Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
   4 * Copyright (C) 2016-2017 Milan Broz
   5 * Copyright (C) 2016-2017 Mikulas Patocka
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include "dm-bio-record.h"
  11
  12#include <linux/compiler.h>
  13#include <linux/module.h>
  14#include <linux/device-mapper.h>
  15#include <linux/dm-io.h>
  16#include <linux/vmalloc.h>
  17#include <linux/sort.h>
  18#include <linux/rbtree.h>
  19#include <linux/delay.h>
  20#include <linux/random.h>
  21#include <linux/reboot.h>
  22#include <crypto/hash.h>
  23#include <crypto/skcipher.h>
  24#include <linux/async_tx.h>
  25#include <linux/dm-bufio.h>
  26
  27#include "dm-audit.h"
  28
  29#define DM_MSG_PREFIX "integrity"
  30
  31#define DEFAULT_INTERLEAVE_SECTORS	32768
  32#define DEFAULT_JOURNAL_SIZE_FACTOR	7
  33#define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
  34#define DEFAULT_BUFFER_SECTORS		128
  35#define DEFAULT_JOURNAL_WATERMARK	50
  36#define DEFAULT_SYNC_MSEC		10000
  37#define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
  38#define MIN_LOG2_INTERLEAVE_SECTORS	3
  39#define MAX_LOG2_INTERLEAVE_SECTORS	31
  40#define METADATA_WORKQUEUE_MAX_ACTIVE	16
  41#define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
  42#define RECALC_WRITE_SUPER		16
  43#define BITMAP_BLOCK_SIZE		4096	/* don't change it */
  44#define BITMAP_FLUSH_INTERVAL		(10 * HZ)
  45#define DISCARD_FILLER			0xf6
  46#define SALT_SIZE			16
 
  47
  48/*
  49 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
  50 * so it should not be enabled in the official kernel
  51 */
  52//#define DEBUG_PRINT
  53//#define INTERNAL_VERIFY
  54
  55/*
  56 * On disk structures
  57 */
  58
  59#define SB_MAGIC			"integrt"
  60#define SB_VERSION_1			1
  61#define SB_VERSION_2			2
  62#define SB_VERSION_3			3
  63#define SB_VERSION_4			4
  64#define SB_VERSION_5			5
 
  65#define SB_SECTORS			8
  66#define MAX_SECTORS_PER_BLOCK		8
  67
  68struct superblock {
  69	__u8 magic[8];
  70	__u8 version;
  71	__u8 log2_interleave_sectors;
  72	__le16 integrity_tag_size;
  73	__le32 journal_sections;
  74	__le64 provided_data_sectors;	/* userspace uses this value */
  75	__le32 flags;
  76	__u8 log2_sectors_per_block;
  77	__u8 log2_blocks_per_bitmap_bit;
  78	__u8 pad[2];
  79	__le64 recalc_sector;
  80	__u8 pad2[8];
  81	__u8 salt[SALT_SIZE];
  82};
  83
  84#define SB_FLAG_HAVE_JOURNAL_MAC	0x1
  85#define SB_FLAG_RECALCULATING		0x2
  86#define SB_FLAG_DIRTY_BITMAP		0x4
  87#define SB_FLAG_FIXED_PADDING		0x8
  88#define SB_FLAG_FIXED_HMAC		0x10
 
  89
  90#define	JOURNAL_ENTRY_ROUNDUP		8
  91
  92typedef __le64 commit_id_t;
  93#define JOURNAL_MAC_PER_SECTOR		8
  94
  95struct journal_entry {
  96	union {
  97		struct {
  98			__le32 sector_lo;
  99			__le32 sector_hi;
 100		} s;
 101		__le64 sector;
 102	} u;
 103	commit_id_t last_bytes[];
 104	/* __u8 tag[0]; */
 105};
 106
 107#define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
 108
 109#if BITS_PER_LONG == 64
 110#define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
 111#else
 112#define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
 113#endif
 114#define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
 115#define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
 116#define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
 117#define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
 118#define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
 119
 120#define JOURNAL_BLOCK_SECTORS		8
 121#define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
 122#define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
 123
 124struct journal_sector {
 125	struct_group(sectors,
 126		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
 127		__u8 mac[JOURNAL_MAC_PER_SECTOR];
 128	);
 129	commit_id_t commit_id;
 130};
 131
 132#define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
 133
 134#define METADATA_PADDING_SECTORS	8
 135
 136#define N_COMMIT_IDS			4
 137
 138static unsigned char prev_commit_seq(unsigned char seq)
 139{
 140	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
 141}
 142
 143static unsigned char next_commit_seq(unsigned char seq)
 144{
 145	return (seq + 1) % N_COMMIT_IDS;
 146}
 147
 148/*
 149 * In-memory structures
 150 */
 151
 152struct journal_node {
 153	struct rb_node node;
 154	sector_t sector;
 155};
 156
 157struct alg_spec {
 158	char *alg_string;
 159	char *key_string;
 160	__u8 *key;
 161	unsigned int key_size;
 162};
 163
 164struct dm_integrity_c {
 165	struct dm_dev *dev;
 166	struct dm_dev *meta_dev;
 167	unsigned int tag_size;
 168	__s8 log2_tag_size;
 
 169	sector_t start;
 170	mempool_t journal_io_mempool;
 171	struct dm_io_client *io;
 172	struct dm_bufio_client *bufio;
 173	struct workqueue_struct *metadata_wq;
 174	struct superblock *sb;
 175	unsigned int journal_pages;
 176	unsigned int n_bitmap_blocks;
 177
 178	struct page_list *journal;
 179	struct page_list *journal_io;
 180	struct page_list *journal_xor;
 181	struct page_list *recalc_bitmap;
 182	struct page_list *may_write_bitmap;
 183	struct bitmap_block_status *bbs;
 184	unsigned int bitmap_flush_interval;
 185	int synchronous_mode;
 186	struct bio_list synchronous_bios;
 187	struct delayed_work bitmap_flush_work;
 188
 189	struct crypto_skcipher *journal_crypt;
 190	struct scatterlist **journal_scatterlist;
 191	struct scatterlist **journal_io_scatterlist;
 192	struct skcipher_request **sk_requests;
 193
 194	struct crypto_shash *journal_mac;
 195
 196	struct journal_node *journal_tree;
 197	struct rb_root journal_tree_root;
 198
 199	sector_t provided_data_sectors;
 200
 201	unsigned short journal_entry_size;
 202	unsigned char journal_entries_per_sector;
 203	unsigned char journal_section_entries;
 204	unsigned short journal_section_sectors;
 205	unsigned int journal_sections;
 206	unsigned int journal_entries;
 207	sector_t data_device_sectors;
 208	sector_t meta_device_sectors;
 209	unsigned int initial_sectors;
 210	unsigned int metadata_run;
 211	__s8 log2_metadata_run;
 212	__u8 log2_buffer_sectors;
 213	__u8 sectors_per_block;
 214	__u8 log2_blocks_per_bitmap_bit;
 215
 216	unsigned char mode;
 217
 218	int failed;
 219
 220	struct crypto_shash *internal_hash;
 221
 222	struct dm_target *ti;
 223
 224	/* these variables are locked with endio_wait.lock */
 225	struct rb_root in_progress;
 226	struct list_head wait_list;
 227	wait_queue_head_t endio_wait;
 228	struct workqueue_struct *wait_wq;
 229	struct workqueue_struct *offload_wq;
 230
 231	unsigned char commit_seq;
 232	commit_id_t commit_ids[N_COMMIT_IDS];
 233
 234	unsigned int committed_section;
 235	unsigned int n_committed_sections;
 236
 237	unsigned int uncommitted_section;
 238	unsigned int n_uncommitted_sections;
 239
 240	unsigned int free_section;
 241	unsigned char free_section_entry;
 242	unsigned int free_sectors;
 243
 244	unsigned int free_sectors_threshold;
 245
 246	struct workqueue_struct *commit_wq;
 247	struct work_struct commit_work;
 248
 249	struct workqueue_struct *writer_wq;
 250	struct work_struct writer_work;
 251
 252	struct workqueue_struct *recalc_wq;
 253	struct work_struct recalc_work;
 254
 255	struct bio_list flush_bio_list;
 256
 257	unsigned long autocommit_jiffies;
 258	struct timer_list autocommit_timer;
 259	unsigned int autocommit_msec;
 260
 261	wait_queue_head_t copy_to_journal_wait;
 262
 263	struct completion crypto_backoff;
 264
 265	bool wrote_to_journal;
 266	bool journal_uptodate;
 267	bool just_formatted;
 268	bool recalculate_flag;
 269	bool reset_recalculate_flag;
 270	bool discard;
 271	bool fix_padding;
 272	bool fix_hmac;
 273	bool legacy_recalculate;
 274
 275	struct alg_spec internal_hash_alg;
 276	struct alg_spec journal_crypt_alg;
 277	struct alg_spec journal_mac_alg;
 278
 279	atomic64_t number_of_mismatches;
 280
 281	mempool_t recheck_pool;
 
 
 282
 283	struct notifier_block reboot_notifier;
 284};
 285
 286struct dm_integrity_range {
 287	sector_t logical_sector;
 288	sector_t n_sectors;
 289	bool waiting;
 290	union {
 291		struct rb_node node;
 292		struct {
 293			struct task_struct *task;
 294			struct list_head wait_entry;
 295		};
 296	};
 297};
 298
 299struct dm_integrity_io {
 300	struct work_struct work;
 301
 302	struct dm_integrity_c *ic;
 303	enum req_op op;
 304	bool fua;
 305
 306	struct dm_integrity_range range;
 307
 308	sector_t metadata_block;
 309	unsigned int metadata_offset;
 310
 311	atomic_t in_flight;
 312	blk_status_t bi_status;
 313
 314	struct completion *completion;
 315
 316	struct dm_bio_details bio_details;
 
 
 
 
 
 317};
 318
 319struct journal_completion {
 320	struct dm_integrity_c *ic;
 321	atomic_t in_flight;
 322	struct completion comp;
 323};
 324
 325struct journal_io {
 326	struct dm_integrity_range range;
 327	struct journal_completion *comp;
 328};
 329
 330struct bitmap_block_status {
 331	struct work_struct work;
 332	struct dm_integrity_c *ic;
 333	unsigned int idx;
 334	unsigned long *bitmap;
 335	struct bio_list bio_queue;
 336	spinlock_t bio_queue_lock;
 337
 338};
 339
 340static struct kmem_cache *journal_io_cache;
 341
 342#define JOURNAL_IO_MEMPOOL	32
 343
 344#ifdef DEBUG_PRINT
 345#define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
 346#define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
 347						       len ? ": " : "", len, bytes)
 348#else
 349#define DEBUG_print(x, ...)			do { } while (0)
 350#define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
 351#endif
 352
 353static void dm_integrity_prepare(struct request *rq)
 354{
 355}
 356
 357static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
 358{
 359}
 360
 361/*
 362 * DM Integrity profile, protection is performed layer above (dm-crypt)
 363 */
 364static const struct blk_integrity_profile dm_integrity_profile = {
 365	.name			= "DM-DIF-EXT-TAG",
 366	.generate_fn		= NULL,
 367	.verify_fn		= NULL,
 368	.prepare_fn		= dm_integrity_prepare,
 369	.complete_fn		= dm_integrity_complete,
 370};
 371
 372static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
 
 373static void integrity_bio_wait(struct work_struct *w);
 374static void dm_integrity_dtr(struct dm_target *ti);
 375
 376static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
 377{
 378	if (err == -EILSEQ)
 379		atomic64_inc(&ic->number_of_mismatches);
 380	if (!cmpxchg(&ic->failed, 0, err))
 381		DMERR("Error on %s: %d", msg, err);
 382}
 383
 384static int dm_integrity_failed(struct dm_integrity_c *ic)
 385{
 386	return READ_ONCE(ic->failed);
 387}
 388
 389static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
 390{
 391	if (ic->legacy_recalculate)
 392		return false;
 393	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
 394	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
 395	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
 396		return true;
 397	return false;
 398}
 399
 400static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
 401					  unsigned int j, unsigned char seq)
 402{
 403	/*
 404	 * Xor the number with section and sector, so that if a piece of
 405	 * journal is written at wrong place, it is detected.
 406	 */
 407	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
 408}
 409
 410static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
 411				sector_t *area, sector_t *offset)
 412{
 413	if (!ic->meta_dev) {
 414		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
 415		*area = data_sector >> log2_interleave_sectors;
 416		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
 417	} else {
 418		*area = 0;
 419		*offset = data_sector;
 420	}
 421}
 422
 423#define sector_to_block(ic, n)						\
 424do {									\
 425	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
 426	(n) >>= (ic)->sb->log2_sectors_per_block;			\
 427} while (0)
 428
 429static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
 430					    sector_t offset, unsigned int *metadata_offset)
 431{
 432	__u64 ms;
 433	unsigned int mo;
 434
 435	ms = area << ic->sb->log2_interleave_sectors;
 436	if (likely(ic->log2_metadata_run >= 0))
 437		ms += area << ic->log2_metadata_run;
 438	else
 439		ms += area * ic->metadata_run;
 440	ms >>= ic->log2_buffer_sectors;
 441
 442	sector_to_block(ic, offset);
 443
 444	if (likely(ic->log2_tag_size >= 0)) {
 445		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
 446		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
 447	} else {
 448		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
 449		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
 450	}
 451	*metadata_offset = mo;
 452	return ms;
 453}
 454
 455static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
 456{
 457	sector_t result;
 458
 459	if (ic->meta_dev)
 460		return offset;
 461
 462	result = area << ic->sb->log2_interleave_sectors;
 463	if (likely(ic->log2_metadata_run >= 0))
 464		result += (area + 1) << ic->log2_metadata_run;
 465	else
 466		result += (area + 1) * ic->metadata_run;
 467
 468	result += (sector_t)ic->initial_sectors + offset;
 469	result += ic->start;
 470
 471	return result;
 472}
 473
 474static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
 475{
 476	if (unlikely(*sec_ptr >= ic->journal_sections))
 477		*sec_ptr -= ic->journal_sections;
 478}
 479
 480static void sb_set_version(struct dm_integrity_c *ic)
 481{
 482	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
 
 
 483		ic->sb->version = SB_VERSION_5;
 484	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
 485		ic->sb->version = SB_VERSION_4;
 486	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
 487		ic->sb->version = SB_VERSION_3;
 488	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
 489		ic->sb->version = SB_VERSION_2;
 490	else
 491		ic->sb->version = SB_VERSION_1;
 492}
 493
 494static int sb_mac(struct dm_integrity_c *ic, bool wr)
 495{
 496	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
 497	int r;
 498	unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
 499	__u8 *sb = (__u8 *)ic->sb;
 500	__u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
 501
 502	if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
 
 503		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
 504		return -EINVAL;
 505	}
 506
 507	desc->tfm = ic->journal_mac;
 508
 509	if (likely(wr)) {
 510		r = crypto_shash_digest(desc, sb, mac - sb, mac);
 511		if (unlikely(r < 0)) {
 512			dm_integrity_io_error(ic, "crypto_shash_digest", r);
 513			return r;
 514		}
 515	} else {
 516		__u8 actual_mac[HASH_MAX_DIGESTSIZE];
 517
 518		r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
 519		if (unlikely(r < 0)) {
 520			dm_integrity_io_error(ic, "crypto_shash_digest", r);
 521			return r;
 522		}
 523		if (memcmp(mac, actual_mac, mac_size)) {
 524			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
 525			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
 526			return -EILSEQ;
 527		}
 528	}
 529
 530	return 0;
 531}
 532
 533static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
 534{
 535	struct dm_io_request io_req;
 536	struct dm_io_region io_loc;
 537	const enum req_op op = opf & REQ_OP_MASK;
 538	int r;
 539
 540	io_req.bi_opf = opf;
 541	io_req.mem.type = DM_IO_KMEM;
 542	io_req.mem.ptr.addr = ic->sb;
 543	io_req.notify.fn = NULL;
 544	io_req.client = ic->io;
 545	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
 546	io_loc.sector = ic->start;
 547	io_loc.count = SB_SECTORS;
 548
 549	if (op == REQ_OP_WRITE) {
 550		sb_set_version(ic);
 551		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
 552			r = sb_mac(ic, true);
 553			if (unlikely(r))
 554				return r;
 555		}
 556	}
 557
 558	r = dm_io(&io_req, 1, &io_loc, NULL);
 559	if (unlikely(r))
 560		return r;
 561
 562	if (op == REQ_OP_READ) {
 563		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
 564			r = sb_mac(ic, false);
 565			if (unlikely(r))
 566				return r;
 567		}
 568	}
 569
 570	return 0;
 571}
 572
 573#define BITMAP_OP_TEST_ALL_SET		0
 574#define BITMAP_OP_TEST_ALL_CLEAR	1
 575#define BITMAP_OP_SET			2
 576#define BITMAP_OP_CLEAR			3
 577
 578static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
 579			    sector_t sector, sector_t n_sectors, int mode)
 580{
 581	unsigned long bit, end_bit, this_end_bit, page, end_page;
 582	unsigned long *data;
 583
 584	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
 585		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
 586			sector,
 587			n_sectors,
 588			ic->sb->log2_sectors_per_block,
 589			ic->log2_blocks_per_bitmap_bit,
 590			mode);
 591		BUG();
 592	}
 593
 594	if (unlikely(!n_sectors))
 595		return true;
 596
 597	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 598	end_bit = (sector + n_sectors - 1) >>
 599		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 600
 601	page = bit / (PAGE_SIZE * 8);
 602	bit %= PAGE_SIZE * 8;
 603
 604	end_page = end_bit / (PAGE_SIZE * 8);
 605	end_bit %= PAGE_SIZE * 8;
 606
 607repeat:
 608	if (page < end_page)
 609		this_end_bit = PAGE_SIZE * 8 - 1;
 610	else
 611		this_end_bit = end_bit;
 612
 613	data = lowmem_page_address(bitmap[page].page);
 614
 615	if (mode == BITMAP_OP_TEST_ALL_SET) {
 616		while (bit <= this_end_bit) {
 617			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 618				do {
 619					if (data[bit / BITS_PER_LONG] != -1)
 620						return false;
 621					bit += BITS_PER_LONG;
 622				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 623				continue;
 624			}
 625			if (!test_bit(bit, data))
 626				return false;
 627			bit++;
 628		}
 629	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
 630		while (bit <= this_end_bit) {
 631			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 632				do {
 633					if (data[bit / BITS_PER_LONG] != 0)
 634						return false;
 635					bit += BITS_PER_LONG;
 636				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 637				continue;
 638			}
 639			if (test_bit(bit, data))
 640				return false;
 641			bit++;
 642		}
 643	} else if (mode == BITMAP_OP_SET) {
 644		while (bit <= this_end_bit) {
 645			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 646				do {
 647					data[bit / BITS_PER_LONG] = -1;
 648					bit += BITS_PER_LONG;
 649				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 650				continue;
 651			}
 652			__set_bit(bit, data);
 653			bit++;
 654		}
 655	} else if (mode == BITMAP_OP_CLEAR) {
 656		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
 657			clear_page(data);
 658		else {
 659			while (bit <= this_end_bit) {
 660				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 661					do {
 662						data[bit / BITS_PER_LONG] = 0;
 663						bit += BITS_PER_LONG;
 664					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 665					continue;
 666				}
 667				__clear_bit(bit, data);
 668				bit++;
 669			}
 670		}
 671	} else {
 672		BUG();
 673	}
 674
 675	if (unlikely(page < end_page)) {
 676		bit = 0;
 677		page++;
 678		goto repeat;
 679	}
 680
 681	return true;
 682}
 683
 684static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
 685{
 686	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
 687	unsigned int i;
 688
 689	for (i = 0; i < n_bitmap_pages; i++) {
 690		unsigned long *dst_data = lowmem_page_address(dst[i].page);
 691		unsigned long *src_data = lowmem_page_address(src[i].page);
 692
 693		copy_page(dst_data, src_data);
 694	}
 695}
 696
 697static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
 698{
 699	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 700	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
 701
 702	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
 703	return &ic->bbs[bitmap_block];
 704}
 705
 706static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
 707				 bool e, const char *function)
 708{
 709#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
 710	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
 711
 712	if (unlikely(section >= ic->journal_sections) ||
 713	    unlikely(offset >= limit)) {
 714		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
 715		       function, section, offset, ic->journal_sections, limit);
 716		BUG();
 717	}
 718#endif
 719}
 720
 721static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
 722			       unsigned int *pl_index, unsigned int *pl_offset)
 723{
 724	unsigned int sector;
 725
 726	access_journal_check(ic, section, offset, false, "page_list_location");
 727
 728	sector = section * ic->journal_section_sectors + offset;
 729
 730	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
 731	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
 732}
 733
 734static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
 735					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
 736{
 737	unsigned int pl_index, pl_offset;
 738	char *va;
 739
 740	page_list_location(ic, section, offset, &pl_index, &pl_offset);
 741
 742	if (n_sectors)
 743		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
 744
 745	va = lowmem_page_address(pl[pl_index].page);
 746
 747	return (struct journal_sector *)(va + pl_offset);
 748}
 749
 750static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
 751{
 752	return access_page_list(ic, ic->journal, section, offset, NULL);
 753}
 754
 755static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
 756{
 757	unsigned int rel_sector, offset;
 758	struct journal_sector *js;
 759
 760	access_journal_check(ic, section, n, true, "access_journal_entry");
 761
 762	rel_sector = n % JOURNAL_BLOCK_SECTORS;
 763	offset = n / JOURNAL_BLOCK_SECTORS;
 764
 765	js = access_journal(ic, section, rel_sector);
 766	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
 767}
 768
 769static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
 770{
 771	n <<= ic->sb->log2_sectors_per_block;
 772
 773	n += JOURNAL_BLOCK_SECTORS;
 774
 775	access_journal_check(ic, section, n, false, "access_journal_data");
 776
 777	return access_journal(ic, section, n);
 778}
 779
 780static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
 781{
 782	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
 783	int r;
 784	unsigned int j, size;
 785
 786	desc->tfm = ic->journal_mac;
 787
 788	r = crypto_shash_init(desc);
 789	if (unlikely(r < 0)) {
 790		dm_integrity_io_error(ic, "crypto_shash_init", r);
 791		goto err;
 792	}
 793
 794	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
 795		__le64 section_le;
 796
 797		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
 798		if (unlikely(r < 0)) {
 799			dm_integrity_io_error(ic, "crypto_shash_update", r);
 800			goto err;
 801		}
 802
 803		section_le = cpu_to_le64(section);
 804		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
 805		if (unlikely(r < 0)) {
 806			dm_integrity_io_error(ic, "crypto_shash_update", r);
 807			goto err;
 808		}
 809	}
 810
 811	for (j = 0; j < ic->journal_section_entries; j++) {
 812		struct journal_entry *je = access_journal_entry(ic, section, j);
 813
 814		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
 815		if (unlikely(r < 0)) {
 816			dm_integrity_io_error(ic, "crypto_shash_update", r);
 817			goto err;
 818		}
 819	}
 820
 821	size = crypto_shash_digestsize(ic->journal_mac);
 822
 823	if (likely(size <= JOURNAL_MAC_SIZE)) {
 824		r = crypto_shash_final(desc, result);
 825		if (unlikely(r < 0)) {
 826			dm_integrity_io_error(ic, "crypto_shash_final", r);
 827			goto err;
 828		}
 829		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
 830	} else {
 831		__u8 digest[HASH_MAX_DIGESTSIZE];
 832
 833		if (WARN_ON(size > sizeof(digest))) {
 834			dm_integrity_io_error(ic, "digest_size", -EINVAL);
 835			goto err;
 836		}
 837		r = crypto_shash_final(desc, digest);
 838		if (unlikely(r < 0)) {
 839			dm_integrity_io_error(ic, "crypto_shash_final", r);
 840			goto err;
 841		}
 842		memcpy(result, digest, JOURNAL_MAC_SIZE);
 843	}
 844
 845	return;
 846err:
 847	memset(result, 0, JOURNAL_MAC_SIZE);
 848}
 849
 850static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
 851{
 852	__u8 result[JOURNAL_MAC_SIZE];
 853	unsigned int j;
 854
 855	if (!ic->journal_mac)
 856		return;
 857
 858	section_mac(ic, section, result);
 859
 860	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
 861		struct journal_sector *js = access_journal(ic, section, j);
 862
 863		if (likely(wr))
 864			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
 865		else {
 866			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
 867				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
 868				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
 869			}
 870		}
 871	}
 872}
 873
 874static void complete_journal_op(void *context)
 875{
 876	struct journal_completion *comp = context;
 877
 878	BUG_ON(!atomic_read(&comp->in_flight));
 879	if (likely(atomic_dec_and_test(&comp->in_flight)))
 880		complete(&comp->comp);
 881}
 882
 883static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
 884			unsigned int n_sections, struct journal_completion *comp)
 885{
 886	struct async_submit_ctl submit;
 887	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
 888	unsigned int pl_index, pl_offset, section_index;
 889	struct page_list *source_pl, *target_pl;
 890
 891	if (likely(encrypt)) {
 892		source_pl = ic->journal;
 893		target_pl = ic->journal_io;
 894	} else {
 895		source_pl = ic->journal_io;
 896		target_pl = ic->journal;
 897	}
 898
 899	page_list_location(ic, section, 0, &pl_index, &pl_offset);
 900
 901	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
 902
 903	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
 904
 905	section_index = pl_index;
 906
 907	do {
 908		size_t this_step;
 909		struct page *src_pages[2];
 910		struct page *dst_page;
 911
 912		while (unlikely(pl_index == section_index)) {
 913			unsigned int dummy;
 914
 915			if (likely(encrypt))
 916				rw_section_mac(ic, section, true);
 917			section++;
 918			n_sections--;
 919			if (!n_sections)
 920				break;
 921			page_list_location(ic, section, 0, &section_index, &dummy);
 922		}
 923
 924		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
 925		dst_page = target_pl[pl_index].page;
 926		src_pages[0] = source_pl[pl_index].page;
 927		src_pages[1] = ic->journal_xor[pl_index].page;
 928
 929		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
 930
 931		pl_index++;
 932		pl_offset = 0;
 933		n_bytes -= this_step;
 934	} while (n_bytes);
 935
 936	BUG_ON(n_sections);
 937
 938	async_tx_issue_pending_all();
 939}
 940
 941static void complete_journal_encrypt(void *data, int err)
 942{
 943	struct journal_completion *comp = data;
 944
 945	if (unlikely(err)) {
 946		if (likely(err == -EINPROGRESS)) {
 947			complete(&comp->ic->crypto_backoff);
 948			return;
 949		}
 950		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
 951	}
 952	complete_journal_op(comp);
 953}
 954
 955static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
 956{
 957	int r;
 958
 959	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 960				      complete_journal_encrypt, comp);
 961	if (likely(encrypt))
 962		r = crypto_skcipher_encrypt(req);
 963	else
 964		r = crypto_skcipher_decrypt(req);
 965	if (likely(!r))
 966		return false;
 967	if (likely(r == -EINPROGRESS))
 968		return true;
 969	if (likely(r == -EBUSY)) {
 970		wait_for_completion(&comp->ic->crypto_backoff);
 971		reinit_completion(&comp->ic->crypto_backoff);
 972		return true;
 973	}
 974	dm_integrity_io_error(comp->ic, "encrypt", r);
 975	return false;
 976}
 977
 978static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
 979			  unsigned int n_sections, struct journal_completion *comp)
 980{
 981	struct scatterlist **source_sg;
 982	struct scatterlist **target_sg;
 983
 984	atomic_add(2, &comp->in_flight);
 985
 986	if (likely(encrypt)) {
 987		source_sg = ic->journal_scatterlist;
 988		target_sg = ic->journal_io_scatterlist;
 989	} else {
 990		source_sg = ic->journal_io_scatterlist;
 991		target_sg = ic->journal_scatterlist;
 992	}
 993
 994	do {
 995		struct skcipher_request *req;
 996		unsigned int ivsize;
 997		char *iv;
 998
 999		if (likely(encrypt))
1000			rw_section_mac(ic, section, true);
1001
1002		req = ic->sk_requests[section];
1003		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1004		iv = req->iv;
1005
1006		memcpy(iv, iv + ivsize, ivsize);
1007
1008		req->src = source_sg[section];
1009		req->dst = target_sg[section];
1010
1011		if (unlikely(do_crypt(encrypt, req, comp)))
1012			atomic_inc(&comp->in_flight);
1013
1014		section++;
1015		n_sections--;
1016	} while (n_sections);
1017
1018	atomic_dec(&comp->in_flight);
1019	complete_journal_op(comp);
1020}
1021
1022static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1023			    unsigned int n_sections, struct journal_completion *comp)
1024{
1025	if (ic->journal_xor)
1026		return xor_journal(ic, encrypt, section, n_sections, comp);
1027	else
1028		return crypt_journal(ic, encrypt, section, n_sections, comp);
1029}
1030
1031static void complete_journal_io(unsigned long error, void *context)
1032{
1033	struct journal_completion *comp = context;
1034
1035	if (unlikely(error != 0))
1036		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1037	complete_journal_op(comp);
1038}
1039
1040static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1041			       unsigned int sector, unsigned int n_sectors,
1042			       struct journal_completion *comp)
1043{
1044	struct dm_io_request io_req;
1045	struct dm_io_region io_loc;
1046	unsigned int pl_index, pl_offset;
1047	int r;
1048
1049	if (unlikely(dm_integrity_failed(ic))) {
1050		if (comp)
1051			complete_journal_io(-1UL, comp);
1052		return;
1053	}
1054
1055	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1056	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1057
1058	io_req.bi_opf = opf;
1059	io_req.mem.type = DM_IO_PAGE_LIST;
1060	if (ic->journal_io)
1061		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1062	else
1063		io_req.mem.ptr.pl = &ic->journal[pl_index];
1064	io_req.mem.offset = pl_offset;
1065	if (likely(comp != NULL)) {
1066		io_req.notify.fn = complete_journal_io;
1067		io_req.notify.context = comp;
1068	} else {
1069		io_req.notify.fn = NULL;
1070	}
1071	io_req.client = ic->io;
1072	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1073	io_loc.sector = ic->start + SB_SECTORS + sector;
1074	io_loc.count = n_sectors;
1075
1076	r = dm_io(&io_req, 1, &io_loc, NULL);
1077	if (unlikely(r)) {
1078		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1079				      "reading journal" : "writing journal", r);
1080		if (comp) {
1081			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1082			complete_journal_io(-1UL, comp);
1083		}
1084	}
1085}
1086
1087static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1088		       unsigned int section, unsigned int n_sections,
1089		       struct journal_completion *comp)
1090{
1091	unsigned int sector, n_sectors;
1092
1093	sector = section * ic->journal_section_sectors;
1094	n_sectors = n_sections * ic->journal_section_sectors;
1095
1096	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1097}
1098
1099static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1100{
1101	struct journal_completion io_comp;
1102	struct journal_completion crypt_comp_1;
1103	struct journal_completion crypt_comp_2;
1104	unsigned int i;
1105
1106	io_comp.ic = ic;
1107	init_completion(&io_comp.comp);
1108
1109	if (commit_start + commit_sections <= ic->journal_sections) {
1110		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1111		if (ic->journal_io) {
1112			crypt_comp_1.ic = ic;
1113			init_completion(&crypt_comp_1.comp);
1114			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1115			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1116			wait_for_completion_io(&crypt_comp_1.comp);
1117		} else {
1118			for (i = 0; i < commit_sections; i++)
1119				rw_section_mac(ic, commit_start + i, true);
1120		}
1121		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1122			   commit_sections, &io_comp);
1123	} else {
1124		unsigned int to_end;
1125
1126		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1127		to_end = ic->journal_sections - commit_start;
1128		if (ic->journal_io) {
1129			crypt_comp_1.ic = ic;
1130			init_completion(&crypt_comp_1.comp);
1131			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1132			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1133			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1134				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1135					   commit_start, to_end, &io_comp);
1136				reinit_completion(&crypt_comp_1.comp);
1137				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1138				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1139				wait_for_completion_io(&crypt_comp_1.comp);
1140			} else {
1141				crypt_comp_2.ic = ic;
1142				init_completion(&crypt_comp_2.comp);
1143				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1144				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1145				wait_for_completion_io(&crypt_comp_1.comp);
1146				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1147				wait_for_completion_io(&crypt_comp_2.comp);
1148			}
1149		} else {
1150			for (i = 0; i < to_end; i++)
1151				rw_section_mac(ic, commit_start + i, true);
1152			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1153			for (i = 0; i < commit_sections - to_end; i++)
1154				rw_section_mac(ic, i, true);
1155		}
1156		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1157	}
1158
1159	wait_for_completion_io(&io_comp.comp);
1160}
1161
1162static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1163			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1164{
1165	struct dm_io_request io_req;
1166	struct dm_io_region io_loc;
1167	int r;
1168	unsigned int sector, pl_index, pl_offset;
1169
1170	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1171
1172	if (unlikely(dm_integrity_failed(ic))) {
1173		fn(-1UL, data);
1174		return;
1175	}
1176
1177	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1178
1179	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1180	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1181
1182	io_req.bi_opf = REQ_OP_WRITE;
1183	io_req.mem.type = DM_IO_PAGE_LIST;
1184	io_req.mem.ptr.pl = &ic->journal[pl_index];
1185	io_req.mem.offset = pl_offset;
1186	io_req.notify.fn = fn;
1187	io_req.notify.context = data;
1188	io_req.client = ic->io;
1189	io_loc.bdev = ic->dev->bdev;
1190	io_loc.sector = target;
1191	io_loc.count = n_sectors;
1192
1193	r = dm_io(&io_req, 1, &io_loc, NULL);
1194	if (unlikely(r)) {
1195		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1196		fn(-1UL, data);
1197	}
1198}
1199
1200static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1201{
1202	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1203	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1204}
1205
1206static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1207{
1208	struct rb_node **n = &ic->in_progress.rb_node;
1209	struct rb_node *parent;
1210
1211	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1212
1213	if (likely(check_waiting)) {
1214		struct dm_integrity_range *range;
1215
1216		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1217			if (unlikely(ranges_overlap(range, new_range)))
1218				return false;
1219		}
1220	}
1221
1222	parent = NULL;
1223
1224	while (*n) {
1225		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1226
1227		parent = *n;
1228		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1229			n = &range->node.rb_left;
1230		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1231			n = &range->node.rb_right;
1232		else
1233			return false;
1234	}
1235
1236	rb_link_node(&new_range->node, parent, n);
1237	rb_insert_color(&new_range->node, &ic->in_progress);
1238
1239	return true;
1240}
1241
1242static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1243{
1244	rb_erase(&range->node, &ic->in_progress);
1245	while (unlikely(!list_empty(&ic->wait_list))) {
1246		struct dm_integrity_range *last_range =
1247			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1248		struct task_struct *last_range_task;
1249
1250		last_range_task = last_range->task;
1251		list_del(&last_range->wait_entry);
1252		if (!add_new_range(ic, last_range, false)) {
1253			last_range->task = last_range_task;
1254			list_add(&last_range->wait_entry, &ic->wait_list);
1255			break;
1256		}
1257		last_range->waiting = false;
1258		wake_up_process(last_range_task);
1259	}
1260}
1261
1262static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1263{
1264	unsigned long flags;
1265
1266	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1267	remove_range_unlocked(ic, range);
1268	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1269}
1270
1271static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1272{
1273	new_range->waiting = true;
1274	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1275	new_range->task = current;
1276	do {
1277		__set_current_state(TASK_UNINTERRUPTIBLE);
1278		spin_unlock_irq(&ic->endio_wait.lock);
1279		io_schedule();
1280		spin_lock_irq(&ic->endio_wait.lock);
1281	} while (unlikely(new_range->waiting));
1282}
1283
1284static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1285{
1286	if (unlikely(!add_new_range(ic, new_range, true)))
1287		wait_and_add_new_range(ic, new_range);
1288}
1289
1290static void init_journal_node(struct journal_node *node)
1291{
1292	RB_CLEAR_NODE(&node->node);
1293	node->sector = (sector_t)-1;
1294}
1295
1296static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1297{
1298	struct rb_node **link;
1299	struct rb_node *parent;
1300
1301	node->sector = sector;
1302	BUG_ON(!RB_EMPTY_NODE(&node->node));
1303
1304	link = &ic->journal_tree_root.rb_node;
1305	parent = NULL;
1306
1307	while (*link) {
1308		struct journal_node *j;
1309
1310		parent = *link;
1311		j = container_of(parent, struct journal_node, node);
1312		if (sector < j->sector)
1313			link = &j->node.rb_left;
1314		else
1315			link = &j->node.rb_right;
1316	}
1317
1318	rb_link_node(&node->node, parent, link);
1319	rb_insert_color(&node->node, &ic->journal_tree_root);
1320}
1321
1322static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1323{
1324	BUG_ON(RB_EMPTY_NODE(&node->node));
1325	rb_erase(&node->node, &ic->journal_tree_root);
1326	init_journal_node(node);
1327}
1328
1329#define NOT_FOUND	(-1U)
1330
1331static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1332{
1333	struct rb_node *n = ic->journal_tree_root.rb_node;
1334	unsigned int found = NOT_FOUND;
1335
1336	*next_sector = (sector_t)-1;
1337	while (n) {
1338		struct journal_node *j = container_of(n, struct journal_node, node);
1339
1340		if (sector == j->sector)
1341			found = j - ic->journal_tree;
1342
1343		if (sector < j->sector) {
1344			*next_sector = j->sector;
1345			n = j->node.rb_left;
1346		} else
1347			n = j->node.rb_right;
1348	}
1349
1350	return found;
1351}
1352
1353static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1354{
1355	struct journal_node *node, *next_node;
1356	struct rb_node *next;
1357
1358	if (unlikely(pos >= ic->journal_entries))
1359		return false;
1360	node = &ic->journal_tree[pos];
1361	if (unlikely(RB_EMPTY_NODE(&node->node)))
1362		return false;
1363	if (unlikely(node->sector != sector))
1364		return false;
1365
1366	next = rb_next(&node->node);
1367	if (unlikely(!next))
1368		return true;
1369
1370	next_node = container_of(next, struct journal_node, node);
1371	return next_node->sector != sector;
1372}
1373
1374static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1375{
1376	struct rb_node *next;
1377	struct journal_node *next_node;
1378	unsigned int next_section;
1379
1380	BUG_ON(RB_EMPTY_NODE(&node->node));
1381
1382	next = rb_next(&node->node);
1383	if (unlikely(!next))
1384		return false;
1385
1386	next_node = container_of(next, struct journal_node, node);
1387
1388	if (next_node->sector != node->sector)
1389		return false;
1390
1391	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1392	if (next_section >= ic->committed_section &&
1393	    next_section < ic->committed_section + ic->n_committed_sections)
1394		return true;
1395	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1396		return true;
1397
1398	return false;
1399}
1400
1401#define TAG_READ	0
1402#define TAG_WRITE	1
1403#define TAG_CMP		2
1404
1405static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1406			       unsigned int *metadata_offset, unsigned int total_size, int op)
1407{
1408#define MAY_BE_FILLER		1
1409#define MAY_BE_HASH		2
1410	unsigned int hash_offset = 0;
1411	unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1412
1413	do {
1414		unsigned char *data, *dp;
1415		struct dm_buffer *b;
1416		unsigned int to_copy;
1417		int r;
1418
1419		r = dm_integrity_failed(ic);
1420		if (unlikely(r))
1421			return r;
1422
1423		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1424		if (IS_ERR(data))
1425			return PTR_ERR(data);
1426
1427		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1428		dp = data + *metadata_offset;
1429		if (op == TAG_READ) {
1430			memcpy(tag, dp, to_copy);
1431		} else if (op == TAG_WRITE) {
1432			if (memcmp(dp, tag, to_copy)) {
1433				memcpy(dp, tag, to_copy);
1434				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1435			}
1436		} else {
1437			/* e.g.: op == TAG_CMP */
1438
1439			if (likely(is_power_of_2(ic->tag_size))) {
1440				if (unlikely(memcmp(dp, tag, to_copy)))
1441					if (unlikely(!ic->discard) ||
1442					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1443						goto thorough_test;
1444				}
1445			} else {
1446				unsigned int i, ts;
1447thorough_test:
1448				ts = total_size;
1449
1450				for (i = 0; i < to_copy; i++, ts--) {
1451					if (unlikely(dp[i] != tag[i]))
1452						may_be &= ~MAY_BE_HASH;
1453					if (likely(dp[i] != DISCARD_FILLER))
1454						may_be &= ~MAY_BE_FILLER;
1455					hash_offset++;
1456					if (unlikely(hash_offset == ic->tag_size)) {
1457						if (unlikely(!may_be)) {
1458							dm_bufio_release(b);
1459							return ts;
1460						}
1461						hash_offset = 0;
1462						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1463					}
1464				}
1465			}
1466		}
1467		dm_bufio_release(b);
1468
1469		tag += to_copy;
1470		*metadata_offset += to_copy;
1471		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1472			(*metadata_block)++;
1473			*metadata_offset = 0;
1474		}
1475
1476		if (unlikely(!is_power_of_2(ic->tag_size)))
1477			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1478
1479		total_size -= to_copy;
1480	} while (unlikely(total_size));
1481
1482	return 0;
1483#undef MAY_BE_FILLER
1484#undef MAY_BE_HASH
1485}
1486
1487struct flush_request {
1488	struct dm_io_request io_req;
1489	struct dm_io_region io_reg;
1490	struct dm_integrity_c *ic;
1491	struct completion comp;
1492};
1493
1494static void flush_notify(unsigned long error, void *fr_)
1495{
1496	struct flush_request *fr = fr_;
1497
1498	if (unlikely(error != 0))
1499		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1500	complete(&fr->comp);
1501}
1502
1503static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1504{
1505	int r;
1506	struct flush_request fr;
1507
1508	if (!ic->meta_dev)
1509		flush_data = false;
1510	if (flush_data) {
1511		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1512		fr.io_req.mem.type = DM_IO_KMEM,
1513		fr.io_req.mem.ptr.addr = NULL,
1514		fr.io_req.notify.fn = flush_notify,
1515		fr.io_req.notify.context = &fr;
1516		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1517		fr.io_reg.bdev = ic->dev->bdev,
1518		fr.io_reg.sector = 0,
1519		fr.io_reg.count = 0,
1520		fr.ic = ic;
1521		init_completion(&fr.comp);
1522		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1523		BUG_ON(r);
1524	}
1525
1526	r = dm_bufio_write_dirty_buffers(ic->bufio);
1527	if (unlikely(r))
1528		dm_integrity_io_error(ic, "writing tags", r);
1529
1530	if (flush_data)
1531		wait_for_completion(&fr.comp);
1532}
1533
1534static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1535{
1536	DECLARE_WAITQUEUE(wait, current);
1537
1538	__add_wait_queue(&ic->endio_wait, &wait);
1539	__set_current_state(TASK_UNINTERRUPTIBLE);
1540	spin_unlock_irq(&ic->endio_wait.lock);
1541	io_schedule();
1542	spin_lock_irq(&ic->endio_wait.lock);
1543	__remove_wait_queue(&ic->endio_wait, &wait);
1544}
1545
1546static void autocommit_fn(struct timer_list *t)
1547{
1548	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1549
1550	if (likely(!dm_integrity_failed(ic)))
1551		queue_work(ic->commit_wq, &ic->commit_work);
1552}
1553
1554static void schedule_autocommit(struct dm_integrity_c *ic)
1555{
1556	if (!timer_pending(&ic->autocommit_timer))
1557		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1558}
1559
1560static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1561{
1562	struct bio *bio;
1563	unsigned long flags;
1564
1565	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1566	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1567	bio_list_add(&ic->flush_bio_list, bio);
1568	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1569
1570	queue_work(ic->commit_wq, &ic->commit_work);
1571}
1572
1573static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1574{
1575	int r;
1576
1577	r = dm_integrity_failed(ic);
1578	if (unlikely(r) && !bio->bi_status)
1579		bio->bi_status = errno_to_blk_status(r);
1580	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1581		unsigned long flags;
1582
1583		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1584		bio_list_add(&ic->synchronous_bios, bio);
1585		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1586		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1587		return;
1588	}
1589	bio_endio(bio);
1590}
1591
1592static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1593{
1594	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1595
1596	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1597		submit_flush_bio(ic, dio);
1598	else
1599		do_endio(ic, bio);
1600}
1601
1602static void dec_in_flight(struct dm_integrity_io *dio)
1603{
1604	if (atomic_dec_and_test(&dio->in_flight)) {
1605		struct dm_integrity_c *ic = dio->ic;
1606		struct bio *bio;
1607
1608		remove_range(ic, &dio->range);
1609
1610		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1611			schedule_autocommit(ic);
1612
1613		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1614		if (unlikely(dio->bi_status) && !bio->bi_status)
1615			bio->bi_status = dio->bi_status;
1616		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1617			dio->range.logical_sector += dio->range.n_sectors;
1618			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1619			INIT_WORK(&dio->work, integrity_bio_wait);
1620			queue_work(ic->offload_wq, &dio->work);
1621			return;
1622		}
1623		do_endio_flush(ic, dio);
1624	}
1625}
1626
1627static void integrity_end_io(struct bio *bio)
1628{
1629	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1630
1631	dm_bio_restore(&dio->bio_details, bio);
1632	if (bio->bi_integrity)
1633		bio->bi_opf |= REQ_INTEGRITY;
1634
1635	if (dio->completion)
1636		complete(dio->completion);
1637
1638	dec_in_flight(dio);
1639}
1640
1641static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1642				      const char *data, char *result)
1643{
1644	__le64 sector_le = cpu_to_le64(sector);
1645	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1646	int r;
1647	unsigned int digest_size;
1648
1649	req->tfm = ic->internal_hash;
1650
1651	r = crypto_shash_init(req);
1652	if (unlikely(r < 0)) {
1653		dm_integrity_io_error(ic, "crypto_shash_init", r);
1654		goto failed;
1655	}
1656
1657	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1658		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1659		if (unlikely(r < 0)) {
1660			dm_integrity_io_error(ic, "crypto_shash_update", r);
1661			goto failed;
1662		}
1663	}
1664
1665	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1666	if (unlikely(r < 0)) {
1667		dm_integrity_io_error(ic, "crypto_shash_update", r);
1668		goto failed;
1669	}
1670
1671	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1672	if (unlikely(r < 0)) {
1673		dm_integrity_io_error(ic, "crypto_shash_update", r);
1674		goto failed;
1675	}
1676
1677	r = crypto_shash_final(req, result);
1678	if (unlikely(r < 0)) {
1679		dm_integrity_io_error(ic, "crypto_shash_final", r);
1680		goto failed;
1681	}
1682
1683	digest_size = crypto_shash_digestsize(ic->internal_hash);
1684	if (unlikely(digest_size < ic->tag_size))
1685		memset(result + digest_size, 0, ic->tag_size - digest_size);
1686
1687	return;
1688
1689failed:
1690	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1691	get_random_bytes(result, ic->tag_size);
1692}
1693
1694static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1695{
1696	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1697	struct dm_integrity_c *ic = dio->ic;
1698	struct bvec_iter iter;
1699	struct bio_vec bv;
1700	sector_t sector, logical_sector, area, offset;
1701	struct page *page;
1702	void *buffer;
1703
1704	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1705	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1706							     &dio->metadata_offset);
1707	sector = get_data_sector(ic, area, offset);
1708	logical_sector = dio->range.logical_sector;
1709
1710	page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1711	buffer = page_to_virt(page);
1712
1713	__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1714		unsigned pos = 0;
1715
1716		do {
 
