Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4 * Copyright (C) 2016-2017 Milan Broz
5 * Copyright (C) 2016-2017 Mikulas Patocka
6 *
7 * This file is released under the GPL.
8 */
9
10#include "dm-bio-record.h"
11
12#include <linux/compiler.h>
13#include <linux/module.h>
14#include <linux/device-mapper.h>
15#include <linux/dm-io.h>
16#include <linux/vmalloc.h>
17#include <linux/sort.h>
18#include <linux/rbtree.h>
19#include <linux/delay.h>
20#include <linux/random.h>
21#include <linux/reboot.h>
22#include <crypto/hash.h>
23#include <crypto/skcipher.h>
24#include <linux/async_tx.h>
25#include <linux/dm-bufio.h>
26
27#include "dm-audit.h"
28
29#define DM_MSG_PREFIX "integrity"
30
31#define DEFAULT_INTERLEAVE_SECTORS 32768
32#define DEFAULT_JOURNAL_SIZE_FACTOR 7
33#define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
34#define DEFAULT_BUFFER_SECTORS 128
35#define DEFAULT_JOURNAL_WATERMARK 50
36#define DEFAULT_SYNC_MSEC 10000
37#define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38#define MIN_LOG2_INTERLEAVE_SECTORS 3
39#define MAX_LOG2_INTERLEAVE_SECTORS 31
40#define METADATA_WORKQUEUE_MAX_ACTIVE 16
41#define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42#define RECALC_WRITE_SUPER 16
43#define BITMAP_BLOCK_SIZE 4096 /* don't change it */
44#define BITMAP_FLUSH_INTERVAL (10 * HZ)
45#define DISCARD_FILLER 0xf6
46#define SALT_SIZE 16
47
48/*
49 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50 * so it should not be enabled in the official kernel
51 */
52//#define DEBUG_PRINT
53//#define INTERNAL_VERIFY
54
55/*
56 * On disk structures
57 */
58
59#define SB_MAGIC "integrt"
60#define SB_VERSION_1 1
61#define SB_VERSION_2 2
62#define SB_VERSION_3 3
63#define SB_VERSION_4 4
64#define SB_VERSION_5 5
65#define SB_SECTORS 8
66#define MAX_SECTORS_PER_BLOCK 8
67
68struct superblock {
69 __u8 magic[8];
70 __u8 version;
71 __u8 log2_interleave_sectors;
72 __le16 integrity_tag_size;
73 __le32 journal_sections;
74 __le64 provided_data_sectors; /* userspace uses this value */
75 __le32 flags;
76 __u8 log2_sectors_per_block;
77 __u8 log2_blocks_per_bitmap_bit;
78 __u8 pad[2];
79 __le64 recalc_sector;
80 __u8 pad2[8];
81 __u8 salt[SALT_SIZE];
82};
83
84#define SB_FLAG_HAVE_JOURNAL_MAC 0x1
85#define SB_FLAG_RECALCULATING 0x2
86#define SB_FLAG_DIRTY_BITMAP 0x4
87#define SB_FLAG_FIXED_PADDING 0x8
88#define SB_FLAG_FIXED_HMAC 0x10
89
90#define JOURNAL_ENTRY_ROUNDUP 8
91
92typedef __le64 commit_id_t;
93#define JOURNAL_MAC_PER_SECTOR 8
94
95struct journal_entry {
96 union {
97 struct {
98 __le32 sector_lo;
99 __le32 sector_hi;
100 } s;
101 __le64 sector;
102 } u;
103 commit_id_t last_bytes[];
104 /* __u8 tag[0]; */
105};
106
107#define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108
109#if BITS_PER_LONG == 64
110#define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111#else
112#define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113#endif
114#define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
115#define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
116#define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1))
117#define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
118#define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2))
119
120#define JOURNAL_BLOCK_SECTORS 8
121#define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122#define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123
124struct journal_sector {
125 struct_group(sectors,
126 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 __u8 mac[JOURNAL_MAC_PER_SECTOR];
128 );
129 commit_id_t commit_id;
130};
131
132#define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133
134#define METADATA_PADDING_SECTORS 8
135
136#define N_COMMIT_IDS 4
137
138static unsigned char prev_commit_seq(unsigned char seq)
139{
140 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141}
142
143static unsigned char next_commit_seq(unsigned char seq)
144{
145 return (seq + 1) % N_COMMIT_IDS;
146}
147
148/*
149 * In-memory structures
150 */
151
152struct journal_node {
153 struct rb_node node;
154 sector_t sector;
155};
156
157struct alg_spec {
158 char *alg_string;
159 char *key_string;
160 __u8 *key;
161 unsigned int key_size;
162};
163
164struct dm_integrity_c {
165 struct dm_dev *dev;
166 struct dm_dev *meta_dev;
167 unsigned int tag_size;
168 __s8 log2_tag_size;
169 sector_t start;
170 mempool_t journal_io_mempool;
171 struct dm_io_client *io;
172 struct dm_bufio_client *bufio;
173 struct workqueue_struct *metadata_wq;
174 struct superblock *sb;
175 unsigned int journal_pages;
176 unsigned int n_bitmap_blocks;
177
178 struct page_list *journal;
179 struct page_list *journal_io;
180 struct page_list *journal_xor;
181 struct page_list *recalc_bitmap;
182 struct page_list *may_write_bitmap;
183 struct bitmap_block_status *bbs;
184 unsigned int bitmap_flush_interval;
185 int synchronous_mode;
186 struct bio_list synchronous_bios;
187 struct delayed_work bitmap_flush_work;
188
189 struct crypto_skcipher *journal_crypt;
190 struct scatterlist **journal_scatterlist;
191 struct scatterlist **journal_io_scatterlist;
192 struct skcipher_request **sk_requests;
193
194 struct crypto_shash *journal_mac;
195
196 struct journal_node *journal_tree;
197 struct rb_root journal_tree_root;
198
199 sector_t provided_data_sectors;
200
201 unsigned short journal_entry_size;
202 unsigned char journal_entries_per_sector;
203 unsigned char journal_section_entries;
204 unsigned short journal_section_sectors;
205 unsigned int journal_sections;
206 unsigned int journal_entries;
207 sector_t data_device_sectors;
208 sector_t meta_device_sectors;
209 unsigned int initial_sectors;
210 unsigned int metadata_run;
211 __s8 log2_metadata_run;
212 __u8 log2_buffer_sectors;
213 __u8 sectors_per_block;
214 __u8 log2_blocks_per_bitmap_bit;
215
216 unsigned char mode;
217
218 int failed;
219
220 struct crypto_shash *internal_hash;
221
222 struct dm_target *ti;
223
224 /* these variables are locked with endio_wait.lock */
225 struct rb_root in_progress;
226 struct list_head wait_list;
227 wait_queue_head_t endio_wait;
228 struct workqueue_struct *wait_wq;
229 struct workqueue_struct *offload_wq;
230
231 unsigned char commit_seq;
232 commit_id_t commit_ids[N_COMMIT_IDS];
233
234 unsigned int committed_section;
235 unsigned int n_committed_sections;
236
237 unsigned int uncommitted_section;
238 unsigned int n_uncommitted_sections;
239
240 unsigned int free_section;
241 unsigned char free_section_entry;
242 unsigned int free_sectors;
243
244 unsigned int free_sectors_threshold;
245
246 struct workqueue_struct *commit_wq;
247 struct work_struct commit_work;
248
249 struct workqueue_struct *writer_wq;
250 struct work_struct writer_work;
251
252 struct workqueue_struct *recalc_wq;
253 struct work_struct recalc_work;
254
255 struct bio_list flush_bio_list;
256
257 unsigned long autocommit_jiffies;
258 struct timer_list autocommit_timer;
259 unsigned int autocommit_msec;
260
261 wait_queue_head_t copy_to_journal_wait;
262
263 struct completion crypto_backoff;
264
265 bool wrote_to_journal;
266 bool journal_uptodate;
267 bool just_formatted;
268 bool recalculate_flag;
269 bool reset_recalculate_flag;
270 bool discard;
271 bool fix_padding;
272 bool fix_hmac;
273 bool legacy_recalculate;
274
275 struct alg_spec internal_hash_alg;
276 struct alg_spec journal_crypt_alg;
277 struct alg_spec journal_mac_alg;
278
279 atomic64_t number_of_mismatches;
280
281 mempool_t recheck_pool;
282
283 struct notifier_block reboot_notifier;
284};
285
286struct dm_integrity_range {
287 sector_t logical_sector;
288 sector_t n_sectors;
289 bool waiting;
290 union {
291 struct rb_node node;
292 struct {
293 struct task_struct *task;
294 struct list_head wait_entry;
295 };
296 };
297};
298
299struct dm_integrity_io {
300 struct work_struct work;
301
302 struct dm_integrity_c *ic;
303 enum req_op op;
304 bool fua;
305
306 struct dm_integrity_range range;
307
308 sector_t metadata_block;
309 unsigned int metadata_offset;
310
311 atomic_t in_flight;
312 blk_status_t bi_status;
313
314 struct completion *completion;
315
316 struct dm_bio_details bio_details;
317};
318
319struct journal_completion {
320 struct dm_integrity_c *ic;
321 atomic_t in_flight;
322 struct completion comp;
323};
324
325struct journal_io {
326 struct dm_integrity_range range;
327 struct journal_completion *comp;
328};
329
330struct bitmap_block_status {
331 struct work_struct work;
332 struct dm_integrity_c *ic;
333 unsigned int idx;
334 unsigned long *bitmap;
335 struct bio_list bio_queue;
336 spinlock_t bio_queue_lock;
337
338};
339
340static struct kmem_cache *journal_io_cache;
341
342#define JOURNAL_IO_MEMPOOL 32
343
344#ifdef DEBUG_PRINT
345#define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
346#define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
347 len ? ": " : "", len, bytes)
348#else
349#define DEBUG_print(x, ...) do { } while (0)
350#define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
351#endif
352
353static void dm_integrity_prepare(struct request *rq)
354{
355}
356
357static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
358{
359}
360
361/*
362 * DM Integrity profile, protection is performed layer above (dm-crypt)
363 */
364static const struct blk_integrity_profile dm_integrity_profile = {
365 .name = "DM-DIF-EXT-TAG",
366 .generate_fn = NULL,
367 .verify_fn = NULL,
368 .prepare_fn = dm_integrity_prepare,
369 .complete_fn = dm_integrity_complete,
370};
371
372static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
373static void integrity_bio_wait(struct work_struct *w);
374static void dm_integrity_dtr(struct dm_target *ti);
375
376static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
377{
378 if (err == -EILSEQ)
379 atomic64_inc(&ic->number_of_mismatches);
380 if (!cmpxchg(&ic->failed, 0, err))
381 DMERR("Error on %s: %d", msg, err);
382}
383
384static int dm_integrity_failed(struct dm_integrity_c *ic)
385{
386 return READ_ONCE(ic->failed);
387}
388
389static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
390{
391 if (ic->legacy_recalculate)
392 return false;
393 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
394 ic->internal_hash_alg.key || ic->journal_mac_alg.key :
395 ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
396 return true;
397 return false;
398}
399
400static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
401 unsigned int j, unsigned char seq)
402{
403 /*
404 * Xor the number with section and sector, so that if a piece of
405 * journal is written at wrong place, it is detected.
