Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
   4 * Copyright (C) 2016-2017 Milan Broz
   5 * Copyright (C) 2016-2017 Mikulas Patocka
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include "dm-bio-record.h"
  11
  12#include <linux/compiler.h>
  13#include <linux/module.h>
  14#include <linux/device-mapper.h>
  15#include <linux/dm-io.h>
  16#include <linux/vmalloc.h>
  17#include <linux/sort.h>
  18#include <linux/rbtree.h>
  19#include <linux/delay.h>
  20#include <linux/random.h>
  21#include <linux/reboot.h>
  22#include <crypto/hash.h>
  23#include <crypto/skcipher.h>
  24#include <linux/async_tx.h>
  25#include <linux/dm-bufio.h>
  26
  27#include "dm-audit.h"
  28
  29#define DM_MSG_PREFIX "integrity"
  30
  31#define DEFAULT_INTERLEAVE_SECTORS	32768
  32#define DEFAULT_JOURNAL_SIZE_FACTOR	7
  33#define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
  34#define DEFAULT_BUFFER_SECTORS		128
  35#define DEFAULT_JOURNAL_WATERMARK	50
  36#define DEFAULT_SYNC_MSEC		10000
  37#define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
  38#define MIN_LOG2_INTERLEAVE_SECTORS	3
  39#define MAX_LOG2_INTERLEAVE_SECTORS	31
  40#define METADATA_WORKQUEUE_MAX_ACTIVE	16
  41#define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
  42#define RECALC_WRITE_SUPER		16
  43#define BITMAP_BLOCK_SIZE		4096	/* don't change it */
  44#define BITMAP_FLUSH_INTERVAL		(10 * HZ)
  45#define DISCARD_FILLER			0xf6
  46#define SALT_SIZE			16
  47
  48/*
  49 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
  50 * so it should not be enabled in the official kernel
  51 */
  52//#define DEBUG_PRINT
  53//#define INTERNAL_VERIFY
  54
  55/*
  56 * On disk structures
  57 */
  58
  59#define SB_MAGIC			"integrt"
  60#define SB_VERSION_1			1
  61#define SB_VERSION_2			2
  62#define SB_VERSION_3			3
  63#define SB_VERSION_4			4
  64#define SB_VERSION_5			5
  65#define SB_SECTORS			8
  66#define MAX_SECTORS_PER_BLOCK		8
  67
  68struct superblock {
  69	__u8 magic[8];
  70	__u8 version;
  71	__u8 log2_interleave_sectors;
  72	__le16 integrity_tag_size;
  73	__le32 journal_sections;
  74	__le64 provided_data_sectors;	/* userspace uses this value */
  75	__le32 flags;
  76	__u8 log2_sectors_per_block;
  77	__u8 log2_blocks_per_bitmap_bit;
  78	__u8 pad[2];
  79	__le64 recalc_sector;
  80	__u8 pad2[8];
  81	__u8 salt[SALT_SIZE];
  82};
  83
  84#define SB_FLAG_HAVE_JOURNAL_MAC	0x1
  85#define SB_FLAG_RECALCULATING		0x2
  86#define SB_FLAG_DIRTY_BITMAP		0x4
  87#define SB_FLAG_FIXED_PADDING		0x8
  88#define SB_FLAG_FIXED_HMAC		0x10
  89
  90#define	JOURNAL_ENTRY_ROUNDUP		8
  91
  92typedef __le64 commit_id_t;
  93#define JOURNAL_MAC_PER_SECTOR		8
  94
  95struct journal_entry {
  96	union {
  97		struct {
  98			__le32 sector_lo;
  99			__le32 sector_hi;
 100		} s;
 101		__le64 sector;
 102	} u;
 103	commit_id_t last_bytes[];
 104	/* __u8 tag[0]; */
 105};
 106
 107#define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
 108
 109#if BITS_PER_LONG == 64
 110#define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
 111#else
 112#define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
 113#endif
 114#define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
 115#define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
 116#define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
 117#define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
 118#define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
 119
 120#define JOURNAL_BLOCK_SECTORS		8
 121#define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
 122#define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
 123
 124struct journal_sector {
 125	struct_group(sectors,
 126		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
 127		__u8 mac[JOURNAL_MAC_PER_SECTOR];
 128	);
 129	commit_id_t commit_id;
 130};
 131
 132#define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
 133
 134#define METADATA_PADDING_SECTORS	8
 135
 136#define N_COMMIT_IDS			4
 137
 138static unsigned char prev_commit_seq(unsigned char seq)
 139{
 140	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
 141}
 142
 143static unsigned char next_commit_seq(unsigned char seq)
 144{
 145	return (seq + 1) % N_COMMIT_IDS;
 146}
 147
 148/*
 149 * In-memory structures
 150 */
 151
 152struct journal_node {
 153	struct rb_node node;
 154	sector_t sector;
 155};
 156
 157struct alg_spec {
 158	char *alg_string;
 159	char *key_string;
 160	__u8 *key;
 161	unsigned int key_size;
 162};
 163
 164struct dm_integrity_c {
 165	struct dm_dev *dev;
 166	struct dm_dev *meta_dev;
 167	unsigned int tag_size;
 168	__s8 log2_tag_size;
 169	sector_t start;
 170	mempool_t journal_io_mempool;
 171	struct dm_io_client *io;
 172	struct dm_bufio_client *bufio;
 173	struct workqueue_struct *metadata_wq;
 174	struct superblock *sb;
 175	unsigned int journal_pages;
 176	unsigned int n_bitmap_blocks;
 177
 178	struct page_list *journal;
 179	struct page_list *journal_io;
 180	struct page_list *journal_xor;
 181	struct page_list *recalc_bitmap;
 182	struct page_list *may_write_bitmap;
 183	struct bitmap_block_status *bbs;
 184	unsigned int bitmap_flush_interval;
 185	int synchronous_mode;
 186	struct bio_list synchronous_bios;
 187	struct delayed_work bitmap_flush_work;
 188
 189	struct crypto_skcipher *journal_crypt;
 190	struct scatterlist **journal_scatterlist;
 191	struct scatterlist **journal_io_scatterlist;
 192	struct skcipher_request **sk_requests;
 193
 194	struct crypto_shash *journal_mac;
 195
 196	struct journal_node *journal_tree;
 197	struct rb_root journal_tree_root;
 198
 199	sector_t provided_data_sectors;
 200
 201	unsigned short journal_entry_size;
 202	unsigned char journal_entries_per_sector;
 203	unsigned char journal_section_entries;
 204	unsigned short journal_section_sectors;
 205	unsigned int journal_sections;
 206	unsigned int journal_entries;
 207	sector_t data_device_sectors;
 208	sector_t meta_device_sectors;
 209	unsigned int initial_sectors;
 210	unsigned int metadata_run;
 211	__s8 log2_metadata_run;
 212	__u8 log2_buffer_sectors;
 213	__u8 sectors_per_block;
 214	__u8 log2_blocks_per_bitmap_bit;
 215
 216	unsigned char mode;
 217
 218	int failed;
 219
 220	struct crypto_shash *internal_hash;
 221
 222	struct dm_target *ti;
 223
 224	/* these variables are locked with endio_wait.lock */
 225	struct rb_root in_progress;
 226	struct list_head wait_list;
 227	wait_queue_head_t endio_wait;
 228	struct workqueue_struct *wait_wq;
 229	struct workqueue_struct *offload_wq;
 230
 231	unsigned char commit_seq;
 232	commit_id_t commit_ids[N_COMMIT_IDS];
 233
 234	unsigned int committed_section;
 235	unsigned int n_committed_sections;
 236
 237	unsigned int uncommitted_section;
 238	unsigned int n_uncommitted_sections;
 239
 240	unsigned int free_section;
 241	unsigned char free_section_entry;
 242	unsigned int free_sectors;
 243
 244	unsigned int free_sectors_threshold;
 245
 246	struct workqueue_struct *commit_wq;
 247	struct work_struct commit_work;
 248
 249	struct workqueue_struct *writer_wq;
 250	struct work_struct writer_work;
 251
 252	struct workqueue_struct *recalc_wq;
 253	struct work_struct recalc_work;
 
 
 254
 255	struct bio_list flush_bio_list;
 256
 257	unsigned long autocommit_jiffies;
 258	struct timer_list autocommit_timer;
 259	unsigned int autocommit_msec;
 260
 261	wait_queue_head_t copy_to_journal_wait;
 262
 263	struct completion crypto_backoff;
 264
 265	bool wrote_to_journal;
 266	bool journal_uptodate;
 267	bool just_formatted;
 268	bool recalculate_flag;
 269	bool reset_recalculate_flag;
 270	bool discard;
 271	bool fix_padding;
 272	bool fix_hmac;
 273	bool legacy_recalculate;
 274
 275	struct alg_spec internal_hash_alg;
 276	struct alg_spec journal_crypt_alg;
 277	struct alg_spec journal_mac_alg;
 278
 279	atomic64_t number_of_mismatches;
 280
 281	mempool_t recheck_pool;
 282
 283	struct notifier_block reboot_notifier;
 284};
 285
 286struct dm_integrity_range {
 287	sector_t logical_sector;
 288	sector_t n_sectors;
 289	bool waiting;
 290	union {
 291		struct rb_node node;
 292		struct {
 293			struct task_struct *task;
 294			struct list_head wait_entry;
 295		};
 296	};
 297};
 298
 299struct dm_integrity_io {
 300	struct work_struct work;
 301
 302	struct dm_integrity_c *ic;
 303	enum req_op op;
 304	bool fua;
 305
 306	struct dm_integrity_range range;
 307
 308	sector_t metadata_block;
 309	unsigned int metadata_offset;
 310
 311	atomic_t in_flight;
 312	blk_status_t bi_status;
 313
 314	struct completion *completion;
 315
 316	struct dm_bio_details bio_details;
 317};
 318
 319struct journal_completion {
 320	struct dm_integrity_c *ic;
 321	atomic_t in_flight;
 322	struct completion comp;
 323};
 324
 325struct journal_io {
 326	struct dm_integrity_range range;
 327	struct journal_completion *comp;
 328};
 329
 330struct bitmap_block_status {
 331	struct work_struct work;
 332	struct dm_integrity_c *ic;
 333	unsigned int idx;
 334	unsigned long *bitmap;
 335	struct bio_list bio_queue;
 336	spinlock_t bio_queue_lock;
 337
 338};
 339
 340static struct kmem_cache *journal_io_cache;
 341
 342#define JOURNAL_IO_MEMPOOL	32
 343
 344#ifdef DEBUG_PRINT
 345#define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
 346#define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
 347						       len ? ": " : "", len, bytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 348#else
 349#define DEBUG_print(x, ...)			do { } while (0)
 350#define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
 351#endif
 352
 353static void dm_integrity_prepare(struct request *rq)
 354{
 355}
 356
 357static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
 358{
 359}
 360
 361/*
 362 * DM Integrity profile, protection is performed layer above (dm-crypt)
 363 */
 364static const struct blk_integrity_profile dm_integrity_profile = {
 365	.name			= "DM-DIF-EXT-TAG",
 366	.generate_fn		= NULL,
 367	.verify_fn		= NULL,
 368	.prepare_fn		= dm_integrity_prepare,
 369	.complete_fn		= dm_integrity_complete,
 370};
 371
 372static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
 373static void integrity_bio_wait(struct work_struct *w);
 374static void dm_integrity_dtr(struct dm_target *ti);
 375
 376static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
 377{
 378	if (err == -EILSEQ)
 379		atomic64_inc(&ic->number_of_mismatches);
 380	if (!cmpxchg(&ic->failed, 0, err))
 381		DMERR("Error on %s: %d", msg, err);
 382}
 383
 384static int dm_integrity_failed(struct dm_integrity_c *ic)
 385{
 386	return READ_ONCE(ic->failed);
 387}
 388
 389static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
 390{
 391	if (ic->legacy_recalculate)
 392		return false;
 393	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
 394	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
 395	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
 396		return true;
 397	return false;
 398}
 399
 400static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
 401					  unsigned int j, unsigned char seq)
 402{
 403	/*
 404	 * Xor the number with section and sector, so that if a piece of
 405	 * journal is written at wrong place, it is detected.
 406	 */
 407	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
 408}
 409
 410static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
 411				sector_t *area, sector_t *offset)
 412{
 413	if (!ic->meta_dev) {
 414		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
 415		*area = data_sector >> log2_interleave_sectors;
 416		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
 417	} else {
 418		*area = 0;
 419		*offset = data_sector;
 420	}
 421}
 422
 423#define sector_to_block(ic, n)						\
 424do {									\
 425	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
 426	(n) >>= (ic)->sb->log2_sectors_per_block;			\
 427} while (0)
 428
 429static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
 430					    sector_t offset, unsigned int *metadata_offset)
 431{
 432	__u64 ms;
 433	unsigned int mo;
 434
 435	ms = area << ic->sb->log2_interleave_sectors;
 436	if (likely(ic->log2_metadata_run >= 0))
 437		ms += area << ic->log2_metadata_run;
 438	else
 439		ms += area * ic->metadata_run;
 440	ms >>= ic->log2_buffer_sectors;
 441
 442	sector_to_block(ic, offset);
 443
 444	if (likely(ic->log2_tag_size >= 0)) {
 445		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
 446		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
 447	} else {
 448		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
 449		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
 450	}
 451	*metadata_offset = mo;
 452	return ms;
 453}
 454
 455static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
 456{
 457	sector_t result;
 458
 459	if (ic->meta_dev)
 460		return offset;
 461
 462	result = area << ic->sb->log2_interleave_sectors;
 463	if (likely(ic->log2_metadata_run >= 0))
 464		result += (area + 1) << ic->log2_metadata_run;
 465	else
 466		result += (area + 1) * ic->metadata_run;
 467
 468	result += (sector_t)ic->initial_sectors + offset;
 469	result += ic->start;
 470
 471	return result;
 472}
 473
 474static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
 475{
 476	if (unlikely(*sec_ptr >= ic->journal_sections))
 477		*sec_ptr -= ic->journal_sections;
 478}
 479
 480static void sb_set_version(struct dm_integrity_c *ic)
 481{
 482	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
 483		ic->sb->version = SB_VERSION_5;
 484	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
 485		ic->sb->version = SB_VERSION_4;
 486	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
 487		ic->sb->version = SB_VERSION_3;
 488	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
 489		ic->sb->version = SB_VERSION_2;
 490	else
 491		ic->sb->version = SB_VERSION_1;
 492}
 493
 494static int sb_mac(struct dm_integrity_c *ic, bool wr)
 495{
 496	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
 497	int r;
 498	unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
 499	__u8 *sb = (__u8 *)ic->sb;
 500	__u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
 501
 502	if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
 503		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
 504		return -EINVAL;
 505	}
 506
 507	desc->tfm = ic->journal_mac;
 508
 509	if (likely(wr)) {
 510		r = crypto_shash_digest(desc, sb, mac - sb, mac);
 511		if (unlikely(r < 0)) {
 512			dm_integrity_io_error(ic, "crypto_shash_digest", r);
 513			return r;
 514		}
 515	} else {
 516		__u8 actual_mac[HASH_MAX_DIGESTSIZE];
 517
 518		r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
 519		if (unlikely(r < 0)) {
 520			dm_integrity_io_error(ic, "crypto_shash_digest", r);
 521			return r;
 522		}
 523		if (memcmp(mac, actual_mac, mac_size)) {
 524			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
 525			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
 526			return -EILSEQ;
 527		}
 528	}
 529
 530	return 0;
 531}
 532
 533static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
 534{
 535	struct dm_io_request io_req;
 536	struct dm_io_region io_loc;
 537	const enum req_op op = opf & REQ_OP_MASK;
 538	int r;
 539
 540	io_req.bi_opf = opf;
 
 541	io_req.mem.type = DM_IO_KMEM;
 542	io_req.mem.ptr.addr = ic->sb;
 543	io_req.notify.fn = NULL;
 544	io_req.client = ic->io;
 545	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
 546	io_loc.sector = ic->start;
 547	io_loc.count = SB_SECTORS;
 548
 549	if (op == REQ_OP_WRITE) {
 550		sb_set_version(ic);
 551		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
 552			r = sb_mac(ic, true);
 553			if (unlikely(r))
 554				return r;
 555		}
 556	}
 557
 558	r = dm_io(&io_req, 1, &io_loc, NULL);
 559	if (unlikely(r))
 560		return r;
 561
 562	if (op == REQ_OP_READ) {
 563		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
 564			r = sb_mac(ic, false);
 565			if (unlikely(r))
 566				return r;
 567		}
 568	}
 569
 570	return 0;
 571}
 572
 573#define BITMAP_OP_TEST_ALL_SET		0
 574#define BITMAP_OP_TEST_ALL_CLEAR	1
 575#define BITMAP_OP_SET			2
 576#define BITMAP_OP_CLEAR			3
 577
 578static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
 579			    sector_t sector, sector_t n_sectors, int mode)
 580{
 581	unsigned long bit, end_bit, this_end_bit, page, end_page;
 582	unsigned long *data;
 583
 584	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
 585		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
 586			sector,
 587			n_sectors,
 588			ic->sb->log2_sectors_per_block,
 589			ic->log2_blocks_per_bitmap_bit,
 590			mode);
 591		BUG();
 592	}
 593
 594	if (unlikely(!n_sectors))
 595		return true;
 596
 597	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 598	end_bit = (sector + n_sectors - 1) >>
 599		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 600
 601	page = bit / (PAGE_SIZE * 8);
 602	bit %= PAGE_SIZE * 8;
 603
 604	end_page = end_bit / (PAGE_SIZE * 8);
 605	end_bit %= PAGE_SIZE * 8;
 606
 607repeat:
 608	if (page < end_page)
 609		this_end_bit = PAGE_SIZE * 8 - 1;
 610	else
 611		this_end_bit = end_bit;
 
 612
 613	data = lowmem_page_address(bitmap[page].page);
 614
 615	if (mode == BITMAP_OP_TEST_ALL_SET) {
 616		while (bit <= this_end_bit) {
 617			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 618				do {
 619					if (data[bit / BITS_PER_LONG] != -1)
 620						return false;
 621					bit += BITS_PER_LONG;
 622				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 623				continue;
 624			}
 625			if (!test_bit(bit, data))
 626				return false;
 627			bit++;
 628		}
 629	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
 630		while (bit <= this_end_bit) {
 631			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 632				do {
 633					if (data[bit / BITS_PER_LONG] != 0)
 634						return false;
 635					bit += BITS_PER_LONG;
 636				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 637				continue;
 638			}
 639			if (test_bit(bit, data))
 640				return false;
 641			bit++;
 642		}
 643	} else if (mode == BITMAP_OP_SET) {
 644		while (bit <= this_end_bit) {
 645			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 646				do {
 647					data[bit / BITS_PER_LONG] = -1;
 648					bit += BITS_PER_LONG;
 649				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 650				continue;
 651			}
 652			__set_bit(bit, data);
 653			bit++;
 654		}
 655	} else if (mode == BITMAP_OP_CLEAR) {
 656		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
 657			clear_page(data);
 658		else {
 659			while (bit <= this_end_bit) {
 660				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 661					do {
 662						data[bit / BITS_PER_LONG] = 0;
 663						bit += BITS_PER_LONG;
 664					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 665					continue;
 666				}
 667				__clear_bit(bit, data);
 668				bit++;
 669			}
 
 
 670		}
 671	} else {
 672		BUG();
 673	}
 674
 675	if (unlikely(page < end_page)) {
 676		bit = 0;
 677		page++;
 678		goto repeat;
 679	}
 680
 681	return true;
 682}
 683
 684static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
 685{
 686	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
 687	unsigned int i;
 688
 689	for (i = 0; i < n_bitmap_pages; i++) {
 690		unsigned long *dst_data = lowmem_page_address(dst[i].page);
 691		unsigned long *src_data = lowmem_page_address(src[i].page);
 692
 693		copy_page(dst_data, src_data);
 694	}
 695}
 696
 697static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
 698{
 699	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 700	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
 701
 702	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
 703	return &ic->bbs[bitmap_block];
 704}
 705
 706static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
 707				 bool e, const char *function)
 708{
 709#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
 710	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
 711
 712	if (unlikely(section >= ic->journal_sections) ||
 713	    unlikely(offset >= limit)) {
 714		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
 715		       function, section, offset, ic->journal_sections, limit);
 716		BUG();
 717	}
 718#endif
 719}
 720
 721static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
 722			       unsigned int *pl_index, unsigned int *pl_offset)
 723{
 724	unsigned int sector;
 725
 726	access_journal_check(ic, section, offset, false, "page_list_location");
 727
 728	sector = section * ic->journal_section_sectors + offset;
 729
 730	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
 731	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
 732}
 733
 734static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
 735					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
 736{
 737	unsigned int pl_index, pl_offset;
 738	char *va;
 739
 740	page_list_location(ic, section, offset, &pl_index, &pl_offset);
 741
 742	if (n_sectors)
 743		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
 744
 745	va = lowmem_page_address(pl[pl_index].page);
 746
 747	return (struct journal_sector *)(va + pl_offset);
 748}
 749
 750static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
 751{
 752	return access_page_list(ic, ic->journal, section, offset, NULL);
 753}
 754
 755static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
 756{
 757	unsigned int rel_sector, offset;
 758	struct journal_sector *js;
 759
 760	access_journal_check(ic, section, n, true, "access_journal_entry");
 761
 762	rel_sector = n % JOURNAL_BLOCK_SECTORS;
 763	offset = n / JOURNAL_BLOCK_SECTORS;
 764
 765	js = access_journal(ic, section, rel_sector);
 766	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
 767}
 768
 769static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
 770{
 771	n <<= ic->sb->log2_sectors_per_block;
 772
 773	n += JOURNAL_BLOCK_SECTORS;
 774
 775	access_journal_check(ic, section, n, false, "access_journal_data");
 776
 777	return access_journal(ic, section, n);
 778}
 779
 780static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
 781{
 782	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
 783	int r;
 784	unsigned int j, size;
 785
 786	desc->tfm = ic->journal_mac;
 787
 788	r = crypto_shash_init(desc);
 789	if (unlikely(r < 0)) {
 790		dm_integrity_io_error(ic, "crypto_shash_init", r);
 791		goto err;
 792	}
 793
 794	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
 795		__le64 section_le;
 796
 797		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
 798		if (unlikely(r < 0)) {
 799			dm_integrity_io_error(ic, "crypto_shash_update", r);
 800			goto err;
 801		}
 802
 803		section_le = cpu_to_le64(section);
 804		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
 805		if (unlikely(r < 0)) {
 806			dm_integrity_io_error(ic, "crypto_shash_update", r);
 807			goto err;
 808		}
 809	}
 810
 811	for (j = 0; j < ic->journal_section_entries; j++) {
 812		struct journal_entry *je = access_journal_entry(ic, section, j);
 813
 814		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
 815		if (unlikely(r < 0)) {
 816			dm_integrity_io_error(ic, "crypto_shash_update", r);
 817			goto err;
 818		}
 819	}
 820
 821	size = crypto_shash_digestsize(ic->journal_mac);
 822
 823	if (likely(size <= JOURNAL_MAC_SIZE)) {
 824		r = crypto_shash_final(desc, result);
 825		if (unlikely(r < 0)) {
 826			dm_integrity_io_error(ic, "crypto_shash_final", r);
 827			goto err;
 828		}
 829		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
 830	} else {
 831		__u8 digest[HASH_MAX_DIGESTSIZE];
 832
 833		if (WARN_ON(size > sizeof(digest))) {
 834			dm_integrity_io_error(ic, "digest_size", -EINVAL);
 835			goto err;
 836		}
 837		r = crypto_shash_final(desc, digest);
 838		if (unlikely(r < 0)) {
 839			dm_integrity_io_error(ic, "crypto_shash_final", r);
 840			goto err;
 841		}
 842		memcpy(result, digest, JOURNAL_MAC_SIZE);
 843	}
 844
 845	return;
 846err:
 847	memset(result, 0, JOURNAL_MAC_SIZE);
 848}
 849
 850static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
 851{
 852	__u8 result[JOURNAL_MAC_SIZE];
 853	unsigned int j;
 854
 855	if (!ic->journal_mac)
 856		return;
 857
 858	section_mac(ic, section, result);
 859
 860	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
 861		struct journal_sector *js = access_journal(ic, section, j);
 862
 863		if (likely(wr))
 864			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
 865		else {
 866			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
 867				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
 868				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
 869			}
 870		}
 871	}
 872}
 873
 874static void complete_journal_op(void *context)
 875{
 876	struct journal_completion *comp = context;
 877
 878	BUG_ON(!atomic_read(&comp->in_flight));
 879	if (likely(atomic_dec_and_test(&comp->in_flight)))
 880		complete(&comp->comp);
 881}
 882
 883static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
 884			unsigned int n_sections, struct journal_completion *comp)
 885{
 886	struct async_submit_ctl submit;
 887	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
 888	unsigned int pl_index, pl_offset, section_index;
 889	struct page_list *source_pl, *target_pl;
 890
 891	if (likely(encrypt)) {
 892		source_pl = ic->journal;
 893		target_pl = ic->journal_io;
 894	} else {
 895		source_pl = ic->journal_io;
 896		target_pl = ic->journal;
 897	}
 898
 899	page_list_location(ic, section, 0, &pl_index, &pl_offset);
 900
 901	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
 902
 903	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
 904
 905	section_index = pl_index;
 906
 907	do {
 908		size_t this_step;
 909		struct page *src_pages[2];
 910		struct page *dst_page;
 911
 912		while (unlikely(pl_index == section_index)) {
 913			unsigned int dummy;
 914
 915			if (likely(encrypt))
 916				rw_section_mac(ic, section, true);
 917			section++;
 918			n_sections--;
 919			if (!n_sections)
 920				break;
 921			page_list_location(ic, section, 0, &section_index, &dummy);
 922		}
 923
 924		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
 925		dst_page = target_pl[pl_index].page;
 926		src_pages[0] = source_pl[pl_index].page;
 927		src_pages[1] = ic->journal_xor[pl_index].page;
 928
 929		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
 930
 931		pl_index++;
 932		pl_offset = 0;
 933		n_bytes -= this_step;
 934	} while (n_bytes);
 935
 936	BUG_ON(n_sections);
 937
 938	async_tx_issue_pending_all();
 939}
 940
 941static void complete_journal_encrypt(void *data, int err)
 942{
 943	struct journal_completion *comp = data;
 944
 945	if (unlikely(err)) {
 946		if (likely(err == -EINPROGRESS)) {
 947			complete(&comp->ic->crypto_backoff);
 948			return;
 949		}
 950		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
 951	}
 952	complete_journal_op(comp);
 953}
 954
 955static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
 956{
 957	int r;
 958
 959	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 960				      complete_journal_encrypt, comp);
 961	if (likely(encrypt))
 962		r = crypto_skcipher_encrypt(req);
 963	else
 964		r = crypto_skcipher_decrypt(req);
 965	if (likely(!r))
 966		return false;
 967	if (likely(r == -EINPROGRESS))
 968		return true;
 969	if (likely(r == -EBUSY)) {
 970		wait_for_completion(&comp->ic->crypto_backoff);
 971		reinit_completion(&comp->ic->crypto_backoff);
 972		return true;
 973	}
 974	dm_integrity_io_error(comp->ic, "encrypt", r);
 975	return false;
 976}
 977
 978static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
 979			  unsigned int n_sections, struct journal_completion *comp)
 980{
 981	struct scatterlist **source_sg;
 982	struct scatterlist **target_sg;
 983
 984	atomic_add(2, &comp->in_flight);
 985
 986	if (likely(encrypt)) {
 987		source_sg = ic->journal_scatterlist;
 988		target_sg = ic->journal_io_scatterlist;
 989	} else {
 990		source_sg = ic->journal_io_scatterlist;
 991		target_sg = ic->journal_scatterlist;
 992	}
 993
 994	do {
 995		struct skcipher_request *req;
 996		unsigned int ivsize;
 997		char *iv;
 998
 999		if (likely(encrypt))
1000			rw_section_mac(ic, section, true);
1001
1002		req = ic->sk_requests[section];
1003		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1004		iv = req->iv;
1005
1006		memcpy(iv, iv + ivsize, ivsize);
1007
1008		req->src = source_sg[section];
1009		req->dst = target_sg[section];
1010
1011		if (unlikely(do_crypt(encrypt, req, comp)))
1012			atomic_inc(&comp->in_flight);
1013
1014		section++;
1015		n_sections--;
1016	} while (n_sections);
1017
1018	atomic_dec(&comp->in_flight);
1019	complete_journal_op(comp);
1020}
1021
1022static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1023			    unsigned int n_sections, struct journal_completion *comp)
1024{
1025	if (ic->journal_xor)
1026		return xor_journal(ic, encrypt, section, n_sections, comp);
1027	else
1028		return crypt_journal(ic, encrypt, section, n_sections, comp);
1029}
1030
1031static void complete_journal_io(unsigned long error, void *context)
1032{
1033	struct journal_completion *comp = context;
1034
1035	if (unlikely(error != 0))
1036		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1037	complete_journal_op(comp);
1038}
1039
1040static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1041			       unsigned int sector, unsigned int n_sectors,
1042			       struct journal_completion *comp)
1043{
1044	struct dm_io_request io_req;
1045	struct dm_io_region io_loc;
1046	unsigned int pl_index, pl_offset;
1047	int r;
1048
1049	if (unlikely(dm_integrity_failed(ic))) {
1050		if (comp)
1051			complete_journal_io(-1UL, comp);
1052		return;
1053	}
1054
1055	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1056	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1057
1058	io_req.bi_opf = opf;
 
1059	io_req.mem.type = DM_IO_PAGE_LIST;
1060	if (ic->journal_io)
1061		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1062	else
1063		io_req.mem.ptr.pl = &ic->journal[pl_index];
1064	io_req.mem.offset = pl_offset;
1065	if (likely(comp != NULL)) {
1066		io_req.notify.fn = complete_journal_io;
1067		io_req.notify.context = comp;
1068	} else {
1069		io_req.notify.fn = NULL;
1070	}
1071	io_req.client = ic->io;
1072	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1073	io_loc.sector = ic->start + SB_SECTORS + sector;
1074	io_loc.count = n_sectors;
1075
1076	r = dm_io(&io_req, 1, &io_loc, NULL);
1077	if (unlikely(r)) {
1078		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1079				      "reading journal" : "writing journal", r);
1080		if (comp) {
1081			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1082			complete_journal_io(-1UL, comp);
1083		}
1084	}
1085}
1086
1087static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1088		       unsigned int section, unsigned int n_sections,
1089		       struct journal_completion *comp)
1090{
1091	unsigned int sector, n_sectors;
1092
1093	sector = section * ic->journal_section_sectors;
1094	n_sectors = n_sections * ic->journal_section_sectors;
1095
1096	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1097}
1098
1099static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1100{
1101	struct journal_completion io_comp;
1102	struct journal_completion crypt_comp_1;
1103	struct journal_completion crypt_comp_2;
1104	unsigned int i;
1105
1106	io_comp.ic = ic;
1107	init_completion(&io_comp.comp);
1108
1109	if (commit_start + commit_sections <= ic->journal_sections) {
1110		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1111		if (ic->journal_io) {
1112			crypt_comp_1.ic = ic;
1113			init_completion(&crypt_comp_1.comp);
1114			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1115			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1116			wait_for_completion_io(&crypt_comp_1.comp);
1117		} else {
1118			for (i = 0; i < commit_sections; i++)
1119				rw_section_mac(ic, commit_start + i, true);
1120		}
1121		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1122			   commit_sections, &io_comp);
1123	} else {
1124		unsigned int to_end;
1125
1126		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1127		to_end = ic->journal_sections - commit_start;
1128		if (ic->journal_io) {
1129			crypt_comp_1.ic = ic;
1130			init_completion(&crypt_comp_1.comp);
1131			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1132			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1133			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1134				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1135					   commit_start, to_end, &io_comp);
1136				reinit_completion(&crypt_comp_1.comp);
1137				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1138				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1139				wait_for_completion_io(&crypt_comp_1.comp);
1140			} else {
1141				crypt_comp_2.ic = ic;
1142				init_completion(&crypt_comp_2.comp);
1143				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1144				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1145				wait_for_completion_io(&crypt_comp_1.comp);
1146				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1147				wait_for_completion_io(&crypt_comp_2.comp);
1148			}
1149		} else {
1150			for (i = 0; i < to_end; i++)
1151				rw_section_mac(ic, commit_start + i, true);
1152			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1153			for (i = 0; i < commit_sections - to_end; i++)
1154				rw_section_mac(ic, i, true);
1155		}
1156		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1157	}
1158
1159	wait_for_completion_io(&io_comp.comp);
1160}
1161
1162static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1163			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1164{
1165	struct dm_io_request io_req;
1166	struct dm_io_region io_loc;
1167	int r;
1168	unsigned int sector, pl_index, pl_offset;
1169
1170	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1171
1172	if (unlikely(dm_integrity_failed(ic))) {
1173		fn(-1UL, data);
1174		return;
1175	}
1176
1177	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1178
1179	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1180	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1181
1182	io_req.bi_opf = REQ_OP_WRITE;
 