1717			char *mem;
 
1718			int r;
1719			struct dm_io_request io_req;
1720			struct dm_io_region io_loc;
1721			io_req.bi_opf = REQ_OP_READ;
1722			io_req.mem.type = DM_IO_KMEM;
1723			io_req.mem.ptr.addr = buffer;
1724			io_req.notify.fn = NULL;
1725			io_req.client = ic->io;
1726			io_loc.bdev = ic->dev->bdev;
1727			io_loc.sector = sector;
1728			io_loc.count = ic->sectors_per_block;
1729
1730			r = dm_io(&io_req, 1, &io_loc, NULL);
 
 
 
 
 
 
 
 
1731			if (unlikely(r)) {
1732				dio->bi_status = errno_to_blk_status(r);
1733				goto free_ret;
1734			}
1735
1736			integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1737			r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1738						&dio->metadata_offset, ic->tag_size, TAG_CMP);
1739			if (r) {
1740				if (r > 0) {
1741					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1742						    bio->bi_bdev, logical_sector);
1743					atomic64_inc(&ic->number_of_mismatches);
1744					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1745							 bio, logical_sector, 0);
1746					r = -EILSEQ;
1747				}
1748				dio->bi_status = errno_to_blk_status(r);
1749				goto free_ret;
1750			}
1751
1752			mem = bvec_kmap_local(&bv);
1753			memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1754			kunmap_local(mem);
1755
1756			pos += ic->sectors_per_block << SECTOR_SHIFT;
1757			sector += ic->sectors_per_block;
1758			logical_sector += ic->sectors_per_block;
1759		} while (pos < bv.bv_len);
1760	}
1761free_ret:
1762	mempool_free(page, &ic->recheck_pool);
1763}
1764
1765static void integrity_metadata(struct work_struct *w)
1766{
1767	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1768	struct dm_integrity_c *ic = dio->ic;
1769
1770	int r;
1771
1772	if (ic->internal_hash) {
1773		struct bvec_iter iter;
1774		struct bio_vec bv;
1775		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1776		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1777		char *checksums;
1778		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1779		char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1780		sector_t sector;
1781		unsigned int sectors_to_process;
1782
1783		if (unlikely(ic->mode == 'R'))
1784			goto skip_io;
1785
1786		if (likely(dio->op != REQ_OP_DISCARD))
1787			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1788					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1789		else
1790			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1791		if (!checksums) {
1792			checksums = checksums_onstack;
1793			if (WARN_ON(extra_space &&
1794				    digest_size > sizeof(checksums_onstack))) {
1795				r = -EINVAL;
1796				goto error;
1797			}
1798		}
1799
1800		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1801			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1802			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1803			unsigned int max_blocks = max_size / ic->tag_size;
1804
1805			memset(checksums, DISCARD_FILLER, max_size);
1806
1807			while (bi_size) {
1808				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1809
1810				this_step_blocks = min(this_step_blocks, max_blocks);
1811				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1812							this_step_blocks * ic->tag_size, TAG_WRITE);
1813				if (unlikely(r)) {
1814					if (likely(checksums != checksums_onstack))
1815						kfree(checksums);
1816					goto error;
1817				}
1818
1819				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1820			}
1821
1822			if (likely(checksums != checksums_onstack))
1823				kfree(checksums);
1824			goto skip_io;
1825		}
1826
1827		sector = dio->range.logical_sector;
1828		sectors_to_process = dio->range.n_sectors;
1829
1830		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1831			struct bio_vec bv_copy = bv;
1832			unsigned int pos;
1833			char *mem, *checksums_ptr;
1834
1835again:
1836			mem = bvec_kmap_local(&bv_copy);
1837			pos = 0;
1838			checksums_ptr = checksums;
1839			do {
1840				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1841				checksums_ptr += ic->tag_size;
1842				sectors_to_process -= ic->sectors_per_block;
1843				pos += ic->sectors_per_block << SECTOR_SHIFT;
1844				sector += ic->sectors_per_block;
1845			} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1846			kunmap_local(mem);
1847
1848			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1849						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1850			if (unlikely(r)) {
 
 
1851				if (r > 0) {
1852					integrity_recheck(dio, checksums);
1853					goto skip_io;
1854				}
1855				if (likely(checksums != checksums_onstack))
1856					kfree(checksums);
1857				goto error;
1858			}
1859
1860			if (!sectors_to_process)
1861				break;
1862
1863			if (unlikely(pos < bv_copy.bv_len)) {
1864				bv_copy.bv_offset += pos;
1865				bv_copy.bv_len -= pos;
1866				goto again;
1867			}
1868		}
1869
1870		if (likely(checksums != checksums_onstack))
1871			kfree(checksums);
1872	} else {
1873		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1874
1875		if (bip) {
1876			struct bio_vec biv;
1877			struct bvec_iter iter;
1878			unsigned int data_to_process = dio->range.n_sectors;
1879
1880			sector_to_block(ic, data_to_process);
1881			data_to_process *= ic->tag_size;
1882
1883			bip_for_each_vec(biv, bip, iter) {
1884				unsigned char *tag;
1885				unsigned int this_len;
1886
1887				BUG_ON(PageHighMem(biv.bv_page));
1888				tag = bvec_virt(&biv);
1889				this_len = min(biv.bv_len, data_to_process);
1890				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1891							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1892				if (unlikely(r))
1893					goto error;
1894				data_to_process -= this_len;
1895				if (!data_to_process)
1896					break;
1897			}
1898		}
1899	}
1900skip_io:
1901	dec_in_flight(dio);
1902	return;
1903error:
1904	dio->bi_status = errno_to_blk_status(r);
1905	dec_in_flight(dio);
1906}
1907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1908static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1909{
1910	struct dm_integrity_c *ic = ti->private;
1911	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1912	struct bio_integrity_payload *bip;
1913
1914	sector_t area, offset;
1915
1916	dio->ic = ic;
1917	dio->bi_status = 0;
1918	dio->op = bio_op(bio);
1919
 
 
 
 
 
 
 
 
1920	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1921		if (ti->max_io_len) {
1922			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1923			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1924			sector_t start_boundary = sec >> log2_max_io_len;
1925			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1926
1927			if (start_boundary < end_boundary) {
1928				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1929
1930				dm_accept_partial_bio(bio, len);
1931			}
1932		}
1933	}
1934
1935	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1936		submit_flush_bio(ic, dio);
1937		return DM_MAPIO_SUBMITTED;
1938	}
1939
1940	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1941	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1942	if (unlikely(dio->fua)) {
1943		/*
1944		 * Don't pass down the FUA flag because we have to flush
1945		 * disk cache anyway.
1946		 */
1947		bio->bi_opf &= ~REQ_FUA;
1948	}
1949	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1950		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1951		      dio->range.logical_sector, bio_sectors(bio),
1952		      ic->provided_data_sectors);
1953		return DM_MAPIO_KILL;
1954	}
1955	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1956		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1957		      ic->sectors_per_block,
1958		      dio->range.logical_sector, bio_sectors(bio));
1959		return DM_MAPIO_KILL;
1960	}
1961
1962	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1963		struct bvec_iter iter;
1964		struct bio_vec bv;
1965
1966		bio_for_each_segment(bv, bio, iter) {
1967			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1968				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1969					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1970				return DM_MAPIO_KILL;
1971			}
1972		}
1973	}
1974
1975	bip = bio_integrity(bio);
1976	if (!ic->internal_hash) {
1977		if (bip) {
1978			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1979
1980			if (ic->log2_tag_size >= 0)
1981				wanted_tag_size <<= ic->log2_tag_size;
1982			else
1983				wanted_tag_size *= ic->tag_size;
1984			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1985				DMERR("Invalid integrity data size %u, expected %u",
1986				      bip->bip_iter.bi_size, wanted_tag_size);
1987				return DM_MAPIO_KILL;
1988			}
1989		}
1990	} else {
1991		if (unlikely(bip != NULL)) {
1992			DMERR("Unexpected integrity data when using internal hash");
1993			return DM_MAPIO_KILL;
1994		}
1995	}
1996
1997	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1998		return DM_MAPIO_KILL;
1999
2000	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2001	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2002	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2003
2004	dm_integrity_map_continue(dio, true);
2005	return DM_MAPIO_SUBMITTED;
2006}
2007
2008static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2009				 unsigned int journal_section, unsigned int journal_entry)
2010{
2011	struct dm_integrity_c *ic = dio->ic;
2012	sector_t logical_sector;
2013	unsigned int n_sectors;
2014
2015	logical_sector = dio->range.logical_sector;
2016	n_sectors = dio->range.n_sectors;
2017	do {
2018		struct bio_vec bv = bio_iovec(bio);
2019		char *mem;
2020
2021		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2022			bv.bv_len = n_sectors << SECTOR_SHIFT;
2023		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2024		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2025retry_kmap:
2026		mem = kmap_local_page(bv.bv_page);
2027		if (likely(dio->op == REQ_OP_WRITE))
2028			flush_dcache_page(bv.bv_page);
2029
2030		do {
2031			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2032
2033			if (unlikely(dio->op == REQ_OP_READ)) {
2034				struct journal_sector *js;
2035				char *mem_ptr;
2036				unsigned int s;
2037
2038				if (unlikely(journal_entry_is_inprogress(je))) {
2039					flush_dcache_page(bv.bv_page);
2040					kunmap_local(mem);
2041
2042					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2043					goto retry_kmap;
2044				}
2045				smp_rmb();
2046				BUG_ON(journal_entry_get_sector(je) != logical_sector);
2047				js = access_journal_data(ic, journal_section, journal_entry);
2048				mem_ptr = mem + bv.bv_offset;
2049				s = 0;
2050				do {
2051					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2052					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2053					js++;
2054					mem_ptr += 1 << SECTOR_SHIFT;
2055				} while (++s < ic->sectors_per_block);
2056#ifdef INTERNAL_VERIFY
2057				if (ic->internal_hash) {
2058					char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2059
2060					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2061					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2062						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2063							    logical_sector);
2064						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2065								 bio, logical_sector, 0);
2066					}
2067				}
2068#endif
2069			}
2070
2071			if (!ic->internal_hash) {
2072				struct bio_integrity_payload *bip = bio_integrity(bio);
2073				unsigned int tag_todo = ic->tag_size;
2074				char *tag_ptr = journal_entry_tag(ic, je);
2075
2076				if (bip) {
2077					do {
2078						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2079						unsigned int tag_now = min(biv.bv_len, tag_todo);
2080						char *tag_addr;
2081
2082						BUG_ON(PageHighMem(biv.bv_page));
2083						tag_addr = bvec_virt(&biv);
2084						if (likely(dio->op == REQ_OP_WRITE))
2085							memcpy(tag_ptr, tag_addr, tag_now);
2086						else
2087							memcpy(tag_addr, tag_ptr, tag_now);
2088						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2089						tag_ptr += tag_now;
2090						tag_todo -= tag_now;
2091					} while (unlikely(tag_todo));
2092				} else if (likely(dio->op == REQ_OP_WRITE))
2093					memset(tag_ptr, 0, tag_todo);
2094			}
2095
2096			if (likely(dio->op == REQ_OP_WRITE)) {
2097				struct journal_sector *js;
2098				unsigned int s;
2099
2100				js = access_journal_data(ic, journal_section, journal_entry);
2101				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2102
2103				s = 0;
2104				do {
2105					je->last_bytes[s] = js[s].commit_id;
2106				} while (++s < ic->sectors_per_block);
2107
2108				if (ic->internal_hash) {
2109					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2110
2111					if (unlikely(digest_size > ic->tag_size)) {
2112						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2113
2114						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2115						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2116					} else
2117						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2118				}
2119
2120				journal_entry_set_sector(je, logical_sector);
2121			}
2122			logical_sector += ic->sectors_per_block;
2123
2124			journal_entry++;
2125			if (unlikely(journal_entry == ic->journal_section_entries)) {
2126				journal_entry = 0;
2127				journal_section++;
2128				wraparound_section(ic, &journal_section);
2129			}
2130
2131			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2132		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2133
2134		if (unlikely(dio->op == REQ_OP_READ))
2135			flush_dcache_page(bv.bv_page);
2136		kunmap_local(mem);
2137	} while (n_sectors);
2138
2139	if (likely(dio->op == REQ_OP_WRITE)) {
2140		smp_mb();
2141		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2142			wake_up(&ic->copy_to_journal_wait);
2143		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2144			queue_work(ic->commit_wq, &ic->commit_work);
2145		else
2146			schedule_autocommit(ic);
2147	} else
2148		remove_range(ic, &dio->range);
2149
2150	if (unlikely(bio->bi_iter.bi_size)) {
2151		sector_t area, offset;
2152
2153		dio->range.logical_sector = logical_sector;
2154		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2155		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2156		return true;
2157	}
2158
2159	return false;
2160}
2161
2162static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2163{
2164	struct dm_integrity_c *ic = dio->ic;
2165	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2166	unsigned int journal_section, journal_entry;
2167	unsigned int journal_read_pos;
 
2168	struct completion read_comp;
2169	bool discard_retried = false;
2170	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2171
2172	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2173		need_sync_io = true;
2174
2175	if (need_sync_io && from_map) {
2176		INIT_WORK(&dio->work, integrity_bio_wait);
2177		queue_work(ic->offload_wq, &dio->work);
2178		return;
2179	}
2180
2181lock_retry:
2182	spin_lock_irq(&ic->endio_wait.lock);
2183retry:
2184	if (unlikely(dm_integrity_failed(ic))) {
2185		spin_unlock_irq(&ic->endio_wait.lock);
2186		do_endio(ic, bio);
2187		return;
2188	}
2189	dio->range.n_sectors = bio_sectors(bio);
2190	journal_read_pos = NOT_FOUND;
2191	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2192		if (dio->op == REQ_OP_WRITE) {
2193			unsigned int next_entry, i, pos;
2194			unsigned int ws, we, range_sectors;
2195
2196			dio->range.n_sectors = min(dio->range.n_sectors,
2197						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2198			if (unlikely(!dio->range.n_sectors)) {
2199				if (from_map)
2200					goto offload_to_thread;
2201				sleep_on_endio_wait(ic);
2202				goto retry;
2203			}
2204			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2205			ic->free_sectors -= range_sectors;
2206			journal_section = ic->free_section;
2207			journal_entry = ic->free_section_entry;
2208
2209			next_entry = ic->free_section_entry + range_sectors;
2210			ic->free_section_entry = next_entry % ic->journal_section_entries;
2211			ic->free_section += next_entry / ic->journal_section_entries;
2212			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2213			wraparound_section(ic, &ic->free_section);
2214
2215			pos = journal_section * ic->journal_section_entries + journal_entry;
2216			ws = journal_section;
2217			we = journal_entry;
2218			i = 0;
2219			do {
2220				struct journal_entry *je;
2221
2222				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2223				pos++;
2224				if (unlikely(pos >= ic->journal_entries))
2225					pos = 0;
2226
2227				je = access_journal_entry(ic, ws, we);
2228				BUG_ON(!journal_entry_is_unused(je));
2229				journal_entry_set_inprogress(je);
2230				we++;
2231				if (unlikely(we == ic->journal_section_entries)) {
2232					we = 0;
2233					ws++;
2234					wraparound_section(ic, &ws);
2235				}
2236			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2237
2238			spin_unlock_irq(&ic->endio_wait.lock);
2239			goto journal_read_write;
2240		} else {
2241			sector_t next_sector;
2242
2243			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2244			if (likely(journal_read_pos == NOT_FOUND)) {
2245				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2246					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2247			} else {
2248				unsigned int i;
2249				unsigned int jp = journal_read_pos + 1;
2250
2251				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2252					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2253						break;
2254				}
2255				dio->range.n_sectors = i;
2256			}
2257		}
2258	}
2259	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2260		/*
2261		 * We must not sleep in the request routine because it could
2262		 * stall bios on current->bio_list.
2263		 * So, we offload the bio to a workqueue if we have to sleep.
2264		 */
2265		if (from_map) {
2266offload_to_thread:
2267			spin_unlock_irq(&ic->endio_wait.lock);
2268			INIT_WORK(&dio->work, integrity_bio_wait);
2269			queue_work(ic->wait_wq, &dio->work);
2270			return;
2271		}
2272		if (journal_read_pos != NOT_FOUND)
2273			dio->range.n_sectors = ic->sectors_per_block;
2274		wait_and_add_new_range(ic, &dio->range);
2275		/*
2276		 * wait_and_add_new_range drops the spinlock, so the journal
2277		 * may have been changed arbitrarily. We need to recheck.
2278		 * To simplify the code, we restrict I/O size to just one block.
2279		 */
2280		if (journal_read_pos != NOT_FOUND) {
2281			sector_t next_sector;
2282			unsigned int new_pos;
2283
2284			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2285			if (unlikely(new_pos != journal_read_pos)) {
2286				remove_range_unlocked(ic, &dio->range);
2287				goto retry;
2288			}
2289		}
2290	}
2291	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2292		sector_t next_sector;
2293		unsigned int new_pos;
2294
2295		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2296		if (unlikely(new_pos != NOT_FOUND) ||
2297		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2298			remove_range_unlocked(ic, &dio->range);
2299			spin_unlock_irq(&ic->endio_wait.lock);
2300			queue_work(ic->commit_wq, &ic->commit_work);
2301			flush_workqueue(ic->commit_wq);
2302			queue_work(ic->writer_wq, &ic->writer_work);
2303			flush_workqueue(ic->writer_wq);
2304			discard_retried = true;
2305			goto lock_retry;
2306		}
2307	}
 
2308	spin_unlock_irq(&ic->endio_wait.lock);
2309
2310	if (unlikely(journal_read_pos != NOT_FOUND)) {
2311		journal_section = journal_read_pos / ic->journal_section_entries;
2312		journal_entry = journal_read_pos % ic->journal_section_entries;
2313		goto journal_read_write;
2314	}
2315
2316	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2317		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2318				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2319			struct bitmap_block_status *bbs;
2320
2321			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2322			spin_lock(&bbs->bio_queue_lock);
2323			bio_list_add(&bbs->bio_queue, bio);
2324			spin_unlock(&bbs->bio_queue_lock);
2325			queue_work(ic->writer_wq, &bbs->work);
2326			return;
2327		}
2328	}
2329
2330	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2331
2332	if (need_sync_io) {
2333		init_completion(&read_comp);
2334		dio->completion = &read_comp;
2335	} else
2336		dio->completion = NULL;
2337
2338	dm_bio_record(&dio->bio_details, bio);
2339	bio_set_dev(bio, ic->dev->bdev);
2340	bio->bi_integrity = NULL;
2341	bio->bi_opf &= ~REQ_INTEGRITY;
2342	bio->bi_end_io = integrity_end_io;
2343	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2344
2345	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2346		integrity_metadata(&dio->work);
2347		dm_integrity_flush_buffers(ic, false);
2348
2349		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2350		dio->completion = NULL;
2351
2352		submit_bio_noacct(bio);
2353
2354		return;
2355	}
2356
2357	submit_bio_noacct(bio);
2358
2359	if (need_sync_io) {
2360		wait_for_completion_io(&read_comp);
2361		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2362		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2363			goto skip_check;
2364		if (ic->mode == 'B') {
2365			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2366					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2367				goto skip_check;
2368		}
2369
2370		if (likely(!bio->bi_status))
2371			integrity_metadata(&dio->work);
2372		else
2373skip_check:
2374			dec_in_flight(dio);
2375	} else {
2376		INIT_WORK(&dio->work, integrity_metadata);
2377		queue_work(ic->metadata_wq, &dio->work);
2378	}
2379
2380	return;
2381
2382journal_read_write:
2383	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2384		goto lock_retry;
2385
2386	do_endio_flush(ic, dio);
2387}
2388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2389
2390static void integrity_bio_wait(struct work_struct *w)
2391{
2392	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
 
2393
2394	dm_integrity_map_continue(dio, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2395}
2396
2397static void pad_uncommitted(struct dm_integrity_c *ic)
2398{
2399	if (ic->free_section_entry) {
2400		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2401		ic->free_section_entry = 0;
2402		ic->free_section++;
2403		wraparound_section(ic, &ic->free_section);
2404		ic->n_uncommitted_sections++;
2405	}
2406	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2407		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2408		    ic->journal_section_entries + ic->free_sectors)) {
2409		DMCRIT("journal_sections %u, journal_section_entries %u, "
2410		       "n_uncommitted_sections %u, n_committed_sections %u, "
2411		       "journal_section_entries %u, free_sectors %u",
2412		       ic->journal_sections, ic->journal_section_entries,
2413		       ic->n_uncommitted_sections, ic->n_committed_sections,
2414		       ic->journal_section_entries, ic->free_sectors);
2415	}
2416}
2417
2418static void integrity_commit(struct work_struct *w)
2419{
2420	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2421	unsigned int commit_start, commit_sections;
2422	unsigned int i, j, n;
2423	struct bio *flushes;
2424
2425	del_timer(&ic->autocommit_timer);
2426
 
 
 