406 */
407 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
408}
409
410static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
411 sector_t *area, sector_t *offset)
412{
413 if (!ic->meta_dev) {
414 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
415 *area = data_sector >> log2_interleave_sectors;
416 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
417 } else {
418 *area = 0;
419 *offset = data_sector;
420 }
421}
422
423#define sector_to_block(ic, n) \
424do { \
425 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \
426 (n) >>= (ic)->sb->log2_sectors_per_block; \
427} while (0)
428
429static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
430 sector_t offset, unsigned int *metadata_offset)
431{
432 __u64 ms;
433 unsigned int mo;
434
435 ms = area << ic->sb->log2_interleave_sectors;
436 if (likely(ic->log2_metadata_run >= 0))
437 ms += area << ic->log2_metadata_run;
438 else
439 ms += area * ic->metadata_run;
440 ms >>= ic->log2_buffer_sectors;
441
442 sector_to_block(ic, offset);
443
444 if (likely(ic->log2_tag_size >= 0)) {
445 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
446 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
447 } else {
448 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
449 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
450 }
451 *metadata_offset = mo;
452 return ms;
453}
454
455static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
456{
457 sector_t result;
458
459 if (ic->meta_dev)
460 return offset;
461
462 result = area << ic->sb->log2_interleave_sectors;
463 if (likely(ic->log2_metadata_run >= 0))
464 result += (area + 1) << ic->log2_metadata_run;
465 else
466 result += (area + 1) * ic->metadata_run;
467
468 result += (sector_t)ic->initial_sectors + offset;
469 result += ic->start;
470
471 return result;
472}
473
474static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
475{
476 if (unlikely(*sec_ptr >= ic->journal_sections))
477 *sec_ptr -= ic->journal_sections;
478}
479
480static void sb_set_version(struct dm_integrity_c *ic)
481{
482 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
483 ic->sb->version = SB_VERSION_5;
484 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
485 ic->sb->version = SB_VERSION_4;
486 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
487 ic->sb->version = SB_VERSION_3;
488 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
489 ic->sb->version = SB_VERSION_2;
490 else
491 ic->sb->version = SB_VERSION_1;
492}
493
494static int sb_mac(struct dm_integrity_c *ic, bool wr)
495{
496 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
497 int r;
498 unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
499 __u8 *sb = (__u8 *)ic->sb;
500 __u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
501
502 if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
503 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
504 return -EINVAL;
505 }
506
507 desc->tfm = ic->journal_mac;
508
509 if (likely(wr)) {
510 r = crypto_shash_digest(desc, sb, mac - sb, mac);
511 if (unlikely(r < 0)) {
512 dm_integrity_io_error(ic, "crypto_shash_digest", r);
513 return r;
514 }
515 } else {
516 __u8 actual_mac[HASH_MAX_DIGESTSIZE];
517
518 r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
519 if (unlikely(r < 0)) {
520 dm_integrity_io_error(ic, "crypto_shash_digest", r);
521 return r;
522 }
523 if (memcmp(mac, actual_mac, mac_size)) {
524 dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
525 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
526 return -EILSEQ;
527 }
528 }
529
530 return 0;
531}
532
533static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
534{
535 struct dm_io_request io_req;
536 struct dm_io_region io_loc;
537 const enum req_op op = opf & REQ_OP_MASK;
538 int r;
539
540 io_req.bi_opf = opf;
541 io_req.mem.type = DM_IO_KMEM;
542 io_req.mem.ptr.addr = ic->sb;
543 io_req.notify.fn = NULL;
544 io_req.client = ic->io;
545 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
546 io_loc.sector = ic->start;
547 io_loc.count = SB_SECTORS;
548
549 if (op == REQ_OP_WRITE) {
550 sb_set_version(ic);
551 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
552 r = sb_mac(ic, true);
553 if (unlikely(r))
554 return r;
555 }
556 }
557
558 r = dm_io(&io_req, 1, &io_loc, NULL);
559 if (unlikely(r))
560 return r;
561
562 if (op == REQ_OP_READ) {
563 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
564 r = sb_mac(ic, false);
565 if (unlikely(r))
566 return r;
567 }
568 }
569
570 return 0;
571}
572
573#define BITMAP_OP_TEST_ALL_SET 0
574#define BITMAP_OP_TEST_ALL_CLEAR 1
575#define BITMAP_OP_SET 2
576#define BITMAP_OP_CLEAR 3
577
578static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
579 sector_t sector, sector_t n_sectors, int mode)
580{
581 unsigned long bit, end_bit, this_end_bit, page, end_page;
582 unsigned long *data;
583
584 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
585 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
586 sector,
587 n_sectors,
588 ic->sb->log2_sectors_per_block,
589 ic->log2_blocks_per_bitmap_bit,
590 mode);
591 BUG();
592 }
593
594 if (unlikely(!n_sectors))
595 return true;
596
597 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
598 end_bit = (sector + n_sectors - 1) >>
599 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
600
601 page = bit / (PAGE_SIZE * 8);
602 bit %= PAGE_SIZE * 8;
603
604 end_page = end_bit / (PAGE_SIZE * 8);
605 end_bit %= PAGE_SIZE * 8;
606
607repeat:
608 if (page < end_page)
609 this_end_bit = PAGE_SIZE * 8 - 1;
610 else
611 this_end_bit = end_bit;
612
613 data = lowmem_page_address(bitmap[page].page);
614
615 if (mode == BITMAP_OP_TEST_ALL_SET) {
616 while (bit <= this_end_bit) {
617 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
618 do {
619 if (data[bit / BITS_PER_LONG] != -1)
620 return false;
621 bit += BITS_PER_LONG;
622 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
623 continue;
624 }
625 if (!test_bit(bit, data))
626 return false;
627 bit++;
628 }
629 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
630 while (bit <= this_end_bit) {
631 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
632 do {
633 if (data[bit / BITS_PER_LONG] != 0)
634 return false;
635 bit += BITS_PER_LONG;
636 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
637 continue;
638 }
639 if (test_bit(bit, data))
640 return false;
641 bit++;
642 }
643 } else if (mode == BITMAP_OP_SET) {
644 while (bit <= this_end_bit) {
645 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
646 do {
647 data[bit / BITS_PER_LONG] = -1;
648 bit += BITS_PER_LONG;
649 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
650 continue;
651 }
652 __set_bit(bit, data);
653 bit++;
654 }
655 } else if (mode == BITMAP_OP_CLEAR) {
656 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
657 clear_page(data);
658 else {
659 while (bit <= this_end_bit) {
660 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
661 do {
662 data[bit / BITS_PER_LONG] = 0;
663 bit += BITS_PER_LONG;
664 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
665 continue;
666 }
667 __clear_bit(bit, data);
668 bit++;
669 }
670 }
671 } else {
672 BUG();
673 }
674
675 if (unlikely(page < end_page)) {
676 bit = 0;
677 page++;
678 goto repeat;
679 }
680
681 return true;
682}
683
684static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
685{
686 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
687 unsigned int i;
688
689 for (i = 0; i < n_bitmap_pages; i++) {
690 unsigned long *dst_data = lowmem_page_address(dst[i].page);
691 unsigned long *src_data = lowmem_page_address(src[i].page);
692
693 copy_page(dst_data, src_data);
694 }
695}
696
697static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
698{
699 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
700 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
701
702 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
703 return &ic->bbs[bitmap_block];
704}
705
706static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
707 bool e, const char *function)
708{
709#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
710 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
711
712 if (unlikely(section >= ic->journal_sections) ||
713 unlikely(offset >= limit)) {
714 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
715 function, section, offset, ic->journal_sections, limit);
716 BUG();
717 }
718#endif
719}
720
721static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
722 unsigned int *pl_index, unsigned int *pl_offset)
723{
724 unsigned int sector;
725
726 access_journal_check(ic, section, offset, false, "page_list_location");
727
728 sector = section * ic->journal_section_sectors + offset;
729
730 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
731 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
732}
733
734static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
735 unsigned int section, unsigned int offset, unsigned int *n_sectors)
736{
737 unsigned int pl_index, pl_offset;
738 char *va;
739
740 page_list_location(ic, section, offset, &pl_index, &pl_offset);
741
742 if (n_sectors)
743 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
744
745 va = lowmem_page_address(pl[pl_index].page);
746
747 return (struct journal_sector *)(va + pl_offset);
748}
749
750static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
751{
752 return access_page_list(ic, ic->journal, section, offset, NULL);
753}
754
755static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
756{
757 unsigned int rel_sector, offset;
758 struct journal_sector *js;
759
760 access_journal_check(ic, section, n, true, "access_journal_entry");
761
762 rel_sector = n % JOURNAL_BLOCK_SECTORS;
763 offset = n / JOURNAL_BLOCK_SECTORS;
764
765 js = access_journal(ic, section, rel_sector);
766 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
767}
768
769static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
770{
771 n <<= ic->sb->log2_sectors_per_block;
772
773 n += JOURNAL_BLOCK_SECTORS;
774
775 access_journal_check(ic, section, n, false, "access_journal_data");
776
777 return access_journal(ic, section, n);
778}
779
780static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
781{
782 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
783 int r;
784 unsigned int j, size;
785
786 desc->tfm = ic->journal_mac;
787
788 r = crypto_shash_init(desc);
789 if (unlikely(r < 0)) {
790 dm_integrity_io_error(ic, "crypto_shash_init", r);
791 goto err;
792 }
793
794 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
795 __le64 section_le;
796
797 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
798 if (unlikely(r < 0)) {
799 dm_integrity_io_error(ic, "crypto_shash_update", r);
800 goto err;
801 }
802
803 section_le = cpu_to_le64(section);
804 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le));
805 if (unlikely(r < 0)) {
806 dm_integrity_io_error(ic, "crypto_shash_update", r);
807 goto err;
808 }
809 }
810
811 for (j = 0; j < ic->journal_section_entries; j++) {
812 struct journal_entry *je = access_journal_entry(ic, section, j);
813
814 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
815 if (unlikely(r < 0)) {
816 dm_integrity_io_error(ic, "crypto_shash_update", r);
817 goto err;
818 }
819 }
820
821 size = crypto_shash_digestsize(ic->journal_mac);
822
823 if (likely(size <= JOURNAL_MAC_SIZE)) {
824 r = crypto_shash_final(desc, result);
825 if (unlikely(r < 0)) {
826 dm_integrity_io_error(ic, "crypto_shash_final", r);
827 goto err;
828 }
829 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
830 } else {
831 __u8 digest[HASH_MAX_DIGESTSIZE];
832
833 if (WARN_ON(size > sizeof(digest))) {
834 dm_integrity_io_error(ic, "digest_size", -EINVAL);
835 goto err;
836 }
837 r = crypto_shash_final(desc, digest);
838 if (unlikely(r < 0)) {
839 dm_integrity_io_error(ic, "crypto_shash_final", r);
840 goto err;
841 }
842 memcpy(result, digest, JOURNAL_MAC_SIZE);
843 }
844
845 return;
846err:
847 memset(result, 0, JOURNAL_MAC_SIZE);
848}
849
850static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
851{
852 __u8 result[JOURNAL_MAC_SIZE];
853 unsigned int j;
854
855 if (!ic->journal_mac)
856 return;
857
858 section_mac(ic, section, result);
859
860 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
861 struct journal_sector *js = access_journal(ic, section, j);
862
863 if (likely(wr))
864 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
865 else {
866 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
867 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
868 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
869 }
870 }
871 }
872}
873
874static void complete_journal_op(void *context)
875{
876 struct journal_completion *comp = context;
877
878 BUG_ON(!atomic_read(&comp->in_flight));
879 if (likely(atomic_dec_and_test(&comp->in_flight)))
880 complete(&comp->comp);
881}
882
883static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
884 unsigned int n_sections, struct journal_completion *comp)
885{
886 struct async_submit_ctl submit;
887 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
888 unsigned int pl_index, pl_offset, section_index;
889 struct page_list *source_pl, *target_pl;
890
891 if (likely(encrypt)) {
892 source_pl = ic->journal;
893 target_pl = ic->journal_io;
894 } else {
895 source_pl = ic->journal_io;
896 target_pl = ic->journal;
897 }
898
899 page_list_location(ic, section, 0, &pl_index, &pl_offset);
900
901 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
902
903 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
904
905 section_index = pl_index;
906
907 do {
908 size_t this_step;
909 struct page *src_pages[2];
910 struct page *dst_page;
911
912 while (unlikely(pl_index == section_index)) {
913 unsigned int dummy;
914
915 if (likely(encrypt))
916 rw_section_mac(ic, section, true);
917 section++;
918 n_sections--;
919 if (!n_sections)
920 break;
921 page_list_location(ic, section, 0, §ion_index, &dummy);
922 }
923
924 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
925 dst_page = target_pl[pl_index].page;
926 src_pages[0] = source_pl[pl_index].page;
927 src_pages[1] = ic->journal_xor[pl_index].page;
928
929 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
930
931 pl_index++;
932 pl_offset = 0;
933 n_bytes -= this_step;
934 } while (n_bytes);
935
936 BUG_ON(n_sections);
937
938 async_tx_issue_pending_all();
939}
940
941static void complete_journal_encrypt(void *data, int err)
942{
943 struct journal_completion *comp = data;
944
945 if (unlikely(err)) {
946 if (likely(err == -EINPROGRESS)) {
947 complete(&comp->ic->crypto_backoff);
948 return;
949 }
950 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
951 }
952 complete_journal_op(comp);
953}
954
955static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
956{
957 int r;
958
959 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
960 complete_journal_encrypt, comp);
961 if (likely(encrypt))
962 r = crypto_skcipher_encrypt(req);
963 else
964 r = crypto_skcipher_decrypt(req);
965 if (likely(!r))
966 return false;
967 if (likely(r == -EINPROGRESS))
968 return true;
969 if (likely(r == -EBUSY)) {
970 wait_for_completion(&comp->ic->crypto_backoff);
971 reinit_completion(&comp->ic->crypto_backoff);
972 return true;
973 }
974 dm_integrity_io_error(comp->ic, "encrypt", r);
975 return false;
976}
977
978static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
979 unsigned int n_sections, struct journal_completion *comp)
980{
981 struct scatterlist **source_sg;
982 struct scatterlist **target_sg;
983
984 atomic_add(2, &comp->in_flight);
985
986 if (likely(encrypt)) {
987 source_sg = ic->journal_scatterlist;
988 target_sg = ic->journal_io_scatterlist;
989 } else {
990 source_sg = ic->journal_io_scatterlist;
991 target_sg = ic->journal_scatterlist;
992 }
993
994 do {
995 struct skcipher_request *req;
996 unsigned int ivsize;
997 char *iv;
998
999 if (likely(encrypt))
1000 rw_section_mac(ic, section, true);
1001
1002 req = ic->sk_requests[section];
1003 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1004 iv = req->iv;
1005
1006 memcpy(iv, iv + ivsize, ivsize);
1007
1008 req->src = source_sg[section];
1009 req->dst = target_sg[section];
1010
1011 if (unlikely(do_crypt(encrypt, req, comp)))
1012 atomic_inc(&comp->in_flight);
1013
1014 section++;
1015 n_sections--;
1016 } while (n_sections);
1017
1018 atomic_dec(&comp->in_flight);
1019 complete_journal_op(comp);
1020}
1021
1022static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1023 unsigned int n_sections, struct journal_completion *comp)
1024{
1025 if (ic->journal_xor)
1026 return xor_journal(ic, encrypt, section, n_sections, comp);
1027 else
1028 return crypt_journal(ic, encrypt, section, n_sections, comp);
1029}
1030
1031static void complete_journal_io(unsigned long error, void *context)
1032{
1033 struct journal_completion *comp = context;
1034
1035 if (unlikely(error != 0))
1036 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1037 complete_journal_op(comp);
1038}
1039
1040static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1041 unsigned int sector, unsigned int n_sectors,
1042 struct journal_completion *comp)
1043{
1044 struct dm_io_request io_req;
1045 struct dm_io_region io_loc;
1046 unsigned int pl_index, pl_offset;
1047 int r;
1048
1049 if (unlikely(dm_integrity_failed(ic))) {
1050 if (comp)
1051 complete_journal_io(-1UL, comp);
1052 return;
1053 }
1054
1055 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1056 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1057
1058 io_req.bi_opf = opf;
1059 io_req.mem.type = DM_IO_PAGE_LIST;
1060 if (ic->journal_io)
1061 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1062 else
1063 io_req.mem.ptr.pl = &ic->journal[pl_index];
1064 io_req.mem.offset = pl_offset;
1065 if (likely(comp != NULL)) {
