Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4 * Copyright (C) 2016-2017 Milan Broz
5 * Copyright (C) 2016-2017 Mikulas Patocka
6 *
7 * This file is released under the GPL.
8 */
9
10#include "dm-bio-record.h"
11
12#include <linux/compiler.h>
13#include <linux/module.h>
14#include <linux/device-mapper.h>
15#include <linux/dm-io.h>
16#include <linux/vmalloc.h>
17#include <linux/sort.h>
18#include <linux/rbtree.h>
19#include <linux/delay.h>
20#include <linux/random.h>
21#include <linux/reboot.h>
22#include <crypto/hash.h>
23#include <crypto/skcipher.h>
24#include <linux/async_tx.h>
25#include <linux/dm-bufio.h>
26
27#include "dm-audit.h"
28
29#define DM_MSG_PREFIX "integrity"
30
31#define DEFAULT_INTERLEAVE_SECTORS 32768
32#define DEFAULT_JOURNAL_SIZE_FACTOR 7
33#define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
34#define DEFAULT_BUFFER_SECTORS 128
35#define DEFAULT_JOURNAL_WATERMARK 50
36#define DEFAULT_SYNC_MSEC 10000
37#define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38#define MIN_LOG2_INTERLEAVE_SECTORS 3
39#define MAX_LOG2_INTERLEAVE_SECTORS 31
40#define METADATA_WORKQUEUE_MAX_ACTIVE 16
41#define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42#define RECALC_WRITE_SUPER 16
43#define BITMAP_BLOCK_SIZE 4096 /* don't change it */
44#define BITMAP_FLUSH_INTERVAL (10 * HZ)
45#define DISCARD_FILLER 0xf6
46#define SALT_SIZE 16
47
48/*
49 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50 * so it should not be enabled in the official kernel
51 */
52//#define DEBUG_PRINT
53//#define INTERNAL_VERIFY
54
55/*
56 * On disk structures
57 */
58
59#define SB_MAGIC "integrt"
60#define SB_VERSION_1 1
61#define SB_VERSION_2 2
62#define SB_VERSION_3 3
63#define SB_VERSION_4 4
64#define SB_VERSION_5 5
65#define SB_SECTORS 8
66#define MAX_SECTORS_PER_BLOCK 8
67
68struct superblock {
69 __u8 magic[8];
70 __u8 version;
71 __u8 log2_interleave_sectors;
72 __le16 integrity_tag_size;
73 __le32 journal_sections;
74 __le64 provided_data_sectors; /* userspace uses this value */
75 __le32 flags;
76 __u8 log2_sectors_per_block;
77 __u8 log2_blocks_per_bitmap_bit;
78 __u8 pad[2];
79 __le64 recalc_sector;
80 __u8 pad2[8];
81 __u8 salt[SALT_SIZE];
82};
83
84#define SB_FLAG_HAVE_JOURNAL_MAC 0x1
85#define SB_FLAG_RECALCULATING 0x2
86#define SB_FLAG_DIRTY_BITMAP 0x4
87#define SB_FLAG_FIXED_PADDING 0x8
88#define SB_FLAG_FIXED_HMAC 0x10
89
90#define JOURNAL_ENTRY_ROUNDUP 8
91
92typedef __le64 commit_id_t;
93#define JOURNAL_MAC_PER_SECTOR 8
94
95struct journal_entry {
96 union {
97 struct {
98 __le32 sector_lo;
99 __le32 sector_hi;
100 } s;
101 __le64 sector;
102 } u;
103 commit_id_t last_bytes[];
104 /* __u8 tag[0]; */
105};
106
107#define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108
109#if BITS_PER_LONG == 64
110#define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111#else
112#define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113#endif
114#define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
115#define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
116#define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1))
117#define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
118#define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2))
119
120#define JOURNAL_BLOCK_SECTORS 8
121#define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122#define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123
124struct journal_sector {
125 struct_group(sectors,
126 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 __u8 mac[JOURNAL_MAC_PER_SECTOR];
128 );
129 commit_id_t commit_id;
130};
131
132#define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133
134#define METADATA_PADDING_SECTORS 8
135
136#define N_COMMIT_IDS 4
137
138static unsigned char prev_commit_seq(unsigned char seq)
139{
140 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141}
142
143static unsigned char next_commit_seq(unsigned char seq)
144{
145 return (seq + 1) % N_COMMIT_IDS;
146}
147
148/*
149 * In-memory structures
150 */
151
152struct journal_node {
153 struct rb_node node;
154 sector_t sector;
155};
156
157struct alg_spec {
158 char *alg_string;
159 char *key_string;
160 __u8 *key;
161 unsigned int key_size;
162};
163
164struct dm_integrity_c {
165 struct dm_dev *dev;
166 struct dm_dev *meta_dev;
167 unsigned int tag_size;
168 __s8 log2_tag_size;
169 sector_t start;
170 mempool_t journal_io_mempool;
171 struct dm_io_client *io;
172 struct dm_bufio_client *bufio;
173 struct workqueue_struct *metadata_wq;
174 struct superblock *sb;
175 unsigned int journal_pages;
176 unsigned int n_bitmap_blocks;
177
178 struct page_list *journal;
179 struct page_list *journal_io;
180 struct page_list *journal_xor;
181 struct page_list *recalc_bitmap;
182 struct page_list *may_write_bitmap;
183 struct bitmap_block_status *bbs;
184 unsigned int bitmap_flush_interval;
185 int synchronous_mode;
186 struct bio_list synchronous_bios;
187 struct delayed_work bitmap_flush_work;
188
189 struct crypto_skcipher *journal_crypt;
190 struct scatterlist **journal_scatterlist;
191 struct scatterlist **journal_io_scatterlist;
192 struct skcipher_request **sk_requests;
193
194 struct crypto_shash *journal_mac;
195
196 struct journal_node *journal_tree;
197 struct rb_root journal_tree_root;
198
199 sector_t provided_data_sectors;
200
201 unsigned short journal_entry_size;
202 unsigned char journal_entries_per_sector;
203 unsigned char journal_section_entries;
204 unsigned short journal_section_sectors;
205 unsigned int journal_sections;
206 unsigned int journal_entries;
207 sector_t data_device_sectors;
208 sector_t meta_device_sectors;
209 unsigned int initial_sectors;
210 unsigned int metadata_run;
211 __s8 log2_metadata_run;
212 __u8 log2_buffer_sectors;
213 __u8 sectors_per_block;
214 __u8 log2_blocks_per_bitmap_bit;
215
216 unsigned char mode;
217
218 int failed;
219
220 struct crypto_shash *internal_hash;
221
222 struct dm_target *ti;
223
224 /* these variables are locked with endio_wait.lock */
225 struct rb_root in_progress;
226 struct list_head wait_list;
227 wait_queue_head_t endio_wait;
228 struct workqueue_struct *wait_wq;
229 struct workqueue_struct *offload_wq;
230
231 unsigned char commit_seq;
232 commit_id_t commit_ids[N_COMMIT_IDS];
233
234 unsigned int committed_section;
235 unsigned int n_committed_sections;
236
237 unsigned int uncommitted_section;
238 unsigned int n_uncommitted_sections;
239
240 unsigned int free_section;
241 unsigned char free_section_entry;
242 unsigned int free_sectors;
243
244 unsigned int free_sectors_threshold;
245
246 struct workqueue_struct *commit_wq;
247 struct work_struct commit_work;
248
249 struct workqueue_struct *writer_wq;
250 struct work_struct writer_work;
251
252 struct workqueue_struct *recalc_wq;
253 struct work_struct recalc_work;
254
255 struct bio_list flush_bio_list;
256
257 unsigned long autocommit_jiffies;
258 struct timer_list autocommit_timer;
259 unsigned int autocommit_msec;
260
261 wait_queue_head_t copy_to_journal_wait;
262
263 struct completion crypto_backoff;
264
265 bool wrote_to_journal;
266 bool journal_uptodate;
267 bool just_formatted;
268 bool recalculate_flag;
269 bool reset_recalculate_flag;
270 bool discard;
271 bool fix_padding;
272 bool fix_hmac;
273 bool legacy_recalculate;
274
275 struct alg_spec internal_hash_alg;
276 struct alg_spec journal_crypt_alg;
277 struct alg_spec journal_mac_alg;
278
279 atomic64_t number_of_mismatches;
280
281 mempool_t recheck_pool;
282
283 struct notifier_block reboot_notifier;
284};
285
286struct dm_integrity_range {
287 sector_t logical_sector;
288 sector_t n_sectors;
289 bool waiting;
290 union {
291 struct rb_node node;
292 struct {
293 struct task_struct *task;
294 struct list_head wait_entry;
295 };
296 };
297};
298
299struct dm_integrity_io {
300 struct work_struct work;
301
302 struct dm_integrity_c *ic;
303 enum req_op op;
304 bool fua;
305
306 struct dm_integrity_range range;
307
308 sector_t metadata_block;
309 unsigned int metadata_offset;
310
311 atomic_t in_flight;
312 blk_status_t bi_status;
313
314 struct completion *completion;
315
316 struct dm_bio_details bio_details;
317};
318
319struct journal_completion {
320 struct dm_integrity_c *ic;
321 atomic_t in_flight;
322 struct completion comp;
323};
324
325struct journal_io {
326 struct dm_integrity_range range;
327 struct journal_completion *comp;
328};
329
330struct bitmap_block_status {
331 struct work_struct work;
332 struct dm_integrity_c *ic;
333 unsigned int idx;
334 unsigned long *bitmap;
335 struct bio_list bio_queue;
336 spinlock_t bio_queue_lock;
337
338};
339
340static struct kmem_cache *journal_io_cache;
341
342#define JOURNAL_IO_MEMPOOL 32
343
344#ifdef DEBUG_PRINT
345#define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
346#define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
347 len ? ": " : "", len, bytes)
348#else
349#define DEBUG_print(x, ...) do { } while (0)
350#define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
351#endif
352
353static void dm_integrity_prepare(struct request *rq)
354{
355}
356
357static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
358{
359}
360
361/*
362 * DM Integrity profile, protection is performed layer above (dm-crypt)
363 */
364static const struct blk_integrity_profile dm_integrity_profile = {
365 .name = "DM-DIF-EXT-TAG",
366 .generate_fn = NULL,
367 .verify_fn = NULL,
368 .prepare_fn = dm_integrity_prepare,
369 .complete_fn = dm_integrity_complete,
370};
371
372static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
373static void integrity_bio_wait(struct work_struct *w);
374static void dm_integrity_dtr(struct dm_target *ti);
375
376static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
377{
378 if (err == -EILSEQ)
379 atomic64_inc(&ic->number_of_mismatches);
380 if (!cmpxchg(&ic->failed, 0, err))
381 DMERR("Error on %s: %d", msg, err);
382}
383
384static int dm_integrity_failed(struct dm_integrity_c *ic)
385{
386 return READ_ONCE(ic->failed);
387}
388
389static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
390{
391 if (ic->legacy_recalculate)
392 return false;
393 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
394 ic->internal_hash_alg.key || ic->journal_mac_alg.key :
395 ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
396 return true;
397 return false;
398}
399
400static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
401 unsigned int j, unsigned char seq)
402{
403 /*
404 * Xor the number with section and sector, so that if a piece of
405 * journal is written at wrong place, it is detected.
406 */
407 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
408}
409
410static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
411 sector_t *area, sector_t *offset)
412{
413 if (!ic->meta_dev) {
414 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
415 *area = data_sector >> log2_interleave_sectors;
416 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
417 } else {
418 *area = 0;
419 *offset = data_sector;
420 }
421}
422
423#define sector_to_block(ic, n) \
424do { \
425 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \
426 (n) >>= (ic)->sb->log2_sectors_per_block; \
427} while (0)
428
429static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
430 sector_t offset, unsigned int *metadata_offset)
431{
432 __u64 ms;
433 unsigned int mo;
434
435 ms = area << ic->sb->log2_interleave_sectors;
436 if (likely(ic->log2_metadata_run >= 0))
437 ms += area << ic->log2_metadata_run;
438 else
439 ms += area * ic->metadata_run;
440 ms >>= ic->log2_buffer_sectors;
441
442 sector_to_block(ic, offset);
443
444 if (likely(ic->log2_tag_size >= 0)) {
445 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
446 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
447 } else {
448 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
449 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
450 }
451 *metadata_offset = mo;
452 return ms;
453}
454
455static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
456{
457 sector_t result;
458
459 if (ic->meta_dev)
460 return offset;
461
462 result = area << ic->sb->log2_interleave_sectors;
463 if (likely(ic->log2_metadata_run >= 0))
464 result += (area + 1) << ic->log2_metadata_run;
465 else
466 result += (area + 1) * ic->metadata_run;
467
468 result += (sector_t)ic->initial_sectors + offset;
469 result += ic->start;
470
471 return result;
472}
473
474static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
475{
476 if (unlikely(*sec_ptr >= ic->journal_sections))
477 *sec_ptr -= ic->journal_sections;
478}
479
480static void sb_set_version(struct dm_integrity_c *ic)
481{
482 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
483 ic->sb->version = SB_VERSION_5;
484 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
485 ic->sb->version = SB_VERSION_4;
486 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
487 ic->sb->version = SB_VERSION_3;
488 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
489 ic->sb->version = SB_VERSION_2;
490 else
491 ic->sb->version = SB_VERSION_1;
492}
493
494static int sb_mac(struct dm_integrity_c *ic, bool wr)
495{
496 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
497 int r;
498 unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
499 __u8 *sb = (__u8 *)ic->sb;
500 __u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
501
502 if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
503 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
504 return -EINVAL;
505 }
506
507 desc->tfm = ic->journal_mac;
508
509 if (likely(wr)) {
510 r = crypto_shash_digest(desc, sb, mac - sb, mac);
511 if (unlikely(r < 0)) {
512 dm_integrity_io_error(ic, "crypto_shash_digest", r);
513 return r;
514 }
515 } else {
516 __u8 actual_mac[HASH_MAX_DIGESTSIZE];
517
518 r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
519 if (unlikely(r < 0)) {
520 dm_integrity_io_error(ic, "crypto_shash_digest", r);
521 return r;
522 }
523 if (memcmp(mac, actual_mac, mac_size)) {
524 dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
525 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
526 return -EILSEQ;
527 }
528 }
529
530 return 0;
531}
532
533static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
534{
535 struct dm_io_request io_req;
536 struct dm_io_region io_loc;
537 const enum req_op op = opf & REQ_OP_MASK;
538 int r;
539
540 io_req.bi_opf = opf;
541 io_req.mem.type = DM_IO_KMEM;
542 io_req.mem.ptr.addr = ic->sb;
543 io_req.notify.fn = NULL;
544 io_req.client = ic->io;
545 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
546 io_loc.sector = ic->start;
547 io_loc.count = SB_SECTORS;
548
549 if (op == REQ_OP_WRITE) {
550 sb_set_version(ic);
551 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
552 r = sb_mac(ic, true);
553 if (unlikely(r))
554 return r;
555 }
556 }
557
558 r = dm_io(&io_req, 1, &io_loc, NULL);
559 if (unlikely(r))
560 return r;
561
562 if (op == REQ_OP_READ) {
563 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
564 r = sb_mac(ic, false);
565 if (unlikely(r))
566 return r;
567 }
568 }
569
570 return 0;
571}
572
573#define BITMAP_OP_TEST_ALL_SET 0
574#define BITMAP_OP_TEST_ALL_CLEAR 1
575#define BITMAP_OP_SET 2
576#define BITMAP_OP_CLEAR 3
577
578static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
579 sector_t sector, sector_t n_sectors, int mode)
580{
581 unsigned long bit, end_bit, this_end_bit, page, end_page;
582 unsigned long *data;
583
584 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
585 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
586 sector,
587 n_sectors,
588 ic->sb->log2_sectors_per_block,
589 ic->log2_blocks_per_bitmap_bit,
590 mode);
591 BUG();
592 }
593
594 if (unlikely(!n_sectors))
595 return true;
596
597 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
598 end_bit = (sector + n_sectors - 1) >>
599 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
600
601 page = bit / (PAGE_SIZE * 8);
602 bit %= PAGE_SIZE * 8;
603
604 end_page = end_bit / (PAGE_SIZE * 8);
605 end_bit %= PAGE_SIZE * 8;
606
607repeat:
608 if (page < end_page)
609 this_end_bit = PAGE_SIZE * 8 - 1;
610 else
611 this_end_bit = end_bit;
612
613 data = lowmem_page_address(bitmap[page].page);
614
615 if (mode == BITMAP_OP_TEST_ALL_SET) {
616 while (bit <= this_end_bit) {
617 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
618 do {
619 if (data[bit / BITS_PER_LONG] != -1)
620 return false;
621 bit += BITS_PER_LONG;
622 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
623 continue;
624 }
625 if (!test_bit(bit, data))
626 return false;
627 bit++;
628 }
629 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
630 while (bit <= this_end_bit) {
631 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
632 do {
633 if (data[bit / BITS_PER_LONG] != 0)
634 return false;
635 bit += BITS_PER_LONG;
636 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
637 continue;
638 }
639 if (test_bit(bit, data))
640 return false;
641 bit++;
642 }
643 } else if (mode == BITMAP_OP_SET) {
644 while (bit <= this_end_bit) {
645 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
646 do {
647 data[bit / BITS_PER_LONG] = -1;
648 bit += BITS_PER_LONG;
649 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
650 continue;
651 }
652 __set_bit(bit, data);
653 bit++;
654 }
655 } else if (mode == BITMAP_OP_CLEAR) {
656 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
657 clear_page(data);
658 else {
659 while (bit <= this_end_bit) {
660 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
661 do {
662 data[bit / BITS_PER_LONG] = 0;
663 bit += BITS_PER_LONG;
664 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
665 continue;
666 }
667 __clear_bit(bit, data);
668 bit++;
669 }
670 }
671 } else {
672 BUG();
673 }
674
675 if (unlikely(page < end_page)) {
676 bit = 0;
677 page++;
678 goto repeat;
679 }
680
681 return true;
682}
683
684static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
685{
686 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
687 unsigned int i;
688
689 for (i = 0; i < n_bitmap_pages; i++) {
690 unsigned long *dst_data = lowmem_page_address(dst[i].page);
691 unsigned long *src_data = lowmem_page_address(src[i].page);
692
693 copy_page(dst_data, src_data);
694 }
695}
696
697static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
698{
699 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
700 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
701
702 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
703 return &ic->bbs[bitmap_block];
704}
705
706static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
707 bool e, const char *function)
708{
709#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
710 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
711
712 if (unlikely(section >= ic->journal_sections) ||
713 unlikely(offset >= limit)) {
714 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
715 function, section, offset, ic->journal_sections, limit);
716 BUG();
717 }
718#endif
719}
720
721static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
722 unsigned int *pl_index, unsigned int *pl_offset)
723{
724 unsigned int sector;
725
726 access_journal_check(ic, section, offset, false, "page_list_location");
727
728 sector = section * ic->journal_section_sectors + offset;
729
730 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
731 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
732}
733
734static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
735 unsigned int section, unsigned int offset, unsigned int *n_sectors)
736{
737 unsigned int pl_index, pl_offset;
738 char *va;
739
740 page_list_location(ic, section, offset, &pl_index, &pl_offset);
741
742 if (n_sectors)
743 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
744
745 va = lowmem_page_address(pl[pl_index].page);
746
747 return (struct journal_sector *)(va + pl_offset);
748}
749
750static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
751{
752 return access_page_list(ic, ic->journal, section, offset, NULL);
753}
754
755static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
756{
757 unsigned int rel_sector, offset;
758 struct journal_sector *js;
759
760 access_journal_check(ic, section, n, true, "access_journal_entry");
761
762 rel_sector = n % JOURNAL_BLOCK_SECTORS;
763 offset = n / JOURNAL_BLOCK_SECTORS;
764
765 js = access_journal(ic, section, rel_sector);
766 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
767}
768
769static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
770{
771 n <<= ic->sb->log2_sectors_per_block;
772
773 n += JOURNAL_BLOCK_SECTORS;
774
775 access_journal_check(ic, section, n, false, "access_journal_data");
776
777 return access_journal(ic, section, n);
778}
779
780static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
781{
782 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
783 int r;
784 unsigned int j, size;
785
786 desc->tfm = ic->journal_mac;
787
788 r = crypto_shash_init(desc);
789 if (unlikely(r < 0)) {
790 dm_integrity_io_error(ic, "crypto_shash_init", r);
791 goto err;
792 }
793
794 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
795 __le64 section_le;
796
797 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
798 if (unlikely(r < 0)) {
799 dm_integrity_io_error(ic, "crypto_shash_update", r);
800 goto err;
801 }
802
803 section_le = cpu_to_le64(section);
804 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le));
805 if (unlikely(r < 0)) {
806 dm_integrity_io_error(ic, "crypto_shash_update", r);
807 goto err;
808 }
809 }
810
811 for (j = 0; j < ic->journal_section_entries; j++) {
812 struct journal_entry *je = access_journal_entry(ic, section, j);
813
814 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
815 if (unlikely(r < 0)) {
816 dm_integrity_io_error(ic, "crypto_shash_update", r);
817 goto err;
818 }
819 }
820
821 size = crypto_shash_digestsize(ic->journal_mac);
822
823 if (likely(size <= JOURNAL_MAC_SIZE)) {
824 r = crypto_shash_final(desc, result);
825 if (unlikely(r < 0)) {
826 dm_integrity_io_error(ic, "crypto_shash_final", r);
827 goto err;
828 }
829 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
830 } else {
831 __u8 digest[HASH_MAX_DIGESTSIZE];
832
833 if (WARN_ON(size > sizeof(digest))) {
834 dm_integrity_io_error(ic, "digest_size", -EINVAL);
835 goto err;
836 }
837 r = crypto_shash_final(desc, digest);
838 if (unlikely(r < 0)) {
839 dm_integrity_io_error(ic, "crypto_shash_final", r);
840 goto err;
841 }
842 memcpy(result, digest, JOURNAL_MAC_SIZE);
843 }
844
845 return;
846err:
847 memset(result, 0, JOURNAL_MAC_SIZE);
848}
849
850static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
851{
852 __u8 result[JOURNAL_MAC_SIZE];
853 unsigned int j;
854
855 if (!ic->journal_mac)
856 return;
857
858 section_mac(ic, section, result);
859
860 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
861 struct journal_sector *js = access_journal(ic, section, j);
862
863 if (likely(wr))
864 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
865 else {
866 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
867 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
868 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
869 }
870 }
871 }
872}
873
874static void complete_journal_op(void *context)
875{
876 struct journal_completion *comp = context;
877
878 BUG_ON(!atomic_read(&comp->in_flight));
879 if (likely(atomic_dec_and_test(&comp->in_flight)))
880 complete(&comp->comp);
881}
882
883static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
884 unsigned int n_sections, struct journal_completion *comp)
885{
886 struct async_submit_ctl submit;
887 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
888 unsigned int pl_index, pl_offset, section_index;
889 struct page_list *source_pl, *target_pl;
890
891 if (likely(encrypt)) {
892 source_pl = ic->journal;
893 target_pl = ic->journal_io;
894 } else {
895 source_pl = ic->journal_io;
896 target_pl = ic->journal;
897 }
898
899 page_list_location(ic, section, 0, &pl_index, &pl_offset);
900
901 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
902
903 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
904
905 section_index = pl_index;
906
907 do {
908 size_t this_step;
909 struct page *src_pages[2];
910 struct page *dst_page;
911
912 while (unlikely(pl_index == section_index)) {
913 unsigned int dummy;
914
915 if (likely(encrypt))
916 rw_section_mac(ic, section, true);
917 section++;
918 n_sections--;
919 if (!n_sections)
920 break;
921 page_list_location(ic, section, 0, §ion_index, &dummy);
922 }
923
924 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
925 dst_page = target_pl[pl_index].page;
926 src_pages[0] = source_pl[pl_index].page;
927 src_pages[1] = ic->journal_xor[pl_index].page;
928
929 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
930
931 pl_index++;
932 pl_offset = 0;
933 n_bytes -= this_step;
934 } while (n_bytes);
935
936 BUG_ON(n_sections);
937
938 async_tx_issue_pending_all();
939}
940
941static void complete_journal_encrypt(void *data, int err)
942{
943 struct journal_completion *comp = data;
944
945 if (unlikely(err)) {
946 if (likely(err == -EINPROGRESS)) {
947 complete(&comp->ic->crypto_backoff);
948 return;
949 }
950 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
951 }
952 complete_journal_op(comp);
953}
954
955static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
956{
957 int r;
958
959 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
960 complete_journal_encrypt, comp);
961 if (likely(encrypt))
962 r = crypto_skcipher_encrypt(req);
963 else
964 r = crypto_skcipher_decrypt(req);
965 if (likely(!r))
966 return false;
967 if (likely(r == -EINPROGRESS))
968 return true;
969 if (likely(r == -EBUSY)) {
970 wait_for_completion(&comp->ic->crypto_backoff);
971 reinit_completion(&comp->ic->crypto_backoff);
972 return true;
973 }
974 dm_integrity_io_error(comp->ic, "encrypt", r);
975 return false;
976}
977
978static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
979 unsigned int n_sections, struct journal_completion *comp)
980{
981 struct scatterlist **source_sg;
982 struct scatterlist **target_sg;
983
984 atomic_add(2, &comp->in_flight);
985
986 if (likely(encrypt)) {
987 source_sg = ic->journal_scatterlist;
988 target_sg = ic->journal_io_scatterlist;
989 } else {
990 source_sg = ic->journal_io_scatterlist;
991 target_sg = ic->journal_scatterlist;
992 }
993
994 do {
995 struct skcipher_request *req;
996 unsigned int ivsize;
997 char *iv;
998
999 if (likely(encrypt))
1000 rw_section_mac(ic, section, true);
1001
1002 req = ic->sk_requests[section];
1003 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1004 iv = req->iv;
1005
1006 memcpy(iv, iv + ivsize, ivsize);
1007
1008 req->src = source_sg[section];
1009 req->dst = target_sg[section];
1010
1011 if (unlikely(do_crypt(encrypt, req, comp)))
1012 atomic_inc(&comp->in_flight);
1013
1014 section++;
1015 n_sections--;
1016 } while (n_sections);
1017
1018 atomic_dec(&comp->in_flight);
1019 complete_journal_op(comp);
1020}
1021
1022static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1023 unsigned int n_sections, struct journal_completion *comp)
1024{
1025 if (ic->journal_xor)
1026 return xor_journal(ic, encrypt, section, n_sections, comp);
1027 else
1028 return crypt_journal(ic, encrypt, section, n_sections, comp);
1029}
1030
1031static void complete_journal_io(unsigned long error, void *context)
1032{
1033 struct journal_completion *comp = context;
1034
1035 if (unlikely(error != 0))
1036 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1037 complete_journal_op(comp);
1038}
1039
1040static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1041 unsigned int sector, unsigned int n_sectors,
1042 struct journal_completion *comp)
1043{
1044 struct dm_io_request io_req;
1045 struct dm_io_region io_loc;
1046 unsigned int pl_index, pl_offset;
1047 int r;
1048
1049 if (unlikely(dm_integrity_failed(ic))) {
1050 if (comp)
1051 complete_journal_io(-1UL, comp);
1052 return;
1053 }
1054
1055 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1056 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1057
1058 io_req.bi_opf = opf;
1059 io_req.mem.type = DM_IO_PAGE_LIST;
1060 if (ic->journal_io)
1061 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1062 else
1063 io_req.mem.ptr.pl = &ic->journal[pl_index];
1064 io_req.mem.offset = pl_offset;
1065 if (likely(comp != NULL)) {
1066 io_req.notify.fn = complete_journal_io;
1067 io_req.notify.context = comp;
1068 } else {
1069 io_req.notify.fn = NULL;
1070 }
1071 io_req.client = ic->io;
1072 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1073 io_loc.sector = ic->start + SB_SECTORS + sector;
1074 io_loc.count = n_sectors;
1075
1076 r = dm_io(&io_req, 1, &io_loc, NULL);
1077 if (unlikely(r)) {
1078 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1079 "reading journal" : "writing journal", r);
1080 if (comp) {
1081 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1082 complete_journal_io(-1UL, comp);
1083 }
1084 }
1085}
1086
1087static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1088 unsigned int section, unsigned int n_sections,
1089 struct journal_completion *comp)
1090{
1091 unsigned int sector, n_sectors;
1092
1093 sector = section * ic->journal_section_sectors;
1094 n_sectors = n_sections * ic->journal_section_sectors;
1095
1096 rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1097}
1098
1099static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1100{
1101 struct journal_completion io_comp;
1102 struct journal_completion crypt_comp_1;
1103 struct journal_completion crypt_comp_2;
1104 unsigned int i;
1105
1106 io_comp.ic = ic;
1107 init_completion(&io_comp.comp);
1108
1109 if (commit_start + commit_sections <= ic->journal_sections) {
1110 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1111 if (ic->journal_io) {
1112 crypt_comp_1.ic = ic;
1113 init_completion(&crypt_comp_1.comp);
1114 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1115 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1116 wait_for_completion_io(&crypt_comp_1.comp);
1117 } else {
1118 for (i = 0; i < commit_sections; i++)
1119 rw_section_mac(ic, commit_start + i, true);
1120 }
1121 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1122 commit_sections, &io_comp);
1123 } else {
1124 unsigned int to_end;
1125
1126 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1127 to_end = ic->journal_sections - commit_start;
1128 if (ic->journal_io) {
1129 crypt_comp_1.ic = ic;
1130 init_completion(&crypt_comp_1.comp);
1131 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1132 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1133 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1134 rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1135 commit_start, to_end, &io_comp);
1136 reinit_completion(&crypt_comp_1.comp);
1137 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1138 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1139 wait_for_completion_io(&crypt_comp_1.comp);
1140 } else {
1141 crypt_comp_2.ic = ic;
1142 init_completion(&crypt_comp_2.comp);
1143 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1144 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1145 wait_for_completion_io(&crypt_comp_1.comp);
1146 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1147 wait_for_completion_io(&crypt_comp_2.comp);
1148 }
1149 } else {
1150 for (i = 0; i < to_end; i++)
1151 rw_section_mac(ic, commit_start + i, true);
1152 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1153 for (i = 0; i < commit_sections - to_end; i++)
1154 rw_section_mac(ic, i, true);
1155 }
1156 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1157 }
1158
1159 wait_for_completion_io(&io_comp.comp);
1160}
1161
1162static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1163 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1164{
1165 struct dm_io_request io_req;
1166 struct dm_io_region io_loc;
1167 int r;
1168 unsigned int sector, pl_index, pl_offset;
1169
1170 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1171
1172 if (unlikely(dm_integrity_failed(ic))) {
1173 fn(-1UL, data);
1174 return;
1175 }
1176
1177 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1178
1179 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1180 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1181