2427	spin_lock_irq(&ic->endio_wait.lock);
2428	flushes = bio_list_get(&ic->flush_bio_list);
2429	if (unlikely(ic->mode != 'J')) {
2430		spin_unlock_irq(&ic->endio_wait.lock);
2431		dm_integrity_flush_buffers(ic, true);
2432		goto release_flush_bios;
2433	}
2434
2435	pad_uncommitted(ic);
2436	commit_start = ic->uncommitted_section;
2437	commit_sections = ic->n_uncommitted_sections;
2438	spin_unlock_irq(&ic->endio_wait.lock);
2439
2440	if (!commit_sections)
2441		goto release_flush_bios;
2442
2443	ic->wrote_to_journal = true;
2444
2445	i = commit_start;
2446	for (n = 0; n < commit_sections; n++) {
2447		for (j = 0; j < ic->journal_section_entries; j++) {
2448			struct journal_entry *je;
2449
2450			je = access_journal_entry(ic, i, j);
2451			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2452		}
2453		for (j = 0; j < ic->journal_section_sectors; j++) {
2454			struct journal_sector *js;
2455
2456			js = access_journal(ic, i, j);
2457			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2458		}
2459		i++;
2460		if (unlikely(i >= ic->journal_sections))
2461			ic->commit_seq = next_commit_seq(ic->commit_seq);
2462		wraparound_section(ic, &i);
2463	}
2464	smp_rmb();
2465
2466	write_journal(ic, commit_start, commit_sections);
2467
2468	spin_lock_irq(&ic->endio_wait.lock);
2469	ic->uncommitted_section += commit_sections;
2470	wraparound_section(ic, &ic->uncommitted_section);
2471	ic->n_uncommitted_sections -= commit_sections;
2472	ic->n_committed_sections += commit_sections;
2473	spin_unlock_irq(&ic->endio_wait.lock);
2474
2475	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2476		queue_work(ic->writer_wq, &ic->writer_work);
2477
2478release_flush_bios:
2479	while (flushes) {
2480		struct bio *next = flushes->bi_next;
2481
2482		flushes->bi_next = NULL;
2483		do_endio(ic, flushes);
2484		flushes = next;
2485	}
2486}
2487
2488static void complete_copy_from_journal(unsigned long error, void *context)
2489{
2490	struct journal_io *io = context;
2491	struct journal_completion *comp = io->comp;
2492	struct dm_integrity_c *ic = comp->ic;
2493
2494	remove_range(ic, &io->range);
2495	mempool_free(io, &ic->journal_io_mempool);
2496	if (unlikely(error != 0))
2497		dm_integrity_io_error(ic, "copying from journal", -EIO);
2498	complete_journal_op(comp);
2499}
2500
2501static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2502			       struct journal_entry *je)
2503{
2504	unsigned int s = 0;
2505
2506	do {
2507		js->commit_id = je->last_bytes[s];
2508		js++;
2509	} while (++s < ic->sectors_per_block);
2510}
2511
2512static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2513			     unsigned int write_sections, bool from_replay)
2514{
2515	unsigned int i, j, n;
2516	struct journal_completion comp;
2517	struct blk_plug plug;
2518
2519	blk_start_plug(&plug);
2520
2521	comp.ic = ic;
2522	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2523	init_completion(&comp.comp);
2524
2525	i = write_start;
2526	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2527#ifndef INTERNAL_VERIFY
2528		if (unlikely(from_replay))
2529#endif
2530			rw_section_mac(ic, i, false);
2531		for (j = 0; j < ic->journal_section_entries; j++) {
2532			struct journal_entry *je = access_journal_entry(ic, i, j);
2533			sector_t sec, area, offset;
2534			unsigned int k, l, next_loop;
2535			sector_t metadata_block;
2536			unsigned int metadata_offset;
2537			struct journal_io *io;
2538
2539			if (journal_entry_is_unused(je))
2540				continue;
2541			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2542			sec = journal_entry_get_sector(je);
2543			if (unlikely(from_replay)) {
2544				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2545					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2546					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2547				}
2548				if (unlikely(sec >= ic->provided_data_sectors)) {
2549					journal_entry_set_unused(je);
2550					continue;
2551				}
2552			}
2553			get_area_and_offset(ic, sec, &area, &offset);
2554			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2555			for (k = j + 1; k < ic->journal_section_entries; k++) {
2556				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2557				sector_t sec2, area2, offset2;
2558
2559				if (journal_entry_is_unused(je2))
2560					break;
2561				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2562				sec2 = journal_entry_get_sector(je2);
2563				if (unlikely(sec2 >= ic->provided_data_sectors))
2564					break;
2565				get_area_and_offset(ic, sec2, &area2, &offset2);
2566				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2567					break;
2568				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2569			}
2570			next_loop = k - 1;
2571
2572			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2573			io->comp = &comp;
2574			io->range.logical_sector = sec;
2575			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2576
2577			spin_lock_irq(&ic->endio_wait.lock);
2578			add_new_range_and_wait(ic, &io->range);
2579
2580			if (likely(!from_replay)) {
2581				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2582
2583				/* don't write if there is newer committed sector */
2584				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2585					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2586
2587					journal_entry_set_unused(je2);
2588					remove_journal_node(ic, &section_node[j]);
2589					j++;
2590					sec += ic->sectors_per_block;
2591					offset += ic->sectors_per_block;
2592				}
2593				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2594					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2595
2596					journal_entry_set_unused(je2);
2597					remove_journal_node(ic, &section_node[k - 1]);
2598					k--;
2599				}
2600				if (j == k) {
2601					remove_range_unlocked(ic, &io->range);
2602					spin_unlock_irq(&ic->endio_wait.lock);
2603					mempool_free(io, &ic->journal_io_mempool);
2604					goto skip_io;
2605				}
2606				for (l = j; l < k; l++)
2607					remove_journal_node(ic, &section_node[l]);
2608			}
2609			spin_unlock_irq(&ic->endio_wait.lock);
2610
2611			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2612			for (l = j; l < k; l++) {
2613				int r;
2614				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2615
2616				if (
2617#ifndef INTERNAL_VERIFY
2618				    unlikely(from_replay) &&
2619#endif
2620				    ic->internal_hash) {
2621					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2622
2623					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2624								  (char *)access_journal_data(ic, i, l), test_tag);
2625					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2626						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2627						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2628					}
2629				}
2630
2631				journal_entry_set_unused(je2);
2632				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2633							ic->tag_size, TAG_WRITE);
2634				if (unlikely(r))
2635					dm_integrity_io_error(ic, "reading tags", r);
2636			}
2637
2638			atomic_inc(&comp.in_flight);
2639			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2640					  (k - j) << ic->sb->log2_sectors_per_block,
2641					  get_data_sector(ic, area, offset),
2642					  complete_copy_from_journal, io);
2643skip_io:
2644			j = next_loop;
2645		}
2646	}
2647
2648	dm_bufio_write_dirty_buffers_async(ic->bufio);
2649
2650	blk_finish_plug(&plug);
2651
2652	complete_journal_op(&comp);
2653	wait_for_completion_io(&comp.comp);
2654
2655	dm_integrity_flush_buffers(ic, true);
2656}
2657
2658static void integrity_writer(struct work_struct *w)
2659{
2660	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2661	unsigned int write_start, write_sections;
2662	unsigned int prev_free_sectors;
2663
2664	spin_lock_irq(&ic->endio_wait.lock);
2665	write_start = ic->committed_section;
2666	write_sections = ic->n_committed_sections;
2667	spin_unlock_irq(&ic->endio_wait.lock);
2668
2669	if (!write_sections)
2670		return;
2671
2672	do_journal_write(ic, write_start, write_sections, false);
2673
2674	spin_lock_irq(&ic->endio_wait.lock);
2675
2676	ic->committed_section += write_sections;
2677	wraparound_section(ic, &ic->committed_section);
2678	ic->n_committed_sections -= write_sections;
2679
2680	prev_free_sectors = ic->free_sectors;
2681	ic->free_sectors += write_sections * ic->journal_section_entries;
2682	if (unlikely(!prev_free_sectors))
2683		wake_up_locked(&ic->endio_wait);
2684
2685	spin_unlock_irq(&ic->endio_wait.lock);
2686}
2687
2688static void recalc_write_super(struct dm_integrity_c *ic)
2689{
2690	int r;
2691
2692	dm_integrity_flush_buffers(ic, false);
2693	if (dm_integrity_failed(ic))
2694		return;
2695
2696	r = sync_rw_sb(ic, REQ_OP_WRITE);
2697	if (unlikely(r))
2698		dm_integrity_io_error(ic, "writing superblock", r);
2699}
2700
2701static void integrity_recalc(struct work_struct *w)
2702{
2703	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2704	size_t recalc_tags_size;
2705	u8 *recalc_buffer = NULL;
2706	u8 *recalc_tags = NULL;
2707	struct dm_integrity_range range;
2708	struct dm_io_request io_req;
2709	struct dm_io_region io_loc;
2710	sector_t area, offset;
2711	sector_t metadata_block;
2712	unsigned int metadata_offset;
2713	sector_t logical_sector, n_sectors;
2714	__u8 *t;
2715	unsigned int i;
2716	int r;
2717	unsigned int super_counter = 0;
2718	unsigned recalc_sectors = RECALC_SECTORS;
2719
2720retry:
2721	recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2722	if (!recalc_buffer) {
2723oom:
2724		recalc_sectors >>= 1;
2725		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2726			goto retry;
2727		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2728		goto free_ret;
2729	}
2730	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2731	if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2732		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2733	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2734	if (!recalc_tags) {
2735		vfree(recalc_buffer);
2736		recalc_buffer = NULL;
2737		goto oom;
2738	}
2739
2740	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2741
2742	spin_lock_irq(&ic->endio_wait.lock);
2743
2744next_chunk:
2745
2746	if (unlikely(dm_post_suspending(ic->ti)))
2747		goto unlock_ret;
2748
2749	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2750	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2751		if (ic->mode == 'B') {
2752			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2753			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2754			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2755		}
2756		goto unlock_ret;
2757	}
2758
2759	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2760	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2761	if (!ic->meta_dev)
2762		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2763
2764	add_new_range_and_wait(ic, &range);
2765	spin_unlock_irq(&ic->endio_wait.lock);
2766	logical_sector = range.logical_sector;
2767	n_sectors = range.n_sectors;
2768
2769	if (ic->mode == 'B') {
2770		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2771			goto advance_and_next;
2772
2773		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2774				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2775			logical_sector += ic->sectors_per_block;
2776			n_sectors -= ic->sectors_per_block;
2777			cond_resched();
2778		}
2779		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2780				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2781			n_sectors -= ic->sectors_per_block;
2782			cond_resched();
2783		}
2784		get_area_and_offset(ic, logical_sector, &area, &offset);
2785	}
2786
2787	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2788
2789	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2790		recalc_write_super(ic);
2791		if (ic->mode == 'B')
2792			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2793
2794		super_counter = 0;
2795	}
2796
2797	if (unlikely(dm_integrity_failed(ic)))
2798		goto err;
2799
2800	io_req.bi_opf = REQ_OP_READ;
2801	io_req.mem.type = DM_IO_VMA;
2802	io_req.mem.ptr.addr = recalc_buffer;
2803	io_req.notify.fn = NULL;
2804	io_req.client = ic->io;
2805	io_loc.bdev = ic->dev->bdev;
2806	io_loc.sector = get_data_sector(ic, area, offset);
2807	io_loc.count = n_sectors;
2808
2809	r = dm_io(&io_req, 1, &io_loc, NULL);
2810	if (unlikely(r)) {
2811		dm_integrity_io_error(ic, "reading data", r);
2812		goto err;
2813	}
2814
2815	t = recalc_tags;
2816	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2817		integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2818		t += ic->tag_size;
2819	}
2820
2821	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2822
2823	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2824	if (unlikely(r)) {
2825		dm_integrity_io_error(ic, "writing tags", r);
2826		goto err;
2827	}
2828
2829	if (ic->mode == 'B') {
2830		sector_t start, end;
2831
2832		start = (range.logical_sector >>
2833			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2834			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2835		end = ((range.logical_sector + range.n_sectors) >>
2836		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2837			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2838		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2839	}
2840
2841advance_and_next:
2842	cond_resched();
2843
2844	spin_lock_irq(&ic->endio_wait.lock);
2845	remove_range_unlocked(ic, &range);
2846	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2847	goto next_chunk;
2848
2849err:
2850	remove_range(ic, &range);
2851	goto free_ret;
2852
2853unlock_ret:
2854	spin_unlock_irq(&ic->endio_wait.lock);
2855
2856	recalc_write_super(ic);
2857
2858free_ret:
2859	vfree(recalc_buffer);
2860	kvfree(recalc_tags);
2861}
2862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863static void bitmap_block_work(struct work_struct *w)
2864{
2865	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2866	struct dm_integrity_c *ic = bbs->ic;
2867	struct bio *bio;
2868	struct bio_list bio_queue;
2869	struct bio_list waiting;
2870
2871	bio_list_init(&waiting);
2872
2873	spin_lock(&bbs->bio_queue_lock);
2874	bio_queue = bbs->bio_queue;
2875	bio_list_init(&bbs->bio_queue);
2876	spin_unlock(&bbs->bio_queue_lock);
2877
2878	while ((bio = bio_list_pop(&bio_queue))) {
2879		struct dm_integrity_io *dio;
2880
2881		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2882
2883		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2884				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2885			remove_range(ic, &dio->range);
2886			INIT_WORK(&dio->work, integrity_bio_wait);
2887			queue_work(ic->offload_wq, &dio->work);
2888		} else {
2889			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2890					dio->range.n_sectors, BITMAP_OP_SET);
2891			bio_list_add(&waiting, bio);
2892		}
2893	}
2894
2895	if (bio_list_empty(&waiting))
2896		return;
2897
2898	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2899			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2900			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2901
2902	while ((bio = bio_list_pop(&waiting))) {
2903		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2904
2905		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2906				dio->range.n_sectors, BITMAP_OP_SET);
2907
2908		remove_range(ic, &dio->range);
2909		INIT_WORK(&dio->work, integrity_bio_wait);
2910		queue_work(ic->offload_wq, &dio->work);
2911	}
2912
2913	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2914}
2915
2916static void bitmap_flush_work(struct work_struct *work)
2917{
2918	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2919	struct dm_integrity_range range;
2920	unsigned long limit;
2921	struct bio *bio;
2922
2923	dm_integrity_flush_buffers(ic, false);
2924
2925	range.logical_sector = 0;
2926	range.n_sectors = ic->provided_data_sectors;
2927
2928	spin_lock_irq(&ic->endio_wait.lock);
2929	add_new_range_and_wait(ic, &range);
2930	spin_unlock_irq(&ic->endio_wait.lock);
2931
2932	dm_integrity_flush_buffers(ic, true);
2933
2934	limit = ic->provided_data_sectors;
2935	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2936		limit = le64_to_cpu(ic->sb->recalc_sector)
2937			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2938			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2939	}
2940	/*DEBUG_print("zeroing journal\n");*/
2941	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2942	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2943
2944	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2945			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2946
2947	spin_lock_irq(&ic->endio_wait.lock);
2948	remove_range_unlocked(ic, &range);
2949	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2950		bio_endio(bio);
2951		spin_unlock_irq(&ic->endio_wait.lock);
2952		spin_lock_irq(&ic->endio_wait.lock);
2953	}
2954	spin_unlock_irq(&ic->endio_wait.lock);
2955}
2956
2957
2958static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2959			 unsigned int n_sections, unsigned char commit_seq)
2960{
2961	unsigned int i, j, n;
2962
2963	if (!n_sections)
2964		return;
2965
2966	for (n = 0; n < n_sections; n++) {
2967		i = start_section + n;
2968		wraparound_section(ic, &i);
2969		for (j = 0; j < ic->journal_section_sectors; j++) {
2970			struct journal_sector *js = access_journal(ic, i, j);
2971
2972			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2973			memset(&js->sectors, 0, sizeof(js->sectors));
2974			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2975		}
2976		for (j = 0; j < ic->journal_section_entries; j++) {
2977			struct journal_entry *je = access_journal_entry(ic, i, j);
2978
2979			journal_entry_set_unused(je);
2980		}
2981	}
2982
2983	write_journal(ic, start_section, n_sections);
2984}
2985
2986static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2987{
2988	unsigned char k;
2989
2990	for (k = 0; k < N_COMMIT_IDS; k++) {
2991		if (dm_integrity_commit_id(ic, i, j, k) == id)
2992			return k;
2993	}
2994	dm_integrity_io_error(ic, "journal commit id", -EIO);
2995	return -EIO;
2996}
2997
2998static void replay_journal(struct dm_integrity_c *ic)
2999{
3000	unsigned int i, j;
3001	bool used_commit_ids[N_COMMIT_IDS];
3002	unsigned int max_commit_id_sections[N_COMMIT_IDS];
3003	unsigned int write_start, write_sections;
3004	unsigned int continue_section;
3005	bool journal_empty;
3006	unsigned char unused, last_used, want_commit_seq;
3007
3008	if (ic->mode == 'R')
3009		return;
3010
3011	if (ic->journal_uptodate)
3012		return;
3013
3014	last_used = 0;
3015	write_start = 0;
3016
3017	if (!ic->just_formatted) {
3018		DEBUG_print("reading journal\n");
3019		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3020		if (ic->journal_io)
3021			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3022		if (ic->journal_io) {
3023			struct journal_completion crypt_comp;
3024
3025			crypt_comp.ic = ic;
3026			init_completion(&crypt_comp.comp);
3027			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3028			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3029			wait_for_completion(&crypt_comp.comp);
3030		}
3031		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3032	}
3033
3034	if (dm_integrity_failed(ic))
3035		goto clear_journal;
3036
3037	journal_empty = true;
3038	memset(used_commit_ids, 0, sizeof(used_commit_ids));
3039	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3040	for (i = 0; i < ic->journal_sections; i++) {
3041		for (j = 0; j < ic->journal_section_sectors; j++) {
3042			int k;
3043			struct journal_sector *js = access_journal(ic, i, j);
3044
3045			k = find_commit_seq(ic, i, j, js->commit_id);
3046			if (k < 0)
3047				goto clear_journal;
3048			used_commit_ids[k] = true;
3049			max_commit_id_sections[k] = i;
3050		}
3051		if (journal_empty) {
3052			for (j = 0; j < ic->journal_section_entries; j++) {
3053				struct journal_entry *je = access_journal_entry(ic, i, j);
3054
3055				if (!journal_entry_is_unused(je)) {
3056					journal_empty = false;
3057					break;
3058				}
3059			}
3060		}
3061	}
3062
3063	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3064		unused = N_COMMIT_IDS - 1;
3065		while (unused && !used_commit_ids[unused - 1])
3066			unused--;
3067	} else {
3068		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3069			if (!used_commit_ids[unused])
3070				break;
3071		if (unused == N_COMMIT_IDS) {
3072			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3073			goto clear_journal;
3074		}
3075	}
3076	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3077		    unused, used_commit_ids[0], used_commit_ids[1],
3078		    used_commit_ids[2], used_commit_ids[3]);
3079
3080	last_used = prev_commit_seq(unused);
3081	want_commit_seq = prev_commit_seq(last_used);
3082
3083	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3084		journal_empty = true;
3085
3086	write_start = max_commit_id_sections[last_used] + 1;
3087	if (unlikely(write_start >= ic->journal_sections))
3088		want_commit_seq = next_commit_seq(want_commit_seq);
3089	wraparound_section(ic, &write_start);
3090
3091	i = write_start;
3092	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3093		for (j = 0; j < ic->journal_section_sectors; j++) {
3094			struct journal_sector *js = access_journal(ic, i, j);
3095
3096			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3097				/*
3098				 * This could be caused by crash during writing.
3099				 * We won't replay the inconsistent part of the
3100				 * journal.
3101				 */
3102				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3103					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3104				goto brk;
3105			}
3106		}
3107		i++;
3108		if (unlikely(i >= ic->journal_sections))
3109			want_commit_seq = next_commit_seq(want_commit_seq);
3110		wraparound_section(ic, &i);
3111	}
3112brk:
3113
3114	if (!journal_empty) {
3115		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3116			    write_sections, write_start, want_commit_seq);
3117		do_journal_write(ic, write_start, write_sections, true);
3118	}
3119
3120	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3121		continue_section = write_start;
3122		ic->commit_seq = want_commit_seq;
3123		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3124	} else {
3125		unsigned int s;
3126		unsigned char erase_seq;
3127
3128clear_journal:
3129		DEBUG_print("clearing journal\n");
3130
3131		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3132		s = write_start;
3133		init_journal(ic, s, 1, erase_seq);
3134		s++;
3135		wraparound_section(ic, &s);
3136		if (ic->journal_sections >= 2) {
3137			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3138			s += ic->journal_sections - 2;
3139			wraparound_section(ic, &s);
3140			init_journal(ic, s, 1, erase_seq);
3141		}
3142
3143		continue_section = 0;
3144		ic->commit_seq = next_commit_seq(erase_seq);
3145	}
3146
3147	ic->committed_section = continue_section;
3148	ic->n_committed_sections = 0;
3149
3150	ic->uncommitted_section = continue_section;
3151	ic->n_uncommitted_sections = 0;
3152
3153	ic->free_section = continue_section;
3154	ic->free_section_entry = 0;
3155	ic->free_sectors = ic->journal_entries;
3156
3157	ic->journal_tree_root = RB_ROOT;
3158	for (i = 0; i < ic->journal_entries; i++)
3159		init_journal_node(&ic->journal_tree[i]);
3160}
3161
3162static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3163{
3164	DEBUG_print("%s\n", __func__);
3165
3166	if (ic->mode == 'B') {
3167		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3168		ic->synchronous_mode = 1;
3169
3170		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3171		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3172		flush_workqueue(ic->commit_wq);
3173	}
3174}
3175
3176static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3177{
3178	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3179
3180	DEBUG_print("%s\n", __func__);
3181
3182	dm_integrity_enter_synchronous_mode(ic);
3183
3184	return NOTIFY_DONE;
3185}
3186
3187static void dm_integrity_postsuspend(struct dm_target *ti)
3188{
3189	struct dm_integrity_c *ic = ti->private;
3190	int r;
3191
3192	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3193
3194	del_timer_sync(&ic->autocommit_timer);
3195
3196	if (ic->recalc_wq)
3197		drain_workqueue(ic->recalc_wq);
3198
3199	if (ic->mode == 'B')
3200		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3201
3202	queue_work(ic->commit_wq, &ic->commit_work);
3203	drain_workqueue(ic->commit_wq);
3204
3205	if (ic->mode == 'J') {
3206		queue_work(ic->writer_wq, &ic->writer_work);
3207		drain_workqueue(ic->writer_wq);
3208		dm_integrity_flush_buffers(ic, true);
3209		if (ic->wrote_to_journal) {
3210			init_journal(ic, ic->free_section,
3211				     ic->journal_sections - ic->free_section, ic->commit_seq);
3212			if (ic->free_section) {
3213				init_journal(ic, 0, ic->free_section,
3214					     next_commit_seq(ic->commit_seq));
3215			}
3216		}
3217	}
3218
3219	if (ic->mode == 'B') {
3220		dm_integrity_flush_buffers(ic, true);
3221#if 1
3222		/* set to 0 to test bitmap replay code */
3223		init_journal(ic, 0, ic->journal_sections, 0);
3224		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3225		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3226		if (unlikely(r))
3227			dm_integrity_io_error(ic, "writing superblock", r);
3228#endif
3229	}
3230
3231	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3232
3233	ic->journal_uptodate = true;
3234}
3235
3236static void dm_integrity_resume(struct dm_target *ti)
3237{
3238	struct dm_integrity_c *ic = ti->private;
3239	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3240	int r;
3241
3242	DEBUG_print("resume\n");
3243
3244	ic->wrote_to_journal = false;
3245
3246	if (ic->provided_data_sectors != old_provided_data_sectors) {
3247		if (ic->provided_data_sectors > old_provided_data_sectors &&
3248		    ic->mode == 'B' &&
3249		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3250			rw_journal_sectors(ic, REQ_OP_READ, 0,
3251					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3252			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3253					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3254			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3255					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3256		}
3257
3258		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3259		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3260		if (unlikely(r))
3261			dm_integrity_io_error(ic, "writing superblock", r);
3262	}
3263
3264	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3265		DEBUG_print("resume dirty_bitmap\n");
3266		rw_journal_sectors(ic, REQ_OP_READ, 0,
3267				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3268		if (ic->mode == 'B') {
3269			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3270			    !ic->reset_recalculate_flag) {
3271				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3272				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3273				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3274						     BITMAP_OP_TEST_ALL_CLEAR)) {
3275					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3276					ic->sb->recalc_sector = cpu_to_le64(0);
3277				}
3278			} else {
3279				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3280					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3281				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3282				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3283				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3284				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3285				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3286						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3287				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3288				ic->sb->recalc_sector = cpu_to_le64(0);
3289			}
3290		} else {
3291			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3292			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3293			    ic->reset_recalculate_flag) {
3294				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3295				ic->sb->recalc_sector = cpu_to_le64(0);
3296			}
3297			init_journal(ic, 0, ic->journal_sections, 0);
3298			replay_journal(ic);
3299			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3300		}
3301		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3302		if (unlikely(r))
3303			dm_integrity_io_error(ic, "writing superblock", r);
3304	} else {
3305		replay_journal(ic);
3306		if (ic->reset_recalculate_flag) {
3307			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3308			ic->sb->recalc_sector = cpu_to_le64(0);
3309		}
3310		if (ic->mode == 'B') {
3311			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3312			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3313			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3314			if (unlikely(r))
3315				dm_integrity_io_error(ic, "writing superblock", r);
3316
3317			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3318			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3319			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3320			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3321			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3322				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3323						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3324				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3325						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3326				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3327						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3328			}
3329			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3330					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3331		}
3332	}
3333
3334	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3335	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3336		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3337
3338		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3339		if (recalc_pos < ic->provided_data_sectors) {
3340			queue_work(ic->recalc_wq, &ic->recalc_work);
3341		} else if (recalc_pos > ic->provided_data_sectors) {
3342			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3343			recalc_write_super(ic);
3344		}
3345	}
3346
3347	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3348	ic->reboot_notifier.next = NULL;
3349	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3350	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3351
3352#if 0
3353	/* set to 1 to stress test synchronous mode */
3354	dm_integrity_enter_synchronous_mode(ic);
3355#endif
3356}
3357
3358static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3359				unsigned int status_flags, char *result, unsigned int maxlen)
3360{
3361	struct dm_integrity_c *ic = ti->private;
3362	unsigned int arg_count;
3363	size_t sz = 0;
3364
3365	switch (type) {
3366	case STATUSTYPE_INFO:
3367		DMEMIT("%llu %llu",
3368			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3369			ic->provided_data_sectors);
3370		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3371			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3372		else
3373			DMEMIT(" -");
3374		break;
3375
3376	case STATUSTYPE_TABLE: {
3377		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3378
3379		watermark_percentage += ic->journal_entries / 2;
3380		do_div(watermark_percentage, ic->journal_entries);
3381		arg_count = 3;
3382		arg_count += !!ic->meta_dev;
3383		arg_count += ic->sectors_per_block != 1;
3384		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3385		arg_count += ic->reset_recalculate_flag;
3386		arg_count += ic->discard;
3387		arg_count += ic->mode == 'J';
3388		arg_count += ic->mode == 'J';
3389		arg_count += ic->mode == 'B';
3390		arg_count += ic->mode == 'B';
3391		arg_count += !!ic->internal_hash_alg.alg_string;
3392		arg_count += !!ic->journal_crypt_alg.alg_string;
3393		arg_count += !!ic->journal_mac_alg.alg_string;
3394		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3395		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3396		arg_count += ic->legacy_recalculate;
3397		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3398		       ic->tag_size, ic->mode, arg_count);
3399		if (ic->meta_dev)
3400			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3401		if (ic->sectors_per_block != 1)
3402			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3403		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3404			DMEMIT(" recalculate");
3405		if (ic->reset_recalculate_flag)
3406			DMEMIT(" reset_recalculate");
3407		if (ic->discard)
3408			DMEMIT(" allow_discards");
3409		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3410		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3411		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3412		if (ic->mode == 'J') {
 
 
 
 
3413			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3414			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3415		}
3416		if (ic->mode == 'B') {
3417			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3418			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3419		}
3420		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3421			DMEMIT(" fix_padding");
3422		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3423			DMEMIT(" fix_hmac");
3424		if (ic->legacy_recalculate)
3425			DMEMIT(" legacy_recalculate");
3426
3427#define EMIT_ALG(a, n)							\
3428		do {							\
3429			if (ic->a.alg_string) {				\
3430				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3431				if (ic->a.key_string)			\
3432					DMEMIT(":%s", ic->a.key_string);\
3433			}						\
3434		} while (0)
3435		EMIT_ALG(internal_hash_alg, "internal_hash");
3436		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3437		EMIT_ALG(journal_mac_alg, "journal_mac");
3438		break;
3439	}
3440	case STATUSTYPE_IMA:
3441		DMEMIT_TARGET_NAME_VERSION(ti->type);
3442		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3443			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3444
3445		if (ic->meta_dev)
3446			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3447		if (ic->sectors_per_block != 1)
3448			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3449
3450		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3451		       'y' : 'n');
3452		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3453		DMEMIT(",fix_padding=%c",
3454		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3455		DMEMIT(",fix_hmac=%c",
3456		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3457		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3458
3459		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3460		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3461		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3462		DMEMIT(";");
3463		break;
3464	}
3465}
3466
3467static int dm_integrity_iterate_devices(struct dm_target *ti,
3468					iterate_devices_callout_fn fn, void *data)
3469{
3470	struct dm_integrity_c *ic = ti->private;
3471
3472	if (!ic->meta_dev)
3473		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3474	else
3475		return fn(ti, ic->dev, 0, ti->len, data);
3476}
3477
3478static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3479{
3480	struct dm_integrity_c *ic = ti->private;
3481
3482	if (ic->sectors_per_block > 1) {
3483		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3484		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3485		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3486		limits->dma_alignment = limits->logical_block_size - 1;
 
 
 
 
 
 
 
 
 
 
 
3487	}
 
 
3488}
3489
3490static void calculate_journal_section_size(struct dm_integrity_c *ic)
3491{
3492	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3493
3494	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3495	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3496					 JOURNAL_ENTRY_ROUNDUP);
3497
3498	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3499		sector_space -= JOURNAL_MAC_PER_SECTOR;
3500	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3501	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3502	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3503	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3504}
3505
3506static int calculate_device_limits(struct dm_integrity_c *ic)
3507{
3508	__u64 initial_sectors;
3509
3510	calculate_journal_section_size(ic);
3511	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3512	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3513		return -EINVAL;
3514	ic->initial_sectors = initial_sectors;
3515
3516	if (!ic->meta_dev) {
 
 
 
3517		sector_t last_sector, last_area, last_offset;
3518
3519		/* we have to maintain excessive padding for compatibility with existing volumes */
3520		__u64 metadata_run_padding =
3521			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3522			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3523			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3524
3525		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3526					    metadata_run_padding) >> SECTOR_SHIFT;
3527		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3528			ic->log2_metadata_run = __ffs(ic->metadata_run);
3529		else
3530			ic->log2_metadata_run = -1;
3531
3532		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3533		last_sector = get_data_sector(ic, last_area, last_offset);
3534		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3535			return -EINVAL;
3536	} else {
3537		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3538
3539		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3540				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3541		meta_size <<= ic->log2_buffer_sectors;
3542		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3543		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3544			return -EINVAL;
3545		ic->metadata_run = 1;
3546		ic->log2_metadata_run = 0;
3547	}
3548
3549	return 0;
3550}
3551
3552static void get_provided_data_sectors(struct dm_integrity_c *ic)
3553{
3554	if (!ic->meta_dev) {
3555		int test_bit;
3556
3557		ic->provided_data_sectors = 0;
3558		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3559			__u64 prev_data_sectors = ic->provided_data_sectors;
3560
3561			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3562			if (calculate_device_limits(ic))
3563				ic->provided_data_sectors = prev_data_sectors;
3564		}
3565	} else {
3566		ic->provided_data_sectors = ic->data_device_sectors;
3567		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3568	}
3569}
3570
3571static int initialize_superblock(struct dm_integrity_c *ic,
3572				 unsigned int journal_sectors, unsigned int interleave_sectors)
3573{
3574	unsigned int journal_sections;
3575	int test_bit;
3576
3577	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3578	memcpy(ic->sb->magic, SB_MAGIC, 8);
 
 
3579	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3580	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3581	if (ic->journal_mac_alg.alg_string)
3582		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3583
3584	calculate_journal_section_size(ic);
3585	journal_sections = journal_sectors / ic->journal_section_sectors;
3586	if (!journal_sections)
3587		journal_sections = 1;
 