1066 io_req.notify.fn = complete_journal_io;
1067 io_req.notify.context = comp;
1068 } else {
1069 io_req.notify.fn = NULL;
1070 }
1071 io_req.client = ic->io;
1072 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1073 io_loc.sector = ic->start + SB_SECTORS + sector;
1074 io_loc.count = n_sectors;
1075
1076 r = dm_io(&io_req, 1, &io_loc, NULL);
1077 if (unlikely(r)) {
1078 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1079 "reading journal" : "writing journal", r);
1080 if (comp) {
1081 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1082 complete_journal_io(-1UL, comp);
1083 }
1084 }
1085}
1086
1087static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1088 unsigned int section, unsigned int n_sections,
1089 struct journal_completion *comp)
1090{
1091 unsigned int sector, n_sectors;
1092
1093 sector = section * ic->journal_section_sectors;
1094 n_sectors = n_sections * ic->journal_section_sectors;
1095
1096 rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1097}
1098
1099static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1100{
1101 struct journal_completion io_comp;
1102 struct journal_completion crypt_comp_1;
1103 struct journal_completion crypt_comp_2;
1104 unsigned int i;
1105
1106 io_comp.ic = ic;
1107 init_completion(&io_comp.comp);
1108
1109 if (commit_start + commit_sections <= ic->journal_sections) {
1110 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1111 if (ic->journal_io) {
1112 crypt_comp_1.ic = ic;
1113 init_completion(&crypt_comp_1.comp);
1114 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1115 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1116 wait_for_completion_io(&crypt_comp_1.comp);
1117 } else {
1118 for (i = 0; i < commit_sections; i++)
1119 rw_section_mac(ic, commit_start + i, true);
1120 }
1121 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1122 commit_sections, &io_comp);
1123 } else {
1124 unsigned int to_end;
1125
1126 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1127 to_end = ic->journal_sections - commit_start;
1128 if (ic->journal_io) {
1129 crypt_comp_1.ic = ic;
1130 init_completion(&crypt_comp_1.comp);
1131 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1132 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1133 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1134 rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1135 commit_start, to_end, &io_comp);
1136 reinit_completion(&crypt_comp_1.comp);
1137 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1138 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1139 wait_for_completion_io(&crypt_comp_1.comp);
1140 } else {
1141 crypt_comp_2.ic = ic;
1142 init_completion(&crypt_comp_2.comp);
1143 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1144 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1145 wait_for_completion_io(&crypt_comp_1.comp);
1146 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1147 wait_for_completion_io(&crypt_comp_2.comp);
1148 }
1149 } else {
1150 for (i = 0; i < to_end; i++)
1151 rw_section_mac(ic, commit_start + i, true);
1152 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1153 for (i = 0; i < commit_sections - to_end; i++)
1154 rw_section_mac(ic, i, true);
1155 }
1156 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1157 }
1158
1159 wait_for_completion_io(&io_comp.comp);
1160}
1161
1162static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1163 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1164{
1165 struct dm_io_request io_req;
1166 struct dm_io_region io_loc;
1167 int r;
1168 unsigned int sector, pl_index, pl_offset;
1169
1170 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1171
1172 if (unlikely(dm_integrity_failed(ic))) {
1173 fn(-1UL, data);
1174 return;
1175 }
1176
1177 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1178
1179 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1180 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1181
1182 io_req.bi_opf = REQ_OP_WRITE;
1183 io_req.mem.type = DM_IO_PAGE_LIST;
1184 io_req.mem.ptr.pl = &ic->journal[pl_index];
1185 io_req.mem.offset = pl_offset;
1186 io_req.notify.fn = fn;
1187 io_req.notify.context = data;
1188 io_req.client = ic->io;
1189 io_loc.bdev = ic->dev->bdev;
1190 io_loc.sector = target;
1191 io_loc.count = n_sectors;
1192
1193 r = dm_io(&io_req, 1, &io_loc, NULL);
1194 if (unlikely(r)) {
1195 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1196 fn(-1UL, data);
1197 }
1198}
1199
1200static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1201{
1202 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1203 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1204}
1205
1206static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1207{
1208 struct rb_node **n = &ic->in_progress.rb_node;
1209 struct rb_node *parent;
1210
1211 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1212
1213 if (likely(check_waiting)) {
1214 struct dm_integrity_range *range;
1215
1216 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1217 if (unlikely(ranges_overlap(range, new_range)))
1218 return false;
1219 }
1220 }
1221
1222 parent = NULL;
1223
1224 while (*n) {
1225 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1226
1227 parent = *n;
1228 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1229 n = &range->node.rb_left;
1230 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1231 n = &range->node.rb_right;
1232 else
1233 return false;
1234 }
1235
1236 rb_link_node(&new_range->node, parent, n);
1237 rb_insert_color(&new_range->node, &ic->in_progress);
1238
1239 return true;
1240}
1241
1242static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1243{
1244 rb_erase(&range->node, &ic->in_progress);
1245 while (unlikely(!list_empty(&ic->wait_list))) {
1246 struct dm_integrity_range *last_range =
1247 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1248 struct task_struct *last_range_task;
1249
1250 last_range_task = last_range->task;
1251 list_del(&last_range->wait_entry);
1252 if (!add_new_range(ic, last_range, false)) {
1253 last_range->task = last_range_task;
1254 list_add(&last_range->wait_entry, &ic->wait_list);
1255 break;
1256 }
1257 last_range->waiting = false;
1258 wake_up_process(last_range_task);
1259 }
1260}
1261
1262static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1263{
1264 unsigned long flags;
1265
1266 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1267 remove_range_unlocked(ic, range);
1268 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1269}
1270
1271static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1272{
1273 new_range->waiting = true;
1274 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1275 new_range->task = current;
1276 do {
1277 __set_current_state(TASK_UNINTERRUPTIBLE);
1278 spin_unlock_irq(&ic->endio_wait.lock);
1279 io_schedule();
1280 spin_lock_irq(&ic->endio_wait.lock);
1281 } while (unlikely(new_range->waiting));
1282}
1283
1284static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1285{
1286 if (unlikely(!add_new_range(ic, new_range, true)))
1287 wait_and_add_new_range(ic, new_range);
1288}
1289
1290static void init_journal_node(struct journal_node *node)
1291{
1292 RB_CLEAR_NODE(&node->node);
1293 node->sector = (sector_t)-1;
1294}
1295
1296static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1297{
1298 struct rb_node **link;
1299 struct rb_node *parent;
1300
1301 node->sector = sector;
1302 BUG_ON(!RB_EMPTY_NODE(&node->node));
1303
1304 link = &ic->journal_tree_root.rb_node;
1305 parent = NULL;
1306
1307 while (*link) {
1308 struct journal_node *j;
1309
1310 parent = *link;
1311 j = container_of(parent, struct journal_node, node);
1312 if (sector < j->sector)
1313 link = &j->node.rb_left;
1314 else
1315 link = &j->node.rb_right;
1316 }
1317
1318 rb_link_node(&node->node, parent, link);
1319 rb_insert_color(&node->node, &ic->journal_tree_root);
1320}
1321
1322static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1323{
1324 BUG_ON(RB_EMPTY_NODE(&node->node));
1325 rb_erase(&node->node, &ic->journal_tree_root);
1326 init_journal_node(node);
1327}
1328
1329#define NOT_FOUND (-1U)
1330
1331static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1332{
1333 struct rb_node *n = ic->journal_tree_root.rb_node;
1334 unsigned int found = NOT_FOUND;
1335
1336 *next_sector = (sector_t)-1;
1337 while (n) {
1338 struct journal_node *j = container_of(n, struct journal_node, node);
1339
1340 if (sector == j->sector)
1341 found = j - ic->journal_tree;
1342
1343 if (sector < j->sector) {
1344 *next_sector = j->sector;
1345 n = j->node.rb_left;
1346 } else
1347 n = j->node.rb_right;
1348 }
1349
1350 return found;
1351}
1352
1353static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1354{
1355 struct journal_node *node, *next_node;
1356 struct rb_node *next;
1357
1358 if (unlikely(pos >= ic->journal_entries))
1359 return false;
1360 node = &ic->journal_tree[pos];
1361 if (unlikely(RB_EMPTY_NODE(&node->node)))
1362 return false;
1363 if (unlikely(node->sector != sector))
1364 return false;
1365
1366 next = rb_next(&node->node);
1367 if (unlikely(!next))
1368 return true;
1369
1370 next_node = container_of(next, struct journal_node, node);
1371 return next_node->sector != sector;
1372}
1373
1374static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1375{
1376 struct rb_node *next;
1377 struct journal_node *next_node;
1378 unsigned int next_section;
1379
1380 BUG_ON(RB_EMPTY_NODE(&node->node));
1381
1382 next = rb_next(&node->node);
1383 if (unlikely(!next))
1384 return false;
1385
1386 next_node = container_of(next, struct journal_node, node);
1387
1388 if (next_node->sector != node->sector)
1389 return false;
1390
1391 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1392 if (next_section >= ic->committed_section &&
1393 next_section < ic->committed_section + ic->n_committed_sections)
1394 return true;
1395 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1396 return true;
1397
1398 return false;
1399}
1400
1401#define TAG_READ 0
1402#define TAG_WRITE 1
1403#define TAG_CMP 2
1404
1405static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1406 unsigned int *metadata_offset, unsigned int total_size, int op)
1407{
1408#define MAY_BE_FILLER 1
1409#define MAY_BE_HASH 2
1410 unsigned int hash_offset = 0;
1411 unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1412
1413 do {
1414 unsigned char *data, *dp;
1415 struct dm_buffer *b;
1416 unsigned int to_copy;
1417 int r;
1418
1419 r = dm_integrity_failed(ic);
1420 if (unlikely(r))
1421 return r;
1422
1423 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1424 if (IS_ERR(data))
1425 return PTR_ERR(data);
1426
1427 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1428 dp = data + *metadata_offset;
1429 if (op == TAG_READ) {
1430 memcpy(tag, dp, to_copy);
1431 } else if (op == TAG_WRITE) {
1432 if (memcmp(dp, tag, to_copy)) {
1433 memcpy(dp, tag, to_copy);
1434 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1435 }
1436 } else {
1437 /* e.g.: op == TAG_CMP */
1438
1439 if (likely(is_power_of_2(ic->tag_size))) {
1440 if (unlikely(memcmp(dp, tag, to_copy)))
1441 if (unlikely(!ic->discard) ||
1442 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1443 goto thorough_test;
1444 }
1445 } else {
1446 unsigned int i, ts;
1447thorough_test:
1448 ts = total_size;
1449
1450 for (i = 0; i < to_copy; i++, ts--) {
1451 if (unlikely(dp[i] != tag[i]))
1452 may_be &= ~MAY_BE_HASH;
1453 if (likely(dp[i] != DISCARD_FILLER))
1454 may_be &= ~MAY_BE_FILLER;
1455 hash_offset++;
1456 if (unlikely(hash_offset == ic->tag_size)) {
1457 if (unlikely(!may_be)) {
1458 dm_bufio_release(b);
1459 return ts;
1460 }
1461 hash_offset = 0;
1462 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1463 }
1464 }
1465 }
1466 }
1467 dm_bufio_release(b);
1468
1469 tag += to_copy;
1470 *metadata_offset += to_copy;
1471 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1472 (*metadata_block)++;
1473 *metadata_offset = 0;
1474 }
1475
1476 if (unlikely(!is_power_of_2(ic->tag_size)))
1477 hash_offset = (hash_offset + to_copy) % ic->tag_size;
1478
1479 total_size -= to_copy;
1480 } while (unlikely(total_size));
1481
1482 return 0;
1483#undef MAY_BE_FILLER
1484#undef MAY_BE_HASH
1485}
1486
1487struct flush_request {
1488 struct dm_io_request io_req;
1489 struct dm_io_region io_reg;
1490 struct dm_integrity_c *ic;
1491 struct completion comp;
1492};
1493
1494static void flush_notify(unsigned long error, void *fr_)
1495{
1496 struct flush_request *fr = fr_;
1497
1498 if (unlikely(error != 0))
1499 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1500 complete(&fr->comp);
1501}
1502
1503static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1504{
1505 int r;
1506 struct flush_request fr;
1507
1508 if (!ic->meta_dev)
1509 flush_data = false;
1510 if (flush_data) {
1511 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1512 fr.io_req.mem.type = DM_IO_KMEM,
1513 fr.io_req.mem.ptr.addr = NULL,
1514 fr.io_req.notify.fn = flush_notify,
1515 fr.io_req.notify.context = &fr;
1516 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1517 fr.io_reg.bdev = ic->dev->bdev,
1518 fr.io_reg.sector = 0,
1519 fr.io_reg.count = 0,
1520 fr.ic = ic;
1521 init_completion(&fr.comp);
1522 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1523 BUG_ON(r);
1524 }
1525
1526 r = dm_bufio_write_dirty_buffers(ic->bufio);
1527 if (unlikely(r))
1528 dm_integrity_io_error(ic, "writing tags", r);
1529
1530 if (flush_data)
1531 wait_for_completion(&fr.comp);
1532}
1533
1534static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1535{
1536 DECLARE_WAITQUEUE(wait, current);
1537
1538 __add_wait_queue(&ic->endio_wait, &wait);
1539 __set_current_state(TASK_UNINTERRUPTIBLE);
1540 spin_unlock_irq(&ic->endio_wait.lock);
1541 io_schedule();
1542 spin_lock_irq(&ic->endio_wait.lock);
1543 __remove_wait_queue(&ic->endio_wait, &wait);
1544}
1545
1546static void autocommit_fn(struct timer_list *t)
1547{
1548 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1549
1550 if (likely(!dm_integrity_failed(ic)))
1551 queue_work(ic->commit_wq, &ic->commit_work);
1552}
1553
1554static void schedule_autocommit(struct dm_integrity_c *ic)
1555{
1556 if (!timer_pending(&ic->autocommit_timer))
1557 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1558}
1559
1560static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1561{
1562 struct bio *bio;
1563 unsigned long flags;
1564
1565 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1566 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1567 bio_list_add(&ic->flush_bio_list, bio);
1568 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1569
1570 queue_work(ic->commit_wq, &ic->commit_work);
1571}
1572
1573static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1574{
1575 int r;
1576
1577 r = dm_integrity_failed(ic);
1578 if (unlikely(r) && !bio->bi_status)
1579 bio->bi_status = errno_to_blk_status(r);
1580 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1581 unsigned long flags;
1582
1583 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1584 bio_list_add(&ic->synchronous_bios, bio);
1585 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1586 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1587 return;
1588 }
1589 bio_endio(bio);
1590}
1591
1592static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1593{
1594 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1595
1596 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1597 submit_flush_bio(ic, dio);
1598 else
1599 do_endio(ic, bio);
1600}
1601
1602static void dec_in_flight(struct dm_integrity_io *dio)
1603{
1604 if (atomic_dec_and_test(&dio->in_flight)) {
1605 struct dm_integrity_c *ic = dio->ic;
1606 struct bio *bio;
1607
1608 remove_range(ic, &dio->range);
1609
1610 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1611 schedule_autocommit(ic);
1612
1613 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1614 if (unlikely(dio->bi_status) && !bio->bi_status)
1615 bio->bi_status = dio->bi_status;
1616 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1617 dio->range.logical_sector += dio->range.n_sectors;
1618 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1619 INIT_WORK(&dio->work, integrity_bio_wait);
1620 queue_work(ic->offload_wq, &dio->work);
1621 return;
1622 }
1623 do_endio_flush(ic, dio);
1624 }
1625}
1626
1627static void integrity_end_io(struct bio *bio)
1628{
1629 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1630
1631 dm_bio_restore(&dio->bio_details, bio);
1632 if (bio->bi_integrity)
1633 bio->bi_opf |= REQ_INTEGRITY;
1634
1635 if (dio->completion)
1636 complete(dio->completion);
1637
1638 dec_in_flight(dio);
1639}
1640
1641static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1642 const char *data, char *result)
1643{
1644 __le64 sector_le = cpu_to_le64(sector);
1645 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1646 int r;
1647 unsigned int digest_size;
1648
1649 req->tfm = ic->internal_hash;
1650
1651 r = crypto_shash_init(req);
1652 if (unlikely(r < 0)) {
1653 dm_integrity_io_error(ic, "crypto_shash_init", r);
1654 goto failed;
1655 }
1656
1657 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1658 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1659 if (unlikely(r < 0)) {
1660 dm_integrity_io_error(ic, "crypto_shash_update", r);
1661 goto failed;
1662 }
1663 }
1664
1665 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le));
1666 if (unlikely(r < 0)) {
1667 dm_integrity_io_error(ic, "crypto_shash_update", r);
1668 goto failed;
1669 }
1670
1671 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1672 if (unlikely(r < 0)) {
1673 dm_integrity_io_error(ic, "crypto_shash_update", r);
1674 goto failed;
1675 }
1676
1677 r = crypto_shash_final(req, result);
1678 if (unlikely(r < 0)) {