1182 io_req.bi_opf = REQ_OP_WRITE;
1183 io_req.mem.type = DM_IO_PAGE_LIST;
1184 io_req.mem.ptr.pl = &ic->journal[pl_index];
1185 io_req.mem.offset = pl_offset;
1186 io_req.notify.fn = fn;
1187 io_req.notify.context = data;
1188 io_req.client = ic->io;
1189 io_loc.bdev = ic->dev->bdev;
1190 io_loc.sector = target;
1191 io_loc.count = n_sectors;
1192
1193 r = dm_io(&io_req, 1, &io_loc, NULL);
1194 if (unlikely(r)) {
1195 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1196 fn(-1UL, data);
1197 }
1198}
1199
1200static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1201{
1202 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1203 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1204}
1205
1206static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1207{
1208 struct rb_node **n = &ic->in_progress.rb_node;
1209 struct rb_node *parent;
1210
1211 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1212
1213 if (likely(check_waiting)) {
1214 struct dm_integrity_range *range;
1215
1216 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1217 if (unlikely(ranges_overlap(range, new_range)))
1218 return false;
1219 }
1220 }
1221
1222 parent = NULL;
1223
1224 while (*n) {
1225 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1226
1227 parent = *n;
1228 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1229 n = &range->node.rb_left;
1230 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1231 n = &range->node.rb_right;
1232 else
1233 return false;
1234 }
1235
1236 rb_link_node(&new_range->node, parent, n);
1237 rb_insert_color(&new_range->node, &ic->in_progress);
1238
1239 return true;
1240}
1241
1242static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1243{
1244 rb_erase(&range->node, &ic->in_progress);
1245 while (unlikely(!list_empty(&ic->wait_list))) {
1246 struct dm_integrity_range *last_range =
1247 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1248 struct task_struct *last_range_task;
1249
1250 last_range_task = last_range->task;
1251 list_del(&last_range->wait_entry);
1252 if (!add_new_range(ic, last_range, false)) {
1253 last_range->task = last_range_task;
1254 list_add(&last_range->wait_entry, &ic->wait_list);
1255 break;
1256 }
1257 last_range->waiting = false;
1258 wake_up_process(last_range_task);
1259 }
1260}
1261
1262static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1263{
1264 unsigned long flags;
1265
1266 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1267 remove_range_unlocked(ic, range);
1268 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1269}
1270
1271static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1272{
1273 new_range->waiting = true;
1274 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1275 new_range->task = current;
1276 do {
1277 __set_current_state(TASK_UNINTERRUPTIBLE);
1278 spin_unlock_irq(&ic->endio_wait.lock);
1279 io_schedule();
1280 spin_lock_irq(&ic->endio_wait.lock);
1281 } while (unlikely(new_range->waiting));
1282}
1283
1284static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1285{
1286 if (unlikely(!add_new_range(ic, new_range, true)))
1287 wait_and_add_new_range(ic, new_range);
1288}
1289
1290static void init_journal_node(struct journal_node *node)
1291{
1292 RB_CLEAR_NODE(&node->node);
1293 node->sector = (sector_t)-1;
1294}
1295
1296static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1297{
1298 struct rb_node **link;
1299 struct rb_node *parent;
1300
1301 node->sector = sector;
1302 BUG_ON(!RB_EMPTY_NODE(&node->node));
1303
1304 link = &ic->journal_tree_root.rb_node;
1305 parent = NULL;
1306
1307 while (*link) {
1308 struct journal_node *j;
1309
1310 parent = *link;
1311 j = container_of(parent, struct journal_node, node);
1312 if (sector < j->sector)
1313 link = &j->node.rb_left;
1314 else
1315 link = &j->node.rb_right;
1316 }
1317
1318 rb_link_node(&node->node, parent, link);
1319 rb_insert_color(&node->node, &ic->journal_tree_root);
1320}
1321
1322static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1323{
1324 BUG_ON(RB_EMPTY_NODE(&node->node));
1325 rb_erase(&node->node, &ic->journal_tree_root);
1326 init_journal_node(node);
1327}
1328
1329#define NOT_FOUND (-1U)
1330
1331static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1332{
1333 struct rb_node *n = ic->journal_tree_root.rb_node;
1334 unsigned int found = NOT_FOUND;
1335
1336 *next_sector = (sector_t)-1;
1337 while (n) {
1338 struct journal_node *j = container_of(n, struct journal_node, node);
1339
1340 if (sector == j->sector)
1341 found = j - ic->journal_tree;
1342
1343 if (sector < j->sector) {
1344 *next_sector = j->sector;
1345 n = j->node.rb_left;
1346 } else
1347 n = j->node.rb_right;
1348 }
1349
1350 return found;
1351}
1352
1353static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1354{
1355 struct journal_node *node, *next_node;
1356 struct rb_node *next;
1357
1358 if (unlikely(pos >= ic->journal_entries))
1359 return false;
1360 node = &ic->journal_tree[pos];
1361 if (unlikely(RB_EMPTY_NODE(&node->node)))
1362 return false;
1363 if (unlikely(node->sector != sector))
1364 return false;
1365
1366 next = rb_next(&node->node);
1367 if (unlikely(!next))
1368 return true;
1369
1370 next_node = container_of(next, struct journal_node, node);
1371 return next_node->sector != sector;
1372}
1373
1374static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1375{
1376 struct rb_node *next;
1377 struct journal_node *next_node;
1378 unsigned int next_section;
1379
1380 BUG_ON(RB_EMPTY_NODE(&node->node));
1381
1382 next = rb_next(&node->node);
1383 if (unlikely(!next))
1384 return false;
1385
1386 next_node = container_of(next, struct journal_node, node);
1387
1388 if (next_node->sector != node->sector)
1389 return false;
1390
1391 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1392 if (next_section >= ic->committed_section &&
1393 next_section < ic->committed_section + ic->n_committed_sections)
1394 return true;
1395 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1396 return true;
1397
1398 return false;
1399}
1400
1401#define TAG_READ 0
1402#define TAG_WRITE 1
1403#define TAG_CMP 2
1404
1405static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1406 unsigned int *metadata_offset, unsigned int total_size, int op)
1407{
1408#define MAY_BE_FILLER 1
1409#define MAY_BE_HASH 2
1410 unsigned int hash_offset = 0;
1411 unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1412
1413 do {
1414 unsigned char *data, *dp;
1415 struct dm_buffer *b;
1416 unsigned int to_copy;
1417 int r;
1418
1419 r = dm_integrity_failed(ic);
1420 if (unlikely(r))
1421 return r;
1422
1423 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1424 if (IS_ERR(data))
1425 return PTR_ERR(data);
1426
1427 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1428 dp = data + *metadata_offset;
1429 if (op == TAG_READ) {
1430 memcpy(tag, dp, to_copy);
1431 } else if (op == TAG_WRITE) {
1432 if (memcmp(dp, tag, to_copy)) {
1433 memcpy(dp, tag, to_copy);
1434 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1435 }
1436 } else {
1437 /* e.g.: op == TAG_CMP */
1438
1439 if (likely(is_power_of_2(ic->tag_size))) {
1440 if (unlikely(memcmp(dp, tag, to_copy)))
1441 if (unlikely(!ic->discard) ||
1442 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1443 goto thorough_test;
1444 }
1445 } else {
1446 unsigned int i, ts;
1447thorough_test:
1448 ts = total_size;
1449
1450 for (i = 0; i < to_copy; i++, ts--) {
1451 if (unlikely(dp[i] != tag[i]))
1452 may_be &= ~MAY_BE_HASH;
1453 if (likely(dp[i] != DISCARD_FILLER))
1454 may_be &= ~MAY_BE_FILLER;
1455 hash_offset++;
1456 if (unlikely(hash_offset == ic->tag_size)) {
1457 if (unlikely(!may_be)) {
1458 dm_bufio_release(b);
1459 return ts;
1460 }
1461 hash_offset = 0;
1462 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1463 }
1464 }
1465 }
1466 }
1467 dm_bufio_release(b);
1468
1469 tag += to_copy;
1470 *metadata_offset += to_copy;
1471 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1472 (*metadata_block)++;
1473 *metadata_offset = 0;
1474 }
1475
1476 if (unlikely(!is_power_of_2(ic->tag_size)))
1477 hash_offset = (hash_offset + to_copy) % ic->tag_size;
1478
1479 total_size -= to_copy;
1480 } while (unlikely(total_size));
1481
1482 return 0;
1483#undef MAY_BE_FILLER
1484#undef MAY_BE_HASH
1485}
1486
1487struct flush_request {
1488 struct dm_io_request io_req;
1489 struct dm_io_region io_reg;
1490 struct dm_integrity_c *ic;
1491 struct completion comp;
1492};
1493
1494static void flush_notify(unsigned long error, void *fr_)
1495{
1496 struct flush_request *fr = fr_;
1497
1498 if (unlikely(error != 0))
1499 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1500 complete(&fr->comp);
1501}
1502
1503static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1504{
1505 int r;
1506 struct flush_request fr;
1507
1508 if (!ic->meta_dev)
1509 flush_data = false;
1510 if (flush_data) {
1511 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1512 fr.io_req.mem.type = DM_IO_KMEM,
1513 fr.io_req.mem.ptr.addr = NULL,
1514 fr.io_req.notify.fn = flush_notify,
1515 fr.io_req.notify.context = &fr;
1516 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1517 fr.io_reg.bdev = ic->dev->bdev,
1518 fr.io_reg.sector = 0,
1519 fr.io_reg.count = 0,
1520 fr.ic = ic;
1521 init_completion(&fr.comp);
1522 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1523 BUG_ON(r);
1524 }
1525
1526 r = dm_bufio_write_dirty_buffers(ic->bufio);
1527 if (unlikely(r))
1528 dm_integrity_io_error(ic, "writing tags", r);
1529
1530 if (flush_data)
1531 wait_for_completion(&fr.comp);
1532}
1533
1534static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1535{
1536 DECLARE_WAITQUEUE(wait, current);
1537
1538 __add_wait_queue(&ic->endio_wait, &wait);
1539 __set_current_state(TASK_UNINTERRUPTIBLE);
1540 spin_unlock_irq(&ic->endio_wait.lock);
1541 io_schedule();
1542 spin_lock_irq(&ic->endio_wait.lock);
1543 __remove_wait_queue(&ic->endio_wait, &wait);
1544}
1545
1546static void autocommit_fn(struct timer_list *t)
1547{
1548 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1549
1550 if (likely(!dm_integrity_failed(ic)))
1551 queue_work(ic->commit_wq, &ic->commit_work);
1552}
1553
1554static void schedule_autocommit(struct dm_integrity_c *ic)
1555{
1556 if (!timer_pending(&ic->autocommit_timer))
1557 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1558}
1559
1560static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1561{
1562 struct bio *bio;
1563 unsigned long flags;
1564
1565 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1566 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1567 bio_list_add(&ic->flush_bio_list, bio);
1568 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1569
1570 queue_work(ic->commit_wq, &ic->commit_work);
1571}
1572
1573static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1574{
1575 int r;
1576
1577 r = dm_integrity_failed(ic);
1578 if (unlikely(r) && !bio->bi_status)
1579 bio->bi_status = errno_to_blk_status(r);
1580 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1581 unsigned long flags;
1582
1583 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1584 bio_list_add(&ic->synchronous_bios, bio);
1585 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1586 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1587 return;
1588 }
1589 bio_endio(bio);
1590}
1591
1592static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1593{
1594 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1595
1596 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1597 submit_flush_bio(ic, dio);
1598 else
1599 do_endio(ic, bio);
1600}
1601
1602static void dec_in_flight(struct dm_integrity_io *dio)
1603{
1604 if (atomic_dec_and_test(&dio->in_flight)) {
1605 struct dm_integrity_c *ic = dio->ic;
1606 struct bio *bio;
1607
1608 remove_range(ic, &dio->range);
1609
1610 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1611 schedule_autocommit(ic);
1612
1613 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1614 if (unlikely(dio->bi_status) && !bio->bi_status)
1615 bio->bi_status = dio->bi_status;
1616 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1617 dio->range.logical_sector += dio->range.n_sectors;
1618 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1619 INIT_WORK(&dio->work, integrity_bio_wait);
1620 queue_work(ic->offload_wq, &dio->work);
1621 return;
1622 }
1623 do_endio_flush(ic, dio);
1624 }
1625}
1626
1627static void integrity_end_io(struct bio *bio)
1628{
1629 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1630
1631 dm_bio_restore(&dio->bio_details, bio);
1632 if (bio->bi_integrity)
1633 bio->bi_opf |= REQ_INTEGRITY;
1634
1635 if (dio->completion)
1636 complete(dio->completion);
1637
1638 dec_in_flight(dio);
1639}
1640
1641static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1642 const char *data, char *result)
1643{
1644 __le64 sector_le = cpu_to_le64(sector);
1645 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1646 int r;
1647 unsigned int digest_size;
1648
1649 req->tfm = ic->internal_hash;
1650
1651 r = crypto_shash_init(req);
1652 if (unlikely(r < 0)) {
1653 dm_integrity_io_error(ic, "crypto_shash_init", r);
1654 goto failed;
1655 }
1656
1657 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1658 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1659 if (unlikely(r < 0)) {
1660 dm_integrity_io_error(ic, "crypto_shash_update", r);
1661 goto failed;
1662 }
1663 }
1664
1665 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le));
1666 if (unlikely(r < 0)) {
1667 dm_integrity_io_error(ic, "crypto_shash_update", r);
1668 goto failed;
1669 }
1670
1671 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1672 if (unlikely(r < 0)) {
1673 dm_integrity_io_error(ic, "crypto_shash_update", r);
1674 goto failed;
1675 }
1676
1677 r = crypto_shash_final(req, result);
1678 if (unlikely(r < 0)) {
1679 dm_integrity_io_error(ic, "crypto_shash_final", r);
1680 goto failed;
1681 }
1682
1683 digest_size = crypto_shash_digestsize(ic->internal_hash);
1684 if (unlikely(digest_size < ic->tag_size))
1685 memset(result + digest_size, 0, ic->tag_size - digest_size);
1686
1687 return;
1688
1689failed:
1690 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1691 get_random_bytes(result, ic->tag_size);
1692}
1693
1694static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1695{
1696 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1697 struct dm_integrity_c *ic = dio->ic;
1698 struct bvec_iter iter;
1699 struct bio_vec bv;
1700 sector_t sector, logical_sector, area, offset;
1701 struct page *page;
1702 void *buffer;
1703
1704 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1705 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1706 &dio->metadata_offset);
1707 sector = get_data_sector(ic, area, offset);
1708 logical_sector = dio->range.logical_sector;
1709
1710 page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1711 buffer = page_to_virt(page);
1712
1713 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1714 unsigned pos = 0;
1715
1716 do {
1717 char *mem;
1718 int r;
1719 struct dm_io_request io_req;
1720 struct dm_io_region io_loc;
1721 io_req.bi_opf = REQ_OP_READ;
1722 io_req.mem.type = DM_IO_KMEM;
1723 io_req.mem.ptr.addr = buffer;
1724 io_req.notify.fn = NULL;
1725 io_req.client = ic->io;
1726 io_loc.bdev = ic->dev->bdev;
1727 io_loc.sector = sector;
1728 io_loc.count = ic->sectors_per_block;
1729
1730 r = dm_io(&io_req, 1, &io_loc, NULL);
1731 if (unlikely(r)) {
1732 dio->bi_status = errno_to_blk_status(r);
1733 goto free_ret;
1734 }
1735
1736 integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1737 r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1738 &dio->metadata_offset, ic->tag_size, TAG_CMP);
1739 if (r) {
1740 if (r > 0) {
1741 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1742 bio->bi_bdev, logical_sector);
1743 atomic64_inc(&ic->number_of_mismatches);
1744 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1745 bio, logical_sector, 0);
1746 r = -EILSEQ;
1747 }
1748 dio->bi_status = errno_to_blk_status(r);
1749 goto free_ret;
1750 }
1751
1752 mem = bvec_kmap_local(&bv);
1753 memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1754 kunmap_local(mem);
1755
1756 pos += ic->sectors_per_block << SECTOR_SHIFT;
1757 sector += ic->sectors_per_block;
1758 logical_sector += ic->sectors_per_block;
1759 } while (pos < bv.bv_len);
1760 }
1761free_ret:
1762 mempool_free(page, &ic->recheck_pool);
1763}
1764
1765static void integrity_metadata(struct work_struct *w)
1766{
1767 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1768 struct dm_integrity_c *ic = dio->ic;
1769
1770 int r;
1771
1772 if (ic->internal_hash) {
1773 struct bvec_iter iter;
1774 struct bio_vec bv;
1775 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1776 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1777 char *checksums;
1778 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1779 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1780 sector_t sector;
1781 unsigned int sectors_to_process;
1782
1783 if (unlikely(ic->mode == 'R'))
1784 goto skip_io;
1785
1786 if (likely(dio->op != REQ_OP_DISCARD))
1787 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1788 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1789 else
1790 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1791 if (!checksums) {
1792 checksums = checksums_onstack;
1793 if (WARN_ON(extra_space &&
1794 digest_size > sizeof(checksums_onstack))) {
1795 r = -EINVAL;
1796 goto error;
1797 }
1798 }
1799
1800 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1801 unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1802 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1803 unsigned int max_blocks = max_size / ic->tag_size;
1804
1805 memset(checksums, DISCARD_FILLER, max_size);
1806
1807 while (bi_size) {
1808 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1809
1810 this_step_blocks = min(this_step_blocks, max_blocks);
1811 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1812 this_step_blocks * ic->tag_size, TAG_WRITE);
1813 if (unlikely(r)) {
1814 if (likely(checksums != checksums_onstack))
1815 kfree(checksums);
1816 goto error;
1817 }
1818
1819 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1820 }
1821
1822 if (likely(checksums != checksums_onstack))
1823 kfree(checksums);
1824 goto skip_io;
1825 }
1826
1827 sector = dio->range.logical_sector;
1828 sectors_to_process = dio->range.n_sectors;
1829
1830 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1831 struct bio_vec bv_copy = bv;
1832 unsigned int pos;
1833 char *mem, *checksums_ptr;
1834
1835again:
1836 mem = bvec_kmap_local(&bv_copy);
1837 pos = 0;
1838 checksums_ptr = checksums;
1839 do {
1840 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1841 checksums_ptr += ic->tag_size;
1842 sectors_to_process -= ic->sectors_per_block;
1843 pos += ic->sectors_per_block << SECTOR_SHIFT;
1844 sector += ic->sectors_per_block;
1845 } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1846 kunmap_local(mem);
1847
1848 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1849 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1850 if (unlikely(r)) {
1851 if (r > 0) {
1852 integrity_recheck(dio, checksums);
1853 goto skip_io;
1854 }
1855 if (likely(checksums != checksums_onstack))
1856 kfree(checksums);
1857 goto error;
1858 }
1859
1860 if (!sectors_to_process)
1861 break;
1862
1863 if (unlikely(pos < bv_copy.bv_len)) {
1864 bv_copy.bv_offset += pos;
1865 bv_copy.bv_len -= pos;
1866 goto again;
1867 }
1868 }
1869
1870 if (likely(checksums != checksums_onstack))
1871 kfree(checksums);
1872 } else {
1873 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1874
1875 if (bip) {
1876 struct bio_vec biv;
1877 struct bvec_iter iter;
1878 unsigned int data_to_process = dio->range.n_sectors;
1879
1880 sector_to_block(ic, data_to_process);
1881 data_to_process *= ic->tag_size;
1882
1883 bip_for_each_vec(biv, bip, iter) {
1884 unsigned char *tag;
1885 unsigned int this_len;
1886
1887 BUG_ON(PageHighMem(biv.bv_page));
1888 tag = bvec_virt(&biv);
1889 this_len = min(biv.bv_len, data_to_process);
1890 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1891 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1892 if (unlikely(r))
1893 goto error;
1894 data_to_process -= this_len;
1895 if (!data_to_process)
1896 break;
1897 }
1898 }
1899 }
1900skip_io:
1901 dec_in_flight(dio);
1902 return;
1903error:
1904 dio->bi_status = errno_to_blk_status(r);
1905 dec_in_flight(dio);
1906}
1907
1908static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1909{
1910 struct dm_integrity_c *ic = ti->private;
1911 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1912 struct bio_integrity_payload *bip;
1913
1914 sector_t area, offset;
1915
1916 dio->ic = ic;
1917 dio->bi_status = 0;
1918 dio->op = bio_op(bio);
1919
1920 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1921 if (ti->max_io_len) {
1922 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1923 unsigned int log2_max_io_len = __fls(ti->max_io_len);
1924 sector_t start_boundary = sec >> log2_max_io_len;
1925 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1926
1927 if (start_boundary < end_boundary) {
1928 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1929
1930 dm_accept_partial_bio(bio, len);
1931 }
1932 }
1933 }
1934
1935 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1936 submit_flush_bio(ic, dio);
1937 return DM_MAPIO_SUBMITTED;
1938 }
1939
1940 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1941 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1942 if (unlikely(dio->fua)) {
1943 /*
1944 * Don't pass down the FUA flag because we have to flush
1945 * disk cache anyway.
1946 */
1947 bio->bi_opf &= ~REQ_FUA;
1948 }
1949 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1950 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1951 dio->range.logical_sector, bio_sectors(bio),
1952 ic->provided_data_sectors);
1953 return DM_MAPIO_KILL;
1954 }
1955 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1956 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1957 ic->sectors_per_block,
1958 dio->range.logical_sector, bio_sectors(bio));
1959 return DM_MAPIO_KILL;
1960 }
1961
1962 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1963 struct bvec_iter iter;
1964 struct bio_vec bv;
1965
1966 bio_for_each_segment(bv, bio, iter) {
1967 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1968 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1969 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1970 return DM_MAPIO_KILL;
1971 }
1972 }
1973 }
1974
1975 bip = bio_integrity(bio);
1976 if (!ic->internal_hash) {
1977 if (bip) {
1978 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1979
1980 if (ic->log2_tag_size >= 0)
1981 wanted_tag_size <<= ic->log2_tag_size;
1982 else
1983 wanted_tag_size *= ic->tag_size;
1984 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1985 DMERR("Invalid integrity data size %u, expected %u",
1986 bip->bip_iter.bi_size, wanted_tag_size);
1987 return DM_MAPIO_KILL;
1988 }
1989 }
1990 } else {
1991 if (unlikely(bip != NULL)) {
1992 DMERR("Unexpected integrity data when using internal hash");
1993 return DM_MAPIO_KILL;
1994 }
1995 }
1996
1997 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1998 return DM_MAPIO_KILL;
1999
2000 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2001 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2002 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2003
2004 dm_integrity_map_continue(dio, true);
2005 return DM_MAPIO_SUBMITTED;
2006}
2007
2008static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2009 unsigned int journal_section, unsigned int journal_entry)
2010{
2011 struct dm_integrity_c *ic = dio->ic;
2012 sector_t logical_sector;
2013 unsigned int n_sectors;
2014
2015 logical_sector = dio->range.logical_sector;
2016 n_sectors = dio->range.n_sectors;
2017 do {
2018 struct bio_vec bv = bio_iovec(bio);
2019 char *mem;
2020
2021 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2022 bv.bv_len = n_sectors << SECTOR_SHIFT;
2023 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2024 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2025retry_kmap:
2026 mem = kmap_local_page(bv.bv_page);
2027 if (likely(dio->op == REQ_OP_WRITE))
2028 flush_dcache_page(bv.bv_page);
2029
2030 do {
2031 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2032
2033 if (unlikely(dio->op == REQ_OP_READ)) {
2034 struct journal_sector *js;
2035 char *mem_ptr;
2036 unsigned int s;
2037
2038 if (unlikely(journal_entry_is_inprogress(je))) {
2039 flush_dcache_page(bv.bv_page);
2040 kunmap_local(mem);
2041
2042 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2043 goto retry_kmap;
2044 }
2045 smp_rmb();
2046 BUG_ON(journal_entry_get_sector(je) != logical_sector);
2047 js = access_journal_data(ic, journal_section, journal_entry);
2048 mem_ptr = mem + bv.bv_offset;
2049 s = 0;
2050 do {
2051 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2052 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2053 js++;
2054 mem_ptr += 1 << SECTOR_SHIFT;
2055 } while (++s < ic->sectors_per_block);
2056#ifdef INTERNAL_VERIFY
2057 if (ic->internal_hash) {
2058 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2059
2060 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2061 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2062 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2063 logical_sector);
2064 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2065 bio, logical_sector, 0);
2066 }
2067 }
2068#endif
2069 }
2070
2071 if (!ic->internal_hash) {
2072 struct bio_integrity_payload *bip = bio_integrity(bio);
2073 unsigned int tag_todo = ic->tag_size;
2074 char *tag_ptr = journal_entry_tag(ic, je);
2075
2076 if (bip) {
2077 do {
2078 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2079 unsigned int tag_now = min(biv.bv_len, tag_todo);
2080 char *tag_addr;
2081
2082 BUG_ON(PageHighMem(biv.bv_page));
2083 tag_addr = bvec_virt(&biv);
2084 if (likely(dio->op == REQ_OP_WRITE))
2085 memcpy(tag_ptr, tag_addr, tag_now);
2086 else
2087 memcpy(tag_addr, tag_ptr, tag_now);
2088 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2089 tag_ptr += tag_now;
2090 tag_todo -= tag_now;
2091 } while (unlikely(tag_todo));
2092 } else if (likely(dio->op == REQ_OP_WRITE))
2093 memset(tag_ptr, 0, tag_todo);
2094 }
2095
2096 if (likely(dio->op == REQ_OP_WRITE)) {
2097 struct journal_sector *js;
2098 unsigned int s;
2099
2100 js = access_journal_data(ic, journal_section, journal_entry);
2101 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2102
2103 s = 0;
2104 do {
2105 je->last_bytes[s] = js[s].commit_id;
2106 } while (++s < ic->sectors_per_block);
2107
2108 if (ic->internal_hash) {
2109 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2110
2111 if (unlikely(digest_size > ic->tag_size)) {
2112 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2113
2114 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2115 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2116 } else
2117 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2118 }
2119
2120 journal_entry_set_sector(je, logical_sector);
2121 }
2122 logical_sector += ic->sectors_per_block;
2123
2124 journal_entry++;
2125 if (unlikely(journal_entry == ic->journal_section_entries)) {
2126 journal_entry = 0;
2127 journal_section++;
2128 wraparound_section(ic, &journal_section);
2129 }
2130
2131 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2132 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2133
2134 if (unlikely(dio->op == REQ_OP_READ))
2135 flush_dcache_page(bv.bv_page);
2136 kunmap_local(mem);
2137 } while (n_sectors);
2138
2139 if (likely(dio->op == REQ_OP_WRITE)) {
2140 smp_mb();
2141 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2142 wake_up(&ic->copy_to_journal_wait);
2143 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2144 queue_work(ic->commit_wq, &ic->commit_work);
2145 else
2146 schedule_autocommit(ic);
2147 } else
2148 remove_range(ic, &dio->range);
2149
2150 if (unlikely(bio->bi_iter.bi_size)) {
2151 sector_t area, offset;
2152
2153 dio->range.logical_sector = logical_sector;
2154 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2155 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2156 return true;
2157 }
2158
2159 return false;
2160}
2161
2162static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2163{
2164 struct dm_integrity_c *ic = dio->ic;
2165 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2166 unsigned int journal_section, journal_entry;
2167 unsigned int journal_read_pos;
2168 struct completion read_comp;
2169 bool discard_retried = false;
2170 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2171
2172 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2173 need_sync_io = true;
2174
2175 if (need_sync_io && from_map) {
2176 INIT_WORK(&dio->work, integrity_bio_wait);
2177 queue_work(ic->offload_wq, &dio->work);
2178 return;
2179 }
2180
2181lock_retry:
2182 spin_lock_irq(&ic->endio_wait.lock);
2183retry:
2184 if (unlikely(dm_integrity_failed(ic))) {
2185 spin_unlock_irq(&ic->endio_wait.lock);
2186 do_endio(ic, bio);
2187 return;
2188 }
2189 dio->range.n_sectors = bio_sectors(bio);
2190 journal_read_pos = NOT_FOUND;
2191 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2192 if (dio->op == REQ_OP_WRITE) {
2193 unsigned int next_entry, i, pos;
2194 unsigned int ws, we, range_sectors;
2195
2196 dio->range.n_sectors = min(dio->range.n_sectors,
2197 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2198 if (unlikely(!dio->range.n_sectors)) {
2199 if (from_map)
2200 goto offload_to_thread;
2201 sleep_on_endio_wait(ic);
2202 goto retry;
2203 }
2204 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2205 ic->free_sectors -= range_sectors;
2206 journal_section = ic->free_section;
2207 journal_entry = ic->free_section_entry;
2208
2209 next_entry = ic->free_section_entry + range_sectors;
2210 ic->free_section_entry = next_entry % ic->journal_section_entries;
2211 ic->free_section += next_entry / ic->journal_section_entries;
2212 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2213 wraparound_section(ic, &ic->free_section);
2214
2215 pos = journal_section * ic->journal_section_entries + journal_entry;
2216 ws = journal_section;
2217 we = journal_entry;
2218 i = 0;
2219 do {
2220 struct journal_entry *je;
2221
2222 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2223 pos++;
2224 if (unlikely(pos >= ic->journal_entries))
2225 pos = 0;
2226
2227 je = access_journal_entry(ic, ws, we);
2228 BUG_ON(!journal_entry_is_unused(je));
2229 journal_entry_set_inprogress(je);
2230 we++;
2231 if (unlikely(we == ic->journal_section_entries)) {
2232 we = 0;
2233 ws++;
2234 wraparound_section(ic, &ws);
2235 }
2236 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2237
2238 spin_unlock_irq(&ic->endio_wait.lock);
2239 goto journal_read_write;
2240 } else {
2241 sector_t next_sector;
2242
2243 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2244 if (likely(journal_read_pos == NOT_FOUND)) {
2245 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2246 dio->range.n_sectors = next_sector - dio->range.logical_sector;
2247 } else {
2248 unsigned int i;
2249 unsigned int jp = journal_read_pos + 1;
2250
2251 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2252 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2253 break;
2254 }
2255 dio->range.n_sectors = i;
2256 }
2257 }
2258 }
2259 if (unlikely(!add_new_range(ic, &dio->range, true))) {
2260 /*
2261 * We must not sleep in the request routine because it could
2262 * stall bios on current->bio_list.
2263 * So, we offload the bio to a workqueue if we have to sleep.
2264 */
2265 if (from_map) {
2266offload_to_thread:
2267 spin_unlock_irq(&ic->endio_wait.lock);
2268 INIT_WORK(&dio->work, integrity_bio_wait);
2269 queue_work(ic->wait_wq, &dio->work);
2270 return;
2271 }
2272 if (journal_read_pos != NOT_FOUND)
2273 dio->range.n_sectors = ic->sectors_per_block;
2274 wait_and_add_new_range(ic, &dio->range);
2275 /*
2276 * wait_and_add_new_range drops the spinlock, so the journal
2277 * may have been changed arbitrarily. We need to recheck.
2278 * To simplify the code, we restrict I/O size to just one block.