 
3588
3589	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3590		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3591		get_random_bytes(ic->sb->salt, SALT_SIZE);
3592	}
3593
3594	if (!ic->meta_dev) {
3595		if (ic->fix_padding)
3596			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3597		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3598		if (!interleave_sectors)
3599			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3600		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3601		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3602		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3603
3604		get_provided_data_sectors(ic);
3605		if (!ic->provided_data_sectors)
3606			return -EINVAL;
3607	} else {
3608		ic->sb->log2_interleave_sectors = 0;
3609
3610		get_provided_data_sectors(ic);
3611		if (!ic->provided_data_sectors)
3612			return -EINVAL;
3613
3614try_smaller_buffer:
3615		ic->sb->journal_sections = cpu_to_le32(0);
3616		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3617			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3618			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3619
3620			if (test_journal_sections > journal_sections)
3621				continue;
3622			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3623			if (calculate_device_limits(ic))
3624				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3625
3626		}
3627		if (!le32_to_cpu(ic->sb->journal_sections)) {
3628			if (ic->log2_buffer_sectors > 3) {
3629				ic->log2_buffer_sectors--;
3630				goto try_smaller_buffer;
3631			}
3632			return -EINVAL;
3633		}
3634	}
3635
3636	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3637
3638	sb_set_version(ic);
3639
3640	return 0;
3641}
3642
3643static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3644{
3645	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3646	struct blk_integrity bi;
3647
3648	memset(&bi, 0, sizeof(bi));
3649	bi.profile = &dm_integrity_profile;
3650	bi.tuple_size = ic->tag_size;
3651	bi.tag_size = bi.tuple_size;
3652	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3653
3654	blk_integrity_register(disk, &bi);
3655	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3656}
3657
3658static void dm_integrity_free_page_list(struct page_list *pl)
3659{
3660	unsigned int i;
3661
3662	if (!pl)
3663		return;
3664	for (i = 0; pl[i].page; i++)
3665		__free_page(pl[i].page);
3666	kvfree(pl);
3667}
3668
3669static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3670{
3671	struct page_list *pl;
3672	unsigned int i;
3673
3674	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3675	if (!pl)
3676		return NULL;
3677
3678	for (i = 0; i < n_pages; i++) {
3679		pl[i].page = alloc_page(GFP_KERNEL);
3680		if (!pl[i].page) {
3681			dm_integrity_free_page_list(pl);
3682			return NULL;
3683		}
3684		if (i)
3685			pl[i - 1].next = &pl[i];
3686	}
3687	pl[i].page = NULL;
3688	pl[i].next = NULL;
3689
3690	return pl;
3691}
3692
3693static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3694{
3695	unsigned int i;
3696
3697	for (i = 0; i < ic->journal_sections; i++)
3698		kvfree(sl[i]);
3699	kvfree(sl);
3700}
3701
3702static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3703								   struct page_list *pl)
3704{
3705	struct scatterlist **sl;
3706	unsigned int i;
3707
3708	sl = kvmalloc_array(ic->journal_sections,
3709			    sizeof(struct scatterlist *),
3710			    GFP_KERNEL | __GFP_ZERO);
3711	if (!sl)
3712		return NULL;
3713
3714	for (i = 0; i < ic->journal_sections; i++) {
3715		struct scatterlist *s;
3716		unsigned int start_index, start_offset;
3717		unsigned int end_index, end_offset;
3718		unsigned int n_pages;
3719		unsigned int idx;
3720
3721		page_list_location(ic, i, 0, &start_index, &start_offset);
3722		page_list_location(ic, i, ic->journal_section_sectors - 1,
3723				   &end_index, &end_offset);
3724
3725		n_pages = (end_index - start_index + 1);
3726
3727		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3728				   GFP_KERNEL);
3729		if (!s) {
3730			dm_integrity_free_journal_scatterlist(ic, sl);
3731			return NULL;
3732		}
3733
3734		sg_init_table(s, n_pages);
3735		for (idx = start_index; idx <= end_index; idx++) {
3736			char *va = lowmem_page_address(pl[idx].page);
3737			unsigned int start = 0, end = PAGE_SIZE;
3738
3739			if (idx == start_index)
3740				start = start_offset;
3741			if (idx == end_index)
3742				end = end_offset + (1 << SECTOR_SHIFT);
3743			sg_set_buf(&s[idx - start_index], va + start, end - start);
3744		}
3745
3746		sl[i] = s;
3747	}
3748
3749	return sl;
3750}
3751
3752static void free_alg(struct alg_spec *a)
3753{
3754	kfree_sensitive(a->alg_string);
3755	kfree_sensitive(a->key);
3756	memset(a, 0, sizeof(*a));
3757}
3758
3759static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3760{
3761	char *k;
3762
3763	free_alg(a);
3764
3765	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3766	if (!a->alg_string)
3767		goto nomem;
3768
3769	k = strchr(a->alg_string, ':');
3770	if (k) {
3771		*k = 0;
3772		a->key_string = k + 1;
3773		if (strlen(a->key_string) & 1)
3774			goto inval;
3775
3776		a->key_size = strlen(a->key_string) / 2;
3777		a->key = kmalloc(a->key_size, GFP_KERNEL);
3778		if (!a->key)
3779			goto nomem;
3780		if (hex2bin(a->key, a->key_string, a->key_size))
3781			goto inval;
3782	}
3783
3784	return 0;
3785inval:
3786	*error = error_inval;
3787	return -EINVAL;
3788nomem:
3789	*error = "Out of memory for an argument";
3790	return -ENOMEM;
3791}
3792
3793static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3794		   char *error_alg, char *error_key)
3795{
3796	int r;
3797
3798	if (a->alg_string) {
3799		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3800		if (IS_ERR(*hash)) {
3801			*error = error_alg;
3802			r = PTR_ERR(*hash);
3803			*hash = NULL;
3804			return r;
3805		}
3806
3807		if (a->key) {
3808			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3809			if (r) {
3810				*error = error_key;
3811				return r;
3812			}
3813		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3814			*error = error_key;
3815			return -ENOKEY;
3816		}
3817	}
3818
3819	return 0;
3820}
3821
3822static int create_journal(struct dm_integrity_c *ic, char **error)
3823{
3824	int r = 0;
3825	unsigned int i;
3826	__u64 journal_pages, journal_desc_size, journal_tree_size;
3827	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3828	struct skcipher_request *req = NULL;
3829
3830	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3831	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3832	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3833	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3834
3835	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3836				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3837	journal_desc_size = journal_pages * sizeof(struct page_list);
3838	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3839		*error = "Journal doesn't fit into memory";
3840		r = -ENOMEM;
3841		goto bad;
3842	}
3843	ic->journal_pages = journal_pages;
3844
3845	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3846	if (!ic->journal) {
3847		*error = "Could not allocate memory for journal";
3848		r = -ENOMEM;
3849		goto bad;
3850	}
3851	if (ic->journal_crypt_alg.alg_string) {
3852		unsigned int ivsize, blocksize;
3853		struct journal_completion comp;
3854
3855		comp.ic = ic;
3856		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3857		if (IS_ERR(ic->journal_crypt)) {
3858			*error = "Invalid journal cipher";
3859			r = PTR_ERR(ic->journal_crypt);
3860			ic->journal_crypt = NULL;
3861			goto bad;
3862		}
3863		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3864		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3865
3866		if (ic->journal_crypt_alg.key) {
3867			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3868						   ic->journal_crypt_alg.key_size);
3869			if (r) {
3870				*error = "Error setting encryption key";
3871				goto bad;
3872			}
3873		}
3874		DEBUG_print("cipher %s, block size %u iv size %u\n",
3875			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3876
3877		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3878		if (!ic->journal_io) {
3879			*error = "Could not allocate memory for journal io";
3880			r = -ENOMEM;
3881			goto bad;
3882		}
3883
3884		if (blocksize == 1) {
3885			struct scatterlist *sg;
3886
3887			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3888			if (!req) {
3889				*error = "Could not allocate crypt request";
3890				r = -ENOMEM;
3891				goto bad;
3892			}
3893
3894			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3895			if (!crypt_iv) {
3896				*error = "Could not allocate iv";
3897				r = -ENOMEM;
3898				goto bad;
3899			}
3900
3901			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3902			if (!ic->journal_xor) {
3903				*error = "Could not allocate memory for journal xor";
3904				r = -ENOMEM;
3905				goto bad;
3906			}
3907
3908			sg = kvmalloc_array(ic->journal_pages + 1,
3909					    sizeof(struct scatterlist),
3910					    GFP_KERNEL);
3911			if (!sg) {
3912				*error = "Unable to allocate sg list";
3913				r = -ENOMEM;
3914				goto bad;
3915			}
3916			sg_init_table(sg, ic->journal_pages + 1);
3917			for (i = 0; i < ic->journal_pages; i++) {
3918				char *va = lowmem_page_address(ic->journal_xor[i].page);
3919
3920				clear_page(va);
3921				sg_set_buf(&sg[i], va, PAGE_SIZE);
3922			}
3923			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3924
3925			skcipher_request_set_crypt(req, sg, sg,
3926						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3927			init_completion(&comp.comp);
3928			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3929			if (do_crypt(true, req, &comp))
3930				wait_for_completion(&comp.comp);
3931			kvfree(sg);
3932			r = dm_integrity_failed(ic);
3933			if (r) {
3934				*error = "Unable to encrypt journal";
3935				goto bad;
3936			}
3937			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3938
3939			crypto_free_skcipher(ic->journal_crypt);
3940			ic->journal_crypt = NULL;
3941		} else {
3942			unsigned int crypt_len = roundup(ivsize, blocksize);
3943
3944			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3945			if (!req) {
3946				*error = "Could not allocate crypt request";
3947				r = -ENOMEM;
3948				goto bad;
3949			}
3950
3951			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3952			if (!crypt_iv) {
3953				*error = "Could not allocate iv";
3954				r = -ENOMEM;
3955				goto bad;
3956			}
3957
3958			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3959			if (!crypt_data) {
3960				*error = "Unable to allocate crypt data";
3961				r = -ENOMEM;
3962				goto bad;
3963			}
3964
3965			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3966			if (!ic->journal_scatterlist) {
3967				*error = "Unable to allocate sg list";
3968				r = -ENOMEM;
3969				goto bad;
3970			}
3971			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3972			if (!ic->journal_io_scatterlist) {
3973				*error = "Unable to allocate sg list";
3974				r = -ENOMEM;
3975				goto bad;
3976			}
3977			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3978							 sizeof(struct skcipher_request *),
3979							 GFP_KERNEL | __GFP_ZERO);
3980			if (!ic->sk_requests) {
3981				*error = "Unable to allocate sk requests";
3982				r = -ENOMEM;
3983				goto bad;
3984			}
3985			for (i = 0; i < ic->journal_sections; i++) {
3986				struct scatterlist sg;
3987				struct skcipher_request *section_req;
3988				__le32 section_le = cpu_to_le32(i);
3989
3990				memset(crypt_iv, 0x00, ivsize);
3991				memset(crypt_data, 0x00, crypt_len);
3992				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
3993
3994				sg_init_one(&sg, crypt_data, crypt_len);
3995				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3996				init_completion(&comp.comp);
3997				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3998				if (do_crypt(true, req, &comp))
3999					wait_for_completion(&comp.comp);
4000
4001				r = dm_integrity_failed(ic);
4002				if (r) {
4003					*error = "Unable to generate iv";
4004					goto bad;
4005				}
4006
4007				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4008				if (!section_req) {
4009					*error = "Unable to allocate crypt request";
4010					r = -ENOMEM;
4011					goto bad;
4012				}
4013				section_req->iv = kmalloc_array(ivsize, 2,
4014								GFP_KERNEL);
4015				if (!section_req->iv) {
4016					skcipher_request_free(section_req);
4017					*error = "Unable to allocate iv";
4018					r = -ENOMEM;
4019					goto bad;
4020				}
4021				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4022				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4023				ic->sk_requests[i] = section_req;
4024				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4025			}
4026		}
4027	}
4028
4029	for (i = 0; i < N_COMMIT_IDS; i++) {
4030		unsigned int j;
4031
4032retest_commit_id:
4033		for (j = 0; j < i; j++) {
4034			if (ic->commit_ids[j] == ic->commit_ids[i]) {
4035				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4036				goto retest_commit_id;
4037			}
4038		}
4039		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4040	}
4041
4042	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4043	if (journal_tree_size > ULONG_MAX) {
4044		*error = "Journal doesn't fit into memory";
4045		r = -ENOMEM;
4046		goto bad;
4047	}
4048	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4049	if (!ic->journal_tree) {
4050		*error = "Could not allocate memory for journal tree";
4051		r = -ENOMEM;
4052	}
4053bad:
4054	kfree(crypt_data);
4055	kfree(crypt_iv);
4056	skcipher_request_free(req);
4057
4058	return r;
4059}
4060
4061/*
4062 * Construct a integrity mapping
4063 *
4064 * Arguments:
4065 *	device
4066 *	offset from the start of the device
4067 *	tag size
4068 *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4069 *	number of optional arguments
4070 *	optional arguments:
4071 *		journal_sectors
4072 *		interleave_sectors
4073 *		buffer_sectors
4074 *		journal_watermark
4075 *		commit_time
4076 *		meta_device
4077 *		block_size
4078 *		sectors_per_bit
4079 *		bitmap_flush_interval
4080 *		internal_hash
4081 *		journal_crypt
4082 *		journal_mac
4083 *		recalculate
4084 */
4085static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4086{
4087	struct dm_integrity_c *ic;
4088	char dummy;
4089	int r;
4090	unsigned int extra_args;
4091	struct dm_arg_set as;
4092	static const struct dm_arg _args[] = {
4093		{0, 18, "Invalid number of feature args"},
4094	};
4095	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4096	bool should_write_sb;
4097	__u64 threshold;
4098	unsigned long long start;
4099	__s8 log2_sectors_per_bitmap_bit = -1;
4100	__s8 log2_blocks_per_bitmap_bit;
4101	__u64 bits_in_journal;
4102	__u64 n_bitmap_bits;
4103
4104#define DIRECT_ARGUMENTS	4
4105
4106	if (argc <= DIRECT_ARGUMENTS) {
4107		ti->error = "Invalid argument count";
4108		return -EINVAL;
4109	}
4110
4111	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4112	if (!ic) {
4113		ti->error = "Cannot allocate integrity context";
4114		return -ENOMEM;
4115	}
4116	ti->private = ic;
4117	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4118	ic->ti = ti;
4119
4120	ic->in_progress = RB_ROOT;
4121	INIT_LIST_HEAD(&ic->wait_list);
4122	init_waitqueue_head(&ic->endio_wait);
4123	bio_list_init(&ic->flush_bio_list);
4124	init_waitqueue_head(&ic->copy_to_journal_wait);
4125	init_completion(&ic->crypto_backoff);
4126	atomic64_set(&ic->number_of_mismatches, 0);
4127	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4128
4129	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4130	if (r) {
4131		ti->error = "Device lookup failed";
4132		goto bad;
4133	}
4134
4135	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4136		ti->error = "Invalid starting offset";
4137		r = -EINVAL;
4138		goto bad;
4139	}
4140	ic->start = start;
4141
4142	if (strcmp(argv[2], "-")) {
4143		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4144			ti->error = "Invalid tag size";
4145			r = -EINVAL;
4146			goto bad;
4147		}
4148	}
4149
4150	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4151	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
 
4152		ic->mode = argv[3][0];
4153	} else {
4154		ti->error = "Invalid mode (expecting J, B, D, R)";
4155		r = -EINVAL;
4156		goto bad;
4157	}
4158
4159	journal_sectors = 0;
4160	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4161	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4162	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4163	sync_msec = DEFAULT_SYNC_MSEC;
4164	ic->sectors_per_block = 1;
4165
4166	as.argc = argc - DIRECT_ARGUMENTS;
4167	as.argv = argv + DIRECT_ARGUMENTS;
4168	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4169	if (r)
4170		goto bad;
4171
4172	while (extra_args--) {
4173		const char *opt_string;
4174		unsigned int val;
4175		unsigned long long llval;
4176
4177		opt_string = dm_shift_arg(&as);
4178		if (!opt_string) {
4179			r = -EINVAL;
4180			ti->error = "Not enough feature arguments";
4181			goto bad;
4182		}
4183		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4184			journal_sectors = val ? val : 1;
4185		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4186			interleave_sectors = val;
4187		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4188			buffer_sectors = val;
4189		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4190			journal_watermark = val;
4191		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4192			sync_msec = val;
4193		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4194			if (ic->meta_dev) {
4195				dm_put_device(ti, ic->meta_dev);
4196				ic->meta_dev = NULL;
4197			}
4198			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4199					  dm_table_get_mode(ti->table), &ic->meta_dev);
4200			if (r) {
4201				ti->error = "Device lookup failed";
4202				goto bad;
4203			}
4204		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4205			if (val < 1 << SECTOR_SHIFT ||
4206			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4207			    (val & (val - 1))) {
4208				r = -EINVAL;
4209				ti->error = "Invalid block_size argument";
4210				goto bad;
4211			}
4212			ic->sectors_per_block = val >> SECTOR_SHIFT;
4213		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4214			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4215		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4216			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4217				r = -EINVAL;
4218				ti->error = "Invalid bitmap_flush_interval argument";
4219				goto bad;
4220			}
4221			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4222		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4223			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4224					    "Invalid internal_hash argument");
4225			if (r)
4226				goto bad;
4227		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4228			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4229					    "Invalid journal_crypt argument");
4230			if (r)
4231				goto bad;
4232		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4233			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4234					    "Invalid journal_mac argument");
4235			if (r)
4236				goto bad;
4237		} else if (!strcmp(opt_string, "recalculate")) {
4238			ic->recalculate_flag = true;
4239		} else if (!strcmp(opt_string, "reset_recalculate")) {
4240			ic->recalculate_flag = true;
4241			ic->reset_recalculate_flag = true;
4242		} else if (!strcmp(opt_string, "allow_discards")) {
4243			ic->discard = true;
4244		} else if (!strcmp(opt_string, "fix_padding")) {
4245			ic->fix_padding = true;
4246		} else if (!strcmp(opt_string, "fix_hmac")) {
4247			ic->fix_hmac = true;
4248		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4249			ic->legacy_recalculate = true;
4250		} else {
4251			r = -EINVAL;
4252			ti->error = "Invalid argument";
4253			goto bad;
4254		}
4255	}
4256
4257	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4258	if (!ic->meta_dev)
4259		ic->meta_device_sectors = ic->data_device_sectors;
4260	else
4261		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4262
4263	if (!journal_sectors) {
4264		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4265				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4266	}
4267
4268	if (!buffer_sectors)
4269		buffer_sectors = 1;
4270	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4271
4272	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4273		    "Invalid internal hash", "Error setting internal hash key");
4274	if (r)
4275		goto bad;
4276
4277	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4278		    "Invalid journal mac", "Error setting journal mac key");
4279	if (r)
4280		goto bad;
4281
4282	if (!ic->tag_size) {
4283		if (!ic->internal_hash) {
4284			ti->error = "Unknown tag size";
4285			r = -EINVAL;
4286			goto bad;
4287		}
4288		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4289	}
4290	if (ic->tag_size > MAX_TAG_SIZE) {
4291		ti->error = "Too big tag size";
4292		r = -EINVAL;
4293		goto bad;
4294	}
4295	if (!(ic->tag_size & (ic->tag_size - 1)))
4296		ic->log2_tag_size = __ffs(ic->tag_size);
4297	else
4298		ic->log2_tag_size = -1;
4299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4300	if (ic->mode == 'B' && !ic->internal_hash) {
4301		r = -EINVAL;
4302		ti->error = "Bitmap mode can be only used with internal hash";
4303		goto bad;
4304	}
4305
4306	if (ic->discard && !ic->internal_hash) {
4307		r = -EINVAL;
4308		ti->error = "Discard can be only used with internal hash";
4309		goto bad;
4310	}
4311
4312	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4313	ic->autocommit_msec = sync_msec;
4314	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4315
4316	ic->io = dm_io_client_create();
4317	if (IS_ERR(ic->io)) {
4318		r = PTR_ERR(ic->io);
4319		ic->io = NULL;
4320		ti->error = "Cannot allocate dm io";
4321		goto bad;
4322	}
4323
4324	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4325	if (r) {
4326		ti->error = "Cannot allocate mempool";
4327		goto bad;
4328	}
4329
4330	r = mempool_init_page_pool(&ic->recheck_pool, 1, 0);
4331	if (r) {
4332		ti->error = "Cannot allocate mempool";
4333		goto bad;
4334	}
4335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4336	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4337					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4338	if (!ic->metadata_wq) {
4339		ti->error = "Cannot allocate workqueue";
4340		r = -ENOMEM;
4341		goto bad;
4342	}
4343
4344	/*
4345	 * If this workqueue weren't ordered, it would cause bio reordering
4346	 * and reduced performance.
4347	 */
4348	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4349	if (!ic->wait_wq) {
4350		ti->error = "Cannot allocate workqueue";
4351		r = -ENOMEM;
4352		goto bad;
4353	}
4354
4355	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4356					  METADATA_WORKQUEUE_MAX_ACTIVE);
4357	if (!ic->offload_wq) {
4358		ti->error = "Cannot allocate workqueue";
4359		r = -ENOMEM;
4360		goto bad;
4361	}
4362
4363	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4364	if (!ic->commit_wq) {
4365		ti->error = "Cannot allocate workqueue";
4366		r = -ENOMEM;
4367		goto bad;
4368	}
4369	INIT_WORK(&ic->commit_work, integrity_commit);
4370
4371	if (ic->mode == 'J' || ic->mode == 'B') {
4372		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4373		if (!ic->writer_wq) {
4374			ti->error = "Cannot allocate workqueue";
4375			r = -ENOMEM;
4376			goto bad;
4377		}
4378		INIT_WORK(&ic->writer_work, integrity_writer);
4379	}
4380
4381	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4382	if (!ic->sb) {
4383		r = -ENOMEM;
4384		ti->error = "Cannot allocate superblock area";
4385		goto bad;
4386	}
4387
4388	r = sync_rw_sb(ic, REQ_OP_READ);
4389	if (r) {
4390		ti->error = "Error reading superblock";
4391		goto bad;
4392	}
4393	should_write_sb = false;
4394	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4395		if (ic->mode != 'R') {
4396			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4397				r = -EINVAL;
4398				ti->error = "The device is not initialized";
4399				goto bad;
4400			}
4401		}
4402
4403		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4404		if (r) {
4405			ti->error = "Could not initialize superblock";
4406			goto bad;
4407		}
4408		if (ic->mode != 'R')
4409			should_write_sb = true;
4410	}
4411
4412	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4413		r = -EINVAL;
4414		ti->error = "Unknown version";
4415		goto bad;
4416	}
 
 
 
 
 
4417	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4418		r = -EINVAL;
4419		ti->error = "Tag size doesn't match the information in superblock";
4420		goto bad;
4421	}
4422	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4423		r = -EINVAL;
4424		ti->error = "Block size doesn't match the information in superblock";
4425		goto bad;
4426	}
4427	if (!le32_to_cpu(ic->sb->journal_sections)) {
4428		r = -EINVAL;
4429		ti->error = "Corrupted superblock, journal_sections is 0";
4430		goto bad;
 
 
 
 
 
 
 
 
4431	}
4432	/* make sure that ti->max_io_len doesn't overflow */
4433	if (!ic->meta_dev) {
4434		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4435		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4436			r = -EINVAL;
4437			ti->error = "Invalid interleave_sectors in the superblock";
4438			goto bad;
4439		}
4440	} else {
4441		if (ic->sb->log2_interleave_sectors) {
4442			r = -EINVAL;
4443			ti->error = "Invalid interleave_sectors in the superblock";
4444			goto bad;
4445		}
4446	}
4447	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4448		r = -EINVAL;
4449		ti->error = "Journal mac mismatch";
4450		goto bad;
4451	}
4452
4453	get_provided_data_sectors(ic);
4454	if (!ic->provided_data_sectors) {
4455		r = -EINVAL;
4456		ti->error = "The device is too small";
4457		goto bad;
4458	}
4459
4460try_smaller_buffer:
4461	r = calculate_device_limits(ic);
4462	if (r) {
4463		if (ic->meta_dev) {
4464			if (ic->log2_buffer_sectors > 3) {
4465				ic->log2_buffer_sectors--;
4466				goto try_smaller_buffer;
4467			}
4468		}
4469		ti->error = "The device is too small";
4470		goto bad;
4471	}
4472
4473	if (log2_sectors_per_bitmap_bit < 0)
4474		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4475	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4476		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4477
4478	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4479	if (bits_in_journal > UINT_MAX)
4480		bits_in_journal = UINT_MAX;
4481	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4482		log2_sectors_per_bitmap_bit++;
 
4483
4484	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4485	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4486	if (should_write_sb)
4487		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4488
4489	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4490				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4491	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4492
4493	if (!ic->meta_dev)
4494		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4495
4496	if (ti->len > ic->provided_data_sectors) {
4497		r = -EINVAL;
4498		ti->error = "Not enough provided sectors for requested mapping size";
4499		goto bad;
4500	}
4501
4502
4503	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4504	threshold += 50;
4505	do_div(threshold, 100);
4506	ic->free_sectors_threshold = threshold;
4507
4508	DEBUG_print("initialized:\n");
4509	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4510	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4511	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4512	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4513	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4514	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4515	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4516	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4517	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4518	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4519	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4520	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4521	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4522	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4523	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4524
4525	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4526		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4527		ic->sb->recalc_sector = cpu_to_le64(0);
4528	}
4529
4530	if (ic->internal_hash) {
4531		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4532		if (!ic->recalc_wq) {
4533			ti->error = "Cannot allocate workqueue";
4534			r = -ENOMEM;
4535			goto bad;
4536		}
4537		INIT_WORK(&ic->recalc_work, integrity_recalc);
4538	} else {
4539		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4540			ti->error = "Recalculate can only be specified with internal_hash";
4541			r = -EINVAL;
4542			goto bad;
4543		}
4544	}
4545
4546	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4547	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4548	    dm_integrity_disable_recalculate(ic)) {
4549		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4550		r = -EOPNOTSUPP;
4551		goto bad;
4552	}
4553
4554	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4555			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4556	if (IS_ERR(ic->bufio)) {
4557		r = PTR_ERR(ic->bufio);
4558		ti->error = "Cannot initialize dm-bufio";
4559		ic->bufio = NULL;
4560		goto bad;
4561	}
4562	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4563
4564	if (ic->mode != 'R') {
4565		r = create_journal(ic, &ti->error);
4566		if (r)
4567			goto bad;
4568
4569	}
4570
4571	if (ic->mode == 'B') {
4572		unsigned int i;
4573		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4574
4575		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4576		if (!ic->recalc_bitmap) {
4577			r = -ENOMEM;
4578			goto bad;
4579		}
4580		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4581		if (!ic->may_write_bitmap) {
4582			r = -ENOMEM;
4583			goto bad;
4584		}
4585		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4586		if (!ic->bbs) {
4587			r = -ENOMEM;
4588			goto bad;
4589		}
4590		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4591		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4592			struct bitmap_block_status *bbs = &ic->bbs[i];
4593			unsigned int sector, pl_index, pl_offset;
4594
4595			INIT_WORK(&bbs->work, bitmap_block_work);
4596			bbs->ic = ic;
4597			bbs->idx = i;
4598			bio_list_init(&bbs->bio_queue);
4599			spin_lock_init(&bbs->bio_queue_lock);
4600
4601			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4602			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4603			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4604
4605			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4606		}
4607	}
4608
4609	if (should_write_sb) {
4610		init_journal(ic, 0, ic->journal_sections, 0);
4611		r = dm_integrity_failed(ic);
4612		if (unlikely(r)) {
4613			ti->error = "Error initializing journal";
4614			goto bad;
4615		}
4616		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4617		if (r) {
4618			ti->error = "Error initializing superblock";
4619			goto bad;
4620		}
4621		ic->just_formatted = true;
4622	}
4623
4624	if (!ic->meta_dev) {
4625		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4626		if (r)
4627			goto bad;
4628	}
4629	if (ic->mode == 'B') {
4630		unsigned int max_io_len;
4631
4632		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4633		if (!max_io_len)
4634			max_io_len = 1U << 31;
4635		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4636		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4637			r = dm_set_target_max_io_len(ti, max_io_len);
4638			if (r)
4639				goto bad;
4640		}
4641	}
4642
4643	if (!ic->internal_hash)
4644		dm_integrity_set(ti, ic);
4645
4646	ti->num_flush_bios = 1;
4647	ti->flush_supported = true;
4648	if (ic->discard)
4649		ti->num_discard_bios = 1;
4650
 
 
 
4651	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4652	return 0;
4653
4654bad:
4655	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4656	dm_integrity_dtr(ti);
4657	return r;
4658}
4659
4660static void dm_integrity_dtr(struct dm_target *ti)
4661{
4662	struct dm_integrity_c *ic = ti->private;
4663
4664	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4665	BUG_ON(!list_empty(&ic->wait_list));
4666
4667	if (ic->mode == 'B')
4668		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4669	if (ic->metadata_wq)
4670		destroy_workqueue(ic->metadata_wq);
4671	if (ic->wait_wq)
4672		destroy_workqueue(ic->wait_wq);
4673	if (ic->offload_wq)
4674		destroy_workqueue(ic->offload_wq);
4675	if (ic->commit_wq)
4676		destroy_workqueue(ic->commit_wq);
4677	if (ic->writer_wq)
4678		destroy_workqueue(ic->writer_wq);
4679	if (ic->recalc_wq)
4680		destroy_workqueue(ic->recalc_wq);
4681	kvfree(ic->bbs);
4682	if (ic->bufio)
4683		dm_bufio_client_destroy(ic->bufio);
 
 
4684	mempool_exit(&ic->recheck_pool);
4685	mempool_exit(&ic->journal_io_mempool);
4686	if (ic->io)
4687		dm_io_client_destroy(ic->io);
4688	if (ic->dev)
4689		dm_put_device(ti, ic->dev);
4690	if (ic->meta_dev)
4691		dm_put_device(ti, ic->meta_dev);
4692	dm_integrity_free_page_list(ic->journal);
4693	dm_integrity_free_page_list(ic->journal_io);
4694	dm_integrity_free_page_list(ic->journal_xor);
4695	dm_integrity_free_page_list(ic->recalc_bitmap);
4696	dm_integrity_free_page_list(ic->may_write_bitmap);
4697	if (ic->journal_scatterlist)
4698		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4699	if (ic->journal_io_scatterlist)
4700		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4701	if (ic->sk_requests) {
4702		unsigned int i;
4703
4704		for (i = 0; i < ic->journal_sections; i++) {
4705			struct skcipher_request *req;
4706
4707			req = ic->sk_requests[i];
4708			if (req) {
4709				kfree_sensitive(req->iv);
4710				skcipher_request_free(req);
4711			}
4712		}
4713		kvfree(ic->sk_requests);
4714	}
4715	kvfree(ic->journal_tree);
4716	if (ic->sb)
4717		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4718
4719	if (ic->internal_hash)
4720		crypto_free_shash(ic->internal_hash);
4721	free_alg(&ic->internal_hash_alg);
4722
4723	if (ic->journal_crypt)
4724		crypto_free_skcipher(ic->journal_crypt);
4725	free_alg(&ic->journal_crypt_alg);
4726
4727	if (ic->journal_mac)
4728		crypto_free_shash(ic->journal_mac);
4729	free_alg(&ic->journal_mac_alg);
4730
4731	kfree(ic);
4732	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4733}
4734
4735static struct target_type integrity_target = {
4736	.name			= "integrity",
4737	.version		= {1, 11, 0},
4738	.module			= THIS_MODULE,
4739	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4740	.ctr			= dm_integrity_ctr,
4741	.dtr			= dm_integrity_dtr,
4742	.map			= dm_integrity_map,
 
