIO_BASED:
2916		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2917		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2918		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2919		pools->io_bs = bioset_create(pool_size, io_front_pad, 0);
2920		if (!pools->io_bs)
2921			goto out;
2922		if (integrity && bioset_integrity_create(pools->io_bs, pool_size))
2923			goto out;
2924		break;
2925	case DM_TYPE_REQUEST_BASED:
2926	case DM_TYPE_MQ_REQUEST_BASED:
2927		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2928		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2929		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2930		break;
2931	default:
2932		BUG();
2933	}
2934
2935	pools->bs = bioset_create(pool_size, front_pad, 0);
2936	if (!pools->bs)
2937		goto out;
2938
2939	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2940		goto out;
2941
2942	return pools;
2943
2944out:
2945	dm_free_md_mempools(pools);
2946
2947	return NULL;
2948}
2949
2950void dm_free_md_mempools(struct dm_md_mempools *pools)
2951{
2952	if (!pools)
2953		return;
2954
2955	if (pools->bs)
2956		bioset_free(pools->bs);
2957	if (pools->io_bs)
2958		bioset_free(pools->io_bs);
2959
2960	kfree(pools);
2961}
2962
2963struct dm_pr {
2964	u64	old_key;
2965	u64	new_key;
2966	u32	flags;
 
2967	bool	fail_early;
 
 
 
 
2968};
2969
2970static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2971		      void *data)
2972{
2973	struct mapped_device *md = bdev->bd_disk->private_data;
2974	struct dm_table *table;
2975	struct dm_target *ti;
2976	int ret = -ENOTTY, srcu_idx;
2977
2978	table = dm_get_live_table(md, &srcu_idx);
2979	if (!table || !dm_table_get_size(table))
2980		goto out;
2981
2982	/* We only support devices that have a single target */
2983	if (dm_table_get_num_targets(table) != 1)
2984		goto out;
2985	ti = dm_table_get_target(table, 0);
2986
 
 
 
 
 
2987	ret = -EINVAL;
2988	if (!ti->type->iterate_devices)
2989		goto out;
2990
2991	ret = ti->type->iterate_devices(ti, fn, data);
 
2992out:
2993	dm_put_live_table(md, srcu_idx);
2994	return ret;
2995}
2996
2997/*
2998 * For register / unregister we need to manually call out to every path.
2999 */
3000static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3001			    sector_t start, sector_t len, void *data)
3002{
3003	struct dm_pr *pr = data;
3004	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
 
3005
3006	if (!ops || !ops->pr_register)
3007		return -EOPNOTSUPP;
3008	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
3009}
3010
3011static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3012			  u32 flags)
3013{
3014	struct dm_pr pr = {
3015		.old_key	= old_key,
3016		.new_key	= new_key,
3017		.flags		= flags,
3018		.fail_early	= true,
 
3019	};
3020	int ret;
3021
3022	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3023	if (ret && new_key) {
3024		/* unregister all paths if we failed to register any path */
3025		pr.old_key = new_key;
3026		pr.new_key = 0;
3027		pr.flags = 0;
3028		pr.fail_early = false;
3029		dm_call_pr(bdev, __dm_pr_register, &pr);
3030	}
3031
 
 
 
 
 
 
 
 
 
 
 
 
 
3032	return ret;
3033}
3034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3036			 u32 flags)
3037{
3038	struct mapped_device *md = bdev->bd_disk->private_data;
3039	const struct pr_ops *ops;
3040	int r, srcu_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3041
3042	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3043	if (r < 0)
3044		goto out;
3045
3046	ops = bdev->bd_disk->fops->pr_ops;
3047	if (ops && ops->pr_reserve)
3048		r = ops->pr_reserve(bdev, key, type, flags);
3049	else
3050		r = -EOPNOTSUPP;
3051out:
3052	dm_unprepare_ioctl(md, srcu_idx);
3053	return r;
3054}
3055
3056static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3057{
3058	struct mapped_device *md = bdev->bd_disk->private_data;
3059	const struct pr_ops *ops;
3060	int r, srcu_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3061
3062	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3063	if (r < 0)
3064		goto out;
 
3065
3066	ops = bdev->bd_disk->fops->pr_ops;
3067	if (ops && ops->pr_release)
3068		r = ops->pr_release(bdev, key, type);
3069	else
3070		r = -EOPNOTSUPP;
3071out:
3072	dm_unprepare_ioctl(md, srcu_idx);
3073	return r;
3074}
3075
3076static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3077			 enum pr_type type, bool abort)
3078{
3079	struct mapped_device *md = bdev->bd_disk->private_data;
3080	const struct pr_ops *ops;
3081	int r, srcu_idx;
 
 
 
 
3082
3083	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3084	if (r < 0)
3085		goto out;
3086
3087	ops = bdev->bd_disk->fops->pr_ops;
3088	if (ops && ops->pr_preempt)
3089		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3090	else
3091		r = -EOPNOTSUPP;
3092out:
3093	dm_unprepare_ioctl(md, srcu_idx);
3094	return r;
3095}
3096
3097static int dm_pr_clear(struct block_device *bdev, u64 key)
3098{
3099	struct mapped_device *md = bdev->bd_disk->private_data;
3100	const struct pr_ops *ops;
3101	int r, srcu_idx;
3102
3103	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3104	if (r < 0)
3105		goto out;
3106
3107	ops = bdev->bd_disk->fops->pr_ops;
3108	if (ops && ops->pr_clear)
3109		r = ops->pr_clear(bdev, key);
3110	else
3111		r = -EOPNOTSUPP;
3112out:
3113	dm_unprepare_ioctl(md, srcu_idx);
3114	return r;
3115}
3116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3117static const struct pr_ops dm_pr_ops = {
3118	.pr_register	= dm_pr_register,
3119	.pr_reserve	= dm_pr_reserve,
3120	.pr_release	= dm_pr_release,
3121	.pr_preempt	= dm_pr_preempt,
3122	.pr_clear	= dm_pr_clear,
 
 
3123};
3124
3125static const struct block_device_operations dm_blk_dops = {
 
 
 
 
 
 
 
 
 
 
 
 
3126	.open = dm_blk_open,
3127	.release = dm_blk_close,
3128	.ioctl = dm_blk_ioctl,
3129	.getgeo = dm_blk_getgeo,
3130	.pr_ops = &dm_pr_ops,
3131	.owner = THIS_MODULE
3132};
3133
3134static const struct dax_operations dm_dax_ops = {
3135	.direct_access = dm_dax_direct_access,
3136	.copy_from_iter = dm_dax_copy_from_iter,
 
3137};
3138
3139/*
3140 * module hooks
3141 */
3142module_init(dm_init);
3143module_exit(dm_exit);
3144
3145module_param(major, uint, 0);
3146MODULE_PARM_DESC(major, "The major number of the device mapper");
3147
3148module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3149MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3150
3151module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3152MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
 
 
 
3153
3154MODULE_DESCRIPTION(DM_NAME " driver");
3155MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3156MODULE_LICENSE("GPL");