2279 */
2280 if (journal_read_pos != NOT_FOUND) {
2281 sector_t next_sector;
2282 unsigned int new_pos;
2283
2284 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2285 if (unlikely(new_pos != journal_read_pos)) {
2286 remove_range_unlocked(ic, &dio->range);
2287 goto retry;
2288 }
2289 }
2290 }
2291 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2292 sector_t next_sector;
2293 unsigned int new_pos;
2294
2295 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2296 if (unlikely(new_pos != NOT_FOUND) ||
2297 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2298 remove_range_unlocked(ic, &dio->range);
2299 spin_unlock_irq(&ic->endio_wait.lock);
2300 queue_work(ic->commit_wq, &ic->commit_work);
2301 flush_workqueue(ic->commit_wq);
2302 queue_work(ic->writer_wq, &ic->writer_work);
2303 flush_workqueue(ic->writer_wq);
2304 discard_retried = true;
2305 goto lock_retry;
2306 }
2307 }
2308 spin_unlock_irq(&ic->endio_wait.lock);
2309
2310 if (unlikely(journal_read_pos != NOT_FOUND)) {
2311 journal_section = journal_read_pos / ic->journal_section_entries;
2312 journal_entry = journal_read_pos % ic->journal_section_entries;
2313 goto journal_read_write;
2314 }
2315
2316 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2317 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2318 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2319 struct bitmap_block_status *bbs;
2320
2321 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2322 spin_lock(&bbs->bio_queue_lock);
2323 bio_list_add(&bbs->bio_queue, bio);
2324 spin_unlock(&bbs->bio_queue_lock);
2325 queue_work(ic->writer_wq, &bbs->work);
2326 return;
2327 }
2328 }
2329
2330 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2331
2332 if (need_sync_io) {
2333 init_completion(&read_comp);
2334 dio->completion = &read_comp;
2335 } else
2336 dio->completion = NULL;
2337
2338 dm_bio_record(&dio->bio_details, bio);
2339 bio_set_dev(bio, ic->dev->bdev);
2340 bio->bi_integrity = NULL;
2341 bio->bi_opf &= ~REQ_INTEGRITY;
2342 bio->bi_end_io = integrity_end_io;
2343 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2344
2345 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2346 integrity_metadata(&dio->work);
2347 dm_integrity_flush_buffers(ic, false);
2348
2349 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2350 dio->completion = NULL;
2351
2352 submit_bio_noacct(bio);
2353
2354 return;
2355 }
2356
2357 submit_bio_noacct(bio);
2358
2359 if (need_sync_io) {
2360 wait_for_completion_io(&read_comp);
2361 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2362 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2363 goto skip_check;
2364 if (ic->mode == 'B') {
2365 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2366 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2367 goto skip_check;
2368 }
2369
2370 if (likely(!bio->bi_status))
2371 integrity_metadata(&dio->work);
2372 else
2373skip_check:
2374 dec_in_flight(dio);
2375 } else {
2376 INIT_WORK(&dio->work, integrity_metadata);
2377 queue_work(ic->metadata_wq, &dio->work);
2378 }
2379
2380 return;
2381
2382journal_read_write:
2383 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2384 goto lock_retry;
2385
2386 do_endio_flush(ic, dio);
2387}
2388
2389
2390static void integrity_bio_wait(struct work_struct *w)
2391{
2392 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2393
2394 dm_integrity_map_continue(dio, false);
2395}
2396
2397static void pad_uncommitted(struct dm_integrity_c *ic)
2398{
2399 if (ic->free_section_entry) {
2400 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2401 ic->free_section_entry = 0;
2402 ic->free_section++;
2403 wraparound_section(ic, &ic->free_section);
2404 ic->n_uncommitted_sections++;
2405 }
2406 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2407 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2408 ic->journal_section_entries + ic->free_sectors)) {
2409 DMCRIT("journal_sections %u, journal_section_entries %u, "
2410 "n_uncommitted_sections %u, n_committed_sections %u, "
2411 "journal_section_entries %u, free_sectors %u",
2412 ic->journal_sections, ic->journal_section_entries,
2413 ic->n_uncommitted_sections, ic->n_committed_sections,
2414 ic->journal_section_entries, ic->free_sectors);
2415 }
2416}
2417
2418static void integrity_commit(struct work_struct *w)
2419{
2420 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2421 unsigned int commit_start, commit_sections;
2422 unsigned int i, j, n;
2423 struct bio *flushes;
2424
2425 del_timer(&ic->autocommit_timer);
2426
2427 spin_lock_irq(&ic->endio_wait.lock);
2428 flushes = bio_list_get(&ic->flush_bio_list);
2429 if (unlikely(ic->mode != 'J')) {
2430 spin_unlock_irq(&ic->endio_wait.lock);
2431 dm_integrity_flush_buffers(ic, true);
2432 goto release_flush_bios;
2433 }
2434
2435 pad_uncommitted(ic);
2436 commit_start = ic->uncommitted_section;
2437 commit_sections = ic->n_uncommitted_sections;
2438 spin_unlock_irq(&ic->endio_wait.lock);
2439
2440 if (!commit_sections)
2441 goto release_flush_bios;
2442
2443 ic->wrote_to_journal = true;
2444
2445 i = commit_start;
2446 for (n = 0; n < commit_sections; n++) {
2447 for (j = 0; j < ic->journal_section_entries; j++) {
2448 struct journal_entry *je;
2449
2450 je = access_journal_entry(ic, i, j);
2451 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2452 }
2453 for (j = 0; j < ic->journal_section_sectors; j++) {
2454 struct journal_sector *js;
2455
2456 js = access_journal(ic, i, j);
2457 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2458 }
2459 i++;
2460 if (unlikely(i >= ic->journal_sections))
2461 ic->commit_seq = next_commit_seq(ic->commit_seq);
2462 wraparound_section(ic, &i);
2463 }
2464 smp_rmb();
2465
2466 write_journal(ic, commit_start, commit_sections);
2467
2468 spin_lock_irq(&ic->endio_wait.lock);
2469 ic->uncommitted_section += commit_sections;
2470 wraparound_section(ic, &ic->uncommitted_section);
2471 ic->n_uncommitted_sections -= commit_sections;
2472 ic->n_committed_sections += commit_sections;
2473 spin_unlock_irq(&ic->endio_wait.lock);
2474
2475 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2476 queue_work(ic->writer_wq, &ic->writer_work);
2477
2478release_flush_bios:
2479 while (flushes) {
2480 struct bio *next = flushes->bi_next;
2481
2482 flushes->bi_next = NULL;
2483 do_endio(ic, flushes);
2484 flushes = next;
2485 }
2486}
2487
2488static void complete_copy_from_journal(unsigned long error, void *context)
2489{
2490 struct journal_io *io = context;
2491 struct journal_completion *comp = io->comp;
2492 struct dm_integrity_c *ic = comp->ic;
2493
2494 remove_range(ic, &io->range);
2495 mempool_free(io, &ic->journal_io_mempool);
2496 if (unlikely(error != 0))
2497 dm_integrity_io_error(ic, "copying from journal", -EIO);
2498 complete_journal_op(comp);
2499}
2500
2501static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2502 struct journal_entry *je)
2503{
2504 unsigned int s = 0;
2505
2506 do {
2507 js->commit_id = je->last_bytes[s];
2508 js++;
2509 } while (++s < ic->sectors_per_block);
2510}
2511
2512static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2513 unsigned int write_sections, bool from_replay)
2514{
2515 unsigned int i, j, n;
2516 struct journal_completion comp;
2517 struct blk_plug plug;
2518
2519 blk_start_plug(&plug);
2520
2521 comp.ic = ic;
2522 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2523 init_completion(&comp.comp);
2524
2525 i = write_start;
2526 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2527#ifndef INTERNAL_VERIFY
2528 if (unlikely(from_replay))
2529#endif
2530 rw_section_mac(ic, i, false);
2531 for (j = 0; j < ic->journal_section_entries; j++) {
2532 struct journal_entry *je = access_journal_entry(ic, i, j);
2533 sector_t sec, area, offset;
2534 unsigned int k, l, next_loop;
2535 sector_t metadata_block;
2536 unsigned int metadata_offset;
2537 struct journal_io *io;
2538
2539 if (journal_entry_is_unused(je))
2540 continue;
2541 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2542 sec = journal_entry_get_sector(je);
2543 if (unlikely(from_replay)) {
2544 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2545 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2546 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2547 }
2548 if (unlikely(sec >= ic->provided_data_sectors)) {
2549 journal_entry_set_unused(je);
2550 continue;
2551 }
2552 }
2553 get_area_and_offset(ic, sec, &area, &offset);
2554 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2555 for (k = j + 1; k < ic->journal_section_entries; k++) {
2556 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2557 sector_t sec2, area2, offset2;
2558
2559 if (journal_entry_is_unused(je2))
2560 break;
2561 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2562 sec2 = journal_entry_get_sector(je2);
2563 if (unlikely(sec2 >= ic->provided_data_sectors))
2564 break;
2565 get_area_and_offset(ic, sec2, &area2, &offset2);
2566 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2567 break;
2568 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2569 }
2570 next_loop = k - 1;
2571
2572 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2573 io->comp = ∁
2574 io->range.logical_sector = sec;
2575 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2576
2577 spin_lock_irq(&ic->endio_wait.lock);
2578 add_new_range_and_wait(ic, &io->range);
2579
2580 if (likely(!from_replay)) {
2581 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2582
2583 /* don't write if there is newer committed sector */
2584 while (j < k && find_newer_committed_node(ic, §ion_node[j])) {
2585 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2586
2587 journal_entry_set_unused(je2);
2588 remove_journal_node(ic, §ion_node[j]);
2589 j++;
2590 sec += ic->sectors_per_block;
2591 offset += ic->sectors_per_block;
2592 }
2593 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) {
2594 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2595
2596 journal_entry_set_unused(je2);
2597 remove_journal_node(ic, §ion_node[k - 1]);
2598 k--;
2599 }
2600 if (j == k) {
2601 remove_range_unlocked(ic, &io->range);
2602 spin_unlock_irq(&ic->endio_wait.lock);
2603 mempool_free(io, &ic->journal_io_mempool);
2604 goto skip_io;
2605 }
2606 for (l = j; l < k; l++)
2607 remove_journal_node(ic, §ion_node[l]);
2608 }
2609 spin_unlock_irq(&ic->endio_wait.lock);
2610
2611 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2612 for (l = j; l < k; l++) {
2613 int r;
2614 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2615
2616 if (
2617#ifndef INTERNAL_VERIFY
2618 unlikely(from_replay) &&
2619#endif
2620 ic->internal_hash) {
2621 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2622
2623 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2624 (char *)access_journal_data(ic, i, l), test_tag);
2625 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2626 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2627 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2628 }
2629 }
2630
2631 journal_entry_set_unused(je2);
2632 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2633 ic->tag_size, TAG_WRITE);
2634 if (unlikely(r))
2635 dm_integrity_io_error(ic, "reading tags", r);
2636 }
2637
2638 atomic_inc(&comp.in_flight);
2639 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2640 (k - j) << ic->sb->log2_sectors_per_block,
2641 get_data_sector(ic, area, offset),
2642 complete_copy_from_journal, io);
2643skip_io:
2644 j = next_loop;
2645 }
2646 }
2647
2648 dm_bufio_write_dirty_buffers_async(ic->bufio);
2649
2650 blk_finish_plug(&plug);
2651
2652 complete_journal_op(&comp);
2653 wait_for_completion_io(&comp.comp);
2654
2655 dm_integrity_flush_buffers(ic, true);
2656}
2657
2658static void integrity_writer(struct work_struct *w)
2659{
2660 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2661 unsigned int write_start, write_sections;
2662 unsigned int prev_free_sectors;
2663
2664 spin_lock_irq(&ic->endio_wait.lock);
2665 write_start = ic->committed_section;
2666 write_sections = ic->n_committed_sections;
2667 spin_unlock_irq(&ic->endio_wait.lock);
2668
2669 if (!write_sections)
2670 return;
2671
2672 do_journal_write(ic, write_start, write_sections, false);
2673
2674 spin_lock_irq(&ic->endio_wait.lock);
2675
2676 ic->committed_section += write_sections;
2677 wraparound_section(ic, &ic->committed_section);
2678 ic->n_committed_sections -= write_sections;
2679
2680 prev_free_sectors = ic->free_sectors;
2681 ic->free_sectors += write_sections * ic->journal_section_entries;
2682 if (unlikely(!prev_free_sectors))
2683 wake_up_locked(&ic->endio_wait);
2684
2685 spin_unlock_irq(&ic->endio_wait.lock);
2686}
2687
2688static void recalc_write_super(struct dm_integrity_c *ic)
2689{
2690 int r;
2691
2692 dm_integrity_flush_buffers(ic, false);
2693 if (dm_integrity_failed(ic))
2694 return;
2695
2696 r = sync_rw_sb(ic, REQ_OP_WRITE);
2697 if (unlikely(r))
2698 dm_integrity_io_error(ic, "writing superblock", r);
2699}
2700
2701static void integrity_recalc(struct work_struct *w)
2702{
2703 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2704 size_t recalc_tags_size;
2705 u8 *recalc_buffer = NULL;
2706 u8 *recalc_tags = NULL;
2707 struct dm_integrity_range range;
2708 struct dm_io_request io_req;
2709 struct dm_io_region io_loc;
2710 sector_t area, offset;
2711 sector_t metadata_block;
2712 unsigned int metadata_offset;
2713 sector_t logical_sector, n_sectors;
2714 __u8 *t;
2715 unsigned int i;
2716 int r;
2717 unsigned int super_counter = 0;
2718 unsigned recalc_sectors = RECALC_SECTORS;
2719
2720retry:
2721 recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2722 if (!recalc_buffer) {
2723oom:
2724 recalc_sectors >>= 1;
2725 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2726 goto retry;
2727 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2728 goto free_ret;
2729 }
2730 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2731 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2732 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2733 recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2734 if (!recalc_tags) {
2735 vfree(recalc_buffer);
2736 recalc_buffer = NULL;
2737 goto oom;
2738 }
2739
2740 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2741
2742 spin_lock_irq(&ic->endio_wait.lock);
2743
2744next_chunk:
2745
2746 if (unlikely(dm_post_suspending(ic->ti)))
2747 goto unlock_ret;
2748
2749 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2750 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2751 if (ic->mode == 'B') {
2752 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2753 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2754 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2755 }
2756 goto unlock_ret;
2757 }
2758
2759 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2760 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2761 if (!ic->meta_dev)
2762 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2763
2764 add_new_range_and_wait(ic, &range);
2765 spin_unlock_irq(&ic->endio_wait.lock);
2766 logical_sector = range.logical_sector;
2767 n_sectors = range.n_sectors;
2768
2769 if (ic->mode == 'B') {
2770 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2771 goto advance_and_next;
2772
2773 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2774 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2775 logical_sector += ic->sectors_per_block;
2776 n_sectors -= ic->sectors_per_block;
2777 cond_resched();
2778 }
2779 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2780 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2781 n_sectors -= ic->sectors_per_block;
2782 cond_resched();
2783 }
2784 get_area_and_offset(ic, logical_sector, &area, &offset);
2785 }
2786
2787 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2788
2789 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2790 recalc_write_super(ic);
2791 if (ic->mode == 'B')
2792 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2793
2794 super_counter = 0;
2795 }
2796
2797 if (unlikely(dm_integrity_failed(ic)))
2798 goto err;
2799
2800 io_req.bi_opf = REQ_OP_READ;
2801 io_req.mem.type = DM_IO_VMA;
2802 io_req.mem.ptr.addr = recalc_buffer;
2803 io_req.notify.fn = NULL;
2804 io_req.client = ic->io;
2805 io_loc.bdev = ic->dev->bdev;
2806 io_loc.sector = get_data_sector(ic, area, offset);
2807 io_loc.count = n_sectors;
2808
2809 r = dm_io(&io_req, 1, &io_loc, NULL);
2810 if (unlikely(r)) {
2811 dm_integrity_io_error(ic, "reading data", r);
2812 goto err;
2813 }
2814
2815 t = recalc_tags;
2816 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2817 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2818 t += ic->tag_size;
2819 }
2820
2821 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2822
2823 r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2824 if (unlikely(r)) {
2825 dm_integrity_io_error(ic, "writing tags", r);
2826 goto err;
2827 }
2828
2829 if (ic->mode == 'B') {
2830 sector_t start, end;
2831
2832 start = (range.logical_sector >>
2833 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2834 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2835 end = ((range.logical_sector + range.n_sectors) >>
2836 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2837 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2838 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2839 }
2840
2841advance_and_next:
2842 cond_resched();
2843
2844 spin_lock_irq(&ic->endio_wait.lock);
2845 remove_range_unlocked(ic, &range);
2846 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2847 goto next_chunk;
2848
2849err:
2850 remove_range(ic, &range);
2851 goto free_ret;
2852
2853unlock_ret:
2854 spin_unlock_irq(&ic->endio_wait.lock);
2855
2856 recalc_write_super(ic);
2857
2858free_ret:
2859 vfree(recalc_buffer);
2860 kvfree(recalc_tags);
2861}
2862
2863static void bitmap_block_work(struct work_struct *w)
2864{
2865 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2866 struct dm_integrity_c *ic = bbs->ic;
2867 struct bio *bio;
2868 struct bio_list bio_queue;
2869 struct bio_list waiting;
2870
2871 bio_list_init(&waiting);
2872
2873 spin_lock(&bbs->bio_queue_lock);
2874 bio_queue = bbs->bio_queue;
2875 bio_list_init(&bbs->bio_queue);
2876 spin_unlock(&bbs->bio_queue_lock);
2877
2878 while ((bio = bio_list_pop(&bio_queue))) {
2879 struct dm_integrity_io *dio;
2880
2881 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2882
2883 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2884 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2885 remove_range(ic, &dio->range);
2886 INIT_WORK(&dio->work, integrity_bio_wait);
2887 queue_work(ic->offload_wq, &dio->work);
2888 } else {
2889 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2890 dio->range.n_sectors, BITMAP_OP_SET);
2891 bio_list_add(&waiting, bio);
2892 }
2893 }
2894
2895 if (bio_list_empty(&waiting))
2896 return;
2897
2898 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2899 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2900 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2901
2902 while ((bio = bio_list_pop(&waiting))) {
2903 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2904
2905 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2906 dio->range.n_sectors, BITMAP_OP_SET);
2907
2908 remove_range(ic, &dio->range);
2909 INIT_WORK(&dio->work, integrity_bio_wait);
2910 queue_work(ic->offload_wq, &dio->work);
2911 }
2912
2913 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2914}
2915
2916static void bitmap_flush_work(struct work_struct *work)
2917{
2918 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2919 struct dm_integrity_range range;
2920 unsigned long limit;
2921 struct bio *bio;
2922
2923 dm_integrity_flush_buffers(ic, false);
2924
2925 range.logical_sector = 0;
2926 range.n_sectors = ic->provided_data_sectors;
2927
2928 spin_lock_irq(&ic->endio_wait.lock);
2929 add_new_range_and_wait(ic, &range);
2930 spin_unlock_irq(&ic->endio_wait.lock);
2931
2932 dm_integrity_flush_buffers(ic, true);
2933
2934 limit = ic->provided_data_sectors;
2935 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2936 limit = le64_to_cpu(ic->sb->recalc_sector)
2937 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2938 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2939 }
2940 /*DEBUG_print("zeroing journal\n");*/
2941 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2942 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2943
2944 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2945 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2946
2947 spin_lock_irq(&ic->endio_wait.lock);
2948 remove_range_unlocked(ic, &range);
2949 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2950 bio_endio(bio);
2951 spin_unlock_irq(&ic->endio_wait.lock);
2952 spin_lock_irq(&ic->endio_wait.lock);
2953 }
2954 spin_unlock_irq(&ic->endio_wait.lock);
2955}
2956
2957
2958static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2959 unsigned int n_sections, unsigned char commit_seq)
2960{
2961 unsigned int i, j, n;
2962
2963 if (!n_sections)
2964 return;
2965
2966 for (n = 0; n < n_sections; n++) {
2967 i = start_section + n;
2968 wraparound_section(ic, &i);
2969 for (j = 0; j < ic->journal_section_sectors; j++) {
2970 struct journal_sector *js = access_journal(ic, i, j);
2971
2972 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2973 memset(&js->sectors, 0, sizeof(js->sectors));
2974 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2975 }
2976 for (j = 0; j < ic->journal_section_entries; j++) {
2977 struct journal_entry *je = access_journal_entry(ic, i, j);
2978
2979 journal_entry_set_unused(je);
2980 }
2981 }
2982
2983 write_journal(ic, start_section, n_sections);
2984}
2985
2986static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2987{
2988 unsigned char k;
2989
2990 for (k = 0; k < N_COMMIT_IDS; k++) {
2991 if (dm_integrity_commit_id(ic, i, j, k) == id)
2992 return k;
2993 }
2994 dm_integrity_io_error(ic, "journal commit id", -EIO);
2995 return -EIO;
2996}
2997
2998static void replay_journal(struct dm_integrity_c *ic)
2999{
3000 unsigned int i, j;
3001 bool used_commit_ids[N_COMMIT_IDS];
3002 unsigned int max_commit_id_sections[N_COMMIT_IDS];
3003 unsigned int write_start, write_sections;
3004 unsigned int continue_section;
3005 bool journal_empty;
3006 unsigned char unused, last_used, want_commit_seq;
3007
3008 if (ic->mode == 'R')
3009 return;
3010
3011 if (ic->journal_uptodate)
3012 return;
3013
3014 last_used = 0;
3015 write_start = 0;
3016
3017 if (!ic->just_formatted) {
3018 DEBUG_print("reading journal\n");
3019 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3020 if (ic->journal_io)
3021 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3022 if (ic->journal_io) {
3023 struct journal_completion crypt_comp;
3024
3025 crypt_comp.ic = ic;
3026 init_completion(&crypt_comp.comp);
3027 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3028 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3029 wait_for_completion(&crypt_comp.comp);
3030 }
3031 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3032 }
3033
3034 if (dm_integrity_failed(ic))
3035 goto clear_journal;
3036
3037 journal_empty = true;
3038 memset(used_commit_ids, 0, sizeof(used_commit_ids));
3039 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3040 for (i = 0; i < ic->journal_sections; i++) {
3041 for (j = 0; j < ic->journal_section_sectors; j++) {
3042 int k;
3043 struct journal_sector *js = access_journal(ic, i, j);
3044
3045 k = find_commit_seq(ic, i, j, js->commit_id);
3046 if (k < 0)
3047 goto clear_journal;
3048 used_commit_ids[k] = true;
3049 max_commit_id_sections[k] = i;
3050 }
3051 if (journal_empty) {
3052 for (j = 0; j < ic->journal_section_entries; j++) {
3053 struct journal_entry *je = access_journal_entry(ic, i, j);
3054
3055 if (!journal_entry_is_unused(je)) {
3056 journal_empty = false;
3057 break;
3058 }
3059 }
3060 }
3061 }
3062
3063 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3064 unused = N_COMMIT_IDS - 1;
3065 while (unused && !used_commit_ids[unused - 1])
3066 unused--;
3067 } else {
3068 for (unused = 0; unused < N_COMMIT_IDS; unused++)
3069 if (!used_commit_ids[unused])
3070 break;
3071 if (unused == N_COMMIT_IDS) {
3072 dm_integrity_io_error(ic, "journal commit ids", -EIO);
3073 goto clear_journal;
3074 }
3075 }
3076 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3077 unused, used_commit_ids[0], used_commit_ids[1],
3078 used_commit_ids[2], used_commit_ids[3]);
3079
3080 last_used = prev_commit_seq(unused);
3081 want_commit_seq = prev_commit_seq(last_used);
3082
3083 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3084 journal_empty = true;
3085
3086 write_start = max_commit_id_sections[last_used] + 1;
3087 if (unlikely(write_start >= ic->journal_sections))
3088 want_commit_seq = next_commit_seq(want_commit_seq);
3089 wraparound_section(ic, &write_start);
3090
3091 i = write_start;
3092 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3093 for (j = 0; j < ic->journal_section_sectors; j++) {
3094 struct journal_sector *js = access_journal(ic, i, j);
3095
3096 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3097 /*
3098 * This could be caused by crash during writing.
3099 * We won't replay the inconsistent part of the
3100 * journal.