4743	.postsuspend		= dm_integrity_postsuspend,
4744	.resume			= dm_integrity_resume,
4745	.status			= dm_integrity_status,
4746	.iterate_devices	= dm_integrity_iterate_devices,
4747	.io_hints		= dm_integrity_io_hints,
4748};
4749
4750static int __init dm_integrity_init(void)
4751{
4752	int r;
4753
4754	journal_io_cache = kmem_cache_create("integrity_journal_io",
4755					     sizeof(struct journal_io), 0, 0, NULL);
4756	if (!journal_io_cache) {
4757		DMERR("can't allocate journal io cache");
4758		return -ENOMEM;
4759	}
4760
4761	r = dm_register_target(&integrity_target);
4762	if (r < 0) {
4763		kmem_cache_destroy(journal_io_cache);
4764		return r;
4765	}
4766
4767	return 0;
4768}
4769
4770static void __exit dm_integrity_exit(void)
4771{
4772	dm_unregister_target(&integrity_target);
4773	kmem_cache_destroy(journal_io_cache);
4774}
4775
4776module_init(dm_integrity_init);
4777module_exit(dm_integrity_exit);
4778
4779MODULE_AUTHOR("Milan Broz");
4780MODULE_AUTHOR("Mikulas Patocka");
4781MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4782MODULE_LICENSE("GPL");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
   4 * Copyright (C) 2016-2017 Milan Broz
   5 * Copyright (C) 2016-2017 Mikulas Patocka
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include "dm-bio-record.h"
  11
  12#include <linux/compiler.h>
  13#include <linux/module.h>
  14#include <linux/device-mapper.h>
  15#include <linux/dm-io.h>
  16#include <linux/vmalloc.h>
  17#include <linux/sort.h>
  18#include <linux/rbtree.h>
  19#include <linux/delay.h>
  20#include <linux/random.h>
  21#include <linux/reboot.h>
  22#include <crypto/hash.h>
  23#include <crypto/skcipher.h>
  24#include <linux/async_tx.h>
  25#include <linux/dm-bufio.h>
  26
  27#include "dm-audit.h"
  28
  29#define DM_MSG_PREFIX "integrity"
  30
  31#define DEFAULT_INTERLEAVE_SECTORS	32768
  32#define DEFAULT_JOURNAL_SIZE_FACTOR	7
  33#define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
  34#define DEFAULT_BUFFER_SECTORS		128
  35#define DEFAULT_JOURNAL_WATERMARK	50
  36#define DEFAULT_SYNC_MSEC		10000
  37#define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
  38#define MIN_LOG2_INTERLEAVE_SECTORS	3
  39#define MAX_LOG2_INTERLEAVE_SECTORS	31
  40#define METADATA_WORKQUEUE_MAX_ACTIVE	16
  41#define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
  42#define RECALC_WRITE_SUPER		16
  43#define BITMAP_BLOCK_SIZE		4096	/* don't change it */
  44#define BITMAP_FLUSH_INTERVAL		(10 * HZ)
  45#define DISCARD_FILLER			0xf6
  46#define SALT_SIZE			16
  47#define RECHECK_POOL_SIZE		256
  48
  49/*
  50 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
  51 * so it should not be enabled in the official kernel
  52 */
  53//#define DEBUG_PRINT
  54//#define INTERNAL_VERIFY
  55
  56/*
  57 * On disk structures
  58 */
  59
  60#define SB_MAGIC			"integrt"
  61#define SB_VERSION_1			1
  62#define SB_VERSION_2			2
  63#define SB_VERSION_3			3
  64#define SB_VERSION_4			4
  65#define SB_VERSION_5			5
  66#define SB_VERSION_6			6
  67#define SB_SECTORS			8
  68#define MAX_SECTORS_PER_BLOCK		8
  69
  70struct superblock {
  71	__u8 magic[8];
  72	__u8 version;
  73	__u8 log2_interleave_sectors;
  74	__le16 integrity_tag_size;
  75	__le32 journal_sections;
  76	__le64 provided_data_sectors;	/* userspace uses this value */
  77	__le32 flags;
  78	__u8 log2_sectors_per_block;
  79	__u8 log2_blocks_per_bitmap_bit;
  80	__u8 pad[2];
  81	__le64 recalc_sector;
  82	__u8 pad2[8];
  83	__u8 salt[SALT_SIZE];
  84};
  85
  86#define SB_FLAG_HAVE_JOURNAL_MAC	0x1
  87#define SB_FLAG_RECALCULATING		0x2
  88#define SB_FLAG_DIRTY_BITMAP		0x4
  89#define SB_FLAG_FIXED_PADDING		0x8
  90#define SB_FLAG_FIXED_HMAC		0x10
  91#define SB_FLAG_INLINE			0x20
  92
  93#define	JOURNAL_ENTRY_ROUNDUP		8
  94
  95typedef __le64 commit_id_t;
  96#define JOURNAL_MAC_PER_SECTOR		8
  97
  98struct journal_entry {
  99	union {
 100		struct {
 101			__le32 sector_lo;
 102			__le32 sector_hi;
 103		} s;
 104		__le64 sector;
 105	} u;
 106	commit_id_t last_bytes[];
 107	/* __u8 tag[0]; */
 108};
 109
 110#define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
 111
 112#if BITS_PER_LONG == 64
 113#define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
 114#else
 115#define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
 116#endif
 117#define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
 118#define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
 119#define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
 120#define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
 121#define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
 122
 123#define JOURNAL_BLOCK_SECTORS		8
 124#define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
 125#define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
 126
 127struct journal_sector {
 128	struct_group(sectors,
 129		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
 130		__u8 mac[JOURNAL_MAC_PER_SECTOR];
 131	);
 132	commit_id_t commit_id;
 133};
 134
 135#define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
 136
 137#define METADATA_PADDING_SECTORS	8
 138
 139#define N_COMMIT_IDS			4
 140
 141static unsigned char prev_commit_seq(unsigned char seq)
 142{
 143	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
 144}
 145
 146static unsigned char next_commit_seq(unsigned char seq)
 147{
 148	return (seq + 1) % N_COMMIT_IDS;
 149}
 150
 151/*
 152 * In-memory structures
 153 */
 154
 155struct journal_node {
 156	struct rb_node node;
 157	sector_t sector;
 158};
 159
 160struct alg_spec {
 161	char *alg_string;
 162	char *key_string;
 163	__u8 *key;
 164	unsigned int key_size;
 165};
 166
 167struct dm_integrity_c {
 168	struct dm_dev *dev;
 169	struct dm_dev *meta_dev;
 170	unsigned int tag_size;
 171	__s8 log2_tag_size;
 172	unsigned int tuple_size;
 173	sector_t start;
 174	mempool_t journal_io_mempool;
 175	struct dm_io_client *io;
 176	struct dm_bufio_client *bufio;
 177	struct workqueue_struct *metadata_wq;
 178	struct superblock *sb;
 179	unsigned int journal_pages;
 180	unsigned int n_bitmap_blocks;
 181
 182	struct page_list *journal;
 183	struct page_list *journal_io;
 184	struct page_list *journal_xor;
 185	struct page_list *recalc_bitmap;
 186	struct page_list *may_write_bitmap;
 187	struct bitmap_block_status *bbs;
 188	unsigned int bitmap_flush_interval;
 189	int synchronous_mode;
 190	struct bio_list synchronous_bios;
 191	struct delayed_work bitmap_flush_work;
 192
 193	struct crypto_skcipher *journal_crypt;
 194	struct scatterlist **journal_scatterlist;
 195	struct scatterlist **journal_io_scatterlist;
 196	struct skcipher_request **sk_requests;
 197
 198	struct crypto_shash *journal_mac;
 199
 200	struct journal_node *journal_tree;
 201	struct rb_root journal_tree_root;
 202
 203	sector_t provided_data_sectors;
 204
 205	unsigned short journal_entry_size;
 206	unsigned char journal_entries_per_sector;
 207	unsigned char journal_section_entries;
 208	unsigned short journal_section_sectors;
 209	unsigned int journal_sections;
 210	unsigned int journal_entries;
 211	sector_t data_device_sectors;
 212	sector_t meta_device_sectors;
 213	unsigned int initial_sectors;
 214	unsigned int metadata_run;
 215	__s8 log2_metadata_run;
 216	__u8 log2_buffer_sectors;
 217	__u8 sectors_per_block;
 218	__u8 log2_blocks_per_bitmap_bit;
 219
 220	unsigned char mode;
 221
 222	int failed;
 223
 224	struct crypto_shash *internal_hash;
 225
 226	struct dm_target *ti;
 227
 228	/* these variables are locked with endio_wait.lock */
 229	struct rb_root in_progress;
 230	struct list_head wait_list;
 231	wait_queue_head_t endio_wait;
 232	struct workqueue_struct *wait_wq;
 233	struct workqueue_struct *offload_wq;
 234
 235	unsigned char commit_seq;
 236	commit_id_t commit_ids[N_COMMIT_IDS];
 237
 238	unsigned int committed_section;
 239	unsigned int n_committed_sections;
 240
 241	unsigned int uncommitted_section;
 242	unsigned int n_uncommitted_sections;
 243
 244	unsigned int free_section;
 245	unsigned char free_section_entry;
 246	unsigned int free_sectors;
 247
 248	unsigned int free_sectors_threshold;
 249
 250	struct workqueue_struct *commit_wq;
 251	struct work_struct commit_work;
 252
 253	struct workqueue_struct *writer_wq;
 254	struct work_struct writer_work;
 255
 256	struct workqueue_struct *recalc_wq;
 257	struct work_struct recalc_work;
 258
 259	struct bio_list flush_bio_list;
 260
 261	unsigned long autocommit_jiffies;
 262	struct timer_list autocommit_timer;
 263	unsigned int autocommit_msec;
 264
 265	wait_queue_head_t copy_to_journal_wait;
 266
 267	struct completion crypto_backoff;
 268
 269	bool wrote_to_journal;
 270	bool journal_uptodate;
 271	bool just_formatted;
 272	bool recalculate_flag;
 273	bool reset_recalculate_flag;
 274	bool discard;
 275	bool fix_padding;
 276	bool fix_hmac;
 277	bool legacy_recalculate;
 278
 279	struct alg_spec internal_hash_alg;
 280	struct alg_spec journal_crypt_alg;
 281	struct alg_spec journal_mac_alg;
 282
 283	atomic64_t number_of_mismatches;
 284
 285	mempool_t recheck_pool;
 286	struct bio_set recheck_bios;
 287	struct bio_set recalc_bios;
 288
 289	struct notifier_block reboot_notifier;
 290};
 291
 292struct dm_integrity_range {
 293	sector_t logical_sector;
 294	sector_t n_sectors;
 295	bool waiting;
 296	union {
 297		struct rb_node node;
 298		struct {
 299			struct task_struct *task;
 300			struct list_head wait_entry;
 301		};
 302	};
 303};
 304
 305struct dm_integrity_io {
 306	struct work_struct work;
 307
 308	struct dm_integrity_c *ic;
 309	enum req_op op;
 310	bool fua;
 311
 312	struct dm_integrity_range range;
 313
 314	sector_t metadata_block;
 315	unsigned int metadata_offset;
 316
 317	atomic_t in_flight;
 318	blk_status_t bi_status;
 319
 320	struct completion *completion;
 321
 322	struct dm_bio_details bio_details;
 323
 324	char *integrity_payload;
 325	unsigned payload_len;
 326	bool integrity_payload_from_mempool;
 327	bool integrity_range_locked;
 328};
 329
 330struct journal_completion {
 331	struct dm_integrity_c *ic;
 332	atomic_t in_flight;
 333	struct completion comp;
 334};
 335
 336struct journal_io {
 337	struct dm_integrity_range range;
 338	struct journal_completion *comp;
 339};
 340
 341struct bitmap_block_status {
 342	struct work_struct work;
 343	struct dm_integrity_c *ic;
 344	unsigned int idx;
 345	unsigned long *bitmap;
 346	struct bio_list bio_queue;
 347	spinlock_t bio_queue_lock;
 348
 349};
 350
 351static struct kmem_cache *journal_io_cache;
 352
 353#define JOURNAL_IO_MEMPOOL	32
 354
 355#ifdef DEBUG_PRINT
 356#define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
 357#define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
 358						       len ? ": " : "", len, bytes)
 359#else
 360#define DEBUG_print(x, ...)			do { } while (0)
 361#define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
 362#endif
 363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 364static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
 365static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map);
 366static void integrity_bio_wait(struct work_struct *w);
 367static void dm_integrity_dtr(struct dm_target *ti);
 368
 369static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
 370{
 371	if (err == -EILSEQ)
 372		atomic64_inc(&ic->number_of_mismatches);
 373	if (!cmpxchg(&ic->failed, 0, err))
 374		DMERR("Error on %s: %d", msg, err);
 375}
 376
 377static int dm_integrity_failed(struct dm_integrity_c *ic)
 378{
 379	return READ_ONCE(ic->failed);
 380}
 381
 382static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
 383{
 384	if (ic->legacy_recalculate)
 385		return false;
 386	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
 387	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
 388	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
 389		return true;
 390	return false;
 391}
 392
 393static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
 394					  unsigned int j, unsigned char seq)
 395{
 396	/*
 397	 * Xor the number with section and sector, so that if a piece of
 398	 * journal is written at wrong place, it is detected.
 399	 */
 400	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
 401}
 402
 403static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
 404				sector_t *area, sector_t *offset)
 405{
 406	if (!ic->meta_dev) {
 407		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
 408		*area = data_sector >> log2_interleave_sectors;
 409		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
 410	} else {
 411		*area = 0;
 412		*offset = data_sector;
 413	}
 414}
 415
 416#define sector_to_block(ic, n)						\
 417do {									\
 418	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
 419	(n) >>= (ic)->sb->log2_sectors_per_block;			\
 420} while (0)
 421
 422static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
 423					    sector_t offset, unsigned int *metadata_offset)
 424{
 425	__u64 ms;
 426	unsigned int mo;
 427
 428	ms = area << ic->sb->log2_interleave_sectors;
 429	if (likely(ic->log2_metadata_run >= 0))
 430		ms += area << ic->log2_metadata_run;
 431	else
 432		ms += area * ic->metadata_run;
 433	ms >>= ic->log2_buffer_sectors;
 434
 435	sector_to_block(ic, offset);
 436
 437	if (likely(ic->log2_tag_size >= 0)) {
 438		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
 439		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
 440	} else {
 441		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
 442		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
 443	}
 444	*metadata_offset = mo;
 445	return ms;
 446}
 447
 448static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
 449{
 450	sector_t result;
 451
 452	if (ic->meta_dev)
 453		return offset;
 454
 455	result = area << ic->sb->log2_interleave_sectors;
 456	if (likely(ic->log2_metadata_run >= 0))
 457		result += (area + 1) << ic->log2_metadata_run;
 458	else
 459		result += (area + 1) * ic->metadata_run;
 460
 461	result += (sector_t)ic->initial_sectors + offset;
 462	result += ic->start;
 463
 464	return result;
 465}
 466
 467static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
 468{
 469	if (unlikely(*sec_ptr >= ic->journal_sections))
 470		*sec_ptr -= ic->journal_sections;
 471}
 472
 473static void sb_set_version(struct dm_integrity_c *ic)
 474{
 475	if (ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE))
 476		ic->sb->version = SB_VERSION_6;
 477	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
 478		ic->sb->version = SB_VERSION_5;
 479	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
 480		ic->sb->version = SB_VERSION_4;
 481	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
 482		ic->sb->version = SB_VERSION_3;
 483	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
 484		ic->sb->version = SB_VERSION_2;
 485	else
 486		ic->sb->version = SB_VERSION_1;
 487}
 488
 489static int sb_mac(struct dm_integrity_c *ic, bool wr)
 490{
 491	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
 492	int r;
 493	unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
 494	__u8 *sb = (__u8 *)ic->sb;
 495	__u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
 496
 497	if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT ||
 498	    mac_size > HASH_MAX_DIGESTSIZE) {
 499		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
 500		return -EINVAL;
 501	}
 502
 503	desc->tfm = ic->journal_mac;
 504
 505	if (likely(wr)) {
 506		r = crypto_shash_digest(desc, sb, mac - sb, mac);
 507		if (unlikely(r < 0)) {
 508			dm_integrity_io_error(ic, "crypto_shash_digest", r);
 509			return r;
 510		}
 511	} else {
 512		__u8 actual_mac[HASH_MAX_DIGESTSIZE];
 513
 514		r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
 515		if (unlikely(r < 0)) {
 516			dm_integrity_io_error(ic, "crypto_shash_digest", r);
 517			return r;
 518		}
 519		if (memcmp(mac, actual_mac, mac_size)) {
 520			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
 521			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
 522			return -EILSEQ;
 523		}
 524	}
 525
 526	return 0;
 527}
 528
 529static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
 530{
 531	struct dm_io_request io_req;
 532	struct dm_io_region io_loc;
 533	const enum req_op op = opf & REQ_OP_MASK;
 534	int r;
 535
 536	io_req.bi_opf = opf;
 537	io_req.mem.type = DM_IO_KMEM;
 538	io_req.mem.ptr.addr = ic->sb;
 539	io_req.notify.fn = NULL;
 540	io_req.client = ic->io;
 541	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
 542	io_loc.sector = ic->start;
 543	io_loc.count = SB_SECTORS;
 544
 545	if (op == REQ_OP_WRITE) {
 546		sb_set_version(ic);
 547		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
 548			r = sb_mac(ic, true);
 549			if (unlikely(r))
 550				return r;
 551		}
 552	}
 553
 554	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
 555	if (unlikely(r))
 556		return r;
 557
 558	if (op == REQ_OP_READ) {
 559		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
 560			r = sb_mac(ic, false);
 561			if (unlikely(r))
 562				return r;
 563		}
 564	}
 565
 566	return 0;
 567}
 568
 569#define BITMAP_OP_TEST_ALL_SET		0
 570#define BITMAP_OP_TEST_ALL_CLEAR	1
 571#define BITMAP_OP_SET			2
 572#define BITMAP_OP_CLEAR			3
 573
 574static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
 575			    sector_t sector, sector_t n_sectors, int mode)
 576{
 577	unsigned long bit, end_bit, this_end_bit, page, end_page;
 578	unsigned long *data;
 579
 580	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
 581		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
 582			sector,
 583			n_sectors,
 584			ic->sb->log2_sectors_per_block,
 585			ic->log2_blocks_per_bitmap_bit,
 586			mode);
 587		BUG();
 588	}
 589
 590	if (unlikely(!n_sectors))
 591		return true;
 592
 593	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 594	end_bit = (sector + n_sectors - 1) >>
 595		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 596
 597	page = bit / (PAGE_SIZE * 8);
 598	bit %= PAGE_SIZE * 8;
 599
 600	end_page = end_bit / (PAGE_SIZE * 8);
 601	end_bit %= PAGE_SIZE * 8;
 602
 603repeat:
 604	if (page < end_page)
 605		this_end_bit = PAGE_SIZE * 8 - 1;
 606	else
 607		this_end_bit = end_bit;
 608
 609	data = lowmem_page_address(bitmap[page].page);
 610
 611	if (mode == BITMAP_OP_TEST_ALL_SET) {
 612		while (bit <= this_end_bit) {
 613			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 614				do {
 615					if (data[bit / BITS_PER_LONG] != -1)
 616						return false;
 617					bit += BITS_PER_LONG;
 618				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 619				continue;
 620			}
 621			if (!test_bit(bit, data))
 622				return false;
 623			bit++;
 624		}
 625	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
 626		while (bit <= this_end_bit) {
 627			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 628				do {
 629					if (data[bit / BITS_PER_LONG] != 0)
 630						return false;
 631					bit += BITS_PER_LONG;
 632				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 633				continue;
 634			}
 635			if (test_bit(bit, data))
 636				return false;
 637			bit++;
 638		}
 639	} else if (mode == BITMAP_OP_SET) {
 640		while (bit <= this_end_bit) {
 641			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 642				do {
 643					data[bit / BITS_PER_LONG] = -1;
 644					bit += BITS_PER_LONG;
 645				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 646				continue;
 647			}
 648			__set_bit(bit, data);
 649			bit++;
 650		}
 651	} else if (mode == BITMAP_OP_CLEAR) {
 652		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
 653			clear_page(data);
 654		else {
 655			while (bit <= this_end_bit) {
 656				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 657					do {
 658						data[bit / BITS_PER_LONG] = 0;
 659						bit += BITS_PER_LONG;
 660					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 661					continue;
 662				}
 663				__clear_bit(bit, data);
 664				bit++;
 665			}
 666		}
 667	} else {
 668		BUG();
 669	}
 670
 671	if (unlikely(page < end_page)) {
 672		bit = 0;
 673		page++;
 674		goto repeat;
 675	}
 676
 677	return true;
 678}
 679
 680static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
 681{
 682	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
 683	unsigned int i;
 684
 685	for (i = 0; i < n_bitmap_pages; i++) {
 686		unsigned long *dst_data = lowmem_page_address(dst[i].page);
 687		unsigned long *src_data = lowmem_page_address(src[i].page);
 688
 689		copy_page(dst_data, src_data);
 690	}
 691}
 692
 693static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
 694{
 695	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 696	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
 697
 698	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
 699	return &ic->bbs[bitmap_block];
 700}
 701
 702static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
 703				 bool e, const char *function)
 704{
 705#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
 706	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
 707
 708	if (unlikely(section >= ic->journal_sections) ||
 709	    unlikely(offset >= limit)) {
 710		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
 711		       function, section, offset, ic->journal_sections, limit);
 712		BUG();
 713	}
 714#endif
 715}
 716
 717static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
 718			       unsigned int *pl_index, unsigned int *pl_offset)
 719{
 720	unsigned int sector;
 721
 722	access_journal_check(ic, section, offset, false, "page_list_location");
 723
 724	sector = section * ic->journal_section_sectors + offset;
 725
 726	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
 727	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
 728}
 729
 730static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
 731					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
 732{
 733	unsigned int pl_index, pl_offset;
 734	char *va;
 735
 736	page_list_location(ic, section, offset, &pl_index, &pl_offset);
 737
 738	if (n_sectors)
 739		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
 740
 741	va = lowmem_page_address(pl[pl_index].page);
 742
 743	return (struct journal_sector *)(va + pl_offset);
 744}
 745
 746static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
 747{
 748	return access_page_list(ic, ic->journal, section, offset, NULL);
 749}
 750
 751static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
 752{
 753	unsigned int rel_sector, offset;
 754	struct journal_sector *js;
 755
 756	access_journal_check(ic, section, n, true, "access_journal_entry");
 757
 758	rel_sector = n % JOURNAL_BLOCK_SECTORS;
 759	offset = n / JOURNAL_BLOCK_SECTORS;
 760
 761	js = access_journal(ic, section, rel_sector);
 762	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
 763}
 764
 765static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
 766{
 767	n <<= ic->sb->log2_sectors_per_block;
 768
 769	n += JOURNAL_BLOCK_SECTORS;
 770
 771	access_journal_check(ic, section, n, false, "access_journal_data");
 772
 773	return access_journal(ic, section, n);
 774}
 775
 776static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
 777{
 778	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
 779	int r;
 780	unsigned int j, size;
 781
 782	desc->tfm = ic->journal_mac;
 783
 784	r = crypto_shash_init(desc);
 785	if (unlikely(r < 0)) {
 786		dm_integrity_io_error(ic, "crypto_shash_init", r);
 787		goto err;
 788	}
 789
 790	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
 791		__le64 section_le;
 792
 793		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
 794		if (unlikely(r < 0)) {
 795			dm_integrity_io_error(ic, "crypto_shash_update", r);
 796			goto err;
 797		}
 798
 799		section_le = cpu_to_le64(section);
 800		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
 801		if (unlikely(r < 0)) {
 802			dm_integrity_io_error(ic, "crypto_shash_update", r);
 803			goto err;
 804		}
 805	}
 806
 807	for (j = 0; j < ic->journal_section_entries; j++) {
 808		struct journal_entry *je = access_journal_entry(ic, section, j);
 809
 810		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
 811		if (unlikely(r < 0)) {
 812			dm_integrity_io_error(ic, "crypto_shash_update", r);
 813			goto err;
 814		}
 815	}
 816
 817	size = crypto_shash_digestsize(ic->journal_mac);
 818
 819	if (likely(size <= JOURNAL_MAC_SIZE)) {
 820		r = crypto_shash_final(desc, result);
 821		if (unlikely(r < 0)) {
 822			dm_integrity_io_error(ic, "crypto_shash_final", r);
 823			goto err;
 824		}
 825		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
 826	} else {
 827		__u8 digest[HASH_MAX_DIGESTSIZE];
 828
 829		if (WARN_ON(size > sizeof(digest))) {
 830			dm_integrity_io_error(ic, "digest_size", -EINVAL);
 831			goto err;
 832		}
 833		r = crypto_shash_final(desc, digest);
 834		if (unlikely(r < 0)) {
 835			dm_integrity_io_error(ic, "crypto_shash_final", r);
 836			goto err;
 837		}
 838		memcpy(result, digest, JOURNAL_MAC_SIZE);
 839	}
 840
 841	return;
 842err:
 843	memset(result, 0, JOURNAL_MAC_SIZE);
 844}
 845
 846static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
 847{
 848	__u8 result[JOURNAL_MAC_SIZE];
 849	unsigned int j;
 850
 851	if (!ic->journal_mac)
 852		return;
 853
 854	section_mac(ic, section, result);
 855
 856	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
 857		struct journal_sector *js = access_journal(ic, section, j);
 858
 859		if (likely(wr))
 860			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
 861		else {
 862			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
 863				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
 864				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
 865			}
 866		}
 867	}
 868}
 869
 870static void complete_journal_op(void *context)
 871{
 872	struct journal_completion *comp = context;
 873
 874	BUG_ON(!atomic_read(&comp->in_flight));
 875	if (likely(atomic_dec_and_test(&comp->in_flight)))
 876		complete(&comp->comp);
 877}
 878
 879static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
 880			unsigned int n_sections, struct journal_completion *comp)
 881{
 882	struct async_submit_ctl submit;
 883	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
 884	unsigned int pl_index, pl_offset, section_index;
 885	struct page_list *source_pl, *target_pl;
 886
 887	if (likely(encrypt)) {
 888		source_pl = ic->journal;
 889		target_pl = ic->journal_io;
 890	} else {
 891		source_pl = ic->journal_io;
 892		target_pl = ic->journal;
 893	}
 894
 895	page_list_location(ic, section, 0, &pl_index, &pl_offset);
 896
 897	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
 898
 899	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
 900
 901	section_index = pl_index;
 902
 903	do {
 904		size_t this_step;
 905		struct page *src_pages[2];
 906		struct page *dst_page;
 907
 908		while (unlikely(pl_index == section_index)) {
 909			unsigned int dummy;
 910
 911			if (likely(encrypt))
 912				rw_section_mac(ic, section, true);
 913			section++;
 914			n_sections--;
 915			if (!n_sections)
 916				break;
 917			page_list_location(ic, section, 0, &section_index, &dummy);
 918		}
 919
 920		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
 921		dst_page = target_pl[pl_index].page;
 922		src_pages[0] = source_pl[pl_index].page;
 923		src_pages[1] = ic->journal_xor[pl_index].page;
 924
 925		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
 926
 927		pl_index++;
 928		pl_offset = 0;
 929		n_bytes -= this_step;
 930	} while (n_bytes);
 931
 932	BUG_ON(n_sections);
 933
 934	async_tx_issue_pending_all();
 935}
 936
 937static void complete_journal_encrypt(void *data, int err)
 938{
 939	struct journal_completion *comp = data;
 940
 941	if (unlikely(err)) {
 942		if (likely(err == -EINPROGRESS)) {
 943			complete(&comp->ic->crypto_backoff);
 944			return;
 945		}
 946		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
 947	}
 948	complete_journal_op(comp);
 949}
 950
 951static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
 952{
 953	int r;
 954
 955	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 956				      complete_journal_encrypt, comp);
 957	if (likely(encrypt))
 958		r = crypto_skcipher_encrypt(req);
 959	else
 960		r = crypto_skcipher_decrypt(req);
 961	if (likely(!r))
 962		return false;
 963	if (likely(r == -EINPROGRESS))
 964		return true;
 965	if (likely(r == -EBUSY)) {
 966		wait_for_completion(&comp->ic->crypto_backoff);
 967		reinit_completion(&comp->ic->crypto_backoff);
 968		return true;
 969	}
 970	dm_integrity_io_error(comp->ic, "encrypt", r);
 971	return false;
 972}
 973
 974static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
 975			  unsigned int n_sections, struct journal_completion *comp)
 976{
 977	struct scatterlist **source_sg;
 978	struct scatterlist **target_sg;
 979
 980	atomic_add(2, &comp->in_flight);
 981
 982	if (likely(encrypt)) {
 983		source_sg = ic->journal_scatterlist;
 984		target_sg = ic->journal_io_scatterlist;
 985	} else {
 986		source_sg = ic->journal_io_scatterlist;
 987		target_sg = ic->journal_scatterlist;
 988	}
 989
 990	do {
 991		struct skcipher_request *req;
 992		unsigned int ivsize;
 993		char *iv;
 994
 995		if (likely(encrypt))
 996			rw_section_mac(ic, section, true);
 997
 998		req = ic->sk_requests[section];
 999		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1000		iv = req->iv;
1001
1002		memcpy(iv, iv + ivsize, ivsize);
1003
1004		req->src = source_sg[section];
1005		req->dst = target_sg[section];
1006
1007		if (unlikely(do_crypt(encrypt, req, comp)))
1008			atomic_inc(&comp->in_flight);
1009
1010		section++;
1011		n_sections--;
1012	} while (n_sections);
1013
1014	atomic_dec(&comp->in_flight);
1015	complete_journal_op(comp);
1016}
1017
1018static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1019			    unsigned int n_sections, struct journal_completion *comp)
1020{
1021	if (ic->journal_xor)
1022		return xor_journal(ic, encrypt, section, n_sections, comp);
1023	else
1024		return crypt_journal(ic, encrypt, section, n_sections, comp);
1025}
1026
1027static void complete_journal_io(unsigned long error, void *context)
1028{
1029	struct journal_completion *comp = context;
1030
1031	if (unlikely(error != 0))
1032		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1033	complete_journal_op(comp);
1034}
1035
1036static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1037			       unsigned int sector, unsigned int n_sectors,
1038			       struct journal_completion *comp)
1039{
1040	struct dm_io_request io_req;
1041	struct dm_io_region io_loc;
1042	unsigned int pl_index, pl_offset;
1043	int r;
1044
1045	if (unlikely(dm_integrity_failed(ic))) {
1046		if (comp)
1047			complete_journal_io(-1UL, comp);
1048		return;
1049	}
1050
1051	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1052	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1053
1054	io_req.bi_opf = opf;
1055	io_req.mem.type = DM_IO_PAGE_LIST;
1056	if (ic->journal_io)
1057		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1058	else
1059		io_req.mem.ptr.pl = &ic->journal[pl_index];
1060	io_req.mem.offset = pl_offset;
1061	if (likely(comp != NULL)) {
1062		io_req.notify.fn = complete_journal_io;
1063		io_req.notify.context = comp;
1064	} else {
1065		io_req.notify.fn = NULL;
1066	}
1067	io_req.client = ic->io;
1068	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1069	io_loc.sector = ic->start + SB_SECTORS + sector;
1070	io_loc.count = n_sectors;
1071
1072	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1073	if (unlikely(r)) {
1074		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1075				      "reading journal" : "writing journal", r);
1076		if (comp) {
1077			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1078			complete_journal_io(-1UL, comp);
1079		}
1080	}
1081}
1082
1083static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1084		       unsigned int section, unsigned int n_sections,
1085		       struct journal_completion *comp)
1086{
1087	unsigned int sector, n_sectors;
1088
1089	sector = section * ic->journal_section_sectors;
1090	n_sectors = n_sections * ic->journal_section_sectors;
1091
1092	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1093}
1094
1095static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1096{
1097	struct journal_completion io_comp;
1098	struct journal_completion crypt_comp_1;
1099	struct journal_completion crypt_comp_2;
1100	unsigned int i;
1101
1102	io_comp.ic = ic;
1103	init_completion(&io_comp.comp);
1104
1105	if (commit_start + commit_sections <= ic->journal_sections) {
1106		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1107		if (ic->journal_io) {
1108			crypt_comp_1.ic = ic;
1109			init_completion(&crypt_comp_1.comp);
1110			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1111			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1112			wait_for_completion_io(&crypt_comp_1.comp);
1113		} else {
1114			for (i = 0; i < commit_sections; i++)
1115				rw_section_mac(ic, commit_start + i, true);
1116		}
1117		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1118			   commit_sections, &io_comp);
1119	} else {
1120		unsigned int to_end;
1121
1122		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1123		to_end = ic->journal_sections - commit_start;
1124		if (ic->journal_io) {
1125			crypt_comp_1.ic = ic;
1126			init_completion(&crypt_comp_1.comp);
1127			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1128			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1129			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1130				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1131					   commit_start, to_end, &io_comp);
1132				reinit_completion(&crypt_comp_1.comp);
1133				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1134				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1135				wait_for_completion_io(&crypt_comp_1.comp);
1136			} else {
1137				crypt_comp_2.ic = ic;
1138				init_completion(&crypt_comp_2.comp);
1139				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1140				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1141				wait_for_completion_io(&crypt_comp_1.comp);
1142				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1143				wait_for_completion_io(&crypt_comp_2.comp);
1144			}
1145		} else {
1146			for (i = 0; i < to_end; i++)
1147				rw_section_mac(ic, commit_start + i, true);
1148			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1149			for (i = 0; i < commit_sections - to_end; i++)
1150				rw_section_mac(ic, i, true);
1151		}
1152		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1153	}
1154
1155	wait_for_completion_io(&io_comp.comp);
1156}
1157
1158static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1159			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1160{
1161	struct dm_io_request io_req;
1162	struct dm_io_region io_loc;
1163	int r;
1164	unsigned int sector, pl_index, pl_offset;
1165
1166	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1167
1168	if (unlikely(dm_integrity_failed(ic))) {
1169		fn(-1UL, data);
1170		return;
1171	}
1172
1173	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1174
1175	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1176	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1177
1178	io_req.bi_opf = REQ_OP_WRITE;
1179	io_req.mem.type = DM_IO_PAGE_LIST;
1180	io_req.mem.ptr.pl = &ic->journal[pl_index];
1181	io_req.mem.offset = pl_offset;
1182	io_req.notify.fn = fn;
1183	io_req.notify.context = data;
1184	io_req.client = ic->io;
1185	io_loc.bdev = ic->dev->bdev;
1186	io_loc.sector = target;
1187	io_loc.count = n_sectors;
1188
1189	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1190	if (unlikely(r)) {
1191		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1192		fn(-1UL, data);
1193	}
1194}
1195
1196static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1197{
1198	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1199	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1200}
1201
1202static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1203{
1204	struct rb_node **n = &ic->in_progress.rb_node;
1205	struct rb_node *parent;
1206
1207	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1208
1209	if (likely(check_waiting)) {
1210		struct dm_integrity_range *range;
1211
1212		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1213			if (unlikely(ranges_overlap(range, new_range)))
1214				return false;
1215		}
1216	}
1217
1218	parent = NULL;
1219
1220	while (*n) {
1221		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1222
1223		parent = *n;
1224		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1225			n = &range->node.rb_left;
1226		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1227			n = &range->node.rb_right;
1228		else
1229			return false;
1230	}
1231
1232	rb_link_node(&new_range->node, parent, n);
1233	rb_insert_color(&new_range->node, &ic->in_progress);
1234
1235	return true;
1236}
1237
1238static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1239{
1240	rb_erase(&range->node, &ic->in_progress);
1241	while (unlikely(!list_empty(&ic->wait_list))) {
1242		struct dm_integrity_range *last_range =
1243			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1244		struct task_struct *last_range_task;
1245
1246		last_range_task = last_range->task;
1247		list_del(&last_range->wait_entry);
1248		if (!add_new_range(ic, last_range, false)) {
1249			last_range->task = last_range_task;
1250			list_add(&last_range->wait_entry, &ic->wait_list);
1251			break;
1252		}
1253		last_range->waiting = false;
1254		wake_up_process(last_range_task);
1255	}
1256}
1257
1258static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1259{
1260	unsigned long flags;
1261
1262	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1263	remove_range_unlocked(ic, range);
1264	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1265}
1266
1267static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1268{
1269	new_range->waiting = true;
1270	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1271	new_range->task = current;
1272	do {
1273		__set_current_state(TASK_UNINTERRUPTIBLE);
1274		spin_unlock_irq(&ic->endio_wait.lock);
1275		io_schedule();
1276		spin_lock_irq(&ic->endio_wait.lock);
1277	} while (unlikely(new_range->waiting));
1278}
1279
1280static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1281{
1282	if (unlikely(!add_new_range(ic, new_range, true)))
1283		wait_and_add_new_range(ic, new_range);
1284}
1285
1286static void init_journal_node(struct journal_node *node)
1287{
1288	RB_CLEAR_NODE(&node->node);
1289	node->sector = (sector_t)-1;
1290}
1291
1292static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1293{
1294	struct rb_node **link;
1295	struct rb_node *parent;
1296
1297	node->sector = sector;
1298	BUG_ON(!RB_EMPTY_NODE(&node->node));
1299
1300	link = &ic->journal_tree_root.rb_node;
1301	parent = NULL;
1302
1303	while (*link) {
1304		struct journal_node *j;
1305
1306		parent = *link;
1307		j = container_of(parent, struct journal_node, node);
1308		if (sector < j->sector)
1309			link = &j->node.rb_left;
1310		else
1311			link = &j->node.rb_right;
1312	}
1313
1314	rb_link_node(&node->node, parent, link);
1315	rb_insert_color(&node->node, &ic->journal_tree_root);
1316}
1317
1318static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1319{
1320	BUG_ON(RB_EMPTY_NODE(&node->node));
1321	rb_erase(&node->node, &ic->journal_tree_root);
1322	init_journal_node(node);
1323}
1324
1325#define NOT_FOUND	(-1U)
1326
1327static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1328{
1329	struct rb_node *n = ic->journal_tree_root.rb_node;
1330	unsigned int found = NOT_FOUND;
1331
1332	*next_sector = (sector_t)-1;
1333	while (n) {
1334		struct journal_node *j = container_of(n, struct journal_node, node);
1335
1336		if (sector == j->sector)
1337			found = j - ic->journal_tree;
1338
1339		if (sector < j->sector) {
1340			*next_sector = j->sector;
1341			n = j->node.rb_left;
1342		} else
1343			n = j->node.rb_right;
1344	}
1345
1346	return found;
1347}
1348
1349static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1350{
1351	struct journal_node *node, *next_node;
1352	struct rb_node *next;
1353
1354	if (unlikely(pos >= ic->journal_entries))
1355		return false;
1356	node = &ic->journal_tree[pos];
1357	if (unlikely(RB_EMPTY_NODE(&node->node)))
1358		return false;
1359	if (unlikely(node->sector != sector))
1360		return false;
1361
1362	next = rb_next(&node->node);
1363	if (unlikely(!next))
1364		return true;
1365
1366	next_node = container_of(next, struct journal_node, node);
1367	return next_node->sector != sector;
1368}
1369
1370static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1371{
1372	struct rb_node *next;
1373	struct journal_node *next_node;
1374	unsigned int next_section;
1375
1376	BUG_ON(RB_EMPTY_NODE(&node->node));
1377
1378	next = rb_next(&node->node);
1379	if (unlikely(!next))
1380		return false;
1381
1382	next_node = container_of(next, struct journal_node, node);
1383
1384	if (next_node->sector != node->sector)
1385		return false;
1386
1387	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1388	if (next_section >= ic->committed_section &&
1389	    next_section < ic->committed_section + ic->n_committed_sections)
1390		return true;
1391	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1392		return true;
1393
1394	return false;
1395}
1396
1397#define TAG_READ	0
1398#define TAG_WRITE	1
1399#define TAG_CMP		2
1400
1401static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1402			       unsigned int *metadata_offset, unsigned int total_size, int op)
1403{
1404#define MAY_BE_FILLER		1
1405#define MAY_BE_HASH		2
1406	unsigned int hash_offset = 0;
1407	unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1408
1409	do {
1410		unsigned char *data, *dp;
1411		struct dm_buffer *b;
1412		unsigned int to_copy;
1413		int r;
1414
1415		r = dm_integrity_failed(ic);
1416		if (unlikely(r))
1417			return r;
1418
1419		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1420		if (IS_ERR(data))
1421			return PTR_ERR(data);
1422
1423		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1424		dp = data + *metadata_offset;
1425		if (op == TAG_READ) {
1426			memcpy(tag, dp, to_copy);
1427		} else if (op == TAG_WRITE) {
1428			if (memcmp(dp, tag, to_copy)) {
1429				memcpy(dp, tag, to_copy);
1430				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1431			}
1432		} else {
1433			/* e.g.: op == TAG_CMP */
1434
1435			if (likely(is_power_of_2(ic->tag_size))) {
1436				if (unlikely(memcmp(dp, tag, to_copy)))
1437					if (unlikely(!ic->discard) ||
1438					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1439						goto thorough_test;
1440				}
1441			} else {
1442				unsigned int i, ts;
1443thorough_test:
1444				ts = total_size;
1445
1446				for (i = 0; i < to_copy; i++, ts--) {
1447					if (unlikely(dp[i] != tag[i]))
1448						may_be &= ~MAY_BE_HASH;
1449					if (likely(dp[i] != DISCARD_FILLER))
1450						may_be &= ~MAY_BE_FILLER;
1451					hash_offset++;
1452					if (unlikely(hash_offset == ic->tag_size)) {
1453						if (unlikely(!may_be)) {
1454							dm_bufio_release(b);
1455							return ts;
1456						}
1457						hash_offset = 0;
1458						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1459					}
1460				}
1461			}
1462		}
1463		dm_bufio_release(b);
1464
1465		tag += to_copy;
1466		*metadata_offset += to_copy;
1467		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1468			(*metadata_block)++;
1469			*metadata_offset = 0;
1470		}
1471
1472		if (unlikely(!is_power_of_2(ic->tag_size)))
1473			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1474
1475		total_size -= to_copy;
1476	} while (unlikely(total_size));
1477
1478	return 0;
1479#undef MAY_BE_FILLER
1480#undef MAY_BE_HASH
1481}
1482
1483struct flush_request {
1484	struct dm_io_request io_req;
1485	struct dm_io_region io_reg;
1486	struct dm_integrity_c *ic;
1487	struct completion comp;
1488};
1489
1490static void flush_notify(unsigned long error, void *fr_)
1491{
1492	struct flush_request *fr = fr_;
1493
1494	if (unlikely(error != 0))
1495		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1496	complete(&fr->comp);
1497}
1498
1499static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1500{
1501	int r;
1502	struct flush_request fr;
1503
1504	if (!ic->meta_dev)
1505		flush_data = false;
1506	if (flush_data) {
1507		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1508		fr.io_req.mem.type = DM_IO_KMEM;
1509		fr.io_req.mem.ptr.addr = NULL;
1510		fr.io_req.notify.fn = flush_notify;
1511		fr.io_req.notify.context = &fr;
1512		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio);
1513		fr.io_reg.bdev = ic->dev->bdev;
1514		fr.io_reg.sector = 0;
1515		fr.io_reg.count = 0;
1516		fr.ic = ic;
1517		init_completion(&fr.comp);
1518		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT);
1519		BUG_ON(r);
1520	}
1521
1522	r = dm_bufio_write_dirty_buffers(ic->bufio);
1523	if (unlikely(r))
1524		dm_integrity_io_error(ic, "writing tags", r);
1525
1526	if (flush_data)
1527		wait_for_completion(&fr.comp);
1528}
1529
1530static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1531{
1532	DECLARE_WAITQUEUE(wait, current);
1533
1534	__add_wait_queue(&ic->endio_wait, &wait);
1535	__set_current_state(TASK_UNINTERRUPTIBLE);
1536	spin_unlock_irq(&ic->endio_wait.lock);
1537	io_schedule();
1538	spin_lock_irq(&ic->endio_wait.lock);
1539	__remove_wait_queue(&ic->endio_wait, &wait);
1540}
1541
1542static void autocommit_fn(struct timer_list *t)
1543{
1544	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1545
1546	if (likely(!dm_integrity_failed(ic)))
1547		queue_work(ic->commit_wq, &ic->commit_work);
1548}
1549
1550static void schedule_autocommit(struct dm_integrity_c *ic)
1551{
1552	if (!timer_pending(&ic->autocommit_timer))
1553		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1554}
1555
1556static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1557{
1558	struct bio *bio;
1559	unsigned long flags;
1560
1561	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1562	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1563	bio_list_add(&ic->flush_bio_list, bio);
1564	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1565
1566	queue_work(ic->commit_wq, &ic->commit_work);
1567}
1568
1569static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1570{
1571	int r;
1572
1573	r = dm_integrity_failed(ic);
1574	if (unlikely(r) && !bio->bi_status)
1575		bio->bi_status = errno_to_blk_status(r);
1576	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1577		unsigned long flags;
1578
1579		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1580		bio_list_add(&ic->synchronous_bios, bio);
1581		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1582		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1583		return;
1584	}
1585	bio_endio(bio);
1586}
1587
1588static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1589{
1590	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1591
1592	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1593		submit_flush_bio(ic, dio);
1594	else
1595		do_endio(ic, bio);
1596}
1597
1598static void dec_in_flight(struct dm_integrity_io *dio)
1599{
1600	if (atomic_dec_and_test(&dio->in_flight)) {
1601		struct dm_integrity_c *ic = dio->ic;
1602		struct bio *bio;
1603
1604		remove_range(ic, &dio->range);
1605
1606		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1607			schedule_autocommit(ic);
1608
1609		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1610		if (unlikely(dio->bi_status) && !bio->bi_status)
1611			bio->bi_status = dio->bi_status;
1612		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1613			dio->range.logical_sector += dio->range.n_sectors;
1614			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1615			INIT_WORK(&dio->work, integrity_bio_wait);
1616			queue_work(ic->offload_wq, &dio->work);
1617			return;
1618		}
1619		do_endio_flush(ic, dio);
1620	}
1621}
1622
1623static void integrity_end_io(struct bio *bio)
1624{
1625	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1626
1627	dm_bio_restore(&dio->bio_details, bio);
1628	if (bio->bi_integrity)
1629		bio->bi_opf |= REQ_INTEGRITY;
1630
1631	if (dio->completion)
1632		complete(dio->completion);
1633
1634	dec_in_flight(dio);
1635}
1636
1637static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1638				      const char *data, char *result)
1639{
1640	__le64 sector_le = cpu_to_le64(sector);
1641	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1642	int r;
1643	unsigned int digest_size;
1644
1645	req->tfm = ic->internal_hash;
1646
1647	r = crypto_shash_init(req);
1648	if (unlikely(r < 0)) {
1649		dm_integrity_io_error(ic, "crypto_shash_init", r);
1650		goto failed;
1651	}
1652
1653	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1654		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1655		if (unlikely(r < 0)) {
1656			dm_integrity_io_error(ic, "crypto_shash_update", r);
1657			goto failed;
1658		}
1659	}
1660
1661	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1662	if (unlikely(r < 0)) {
1663		dm_integrity_io_error(ic, "crypto_shash_update", r);
1664		goto failed;
1665	}
1666
1667	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1668	if (unlikely(r < 0)) {
1669		dm_integrity_io_error(ic, "crypto_shash_update", r);
1670		goto failed;
1671	}
1672
1673	r = crypto_shash_final(req, result);
1674	if (unlikely(r < 0)) {
1675		dm_integrity_io_error(ic, "crypto_shash_final", r);
1676		goto failed;
1677	}
1678
1679	digest_size = crypto_shash_digestsize(ic->internal_hash);
1680	if (unlikely(digest_size < ic->tag_size))
1681		memset(result + digest_size, 0, ic->tag_size - digest_size);
1682
1683	return;
1684
1685failed:
1686	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1687	get_random_bytes(result, ic->tag_size);
1688}
1689
1690static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1691{
1692	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1693	struct dm_integrity_c *ic = dio->ic;
1694	struct bvec_iter iter;
1695	struct bio_vec bv;
1696	sector_t sector, logical_sector, area, offset;
1697	struct page *page;
 