1183	io_req.mem.type = DM_IO_PAGE_LIST;
1184	io_req.mem.ptr.pl = &ic->journal[pl_index];
1185	io_req.mem.offset = pl_offset;
1186	io_req.notify.fn = fn;
1187	io_req.notify.context = data;
1188	io_req.client = ic->io;
1189	io_loc.bdev = ic->dev->bdev;
1190	io_loc.sector = target;
1191	io_loc.count = n_sectors;
1192
1193	r = dm_io(&io_req, 1, &io_loc, NULL);
1194	if (unlikely(r)) {
1195		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1196		fn(-1UL, data);
1197	}
1198}
1199
1200static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1201{
1202	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1203	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1204}
1205
1206static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1207{
1208	struct rb_node **n = &ic->in_progress.rb_node;
1209	struct rb_node *parent;
1210
1211	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1212
1213	if (likely(check_waiting)) {
1214		struct dm_integrity_range *range;
1215
1216		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1217			if (unlikely(ranges_overlap(range, new_range)))
1218				return false;
1219		}
1220	}
1221
1222	parent = NULL;
1223
1224	while (*n) {
1225		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1226
1227		parent = *n;
1228		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1229			n = &range->node.rb_left;
1230		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1231			n = &range->node.rb_right;
1232		else
1233			return false;
 
1234	}
1235
1236	rb_link_node(&new_range->node, parent, n);
1237	rb_insert_color(&new_range->node, &ic->in_progress);
1238
1239	return true;
1240}
1241
1242static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1243{
1244	rb_erase(&range->node, &ic->in_progress);
1245	while (unlikely(!list_empty(&ic->wait_list))) {
1246		struct dm_integrity_range *last_range =
1247			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1248		struct task_struct *last_range_task;
1249
1250		last_range_task = last_range->task;
1251		list_del(&last_range->wait_entry);
1252		if (!add_new_range(ic, last_range, false)) {
1253			last_range->task = last_range_task;
1254			list_add(&last_range->wait_entry, &ic->wait_list);
1255			break;
1256		}
1257		last_range->waiting = false;
1258		wake_up_process(last_range_task);
1259	}
1260}
1261
1262static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1263{
1264	unsigned long flags;
1265
1266	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1267	remove_range_unlocked(ic, range);
1268	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1269}
1270
1271static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1272{
1273	new_range->waiting = true;
1274	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1275	new_range->task = current;
1276	do {
1277		__set_current_state(TASK_UNINTERRUPTIBLE);
1278		spin_unlock_irq(&ic->endio_wait.lock);
1279		io_schedule();
1280		spin_lock_irq(&ic->endio_wait.lock);
1281	} while (unlikely(new_range->waiting));
1282}
1283
1284static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1285{
1286	if (unlikely(!add_new_range(ic, new_range, true)))
1287		wait_and_add_new_range(ic, new_range);
1288}
1289
1290static void init_journal_node(struct journal_node *node)
1291{
1292	RB_CLEAR_NODE(&node->node);
1293	node->sector = (sector_t)-1;
1294}
1295
1296static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1297{
1298	struct rb_node **link;
1299	struct rb_node *parent;
1300
1301	node->sector = sector;
1302	BUG_ON(!RB_EMPTY_NODE(&node->node));
1303
1304	link = &ic->journal_tree_root.rb_node;
1305	parent = NULL;
1306
1307	while (*link) {
1308		struct journal_node *j;
1309
1310		parent = *link;
1311		j = container_of(parent, struct journal_node, node);
1312		if (sector < j->sector)
1313			link = &j->node.rb_left;
1314		else
1315			link = &j->node.rb_right;
1316	}
1317
1318	rb_link_node(&node->node, parent, link);
1319	rb_insert_color(&node->node, &ic->journal_tree_root);
1320}
1321
1322static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1323{
1324	BUG_ON(RB_EMPTY_NODE(&node->node));
1325	rb_erase(&node->node, &ic->journal_tree_root);
1326	init_journal_node(node);
1327}
1328
1329#define NOT_FOUND	(-1U)
1330
1331static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1332{
1333	struct rb_node *n = ic->journal_tree_root.rb_node;
1334	unsigned int found = NOT_FOUND;
1335
1336	*next_sector = (sector_t)-1;
1337	while (n) {
1338		struct journal_node *j = container_of(n, struct journal_node, node);
1339
1340		if (sector == j->sector)
1341			found = j - ic->journal_tree;
1342
1343		if (sector < j->sector) {
1344			*next_sector = j->sector;
1345			n = j->node.rb_left;
1346		} else
1347			n = j->node.rb_right;
 
1348	}
1349
1350	return found;
1351}
1352
1353static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1354{
1355	struct journal_node *node, *next_node;
1356	struct rb_node *next;
1357
1358	if (unlikely(pos >= ic->journal_entries))
1359		return false;
1360	node = &ic->journal_tree[pos];
1361	if (unlikely(RB_EMPTY_NODE(&node->node)))
1362		return false;
1363	if (unlikely(node->sector != sector))
1364		return false;
1365
1366	next = rb_next(&node->node);
1367	if (unlikely(!next))
1368		return true;
1369
1370	next_node = container_of(next, struct journal_node, node);
1371	return next_node->sector != sector;
1372}
1373
1374static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1375{
1376	struct rb_node *next;
1377	struct journal_node *next_node;
1378	unsigned int next_section;
1379
1380	BUG_ON(RB_EMPTY_NODE(&node->node));
1381
1382	next = rb_next(&node->node);
1383	if (unlikely(!next))
1384		return false;
1385
1386	next_node = container_of(next, struct journal_node, node);
1387
1388	if (next_node->sector != node->sector)
1389		return false;
1390
1391	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1392	if (next_section >= ic->committed_section &&
1393	    next_section < ic->committed_section + ic->n_committed_sections)
1394		return true;
1395	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1396		return true;
1397
1398	return false;
1399}
1400
1401#define TAG_READ	0
1402#define TAG_WRITE	1
1403#define TAG_CMP		2
1404
1405static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1406			       unsigned int *metadata_offset, unsigned int total_size, int op)
1407{
1408#define MAY_BE_FILLER		1
1409#define MAY_BE_HASH		2
1410	unsigned int hash_offset = 0;
1411	unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1412
1413	do {
1414		unsigned char *data, *dp;
1415		struct dm_buffer *b;
1416		unsigned int to_copy;
1417		int r;
1418
1419		r = dm_integrity_failed(ic);
1420		if (unlikely(r))
1421			return r;
1422
1423		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1424		if (IS_ERR(data))
1425			return PTR_ERR(data);
1426
1427		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1428		dp = data + *metadata_offset;
1429		if (op == TAG_READ) {
1430			memcpy(tag, dp, to_copy);
1431		} else if (op == TAG_WRITE) {
1432			if (memcmp(dp, tag, to_copy)) {
1433				memcpy(dp, tag, to_copy);
1434				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1435			}
1436		} else {
1437			/* e.g.: op == TAG_CMP */
1438
1439			if (likely(is_power_of_2(ic->tag_size))) {
1440				if (unlikely(memcmp(dp, tag, to_copy)))
1441					if (unlikely(!ic->discard) ||
1442					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1443						goto thorough_test;
1444				}
1445			} else {
1446				unsigned int i, ts;
1447thorough_test:
1448				ts = total_size;
1449
1450				for (i = 0; i < to_copy; i++, ts--) {
1451					if (unlikely(dp[i] != tag[i]))
1452						may_be &= ~MAY_BE_HASH;
1453					if (likely(dp[i] != DISCARD_FILLER))
1454						may_be &= ~MAY_BE_FILLER;
1455					hash_offset++;
1456					if (unlikely(hash_offset == ic->tag_size)) {
1457						if (unlikely(!may_be)) {
1458							dm_bufio_release(b);
1459							return ts;
1460						}
1461						hash_offset = 0;
1462						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1463					}
1464				}
1465			}
1466		}
1467		dm_bufio_release(b);
1468
1469		tag += to_copy;
1470		*metadata_offset += to_copy;
1471		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1472			(*metadata_block)++;
1473			*metadata_offset = 0;
1474		}
1475
1476		if (unlikely(!is_power_of_2(ic->tag_size)))
1477			hash_offset = (hash_offset + to_copy) % ic->tag_size;
 
1478
1479		total_size -= to_copy;
1480	} while (unlikely(total_size));
1481
1482	return 0;
1483#undef MAY_BE_FILLER
1484#undef MAY_BE_HASH
1485}
1486
1487struct flush_request {
1488	struct dm_io_request io_req;
1489	struct dm_io_region io_reg;
1490	struct dm_integrity_c *ic;
1491	struct completion comp;
1492};
1493
1494static void flush_notify(unsigned long error, void *fr_)
1495{
1496	struct flush_request *fr = fr_;
1497
1498	if (unlikely(error != 0))
1499		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1500	complete(&fr->comp);
1501}
1502
1503static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1504{
1505	int r;
1506	struct flush_request fr;
1507
1508	if (!ic->meta_dev)
1509		flush_data = false;
1510	if (flush_data) {
1511		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1512		fr.io_req.mem.type = DM_IO_KMEM,
1513		fr.io_req.mem.ptr.addr = NULL,
1514		fr.io_req.notify.fn = flush_notify,
1515		fr.io_req.notify.context = &fr;
1516		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1517		fr.io_reg.bdev = ic->dev->bdev,
1518		fr.io_reg.sector = 0,
1519		fr.io_reg.count = 0,
1520		fr.ic = ic;
1521		init_completion(&fr.comp);
1522		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1523		BUG_ON(r);
1524	}
1525
1526	r = dm_bufio_write_dirty_buffers(ic->bufio);
1527	if (unlikely(r))
1528		dm_integrity_io_error(ic, "writing tags", r);
1529
1530	if (flush_data)
1531		wait_for_completion(&fr.comp);
1532}
1533
1534static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1535{
1536	DECLARE_WAITQUEUE(wait, current);
1537
1538	__add_wait_queue(&ic->endio_wait, &wait);
1539	__set_current_state(TASK_UNINTERRUPTIBLE);
1540	spin_unlock_irq(&ic->endio_wait.lock);
1541	io_schedule();
1542	spin_lock_irq(&ic->endio_wait.lock);
1543	__remove_wait_queue(&ic->endio_wait, &wait);
1544}
1545
1546static void autocommit_fn(struct timer_list *t)
1547{
1548	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1549
1550	if (likely(!dm_integrity_failed(ic)))
1551		queue_work(ic->commit_wq, &ic->commit_work);
1552}
1553
1554static void schedule_autocommit(struct dm_integrity_c *ic)
1555{
1556	if (!timer_pending(&ic->autocommit_timer))
1557		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1558}
1559
1560static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1561{
1562	struct bio *bio;
1563	unsigned long flags;
1564
1565	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1566	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1567	bio_list_add(&ic->flush_bio_list, bio);
1568	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1569
1570	queue_work(ic->commit_wq, &ic->commit_work);
1571}
1572
1573static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1574{
1575	int r;
1576
1577	r = dm_integrity_failed(ic);
1578	if (unlikely(r) && !bio->bi_status)
1579		bio->bi_status = errno_to_blk_status(r);
1580	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1581		unsigned long flags;
1582
1583		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1584		bio_list_add(&ic->synchronous_bios, bio);
1585		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1586		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1587		return;
1588	}
1589	bio_endio(bio);
1590}
1591
1592static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1593{
1594	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1595
1596	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1597		submit_flush_bio(ic, dio);
1598	else
1599		do_endio(ic, bio);
1600}
1601
1602static void dec_in_flight(struct dm_integrity_io *dio)
1603{
1604	if (atomic_dec_and_test(&dio->in_flight)) {
1605		struct dm_integrity_c *ic = dio->ic;
1606		struct bio *bio;
1607
1608		remove_range(ic, &dio->range);
1609
1610		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1611			schedule_autocommit(ic);
1612
1613		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
 
1614		if (unlikely(dio->bi_status) && !bio->bi_status)
1615			bio->bi_status = dio->bi_status;
1616		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1617			dio->range.logical_sector += dio->range.n_sectors;
1618			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1619			INIT_WORK(&dio->work, integrity_bio_wait);
1620			queue_work(ic->offload_wq, &dio->work);
1621			return;
1622		}
1623		do_endio_flush(ic, dio);
1624	}
1625}
1626
1627static void integrity_end_io(struct bio *bio)
1628{
1629	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1630
1631	dm_bio_restore(&dio->bio_details, bio);
1632	if (bio->bi_integrity)
1633		bio->bi_opf |= REQ_INTEGRITY;
1634
1635	if (dio->completion)
1636		complete(dio->completion);
1637
1638	dec_in_flight(dio);
1639}
1640
1641static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1642				      const char *data, char *result)
1643{
1644	__le64 sector_le = cpu_to_le64(sector);
1645	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1646	int r;
1647	unsigned int digest_size;
1648
1649	req->tfm = ic->internal_hash;
1650
1651	r = crypto_shash_init(req);
1652	if (unlikely(r < 0)) {
1653		dm_integrity_io_error(ic, "crypto_shash_init", r);
1654		goto failed;
1655	}
1656
1657	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1658		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1659		if (unlikely(r < 0)) {
1660			dm_integrity_io_error(ic, "crypto_shash_update", r);
1661			goto failed;
1662		}
1663	}
1664
1665	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1666	if (unlikely(r < 0)) {
1667		dm_integrity_io_error(ic, "crypto_shash_update", r);
1668		goto failed;
1669	}
1670
1671	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1672	if (unlikely(r < 0)) {
1673		dm_integrity_io_error(ic, "crypto_shash_update", r);
1674		goto failed;
1675	}
1676
1677	r = crypto_shash_final(req, result);
1678	if (unlikely(r < 0)) {
1679		dm_integrity_io_error(ic, "crypto_shash_final", r);
1680		goto failed;
1681	}
1682
1683	digest_size = crypto_shash_digestsize(ic->internal_hash);
1684	if (unlikely(digest_size < ic->tag_size))
1685		memset(result + digest_size, 0, ic->tag_size - digest_size);
1686
1687	return;
1688
1689failed:
1690	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1691	get_random_bytes(result, ic->tag_size);
1692}
1693
1694static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1695{
1696	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1697	struct dm_integrity_c *ic = dio->ic;
1698	struct bvec_iter iter;
1699	struct bio_vec bv;
1700	sector_t sector, logical_sector, area, offset;
1701	struct page *page;
1702	void *buffer;
1703
1704	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1705	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1706							     &dio->metadata_offset);
1707	sector = get_data_sector(ic, area, offset);
1708	logical_sector = dio->range.logical_sector;
1709
1710	page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1711	buffer = page_to_virt(page);
1712
1713	__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1714		unsigned pos = 0;
1715
1716		do {
1717			char *mem;
1718			int r;
1719			struct dm_io_request io_req;
1720			struct dm_io_region io_loc;
1721			io_req.bi_opf = REQ_OP_READ;
1722			io_req.mem.type = DM_IO_KMEM;
1723			io_req.mem.ptr.addr = buffer;
1724			io_req.notify.fn = NULL;
1725			io_req.client = ic->io;
1726			io_loc.bdev = ic->dev->bdev;
1727			io_loc.sector = sector;
1728			io_loc.count = ic->sectors_per_block;
1729
1730			r = dm_io(&io_req, 1, &io_loc, NULL);
1731			if (unlikely(r)) {
1732				dio->bi_status = errno_to_blk_status(r);
1733				goto free_ret;
1734			}
1735
1736			integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1737			r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1738						&dio->metadata_offset, ic->tag_size, TAG_CMP);
1739			if (r) {
1740				if (r > 0) {
1741					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1742						    bio->bi_bdev, logical_sector);
1743					atomic64_inc(&ic->number_of_mismatches);
1744					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1745							 bio, logical_sector, 0);
1746					r = -EILSEQ;
1747				}
1748				dio->bi_status = errno_to_blk_status(r);
1749				goto free_ret;
1750			}
1751
1752			mem = bvec_kmap_local(&bv);
1753			memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1754			kunmap_local(mem);
1755
1756			pos += ic->sectors_per_block << SECTOR_SHIFT;
1757			sector += ic->sectors_per_block;
1758			logical_sector += ic->sectors_per_block;
1759		} while (pos < bv.bv_len);
1760	}
1761free_ret:
1762	mempool_free(page, &ic->recheck_pool);
1763}
1764
1765static void integrity_metadata(struct work_struct *w)
1766{
1767	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1768	struct dm_integrity_c *ic = dio->ic;
1769
1770	int r;
1771
1772	if (ic->internal_hash) {
1773		struct bvec_iter iter;
1774		struct bio_vec bv;
1775		unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1776		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1777		char *checksums;
1778		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1779		char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1780		sector_t sector;
1781		unsigned int sectors_to_process;
1782
1783		if (unlikely(ic->mode == 'R'))
1784			goto skip_io;
1785
1786		if (likely(dio->op != REQ_OP_DISCARD))
1787			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1788					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1789		else
1790			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1791		if (!checksums) {
1792			checksums = checksums_onstack;
1793			if (WARN_ON(extra_space &&
1794				    digest_size > sizeof(checksums_onstack))) {
1795				r = -EINVAL;
1796				goto error;
1797			}
1798		}
1799
1800		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1801			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1802			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1803			unsigned int max_blocks = max_size / ic->tag_size;
1804
1805			memset(checksums, DISCARD_FILLER, max_size);
1806
1807			while (bi_size) {
1808				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1809
1810				this_step_blocks = min(this_step_blocks, max_blocks);
1811				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1812							this_step_blocks * ic->tag_size, TAG_WRITE);
1813				if (unlikely(r)) {
1814					if (likely(checksums != checksums_onstack))
1815						kfree(checksums);
1816					goto error;
1817				}
1818
 
 
 
 
 
1819				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
 
1820			}
1821
1822			if (likely(checksums != checksums_onstack))
1823				kfree(checksums);
1824			goto skip_io;
1825		}
1826
1827		sector = dio->range.logical_sector;
1828		sectors_to_process = dio->range.n_sectors;
1829
1830		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1831			struct bio_vec bv_copy = bv;
1832			unsigned int pos;
1833			char *mem, *checksums_ptr;
1834
1835again:
1836			mem = bvec_kmap_local(&bv_copy);
1837			pos = 0;
1838			checksums_ptr = checksums;
1839			do {
1840				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1841				checksums_ptr += ic->tag_size;
1842				sectors_to_process -= ic->sectors_per_block;
1843				pos += ic->sectors_per_block << SECTOR_SHIFT;
1844				sector += ic->sectors_per_block;
1845			} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1846			kunmap_local(mem);
1847
1848			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1849						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1850			if (unlikely(r)) {
1851				if (r > 0) {
1852					integrity_recheck(dio, checksums);
1853					goto skip_io;
 
 
 
1854				}
1855				if (likely(checksums != checksums_onstack))
1856					kfree(checksums);
1857				goto error;
1858			}
1859
1860			if (!sectors_to_process)
1861				break;
1862
1863			if (unlikely(pos < bv_copy.bv_len)) {
1864				bv_copy.bv_offset += pos;
1865				bv_copy.bv_len -= pos;
1866				goto again;
1867			}
1868		}
1869
1870		if (likely(checksums != checksums_onstack))
1871			kfree(checksums);
1872	} else {
1873		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1874
1875		if (bip) {
1876			struct bio_vec biv;
1877			struct bvec_iter iter;
1878			unsigned int data_to_process = dio->range.n_sectors;
1879
1880			sector_to_block(ic, data_to_process);
1881			data_to_process *= ic->tag_size;
1882
1883			bip_for_each_vec(biv, bip, iter) {
1884				unsigned char *tag;
1885				unsigned int this_len;
1886
1887				BUG_ON(PageHighMem(biv.bv_page));
1888				tag = bvec_virt(&biv);
1889				this_len = min(biv.bv_len, data_to_process);
1890				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1891							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1892				if (unlikely(r))
1893					goto error;
1894				data_to_process -= this_len;
1895				if (!data_to_process)
1896					break;
1897			}
1898		}
1899	}
1900skip_io:
1901	dec_in_flight(dio);
1902	return;
1903error:
1904	dio->bi_status = errno_to_blk_status(r);
1905	dec_in_flight(dio);
1906}
1907
1908static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1909{
1910	struct dm_integrity_c *ic = ti->private;
1911	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1912	struct bio_integrity_payload *bip;
1913
1914	sector_t area, offset;
1915
1916	dio->ic = ic;
1917	dio->bi_status = 0;
1918	dio->op = bio_op(bio);
1919
1920	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1921		if (ti->max_io_len) {
1922			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1923			unsigned int log2_max_io_len = __fls(ti->max_io_len);
1924			sector_t start_boundary = sec >> log2_max_io_len;
1925			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1926
1927			if (start_boundary < end_boundary) {
1928				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1929
1930				dm_accept_partial_bio(bio, len);
1931			}
1932		}
1933	}
1934
1935	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1936		submit_flush_bio(ic, dio);
1937		return DM_MAPIO_SUBMITTED;
1938	}
1939
1940	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1941	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1942	if (unlikely(dio->fua)) {
1943		/*
1944		 * Don't pass down the FUA flag because we have to flush
1945		 * disk cache anyway.
1946		 */
1947		bio->bi_opf &= ~REQ_FUA;
1948	}
1949	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1950		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1951		      dio->range.logical_sector, bio_sectors(bio),
1952		      ic->provided_data_sectors);
1953		return DM_MAPIO_KILL;
1954	}
1955	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1956		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1957		      ic->sectors_per_block,
1958		      dio->range.logical_sector, bio_sectors(bio));
1959		return DM_MAPIO_KILL;
1960	}
1961
1962	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1963		struct bvec_iter iter;
1964		struct bio_vec bv;
1965
1966		bio_for_each_segment(bv, bio, iter) {
1967			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1968				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1969					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1970				return DM_MAPIO_KILL;
1971			}
1972		}
1973	}
1974
1975	bip = bio_integrity(bio);
1976	if (!ic->internal_hash) {
1977		if (bip) {
1978			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1979
1980			if (ic->log2_tag_size >= 0)
1981				wanted_tag_size <<= ic->log2_tag_size;
1982			else
1983				wanted_tag_size *= ic->tag_size;
1984			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1985				DMERR("Invalid integrity data size %u, expected %u",
1986				      bip->bip_iter.bi_size, wanted_tag_size);
1987				return DM_MAPIO_KILL;
1988			}
1989		}
1990	} else {
1991		if (unlikely(bip != NULL)) {
1992			DMERR("Unexpected integrity data when using internal hash");
1993			return DM_MAPIO_KILL;
1994		}
1995	}
1996
1997	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1998		return DM_MAPIO_KILL;
1999
2000	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2001	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2002	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2003
2004	dm_integrity_map_continue(dio, true);
2005	return DM_MAPIO_SUBMITTED;
2006}
2007
2008static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2009				 unsigned int journal_section, unsigned int journal_entry)
2010{
2011	struct dm_integrity_c *ic = dio->ic;
2012	sector_t logical_sector;
2013	unsigned int n_sectors;
2014
2015	logical_sector = dio->range.logical_sector;
2016	n_sectors = dio->range.n_sectors;
2017	do {
2018		struct bio_vec bv = bio_iovec(bio);
2019		char *mem;
2020
2021		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2022			bv.bv_len = n_sectors << SECTOR_SHIFT;
2023		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2024		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2025retry_kmap:
2026		mem = kmap_local_page(bv.bv_page);
2027		if (likely(dio->op == REQ_OP_WRITE))
2028			flush_dcache_page(bv.bv_page);
2029
2030		do {
2031			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2032
2033			if (unlikely(dio->op == REQ_OP_READ)) {
2034				struct journal_sector *js;
2035				char *mem_ptr;
2036				unsigned int s;
2037
2038				if (unlikely(journal_entry_is_inprogress(je))) {
2039					flush_dcache_page(bv.bv_page);
2040					kunmap_local(mem);
2041
2042					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2043					goto retry_kmap;
2044				}
2045				smp_rmb();
2046				BUG_ON(journal_entry_get_sector(je) != logical_sector);
2047				js = access_journal_data(ic, journal_section, journal_entry);
2048				mem_ptr = mem + bv.bv_offset;
2049				s = 0;
2050				do {
2051					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2052					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2053					js++;
2054					mem_ptr += 1 << SECTOR_SHIFT;
2055				} while (++s < ic->sectors_per_block);
2056#ifdef INTERNAL_VERIFY
2057				if (ic->internal_hash) {
2058					char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2059
2060					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2061					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2062						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2063							    logical_sector);
2064						dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2065								 bio, logical_sector, 0);
2066					}
2067				}
2068#endif
2069			}
2070
2071			if (!ic->internal_hash) {
2072				struct bio_integrity_payload *bip = bio_integrity(bio);
2073				unsigned int tag_todo = ic->tag_size;
2074				char *tag_ptr = journal_entry_tag(ic, je);
2075
2076				if (bip) {
2077					do {
2078						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2079						unsigned int tag_now = min(biv.bv_len, tag_todo);
2080						char *tag_addr;
2081
2082						BUG_ON(PageHighMem(biv.bv_page));
2083						tag_addr = bvec_virt(&biv);
2084						if (likely(dio->op == REQ_OP_WRITE))
2085							memcpy(tag_ptr, tag_addr, tag_now);
2086						else
2087							memcpy(tag_addr, tag_ptr, tag_now);
2088						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2089						tag_ptr += tag_now;
2090						tag_todo -= tag_now;
2091					} while (unlikely(tag_todo));
2092				} else if (likely(dio->op == REQ_OP_WRITE))
2093					memset(tag_ptr, 0, tag_todo);
2094			}
2095
2096			if (likely(dio->op == REQ_OP_WRITE)) {
2097				struct journal_sector *js;
2098				unsigned int s;
2099
2100				js = access_journal_data(ic, journal_section, journal_entry);
2101				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2102
2103				s = 0;
2104				do {
2105					je->last_bytes[s] = js[s].commit_id;
2106				} while (++s < ic->sectors_per_block);
2107
2108				if (ic->internal_hash) {
2109					unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2110
2111					if (unlikely(digest_size > ic->tag_size)) {
2112						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2113
2114						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2115						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2116					} else
2117						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2118				}
2119
2120				journal_entry_set_sector(je, logical_sector);
2121			}
2122			logical_sector += ic->sectors_per_block;
2123
2124			journal_entry++;
2125			if (unlikely(journal_entry == ic->journal_section_entries)) {
2126				journal_entry = 0;
2127				journal_section++;
2128				wraparound_section(ic, &journal_section);
2129			}
2130
2131			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2132		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2133
2134		if (unlikely(dio->op == REQ_OP_READ))
2135			flush_dcache_page(bv.bv_page);
2136		kunmap_local(mem);
2137	} while (n_sectors);
2138
2139	if (likely(dio->op == REQ_OP_WRITE)) {
2140		smp_mb();
2141		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2142			wake_up(&ic->copy_to_journal_wait);
2143		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2144			queue_work(ic->commit_wq, &ic->commit_work);
2145		else
2146			schedule_autocommit(ic);
2147	} else
 
2148		remove_range(ic, &dio->range);
 
2149
2150	if (unlikely(bio->bi_iter.bi_size)) {
2151		sector_t area, offset;
2152
2153		dio->range.logical_sector = logical_sector;
2154		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2155		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2156		return true;
2157	}
2158
2159	return false;
2160}
2161
2162static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2163{
2164	struct dm_integrity_c *ic = dio->ic;
2165	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2166	unsigned int journal_section, journal_entry;
2167	unsigned int journal_read_pos;
2168	struct completion read_comp;
2169	bool discard_retried = false;
2170	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2171
2172	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2173		need_sync_io = true;
2174
2175	if (need_sync_io && from_map) {
2176		INIT_WORK(&dio->work, integrity_bio_wait);
2177		queue_work(ic->offload_wq, &dio->work);
2178		return;
2179	}
2180
2181lock_retry:
2182	spin_lock_irq(&ic->endio_wait.lock);
2183retry:
2184	if (unlikely(dm_integrity_failed(ic))) {
2185		spin_unlock_irq(&ic->endio_wait.lock);
2186		do_endio(ic, bio);
2187		return;
2188	}
2189	dio->range.n_sectors = bio_sectors(bio);
2190	journal_read_pos = NOT_FOUND;
2191	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2192		if (dio->op == REQ_OP_WRITE) {
2193			unsigned int next_entry, i, pos;
2194			unsigned int ws, we, range_sectors;
2195
2196			dio->range.n_sectors = min(dio->range.n_sectors,
2197						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2198			if (unlikely(!dio->range.n_sectors)) {
2199				if (from_map)
2200					goto offload_to_thread;
2201				sleep_on_endio_wait(ic);
2202				goto retry;
2203			}
2204			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2205			ic->free_sectors -= range_sectors;
2206			journal_section = ic->free_section;
2207			journal_entry = ic->free_section_entry;
2208
2209			next_entry = ic->free_section_entry + range_sectors;
2210			ic->free_section_entry = next_entry % ic->journal_section_entries;
2211			ic->free_section += next_entry / ic->journal_section_entries;
2212			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2213			wraparound_section(ic, &ic->free_section);
2214
2215			pos = journal_section * ic->journal_section_entries + journal_entry;
2216			ws = journal_section;
2217			we = journal_entry;
2218			i = 0;
2219			do {
2220				struct journal_entry *je;
2221
2222				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2223				pos++;
2224				if (unlikely(pos >= ic->journal_entries))
2225					pos = 0;
2226
2227				je = access_journal_entry(ic, ws, we);
2228				BUG_ON(!journal_entry_is_unused(je));
2229				journal_entry_set_inprogress(je);
2230				we++;
2231				if (unlikely(we == ic->journal_section_entries)) {
2232					we = 0;
2233					ws++;
2234					wraparound_section(ic, &ws);
2235				}
2236			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2237
2238			spin_unlock_irq(&ic->endio_wait.lock);
2239			goto journal_read_write;
2240		} else {
2241			sector_t next_sector;
2242
2243			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2244			if (likely(journal_read_pos == NOT_FOUND)) {
2245				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2246					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2247			} else {
2248				unsigned int i;
2249				unsigned int jp = journal_read_pos + 1;
2250
2251				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2252					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2253						break;
2254				}
2255				dio->range.n_sectors = i;
2256			}
2257		}
2258	}
2259	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2260		/*
2261		 * We must not sleep in the request routine because it could
2262		 * stall bios on current->bio_list.
2263		 * So, we offload the bio to a workqueue if we have to sleep.
2264		 */
2265		if (from_map) {
2266offload_to_thread:
2267			spin_unlock_irq(&ic->endio_wait.lock);
2268			INIT_WORK(&dio->work, integrity_bio_wait);
2269			queue_work(ic->wait_wq, &dio->work);
2270			return;
2271		}
2272		if (journal_read_pos != NOT_FOUND)
2273			dio->range.n_sectors = ic->sectors_per_block;
2274		wait_and_add_new_range(ic, &dio->range);
2275		/*
2276		 * wait_and_add_new_range drops the spinlock, so the journal
2277		 * may have been changed arbitrarily. We need to recheck.
2278		 * To simplify the code, we restrict I/O size to just one block.
2279		 */
2280		if (journal_read_pos != NOT_FOUND) {
2281			sector_t next_sector;
2282			unsigned int new_pos;
2283
2284			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2285			if (unlikely(new_pos != journal_read_pos)) {
2286				remove_range_unlocked(ic, &dio->range);
2287				goto retry;
2288			}
2289		}
2290	}
2291	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2292		sector_t next_sector;
2293		unsigned int new_pos;
2294
2295		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2296		if (unlikely(new_pos != NOT_FOUND) ||
2297		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2298			remove_range_unlocked(ic, &dio->range);
2299			spin_unlock_irq(&ic->endio_wait.lock);
2300			queue_work(ic->commit_wq, &ic->commit_work);
2301			flush_workqueue(ic->commit_wq);
2302			queue_work(ic->writer_wq, &ic->writer_work);
2303			flush_workqueue(ic->writer_wq);
2304			discard_retried = true;
2305			goto lock_retry;
2306		}
2307	}
2308	spin_unlock_irq(&ic->endio_wait.lock);
2309
2310	if (unlikely(journal_read_pos != NOT_FOUND)) {
2311		journal_section = journal_read_pos / ic->journal_section_entries;
2312		journal_entry = journal_read_pos % ic->journal_section_entries;
2313		goto journal_read_write;
2314	}
2315
2316	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2317		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2318				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2319			struct bitmap_block_status *bbs;
2320
2321			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2322			spin_lock(&bbs->bio_queue_lock);
2323			bio_list_add(&bbs->bio_queue, bio);
2324			spin_unlock(&bbs->bio_queue_lock);
2325			queue_work(ic->writer_wq, &bbs->work);
2326			return;
2327		}
2328	}
2329
2330	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2331
2332	if (need_sync_io) {
2333		init_completion(&read_comp);
2334		dio->completion = &read_comp;
2335	} else
2336		dio->completion = NULL;
2337
2338	dm_bio_record(&dio->bio_details, bio);
2339	bio_set_dev(bio, ic->dev->bdev);
2340	bio->bi_integrity = NULL;
2341	bio->bi_opf &= ~REQ_INTEGRITY;
2342	bio->bi_end_io = integrity_end_io;
2343	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2344
2345	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2346		integrity_metadata(&dio->work);
2347		dm_integrity_flush_buffers(ic, false);
2348
2349		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2350		dio->completion = NULL;
2351
2352		submit_bio_noacct(bio);
2353
2354		return;
2355	}
2356
2357	submit_bio_noacct(bio);
2358
2359	if (need_sync_io) {
2360		wait_for_completion_io(&read_comp);
2361		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2362		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2363			goto skip_check;
2364		if (ic->mode == 'B') {
2365			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2366					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2367				goto skip_check;
2368		}
2369
2370		if (likely(!bio->bi_status))
2371			integrity_metadata(&dio->work);
2372		else
2373skip_check:
2374			dec_in_flight(dio);
 