3101 */
3102 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3103 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3104 goto brk;
3105 }
3106 }
3107 i++;
3108 if (unlikely(i >= ic->journal_sections))
3109 want_commit_seq = next_commit_seq(want_commit_seq);
3110 wraparound_section(ic, &i);
3111 }
3112brk:
3113
3114 if (!journal_empty) {
3115 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3116 write_sections, write_start, want_commit_seq);
3117 do_journal_write(ic, write_start, write_sections, true);
3118 }
3119
3120 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3121 continue_section = write_start;
3122 ic->commit_seq = want_commit_seq;
3123 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3124 } else {
3125 unsigned int s;
3126 unsigned char erase_seq;
3127
3128clear_journal:
3129 DEBUG_print("clearing journal\n");
3130
3131 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3132 s = write_start;
3133 init_journal(ic, s, 1, erase_seq);
3134 s++;
3135 wraparound_section(ic, &s);
3136 if (ic->journal_sections >= 2) {
3137 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3138 s += ic->journal_sections - 2;
3139 wraparound_section(ic, &s);
3140 init_journal(ic, s, 1, erase_seq);
3141 }
3142
3143 continue_section = 0;
3144 ic->commit_seq = next_commit_seq(erase_seq);
3145 }
3146
3147 ic->committed_section = continue_section;
3148 ic->n_committed_sections = 0;
3149
3150 ic->uncommitted_section = continue_section;
3151 ic->n_uncommitted_sections = 0;
3152
3153 ic->free_section = continue_section;
3154 ic->free_section_entry = 0;
3155 ic->free_sectors = ic->journal_entries;
3156
3157 ic->journal_tree_root = RB_ROOT;
3158 for (i = 0; i < ic->journal_entries; i++)
3159 init_journal_node(&ic->journal_tree[i]);
3160}
3161
3162static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3163{
3164 DEBUG_print("%s\n", __func__);
3165
3166 if (ic->mode == 'B') {
3167 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3168 ic->synchronous_mode = 1;
3169
3170 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3171 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3172 flush_workqueue(ic->commit_wq);
3173 }
3174}
3175
3176static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3177{
3178 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3179
3180 DEBUG_print("%s\n", __func__);
3181
3182 dm_integrity_enter_synchronous_mode(ic);
3183
3184 return NOTIFY_DONE;
3185}
3186
3187static void dm_integrity_postsuspend(struct dm_target *ti)
3188{
3189 struct dm_integrity_c *ic = ti->private;
3190 int r;
3191
3192 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3193
3194 del_timer_sync(&ic->autocommit_timer);
3195
3196 if (ic->recalc_wq)
3197 drain_workqueue(ic->recalc_wq);
3198
3199 if (ic->mode == 'B')
3200 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3201
3202 queue_work(ic->commit_wq, &ic->commit_work);
3203 drain_workqueue(ic->commit_wq);
3204
3205 if (ic->mode == 'J') {
3206 queue_work(ic->writer_wq, &ic->writer_work);
3207 drain_workqueue(ic->writer_wq);
3208 dm_integrity_flush_buffers(ic, true);
3209 if (ic->wrote_to_journal) {
3210 init_journal(ic, ic->free_section,
3211 ic->journal_sections - ic->free_section, ic->commit_seq);
3212 if (ic->free_section) {
3213 init_journal(ic, 0, ic->free_section,
3214 next_commit_seq(ic->commit_seq));
3215 }
3216 }
3217 }
3218
3219 if (ic->mode == 'B') {
3220 dm_integrity_flush_buffers(ic, true);
3221#if 1
3222 /* set to 0 to test bitmap replay code */
3223 init_journal(ic, 0, ic->journal_sections, 0);
3224 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3225 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3226 if (unlikely(r))
3227 dm_integrity_io_error(ic, "writing superblock", r);
3228#endif
3229 }
3230
3231 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3232
3233 ic->journal_uptodate = true;
3234}
3235
3236static void dm_integrity_resume(struct dm_target *ti)
3237{
3238 struct dm_integrity_c *ic = ti->private;
3239 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3240 int r;
3241
3242 DEBUG_print("resume\n");
3243
3244 ic->wrote_to_journal = false;
3245
3246 if (ic->provided_data_sectors != old_provided_data_sectors) {
3247 if (ic->provided_data_sectors > old_provided_data_sectors &&
3248 ic->mode == 'B' &&
3249 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3250 rw_journal_sectors(ic, REQ_OP_READ, 0,
3251 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3252 block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3253 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3254 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3255 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3256 }
3257
3258 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3259 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3260 if (unlikely(r))
3261 dm_integrity_io_error(ic, "writing superblock", r);
3262 }
3263
3264 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3265 DEBUG_print("resume dirty_bitmap\n");
3266 rw_journal_sectors(ic, REQ_OP_READ, 0,
3267 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3268 if (ic->mode == 'B') {
3269 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3270 !ic->reset_recalculate_flag) {
3271 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3272 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3273 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3274 BITMAP_OP_TEST_ALL_CLEAR)) {
3275 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3276 ic->sb->recalc_sector = cpu_to_le64(0);
3277 }
3278 } else {
3279 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3280 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3281 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3282 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3283 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3284 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3285 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3286 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3287 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3288 ic->sb->recalc_sector = cpu_to_le64(0);
3289 }
3290 } else {
3291 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3292 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3293 ic->reset_recalculate_flag) {
3294 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3295 ic->sb->recalc_sector = cpu_to_le64(0);
3296 }
3297 init_journal(ic, 0, ic->journal_sections, 0);
3298 replay_journal(ic);
3299 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3300 }
3301 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3302 if (unlikely(r))
3303 dm_integrity_io_error(ic, "writing superblock", r);
3304 } else {
3305 replay_journal(ic);
3306 if (ic->reset_recalculate_flag) {
3307 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3308 ic->sb->recalc_sector = cpu_to_le64(0);
3309 }
3310 if (ic->mode == 'B') {
3311 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3312 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3313 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3314 if (unlikely(r))
3315 dm_integrity_io_error(ic, "writing superblock", r);
3316
3317 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3318 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3319 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3320 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3321 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3322 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3323 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3324 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3325 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3326 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3327 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3328 }
3329 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3330 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3331 }
3332 }
3333
3334 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3335 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3336 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3337
3338 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3339 if (recalc_pos < ic->provided_data_sectors) {
3340 queue_work(ic->recalc_wq, &ic->recalc_work);
3341 } else if (recalc_pos > ic->provided_data_sectors) {
3342 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3343 recalc_write_super(ic);
3344 }
3345 }
3346
3347 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3348 ic->reboot_notifier.next = NULL;
3349 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
3350 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3351
3352#if 0
3353 /* set to 1 to stress test synchronous mode */
3354 dm_integrity_enter_synchronous_mode(ic);
3355#endif
3356}
3357
3358static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3359 unsigned int status_flags, char *result, unsigned int maxlen)
3360{
3361 struct dm_integrity_c *ic = ti->private;
3362 unsigned int arg_count;
3363 size_t sz = 0;
3364
3365 switch (type) {
3366 case STATUSTYPE_INFO:
3367 DMEMIT("%llu %llu",
3368 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3369 ic->provided_data_sectors);
3370 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3371 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3372 else
3373 DMEMIT(" -");
3374 break;
3375
3376 case STATUSTYPE_TABLE: {
3377 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3378
3379 watermark_percentage += ic->journal_entries / 2;
3380 do_div(watermark_percentage, ic->journal_entries);
3381 arg_count = 3;
3382 arg_count += !!ic->meta_dev;
3383 arg_count += ic->sectors_per_block != 1;
3384 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3385 arg_count += ic->reset_recalculate_flag;
3386 arg_count += ic->discard;
3387 arg_count += ic->mode == 'J';
3388 arg_count += ic->mode == 'J';
3389 arg_count += ic->mode == 'B';
3390 arg_count += ic->mode == 'B';
3391 arg_count += !!ic->internal_hash_alg.alg_string;
3392 arg_count += !!ic->journal_crypt_alg.alg_string;
3393 arg_count += !!ic->journal_mac_alg.alg_string;
3394 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3395 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3396 arg_count += ic->legacy_recalculate;
3397 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3398 ic->tag_size, ic->mode, arg_count);
3399 if (ic->meta_dev)
3400 DMEMIT(" meta_device:%s", ic->meta_dev->name);
3401 if (ic->sectors_per_block != 1)
3402 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3403 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3404 DMEMIT(" recalculate");
3405 if (ic->reset_recalculate_flag)
3406 DMEMIT(" reset_recalculate");
3407 if (ic->discard)
3408 DMEMIT(" allow_discards");
3409 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3410 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3411 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3412 if (ic->mode == 'J') {
3413 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3414 DMEMIT(" commit_time:%u", ic->autocommit_msec);
3415 }
3416 if (ic->mode == 'B') {
3417 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3418 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3419 }
3420 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3421 DMEMIT(" fix_padding");
3422 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3423 DMEMIT(" fix_hmac");
3424 if (ic->legacy_recalculate)
3425 DMEMIT(" legacy_recalculate");
3426
3427#define EMIT_ALG(a, n) \
3428 do { \
3429 if (ic->a.alg_string) { \
3430 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3431 if (ic->a.key_string) \
3432 DMEMIT(":%s", ic->a.key_string);\
3433 } \
3434 } while (0)
3435 EMIT_ALG(internal_hash_alg, "internal_hash");
3436 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3437 EMIT_ALG(journal_mac_alg, "journal_mac");
3438 break;
3439 }
3440 case STATUSTYPE_IMA:
3441 DMEMIT_TARGET_NAME_VERSION(ti->type);
3442 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3443 ic->dev->name, ic->start, ic->tag_size, ic->mode);
3444
3445 if (ic->meta_dev)
3446 DMEMIT(",meta_device=%s", ic->meta_dev->name);
3447 if (ic->sectors_per_block != 1)
3448 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3449
3450 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3451 'y' : 'n');
3452 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3453 DMEMIT(",fix_padding=%c",
3454 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3455 DMEMIT(",fix_hmac=%c",
3456 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3457 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3458
3459 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3460 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3461 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3462 DMEMIT(";");
3463 break;
3464 }
3465}
3466
3467static int dm_integrity_iterate_devices(struct dm_target *ti,
3468 iterate_devices_callout_fn fn, void *data)
3469{
3470 struct dm_integrity_c *ic = ti->private;
3471
3472 if (!ic->meta_dev)
3473 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3474 else
3475 return fn(ti, ic->dev, 0, ti->len, data);
3476}
3477
3478static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3479{
3480 struct dm_integrity_c *ic = ti->private;
3481
3482 if (ic->sectors_per_block > 1) {
3483 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3484 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3485 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3486 limits->dma_alignment = limits->logical_block_size - 1;
3487 }
3488}
3489
3490static void calculate_journal_section_size(struct dm_integrity_c *ic)
3491{
3492 unsigned int sector_space = JOURNAL_SECTOR_DATA;
3493
3494 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3495 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3496 JOURNAL_ENTRY_ROUNDUP);
3497
3498 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3499 sector_space -= JOURNAL_MAC_PER_SECTOR;
3500 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3501 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3502 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3503 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3504}
3505
3506static int calculate_device_limits(struct dm_integrity_c *ic)
3507{
3508 __u64 initial_sectors;
3509
3510 calculate_journal_section_size(ic);
3511 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3512 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3513 return -EINVAL;
3514 ic->initial_sectors = initial_sectors;
3515
3516 if (!ic->meta_dev) {
3517 sector_t last_sector, last_area, last_offset;
3518
3519 /* we have to maintain excessive padding for compatibility with existing volumes */
3520 __u64 metadata_run_padding =
3521 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3522 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3523 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3524
3525 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3526 metadata_run_padding) >> SECTOR_SHIFT;
3527 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3528 ic->log2_metadata_run = __ffs(ic->metadata_run);
3529 else
3530 ic->log2_metadata_run = -1;
3531
3532 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3533 last_sector = get_data_sector(ic, last_area, last_offset);
3534 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3535 return -EINVAL;
3536 } else {
3537 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3538
3539 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3540 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3541 meta_size <<= ic->log2_buffer_sectors;
3542 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3543 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3544 return -EINVAL;
3545 ic->metadata_run = 1;
3546 ic->log2_metadata_run = 0;
3547 }
3548
3549 return 0;
3550}
3551
3552static void get_provided_data_sectors(struct dm_integrity_c *ic)
3553{
3554 if (!ic->meta_dev) {
3555 int test_bit;
3556
3557 ic->provided_data_sectors = 0;
3558 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3559 __u64 prev_data_sectors = ic->provided_data_sectors;
3560
3561 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3562 if (calculate_device_limits(ic))
3563 ic->provided_data_sectors = prev_data_sectors;
3564 }
3565 } else {
3566 ic->provided_data_sectors = ic->data_device_sectors;
3567 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3568 }
3569}
3570
3571static int initialize_superblock(struct dm_integrity_c *ic,
3572 unsigned int journal_sectors, unsigned int interleave_sectors)
3573{
3574 unsigned int journal_sections;
3575 int test_bit;
3576
3577 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3578 memcpy(ic->sb->magic, SB_MAGIC, 8);
3579 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3580 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3581 if (ic->journal_mac_alg.alg_string)
3582 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3583
3584 calculate_journal_section_size(ic);
3585 journal_sections = journal_sectors / ic->journal_section_sectors;
3586 if (!journal_sections)
3587 journal_sections = 1;
3588
3589 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3590 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3591 get_random_bytes(ic->sb->salt, SALT_SIZE);
3592 }
3593
3594 if (!ic->meta_dev) {
3595 if (ic->fix_padding)
3596 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3597 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3598 if (!interleave_sectors)
3599 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3600 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3601 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3602 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3603
3604 get_provided_data_sectors(ic);
3605 if (!ic->provided_data_sectors)
3606 return -EINVAL;
3607 } else {
3608 ic->sb->log2_interleave_sectors = 0;
3609
3610 get_provided_data_sectors(ic);
3611 if (!ic->provided_data_sectors)
3612 return -EINVAL;
3613
3614try_smaller_buffer:
3615 ic->sb->journal_sections = cpu_to_le32(0);
3616 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3617 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3618 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3619
3620 if (test_journal_sections > journal_sections)
3621 continue;
3622 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3623 if (calculate_device_limits(ic))
3624 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3625
3626 }
3627 if (!le32_to_cpu(ic->sb->journal_sections)) {
3628 if (ic->log2_buffer_sectors > 3) {
3629 ic->log2_buffer_sectors--;
3630 goto try_smaller_buffer;
3631 }
3632 return -EINVAL;
3633 }
3634 }
3635
3636 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3637
3638 sb_set_version(ic);
3639
3640 return 0;
3641}
3642
3643static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3644{
3645 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3646 struct blk_integrity bi;
3647
3648 memset(&bi, 0, sizeof(bi));
3649 bi.profile = &dm_integrity_profile;
3650 bi.tuple_size = ic->tag_size;
3651 bi.tag_size = bi.tuple_size;
3652 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3653
3654 blk_integrity_register(disk, &bi);
3655 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3656}
3657
3658static void dm_integrity_free_page_list(struct page_list *pl)
3659{
3660 unsigned int i;
3661
3662 if (!pl)
3663 return;
3664 for (i = 0; pl[i].page; i++)
3665 __free_page(pl[i].page);
3666 kvfree(pl);
3667}
3668
3669static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3670{
3671 struct page_list *pl;
3672 unsigned int i;
3673
3674 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3675 if (!pl)
3676 return NULL;
3677
3678 for (i = 0; i < n_pages; i++) {
3679 pl[i].page = alloc_page(GFP_KERNEL);
3680 if (!pl[i].page) {
3681 dm_integrity_free_page_list(pl);
3682 return NULL;
3683 }
3684 if (i)
3685 pl[i - 1].next = &pl[i];
3686 }
3687 pl[i].page = NULL;
3688 pl[i].next = NULL;
3689
3690 return pl;
3691}
3692
3693static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3694{
3695 unsigned int i;
3696
3697 for (i = 0; i < ic->journal_sections; i++)
3698 kvfree(sl[i]);
3699 kvfree(sl);
3700}
3701
3702static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3703 struct page_list *pl)
3704{
3705 struct scatterlist **sl;
3706 unsigned int i;
3707
3708 sl = kvmalloc_array(ic->journal_sections,
3709 sizeof(struct scatterlist *),
3710 GFP_KERNEL | __GFP_ZERO);
3711 if (!sl)
3712 return NULL;
3713
3714 for (i = 0; i < ic->journal_sections; i++) {
3715 struct scatterlist *s;
3716 unsigned int start_index, start_offset;
3717 unsigned int end_index, end_offset;
3718 unsigned int n_pages;
3719 unsigned int idx;
3720
3721 page_list_location(ic, i, 0, &start_index, &start_offset);
3722 page_list_location(ic, i, ic->journal_section_sectors - 1,
3723 &end_index, &end_offset);
3724
3725 n_pages = (end_index - start_index + 1);
3726
3727 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3728 GFP_KERNEL);
3729 if (!s) {
3730 dm_integrity_free_journal_scatterlist(ic, sl);
3731 return NULL;
3732 }
3733
3734 sg_init_table(s, n_pages);
3735 for (idx = start_index; idx <= end_index; idx++) {
3736 char *va = lowmem_page_address(pl[idx].page);
3737 unsigned int start = 0, end = PAGE_SIZE;
3738
3739 if (idx == start_index)
3740 start = start_offset;
3741 if (idx == end_index)
3742 end = end_offset + (1 << SECTOR_SHIFT);
3743 sg_set_buf(&s[idx - start_index], va + start, end - start);
3744 }
3745
3746 sl[i] = s;
3747 }
3748
3749 return sl;
3750}
3751
3752static void free_alg(struct alg_spec *a)
3753{
3754 kfree_sensitive(a->alg_string);
3755 kfree_sensitive(a->key);
3756 memset(a, 0, sizeof(*a));
3757}
3758
3759static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3760{
3761 char *k;
3762
3763 free_alg(a);
3764
3765 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3766 if (!a->alg_string)
3767 goto nomem;
3768
3769 k = strchr(a->alg_string, ':');
3770 if (k) {
3771 *k = 0;
3772 a->key_string = k + 1;
3773 if (strlen(a->key_string) & 1)
3774 goto inval;
3775
3776 a->key_size = strlen(a->key_string) / 2;
3777 a->key = kmalloc(a->key_size, GFP_KERNEL);
3778 if (!a->key)
3779 goto nomem;
3780 if (hex2bin(a->key, a->key_string, a->key_size))
3781 goto inval;
3782 }
3783
3784 return 0;
3785inval:
3786 *error = error_inval;
3787 return -EINVAL;
3788nomem:
3789 *error = "Out of memory for an argument";
3790 return -ENOMEM;
3791}
3792
3793static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3794 char *error_alg, char *error_key)
3795{
3796 int r;
3797
3798 if (a->alg_string) {
3799 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3800 if (IS_ERR(*hash)) {
3801 *error = error_alg;
3802 r = PTR_ERR(*hash);
3803 *hash = NULL;
3804 return r;
3805 }
3806
3807 if (a->key) {
3808 r = crypto_shash_setkey(*hash, a->key, a->key_size);
3809 if (r) {
3810 *error = error_key;
3811 return r;
3812 }
3813 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3814 *error = error_key;
3815 return -ENOKEY;
3816 }
3817 }
3818
3819 return 0;
3820}
3821
3822static int create_journal(struct dm_integrity_c *ic, char **error)
3823{
3824 int r = 0;
3825 unsigned int i;
3826 __u64 journal_pages, journal_desc_size, journal_tree_size;
3827 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3828 struct skcipher_request *req = NULL;
3829
3830 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3831 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3832 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3833 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3834
3835 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3836 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3837 journal_desc_size = journal_pages * sizeof(struct page_list);
3838 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3839 *error = "Journal doesn't fit into memory";
3840 r = -ENOMEM;
3841 goto bad;
3842 }
3843 ic->journal_pages = journal_pages;
3844
3845 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3846 if (!ic->journal) {
3847 *error = "Could not allocate memory for journal";
3848 r = -ENOMEM;
3849 goto bad;
3850 }
3851 if (ic->journal_crypt_alg.alg_string) {
3852 unsigned int ivsize, blocksize;
3853 struct journal_completion comp;
3854
3855 comp.ic = ic;
3856 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3857 if (IS_ERR(ic->journal_crypt)) {
3858 *error = "Invalid journal cipher";
3859 r = PTR_ERR(ic->journal_crypt);
3860 ic->journal_crypt = NULL;
3861 goto bad;
3862 }
3863 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3864 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3865
3866 if (ic->journal_crypt_alg.key) {
3867 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3868 ic->journal_crypt_alg.key_size);
3869 if (r) {
3870 *error = "Error setting encryption key";
3871 goto bad;
3872 }
3873 }
3874 DEBUG_print("cipher %s, block size %u iv size %u\n",
3875 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3876
3877 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3878 if (!ic->journal_io) {
3879 *error = "Could not allocate memory for journal io";
3880 r = -ENOMEM;
3881 goto bad;
3882 }
3883
3884 if (blocksize == 1) {
3885 struct scatterlist *sg;
3886
3887 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3888 if (!req) {
3889 *error = "Could not allocate crypt request";
3890 r = -ENOMEM;
3891 goto bad;
3892 }
3893
3894 crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3895 if (!crypt_iv) {
3896 *error = "Could not allocate iv";
3897 r = -ENOMEM;
3898 goto bad;
3899 }
3900
3901 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3902 if (!ic->journal_xor) {
3903 *error = "Could not allocate memory for journal xor";
3904 r = -ENOMEM;
3905 goto bad;
3906 }
3907
3908 sg = kvmalloc_array(ic->journal_pages + 1,
3909 sizeof(struct scatterlist),
3910 GFP_KERNEL);
3911 if (!sg) {
3912 *error = "Unable to allocate sg list";
3913 r = -ENOMEM;
3914 goto bad;
3915 }
3916 sg_init_table(sg, ic->journal_pages + 1);
3917 for (i = 0; i < ic->journal_pages; i++) {
3918 char *va = lowmem_page_address(ic->journal_xor[i].page);
3919
3920 clear_page(va);
3921 sg_set_buf(&sg[i], va, PAGE_SIZE);
3922 }
3923 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3924
3925 skcipher_request_set_crypt(req, sg, sg,
3926 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3927 init_completion(&comp.comp);
3928 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3929 if (do_crypt(true, req, &comp))
3930 wait_for_completion(&comp.comp);
3931 kvfree(sg);
3932 r = dm_integrity_failed(ic);
3933 if (r) {
3934 *error = "Unable to encrypt journal";
3935 goto bad;
3936 }
3937 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3938
3939 crypto_free_skcipher(ic->journal_crypt);
3940 ic->journal_crypt = NULL;
3941 } else {
3942 unsigned int crypt_len = roundup(ivsize, blocksize);
3943
3944 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3945 if (!req) {
3946 *error = "Could not allocate crypt request";
3947 r = -ENOMEM;
3948 goto bad;
3949 }
3950
3951 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3952 if (!crypt_iv) {
3953 *error = "Could not allocate iv";
3954 r = -ENOMEM;
3955 goto bad;
3956 }
3957
3958 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3959 if (!crypt_data) {
3960 *error = "Unable to allocate crypt data";
3961 r = -ENOMEM;
3962 goto bad;
3963 }
3964
3965 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3966 if (!ic->journal_scatterlist) {
3967 *error = "Unable to allocate sg list";
3968 r = -ENOMEM;
3969 goto bad;
3970 }
3971 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3972 if (!ic->journal_io_scatterlist) {
3973 *error = "Unable to allocate sg list";
3974 r = -ENOMEM;
3975 goto bad;
3976 }
3977 ic->sk_requests = kvmalloc_array(ic->journal_sections,
3978 sizeof(struct skcipher_request *),
3979 GFP_KERNEL | __GFP_ZERO);
3980 if (!ic->sk_requests) {
3981 *error = "Unable to allocate sk requests";
3982 r = -ENOMEM;
3983 goto bad;
3984 }
3985 for (i = 0; i < ic->journal_sections; i++) {
3986 struct scatterlist sg;
3987 struct skcipher_request *section_req;
3988 __le32 section_le = cpu_to_le32(i);
3989
3990 memset(crypt_iv, 0x00, ivsize);
3991 memset(crypt_data, 0x00, crypt_len);
3992 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le)));
3993
3994 sg_init_one(&sg, crypt_data, crypt_len);
3995 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3996 init_completion(&comp.comp);
3997 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3998 if (do_crypt(true, req, &comp))
3999 wait_for_completion(&comp.comp);
4000
4001 r = dm_integrity_failed(ic);
4002 if (r) {
4003 *error = "Unable to generate iv";
4004 goto bad;
4005 }
4006
4007 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4008 if (!section_req) {
4009 *error = "Unable to allocate crypt request";
4010 r = -ENOMEM;
4011 goto bad;
4012 }
4013 section_req->iv = kmalloc_array(ivsize, 2,
4014 GFP_KERNEL);
4015 if (!section_req->iv) {
4016 skcipher_request_free(section_req);
4017 *error = "Unable to allocate iv";
4018 r = -ENOMEM;
4019 goto bad;
4020 }
4021 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4022 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4023 ic->sk_requests[i] = section_req;
4024 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4025 }
4026 }
4027 }
4028
4029 for (i = 0; i < N_COMMIT_IDS; i++) {
4030 unsigned int j;
4031
4032retest_commit_id:
4033 for (j = 0; j < i; j++) {
4034 if (ic->commit_ids[j] == ic->commit_ids[i]) {
4035 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4036 goto retest_commit_id;
4037 }
4038 }
4039 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4040 }
4041
4042 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4043 if (journal_tree_size > ULONG_MAX) {
4044 *error = "Journal doesn't fit into memory";
4045 r = -ENOMEM;
4046 goto bad;
4047 }
4048 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4049 if (!ic->journal_tree) {
4050 *error = "Could not allocate memory for journal tree";
4051 r = -ENOMEM;
4052 }
4053bad:
4054 kfree(crypt_data);
4055 kfree(crypt_iv);
4056 skcipher_request_free(req);
4057
4058 return r;
4059}
4060
4061/*
4062 * Construct a integrity mapping
4063 *
4064 * Arguments:
4065 * device
4066 * offset from the start of the device
4067 * tag size
4068 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4069 * number of optional arguments
4070 * optional arguments:
4071 * journal_sectors
4072 * interleave_sectors
4073 * buffer_sectors
4074 * journal_watermark
4075 * commit_time
4076 * meta_device
4077 * block_size
4078 * sectors_per_bit
4079 * bitmap_flush_interval
4080 * internal_hash
4081 * journal_crypt
4082 * journal_mac
4083 * recalculate
4084 */
4085static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4086{
4087 struct dm_integrity_c *ic;
4088 char dummy;
4089 int r;
4090 unsigned int extra_args;
4091 struct dm_arg_set as;
4092 static const struct dm_arg _args[] = {
4093 {0, 18, "Invalid number of feature args"},
4094 };
4095 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4096 bool should_write_sb;
4097 __u64 threshold;
4098 unsigned long long start;
4099 __s8 log2_sectors_per_bitmap_bit = -1;
4100 __s8 log2_blocks_per_bitmap_bit;
4101 __u64 bits_in_journal;
4102 __u64 n_bitmap_bits;
4103
4104#define DIRECT_ARGUMENTS 4
4105
4106 if (argc <= DIRECT_ARGUMENTS) {
4107 ti->error = "Invalid argument count";
4108 return -EINVAL;
4109 }
4110
4111 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4112 if (!ic) {
4113 ti->error = "Cannot allocate integrity context";
4114 return -ENOMEM;
4115 }
4116 ti->private = ic;
4117 ti->per_io_data_size = sizeof(struct dm_integrity_io);
4118 ic->ti = ti;
4119
4120 ic->in_progress = RB_ROOT;
4121 INIT_LIST_HEAD(&ic->wait_list);
4122 init_waitqueue_head(&ic->endio_wait);
4123 bio_list_init(&ic->flush_bio_list);
4124 init_waitqueue_head(&ic->copy_to_journal_wait);
4125 init_completion(&ic->crypto_backoff);
4126 atomic64_set(&ic->number_of_mismatches, 0);
4127 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4128
4129 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4130 if (r) {
4131 ti->error = "Device lookup failed";
4132 goto bad;
4133 }
4134
4135 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4136 ti->error = "Invalid starting offset";
4137 r = -EINVAL;
4138 goto bad;
4139 }
4140 ic->start = start;
4141
4142 if (strcmp(argv[2], "-")) {
4143 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4144 ti->error = "Invalid tag size";
4145 r = -EINVAL;
4146 goto bad;
4147 }
4148 }
4149
4150 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4151 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4152 ic->mode = argv[3][0];
4153 } else {
4154 ti->error = "Invalid mode (expecting J, B, D, R)";
4155 r = -EINVAL;
4156 goto bad;
4157 }
4158
4159 journal_sectors = 0;
4160 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4161 buffer_sectors = DEFAULT_BUFFER_SECTORS;
4162 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4163 sync_msec = DEFAULT_SYNC_MSEC;
4164 ic->sectors_per_block = 1;
4165
4166 as.argc = argc - DIRECT_ARGUMENTS;
4167 as.argv = argv + DIRECT_ARGUMENTS;
4168 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4169 if (r)
4170 goto bad;
4171
4172 while (extra_args--) {
4173 const char *opt_string;
4174 unsigned int val;
4175 unsigned long long llval;
4176
4177 opt_string = dm_shift_arg(&as);
4178 if (!opt_string) {
4179 r = -EINVAL;
4180 ti->error = "Not enough feature arguments";
4181 goto bad;
4182 }
4183 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4184 journal_sectors = val ? val : 1;
4185 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4186 interleave_sectors = val;
4187 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4188 buffer_sectors = val;
4189 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4190 journal_watermark = val;
4191 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4192 sync_msec = val;
4193 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4194 if (ic->meta_dev) {
4195 dm_put_device(ti, ic->meta_dev);
4196 ic->meta_dev = NULL;
4197 }
4198 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4199 dm_table_get_mode(ti->table), &ic->meta_dev);
4200 if (r) {
4201 ti->error = "Device lookup failed";
4202 goto bad;
4203 }
4204 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4205 if (val < 1 << SECTOR_SHIFT ||
4206 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4207 (val & (val - 1))) {
4208 r = -EINVAL;
4209 ti->error = "Invalid block_size argument";
4210 goto bad;
4211 }
4212 ic->sectors_per_block = val >> SECTOR_SHIFT;
4213 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4214 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4215 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4216 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4217 r = -EINVAL;
4218 ti->error = "Invalid bitmap_flush_interval argument";
4219 goto bad;
4220 }
4221 ic->bitmap_flush_interval = msecs_to_jiffies(val);
4222 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4223 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4224 "Invalid internal_hash argument");
4225 if (r)
4226 goto bad;
4227 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4228 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4229 "Invalid journal_crypt argument");
4230 if (r)
4231 goto bad;
4232 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4233 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4234 "Invalid journal_mac argument");
4235 if (r)
4236 goto bad;
4237 } else if (!strcmp(opt_string, "recalculate")) {
4238 ic->recalculate_flag = true;
4239 } else if (!strcmp(opt_string, "reset_recalculate")) {
4240 ic->recalculate_flag = true;
4241 ic->reset_recalculate_flag = true;
4242 } else if (!strcmp(opt_string, "allow_discards")) {
4243 ic->discard = true;
4244 } else if (!strcmp(opt_string, "fix_padding")) {
4245 ic->fix_padding = true;
4246 } else if (!strcmp(opt_string, "fix_hmac")) {
4247 ic->fix_hmac = true;
4248 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4249 ic->legacy_recalculate = true;
4250 } else {
4251 r = -EINVAL;
4252 ti->error = "Invalid argument";
4253 goto bad;
4254 }
4255 }
4256
4257 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4258 if (!ic->meta_dev)
4259 ic->meta_device_sectors = ic->data_device_sectors;
4260 else
4261 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4262
4263 if (!journal_sectors) {
4264 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4265 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4266 }
4267
4268 if (!buffer_sectors)
4269 buffer_sectors = 1;
4270 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4271
4272 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4273 "Invalid internal hash", "Error setting internal hash key");
4274 if (r)
4275 goto bad;
4276
4277 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4278 "Invalid journal mac", "Error setting journal mac key");
4279 if (r)
4280 goto bad;
4281
4282 if (!ic->tag_size) {
4283 if (!ic->internal_hash) {
4284 ti->error = "Unknown tag size";
4285 r = -EINVAL;
4286 goto bad;
4287 }
4288 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4289 }
4290 if (ic->tag_size > MAX_TAG_SIZE) {
4291 ti->error = "Too big tag size";
4292 r = -EINVAL;
4293 goto bad;
4294 }
4295 if (!(ic->tag_size & (ic->tag_size - 1)))
4296 ic->log2_tag_size = __ffs(ic->tag_size);
4297 else
4298 ic->log2_tag_size = -1;
4299
4300 if (ic->mode == 'B' && !ic->internal_hash) {
4301 r = -EINVAL;
4302 ti->error = "Bitmap mode can be only used with internal hash";
4303 goto bad;
4304 }
4305
4306 if (ic->discard && !ic->internal_hash) {
4307 r = -EINVAL;
4308 ti->error = "Discard can be only used with internal hash";
4309 goto bad;
4310 }
4311
4312 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4313 ic->autocommit_msec = sync_msec;
4314 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4315
4316 ic->io = dm_io_client_create();
4317 if (IS_ERR(ic->io)) {
4318 r = PTR_ERR(ic->io);
4319 ic->io = NULL;
4320 ti->error = "Cannot allocate dm io";
4321 goto bad;
4322 }
4323
4324 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4325 if (r) {
4326 ti->error = "Cannot allocate mempool";
4327 goto bad;
4328 }
4329
4330 r = mempool_init_page_pool(&ic->recheck_pool, 1, 0);
4331 if (r) {
4332 ti->error = "Cannot allocate mempool";
4333 goto bad;
4334 }
4335
4336 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4337 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4338 if (!ic->metadata_wq) {
4339 ti->error = "Cannot allocate workqueue";
4340 r = -ENOMEM;
4341 goto bad;
4342 }
4343
4344 /*
4345 * If this workqueue weren't ordered, it would cause bio reordering
4346 * and reduced performance.