1698
1699	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1700	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1701							     &dio->metadata_offset);
1702	sector = get_data_sector(ic, area, offset);
1703	logical_sector = dio->range.logical_sector;
1704
1705	page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
 
1706
1707	__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1708		unsigned pos = 0;
1709
1710		do {
1711			sector_t alignment;
1712			char *mem;
1713			char *buffer = page_to_virt(page);
1714			int r;
1715			struct dm_io_request io_req;
1716			struct dm_io_region io_loc;
1717			io_req.bi_opf = REQ_OP_READ;
1718			io_req.mem.type = DM_IO_KMEM;
1719			io_req.mem.ptr.addr = buffer;
1720			io_req.notify.fn = NULL;
1721			io_req.client = ic->io;
1722			io_loc.bdev = ic->dev->bdev;
1723			io_loc.sector = sector;
1724			io_loc.count = ic->sectors_per_block;
1725
1726			/* Align the bio to logical block size */
1727			alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT);
1728			alignment &= -alignment;
1729			io_loc.sector = round_down(io_loc.sector, alignment);
1730			io_loc.count += sector - io_loc.sector;
1731			buffer += (sector - io_loc.sector) << SECTOR_SHIFT;
1732			io_loc.count = round_up(io_loc.count, alignment);
1733
1734			r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1735			if (unlikely(r)) {
1736				dio->bi_status = errno_to_blk_status(r);
1737				goto free_ret;
1738			}
1739
1740			integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1741			r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1742						&dio->metadata_offset, ic->tag_size, TAG_CMP);
1743			if (r) {
1744				if (r > 0) {
1745					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1746						    bio->bi_bdev, logical_sector);
1747					atomic64_inc(&ic->number_of_mismatches);
1748					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1749							 bio, logical_sector, 0);
1750					r = -EILSEQ;
1751				}
1752				dio->bi_status = errno_to_blk_status(r);
1753				goto free_ret;
1754			}
1755
1756			mem = bvec_kmap_local(&bv);
1757			memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1758			kunmap_local(mem);
1759
1760			pos += ic->sectors_per_block << SECTOR_SHIFT;
1761			sector += ic->sectors_per_block;
1762			logical_sector += ic->sectors_per_block;
1763		} while (pos < bv.bv_len);
1764	}
1765free_ret:
1766	mempool_free(page, &ic->recheck_pool);
1767}
1768
1769static void integrity_metadata(struct work_struct *w)
1770{
1771	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1772	struct dm_integrity_c *ic = dio->ic;
1773
1774	int r;
1775
1776	if (ic->internal_hash) {
1777		struct bvec_iter iter;
1778		struct bio_vec bv;
1779		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1780		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1781		char *checksums;
1782		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1783		char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1784		sector_t sector;
1785		unsigned int sectors_to_process;
1786
1787		if (unlikely(ic->mode == 'R'))
1788			goto skip_io;
1789
1790		if (likely(dio->op != REQ_OP_DISCARD))
1791			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1792					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1793		else
1794			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1795		if (!checksums) {
1796			checksums = checksums_onstack;
1797			if (WARN_ON(extra_space &&
1798				    digest_size > sizeof(checksums_onstack))) {
1799				r = -EINVAL;
1800				goto error;
1801			}
1802		}
1803
1804		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1805			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1806			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1807			unsigned int max_blocks = max_size / ic->tag_size;
1808
1809			memset(checksums, DISCARD_FILLER, max_size);
1810
1811			while (bi_size) {
1812				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1813
1814				this_step_blocks = min(this_step_blocks, max_blocks);
1815				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1816							this_step_blocks * ic->tag_size, TAG_WRITE);
1817				if (unlikely(r)) {
1818					if (likely(checksums != checksums_onstack))
1819						kfree(checksums);
1820					goto error;
1821				}
1822
1823				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1824			}
1825
1826			if (likely(checksums != checksums_onstack))
1827				kfree(checksums);
1828			goto skip_io;
1829		}
1830
1831		sector = dio->range.logical_sector;
1832		sectors_to_process = dio->range.n_sectors;
1833
1834		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1835			struct bio_vec bv_copy = bv;
1836			unsigned int pos;
1837			char *mem, *checksums_ptr;
1838
1839again:
1840			mem = bvec_kmap_local(&bv_copy);
1841			pos = 0;
1842			checksums_ptr = checksums;
1843			do {
1844				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1845				checksums_ptr += ic->tag_size;
1846				sectors_to_process -= ic->sectors_per_block;
1847				pos += ic->sectors_per_block << SECTOR_SHIFT;
1848				sector += ic->sectors_per_block;
1849			} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1850			kunmap_local(mem);
1851
1852			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1853						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1854			if (unlikely(r)) {
1855				if (likely(checksums != checksums_onstack))
1856					kfree(checksums);
1857				if (r > 0) {
1858					integrity_recheck(dio, checksums_onstack);
1859					goto skip_io;
1860				}
 
 
1861				goto error;
1862			}
1863
1864			if (!sectors_to_process)
1865				break;
1866
1867			if (unlikely(pos < bv_copy.bv_len)) {
1868				bv_copy.bv_offset += pos;
1869				bv_copy.bv_len -= pos;
1870				goto again;
1871			}
1872		}
1873
1874		if (likely(checksums != checksums_onstack))
1875			kfree(checksums);
1876	} else {
1877		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1878
1879		if (bip) {
1880			struct bio_vec biv;
1881			struct bvec_iter iter;
1882			unsigned int data_to_process = dio->range.n_sectors;
1883
1884			sector_to_block(ic, data_to_process);
1885			data_to_process *= ic->tag_size;
1886
1887			bip_for_each_vec(biv, bip, iter) {
1888				unsigned char *tag;
1889				unsigned int this_len;
1890
1891				BUG_ON(PageHighMem(biv.bv_page));
1892				tag = bvec_virt(&biv);
1893				this_len = min(biv.bv_len, data_to_process);
1894				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1895							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1896				if (unlikely(r))
1897					goto error;
1898				data_to_process -= this_len;
1899				if (!data_to_process)
1900					break;
1901			}
1902		}
1903	}
1904skip_io:
1905	dec_in_flight(dio);
1906	return;
1907error:
1908	dio->bi_status = errno_to_blk_status(r);
1909	dec_in_flight(dio);
1910}
1911
1912static inline bool dm_integrity_check_limits(struct dm_integrity_c *ic, sector_t logical_sector, struct bio *bio)
1913{
1914	if (unlikely(logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1915		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1916		      logical_sector, bio_sectors(bio),
1917		      ic->provided_data_sectors);
1918		return false;
1919	}
1920	if (unlikely((logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1921		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1922		      ic->sectors_per_block,
1923		      logical_sector, bio_sectors(bio));
1924		return false;
1925	}
1926	if (ic->sectors_per_block > 1 && likely(bio_op(bio) != REQ_OP_DISCARD)) {
1927		struct bvec_iter iter;
1928		struct bio_vec bv;
1929
1930		bio_for_each_segment(bv, bio, iter) {
1931			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1932				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1933					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1934				return false;
1935			}
1936		}
1937	}
1938	return true;
1939}
1940
1941static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1942{
1943	struct dm_integrity_c *ic = ti->private;
1944	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1945	struct bio_integrity_payload *bip;
1946
1947	sector_t area, offset;
1948
1949	dio->ic = ic;
1950	dio->bi_status = 0;
1951	dio->op = bio_op(bio);
1952
1953	if (ic->mode == 'I') {
1954		bio->bi_iter.bi_sector = dm_target_offset(ic->ti, bio->bi_iter.bi_sector);
1955		dio->integrity_payload = NULL;
1956		dio->integrity_payload_from_mempool = false;
1957		dio->integrity_range_locked = false;
1958		return dm_integrity_map_inline(dio, true);
1959	}
1960
1961	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1962		if (ti->max_io_len) {
1963			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1964			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1965			sector_t start_boundary = sec >> log2_max_io_len;
1966			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1967
1968			if (start_boundary < end_boundary) {
1969				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1970
1971				dm_accept_partial_bio(bio, len);
1972			}
1973		}
1974	}
1975
1976	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1977		submit_flush_bio(ic, dio);
1978		return DM_MAPIO_SUBMITTED;
1979	}
1980
1981	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1982	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1983	if (unlikely(dio->fua)) {
1984		/*
1985		 * Don't pass down the FUA flag because we have to flush
1986		 * disk cache anyway.
1987		 */
1988		bio->bi_opf &= ~REQ_FUA;
1989	}
1990	if (unlikely(!dm_integrity_check_limits(ic, dio->range.logical_sector, bio)))
 
 
 