2375	} else {
2376		INIT_WORK(&dio->work, integrity_metadata);
2377		queue_work(ic->metadata_wq, &dio->work);
2378	}
2379
2380	return;
2381
2382journal_read_write:
2383	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2384		goto lock_retry;
2385
2386	do_endio_flush(ic, dio);
2387}
2388
2389
2390static void integrity_bio_wait(struct work_struct *w)
2391{
2392	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2393
2394	dm_integrity_map_continue(dio, false);
2395}
2396
2397static void pad_uncommitted(struct dm_integrity_c *ic)
2398{
2399	if (ic->free_section_entry) {
2400		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2401		ic->free_section_entry = 0;
2402		ic->free_section++;
2403		wraparound_section(ic, &ic->free_section);
2404		ic->n_uncommitted_sections++;
2405	}
2406	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2407		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2408		    ic->journal_section_entries + ic->free_sectors)) {
2409		DMCRIT("journal_sections %u, journal_section_entries %u, "
2410		       "n_uncommitted_sections %u, n_committed_sections %u, "
2411		       "journal_section_entries %u, free_sectors %u",
2412		       ic->journal_sections, ic->journal_section_entries,
2413		       ic->n_uncommitted_sections, ic->n_committed_sections,
2414		       ic->journal_section_entries, ic->free_sectors);
2415	}
2416}
2417
2418static void integrity_commit(struct work_struct *w)
2419{
2420	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2421	unsigned int commit_start, commit_sections;
2422	unsigned int i, j, n;
2423	struct bio *flushes;
2424
2425	del_timer(&ic->autocommit_timer);
2426
2427	spin_lock_irq(&ic->endio_wait.lock);
2428	flushes = bio_list_get(&ic->flush_bio_list);
2429	if (unlikely(ic->mode != 'J')) {
2430		spin_unlock_irq(&ic->endio_wait.lock);
2431		dm_integrity_flush_buffers(ic, true);
2432		goto release_flush_bios;
2433	}
2434
2435	pad_uncommitted(ic);
2436	commit_start = ic->uncommitted_section;
2437	commit_sections = ic->n_uncommitted_sections;
2438	spin_unlock_irq(&ic->endio_wait.lock);
2439
2440	if (!commit_sections)
2441		goto release_flush_bios;
2442
2443	ic->wrote_to_journal = true;
2444
2445	i = commit_start;
2446	for (n = 0; n < commit_sections; n++) {
2447		for (j = 0; j < ic->journal_section_entries; j++) {
2448			struct journal_entry *je;
2449
2450			je = access_journal_entry(ic, i, j);
2451			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2452		}
2453		for (j = 0; j < ic->journal_section_sectors; j++) {
2454			struct journal_sector *js;
2455
2456			js = access_journal(ic, i, j);
2457			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2458		}
2459		i++;
2460		if (unlikely(i >= ic->journal_sections))
2461			ic->commit_seq = next_commit_seq(ic->commit_seq);
2462		wraparound_section(ic, &i);
2463	}
2464	smp_rmb();
2465
2466	write_journal(ic, commit_start, commit_sections);
2467
2468	spin_lock_irq(&ic->endio_wait.lock);
2469	ic->uncommitted_section += commit_sections;
2470	wraparound_section(ic, &ic->uncommitted_section);
2471	ic->n_uncommitted_sections -= commit_sections;
2472	ic->n_committed_sections += commit_sections;
2473	spin_unlock_irq(&ic->endio_wait.lock);
2474
2475	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2476		queue_work(ic->writer_wq, &ic->writer_work);
2477
2478release_flush_bios:
2479	while (flushes) {
2480		struct bio *next = flushes->bi_next;
2481
2482		flushes->bi_next = NULL;
2483		do_endio(ic, flushes);
2484		flushes = next;
2485	}
2486}
2487
2488static void complete_copy_from_journal(unsigned long error, void *context)
2489{
2490	struct journal_io *io = context;
2491	struct journal_completion *comp = io->comp;
2492	struct dm_integrity_c *ic = comp->ic;
2493
2494	remove_range(ic, &io->range);
2495	mempool_free(io, &ic->journal_io_mempool);
2496	if (unlikely(error != 0))
2497		dm_integrity_io_error(ic, "copying from journal", -EIO);
2498	complete_journal_op(comp);
2499}
2500
2501static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2502			       struct journal_entry *je)
2503{
2504	unsigned int s = 0;
2505
2506	do {
2507		js->commit_id = je->last_bytes[s];
2508		js++;
2509	} while (++s < ic->sectors_per_block);
2510}
2511
2512static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2513			     unsigned int write_sections, bool from_replay)
2514{
2515	unsigned int i, j, n;
2516	struct journal_completion comp;
2517	struct blk_plug plug;
2518
2519	blk_start_plug(&plug);
2520
2521	comp.ic = ic;
2522	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2523	init_completion(&comp.comp);
2524
2525	i = write_start;
2526	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2527#ifndef INTERNAL_VERIFY
2528		if (unlikely(from_replay))
2529#endif
2530			rw_section_mac(ic, i, false);
2531		for (j = 0; j < ic->journal_section_entries; j++) {
2532			struct journal_entry *je = access_journal_entry(ic, i, j);
2533			sector_t sec, area, offset;
2534			unsigned int k, l, next_loop;
2535			sector_t metadata_block;
2536			unsigned int metadata_offset;
2537			struct journal_io *io;
2538
2539			if (journal_entry_is_unused(je))
2540				continue;
2541			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2542			sec = journal_entry_get_sector(je);
2543			if (unlikely(from_replay)) {
2544				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2545					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2546					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2547				}
2548				if (unlikely(sec >= ic->provided_data_sectors)) {
2549					journal_entry_set_unused(je);
2550					continue;
2551				}
2552			}
 
 
2553			get_area_and_offset(ic, sec, &area, &offset);
2554			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2555			for (k = j + 1; k < ic->journal_section_entries; k++) {
2556				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2557				sector_t sec2, area2, offset2;
2558
2559				if (journal_entry_is_unused(je2))
2560					break;
2561				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2562				sec2 = journal_entry_get_sector(je2);
2563				if (unlikely(sec2 >= ic->provided_data_sectors))
2564					break;
2565				get_area_and_offset(ic, sec2, &area2, &offset2);
2566				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2567					break;
2568				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2569			}
2570			next_loop = k - 1;
2571
2572			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2573			io->comp = &comp;
2574			io->range.logical_sector = sec;
2575			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2576
2577			spin_lock_irq(&ic->endio_wait.lock);
2578			add_new_range_and_wait(ic, &io->range);
2579
2580			if (likely(!from_replay)) {
2581				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2582
2583				/* don't write if there is newer committed sector */
2584				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2585					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2586
2587					journal_entry_set_unused(je2);
2588					remove_journal_node(ic, &section_node[j]);
2589					j++;
2590					sec += ic->sectors_per_block;
2591					offset += ic->sectors_per_block;
2592				}
2593				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2594					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2595
2596					journal_entry_set_unused(je2);
2597					remove_journal_node(ic, &section_node[k - 1]);
2598					k--;
2599				}
2600				if (j == k) {
2601					remove_range_unlocked(ic, &io->range);
2602					spin_unlock_irq(&ic->endio_wait.lock);
2603					mempool_free(io, &ic->journal_io_mempool);
2604					goto skip_io;
2605				}
2606				for (l = j; l < k; l++)
2607					remove_journal_node(ic, &section_node[l]);
 
2608			}
2609			spin_unlock_irq(&ic->endio_wait.lock);
2610
2611			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2612			for (l = j; l < k; l++) {
2613				int r;
2614				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2615
2616				if (
2617#ifndef INTERNAL_VERIFY
2618				    unlikely(from_replay) &&
2619#endif
2620				    ic->internal_hash) {
2621					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2622
2623					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2624								  (char *)access_journal_data(ic, i, l), test_tag);
2625					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2626						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2627						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2628					}
2629				}
2630
2631				journal_entry_set_unused(je2);
2632				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2633							ic->tag_size, TAG_WRITE);
2634				if (unlikely(r))
2635					dm_integrity_io_error(ic, "reading tags", r);
 
2636			}
2637
2638			atomic_inc(&comp.in_flight);
2639			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2640					  (k - j) << ic->sb->log2_sectors_per_block,
2641					  get_data_sector(ic, area, offset),
2642					  complete_copy_from_journal, io);
2643skip_io:
2644			j = next_loop;
2645		}
2646	}
2647
2648	dm_bufio_write_dirty_buffers_async(ic->bufio);
2649
2650	blk_finish_plug(&plug);
2651
2652	complete_journal_op(&comp);
2653	wait_for_completion_io(&comp.comp);
2654
2655	dm_integrity_flush_buffers(ic, true);
2656}
2657
2658static void integrity_writer(struct work_struct *w)
2659{
2660	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2661	unsigned int write_start, write_sections;
2662	unsigned int prev_free_sectors;
 
 
 
 
 
2663
2664	spin_lock_irq(&ic->endio_wait.lock);
2665	write_start = ic->committed_section;
2666	write_sections = ic->n_committed_sections;
2667	spin_unlock_irq(&ic->endio_wait.lock);
2668
2669	if (!write_sections)
2670		return;
2671
2672	do_journal_write(ic, write_start, write_sections, false);
2673
2674	spin_lock_irq(&ic->endio_wait.lock);
2675
2676	ic->committed_section += write_sections;
2677	wraparound_section(ic, &ic->committed_section);
2678	ic->n_committed_sections -= write_sections;
2679
2680	prev_free_sectors = ic->free_sectors;
2681	ic->free_sectors += write_sections * ic->journal_section_entries;
2682	if (unlikely(!prev_free_sectors))
2683		wake_up_locked(&ic->endio_wait);
2684
2685	spin_unlock_irq(&ic->endio_wait.lock);
2686}
2687
2688static void recalc_write_super(struct dm_integrity_c *ic)
2689{
2690	int r;
2691
2692	dm_integrity_flush_buffers(ic, false);
2693	if (dm_integrity_failed(ic))
2694		return;
2695
2696	r = sync_rw_sb(ic, REQ_OP_WRITE);
2697	if (unlikely(r))
2698		dm_integrity_io_error(ic, "writing superblock", r);
2699}
2700
2701static void integrity_recalc(struct work_struct *w)
2702{
2703	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2704	size_t recalc_tags_size;
2705	u8 *recalc_buffer = NULL;
2706	u8 *recalc_tags = NULL;
2707	struct dm_integrity_range range;
2708	struct dm_io_request io_req;
2709	struct dm_io_region io_loc;
2710	sector_t area, offset;
2711	sector_t metadata_block;
2712	unsigned int metadata_offset;
2713	sector_t logical_sector, n_sectors;
2714	__u8 *t;
2715	unsigned int i;
2716	int r;
2717	unsigned int super_counter = 0;
2718	unsigned recalc_sectors = RECALC_SECTORS;
2719
2720retry:
2721	recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2722	if (!recalc_buffer) {
2723oom:
2724		recalc_sectors >>= 1;
2725		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2726			goto retry;
2727		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2728		goto free_ret;
2729	}
2730	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2731	if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2732		recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2733	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2734	if (!recalc_tags) {
2735		vfree(recalc_buffer);
2736		recalc_buffer = NULL;
2737		goto oom;
2738	}
2739
2740	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2741
2742	spin_lock_irq(&ic->endio_wait.lock);
2743
2744next_chunk:
2745
2746	if (unlikely(dm_post_suspending(ic->ti)))
2747		goto unlock_ret;
2748
2749	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2750	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2751		if (ic->mode == 'B') {
2752			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2753			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2754			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2755		}
2756		goto unlock_ret;
2757	}
2758
2759	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2760	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2761	if (!ic->meta_dev)
2762		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2763
2764	add_new_range_and_wait(ic, &range);
2765	spin_unlock_irq(&ic->endio_wait.lock);
2766	logical_sector = range.logical_sector;
2767	n_sectors = range.n_sectors;
2768
2769	if (ic->mode == 'B') {
2770		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2771			goto advance_and_next;
2772
2773		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2774				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2775			logical_sector += ic->sectors_per_block;
2776			n_sectors -= ic->sectors_per_block;
2777			cond_resched();
2778		}
2779		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2780				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2781			n_sectors -= ic->sectors_per_block;
2782			cond_resched();
2783		}
2784		get_area_and_offset(ic, logical_sector, &area, &offset);
2785	}
2786
2787	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2788
2789	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2790		recalc_write_super(ic);
2791		if (ic->mode == 'B')
2792			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2793
2794		super_counter = 0;
2795	}
2796
2797	if (unlikely(dm_integrity_failed(ic)))
2798		goto err;
2799
2800	io_req.bi_opf = REQ_OP_READ;
 
2801	io_req.mem.type = DM_IO_VMA;
2802	io_req.mem.ptr.addr = recalc_buffer;
2803	io_req.notify.fn = NULL;
2804	io_req.client = ic->io;
2805	io_loc.bdev = ic->dev->bdev;
2806	io_loc.sector = get_data_sector(ic, area, offset);
2807	io_loc.count = n_sectors;
2808
2809	r = dm_io(&io_req, 1, &io_loc, NULL);
2810	if (unlikely(r)) {
2811		dm_integrity_io_error(ic, "reading data", r);
2812		goto err;
2813	}
2814
2815	t = recalc_tags;
2816	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2817		integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2818		t += ic->tag_size;
2819	}
2820
2821	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2822
2823	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2824	if (unlikely(r)) {
2825		dm_integrity_io_error(ic, "writing tags", r);
2826		goto err;
2827	}
2828
2829	if (ic->mode == 'B') {
2830		sector_t start, end;
2831
2832		start = (range.logical_sector >>
2833			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2834			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2835		end = ((range.logical_sector + range.n_sectors) >>
2836		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2837			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2838		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2839	}
2840
2841advance_and_next:
2842	cond_resched();
2843
2844	spin_lock_irq(&ic->endio_wait.lock);
2845	remove_range_unlocked(ic, &range);
2846	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2847	goto next_chunk;
2848
2849err:
2850	remove_range(ic, &range);
2851	goto free_ret;
2852
2853unlock_ret:
2854	spin_unlock_irq(&ic->endio_wait.lock);
2855
2856	recalc_write_super(ic);
2857
2858free_ret:
2859	vfree(recalc_buffer);
2860	kvfree(recalc_tags);
2861}
2862
2863static void bitmap_block_work(struct work_struct *w)
2864{
2865	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2866	struct dm_integrity_c *ic = bbs->ic;
2867	struct bio *bio;
2868	struct bio_list bio_queue;
2869	struct bio_list waiting;
2870
2871	bio_list_init(&waiting);
2872
2873	spin_lock(&bbs->bio_queue_lock);
2874	bio_queue = bbs->bio_queue;
2875	bio_list_init(&bbs->bio_queue);
2876	spin_unlock(&bbs->bio_queue_lock);
2877
2878	while ((bio = bio_list_pop(&bio_queue))) {
2879		struct dm_integrity_io *dio;
2880
2881		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2882
2883		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2884				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2885			remove_range(ic, &dio->range);
2886			INIT_WORK(&dio->work, integrity_bio_wait);
2887			queue_work(ic->offload_wq, &dio->work);
2888		} else {
2889			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2890					dio->range.n_sectors, BITMAP_OP_SET);
2891			bio_list_add(&waiting, bio);
2892		}
2893	}
2894
2895	if (bio_list_empty(&waiting))
2896		return;
2897
2898	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2899			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2900			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2901
2902	while ((bio = bio_list_pop(&waiting))) {
2903		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2904
2905		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2906				dio->range.n_sectors, BITMAP_OP_SET);
2907
2908		remove_range(ic, &dio->range);
2909		INIT_WORK(&dio->work, integrity_bio_wait);
2910		queue_work(ic->offload_wq, &dio->work);
2911	}
2912
2913	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2914}
2915
2916static void bitmap_flush_work(struct work_struct *work)
2917{
2918	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2919	struct dm_integrity_range range;
2920	unsigned long limit;
2921	struct bio *bio;
2922
2923	dm_integrity_flush_buffers(ic, false);
2924
2925	range.logical_sector = 0;
2926	range.n_sectors = ic->provided_data_sectors;
2927
2928	spin_lock_irq(&ic->endio_wait.lock);
2929	add_new_range_and_wait(ic, &range);
2930	spin_unlock_irq(&ic->endio_wait.lock);
2931
2932	dm_integrity_flush_buffers(ic, true);
 
 
2933
2934	limit = ic->provided_data_sectors;
2935	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2936		limit = le64_to_cpu(ic->sb->recalc_sector)
2937			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2938			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2939	}
2940	/*DEBUG_print("zeroing journal\n");*/
2941	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2942	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2943
2944	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2945			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2946
2947	spin_lock_irq(&ic->endio_wait.lock);
2948	remove_range_unlocked(ic, &range);
2949	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2950		bio_endio(bio);
2951		spin_unlock_irq(&ic->endio_wait.lock);
2952		spin_lock_irq(&ic->endio_wait.lock);
2953	}
2954	spin_unlock_irq(&ic->endio_wait.lock);
2955}
2956
2957
2958static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2959			 unsigned int n_sections, unsigned char commit_seq)
2960{
2961	unsigned int i, j, n;
2962
2963	if (!n_sections)
2964		return;
2965
2966	for (n = 0; n < n_sections; n++) {
2967		i = start_section + n;
2968		wraparound_section(ic, &i);
2969		for (j = 0; j < ic->journal_section_sectors; j++) {
2970			struct journal_sector *js = access_journal(ic, i, j);
2971
2972			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2973			memset(&js->sectors, 0, sizeof(js->sectors));
2974			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2975		}
2976		for (j = 0; j < ic->journal_section_entries; j++) {
2977			struct journal_entry *je = access_journal_entry(ic, i, j);
2978
2979			journal_entry_set_unused(je);
2980		}
2981	}
2982
2983	write_journal(ic, start_section, n_sections);
2984}
2985
2986static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2987{
2988	unsigned char k;
2989
2990	for (k = 0; k < N_COMMIT_IDS; k++) {
2991		if (dm_integrity_commit_id(ic, i, j, k) == id)
2992			return k;
2993	}
2994	dm_integrity_io_error(ic, "journal commit id", -EIO);
2995	return -EIO;
2996}
2997
2998static void replay_journal(struct dm_integrity_c *ic)
2999{
3000	unsigned int i, j;
3001	bool used_commit_ids[N_COMMIT_IDS];
3002	unsigned int max_commit_id_sections[N_COMMIT_IDS];
3003	unsigned int write_start, write_sections;
3004	unsigned int continue_section;
3005	bool journal_empty;
3006	unsigned char unused, last_used, want_commit_seq;
3007
3008	if (ic->mode == 'R')
3009		return;
3010
3011	if (ic->journal_uptodate)
3012		return;
3013
3014	last_used = 0;
3015	write_start = 0;
3016
3017	if (!ic->just_formatted) {
3018		DEBUG_print("reading journal\n");
3019		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3020		if (ic->journal_io)
3021			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3022		if (ic->journal_io) {
3023			struct journal_completion crypt_comp;
3024
3025			crypt_comp.ic = ic;
3026			init_completion(&crypt_comp.comp);
3027			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3028			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3029			wait_for_completion(&crypt_comp.comp);
3030		}
3031		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3032	}
3033
3034	if (dm_integrity_failed(ic))
3035		goto clear_journal;
3036
3037	journal_empty = true;
3038	memset(used_commit_ids, 0, sizeof(used_commit_ids));
3039	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3040	for (i = 0; i < ic->journal_sections; i++) {
3041		for (j = 0; j < ic->journal_section_sectors; j++) {
3042			int k;
3043			struct journal_sector *js = access_journal(ic, i, j);
3044
3045			k = find_commit_seq(ic, i, j, js->commit_id);
3046			if (k < 0)
3047				goto clear_journal;
3048			used_commit_ids[k] = true;
3049			max_commit_id_sections[k] = i;
3050		}
3051		if (journal_empty) {
3052			for (j = 0; j < ic->journal_section_entries; j++) {
3053				struct journal_entry *je = access_journal_entry(ic, i, j);
3054
3055				if (!journal_entry_is_unused(je)) {
3056					journal_empty = false;
3057					break;
3058				}
3059			}
3060		}
3061	}
3062
3063	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3064		unused = N_COMMIT_IDS - 1;
3065		while (unused && !used_commit_ids[unused - 1])
3066			unused--;
3067	} else {
3068		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3069			if (!used_commit_ids[unused])
3070				break;
3071		if (unused == N_COMMIT_IDS) {
3072			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3073			goto clear_journal;
3074		}
3075	}
3076	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3077		    unused, used_commit_ids[0], used_commit_ids[1],
3078		    used_commit_ids[2], used_commit_ids[3]);
3079
3080	last_used = prev_commit_seq(unused);
3081	want_commit_seq = prev_commit_seq(last_used);
3082
3083	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3084		journal_empty = true;
3085
3086	write_start = max_commit_id_sections[last_used] + 1;
3087	if (unlikely(write_start >= ic->journal_sections))
3088		want_commit_seq = next_commit_seq(want_commit_seq);
3089	wraparound_section(ic, &write_start);
3090
3091	i = write_start;
3092	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3093		for (j = 0; j < ic->journal_section_sectors; j++) {
3094			struct journal_sector *js = access_journal(ic, i, j);
3095
3096			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3097				/*
3098				 * This could be caused by crash during writing.
3099				 * We won't replay the inconsistent part of the
3100				 * journal.
3101				 */
3102				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3103					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3104				goto brk;
3105			}
3106		}
3107		i++;
3108		if (unlikely(i >= ic->journal_sections))
3109			want_commit_seq = next_commit_seq(want_commit_seq);
3110		wraparound_section(ic, &i);
3111	}
3112brk:
3113
3114	if (!journal_empty) {
3115		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3116			    write_sections, write_start, want_commit_seq);
3117		do_journal_write(ic, write_start, write_sections, true);
3118	}
3119
3120	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3121		continue_section = write_start;
3122		ic->commit_seq = want_commit_seq;
3123		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3124	} else {
3125		unsigned int s;
3126		unsigned char erase_seq;
3127
3128clear_journal:
3129		DEBUG_print("clearing journal\n");
3130
3131		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3132		s = write_start;
3133		init_journal(ic, s, 1, erase_seq);
3134		s++;
3135		wraparound_section(ic, &s);
3136		if (ic->journal_sections >= 2) {
3137			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3138			s += ic->journal_sections - 2;
3139			wraparound_section(ic, &s);
3140			init_journal(ic, s, 1, erase_seq);
3141		}
3142
3143		continue_section = 0;
3144		ic->commit_seq = next_commit_seq(erase_seq);
3145	}
3146
3147	ic->committed_section = continue_section;
3148	ic->n_committed_sections = 0;
3149
3150	ic->uncommitted_section = continue_section;
3151	ic->n_uncommitted_sections = 0;
3152
3153	ic->free_section = continue_section;
3154	ic->free_section_entry = 0;
3155	ic->free_sectors = ic->journal_entries;
3156
3157	ic->journal_tree_root = RB_ROOT;
3158	for (i = 0; i < ic->journal_entries; i++)
3159		init_journal_node(&ic->journal_tree[i]);
3160}
3161
3162static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3163{
3164	DEBUG_print("%s\n", __func__);
3165
3166	if (ic->mode == 'B') {
3167		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3168		ic->synchronous_mode = 1;
3169
3170		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3171		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3172		flush_workqueue(ic->commit_wq);
3173	}
3174}
3175
3176static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3177{
3178	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3179
3180	DEBUG_print("%s\n", __func__);
3181
3182	dm_integrity_enter_synchronous_mode(ic);
3183
3184	return NOTIFY_DONE;
3185}
3186
3187static void dm_integrity_postsuspend(struct dm_target *ti)
3188{
3189	struct dm_integrity_c *ic = ti->private;
3190	int r;
3191
3192	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3193
3194	del_timer_sync(&ic->autocommit_timer);
3195
3196	if (ic->recalc_wq)
3197		drain_workqueue(ic->recalc_wq);
3198
3199	if (ic->mode == 'B')
3200		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3201
3202	queue_work(ic->commit_wq, &ic->commit_work);
3203	drain_workqueue(ic->commit_wq);
3204
3205	if (ic->mode == 'J') {
3206		queue_work(ic->writer_wq, &ic->writer_work);
 