4347 */
4348 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4349 if (!ic->wait_wq) {
4350 ti->error = "Cannot allocate workqueue";
4351 r = -ENOMEM;
4352 goto bad;
4353 }
4354
4355 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4356 METADATA_WORKQUEUE_MAX_ACTIVE);
4357 if (!ic->offload_wq) {
4358 ti->error = "Cannot allocate workqueue";
4359 r = -ENOMEM;
4360 goto bad;
4361 }
4362
4363 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4364 if (!ic->commit_wq) {
4365 ti->error = "Cannot allocate workqueue";
4366 r = -ENOMEM;
4367 goto bad;
4368 }
4369 INIT_WORK(&ic->commit_work, integrity_commit);
4370
4371 if (ic->mode == 'J' || ic->mode == 'B') {
4372 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4373 if (!ic->writer_wq) {
4374 ti->error = "Cannot allocate workqueue";
4375 r = -ENOMEM;
4376 goto bad;
4377 }
4378 INIT_WORK(&ic->writer_work, integrity_writer);
4379 }
4380
4381 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4382 if (!ic->sb) {
4383 r = -ENOMEM;
4384 ti->error = "Cannot allocate superblock area";
4385 goto bad;
4386 }
4387
4388 r = sync_rw_sb(ic, REQ_OP_READ);
4389 if (r) {
4390 ti->error = "Error reading superblock";
4391 goto bad;
4392 }
4393 should_write_sb = false;
4394 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4395 if (ic->mode != 'R') {
4396 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4397 r = -EINVAL;
4398 ti->error = "The device is not initialized";
4399 goto bad;
4400 }
4401 }
4402
4403 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4404 if (r) {
4405 ti->error = "Could not initialize superblock";
4406 goto bad;
4407 }
4408 if (ic->mode != 'R')
4409 should_write_sb = true;
4410 }
4411
4412 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4413 r = -EINVAL;
4414 ti->error = "Unknown version";
4415 goto bad;
4416 }
4417 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4418 r = -EINVAL;
4419 ti->error = "Tag size doesn't match the information in superblock";
4420 goto bad;
4421 }
4422 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4423 r = -EINVAL;
4424 ti->error = "Block size doesn't match the information in superblock";
4425 goto bad;
4426 }
4427 if (!le32_to_cpu(ic->sb->journal_sections)) {
4428 r = -EINVAL;
4429 ti->error = "Corrupted superblock, journal_sections is 0";
4430 goto bad;
4431 }
4432 /* make sure that ti->max_io_len doesn't overflow */
4433 if (!ic->meta_dev) {
4434 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4435 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4436 r = -EINVAL;
4437 ti->error = "Invalid interleave_sectors in the superblock";
4438 goto bad;
4439 }
4440 } else {
4441 if (ic->sb->log2_interleave_sectors) {
4442 r = -EINVAL;
4443 ti->error = "Invalid interleave_sectors in the superblock";
4444 goto bad;
4445 }
4446 }
4447 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4448 r = -EINVAL;
4449 ti->error = "Journal mac mismatch";
4450 goto bad;
4451 }
4452
4453 get_provided_data_sectors(ic);
4454 if (!ic->provided_data_sectors) {
4455 r = -EINVAL;
4456 ti->error = "The device is too small";
4457 goto bad;
4458 }
4459
4460try_smaller_buffer:
4461 r = calculate_device_limits(ic);
4462 if (r) {
4463 if (ic->meta_dev) {
4464 if (ic->log2_buffer_sectors > 3) {
4465 ic->log2_buffer_sectors--;
4466 goto try_smaller_buffer;
4467 }
4468 }
4469 ti->error = "The device is too small";
4470 goto bad;
4471 }
4472
4473 if (log2_sectors_per_bitmap_bit < 0)
4474 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4475 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4476 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4477
4478 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4479 if (bits_in_journal > UINT_MAX)
4480 bits_in_journal = UINT_MAX;
4481 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4482 log2_sectors_per_bitmap_bit++;
4483
4484 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4485 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4486 if (should_write_sb)
4487 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4488
4489 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4490 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4491 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4492
4493 if (!ic->meta_dev)
4494 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4495
4496 if (ti->len > ic->provided_data_sectors) {
4497 r = -EINVAL;
4498 ti->error = "Not enough provided sectors for requested mapping size";
4499 goto bad;
4500 }
4501
4502
4503 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4504 threshold += 50;
4505 do_div(threshold, 100);
4506 ic->free_sectors_threshold = threshold;
4507
4508 DEBUG_print("initialized:\n");
4509 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4510 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
4511 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4512 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
4513 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
4514 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4515 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
4516 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4517 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4518 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
4519 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
4520 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
4521 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4522 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4523 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
4524
4525 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4526 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4527 ic->sb->recalc_sector = cpu_to_le64(0);
4528 }
4529
4530 if (ic->internal_hash) {
4531 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4532 if (!ic->recalc_wq) {
4533 ti->error = "Cannot allocate workqueue";
4534 r = -ENOMEM;
4535 goto bad;
4536 }
4537 INIT_WORK(&ic->recalc_work, integrity_recalc);
4538 } else {
4539 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4540 ti->error = "Recalculate can only be specified with internal_hash";
4541 r = -EINVAL;
4542 goto bad;
4543 }
4544 }
4545
4546 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4547 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4548 dm_integrity_disable_recalculate(ic)) {
4549 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4550 r = -EOPNOTSUPP;
4551 goto bad;
4552 }
4553
4554 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4555 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4556 if (IS_ERR(ic->bufio)) {
4557 r = PTR_ERR(ic->bufio);
4558 ti->error = "Cannot initialize dm-bufio";
4559 ic->bufio = NULL;
4560 goto bad;
4561 }
4562 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4563
4564 if (ic->mode != 'R') {
4565 r = create_journal(ic, &ti->error);
4566 if (r)
4567 goto bad;
4568
4569 }
4570
4571 if (ic->mode == 'B') {
4572 unsigned int i;
4573 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4574
4575 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4576 if (!ic->recalc_bitmap) {
4577 r = -ENOMEM;
4578 goto bad;
4579 }
4580 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4581 if (!ic->may_write_bitmap) {
4582 r = -ENOMEM;
4583 goto bad;
4584 }
4585 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4586 if (!ic->bbs) {
4587 r = -ENOMEM;
4588 goto bad;
4589 }
4590 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4591 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4592 struct bitmap_block_status *bbs = &ic->bbs[i];
4593 unsigned int sector, pl_index, pl_offset;
4594
4595 INIT_WORK(&bbs->work, bitmap_block_work);
4596 bbs->ic = ic;
4597 bbs->idx = i;
4598 bio_list_init(&bbs->bio_queue);
4599 spin_lock_init(&bbs->bio_queue_lock);
4600
4601 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4602 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4603 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4604
4605 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4606 }
4607 }
4608
4609 if (should_write_sb) {
4610 init_journal(ic, 0, ic->journal_sections, 0);
4611 r = dm_integrity_failed(ic);
4612 if (unlikely(r)) {
4613 ti->error = "Error initializing journal";
4614 goto bad;
4615 }
4616 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4617 if (r) {
4618 ti->error = "Error initializing superblock";
4619 goto bad;
4620 }
4621 ic->just_formatted = true;
4622 }
4623
4624 if (!ic->meta_dev) {
4625 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4626 if (r)
4627 goto bad;
4628 }
4629 if (ic->mode == 'B') {
4630 unsigned int max_io_len;
4631
4632 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4633 if (!max_io_len)
4634 max_io_len = 1U << 31;
4635 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4636 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4637 r = dm_set_target_max_io_len(ti, max_io_len);
4638 if (r)
4639 goto bad;
4640 }
4641 }
4642
4643 if (!ic->internal_hash)
4644 dm_integrity_set(ti, ic);
4645
4646 ti->num_flush_bios = 1;
4647 ti->flush_supported = true;
4648 if (ic->discard)
4649 ti->num_discard_bios = 1;
4650
4651 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4652 return 0;
4653
4654bad:
4655 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4656 dm_integrity_dtr(ti);
4657 return r;
4658}
4659
4660static void dm_integrity_dtr(struct dm_target *ti)
4661{
4662 struct dm_integrity_c *ic = ti->private;
4663
4664 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4665 BUG_ON(!list_empty(&ic->wait_list));
4666
4667 if (ic->mode == 'B')
4668 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4669 if (ic->metadata_wq)
4670 destroy_workqueue(ic->metadata_wq);
4671 if (ic->wait_wq)
4672 destroy_workqueue(ic->wait_wq);
4673 if (ic->offload_wq)
4674 destroy_workqueue(ic->offload_wq);
4675 if (ic->commit_wq)
4676 destroy_workqueue(ic->commit_wq);
4677 if (ic->writer_wq)
4678 destroy_workqueue(ic->writer_wq);
4679 if (ic->recalc_wq)
4680 destroy_workqueue(ic->recalc_wq);
4681 kvfree(ic->bbs);
4682 if (ic->bufio)
4683 dm_bufio_client_destroy(ic->bufio);
4684 mempool_exit(&ic->recheck_pool);
4685 mempool_exit(&ic->journal_io_mempool);
4686 if (ic->io)
4687 dm_io_client_destroy(ic->io);
4688 if (ic->dev)
4689 dm_put_device(ti, ic->dev);
4690 if (ic->meta_dev)
4691 dm_put_device(ti, ic->meta_dev);
4692 dm_integrity_free_page_list(ic->journal);
4693 dm_integrity_free_page_list(ic->journal_io);
4694 dm_integrity_free_page_list(ic->journal_xor);
4695 dm_integrity_free_page_list(ic->recalc_bitmap);
4696 dm_integrity_free_page_list(ic->may_write_bitmap);
4697 if (ic->journal_scatterlist)
4698 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4699 if (ic->journal_io_scatterlist)
4700 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4701 if (ic->sk_requests) {
4702 unsigned int i;
4703
4704 for (i = 0; i < ic->journal_sections; i++) {
4705 struct skcipher_request *req;
4706
4707 req = ic->sk_requests[i];
4708 if (req) {
4709 kfree_sensitive(req->iv);
4710 skcipher_request_free(req);
4711 }
4712 }
4713 kvfree(ic->sk_requests);
4714 }
4715 kvfree(ic->journal_tree);
4716 if (ic->sb)
4717 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4718
4719 if (ic->internal_hash)
4720 crypto_free_shash(ic->internal_hash);
4721 free_alg(&ic->internal_hash_alg);
4722
4723 if (ic->journal_crypt)
4724 crypto_free_skcipher(ic->journal_crypt);
4725 free_alg(&ic->journal_crypt_alg);
4726
4727 if (ic->journal_mac)
4728 crypto_free_shash(ic->journal_mac);
4729 free_alg(&ic->journal_mac_alg);
4730
4731 kfree(ic);
4732 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4733}
4734
4735static struct target_type integrity_target = {
4736 .name = "integrity",
4737 .version = {1, 11, 0},
4738 .module = THIS_MODULE,
4739 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4740 .ctr = dm_integrity_ctr,
4741 .dtr = dm_integrity_dtr,
4742 .map = dm_integrity_map,
4743 .postsuspend = dm_integrity_postsuspend,
4744 .resume = dm_integrity_resume,
4745 .status = dm_integrity_status,
4746 .iterate_devices = dm_integrity_iterate_devices,
4747 .io_hints = dm_integrity_io_hints,
4748};
4749
4750static int __init dm_integrity_init(void)
4751{
4752 int r;
4753
4754 journal_io_cache = kmem_cache_create("integrity_journal_io",
4755 sizeof(struct journal_io), 0, 0, NULL);
4756 if (!journal_io_cache) {
4757 DMERR("can't allocate journal io cache");
4758 return -ENOMEM;
4759 }
4760
4761 r = dm_register_target(&integrity_target);
4762 if (r < 0) {
4763 kmem_cache_destroy(journal_io_cache);
4764 return r;
4765 }
4766
4767 return 0;
4768}
4769
4770static void __exit dm_integrity_exit(void)
4771{
4772 dm_unregister_target(&integrity_target);
4773 kmem_cache_destroy(journal_io_cache);
4774}
4775
4776module_init(dm_integrity_init);
4777module_exit(dm_integrity_exit);
4778
4779MODULE_AUTHOR("Milan Broz");
4780MODULE_AUTHOR("Mikulas Patocka");
4781MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4782MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
5 *
6 * This file is released under the GPL.
7 */
8
9#include <linux/compiler.h>
10#include <linux/module.h>
11#include <linux/device-mapper.h>
12#include <linux/dm-io.h>
13#include <linux/vmalloc.h>
14#include <linux/sort.h>
15#include <linux/rbtree.h>
16#include <linux/delay.h>
17#include <linux/random.h>
18#include <linux/reboot.h>
19#include <crypto/hash.h>
20#include <crypto/skcipher.h>
21#include <linux/async_tx.h>
22#include <linux/dm-bufio.h>
23
24#define DM_MSG_PREFIX "integrity"
25
26#define DEFAULT_INTERLEAVE_SECTORS 32768
27#define DEFAULT_JOURNAL_SIZE_FACTOR 7
28#define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
29#define DEFAULT_BUFFER_SECTORS 128
30#define DEFAULT_JOURNAL_WATERMARK 50
31#define DEFAULT_SYNC_MSEC 10000
32#define DEFAULT_MAX_JOURNAL_SECTORS 131072
33#define MIN_LOG2_INTERLEAVE_SECTORS 3
34#define MAX_LOG2_INTERLEAVE_SECTORS 31
35#define METADATA_WORKQUEUE_MAX_ACTIVE 16
36#define RECALC_SECTORS 8192
37#define RECALC_WRITE_SUPER 16
38#define BITMAP_BLOCK_SIZE 4096 /* don't change it */
39#define BITMAP_FLUSH_INTERVAL (10 * HZ)
40
41/*
42 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
43 * so it should not be enabled in the official kernel
44 */
45//#define DEBUG_PRINT
46//#define INTERNAL_VERIFY
47
48/*
49 * On disk structures
50 */
51
52#define SB_MAGIC "integrt"
53#define SB_VERSION_1 1
54#define SB_VERSION_2 2
55#define SB_VERSION_3 3
56#define SB_SECTORS 8
57#define MAX_SECTORS_PER_BLOCK 8
58
59struct superblock {
60 __u8 magic[8];
61 __u8 version;
62 __u8 log2_interleave_sectors;
63 __u16 integrity_tag_size;
64 __u32 journal_sections;
65 __u64 provided_data_sectors; /* userspace uses this value */
66 __u32 flags;
67 __u8 log2_sectors_per_block;
68 __u8 log2_blocks_per_bitmap_bit;
69 __u8 pad[2];
70 __u64 recalc_sector;
71};
72
73#define SB_FLAG_HAVE_JOURNAL_MAC 0x1
74#define SB_FLAG_RECALCULATING 0x2
75#define SB_FLAG_DIRTY_BITMAP 0x4
76
77#define JOURNAL_ENTRY_ROUNDUP 8
78
79typedef __u64 commit_id_t;
80#define JOURNAL_MAC_PER_SECTOR 8
81
82struct journal_entry {
83 union {
84 struct {
85 __u32 sector_lo;
86 __u32 sector_hi;
87 } s;
88 __u64 sector;
89 } u;
90 commit_id_t last_bytes[0];
91 /* __u8 tag[0]; */
92};
93
94#define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
95
96#if BITS_PER_LONG == 64
97#define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
98#else
99#define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
100#endif
101#define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
102#define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
103#define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
104#define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
105#define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
106
107#define JOURNAL_BLOCK_SECTORS 8
108#define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
109#define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
110
111struct journal_sector {
112 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
113 __u8 mac[JOURNAL_MAC_PER_SECTOR];
114 commit_id_t commit_id;
115};
116
117#define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
118
119#define METADATA_PADDING_SECTORS 8
120
121#define N_COMMIT_IDS 4
122
123static unsigned char prev_commit_seq(unsigned char seq)
124{
125 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
126}
127
128static unsigned char next_commit_seq(unsigned char seq)
129{
130 return (seq + 1) % N_COMMIT_IDS;
131}
132
133/*
134 * In-memory structures
135 */
136
137struct journal_node {
138 struct rb_node node;
139 sector_t sector;
140};
141
142struct alg_spec {
143 char *alg_string;
144 char *key_string;
145 __u8 *key;
146 unsigned key_size;
147};
148
149struct dm_integrity_c {
150 struct dm_dev *dev;
151 struct dm_dev *meta_dev;
152 unsigned tag_size;
153 __s8 log2_tag_size;
154 sector_t start;
155 mempool_t journal_io_mempool;
156 struct dm_io_client *io;
157 struct dm_bufio_client *bufio;
158 struct workqueue_struct *metadata_wq;
159 struct superblock *sb;
160 unsigned journal_pages;
161 unsigned n_bitmap_blocks;
162
163 struct page_list *journal;
164 struct page_list *journal_io;
165 struct page_list *journal_xor;
166 struct page_list *recalc_bitmap;
167 struct page_list *may_write_bitmap;
168 struct bitmap_block_status *bbs;
169 unsigned bitmap_flush_interval;
170 int synchronous_mode;
171 struct bio_list synchronous_bios;
172 struct delayed_work bitmap_flush_work;
173
174 struct crypto_skcipher *journal_crypt;
175 struct scatterlist **journal_scatterlist;
176 struct scatterlist **journal_io_scatterlist;
177 struct skcipher_request **sk_requests;
178
179 struct crypto_shash *journal_mac;
180
181 struct journal_node *journal_tree;
182 struct rb_root journal_tree_root;
183
184 sector_t provided_data_sectors;
185
186 unsigned short journal_entry_size;
187 unsigned char journal_entries_per_sector;
188 unsigned char journal_section_entries;
189 unsigned short journal_section_sectors;
190 unsigned journal_sections;
191 unsigned journal_entries;
192 sector_t data_device_sectors;
193 sector_t meta_device_sectors;
194 unsigned initial_sectors;
195 unsigned metadata_run;
196 __s8 log2_metadata_run;
197 __u8 log2_buffer_sectors;
198 __u8 sectors_per_block;
199 __u8 log2_blocks_per_bitmap_bit;
200
201 unsigned char mode;
202 int suspending;
203
204 int failed;
205
206 struct crypto_shash *internal_hash;
207
208 /* these variables are locked with endio_wait.lock */
209 struct rb_root in_progress;
210 struct list_head wait_list;
211 wait_queue_head_t endio_wait;
212 struct workqueue_struct *wait_wq;
213
214 unsigned char commit_seq;
215 commit_id_t commit_ids[N_COMMIT_IDS];
216
217 unsigned committed_section;
218 unsigned n_committed_sections;
219
220 unsigned uncommitted_section;
221 unsigned n_uncommitted_sections;
222
223 unsigned free_section;
224 unsigned char free_section_entry;
225 unsigned free_sectors;
226
227 unsigned free_sectors_threshold;
228
229 struct workqueue_struct *commit_wq;
230 struct work_struct commit_work;
231
232 struct workqueue_struct *writer_wq;
233 struct work_struct writer_work;
234
235 struct workqueue_struct *recalc_wq;
236 struct work_struct recalc_work;
237 u8 *recalc_buffer;
238 u8 *recalc_tags;
239
240 struct bio_list flush_bio_list;
241
242 unsigned long autocommit_jiffies;
243 struct timer_list autocommit_timer;
244 unsigned autocommit_msec;
245
246 wait_queue_head_t copy_to_journal_wait;
247
248 struct completion crypto_backoff;
249
250 bool journal_uptodate;
251 bool just_formatted;
252 bool recalculate_flag;
253
254 struct alg_spec internal_hash_alg;
255 struct alg_spec journal_crypt_alg;
256 struct alg_spec journal_mac_alg;
257
258 atomic64_t number_of_mismatches;
259
260 struct notifier_block reboot_notifier;
261};
262
263struct dm_integrity_range {
264 sector_t logical_sector;
265 sector_t n_sectors;
266 bool waiting;
267 union {
268 struct rb_node node;
269 struct {
270 struct task_struct *task;
271 struct list_head wait_entry;
272 };
273 };
274};
275
276struct dm_integrity_io {
277 struct work_struct work;
278
279 struct dm_integrity_c *ic;
280 bool write;
281 bool fua;
282
283 struct dm_integrity_range range;
284
285 sector_t metadata_block;
286 unsigned metadata_offset;
287
288 atomic_t in_flight;
289 blk_status_t bi_status;
290
291 struct completion *completion;
292
293 struct gendisk *orig_bi_disk;
294 u8 orig_bi_partno;
295 bio_end_io_t *orig_bi_end_io;
296 struct bio_integrity_payload *orig_bi_integrity;
297 struct bvec_iter orig_bi_iter;
298};
299
300struct journal_completion {
301 struct dm_integrity_c *ic;
302 atomic_t in_flight;
303 struct completion comp;
304};
305
306struct journal_io {
307 struct dm_integrity_range range;
308 struct journal_completion *comp;
309};
310
311struct bitmap_block_status {
312 struct work_struct work;
313 struct dm_integrity_c *ic;
314 unsigned idx;
315 unsigned long *bitmap;
316 struct bio_list bio_queue;
317 spinlock_t bio_queue_lock;
318
319};
320
321static struct kmem_cache *journal_io_cache;
322
323#define JOURNAL_IO_MEMPOOL 32
324
325#ifdef DEBUG_PRINT
326#define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
327static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
328{
329 va_list args;
330 va_start(args, msg);
331 vprintk(msg, args);
332 va_end(args);
333 if (len)
334 pr_cont(":");
335 while (len) {
336 pr_cont(" %02x", *bytes);
337 bytes++;
338 len--;
339 }
340 pr_cont("\n");
341}
342#define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
343#else
344#define DEBUG_print(x, ...) do { } while (0)
345#define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
346#endif
347
348static void dm_integrity_prepare(struct request *rq)
349{
350}
351
352static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
353{
354}
355
356/*
357 * DM Integrity profile, protection is performed layer above (dm-crypt)
358 */
359static const struct blk_integrity_profile dm_integrity_profile = {
360 .name = "DM-DIF-EXT-TAG",
361 .generate_fn = NULL,
362 .verify_fn = NULL,
363 .prepare_fn = dm_integrity_prepare,
364 .complete_fn = dm_integrity_complete,
365};
366
367static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
368static void integrity_bio_wait(struct work_struct *w);
369static void dm_integrity_dtr(struct dm_target *ti);
370
371static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
372{
373 if (err == -EILSEQ)
374 atomic64_inc(&ic->number_of_mismatches);
375 if (!cmpxchg(&ic->failed, 0, err))
376 DMERR("Error on %s: %d", msg, err);
377}
378
379static int dm_integrity_failed(struct dm_integrity_c *ic)
380{
381 return READ_ONCE(ic->failed);
382}
383
384static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
385 unsigned j, unsigned char seq)
386{
387 /*
388 * Xor the number with section and sector, so that if a piece of
389 * journal is written at wrong place, it is detected.
390 */
391 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
392}
393
394static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
395 sector_t *area, sector_t *offset)
396{
397 if (!ic->meta_dev) {
398 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
399 *area = data_sector >> log2_interleave_sectors;
400 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
401 } else {
402 *area = 0;
403 *offset = data_sector;
404 }
405}
406
407#define sector_to_block(ic, n) \
408do { \
409 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
410 (n) >>= (ic)->sb->log2_sectors_per_block; \
411} while (0)
412
413static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
414 sector_t offset, unsigned *metadata_offset)
415{
416 __u64 ms;
417 unsigned mo;
418
419 ms = area << ic->sb->log2_interleave_sectors;
420 if (likely(ic->log2_metadata_run >= 0))
421 ms += area << ic->log2_metadata_run;
422 else
423 ms += area * ic->metadata_run;
424 ms >>= ic->log2_buffer_sectors;
425
426 sector_to_block(ic, offset);
427
428 if (likely(ic->log2_tag_size >= 0)) {
429 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
430 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
431 } else {
432 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
433 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
434 }
435 *metadata_offset = mo;
436 return ms;
437}
438
439static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
440{
441 sector_t result;
442
443 if (ic->meta_dev)
444 return offset;
445
446 result = area << ic->sb->log2_interleave_sectors;
447 if (likely(ic->log2_metadata_run >= 0))
448 result += (area + 1) << ic->log2_metadata_run;
449 else
450 result += (area + 1) * ic->metadata_run;
451
452 result += (sector_t)ic->initial_sectors + offset;
453 result += ic->start;
454
455 return result;
456}
457
458static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
459{
460 if (unlikely(*sec_ptr >= ic->journal_sections))
461 *sec_ptr -= ic->journal_sections;
462}
463
464static void sb_set_version(struct dm_integrity_c *ic)
465{
466 if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
467 ic->sb->version = SB_VERSION_3;
468 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
469 ic->sb->version = SB_VERSION_2;
470 else
471 ic->sb->version = SB_VERSION_1;
472}
473
474static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
475{
476 struct dm_io_request io_req;
477 struct dm_io_region io_loc;
478
479 io_req.bi_op = op;
480 io_req.bi_op_flags = op_flags;
481 io_req.mem.type = DM_IO_KMEM;
482 io_req.mem.ptr.addr = ic->sb;
483 io_req.notify.fn = NULL;
484 io_req.client = ic->io;
485 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
486 io_loc.sector = ic->start;
487 io_loc.count = SB_SECTORS;
488
489 if (op == REQ_OP_WRITE)
490 sb_set_version(ic);
491
492 return dm_io(&io_req, 1, &io_loc, NULL);
493}
494
495#define BITMAP_OP_TEST_ALL_SET 0
496#define BITMAP_OP_TEST_ALL_CLEAR 1
497#define BITMAP_OP_SET 2
498#define BITMAP_OP_CLEAR 3
499
500static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
501 sector_t sector, sector_t n_sectors, int mode)
502{
503 unsigned long bit, end_bit, this_end_bit, page, end_page;
504 unsigned long *data;
505
506 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
507 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
508 (unsigned long long)sector,
509 (unsigned long long)n_sectors,
510 ic->sb->log2_sectors_per_block,
511 ic->log2_blocks_per_bitmap_bit,
512 mode);
513 BUG();
514 }
515
516 if (unlikely(!n_sectors))
517 return true;
518
519 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
520 end_bit = (sector + n_sectors - 1) >>
521 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
522
523 page = bit / (PAGE_SIZE * 8);
524 bit %= PAGE_SIZE * 8;
525
526 end_page = end_bit / (PAGE_SIZE * 8);
527 end_bit %= PAGE_SIZE * 8;
528
529repeat:
530 if (page < end_page) {
531 this_end_bit = PAGE_SIZE * 8 - 1;
532 } else {
533 this_end_bit = end_bit;
534 }
535
536 data = lowmem_page_address(bitmap[page].page);
537
538 if (mode == BITMAP_OP_TEST_ALL_SET) {
539 while (bit <= this_end_bit) {
540 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
541 do {
542 if (data[bit / BITS_PER_LONG] != -1)
543 return false;
544 bit += BITS_PER_LONG;
545 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
546 continue;
547 }
548 if (!test_bit(bit, data))
549 return false;
550 bit++;
551 }
552 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
553 while (bit <= this_end_bit) {
554 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
555 do {
556 if (data[bit / BITS_PER_LONG] != 0)
557 return false;
558 bit += BITS_PER_LONG;
559 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
560 continue;
561 }
562 if (test_bit(bit, data))
563 return false;
564 bit++;
565 }
566 } else if (mode == BITMAP_OP_SET) {
567 while (bit <= this_end_bit) {
568 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
569 do {
570 data[bit / BITS_PER_LONG] = -1;
571 bit += BITS_PER_LONG;
572 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
573 continue;
574 }
575 __set_bit(bit, data);
576 bit++;
577 }
578 } else if (mode == BITMAP_OP_CLEAR) {
579 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
580 clear_page(data);
581 else while (bit <= this_end_bit) {
582 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
583 do {
584 data[bit / BITS_PER_LONG] = 0;
585 bit += BITS_PER_LONG;
586 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
587 continue;
588 }
589 __clear_bit(bit, data);
590 bit++;
591 }
592 } else {
593 BUG();
594 }
595
596 if (unlikely(page < end_page)) {
597 bit = 0;
598 page++;
599 goto repeat;
600 }
601
602 return true;
603}
604
605static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
606{
607 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
608 unsigned i;
609
610 for (i = 0; i < n_bitmap_pages; i++) {
611 unsigned long *dst_data = lowmem_page_address(dst[i].page);
612 unsigned long *src_data = lowmem_page_address(src[i].page);
613 copy_page(dst_data, src_data);
614 }
615}
616
617static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
618{
619 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
620 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
621
622 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
623 return &ic->bbs[bitmap_block];
624}
625
626static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
627 bool e, const char *function)
628{
629#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
630 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
631
632 if (unlikely(section >= ic->journal_sections) ||
633 unlikely(offset >= limit)) {
634 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
635 function, section, offset, ic->journal_sections, limit);
636 BUG();
637 }
638#endif
639}
640
641static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
642 unsigned *pl_index, unsigned *pl_offset)
643{
644 unsigned sector;
645
646 access_journal_check(ic, section, offset, false, "page_list_location");
647
648 sector = section * ic->journal_section_sectors + offset;
649
650 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
651 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
652}
653
654static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
655 unsigned section, unsigned offset, unsigned *n_sectors)
656{
657 unsigned pl_index, pl_offset;
658 char *va;
659
660 page_list_location(ic, section, offset, &pl_index, &pl_offset);
661
662 if (n_sectors)
663 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
664
665 va = lowmem_page_address(pl[pl_index].page);
666
667 return (struct journal_sector *)(va + pl_offset);
668}
669
670static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
671{
672 return access_page_list(ic, ic->journal, section, offset, NULL);
673}
674
675static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
676{
677 unsigned rel_sector, offset;
678 struct journal_sector *js;
679
680 access_journal_check(ic, section, n, true, "access_journal_entry");
681
682 rel_sector = n % JOURNAL_BLOCK_SECTORS;
683 offset = n / JOURNAL_BLOCK_SECTORS;
684
685 js = access_journal(ic, section, rel_sector);
686 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
687}
688
689static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
690{
691 n <<= ic->sb->log2_sectors_per_block;
692
693 n += JOURNAL_BLOCK_SECTORS;
694
695 access_journal_check(ic, section, n, false, "access_journal_data");
696
697 return access_journal(ic, section, n);
698}
699
700static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
701{
702 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
703 int r;
704 unsigned j, size;
705
706 desc->tfm = ic->journal_mac;
707
708 r = crypto_shash_init(desc);
709 if (unlikely(r)) {
710 dm_integrity_io_error(ic, "crypto_shash_init", r);
711 goto err;
712 }
713
714 for (j = 0; j < ic->journal_section_entries; j++) {
715 struct journal_entry *je = access_journal_entry(ic, section, j);
716 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
717 if (unlikely(r)) {
718 dm_integrity_io_error(ic, "crypto_shash_update", r);
719 goto err;
720 }
721 }
722
723 size = crypto_shash_digestsize(ic->journal_mac);
724
725 if (likely(size <= JOURNAL_MAC_SIZE)) {
726 r = crypto_shash_final(desc, result);
727 if (unlikely(r)) {
728 dm_integrity_io_error(ic, "crypto_shash_final", r);
729 goto err;
730 }
731 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
732 } else {
733 __u8 digest[HASH_MAX_DIGESTSIZE];
734
735 if (WARN_ON(size > sizeof(digest))) {
736 dm_integrity_io_error(ic, "digest_size", -EINVAL);
737 goto err;
738 }
739 r = crypto_shash_final(desc, digest);
740 if (unlikely(r)) {
741 dm_integrity_io_error(ic, "crypto_shash_final", r);
742 goto err;
743 }
744 memcpy(result, digest, JOURNAL_MAC_SIZE);
745 }
746
747 return;
748err:
749 memset(result, 0, JOURNAL_MAC_SIZE);
750}
751
752static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
753{
754 __u8 result[JOURNAL_MAC_SIZE];
755 unsigned j;
756
757 if (!ic->journal_mac)
758 return;
759
760 section_mac(ic, section, result);
761
762 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
763 struct journal_sector *js = access_journal(ic, section, j);
764
765 if (likely(wr))
766 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
767 else {
768 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
769 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
770 }
771 }
772}
773
774static void complete_journal_op(void *context)
775{
776 struct journal_completion *comp = context;
777 BUG_ON(!atomic_read(&comp->in_flight));
778 if (likely(atomic_dec_and_test(&comp->in_flight)))
779 complete(&comp->comp);
780}
781
782static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
783 unsigned n_sections, struct journal_completion *comp)
784{
785 struct async_submit_ctl submit;
786 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
787 unsigned pl_index, pl_offset, section_index;
788 struct page_list *source_pl, *target_pl;
789
790 if (likely(encrypt)) {
791 source_pl = ic->journal;
792 target_pl = ic->journal_io;
793 } else {
794 source_pl = ic->journal_io;
795 target_pl = ic->journal;
796 }
797
798 page_list_location(ic, section, 0, &pl_index, &pl_offset);
799
800 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
801
802 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
803
804 section_index = pl_index;
805
806 do {
807 size_t this_step;