1679 dm_integrity_io_error(ic, "crypto_shash_final", r);
1680 goto failed;
1681 }
1682
1683 digest_size = crypto_shash_digestsize(ic->internal_hash);
1684 if (unlikely(digest_size < ic->tag_size))
1685 memset(result + digest_size, 0, ic->tag_size - digest_size);
1686
1687 return;
1688
1689failed:
1690 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1691 get_random_bytes(result, ic->tag_size);
1692}
1693
1694static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1695{
1696 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1697 struct dm_integrity_c *ic = dio->ic;
1698 struct bvec_iter iter;
1699 struct bio_vec bv;
1700 sector_t sector, logical_sector, area, offset;
1701 struct page *page;
1702 void *buffer;
1703
1704 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1705 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1706 &dio->metadata_offset);
1707 sector = get_data_sector(ic, area, offset);
1708 logical_sector = dio->range.logical_sector;
1709
1710 page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1711 buffer = page_to_virt(page);
1712
1713 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1714 unsigned pos = 0;
1715
1716 do {
1717 char *mem;
1718 int r;
1719 struct dm_io_request io_req;
1720 struct dm_io_region io_loc;
1721 io_req.bi_opf = REQ_OP_READ;
1722 io_req.mem.type = DM_IO_KMEM;
1723 io_req.mem.ptr.addr = buffer;
1724 io_req.notify.fn = NULL;
1725 io_req.client = ic->io;
1726 io_loc.bdev = ic->dev->bdev;
1727 io_loc.sector = sector;
1728 io_loc.count = ic->sectors_per_block;
1729
1730 r = dm_io(&io_req, 1, &io_loc, NULL);
1731 if (unlikely(r)) {
1732 dio->bi_status = errno_to_blk_status(r);
1733 goto free_ret;
1734 }
1735
1736 integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1737 r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1738 &dio->metadata_offset, ic->tag_size, TAG_CMP);
1739 if (r) {
1740 if (r > 0) {
1741 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1742 bio->bi_bdev, logical_sector);
1743 atomic64_inc(&ic->number_of_mismatches);
1744 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1745 bio, logical_sector, 0);
1746 r = -EILSEQ;
1747 }
1748 dio->bi_status = errno_to_blk_status(r);
1749 goto free_ret;
1750 }
1751
1752 mem = bvec_kmap_local(&bv);
1753 memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1754 kunmap_local(mem);
1755
1756 pos += ic->sectors_per_block << SECTOR_SHIFT;
1757 sector += ic->sectors_per_block;
1758 logical_sector += ic->sectors_per_block;
1759 } while (pos < bv.bv_len);
1760 }
1761free_ret:
1762 mempool_free(page, &ic->recheck_pool);
1763}
1764
1765static void integrity_metadata(struct work_struct *w)
1766{
1767 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1768 struct dm_integrity_c *ic = dio->ic;
1769
1770 int r;
1771
1772 if (ic->internal_hash) {
1773 struct bvec_iter iter;
1774 struct bio_vec bv;
1775 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1776 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1777 char *checksums;
1778 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1779 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1780 sector_t sector;
1781 unsigned int sectors_to_process;
1782
1783 if (unlikely(ic->mode == 'R'))
1784 goto skip_io;
1785
1786 if (likely(dio->op != REQ_OP_DISCARD))
1787 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1788 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1789 else
1790 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1791 if (!checksums) {
1792 checksums = checksums_onstack;
1793 if (WARN_ON(extra_space &&
1794 digest_size > sizeof(checksums_onstack))) {
1795 r = -EINVAL;
1796 goto error;
1797 }
1798 }
1799
1800 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1801 unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1802 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1803 unsigned int max_blocks = max_size / ic->tag_size;
1804
1805 memset(checksums, DISCARD_FILLER, max_size);
1806
1807 while (bi_size) {
1808 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1809
1810 this_step_blocks = min(this_step_blocks, max_blocks);
1811 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1812 this_step_blocks * ic->tag_size, TAG_WRITE);
1813 if (unlikely(r)) {
1814 if (likely(checksums != checksums_onstack))
1815 kfree(checksums);
1816 goto error;
1817 }
1818
1819 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1820 }
1821
1822 if (likely(checksums != checksums_onstack))
1823 kfree(checksums);
1824 goto skip_io;
1825 }
1826
1827 sector = dio->range.logical_sector;
1828 sectors_to_process = dio->range.n_sectors;
1829
1830 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1831 struct bio_vec bv_copy = bv;
1832 unsigned int pos;
1833 char *mem, *checksums_ptr;
1834
1835again:
1836 mem = bvec_kmap_local(&bv_copy);
1837 pos = 0;
1838 checksums_ptr = checksums;
1839 do {
1840 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1841 checksums_ptr += ic->tag_size;
1842 sectors_to_process -= ic->sectors_per_block;
1843 pos += ic->sectors_per_block << SECTOR_SHIFT;
1844 sector += ic->sectors_per_block;
1845 } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1846 kunmap_local(mem);
1847
1848 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1849 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1850 if (unlikely(r)) {
1851 if (r > 0) {
1852 integrity_recheck(dio, checksums);
1853 goto skip_io;
1854 }
1855 if (likely(checksums != checksums_onstack))
1856 kfree(checksums);
1857 goto error;
1858 }
1859
1860 if (!sectors_to_process)
1861 break;
1862
1863 if (unlikely(pos < bv_copy.bv_len)) {
1864 bv_copy.bv_offset += pos;
1865 bv_copy.bv_len -= pos;
1866 goto again;
1867 }
1868 }
1869
1870 if (likely(checksums != checksums_onstack))
1871 kfree(checksums);
1872 } else {
1873 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1874
1875 if (bip) {
1876 struct bio_vec biv;
1877 struct bvec_iter iter;
1878 unsigned int data_to_process = dio->range.n_sectors;
1879
1880 sector_to_block(ic, data_to_process);
1881 data_to_process *= ic->tag_size;
1882
1883 bip_for_each_vec(biv, bip, iter) {
1884 unsigned char *tag;
1885 unsigned int this_len;
1886
1887 BUG_ON(PageHighMem(biv.bv_page));
1888 tag = bvec_virt(&biv);
1889 this_len = min(biv.bv_len, data_to_process);
1890 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1891 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1892 if (unlikely(r))
1893 goto error;
1894 data_to_process -= this_len;
1895 if (!data_to_process)
1896 break;
1897 }
1898 }
1899 }
1900skip_io:
1901 dec_in_flight(dio);
1902 return;
1903error:
1904 dio->bi_status = errno_to_blk_status(r);
1905 dec_in_flight(dio);
1906}
1907
1908static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1909{
1910 struct dm_integrity_c *ic = ti->private;
1911 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1912 struct bio_integrity_payload *bip;
1913
1914 sector_t area, offset;
1915
1916 dio->ic = ic;
1917 dio->bi_status = 0;
1918 dio->op = bio_op(bio);
1919
1920 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1921 if (ti->max_io_len) {
1922 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1923 unsigned int log2_max_io_len = __fls(ti->max_io_len);
1924 sector_t start_boundary = sec >> log2_max_io_len;
1925 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1926
1927 if (start_boundary < end_boundary) {
1928 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1929
1930 dm_accept_partial_bio(bio, len);
1931 }
1932 }
1933 }
1934
1935 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1936 submit_flush_bio(ic, dio);
1937 return DM_MAPIO_SUBMITTED;
1938 }
1939
1940 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1941 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1942 if (unlikely(dio->fua)) {
1943 /*
1944 * Don't pass down the FUA flag because we have to flush
1945 * disk cache anyway.
1946 */
1947 bio->bi_opf &= ~REQ_FUA;
1948 }
1949 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1950 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1951 dio->range.logical_sector, bio_sectors(bio),
1952 ic->provided_data_sectors);
1953 return DM_MAPIO_KILL;
1954 }
1955 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1956 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1957 ic->sectors_per_block,
1958 dio->range.logical_sector, bio_sectors(bio));
1959 return DM_MAPIO_KILL;
1960 }
1961
1962 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1963 struct bvec_iter iter;
1964 struct bio_vec bv;
1965
1966 bio_for_each_segment(bv, bio, iter) {
1967 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1968 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1969 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1970 return DM_MAPIO_KILL;
1971 }
1972 }
1973 }
1974
1975 bip = bio_integrity(bio);
1976 if (!ic->internal_hash) {
1977 if (bip) {
1978 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1979
1980 if (ic->log2_tag_size >= 0)
1981 wanted_tag_size <<= ic->log2_tag_size;
1982 else
1983 wanted_tag_size *= ic->tag_size;
1984 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1985 DMERR("Invalid integrity data size %u, expected %u",
1986 bip->bip_iter.bi_size, wanted_tag_size);
1987 return DM_MAPIO_KILL;
1988 }
1989 }
1990 } else {
1991 if (unlikely(bip != NULL)) {
1992 DMERR("Unexpected integrity data when using internal hash");
1993 return DM_MAPIO_KILL;
1994 }
1995 }
1996
1997 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1998 return DM_MAPIO_KILL;
1999
2000 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2001 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2002 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2003
2004 dm_integrity_map_continue(dio, true);
2005 return DM_MAPIO_SUBMITTED;
2006}
2007
2008static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2009 unsigned int journal_section, unsigned int journal_entry)
2010{
2011 struct dm_integrity_c *ic = dio->ic;
2012 sector_t logical_sector;
2013 unsigned int n_sectors;
2014
2015 logical_sector = dio->range.logical_sector;
2016 n_sectors = dio->range.n_sectors;
2017 do {
2018 struct bio_vec bv = bio_iovec(bio);
2019 char *mem;
2020
2021 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2022 bv.bv_len = n_sectors << SECTOR_SHIFT;
2023 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2024 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2025retry_kmap:
2026 mem = kmap_local_page(bv.bv_page);
2027 if (likely(dio->op == REQ_OP_WRITE))
2028 flush_dcache_page(bv.bv_page);
2029
2030 do {
2031 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2032
2033 if (unlikely(dio->op == REQ_OP_READ)) {
2034 struct journal_sector *js;
2035 char *mem_ptr;
2036 unsigned int s;
2037
2038 if (unlikely(journal_entry_is_inprogress(je))) {
2039 flush_dcache_page(bv.bv_page);
2040 kunmap_local(mem);
2041
2042 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2043 goto retry_kmap;
2044 }
2045 smp_rmb();
2046 BUG_ON(journal_entry_get_sector(je) != logical_sector);
2047 js = access_journal_data(ic, journal_section, journal_entry);
2048 mem_ptr = mem + bv.bv_offset;
2049 s = 0;
2050 do {
2051 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2052 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2053 js++;
2054 mem_ptr += 1 << SECTOR_SHIFT;
2055 } while (++s < ic->sectors_per_block);
2056#ifdef INTERNAL_VERIFY
2057 if (ic->internal_hash) {
2058 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2059
2060 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2061 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2062 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2063 logical_sector);
2064 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2065 bio, logical_sector, 0);
2066 }
2067 }
2068#endif
2069 }
2070
2071 if (!ic->internal_hash) {
2072 struct bio_integrity_payload *bip = bio_integrity(bio);
2073 unsigned int tag_todo = ic->tag_size;
2074 char *tag_ptr = journal_entry_tag(ic, je);
2075
2076 if (bip) {
2077 do {
2078 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2079 unsigned int tag_now = min(biv.bv_len, tag_todo);
2080 char *tag_addr;
2081
2082 BUG_ON(PageHighMem(biv.bv_page));
2083 tag_addr = bvec_virt(&biv);
2084 if (likely(dio->op == REQ_OP_WRITE))
2085 memcpy(tag_ptr, tag_addr, tag_now);
2086 else
2087 memcpy(tag_addr, tag_ptr, tag_now);
2088 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2089 tag_ptr += tag_now;
2090 tag_todo -= tag_now;
2091 } while (unlikely(tag_todo));
2092 } else if (likely(dio->op == REQ_OP_WRITE))
2093 memset(tag_ptr, 0, tag_todo);
2094 }
2095
2096 if (likely(dio->op == REQ_OP_WRITE)) {
2097 struct journal_sector *js;
2098 unsigned int s;
2099
2100 js = access_journal_data(ic, journal_section, journal_entry);
2101 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2102
2103 s = 0;
2104 do {
2105 je->last_bytes[s] = js[s].commit_id;
2106 } while (++s < ic->sectors_per_block);
2107
2108 if (ic->internal_hash) {
2109 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2110
2111 if (unlikely(digest_size > ic->tag_size)) {
2112 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2113
2114 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2115 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2116 } else
2117 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2118 }
2119
2120 journal_entry_set_sector(je, logical_sector);
2121 }
2122 logical_sector += ic->sectors_per_block;
2123
2124 journal_entry++;
2125 if (unlikely(journal_entry == ic->journal_section_entries)) {
2126 journal_entry = 0;
2127 journal_section++;
2128 wraparound_section(ic, &journal_section);
2129 }
2130
2131 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2132 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2133
2134 if (unlikely(dio->op == REQ_OP_READ))
2135 flush_dcache_page(bv.bv_page);
2136 kunmap_local(mem);
2137 } while (n_sectors);
2138
2139 if (likely(dio->op == REQ_OP_WRITE)) {
2140 smp_mb();
2141 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2142 wake_up(&ic->copy_to_journal_wait);
2143 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2144 queue_work(ic->commit_wq, &ic->commit_work);
2145 else
2146 schedule_autocommit(ic);
2147 } else
2148 remove_range(ic, &dio->range);
2149
2150 if (unlikely(bio->bi_iter.bi_size)) {
2151 sector_t area, offset;
2152
2153 dio->range.logical_sector = logical_sector;
2154 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2155 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2156 return true;
2157 }
2158
2159 return false;
2160}
2161
2162static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2163{
2164 struct dm_integrity_c *ic = dio->ic;
2165 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2166 unsigned int journal_section, journal_entry;
2167 unsigned int journal_read_pos;
2168 struct completion read_comp;
2169 bool discard_retried = false;
2170 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2171
2172 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2173 need_sync_io = true;
2174
2175 if (need_sync_io && from_map) {
2176 INIT_WORK(&dio->work, integrity_bio_wait);
2177 queue_work(ic->offload_wq, &dio->work);
2178 return;
2179 }
2180
2181lock_retry:
2182 spin_lock_irq(&ic->endio_wait.lock);
2183retry:
2184 if (unlikely(dm_integrity_failed(ic))) {
2185 spin_unlock_irq(&ic->endio_wait.lock);
2186 do_endio(ic, bio);
2187 return;
2188 }
2189 dio->range.n_sectors = bio_sectors(bio);
2190 journal_read_pos = NOT_FOUND;
2191 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2192 if (dio->op == REQ_OP_WRITE) {
2193 unsigned int next_entry, i, pos;
2194 unsigned int ws, we, range_sectors;
2195
2196 dio->range.n_sectors = min(dio->range.n_sectors,
2197 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2198 if (unlikely(!dio->range.n_sectors)) {
2199 if (from_map)
2200 goto offload_to_thread;
2201 sleep_on_endio_wait(ic);
2202 goto retry;
2203 }
2204 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2205 ic->free_sectors -= range_sectors;
2206 journal_section = ic->free_section;
2207 journal_entry = ic->free_section_entry;
2208
2209 next_entry = ic->free_section_entry + range_sectors;
2210 ic->free_section_entry = next_entry % ic->journal_section_entries;
2211 ic->free_section += next_entry / ic->journal_section_entries;
2212 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2213 wraparound_section(ic, &ic->free_section);
2214
2215 pos = journal_section * ic->journal_section_entries + journal_entry;
2216 ws = journal_section;
2217 we = journal_entry;
2218 i = 0;
2219 do {
2220 struct journal_entry *je;
2221
2222 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2223 pos++;
2224 if (unlikely(pos >= ic->journal_entries))
2225 pos = 0;
2226
2227 je = access_journal_entry(ic, ws, we);
2228 BUG_ON(!journal_entry_is_unused(je));
2229 journal_entry_set_inprogress(je);
2230 we++;
2231 if (unlikely(we == ic->journal_section_entries)) {
2232 we = 0;
2233 ws++;
2234 wraparound_section(ic, &ws);
2235 }
2236 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2237
2238 spin_unlock_irq(&ic->endio_wait.lock);
2239 goto journal_read_write;
2240 } else {
2241 sector_t next_sector;
2242
2243 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2244 if (likely(journal_read_pos == NOT_FOUND)) {
2245 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2246 dio->range.n_sectors = next_sector - dio->range.logical_sector;
2247 } else {
2248 unsigned int i;
2249 unsigned int jp = journal_read_pos + 1;
2250
2251 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2252 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2253 break;
2254 }
2255 dio->range.n_sectors = i;
2256 }
2257 }
2258 }
2259 if (unlikely(!add_new_range(ic, &dio->range, true))) {
2260 /*
2261 * We must not sleep in the request routine because it could
2262 * stall bios on current->bio_list.