3207		drain_workqueue(ic->writer_wq);
3208		dm_integrity_flush_buffers(ic, true);
3209		if (ic->wrote_to_journal) {
3210			init_journal(ic, ic->free_section,
3211				     ic->journal_sections - ic->free_section, ic->commit_seq);
3212			if (ic->free_section) {
3213				init_journal(ic, 0, ic->free_section,
3214					     next_commit_seq(ic->commit_seq));
3215			}
3216		}
3217	}
3218
3219	if (ic->mode == 'B') {
3220		dm_integrity_flush_buffers(ic, true);
3221#if 1
3222		/* set to 0 to test bitmap replay code */
3223		init_journal(ic, 0, ic->journal_sections, 0);
3224		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3225		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3226		if (unlikely(r))
3227			dm_integrity_io_error(ic, "writing superblock", r);
3228#endif
3229	}
3230
3231	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3232
3233	ic->journal_uptodate = true;
3234}
3235
3236static void dm_integrity_resume(struct dm_target *ti)
3237{
3238	struct dm_integrity_c *ic = ti->private;
3239	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3240	int r;
3241
3242	DEBUG_print("resume\n");
3243
3244	ic->wrote_to_journal = false;
3245
3246	if (ic->provided_data_sectors != old_provided_data_sectors) {
3247		if (ic->provided_data_sectors > old_provided_data_sectors &&
3248		    ic->mode == 'B' &&
3249		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3250			rw_journal_sectors(ic, REQ_OP_READ, 0,
3251					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3252			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3253					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3254			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3255					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3256		}
3257
3258		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3259		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3260		if (unlikely(r))
3261			dm_integrity_io_error(ic, "writing superblock", r);
3262	}
3263
3264	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3265		DEBUG_print("resume dirty_bitmap\n");
3266		rw_journal_sectors(ic, REQ_OP_READ, 0,
3267				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3268		if (ic->mode == 'B') {
3269			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3270			    !ic->reset_recalculate_flag) {
3271				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3272				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3273				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3274						     BITMAP_OP_TEST_ALL_CLEAR)) {
3275					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3276					ic->sb->recalc_sector = cpu_to_le64(0);
3277				}
3278			} else {
3279				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3280					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3281				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3282				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3283				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3284				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3285				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3286						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3287				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3288				ic->sb->recalc_sector = cpu_to_le64(0);
3289			}
3290		} else {
3291			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3292			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3293			    ic->reset_recalculate_flag) {
3294				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3295				ic->sb->recalc_sector = cpu_to_le64(0);
3296			}
3297			init_journal(ic, 0, ic->journal_sections, 0);
3298			replay_journal(ic);
3299			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3300		}
3301		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3302		if (unlikely(r))
3303			dm_integrity_io_error(ic, "writing superblock", r);
3304	} else {
3305		replay_journal(ic);
3306		if (ic->reset_recalculate_flag) {
3307			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3308			ic->sb->recalc_sector = cpu_to_le64(0);
3309		}
3310		if (ic->mode == 'B') {
3311			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3312			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3313			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3314			if (unlikely(r))
3315				dm_integrity_io_error(ic, "writing superblock", r);
3316
3317			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3318			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3319			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3320			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3321			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3322				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3323						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3324				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3325						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3326				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3327						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3328			}
3329			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3330					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3331		}
3332	}
3333
3334	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3335	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3336		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3337
3338		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3339		if (recalc_pos < ic->provided_data_sectors) {
3340			queue_work(ic->recalc_wq, &ic->recalc_work);
3341		} else if (recalc_pos > ic->provided_data_sectors) {
3342			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3343			recalc_write_super(ic);
3344		}
3345	}
3346
3347	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3348	ic->reboot_notifier.next = NULL;
3349	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3350	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3351
3352#if 0
3353	/* set to 1 to stress test synchronous mode */
3354	dm_integrity_enter_synchronous_mode(ic);
3355#endif
3356}
3357
3358static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3359				unsigned int status_flags, char *result, unsigned int maxlen)
3360{
3361	struct dm_integrity_c *ic = ti->private;
3362	unsigned int arg_count;
3363	size_t sz = 0;
3364
3365	switch (type) {
3366	case STATUSTYPE_INFO:
3367		DMEMIT("%llu %llu",
3368			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3369			ic->provided_data_sectors);
3370		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3371			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3372		else
3373			DMEMIT(" -");
3374		break;
3375
3376	case STATUSTYPE_TABLE: {
3377		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3378
3379		watermark_percentage += ic->journal_entries / 2;
3380		do_div(watermark_percentage, ic->journal_entries);
3381		arg_count = 3;
3382		arg_count += !!ic->meta_dev;
3383		arg_count += ic->sectors_per_block != 1;
3384		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3385		arg_count += ic->reset_recalculate_flag;
3386		arg_count += ic->discard;
3387		arg_count += ic->mode == 'J';
3388		arg_count += ic->mode == 'J';
3389		arg_count += ic->mode == 'B';
3390		arg_count += ic->mode == 'B';
3391		arg_count += !!ic->internal_hash_alg.alg_string;
3392		arg_count += !!ic->journal_crypt_alg.alg_string;
3393		arg_count += !!ic->journal_mac_alg.alg_string;
3394		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3395		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3396		arg_count += ic->legacy_recalculate;
3397		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3398		       ic->tag_size, ic->mode, arg_count);
3399		if (ic->meta_dev)
3400			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3401		if (ic->sectors_per_block != 1)
3402			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3403		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3404			DMEMIT(" recalculate");
3405		if (ic->reset_recalculate_flag)
3406			DMEMIT(" reset_recalculate");
3407		if (ic->discard)
3408			DMEMIT(" allow_discards");
3409		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3410		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3411		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3412		if (ic->mode == 'J') {
3413			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3414			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3415		}
3416		if (ic->mode == 'B') {
3417			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3418			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3419		}
3420		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3421			DMEMIT(" fix_padding");
3422		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3423			DMEMIT(" fix_hmac");
3424		if (ic->legacy_recalculate)
3425			DMEMIT(" legacy_recalculate");
3426
3427#define EMIT_ALG(a, n)							\
3428		do {							\
3429			if (ic->a.alg_string) {				\
3430				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3431				if (ic->a.key_string)			\
3432					DMEMIT(":%s", ic->a.key_string);\
3433			}						\
3434		} while (0)
3435		EMIT_ALG(internal_hash_alg, "internal_hash");
3436		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3437		EMIT_ALG(journal_mac_alg, "journal_mac");
3438		break;
3439	}
3440	case STATUSTYPE_IMA:
3441		DMEMIT_TARGET_NAME_VERSION(ti->type);
3442		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3443			ic->dev->name, ic->start, ic->tag_size, ic->mode);
3444
3445		if (ic->meta_dev)
3446			DMEMIT(",meta_device=%s", ic->meta_dev->name);
3447		if (ic->sectors_per_block != 1)
3448			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3449
3450		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3451		       'y' : 'n');
3452		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3453		DMEMIT(",fix_padding=%c",
3454		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3455		DMEMIT(",fix_hmac=%c",
3456		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3457		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3458
3459		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3460		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3461		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3462		DMEMIT(";");
3463		break;
3464	}
3465}
3466
3467static int dm_integrity_iterate_devices(struct dm_target *ti,
3468					iterate_devices_callout_fn fn, void *data)
3469{
3470	struct dm_integrity_c *ic = ti->private;
3471
3472	if (!ic->meta_dev)
3473		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3474	else
3475		return fn(ti, ic->dev, 0, ti->len, data);
3476}
3477
3478static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3479{
3480	struct dm_integrity_c *ic = ti->private;
3481
3482	if (ic->sectors_per_block > 1) {
3483		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3484		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3485		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3486		limits->dma_alignment = limits->logical_block_size - 1;
3487	}
3488}
3489
3490static void calculate_journal_section_size(struct dm_integrity_c *ic)
3491{
3492	unsigned int sector_space = JOURNAL_SECTOR_DATA;
3493
3494	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3495	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3496					 JOURNAL_ENTRY_ROUNDUP);
3497
3498	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3499		sector_space -= JOURNAL_MAC_PER_SECTOR;
3500	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3501	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3502	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3503	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3504}
3505
3506static int calculate_device_limits(struct dm_integrity_c *ic)
3507{
3508	__u64 initial_sectors;
3509
3510	calculate_journal_section_size(ic);
3511	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3512	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3513		return -EINVAL;
3514	ic->initial_sectors = initial_sectors;
3515
3516	if (!ic->meta_dev) {
3517		sector_t last_sector, last_area, last_offset;
3518
3519		/* we have to maintain excessive padding for compatibility with existing volumes */
3520		__u64 metadata_run_padding =
3521			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3522			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3523			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3524
3525		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3526					    metadata_run_padding) >> SECTOR_SHIFT;
3527		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3528			ic->log2_metadata_run = __ffs(ic->metadata_run);
3529		else
3530			ic->log2_metadata_run = -1;
3531
3532		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3533		last_sector = get_data_sector(ic, last_area, last_offset);
3534		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3535			return -EINVAL;
3536	} else {
3537		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3538
3539		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3540				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3541		meta_size <<= ic->log2_buffer_sectors;
3542		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3543		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3544			return -EINVAL;
3545		ic->metadata_run = 1;
3546		ic->log2_metadata_run = 0;
3547	}
3548
3549	return 0;
3550}
3551
3552static void get_provided_data_sectors(struct dm_integrity_c *ic)
3553{
3554	if (!ic->meta_dev) {
3555		int test_bit;
3556
3557		ic->provided_data_sectors = 0;
3558		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3559			__u64 prev_data_sectors = ic->provided_data_sectors;
3560
3561			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3562			if (calculate_device_limits(ic))
3563				ic->provided_data_sectors = prev_data_sectors;
3564		}
3565	} else {
3566		ic->provided_data_sectors = ic->data_device_sectors;
3567		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3568	}
3569}
3570
3571static int initialize_superblock(struct dm_integrity_c *ic,
3572				 unsigned int journal_sectors, unsigned int interleave_sectors)
3573{
3574	unsigned int journal_sections;
3575	int test_bit;
3576
3577	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3578	memcpy(ic->sb->magic, SB_MAGIC, 8);
3579	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3580	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3581	if (ic->journal_mac_alg.alg_string)
3582		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3583
3584	calculate_journal_section_size(ic);
3585	journal_sections = journal_sectors / ic->journal_section_sectors;
3586	if (!journal_sections)
3587		journal_sections = 1;
3588
3589	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3590		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3591		get_random_bytes(ic->sb->salt, SALT_SIZE);
3592	}
3593
3594	if (!ic->meta_dev) {
3595		if (ic->fix_padding)
3596			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3597		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3598		if (!interleave_sectors)
3599			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3600		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3601		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3602		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3603
3604		get_provided_data_sectors(ic);
3605		if (!ic->provided_data_sectors)
3606			return -EINVAL;
3607	} else {
3608		ic->sb->log2_interleave_sectors = 0;
3609
3610		get_provided_data_sectors(ic);
3611		if (!ic->provided_data_sectors)
3612			return -EINVAL;
3613
3614try_smaller_buffer:
3615		ic->sb->journal_sections = cpu_to_le32(0);
3616		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3617			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3618			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3619
3620			if (test_journal_sections > journal_sections)
3621				continue;
3622			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3623			if (calculate_device_limits(ic))
3624				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3625
3626		}
3627		if (!le32_to_cpu(ic->sb->journal_sections)) {
3628			if (ic->log2_buffer_sectors > 3) {
3629				ic->log2_buffer_sectors--;
3630				goto try_smaller_buffer;
3631			}
3632			return -EINVAL;
3633		}
3634	}
3635
3636	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3637
3638	sb_set_version(ic);
3639
3640	return 0;
3641}
3642
3643static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3644{
3645	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3646	struct blk_integrity bi;
3647
3648	memset(&bi, 0, sizeof(bi));
3649	bi.profile = &dm_integrity_profile;
3650	bi.tuple_size = ic->tag_size;
3651	bi.tag_size = bi.tuple_size;
3652	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3653
3654	blk_integrity_register(disk, &bi);
3655	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3656}
3657
3658static void dm_integrity_free_page_list(struct page_list *pl)
3659{
3660	unsigned int i;
3661
3662	if (!pl)
3663		return;
3664	for (i = 0; pl[i].page; i++)
3665		__free_page(pl[i].page);
3666	kvfree(pl);
3667}
3668
3669static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3670{
3671	struct page_list *pl;
3672	unsigned int i;
3673
3674	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3675	if (!pl)
3676		return NULL;
3677
3678	for (i = 0; i < n_pages; i++) {
3679		pl[i].page = alloc_page(GFP_KERNEL);
3680		if (!pl[i].page) {
3681			dm_integrity_free_page_list(pl);
3682			return NULL;
3683		}
3684		if (i)
3685			pl[i - 1].next = &pl[i];
3686	}
3687	pl[i].page = NULL;
3688	pl[i].next = NULL;
3689
3690	return pl;
3691}
3692
3693static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3694{
3695	unsigned int i;
3696
3697	for (i = 0; i < ic->journal_sections; i++)
3698		kvfree(sl[i]);
3699	kvfree(sl);
3700}
3701
3702static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3703								   struct page_list *pl)
3704{
3705	struct scatterlist **sl;
3706	unsigned int i;
3707
3708	sl = kvmalloc_array(ic->journal_sections,
3709			    sizeof(struct scatterlist *),
3710			    GFP_KERNEL | __GFP_ZERO);
3711	if (!sl)
3712		return NULL;
3713
3714	for (i = 0; i < ic->journal_sections; i++) {
3715		struct scatterlist *s;
3716		unsigned int start_index, start_offset;
3717		unsigned int end_index, end_offset;
3718		unsigned int n_pages;
3719		unsigned int idx;
3720
3721		page_list_location(ic, i, 0, &start_index, &start_offset);
3722		page_list_location(ic, i, ic->journal_section_sectors - 1,
3723				   &end_index, &end_offset);
3724
3725		n_pages = (end_index - start_index + 1);
3726
3727		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3728				   GFP_KERNEL);
3729		if (!s) {
3730			dm_integrity_free_journal_scatterlist(ic, sl);
3731			return NULL;
3732		}
3733
3734		sg_init_table(s, n_pages);
3735		for (idx = start_index; idx <= end_index; idx++) {
3736			char *va = lowmem_page_address(pl[idx].page);
3737			unsigned int start = 0, end = PAGE_SIZE;
3738
3739			if (idx == start_index)
3740				start = start_offset;
3741			if (idx == end_index)
3742				end = end_offset + (1 << SECTOR_SHIFT);
3743			sg_set_buf(&s[idx - start_index], va + start, end - start);
3744		}
3745
3746		sl[i] = s;
3747	}
3748
3749	return sl;
3750}
3751
3752static void free_alg(struct alg_spec *a)
3753{
3754	kfree_sensitive(a->alg_string);
3755	kfree_sensitive(a->key);
3756	memset(a, 0, sizeof(*a));
3757}
3758
3759static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3760{
3761	char *k;
3762
3763	free_alg(a);
3764
3765	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3766	if (!a->alg_string)
3767		goto nomem;
3768
3769	k = strchr(a->alg_string, ':');
3770	if (k) {
3771		*k = 0;
3772		a->key_string = k + 1;
3773		if (strlen(a->key_string) & 1)
3774			goto inval;
3775
3776		a->key_size = strlen(a->key_string) / 2;
3777		a->key = kmalloc(a->key_size, GFP_KERNEL);
3778		if (!a->key)
3779			goto nomem;
3780		if (hex2bin(a->key, a->key_string, a->key_size))
3781			goto inval;
3782	}
3783
3784	return 0;
3785inval:
3786	*error = error_inval;
3787	return -EINVAL;
3788nomem:
3789	*error = "Out of memory for an argument";
3790	return -ENOMEM;
3791}
3792
3793static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3794		   char *error_alg, char *error_key)
3795{
3796	int r;
3797
3798	if (a->alg_string) {
3799		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3800		if (IS_ERR(*hash)) {
3801			*error = error_alg;
3802			r = PTR_ERR(*hash);
3803			*hash = NULL;
3804			return r;
3805		}
3806
3807		if (a->key) {
3808			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3809			if (r) {
3810				*error = error_key;
3811				return r;
3812			}
3813		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3814			*error = error_key;
3815			return -ENOKEY;
3816		}
3817	}
3818
3819	return 0;
3820}
3821
3822static int create_journal(struct dm_integrity_c *ic, char **error)
3823{
3824	int r = 0;
3825	unsigned int i;
3826	__u64 journal_pages, journal_desc_size, journal_tree_size;
3827	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3828	struct skcipher_request *req = NULL;
3829
3830	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3831	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3832	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3833	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3834
3835	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3836				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3837	journal_desc_size = journal_pages * sizeof(struct page_list);
3838	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3839		*error = "Journal doesn't fit into memory";
3840		r = -ENOMEM;
3841		goto bad;
3842	}
3843	ic->journal_pages = journal_pages;
3844
3845	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3846	if (!ic->journal) {
3847		*error = "Could not allocate memory for journal";
3848		r = -ENOMEM;
3849		goto bad;
3850	}
3851	if (ic->journal_crypt_alg.alg_string) {
3852		unsigned int ivsize, blocksize;
3853		struct journal_completion comp;
3854
3855		comp.ic = ic;
3856		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3857		if (IS_ERR(ic->journal_crypt)) {
3858			*error = "Invalid journal cipher";
3859			r = PTR_ERR(ic->journal_crypt);
3860			ic->journal_crypt = NULL;
3861			goto bad;
3862		}
3863		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3864		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3865
3866		if (ic->journal_crypt_alg.key) {
3867			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3868						   ic->journal_crypt_alg.key_size);
3869			if (r) {
3870				*error = "Error setting encryption key";
3871				goto bad;
3872			}
3873		}
3874		DEBUG_print("cipher %s, block size %u iv size %u\n",
3875			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3876
3877		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3878		if (!ic->journal_io) {
3879			*error = "Could not allocate memory for journal io";
3880			r = -ENOMEM;
3881			goto bad;
3882		}
3883
3884		if (blocksize == 1) {
3885			struct scatterlist *sg;
3886
3887			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3888			if (!req) {
3889				*error = "Could not allocate crypt request";
3890				r = -ENOMEM;
3891				goto bad;
3892			}
3893
3894			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3895			if (!crypt_iv) {
3896				*error = "Could not allocate iv";
3897				r = -ENOMEM;
3898				goto bad;
3899			}
3900
3901			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3902			if (!ic->journal_xor) {
3903				*error = "Could not allocate memory for journal xor";
3904				r = -ENOMEM;
3905				goto bad;
3906			}
3907
3908			sg = kvmalloc_array(ic->journal_pages + 1,
3909					    sizeof(struct scatterlist),
3910					    GFP_KERNEL);
3911			if (!sg) {
3912				*error = "Unable to allocate sg list";
3913				r = -ENOMEM;
3914				goto bad;
3915			}
3916			sg_init_table(sg, ic->journal_pages + 1);
3917			for (i = 0; i < ic->journal_pages; i++) {
3918				char *va = lowmem_page_address(ic->journal_xor[i].page);
3919
3920				clear_page(va);
3921				sg_set_buf(&sg[i], va, PAGE_SIZE);
3922			}
3923			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3924
3925			skcipher_request_set_crypt(req, sg, sg,
3926						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3927			init_completion(&comp.comp);
3928			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3929			if (do_crypt(true, req, &comp))
3930				wait_for_completion(&comp.comp);
3931			kvfree(sg);
3932			r = dm_integrity_failed(ic);
3933			if (r) {
3934				*error = "Unable to encrypt journal";
3935				goto bad;
3936			}
3937			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3938
3939			crypto_free_skcipher(ic->journal_crypt);
3940			ic->journal_crypt = NULL;
3941		} else {
3942			unsigned int crypt_len = roundup(ivsize, blocksize);
3943
3944			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3945			if (!req) {
3946				*error = "Could not allocate crypt request";
3947				r = -ENOMEM;
3948				goto bad;
3949			}
3950
3951			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3952			if (!crypt_iv) {
3953				*error = "Could not allocate iv";
3954				r = -ENOMEM;
3955				goto bad;
3956			}
3957
3958			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3959			if (!crypt_data) {
3960				*error = "Unable to allocate crypt data";
3961				r = -ENOMEM;
3962				goto bad;
3963			}
3964
3965			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3966			if (!ic->journal_scatterlist) {
3967				*error = "Unable to allocate sg list";
3968				r = -ENOMEM;
3969				goto bad;
3970			}
3971			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3972			if (!ic->journal_io_scatterlist) {
3973				*error = "Unable to allocate sg list";
3974				r = -ENOMEM;
3975				goto bad;
3976			}
3977			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3978							 sizeof(struct skcipher_request *),
3979							 GFP_KERNEL | __GFP_ZERO);
3980			if (!ic->sk_requests) {
3981				*error = "Unable to allocate sk requests";
3982				r = -ENOMEM;
3983				goto bad;
3984			}
3985			for (i = 0; i < ic->journal_sections; i++) {
3986				struct scatterlist sg;
3987				struct skcipher_request *section_req;
3988				__le32 section_le = cpu_to_le32(i);
3989
3990				memset(crypt_iv, 0x00, ivsize);
3991				memset(crypt_data, 0x00, crypt_len);
3992				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
3993
3994				sg_init_one(&sg, crypt_data, crypt_len);
3995				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3996				init_completion(&comp.comp);
3997				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3998				if (do_crypt(true, req, &comp))
3999					wait_for_completion(&comp.comp);
4000
4001				r = dm_integrity_failed(ic);
4002				if (r) {
4003					*error = "Unable to generate iv";
4004					goto bad;
4005				}
4006
4007				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4008				if (!section_req) {
4009					*error = "Unable to allocate crypt request";
4010					r = -ENOMEM;
4011					goto bad;
4012				}
4013				section_req->iv = kmalloc_array(ivsize, 2,
4014								GFP_KERNEL);
4015				if (!section_req->iv) {
4016					skcipher_request_free(section_req);
4017					*error = "Unable to allocate iv";
4018					r = -ENOMEM;
4019					goto bad;
4020				}
4021				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4022				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4023				ic->sk_requests[i] = section_req;
4024				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4025			}
4026		}
4027	}
4028
4029	for (i = 0; i < N_COMMIT_IDS; i++) {
4030		unsigned int j;
4031
4032retest_commit_id:
4033		for (j = 0; j < i; j++) {
4034			if (ic->commit_ids[j] == ic->commit_ids[i]) {
4035				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4036				goto retest_commit_id;
4037			}
4038		}
4039		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4040	}
4041
4042	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4043	if (journal_tree_size > ULONG_MAX) {
4044		*error = "Journal doesn't fit into memory";
4045		r = -ENOMEM;
4046		goto bad;
4047	}
4048	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4049	if (!ic->journal_tree) {
4050		*error = "Could not allocate memory for journal tree";
4051		r = -ENOMEM;
4052	}
4053bad:
4054	kfree(crypt_data);
4055	kfree(crypt_iv);
4056	skcipher_request_free(req);
4057
4058	return r;
4059}
4060
4061/*
4062 * Construct a integrity mapping
4063 *
4064 * Arguments:
4065 *	device
4066 *	offset from the start of the device
4067 *	tag size
4068 *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4069 *	number of optional arguments
4070 *	optional arguments:
4071 *		journal_sectors
4072 *		interleave_sectors
4073 *		buffer_sectors
4074 *		journal_watermark
4075 *		commit_time
4076 *		meta_device
4077 *		block_size
4078 *		sectors_per_bit
4079 *		bitmap_flush_interval
4080 *		internal_hash
4081 *		journal_crypt
4082 *		journal_mac
4083 *		recalculate
4084 */
4085static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4086{
4087	struct dm_integrity_c *ic;
4088	char dummy;
4089	int r;
4090	unsigned int extra_args;
4091	struct dm_arg_set as;
4092	static const struct dm_arg _args[] = {
4093		{0, 18, "Invalid number of feature args"},
4094	};
4095	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4096	bool should_write_sb;
4097	__u64 threshold;
4098	unsigned long long start;
4099	__s8 log2_sectors_per_bitmap_bit = -1;
4100	__s8 log2_blocks_per_bitmap_bit;
4101	__u64 bits_in_journal;
4102	__u64 n_bitmap_bits;
4103
4104#define DIRECT_ARGUMENTS	4
4105
4106	if (argc <= DIRECT_ARGUMENTS) {
4107		ti->error = "Invalid argument count";
4108		return -EINVAL;
4109	}
4110
4111	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4112	if (!ic) {
4113		ti->error = "Cannot allocate integrity context";
4114		return -ENOMEM;
4115	}
4116	ti->private = ic;
4117	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4118	ic->ti = ti;
4119
4120	ic->in_progress = RB_ROOT;
4121	INIT_LIST_HEAD(&ic->wait_list);
4122	init_waitqueue_head(&ic->endio_wait);
4123	bio_list_init(&ic->flush_bio_list);
4124	init_waitqueue_head(&ic->copy_to_journal_wait);
4125	init_completion(&ic->crypto_backoff);
4126	atomic64_set(&ic->number_of_mismatches, 0);
4127	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4128
4129	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4130	if (r) {
4131		ti->error = "Device lookup failed";
4132		goto bad;
4133	}
4134
4135	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4136		ti->error = "Invalid starting offset";
4137		r = -EINVAL;
4138		goto bad;
4139	}
4140	ic->start = start;
4141
4142	if (strcmp(argv[2], "-")) {
4143		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4144			ti->error = "Invalid tag size";
4145			r = -EINVAL;
4146			goto bad;
4147		}
4148	}
4149
4150	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4151	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4152		ic->mode = argv[3][0];
4153	} else {
4154		ti->error = "Invalid mode (expecting J, B, D, R)";
4155		r = -EINVAL;
4156		goto bad;
4157	}
4158
4159	journal_sectors = 0;
4160	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4161	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4162	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4163	sync_msec = DEFAULT_SYNC_MSEC;
4164	ic->sectors_per_block = 1;
4165
4166	as.argc = argc - DIRECT_ARGUMENTS;
4167	as.argv = argv + DIRECT_ARGUMENTS;
4168	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4169	if (r)
4170		goto bad;
4171
4172	while (extra_args--) {
4173		const char *opt_string;
4174		unsigned int val;
4175		unsigned long long llval;
4176
4177		opt_string = dm_shift_arg(&as);
4178		if (!opt_string) {
4179			r = -EINVAL;
4180			ti->error = "Not enough feature arguments";
4181			goto bad;
4182		}
4183		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4184			journal_sectors = val ? val : 1;
4185		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4186			interleave_sectors = val;
4187		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4188			buffer_sectors = val;
4189		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4190			journal_watermark = val;
4191		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4192			sync_msec = val;
4193		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4194			if (ic->meta_dev) {
4195				dm_put_device(ti, ic->meta_dev);
4196				ic->meta_dev = NULL;
4197			}
4198			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4199					  dm_table_get_mode(ti->table), &ic->meta_dev);
4200			if (r) {
4201				ti->error = "Device lookup failed";
4202				goto bad;
4203			}
4204		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4205			if (val < 1 << SECTOR_SHIFT ||
4206			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4207			    (val & (val - 1))) {
4208				r = -EINVAL;
4209				ti->error = "Invalid block_size argument";
4210				goto bad;
4211			}
4212			ic->sectors_per_block = val >> SECTOR_SHIFT;
4213		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4214			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4215		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4216			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4217				r = -EINVAL;
4218				ti->error = "Invalid bitmap_flush_interval argument";
4219				goto bad;
4220			}
4221			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4222		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4223			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4224					    "Invalid internal_hash argument");
4225			if (r)
4226				goto bad;
4227		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4228			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4229					    "Invalid journal_crypt argument");
4230			if (r)
4231				goto bad;
4232		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4233			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4234					    "Invalid journal_mac argument");
4235			if (r)
4236				goto bad;
4237		} else if (!strcmp(opt_string, "recalculate")) {
4238			ic->recalculate_flag = true;
4239		} else if (!strcmp(opt_string, "reset_recalculate")) {
4240			ic->recalculate_flag = true;
4241			ic->reset_recalculate_flag = true;
4242		} else if (!strcmp(opt_string, "allow_discards")) {
4243			ic->discard = true;
4244		} else if (!strcmp(opt_string, "fix_padding")) {
4245			ic->fix_padding = true;
4246		} else if (!strcmp(opt_string, "fix_hmac")) {
4247			ic->fix_hmac = true;
4248		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4249			ic->legacy_recalculate = true;
4250		} else {
4251			r = -EINVAL;
4252			ti->error = "Invalid argument";
4253			goto bad;
4254		}
4255	}
4256
4257	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4258	if (!ic->meta_dev)
4259		ic->meta_device_sectors = ic->data_device_sectors;
4260	else
4261		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4262
4263	if (!journal_sectors) {
4264		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4265				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4266	}
4267
4268	if (!buffer_sectors)
4269		buffer_sectors = 1;
4270	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4271
4272	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4273		    "Invalid internal hash", "Error setting internal hash key");
4274	if (r)
4275		goto bad;
4276
4277	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4278		    "Invalid journal mac", "Error setting journal mac key");
4279	if (r)
4280		goto bad;
4281
4282	if (!ic->tag_size) {
4283		if (!ic->internal_hash) {
4284			ti->error = "Unknown tag size";
4285			r = -EINVAL;
4286			goto bad;
4287		}
4288		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4289	}
4290	if (ic->tag_size > MAX_TAG_SIZE) {
4291		ti->error = "Too big tag size";
4292		r = -EINVAL;
4293		goto bad;
4294	}
4295	if (!(ic->tag_size & (ic->tag_size - 1)))
4296		ic->log2_tag_size = __ffs(ic->tag_size);
4297	else
4298		ic->log2_tag_size = -1;
4299
4300	if (ic->mode == 'B' && !ic->internal_hash) {
4301		r = -EINVAL;
4302		ti->error = "Bitmap mode can be only used with internal hash";
4303		goto bad;
4304	}
4305
4306	if (ic->discard && !ic->internal_hash) {
4307		r = -EINVAL;
4308		ti->error = "Discard can be only used with internal hash";
4309		goto bad;
4310	}
4311
4312	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4313	ic->autocommit_msec = sync_msec;
4314	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4315
4316	ic->io = dm_io_client_create();
4317	if (IS_ERR(ic->io)) {
4318		r = PTR_ERR(ic->io);
4319		ic->io = NULL;
4320		ti->error = "Cannot allocate dm io";
4321		goto bad;
4322	}
4323
4324	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4325	if (r) {
4326		ti->error = "Cannot allocate mempool";
4327		goto bad;
4328	}
4329
4330	r = mempool_init_page_pool(&ic->recheck_pool, 1, 0);
4331	if (r) {
4332		ti->error = "Cannot allocate mempool";
4333		goto bad;
4334	}
4335
4336	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4337					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4338	if (!ic->metadata_wq) {
4339		ti->error = "Cannot allocate workqueue";
4340		r = -ENOMEM;
4341		goto bad;
4342	}
4343
4344	/*
4345	 * If this workqueue weren't ordered, it would cause bio reordering
4346	 * and reduced performance.
4347	 */
4348	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4349	if (!ic->wait_wq) {
4350		ti->error = "Cannot allocate workqueue";
4351		r = -ENOMEM;
4352		goto bad;
4353	}
4354
4355	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4356					  METADATA_WORKQUEUE_MAX_ACTIVE);
4357	if (!ic->offload_wq) {
4358		ti->error = "Cannot allocate workqueue";
4359		r = -ENOMEM;
4360		goto bad;
4361	}
4362
4363	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4364	if (!ic->commit_wq) {
4365		ti->error = "Cannot allocate workqueue";
4366		r = -ENOMEM;
4367		goto bad;
4368	}
4369	INIT_WORK(&ic->commit_work, integrity_commit);
4370
4371	if (ic->mode == 'J' || ic->mode == 'B') {
4372		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4373		if (!ic->writer_wq) {
4374			ti->error = "Cannot allocate workqueue";
4375			r = -ENOMEM;
4376			goto bad;
4377		}
4378		INIT_WORK(&ic->writer_work, integrity_writer);
4379	}
4380
4381	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4382	if (!ic->sb) {
4383		r = -ENOMEM;
4384		ti->error = "Cannot allocate superblock area";
4385		goto bad;
4386	}
4387
4388	r = sync_rw_sb(ic, REQ_OP_READ);
4389	if (r) {
4390		ti->error = "Error reading superblock";
4391		goto bad;
4392	}
4393	should_write_sb = false;
4394	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4395		if (ic->mode != 'R') {
4396			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4397				r = -EINVAL;
4398				ti->error = "The device is not initialized";
4399				goto bad;
4400			}
4401		}
4402
4403		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4404		if (r) {
4405			ti->error = "Could not initialize superblock";
4406			goto bad;
4407		}
4408		if (ic->mode != 'R')
4409			should_write_sb = true;
4410	}
4411
4412	if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4413		r = -EINVAL;
4414		ti->error = "Unknown version";
4415		goto bad;
4416	}
4417	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4418		r = -EINVAL;
4419		ti->error = "Tag size doesn't match the information in superblock";
4420		goto bad;
4421	}
4422	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4423		r = -EINVAL;
4424		ti->error = "Block size doesn't match the information in superblock";
4425		goto bad;
4426	}
4427	if (!le32_to_cpu(ic->sb->journal_sections)) {
4428		r = -EINVAL;
4429		ti->error = "Corrupted superblock, journal_sections is 0";
4430		goto bad;
4431	}
4432	/* make sure that ti->max_io_len doesn't overflow */
4433	if (!ic->meta_dev) {
4434		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4435		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4436			r = -EINVAL;
4437			ti->error = "Invalid interleave_sectors in the superblock";
4438			goto bad;
4439		}
4440	} else {
4441		if (ic->sb->log2_interleave_sectors) {
4442			r = -EINVAL;
4443			ti->error = "Invalid interleave_sectors in the superblock";
4444			goto bad;
4445		}
4446	}
4447	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4448		r = -EINVAL;
4449		ti->error = "Journal mac mismatch";
4450		goto bad;
4451	}
4452
4453	get_provided_data_sectors(ic);
4454	if (!ic->provided_data_sectors) {
4455		r = -EINVAL;
4456		ti->error = "The device is too small";
4457		goto bad;
4458	}
4459
4460try_smaller_buffer:
4461	r = calculate_device_limits(ic);
4462	if (r) {
4463		if (ic->meta_dev) {
4464			if (ic->log2_buffer_sectors > 3) {
4465				ic->log2_buffer_sectors--;
4466				goto try_smaller_buffer;
4467			}
4468		}
4469		ti->error = "The device is too small";
4470		goto bad;
4471	}
4472
4473	if (log2_sectors_per_bitmap_bit < 0)
4474		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4475	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4476		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4477
4478	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4479	if (bits_in_journal > UINT_MAX)
4480		bits_in_journal = UINT_MAX;
4481	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4482		log2_sectors_per_bitmap_bit++;
4483
4484	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4485	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4486	if (should_write_sb)
4487		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4488
4489	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4490				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4491	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4492
4493	if (!ic->meta_dev)
4494		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4495
4496	if (ti->len > ic->provided_data_sectors) {
4497		r = -EINVAL;
4498		ti->error = "Not enough provided sectors for requested mapping size";
4499		goto bad;
4500	}
4501
4502
4503	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4504	threshold += 50;
4505	do_div(threshold, 100);
4506	ic->free_sectors_threshold = threshold;
4507
4508	DEBUG_print("initialized:\n");
4509	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4510	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4511	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4512	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4513	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4514	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4515	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4516	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4517	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4518	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4519	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4520	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4521	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4522	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4523	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4524
4525	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4526		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4527		ic->sb->recalc_sector = cpu_to_le64(0);
4528	}
4529
4530	if (ic->internal_hash) {
4531		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4532		if (!ic->recalc_wq) {
4533			ti->error = "Cannot allocate workqueue";
4534			r = -ENOMEM;
4535			goto bad;
4536		}
4537		INIT_WORK(&ic->recalc_work, integrity_recalc);
4538	} else {
4539		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4540			ti->error = "Recalculate can only be specified with internal_hash";
4541			r = -EINVAL;
 
 
 
 
 
 
 
4542			goto bad;
4543		}
4544	}
4545
4546	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4547	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4548	    dm_integrity_disable_recalculate(ic)) {
4549		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4550		r = -EOPNOTSUPP;
4551		goto bad;
4552	}
4553
4554	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4555			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4556	if (IS_ERR(ic->bufio)) {
4557		r = PTR_ERR(ic->bufio);
4558		ti->error = "Cannot initialize dm-bufio";
4559		ic->bufio = NULL;
4560		goto bad;
4561	}
4562	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4563
4564	if (ic->mode != 'R') {
4565		r = create_journal(ic, &ti->error);
4566		if (r)
4567			goto bad;
4568
4569	}
4570
4571	if (ic->mode == 'B') {
4572		unsigned int i;
4573		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4574
4575		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4576		if (!ic->recalc_bitmap) {
4577			r = -ENOMEM;
4578			goto bad;
4579		}
4580		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4581		if (!ic->may_write_bitmap) {
4582			r = -ENOMEM;
4583			goto bad;
4584		}
4585		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4586		if (!ic->bbs) {
4587			r = -ENOMEM;
4588			goto bad;
4589		}
4590		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4591		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4592			struct bitmap_block_status *bbs = &ic->bbs[i];
4593			unsigned int sector, pl_index, pl_offset;
4594
4595			INIT_WORK(&bbs->work, bitmap_block_work);
4596			bbs->ic = ic;
4597			bbs->idx = i;
4598			bio_list_init(&bbs->bio_queue);
4599			spin_lock_init(&bbs->bio_queue_lock);
4600
4601			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4602			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4603			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4604
4605			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4606		}
4607	}
4608
4609	if (should_write_sb) {
 
 
4610		init_journal(ic, 0, ic->journal_sections, 0);
4611		r = dm_integrity_failed(ic);
4612		if (unlikely(r)) {
4613			ti->error = "Error initializing journal";
4614			goto bad;
4615		}
4616		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4617		if (r) {
4618			ti->error = "Error initializing superblock";
4619			goto bad;
4620		}
4621		ic->just_formatted = true;
4622	}
4623
4624	if (!ic->meta_dev) {
4625		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4626		if (r)
4627			goto bad;
4628	}
4629	if (ic->mode == 'B') {
4630		unsigned int max_io_len;
4631
4632		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4633		if (!max_io_len)
4634			max_io_len = 1U << 31;
4635		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4636		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4637			r = dm_set_target_max_io_len(ti, max_io_len);
4638			if (r)
4639				goto bad;
4640		}
4641	}
4642
4643	if (!ic->internal_hash)
4644		dm_integrity_set(ti, ic);
4645
4646	ti->num_flush_bios = 1;
4647	ti->flush_supported = true;
4648	if (ic->discard)
4649		ti->num_discard_bios = 1;
4650
4651	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4652	return 0;
4653
4654bad:
4655	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4656	dm_integrity_dtr(ti);
4657	return r;
4658}
4659
4660static void dm_integrity_dtr(struct dm_target *ti)
4661{
4662	struct dm_integrity_c *ic = ti->private;
4663
4664	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4665	BUG_ON(!list_empty(&ic->wait_list));
4666
4667	if (ic->mode == 'B')
4668		cancel_delayed_work_sync(&ic->bitmap_flush_work);
4669	if (ic->metadata_wq)
4670		destroy_workqueue(ic->metadata_wq);
4671	if (ic->wait_wq)
4672		destroy_workqueue(ic->wait_wq);
4673	if (ic->offload_wq)
4674		destroy_workqueue(ic->offload_wq);
4675	if (ic->commit_wq)
4676		destroy_workqueue(ic->commit_wq);
4677	if (ic->writer_wq)
4678		destroy_workqueue(ic->writer_wq);
4679	if (ic->recalc_wq)
4680		destroy_workqueue(ic->recalc_wq);
 