808 struct page *src_pages[2];
809 struct page *dst_page;
810
811 while (unlikely(pl_index == section_index)) {
812 unsigned dummy;
813 if (likely(encrypt))
814 rw_section_mac(ic, section, true);
815 section++;
816 n_sections--;
817 if (!n_sections)
818 break;
819 page_list_location(ic, section, 0, §ion_index, &dummy);
820 }
821
822 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
823 dst_page = target_pl[pl_index].page;
824 src_pages[0] = source_pl[pl_index].page;
825 src_pages[1] = ic->journal_xor[pl_index].page;
826
827 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
828
829 pl_index++;
830 pl_offset = 0;
831 n_bytes -= this_step;
832 } while (n_bytes);
833
834 BUG_ON(n_sections);
835
836 async_tx_issue_pending_all();
837}
838
839static void complete_journal_encrypt(struct crypto_async_request *req, int err)
840{
841 struct journal_completion *comp = req->data;
842 if (unlikely(err)) {
843 if (likely(err == -EINPROGRESS)) {
844 complete(&comp->ic->crypto_backoff);
845 return;
846 }
847 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
848 }
849 complete_journal_op(comp);
850}
851
852static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
853{
854 int r;
855 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
856 complete_journal_encrypt, comp);
857 if (likely(encrypt))
858 r = crypto_skcipher_encrypt(req);
859 else
860 r = crypto_skcipher_decrypt(req);
861 if (likely(!r))
862 return false;
863 if (likely(r == -EINPROGRESS))
864 return true;
865 if (likely(r == -EBUSY)) {
866 wait_for_completion(&comp->ic->crypto_backoff);
867 reinit_completion(&comp->ic->crypto_backoff);
868 return true;
869 }
870 dm_integrity_io_error(comp->ic, "encrypt", r);
871 return false;
872}
873
874static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
875 unsigned n_sections, struct journal_completion *comp)
876{
877 struct scatterlist **source_sg;
878 struct scatterlist **target_sg;
879
880 atomic_add(2, &comp->in_flight);
881
882 if (likely(encrypt)) {
883 source_sg = ic->journal_scatterlist;
884 target_sg = ic->journal_io_scatterlist;
885 } else {
886 source_sg = ic->journal_io_scatterlist;
887 target_sg = ic->journal_scatterlist;
888 }
889
890 do {
891 struct skcipher_request *req;
892 unsigned ivsize;
893 char *iv;
894
895 if (likely(encrypt))
896 rw_section_mac(ic, section, true);
897
898 req = ic->sk_requests[section];
899 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
900 iv = req->iv;
901
902 memcpy(iv, iv + ivsize, ivsize);
903
904 req->src = source_sg[section];
905 req->dst = target_sg[section];
906
907 if (unlikely(do_crypt(encrypt, req, comp)))
908 atomic_inc(&comp->in_flight);
909
910 section++;
911 n_sections--;
912 } while (n_sections);
913
914 atomic_dec(&comp->in_flight);
915 complete_journal_op(comp);
916}
917
918static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
919 unsigned n_sections, struct journal_completion *comp)
920{
921 if (ic->journal_xor)
922 return xor_journal(ic, encrypt, section, n_sections, comp);
923 else
924 return crypt_journal(ic, encrypt, section, n_sections, comp);
925}
926
927static void complete_journal_io(unsigned long error, void *context)
928{
929 struct journal_completion *comp = context;
930 if (unlikely(error != 0))
931 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
932 complete_journal_op(comp);
933}
934
935static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
936 unsigned sector, unsigned n_sectors, struct journal_completion *comp)
937{
938 struct dm_io_request io_req;
939 struct dm_io_region io_loc;
940 unsigned pl_index, pl_offset;
941 int r;
942
943 if (unlikely(dm_integrity_failed(ic))) {
944 if (comp)
945 complete_journal_io(-1UL, comp);
946 return;
947 }
948
949 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
950 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
951
952 io_req.bi_op = op;
953 io_req.bi_op_flags = op_flags;
954 io_req.mem.type = DM_IO_PAGE_LIST;
955 if (ic->journal_io)
956 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
957 else
958 io_req.mem.ptr.pl = &ic->journal[pl_index];
959 io_req.mem.offset = pl_offset;
960 if (likely(comp != NULL)) {
961 io_req.notify.fn = complete_journal_io;
962 io_req.notify.context = comp;
963 } else {
964 io_req.notify.fn = NULL;
965 }
966 io_req.client = ic->io;
967 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
968 io_loc.sector = ic->start + SB_SECTORS + sector;
969 io_loc.count = n_sectors;
970
971 r = dm_io(&io_req, 1, &io_loc, NULL);
972 if (unlikely(r)) {
973 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
974 if (comp) {
975 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
976 complete_journal_io(-1UL, comp);
977 }
978 }
979}
980
981static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
982 unsigned n_sections, struct journal_completion *comp)
983{
984 unsigned sector, n_sectors;
985
986 sector = section * ic->journal_section_sectors;
987 n_sectors = n_sections * ic->journal_section_sectors;
988
989 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
990}
991
992static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
993{
994 struct journal_completion io_comp;
995 struct journal_completion crypt_comp_1;
996 struct journal_completion crypt_comp_2;
997 unsigned i;
998
999 io_comp.ic = ic;
1000 init_completion(&io_comp.comp);
1001
1002 if (commit_start + commit_sections <= ic->journal_sections) {
1003 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1004 if (ic->journal_io) {
1005 crypt_comp_1.ic = ic;
1006 init_completion(&crypt_comp_1.comp);
1007 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1008 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1009 wait_for_completion_io(&crypt_comp_1.comp);
1010 } else {
1011 for (i = 0; i < commit_sections; i++)
1012 rw_section_mac(ic, commit_start + i, true);
1013 }
1014 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1015 commit_sections, &io_comp);
1016 } else {
1017 unsigned to_end;
1018 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1019 to_end = ic->journal_sections - commit_start;
1020 if (ic->journal_io) {
1021 crypt_comp_1.ic = ic;
1022 init_completion(&crypt_comp_1.comp);
1023 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1024 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1025 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1026 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1027 reinit_completion(&crypt_comp_1.comp);
1028 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1029 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1030 wait_for_completion_io(&crypt_comp_1.comp);
1031 } else {
1032 crypt_comp_2.ic = ic;
1033 init_completion(&crypt_comp_2.comp);
1034 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1035 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1036 wait_for_completion_io(&crypt_comp_1.comp);
1037 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1038 wait_for_completion_io(&crypt_comp_2.comp);
1039 }
1040 } else {
1041 for (i = 0; i < to_end; i++)
1042 rw_section_mac(ic, commit_start + i, true);
1043 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1044 for (i = 0; i < commit_sections - to_end; i++)
1045 rw_section_mac(ic, i, true);
1046 }
1047 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1048 }
1049
1050 wait_for_completion_io(&io_comp.comp);
1051}
1052
1053static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1054 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1055{
1056 struct dm_io_request io_req;
1057 struct dm_io_region io_loc;
1058 int r;
1059 unsigned sector, pl_index, pl_offset;
1060
1061 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1062
1063 if (unlikely(dm_integrity_failed(ic))) {
1064 fn(-1UL, data);
1065 return;
1066 }
1067
1068 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1069
1070 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1071 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1072
1073 io_req.bi_op = REQ_OP_WRITE;
1074 io_req.bi_op_flags = 0;
1075 io_req.mem.type = DM_IO_PAGE_LIST;
1076 io_req.mem.ptr.pl = &ic->journal[pl_index];
1077 io_req.mem.offset = pl_offset;
1078 io_req.notify.fn = fn;
1079 io_req.notify.context = data;
1080 io_req.client = ic->io;
1081 io_loc.bdev = ic->dev->bdev;
1082 io_loc.sector = target;
1083 io_loc.count = n_sectors;
1084
1085 r = dm_io(&io_req, 1, &io_loc, NULL);
1086 if (unlikely(r)) {
1087 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1088 fn(-1UL, data);
1089 }
1090}
1091
1092static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1093{
1094 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1095 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1096}
1097
1098static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1099{
1100 struct rb_node **n = &ic->in_progress.rb_node;
1101 struct rb_node *parent;
1102
1103 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1104
1105 if (likely(check_waiting)) {
1106 struct dm_integrity_range *range;
1107 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1108 if (unlikely(ranges_overlap(range, new_range)))
1109 return false;
1110 }
1111 }
1112
1113 parent = NULL;
1114
1115 while (*n) {
1116 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1117
1118 parent = *n;
1119 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1120 n = &range->node.rb_left;
1121 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1122 n = &range->node.rb_right;
1123 } else {
1124 return false;
1125 }
1126 }
1127
1128 rb_link_node(&new_range->node, parent, n);
1129 rb_insert_color(&new_range->node, &ic->in_progress);
1130
1131 return true;
1132}
1133
1134static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1135{
1136 rb_erase(&range->node, &ic->in_progress);
1137 while (unlikely(!list_empty(&ic->wait_list))) {
1138 struct dm_integrity_range *last_range =
1139 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1140 struct task_struct *last_range_task;
1141 last_range_task = last_range->task;
1142 list_del(&last_range->wait_entry);
1143 if (!add_new_range(ic, last_range, false)) {
1144 last_range->task = last_range_task;
1145 list_add(&last_range->wait_entry, &ic->wait_list);
1146 break;
1147 }
1148 last_range->waiting = false;
1149 wake_up_process(last_range_task);
1150 }
1151}
1152
1153static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1154{
1155 unsigned long flags;
1156
1157 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1158 remove_range_unlocked(ic, range);
1159 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1160}
1161
1162static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1163{
1164 new_range->waiting = true;
1165 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1166 new_range->task = current;
1167 do {
1168 __set_current_state(TASK_UNINTERRUPTIBLE);
1169 spin_unlock_irq(&ic->endio_wait.lock);
1170 io_schedule();
1171 spin_lock_irq(&ic->endio_wait.lock);
1172 } while (unlikely(new_range->waiting));
1173}
1174
1175static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1176{
1177 if (unlikely(!add_new_range(ic, new_range, true)))
1178 wait_and_add_new_range(ic, new_range);
1179}
1180
1181static void init_journal_node(struct journal_node *node)
1182{
1183 RB_CLEAR_NODE(&node->node);
1184 node->sector = (sector_t)-1;
1185}
1186
1187static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1188{
1189 struct rb_node **link;
1190 struct rb_node *parent;
1191
1192 node->sector = sector;
1193 BUG_ON(!RB_EMPTY_NODE(&node->node));
1194
1195 link = &ic->journal_tree_root.rb_node;
1196 parent = NULL;
1197
1198 while (*link) {
1199 struct journal_node *j;
1200 parent = *link;
1201 j = container_of(parent, struct journal_node, node);
1202 if (sector < j->sector)
1203 link = &j->node.rb_left;
1204 else
1205 link = &j->node.rb_right;
1206 }
1207
1208 rb_link_node(&node->node, parent, link);
1209 rb_insert_color(&node->node, &ic->journal_tree_root);
1210}
1211
1212static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1213{
1214 BUG_ON(RB_EMPTY_NODE(&node->node));
1215 rb_erase(&node->node, &ic->journal_tree_root);
1216 init_journal_node(node);
1217}
1218
1219#define NOT_FOUND (-1U)
1220
1221static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1222{
1223 struct rb_node *n = ic->journal_tree_root.rb_node;
1224 unsigned found = NOT_FOUND;
1225 *next_sector = (sector_t)-1;
1226 while (n) {
1227 struct journal_node *j = container_of(n, struct journal_node, node);
1228 if (sector == j->sector) {
1229 found = j - ic->journal_tree;
1230 }
1231 if (sector < j->sector) {
1232 *next_sector = j->sector;
1233 n = j->node.rb_left;
1234 } else {
1235 n = j->node.rb_right;
1236 }
1237 }
1238
1239 return found;
1240}
1241
1242static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1243{
1244 struct journal_node *node, *next_node;
1245 struct rb_node *next;
1246
1247 if (unlikely(pos >= ic->journal_entries))
1248 return false;
1249 node = &ic->journal_tree[pos];
1250 if (unlikely(RB_EMPTY_NODE(&node->node)))
1251 return false;
1252 if (unlikely(node->sector != sector))
1253 return false;
1254
1255 next = rb_next(&node->node);
1256 if (unlikely(!next))
1257 return true;
1258
1259 next_node = container_of(next, struct journal_node, node);
1260 return next_node->sector != sector;
1261}
1262
1263static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1264{
1265 struct rb_node *next;
1266 struct journal_node *next_node;
1267 unsigned next_section;
1268
1269 BUG_ON(RB_EMPTY_NODE(&node->node));
1270
1271 next = rb_next(&node->node);
1272 if (unlikely(!next))
1273 return false;
1274
1275 next_node = container_of(next, struct journal_node, node);
1276
1277 if (next_node->sector != node->sector)
1278 return false;
1279
1280 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1281 if (next_section >= ic->committed_section &&
1282 next_section < ic->committed_section + ic->n_committed_sections)
1283 return true;
1284 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1285 return true;
1286
1287 return false;
1288}
1289
1290#define TAG_READ 0
1291#define TAG_WRITE 1
1292#define TAG_CMP 2
1293
1294static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1295 unsigned *metadata_offset, unsigned total_size, int op)
1296{
1297 do {
1298 unsigned char *data, *dp;
1299 struct dm_buffer *b;
1300 unsigned to_copy;
1301 int r;
1302
1303 r = dm_integrity_failed(ic);
1304 if (unlikely(r))
1305 return r;
1306
1307 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1308 if (IS_ERR(data))
1309 return PTR_ERR(data);
1310
1311 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1312 dp = data + *metadata_offset;
1313 if (op == TAG_READ) {
1314 memcpy(tag, dp, to_copy);
1315 } else if (op == TAG_WRITE) {
1316 memcpy(dp, tag, to_copy);
1317 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1318 } else {
1319 /* e.g.: op == TAG_CMP */
1320 if (unlikely(memcmp(dp, tag, to_copy))) {
1321 unsigned i;
1322
1323 for (i = 0; i < to_copy; i++) {
1324 if (dp[i] != tag[i])
1325 break;
1326 total_size--;
1327 }
1328 dm_bufio_release(b);
1329 return total_size;
1330 }
1331 }
1332 dm_bufio_release(b);
1333
1334 tag += to_copy;
1335 *metadata_offset += to_copy;
1336 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1337 (*metadata_block)++;
1338 *metadata_offset = 0;
1339 }
1340 total_size -= to_copy;
1341 } while (unlikely(total_size));
1342
1343 return 0;
1344}
1345
1346static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1347{
1348 int r;
1349 r = dm_bufio_write_dirty_buffers(ic->bufio);
1350 if (unlikely(r))
1351 dm_integrity_io_error(ic, "writing tags", r);
1352}
1353
1354static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1355{
1356 DECLARE_WAITQUEUE(wait, current);
1357 __add_wait_queue(&ic->endio_wait, &wait);
1358 __set_current_state(TASK_UNINTERRUPTIBLE);
1359 spin_unlock_irq(&ic->endio_wait.lock);
1360 io_schedule();
1361 spin_lock_irq(&ic->endio_wait.lock);
1362 __remove_wait_queue(&ic->endio_wait, &wait);
1363}
1364
1365static void autocommit_fn(struct timer_list *t)
1366{
1367 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1368
1369 if (likely(!dm_integrity_failed(ic)))
1370 queue_work(ic->commit_wq, &ic->commit_work);
1371}
1372
1373static void schedule_autocommit(struct dm_integrity_c *ic)
1374{
1375 if (!timer_pending(&ic->autocommit_timer))
1376 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1377}
1378
1379static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1380{
1381 struct bio *bio;
1382 unsigned long flags;
1383
1384 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1385 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1386 bio_list_add(&ic->flush_bio_list, bio);
1387 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1388
1389 queue_work(ic->commit_wq, &ic->commit_work);
1390}
1391
1392static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1393{
1394 int r = dm_integrity_failed(ic);
1395 if (unlikely(r) && !bio->bi_status)
1396 bio->bi_status = errno_to_blk_status(r);
1397 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1398 unsigned long flags;
1399 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1400 bio_list_add(&ic->synchronous_bios, bio);
1401 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1402 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1403 return;
1404 }
1405 bio_endio(bio);
1406}
1407
1408static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1409{
1410 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1411
1412 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1413 submit_flush_bio(ic, dio);
1414 else
1415 do_endio(ic, bio);
1416}
1417
1418static void dec_in_flight(struct dm_integrity_io *dio)
1419{
1420 if (atomic_dec_and_test(&dio->in_flight)) {
1421 struct dm_integrity_c *ic = dio->ic;
1422 struct bio *bio;
1423
1424 remove_range(ic, &dio->range);
1425
1426 if (unlikely(dio->write))
1427 schedule_autocommit(ic);
1428
1429 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1430
1431 if (unlikely(dio->bi_status) && !bio->bi_status)
1432 bio->bi_status = dio->bi_status;
1433 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1434 dio->range.logical_sector += dio->range.n_sectors;
1435 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1436 INIT_WORK(&dio->work, integrity_bio_wait);
1437 queue_work(ic->wait_wq, &dio->work);
1438 return;
1439 }
1440 do_endio_flush(ic, dio);
1441 }
1442}
1443
1444static void integrity_end_io(struct bio *bio)
1445{
1446 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1447
1448 bio->bi_iter = dio->orig_bi_iter;
1449 bio->bi_disk = dio->orig_bi_disk;
1450 bio->bi_partno = dio->orig_bi_partno;
1451 if (dio->orig_bi_integrity) {
1452 bio->bi_integrity = dio->orig_bi_integrity;
1453 bio->bi_opf |= REQ_INTEGRITY;
1454 }
1455 bio->bi_end_io = dio->orig_bi_end_io;
1456
1457 if (dio->completion)
1458 complete(dio->completion);
1459
1460 dec_in_flight(dio);
1461}
1462
1463static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1464 const char *data, char *result)
1465{
1466 __u64 sector_le = cpu_to_le64(sector);
1467 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1468 int r;
1469 unsigned digest_size;
1470
1471 req->tfm = ic->internal_hash;
1472
1473 r = crypto_shash_init(req);
1474 if (unlikely(r < 0)) {
1475 dm_integrity_io_error(ic, "crypto_shash_init", r);
1476 goto failed;
1477 }
1478
1479 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le);
1480 if (unlikely(r < 0)) {
1481 dm_integrity_io_error(ic, "crypto_shash_update", r);
1482 goto failed;
1483 }
1484
1485 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1486 if (unlikely(r < 0)) {
1487 dm_integrity_io_error(ic, "crypto_shash_update", r);
1488 goto failed;
1489 }
1490
1491 r = crypto_shash_final(req, result);
1492 if (unlikely(r < 0)) {
1493 dm_integrity_io_error(ic, "crypto_shash_final", r);
1494 goto failed;
1495 }
1496
1497 digest_size = crypto_shash_digestsize(ic->internal_hash);
1498 if (unlikely(digest_size < ic->tag_size))
1499 memset(result + digest_size, 0, ic->tag_size - digest_size);
1500
1501 return;
1502
1503failed:
1504 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1505 get_random_bytes(result, ic->tag_size);
1506}
1507
1508static void integrity_metadata(struct work_struct *w)
1509{
1510 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1511 struct dm_integrity_c *ic = dio->ic;
1512
1513 int r;
1514
1515 if (ic->internal_hash) {
1516 struct bvec_iter iter;
1517 struct bio_vec bv;
1518 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1519 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1520 char *checksums;
1521 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1522 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1523 unsigned sectors_to_process = dio->range.n_sectors;
1524 sector_t sector = dio->range.logical_sector;
1525
1526 if (unlikely(ic->mode == 'R'))
1527 goto skip_io;
1528
1529 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1530 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1531 if (!checksums) {
1532 checksums = checksums_onstack;
1533 if (WARN_ON(extra_space &&
1534 digest_size > sizeof(checksums_onstack))) {
1535 r = -EINVAL;
1536 goto error;
1537 }
1538 }
1539
1540 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1541 unsigned pos;
1542 char *mem, *checksums_ptr;
1543
1544again:
1545 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1546 pos = 0;
1547 checksums_ptr = checksums;
1548 do {
1549 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1550 checksums_ptr += ic->tag_size;
1551 sectors_to_process -= ic->sectors_per_block;
1552 pos += ic->sectors_per_block << SECTOR_SHIFT;
1553 sector += ic->sectors_per_block;
1554 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1555 kunmap_atomic(mem);
1556
1557 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1558 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1559 if (unlikely(r)) {
1560 if (r > 0) {
1561 DMERR_LIMIT("Checksum failed at sector 0x%llx",
1562 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1563 r = -EILSEQ;
1564 atomic64_inc(&ic->number_of_mismatches);
1565 }
1566 if (likely(checksums != checksums_onstack))
1567 kfree(checksums);
1568 goto error;
1569 }
1570
1571 if (!sectors_to_process)
1572 break;
1573
1574 if (unlikely(pos < bv.bv_len)) {
1575 bv.bv_offset += pos;
1576 bv.bv_len -= pos;
1577 goto again;
1578 }
1579 }
1580
1581 if (likely(checksums != checksums_onstack))
1582 kfree(checksums);
1583 } else {
1584 struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1585
1586 if (bip) {
1587 struct bio_vec biv;
1588 struct bvec_iter iter;
1589 unsigned data_to_process = dio->range.n_sectors;
1590 sector_to_block(ic, data_to_process);
1591 data_to_process *= ic->tag_size;
1592
1593 bip_for_each_vec(biv, bip, iter) {
1594 unsigned char *tag;
1595 unsigned this_len;
1596
1597 BUG_ON(PageHighMem(biv.bv_page));
1598 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1599 this_len = min(biv.bv_len, data_to_process);
1600 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1601 this_len, !dio->write ? TAG_READ : TAG_WRITE);
1602 if (unlikely(r))
1603 goto error;
1604 data_to_process -= this_len;
1605 if (!data_to_process)
1606 break;
1607 }
1608 }
1609 }
1610skip_io:
1611 dec_in_flight(dio);
1612 return;
1613error:
1614 dio->bi_status = errno_to_blk_status(r);
1615 dec_in_flight(dio);
1616}
1617
1618static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1619{
1620 struct dm_integrity_c *ic = ti->private;
1621 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1622 struct bio_integrity_payload *bip;
1623
1624 sector_t area, offset;
1625
1626 dio->ic = ic;
1627 dio->bi_status = 0;
1628
1629 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1630 submit_flush_bio(ic, dio);
1631 return DM_MAPIO_SUBMITTED;
1632 }
1633
1634 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1635 dio->write = bio_op(bio) == REQ_OP_WRITE;
1636 dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1637 if (unlikely(dio->fua)) {
1638 /*
1639 * Don't pass down the FUA flag because we have to flush
1640 * disk cache anyway.
1641 */
1642 bio->bi_opf &= ~REQ_FUA;
1643 }
1644 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1645 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1646 (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1647 (unsigned long long)ic->provided_data_sectors);
1648 return DM_MAPIO_KILL;
1649 }
1650 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1651 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1652 ic->sectors_per_block,
1653 (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1654 return DM_MAPIO_KILL;
1655 }
1656
1657 if (ic->sectors_per_block > 1) {
1658 struct bvec_iter iter;
1659 struct bio_vec bv;
1660 bio_for_each_segment(bv, bio, iter) {
1661 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1662 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1663 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1664 return DM_MAPIO_KILL;
1665 }
1666 }
1667 }
1668
1669 bip = bio_integrity(bio);
1670 if (!ic->internal_hash) {
1671 if (bip) {
1672 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1673 if (ic->log2_tag_size >= 0)
1674 wanted_tag_size <<= ic->log2_tag_size;
1675 else
1676 wanted_tag_size *= ic->tag_size;
1677 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1678 DMERR("Invalid integrity data size %u, expected %u",
1679 bip->bip_iter.bi_size, wanted_tag_size);
1680 return DM_MAPIO_KILL;
1681 }
1682 }
1683 } else {
1684 if (unlikely(bip != NULL)) {
1685 DMERR("Unexpected integrity data when using internal hash");
1686 return DM_MAPIO_KILL;
1687 }
1688 }
1689
1690 if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1691 return DM_MAPIO_KILL;
1692
1693 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1694 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1695 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1696
1697 dm_integrity_map_continue(dio, true);
1698 return DM_MAPIO_SUBMITTED;
1699}
1700
1701static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1702 unsigned journal_section, unsigned journal_entry)
1703{
1704 struct dm_integrity_c *ic = dio->ic;
1705 sector_t logical_sector;
1706 unsigned n_sectors;
1707
1708 logical_sector = dio->range.logical_sector;
1709 n_sectors = dio->range.n_sectors;
1710 do {
1711 struct bio_vec bv = bio_iovec(bio);
1712 char *mem;
1713
1714 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1715 bv.bv_len = n_sectors << SECTOR_SHIFT;
1716 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1717 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1718retry_kmap:
1719 mem = kmap_atomic(bv.bv_page);
1720 if (likely(dio->write))
1721 flush_dcache_page(bv.bv_page);
1722
1723 do {
1724 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1725
1726 if (unlikely(!dio->write)) {
1727 struct journal_sector *js;
1728 char *mem_ptr;
1729 unsigned s;
1730
1731 if (unlikely(journal_entry_is_inprogress(je))) {
1732 flush_dcache_page(bv.bv_page);
1733 kunmap_atomic(mem);
1734
1735 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1736 goto retry_kmap;
1737 }
1738 smp_rmb();
1739 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1740 js = access_journal_data(ic, journal_section, journal_entry);
1741 mem_ptr = mem + bv.bv_offset;
1742 s = 0;
1743 do {
1744 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1745 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1746 js++;
1747 mem_ptr += 1 << SECTOR_SHIFT;
1748 } while (++s < ic->sectors_per_block);
1749#ifdef INTERNAL_VERIFY
1750 if (ic->internal_hash) {
1751 char checksums_onstack[max(HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1752
1753 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1754 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1755 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1756 (unsigned long long)logical_sector);
1757 }
1758 }
1759#endif
1760 }
1761
1762 if (!ic->internal_hash) {
1763 struct bio_integrity_payload *bip = bio_integrity(bio);
1764 unsigned tag_todo = ic->tag_size;
1765 char *tag_ptr = journal_entry_tag(ic, je);
1766
1767 if (bip) do {
1768 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1769 unsigned tag_now = min(biv.bv_len, tag_todo);
1770 char *tag_addr;
1771 BUG_ON(PageHighMem(biv.bv_page));
1772 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1773 if (likely(dio->write))
1774 memcpy(tag_ptr, tag_addr, tag_now);
1775 else
1776 memcpy(tag_addr, tag_ptr, tag_now);
1777 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1778 tag_ptr += tag_now;
1779 tag_todo -= tag_now;
1780 } while (unlikely(tag_todo)); else {
1781 if (likely(dio->write))
1782 memset(tag_ptr, 0, tag_todo);
1783 }
1784 }
1785
1786 if (likely(dio->write)) {
1787 struct journal_sector *js;
1788 unsigned s;
1789
1790 js = access_journal_data(ic, journal_section, journal_entry);
1791 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1792
1793 s = 0;
1794 do {
1795 je->last_bytes[s] = js[s].commit_id;
1796 } while (++s < ic->sectors_per_block);
1797
1798 if (ic->internal_hash) {
1799 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1800 if (unlikely(digest_size > ic->tag_size)) {
1801 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1802 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1803 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1804 } else
1805 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1806 }
1807
1808 journal_entry_set_sector(je, logical_sector);
1809 }
1810 logical_sector += ic->sectors_per_block;
1811
1812 journal_entry++;
1813 if (unlikely(journal_entry == ic->journal_section_entries)) {
1814 journal_entry = 0;
1815 journal_section++;
1816 wraparound_section(ic, &journal_section);
1817 }
1818
1819 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1820 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1821
1822 if (unlikely(!dio->write))
1823 flush_dcache_page(bv.bv_page);
1824 kunmap_atomic(mem);
1825 } while (n_sectors);
1826
1827 if (likely(dio->write)) {
1828 smp_mb();
1829 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1830 wake_up(&ic->copy_to_journal_wait);
1831 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1832 queue_work(ic->commit_wq, &ic->commit_work);
1833 } else {
1834 schedule_autocommit(ic);
1835 }
1836 } else {
1837 remove_range(ic, &dio->range);
1838 }
1839
1840 if (unlikely(bio->bi_iter.bi_size)) {
1841 sector_t area, offset;
1842
1843 dio->range.logical_sector = logical_sector;
1844 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1845 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1846 return true;
1847 }
1848
1849 return false;
1850}
1851
1852static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1853{
1854 struct dm_integrity_c *ic = dio->ic;
1855 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1856 unsigned journal_section, journal_entry;
1857 unsigned journal_read_pos;
1858 struct completion read_comp;
1859 bool need_sync_io = ic->internal_hash && !dio->write;
1860
1861 if (need_sync_io && from_map) {
1862 INIT_WORK(&dio->work, integrity_bio_wait);
1863 queue_work(ic->metadata_wq, &dio->work);
1864 return;
1865 }
1866
1867lock_retry:
1868 spin_lock_irq(&ic->endio_wait.lock);
1869retry:
1870 if (unlikely(dm_integrity_failed(ic))) {
1871 spin_unlock_irq(&ic->endio_wait.lock);
1872 do_endio(ic, bio);
1873 return;
1874 }
1875 dio->range.n_sectors = bio_sectors(bio);
1876 journal_read_pos = NOT_FOUND;
1877 if (likely(ic->mode == 'J')) {
1878 if (dio->write) {
1879 unsigned next_entry, i, pos;
1880 unsigned ws, we, range_sectors;
1881
1882 dio->range.n_sectors = min(dio->range.n_sectors,
1883 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
1884 if (unlikely(!dio->range.n_sectors)) {
1885 if (from_map)
1886 goto offload_to_thread;
1887 sleep_on_endio_wait(ic);
1888 goto retry;
1889 }
1890 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1891 ic->free_sectors -= range_sectors;
1892 journal_section = ic->free_section;
1893 journal_entry = ic->free_section_entry;
1894
1895 next_entry = ic->free_section_entry + range_sectors;
1896 ic->free_section_entry = next_entry % ic->journal_section_entries;
1897 ic->free_section += next_entry / ic->journal_section_entries;
1898 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1899 wraparound_section(ic, &ic->free_section);
1900
1901 pos = journal_section * ic->journal_section_entries + journal_entry;
1902 ws = journal_section;
1903 we = journal_entry;
1904 i = 0;
1905 do {
1906 struct journal_entry *je;
1907
1908 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1909 pos++;
1910 if (unlikely(pos >= ic->journal_entries))
1911 pos = 0;
1912
1913 je = access_journal_entry(ic, ws, we);
1914 BUG_ON(!journal_entry_is_unused(je));
1915 journal_entry_set_inprogress(je);
1916 we++;
1917 if (unlikely(we == ic->journal_section_entries)) {
1918 we = 0;
1919 ws++;
1920 wraparound_section(ic, &ws);
1921 }
1922 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1923
1924 spin_unlock_irq(&ic->endio_wait.lock);
1925 goto journal_read_write;
1926 } else {
1927 sector_t next_sector;
1928 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1929 if (likely(journal_read_pos == NOT_FOUND)) {
1930 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1931 dio->range.n_sectors = next_sector - dio->range.logical_sector;
1932 } else {
1933 unsigned i;
1934 unsigned jp = journal_read_pos + 1;
1935 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1936 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1937 break;
1938 }
1939 dio->range.n_sectors = i;
1940 }
1941 }
1942 }
1943 if (unlikely(!add_new_range(ic, &dio->range, true))) {
1944 /*
1945 * We must not sleep in the request routine because it could
1946 * stall bios on current->bio_list.
1947 * So, we offload the bio to a workqueue if we have to sleep.
1948 */
1949 if (from_map) {
1950offload_to_thread:
1951 spin_unlock_irq(&ic->endio_wait.lock);
1952 INIT_WORK(&dio->work, integrity_bio_wait);
1953 queue_work(ic->wait_wq, &dio->work);
1954 return;
1955 }
1956 if (journal_read_pos != NOT_FOUND)
1957 dio->range.n_sectors = ic->sectors_per_block;
1958 wait_and_add_new_range(ic, &dio->range);
1959 /*
1960 * wait_and_add_new_range drops the spinlock, so the journal
1961 * may have been changed arbitrarily. We need to recheck.
1962 * To simplify the code, we restrict I/O size to just one block.