2263 * So, we offload the bio to a workqueue if we have to sleep.
2264 */
2265 if (from_map) {
2266offload_to_thread:
2267 spin_unlock_irq(&ic->endio_wait.lock);
2268 INIT_WORK(&dio->work, integrity_bio_wait);
2269 queue_work(ic->wait_wq, &dio->work);
2270 return;
2271 }
2272 if (journal_read_pos != NOT_FOUND)
2273 dio->range.n_sectors = ic->sectors_per_block;
2274 wait_and_add_new_range(ic, &dio->range);
2275 /*
2276 * wait_and_add_new_range drops the spinlock, so the journal
2277 * may have been changed arbitrarily. We need to recheck.
2278 * To simplify the code, we restrict I/O size to just one block.
2279 */
2280 if (journal_read_pos != NOT_FOUND) {
2281 sector_t next_sector;
2282 unsigned int new_pos;
2283
2284 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2285 if (unlikely(new_pos != journal_read_pos)) {
2286 remove_range_unlocked(ic, &dio->range);
2287 goto retry;
2288 }
2289 }
2290 }
2291 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2292 sector_t next_sector;
2293 unsigned int new_pos;
2294
2295 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2296 if (unlikely(new_pos != NOT_FOUND) ||
2297 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2298 remove_range_unlocked(ic, &dio->range);
2299 spin_unlock_irq(&ic->endio_wait.lock);
2300 queue_work(ic->commit_wq, &ic->commit_work);
2301 flush_workqueue(ic->commit_wq);
2302 queue_work(ic->writer_wq, &ic->writer_work);
2303 flush_workqueue(ic->writer_wq);
2304 discard_retried = true;
2305 goto lock_retry;
2306 }
2307 }
2308 spin_unlock_irq(&ic->endio_wait.lock);
2309
2310 if (unlikely(journal_read_pos != NOT_FOUND)) {
2311 journal_section = journal_read_pos / ic->journal_section_entries;
2312 journal_entry = journal_read_pos % ic->journal_section_entries;
2313 goto journal_read_write;
2314 }
2315
2316 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2317 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2318 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2319 struct bitmap_block_status *bbs;
2320
2321 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2322 spin_lock(&bbs->bio_queue_lock);
2323 bio_list_add(&bbs->bio_queue, bio);
2324 spin_unlock(&bbs->bio_queue_lock);
2325 queue_work(ic->writer_wq, &bbs->work);
2326 return;
2327 }
2328 }
2329
2330 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2331
2332 if (need_sync_io) {
2333 init_completion(&read_comp);
2334 dio->completion = &read_comp;
2335 } else
2336 dio->completion = NULL;
2337
2338 dm_bio_record(&dio->bio_details, bio);
2339 bio_set_dev(bio, ic->dev->bdev);
2340 bio->bi_integrity = NULL;
2341 bio->bi_opf &= ~REQ_INTEGRITY;
2342 bio->bi_end_io = integrity_end_io;
2343 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2344
2345 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2346 integrity_metadata(&dio->work);
2347 dm_integrity_flush_buffers(ic, false);
2348
2349 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2350 dio->completion = NULL;
2351
2352 submit_bio_noacct(bio);
2353
2354 return;
2355 }
2356
2357 submit_bio_noacct(bio);
2358
2359 if (need_sync_io) {
2360 wait_for_completion_io(&read_comp);
2361 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2362 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2363 goto skip_check;
2364 if (ic->mode == 'B') {
2365 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2366 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2367 goto skip_check;
2368 }
2369
2370 if (likely(!bio->bi_status))
2371 integrity_metadata(&dio->work);
2372 else
2373skip_check:
2374 dec_in_flight(dio);
2375 } else {
2376 INIT_WORK(&dio->work, integrity_metadata);
2377 queue_work(ic->metadata_wq, &dio->work);
2378 }
2379
2380 return;
2381
2382journal_read_write:
2383 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2384 goto lock_retry;
2385
2386 do_endio_flush(ic, dio);
2387}
2388
2389
2390static void integrity_bio_wait(struct work_struct *w)
2391{
2392 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2393
2394 dm_integrity_map_continue(dio, false);
2395}
2396
2397static void pad_uncommitted(struct dm_integrity_c *ic)
2398{
2399 if (ic->free_section_entry) {
2400 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2401 ic->free_section_entry = 0;
2402 ic->free_section++;
2403 wraparound_section(ic, &ic->free_section);
2404 ic->n_uncommitted_sections++;
2405 }
2406 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2407 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2408 ic->journal_section_entries + ic->free_sectors)) {
2409 DMCRIT("journal_sections %u, journal_section_entries %u, "
2410 "n_uncommitted_sections %u, n_committed_sections %u, "
2411 "journal_section_entries %u, free_sectors %u",
2412 ic->journal_sections, ic->journal_section_entries,
2413 ic->n_uncommitted_sections, ic->n_committed_sections,
2414 ic->journal_section_entries, ic->free_sectors);
2415 }
2416}
2417
2418static void integrity_commit(struct work_struct *w)
2419{
2420 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2421 unsigned int commit_start, commit_sections;
2422 unsigned int i, j, n;
2423 struct bio *flushes;
2424
2425 del_timer(&ic->autocommit_timer);
2426
2427 spin_lock_irq(&ic->endio_wait.lock);
2428 flushes = bio_list_get(&ic->flush_bio_list);
2429 if (unlikely(ic->mode != 'J')) {
2430 spin_unlock_irq(&ic->endio_wait.lock);
2431 dm_integrity_flush_buffers(ic, true);
2432 goto release_flush_bios;
2433 }
2434
2435 pad_uncommitted(ic);
2436 commit_start = ic->uncommitted_section;
2437 commit_sections = ic->n_uncommitted_sections;
2438 spin_unlock_irq(&ic->endio_wait.lock);
2439
2440 if (!commit_sections)
2441 goto release_flush_bios;
2442
2443 ic->wrote_to_journal = true;
2444
2445 i = commit_start;
2446 for (n = 0; n < commit_sections; n++) {
2447 for (j = 0; j < ic->journal_section_entries; j++) {
2448 struct journal_entry *je;
2449
2450 je = access_journal_entry(ic, i, j);
2451 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2452 }
2453 for (j = 0; j < ic->journal_section_sectors; j++) {
2454 struct journal_sector *js;
2455
2456 js = access_journal(ic, i, j);
2457 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2458 }
2459 i++;
2460 if (unlikely(i >= ic->journal_sections))
2461 ic->commit_seq = next_commit_seq(ic->commit_seq);
2462 wraparound_section(ic, &i);
2463 }
2464 smp_rmb();
2465
2466 write_journal(ic, commit_start, commit_sections);
2467
2468 spin_lock_irq(&ic->endio_wait.lock);
2469 ic->uncommitted_section += commit_sections;
2470 wraparound_section(ic, &ic->uncommitted_section);
2471 ic->n_uncommitted_sections -= commit_sections;
2472 ic->n_committed_sections += commit_sections;
2473 spin_unlock_irq(&ic->endio_wait.lock);
2474
2475 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2476 queue_work(ic->writer_wq, &ic->writer_work);
2477
2478release_flush_bios:
2479 while (flushes) {
2480 struct bio *next = flushes->bi_next;
2481
2482 flushes->bi_next = NULL;
2483 do_endio(ic, flushes);
2484 flushes = next;
2485 }
2486}
2487
2488static void complete_copy_from_journal(unsigned long error, void *context)
2489{
2490 struct journal_io *io = context;
2491 struct journal_completion *comp = io->comp;
2492 struct dm_integrity_c *ic = comp->ic;
2493
2494 remove_range(ic, &io->range);
2495 mempool_free(io, &ic->journal_io_mempool);
2496 if (unlikely(error != 0))
2497 dm_integrity_io_error(ic, "copying from journal", -EIO);
2498 complete_journal_op(comp);
2499}
2500
2501static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2502 struct journal_entry *je)
2503{
2504 unsigned int s = 0;
2505
2506 do {
2507 js->commit_id = je->last_bytes[s];
2508 js++;
2509 } while (++s < ic->sectors_per_block);
2510}
2511
2512static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2513 unsigned int write_sections, bool from_replay)
2514{
2515 unsigned int i, j, n;
2516 struct journal_completion comp;
2517 struct blk_plug plug;
2518
2519 blk_start_plug(&plug);
2520
2521 comp.ic = ic;
2522 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2523 init_completion(&comp.comp);
2524
2525 i = write_start;
2526 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2527#ifndef INTERNAL_VERIFY
2528 if (unlikely(from_replay))
2529#endif
2530 rw_section_mac(ic, i, false);
2531 for (j = 0; j < ic->journal_section_entries; j++) {
2532 struct journal_entry *je = access_journal_entry(ic, i, j);
2533 sector_t sec, area, offset;
2534 unsigned int k, l, next_loop;
2535 sector_t metadata_block;
2536 unsigned int metadata_offset;
2537 struct journal_io *io;
2538
2539 if (journal_entry_is_unused(je))
2540 continue;
2541 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2542 sec = journal_entry_get_sector(je);
2543 if (unlikely(from_replay)) {
2544 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2545 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2546 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2547 }
2548 if (unlikely(sec >= ic->provided_data_sectors)) {
2549 journal_entry_set_unused(je);
2550 continue;
2551 }
2552 }
2553 get_area_and_offset(ic, sec, &area, &offset);
2554 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2555 for (k = j + 1; k < ic->journal_section_entries; k++) {
2556 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2557 sector_t sec2, area2, offset2;
2558
2559 if (journal_entry_is_unused(je2))
2560 break;
2561 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2562 sec2 = journal_entry_get_sector(je2);
2563 if (unlikely(sec2 >= ic->provided_data_sectors))
2564 break;
2565 get_area_and_offset(ic, sec2, &area2, &offset2);
2566 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2567 break;
2568 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2569 }
2570 next_loop = k - 1;
2571
2572 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2573 io->comp = ∁
2574 io->range.logical_sector = sec;
2575 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2576
2577 spin_lock_irq(&ic->endio_wait.lock);
2578 add_new_range_and_wait(ic, &io->range);
2579
2580 if (likely(!from_replay)) {
2581 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2582
2583 /* don't write if there is newer committed sector */
2584 while (j < k && find_newer_committed_node(ic, §ion_node[j])) {
2585 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2586
2587 journal_entry_set_unused(je2);
2588 remove_journal_node(ic, §ion_node[j]);
2589 j++;
2590 sec += ic->sectors_per_block;
2591 offset += ic->sectors_per_block;
2592 }
2593 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) {
2594 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2595
2596 journal_entry_set_unused(je2);
2597 remove_journal_node(ic, §ion_node[k - 1]);
2598 k--;
2599 }
2600 if (j == k) {
2601 remove_range_unlocked(ic, &io->range);
2602 spin_unlock_irq(&ic->endio_wait.lock);
2603 mempool_free(io, &ic->journal_io_mempool);
2604 goto skip_io;
2605 }
2606 for (l = j; l < k; l++)
2607 remove_journal_node(ic, §ion_node[l]);
2608 }
2609 spin_unlock_irq(&ic->endio_wait.lock);
2610
2611 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2612 for (l = j; l < k; l++) {
2613 int r;
2614 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2615
2616 if (
2617#ifndef INTERNAL_VERIFY
2618 unlikely(from_replay) &&
2619#endif
2620 ic->internal_hash) {
2621 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2622
2623 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2624 (char *)access_journal_data(ic, i, l), test_tag);
2625 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2626 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2627 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2628 }
2629 }
2630
2631 journal_entry_set_unused(je2);
2632 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2633 ic->tag_size, TAG_WRITE);
2634 if (unlikely(r))
2635 dm_integrity_io_error(ic, "reading tags", r);
2636 }
2637
2638 atomic_inc(&comp.in_flight);
2639 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2640 (k - j) << ic->sb->log2_sectors_per_block,
2641 get_data_sector(ic, area, offset),
2642 complete_copy_from_journal, io);
2643skip_io:
2644 j = next_loop;
2645 }
2646 }
2647
2648 dm_bufio_write_dirty_buffers_async(ic->bufio);
2649
2650 blk_finish_plug(&plug);
2651
2652 complete_journal_op(&comp);
2653 wait_for_completion_io(&comp.comp);
2654
2655 dm_integrity_flush_buffers(ic, true);
2656}
2657
2658static void integrity_writer(struct work_struct *w)
2659{
2660 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2661 unsigned int write_start, write_sections;
2662 unsigned int prev_free_sectors;
2663
2664 spin_lock_irq(&ic->endio_wait.lock);
2665 write_start = ic->committed_section;
2666 write_sections = ic->n_committed_sections;
2667 spin_unlock_irq(&ic->endio_wait.lock);
2668
2669 if (!write_sections)
2670 return;
2671
2672 do_journal_write(ic, write_start, write_sections, false);
2673
2674 spin_lock_irq(&ic->endio_wait.lock);
2675
2676 ic->committed_section += write_sections;
2677 wraparound_section(ic, &ic->committed_section);