 
4681	kvfree(ic->bbs);
4682	if (ic->bufio)
4683		dm_bufio_client_destroy(ic->bufio);
4684	mempool_exit(&ic->recheck_pool);
4685	mempool_exit(&ic->journal_io_mempool);
4686	if (ic->io)
4687		dm_io_client_destroy(ic->io);
4688	if (ic->dev)
4689		dm_put_device(ti, ic->dev);
4690	if (ic->meta_dev)
4691		dm_put_device(ti, ic->meta_dev);
4692	dm_integrity_free_page_list(ic->journal);
4693	dm_integrity_free_page_list(ic->journal_io);
4694	dm_integrity_free_page_list(ic->journal_xor);
4695	dm_integrity_free_page_list(ic->recalc_bitmap);
4696	dm_integrity_free_page_list(ic->may_write_bitmap);
4697	if (ic->journal_scatterlist)
4698		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4699	if (ic->journal_io_scatterlist)
4700		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4701	if (ic->sk_requests) {
4702		unsigned int i;
4703
4704		for (i = 0; i < ic->journal_sections; i++) {
4705			struct skcipher_request *req;
4706
4707			req = ic->sk_requests[i];
4708			if (req) {
4709				kfree_sensitive(req->iv);
4710				skcipher_request_free(req);
4711			}
4712		}
4713		kvfree(ic->sk_requests);
4714	}
4715	kvfree(ic->journal_tree);
4716	if (ic->sb)
4717		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4718
4719	if (ic->internal_hash)
4720		crypto_free_shash(ic->internal_hash);
4721	free_alg(&ic->internal_hash_alg);
4722
4723	if (ic->journal_crypt)
4724		crypto_free_skcipher(ic->journal_crypt);
4725	free_alg(&ic->journal_crypt_alg);
4726
4727	if (ic->journal_mac)
4728		crypto_free_shash(ic->journal_mac);
4729	free_alg(&ic->journal_mac_alg);
4730
4731	kfree(ic);
4732	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4733}
4734
4735static struct target_type integrity_target = {
4736	.name			= "integrity",
4737	.version		= {1, 11, 0},
4738	.module			= THIS_MODULE,
4739	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4740	.ctr			= dm_integrity_ctr,
4741	.dtr			= dm_integrity_dtr,
4742	.map			= dm_integrity_map,
4743	.postsuspend		= dm_integrity_postsuspend,
4744	.resume			= dm_integrity_resume,
4745	.status			= dm_integrity_status,
4746	.iterate_devices	= dm_integrity_iterate_devices,
4747	.io_hints		= dm_integrity_io_hints,
4748};
4749
4750static int __init dm_integrity_init(void)
4751{
4752	int r;
4753
4754	journal_io_cache = kmem_cache_create("integrity_journal_io",
4755					     sizeof(struct journal_io), 0, 0, NULL);
4756	if (!journal_io_cache) {
4757		DMERR("can't allocate journal io cache");
4758		return -ENOMEM;
4759	}
4760
4761	r = dm_register_target(&integrity_target);
4762	if (r < 0) {
4763		kmem_cache_destroy(journal_io_cache);
4764		return r;
4765	}
4766
4767	return 0;
 
 
 
4768}
4769
4770static void __exit dm_integrity_exit(void)
4771{
4772	dm_unregister_target(&integrity_target);
4773	kmem_cache_destroy(journal_io_cache);
4774}
4775
4776module_init(dm_integrity_init);
4777module_exit(dm_integrity_exit);
4778
4779MODULE_AUTHOR("Milan Broz");
4780MODULE_AUTHOR("Mikulas Patocka");
4781MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4782MODULE_LICENSE("GPL");
v5.9
 
   1/*
   2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
   3 * Copyright (C) 2016-2017 Milan Broz
   4 * Copyright (C) 2016-2017 Mikulas Patocka
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include "dm-bio-record.h"
  10
  11#include <linux/compiler.h>
  12#include <linux/module.h>
  13#include <linux/device-mapper.h>
  14#include <linux/dm-io.h>
  15#include <linux/vmalloc.h>
  16#include <linux/sort.h>
  17#include <linux/rbtree.h>
  18#include <linux/delay.h>
  19#include <linux/random.h>
  20#include <linux/reboot.h>
  21#include <crypto/hash.h>
  22#include <crypto/skcipher.h>
  23#include <linux/async_tx.h>
  24#include <linux/dm-bufio.h>
  25
 
 
  26#define DM_MSG_PREFIX "integrity"
  27
  28#define DEFAULT_INTERLEAVE_SECTORS	32768
  29#define DEFAULT_JOURNAL_SIZE_FACTOR	7
  30#define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
  31#define DEFAULT_BUFFER_SECTORS		128
  32#define DEFAULT_JOURNAL_WATERMARK	50
  33#define DEFAULT_SYNC_MSEC		10000
  34#define DEFAULT_MAX_JOURNAL_SECTORS	131072
  35#define MIN_LOG2_INTERLEAVE_SECTORS	3
  36#define MAX_LOG2_INTERLEAVE_SECTORS	31
  37#define METADATA_WORKQUEUE_MAX_ACTIVE	16
  38#define RECALC_SECTORS			8192
  39#define RECALC_WRITE_SUPER		16
  40#define BITMAP_BLOCK_SIZE		4096	/* don't change it */
  41#define BITMAP_FLUSH_INTERVAL		(10 * HZ)
  42#define DISCARD_FILLER			0xf6
 
  43
  44/*
  45 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
  46 * so it should not be enabled in the official kernel
  47 */
  48//#define DEBUG_PRINT
  49//#define INTERNAL_VERIFY
  50
  51/*
  52 * On disk structures
  53 */
  54
  55#define SB_MAGIC			"integrt"
  56#define SB_VERSION_1			1
  57#define SB_VERSION_2			2
  58#define SB_VERSION_3			3
  59#define SB_VERSION_4			4
 
  60#define SB_SECTORS			8
  61#define MAX_SECTORS_PER_BLOCK		8
  62
  63struct superblock {
  64	__u8 magic[8];
  65	__u8 version;
  66	__u8 log2_interleave_sectors;
  67	__u16 integrity_tag_size;
  68	__u32 journal_sections;
  69	__u64 provided_data_sectors;	/* userspace uses this value */
  70	__u32 flags;
  71	__u8 log2_sectors_per_block;
  72	__u8 log2_blocks_per_bitmap_bit;
  73	__u8 pad[2];
  74	__u64 recalc_sector;
 
 
  75};
  76
  77#define SB_FLAG_HAVE_JOURNAL_MAC	0x1
  78#define SB_FLAG_RECALCULATING		0x2
  79#define SB_FLAG_DIRTY_BITMAP		0x4
  80#define SB_FLAG_FIXED_PADDING		0x8
 
  81
  82#define	JOURNAL_ENTRY_ROUNDUP		8
  83
  84typedef __u64 commit_id_t;
  85#define JOURNAL_MAC_PER_SECTOR		8
  86
  87struct journal_entry {
  88	union {
  89		struct {
  90			__u32 sector_lo;
  91			__u32 sector_hi;
  92		} s;
  93		__u64 sector;
  94	} u;
  95	commit_id_t last_bytes[];
  96	/* __u8 tag[0]; */
  97};
  98
  99#define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
 100
 101#if BITS_PER_LONG == 64
 102#define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
 103#else
 104#define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
 105#endif
 106#define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
 107#define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
 108#define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
 109#define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
 110#define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
 111
 112#define JOURNAL_BLOCK_SECTORS		8
 113#define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
 114#define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
 115
 116struct journal_sector {
 117	__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
 118	__u8 mac[JOURNAL_MAC_PER_SECTOR];
 
 
 119	commit_id_t commit_id;
 120};
 121
 122#define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
 123
 124#define METADATA_PADDING_SECTORS	8
 125
 126#define N_COMMIT_IDS			4
 127
 128static unsigned char prev_commit_seq(unsigned char seq)
 129{
 130	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
 131}
 132
 133static unsigned char next_commit_seq(unsigned char seq)
 134{
 135	return (seq + 1) % N_COMMIT_IDS;
 136}
 137
 138/*
 139 * In-memory structures
 140 */
 141
 142struct journal_node {
 143	struct rb_node node;
 144	sector_t sector;
 145};
 146
 147struct alg_spec {
 148	char *alg_string;
 149	char *key_string;
 150	__u8 *key;
 151	unsigned key_size;
 152};
 153
 154struct dm_integrity_c {
 155	struct dm_dev *dev;
 156	struct dm_dev *meta_dev;
 157	unsigned tag_size;
 158	__s8 log2_tag_size;
 159	sector_t start;
 160	mempool_t journal_io_mempool;
 161	struct dm_io_client *io;
 162	struct dm_bufio_client *bufio;
 163	struct workqueue_struct *metadata_wq;
 164	struct superblock *sb;
 165	unsigned journal_pages;
 166	unsigned n_bitmap_blocks;
 167
 168	struct page_list *journal;
 169	struct page_list *journal_io;
 170	struct page_list *journal_xor;
 171	struct page_list *recalc_bitmap;
 172	struct page_list *may_write_bitmap;
 173	struct bitmap_block_status *bbs;
 174	unsigned bitmap_flush_interval;
 175	int synchronous_mode;
 176	struct bio_list synchronous_bios;
 177	struct delayed_work bitmap_flush_work;
 178
 179	struct crypto_skcipher *journal_crypt;
 180	struct scatterlist **journal_scatterlist;
 181	struct scatterlist **journal_io_scatterlist;
 182	struct skcipher_request **sk_requests;
 183
 184	struct crypto_shash *journal_mac;
 185
 186	struct journal_node *journal_tree;
 187	struct rb_root journal_tree_root;
 188
 189	sector_t provided_data_sectors;
 190
 191	unsigned short journal_entry_size;
 192	unsigned char journal_entries_per_sector;
 193	unsigned char journal_section_entries;
 194	unsigned short journal_section_sectors;
 195	unsigned journal_sections;
 196	unsigned journal_entries;
 197	sector_t data_device_sectors;
 198	sector_t meta_device_sectors;
 199	unsigned initial_sectors;
 200	unsigned metadata_run;
 201	__s8 log2_metadata_run;
 202	__u8 log2_buffer_sectors;
 203	__u8 sectors_per_block;
 204	__u8 log2_blocks_per_bitmap_bit;
 205
 206	unsigned char mode;
 207
 208	int failed;
 209
 210	struct crypto_shash *internal_hash;
 211
 212	struct dm_target *ti;
 213
 214	/* these variables are locked with endio_wait.lock */
 215	struct rb_root in_progress;
 216	struct list_head wait_list;
 217	wait_queue_head_t endio_wait;
 218	struct workqueue_struct *wait_wq;
 219	struct workqueue_struct *offload_wq;
 220
 221	unsigned char commit_seq;
 222	commit_id_t commit_ids[N_COMMIT_IDS];
 223
 224	unsigned committed_section;
 225	unsigned n_committed_sections;
 226
 227	unsigned uncommitted_section;
 228	unsigned n_uncommitted_sections;
 229
 230	unsigned free_section;
 231	unsigned char free_section_entry;
 232	unsigned free_sectors;
 233
 234	unsigned free_sectors_threshold;
 235
 236	struct workqueue_struct *commit_wq;
 237	struct work_struct commit_work;
 238
 239	struct workqueue_struct *writer_wq;
 240	struct work_struct writer_work;
 241
 242	struct workqueue_struct *recalc_wq;
 243	struct work_struct recalc_work;
 244	u8 *recalc_buffer;
 245	u8 *recalc_tags;
 246
 247	struct bio_list flush_bio_list;
 248
 249	unsigned long autocommit_jiffies;
 250	struct timer_list autocommit_timer;
 251	unsigned autocommit_msec;
 252
 253	wait_queue_head_t copy_to_journal_wait;
 254
 255	struct completion crypto_backoff;
 256
 
 257	bool journal_uptodate;
 258	bool just_formatted;
 259	bool recalculate_flag;
 
 
 260	bool fix_padding;
 261	bool discard;
 
 262
 263	struct alg_spec internal_hash_alg;
 264	struct alg_spec journal_crypt_alg;
 265	struct alg_spec journal_mac_alg;
 266
 267	atomic64_t number_of_mismatches;
 268
 
 
 269	struct notifier_block reboot_notifier;
 270};
 271
 272struct dm_integrity_range {
 273	sector_t logical_sector;
 274	sector_t n_sectors;
 275	bool waiting;
 276	union {
 277		struct rb_node node;
 278		struct {
 279			struct task_struct *task;
 280			struct list_head wait_entry;
 281		};
 282	};
 283};
 284
 285struct dm_integrity_io {
 286	struct work_struct work;
 287
 288	struct dm_integrity_c *ic;
 289	enum req_opf op;
 290	bool fua;
 291
 292	struct dm_integrity_range range;
 293
 294	sector_t metadata_block;
 295	unsigned metadata_offset;
 296
 297	atomic_t in_flight;
 298	blk_status_t bi_status;
 299
 300	struct completion *completion;
 301
 302	struct dm_bio_details bio_details;
 303};
 304
 305struct journal_completion {
 306	struct dm_integrity_c *ic;
 307	atomic_t in_flight;
 308	struct completion comp;
 309};
 310
 311struct journal_io {
 312	struct dm_integrity_range range;
 313	struct journal_completion *comp;
 314};
 315
 316struct bitmap_block_status {
 317	struct work_struct work;
 318	struct dm_integrity_c *ic;
 319	unsigned idx;
 320	unsigned long *bitmap;
 321	struct bio_list bio_queue;
 322	spinlock_t bio_queue_lock;
 323
 324};
 325
 326static struct kmem_cache *journal_io_cache;
 327
 328#define JOURNAL_IO_MEMPOOL	32
 329
 330#ifdef DEBUG_PRINT
 331#define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
 332static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
 333{
 334	va_list args;
 335	va_start(args, msg);
 336	vprintk(msg, args);
 337	va_end(args);
 338	if (len)
 339		pr_cont(":");
 340	while (len) {
 341		pr_cont(" %02x", *bytes);
 342		bytes++;
 343		len--;
 344	}
 345	pr_cont("\n");
 346}
 347#define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
 348#else
 349#define DEBUG_print(x, ...)			do { } while (0)
 350#define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
 351#endif
 352
 353static void dm_integrity_prepare(struct request *rq)
 354{
 355}
 356
 357static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
 358{
 359}
 360
 361/*
 362 * DM Integrity profile, protection is performed layer above (dm-crypt)
 363 */
 364static const struct blk_integrity_profile dm_integrity_profile = {
 365	.name			= "DM-DIF-EXT-TAG",
 366	.generate_fn		= NULL,
 367	.verify_fn		= NULL,
 368	.prepare_fn		= dm_integrity_prepare,
 369	.complete_fn		= dm_integrity_complete,
 370};
 371
 372static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
 373static void integrity_bio_wait(struct work_struct *w);
 374static void dm_integrity_dtr(struct dm_target *ti);
 375
 376static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
 377{
 378	if (err == -EILSEQ)
 379		atomic64_inc(&ic->number_of_mismatches);
 380	if (!cmpxchg(&ic->failed, 0, err))
 381		DMERR("Error on %s: %d", msg, err);
 382}
 383
 384static int dm_integrity_failed(struct dm_integrity_c *ic)
 385{
 386	return READ_ONCE(ic->failed);
 387}
 388
 389static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
 390					  unsigned j, unsigned char seq)
 
 
 
 
 
 
 
 
 
 
 
 391{
 392	/*
 393	 * Xor the number with section and sector, so that if a piece of
 394	 * journal is written at wrong place, it is detected.
 395	 */
 396	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
 397}
 398
 399static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
 400				sector_t *area, sector_t *offset)
 401{
 402	if (!ic->meta_dev) {
 403		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
 404		*area = data_sector >> log2_interleave_sectors;
 405		*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
 406	} else {
 407		*area = 0;
 408		*offset = data_sector;
 409	}
 410}
 411
 412#define sector_to_block(ic, n)						\
 413do {									\
 414	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
 415	(n) >>= (ic)->sb->log2_sectors_per_block;			\
 416} while (0)
 417
 418static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
 419					    sector_t offset, unsigned *metadata_offset)
 420{
 421	__u64 ms;
 422	unsigned mo;
 423
 424	ms = area << ic->sb->log2_interleave_sectors;
 425	if (likely(ic->log2_metadata_run >= 0))
 426		ms += area << ic->log2_metadata_run;
 427	else
 428		ms += area * ic->metadata_run;
 429	ms >>= ic->log2_buffer_sectors;
 430
 431	sector_to_block(ic, offset);
 432
 433	if (likely(ic->log2_tag_size >= 0)) {
 434		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
 435		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
 436	} else {
 437		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
 438		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
 439	}
 440	*metadata_offset = mo;
 441	return ms;
 442}
 443
 444static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
 445{
 446	sector_t result;
 447
 448	if (ic->meta_dev)
 449		return offset;
 450
 451	result = area << ic->sb->log2_interleave_sectors;
 452	if (likely(ic->log2_metadata_run >= 0))
 453		result += (area + 1) << ic->log2_metadata_run;
 454	else
 455		result += (area + 1) * ic->metadata_run;
 456
 457	result += (sector_t)ic->initial_sectors + offset;
 458	result += ic->start;
 459
 460	return result;
 461}
 462
 463static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
 464{
 465	if (unlikely(*sec_ptr >= ic->journal_sections))
 466		*sec_ptr -= ic->journal_sections;
 467}
 468
 469static void sb_set_version(struct dm_integrity_c *ic)
 470{
 471	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
 
 
 472		ic->sb->version = SB_VERSION_4;
 473	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
 474		ic->sb->version = SB_VERSION_3;
 475	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
 476		ic->sb->version = SB_VERSION_2;
 477	else
 478		ic->sb->version = SB_VERSION_1;
 479}
 480
 481static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482{
 483	struct dm_io_request io_req;
 484	struct dm_io_region io_loc;
 
 
 485
 486	io_req.bi_op = op;
 487	io_req.bi_op_flags = op_flags;
 488	io_req.mem.type = DM_IO_KMEM;
 489	io_req.mem.ptr.addr = ic->sb;
 490	io_req.notify.fn = NULL;
 491	io_req.client = ic->io;
 492	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
 493	io_loc.sector = ic->start;
 494	io_loc.count = SB_SECTORS;
 495
 496	if (op == REQ_OP_WRITE)
 497		sb_set_version(ic);
 
 
 
 
 
 
 
 
 
 
 498
 499	return dm_io(&io_req, 1, &io_loc, NULL);
 
 
 
 
 
 
 
 
 500}
 501
 502#define BITMAP_OP_TEST_ALL_SET		0
 503#define BITMAP_OP_TEST_ALL_CLEAR	1
 504#define BITMAP_OP_SET			2
 505#define BITMAP_OP_CLEAR			3
 506
 507static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
 508			    sector_t sector, sector_t n_sectors, int mode)
 509{
 510	unsigned long bit, end_bit, this_end_bit, page, end_page;
 511	unsigned long *data;
 512
 513	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
 514		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
 515			sector,
 516			n_sectors,
 517			ic->sb->log2_sectors_per_block,
 518			ic->log2_blocks_per_bitmap_bit,
 519			mode);
 520		BUG();
 521	}
 522
 523	if (unlikely(!n_sectors))
 524		return true;
 525
 526	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 527	end_bit = (sector + n_sectors - 1) >>
 528		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 529
 530	page = bit / (PAGE_SIZE * 8);
 531	bit %= PAGE_SIZE * 8;
 532
 533	end_page = end_bit / (PAGE_SIZE * 8);
 534	end_bit %= PAGE_SIZE * 8;
 535
 536repeat:
 537	if (page < end_page) {
 538		this_end_bit = PAGE_SIZE * 8 - 1;
 539	} else {
 540		this_end_bit = end_bit;
 541	}
 542
 543	data = lowmem_page_address(bitmap[page].page);
 544
 545	if (mode == BITMAP_OP_TEST_ALL_SET) {
 546		while (bit <= this_end_bit) {
 547			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 548				do {
 549					if (data[bit / BITS_PER_LONG] != -1)
 550						return false;
 551					bit += BITS_PER_LONG;
 552				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 553				continue;
 554			}
 555			if (!test_bit(bit, data))
 556				return false;
 557			bit++;
 558		}
 559	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
 560		while (bit <= this_end_bit) {
 561			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 562				do {
 563					if (data[bit / BITS_PER_LONG] != 0)
 564						return false;
 565					bit += BITS_PER_LONG;
 566				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 567				continue;
 568			}
 569			if (test_bit(bit, data))
 570				return false;
 571			bit++;
 572		}
 573	} else if (mode == BITMAP_OP_SET) {
 574		while (bit <= this_end_bit) {
 575			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 576				do {
 577					data[bit / BITS_PER_LONG] = -1;
 578					bit += BITS_PER_LONG;
 579				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 580				continue;
 581			}
 582			__set_bit(bit, data);
 583			bit++;
 584		}
 585	} else if (mode == BITMAP_OP_CLEAR) {
 586		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
 587			clear_page(data);
 588		else while (bit <= this_end_bit) {
 589			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
 590				do {
 591					data[bit / BITS_PER_LONG] = 0;
 592					bit += BITS_PER_LONG;
 593				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
 594				continue;
 
 
 
 
 595			}
 596			__clear_bit(bit, data);
 597			bit++;
 598		}
 599	} else {
 600		BUG();
 601	}
 602
 603	if (unlikely(page < end_page)) {
 604		bit = 0;
 605		page++;
 606		goto repeat;
 607	}
 608
 609	return true;
 610}
 611
 612static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
 613{
 614	unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
 615	unsigned i;
 616
 617	for (i = 0; i < n_bitmap_pages; i++) {
 618		unsigned long *dst_data = lowmem_page_address(dst[i].page);
 619		unsigned long *src_data = lowmem_page_address(src[i].page);
 
 620		copy_page(dst_data, src_data);
 621	}
 622}
 623
 624static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
 625{
 626	unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
 627	unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
 628
 629	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
 630	return &ic->bbs[bitmap_block];
 631}
 632
 633static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
 634				 bool e, const char *function)
 635{
 636#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
 637	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
 638
 639	if (unlikely(section >= ic->journal_sections) ||
 640	    unlikely(offset >= limit)) {
 641		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
 642		       function, section, offset, ic->journal_sections, limit);
 643		BUG();
 644	}
 645#endif
 646}
 647
 648static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
 649			       unsigned *pl_index, unsigned *pl_offset)
 650{
 651	unsigned sector;
 652
 653	access_journal_check(ic, section, offset, false, "page_list_location");
 654
 655	sector = section * ic->journal_section_sectors + offset;
 656
 657	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
 658	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
 659}
 660
 661static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
 662					       unsigned section, unsigned offset, unsigned *n_sectors)
 663{
 664	unsigned pl_index, pl_offset;
 665	char *va;
 666
 667	page_list_location(ic, section, offset, &pl_index, &pl_offset);
 668
 669	if (n_sectors)
 670		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
 671
 672	va = lowmem_page_address(pl[pl_index].page);
 673
 674	return (struct journal_sector *)(va + pl_offset);
 675}
 676
 677static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
 678{
 679	return access_page_list(ic, ic->journal, section, offset, NULL);
 680}
 681
 682static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
 683{
 684	unsigned rel_sector, offset;
 685	struct journal_sector *js;
 686
 687	access_journal_check(ic, section, n, true, "access_journal_entry");
 688
 689	rel_sector = n % JOURNAL_BLOCK_SECTORS;
 690	offset = n / JOURNAL_BLOCK_SECTORS;
 691
 692	js = access_journal(ic, section, rel_sector);
 693	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
 694}
 695
 696static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
 697{
 698	n <<= ic->sb->log2_sectors_per_block;
 699
 700	n += JOURNAL_BLOCK_SECTORS;
 701
 702	access_journal_check(ic, section, n, false, "access_journal_data");
 703
 704	return access_journal(ic, section, n);
 705}
 706
 707static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
 708{
 709	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
 710	int r;
 711	unsigned j, size;
 712
 713	desc->tfm = ic->journal_mac;
 714
 715	r = crypto_shash_init(desc);
 716	if (unlikely(r)) {
 717		dm_integrity_io_error(ic, "crypto_shash_init", r);
 718		goto err;
 719	}
 720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721	for (j = 0; j < ic->journal_section_entries; j++) {
 722		struct journal_entry *je = access_journal_entry(ic, section, j);
 723		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
 724		if (unlikely(r)) {
 
 725			dm_integrity_io_error(ic, "crypto_shash_update", r);
 726			goto err;
 727		}
 728	}
 729
 730	size = crypto_shash_digestsize(ic->journal_mac);
 731
 732	if (likely(size <= JOURNAL_MAC_SIZE)) {
 733		r = crypto_shash_final(desc, result);
 734		if (unlikely(r)) {
 735			dm_integrity_io_error(ic, "crypto_shash_final", r);
 736			goto err;
 737		}
 738		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
 739	} else {
 740		__u8 digest[HASH_MAX_DIGESTSIZE];
 741
 742		if (WARN_ON(size > sizeof(digest))) {
 743			dm_integrity_io_error(ic, "digest_size", -EINVAL);
 744			goto err;
 745		}
 746		r = crypto_shash_final(desc, digest);
 747		if (unlikely(r)) {
 748			dm_integrity_io_error(ic, "crypto_shash_final", r);
 749			goto err;
 750		}
 751		memcpy(result, digest, JOURNAL_MAC_SIZE);
 752	}
 753
 754	return;
 755err:
 756	memset(result, 0, JOURNAL_MAC_SIZE);
 757}
 758
 759static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
 760{
 761	__u8 result[JOURNAL_MAC_SIZE];
 762	unsigned j;
 763
 764	if (!ic->journal_mac)
 765		return;
 766
 767	section_mac(ic, section, result);
 768
 769	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
 770		struct journal_sector *js = access_journal(ic, section, j);
 771
 772		if (likely(wr))
 773			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
 774		else {
 775			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
 776				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
 
 
 777		}
 778	}
 779}
 780
 781static void complete_journal_op(void *context)
 782{
 783	struct journal_completion *comp = context;
 
 784	BUG_ON(!atomic_read(&comp->in_flight));
 785	if (likely(atomic_dec_and_test(&comp->in_flight)))
 786		complete(&comp->comp);
 787}
 788
 789static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
 790			unsigned n_sections, struct journal_completion *comp)
 791{
 792	struct async_submit_ctl submit;
 793	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
 794	unsigned pl_index, pl_offset, section_index;
 795	struct page_list *source_pl, *target_pl;
 796
 797	if (likely(encrypt)) {
 798		source_pl = ic->journal;
 799		target_pl = ic->journal_io;
 800	} else {
 801		source_pl = ic->journal_io;
 802		target_pl = ic->journal;
 803	}
 804
 805	page_list_location(ic, section, 0, &pl_index, &pl_offset);
 806
 807	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
 808
 809	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
 810
 811	section_index = pl_index;
 812
 813	do {
 814		size_t this_step;
 815		struct page *src_pages[2];
 816		struct page *dst_page;
 817
 818		while (unlikely(pl_index == section_index)) {
 819			unsigned dummy;
 
 820			if (likely(encrypt))
 821				rw_section_mac(ic, section, true);
 822			section++;
 823			n_sections--;
 824			if (!n_sections)
 825				break;
 826			page_list_location(ic, section, 0, &section_index, &dummy);
 827		}
 828
 829		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
 830		dst_page = target_pl[pl_index].page;
 831		src_pages[0] = source_pl[pl_index].page;
 832		src_pages[1] = ic->journal_xor[pl_index].page;
 833
 834		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
 835
 836		pl_index++;
 837		pl_offset = 0;
 838		n_bytes -= this_step;
 839	} while (n_bytes);
 840
 841	BUG_ON(n_sections);
 842
 843	async_tx_issue_pending_all();
 844}
 845
 846static void complete_journal_encrypt(struct crypto_async_request *req, int err)
 847{
 848	struct journal_completion *comp = req->data;
 
 849	if (unlikely(err)) {
 850		if (likely(err == -EINPROGRESS)) {
 851			complete(&comp->ic->crypto_backoff);
 852			return;
 853		}
 854		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
 855	}
 856	complete_journal_op(comp);
 857}
 858
 859static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
 860{
 861	int r;
 
 862	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 863				      complete_journal_encrypt, comp);
 864	if (likely(encrypt))
 865		r = crypto_skcipher_encrypt(req);
 866	else
 867		r = crypto_skcipher_decrypt(req);
 868	if (likely(!r))
 869		return false;
 870	if (likely(r == -EINPROGRESS))
 871		return true;
 872	if (likely(r == -EBUSY)) {
 873		wait_for_completion(&comp->ic->crypto_backoff);
 874		reinit_completion(&comp->ic->crypto_backoff);
 875		return true;
 876	}
 877	dm_integrity_io_error(comp->ic, "encrypt", r);
 878	return false;
 879}
 880
 881static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
 882			  unsigned n_sections, struct journal_completion *comp)
 883{
 884	struct scatterlist **source_sg;
 885	struct scatterlist **target_sg;
 886
 887	atomic_add(2, &comp->in_flight);
 888
 889	if (likely(encrypt)) {
 890		source_sg = ic->journal_scatterlist;
 891		target_sg = ic->journal_io_scatterlist;
 892	} else {
 893		source_sg = ic->journal_io_scatterlist;
 894		target_sg = ic->journal_scatterlist;
 895	}
 896
 897	do {
 898		struct skcipher_request *req;
 899		unsigned ivsize;
 900		char *iv;
 901
 902		if (likely(encrypt))
 903			rw_section_mac(ic, section, true);
 904
 905		req = ic->sk_requests[section];
 906		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
 907		iv = req->iv;
 908
 909		memcpy(iv, iv + ivsize, ivsize);
 910
 911		req->src = source_sg[section];
 912		req->dst = target_sg[section];
 913
 914		if (unlikely(do_crypt(encrypt, req, comp)))
 915			atomic_inc(&comp->in_flight);
 916
 917		section++;
 918		n_sections--;
 919	} while (n_sections);
 920
 921	atomic_dec(&comp->in_flight);
 922	complete_journal_op(comp);
 923}
 924
 925static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
 926			    unsigned n_sections, struct journal_completion *comp)
 927{
 928	if (ic->journal_xor)
 929		return xor_journal(ic, encrypt, section, n_sections, comp);
 930	else
 931		return crypt_journal(ic, encrypt, section, n_sections, comp);
 932}
 933
 934static void complete_journal_io(unsigned long error, void *context)
 935{
 936	struct journal_completion *comp = context;
 
 937	if (unlikely(error != 0))
 938		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
 939	complete_journal_op(comp);
 940}
 941
 942static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
 943			       unsigned sector, unsigned n_sectors, struct journal_completion *comp)
 
 944{
 945	struct dm_io_request io_req;
 946	struct dm_io_region io_loc;
 947	unsigned pl_index, pl_offset;
 948	int r;
 949
 950	if (unlikely(dm_integrity_failed(ic))) {
 951		if (comp)
 952			complete_journal_io(-1UL, comp);
 953		return;
 954	}
 955
 956	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
 957	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
 958
 959	io_req.bi_op = op;
 960	io_req.bi_op_flags = op_flags;
 961	io_req.mem.type = DM_IO_PAGE_LIST;
 962	if (ic->journal_io)
 963		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
 964	else
 965		io_req.mem.ptr.pl = &ic->journal[pl_index];
 966	io_req.mem.offset = pl_offset;
 967	if (likely(comp != NULL)) {
 968		io_req.notify.fn = complete_journal_io;
 969		io_req.notify.context = comp;
 970	} else {
 971		io_req.notify.fn = NULL;
 972	}
 973	io_req.client = ic->io;
 974	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
 975	io_loc.sector = ic->start + SB_SECTORS + sector;
 976	io_loc.count = n_sectors;
 977
 978	r = dm_io(&io_req, 1, &io_loc, NULL);
 979	if (unlikely(r)) {
 980		dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
 
 981		if (comp) {
 982			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
 983			complete_journal_io(-1UL, comp);
 984		}
 985	}
 986}
 987
 988static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
 989		       unsigned n_sections, struct journal_completion *comp)
 