1991		return DM_MAPIO_KILL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1992
1993	bip = bio_integrity(bio);
1994	if (!ic->internal_hash) {
1995		if (bip) {
1996			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1997
1998			if (ic->log2_tag_size >= 0)
1999				wanted_tag_size <<= ic->log2_tag_size;
2000			else
2001				wanted_tag_size *= ic->tag_size;
2002			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
2003				DMERR("Invalid integrity data size %u, expected %u",
2004				      bip->bip_iter.bi_size, wanted_tag_size);
2005				return DM_MAPIO_KILL;
2006			}
2007		}
2008	} else {
2009		if (unlikely(bip != NULL)) {
2010			DMERR("Unexpected integrity data when using internal hash");
2011			return DM_MAPIO_KILL;
2012		}
2013	}
2014
2015	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
2016		return DM_MAPIO_KILL;
2017
2018	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2019	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2020	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2021
2022	dm_integrity_map_continue(dio, true);
2023	return DM_MAPIO_SUBMITTED;
2024}
2025
2026static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2027				 unsigned int journal_section, unsigned int journal_entry)
2028{
2029	struct dm_integrity_c *ic = dio->ic;
2030	sector_t logical_sector;
2031	unsigned int n_sectors;
2032
2033	logical_sector = dio->range.logical_sector;
2034	n_sectors = dio->range.n_sectors;
2035	do {
2036		struct bio_vec bv = bio_iovec(bio);
2037		char *mem;
2038
2039		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2040			bv.bv_len = n_sectors << SECTOR_SHIFT;
2041		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2042		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2043retry_kmap:
2044		mem = kmap_local_page(bv.bv_page);
2045		if (likely(dio->op == REQ_OP_WRITE))
2046			flush_dcache_page(bv.bv_page);
2047
2048		do {
2049			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2050
2051			if (unlikely(dio->op == REQ_OP_READ)) {
2052				struct journal_sector *js;
2053				char *mem_ptr;
2054				unsigned int s;
2055
2056				if (unlikely(journal_entry_is_inprogress(je))) {
2057					flush_dcache_page(bv.bv_page);
2058					kunmap_local(mem);
2059
2060					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2061					goto retry_kmap;
2062				}
2063				smp_rmb();
2064				BUG_ON(journal_entry_get_sector(je) != logical_sector);
2065				js = access_journal_data(ic, journal_section, journal_entry);
2066				mem_ptr = mem + bv.bv_offset;
2067				s = 0;
2068				do {
2069					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2070					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2071					js++;
2072					mem_ptr += 1 << SECTOR_SHIFT;
2073				} while (++s < ic->sectors_per_block);
2074#ifdef INTERNAL_VERIFY
2075				if (ic->internal_hash) {
2076					char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2077
2078					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2079					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2080						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2081							    logical_sector);
2082						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2083								 bio, logical_sector, 0);
2084					}
2085				}
2086#endif
2087			}
2088
2089			if (!ic->internal_hash) {
2090				struct bio_integrity_payload *bip = bio_integrity(bio);
2091				unsigned int tag_todo = ic->tag_size;
2092				char *tag_ptr = journal_entry_tag(ic, je);
2093
2094				if (bip) {
2095					do {
2096						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2097						unsigned int tag_now = min(biv.bv_len, tag_todo);
2098						char *tag_addr;
2099
2100						BUG_ON(PageHighMem(biv.bv_page));
2101						tag_addr = bvec_virt(&biv);
2102						if (likely(dio->op == REQ_OP_WRITE))
2103							memcpy(tag_ptr, tag_addr, tag_now);
2104						else
2105							memcpy(tag_addr, tag_ptr, tag_now);
2106						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2107						tag_ptr += tag_now;
2108						tag_todo -= tag_now;
2109					} while (unlikely(tag_todo));
2110				} else if (likely(dio->op == REQ_OP_WRITE))
2111					memset(tag_ptr, 0, tag_todo);
2112			}
2113
2114			if (likely(dio->op == REQ_OP_WRITE)) {
2115				struct journal_sector *js;
2116				unsigned int s;
2117
2118				js = access_journal_data(ic, journal_section, journal_entry);
2119				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2120
2121				s = 0;
2122				do {
2123					je->last_bytes[s] = js[s].commit_id;
2124				} while (++s < ic->sectors_per_block);
2125
2126				if (ic->internal_hash) {
2127					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2128
2129					if (unlikely(digest_size > ic->tag_size)) {
2130						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2131
2132						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2133						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2134					} else
2135						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2136				}
2137
2138				journal_entry_set_sector(je, logical_sector);
2139			}
2140			logical_sector += ic->sectors_per_block;
2141
2142			journal_entry++;
2143			if (unlikely(journal_entry == ic->journal_section_entries)) {
2144				journal_entry = 0;
2145				journal_section++;
2146				wraparound_section(ic, &journal_section);
2147			}
2148
2149			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2150		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2151
2152		if (unlikely(dio->op == REQ_OP_READ))
2153			flush_dcache_page(bv.bv_page);
2154		kunmap_local(mem);
2155	} while (n_sectors);
2156
2157	if (likely(dio->op == REQ_OP_WRITE)) {
2158		smp_mb();
2159		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2160			wake_up(&ic->copy_to_journal_wait);
2161		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2162			queue_work(ic->commit_wq, &ic->commit_work);
2163		else
2164			schedule_autocommit(ic);
2165	} else
2166		remove_range(ic, &dio->range);
2167
2168	if (unlikely(bio->bi_iter.bi_size)) {
2169		sector_t area, offset;
2170
2171		dio->range.logical_sector = logical_sector;
2172		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2173		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2174		return true;
2175	}
2176
2177	return false;
2178}
2179
2180static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2181{
2182	struct dm_integrity_c *ic = dio->ic;
2183	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2184	unsigned int journal_section, journal_entry;
2185	unsigned int journal_read_pos;
2186	sector_t recalc_sector;
2187	struct completion read_comp;
2188	bool discard_retried = false;
2189	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2190
2191	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2192		need_sync_io = true;
2193
2194	if (need_sync_io && from_map) {
2195		INIT_WORK(&dio->work, integrity_bio_wait);
2196		queue_work(ic->offload_wq, &dio->work);
2197		return;
2198	}
2199
2200lock_retry:
2201	spin_lock_irq(&ic->endio_wait.lock);
2202retry:
2203	if (unlikely(dm_integrity_failed(ic))) {
2204		spin_unlock_irq(&ic->endio_wait.lock);
2205		do_endio(ic, bio);
2206		return;
2207	}
2208	dio->range.n_sectors = bio_sectors(bio);
2209	journal_read_pos = NOT_FOUND;
2210	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2211		if (dio->op == REQ_OP_WRITE) {
2212			unsigned int next_entry, i, pos;
2213			unsigned int ws, we, range_sectors;
2214
2215			dio->range.n_sectors = min(dio->range.n_sectors,
2216						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2217			if (unlikely(!dio->range.n_sectors)) {
2218				if (from_map)
2219					goto offload_to_thread;
2220				sleep_on_endio_wait(ic);
2221				goto retry;
2222			}
2223			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2224			ic->free_sectors -= range_sectors;
2225			journal_section = ic->free_section;
2226			journal_entry = ic->free_section_entry;
2227
2228			next_entry = ic->free_section_entry + range_sectors;
2229			ic->free_section_entry = next_entry % ic->journal_section_entries;
2230			ic->free_section += next_entry / ic->journal_section_entries;
2231			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2232			wraparound_section(ic, &ic->free_section);
2233
2234			pos = journal_section * ic->journal_section_entries + journal_entry;
2235			ws = journal_section;
2236			we = journal_entry;
2237			i = 0;
2238			do {
2239				struct journal_entry *je;
2240
2241				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2242				pos++;
2243				if (unlikely(pos >= ic->journal_entries))
2244					pos = 0;
2245
2246				je = access_journal_entry(ic, ws, we);
2247				BUG_ON(!journal_entry_is_unused(je));
2248				journal_entry_set_inprogress(je);
2249				we++;
2250				if (unlikely(we == ic->journal_section_entries)) {
2251					we = 0;
2252					ws++;
2253					wraparound_section(ic, &ws);
2254				}
2255			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2256
2257			spin_unlock_irq(&ic->endio_wait.lock);
2258			goto journal_read_write;
2259		} else {
2260			sector_t next_sector;
2261
2262			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2263			if (likely(journal_read_pos == NOT_FOUND)) {
2264				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2265					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2266			} else {
2267				unsigned int i;
2268				unsigned int jp = journal_read_pos + 1;
2269
2270				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2271					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2272						break;
2273				}
2274				dio->range.n_sectors = i;
2275			}
2276		}
2277	}
2278	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2279		/*
2280		 * We must not sleep in the request routine because it could
2281		 * stall bios on current->bio_list.
2282		 * So, we offload the bio to a workqueue if we have to sleep.
2283		 */
2284		if (from_map) {
2285offload_to_thread:
2286			spin_unlock_irq(&ic->endio_wait.lock);
2287			INIT_WORK(&dio->work, integrity_bio_wait);
2288			queue_work(ic->wait_wq, &dio->work);
2289			return;
2290		}
2291		if (journal_read_pos != NOT_FOUND)
2292			dio->range.n_sectors = ic->sectors_per_block;
2293		wait_and_add_new_range(ic, &dio->range);
2294		/*
2295		 * wait_and_add_new_range drops the spinlock, so the journal
2296		 * may have been changed arbitrarily. We need to recheck.
2297		 * To simplify the code, we restrict I/O size to just one block.
2298		 */
2299		if (journal_read_pos != NOT_FOUND) {
2300			sector_t next_sector;
2301			unsigned int new_pos;
2302
2303			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2304			if (unlikely(new_pos != journal_read_pos)) {
2305				remove_range_unlocked(ic, &dio->range);
2306				goto retry;
2307			}
2308		}
2309	}
2310	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2311		sector_t next_sector;
2312		unsigned int new_pos;
2313
2314		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2315		if (unlikely(new_pos != NOT_FOUND) ||
2316		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2317			remove_range_unlocked(ic, &dio->range);
2318			spin_unlock_irq(&ic->endio_wait.lock);
2319			queue_work(ic->commit_wq, &ic->commit_work);
2320			flush_workqueue(ic->commit_wq);
2321			queue_work(ic->writer_wq, &ic->writer_work);
2322			flush_workqueue(ic->writer_wq);
2323			discard_retried = true;
2324			goto lock_retry;
2325		}
2326	}
2327	recalc_sector = le64_to_cpu(ic->sb->recalc_sector);
2328	spin_unlock_irq(&ic->endio_wait.lock);
2329
2330	if (unlikely(journal_read_pos != NOT_FOUND)) {
2331		journal_section = journal_read_pos / ic->journal_section_entries;
2332		journal_entry = journal_read_pos % ic->journal_section_entries;
2333		goto journal_read_write;
2334	}
2335
2336	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2337		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2338				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2339			struct bitmap_block_status *bbs;
2340
2341			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2342			spin_lock(&bbs->bio_queue_lock);
2343			bio_list_add(&bbs->bio_queue, bio);
2344			spin_unlock(&bbs->bio_queue_lock);
2345			queue_work(ic->writer_wq, &bbs->work);
2346			return;
2347		}
2348	}
2349
2350	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2351
2352	if (need_sync_io) {
2353		init_completion(&read_comp);
2354		dio->completion = &read_comp;
2355	} else
2356		dio->completion = NULL;
2357
2358	dm_bio_record(&dio->bio_details, bio);
2359	bio_set_dev(bio, ic->dev->bdev);
2360	bio->bi_integrity = NULL;
2361	bio->bi_opf &= ~REQ_INTEGRITY;
2362	bio->bi_end_io = integrity_end_io;
2363	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2364
2365	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2366		integrity_metadata(&dio->work);
2367		dm_integrity_flush_buffers(ic, false);
2368
2369		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2370		dio->completion = NULL;
2371
2372		submit_bio_noacct(bio);
2373
2374		return;
2375	}
2376
2377	submit_bio_noacct(bio);
2378
2379	if (need_sync_io) {
2380		wait_for_completion_io(&read_comp);
2381		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2382		    dio->range.logical_sector + dio->range.n_sectors > recalc_sector)
2383			goto skip_check;
2384		if (ic->mode == 'B') {
2385			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2386					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2387				goto skip_check;
2388		}
2389
2390		if (likely(!bio->bi_status))
2391			integrity_metadata(&dio->work);
2392		else
2393skip_check:
2394			dec_in_flight(dio);
2395	} else {
2396		INIT_WORK(&dio->work, integrity_metadata);
2397		queue_work(ic->metadata_wq, &dio->work);
2398	}
2399
2400	return;
2401
2402journal_read_write:
2403	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2404		goto lock_retry;
2405
2406	do_endio_flush(ic, dio);
2407}
2408
2409static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map)
2410{
2411	struct dm_integrity_c *ic = dio->ic;
2412	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2413	struct bio_integrity_payload *bip;
2414	unsigned ret;
2415	sector_t recalc_sector;
2416
2417	if (unlikely(bio_integrity(bio))) {
2418		bio->bi_status = BLK_STS_NOTSUPP;
2419		bio_endio(bio);
2420		return DM_MAPIO_SUBMITTED;
2421	}
2422
2423	bio_set_dev(bio, ic->dev->bdev);
2424	if (unlikely((bio->bi_opf & REQ_PREFLUSH) != 0))
2425		return DM_MAPIO_REMAPPED;
2426
2427retry:
2428	if (!dio->integrity_payload) {
2429		unsigned digest_size, extra_size;
2430		dio->payload_len = ic->tuple_size * (bio_sectors(bio) >> ic->sb->log2_sectors_per_block);
2431		digest_size = crypto_shash_digestsize(ic->internal_hash);
2432		extra_size = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
2433		dio->payload_len += extra_size;
2434		dio->integrity_payload = kmalloc(dio->payload_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
2435		if (unlikely(!dio->integrity_payload)) {
2436			const unsigned x_size = PAGE_SIZE << 1;
2437			if (dio->payload_len > x_size) {
2438				unsigned sectors = ((x_size - extra_size) / ic->tuple_size) << ic->sb->log2_sectors_per_block;
2439				if (WARN_ON(!sectors || sectors >= bio_sectors(bio))) {
2440					bio->bi_status = BLK_STS_NOTSUPP;
2441					bio_endio(bio);
2442					return DM_MAPIO_SUBMITTED;
2443				}
2444				dm_accept_partial_bio(bio, sectors);
2445				goto retry;
2446			}
2447		}
2448	}
2449
2450	dio->range.logical_sector = bio->bi_iter.bi_sector;
2451	dio->range.n_sectors = bio_sectors(bio);
2452
2453	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)))
2454		goto skip_spinlock;
2455#ifdef CONFIG_64BIT
2456	/*
2457	 * On 64-bit CPUs we can optimize the lock away (so that it won't cause
2458	 * cache line bouncing) and use acquire/release barriers instead.
2459	 *
2460	 * Paired with smp_store_release in integrity_recalc_inline.
2461	 */
2462	recalc_sector = le64_to_cpu(smp_load_acquire(&ic->sb->recalc_sector));
2463	if (likely(dio->range.logical_sector + dio->range.n_sectors <= recalc_sector))
2464		goto skip_spinlock;
2465#endif
2466	spin_lock_irq(&ic->endio_wait.lock);
2467	recalc_sector = le64_to_cpu(ic->sb->recalc_sector);
2468	if (dio->range.logical_sector + dio->range.n_sectors <= recalc_sector)
2469		goto skip_unlock;
2470	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2471		if (from_map) {
2472			spin_unlock_irq(&ic->endio_wait.lock);
2473			INIT_WORK(&dio->work, integrity_bio_wait);
2474			queue_work(ic->wait_wq, &dio->work);
2475			return DM_MAPIO_SUBMITTED;
2476		}
2477		wait_and_add_new_range(ic, &dio->range);
2478	}
2479	dio->integrity_range_locked = true;
2480skip_unlock:
2481	spin_unlock_irq(&ic->endio_wait.lock);
2482skip_spinlock:
2483
2484	if (unlikely(!dio->integrity_payload)) {
2485		dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2486		dio->integrity_payload_from_mempool = true;
2487	}
2488
2489	dio->bio_details.bi_iter = bio->bi_iter;
2490
2491	if (unlikely(!dm_integrity_check_limits(ic, bio->bi_iter.bi_sector, bio))) {
2492		return DM_MAPIO_KILL;
2493	}
2494
2495	bio->bi_iter.bi_sector += ic->start + SB_SECTORS;
2496
2497	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
2498	if (IS_ERR(bip)) {
2499		bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2500		bio_endio(bio);
2501		return DM_MAPIO_SUBMITTED;
2502	}
2503
2504	if (dio->op == REQ_OP_WRITE) {
2505		unsigned pos = 0;
2506		while (dio->bio_details.bi_iter.bi_size) {
2507			struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2508			const char *mem = bvec_kmap_local(&bv);
2509			if (ic->tag_size < ic->tuple_size)
2510				memset(dio->integrity_payload + pos + ic->tag_size, 0, ic->tuple_size - ic->tuple_size);
2511			integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, dio->integrity_payload + pos);
2512			kunmap_local(mem);
2513			pos += ic->tuple_size;
2514			bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2515		}
2516	}
2517
2518	ret = bio_integrity_add_page(bio, virt_to_page(dio->integrity_payload),
2519					dio->payload_len, offset_in_page(dio->integrity_payload));
2520	if (unlikely(ret != dio->payload_len)) {
2521		bio->bi_status = BLK_STS_RESOURCE;
2522		bio_endio(bio);
2523		return DM_MAPIO_SUBMITTED;
2524	}
2525
2526	return DM_MAPIO_REMAPPED;
2527}
2528
2529static inline void dm_integrity_free_payload(struct dm_integrity_io *dio)
2530{
2531	struct dm_integrity_c *ic = dio->ic;
2532	if (unlikely(dio->integrity_payload_from_mempool))
2533		mempool_free(virt_to_page(dio->integrity_payload), &ic->recheck_pool);
2534	else
2535		kfree(dio->integrity_payload);
2536	dio->integrity_payload = NULL;
2537	dio->integrity_payload_from_mempool = false;
2538}
2539
2540static void dm_integrity_inline_recheck(struct work_struct *w)
2541{
2542	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2543	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2544	struct dm_integrity_c *ic = dio->ic;
2545	struct bio *outgoing_bio;
2546	void *outgoing_data;
2547
2548	dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2549	dio->integrity_payload_from_mempool = true;
2550
2551	outgoing_data = dio->integrity_payload + PAGE_SIZE;
2552
2553	while (dio->bio_details.bi_iter.bi_size) {
2554		char digest[HASH_MAX_DIGESTSIZE];
2555		int r;
2556		struct bio_integrity_payload *bip;
2557		struct bio_vec bv;
2558		char *mem;
2559
2560		outgoing_bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recheck_bios);
2561
2562		r = bio_add_page(outgoing_bio, virt_to_page(outgoing_data), ic->sectors_per_block << SECTOR_SHIFT, 0);
2563		if (unlikely(r != (ic->sectors_per_block << SECTOR_SHIFT))) {
2564			bio_put(outgoing_bio);
2565			bio->bi_status = BLK_STS_RESOURCE;
2566			bio_endio(bio);
2567			return;
2568		}
2569
2570		bip = bio_integrity_alloc(outgoing_bio, GFP_NOIO, 1);
2571		if (IS_ERR(bip)) {
2572			bio_put(outgoing_bio);
2573			bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2574			bio_endio(bio);
2575			return;
2576		}
2577
2578		r = bio_integrity_add_page(outgoing_bio, virt_to_page(dio->integrity_payload), ic->tuple_size, 0);
2579		if (unlikely(r != ic->tuple_size)) {
2580			bio_put(outgoing_bio);
2581			bio->bi_status = BLK_STS_RESOURCE;
2582			bio_endio(bio);
2583			return;
2584		}
2585
2586		outgoing_bio->bi_iter.bi_sector = dio->bio_details.bi_iter.bi_sector + ic->start + SB_SECTORS;
2587
2588		r = submit_bio_wait(outgoing_bio);
2589		if (unlikely(r != 0)) {
2590			bio_put(outgoing_bio);
2591			bio->bi_status = errno_to_blk_status(r);
2592			bio_endio(bio);
2593			return;
2594		}
2595		bio_put(outgoing_bio);
2596
2597		integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, outgoing_data, digest);
2598		if (unlikely(memcmp(digest, dio->integrity_payload, min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) {
2599			DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
2600				ic->dev->bdev, dio->bio_details.bi_iter.bi_sector);
2601			atomic64_inc(&ic->number_of_mismatches);
2602			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
2603				bio, dio->bio_details.bi_iter.bi_sector, 0);
2604
2605			bio->bi_status = BLK_STS_PROTECTION;
2606			bio_endio(bio);
2607			return;
2608		}
2609
2610		bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2611		mem = bvec_kmap_local(&bv);
2612		memcpy(mem, outgoing_data, ic->sectors_per_block << SECTOR_SHIFT);
2613		kunmap_local(mem);
2614
2615		bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2616	}
2617
2618	bio_endio(bio);
2619}
2620
2621static int dm_integrity_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
2622{
2623	struct dm_integrity_c *ic = ti->private;
2624	if (ic->mode == 'I') {
2625		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2626		if (dio->op == REQ_OP_READ && likely(*status == BLK_STS_OK)) {
2627			unsigned pos = 0;
2628			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2629			    unlikely(dio->integrity_range_locked))
2630				goto skip_check;
2631			while (dio->bio_details.bi_iter.bi_size) {
2632				char digest[HASH_MAX_DIGESTSIZE];
2633				struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2634				char *mem = bvec_kmap_local(&bv);
2635				//memset(mem, 0xff, ic->sectors_per_block << SECTOR_SHIFT);
2636				integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, digest);
2637				if (unlikely(memcmp(digest, dio->integrity_payload + pos,
2638						min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) {
2639					kunmap_local(mem);
2640					dm_integrity_free_payload(dio);
2641					INIT_WORK(&dio->work, dm_integrity_inline_recheck);
2642					queue_work(ic->offload_wq, &dio->work);
2643					return DM_ENDIO_INCOMPLETE;
2644				}
2645				kunmap_local(mem);
2646				pos += ic->tuple_size;
2647				bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2648			}
2649		}
2650skip_check:
2651		dm_integrity_free_payload(dio);
2652		if (unlikely(dio->integrity_range_locked))
2653			remove_range(ic, &dio->range);
2654	}
2655	return DM_ENDIO_DONE;
2656}
2657
2658static void integrity_bio_wait(struct work_struct *w)
2659{
2660	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2661	struct dm_integrity_c *ic = dio->ic;
2662
2663	if (ic->mode == 'I') {
2664		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2665		int r = dm_integrity_map_inline(dio, false);
2666		switch (r) {
2667			case DM_MAPIO_KILL:
2668				bio->bi_status = BLK_STS_IOERR;
2669				fallthrough;
2670			case DM_MAPIO_REMAPPED:
2671				submit_bio_noacct(bio);
2672				fallthrough;
2673			case DM_MAPIO_SUBMITTED:
2674				return;
2675			default:
2676				BUG();
2677		}
2678	} else {
2679		dm_integrity_map_continue(dio, false);
2680	}
2681}
2682
2683static void pad_uncommitted(struct dm_integrity_c *ic)
2684{
2685	if (ic->free_section_entry) {
2686		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2687		ic->free_section_entry = 0;
2688		ic->free_section++;
2689		wraparound_section(ic, &ic->free_section);
2690		ic->n_uncommitted_sections++;
2691	}
2692	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2693		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2694		    ic->journal_section_entries + ic->free_sectors)) {
2695		DMCRIT("journal_sections %u, journal_section_entries %u, "
2696		       "n_uncommitted_sections %u, n_committed_sections %u, "
2697		       "journal_section_entries %u, free_sectors %u",
2698		       ic->journal_sections, ic->journal_section_entries,
2699		       ic->n_uncommitted_sections, ic->n_committed_sections,
2700		       ic->journal_section_entries, ic->free_sectors);
2701	}
2702}
2703
2704static void integrity_commit(struct work_struct *w)
2705{
2706	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2707	unsigned int commit_start, commit_sections;
2708	unsigned int i, j, n;
2709	struct bio *flushes;
2710
2711	del_timer(&ic->autocommit_timer);
2712
2713	if (ic->mode == 'I')
2714		return;
2715
2716	spin_lock_irq(&ic->endio_wait.lock);
2717	flushes = bio_list_get(&ic->flush_bio_list);
2718	if (unlikely(ic->mode != 'J')) {
2719		spin_unlock_irq(&ic->endio_wait.lock);
2720		dm_integrity_flush_buffers(ic, true);
2721		goto release_flush_bios;
2722	}
2723
2724	pad_uncommitted(ic);
2725	commit_start = ic->uncommitted_section;
2726	commit_sections = ic->n_uncommitted_sections;
2727	spin_unlock_irq(&ic->endio_wait.lock);
2728
2729	if (!commit_sections)
2730		goto release_flush_bios;
2731
2732	ic->wrote_to_journal = true;
2733
2734	i = commit_start;
2735	for (n = 0; n < commit_sections; n++) {
2736		for (j = 0; j < ic->journal_section_entries; j++) {
2737			struct journal_entry *je;
2738
2739			je = access_journal_entry(ic, i, j);
2740			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2741		}
2742		for (j = 0; j < ic->journal_section_sectors; j++) {
2743			struct journal_sector *js;
2744
2745			js = access_journal(ic, i, j);
2746			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2747		}
2748		i++;
2749		if (unlikely(i >= ic->journal_sections))
2750			ic->commit_seq = next_commit_seq(ic->commit_seq);
2751		wraparound_section(ic, &i);
2752	}
2753	smp_rmb();
2754
2755	write_journal(ic, commit_start, commit_sections);
2756
2757	spin_lock_irq(&ic->endio_wait.lock);
2758	ic->uncommitted_section += commit_sections;
2759	wraparound_section(ic, &ic->uncommitted_section);
2760	ic->n_uncommitted_sections -= commit_sections;
2761	ic->n_committed_sections += commit_sections;
2762	spin_unlock_irq(&ic->endio_wait.lock);
2763
2764	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2765		queue_work(ic->writer_wq, &ic->writer_work);
2766
2767release_flush_bios:
2768	while (flushes) {
2769		struct bio *next = flushes->bi_next;
2770
2771		flushes->bi_next = NULL;
2772		do_endio(ic, flushes);
2773		flushes = next;
2774	}
2775}
2776
2777static void complete_copy_from_journal(unsigned long error, void *context)
2778{
2779	struct journal_io *io = context;
2780	struct journal_completion *comp = io->comp;
2781	struct dm_integrity_c *ic = comp->ic;
2782
2783	remove_range(ic, &io->range);
2784	mempool_free(io, &ic->journal_io_mempool);
2785	if (unlikely(error != 0))
2786		dm_integrity_io_error(ic, "copying from journal", -EIO);
2787	complete_journal_op(comp);
2788}
2789
2790static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2791			       struct journal_entry *je)
2792{
2793	unsigned int s = 0;
2794
2795	do {
2796		js->commit_id = je->last_bytes[s];
2797		js++;
2798	} while (++s < ic->sectors_per_block);
2799}
2800
2801static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2802			     unsigned int write_sections, bool from_replay)
2803{
2804	unsigned int i, j, n;
2805	struct journal_completion comp;
2806	struct blk_plug plug;
2807
2808	blk_start_plug(&plug);
2809
2810	comp.ic = ic;
2811	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2812	init_completion(&comp.comp);
2813
2814	i = write_start;
2815	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2816#ifndef INTERNAL_VERIFY
2817		if (unlikely(from_replay))
2818#endif
2819			rw_section_mac(ic, i, false);
2820		for (j = 0; j < ic->journal_section_entries; j++) {
2821			struct journal_entry *je = access_journal_entry(ic, i, j);
2822			sector_t sec, area, offset;
2823			unsigned int k, l, next_loop;
2824			sector_t metadata_block;
2825			unsigned int metadata_offset;
2826			struct journal_io *io;
2827
2828			if (journal_entry_is_unused(je))
2829				continue;
2830			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2831			sec = journal_entry_get_sector(je);
2832			if (unlikely(from_replay)) {
2833				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2834					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2835					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2836				}
2837				if (unlikely(sec >= ic->provided_data_sectors)) {
2838					journal_entry_set_unused(je);
2839					continue;
2840				}
2841			}
2842			get_area_and_offset(ic, sec, &area, &offset);
2843			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2844			for (k = j + 1; k < ic->journal_section_entries; k++) {
2845				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2846				sector_t sec2, area2, offset2;
2847
2848				if (journal_entry_is_unused(je2))
2849					break;
2850				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2851				sec2 = journal_entry_get_sector(je2);
2852				if (unlikely(sec2 >= ic->provided_data_sectors))
2853					break;
2854				get_area_and_offset(ic, sec2, &area2, &offset2);
2855				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2856					break;
2857				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2858			}
2859			next_loop = k - 1;
2860
2861			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2862			io->comp = &comp;
2863			io->range.logical_sector = sec;
2864			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2865
2866			spin_lock_irq(&ic->endio_wait.lock);
2867			add_new_range_and_wait(ic, &io->range);
2868
2869			if (likely(!from_replay)) {
2870				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2871
2872				/* don't write if there is newer committed sector */
2873				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2874					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2875
2876					journal_entry_set_unused(je2);
2877					remove_journal_node(ic, &section_node[j]);
2878					j++;
2879					sec += ic->sectors_per_block;
2880					offset += ic->sectors_per_block;
2881				}
2882				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2883					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2884
2885					journal_entry_set_unused(je2);
2886					remove_journal_node(ic, &section_node[k - 1]);
2887					k--;
2888				}
2889				if (j == k) {
2890					remove_range_unlocked(ic, &io->range);
2891					spin_unlock_irq(&ic->endio_wait.lock);
2892					mempool_free(io, &ic->journal_io_mempool);
2893					goto skip_io;
2894				}
2895				for (l = j; l < k; l++)
2896					remove_journal_node(ic, &section_node[l]);
2897			}
2898			spin_unlock_irq(&ic->endio_wait.lock);
2899
2900			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2901			for (l = j; l < k; l++) {
2902				int r;
2903				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2904
2905				if (
2906#ifndef INTERNAL_VERIFY
2907				    unlikely(from_replay) &&
2908#endif
2909				    ic->internal_hash) {
2910					char test_tag[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2911
2912					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2913								  (char *)access_journal_data(ic, i, l), test_tag);
2914					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2915						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2916						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2917					}
2918				}
2919
2920				journal_entry_set_unused(je2);
2921				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2922							ic->tag_size, TAG_WRITE);
2923				if (unlikely(r))
2924					dm_integrity_io_error(ic, "reading tags", r);
2925			}
2926
2927			atomic_inc(&comp.in_flight);
2928			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2929					  (k - j) << ic->sb->log2_sectors_per_block,
2930					  get_data_sector(ic, area, offset),
2931					  complete_copy_from_journal, io);
2932skip_io:
2933			j = next_loop;
2934		}
2935	}
2936
2937	dm_bufio_write_dirty_buffers_async(ic->bufio);
2938
2939	blk_finish_plug(&plug);
2940
2941	complete_journal_op(&comp);
2942	wait_for_completion_io(&comp.comp);
2943
2944	dm_integrity_flush_buffers(ic, true);
2945}
2946
2947static void integrity_writer(struct work_struct *w)
2948{
2949	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2950	unsigned int write_start, write_sections;
2951	unsigned int prev_free_sectors;
2952
2953	spin_lock_irq(&ic->endio_wait.lock);
2954	write_start = ic->committed_section;
2955	write_sections = ic->n_committed_sections;
2956	spin_unlock_irq(&ic->endio_wait.lock);
2957
2958	if (!write_sections)
2959		return;
2960
2961	do_journal_write(ic, write_start, write_sections, false);
2962
2963	spin_lock_irq(&ic->endio_wait.lock);
2964
2965	ic->committed_section += write_sections;
2966	wraparound_section(ic, &ic->committed_section);
2967	ic->n_committed_sections -= write_sections;
2968
2969	prev_free_sectors = ic->free_sectors;
2970	ic->free_sectors += write_sections * ic->journal_section_entries;
2971	if (unlikely(!prev_free_sectors))
2972		wake_up_locked(&ic->endio_wait);
2973
2974	spin_unlock_irq(&ic->endio_wait.lock);
2975}
2976
2977static void recalc_write_super(struct dm_integrity_c *ic)
2978{
2979	int r;
2980
2981	dm_integrity_flush_buffers(ic, false);
2982	if (dm_integrity_failed(ic))
2983		return;
2984
2985	r = sync_rw_sb(ic, REQ_OP_WRITE);
2986	if (unlikely(r))
2987		dm_integrity_io_error(ic, "writing superblock", r);
2988}
2989
2990static void integrity_recalc(struct work_struct *w)
2991{
2992	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2993	size_t recalc_tags_size;
2994	u8 *recalc_buffer = NULL;
2995	u8 *recalc_tags = NULL;
2996	struct dm_integrity_range range;
2997	struct dm_io_request io_req;
2998	struct dm_io_region io_loc;
2999	sector_t area, offset;
3000	sector_t metadata_block;
3001	unsigned int metadata_offset;
3002	sector_t logical_sector, n_sectors;
3003	__u8 *t;
3004	unsigned int i;
3005	int r;
3006	unsigned int super_counter = 0;
3007	unsigned recalc_sectors = RECALC_SECTORS;
3008
3009retry:
3010	recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
3011	if (!recalc_buffer) {
3012oom:
3013		recalc_sectors >>= 1;
3014		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
3015			goto retry;
3016		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
3017		goto free_ret;
3018	}
3019	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3020	if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
3021		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
3022	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
3023	if (!recalc_tags) {
3024		vfree(recalc_buffer);
3025		recalc_buffer = NULL;
3026		goto oom;
3027	}
3028
3029	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
3030
3031	spin_lock_irq(&ic->endio_wait.lock);
3032
3033next_chunk:
3034
3035	if (unlikely(dm_post_suspending(ic->ti)))
3036		goto unlock_ret;
3037
3038	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
3039	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
3040		if (ic->mode == 'B') {
3041			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3042			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
3043			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3044		}
3045		goto unlock_ret;
3046	}
3047
3048	get_area_and_offset(ic, range.logical_sector, &area, &offset);
3049	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
3050	if (!ic->meta_dev)
3051		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
3052
3053	add_new_range_and_wait(ic, &range);
3054	spin_unlock_irq(&ic->endio_wait.lock);
3055	logical_sector = range.logical_sector;
3056	n_sectors = range.n_sectors;
3057
3058	if (ic->mode == 'B') {
3059		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
3060			goto advance_and_next;
3061
3062		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
3063				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
3064			logical_sector += ic->sectors_per_block;
3065			n_sectors -= ic->sectors_per_block;
3066			cond_resched();
3067		}
3068		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
3069				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
3070			n_sectors -= ic->sectors_per_block;
3071			cond_resched();
3072		}
3073		get_area_and_offset(ic, logical_sector, &area, &offset);
3074	}
3075
3076	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
3077
3078	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
3079		recalc_write_super(ic);
3080		if (ic->mode == 'B')
3081			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3082
3083		super_counter = 0;
3084	}
3085
3086	if (unlikely(dm_integrity_failed(ic)))
3087		goto err;
3088
3089	io_req.bi_opf = REQ_OP_READ;
3090	io_req.mem.type = DM_IO_VMA;
3091	io_req.mem.ptr.addr = recalc_buffer;
3092	io_req.notify.fn = NULL;
3093	io_req.client = ic->io;
3094	io_loc.bdev = ic->dev->bdev;
3095	io_loc.sector = get_data_sector(ic, area, offset);
3096	io_loc.count = n_sectors;
3097
3098	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
3099	if (unlikely(r)) {
3100		dm_integrity_io_error(ic, "reading data", r);
3101		goto err;
3102	}
3103
3104	t = recalc_tags;
3105	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
3106		integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
3107		t += ic->tag_size;
3108	}
3109
3110	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
3111
3112	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
3113	if (unlikely(r)) {
3114		dm_integrity_io_error(ic, "writing tags", r);
3115		goto err;
3116	}
3117
3118	if (ic->mode == 'B') {
3119		sector_t start, end;
3120
3121		start = (range.logical_sector >>
3122			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3123			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3124		end = ((range.logical_sector + range.n_sectors) >>
3125		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3126			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3127		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
3128	}
3129
3130advance_and_next:
3131	cond_resched();
3132
3133	spin_lock_irq(&ic->endio_wait.lock);
3134	remove_range_unlocked(ic, &range);
3135	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
3136	goto next_chunk;
3137
3138err:
3139	remove_range(ic, &range);
3140	goto free_ret;
3141
3142unlock_ret:
3143	spin_unlock_irq(&ic->endio_wait.lock);
3144
3145	recalc_write_super(ic);
3146
3147free_ret:
3148	vfree(recalc_buffer);
3149	kvfree(recalc_tags);
3150}
3151
3152static void integrity_recalc_inline(struct work_struct *w)
3153{
3154	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
3155	size_t recalc_tags_size;
3156	u8 *recalc_buffer = NULL;
3157	u8 *recalc_tags = NULL;
3158	struct dm_integrity_range range;
3159	struct bio *bio;
3160	struct bio_integrity_payload *bip;
3161	__u8 *t;
3162	unsigned int i;
3163	int r;
3164	unsigned ret;
3165	unsigned int super_counter = 0;
3166	unsigned recalc_sectors = RECALC_SECTORS;
3167
3168retry:
3169	recalc_buffer = kmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO | __GFP_NOWARN);
3170	if (!recalc_buffer) {
3171oom:
3172		recalc_sectors >>= 1;
3173		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
3174			goto retry;
3175		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
3176		goto free_ret;
3177	}
3178
3179	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tuple_size;
3180	if (crypto_shash_digestsize(ic->internal_hash) > ic->tuple_size)
3181		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tuple_size;
3182	recalc_tags = kmalloc(recalc_tags_size, GFP_NOIO | __GFP_NOWARN);
3183	if (!recalc_tags) {
3184		kfree(recalc_buffer);
3185		recalc_buffer = NULL;
3186		goto oom;
3187	}
3188
3189	spin_lock_irq(&ic->endio_wait.lock);
3190
3191next_chunk:
3192	if (unlikely(dm_post_suspending(ic->ti)))
3193		goto unlock_ret;
3194
3195	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
3196	if (unlikely(range.logical_sector >= ic->provided_data_sectors))
3197		goto unlock_ret;
3198	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
3199
3200	add_new_range_and_wait(ic, &range);
3201	spin_unlock_irq(&ic->endio_wait.lock);
3202
3203	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
3204		recalc_write_super(ic);
3205		super_counter = 0;
3206	}
3207
3208	if (unlikely(dm_integrity_failed(ic)))
3209		goto err;
3210
3211	DEBUG_print("recalculating: %llx - %llx\n", range.logical_sector, range.n_sectors);
3212
3213	bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recalc_bios);
3214	bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector;
3215	__bio_add_page(bio, virt_to_page(recalc_buffer), range.n_sectors << SECTOR_SHIFT, offset_in_page(recalc_buffer));
3216	r = submit_bio_wait(bio);
3217	bio_put(bio);
3218	if (unlikely(r)) {
3219		dm_integrity_io_error(ic, "reading data", r);
3220		goto err;
3221	}
3222
3223	t = recalc_tags;
3224	for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
3225		memset(t, 0, ic->tuple_size);
3226		integrity_sector_checksum(ic, range.logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
3227		t += ic->tuple_size;
3228	}
3229
3230	bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_WRITE, GFP_NOIO, &ic->recalc_bios);
3231	bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector;
3232	__bio_add_page(bio, virt_to_page(recalc_buffer), range.n_sectors << SECTOR_SHIFT, offset_in_page(recalc_buffer));
3233
3234	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
3235	if (unlikely(IS_ERR(bip))) {
3236		bio_put(bio);
3237		DMCRIT("out of memory for bio integrity payload - recalculation disabled");
3238		goto err;
3239	}
3240	ret = bio_integrity_add_page(bio, virt_to_page(recalc_tags), t - recalc_tags, offset_in_page(recalc_tags));
3241	if (unlikely(ret != t - recalc_tags)) {
3242		bio_put(bio);
3243		dm_integrity_io_error(ic, "attaching integrity tags", -ENOMEM);
3244		goto err;
3245	}
3246
3247	r = submit_bio_wait(bio);
3248	bio_put(bio);
3249	if (unlikely(r)) {
3250		dm_integrity_io_error(ic, "writing data", r);
3251		goto err;
3252	}
3253
3254	cond_resched();
3255	spin_lock_irq(&ic->endio_wait.lock);
3256	remove_range_unlocked(ic, &range);
3257#ifdef CONFIG_64BIT
3258	/* Paired with smp_load_acquire in dm_integrity_map_inline. */
3259	smp_store_release(&ic->sb->recalc_sector, cpu_to_le64(range.logical_sector + range.n_sectors));
3260#else
3261	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
3262#endif
3263	goto next_chunk;
3264
3265err:
3266	remove_range(ic, &range);
3267	goto free_ret;
3268
3269unlock_ret:
3270	spin_unlock_irq(&ic->endio_wait.lock);
3271
3272	recalc_write_super(ic);
3273
3274free_ret:
3275	kfree(recalc_buffer);
3276	kfree(recalc_tags);
3277}
3278
3279static void bitmap_block_work(struct work_struct *w)
3280{
3281	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
3282	struct dm_integrity_c *ic = bbs->ic;
3283	struct bio *bio;
3284	struct bio_list bio_queue;
3285	struct bio_list waiting;
3286
3287	bio_list_init(&waiting);
3288
3289	spin_lock(&bbs->bio_queue_lock);
3290	bio_queue = bbs->bio_queue;
3291	bio_list_init(&bbs->bio_queue);
3292	spin_unlock(&bbs->bio_queue_lock);
3293
3294	while ((bio = bio_list_pop(&bio_queue))) {
3295		struct dm_integrity_io *dio;
3296
3297		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3298
3299		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3300				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
3301			remove_range(ic, &dio->range);
3302			INIT_WORK(&dio->work, integrity_bio_wait);
3303			queue_work(ic->offload_wq, &dio->work);
3304		} else {
3305			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
3306					dio->range.n_sectors, BITMAP_OP_SET);
3307			bio_list_add(&waiting, bio);
3308		}
3309	}
3310
3311	if (bio_list_empty(&waiting))
3312		return;
3313
3314	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
3315			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
3316			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
3317
3318	while ((bio = bio_list_pop(&waiting))) {
3319		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3320
3321		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3322				dio->range.n_sectors, BITMAP_OP_SET);
3323
3324		remove_range(ic, &dio->range);
3325		INIT_WORK(&dio->work, integrity_bio_wait);
3326		queue_work(ic->offload_wq, &dio->work);
3327	}
3328
3329	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3330}
3331
3332static void bitmap_flush_work(struct work_struct *work)
3333{
3334	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
3335	struct dm_integrity_range range;
3336	unsigned long limit;
3337	struct bio *bio;
3338
3339	dm_integrity_flush_buffers(ic, false);
3340
3341	range.logical_sector = 0;
3342	range.n_sectors = ic->provided_data_sectors;
3343
3344	spin_lock_irq(&ic->endio_wait.lock);
3345	add_new_range_and_wait(ic, &range);
3346	spin_unlock_irq(&ic->endio_wait.lock);
3347
3348	dm_integrity_flush_buffers(ic, true);
3349
3350	limit = ic->provided_data_sectors;
3351	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3352		limit = le64_to_cpu(ic->sb->recalc_sector)
3353			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
3354			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3355	}
3356	/*DEBUG_print("zeroing journal\n");*/
3357	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
3358	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
3359
3360	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3361			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3362
3363	spin_lock_irq(&ic->endio_wait.lock);
3364	remove_range_unlocked(ic, &range);
3365	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
3366		bio_endio(bio);
3367		spin_unlock_irq(&ic->endio_wait.lock);
3368		spin_lock_irq(&ic->endio_wait.lock);
3369	}
3370	spin_unlock_irq(&ic->endio_wait.lock);
3371}
3372
3373
3374static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
3375			 unsigned int n_sections, unsigned char commit_seq)
3376{
3377	unsigned int i, j, n;
3378
3379	if (!n_sections)
3380		return;
3381
3382	for (n = 0; n < n_sections; n++) {
3383		i = start_section + n;
3384		wraparound_section(ic, &i);
3385		for (j = 0; j < ic->journal_section_sectors; j++) {
3386			struct journal_sector *js = access_journal(ic, i, j);
3387
3388			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
3389			memset(&js->sectors, 0, sizeof(js->sectors));
3390			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
3391		}
3392		for (j = 0; j < ic->journal_section_entries; j++) {
3393			struct journal_entry *je = access_journal_entry(ic, i, j);
3394
3395			journal_entry_set_unused(je);
3396		}
3397	}
3398
3399	write_journal(ic, start_section, n_sections);
3400}
3401
3402static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
3403{
3404	unsigned char k;
3405
3406	for (k = 0; k < N_COMMIT_IDS; k++) {
3407		if (dm_integrity_commit_id(ic, i, j, k) == id)
3408			return k;
3409	}
3410	dm_integrity_io_error(ic, "journal commit id", -EIO);
3411	return -EIO;
3412}
3413
3414static void replay_journal(struct dm_integrity_c *ic)
3415{
3416	unsigned int i, j;
3417	bool used_commit_ids[N_COMMIT_IDS];
3418	unsigned int max_commit_id_sections[N_COMMIT_IDS];
3419	unsigned int write_start, write_sections;
3420	unsigned int continue_section;
3421	bool journal_empty;
3422	unsigned char unused, last_used, want_commit_seq;
3423
3424	if (ic->mode == 'R')
3425		return;
3426
3427	if (ic->journal_uptodate)
3428		return;
3429
3430	last_used = 0;
3431	write_start = 0;
3432
3433	if (!ic->just_formatted) {
3434		DEBUG_print("reading journal\n");
3435		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3436		if (ic->journal_io)
3437			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3438		if (ic->journal_io) {
3439			struct journal_completion crypt_comp;
3440
3441			crypt_comp.ic = ic;
3442			init_completion(&crypt_comp.comp);
3443			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3444			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3445			wait_for_completion(&crypt_comp.comp);
3446		}
3447		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3448	}
3449
3450	if (dm_integrity_failed(ic))
3451		goto clear_journal;
3452
3453	journal_empty = true;
3454	memset(used_commit_ids, 0, sizeof(used_commit_ids));
3455	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3456	for (i = 0; i < ic->journal_sections; i++) {
3457		for (j = 0; j < ic->journal_section_sectors; j++) {
3458			int k;
3459			struct journal_sector *js = access_journal(ic, i, j);
3460
3461			k = find_commit_seq(ic, i, j, js->commit_id);
3462			if (k < 0)
3463				goto clear_journal;
3464			used_commit_ids[k] = true;
3465			max_commit_id_sections[k] = i;
3466		}
3467		if (journal_empty) {
3468			for (j = 0; j < ic->journal_section_entries; j++) {
3469				struct journal_entry *je = access_journal_entry(ic, i, j);
3470
3471				if (!journal_entry_is_unused(je)) {
3472					journal_empty = false;
3473					break;
3474				}
3475			}
3476		}
3477	}
3478
3479	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3480		unused = N_COMMIT_IDS - 1;
3481		while (unused && !used_commit_ids[unused - 1])
3482			unused--;
3483	} else {
3484		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3485			if (!used_commit_ids[unused])
3486				break;
3487		if (unused == N_COMMIT_IDS) {
3488			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3489			goto clear_journal;
3490		}
3491	}
3492	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3493		    unused, used_commit_ids[0], used_commit_ids[1],
3494		    used_commit_ids[2], used_commit_ids[3]);
3495
3496	last_used = prev_commit_seq(unused);
3497	want_commit_seq = prev_commit_seq(last_used);
3498
3499	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3500		journal_empty = true;
3501
3502	write_start = max_commit_id_sections[last_used] + 1;
3503	if (unlikely(write_start >= ic->journal_sections))
3504		want_commit_seq = next_commit_seq(want_commit_seq);
3505	wraparound_section(ic, &write_start);
3506
3507	i = write_start;
3508	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3509		for (j = 0; j < ic->journal_section_sectors; j++) {
3510			struct journal_sector *js = access_journal(ic, i, j);
3511
3512			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3513				/*
3514				 * This could be caused by crash during writing.
3515				 * We won't replay the inconsistent part of the
3516				 * journal.
3517				 */
3518				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3519					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3520				goto brk;
3521			}
3522		}
3523		i++;
3524		if (unlikely(i >= ic->journal_sections))
3525			want_commit_seq = next_commit_seq(want_commit_seq);
3526		wraparound_section(ic, &i);
3527	}
3528brk:
3529
3530	if (!journal_empty) {
3531		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3532			    write_sections, write_start, want_commit_seq);
3533		do_journal_write(ic, write_start, write_sections, true);
3534	}
3535
3536	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3537		continue_section = write_start;
3538		ic->commit_seq = want_commit_seq;
3539		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3540	} else {
3541		unsigned int s;
3542		unsigned char erase_seq;
3543
3544clear_journal:
3545		DEBUG_print("clearing journal\n");
3546
3547		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3548		s = write_start;
3549		init_journal(ic, s, 1, erase_seq);
3550		s++;
3551		wraparound_section(ic, &s);
3552		if (ic->journal_sections >= 2) {
3553			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3554			s += ic->journal_sections - 2;
3555			wraparound_section(ic, &s);
3556			init_journal(ic, s, 1, erase_seq);
3557		}
3558
3559		continue_section = 0;
3560		ic->commit_seq = next_commit_seq(erase_seq);
3561	}
3562
3563	ic->committed_section = continue_section;
3564	ic->n_committed_sections = 0;
3565
3566	ic->uncommitted_section = continue_section;
3567	ic->n_uncommitted_sections = 0;
3568
3569	ic->free_section = continue_section;
3570	ic->free_section_entry = 0;
3571	ic->free_sectors = ic->journal_entries;
3572
3573	ic->journal_tree_root = RB_ROOT;
3574	for (i = 0; i < ic->journal_entries; i++)
3575		init_journal_node(&ic->journal_tree[i]);
3576}
3577
3578static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3579{
3580	DEBUG_print("%s\n", __func__);
3581
3582	if (ic->mode == 'B') {
3583		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3584		ic->synchronous_mode = 1;
3585
3586		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3587		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3588		flush_workqueue(ic->commit_wq);
3589	}
3590}
3591
3592static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3593{
3594	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3595
3596	DEBUG_print("%s\n", __func__);
3597
3598	dm_integrity_enter_synchronous_mode(ic);
3599
3600	return NOTIFY_DONE;
3601}
3602
3603static void dm_integrity_postsuspend(struct dm_target *ti)
3604{
3605	struct dm_integrity_c *ic = ti->private;
3606	int r;
3607
3608	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3609
3610	del_timer_sync(&ic->autocommit_timer);
3611
3612	if (ic->recalc_wq)
3613		drain_workqueue(ic->recalc_wq);
3614
3615	if (ic->mode == 'B')
3616		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3617
3618	queue_work(ic->commit_wq, &ic->commit_work);
3619	drain_workqueue(ic->commit_wq);
3620
3621	if (ic->mode == 'J') {
3622		queue_work(ic->writer_wq, &ic->writer_work);
3623		drain_workqueue(ic->writer_wq);
3624		dm_integrity_flush_buffers(ic, true);
3625		if (ic->wrote_to_journal) {
3626			init_journal(ic, ic->free_section,
3627				     ic->journal_sections - ic->free_section, ic->commit_seq);
3628			if (ic->free_section) {
3629				init_journal(ic, 0, ic->free_section,
3630					     next_commit_seq(ic->commit_seq));
3631			}
3632		}
3633	}
3634
3635	if (ic->mode == 'B') {
3636		dm_integrity_flush_buffers(ic, true);
3637#if 1
3638		/* set to 0 to test bitmap replay code */
3639		init_journal(ic, 0, ic->journal_sections, 0);
3640		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3641		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3642		if (unlikely(r))
3643			dm_integrity_io_error(ic, "writing superblock", r);
3644#endif
3645	}
3646
3647	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3648
3649	ic->journal_uptodate = true;
3650}
3651
3652static void dm_integrity_resume(struct dm_target *ti)
3653{
3654	struct dm_integrity_c *ic = ti->private;
3655	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3656	int r;
3657
3658	DEBUG_print("resume\n");
3659
3660	ic->wrote_to_journal = false;
3661
3662	if (ic->provided_data_sectors != old_provided_data_sectors) {
3663		if (ic->provided_data_sectors > old_provided_data_sectors &&
3664		    ic->mode == 'B' &&
3665		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3666			rw_journal_sectors(ic, REQ_OP_READ, 0,
3667					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3668			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3669					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3670			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3671					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3672		}
3673
3674		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3675		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3676		if (unlikely(r))
3677			dm_integrity_io_error(ic, "writing superblock", r);
3678	}
3679
3680	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3681		DEBUG_print("resume dirty_bitmap\n");
3682		rw_journal_sectors(ic, REQ_OP_READ, 0,
3683				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3684		if (ic->mode == 'B') {
3685			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3686			    !ic->reset_recalculate_flag) {
3687				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3688				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3689				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3690						     BITMAP_OP_TEST_ALL_CLEAR)) {
3691					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3692					ic->sb->recalc_sector = cpu_to_le64(0);
3693				}
3694			} else {
3695				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3696					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3697				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3698				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3699				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3700				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3701				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3702						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3703				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3704				ic->sb->recalc_sector = cpu_to_le64(0);
3705			}
3706		} else {
3707			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3708			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3709			    ic->reset_recalculate_flag) {
3710				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3711				ic->sb->recalc_sector = cpu_to_le64(0);
3712			}
3713			init_journal(ic, 0, ic->journal_sections, 0);
3714			replay_journal(ic);
3715			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3716		}
3717		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3718		if (unlikely(r))
3719			dm_integrity_io_error(ic, "writing superblock", r);
3720	} else {
3721		replay_journal(ic);
3722		if (ic->reset_recalculate_flag) {
3723			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3724			ic->sb->recalc_sector = cpu_to_le64(0);
3725		}
3726		if (ic->mode == 'B') {
3727			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3728			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3729			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3730			if (unlikely(r))
3731				dm_integrity_io_error(ic, "writing superblock", r);
3732
3733			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3734			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3735			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3736			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3737			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3738				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3739						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3740				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3741						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3742				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3743						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3744			}
3745			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3746					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3747		}
3748	}
3749
3750	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3751	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3752		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3753
3754		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3755		if (recalc_pos < ic->provided_data_sectors) {
3756			queue_work(ic->recalc_wq, &ic->recalc_work);
3757		} else if (recalc_pos > ic->provided_data_sectors) {
3758			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3759			recalc_write_super(ic);
3760		}
3761	}
3762
3763	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3764	ic->reboot_notifier.next = NULL;
3765	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3766	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3767
3768#if 0
3769	/* set to 1 to stress test synchronous mode */
3770	dm_integrity_enter_synchronous_mode(ic);
3771#endif
3772}
3773
3774static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3775				unsigned int status_flags, char *result, unsigned int maxlen)
3776{
3777	struct dm_integrity_c *ic = ti->private;
3778	unsigned int arg_count;
3779	size_t sz = 0;
3780
3781	switch (type) {
3782	case STATUSTYPE_INFO:
3783		DMEMIT("%llu %llu",
3784			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3785			ic->provided_data_sectors);
3786		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3787			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3788		else
3789			DMEMIT(" -");
3790		break;
3791
3792	case STATUSTYPE_TABLE: {
 
 
 