1963 */
1964 if (journal_read_pos != NOT_FOUND) {
1965 sector_t next_sector;
1966 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1967 if (unlikely(new_pos != journal_read_pos)) {
1968 remove_range_unlocked(ic, &dio->range);
1969 goto retry;
1970 }
1971 }
1972 }
1973 spin_unlock_irq(&ic->endio_wait.lock);
1974
1975 if (unlikely(journal_read_pos != NOT_FOUND)) {
1976 journal_section = journal_read_pos / ic->journal_section_entries;
1977 journal_entry = journal_read_pos % ic->journal_section_entries;
1978 goto journal_read_write;
1979 }
1980
1981 if (ic->mode == 'B' && dio->write) {
1982 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
1983 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
1984 struct bitmap_block_status *bbs;
1985
1986 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
1987 spin_lock(&bbs->bio_queue_lock);
1988 bio_list_add(&bbs->bio_queue, bio);
1989 spin_unlock(&bbs->bio_queue_lock);
1990 queue_work(ic->writer_wq, &bbs->work);
1991 return;
1992 }
1993 }
1994
1995 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1996
1997 if (need_sync_io) {
1998 init_completion(&read_comp);
1999 dio->completion = &read_comp;
2000 } else
2001 dio->completion = NULL;
2002
2003 dio->orig_bi_iter = bio->bi_iter;
2004
2005 dio->orig_bi_disk = bio->bi_disk;
2006 dio->orig_bi_partno = bio->bi_partno;
2007 bio_set_dev(bio, ic->dev->bdev);
2008
2009 dio->orig_bi_integrity = bio_integrity(bio);
2010 bio->bi_integrity = NULL;
2011 bio->bi_opf &= ~REQ_INTEGRITY;
2012
2013 dio->orig_bi_end_io = bio->bi_end_io;
2014 bio->bi_end_io = integrity_end_io;
2015
2016 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2017 generic_make_request(bio);
2018
2019 if (need_sync_io) {
2020 wait_for_completion_io(&read_comp);
2021 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2022 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2023 goto skip_check;
2024 if (ic->mode == 'B') {
2025 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2026 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2027 goto skip_check;
2028 }
2029
2030 if (likely(!bio->bi_status))
2031 integrity_metadata(&dio->work);
2032 else
2033skip_check:
2034 dec_in_flight(dio);
2035
2036 } else {
2037 INIT_WORK(&dio->work, integrity_metadata);
2038 queue_work(ic->metadata_wq, &dio->work);
2039 }
2040
2041 return;
2042
2043journal_read_write:
2044 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2045 goto lock_retry;
2046
2047 do_endio_flush(ic, dio);
2048}
2049
2050
2051static void integrity_bio_wait(struct work_struct *w)
2052{
2053 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2054
2055 dm_integrity_map_continue(dio, false);
2056}
2057
2058static void pad_uncommitted(struct dm_integrity_c *ic)
2059{
2060 if (ic->free_section_entry) {
2061 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2062 ic->free_section_entry = 0;
2063 ic->free_section++;
2064 wraparound_section(ic, &ic->free_section);
2065 ic->n_uncommitted_sections++;
2066 }
2067 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2068 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2069 ic->journal_section_entries + ic->free_sectors)) {
2070 DMCRIT("journal_sections %u, journal_section_entries %u, "
2071 "n_uncommitted_sections %u, n_committed_sections %u, "
2072 "journal_section_entries %u, free_sectors %u",
2073 ic->journal_sections, ic->journal_section_entries,
2074 ic->n_uncommitted_sections, ic->n_committed_sections,
2075 ic->journal_section_entries, ic->free_sectors);
2076 }
2077}
2078
2079static void integrity_commit(struct work_struct *w)
2080{
2081 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2082 unsigned commit_start, commit_sections;
2083 unsigned i, j, n;
2084 struct bio *flushes;
2085
2086 del_timer(&ic->autocommit_timer);
2087
2088 spin_lock_irq(&ic->endio_wait.lock);
2089 flushes = bio_list_get(&ic->flush_bio_list);
2090 if (unlikely(ic->mode != 'J')) {
2091 spin_unlock_irq(&ic->endio_wait.lock);
2092 dm_integrity_flush_buffers(ic);
2093 goto release_flush_bios;
2094 }
2095
2096 pad_uncommitted(ic);
2097 commit_start = ic->uncommitted_section;
2098 commit_sections = ic->n_uncommitted_sections;
2099 spin_unlock_irq(&ic->endio_wait.lock);
2100
2101 if (!commit_sections)
2102 goto release_flush_bios;
2103
2104 i = commit_start;
2105 for (n = 0; n < commit_sections; n++) {
2106 for (j = 0; j < ic->journal_section_entries; j++) {
2107 struct journal_entry *je;
2108 je = access_journal_entry(ic, i, j);
2109 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2110 }
2111 for (j = 0; j < ic->journal_section_sectors; j++) {
2112 struct journal_sector *js;
2113 js = access_journal(ic, i, j);
2114 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2115 }
2116 i++;
2117 if (unlikely(i >= ic->journal_sections))
2118 ic->commit_seq = next_commit_seq(ic->commit_seq);
2119 wraparound_section(ic, &i);
2120 }
2121 smp_rmb();
2122
2123 write_journal(ic, commit_start, commit_sections);
2124
2125 spin_lock_irq(&ic->endio_wait.lock);
2126 ic->uncommitted_section += commit_sections;
2127 wraparound_section(ic, &ic->uncommitted_section);
2128 ic->n_uncommitted_sections -= commit_sections;
2129 ic->n_committed_sections += commit_sections;
2130 spin_unlock_irq(&ic->endio_wait.lock);
2131
2132 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2133 queue_work(ic->writer_wq, &ic->writer_work);
2134
2135release_flush_bios:
2136 while (flushes) {
2137 struct bio *next = flushes->bi_next;
2138 flushes->bi_next = NULL;
2139 do_endio(ic, flushes);
2140 flushes = next;
2141 }
2142}
2143
2144static void complete_copy_from_journal(unsigned long error, void *context)
2145{
2146 struct journal_io *io = context;
2147 struct journal_completion *comp = io->comp;
2148 struct dm_integrity_c *ic = comp->ic;
2149 remove_range(ic, &io->range);
2150 mempool_free(io, &ic->journal_io_mempool);
2151 if (unlikely(error != 0))
2152 dm_integrity_io_error(ic, "copying from journal", -EIO);
2153 complete_journal_op(comp);
2154}
2155
2156static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2157 struct journal_entry *je)
2158{
2159 unsigned s = 0;
2160 do {
2161 js->commit_id = je->last_bytes[s];
2162 js++;
2163 } while (++s < ic->sectors_per_block);
2164}
2165
2166static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2167 unsigned write_sections, bool from_replay)
2168{
2169 unsigned i, j, n;
2170 struct journal_completion comp;
2171 struct blk_plug plug;
2172
2173 blk_start_plug(&plug);
2174
2175 comp.ic = ic;
2176 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2177 init_completion(&comp.comp);
2178
2179 i = write_start;
2180 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2181#ifndef INTERNAL_VERIFY
2182 if (unlikely(from_replay))
2183#endif
2184 rw_section_mac(ic, i, false);
2185 for (j = 0; j < ic->journal_section_entries; j++) {
2186 struct journal_entry *je = access_journal_entry(ic, i, j);
2187 sector_t sec, area, offset;
2188 unsigned k, l, next_loop;
2189 sector_t metadata_block;
2190 unsigned metadata_offset;
2191 struct journal_io *io;
2192
2193 if (journal_entry_is_unused(je))
2194 continue;
2195 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2196 sec = journal_entry_get_sector(je);
2197 if (unlikely(from_replay)) {
2198 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2199 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2200 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2201 }
2202 }
2203 get_area_and_offset(ic, sec, &area, &offset);
2204 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2205 for (k = j + 1; k < ic->journal_section_entries; k++) {
2206 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2207 sector_t sec2, area2, offset2;
2208 if (journal_entry_is_unused(je2))
2209 break;
2210 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2211 sec2 = journal_entry_get_sector(je2);
2212 get_area_and_offset(ic, sec2, &area2, &offset2);
2213 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2214 break;
2215 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2216 }
2217 next_loop = k - 1;
2218
2219 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2220 io->comp = ∁
2221 io->range.logical_sector = sec;
2222 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2223
2224 spin_lock_irq(&ic->endio_wait.lock);
2225 add_new_range_and_wait(ic, &io->range);
2226
2227 if (likely(!from_replay)) {
2228 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2229
2230 /* don't write if there is newer committed sector */
2231 while (j < k && find_newer_committed_node(ic, §ion_node[j])) {
2232 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2233
2234 journal_entry_set_unused(je2);
2235 remove_journal_node(ic, §ion_node[j]);
2236 j++;
2237 sec += ic->sectors_per_block;
2238 offset += ic->sectors_per_block;
2239 }
2240 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) {
2241 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2242
2243 journal_entry_set_unused(je2);
2244 remove_journal_node(ic, §ion_node[k - 1]);
2245 k--;
2246 }
2247 if (j == k) {
2248 remove_range_unlocked(ic, &io->range);
2249 spin_unlock_irq(&ic->endio_wait.lock);
2250 mempool_free(io, &ic->journal_io_mempool);
2251 goto skip_io;
2252 }
2253 for (l = j; l < k; l++) {
2254 remove_journal_node(ic, §ion_node[l]);
2255 }
2256 }
2257 spin_unlock_irq(&ic->endio_wait.lock);
2258
2259 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2260 for (l = j; l < k; l++) {
2261 int r;
2262 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2263
2264 if (
2265#ifndef INTERNAL_VERIFY
2266 unlikely(from_replay) &&
2267#endif
2268 ic->internal_hash) {
2269 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2270
2271 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2272 (char *)access_journal_data(ic, i, l), test_tag);
2273 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2274 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2275 }
2276
2277 journal_entry_set_unused(je2);
2278 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2279 ic->tag_size, TAG_WRITE);
2280 if (unlikely(r)) {
2281 dm_integrity_io_error(ic, "reading tags", r);
2282 }
2283 }
2284
2285 atomic_inc(&comp.in_flight);
2286 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2287 (k - j) << ic->sb->log2_sectors_per_block,
2288 get_data_sector(ic, area, offset),
2289 complete_copy_from_journal, io);
2290skip_io:
2291 j = next_loop;
2292 }
2293 }
2294
2295 dm_bufio_write_dirty_buffers_async(ic->bufio);
2296
2297 blk_finish_plug(&plug);
2298
2299 complete_journal_op(&comp);
2300 wait_for_completion_io(&comp.comp);
2301
2302 dm_integrity_flush_buffers(ic);
2303}
2304
2305static void integrity_writer(struct work_struct *w)
2306{
2307 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2308 unsigned write_start, write_sections;
2309
2310 unsigned prev_free_sectors;
2311
2312 /* the following test is not needed, but it tests the replay code */
2313 if (READ_ONCE(ic->suspending) && !ic->meta_dev)
2314 return;
2315
2316 spin_lock_irq(&ic->endio_wait.lock);
2317 write_start = ic->committed_section;
2318 write_sections = ic->n_committed_sections;
2319 spin_unlock_irq(&ic->endio_wait.lock);
2320
2321 if (!write_sections)
2322 return;
2323
2324 do_journal_write(ic, write_start, write_sections, false);
2325
2326 spin_lock_irq(&ic->endio_wait.lock);
2327
2328 ic->committed_section += write_sections;
2329 wraparound_section(ic, &ic->committed_section);
2330 ic->n_committed_sections -= write_sections;
2331
2332 prev_free_sectors = ic->free_sectors;
2333 ic->free_sectors += write_sections * ic->journal_section_entries;
2334 if (unlikely(!prev_free_sectors))
2335 wake_up_locked(&ic->endio_wait);
2336
2337 spin_unlock_irq(&ic->endio_wait.lock);
2338}
2339
2340static void recalc_write_super(struct dm_integrity_c *ic)
2341{
2342 int r;
2343
2344 dm_integrity_flush_buffers(ic);
2345 if (dm_integrity_failed(ic))
2346 return;
2347
2348 r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2349 if (unlikely(r))
2350 dm_integrity_io_error(ic, "writing superblock", r);
2351}
2352
2353static void integrity_recalc(struct work_struct *w)
2354{
2355 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2356 struct dm_integrity_range range;
2357 struct dm_io_request io_req;
2358 struct dm_io_region io_loc;
2359 sector_t area, offset;
2360 sector_t metadata_block;
2361 unsigned metadata_offset;
2362 sector_t logical_sector, n_sectors;
2363 __u8 *t;
2364 unsigned i;
2365 int r;
2366 unsigned super_counter = 0;
2367
2368 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2369
2370 spin_lock_irq(&ic->endio_wait.lock);
2371
2372next_chunk:
2373
2374 if (unlikely(READ_ONCE(ic->suspending)))
2375 goto unlock_ret;
2376
2377 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2378 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2379 if (ic->mode == 'B') {
2380 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2381 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2382 }
2383 goto unlock_ret;
2384 }
2385
2386 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2387 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2388 if (!ic->meta_dev)
2389 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2390
2391 add_new_range_and_wait(ic, &range);
2392 spin_unlock_irq(&ic->endio_wait.lock);
2393 logical_sector = range.logical_sector;
2394 n_sectors = range.n_sectors;
2395
2396 if (ic->mode == 'B') {
2397 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2398 goto advance_and_next;
2399 }
2400 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2401 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2402 logical_sector += ic->sectors_per_block;
2403 n_sectors -= ic->sectors_per_block;
2404 cond_resched();
2405 }
2406 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2407 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2408 n_sectors -= ic->sectors_per_block;
2409 cond_resched();
2410 }
2411 get_area_and_offset(ic, logical_sector, &area, &offset);
2412 }
2413
2414 DEBUG_print("recalculating: %lx, %lx\n", logical_sector, n_sectors);
2415
2416 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2417 recalc_write_super(ic);
2418 if (ic->mode == 'B') {
2419 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2420 }
2421 super_counter = 0;
2422 }
2423
2424 if (unlikely(dm_integrity_failed(ic)))
2425 goto err;
2426
2427 io_req.bi_op = REQ_OP_READ;
2428 io_req.bi_op_flags = 0;
2429 io_req.mem.type = DM_IO_VMA;
2430 io_req.mem.ptr.addr = ic->recalc_buffer;
2431 io_req.notify.fn = NULL;
2432 io_req.client = ic->io;
2433 io_loc.bdev = ic->dev->bdev;
2434 io_loc.sector = get_data_sector(ic, area, offset);
2435 io_loc.count = n_sectors;
2436
2437 r = dm_io(&io_req, 1, &io_loc, NULL);
2438 if (unlikely(r)) {
2439 dm_integrity_io_error(ic, "reading data", r);
2440 goto err;
2441 }
2442
2443 t = ic->recalc_tags;
2444 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2445 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2446 t += ic->tag_size;
2447 }
2448
2449 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2450
2451 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2452 if (unlikely(r)) {
2453 dm_integrity_io_error(ic, "writing tags", r);
2454 goto err;
2455 }
2456
2457advance_and_next:
2458 cond_resched();
2459
2460 spin_lock_irq(&ic->endio_wait.lock);
2461 remove_range_unlocked(ic, &range);
2462 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2463 goto next_chunk;
2464
2465err:
2466 remove_range(ic, &range);
2467 return;
2468
2469unlock_ret:
2470 spin_unlock_irq(&ic->endio_wait.lock);
2471
2472 recalc_write_super(ic);
2473}
2474
2475static void bitmap_block_work(struct work_struct *w)
2476{
2477 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2478 struct dm_integrity_c *ic = bbs->ic;
2479 struct bio *bio;
2480 struct bio_list bio_queue;
2481 struct bio_list waiting;
2482
2483 bio_list_init(&waiting);
2484
2485 spin_lock(&bbs->bio_queue_lock);
2486 bio_queue = bbs->bio_queue;
2487 bio_list_init(&bbs->bio_queue);
2488 spin_unlock(&bbs->bio_queue_lock);
2489
2490 while ((bio = bio_list_pop(&bio_queue))) {
2491 struct dm_integrity_io *dio;
2492
2493 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2494
2495 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2496 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2497 remove_range(ic, &dio->range);
2498 INIT_WORK(&dio->work, integrity_bio_wait);
2499 queue_work(ic->wait_wq, &dio->work);
2500 } else {
2501 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2502 dio->range.n_sectors, BITMAP_OP_SET);
2503 bio_list_add(&waiting, bio);
2504 }
2505 }
2506
2507 if (bio_list_empty(&waiting))
2508 return;
2509
2510 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2511 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2512 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2513
2514 while ((bio = bio_list_pop(&waiting))) {
2515 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2516
2517 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2518 dio->range.n_sectors, BITMAP_OP_SET);
2519
2520 remove_range(ic, &dio->range);
2521 INIT_WORK(&dio->work, integrity_bio_wait);
2522 queue_work(ic->wait_wq, &dio->work);
2523 }
2524
2525 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2526}
2527
2528static void bitmap_flush_work(struct work_struct *work)
2529{
2530 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2531 struct dm_integrity_range range;
2532 unsigned long limit;
2533 struct bio *bio;
2534
2535 dm_integrity_flush_buffers(ic);
2536
2537 range.logical_sector = 0;
2538 range.n_sectors = ic->provided_data_sectors;
2539
2540 spin_lock_irq(&ic->endio_wait.lock);
2541 add_new_range_and_wait(ic, &range);
2542 spin_unlock_irq(&ic->endio_wait.lock);
2543
2544 dm_integrity_flush_buffers(ic);
2545 if (ic->meta_dev)
2546 blkdev_issue_flush(ic->dev->bdev, GFP_NOIO, NULL);
2547
2548 limit = ic->provided_data_sectors;
2549 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2550 limit = le64_to_cpu(ic->sb->recalc_sector)
2551 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2552 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2553 }
2554 /*DEBUG_print("zeroing journal\n");*/
2555 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2556 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2557
2558 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2559 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2560
2561 spin_lock_irq(&ic->endio_wait.lock);
2562 remove_range_unlocked(ic, &range);
2563 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2564 bio_endio(bio);
2565 spin_unlock_irq(&ic->endio_wait.lock);
2566 spin_lock_irq(&ic->endio_wait.lock);
2567 }
2568 spin_unlock_irq(&ic->endio_wait.lock);
2569}
2570
2571
2572static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2573 unsigned n_sections, unsigned char commit_seq)
2574{
2575 unsigned i, j, n;
2576
2577 if (!n_sections)
2578 return;
2579
2580 for (n = 0; n < n_sections; n++) {
2581 i = start_section + n;
2582 wraparound_section(ic, &i);
2583 for (j = 0; j < ic->journal_section_sectors; j++) {
2584 struct journal_sector *js = access_journal(ic, i, j);
2585 memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2586 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2587 }
2588 for (j = 0; j < ic->journal_section_entries; j++) {
2589 struct journal_entry *je = access_journal_entry(ic, i, j);
2590 journal_entry_set_unused(je);
2591 }
2592 }
2593
2594 write_journal(ic, start_section, n_sections);
2595}
2596
2597static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2598{
2599 unsigned char k;
2600 for (k = 0; k < N_COMMIT_IDS; k++) {
2601 if (dm_integrity_commit_id(ic, i, j, k) == id)
2602 return k;
2603 }
2604 dm_integrity_io_error(ic, "journal commit id", -EIO);
2605 return -EIO;
2606}
2607
2608static void replay_journal(struct dm_integrity_c *ic)
2609{
2610 unsigned i, j;
2611 bool used_commit_ids[N_COMMIT_IDS];
2612 unsigned max_commit_id_sections[N_COMMIT_IDS];
2613 unsigned write_start, write_sections;
2614 unsigned continue_section;
2615 bool journal_empty;
2616 unsigned char unused, last_used, want_commit_seq;
2617
2618 if (ic->mode == 'R')
2619 return;
2620
2621 if (ic->journal_uptodate)
2622 return;
2623
2624 last_used = 0;
2625 write_start = 0;
2626
2627 if (!ic->just_formatted) {
2628 DEBUG_print("reading journal\n");
2629 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2630 if (ic->journal_io)
2631 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2632 if (ic->journal_io) {
2633 struct journal_completion crypt_comp;
2634 crypt_comp.ic = ic;
2635 init_completion(&crypt_comp.comp);
2636 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2637 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2638 wait_for_completion(&crypt_comp.comp);
2639 }
2640 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2641 }
2642
2643 if (dm_integrity_failed(ic))
2644 goto clear_journal;
2645
2646 journal_empty = true;
2647 memset(used_commit_ids, 0, sizeof used_commit_ids);
2648 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2649 for (i = 0; i < ic->journal_sections; i++) {
2650 for (j = 0; j < ic->journal_section_sectors; j++) {
2651 int k;
2652 struct journal_sector *js = access_journal(ic, i, j);
2653 k = find_commit_seq(ic, i, j, js->commit_id);
2654 if (k < 0)
2655 goto clear_journal;
2656 used_commit_ids[k] = true;
2657 max_commit_id_sections[k] = i;
2658 }
2659 if (journal_empty) {
2660 for (j = 0; j < ic->journal_section_entries; j++) {
2661 struct journal_entry *je = access_journal_entry(ic, i, j);
2662 if (!journal_entry_is_unused(je)) {
2663 journal_empty = false;
2664 break;
2665 }
2666 }
2667 }
2668 }
2669
2670 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2671 unused = N_COMMIT_IDS - 1;
2672 while (unused && !used_commit_ids[unused - 1])
2673 unused--;
2674 } else {
2675 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2676 if (!used_commit_ids[unused])
2677 break;
2678 if (unused == N_COMMIT_IDS) {
2679 dm_integrity_io_error(ic, "journal commit ids", -EIO);
2680 goto clear_journal;
2681 }
2682 }
2683 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2684 unused, used_commit_ids[0], used_commit_ids[1],
2685 used_commit_ids[2], used_commit_ids[3]);
2686
2687 last_used = prev_commit_seq(unused);
2688 want_commit_seq = prev_commit_seq(last_used);
2689
2690 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2691 journal_empty = true;
2692
2693 write_start = max_commit_id_sections[last_used] + 1;
2694 if (unlikely(write_start >= ic->journal_sections))
2695 want_commit_seq = next_commit_seq(want_commit_seq);
2696 wraparound_section(ic, &write_start);
2697
2698 i = write_start;
2699 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2700 for (j = 0; j < ic->journal_section_sectors; j++) {
2701 struct journal_sector *js = access_journal(ic, i, j);
2702
2703 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2704 /*
2705 * This could be caused by crash during writing.
2706 * We won't replay the inconsistent part of the
2707 * journal.
2708 */
2709 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2710 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2711 goto brk;
2712 }
2713 }
2714 i++;
2715 if (unlikely(i >= ic->journal_sections))
2716 want_commit_seq = next_commit_seq(want_commit_seq);
2717 wraparound_section(ic, &i);
2718 }
2719brk:
2720
2721 if (!journal_empty) {
2722 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2723 write_sections, write_start, want_commit_seq);
2724 do_journal_write(ic, write_start, write_sections, true);
2725 }
2726
2727 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2728 continue_section = write_start;
2729 ic->commit_seq = want_commit_seq;
2730 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2731 } else {
2732 unsigned s;
2733 unsigned char erase_seq;
2734clear_journal:
2735 DEBUG_print("clearing journal\n");
2736
2737 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2738 s = write_start;
2739 init_journal(ic, s, 1, erase_seq);
2740 s++;
2741 wraparound_section(ic, &s);
2742 if (ic->journal_sections >= 2) {
2743 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2744 s += ic->journal_sections - 2;
2745 wraparound_section(ic, &s);
2746 init_journal(ic, s, 1, erase_seq);
2747 }
2748
2749 continue_section = 0;
2750 ic->commit_seq = next_commit_seq(erase_seq);
2751 }
2752
2753 ic->committed_section = continue_section;
2754 ic->n_committed_sections = 0;
2755
2756 ic->uncommitted_section = continue_section;
2757 ic->n_uncommitted_sections = 0;
2758
2759 ic->free_section = continue_section;
2760 ic->free_section_entry = 0;
2761 ic->free_sectors = ic->journal_entries;
2762
2763 ic->journal_tree_root = RB_ROOT;
2764 for (i = 0; i < ic->journal_entries; i++)
2765 init_journal_node(&ic->journal_tree[i]);
2766}
2767
2768static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
2769{
2770 DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2771
2772 if (ic->mode == 'B') {
2773 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
2774 ic->synchronous_mode = 1;
2775
2776 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2777 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2778 flush_workqueue(ic->commit_wq);
2779 }
2780}
2781
2782static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
2783{
2784 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
2785
2786 DEBUG_print("dm_integrity_reboot\n");
2787
2788 dm_integrity_enter_synchronous_mode(ic);
2789
2790 return NOTIFY_DONE;
2791}
2792
2793static void dm_integrity_postsuspend(struct dm_target *ti)
2794{
2795 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2796 int r;
2797
2798 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
2799
2800 del_timer_sync(&ic->autocommit_timer);
2801
2802 WRITE_ONCE(ic->suspending, 1);
2803
2804 if (ic->recalc_wq)
2805 drain_workqueue(ic->recalc_wq);
2806
2807 if (ic->mode == 'B')
2808 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2809
2810 queue_work(ic->commit_wq, &ic->commit_work);
2811 drain_workqueue(ic->commit_wq);
2812
2813 if (ic->mode == 'J') {
2814 if (ic->meta_dev)
2815 queue_work(ic->writer_wq, &ic->writer_work);
2816 drain_workqueue(ic->writer_wq);
2817 dm_integrity_flush_buffers(ic);
2818 }
2819
2820 if (ic->mode == 'B') {
2821 dm_integrity_flush_buffers(ic);
2822#if 1
2823 /* set to 0 to test bitmap replay code */
2824 init_journal(ic, 0, ic->journal_sections, 0);
2825 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2826 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2827 if (unlikely(r))
2828 dm_integrity_io_error(ic, "writing superblock", r);
2829#endif
2830 }
2831
2832 WRITE_ONCE(ic->suspending, 0);
2833
2834 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2835
2836 ic->journal_uptodate = true;
2837}
2838
2839static void dm_integrity_resume(struct dm_target *ti)
2840{
2841 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2842 int r;
2843 DEBUG_print("resume\n");
2844
2845 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
2846 DEBUG_print("resume dirty_bitmap\n");
2847 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
2848 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2849 if (ic->mode == 'B') {
2850 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
2851 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
2852 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
2853 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
2854 BITMAP_OP_TEST_ALL_CLEAR)) {
2855 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2856 ic->sb->recalc_sector = cpu_to_le64(0);
2857 }
2858 } else {
2859 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
2860 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
2861 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2862 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2863 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2864 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2865 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2866 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2867 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2868 ic->sb->recalc_sector = cpu_to_le64(0);
2869 }
2870 } else {
2871 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
2872 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
2873 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2874 ic->sb->recalc_sector = cpu_to_le64(0);
2875 }
2876 init_journal(ic, 0, ic->journal_sections, 0);
2877 replay_journal(ic);
2878 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2879 }
2880 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2881 if (unlikely(r))
2882 dm_integrity_io_error(ic, "writing superblock", r);
2883 } else {
2884 replay_journal(ic);
2885 if (ic->mode == 'B') {
2886 int mode;
2887 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2888 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2889 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2890 if (unlikely(r))
2891 dm_integrity_io_error(ic, "writing superblock", r);
2892
2893 mode = ic->recalculate_flag ? BITMAP_OP_SET : BITMAP_OP_CLEAR;
2894 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, mode);
2895 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, mode);
2896 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, mode);
2897 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2898 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2899 }
2900 }
2901
2902 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
2903 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2904 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
2905 DEBUG_print("recalc pos: %lx / %lx\n", (long)recalc_pos, ic->provided_data_sectors);
2906 if (recalc_pos < ic->provided_data_sectors) {
2907 queue_work(ic->recalc_wq, &ic->recalc_work);
2908 } else if (recalc_pos > ic->provided_data_sectors) {
2909 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
2910 recalc_write_super(ic);
2911 }
2912 }
2913
2914 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
2915 ic->reboot_notifier.next = NULL;
2916 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
2917 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
2918
2919#if 0
2920 /* set to 1 to stress test synchronous mode */
2921 dm_integrity_enter_synchronous_mode(ic);
2922#endif
2923}
2924
2925static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2926 unsigned status_flags, char *result, unsigned maxlen)
2927{
2928 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2929 unsigned arg_count;
2930 size_t sz = 0;
2931
2932 switch (type) {
2933 case STATUSTYPE_INFO:
2934 DMEMIT("%llu %llu",
2935 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
2936 (unsigned long long)ic->provided_data_sectors);
2937 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2938 DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
2939 else
2940 DMEMIT(" -");
2941 break;
2942
2943 case STATUSTYPE_TABLE: {
2944 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2945 watermark_percentage += ic->journal_entries / 2;
2946 do_div(watermark_percentage, ic->journal_entries);
2947 arg_count = 3;
2948 arg_count += !!ic->meta_dev;
2949 arg_count += ic->sectors_per_block != 1;
2950 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
2951 arg_count += ic->mode == 'J';
2952 arg_count += ic->mode == 'J';
2953 arg_count += ic->mode == 'B';
2954 arg_count += ic->mode == 'B';
2955 arg_count += !!ic->internal_hash_alg.alg_string;
2956 arg_count += !!ic->journal_crypt_alg.alg_string;
2957 arg_count += !!ic->journal_mac_alg.alg_string;
2958 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2959 ic->tag_size, ic->mode, arg_count);
2960 if (ic->meta_dev)
2961 DMEMIT(" meta_device:%s", ic->meta_dev->name);
2962 if (ic->sectors_per_block != 1)
2963 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2964 if (ic->recalculate_flag)
2965 DMEMIT(" recalculate");
2966 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2967 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2968 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2969 if (ic->mode == 'J') {
2970 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2971 DMEMIT(" commit_time:%u", ic->autocommit_msec);
2972 }
2973 if (ic->mode == 'B') {
2974 DMEMIT(" sectors_per_bit:%llu", (unsigned long long)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
2975 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
2976 }
2977
2978#define EMIT_ALG(a, n) \
2979 do { \
2980 if (ic->a.alg_string) { \
2981 DMEMIT(" %s:%s", n, ic->a.alg_string); \
2982 if (ic->a.key_string) \
2983 DMEMIT(":%s", ic->a.key_string);\
2984 } \
2985 } while (0)
2986 EMIT_ALG(internal_hash_alg, "internal_hash");
2987 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2988 EMIT_ALG(journal_mac_alg, "journal_mac");
2989 break;
2990 }
2991 }
2992}
2993
2994static int dm_integrity_iterate_devices(struct dm_target *ti,
2995 iterate_devices_callout_fn fn, void *data)
2996{
2997 struct dm_integrity_c *ic = ti->private;
2998
2999 if (!ic->meta_dev)
3000 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3001 else
3002 return fn(ti, ic->dev, 0, ti->len, data);
3003}
3004
3005static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3006{
3007 struct dm_integrity_c *ic = ti->private;
3008
3009 if (ic->sectors_per_block > 1) {
3010 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3011 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3012 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3013 }
3014}
3015
3016static void calculate_journal_section_size(struct dm_integrity_c *ic)
3017{
3018 unsigned sector_space = JOURNAL_SECTOR_DATA;
3019
3020 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3021 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3022 JOURNAL_ENTRY_ROUNDUP);
3023
3024 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3025 sector_space -= JOURNAL_MAC_PER_SECTOR;
3026 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3027 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3028 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3029 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3030}
3031
3032static int calculate_device_limits(struct dm_integrity_c *ic)
3033{
3034 __u64 initial_sectors;
3035
3036 calculate_journal_section_size(ic);
3037 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3038 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3039 return -EINVAL;
3040 ic->initial_sectors = initial_sectors;
3041
3042 if (!ic->meta_dev) {
3043 sector_t last_sector, last_area, last_offset;
3044
3045 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3046 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