 990{
 991	unsigned sector, n_sectors;
 992
 993	sector = section * ic->journal_section_sectors;
 994	n_sectors = n_sections * ic->journal_section_sectors;
 995
 996	rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
 997}
 998
 999static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1000{
1001	struct journal_completion io_comp;
1002	struct journal_completion crypt_comp_1;
1003	struct journal_completion crypt_comp_2;
1004	unsigned i;
1005
1006	io_comp.ic = ic;
1007	init_completion(&io_comp.comp);
1008
1009	if (commit_start + commit_sections <= ic->journal_sections) {
1010		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1011		if (ic->journal_io) {
1012			crypt_comp_1.ic = ic;
1013			init_completion(&crypt_comp_1.comp);
1014			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1015			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1016			wait_for_completion_io(&crypt_comp_1.comp);
1017		} else {
1018			for (i = 0; i < commit_sections; i++)
1019				rw_section_mac(ic, commit_start + i, true);
1020		}
1021		rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1022			   commit_sections, &io_comp);
1023	} else {
1024		unsigned to_end;
 
1025		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1026		to_end = ic->journal_sections - commit_start;
1027		if (ic->journal_io) {
1028			crypt_comp_1.ic = ic;
1029			init_completion(&crypt_comp_1.comp);
1030			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1031			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1032			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1033				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
 
1034				reinit_completion(&crypt_comp_1.comp);
1035				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1036				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1037				wait_for_completion_io(&crypt_comp_1.comp);
1038			} else {
1039				crypt_comp_2.ic = ic;
1040				init_completion(&crypt_comp_2.comp);
1041				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1042				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1043				wait_for_completion_io(&crypt_comp_1.comp);
1044				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1045				wait_for_completion_io(&crypt_comp_2.comp);
1046			}
1047		} else {
1048			for (i = 0; i < to_end; i++)
1049				rw_section_mac(ic, commit_start + i, true);
1050			rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1051			for (i = 0; i < commit_sections - to_end; i++)
1052				rw_section_mac(ic, i, true);
1053		}
1054		rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1055	}
1056
1057	wait_for_completion_io(&io_comp.comp);
1058}
1059
1060static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1061			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1062{
1063	struct dm_io_request io_req;
1064	struct dm_io_region io_loc;
1065	int r;
1066	unsigned sector, pl_index, pl_offset;
1067
1068	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1069
1070	if (unlikely(dm_integrity_failed(ic))) {
1071		fn(-1UL, data);
1072		return;
1073	}
1074
1075	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1076
1077	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1078	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1079
1080	io_req.bi_op = REQ_OP_WRITE;
1081	io_req.bi_op_flags = 0;
1082	io_req.mem.type = DM_IO_PAGE_LIST;
1083	io_req.mem.ptr.pl = &ic->journal[pl_index];
1084	io_req.mem.offset = pl_offset;
1085	io_req.notify.fn = fn;
1086	io_req.notify.context = data;
1087	io_req.client = ic->io;
1088	io_loc.bdev = ic->dev->bdev;
1089	io_loc.sector = target;
1090	io_loc.count = n_sectors;
1091
1092	r = dm_io(&io_req, 1, &io_loc, NULL);
1093	if (unlikely(r)) {
1094		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1095		fn(-1UL, data);
1096	}
1097}
1098
1099static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1100{
1101	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1102	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1103}
1104
1105static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1106{
1107	struct rb_node **n = &ic->in_progress.rb_node;
1108	struct rb_node *parent;
1109
1110	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1111
1112	if (likely(check_waiting)) {
1113		struct dm_integrity_range *range;
 
1114		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1115			if (unlikely(ranges_overlap(range, new_range)))
1116				return false;
1117		}
1118	}
1119
1120	parent = NULL;
1121
1122	while (*n) {
1123		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1124
1125		parent = *n;
1126		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1127			n = &range->node.rb_left;
1128		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1129			n = &range->node.rb_right;
1130		} else {
1131			return false;
1132		}
1133	}
1134
1135	rb_link_node(&new_range->node, parent, n);
1136	rb_insert_color(&new_range->node, &ic->in_progress);
1137
1138	return true;
1139}
1140
1141static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1142{
1143	rb_erase(&range->node, &ic->in_progress);
1144	while (unlikely(!list_empty(&ic->wait_list))) {
1145		struct dm_integrity_range *last_range =
1146			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1147		struct task_struct *last_range_task;
 
1148		last_range_task = last_range->task;
1149		list_del(&last_range->wait_entry);
1150		if (!add_new_range(ic, last_range, false)) {
1151			last_range->task = last_range_task;
1152			list_add(&last_range->wait_entry, &ic->wait_list);
1153			break;
1154		}
1155		last_range->waiting = false;
1156		wake_up_process(last_range_task);
1157	}
1158}
1159
1160static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1161{
1162	unsigned long flags;
1163
1164	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1165	remove_range_unlocked(ic, range);
1166	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1167}
1168
1169static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1170{
1171	new_range->waiting = true;
1172	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1173	new_range->task = current;
1174	do {
1175		__set_current_state(TASK_UNINTERRUPTIBLE);
1176		spin_unlock_irq(&ic->endio_wait.lock);
1177		io_schedule();
1178		spin_lock_irq(&ic->endio_wait.lock);
1179	} while (unlikely(new_range->waiting));
1180}
1181
1182static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1183{
1184	if (unlikely(!add_new_range(ic, new_range, true)))
1185		wait_and_add_new_range(ic, new_range);
1186}
1187
1188static void init_journal_node(struct journal_node *node)
1189{
1190	RB_CLEAR_NODE(&node->node);
1191	node->sector = (sector_t)-1;
1192}
1193
1194static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1195{
1196	struct rb_node **link;
1197	struct rb_node *parent;
1198
1199	node->sector = sector;
1200	BUG_ON(!RB_EMPTY_NODE(&node->node));
1201
1202	link = &ic->journal_tree_root.rb_node;
1203	parent = NULL;
1204
1205	while (*link) {
1206		struct journal_node *j;
 
1207		parent = *link;
1208		j = container_of(parent, struct journal_node, node);
1209		if (sector < j->sector)
1210			link = &j->node.rb_left;
1211		else
1212			link = &j->node.rb_right;
1213	}
1214
1215	rb_link_node(&node->node, parent, link);
1216	rb_insert_color(&node->node, &ic->journal_tree_root);
1217}
1218
1219static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1220{
1221	BUG_ON(RB_EMPTY_NODE(&node->node));
1222	rb_erase(&node->node, &ic->journal_tree_root);
1223	init_journal_node(node);
1224}
1225
1226#define NOT_FOUND	(-1U)
1227
1228static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1229{
1230	struct rb_node *n = ic->journal_tree_root.rb_node;
1231	unsigned found = NOT_FOUND;
 
1232	*next_sector = (sector_t)-1;
1233	while (n) {
1234		struct journal_node *j = container_of(n, struct journal_node, node);
1235		if (sector == j->sector) {
 
1236			found = j - ic->journal_tree;
1237		}
1238		if (sector < j->sector) {
1239			*next_sector = j->sector;
1240			n = j->node.rb_left;
1241		} else {
1242			n = j->node.rb_right;
1243		}
1244	}
1245
1246	return found;
1247}
1248
1249static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1250{
1251	struct journal_node *node, *next_node;
1252	struct rb_node *next;
1253
1254	if (unlikely(pos >= ic->journal_entries))
1255		return false;
1256	node = &ic->journal_tree[pos];
1257	if (unlikely(RB_EMPTY_NODE(&node->node)))
1258		return false;
1259	if (unlikely(node->sector != sector))
1260		return false;
1261
1262	next = rb_next(&node->node);
1263	if (unlikely(!next))
1264		return true;
1265
1266	next_node = container_of(next, struct journal_node, node);
1267	return next_node->sector != sector;
1268}
1269
1270static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1271{
1272	struct rb_node *next;
1273	struct journal_node *next_node;
1274	unsigned next_section;
1275
1276	BUG_ON(RB_EMPTY_NODE(&node->node));
1277
1278	next = rb_next(&node->node);
1279	if (unlikely(!next))
1280		return false;
1281
1282	next_node = container_of(next, struct journal_node, node);
1283
1284	if (next_node->sector != node->sector)
1285		return false;
1286
1287	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1288	if (next_section >= ic->committed_section &&
1289	    next_section < ic->committed_section + ic->n_committed_sections)
1290		return true;
1291	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1292		return true;
1293
1294	return false;
1295}
1296
1297#define TAG_READ	0
1298#define TAG_WRITE	1
1299#define TAG_CMP		2
1300
1301static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1302			       unsigned *metadata_offset, unsigned total_size, int op)
1303{
1304#define MAY_BE_FILLER		1
1305#define MAY_BE_HASH		2
1306	unsigned hash_offset = 0;
1307	unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1308
1309	do {
1310		unsigned char *data, *dp;
1311		struct dm_buffer *b;
1312		unsigned to_copy;
1313		int r;
1314
1315		r = dm_integrity_failed(ic);
1316		if (unlikely(r))
1317			return r;
1318
1319		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1320		if (IS_ERR(data))
1321			return PTR_ERR(data);
1322
1323		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1324		dp = data + *metadata_offset;
1325		if (op == TAG_READ) {
1326			memcpy(tag, dp, to_copy);
1327		} else if (op == TAG_WRITE) {
1328			memcpy(dp, tag, to_copy);
1329			dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
 
 
1330		} else {
1331			/* e.g.: op == TAG_CMP */
1332
1333			if (likely(is_power_of_2(ic->tag_size))) {
1334				if (unlikely(memcmp(dp, tag, to_copy)))
1335					if (unlikely(!ic->discard) ||
1336					    unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1337						goto thorough_test;
1338				}
1339			} else {
1340				unsigned i, ts;
1341thorough_test:
1342				ts = total_size;
1343
1344				for (i = 0; i < to_copy; i++, ts--) {
1345					if (unlikely(dp[i] != tag[i]))
1346						may_be &= ~MAY_BE_HASH;
1347					if (likely(dp[i] != DISCARD_FILLER))
1348						may_be &= ~MAY_BE_FILLER;
1349					hash_offset++;
1350					if (unlikely(hash_offset == ic->tag_size)) {
1351						if (unlikely(!may_be)) {
1352							dm_bufio_release(b);
1353							return ts;
1354						}
1355						hash_offset = 0;
1356						may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1357					}
1358				}
1359			}
1360		}
1361		dm_bufio_release(b);
1362
1363		tag += to_copy;
1364		*metadata_offset += to_copy;
1365		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1366			(*metadata_block)++;
1367			*metadata_offset = 0;
1368		}
1369
1370		if (unlikely(!is_power_of_2(ic->tag_size))) {
1371			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1372		}
1373
1374		total_size -= to_copy;
1375	} while (unlikely(total_size));
1376
1377	return 0;
1378#undef MAY_BE_FILLER
1379#undef MAY_BE_HASH
1380}
1381
1382static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1383{
1384	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385	r = dm_bufio_write_dirty_buffers(ic->bufio);
1386	if (unlikely(r))
1387		dm_integrity_io_error(ic, "writing tags", r);
 
 
 
1388}
1389
1390static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1391{
1392	DECLARE_WAITQUEUE(wait, current);
 
1393	__add_wait_queue(&ic->endio_wait, &wait);
1394	__set_current_state(TASK_UNINTERRUPTIBLE);
1395	spin_unlock_irq(&ic->endio_wait.lock);
1396	io_schedule();
1397	spin_lock_irq(&ic->endio_wait.lock);
1398	__remove_wait_queue(&ic->endio_wait, &wait);
1399}
1400
1401static void autocommit_fn(struct timer_list *t)
1402{
1403	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1404
1405	if (likely(!dm_integrity_failed(ic)))
1406		queue_work(ic->commit_wq, &ic->commit_work);
1407}
1408
1409static void schedule_autocommit(struct dm_integrity_c *ic)
1410{
1411	if (!timer_pending(&ic->autocommit_timer))
1412		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1413}
1414
1415static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1416{
1417	struct bio *bio;
1418	unsigned long flags;
1419
1420	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1421	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1422	bio_list_add(&ic->flush_bio_list, bio);
1423	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1424
1425	queue_work(ic->commit_wq, &ic->commit_work);
1426}
1427
1428static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1429{
1430	int r = dm_integrity_failed(ic);
 
 
1431	if (unlikely(r) && !bio->bi_status)
1432		bio->bi_status = errno_to_blk_status(r);
1433	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1434		unsigned long flags;
 
1435		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1436		bio_list_add(&ic->synchronous_bios, bio);
1437		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1438		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1439		return;
1440	}
1441	bio_endio(bio);
1442}
1443
1444static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1445{
1446	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1447
1448	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1449		submit_flush_bio(ic, dio);
1450	else
1451		do_endio(ic, bio);
1452}
1453
1454static void dec_in_flight(struct dm_integrity_io *dio)
1455{
1456	if (atomic_dec_and_test(&dio->in_flight)) {
1457		struct dm_integrity_c *ic = dio->ic;
1458		struct bio *bio;
1459
1460		remove_range(ic, &dio->range);
1461
1462		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1463			schedule_autocommit(ic);
1464
1465		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1466
1467		if (unlikely(dio->bi_status) && !bio->bi_status)
1468			bio->bi_status = dio->bi_status;
1469		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1470			dio->range.logical_sector += dio->range.n_sectors;
1471			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1472			INIT_WORK(&dio->work, integrity_bio_wait);
1473			queue_work(ic->offload_wq, &dio->work);
1474			return;
1475		}
1476		do_endio_flush(ic, dio);
1477	}
1478}
1479
1480static void integrity_end_io(struct bio *bio)
1481{
1482	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1483
1484	dm_bio_restore(&dio->bio_details, bio);
1485	if (bio->bi_integrity)
1486		bio->bi_opf |= REQ_INTEGRITY;
1487
1488	if (dio->completion)
1489		complete(dio->completion);
1490
1491	dec_in_flight(dio);
1492}
1493
1494static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1495				      const char *data, char *result)
1496{
1497	__u64 sector_le = cpu_to_le64(sector);
1498	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1499	int r;
1500	unsigned digest_size;
1501
1502	req->tfm = ic->internal_hash;
1503
1504	r = crypto_shash_init(req);
1505	if (unlikely(r < 0)) {
1506		dm_integrity_io_error(ic, "crypto_shash_init", r);
1507		goto failed;
1508	}
1509
1510	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
 
 
 
 
 
 
 
 
1511	if (unlikely(r < 0)) {
1512		dm_integrity_io_error(ic, "crypto_shash_update", r);
1513		goto failed;
1514	}
1515
1516	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1517	if (unlikely(r < 0)) {
1518		dm_integrity_io_error(ic, "crypto_shash_update", r);
1519		goto failed;
1520	}
1521
1522	r = crypto_shash_final(req, result);
1523	if (unlikely(r < 0)) {
1524		dm_integrity_io_error(ic, "crypto_shash_final", r);
1525		goto failed;
1526	}
1527
1528	digest_size = crypto_shash_digestsize(ic->internal_hash);
1529	if (unlikely(digest_size < ic->tag_size))
1530		memset(result + digest_size, 0, ic->tag_size - digest_size);
1531
1532	return;
1533
1534failed:
1535	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1536	get_random_bytes(result, ic->tag_size);
1537}
1538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1539static void integrity_metadata(struct work_struct *w)
1540{
1541	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1542	struct dm_integrity_c *ic = dio->ic;
1543
1544	int r;
1545
1546	if (ic->internal_hash) {
1547		struct bvec_iter iter;
1548		struct bio_vec bv;
1549		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1550		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1551		char *checksums;
1552		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1553		char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1554		sector_t sector;
1555		unsigned sectors_to_process;
1556
1557		if (unlikely(ic->mode == 'R'))
1558			goto skip_io;
1559
1560		if (likely(dio->op != REQ_OP_DISCARD))
1561			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1562					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1563		else
1564			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1565		if (!checksums) {
1566			checksums = checksums_onstack;
1567			if (WARN_ON(extra_space &&
1568				    digest_size > sizeof(checksums_onstack))) {
1569				r = -EINVAL;
1570				goto error;
1571			}
1572		}
1573
1574		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1575			sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1576			unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1577			unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1578			unsigned max_blocks = max_size / ic->tag_size;
1579			memset(checksums, DISCARD_FILLER, max_size);
1580
1581			while (bi_size) {
1582				unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
 
1583				this_step_blocks = min(this_step_blocks, max_blocks);
1584				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1585							this_step_blocks * ic->tag_size, TAG_WRITE);
1586				if (unlikely(r)) {
1587					if (likely(checksums != checksums_onstack))
1588						kfree(checksums);
1589					goto error;
1590				}
1591
1592				/*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1593					printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1594					printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1595					BUG();
1596				}*/
1597				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1598				bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1599			}
1600
1601			if (likely(checksums != checksums_onstack))
1602				kfree(checksums);
1603			goto skip_io;
1604		}
1605
1606		sector = dio->range.logical_sector;
1607		sectors_to_process = dio->range.n_sectors;
1608
1609		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1610			unsigned pos;
 
1611			char *mem, *checksums_ptr;
1612
1613again:
1614			mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1615			pos = 0;
1616			checksums_ptr = checksums;
1617			do {
1618				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1619				checksums_ptr += ic->tag_size;
1620				sectors_to_process -= ic->sectors_per_block;
1621				pos += ic->sectors_per_block << SECTOR_SHIFT;
1622				sector += ic->sectors_per_block;
1623			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1624			kunmap_atomic(mem);
1625
1626			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1627						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1628			if (unlikely(r)) {
1629				if (r > 0) {
1630					char b[BDEVNAME_SIZE];
1631					DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b),
1632						    (sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1633					r = -EILSEQ;
1634					atomic64_inc(&ic->number_of_mismatches);
1635				}
1636				if (likely(checksums != checksums_onstack))
1637					kfree(checksums);
1638				goto error;
1639			}
1640
1641			if (!sectors_to_process)
1642				break;
1643
1644			if (unlikely(pos < bv.bv_len)) {
1645				bv.bv_offset += pos;
1646				bv.bv_len -= pos;
1647				goto again;
1648			}
1649		}
1650
1651		if (likely(checksums != checksums_onstack))
1652			kfree(checksums);
1653	} else {
1654		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1655
1656		if (bip) {
1657			struct bio_vec biv;
1658			struct bvec_iter iter;
1659			unsigned data_to_process = dio->range.n_sectors;
 
1660			sector_to_block(ic, data_to_process);
1661			data_to_process *= ic->tag_size;
1662
1663			bip_for_each_vec(biv, bip, iter) {
1664				unsigned char *tag;
1665				unsigned this_len;
1666
1667				BUG_ON(PageHighMem(biv.bv_page));
1668				tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1669				this_len = min(biv.bv_len, data_to_process);
1670				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1671							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1672				if (unlikely(r))
1673					goto error;
1674				data_to_process -= this_len;
1675				if (!data_to_process)
1676					break;
1677			}
1678		}
1679	}
1680skip_io:
1681	dec_in_flight(dio);
1682	return;
1683error:
1684	dio->bi_status = errno_to_blk_status(r);
1685	dec_in_flight(dio);
1686}
1687
1688static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1689{
1690	struct dm_integrity_c *ic = ti->private;
1691	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1692	struct bio_integrity_payload *bip;
1693
1694	sector_t area, offset;
1695
1696	dio->ic = ic;
1697	dio->bi_status = 0;
1698	dio->op = bio_op(bio);
1699
1700	if (unlikely(dio->op == REQ_OP_DISCARD)) {
1701		if (ti->max_io_len) {
1702			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1703			unsigned log2_max_io_len = __fls(ti->max_io_len);
1704			sector_t start_boundary = sec >> log2_max_io_len;
1705			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
 
1706			if (start_boundary < end_boundary) {
1707				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
 
1708				dm_accept_partial_bio(bio, len);
1709			}
1710		}
1711	}
1712
1713	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1714		submit_flush_bio(ic, dio);
1715		return DM_MAPIO_SUBMITTED;
1716	}
1717
1718	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1719	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1720	if (unlikely(dio->fua)) {
1721		/*
1722		 * Don't pass down the FUA flag because we have to flush
1723		 * disk cache anyway.
1724		 */
1725		bio->bi_opf &= ~REQ_FUA;
1726	}
1727	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1728		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1729		      dio->range.logical_sector, bio_sectors(bio),
1730		      ic->provided_data_sectors);
1731		return DM_MAPIO_KILL;
1732	}
1733	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1734		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1735		      ic->sectors_per_block,
1736		      dio->range.logical_sector, bio_sectors(bio));
1737		return DM_MAPIO_KILL;
1738	}
1739
1740	if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1741		struct bvec_iter iter;
1742		struct bio_vec bv;
 
1743		bio_for_each_segment(bv, bio, iter) {
1744			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1745				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1746					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1747				return DM_MAPIO_KILL;
1748			}
1749		}
1750	}
1751
1752	bip = bio_integrity(bio);
1753	if (!ic->internal_hash) {
1754		if (bip) {
1755			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
 
1756			if (ic->log2_tag_size >= 0)
1757				wanted_tag_size <<= ic->log2_tag_size;
1758			else
1759				wanted_tag_size *= ic->tag_size;
1760			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1761				DMERR("Invalid integrity data size %u, expected %u",
1762				      bip->bip_iter.bi_size, wanted_tag_size);
1763				return DM_MAPIO_KILL;
1764			}
1765		}
1766	} else {
1767		if (unlikely(bip != NULL)) {
1768			DMERR("Unexpected integrity data when using internal hash");
1769			return DM_MAPIO_KILL;
1770		}
1771	}
1772
1773	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1774		return DM_MAPIO_KILL;
1775
1776	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1777	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1778	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1779
1780	dm_integrity_map_continue(dio, true);
1781	return DM_MAPIO_SUBMITTED;
1782}
1783
1784static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1785				 unsigned journal_section, unsigned journal_entry)
1786{
1787	struct dm_integrity_c *ic = dio->ic;
1788	sector_t logical_sector;
1789	unsigned n_sectors;
1790
1791	logical_sector = dio->range.logical_sector;
1792	n_sectors = dio->range.n_sectors;
1793	do {
1794		struct bio_vec bv = bio_iovec(bio);
1795		char *mem;
1796
1797		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1798			bv.bv_len = n_sectors << SECTOR_SHIFT;
1799		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1800		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1801retry_kmap:
1802		mem = kmap_atomic(bv.bv_page);
1803		if (likely(dio->op == REQ_OP_WRITE))
1804			flush_dcache_page(bv.bv_page);
1805
1806		do {
1807			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1808
1809			if (unlikely(dio->op == REQ_OP_READ)) {
1810				struct journal_sector *js;
1811				char *mem_ptr;
1812				unsigned s;
1813
1814				if (unlikely(journal_entry_is_inprogress(je))) {
1815					flush_dcache_page(bv.bv_page);
1816					kunmap_atomic(mem);
1817
1818					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1819					goto retry_kmap;
1820				}
1821				smp_rmb();
1822				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1823				js = access_journal_data(ic, journal_section, journal_entry);
1824				mem_ptr = mem + bv.bv_offset;
1825				s = 0;
1826				do {
1827					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1828					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1829					js++;
1830					mem_ptr += 1 << SECTOR_SHIFT;
1831				} while (++s < ic->sectors_per_block);
1832#ifdef INTERNAL_VERIFY
1833				if (ic->internal_hash) {
1834					char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1835
1836					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1837					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1838						DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1839							    logical_sector);
 
 
1840					}
1841				}
1842#endif
1843			}
1844
1845			if (!ic->internal_hash) {
1846				struct bio_integrity_payload *bip = bio_integrity(bio);
1847				unsigned tag_todo = ic->tag_size;
1848				char *tag_ptr = journal_entry_tag(ic, je);
1849
1850				if (bip) do {
1851					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1852					unsigned tag_now = min(biv.bv_len, tag_todo);
1853					char *tag_addr;
1854					BUG_ON(PageHighMem(biv.bv_page));
1855					tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1856					if (likely(dio->op == REQ_OP_WRITE))
1857						memcpy(tag_ptr, tag_addr, tag_now);
1858					else
1859						memcpy(tag_addr, tag_ptr, tag_now);
1860					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1861					tag_ptr += tag_now;
1862					tag_todo -= tag_now;
1863				} while (unlikely(tag_todo)); else {
1864					if (likely(dio->op == REQ_OP_WRITE))
1865						memset(tag_ptr, 0, tag_todo);
1866				}
 
1867			}
1868
1869			if (likely(dio->op == REQ_OP_WRITE)) {
1870				struct journal_sector *js;
1871				unsigned s;
1872
1873				js = access_journal_data(ic, journal_section, journal_entry);
1874				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1875
1876				s = 0;
1877				do {
1878					je->last_bytes[s] = js[s].commit_id;
1879				} while (++s < ic->sectors_per_block);
1880
1881				if (ic->internal_hash) {
1882					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
 
1883					if (unlikely(digest_size > ic->tag_size)) {
1884						char checksums_onstack[HASH_MAX_DIGESTSIZE];
 
1885						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1886						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1887					} else
1888						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1889				}
1890
1891				journal_entry_set_sector(je, logical_sector);
1892			}
1893			logical_sector += ic->sectors_per_block;
1894
1895			journal_entry++;
1896			if (unlikely(journal_entry == ic->journal_section_entries)) {
1897				journal_entry = 0;
1898				journal_section++;
1899				wraparound_section(ic, &journal_section);
1900			}
1901
1902			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1903		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1904
1905		if (unlikely(dio->op == REQ_OP_READ))
1906			flush_dcache_page(bv.bv_page);
1907		kunmap_atomic(mem);
1908	} while (n_sectors);
1909
1910	if (likely(dio->op == REQ_OP_WRITE)) {
1911		smp_mb();
1912		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1913			wake_up(&ic->copy_to_journal_wait);
1914		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1915			queue_work(ic->commit_wq, &ic->commit_work);
1916		} else {
1917			schedule_autocommit(ic);
1918		}
1919	} else {
1920		remove_range(ic, &dio->range);
1921	}
1922
1923	if (unlikely(bio->bi_iter.bi_size)) {
1924		sector_t area, offset;
1925
1926		dio->range.logical_sector = logical_sector;
1927		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1928		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1929		return true;
1930	}
1931
1932	return false;
1933}
1934
1935static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1936{
1937	struct dm_integrity_c *ic = dio->ic;
1938	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1939	unsigned journal_section, journal_entry;
1940	unsigned journal_read_pos;
1941	struct completion read_comp;
1942	bool discard_retried = false;
1943	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
 
1944	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
1945		need_sync_io = true;
1946
1947	if (need_sync_io && from_map) {
1948		INIT_WORK(&dio->work, integrity_bio_wait);
1949		queue_work(ic->offload_wq, &dio->work);
1950		return;
1951	}
1952
1953lock_retry:
1954	spin_lock_irq(&ic->endio_wait.lock);
1955retry:
1956	if (unlikely(dm_integrity_failed(ic))) {
1957		spin_unlock_irq(&ic->endio_wait.lock);
1958		do_endio(ic, bio);
1959		return;
1960	}
1961	dio->range.n_sectors = bio_sectors(bio);
1962	journal_read_pos = NOT_FOUND;
1963	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
1964		if (dio->op == REQ_OP_WRITE) {
1965			unsigned next_entry, i, pos;
1966			unsigned ws, we, range_sectors;
1967
1968			dio->range.n_sectors = min(dio->range.n_sectors,
1969						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
1970			if (unlikely(!dio->range.n_sectors)) {
1971				if (from_map)
1972					goto offload_to_thread;
1973				sleep_on_endio_wait(ic);
1974				goto retry;
1975			}
1976			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1977			ic->free_sectors -= range_sectors;
1978			journal_section = ic->free_section;
1979			journal_entry = ic->free_section_entry;
1980
1981			next_entry = ic->free_section_entry + range_sectors;
1982			ic->free_section_entry = next_entry % ic->journal_section_entries;
1983			ic->free_section += next_entry / ic->journal_section_entries;
1984			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1985			wraparound_section(ic, &ic->free_section);
1986
1987			pos = journal_section * ic->journal_section_entries + journal_entry;
1988			ws = journal_section;
1989			we = journal_entry;
1990			i = 0;
1991			do {
1992				struct journal_entry *je;
1993
1994				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1995				pos++;
1996				if (unlikely(pos >= ic->journal_entries))
1997					pos = 0;
1998
1999				je = access_journal_entry(ic, ws, we);
2000				BUG_ON(!journal_entry_is_unused(je));
2001				journal_entry_set_inprogress(je);
2002				we++;
2003				if (unlikely(we == ic->journal_section_entries)) {
2004					we = 0;
2005					ws++;
2006					wraparound_section(ic, &ws);
2007				}
2008			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2009
2010			spin_unlock_irq(&ic->endio_wait.lock);
2011			goto journal_read_write;
2012		} else {
2013			sector_t next_sector;
 
2014			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2015			if (likely(journal_read_pos == NOT_FOUND)) {
2016				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2017					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2018			} else {
2019				unsigned i;
2020				unsigned jp = journal_read_pos + 1;
 
2021				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2022					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2023						break;
2024				}
2025				dio->range.n_sectors = i;
2026			}
2027		}
2028	}
2029	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2030		/*
2031		 * We must not sleep in the request routine because it could
2032		 * stall bios on current->bio_list.
2033		 * So, we offload the bio to a workqueue if we have to sleep.
2034		 */
2035		if (from_map) {
2036offload_to_thread:
2037			spin_unlock_irq(&ic->endio_wait.lock);
2038			INIT_WORK(&dio->work, integrity_bio_wait);
2039			queue_work(ic->wait_wq, &dio->work);
2040			return;
2041		}
2042		if (journal_read_pos != NOT_FOUND)
2043			dio->range.n_sectors = ic->sectors_per_block;
2044		wait_and_add_new_range(ic, &dio->range);
2045		/*
2046		 * wait_and_add_new_range drops the spinlock, so the journal
2047		 * may have been changed arbitrarily. We need to recheck.
2048		 * To simplify the code, we restrict I/O size to just one block.
2049		 */
2050		if (journal_read_pos != NOT_FOUND) {
2051			sector_t next_sector;
2052			unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
 
 
2053			if (unlikely(new_pos != journal_read_pos)) {
2054				remove_range_unlocked(ic, &dio->range);
2055				goto retry;
2056			}
2057		}
2058	}
2059	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2060		sector_t next_sector;
2061		unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
 
 
2062		if (unlikely(new_pos != NOT_FOUND) ||
2063		    unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2064			remove_range_unlocked(ic, &dio->range);
2065			spin_unlock_irq(&ic->endio_wait.lock);
2066			queue_work(ic->commit_wq, &ic->commit_work);
2067			flush_workqueue(ic->commit_wq);
2068			queue_work(ic->writer_wq, &ic->writer_work);
2069			flush_workqueue(ic->writer_wq);
2070			discard_retried = true;
2071			goto lock_retry;
2072		}
2073	}
2074	spin_unlock_irq(&ic->endio_wait.lock);
2075
2076	if (unlikely(journal_read_pos != NOT_FOUND)) {
2077		journal_section = journal_read_pos / ic->journal_section_entries;
2078		journal_entry = journal_read_pos % ic->journal_section_entries;
2079		goto journal_read_write;
2080	}
2081
2082	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2083		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2084				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2085			struct bitmap_block_status *bbs;
2086
2087			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2088			spin_lock(&bbs->bio_queue_lock);
2089			bio_list_add(&bbs->bio_queue, bio);
2090			spin_unlock(&bbs->bio_queue_lock);
2091			queue_work(ic->writer_wq, &bbs->work);
2092			return;
2093		}
2094	}
2095
2096	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2097
2098	if (need_sync_io) {
2099		init_completion(&read_comp);
2100		dio->completion = &read_comp;
2101	} else
2102		dio->completion = NULL;
2103
2104	dm_bio_record(&dio->bio_details, bio);
2105	bio_set_dev(bio, ic->dev->bdev);
2106	bio->bi_integrity = NULL;
2107	bio->bi_opf &= ~REQ_INTEGRITY;
2108	bio->bi_end_io = integrity_end_io;
2109	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2110
2111	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2112		integrity_metadata(&dio->work);
2113		dm_integrity_flush_buffers(ic);
2114
2115		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2116		dio->completion = NULL;
2117
2118		submit_bio_noacct(bio);
2119
2120		return;
2121	}
2122
2123	submit_bio_noacct(bio);
2124
2125	if (need_sync_io) {
2126		wait_for_completion_io(&read_comp);
2127		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2128		    dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2129			goto skip_check;
2130		if (ic->mode == 'B') {
2131			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2132					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2133				goto skip_check;
2134		}
2135
2136		if (likely(!bio->bi_status))
2137			integrity_metadata(&dio->work);
2138		else
2139skip_check:
2140			dec_in_flight(dio);
2141
2142	} else {
2143		INIT_WORK(&dio->work, integrity_metadata);
2144		queue_work(ic->metadata_wq, &dio->work);
2145	}
2146
2147	return;
2148
2149journal_read_write:
2150	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2151		goto lock_retry;
2152
2153	do_endio_flush(ic, dio);
2154}
2155
2156
2157static void integrity_bio_wait(struct work_struct *w)
2158{
2159	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2160
2161	dm_integrity_map_continue(dio, false);
2162}
2163
2164static void pad_uncommitted(struct dm_integrity_c *ic)
2165{
2166	if (ic->free_section_entry) {
2167		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2168		ic->free_section_entry = 0;
2169		ic->free_section++;
2170		wraparound_section(ic, &ic->free_section);
2171		ic->n_uncommitted_sections++;
2172	}
2173	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2174		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2175		    ic->journal_section_entries + ic->free_sectors)) {
2176		DMCRIT("journal_sections %u, journal_section_entries %u, "
2177		       "n_uncommitted_sections %u, n_committed_sections %u, "
2178		       "journal_section_entries %u, free_sectors %u",
2179		       ic->journal_sections, ic->journal_section_entries,
2180		       ic->n_uncommitted_sections, ic->n_committed_sections,
2181		       ic->journal_section_entries, ic->free_sectors);
2182	}
2183}
2184
2185static void integrity_commit(struct work_struct *w)
2186{
2187	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2188	unsigned commit_start, commit_sections;
2189	unsigned i, j, n;
2190	struct bio *flushes;
2191
2192	del_timer(&ic->autocommit_timer);
2193
2194	spin_lock_irq(&ic->endio_wait.lock);
2195	flushes = bio_list_get(&ic->flush_bio_list);
2196	if (unlikely(ic->mode != 'J')) {
2197		spin_unlock_irq(&ic->endio_wait.lock);
2198		dm_integrity_flush_buffers(ic);
2199		goto release_flush_bios;
2200	}
2201
2202	pad_uncommitted(ic);
2203	commit_start = ic->uncommitted_section;
2204	commit_sections = ic->n_uncommitted_sections;
2205	spin_unlock_irq(&ic->endio_wait.lock);
2206
2207	if (!commit_sections)
2208		goto release_flush_bios;
2209
 