2678 ic->n_committed_sections -= write_sections;
2679
2680 prev_free_sectors = ic->free_sectors;
2681 ic->free_sectors += write_sections * ic->journal_section_entries;
2682 if (unlikely(!prev_free_sectors))
2683 wake_up_locked(&ic->endio_wait);
2684
2685 spin_unlock_irq(&ic->endio_wait.lock);
2686}
2687
2688static void recalc_write_super(struct dm_integrity_c *ic)
2689{
2690 int r;
2691
2692 dm_integrity_flush_buffers(ic, false);
2693 if (dm_integrity_failed(ic))
2694 return;
2695
2696 r = sync_rw_sb(ic, REQ_OP_WRITE);
2697 if (unlikely(r))
2698 dm_integrity_io_error(ic, "writing superblock", r);
2699}
2700
2701static void integrity_recalc(struct work_struct *w)
2702{
2703 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2704 size_t recalc_tags_size;
2705 u8 *recalc_buffer = NULL;
2706 u8 *recalc_tags = NULL;
2707 struct dm_integrity_range range;
2708 struct dm_io_request io_req;
2709 struct dm_io_region io_loc;
2710 sector_t area, offset;
2711 sector_t metadata_block;
2712 unsigned int metadata_offset;
2713 sector_t logical_sector, n_sectors;
2714 __u8 *t;
2715 unsigned int i;
2716 int r;
2717 unsigned int super_counter = 0;
2718 unsigned recalc_sectors = RECALC_SECTORS;
2719
2720retry:
2721 recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2722 if (!recalc_buffer) {
2723oom:
2724 recalc_sectors >>= 1;
2725 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2726 goto retry;
2727 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2728 goto free_ret;
2729 }
2730 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2731 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
2732 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
2733 recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
2734 if (!recalc_tags) {
2735 vfree(recalc_buffer);
2736 recalc_buffer = NULL;
2737 goto oom;
2738 }
2739
2740 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2741
2742 spin_lock_irq(&ic->endio_wait.lock);
2743
2744next_chunk:
2745
2746 if (unlikely(dm_post_suspending(ic->ti)))
2747 goto unlock_ret;
2748
2749 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2750 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2751 if (ic->mode == 'B') {
2752 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2753 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2754 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2755 }
2756 goto unlock_ret;
2757 }
2758
2759 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2760 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2761 if (!ic->meta_dev)
2762 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2763
2764 add_new_range_and_wait(ic, &range);
2765 spin_unlock_irq(&ic->endio_wait.lock);
2766 logical_sector = range.logical_sector;
2767 n_sectors = range.n_sectors;
2768
2769 if (ic->mode == 'B') {
2770 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2771 goto advance_and_next;
2772
2773 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2774 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2775 logical_sector += ic->sectors_per_block;
2776 n_sectors -= ic->sectors_per_block;
2777 cond_resched();
2778 }
2779 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2780 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2781 n_sectors -= ic->sectors_per_block;
2782 cond_resched();
2783 }
2784 get_area_and_offset(ic, logical_sector, &area, &offset);
2785 }
2786
2787 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2788
2789 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2790 recalc_write_super(ic);
2791 if (ic->mode == 'B')
2792 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2793
2794 super_counter = 0;
2795 }
2796
2797 if (unlikely(dm_integrity_failed(ic)))
2798 goto err;
2799
2800 io_req.bi_opf = REQ_OP_READ;
2801 io_req.mem.type = DM_IO_VMA;
2802 io_req.mem.ptr.addr = recalc_buffer;
2803 io_req.notify.fn = NULL;
2804 io_req.client = ic->io;
2805 io_loc.bdev = ic->dev->bdev;
2806 io_loc.sector = get_data_sector(ic, area, offset);
2807 io_loc.count = n_sectors;
2808
2809 r = dm_io(&io_req, 1, &io_loc, NULL);
2810 if (unlikely(r)) {
2811 dm_integrity_io_error(ic, "reading data", r);
2812 goto err;
2813 }
2814
2815 t = recalc_tags;
2816 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2817 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
2818 t += ic->tag_size;
2819 }
2820
2821 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2822
2823 r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
2824 if (unlikely(r)) {
2825 dm_integrity_io_error(ic, "writing tags", r);
2826 goto err;
2827 }
2828
2829 if (ic->mode == 'B') {
2830 sector_t start, end;
2831
2832 start = (range.logical_sector >>
2833 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2834 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2835 end = ((range.logical_sector + range.n_sectors) >>
2836 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2837 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2838 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2839 }
2840
2841advance_and_next:
2842 cond_resched();
2843
2844 spin_lock_irq(&ic->endio_wait.lock);
2845 remove_range_unlocked(ic, &range);
2846 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2847 goto next_chunk;
2848
2849err:
2850 remove_range(ic, &range);
2851 goto free_ret;
2852
2853unlock_ret:
2854 spin_unlock_irq(&ic->endio_wait.lock);
2855
2856 recalc_write_super(ic);
2857
2858free_ret:
2859 vfree(recalc_buffer);
2860 kvfree(recalc_tags);
2861}
2862
2863static void bitmap_block_work(struct work_struct *w)
2864{
2865 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2866 struct dm_integrity_c *ic = bbs->ic;
2867 struct bio *bio;
2868 struct bio_list bio_queue;
2869 struct bio_list waiting;
2870
2871 bio_list_init(&waiting);
2872
2873 spin_lock(&bbs->bio_queue_lock);
2874 bio_queue = bbs->bio_queue;
2875 bio_list_init(&bbs->bio_queue);
2876 spin_unlock(&bbs->bio_queue_lock);
2877
2878 while ((bio = bio_list_pop(&bio_queue))) {
2879 struct dm_integrity_io *dio;
2880
2881 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2882
2883 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2884 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2885 remove_range(ic, &dio->range);
2886 INIT_WORK(&dio->work, integrity_bio_wait);
2887 queue_work(ic->offload_wq, &dio->work);
2888 } else {
2889 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2890 dio->range.n_sectors, BITMAP_OP_SET);
2891 bio_list_add(&waiting, bio);
2892 }
2893 }
2894
2895 if (bio_list_empty(&waiting))
2896 return;
2897
2898 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2899 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2900 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2901
2902 while ((bio = bio_list_pop(&waiting))) {
2903 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2904
2905 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2906 dio->range.n_sectors, BITMAP_OP_SET);
2907
2908 remove_range(ic, &dio->range);
2909 INIT_WORK(&dio->work, integrity_bio_wait);
2910 queue_work(ic->offload_wq, &dio->work);
2911 }
2912
2913 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2914}
2915
2916static void bitmap_flush_work(struct work_struct *work)
2917{
2918 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2919 struct dm_integrity_range range;
2920 unsigned long limit;
2921 struct bio *bio;
2922
2923 dm_integrity_flush_buffers(ic, false);
2924
2925 range.logical_sector = 0;
2926 range.n_sectors = ic->provided_data_sectors;
2927
2928 spin_lock_irq(&ic->endio_wait.lock);
2929 add_new_range_and_wait(ic, &range);
2930 spin_unlock_irq(&ic->endio_wait.lock);
2931
2932 dm_integrity_flush_buffers(ic, true);
2933
2934 limit = ic->provided_data_sectors;
2935 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2936 limit = le64_to_cpu(ic->sb->recalc_sector)
2937 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2938 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2939 }
2940 /*DEBUG_print("zeroing journal\n");*/
2941 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2942 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2943
2944 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
2945 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2946
2947 spin_lock_irq(&ic->endio_wait.lock);
2948 remove_range_unlocked(ic, &range);
2949 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2950 bio_endio(bio);
2951 spin_unlock_irq(&ic->endio_wait.lock);
2952 spin_lock_irq(&ic->endio_wait.lock);
2953 }
2954 spin_unlock_irq(&ic->endio_wait.lock);
2955}
2956
2957
2958static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2959 unsigned int n_sections, unsigned char commit_seq)
2960{
2961 unsigned int i, j, n;
2962
2963 if (!n_sections)
2964 return;
2965
2966 for (n = 0; n < n_sections; n++) {
2967 i = start_section + n;
2968 wraparound_section(ic, &i);
2969 for (j = 0; j < ic->journal_section_sectors; j++) {
2970 struct journal_sector *js = access_journal(ic, i, j);
2971
2972 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2973 memset(&js->sectors, 0, sizeof(js->sectors));
2974 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2975 }
2976 for (j = 0; j < ic->journal_section_entries; j++) {
2977 struct journal_entry *je = access_journal_entry(ic, i, j);
2978
2979 journal_entry_set_unused(je);
2980 }
2981 }
2982
2983 write_journal(ic, start_section, n_sections);
2984}
2985
2986static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2987{
2988 unsigned char k;
2989
2990 for (k = 0; k < N_COMMIT_IDS; k++) {
2991 if (dm_integrity_commit_id(ic, i, j, k) == id)
2992 return k;
2993 }
2994 dm_integrity_io_error(ic, "journal commit id", -EIO);
2995 return -EIO;
2996}
2997
2998static void replay_journal(struct dm_integrity_c *ic)
2999{
3000 unsigned int i, j;
3001 bool used_commit_ids[N_COMMIT_IDS];
3002 unsigned int max_commit_id_sections[N_COMMIT_IDS];
3003 unsigned int write_start, write_sections;
3004 unsigned int continue_section;
3005 bool journal_empty;
3006 unsigned char unused, last_used, want_commit_seq;
3007
3008 if (ic->mode == 'R')
3009 return;
3010
3011 if (ic->journal_uptodate)
3012 return;
3013
3014 last_used = 0;
3015 write_start = 0;
3016
3017 if (!ic->just_formatted) {
3018 DEBUG_print("reading journal\n");
3019 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3020 if (ic->journal_io)
3021 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3022 if (ic->journal_io) {
3023 struct journal_completion crypt_comp;
3024
3025 crypt_comp.ic = ic;
3026 init_completion(&crypt_comp.comp);
3027 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3028 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3029 wait_for_completion(&crypt_comp.comp);
3030 }
3031 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3032 }
3033
3034 if (dm_integrity_failed(ic))
3035 goto clear_journal;
3036
3037 journal_empty = true;
3038 memset(used_commit_ids, 0, sizeof(used_commit_ids));
3039 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3040 for (i = 0; i < ic->journal_sections; i++) {
3041 for (j = 0; j < ic->journal_section_sectors; j++) {
3042 int k;
3043 struct journal_sector *js = access_journal(ic, i, j);
3044
3045 k = find_commit_seq(ic, i, j, js->commit_id);
3046 if (k < 0)
3047 goto clear_journal;
3048 used_commit_ids[k] = true;
3049 max_commit_id_sections[k] = i;
3050 }
3051 if (journal_empty) {
3052 for (j = 0; j < ic->journal_section_entries; j++) {
3053 struct journal_entry *je = access_journal_entry(ic, i, j);
3054
3055 if (!journal_entry_is_unused(je)) {
3056 journal_empty = false;
3057 break;
3058 }
3059 }
3060 }
3061 }
3062
3063 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3064 unused = N_COMMIT_IDS - 1;
3065 while (unused && !used_commit_ids[unused - 1])
3066 unused--;
3067 } else {
3068 for (unused = 0; unused < N_COMMIT_IDS; unused++)
3069 if (!used_commit_ids[unused])
3070 break;
3071 if (unused == N_COMMIT_IDS) {
3072 dm_integrity_io_error(ic, "journal commit ids", -EIO);
3073 goto clear_journal;
3074 }
3075 }
3076 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3077 unused, used_commit_ids[0], used_commit_ids[1],
3078 used_commit_ids[2], used_commit_ids[3]);
3079
3080 last_used = prev_commit_seq(unused);
3081 want_commit_seq = prev_commit_seq(last_used);
3082
3083 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3084 journal_empty = true;
3085
3086 write_start = max_commit_id_sections[last_used] + 1;
3087 if (unlikely(write_start >= ic->journal_sections))
3088 want_commit_seq = next_commit_seq(want_commit_seq);
3089 wraparound_section(ic, &write_start);
3090
3091 i = write_start;
3092 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3093 for (j = 0; j < ic->journal_section_sectors; j++) {
3094 struct journal_sector *js = access_journal(ic, i, j);
3095
3096 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3097 /*
3098 * This could be caused by crash during writing.
3099 * We won't replay the inconsistent part of the
3100 * journal.