3047 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3048 ic->log2_metadata_run = __ffs(ic->metadata_run);
3049 else
3050 ic->log2_metadata_run = -1;
3051
3052 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3053 last_sector = get_data_sector(ic, last_area, last_offset);
3054 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3055 return -EINVAL;
3056 } else {
3057 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3058 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3059 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3060 meta_size <<= ic->log2_buffer_sectors;
3061 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3062 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3063 return -EINVAL;
3064 ic->metadata_run = 1;
3065 ic->log2_metadata_run = 0;
3066 }
3067
3068 return 0;
3069}
3070
3071static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3072{
3073 unsigned journal_sections;
3074 int test_bit;
3075
3076 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3077 memcpy(ic->sb->magic, SB_MAGIC, 8);
3078 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3079 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3080 if (ic->journal_mac_alg.alg_string)
3081 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3082
3083 calculate_journal_section_size(ic);
3084 journal_sections = journal_sectors / ic->journal_section_sectors;
3085 if (!journal_sections)
3086 journal_sections = 1;
3087
3088 if (!ic->meta_dev) {
3089 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3090 if (!interleave_sectors)
3091 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3092 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3093 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3094 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3095
3096 ic->provided_data_sectors = 0;
3097 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3098 __u64 prev_data_sectors = ic->provided_data_sectors;
3099
3100 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3101 if (calculate_device_limits(ic))
3102 ic->provided_data_sectors = prev_data_sectors;
3103 }
3104 if (!ic->provided_data_sectors)
3105 return -EINVAL;
3106 } else {
3107 ic->sb->log2_interleave_sectors = 0;
3108 ic->provided_data_sectors = ic->data_device_sectors;
3109 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3110
3111try_smaller_buffer:
3112 ic->sb->journal_sections = cpu_to_le32(0);
3113 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3114 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3115 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3116 if (test_journal_sections > journal_sections)
3117 continue;
3118 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3119 if (calculate_device_limits(ic))
3120 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3121
3122 }
3123 if (!le32_to_cpu(ic->sb->journal_sections)) {
3124 if (ic->log2_buffer_sectors > 3) {
3125 ic->log2_buffer_sectors--;
3126 goto try_smaller_buffer;
3127 }
3128 return -EINVAL;
3129 }
3130 }
3131
3132 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3133
3134 sb_set_version(ic);
3135
3136 return 0;
3137}
3138
3139static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3140{
3141 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3142 struct blk_integrity bi;
3143
3144 memset(&bi, 0, sizeof(bi));
3145 bi.profile = &dm_integrity_profile;
3146 bi.tuple_size = ic->tag_size;
3147 bi.tag_size = bi.tuple_size;
3148 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3149
3150 blk_integrity_register(disk, &bi);
3151 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3152}
3153
3154static void dm_integrity_free_page_list(struct page_list *pl)
3155{
3156 unsigned i;
3157
3158 if (!pl)
3159 return;
3160 for (i = 0; pl[i].page; i++)
3161 __free_page(pl[i].page);
3162 kvfree(pl);
3163}
3164
3165static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3166{
3167 struct page_list *pl;
3168 unsigned i;
3169
3170 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3171 if (!pl)
3172 return NULL;
3173
3174 for (i = 0; i < n_pages; i++) {
3175 pl[i].page = alloc_page(GFP_KERNEL);
3176 if (!pl[i].page) {
3177 dm_integrity_free_page_list(pl);
3178 return NULL;
3179 }
3180 if (i)
3181 pl[i - 1].next = &pl[i];
3182 }
3183 pl[i].page = NULL;
3184 pl[i].next = NULL;
3185
3186 return pl;
3187}
3188
3189static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3190{
3191 unsigned i;
3192 for (i = 0; i < ic->journal_sections; i++)
3193 kvfree(sl[i]);
3194 kvfree(sl);
3195}
3196
3197static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3198 struct page_list *pl)
3199{
3200 struct scatterlist **sl;
3201 unsigned i;
3202
3203 sl = kvmalloc_array(ic->journal_sections,
3204 sizeof(struct scatterlist *),
3205 GFP_KERNEL | __GFP_ZERO);
3206 if (!sl)
3207 return NULL;
3208
3209 for (i = 0; i < ic->journal_sections; i++) {
3210 struct scatterlist *s;
3211 unsigned start_index, start_offset;
3212 unsigned end_index, end_offset;
3213 unsigned n_pages;
3214 unsigned idx;
3215
3216 page_list_location(ic, i, 0, &start_index, &start_offset);
3217 page_list_location(ic, i, ic->journal_section_sectors - 1,
3218 &end_index, &end_offset);
3219
3220 n_pages = (end_index - start_index + 1);
3221
3222 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3223 GFP_KERNEL);
3224 if (!s) {
3225 dm_integrity_free_journal_scatterlist(ic, sl);
3226 return NULL;
3227 }
3228
3229 sg_init_table(s, n_pages);
3230 for (idx = start_index; idx <= end_index; idx++) {
3231 char *va = lowmem_page_address(pl[idx].page);
3232 unsigned start = 0, end = PAGE_SIZE;
3233 if (idx == start_index)
3234 start = start_offset;
3235 if (idx == end_index)
3236 end = end_offset + (1 << SECTOR_SHIFT);
3237 sg_set_buf(&s[idx - start_index], va + start, end - start);
3238 }
3239
3240 sl[i] = s;
3241 }
3242
3243 return sl;
3244}
3245
3246static void free_alg(struct alg_spec *a)
3247{
3248 kzfree(a->alg_string);
3249 kzfree(a->key);
3250 memset(a, 0, sizeof *a);
3251}
3252
3253static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3254{
3255 char *k;
3256
3257 free_alg(a);
3258
3259 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3260 if (!a->alg_string)
3261 goto nomem;
3262
3263 k = strchr(a->alg_string, ':');
3264 if (k) {
3265 *k = 0;
3266 a->key_string = k + 1;
3267 if (strlen(a->key_string) & 1)
3268 goto inval;
3269
3270 a->key_size = strlen(a->key_string) / 2;
3271 a->key = kmalloc(a->key_size, GFP_KERNEL);
3272 if (!a->key)
3273 goto nomem;
3274 if (hex2bin(a->key, a->key_string, a->key_size))
3275 goto inval;
3276 }
3277
3278 return 0;
3279inval:
3280 *error = error_inval;
3281 return -EINVAL;
3282nomem:
3283 *error = "Out of memory for an argument";
3284 return -ENOMEM;
3285}
3286
3287static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3288 char *error_alg, char *error_key)
3289{
3290 int r;
3291
3292 if (a->alg_string) {
3293 *hash = crypto_alloc_shash(a->alg_string, 0, 0);
3294 if (IS_ERR(*hash)) {
3295 *error = error_alg;
3296 r = PTR_ERR(*hash);
3297 *hash = NULL;
3298 return r;
3299 }
3300
3301 if (a->key) {
3302 r = crypto_shash_setkey(*hash, a->key, a->key_size);
3303 if (r) {
3304 *error = error_key;
3305 return r;
3306 }
3307 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3308 *error = error_key;
3309 return -ENOKEY;
3310 }
3311 }
3312
3313 return 0;
3314}
3315
3316static int create_journal(struct dm_integrity_c *ic, char **error)
3317{
3318 int r = 0;
3319 unsigned i;
3320 __u64 journal_pages, journal_desc_size, journal_tree_size;
3321 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3322 struct skcipher_request *req = NULL;
3323
3324 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3325 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3326 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3327 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3328
3329 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3330 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3331 journal_desc_size = journal_pages * sizeof(struct page_list);
3332 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3333 *error = "Journal doesn't fit into memory";
3334 r = -ENOMEM;
3335 goto bad;
3336 }
3337 ic->journal_pages = journal_pages;
3338
3339 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3340 if (!ic->journal) {
3341 *error = "Could not allocate memory for journal";
3342 r = -ENOMEM;
3343 goto bad;
3344 }
3345 if (ic->journal_crypt_alg.alg_string) {
3346 unsigned ivsize, blocksize;
3347 struct journal_completion comp;
3348
3349 comp.ic = ic;
3350 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
3351 if (IS_ERR(ic->journal_crypt)) {
3352 *error = "Invalid journal cipher";
3353 r = PTR_ERR(ic->journal_crypt);
3354 ic->journal_crypt = NULL;
3355 goto bad;
3356 }
3357 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3358 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3359
3360 if (ic->journal_crypt_alg.key) {
3361 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3362 ic->journal_crypt_alg.key_size);
3363 if (r) {
3364 *error = "Error setting encryption key";
3365 goto bad;
3366 }
3367 }
3368 DEBUG_print("cipher %s, block size %u iv size %u\n",
3369 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3370
3371 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3372 if (!ic->journal_io) {
3373 *error = "Could not allocate memory for journal io";
3374 r = -ENOMEM;
3375 goto bad;
3376 }
3377
3378 if (blocksize == 1) {
3379 struct scatterlist *sg;
3380
3381 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3382 if (!req) {
3383 *error = "Could not allocate crypt request";
3384 r = -ENOMEM;
3385 goto bad;
3386 }
3387
3388 crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3389 if (!crypt_iv) {
3390 *error = "Could not allocate iv";
3391 r = -ENOMEM;
3392 goto bad;
3393 }
3394
3395 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3396 if (!ic->journal_xor) {
3397 *error = "Could not allocate memory for journal xor";
3398 r = -ENOMEM;
3399 goto bad;
3400 }
3401
3402 sg = kvmalloc_array(ic->journal_pages + 1,
3403 sizeof(struct scatterlist),
3404 GFP_KERNEL);
3405 if (!sg) {
3406 *error = "Unable to allocate sg list";
3407 r = -ENOMEM;
3408 goto bad;
3409 }
3410 sg_init_table(sg, ic->journal_pages + 1);
3411 for (i = 0; i < ic->journal_pages; i++) {
3412 char *va = lowmem_page_address(ic->journal_xor[i].page);
3413 clear_page(va);
3414 sg_set_buf(&sg[i], va, PAGE_SIZE);
3415 }
3416 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3417
3418 skcipher_request_set_crypt(req, sg, sg,
3419 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3420 init_completion(&comp.comp);
3421 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3422 if (do_crypt(true, req, &comp))
3423 wait_for_completion(&comp.comp);
3424 kvfree(sg);
3425 r = dm_integrity_failed(ic);
3426 if (r) {
3427 *error = "Unable to encrypt journal";
3428 goto bad;
3429 }
3430 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3431
3432 crypto_free_skcipher(ic->journal_crypt);
3433 ic->journal_crypt = NULL;
3434 } else {
3435 unsigned crypt_len = roundup(ivsize, blocksize);
3436
3437 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3438 if (!req) {
3439 *error = "Could not allocate crypt request";
3440 r = -ENOMEM;
3441 goto bad;
3442 }
3443
3444 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3445 if (!crypt_iv) {
3446 *error = "Could not allocate iv";
3447 r = -ENOMEM;
3448 goto bad;
3449 }
3450
3451 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3452 if (!crypt_data) {
3453 *error = "Unable to allocate crypt data";
3454 r = -ENOMEM;
3455 goto bad;
3456 }
3457
3458 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3459 if (!ic->journal_scatterlist) {
3460 *error = "Unable to allocate sg list";
3461 r = -ENOMEM;
3462 goto bad;
3463 }
3464 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3465 if (!ic->journal_io_scatterlist) {
3466 *error = "Unable to allocate sg list";
3467 r = -ENOMEM;
3468 goto bad;
3469 }
3470 ic->sk_requests = kvmalloc_array(ic->journal_sections,
3471 sizeof(struct skcipher_request *),
3472 GFP_KERNEL | __GFP_ZERO);
3473 if (!ic->sk_requests) {
3474 *error = "Unable to allocate sk requests";
3475 r = -ENOMEM;
3476 goto bad;
3477 }
3478 for (i = 0; i < ic->journal_sections; i++) {
3479 struct scatterlist sg;
3480 struct skcipher_request *section_req;
3481 __u32 section_le = cpu_to_le32(i);
3482
3483 memset(crypt_iv, 0x00, ivsize);
3484 memset(crypt_data, 0x00, crypt_len);
3485 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le)));
3486
3487 sg_init_one(&sg, crypt_data, crypt_len);
3488 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3489 init_completion(&comp.comp);
3490 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3491 if (do_crypt(true, req, &comp))
3492 wait_for_completion(&comp.comp);
3493
3494 r = dm_integrity_failed(ic);
3495 if (r) {
3496 *error = "Unable to generate iv";
3497 goto bad;
3498 }
3499
3500 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3501 if (!section_req) {
3502 *error = "Unable to allocate crypt request";
3503 r = -ENOMEM;
3504 goto bad;
3505 }
3506 section_req->iv = kmalloc_array(ivsize, 2,
3507 GFP_KERNEL);
3508 if (!section_req->iv) {
3509 skcipher_request_free(section_req);
3510 *error = "Unable to allocate iv";
3511 r = -ENOMEM;
3512 goto bad;
3513 }
3514 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3515 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3516 ic->sk_requests[i] = section_req;
3517 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3518 }
3519 }
3520 }
3521
3522 for (i = 0; i < N_COMMIT_IDS; i++) {
3523 unsigned j;
3524retest_commit_id:
3525 for (j = 0; j < i; j++) {
3526 if (ic->commit_ids[j] == ic->commit_ids[i]) {
3527 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3528 goto retest_commit_id;
3529 }
3530 }
3531 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3532 }
3533
3534 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3535 if (journal_tree_size > ULONG_MAX) {
3536 *error = "Journal doesn't fit into memory";
3537 r = -ENOMEM;
3538 goto bad;
3539 }
3540 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3541 if (!ic->journal_tree) {
3542 *error = "Could not allocate memory for journal tree";
3543 r = -ENOMEM;
3544 }
3545bad:
3546 kfree(crypt_data);
3547 kfree(crypt_iv);
3548 skcipher_request_free(req);
3549
3550 return r;
3551}
3552
3553/*
3554 * Construct a integrity mapping
3555 *
3556 * Arguments:
3557 * device
3558 * offset from the start of the device
3559 * tag size
3560 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3561 * number of optional arguments
3562 * optional arguments:
3563 * journal_sectors
3564 * interleave_sectors
3565 * buffer_sectors
3566 * journal_watermark
3567 * commit_time
3568 * meta_device
3569 * block_size
3570 * sectors_per_bit
3571 * bitmap_flush_interval
3572 * internal_hash
3573 * journal_crypt
3574 * journal_mac
3575 * recalculate
3576 */
3577static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3578{
3579 struct dm_integrity_c *ic;
3580 char dummy;
3581 int r;
3582 unsigned extra_args;
3583 struct dm_arg_set as;
3584 static const struct dm_arg _args[] = {
3585 {0, 9, "Invalid number of feature args"},
3586 };
3587 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3588 bool should_write_sb;
3589 __u64 threshold;
3590 unsigned long long start;
3591 __s8 log2_sectors_per_bitmap_bit = -1;
3592 __s8 log2_blocks_per_bitmap_bit;
3593 __u64 bits_in_journal;
3594 __u64 n_bitmap_bits;
3595
3596#define DIRECT_ARGUMENTS 4
3597
3598 if (argc <= DIRECT_ARGUMENTS) {
3599 ti->error = "Invalid argument count";
3600 return -EINVAL;
3601 }
3602
3603 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3604 if (!ic) {
3605 ti->error = "Cannot allocate integrity context";
3606 return -ENOMEM;
3607 }
3608 ti->private = ic;
3609 ti->per_io_data_size = sizeof(struct dm_integrity_io);
3610
3611 ic->in_progress = RB_ROOT;
3612 INIT_LIST_HEAD(&ic->wait_list);
3613 init_waitqueue_head(&ic->endio_wait);
3614 bio_list_init(&ic->flush_bio_list);
3615 init_waitqueue_head(&ic->copy_to_journal_wait);
3616 init_completion(&ic->crypto_backoff);
3617 atomic64_set(&ic->number_of_mismatches, 0);
3618 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3619
3620 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3621 if (r) {
3622 ti->error = "Device lookup failed";
3623 goto bad;
3624 }
3625
3626 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3627 ti->error = "Invalid starting offset";
3628 r = -EINVAL;
3629 goto bad;
3630 }
3631 ic->start = start;
3632
3633 if (strcmp(argv[2], "-")) {
3634 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3635 ti->error = "Invalid tag size";
3636 r = -EINVAL;
3637 goto bad;
3638 }
3639 }
3640
3641 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3642 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3643 ic->mode = argv[3][0];
3644 } else {
3645 ti->error = "Invalid mode (expecting J, B, D, R)";
3646 r = -EINVAL;
3647 goto bad;
3648 }
3649
3650 journal_sectors = 0;
3651 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3652 buffer_sectors = DEFAULT_BUFFER_SECTORS;
3653 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3654 sync_msec = DEFAULT_SYNC_MSEC;
3655 ic->sectors_per_block = 1;
3656
3657 as.argc = argc - DIRECT_ARGUMENTS;
3658 as.argv = argv + DIRECT_ARGUMENTS;
3659 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3660 if (r)
3661 goto bad;
3662
3663 while (extra_args--) {
3664 const char *opt_string;
3665 unsigned val;
3666 unsigned long long llval;
3667 opt_string = dm_shift_arg(&as);
3668 if (!opt_string) {
3669 r = -EINVAL;
3670 ti->error = "Not enough feature arguments";
3671 goto bad;
3672 }
3673 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3674 journal_sectors = val ? val : 1;
3675 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3676 interleave_sectors = val;
3677 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3678 buffer_sectors = val;
3679 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3680 journal_watermark = val;
3681 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3682 sync_msec = val;
3683 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3684 if (ic->meta_dev) {
3685 dm_put_device(ti, ic->meta_dev);
3686 ic->meta_dev = NULL;
3687 }
3688 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
3689 dm_table_get_mode(ti->table), &ic->meta_dev);
3690 if (r) {
3691 ti->error = "Device lookup failed";
3692 goto bad;
3693 }
3694 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3695 if (val < 1 << SECTOR_SHIFT ||
3696 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3697 (val & (val -1))) {
3698 r = -EINVAL;
3699 ti->error = "Invalid block_size argument";
3700 goto bad;
3701 }
3702 ic->sectors_per_block = val >> SECTOR_SHIFT;
3703 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
3704 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
3705 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
3706 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
3707 r = -EINVAL;
3708 ti->error = "Invalid bitmap_flush_interval argument";
3709 }
3710 ic->bitmap_flush_interval = msecs_to_jiffies(val);
3711 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3712 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3713 "Invalid internal_hash argument");
3714 if (r)
3715 goto bad;
3716 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3717 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3718 "Invalid journal_crypt argument");
3719 if (r)
3720 goto bad;
3721 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3722 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
3723 "Invalid journal_mac argument");
3724 if (r)
3725 goto bad;
3726 } else if (!strcmp(opt_string, "recalculate")) {
3727 ic->recalculate_flag = true;
3728 } else {
3729 r = -EINVAL;
3730 ti->error = "Invalid argument";
3731 goto bad;
3732 }
3733 }
3734
3735 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3736 if (!ic->meta_dev)
3737 ic->meta_device_sectors = ic->data_device_sectors;
3738 else
3739 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3740
3741 if (!journal_sectors) {
3742 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3743 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3744 }
3745
3746 if (!buffer_sectors)
3747 buffer_sectors = 1;
3748 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3749
3750 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3751 "Invalid internal hash", "Error setting internal hash key");
3752 if (r)
3753 goto bad;
3754
3755 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3756 "Invalid journal mac", "Error setting journal mac key");
3757 if (r)
3758 goto bad;
3759
3760 if (!ic->tag_size) {
3761 if (!ic->internal_hash) {
3762 ti->error = "Unknown tag size";
3763 r = -EINVAL;
3764 goto bad;
3765 }
3766 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3767 }
3768 if (ic->tag_size > MAX_TAG_SIZE) {
3769 ti->error = "Too big tag size";
3770 r = -EINVAL;
3771 goto bad;
3772 }
3773 if (!(ic->tag_size & (ic->tag_size - 1)))
3774 ic->log2_tag_size = __ffs(ic->tag_size);
3775 else
3776 ic->log2_tag_size = -1;
3777
3778 if (ic->mode == 'B' && !ic->internal_hash) {
3779 r = -EINVAL;
3780 ti->error = "Bitmap mode can be only used with internal hash";
3781 goto bad;
3782 }
3783
3784 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3785 ic->autocommit_msec = sync_msec;
3786 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3787
3788 ic->io = dm_io_client_create();
3789 if (IS_ERR(ic->io)) {
3790 r = PTR_ERR(ic->io);
3791 ic->io = NULL;
3792 ti->error = "Cannot allocate dm io";
3793 goto bad;
3794 }
3795
3796 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3797 if (r) {
3798 ti->error = "Cannot allocate mempool";
3799 goto bad;
3800 }
3801
3802 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3803 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3804 if (!ic->metadata_wq) {
3805 ti->error = "Cannot allocate workqueue";
3806 r = -ENOMEM;
3807 goto bad;
3808 }
3809
3810 /*
3811 * If this workqueue were percpu, it would cause bio reordering
3812 * and reduced performance.
3813 */
3814 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3815 if (!ic->wait_wq) {
3816 ti->error = "Cannot allocate workqueue";
3817 r = -ENOMEM;
3818 goto bad;
3819 }
3820
3821 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
3822 if (!ic->commit_wq) {
3823 ti->error = "Cannot allocate workqueue";
3824 r = -ENOMEM;
3825 goto bad;
3826 }
3827 INIT_WORK(&ic->commit_work, integrity_commit);
3828
3829 if (ic->mode == 'J' || ic->mode == 'B') {
3830 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
3831 if (!ic->writer_wq) {
3832 ti->error = "Cannot allocate workqueue";
3833 r = -ENOMEM;
3834 goto bad;
3835 }
3836 INIT_WORK(&ic->writer_work, integrity_writer);
3837 }
3838
3839 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3840 if (!ic->sb) {
3841 r = -ENOMEM;
3842 ti->error = "Cannot allocate superblock area";
3843 goto bad;
3844 }
3845
3846 r = sync_rw_sb(ic, REQ_OP_READ, 0);
3847 if (r) {
3848 ti->error = "Error reading superblock";
3849 goto bad;
3850 }
3851 should_write_sb = false;
3852 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3853 if (ic->mode != 'R') {
3854 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3855 r = -EINVAL;
3856 ti->error = "The device is not initialized";
3857 goto bad;
3858 }
3859 }
3860
3861 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3862 if (r) {
3863 ti->error = "Could not initialize superblock";
3864 goto bad;
3865 }
3866 if (ic->mode != 'R')
3867 should_write_sb = true;
3868 }
3869
3870 if (!ic->sb->version || ic->sb->version > SB_VERSION_3) {
3871 r = -EINVAL;
3872 ti->error = "Unknown version";
3873 goto bad;
3874 }
3875 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3876 r = -EINVAL;
3877 ti->error = "Tag size doesn't match the information in superblock";
3878 goto bad;
3879 }
3880 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3881 r = -EINVAL;
3882 ti->error = "Block size doesn't match the information in superblock";
3883 goto bad;
3884 }
3885 if (!le32_to_cpu(ic->sb->journal_sections)) {
3886 r = -EINVAL;
3887 ti->error = "Corrupted superblock, journal_sections is 0";
3888 goto bad;
3889 }
3890 /* make sure that ti->max_io_len doesn't overflow */
3891 if (!ic->meta_dev) {
3892 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3893 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3894 r = -EINVAL;
3895 ti->error = "Invalid interleave_sectors in the superblock";
3896 goto bad;
3897 }
3898 } else {
3899 if (ic->sb->log2_interleave_sectors) {
3900 r = -EINVAL;
3901 ti->error = "Invalid interleave_sectors in the superblock";
3902 goto bad;
3903 }
3904 }
3905 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3906 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3907 /* test for overflow */
3908 r = -EINVAL;
3909 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3910 goto bad;
3911 }
3912 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3913 r = -EINVAL;
3914 ti->error = "Journal mac mismatch";
3915 goto bad;
3916 }
3917
3918try_smaller_buffer:
3919 r = calculate_device_limits(ic);
3920 if (r) {
3921 if (ic->meta_dev) {
3922 if (ic->log2_buffer_sectors > 3) {
3923 ic->log2_buffer_sectors--;
3924 goto try_smaller_buffer;
3925 }
3926 }
3927 ti->error = "The device is too small";
3928 goto bad;
3929 }
3930
3931 if (log2_sectors_per_bitmap_bit < 0)
3932 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
3933 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
3934 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
3935
3936 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
3937 if (bits_in_journal > UINT_MAX)
3938 bits_in_journal = UINT_MAX;
3939 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
3940 log2_sectors_per_bitmap_bit++;
3941
3942 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
3943 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
3944 if (should_write_sb) {
3945 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
3946 }
3947 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
3948 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
3949 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
3950
3951 if (!ic->meta_dev)
3952 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
3953
3954 if (ti->len > ic->provided_data_sectors) {
3955 r = -EINVAL;
3956 ti->error = "Not enough provided sectors for requested mapping size";
3957 goto bad;
3958 }
3959
3960
3961 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3962 threshold += 50;
3963 do_div(threshold, 100);
3964 ic->free_sectors_threshold = threshold;
3965
3966 DEBUG_print("initialized:\n");
3967 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3968 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
3969 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3970 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
3971 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
3972 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3973 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
3974 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3975 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
3976 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
3977 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
3978 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
3979 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3980 (unsigned long long)ic->provided_data_sectors);
3981 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3982 DEBUG_print(" bits_in_journal %llu\n", (unsigned long long)bits_in_journal);
3983
3984 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
3985 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3986 ic->sb->recalc_sector = cpu_to_le64(0);
3987 }
3988
3989 if (ic->internal_hash) {
3990 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
3991 if (!ic->recalc_wq ) {
3992 ti->error = "Cannot allocate workqueue";
3993 r = -ENOMEM;
3994 goto bad;
3995 }
3996 INIT_WORK(&ic->recalc_work, integrity_recalc);
3997 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
3998 if (!ic->recalc_buffer) {
3999 ti->error = "Cannot allocate buffer for recalculating";
4000 r = -ENOMEM;
4001 goto bad;
4002 }
4003 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4004 ic->tag_size, GFP_KERNEL);
4005 if (!ic->recalc_tags) {
4006 ti->error = "Cannot allocate tags for recalculating";
4007 r = -ENOMEM;
4008 goto bad;
4009 }
4010 }
4011
4012 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4013 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4014 if (IS_ERR(ic->bufio)) {
4015 r = PTR_ERR(ic->bufio);
4016 ti->error = "Cannot initialize dm-bufio";
4017 ic->bufio = NULL;
4018 goto bad;
4019 }
4020 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4021
4022 if (ic->mode != 'R') {
4023 r = create_journal(ic, &ti->error);
4024 if (r)
4025 goto bad;
4026
4027 }
4028
4029 if (ic->mode == 'B') {
4030 unsigned i;
4031 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4032
4033 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4034 if (!ic->recalc_bitmap) {
4035 r = -ENOMEM;
4036 goto bad;
4037 }
4038 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4039 if (!ic->may_write_bitmap) {
4040 r = -ENOMEM;
4041 goto bad;
4042 }
4043 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4044 if (!ic->bbs) {
4045 r = -ENOMEM;
4046 goto bad;
4047 }
4048 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4049 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4050 struct bitmap_block_status *bbs = &ic->bbs[i];
4051 unsigned sector, pl_index, pl_offset;
4052
4053 INIT_WORK(&bbs->work, bitmap_block_work);
4054 bbs->ic = ic;
4055 bbs->idx = i;
4056 bio_list_init(&bbs->bio_queue);
4057 spin_lock_init(&bbs->bio_queue_lock);
4058
4059 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4060 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4061 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4062
4063 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4064 }
4065 }
4066
4067 if (should_write_sb) {
4068 int r;
4069
4070 init_journal(ic, 0, ic->journal_sections, 0);
4071 r = dm_integrity_failed(ic);
4072 if (unlikely(r)) {
4073 ti->error = "Error initializing journal";
4074 goto bad;
4075 }
4076 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4077 if (r) {
4078 ti->error = "Error initializing superblock";
4079 goto bad;
4080 }
4081 ic->just_formatted = true;
4082 }
4083
4084 if (!ic->meta_dev) {
4085 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4086 if (r)
4087 goto bad;
4088 }
4089 if (ic->mode == 'B') {
4090 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4091 if (!max_io_len)
4092 max_io_len = 1U << 31;
4093 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4094 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4095 r = dm_set_target_max_io_len(ti, max_io_len);
4096 if (r)
4097 goto bad;
4098 }
4099 }
4100
4101 if (!ic->internal_hash)
4102 dm_integrity_set(ti, ic);
4103
4104 ti->num_flush_bios = 1;
4105 ti->flush_supported = true;
4106
4107 return 0;
4108
4109bad:
4110 dm_integrity_dtr(ti);
4111 return r;
4112}
4113
4114static void dm_integrity_dtr(struct dm_target *ti)
4115{
4116 struct dm_integrity_c *ic = ti->private;
4117
4118 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4119 BUG_ON(!list_empty(&ic->wait_list));
4120
4121 if (ic->metadata_wq)
4122 destroy_workqueue(ic->metadata_wq);
4123 if (ic->wait_wq)
4124 destroy_workqueue(ic->wait_wq);
4125 if (ic->commit_wq)
4126 destroy_workqueue(ic->commit_wq);
4127 if (ic->writer_wq)
4128 destroy_workqueue(ic->writer_wq);
4129 if (ic->recalc_wq)
4130 destroy_workqueue(ic->recalc_wq);
4131 vfree(ic->recalc_buffer);
4132 kvfree(ic->recalc_tags);
4133 kvfree(ic->bbs);
4134 if (ic->bufio)
4135 dm_bufio_client_destroy(ic->bufio);
4136 mempool_exit(&ic->journal_io_mempool);
4137 if (ic->io)
4138 dm_io_client_destroy(ic->io);
4139 if (ic->dev)
4140 dm_put_device(ti, ic->dev);
4141 if (ic->meta_dev)
4142 dm_put_device(ti, ic->meta_dev);
4143 dm_integrity_free_page_list(ic->journal);
4144 dm_integrity_free_page_list(ic->journal_io);
4145 dm_integrity_free_page_list(ic->journal_xor);
4146 dm_integrity_free_page_list(ic->recalc_bitmap);
4147 dm_integrity_free_page_list(ic->may_write_bitmap);
4148 if (ic->journal_scatterlist)
4149 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4150 if (ic->journal_io_scatterlist)
4151 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4152 if (ic->sk_requests) {
4153 unsigned i;
4154
4155 for (i = 0; i < ic->journal_sections; i++) {
4156 struct skcipher_request *req = ic->sk_requests[i];
4157 if (req) {
4158 kzfree(req->iv);
4159 skcipher_request_free(req);
4160 }
4161 }
4162 kvfree(ic->sk_requests);
4163 }
4164 kvfree(ic->journal_tree);
4165 if (ic->sb)
4166 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4167
4168 if (ic->internal_hash)
4169 crypto_free_shash(ic->internal_hash);
4170 free_alg(&ic->internal_hash_alg);
4171
4172 if (ic->journal_crypt)
4173 crypto_free_skcipher(ic->journal_crypt);
4174 free_alg(&ic->journal_crypt_alg);
4175
4176 if (ic->journal_mac)
4177 crypto_free_shash(ic->journal_mac);
4178 free_alg(&ic->journal_mac_alg);
4179
4180 kfree(ic);
4181}
4182
4183static struct target_type integrity_target = {
4184 .name = "integrity",
4185 .version = {1, 3, 0},
4186 .module = THIS_MODULE,
4187 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4188 .ctr = dm_integrity_ctr,
4189 .dtr = dm_integrity_dtr,
4190 .map = dm_integrity_map,
4191 .postsuspend = dm_integrity_postsuspend,
4192 .resume = dm_integrity_resume,
4193 .status = dm_integrity_status,
4194 .iterate_devices = dm_integrity_iterate_devices,
4195 .io_hints = dm_integrity_io_hints,
4196};
4197
4198static int __init dm_integrity_init(void)
4199{
4200 int r;
4201
4202 journal_io_cache = kmem_cache_create("integrity_journal_io",
4203 sizeof(struct journal_io), 0, 0, NULL);
4204 if (!journal_io_cache) {
4205 DMERR("can't allocate journal io cache");
4206 return -ENOMEM;
4207 }
4208
4209 r = dm_register_target(&integrity_target);
4210
4211 if (r < 0)
4212 DMERR("register failed %d", r);
4213
4214 return r;
4215}
4216
4217static void __exit dm_integrity_exit(void)
4218{
4219 dm_unregister_target(&integrity_target);
4220 kmem_cache_destroy(journal_io_cache);
4221}
4222
4223module_init(dm_integrity_init);
4224module_exit(dm_integrity_exit);
4225
4226MODULE_AUTHOR("Milan Broz");
4227MODULE_AUTHOR("Mikulas Patocka");
4228MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4229MODULE_LICENSE("GPL");