 
2210	i = commit_start;
2211	for (n = 0; n < commit_sections; n++) {
2212		for (j = 0; j < ic->journal_section_entries; j++) {
2213			struct journal_entry *je;
 
2214			je = access_journal_entry(ic, i, j);
2215			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2216		}
2217		for (j = 0; j < ic->journal_section_sectors; j++) {
2218			struct journal_sector *js;
 
2219			js = access_journal(ic, i, j);
2220			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2221		}
2222		i++;
2223		if (unlikely(i >= ic->journal_sections))
2224			ic->commit_seq = next_commit_seq(ic->commit_seq);
2225		wraparound_section(ic, &i);
2226	}
2227	smp_rmb();
2228
2229	write_journal(ic, commit_start, commit_sections);
2230
2231	spin_lock_irq(&ic->endio_wait.lock);
2232	ic->uncommitted_section += commit_sections;
2233	wraparound_section(ic, &ic->uncommitted_section);
2234	ic->n_uncommitted_sections -= commit_sections;
2235	ic->n_committed_sections += commit_sections;
2236	spin_unlock_irq(&ic->endio_wait.lock);
2237
2238	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2239		queue_work(ic->writer_wq, &ic->writer_work);
2240
2241release_flush_bios:
2242	while (flushes) {
2243		struct bio *next = flushes->bi_next;
 
2244		flushes->bi_next = NULL;
2245		do_endio(ic, flushes);
2246		flushes = next;
2247	}
2248}
2249
2250static void complete_copy_from_journal(unsigned long error, void *context)
2251{
2252	struct journal_io *io = context;
2253	struct journal_completion *comp = io->comp;
2254	struct dm_integrity_c *ic = comp->ic;
 
2255	remove_range(ic, &io->range);
2256	mempool_free(io, &ic->journal_io_mempool);
2257	if (unlikely(error != 0))
2258		dm_integrity_io_error(ic, "copying from journal", -EIO);
2259	complete_journal_op(comp);
2260}
2261
2262static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2263			       struct journal_entry *je)
2264{
2265	unsigned s = 0;
 
2266	do {
2267		js->commit_id = je->last_bytes[s];
2268		js++;
2269	} while (++s < ic->sectors_per_block);
2270}
2271
2272static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2273			     unsigned write_sections, bool from_replay)
2274{
2275	unsigned i, j, n;
2276	struct journal_completion comp;
2277	struct blk_plug plug;
2278
2279	blk_start_plug(&plug);
2280
2281	comp.ic = ic;
2282	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2283	init_completion(&comp.comp);
2284
2285	i = write_start;
2286	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2287#ifndef INTERNAL_VERIFY
2288		if (unlikely(from_replay))
2289#endif
2290			rw_section_mac(ic, i, false);
2291		for (j = 0; j < ic->journal_section_entries; j++) {
2292			struct journal_entry *je = access_journal_entry(ic, i, j);
2293			sector_t sec, area, offset;
2294			unsigned k, l, next_loop;
2295			sector_t metadata_block;
2296			unsigned metadata_offset;
2297			struct journal_io *io;
2298
2299			if (journal_entry_is_unused(je))
2300				continue;
2301			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2302			sec = journal_entry_get_sector(je);
2303			if (unlikely(from_replay)) {
2304				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2305					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2306					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2307				}
 
 
 
 
2308			}
2309			if (unlikely(sec >= ic->provided_data_sectors))
2310				continue;
2311			get_area_and_offset(ic, sec, &area, &offset);
2312			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2313			for (k = j + 1; k < ic->journal_section_entries; k++) {
2314				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2315				sector_t sec2, area2, offset2;
 
2316				if (journal_entry_is_unused(je2))
2317					break;
2318				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2319				sec2 = journal_entry_get_sector(je2);
2320				if (unlikely(sec2 >= ic->provided_data_sectors))
2321					break;
2322				get_area_and_offset(ic, sec2, &area2, &offset2);
2323				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2324					break;
2325				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2326			}
2327			next_loop = k - 1;
2328
2329			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2330			io->comp = &comp;
2331			io->range.logical_sector = sec;
2332			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2333
2334			spin_lock_irq(&ic->endio_wait.lock);
2335			add_new_range_and_wait(ic, &io->range);
2336
2337			if (likely(!from_replay)) {
2338				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2339
2340				/* don't write if there is newer committed sector */
2341				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2342					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2343
2344					journal_entry_set_unused(je2);
2345					remove_journal_node(ic, &section_node[j]);
2346					j++;
2347					sec += ic->sectors_per_block;
2348					offset += ic->sectors_per_block;
2349				}
2350				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2351					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2352
2353					journal_entry_set_unused(je2);
2354					remove_journal_node(ic, &section_node[k - 1]);
2355					k--;
2356				}
2357				if (j == k) {
2358					remove_range_unlocked(ic, &io->range);
2359					spin_unlock_irq(&ic->endio_wait.lock);
2360					mempool_free(io, &ic->journal_io_mempool);
2361					goto skip_io;
2362				}
2363				for (l = j; l < k; l++) {
2364					remove_journal_node(ic, &section_node[l]);
2365				}
2366			}
2367			spin_unlock_irq(&ic->endio_wait.lock);
2368
2369			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2370			for (l = j; l < k; l++) {
2371				int r;
2372				struct journal_entry *je2 = access_journal_entry(ic, i, l);
2373
2374				if (
2375#ifndef INTERNAL_VERIFY
2376				    unlikely(from_replay) &&
2377#endif
2378				    ic->internal_hash) {
2379					char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2380
2381					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2382								  (char *)access_journal_data(ic, i, l), test_tag);
2383					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2384						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
 
 
2385				}
2386
2387				journal_entry_set_unused(je2);
2388				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2389							ic->tag_size, TAG_WRITE);
2390				if (unlikely(r)) {
2391					dm_integrity_io_error(ic, "reading tags", r);
2392				}
2393			}
2394
2395			atomic_inc(&comp.in_flight);
2396			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2397					  (k - j) << ic->sb->log2_sectors_per_block,
2398					  get_data_sector(ic, area, offset),
2399					  complete_copy_from_journal, io);
2400skip_io:
2401			j = next_loop;
2402		}
2403	}
2404
2405	dm_bufio_write_dirty_buffers_async(ic->bufio);
2406
2407	blk_finish_plug(&plug);
2408
2409	complete_journal_op(&comp);
2410	wait_for_completion_io(&comp.comp);
2411
2412	dm_integrity_flush_buffers(ic);
2413}
2414
2415static void integrity_writer(struct work_struct *w)
2416{
2417	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2418	unsigned write_start, write_sections;
2419
2420	unsigned prev_free_sectors;
2421
2422	/* the following test is not needed, but it tests the replay code */
2423	if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
2424		return;
2425
2426	spin_lock_irq(&ic->endio_wait.lock);
2427	write_start = ic->committed_section;
2428	write_sections = ic->n_committed_sections;
2429	spin_unlock_irq(&ic->endio_wait.lock);
2430
2431	if (!write_sections)
2432		return;
2433
2434	do_journal_write(ic, write_start, write_sections, false);
2435
2436	spin_lock_irq(&ic->endio_wait.lock);
2437
2438	ic->committed_section += write_sections;
2439	wraparound_section(ic, &ic->committed_section);
2440	ic->n_committed_sections -= write_sections;
2441
2442	prev_free_sectors = ic->free_sectors;
2443	ic->free_sectors += write_sections * ic->journal_section_entries;
2444	if (unlikely(!prev_free_sectors))
2445		wake_up_locked(&ic->endio_wait);
2446
2447	spin_unlock_irq(&ic->endio_wait.lock);
2448}
2449
2450static void recalc_write_super(struct dm_integrity_c *ic)
2451{
2452	int r;
2453
2454	dm_integrity_flush_buffers(ic);
2455	if (dm_integrity_failed(ic))
2456		return;
2457
2458	r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2459	if (unlikely(r))
2460		dm_integrity_io_error(ic, "writing superblock", r);
2461}
2462
2463static void integrity_recalc(struct work_struct *w)
2464{
2465	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
 
 
 
2466	struct dm_integrity_range range;
2467	struct dm_io_request io_req;
2468	struct dm_io_region io_loc;
2469	sector_t area, offset;
2470	sector_t metadata_block;
2471	unsigned metadata_offset;
2472	sector_t logical_sector, n_sectors;
2473	__u8 *t;
2474	unsigned i;
2475	int r;
2476	unsigned super_counter = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2477
2478	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2479
2480	spin_lock_irq(&ic->endio_wait.lock);
2481
2482next_chunk:
2483
2484	if (unlikely(dm_post_suspending(ic->ti)))
2485		goto unlock_ret;
2486
2487	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2488	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2489		if (ic->mode == 'B') {
2490			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2491			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2492			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2493		}
2494		goto unlock_ret;
2495	}
2496
2497	get_area_and_offset(ic, range.logical_sector, &area, &offset);
2498	range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2499	if (!ic->meta_dev)
2500		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2501
2502	add_new_range_and_wait(ic, &range);
2503	spin_unlock_irq(&ic->endio_wait.lock);
2504	logical_sector = range.logical_sector;
2505	n_sectors = range.n_sectors;
2506
2507	if (ic->mode == 'B') {
2508		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2509			goto advance_and_next;
2510		}
2511		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2512				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2513			logical_sector += ic->sectors_per_block;
2514			n_sectors -= ic->sectors_per_block;
2515			cond_resched();
2516		}
2517		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2518				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2519			n_sectors -= ic->sectors_per_block;
2520			cond_resched();
2521		}
2522		get_area_and_offset(ic, logical_sector, &area, &offset);
2523	}
2524
2525	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2526
2527	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2528		recalc_write_super(ic);
2529		if (ic->mode == 'B') {
2530			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2531		}
2532		super_counter = 0;
2533	}
2534
2535	if (unlikely(dm_integrity_failed(ic)))
2536		goto err;
2537
2538	io_req.bi_op = REQ_OP_READ;
2539	io_req.bi_op_flags = 0;
2540	io_req.mem.type = DM_IO_VMA;
2541	io_req.mem.ptr.addr = ic->recalc_buffer;
2542	io_req.notify.fn = NULL;
2543	io_req.client = ic->io;
2544	io_loc.bdev = ic->dev->bdev;
2545	io_loc.sector = get_data_sector(ic, area, offset);
2546	io_loc.count = n_sectors;
2547
2548	r = dm_io(&io_req, 1, &io_loc, NULL);
2549	if (unlikely(r)) {
2550		dm_integrity_io_error(ic, "reading data", r);
2551		goto err;
2552	}
2553
2554	t = ic->recalc_tags;
2555	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2556		integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2557		t += ic->tag_size;
2558	}
2559
2560	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2561
2562	r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2563	if (unlikely(r)) {
2564		dm_integrity_io_error(ic, "writing tags", r);
2565		goto err;
2566	}
2567
2568	if (ic->mode == 'B') {
2569		sector_t start, end;
 
2570		start = (range.logical_sector >>
2571			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2572			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2573		end = ((range.logical_sector + range.n_sectors) >>
2574		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2575			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2576		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2577	}
2578
2579advance_and_next:
2580	cond_resched();
2581
2582	spin_lock_irq(&ic->endio_wait.lock);
2583	remove_range_unlocked(ic, &range);
2584	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2585	goto next_chunk;
2586
2587err:
2588	remove_range(ic, &range);
2589	return;
2590
2591unlock_ret:
2592	spin_unlock_irq(&ic->endio_wait.lock);
2593
2594	recalc_write_super(ic);
 
 
 
 
2595}
2596
2597static void bitmap_block_work(struct work_struct *w)
2598{
2599	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2600	struct dm_integrity_c *ic = bbs->ic;
2601	struct bio *bio;
2602	struct bio_list bio_queue;
2603	struct bio_list waiting;
2604
2605	bio_list_init(&waiting);
2606
2607	spin_lock(&bbs->bio_queue_lock);
2608	bio_queue = bbs->bio_queue;
2609	bio_list_init(&bbs->bio_queue);
2610	spin_unlock(&bbs->bio_queue_lock);
2611
2612	while ((bio = bio_list_pop(&bio_queue))) {
2613		struct dm_integrity_io *dio;
2614
2615		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2616
2617		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2618				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2619			remove_range(ic, &dio->range);
2620			INIT_WORK(&dio->work, integrity_bio_wait);
2621			queue_work(ic->offload_wq, &dio->work);
2622		} else {
2623			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2624					dio->range.n_sectors, BITMAP_OP_SET);
2625			bio_list_add(&waiting, bio);
2626		}
2627	}
2628
2629	if (bio_list_empty(&waiting))
2630		return;
2631
2632	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2633			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2634			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2635
2636	while ((bio = bio_list_pop(&waiting))) {
2637		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2638
2639		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2640				dio->range.n_sectors, BITMAP_OP_SET);
2641
2642		remove_range(ic, &dio->range);
2643		INIT_WORK(&dio->work, integrity_bio_wait);
2644		queue_work(ic->offload_wq, &dio->work);
2645	}
2646
2647	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2648}
2649
2650static void bitmap_flush_work(struct work_struct *work)
2651{
2652	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2653	struct dm_integrity_range range;
2654	unsigned long limit;
2655	struct bio *bio;
2656
2657	dm_integrity_flush_buffers(ic);
2658
2659	range.logical_sector = 0;
2660	range.n_sectors = ic->provided_data_sectors;
2661
2662	spin_lock_irq(&ic->endio_wait.lock);
2663	add_new_range_and_wait(ic, &range);
2664	spin_unlock_irq(&ic->endio_wait.lock);
2665
2666	dm_integrity_flush_buffers(ic);
2667	if (ic->meta_dev)
2668		blkdev_issue_flush(ic->dev->bdev, GFP_NOIO);
2669
2670	limit = ic->provided_data_sectors;
2671	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2672		limit = le64_to_cpu(ic->sb->recalc_sector)
2673			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2674			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2675	}
2676	/*DEBUG_print("zeroing journal\n");*/
2677	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2678	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2679
2680	rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2681			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2682
2683	spin_lock_irq(&ic->endio_wait.lock);
2684	remove_range_unlocked(ic, &range);
2685	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2686		bio_endio(bio);
2687		spin_unlock_irq(&ic->endio_wait.lock);
2688		spin_lock_irq(&ic->endio_wait.lock);
2689	}
2690	spin_unlock_irq(&ic->endio_wait.lock);
2691}
2692
2693
2694static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2695			 unsigned n_sections, unsigned char commit_seq)
2696{
2697	unsigned i, j, n;
2698
2699	if (!n_sections)
2700		return;
2701
2702	for (n = 0; n < n_sections; n++) {
2703		i = start_section + n;
2704		wraparound_section(ic, &i);
2705		for (j = 0; j < ic->journal_section_sectors; j++) {
2706			struct journal_sector *js = access_journal(ic, i, j);
2707			memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
 
 
2708			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2709		}
2710		for (j = 0; j < ic->journal_section_entries; j++) {
2711			struct journal_entry *je = access_journal_entry(ic, i, j);
 
2712			journal_entry_set_unused(je);
2713		}
2714	}
2715
2716	write_journal(ic, start_section, n_sections);
2717}
2718
2719static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2720{
2721	unsigned char k;
 
2722	for (k = 0; k < N_COMMIT_IDS; k++) {
2723		if (dm_integrity_commit_id(ic, i, j, k) == id)
2724			return k;
2725	}
2726	dm_integrity_io_error(ic, "journal commit id", -EIO);
2727	return -EIO;
2728}
2729
2730static void replay_journal(struct dm_integrity_c *ic)
2731{
2732	unsigned i, j;
2733	bool used_commit_ids[N_COMMIT_IDS];
2734	unsigned max_commit_id_sections[N_COMMIT_IDS];
2735	unsigned write_start, write_sections;
2736	unsigned continue_section;
2737	bool journal_empty;
2738	unsigned char unused, last_used, want_commit_seq;
2739
2740	if (ic->mode == 'R')
2741		return;
2742
2743	if (ic->journal_uptodate)
2744		return;
2745
2746	last_used = 0;
2747	write_start = 0;
2748
2749	if (!ic->just_formatted) {
2750		DEBUG_print("reading journal\n");
2751		rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2752		if (ic->journal_io)
2753			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2754		if (ic->journal_io) {
2755			struct journal_completion crypt_comp;
 
2756			crypt_comp.ic = ic;
2757			init_completion(&crypt_comp.comp);
2758			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2759			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2760			wait_for_completion(&crypt_comp.comp);
2761		}
2762		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2763	}
2764
2765	if (dm_integrity_failed(ic))
2766		goto clear_journal;
2767
2768	journal_empty = true;
2769	memset(used_commit_ids, 0, sizeof used_commit_ids);
2770	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2771	for (i = 0; i < ic->journal_sections; i++) {
2772		for (j = 0; j < ic->journal_section_sectors; j++) {
2773			int k;
2774			struct journal_sector *js = access_journal(ic, i, j);
 
2775			k = find_commit_seq(ic, i, j, js->commit_id);
2776			if (k < 0)
2777				goto clear_journal;
2778			used_commit_ids[k] = true;
2779			max_commit_id_sections[k] = i;
2780		}
2781		if (journal_empty) {
2782			for (j = 0; j < ic->journal_section_entries; j++) {
2783				struct journal_entry *je = access_journal_entry(ic, i, j);
 
2784				if (!journal_entry_is_unused(je)) {
2785					journal_empty = false;
2786					break;
2787				}
2788			}
2789		}
2790	}
2791
2792	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2793		unused = N_COMMIT_IDS - 1;
2794		while (unused && !used_commit_ids[unused - 1])
2795			unused--;
2796	} else {
2797		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2798			if (!used_commit_ids[unused])
2799				break;
2800		if (unused == N_COMMIT_IDS) {
2801			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2802			goto clear_journal;
2803		}
2804	}
2805	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2806		    unused, used_commit_ids[0], used_commit_ids[1],
2807		    used_commit_ids[2], used_commit_ids[3]);
2808
2809	last_used = prev_commit_seq(unused);
2810	want_commit_seq = prev_commit_seq(last_used);
2811
2812	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2813		journal_empty = true;
2814
2815	write_start = max_commit_id_sections[last_used] + 1;
2816	if (unlikely(write_start >= ic->journal_sections))
2817		want_commit_seq = next_commit_seq(want_commit_seq);
2818	wraparound_section(ic, &write_start);
2819
2820	i = write_start;
2821	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2822		for (j = 0; j < ic->journal_section_sectors; j++) {
2823			struct journal_sector *js = access_journal(ic, i, j);
2824
2825			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2826				/*
2827				 * This could be caused by crash during writing.
2828				 * We won't replay the inconsistent part of the
2829				 * journal.
2830				 */
2831				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2832					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2833				goto brk;
2834			}
2835		}
2836		i++;
2837		if (unlikely(i >= ic->journal_sections))
2838			want_commit_seq = next_commit_seq(want_commit_seq);
2839		wraparound_section(ic, &i);
2840	}
2841brk:
2842
2843	if (!journal_empty) {
2844		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2845			    write_sections, write_start, want_commit_seq);
2846		do_journal_write(ic, write_start, write_sections, true);
2847	}
2848
2849	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2850		continue_section = write_start;
2851		ic->commit_seq = want_commit_seq;
2852		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2853	} else {
2854		unsigned s;
2855		unsigned char erase_seq;
 
2856clear_journal:
2857		DEBUG_print("clearing journal\n");
2858
2859		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2860		s = write_start;
2861		init_journal(ic, s, 1, erase_seq);
2862		s++;
2863		wraparound_section(ic, &s);
2864		if (ic->journal_sections >= 2) {
2865			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2866			s += ic->journal_sections - 2;
2867			wraparound_section(ic, &s);
2868			init_journal(ic, s, 1, erase_seq);
2869		}
2870
2871		continue_section = 0;
2872		ic->commit_seq = next_commit_seq(erase_seq);
2873	}
2874
2875	ic->committed_section = continue_section;
2876	ic->n_committed_sections = 0;
2877
2878	ic->uncommitted_section = continue_section;
2879	ic->n_uncommitted_sections = 0;
2880
2881	ic->free_section = continue_section;
2882	ic->free_section_entry = 0;
2883	ic->free_sectors = ic->journal_entries;
2884
2885	ic->journal_tree_root = RB_ROOT;
2886	for (i = 0; i < ic->journal_entries; i++)
2887		init_journal_node(&ic->journal_tree[i]);
2888}
2889
2890static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
2891{
2892	DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2893
2894	if (ic->mode == 'B') {
2895		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
2896		ic->synchronous_mode = 1;
2897
2898		cancel_delayed_work_sync(&ic->bitmap_flush_work);
2899		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2900		flush_workqueue(ic->commit_wq);
2901	}
2902}
2903
2904static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
2905{
2906	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
2907
2908	DEBUG_print("dm_integrity_reboot\n");
2909
2910	dm_integrity_enter_synchronous_mode(ic);
2911
2912	return NOTIFY_DONE;
2913}
2914
2915static void dm_integrity_postsuspend(struct dm_target *ti)
2916{
2917	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2918	int r;
2919
2920	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
2921
2922	del_timer_sync(&ic->autocommit_timer);
2923
2924	if (ic->recalc_wq)
2925		drain_workqueue(ic->recalc_wq);
2926
2927	if (ic->mode == 'B')
2928		cancel_delayed_work_sync(&ic->bitmap_flush_work);
2929
2930	queue_work(ic->commit_wq, &ic->commit_work);
2931	drain_workqueue(ic->commit_wq);
2932
2933	if (ic->mode == 'J') {
2934		if (ic->meta_dev)
2935			queue_work(ic->writer_wq, &ic->writer_work);
2936		drain_workqueue(ic->writer_wq);
2937		dm_integrity_flush_buffers(ic);
 
 
 
 
 
 
 
 
2938	}
2939
2940	if (ic->mode == 'B') {
2941		dm_integrity_flush_buffers(ic);
2942#if 1
2943		/* set to 0 to test bitmap replay code */
2944		init_journal(ic, 0, ic->journal_sections, 0);
2945		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2946		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2947		if (unlikely(r))
2948			dm_integrity_io_error(ic, "writing superblock", r);
2949#endif
2950	}
2951
2952	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2953
2954	ic->journal_uptodate = true;
2955}
2956
2957static void dm_integrity_resume(struct dm_target *ti)
2958{
2959	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2960	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
2961	int r;
2962
2963	DEBUG_print("resume\n");
2964
 
 
2965	if (ic->provided_data_sectors != old_provided_data_sectors) {
2966		if (ic->provided_data_sectors > old_provided_data_sectors &&
2967		    ic->mode == 'B' &&
2968		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
2969			rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
2970					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2971			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
2972					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
2973			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2974					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2975		}
2976
2977		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2978		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2979		if (unlikely(r))
2980			dm_integrity_io_error(ic, "writing superblock", r);
2981	}
2982
2983	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
2984		DEBUG_print("resume dirty_bitmap\n");
2985		rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
2986				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2987		if (ic->mode == 'B') {
2988			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
 
2989				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
2990				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
2991				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
2992						     BITMAP_OP_TEST_ALL_CLEAR)) {
2993					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2994					ic->sb->recalc_sector = cpu_to_le64(0);
2995				}
2996			} else {
2997				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
2998					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
2999				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3000				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3001				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3002				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3003				rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3004						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3005				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3006				ic->sb->recalc_sector = cpu_to_le64(0);
3007			}
3008		} else {
3009			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3010			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
 
3011				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3012				ic->sb->recalc_sector = cpu_to_le64(0);
3013			}
3014			init_journal(ic, 0, ic->journal_sections, 0);
3015			replay_journal(ic);
3016			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3017		}
3018		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3019		if (unlikely(r))
3020			dm_integrity_io_error(ic, "writing superblock", r);
3021	} else {
3022		replay_journal(ic);
 
 
 
 
3023		if (ic->mode == 'B') {
3024			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3025			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3026			r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3027			if (unlikely(r))
3028				dm_integrity_io_error(ic, "writing superblock", r);
3029
3030			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3031			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3032			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3033			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3034			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3035				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3036						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3037				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3038						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3039				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3040						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3041			}
3042			rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3043					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3044		}
3045	}
3046
3047	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3048	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3049		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
 
3050		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3051		if (recalc_pos < ic->provided_data_sectors) {
3052			queue_work(ic->recalc_wq, &ic->recalc_work);
3053		} else if (recalc_pos > ic->provided_data_sectors) {
3054			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3055			recalc_write_super(ic);
3056		}
3057	}
3058
3059	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3060	ic->reboot_notifier.next = NULL;
3061	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3062	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3063
3064#if 0
3065	/* set to 1 to stress test synchronous mode */
3066	dm_integrity_enter_synchronous_mode(ic);
3067#endif
3068}
3069
3070static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3071				unsigned status_flags, char *result, unsigned maxlen)
3072{
3073	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3074	unsigned arg_count;
3075	size_t sz = 0;
3076
3077	switch (type) {
3078	case STATUSTYPE_INFO:
3079		DMEMIT("%llu %llu",
3080			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3081			ic->provided_data_sectors);
3082		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3083			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3084		else
3085			DMEMIT(" -");
3086		break;
3087
3088	case STATUSTYPE_TABLE: {
3089		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
 
3090		watermark_percentage += ic->journal_entries / 2;
3091		do_div(watermark_percentage, ic->journal_entries);
3092		arg_count = 3;
3093		arg_count += !!ic->meta_dev;
3094		arg_count += ic->sectors_per_block != 1;
3095		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
 
3096		arg_count += ic->discard;
3097		arg_count += ic->mode == 'J';
3098		arg_count += ic->mode == 'J';
3099		arg_count += ic->mode == 'B';
3100		arg_count += ic->mode == 'B';
3101		arg_count += !!ic->internal_hash_alg.alg_string;
3102		arg_count += !!ic->journal_crypt_alg.alg_string;
3103		arg_count += !!ic->journal_mac_alg.alg_string;
3104		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
 
 
3105		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3106		       ic->tag_size, ic->mode, arg_count);
3107		if (ic->meta_dev)
3108			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3109		if (ic->sectors_per_block != 1)
3110			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3111		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3112			DMEMIT(" recalculate");
 
 
3113		if (ic->discard)
3114			DMEMIT(" allow_discards");
3115		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3116		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3117		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3118		if (ic->mode == 'J') {
3119			DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3120			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3121		}
3122		if (ic->mode == 'B') {
3123			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3124			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3125		}
3126		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3127			DMEMIT(" fix_padding");
 
 
 
 
3128
3129#define EMIT_ALG(a, n)							\
3130		do {							\
3131			if (ic->a.alg_string) {				\
3132				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3133				if (ic->a.key_string)			\
3134					DMEMIT(":%s", ic->a.key_string);\
3135			}						\
3136		} while (0)
3137		EMIT_ALG(internal_hash_alg, "internal_hash");
3138		EMIT_ALG(journal_crypt_alg, "journal_crypt");
3139		EMIT_ALG(journal_mac_alg, "journal_mac");
3140		break;
3141	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3142	}
3143}
3144
3145static int dm_integrity_iterate_devices(struct dm_target *ti,
3146					iterate_devices_callout_fn fn, void *data)
3147{
3148	struct dm_integrity_c *ic = ti->private;
3149
3150	if (!ic->meta_dev)
3151		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3152	else
3153		return fn(ti, ic->dev, 0, ti->len, data);
3154}
3155
3156static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3157{
3158	struct dm_integrity_c *ic = ti->private;
3159
3160	if (ic->sectors_per_block > 1) {
3161		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3162		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3163		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
 
3164	}
3165}
3166
3167static void calculate_journal_section_size(struct dm_integrity_c *ic)
3168{
3169	unsigned sector_space = JOURNAL_SECTOR_DATA;
3170
3171	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3172	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3173					 JOURNAL_ENTRY_ROUNDUP);
3174
3175	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3176		sector_space -= JOURNAL_MAC_PER_SECTOR;
3177	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3178	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3179	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3180	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3181}
3182
3183static int calculate_device_limits(struct dm_integrity_c *ic)
3184{
3185	__u64 initial_sectors;
3186
3187	calculate_journal_section_size(ic);
3188	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3189	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3190		return -EINVAL;
3191	ic->initial_sectors = initial_sectors;
3192
3193	if (!ic->meta_dev) {
3194		sector_t last_sector, last_area, last_offset;
3195
3196		/* we have to maintain excessive padding for compatibility with existing volumes */
3197		__u64 metadata_run_padding =
3198			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3199			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3200			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3201
3202		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3203					    metadata_run_padding) >> SECTOR_SHIFT;
3204		if (!(ic->metadata_run & (ic->metadata_run - 1)))
3205			ic->log2_metadata_run = __ffs(ic->metadata_run);
3206		else
3207			ic->log2_metadata_run = -1;
3208
3209		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3210		last_sector = get_data_sector(ic, last_area, last_offset);
3211		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3212			return -EINVAL;
3213	} else {
3214		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
 
3215		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3216				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3217		meta_size <<= ic->log2_buffer_sectors;
3218		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3219		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
3220			return -EINVAL;
3221		ic->metadata_run = 1;
3222		ic->log2_metadata_run = 0;
3223	}
3224
3225	return 0;
3226}
3227
3228static void get_provided_data_sectors(struct dm_integrity_c *ic)
3229{
3230	if (!ic->meta_dev) {
3231		int test_bit;
 
3232		ic->provided_data_sectors = 0;
3233		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3234			__u64 prev_data_sectors = ic->provided_data_sectors;
3235
3236			ic->provided_data_sectors |= (sector_t)1 << test_bit;
3237			if (calculate_device_limits(ic))
3238				ic->provided_data_sectors = prev_data_sectors;
3239		}
3240	} else {
3241		ic->provided_data_sectors = ic->data_device_sectors;
3242		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3243	}
3244}
3245
3246static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
 
3247{
3248	unsigned journal_sections;
3249	int test_bit;
3250
3251	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3252	memcpy(ic->sb->magic, SB_MAGIC, 8);
3253	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3254	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3255	if (ic->journal_mac_alg.alg_string)
3256		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3257
3258	calculate_journal_section_size(ic);
3259	journal_sections = journal_sectors / ic->journal_section_sectors;
3260	if (!journal_sections)
3261		journal_sections = 1;
3262
 
 
 
 
 
3263	if (!ic->meta_dev) {
3264		if (ic->fix_padding)
3265			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3266		ic->sb->journal_sections = cpu_to_le32(journal_sections);
3267		if (!interleave_sectors)
3268			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3269		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3270		ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3271		ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3272
3273		get_provided_data_sectors(ic);
3274		if (!ic->provided_data_sectors)
3275			return -EINVAL;
3276	} else {
3277		ic->sb->log2_interleave_sectors = 0;
3278
3279		get_provided_data_sectors(ic);
3280		if (!ic->provided_data_sectors)
3281			return -EINVAL;
3282
3283try_smaller_buffer:
3284		ic->sb->journal_sections = cpu_to_le32(0);
3285		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3286			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3287			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
 