3101 */
3102 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3103 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3104 goto brk;
3105 }
3106 }
3107 i++;
3108 if (unlikely(i >= ic->journal_sections))
3109 want_commit_seq = next_commit_seq(want_commit_seq);
3110 wraparound_section(ic, &i);
3111 }
3112brk:
3113
3114 if (!journal_empty) {
3115 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3116 write_sections, write_start, want_commit_seq);
3117 do_journal_write(ic, write_start, write_sections, true);
3118 }
3119
3120 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3121 continue_section = write_start;
3122 ic->commit_seq = want_commit_seq;
3123 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3124 } else {
3125 unsigned int s;
3126 unsigned char erase_seq;
3127
3128clear_journal:
3129 DEBUG_print("clearing journal\n");
3130
3131 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3132 s = write_start;
3133 init_journal(ic, s, 1, erase_seq);
3134 s++;
3135 wraparound_section(ic, &s);
3136 if (ic->journal_sections >= 2) {
3137 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3138 s += ic->journal_sections - 2;
3139 wraparound_section(ic, &s);
3140 init_journal(ic, s, 1, erase_seq);
3141 }
3142
3143 continue_section = 0;
3144 ic->commit_seq = next_commit_seq(erase_seq);
3145 }
3146
3147 ic->committed_section = continue_section;
3148 ic->n_committed_sections = 0;
3149
3150 ic->uncommitted_section = continue_section;
3151 ic->n_uncommitted_sections = 0;
3152
3153 ic->free_section = continue_section;
3154 ic->free_section_entry = 0;
3155 ic->free_sectors = ic->journal_entries;
3156
3157 ic->journal_tree_root = RB_ROOT;
3158 for (i = 0; i < ic->journal_entries; i++)
3159 init_journal_node(&ic->journal_tree[i]);
3160}
3161
3162static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3163{
3164 DEBUG_print("%s\n", __func__);
3165
3166 if (ic->mode == 'B') {
3167 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3168 ic->synchronous_mode = 1;
3169
3170 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3171 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3172 flush_workqueue(ic->commit_wq);
3173 }
3174}
3175
3176static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3177{
3178 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3179
3180 DEBUG_print("%s\n", __func__);
3181
3182 dm_integrity_enter_synchronous_mode(ic);
3183
3184 return NOTIFY_DONE;
3185}
3186
3187static void dm_integrity_postsuspend(struct dm_target *ti)
3188{
3189 struct dm_integrity_c *ic = ti->private;
3190 int r;
3191
3192 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3193
3194 del_timer_sync(&ic->autocommit_timer);
3195
3196 if (ic->recalc_wq)
3197 drain_workqueue(ic->recalc_wq);
3198
3199 if (ic->mode == 'B')
3200 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3201
3202 queue_work(ic->commit_wq, &ic->commit_work);
3203 drain_workqueue(ic->commit_wq);
3204
3205 if (ic->mode == 'J') {
3206 queue_work(ic->writer_wq, &ic->writer_work);
3207 drain_workqueue(ic->writer_wq);
3208 dm_integrity_flush_buffers(ic, true);
3209 if (ic->wrote_to_journal) {
3210 init_journal(ic, ic->free_section,
3211 ic->journal_sections - ic->free_section, ic->commit_seq);
3212 if (ic->free_section) {
3213 init_journal(ic, 0, ic->free_section,
3214 next_commit_seq(ic->commit_seq));
3215 }
3216 }
3217 }
3218
3219 if (ic->mode == 'B') {
3220 dm_integrity_flush_buffers(ic, true);
3221#if 1
3222 /* set to 0 to test bitmap replay code */
3223 init_journal(ic, 0, ic->journal_sections, 0);
3224 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3225 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3226 if (unlikely(r))
3227 dm_integrity_io_error(ic, "writing superblock", r);
3228#endif
3229 }
3230
3231 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3232
3233 ic->journal_uptodate = true;
3234}
3235
3236static void dm_integrity_resume(struct dm_target *ti)
3237{
3238 struct dm_integrity_c *ic = ti->private;
3239 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3240 int r;
3241
3242 DEBUG_print("resume\n");
3243
3244 ic->wrote_to_journal = false;
3245
3246 if (ic->provided_data_sectors != old_provided_data_sectors) {
3247 if (ic->provided_data_sectors > old_provided_data_sectors &&
3248 ic->mode == 'B' &&
3249 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3250 rw_journal_sectors(ic, REQ_OP_READ, 0,
3251 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3252 block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3253 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3254 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3255 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3256 }
3257
3258 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3259 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3260 if (unlikely(r))
3261 dm_integrity_io_error(ic, "writing superblock", r);
3262 }
3263
3264 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3265 DEBUG_print("resume dirty_bitmap\n");
3266 rw_journal_sectors(ic, REQ_OP_READ, 0,
3267 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3268 if (ic->mode == 'B') {
3269 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3270 !ic->reset_recalculate_flag) {
3271 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3272 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3273 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3274 BITMAP_OP_TEST_ALL_CLEAR)) {
3275 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3276 ic->sb->recalc_sector = cpu_to_le64(0);
3277 }
3278 } else {
3279 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3280 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3281 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3282 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3283 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3284 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3285 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3286 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3287 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3288 ic->sb->recalc_sector = cpu_to_le64(0);
3289 }
3290 } else {
3291 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3292 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3293 ic->reset_recalculate_flag) {
3294 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3295 ic->sb->recalc_sector = cpu_to_le64(0);
3296 }
3297 init_journal(ic, 0, ic->journal_sections, 0);
3298 replay_journal(ic);
3299 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3300 }
3301 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3302 if (unlikely(r))
3303 dm_integrity_io_error(ic, "writing superblock", r);
3304 } else {
3305 replay_journal(ic);
3306 if (ic->reset_recalculate_flag) {
3307 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3308 ic->sb->recalc_sector = cpu_to_le64(0);
3309 }
3310 if (ic->mode == 'B') {
3311 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3312 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3313 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3314 if (unlikely(r))
3315 dm_integrity_io_error(ic, "writing superblock", r);
3316
3317 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3318 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3319 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3320 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3321 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3322 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3323 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3324 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3325 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3326 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3327 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3328 }
3329 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3330 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3331 }
3332 }
3333
3334 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3335 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3336 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3337
3338 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3339 if (recalc_pos < ic->provided_data_sectors) {
3340 queue_work(ic->recalc_wq, &ic->recalc_work);
3341 } else if (recalc_pos > ic->provided_data_sectors) {
3342 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3343 recalc_write_super(ic);
3344 }
3345 }
3346
3347 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3348 ic->reboot_notifier.next = NULL;
3349 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
3350 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3351
3352#if 0
3353 /* set to 1 to stress test synchronous mode */
3354 dm_integrity_enter_synchronous_mode(ic);
3355#endif
3356}
3357
3358static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3359 unsigned int status_flags, char *result, unsigned int maxlen)
3360{
3361 struct dm_integrity_c *ic = ti->private;
3362 unsigned int arg_count;
3363 size_t sz = 0;
3364
3365 switch (type) {
3366 case STATUSTYPE_INFO:
3367 DMEMIT("%llu %llu",
3368 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3369 ic->provided_data_sectors);
3370 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3371 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3372 else
3373 DMEMIT(" -");
3374 break;
3375
3376 case STATUSTYPE_TABLE: {
3377 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3378
3379 watermark_percentage += ic->journal_entries / 2;
3380 do_div(watermark_percentage, ic->journal_entries);
3381 arg_count = 3;
3382 arg_count += !!ic->meta_dev;
3383 arg_count += ic->sectors_per_block != 1;
3384 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3385 arg_count += ic->reset_recalculate_flag;
3386 arg_count += ic->discard;
3387 arg_count += ic->mode == 'J';
3388 arg_count += ic->mode == 'J';
3389 arg_count += ic->mode == 'B';
3390 arg_count += ic->mode == 'B';
3391 arg_count += !!ic->internal_hash_alg.alg_string;
3392 arg_count += !!ic->journal_crypt_alg.alg_string;
3393 arg_count += !!ic->journal_mac_alg.alg_string;
3394 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3395 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3396 arg_count += ic->legacy_recalculate;
3397 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3398 ic->tag_size, ic->mode, arg_count);
3399 if (ic->meta_dev)
3400 DMEMIT(" meta_device:%s", ic->meta_dev->name);
3401 if (ic->sectors_per_block != 1)
3402 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3403 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3404 DMEMIT(" recalculate");
3405 if (ic->reset_recalculate_flag)
3406 DMEMIT(" reset_recalculate");
3407 if (ic->discard)
3408 DMEMIT(" allow_discards");
3409 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3410 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3411 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3412 if (ic->mode == 'J') {
3413 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3414 DMEMIT(" commit_time:%u", ic->autocommit_msec);
3415 }
3416 if (ic->mode == 'B') {
3417 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3418 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3419 }
3420 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3421 DMEMIT(" fix_padding");
3422 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3423 DMEMIT(" fix_hmac");
3424 if (ic->legacy_recalculate)
3425 DMEMIT(" legacy_recalculate");
3426
3427#define EMIT_ALG(a, n) \
3428 do { \
3429 if (ic->a.alg_string) { \
3430 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3431 if (ic->a.key_string) \
3432 DMEMIT(":%s", ic->a.key_string);\
3433 } \
3434 } while (0)
3435 EMIT_ALG(internal_hash_alg, "internal_hash");
3436 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3437 EMIT_ALG(journal_mac_alg, "journal_mac");
3438 break;
3439 }
3440 case STATUSTYPE_IMA:
3441 DMEMIT_TARGET_NAME_VERSION(ti->type);
3442 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3443 ic->dev->name, ic->start, ic->tag_size, ic->mode);
3444
3445 if (ic->meta_dev)
3446 DMEMIT(",meta_device=%s", ic->meta_dev->name);
3447 if (ic->sectors_per_block != 1)
3448 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3449
3450 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3451 'y' : 'n');
3452 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3453 DMEMIT(",fix_padding=%c",
3454 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3455 DMEMIT(",fix_hmac=%c",
3456 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3457 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3458
3459 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3460 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3461 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3462 DMEMIT(";");
3463 break;
3464 }
3465}
3466
3467static int dm_integrity_iterate_devices(struct dm_target *ti,
3468 iterate_devices_callout_fn fn, void *data)
3469{
3470 struct dm_integrity_c *ic = ti->private;
3471
3472 if (!ic->meta_dev)
3473 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3474 else
3475 return fn(ti, ic->dev, 0, ti->len, data);
3476}
3477
3478static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3479{
3480 struct dm_integrity_c *ic = ti->private;
3481
3482 if (ic->sectors_per_block > 1) {
3483 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3484 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3485 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3486 limits->dma_alignment = limits->logical_block_size - 1;
3487 }
3488}
3489
3490static void calculate_journal_section_size(struct dm_integrity_c *ic)
3491{
3492 unsigned int sector_space = JOURNAL_SECTOR_DATA;
3493
3494 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3495 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3496 JOURNAL_ENTRY_ROUNDUP);
3497
3498 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3499 sector_space -= JOURNAL_MAC_PER_SECTOR;
3500 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3501 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3502 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3503 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3504}
3505
3506static int calculate_device_limits(struct dm_integrity_c *ic)
3507{
3508 __u64 initial_sectors;
3509
3510 calculate_journal_section_size(ic);
3511 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3512 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3513 return -EINVAL;
3514 ic->initial_sectors = initial_sectors;
3515
3516 if (!ic->meta_dev) {
3517 sector_t last_sector, last_area, last_offset;
3518
3519 /* we have to maintain excessive padding for compatibility with existing volumes */
3520 __u64 metadata_run_padding =
3521 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3522 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3523 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3524
3525 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3526 metadata_run_padding) >> SECTOR_SHIFT;
3527 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3528 ic->log2_metadata_run = __ffs(ic->metadata_run);
3529 else
3530 ic->log2_metadata_run = -1;
3531
3532 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3533 last_sector = get_data_sector(ic, last_area, last_offset);
3534 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3535 return -EINVAL;
3536 } else {
3537 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3538
3539 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3540 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3541 meta_size <<= ic->log2_buffer_sectors;
3542 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3543 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3544 return -EINVAL;
3545 ic->metadata_run = 1;
3546 ic->log2_metadata_run = 0;
3547 }
3548
3549 return 0;
3550}
3551
3552static void get_provided_data_sectors(struct dm_integrity_c *ic)
3553{
3554 if (!ic->meta_dev) {
3555 int test_bit;
3556
3557 ic->provided_data_sectors = 0;
3558 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3559 __u64 prev_data_sectors = ic->provided_data_sectors;
3560
3561 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3562 if (calculate_device_limits(ic))
3563 ic->provided_data_sectors = prev_data_sectors;
3564 }
3565 } else {
3566 ic->provided_data_sectors = ic->data_device_sectors;
3567 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3568 }
3569}
3570
3571static int initialize_superblock(struct dm_integrity_c *ic,
3572 unsigned int journal_sectors, unsigned int interleave_sectors)
3573{
3574 unsigned int journal_sections;
3575 int test_bit;
3576
3577 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3578 memcpy(ic->sb->magic, SB_MAGIC, 8);
3579 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3580 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3581 if (ic->journal_mac_alg.alg_string)
3582 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3583
3584 calculate_journal_section_size(ic);
3585 journal_sections = journal_sectors / ic->journal_section_sectors;
3586 if (!journal_sections)
3587 journal_sections = 1;
3588
3589 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3590 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3591 get_random_bytes(ic->sb->salt, SALT_SIZE);
3592 }
3593
3594 if (!ic->meta_dev) {
3595 if (ic->fix_padding)
3596 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3597 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3598 if (!interleave_sectors)
3599 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3600 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3601 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3602 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3603
3604 get_provided_data_sectors(ic);
3605 if (!ic->provided_data_sectors)
3606 return -EINVAL;
3607 } else {
3608 ic->sb->log2_interleave_sectors = 0;
3609
3610 get_provided_data_sectors(ic);
3611 if (!ic->provided_data_sectors)
3612 return -EINVAL;
3613
3614try_smaller_buffer:
3615 ic->sb->journal_sections = cpu_to_le32(0);
3616 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3617 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3618 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3619
3620 if (test_journal_sections > journal_sections)
3621 continue;
3622 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3623 if (calculate_device_limits(ic))
3624 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3625
3626 }
3627 if (!le32_to_cpu(ic->sb->journal_sections)) {
3628 if (ic->log2_buffer_sectors > 3) {
3629 ic->log2_buffer_sectors--;
3630 goto try_smaller_buffer;
3631 }
3632 return -EINVAL;
3633 }
3634 }
3635
3636 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3637
3638 sb_set_version(ic);
3639
3640 return 0;
3641}
3642
3643static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3644{
3645 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3646 struct blk_integrity bi;
3647
3648 memset(&bi, 0, sizeof(bi));
3649 bi.profile = &dm_integrity_profile;
3650 bi.tuple_size = ic->tag_size;
3651 bi.tag_size = bi.tuple_size;
3652 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3653