 
3793		arg_count = 3;
3794		arg_count += !!ic->meta_dev;
3795		arg_count += ic->sectors_per_block != 1;
3796		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3797		arg_count += ic->reset_recalculate_flag;
3798		arg_count += ic->discard;
3799		arg_count += ic->mode == 'J';
3800		arg_count += ic->mode == 'J';
3801		arg_count += ic->mode == 'B';
3802		arg_count += ic->mode == 'B';
3803		arg_count += !!ic->internal_hash_alg.alg_string;
3804		arg_count += !!ic->journal_crypt_alg.alg_string;
3805		arg_count += !!ic->journal_mac_alg.alg_string;
3806		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3807		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3808		arg_count += ic->legacy_recalculate;
3809		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3810		       ic->tag_size, ic->mode, arg_count);
3811		if (ic->meta_dev)
3812			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3813		if (ic->sectors_per_block != 1)
3814			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3815		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3816			DMEMIT(" recalculate");
3817		if (ic->reset_recalculate_flag)
3818			DMEMIT(" reset_recalculate");
3819		if (ic->discard)
3820			DMEMIT(" allow_discards");
3821		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3822		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3823		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3824		if (ic->mode == 'J') {
3825			__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3826
3827			watermark_percentage += ic->journal_entries / 2;
3828			do_div(watermark_percentage, ic->journal_entries);
3829			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3830			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3831		}
3832		if (ic->mode == 'B') {
3833			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3834			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3835		}
3836		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3837			DMEMIT(" fix_padding");
3838		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3839			DMEMIT(" fix_hmac");
3840		if (ic->legacy_recalculate)
3841			DMEMIT(" legacy_recalculate");
3842
3843#define EMIT_ALG(a, n)							\
3844		do {							\
3845			if (ic->a.alg_string) {				\
3846				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3847				if (ic->a.key_string)			\
3848					DMEMIT(":%s", ic->a.key_string);\
3849			}						\
3850		} while (0)
3851		EMIT_ALG(internal_hash_alg, "internal_hash");
3852		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3853		EMIT_ALG(journal_mac_alg, "journal_mac");
3854		break;
3855	}
3856	case STATUSTYPE_IMA:
3857		DMEMIT_TARGET_NAME_VERSION(ti->type);
3858		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3859			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3860
3861		if (ic->meta_dev)
3862			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3863		if (ic->sectors_per_block != 1)
3864			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3865
3866		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3867		       'y' : 'n');
3868		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3869		DMEMIT(",fix_padding=%c",
3870		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3871		DMEMIT(",fix_hmac=%c",
3872		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3873		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3874
3875		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3876		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3877		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3878		DMEMIT(";");
3879		break;
3880	}
3881}
3882
3883static int dm_integrity_iterate_devices(struct dm_target *ti,
3884					iterate_devices_callout_fn fn, void *data)
3885{
3886	struct dm_integrity_c *ic = ti->private;
3887
3888	if (!ic->meta_dev)
3889		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3890	else
3891		return fn(ti, ic->dev, 0, ti->len, data);
3892}
3893
3894static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3895{
3896	struct dm_integrity_c *ic = ti->private;
3897
3898	if (ic->sectors_per_block > 1) {
3899		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3900		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3901		limits->io_min = ic->sectors_per_block << SECTOR_SHIFT;
3902		limits->dma_alignment = limits->logical_block_size - 1;
3903		limits->discard_granularity = ic->sectors_per_block << SECTOR_SHIFT;
3904	}
3905
3906	if (!ic->internal_hash) {
3907		struct blk_integrity *bi = &limits->integrity;
3908
3909		memset(bi, 0, sizeof(*bi));
3910		bi->tuple_size = ic->tag_size;
3911		bi->tag_size = bi->tuple_size;
3912		bi->interval_exp =
3913			ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3914	}
3915
3916	limits->max_integrity_segments = USHRT_MAX;
3917}
3918
3919static void calculate_journal_section_size(struct dm_integrity_c *ic)
3920{
3921	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3922
3923	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3924	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3925					 JOURNAL_ENTRY_ROUNDUP);
3926
3927	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3928		sector_space -= JOURNAL_MAC_PER_SECTOR;
3929	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3930	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3931	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3932	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3933}
3934
3935static int calculate_device_limits(struct dm_integrity_c *ic)
3936{
3937	__u64 initial_sectors;
3938
3939	calculate_journal_section_size(ic);
3940	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3941	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3942		return -EINVAL;
3943	ic->initial_sectors = initial_sectors;
3944
3945	if (ic->mode == 'I') {
3946		if (ic->initial_sectors + ic->provided_data_sectors > ic->meta_device_sectors)
3947			return -EINVAL;
3948	} else if (!ic->meta_dev) {
3949		sector_t last_sector, last_area, last_offset;
3950
3951		/* we have to maintain excessive padding for compatibility with existing volumes */
3952		__u64 metadata_run_padding =
3953			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3954			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3955			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3956
3957		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3958					    metadata_run_padding) >> SECTOR_SHIFT;
3959		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3960			ic->log2_metadata_run = __ffs(ic->metadata_run);
3961		else
3962			ic->log2_metadata_run = -1;
3963
3964		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3965		last_sector = get_data_sector(ic, last_area, last_offset);
3966		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3967			return -EINVAL;
3968	} else {
3969		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3970
3971		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3972				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3973		meta_size <<= ic->log2_buffer_sectors;
3974		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3975		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3976			return -EINVAL;
3977		ic->metadata_run = 1;
3978		ic->log2_metadata_run = 0;
3979	}
3980
3981	return 0;
3982}
3983
3984static void get_provided_data_sectors(struct dm_integrity_c *ic)
3985{
3986	if (!ic->meta_dev) {
3987		int test_bit;
3988
3989		ic->provided_data_sectors = 0;
3990		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3991			__u64 prev_data_sectors = ic->provided_data_sectors;
3992
3993			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3994			if (calculate_device_limits(ic))
3995				ic->provided_data_sectors = prev_data_sectors;
3996		}
3997	} else {
3998		ic->provided_data_sectors = ic->data_device_sectors;
3999		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
4000	}
4001}
4002
4003static int initialize_superblock(struct dm_integrity_c *ic,
4004				 unsigned int journal_sectors, unsigned int interleave_sectors)
4005{
4006	unsigned int journal_sections;
4007	int test_bit;
4008
4009	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
4010	memcpy(ic->sb->magic, SB_MAGIC, 8);
4011	if (ic->mode == 'I')
4012		ic->sb->flags |= cpu_to_le32(SB_FLAG_INLINE);
4013	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
4014	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
4015	if (ic->journal_mac_alg.alg_string)
4016		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
4017
4018	calculate_journal_section_size(ic);
4019	journal_sections = journal_sectors / ic->journal_section_sectors;
4020	if (!journal_sections)
4021		journal_sections = 1;
4022	if (ic->mode == 'I')
4023		journal_sections = 0;
4024
4025	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
4026		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
4027		get_random_bytes(ic->sb->salt, SALT_SIZE);
4028	}
4029
4030	if (!ic->meta_dev) {
4031		if (ic->fix_padding)
4032			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
4033		ic->sb->journal_sections = cpu_to_le32(journal_sections);
4034		if (!interleave_sectors)
4035			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4036		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
4037		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
4038		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
4039
4040		get_provided_data_sectors(ic);
4041		if (!ic->provided_data_sectors)
4042			return -EINVAL;
4043	} else {
4044		ic->sb->log2_interleave_sectors = 0;
4045
4046		get_provided_data_sectors(ic);
4047		if (!ic->provided_data_sectors)
4048			return -EINVAL;
4049
4050try_smaller_buffer:
4051		ic->sb->journal_sections = cpu_to_le32(0);
4052		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
4053			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
4054			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
4055
4056			if (test_journal_sections > journal_sections)
4057				continue;
4058			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
4059			if (calculate_device_limits(ic))
4060				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
4061
4062		}
4063		if (!le32_to_cpu(ic->sb->journal_sections)) {
4064			if (ic->log2_buffer_sectors > 3) {
4065				ic->log2_buffer_sectors--;
4066				goto try_smaller_buffer;
4067			}
4068			return -EINVAL;
4069		}
4070	}
4071
4072	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
4073
4074	sb_set_version(ic);
4075
4076	return 0;
4077}
4078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4079static void dm_integrity_free_page_list(struct page_list *pl)
4080{
4081	unsigned int i;
4082
4083	if (!pl)
4084		return;
4085	for (i = 0; pl[i].page; i++)
4086		__free_page(pl[i].page);
4087	kvfree(pl);
4088}
4089
4090static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
4091{
4092	struct page_list *pl;
4093	unsigned int i;
4094
4095	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
4096	if (!pl)
4097		return NULL;
4098
4099	for (i = 0; i < n_pages; i++) {
4100		pl[i].page = alloc_page(GFP_KERNEL);
4101		if (!pl[i].page) {
4102			dm_integrity_free_page_list(pl);
4103			return NULL;
4104		}
4105		if (i)
4106			pl[i - 1].next = &pl[i];
4107	}
4108	pl[i].page = NULL;
4109	pl[i].next = NULL;
4110
4111	return pl;
4112}
4113
4114static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
4115{
4116	unsigned int i;
4117
4118	for (i = 0; i < ic->journal_sections; i++)
4119		kvfree(sl[i]);
4120	kvfree(sl);
4121}
4122
4123static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
4124								   struct page_list *pl)
4125{
4126	struct scatterlist **sl;
4127	unsigned int i;
4128
4129	sl = kvmalloc_array(ic->journal_sections,
4130			    sizeof(struct scatterlist *),
4131			    GFP_KERNEL | __GFP_ZERO);
4132	if (!sl)
4133		return NULL;
4134
4135	for (i = 0; i < ic->journal_sections; i++) {
4136		struct scatterlist *s;
4137		unsigned int start_index, start_offset;
4138		unsigned int end_index, end_offset;
4139		unsigned int n_pages;
4140		unsigned int idx;
4141
4142		page_list_location(ic, i, 0, &start_index, &start_offset);
4143		page_list_location(ic, i, ic->journal_section_sectors - 1,
4144				   &end_index, &end_offset);
4145
4146		n_pages = (end_index - start_index + 1);
4147
4148		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
4149				   GFP_KERNEL);
4150		if (!s) {
4151			dm_integrity_free_journal_scatterlist(ic, sl);
4152			return NULL;
4153		}
4154
4155		sg_init_table(s, n_pages);
4156		for (idx = start_index; idx <= end_index; idx++) {
4157			char *va = lowmem_page_address(pl[idx].page);
4158			unsigned int start = 0, end = PAGE_SIZE;
4159
4160			if (idx == start_index)
4161				start = start_offset;
4162			if (idx == end_index)
4163				end = end_offset + (1 << SECTOR_SHIFT);
4164			sg_set_buf(&s[idx - start_index], va + start, end - start);
4165		}
4166
4167		sl[i] = s;
4168	}
4169
4170	return sl;
4171}
4172
4173static void free_alg(struct alg_spec *a)
4174{
4175	kfree_sensitive(a->alg_string);
4176	kfree_sensitive(a->key);
4177	memset(a, 0, sizeof(*a));
4178}
4179
4180static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
4181{
4182	char *k;
4183
4184	free_alg(a);
4185
4186	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
4187	if (!a->alg_string)
4188		goto nomem;
4189
4190	k = strchr(a->alg_string, ':');
4191	if (k) {
4192		*k = 0;
4193		a->key_string = k + 1;
4194		if (strlen(a->key_string) & 1)
4195			goto inval;
4196
4197		a->key_size = strlen(a->key_string) / 2;
4198		a->key = kmalloc(a->key_size, GFP_KERNEL);
4199		if (!a->key)
4200			goto nomem;
4201		if (hex2bin(a->key, a->key_string, a->key_size))
4202			goto inval;
4203	}
4204
4205	return 0;
4206inval:
4207	*error = error_inval;
4208	return -EINVAL;
4209nomem:
4210	*error = "Out of memory for an argument";
4211	return -ENOMEM;
4212}
4213
4214static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
4215		   char *error_alg, char *error_key)
4216{
4217	int r;
4218
4219	if (a->alg_string) {
4220		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4221		if (IS_ERR(*hash)) {
4222			*error = error_alg;
4223			r = PTR_ERR(*hash);
4224			*hash = NULL;
4225			return r;
4226		}
4227
4228		if (a->key) {
4229			r = crypto_shash_setkey(*hash, a->key, a->key_size);
4230			if (r) {
4231				*error = error_key;
4232				return r;
4233			}
4234		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
4235			*error = error_key;
4236			return -ENOKEY;
4237		}
4238	}
4239
4240	return 0;
4241}
4242
4243static int create_journal(struct dm_integrity_c *ic, char **error)
4244{
4245	int r = 0;
4246	unsigned int i;
4247	__u64 journal_pages, journal_desc_size, journal_tree_size;
4248	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
4249	struct skcipher_request *req = NULL;
4250
4251	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
4252	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
4253	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
4254	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
4255
4256	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
4257				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
4258	journal_desc_size = journal_pages * sizeof(struct page_list);
4259	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
4260		*error = "Journal doesn't fit into memory";
4261		r = -ENOMEM;
4262		goto bad;
4263	}
4264	ic->journal_pages = journal_pages;
4265
4266	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
4267	if (!ic->journal) {
4268		*error = "Could not allocate memory for journal";
4269		r = -ENOMEM;
4270		goto bad;
4271	}
4272	if (ic->journal_crypt_alg.alg_string) {
4273		unsigned int ivsize, blocksize;
4274		struct journal_completion comp;
4275
4276		comp.ic = ic;
4277		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4278		if (IS_ERR(ic->journal_crypt)) {
4279			*error = "Invalid journal cipher";
4280			r = PTR_ERR(ic->journal_crypt);
4281			ic->journal_crypt = NULL;
4282			goto bad;
4283		}
4284		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
4285		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
4286
4287		if (ic->journal_crypt_alg.key) {
4288			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
4289						   ic->journal_crypt_alg.key_size);
4290			if (r) {
4291				*error = "Error setting encryption key";
4292				goto bad;
4293			}
4294		}
4295		DEBUG_print("cipher %s, block size %u iv size %u\n",
4296			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
4297
4298		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
4299		if (!ic->journal_io) {
4300			*error = "Could not allocate memory for journal io";
4301			r = -ENOMEM;
4302			goto bad;
4303		}
4304
4305		if (blocksize == 1) {
4306			struct scatterlist *sg;
4307
4308			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4309			if (!req) {
4310				*error = "Could not allocate crypt request";
4311				r = -ENOMEM;
4312				goto bad;
4313			}
4314
4315			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
4316			if (!crypt_iv) {
4317				*error = "Could not allocate iv";
4318				r = -ENOMEM;
4319				goto bad;
4320			}
4321
4322			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
4323			if (!ic->journal_xor) {
4324				*error = "Could not allocate memory for journal xor";
4325				r = -ENOMEM;
4326				goto bad;
4327			}
4328
4329			sg = kvmalloc_array(ic->journal_pages + 1,
4330					    sizeof(struct scatterlist),
4331					    GFP_KERNEL);
4332			if (!sg) {
4333				*error = "Unable to allocate sg list";
4334				r = -ENOMEM;
4335				goto bad;
4336			}
4337			sg_init_table(sg, ic->journal_pages + 1);
4338			for (i = 0; i < ic->journal_pages; i++) {
4339				char *va = lowmem_page_address(ic->journal_xor[i].page);
4340
4341				clear_page(va);
4342				sg_set_buf(&sg[i], va, PAGE_SIZE);
4343			}
4344			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
4345
4346			skcipher_request_set_crypt(req, sg, sg,
4347						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
4348			init_completion(&comp.comp);
4349			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4350			if (do_crypt(true, req, &comp))
4351				wait_for_completion(&comp.comp);
4352			kvfree(sg);
4353			r = dm_integrity_failed(ic);
4354			if (r) {
4355				*error = "Unable to encrypt journal";
4356				goto bad;
4357			}
4358			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
4359
4360			crypto_free_skcipher(ic->journal_crypt);
4361			ic->journal_crypt = NULL;
4362		} else {
4363			unsigned int crypt_len = roundup(ivsize, blocksize);
4364
4365			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4366			if (!req) {
4367				*error = "Could not allocate crypt request";
4368				r = -ENOMEM;
4369				goto bad;
4370			}
4371
4372			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
4373			if (!crypt_iv) {
4374				*error = "Could not allocate iv";
4375				r = -ENOMEM;
4376				goto bad;
4377			}
4378
4379			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
4380			if (!crypt_data) {
4381				*error = "Unable to allocate crypt data";
4382				r = -ENOMEM;
4383				goto bad;
4384			}
4385
4386			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
4387			if (!ic->journal_scatterlist) {
4388				*error = "Unable to allocate sg list";
4389				r = -ENOMEM;
4390				goto bad;
4391			}
4392			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
4393			if (!ic->journal_io_scatterlist) {
4394				*error = "Unable to allocate sg list";
4395				r = -ENOMEM;
4396				goto bad;
4397			}
4398			ic->sk_requests = kvmalloc_array(ic->journal_sections,
4399							 sizeof(struct skcipher_request *),
4400							 GFP_KERNEL | __GFP_ZERO);
4401			if (!ic->sk_requests) {
4402				*error = "Unable to allocate sk requests";
4403				r = -ENOMEM;
4404				goto bad;
4405			}
4406			for (i = 0; i < ic->journal_sections; i++) {
4407				struct scatterlist sg;
4408				struct skcipher_request *section_req;
4409				__le32 section_le = cpu_to_le32(i);
4410
4411				memset(crypt_iv, 0x00, ivsize);
4412				memset(crypt_data, 0x00, crypt_len);
4413				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
4414
4415				sg_init_one(&sg, crypt_data, crypt_len);
4416				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
4417				init_completion(&comp.comp);
4418				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4419				if (do_crypt(true, req, &comp))
4420					wait_for_completion(&comp.comp);
4421
4422				r = dm_integrity_failed(ic);
4423				if (r) {
4424					*error = "Unable to generate iv";
4425					goto bad;
4426				}
4427
4428				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4429				if (!section_req) {
4430					*error = "Unable to allocate crypt request";
4431					r = -ENOMEM;
4432					goto bad;
4433				}
4434				section_req->iv = kmalloc_array(ivsize, 2,
4435								GFP_KERNEL);
4436				if (!section_req->iv) {
4437					skcipher_request_free(section_req);
4438					*error = "Unable to allocate iv";
4439					r = -ENOMEM;
4440					goto bad;
4441				}
4442				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4443				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4444				ic->sk_requests[i] = section_req;
4445				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4446			}
4447		}
4448	}
4449
4450	for (i = 0; i < N_COMMIT_IDS; i++) {
4451		unsigned int j;
4452
4453retest_commit_id:
4454		for (j = 0; j < i; j++) {
4455			if (ic->commit_ids[j] == ic->commit_ids[i]) {
4456				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4457				goto retest_commit_id;
4458			}
4459		}
4460		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4461	}
4462
4463	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4464	if (journal_tree_size > ULONG_MAX) {
4465		*error = "Journal doesn't fit into memory";
4466		r = -ENOMEM;
4467		goto bad;
4468	}
4469	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4470	if (!ic->journal_tree) {
4471		*error = "Could not allocate memory for journal tree";
4472		r = -ENOMEM;
4473	}
4474bad:
4475	kfree(crypt_data);
4476	kfree(crypt_iv);
4477	skcipher_request_free(req);
4478
4479	return r;
4480}
4481
4482/*
4483 * Construct a integrity mapping
4484 *
4485 * Arguments:
4486 *	device
4487 *	offset from the start of the device
4488 *	tag size
4489 *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4490 *	number of optional arguments
4491 *	optional arguments:
4492 *		journal_sectors
4493 *		interleave_sectors
4494 *		buffer_sectors
4495 *		journal_watermark
4496 *		commit_time
4497 *		meta_device
4498 *		block_size
4499 *		sectors_per_bit
4500 *		bitmap_flush_interval
4501 *		internal_hash
4502 *		journal_crypt
4503 *		journal_mac
4504 *		recalculate
4505 */
4506static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4507{
4508	struct dm_integrity_c *ic;
4509	char dummy;
4510	int r;
4511	unsigned int extra_args;
4512	struct dm_arg_set as;
4513	static const struct dm_arg _args[] = {
4514		{0, 18, "Invalid number of feature args"},
4515	};
4516	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4517	bool should_write_sb;
4518	__u64 threshold;
4519	unsigned long long start;
4520	__s8 log2_sectors_per_bitmap_bit = -1;
4521	__s8 log2_blocks_per_bitmap_bit;
4522	__u64 bits_in_journal;
4523	__u64 n_bitmap_bits;
4524
4525#define DIRECT_ARGUMENTS	4
4526
4527	if (argc <= DIRECT_ARGUMENTS) {
4528		ti->error = "Invalid argument count";
4529		return -EINVAL;
4530	}
4531
4532	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4533	if (!ic) {
4534		ti->error = "Cannot allocate integrity context";
4535		return -ENOMEM;
4536	}
4537	ti->private = ic;
4538	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4539	ic->ti = ti;
4540
4541	ic->in_progress = RB_ROOT;
4542	INIT_LIST_HEAD(&ic->wait_list);
4543	init_waitqueue_head(&ic->endio_wait);
4544	bio_list_init(&ic->flush_bio_list);
4545	init_waitqueue_head(&ic->copy_to_journal_wait);
4546	init_completion(&ic->crypto_backoff);
4547	atomic64_set(&ic->number_of_mismatches, 0);
4548	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4549
4550	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4551	if (r) {
4552		ti->error = "Device lookup failed";
4553		goto bad;
4554	}
4555
4556	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4557		ti->error = "Invalid starting offset";
4558		r = -EINVAL;
4559		goto bad;
4560	}
4561	ic->start = start;
4562
4563	if (strcmp(argv[2], "-")) {
4564		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4565			ti->error = "Invalid tag size";
4566			r = -EINVAL;
4567			goto bad;
4568		}
4569	}
4570
4571	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4572	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R") ||
4573	    !strcmp(argv[3], "I")) {
4574		ic->mode = argv[3][0];
4575	} else {
4576		ti->error = "Invalid mode (expecting J, B, D, R, I)";
4577		r = -EINVAL;
4578		goto bad;
4579	}
4580
4581	journal_sectors = 0;
4582	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4583	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4584	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4585	sync_msec = DEFAULT_SYNC_MSEC;
4586	ic->sectors_per_block = 1;
4587
4588	as.argc = argc - DIRECT_ARGUMENTS;
4589	as.argv = argv + DIRECT_ARGUMENTS;
4590	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4591	if (r)
4592		goto bad;
4593
4594	while (extra_args--) {
4595		const char *opt_string;
4596		unsigned int val;
4597		unsigned long long llval;
4598
4599		opt_string = dm_shift_arg(&as);
4600		if (!opt_string) {
4601			r = -EINVAL;
4602			ti->error = "Not enough feature arguments";
4603			goto bad;
4604		}
4605		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4606			journal_sectors = val ? val : 1;
4607		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4608			interleave_sectors = val;
4609		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4610			buffer_sectors = val;
4611		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4612			journal_watermark = val;
4613		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4614			sync_msec = val;
4615		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4616			if (ic->meta_dev) {
4617				dm_put_device(ti, ic->meta_dev);
4618				ic->meta_dev = NULL;
4619			}
4620			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4621					  dm_table_get_mode(ti->table), &ic->meta_dev);
4622			if (r) {
4623				ti->error = "Device lookup failed";
4624				goto bad;
4625			}
4626		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4627			if (val < 1 << SECTOR_SHIFT ||
4628			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4629			    (val & (val - 1))) {
4630				r = -EINVAL;
4631				ti->error = "Invalid block_size argument";
4632				goto bad;
4633			}
4634			ic->sectors_per_block = val >> SECTOR_SHIFT;
4635		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4636			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4637		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4638			if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4639				r = -EINVAL;
4640				ti->error = "Invalid bitmap_flush_interval argument";
4641				goto bad;
4642			}
4643			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4644		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4645			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4646					    "Invalid internal_hash argument");
4647			if (r)
4648				goto bad;
4649		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4650			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4651					    "Invalid journal_crypt argument");
4652			if (r)
4653				goto bad;
4654		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4655			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4656					    "Invalid journal_mac argument");
4657			if (r)
4658				goto bad;
4659		} else if (!strcmp(opt_string, "recalculate")) {
4660			ic->recalculate_flag = true;
4661		} else if (!strcmp(opt_string, "reset_recalculate")) {
4662			ic->recalculate_flag = true;
4663			ic->reset_recalculate_flag = true;
4664		} else if (!strcmp(opt_string, "allow_discards")) {
4665			ic->discard = true;
4666		} else if (!strcmp(opt_string, "fix_padding")) {
4667			ic->fix_padding = true;
4668		} else if (!strcmp(opt_string, "fix_hmac")) {
4669			ic->fix_hmac = true;
4670		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4671			ic->legacy_recalculate = true;
4672		} else {
4673			r = -EINVAL;
4674			ti->error = "Invalid argument";
4675			goto bad;
4676		}
4677	}
4678
4679	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4680	if (!ic->meta_dev)
4681		ic->meta_device_sectors = ic->data_device_sectors;
4682	else
4683		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4684
4685	if (!journal_sectors) {
4686		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4687				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4688	}
4689
4690	if (!buffer_sectors)
4691		buffer_sectors = 1;
4692	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4693
4694	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4695		    "Invalid internal hash", "Error setting internal hash key");
4696	if (r)
4697		goto bad;
4698
4699	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4700		    "Invalid journal mac", "Error setting journal mac key");
4701	if (r)
4702		goto bad;
4703
4704	if (!ic->tag_size) {
4705		if (!ic->internal_hash) {
4706			ti->error = "Unknown tag size";
4707			r = -EINVAL;
4708			goto bad;
4709		}
4710		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4711	}
4712	if (ic->tag_size > MAX_TAG_SIZE) {
4713		ti->error = "Too big tag size";
4714		r = -EINVAL;
4715		goto bad;
4716	}
4717	if (!(ic->tag_size & (ic->tag_size - 1)))
4718		ic->log2_tag_size = __ffs(ic->tag_size);
4719	else
4720		ic->log2_tag_size = -1;
4721
4722	if (ic->mode == 'I') {
4723		struct blk_integrity *bi;
4724		if (ic->meta_dev) {
4725			r = -EINVAL;
4726			ti->error = "Metadata device not supported in inline mode";
4727			goto bad;
4728		}
4729		if (!ic->internal_hash_alg.alg_string) {
4730			r = -EINVAL;
4731			ti->error = "Internal hash not set in inline mode";
4732			goto bad;
4733		}
4734		if (ic->journal_crypt_alg.alg_string || ic->journal_mac_alg.alg_string) {
4735			r = -EINVAL;
4736			ti->error = "Journal crypt not supported in inline mode";
4737			goto bad;
4738		}
4739		if (ic->discard) {
4740			r = -EINVAL;
4741			ti->error = "Discards not supported in inline mode";
4742			goto bad;
4743		}
4744		bi = blk_get_integrity(ic->dev->bdev->bd_disk);
4745		if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
4746			r = -EINVAL;
4747			ti->error = "Integrity profile not supported";
4748			goto bad;
4749		}
4750		/*printk("tag_size: %u, tuple_size: %u\n", bi->tag_size, bi->tuple_size);*/
4751		if (bi->tuple_size < ic->tag_size) {
4752			r = -EINVAL;
4753			ti->error = "The integrity profile is smaller than tag size";
4754			goto bad;
4755		}
4756		if ((unsigned long)bi->tuple_size > PAGE_SIZE / 2) {
4757			r = -EINVAL;
4758			ti->error = "Too big tuple size";
4759			goto bad;
4760		}
4761		ic->tuple_size = bi->tuple_size;
4762		if (1 << bi->interval_exp != ic->sectors_per_block << SECTOR_SHIFT) {
4763			r = -EINVAL;
4764			ti->error = "Integrity profile sector size mismatch";
4765			goto bad;
4766		}
4767	}
4768
4769	if (ic->mode == 'B' && !ic->internal_hash) {
4770		r = -EINVAL;
4771		ti->error = "Bitmap mode can be only used with internal hash";
4772		goto bad;
4773	}
4774
4775	if (ic->discard && !ic->internal_hash) {
4776		r = -EINVAL;
4777		ti->error = "Discard can be only used with internal hash";
4778		goto bad;
4779	}
4780
4781	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4782	ic->autocommit_msec = sync_msec;
4783	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4784
4785	ic->io = dm_io_client_create();
4786	if (IS_ERR(ic->io)) {
4787		r = PTR_ERR(ic->io);
4788		ic->io = NULL;
4789		ti->error = "Cannot allocate dm io";
4790		goto bad;
4791	}
4792
4793	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4794	if (r) {
4795		ti->error = "Cannot allocate mempool";
4796		goto bad;
4797	}
4798
4799	r = mempool_init_page_pool(&ic->recheck_pool, 1, ic->mode == 'I' ? 1 : 0);
4800	if (r) {
4801		ti->error = "Cannot allocate mempool";
4802		goto bad;
4803	}
4804
4805	if (ic->mode == 'I') {
4806		r = bioset_init(&ic->recheck_bios, RECHECK_POOL_SIZE, 0, BIOSET_NEED_BVECS);
4807		if (r) {
4808			ti->error = "Cannot allocate bio set";
4809			goto bad;
4810		}
4811		r = bioset_integrity_create(&ic->recheck_bios, RECHECK_POOL_SIZE);
4812		if (r) {
4813			ti->error = "Cannot allocate bio integrity set";
4814			r = -ENOMEM;
4815			goto bad;
4816		}
4817		r = bioset_init(&ic->recalc_bios, 1, 0, BIOSET_NEED_BVECS);
4818		if (r) {
4819			ti->error = "Cannot allocate bio set";
4820			goto bad;
4821		}
4822		r = bioset_integrity_create(&ic->recalc_bios, 1);
4823		if (r) {
4824			ti->error = "Cannot allocate bio integrity set";
4825			r = -ENOMEM;
4826			goto bad;
4827		}
4828	}
4829
4830	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4831					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4832	if (!ic->metadata_wq) {
4833		ti->error = "Cannot allocate workqueue";
4834		r = -ENOMEM;
4835		goto bad;
4836	}
4837
4838	/*
4839	 * If this workqueue weren't ordered, it would cause bio reordering
4840	 * and reduced performance.
4841	 */
4842	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4843	if (!ic->wait_wq) {
4844		ti->error = "Cannot allocate workqueue";
4845		r = -ENOMEM;
4846		goto bad;
4847	}
4848
4849	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4850					  METADATA_WORKQUEUE_MAX_ACTIVE);
4851	if (!ic->offload_wq) {
4852		ti->error = "Cannot allocate workqueue";
4853		r = -ENOMEM;
4854		goto bad;
4855	}
4856
4857	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4858	if (!ic->commit_wq) {
4859		ti->error = "Cannot allocate workqueue";
4860		r = -ENOMEM;
4861		goto bad;
4862	}
4863	INIT_WORK(&ic->commit_work, integrity_commit);
4864
4865	if (ic->mode == 'J' || ic->mode == 'B') {
4866		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4867		if (!ic->writer_wq) {
4868			ti->error = "Cannot allocate workqueue";
4869			r = -ENOMEM;
4870			goto bad;
4871		}
4872		INIT_WORK(&ic->writer_work, integrity_writer);
4873	}
4874
4875	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4876	if (!ic->sb) {
4877		r = -ENOMEM;
4878		ti->error = "Cannot allocate superblock area";
4879		goto bad;
4880	}
4881
4882	r = sync_rw_sb(ic, REQ_OP_READ);
4883	if (r) {
4884		ti->error = "Error reading superblock";
4885		goto bad;
4886	}
4887	should_write_sb = false;
4888	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4889		if (ic->mode != 'R') {
4890			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4891				r = -EINVAL;
4892				ti->error = "The device is not initialized";
4893				goto bad;
4894			}
4895		}
4896
4897		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4898		if (r) {
4899			ti->error = "Could not initialize superblock";
4900			goto bad;
4901		}
4902		if (ic->mode != 'R')
4903			should_write_sb = true;
4904	}
4905
4906	if (!ic->sb->version || ic->sb->version > SB_VERSION_6) {
4907		r = -EINVAL;
4908		ti->error = "Unknown version";
4909		goto bad;
4910	}
4911	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE)) != (ic->mode == 'I')) {
4912		r = -EINVAL;
4913		ti->error = "Inline flag mismatch";
4914		goto bad;
4915	}
4916	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4917		r = -EINVAL;
4918		ti->error = "Tag size doesn't match the information in superblock";
4919		goto bad;
4920	}
4921	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4922		r = -EINVAL;
4923		ti->error = "Block size doesn't match the information in superblock";
4924		goto bad;
4925	}
4926	if (ic->mode != 'I') {
4927		if (!le32_to_cpu(ic->sb->journal_sections)) {
4928			r = -EINVAL;
4929			ti->error = "Corrupted superblock, journal_sections is 0";
4930			goto bad;
4931		}
4932	} else {
4933		if (le32_to_cpu(ic->sb->journal_sections)) {
4934			r = -EINVAL;
4935			ti->error = "Corrupted superblock, journal_sections is not 0";
4936			goto bad;
4937		}
4938	}
4939	/* make sure that ti->max_io_len doesn't overflow */
4940	if (!ic->meta_dev) {
4941		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4942		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4943			r = -EINVAL;
4944			ti->error = "Invalid interleave_sectors in the superblock";
4945			goto bad;
4946		}
4947	} else {
4948		if (ic->sb->log2_interleave_sectors) {
4949			r = -EINVAL;
4950			ti->error = "Invalid interleave_sectors in the superblock";
4951			goto bad;
4952		}
4953	}
4954	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4955		r = -EINVAL;
4956		ti->error = "Journal mac mismatch";
4957		goto bad;
4958	}
4959
4960	get_provided_data_sectors(ic);
4961	if (!ic->provided_data_sectors) {
4962		r = -EINVAL;
4963		ti->error = "The device is too small";
4964		goto bad;
4965	}
4966
4967try_smaller_buffer:
4968	r = calculate_device_limits(ic);
4969	if (r) {
4970		if (ic->meta_dev) {
4971			if (ic->log2_buffer_sectors > 3) {
4972				ic->log2_buffer_sectors--;
4973				goto try_smaller_buffer;
4974			}
4975		}
4976		ti->error = "The device is too small";
4977		goto bad;
4978	}
4979
4980	if (log2_sectors_per_bitmap_bit < 0)
4981		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4982	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4983		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4984
4985	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4986	if (bits_in_journal > UINT_MAX)
4987		bits_in_journal = UINT_MAX;
4988	if (bits_in_journal)
4989		while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4990			log2_sectors_per_bitmap_bit++;
4991
4992	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4993	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4994	if (should_write_sb)
4995		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4996
4997	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4998				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4999	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
5000
5001	if (!ic->meta_dev)
5002		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
5003
5004	if (ti->len > ic->provided_data_sectors) {
5005		r = -EINVAL;
5006		ti->error = "Not enough provided sectors for requested mapping size";
5007		goto bad;
5008	}
5009
 
5010	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
5011	threshold += 50;
5012	do_div(threshold, 100);
5013	ic->free_sectors_threshold = threshold;
5014
5015	DEBUG_print("initialized:\n");
5016	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
5017	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
5018	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
5019	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
5020	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
5021	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
5022	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
5023	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
5024	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
5025	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
5026	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
5027	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
5028	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
5029	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
5030	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
5031
5032	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
5033		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
5034		ic->sb->recalc_sector = cpu_to_le64(0);
5035	}
5036
5037	if (ic->internal_hash) {
5038		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
5039		if (!ic->recalc_wq) {
5040			ti->error = "Cannot allocate workqueue";
5041			r = -ENOMEM;
5042			goto bad;
5043		}
5044		INIT_WORK(&ic->recalc_work, ic->mode == 'I' ? integrity_recalc_inline : integrity_recalc);
5045	} else {
5046		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
5047			ti->error = "Recalculate can only be specified with internal_hash";
5048			r = -EINVAL;
5049			goto bad;
5050		}
5051	}
5052
5053	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
5054	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
5055	    dm_integrity_disable_recalculate(ic)) {
5056		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
5057		r = -EOPNOTSUPP;
5058		goto bad;
5059	}
5060
5061	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
5062			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
5063	if (IS_ERR(ic->bufio)) {
5064		r = PTR_ERR(ic->bufio);
5065		ti->error = "Cannot initialize dm-bufio";
5066		ic->bufio = NULL;
5067		goto bad;
5068	}
5069	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
5070
5071	if (ic->mode != 'R' && ic->mode != 'I') {
5072		r = create_journal(ic, &ti->error);
5073		if (r)
5074			goto bad;
5075
5076	}
5077
5078	if (ic->mode == 'B') {
5079		unsigned int i;
5080		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
5081
5082		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
5083		if (!ic->recalc_bitmap) {
5084			r = -ENOMEM;
5085			goto bad;
5086		}
5087		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
5088		if (!ic->may_write_bitmap) {
5089			r = -ENOMEM;
5090			goto bad;
5091		}
5092		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
5093		if (!ic->bbs) {
5094			r = -ENOMEM;
5095			goto bad;
5096		}
5097		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
5098		for (i = 0; i < ic->n_bitmap_blocks; i++) {
5099			struct bitmap_block_status *bbs = &ic->bbs[i];
5100			unsigned int sector, pl_index, pl_offset;
5101
5102			INIT_WORK(&bbs->work, bitmap_block_work);
5103			bbs->ic = ic;
5104			bbs->idx = i;
5105			bio_list_init(&bbs->bio_queue);
5106			spin_lock_init(&bbs->bio_queue_lock);
5107
5108			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
5109			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
5110			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
5111
5112			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
5113		}
5114	}
5115
5116	if (should_write_sb) {
5117		init_journal(ic, 0, ic->journal_sections, 0);
5118		r = dm_integrity_failed(ic);
5119		if (unlikely(r)) {
5120			ti->error = "Error initializing journal";
5121			goto bad;
5122		}
5123		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
5124		if (r) {
5125			ti->error = "Error initializing superblock";
5126			goto bad;
5127		}
5128		ic->just_formatted = true;
5129	}
5130
5131	if (!ic->meta_dev && ic->mode != 'I') {
5132		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
5133		if (r)
5134			goto bad;
5135	}
5136	if (ic->mode == 'B') {
5137		unsigned int max_io_len;
5138
5139		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
5140		if (!max_io_len)
5141			max_io_len = 1U << 31;
5142		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
5143		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
5144			r = dm_set_target_max_io_len(ti, max_io_len);
5145			if (r)
5146				goto bad;
5147		}
5148	}
5149
 
 
 
5150	ti->num_flush_bios = 1;
5151	ti->flush_supported = true;
5152	if (ic->discard)
5153		ti->num_discard_bios = 1;
5154
5155	if (ic->mode == 'I')
5156		ti->mempool_needs_integrity = true;
5157
5158	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
5159	return 0;
5160
5161bad:
5162	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
5163	dm_integrity_dtr(ti);
5164	return r;
5165}
5166
5167static void dm_integrity_dtr(struct dm_target *ti)
5168{
5169	struct dm_integrity_c *ic = ti->private;
5170
5171	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
5172	BUG_ON(!list_empty(&ic->wait_list));
5173
5174	if (ic->mode == 'B')
5175		cancel_delayed_work_sync(&ic->bitmap_flush_work);
5176	if (ic->metadata_wq)
5177		destroy_workqueue(ic->metadata_wq);
5178	if (ic->wait_wq)
5179		destroy_workqueue(ic->wait_wq);
5180	if (ic->offload_wq)
5181		destroy_workqueue(ic->offload_wq);
5182	if (ic->commit_wq)
5183		destroy_workqueue(ic->commit_wq);
5184	if (ic->writer_wq)
5185		destroy_workqueue(ic->writer_wq);
5186	if (ic->recalc_wq)
5187		destroy_workqueue(ic->recalc_wq);
5188	kvfree(ic->bbs);
5189	if (ic->bufio)
5190		dm_bufio_client_destroy(ic->bufio);
5191	bioset_exit(&ic->recalc_bios);
5192	bioset_exit(&ic->recheck_bios);
5193	mempool_exit(&ic->recheck_pool);
5194	mempool_exit(&ic->journal_io_mempool);
5195	if (ic->io)
5196		dm_io_client_destroy(ic->io);
5197	if (ic->dev)
5198		dm_put_device(ti, ic->dev);
5199	if (ic->meta_dev)
5200		dm_put_device(ti, ic->meta_dev);
5201	dm_integrity_free_page_list(ic->journal);
5202	dm_integrity_free_page_list(ic->journal_io);
5203	dm_integrity_free_page_list(ic->journal_xor);
5204	dm_integrity_free_page_list(ic->recalc_bitmap);
5205	dm_integrity_free_page_list(ic->may_write_bitmap);
5206	if (ic->journal_scatterlist)
5207		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
5208	if (ic->journal_io_scatterlist)
5209		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
5210	if (ic->sk_requests) {
5211		unsigned int i;
5212
5213		for (i = 0; i < ic->journal_sections; i++) {
5214			struct skcipher_request *req;
5215
5216			req = ic->sk_requests[i];
5217			if (req) {
5218				kfree_sensitive(req->iv);
5219				skcipher_request_free(req);
5220			}
5221		}
5222		kvfree(ic->sk_requests);
5223	}
5224	kvfree(ic->journal_tree);
5225	if (ic->sb)
5226		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
5227
5228	if (ic->internal_hash)
5229		crypto_free_shash(ic->internal_hash);
5230	free_alg(&ic->internal_hash_alg);
5231
5232	if (ic->journal_crypt)
5233		crypto_free_skcipher(ic->journal_crypt);
5234	free_alg(&ic->journal_crypt_alg);
5235
5236	if (ic->journal_mac)
5237		crypto_free_shash(ic->journal_mac);
5238	free_alg(&ic->journal_mac_alg);
5239
5240	kfree(ic);
5241	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
5242}
5243
5244static struct target_type integrity_target = {
5245	.name			= "integrity",
5246	.version		= {1, 13, 0},
5247	.module			= THIS_MODULE,
5248	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
5249	.ctr			= dm_integrity_ctr,
5250	.dtr			= dm_integrity_dtr,
5251	.map			= dm_integrity_map,
5252	.end_io			= dm_integrity_end_io,
5253	.postsuspend		= dm_integrity_postsuspend,
5254	.resume			= dm_integrity_resume,
5255	.status			= dm_integrity_status,
5256	.iterate_devices	= dm_integrity_iterate_devices,
5257	.io_hints		= dm_integrity_io_hints,
5258};
5259
5260static int __init dm_integrity_init(void)
5261{
5262	int r;
5263
5264	journal_io_cache = kmem_cache_create("integrity_journal_io",
5265					     sizeof(struct journal_io), 0, 0, NULL);
5266	if (!journal_io_cache) {
5267		DMERR("can't allocate journal io cache");
5268		return -ENOMEM;
5269	}
5270
5271	r = dm_register_target(&integrity_target);
5272	if (r < 0) {
5273		kmem_cache_destroy(journal_io_cache);
5274		return r;
5275	}
5276
5277	return 0;
5278}
5279
5280static void __exit dm_integrity_exit(void)
5281{
5282	dm_unregister_target(&integrity_target);
5283	kmem_cache_destroy(journal_io_cache);
5284}
5285
5286module_init(dm_integrity_init);
5287module_exit(dm_integrity_exit);
5288
5289MODULE_AUTHOR("Milan Broz");
5290MODULE_AUTHOR("Mikulas Patocka");
5291MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
5292MODULE_LICENSE("GPL");