3288			if (test_journal_sections > journal_sections)
3289				continue;
3290			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3291			if (calculate_device_limits(ic))
3292				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3293
3294		}
3295		if (!le32_to_cpu(ic->sb->journal_sections)) {
3296			if (ic->log2_buffer_sectors > 3) {
3297				ic->log2_buffer_sectors--;
3298				goto try_smaller_buffer;
3299			}
3300			return -EINVAL;
3301		}
3302	}
3303
3304	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3305
3306	sb_set_version(ic);
3307
3308	return 0;
3309}
3310
3311static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3312{
3313	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3314	struct blk_integrity bi;
3315
3316	memset(&bi, 0, sizeof(bi));
3317	bi.profile = &dm_integrity_profile;
3318	bi.tuple_size = ic->tag_size;
3319	bi.tag_size = bi.tuple_size;
3320	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3321
3322	blk_integrity_register(disk, &bi);
3323	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3324}
3325
3326static void dm_integrity_free_page_list(struct page_list *pl)
3327{
3328	unsigned i;
3329
3330	if (!pl)
3331		return;
3332	for (i = 0; pl[i].page; i++)
3333		__free_page(pl[i].page);
3334	kvfree(pl);
3335}
3336
3337static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3338{
3339	struct page_list *pl;
3340	unsigned i;
3341
3342	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3343	if (!pl)
3344		return NULL;
3345
3346	for (i = 0; i < n_pages; i++) {
3347		pl[i].page = alloc_page(GFP_KERNEL);
3348		if (!pl[i].page) {
3349			dm_integrity_free_page_list(pl);
3350			return NULL;
3351		}
3352		if (i)
3353			pl[i - 1].next = &pl[i];
3354	}
3355	pl[i].page = NULL;
3356	pl[i].next = NULL;
3357
3358	return pl;
3359}
3360
3361static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3362{
3363	unsigned i;
 
3364	for (i = 0; i < ic->journal_sections; i++)
3365		kvfree(sl[i]);
3366	kvfree(sl);
3367}
3368
3369static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3370								   struct page_list *pl)
3371{
3372	struct scatterlist **sl;
3373	unsigned i;
3374
3375	sl = kvmalloc_array(ic->journal_sections,
3376			    sizeof(struct scatterlist *),
3377			    GFP_KERNEL | __GFP_ZERO);
3378	if (!sl)
3379		return NULL;
3380
3381	for (i = 0; i < ic->journal_sections; i++) {
3382		struct scatterlist *s;
3383		unsigned start_index, start_offset;
3384		unsigned end_index, end_offset;
3385		unsigned n_pages;
3386		unsigned idx;
3387
3388		page_list_location(ic, i, 0, &start_index, &start_offset);
3389		page_list_location(ic, i, ic->journal_section_sectors - 1,
3390				   &end_index, &end_offset);
3391
3392		n_pages = (end_index - start_index + 1);
3393
3394		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3395				   GFP_KERNEL);
3396		if (!s) {
3397			dm_integrity_free_journal_scatterlist(ic, sl);
3398			return NULL;
3399		}
3400
3401		sg_init_table(s, n_pages);
3402		for (idx = start_index; idx <= end_index; idx++) {
3403			char *va = lowmem_page_address(pl[idx].page);
3404			unsigned start = 0, end = PAGE_SIZE;
 
3405			if (idx == start_index)
3406				start = start_offset;
3407			if (idx == end_index)
3408				end = end_offset + (1 << SECTOR_SHIFT);
3409			sg_set_buf(&s[idx - start_index], va + start, end - start);
3410		}
3411
3412		sl[i] = s;
3413	}
3414
3415	return sl;
3416}
3417
3418static void free_alg(struct alg_spec *a)
3419{
3420	kfree_sensitive(a->alg_string);
3421	kfree_sensitive(a->key);
3422	memset(a, 0, sizeof *a);
3423}
3424
3425static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3426{
3427	char *k;
3428
3429	free_alg(a);
3430
3431	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3432	if (!a->alg_string)
3433		goto nomem;
3434
3435	k = strchr(a->alg_string, ':');
3436	if (k) {
3437		*k = 0;
3438		a->key_string = k + 1;
3439		if (strlen(a->key_string) & 1)
3440			goto inval;
3441
3442		a->key_size = strlen(a->key_string) / 2;
3443		a->key = kmalloc(a->key_size, GFP_KERNEL);
3444		if (!a->key)
3445			goto nomem;
3446		if (hex2bin(a->key, a->key_string, a->key_size))
3447			goto inval;
3448	}
3449
3450	return 0;
3451inval:
3452	*error = error_inval;
3453	return -EINVAL;
3454nomem:
3455	*error = "Out of memory for an argument";
3456	return -ENOMEM;
3457}
3458
3459static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3460		   char *error_alg, char *error_key)
3461{
3462	int r;
3463
3464	if (a->alg_string) {
3465		*hash = crypto_alloc_shash(a->alg_string, 0, 0);
3466		if (IS_ERR(*hash)) {
3467			*error = error_alg;
3468			r = PTR_ERR(*hash);
3469			*hash = NULL;
3470			return r;
3471		}
3472
3473		if (a->key) {
3474			r = crypto_shash_setkey(*hash, a->key, a->key_size);
3475			if (r) {
3476				*error = error_key;
3477				return r;
3478			}
3479		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3480			*error = error_key;
3481			return -ENOKEY;
3482		}
3483	}
3484
3485	return 0;
3486}
3487
3488static int create_journal(struct dm_integrity_c *ic, char **error)
3489{
3490	int r = 0;
3491	unsigned i;
3492	__u64 journal_pages, journal_desc_size, journal_tree_size;
3493	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3494	struct skcipher_request *req = NULL;
3495
3496	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3497	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3498	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3499	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3500
3501	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3502				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3503	journal_desc_size = journal_pages * sizeof(struct page_list);
3504	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3505		*error = "Journal doesn't fit into memory";
3506		r = -ENOMEM;
3507		goto bad;
3508	}
3509	ic->journal_pages = journal_pages;
3510
3511	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3512	if (!ic->journal) {
3513		*error = "Could not allocate memory for journal";
3514		r = -ENOMEM;
3515		goto bad;
3516	}
3517	if (ic->journal_crypt_alg.alg_string) {
3518		unsigned ivsize, blocksize;
3519		struct journal_completion comp;
3520
3521		comp.ic = ic;
3522		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
3523		if (IS_ERR(ic->journal_crypt)) {
3524			*error = "Invalid journal cipher";
3525			r = PTR_ERR(ic->journal_crypt);
3526			ic->journal_crypt = NULL;
3527			goto bad;
3528		}
3529		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3530		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3531
3532		if (ic->journal_crypt_alg.key) {
3533			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3534						   ic->journal_crypt_alg.key_size);
3535			if (r) {
3536				*error = "Error setting encryption key";
3537				goto bad;
3538			}
3539		}
3540		DEBUG_print("cipher %s, block size %u iv size %u\n",
3541			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3542
3543		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3544		if (!ic->journal_io) {
3545			*error = "Could not allocate memory for journal io";
3546			r = -ENOMEM;
3547			goto bad;
3548		}
3549
3550		if (blocksize == 1) {
3551			struct scatterlist *sg;
3552
3553			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3554			if (!req) {
3555				*error = "Could not allocate crypt request";
3556				r = -ENOMEM;
3557				goto bad;
3558			}
3559
3560			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3561			if (!crypt_iv) {
3562				*error = "Could not allocate iv";
3563				r = -ENOMEM;
3564				goto bad;
3565			}
3566
3567			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3568			if (!ic->journal_xor) {
3569				*error = "Could not allocate memory for journal xor";
3570				r = -ENOMEM;
3571				goto bad;
3572			}
3573
3574			sg = kvmalloc_array(ic->journal_pages + 1,
3575					    sizeof(struct scatterlist),
3576					    GFP_KERNEL);
3577			if (!sg) {
3578				*error = "Unable to allocate sg list";
3579				r = -ENOMEM;
3580				goto bad;
3581			}
3582			sg_init_table(sg, ic->journal_pages + 1);
3583			for (i = 0; i < ic->journal_pages; i++) {
3584				char *va = lowmem_page_address(ic->journal_xor[i].page);
 
3585				clear_page(va);
3586				sg_set_buf(&sg[i], va, PAGE_SIZE);
3587			}
3588			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3589
3590			skcipher_request_set_crypt(req, sg, sg,
3591						   PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3592			init_completion(&comp.comp);
3593			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3594			if (do_crypt(true, req, &comp))
3595				wait_for_completion(&comp.comp);
3596			kvfree(sg);
3597			r = dm_integrity_failed(ic);
3598			if (r) {
3599				*error = "Unable to encrypt journal";
3600				goto bad;
3601			}
3602			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3603
3604			crypto_free_skcipher(ic->journal_crypt);
3605			ic->journal_crypt = NULL;
3606		} else {
3607			unsigned crypt_len = roundup(ivsize, blocksize);
3608
3609			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3610			if (!req) {
3611				*error = "Could not allocate crypt request";
3612				r = -ENOMEM;
3613				goto bad;
3614			}
3615
3616			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3617			if (!crypt_iv) {
3618				*error = "Could not allocate iv";
3619				r = -ENOMEM;
3620				goto bad;
3621			}
3622
3623			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3624			if (!crypt_data) {
3625				*error = "Unable to allocate crypt data";
3626				r = -ENOMEM;
3627				goto bad;
3628			}
3629
3630			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3631			if (!ic->journal_scatterlist) {
3632				*error = "Unable to allocate sg list";
3633				r = -ENOMEM;
3634				goto bad;
3635			}
3636			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3637			if (!ic->journal_io_scatterlist) {
3638				*error = "Unable to allocate sg list";
3639				r = -ENOMEM;
3640				goto bad;
3641			}
3642			ic->sk_requests = kvmalloc_array(ic->journal_sections,
3643							 sizeof(struct skcipher_request *),
3644							 GFP_KERNEL | __GFP_ZERO);
3645			if (!ic->sk_requests) {
3646				*error = "Unable to allocate sk requests";
3647				r = -ENOMEM;
3648				goto bad;
3649			}
3650			for (i = 0; i < ic->journal_sections; i++) {
3651				struct scatterlist sg;
3652				struct skcipher_request *section_req;
3653				__u32 section_le = cpu_to_le32(i);
3654
3655				memset(crypt_iv, 0x00, ivsize);
3656				memset(crypt_data, 0x00, crypt_len);
3657				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3658
3659				sg_init_one(&sg, crypt_data, crypt_len);
3660				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3661				init_completion(&comp.comp);
3662				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3663				if (do_crypt(true, req, &comp))
3664					wait_for_completion(&comp.comp);
3665
3666				r = dm_integrity_failed(ic);
3667				if (r) {
3668					*error = "Unable to generate iv";
3669					goto bad;
3670				}
3671
3672				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3673				if (!section_req) {
3674					*error = "Unable to allocate crypt request";
3675					r = -ENOMEM;
3676					goto bad;
3677				}
3678				section_req->iv = kmalloc_array(ivsize, 2,
3679								GFP_KERNEL);
3680				if (!section_req->iv) {
3681					skcipher_request_free(section_req);
3682					*error = "Unable to allocate iv";
3683					r = -ENOMEM;
3684					goto bad;
3685				}
3686				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3687				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3688				ic->sk_requests[i] = section_req;
3689				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3690			}
3691		}
3692	}
3693
3694	for (i = 0; i < N_COMMIT_IDS; i++) {
3695		unsigned j;
 
3696retest_commit_id:
3697		for (j = 0; j < i; j++) {
3698			if (ic->commit_ids[j] == ic->commit_ids[i]) {
3699				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3700				goto retest_commit_id;
3701			}
3702		}
3703		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3704	}
3705
3706	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3707	if (journal_tree_size > ULONG_MAX) {
3708		*error = "Journal doesn't fit into memory";
3709		r = -ENOMEM;
3710		goto bad;
3711	}
3712	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3713	if (!ic->journal_tree) {
3714		*error = "Could not allocate memory for journal tree";
3715		r = -ENOMEM;
3716	}
3717bad:
3718	kfree(crypt_data);
3719	kfree(crypt_iv);
3720	skcipher_request_free(req);
3721
3722	return r;
3723}
3724
3725/*
3726 * Construct a integrity mapping
3727 *
3728 * Arguments:
3729 *	device
3730 *	offset from the start of the device
3731 *	tag size
3732 *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3733 *	number of optional arguments
3734 *	optional arguments:
3735 *		journal_sectors
3736 *		interleave_sectors
3737 *		buffer_sectors
3738 *		journal_watermark
3739 *		commit_time
3740 *		meta_device
3741 *		block_size
3742 *		sectors_per_bit
3743 *		bitmap_flush_interval
3744 *		internal_hash
3745 *		journal_crypt
3746 *		journal_mac
3747 *		recalculate
3748 */
3749static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3750{
3751	struct dm_integrity_c *ic;
3752	char dummy;
3753	int r;
3754	unsigned extra_args;
3755	struct dm_arg_set as;
3756	static const struct dm_arg _args[] = {
3757		{0, 9, "Invalid number of feature args"},
3758	};
3759	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3760	bool should_write_sb;
3761	__u64 threshold;
3762	unsigned long long start;
3763	__s8 log2_sectors_per_bitmap_bit = -1;
3764	__s8 log2_blocks_per_bitmap_bit;
3765	__u64 bits_in_journal;
3766	__u64 n_bitmap_bits;
3767
3768#define DIRECT_ARGUMENTS	4
3769
3770	if (argc <= DIRECT_ARGUMENTS) {
3771		ti->error = "Invalid argument count";
3772		return -EINVAL;
3773	}
3774
3775	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3776	if (!ic) {
3777		ti->error = "Cannot allocate integrity context";
3778		return -ENOMEM;
3779	}
3780	ti->private = ic;
3781	ti->per_io_data_size = sizeof(struct dm_integrity_io);
3782	ic->ti = ti;
3783
3784	ic->in_progress = RB_ROOT;
3785	INIT_LIST_HEAD(&ic->wait_list);
3786	init_waitqueue_head(&ic->endio_wait);
3787	bio_list_init(&ic->flush_bio_list);
3788	init_waitqueue_head(&ic->copy_to_journal_wait);
3789	init_completion(&ic->crypto_backoff);
3790	atomic64_set(&ic->number_of_mismatches, 0);
3791	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3792
3793	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3794	if (r) {
3795		ti->error = "Device lookup failed";
3796		goto bad;
3797	}
3798
3799	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3800		ti->error = "Invalid starting offset";
3801		r = -EINVAL;
3802		goto bad;
3803	}
3804	ic->start = start;
3805
3806	if (strcmp(argv[2], "-")) {
3807		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3808			ti->error = "Invalid tag size";
3809			r = -EINVAL;
3810			goto bad;
3811		}
3812	}
3813
3814	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3815	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3816		ic->mode = argv[3][0];
3817	} else {
3818		ti->error = "Invalid mode (expecting J, B, D, R)";
3819		r = -EINVAL;
3820		goto bad;
3821	}
3822
3823	journal_sectors = 0;
3824	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3825	buffer_sectors = DEFAULT_BUFFER_SECTORS;
3826	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3827	sync_msec = DEFAULT_SYNC_MSEC;
3828	ic->sectors_per_block = 1;
3829
3830	as.argc = argc - DIRECT_ARGUMENTS;
3831	as.argv = argv + DIRECT_ARGUMENTS;
3832	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3833	if (r)
3834		goto bad;
3835
3836	while (extra_args--) {
3837		const char *opt_string;
3838		unsigned val;
3839		unsigned long long llval;
 
3840		opt_string = dm_shift_arg(&as);
3841		if (!opt_string) {
3842			r = -EINVAL;
3843			ti->error = "Not enough feature arguments";
3844			goto bad;
3845		}
3846		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3847			journal_sectors = val ? val : 1;
3848		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3849			interleave_sectors = val;
3850		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3851			buffer_sectors = val;
3852		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3853			journal_watermark = val;
3854		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3855			sync_msec = val;
3856		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3857			if (ic->meta_dev) {
3858				dm_put_device(ti, ic->meta_dev);
3859				ic->meta_dev = NULL;
3860			}
3861			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
3862					  dm_table_get_mode(ti->table), &ic->meta_dev);
3863			if (r) {
3864				ti->error = "Device lookup failed";
3865				goto bad;
3866			}
3867		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3868			if (val < 1 << SECTOR_SHIFT ||
3869			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3870			    (val & (val -1))) {
3871				r = -EINVAL;
3872				ti->error = "Invalid block_size argument";
3873				goto bad;
3874			}
3875			ic->sectors_per_block = val >> SECTOR_SHIFT;
3876		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
3877			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
3878		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
3879			if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
3880				r = -EINVAL;
3881				ti->error = "Invalid bitmap_flush_interval argument";
 
3882			}
3883			ic->bitmap_flush_interval = msecs_to_jiffies(val);
3884		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3885			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3886					    "Invalid internal_hash argument");
3887			if (r)
3888				goto bad;
3889		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3890			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3891					    "Invalid journal_crypt argument");
3892			if (r)
3893				goto bad;
3894		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3895			r = get_alg_and_key(opt_string, &ic->journal_mac_alg,  &ti->error,
3896					    "Invalid journal_mac argument");
3897			if (r)
3898				goto bad;
3899		} else if (!strcmp(opt_string, "recalculate")) {
3900			ic->recalculate_flag = true;
 
 
 
3901		} else if (!strcmp(opt_string, "allow_discards")) {
3902			ic->discard = true;
3903		} else if (!strcmp(opt_string, "fix_padding")) {
3904			ic->fix_padding = true;
 
 
 
 
3905		} else {
3906			r = -EINVAL;
3907			ti->error = "Invalid argument";
3908			goto bad;
3909		}
3910	}
3911
3912	ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3913	if (!ic->meta_dev)
3914		ic->meta_device_sectors = ic->data_device_sectors;
3915	else
3916		ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3917
3918	if (!journal_sectors) {
3919		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3920				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3921	}
3922
3923	if (!buffer_sectors)
3924		buffer_sectors = 1;
3925	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3926
3927	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3928		    "Invalid internal hash", "Error setting internal hash key");
3929	if (r)
3930		goto bad;
3931
3932	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3933		    "Invalid journal mac", "Error setting journal mac key");
3934	if (r)
3935		goto bad;
3936
3937	if (!ic->tag_size) {
3938		if (!ic->internal_hash) {
3939			ti->error = "Unknown tag size";
3940			r = -EINVAL;
3941			goto bad;
3942		}
3943		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3944	}
3945	if (ic->tag_size > MAX_TAG_SIZE) {
3946		ti->error = "Too big tag size";
3947		r = -EINVAL;
3948		goto bad;
3949	}
3950	if (!(ic->tag_size & (ic->tag_size - 1)))
3951		ic->log2_tag_size = __ffs(ic->tag_size);
3952	else
3953		ic->log2_tag_size = -1;
3954
3955	if (ic->mode == 'B' && !ic->internal_hash) {
3956		r = -EINVAL;
3957		ti->error = "Bitmap mode can be only used with internal hash";
3958		goto bad;
3959	}
3960
3961	if (ic->discard && !ic->internal_hash) {
3962		r = -EINVAL;
3963		ti->error = "Discard can be only used with internal hash";
3964		goto bad;
3965	}
3966
3967	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3968	ic->autocommit_msec = sync_msec;
3969	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3970
3971	ic->io = dm_io_client_create();
3972	if (IS_ERR(ic->io)) {
3973		r = PTR_ERR(ic->io);
3974		ic->io = NULL;
3975		ti->error = "Cannot allocate dm io";
3976		goto bad;
3977	}
3978
3979	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3980	if (r) {
3981		ti->error = "Cannot allocate mempool";
3982		goto bad;
3983	}
3984
 
 
 
 
 
 
3985	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3986					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3987	if (!ic->metadata_wq) {
3988		ti->error = "Cannot allocate workqueue";
3989		r = -ENOMEM;
3990		goto bad;
3991	}
3992
3993	/*
3994	 * If this workqueue were percpu, it would cause bio reordering
3995	 * and reduced performance.
3996	 */
3997	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3998	if (!ic->wait_wq) {
3999		ti->error = "Cannot allocate workqueue";
4000		r = -ENOMEM;
4001		goto bad;
4002	}
4003
4004	ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4005					  METADATA_WORKQUEUE_MAX_ACTIVE);
4006	if (!ic->offload_wq) {
4007		ti->error = "Cannot allocate workqueue";
4008		r = -ENOMEM;
4009		goto bad;
4010	}
4011
4012	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4013	if (!ic->commit_wq) {
4014		ti->error = "Cannot allocate workqueue";
4015		r = -ENOMEM;
4016		goto bad;
4017	}
4018	INIT_WORK(&ic->commit_work, integrity_commit);
4019
4020	if (ic->mode == 'J' || ic->mode == 'B') {
4021		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4022		if (!ic->writer_wq) {
4023			ti->error = "Cannot allocate workqueue";
4024			r = -ENOMEM;
4025			goto bad;
4026		}
4027		INIT_WORK(&ic->writer_work, integrity_writer);
4028	}
4029
4030	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4031	if (!ic->sb) {
4032		r = -ENOMEM;
4033		ti->error = "Cannot allocate superblock area";
4034		goto bad;
4035	}
4036
4037	r = sync_rw_sb(ic, REQ_OP_READ, 0);
4038	if (r) {
4039		ti->error = "Error reading superblock";
4040		goto bad;
4041	}
4042	should_write_sb = false;
4043	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4044		if (ic->mode != 'R') {
4045			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4046				r = -EINVAL;
4047				ti->error = "The device is not initialized";
4048				goto bad;
4049			}
4050		}
4051
4052		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4053		if (r) {
4054			ti->error = "Could not initialize superblock";
4055			goto bad;
4056		}
4057		if (ic->mode != 'R')
4058			should_write_sb = true;
4059	}
4060
4061	if (!ic->sb->version || ic->sb->version > SB_VERSION_4) {
4062		r = -EINVAL;
4063		ti->error = "Unknown version";
4064		goto bad;
4065	}
4066	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4067		r = -EINVAL;
4068		ti->error = "Tag size doesn't match the information in superblock";
4069		goto bad;
4070	}
4071	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4072		r = -EINVAL;
4073		ti->error = "Block size doesn't match the information in superblock";
4074		goto bad;
4075	}
4076	if (!le32_to_cpu(ic->sb->journal_sections)) {
4077		r = -EINVAL;
4078		ti->error = "Corrupted superblock, journal_sections is 0";
4079		goto bad;
4080	}
4081	/* make sure that ti->max_io_len doesn't overflow */
4082	if (!ic->meta_dev) {
4083		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4084		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4085			r = -EINVAL;
4086			ti->error = "Invalid interleave_sectors in the superblock";
4087			goto bad;
4088		}
4089	} else {
4090		if (ic->sb->log2_interleave_sectors) {
4091			r = -EINVAL;
4092			ti->error = "Invalid interleave_sectors in the superblock";
4093			goto bad;
4094		}
4095	}
4096	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4097		r = -EINVAL;
4098		ti->error = "Journal mac mismatch";
4099		goto bad;
4100	}
4101
4102	get_provided_data_sectors(ic);
4103	if (!ic->provided_data_sectors) {
4104		r = -EINVAL;
4105		ti->error = "The device is too small";
4106		goto bad;
4107	}
4108
4109try_smaller_buffer:
4110	r = calculate_device_limits(ic);
4111	if (r) {
4112		if (ic->meta_dev) {
4113			if (ic->log2_buffer_sectors > 3) {
4114				ic->log2_buffer_sectors--;
4115				goto try_smaller_buffer;
4116			}
4117		}
4118		ti->error = "The device is too small";
4119		goto bad;
4120	}
4121
4122	if (log2_sectors_per_bitmap_bit < 0)
4123		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4124	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4125		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4126
4127	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4128	if (bits_in_journal > UINT_MAX)
4129		bits_in_journal = UINT_MAX;
4130	while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4131		log2_sectors_per_bitmap_bit++;
4132
4133	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4134	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4135	if (should_write_sb) {
4136		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4137	}
4138	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4139				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4140	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4141
4142	if (!ic->meta_dev)
4143		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4144
4145	if (ti->len > ic->provided_data_sectors) {
4146		r = -EINVAL;
4147		ti->error = "Not enough provided sectors for requested mapping size";
4148		goto bad;
4149	}
4150
4151
4152	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4153	threshold += 50;
4154	do_div(threshold, 100);
4155	ic->free_sectors_threshold = threshold;
4156
4157	DEBUG_print("initialized:\n");
4158	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4159	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
4160	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4161	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
4162	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
4163	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4164	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
4165	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4166	DEBUG_print("	data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
4167	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
4168	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
4169	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
4170	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4171	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4172	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
4173
4174	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4175		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4176		ic->sb->recalc_sector = cpu_to_le64(0);
4177	}
4178
4179	if (ic->internal_hash) {
4180		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4181		if (!ic->recalc_wq ) {
4182			ti->error = "Cannot allocate workqueue";
4183			r = -ENOMEM;
4184			goto bad;
4185		}
4186		INIT_WORK(&ic->recalc_work, integrity_recalc);
4187		ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4188		if (!ic->recalc_buffer) {
4189			ti->error = "Cannot allocate buffer for recalculating";
4190			r = -ENOMEM;
4191			goto bad;
4192		}
4193		ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4194						 ic->tag_size, GFP_KERNEL);
4195		if (!ic->recalc_tags) {
4196			ti->error = "Cannot allocate tags for recalculating";
4197			r = -ENOMEM;
4198			goto bad;
4199		}
 
 
 
 
 
 
 
 
4200	}
4201
4202	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4203			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4204	if (IS_ERR(ic->bufio)) {
4205		r = PTR_ERR(ic->bufio);
4206		ti->error = "Cannot initialize dm-bufio";
4207		ic->bufio = NULL;
4208		goto bad;
4209	}
4210	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4211
4212	if (ic->mode != 'R') {
4213		r = create_journal(ic, &ti->error);
4214		if (r)
4215			goto bad;
4216
4217	}
4218
4219	if (ic->mode == 'B') {
4220		unsigned i;
4221		unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4222
4223		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4224		if (!ic->recalc_bitmap) {
4225			r = -ENOMEM;
4226			goto bad;
4227		}
4228		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4229		if (!ic->may_write_bitmap) {
4230			r = -ENOMEM;
4231			goto bad;
4232		}
4233		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4234		if (!ic->bbs) {
4235			r = -ENOMEM;
4236			goto bad;
4237		}
4238		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4239		for (i = 0; i < ic->n_bitmap_blocks; i++) {
4240			struct bitmap_block_status *bbs = &ic->bbs[i];
4241			unsigned sector, pl_index, pl_offset;
4242
4243			INIT_WORK(&bbs->work, bitmap_block_work);
4244			bbs->ic = ic;
4245			bbs->idx = i;
4246			bio_list_init(&bbs->bio_queue);
4247			spin_lock_init(&bbs->bio_queue_lock);
4248
4249			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4250			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4251			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4252
4253			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4254		}
4255	}
4256
4257	if (should_write_sb) {
4258		int r;
4259
4260		init_journal(ic, 0, ic->journal_sections, 0);
4261		r = dm_integrity_failed(ic);
4262		if (unlikely(r)) {
4263			ti->error = "Error initializing journal";
4264			goto bad;
4265		}
4266		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4267		if (r) {
4268			ti->error = "Error initializing superblock";
4269			goto bad;
4270		}
4271		ic->just_formatted = true;
4272	}
4273
4274	if (!ic->meta_dev) {
4275		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4276		if (r)
4277			goto bad;
4278	}
4279	if (ic->mode == 'B') {
4280		unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
 
 
4281		if (!max_io_len)
4282			max_io_len = 1U << 31;
4283		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4284		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4285			r = dm_set_target_max_io_len(ti, max_io_len);
4286			if (r)
4287				goto bad;
4288		}
4289	}
4290
4291	if (!ic->internal_hash)
4292		dm_integrity_set(ti, ic);
4293
4294	ti->num_flush_bios = 1;
4295	ti->flush_supported = true;
4296	if (ic->discard)
4297		ti->num_discard_bios = 1;
4298
 
4299	return 0;
4300
4301bad:
 
4302	dm_integrity_dtr(ti);
4303	return r;
4304}
4305
4306static void dm_integrity_dtr(struct dm_target *ti)
4307{
4308	struct dm_integrity_c *ic = ti->private;
4309
4310	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4311	BUG_ON(!list_empty(&ic->wait_list));
4312
 
 
4313	if (ic->metadata_wq)
4314		destroy_workqueue(ic->metadata_wq);
4315	if (ic->wait_wq)
4316		destroy_workqueue(ic->wait_wq);
4317	if (ic->offload_wq)
4318		destroy_workqueue(ic->offload_wq);
4319	if (ic->commit_wq)
4320		destroy_workqueue(ic->commit_wq);
4321	if (ic->writer_wq)
4322		destroy_workqueue(ic->writer_wq);
4323	if (ic->recalc_wq)
4324		destroy_workqueue(ic->recalc_wq);
4325	vfree(ic->recalc_buffer);
4326	kvfree(ic->recalc_tags);
4327	kvfree(ic->bbs);
4328	if (ic->bufio)
4329		dm_bufio_client_destroy(ic->bufio);
 
4330	mempool_exit(&ic->journal_io_mempool);
4331	if (ic->io)
4332		dm_io_client_destroy(ic->io);
4333	if (ic->dev)
4334		dm_put_device(ti, ic->dev);
4335	if (ic->meta_dev)
4336		dm_put_device(ti, ic->meta_dev);
4337	dm_integrity_free_page_list(ic->journal);
4338	dm_integrity_free_page_list(ic->journal_io);
4339	dm_integrity_free_page_list(ic->journal_xor);
4340	dm_integrity_free_page_list(ic->recalc_bitmap);
4341	dm_integrity_free_page_list(ic->may_write_bitmap);
4342	if (ic->journal_scatterlist)
4343		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4344	if (ic->journal_io_scatterlist)
4345		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4346	if (ic->sk_requests) {
4347		unsigned i;
4348
4349		for (i = 0; i < ic->journal_sections; i++) {
4350			struct skcipher_request *req = ic->sk_requests[i];
 
 
4351			if (req) {
4352				kfree_sensitive(req->iv);
4353				skcipher_request_free(req);
4354			}
4355		}
4356		kvfree(ic->sk_requests);
4357	}
4358	kvfree(ic->journal_tree);
4359	if (ic->sb)
4360		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4361
4362	if (ic->internal_hash)
4363		crypto_free_shash(ic->internal_hash);
4364	free_alg(&ic->internal_hash_alg);
4365
4366	if (ic->journal_crypt)
4367		crypto_free_skcipher(ic->journal_crypt);
4368	free_alg(&ic->journal_crypt_alg);
4369
4370	if (ic->journal_mac)
4371		crypto_free_shash(ic->journal_mac);
4372	free_alg(&ic->journal_mac_alg);
4373
4374	kfree(ic);
 
4375}
4376
4377static struct target_type integrity_target = {
4378	.name			= "integrity",
4379	.version		= {1, 6, 0},
4380	.module			= THIS_MODULE,
4381	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4382	.ctr			= dm_integrity_ctr,
4383	.dtr			= dm_integrity_dtr,
4384	.map			= dm_integrity_map,
4385	.postsuspend		= dm_integrity_postsuspend,
4386	.resume			= dm_integrity_resume,
4387	.status			= dm_integrity_status,
4388	.iterate_devices	= dm_integrity_iterate_devices,
4389	.io_hints		= dm_integrity_io_hints,
4390};
4391
4392static int __init dm_integrity_init(void)
4393{
4394	int r;
4395
4396	journal_io_cache = kmem_cache_create("integrity_journal_io",
4397					     sizeof(struct journal_io), 0, 0, NULL);
4398	if (!journal_io_cache) {
4399		DMERR("can't allocate journal io cache");
4400		return -ENOMEM;
4401	}
4402
4403	r = dm_register_target(&integrity_target);
 
 
 
 
4404
4405	if (r < 0)
4406		DMERR("register failed %d", r);
4407
4408	return r;
4409}
4410
4411static void __exit dm_integrity_exit(void)
4412{
4413	dm_unregister_target(&integrity_target);
4414	kmem_cache_destroy(journal_io_cache);
4415}
4416
4417module_init(dm_integrity_init);
4418module_exit(dm_integrity_exit);
4419
4420MODULE_AUTHOR("Milan Broz");
4421MODULE_AUTHOR("Mikulas Patocka");
4422MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4423MODULE_LICENSE("GPL");