3654 blk_integrity_register(disk, &bi);
3655 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3656}
3657
3658static void dm_integrity_free_page_list(struct page_list *pl)
3659{
3660 unsigned int i;
3661
3662 if (!pl)
3663 return;
3664 for (i = 0; pl[i].page; i++)
3665 __free_page(pl[i].page);
3666 kvfree(pl);
3667}
3668
3669static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3670{
3671 struct page_list *pl;
3672 unsigned int i;
3673
3674 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3675 if (!pl)
3676 return NULL;
3677
3678 for (i = 0; i < n_pages; i++) {
3679 pl[i].page = alloc_page(GFP_KERNEL);
3680 if (!pl[i].page) {
3681 dm_integrity_free_page_list(pl);
3682 return NULL;
3683 }
3684 if (i)
3685 pl[i - 1].next = &pl[i];
3686 }
3687 pl[i].page = NULL;
3688 pl[i].next = NULL;
3689
3690 return pl;
3691}
3692
3693static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3694{
3695 unsigned int i;
3696
3697 for (i = 0; i < ic->journal_sections; i++)
3698 kvfree(sl[i]);
3699 kvfree(sl);
3700}
3701
3702static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3703 struct page_list *pl)
3704{
3705 struct scatterlist **sl;
3706 unsigned int i;
3707
3708 sl = kvmalloc_array(ic->journal_sections,
3709 sizeof(struct scatterlist *),
3710 GFP_KERNEL | __GFP_ZERO);
3711 if (!sl)
3712 return NULL;
3713
3714 for (i = 0; i < ic->journal_sections; i++) {
3715 struct scatterlist *s;
3716 unsigned int start_index, start_offset;
3717 unsigned int end_index, end_offset;
3718 unsigned int n_pages;
3719 unsigned int idx;
3720
3721 page_list_location(ic, i, 0, &start_index, &start_offset);
3722 page_list_location(ic, i, ic->journal_section_sectors - 1,
3723 &end_index, &end_offset);
3724
3725 n_pages = (end_index - start_index + 1);
3726
3727 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3728 GFP_KERNEL);
3729 if (!s) {
3730 dm_integrity_free_journal_scatterlist(ic, sl);
3731 return NULL;
3732 }
3733
3734 sg_init_table(s, n_pages);
3735 for (idx = start_index; idx <= end_index; idx++) {
3736 char *va = lowmem_page_address(pl[idx].page);
3737 unsigned int start = 0, end = PAGE_SIZE;
3738
3739 if (idx == start_index)
3740 start = start_offset;
3741 if (idx == end_index)
3742 end = end_offset + (1 << SECTOR_SHIFT);
3743 sg_set_buf(&s[idx - start_index], va + start, end - start);
3744 }
3745
3746 sl[i] = s;
3747 }
3748
3749 return sl;
3750}
3751
3752static void free_alg(struct alg_spec *a)
3753{
3754 kfree_sensitive(a->alg_string);
3755 kfree_sensitive(a->key);
3756 memset(a, 0, sizeof(*a));
3757}
3758
3759static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3760{
3761 char *k;
3762
3763 free_alg(a);
3764
3765 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3766 if (!a->alg_string)
3767 goto nomem;
3768
3769 k = strchr(a->alg_string, ':');
3770 if (k) {
3771 *k = 0;
3772 a->key_string = k + 1;
3773 if (strlen(a->key_string) & 1)
3774 goto inval;
3775
3776 a->key_size = strlen(a->key_string) / 2;
3777 a->key = kmalloc(a->key_size, GFP_KERNEL);
3778 if (!a->key)
3779 goto nomem;
3780 if (hex2bin(a->key, a->key_string, a->key_size))
3781 goto inval;
3782 }
3783
3784 return 0;
3785inval:
3786 *error = error_inval;
3787 return -EINVAL;
3788nomem:
3789 *error = "Out of memory for an argument";
3790 return -ENOMEM;
3791}
3792
3793static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3794 char *error_alg, char *error_key)
3795{
3796 int r;
3797
3798 if (a->alg_string) {
3799 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3800 if (IS_ERR(*hash)) {
3801 *error = error_alg;
3802 r = PTR_ERR(*hash);
3803 *hash = NULL;
3804 return r;
3805 }
3806
3807 if (a->key) {
3808 r = crypto_shash_setkey(*hash, a->key, a->key_size);
3809 if (r) {
3810 *error = error_key;
3811 return r;
3812 }
3813 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3814 *error = error_key;
3815 return -ENOKEY;
3816 }
3817 }
3818
3819 return 0;
3820}
3821
3822static int create_journal(struct dm_integrity_c *ic, char **error)
3823{
3824 int r = 0;
3825 unsigned int i;
3826 __u64 journal_pages, journal_desc_size, journal_tree_size;
3827 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3828 struct skcipher_request *req = NULL;
3829
3830 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3831 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3832 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3833 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3834
3835 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3836 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3837 journal_desc_size = journal_pages * sizeof(struct page_list);
3838 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3839 *error = "Journal doesn't fit into memory";
3840 r = -ENOMEM;
3841 goto bad;
3842 }
3843 ic->journal_pages = journal_pages;
3844
3845 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3846 if (!ic->journal) {
3847 *error = "Could not allocate memory for journal";
3848 r = -ENOMEM;
3849 goto bad;
3850 }
3851 if (ic->journal_crypt_alg.alg_string) {
3852 unsigned int ivsize, blocksize;
3853 struct journal_completion comp;
3854
3855 comp.ic = ic;
3856 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3857 if (IS_ERR(ic->journal_crypt)) {
3858 *error = "Invalid journal cipher";
3859 r = PTR_ERR(ic->journal_crypt);
3860 ic->journal_crypt = NULL;
3861 goto bad;
3862 }
3863 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3864 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3865
3866 if (ic->journal_crypt_alg.key) {
3867 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3868 ic->journal_crypt_alg.key_size);
3869 if (r) {
3870 *error = "Error setting encryption key";
3871 goto bad;
3872 }
3873 }
3874 DEBUG_print("cipher %s, block size %u iv size %u\n",
3875 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3876
3877 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3878 if (!ic->journal_io) {
3879 *error = "Could not allocate memory for journal io";
3880 r = -ENOMEM;
3881 goto bad;
3882 }
3883
3884 if (blocksize == 1) {
3885 struct scatterlist *sg;
3886
3887 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3888 if (!req) {
3889 *error = "Could not allocate crypt request";
3890 r = -ENOMEM;
3891 goto bad;
3892 }
3893
3894 crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3895 if (!crypt_iv) {
3896 *error = "Could not allocate iv";
3897 r = -ENOMEM;
3898 goto bad;
3899 }
3900
3901 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3902 if (!ic->journal_xor) {
3903 *error = "Could not allocate memory for journal xor";
3904 r = -ENOMEM;
3905 goto bad;
3906 }
3907
3908 sg = kvmalloc_array(ic->journal_pages + 1,
3909 sizeof(struct scatterlist),
3910 GFP_KERNEL);
3911 if (!sg) {
3912 *error = "Unable to allocate sg list";
3913 r = -ENOMEM;
3914 goto bad;
3915 }
3916 sg_init_table(sg, ic->journal_pages + 1);
3917 for (i = 0; i < ic->journal_pages; i++) {
3918 char *va = lowmem_page_address(ic->journal_xor[i].page);
3919
3920 clear_page(va);
3921 sg_set_buf(&sg[i], va, PAGE_SIZE);
3922 }
3923 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
3924
3925 skcipher_request_set_crypt(req, sg, sg,
3926 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
3927 init_completion(&comp.comp);
3928 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3929 if (do_crypt(true, req, &comp))
3930 wait_for_completion(&comp.comp);
3931 kvfree(sg);
3932 r = dm_integrity_failed(ic);
3933 if (r) {
3934 *error = "Unable to encrypt journal";
3935 goto bad;
3936 }
3937 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3938
3939 crypto_free_skcipher(ic->journal_crypt);
3940 ic->journal_crypt = NULL;
3941 } else {
3942 unsigned int crypt_len = roundup(ivsize, blocksize);
3943
3944 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3945 if (!req) {
3946 *error = "Could not allocate crypt request";
3947 r = -ENOMEM;
3948 goto bad;
3949 }
3950
3951 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3952 if (!crypt_iv) {
3953 *error = "Could not allocate iv";
3954 r = -ENOMEM;
3955 goto bad;
3956 }
3957
3958 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3959 if (!crypt_data) {
3960 *error = "Unable to allocate crypt data";
3961 r = -ENOMEM;
3962 goto bad;
3963 }
3964
3965 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3966 if (!ic->journal_scatterlist) {
3967 *error = "Unable to allocate sg list";
3968 r = -ENOMEM;
3969 goto bad;
3970 }
3971 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3972 if (!ic->journal_io_scatterlist) {
3973 *error = "Unable to allocate sg list";
3974 r = -ENOMEM;
3975 goto bad;
3976 }
3977 ic->sk_requests = kvmalloc_array(ic->journal_sections,
3978 sizeof(struct skcipher_request *),
3979 GFP_KERNEL | __GFP_ZERO);
3980 if (!ic->sk_requests) {
3981 *error = "Unable to allocate sk requests";
3982 r = -ENOMEM;
3983 goto bad;
3984 }
3985 for (i = 0; i < ic->journal_sections; i++) {
3986 struct scatterlist sg;
3987 struct skcipher_request *section_req;
3988 __le32 section_le = cpu_to_le32(i);
3989
3990 memset(crypt_iv, 0x00, ivsize);
3991 memset(crypt_data, 0x00, crypt_len);
3992 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le)));
3993
3994 sg_init_one(&sg, crypt_data, crypt_len);
3995 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3996 init_completion(&comp.comp);
3997 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3998 if (do_crypt(true, req, &comp))
3999 wait_for_completion(&comp.comp);
4000
4001 r = dm_integrity_failed(ic);
4002 if (r) {
4003 *error = "Unable to generate iv";
4004 goto bad;
4005 }
4006
4007 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4008 if (!section_req) {
4009 *error = "Unable to allocate crypt request";
4010 r = -ENOMEM;
4011 goto bad;
4012 }
4013 section_req->iv = kmalloc_array(ivsize, 2,
4014 GFP_KERNEL);
4015 if (!section_req->iv) {
4016 skcipher_request_free(section_req);
4017 *error = "Unable to allocate iv";
4018 r = -ENOMEM;
4019 goto bad;
4020 }
4021 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4022 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4023 ic->sk_requests[i] = section_req;
4024 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4025 }
4026 }
4027 }
4028
4029 for (i = 0; i < N_COMMIT_IDS; i++) {
4030 unsigned int j;
4031
4032retest_commit_id:
4033 for (j = 0; j < i; j++) {
4034 if (ic->commit_ids[j] == ic->commit_ids[i]) {
4035 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4036 goto retest_commit_id;
4037 }
4038 }
4039 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4040 }
4041
4042 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4043 if (journal_tree_size > ULONG_MAX) {
4044 *error = "Journal doesn't fit into memory";
4045 r = -ENOMEM;
4046 goto bad;
4047 }
4048 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4049 if (!ic->journal_tree) {
4050 *error = "Could not allocate memory for journal tree";
4051 r = -ENOMEM;
4052 }
4053bad:
4054 kfree(crypt_data);
4055 kfree(crypt_iv);
4056 skcipher_request_free(req);
4057
4058 return r;
4059}
4060
4061/*
4062 * Construct a integrity mapping
4063 *
4064 * Arguments:
4065 * device
4066 * offset from the start of the device
4067 * tag size
4068 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4069 * number of optional arguments
4070 * optional arguments:
4071 * journal_sectors
4072 * interleave_sectors
4073 * buffer_sectors
4074 * journal_watermark
4075 * commit_time
4076 * meta_device
4077 * block_size
4078 * sectors_per_bit
4079 * bitmap_flush_interval
4080 * internal_hash
4081 * journal_crypt
4082 * journal_mac
4083 * recalculate
4084 */
4085static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4086{
4087 struct dm_integrity_c *ic;
4088 char dummy;
4089 int r;
4090 unsigned int extra_args;
4091 struct dm_arg_set as;
4092 static const struct dm_arg _args[] = {
4093 {0, 18, "Invalid number of feature args"},
4094 };
4095 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4096 bool should_write_sb;
4097 __u64 threshold;
4098 unsigned long long start;
4099 __s8 log2_sectors_per_bitmap_bit = -1;
4100 __s8 log2_blocks_per_bitmap_bit;
4101 __u64 bits_in_journal;
4102 __u64 n_bitmap_bits;
4103
4104#define DIRECT_ARGUMENTS 4
4105
4106 if (argc <= DIRECT_ARGUMENTS) {
4107 ti->error = "Invalid argument count";
4108 return -EINVAL;
4109 }
4110
4111 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4112 if (!ic) {
4113 ti->error = "Cannot allocate integrity context";
4114 return -ENOMEM;
4115 }
4116 ti->private = ic;
4117 ti->per_io_data_size = sizeof(struct dm_integrity_io);
4118 ic->ti = ti;
4119
4120 ic->in_progress = RB_ROOT;
4121 INIT_LIST_HEAD(&ic->wait_list);
4122 init_waitqueue_head(&ic->endio_wait);
4123 bio_list_init(&ic->flush_bio_list);
4124 init_waitqueue_head(&ic->copy_to_journal_wait);
4125 init_completion(&ic->crypto_backoff);
4126 atomic64_set(&ic->number_of_mismatches, 0);
4127 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4128
4129 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4130 if (r) {
4131 ti->error = "Device lookup failed";
4132 goto bad;
4133 }
4134
4135 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4136 ti->error = "Invalid starting offset";
4137 r = -EINVAL;
4138 goto bad;
4139 }
4140 ic->start = start;
4141
4142 if (strcmp(argv[2], "-")) {
4143 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4144 ti->error = "Invalid tag size";
4145 r = -EINVAL;
4146 goto bad;
4147 }
4148 }
4149
4150 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4151 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4152 ic->mode = argv[3][0];
4153 } else {
4154 ti->error = "Invalid mode (expecting J, B, D, R)";
4155 r = -EINVAL;
4156 goto bad;
4157 }
4158
4159 journal_sectors = 0;
4160 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4161 buffer_sectors = DEFAULT_BUFFER_SECTORS;
4162 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4163 sync_msec = DEFAULT_SYNC_MSEC;
4164 ic->sectors_per_block = 1;
4165
4166 as.argc = argc - DIRECT_ARGUMENTS;
4167 as.argv = argv + DIRECT_ARGUMENTS;
4168 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4169 if (r)
4170 goto bad;
4171
4172 while (extra_args--) {
4173 const char *opt_string;
4174 unsigned int val;
4175 unsigned long long llval;
4176
4177 opt_string = dm_shift_arg(&as);
4178 if (!opt_string) {
4179 r = -EINVAL;
4180 ti->error = "Not enough feature arguments";
4181 goto bad;
4182 }
4183 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4184 journal_sectors = val ? val : 1;
4185 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4186 interleave_sectors = val;
4187 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4188 buffer_sectors = val;
4189 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4190 journal_watermark = val;
4191 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4192 sync_msec = val;
4193 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4194 if (ic->meta_dev) {
4195 dm_put_device(ti, ic->meta_dev);
4196 ic->meta_dev = NULL;
4197 }
4198 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4199 dm_table_get_mode(ti->table), &ic->meta_dev);
4200 if (r) {
4201 ti->error = "Device lookup failed";
4202 goto bad;
4203 }
4204 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4205 if (val < 1 << SECTOR_SHIFT ||
4206 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4207 (val & (val - 1))) {
4208 r = -EINVAL;
4209 ti->error = "Invalid block_size argument";
4210 goto bad;
4211 }
4212 ic->sectors_per_block = val >> SECTOR_SHIFT;
4213 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4214 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4215 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4216 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4217 r = -EINVAL;
4218 ti->error = "Invalid bitmap_flush_interval argument";
4219 goto bad;
4220 }
4221 ic->bitmap_flush_interval = msecs_to_jiffies(val);
4222 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4223 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4224 "Invalid internal_hash argument");
4225 if (r)
4226 goto bad;
4227 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4228 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4229 "Invalid journal_crypt argument");
4230 if (r)
4231 goto bad;
4232 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4233 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4234 "Invalid journal_mac argument");
4235 if (r)
4236 goto bad;
4237 } else if (!strcmp(opt_string, "recalculate")) {
4238 ic->recalculate_flag = true;
4239 } else if (!strcmp(opt_string, "reset_recalculate")) {
4240 ic->recalculate_flag = true;
4241 ic->reset_recalculate_flag = true;
4242 } else if (!strcmp(opt_string, "allow_discards")) {
4243 ic->discard = true;
4244 } else if (!strcmp(opt_string, "fix_padding")) {
4245 ic->fix_padding = true;
4246 } else if (!strcmp(opt_string, "fix_hmac")) {
4247 ic->fix_hmac = true;
4248 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4249 ic->legacy_recalculate = true;
4250 } else {
4251 r = -EINVAL;
4252 ti->error = "Invalid argument";
4253 goto bad;
4254 }
4255 }
4256
4257 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4258 if (!ic->meta_dev)
4259 ic->meta_device_sectors = ic->data_device_sectors;
4260 else
4261 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4262
4263 if (!journal_sectors) {
4264 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4265 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4266 }
4267
4268 if (!buffer_sectors)
4269 buffer_sectors = 1;
4270 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4271
4272 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4273 "Invalid internal hash", "Error setting internal hash key");
4274 if (r)
4275 goto bad;
4276
4277 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4278 "Invalid journal mac", "Error setting journal mac key");
4279 if (r)
4280 goto bad;
4281
4282 if (!ic->tag_size) {
4283 if (!ic->internal_hash) {
4284 ti->error = "Unknown tag size";
4285 r = -EINVAL;
4286 goto bad;
4287 }
4288 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4289 }
4290 if (ic->tag_size > MAX_TAG_SIZE) {
4291 ti->error = "Too big tag size";
4292 r = -EINVAL;
4293 goto bad;
4294 }
4295 if (!(ic->tag_size & (ic->tag_size - 1)))
4296 ic->log2_tag_size = __ffs(ic->tag_size);
4297 else
4298 ic->log2_tag_size = -1;
4299
4300 if (ic->mode == 'B' && !ic->internal_hash) {
4301 r = -EINVAL;
4302 ti->error = "Bitmap mode can be only used with internal hash";
4303 goto bad;
4304 }
4305
4306 if (ic->discard && !ic->internal_hash) {
4307 r = -EINVAL;
4308 ti->error = "Discard can be only used with internal hash";
4309 goto bad;
4310 }
4311
4312 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4313 ic->autocommit_msec = sync_msec;
4314 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4315
4316 ic->io = dm_io_client_create();
4317 if (IS_ERR(ic->io)) {
4318 r = PTR_ERR(ic->io);
4319 ic->io = NULL;
4320 ti->error = "Cannot allocate dm io";
4321 goto bad;
4322 }
4323
4324 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4325 if (r) {
4326 ti->error = "Cannot allocate mempool";
4327 goto bad;
4328 }
4329
4330 r = mempool_init_page_pool(&ic->recheck_pool, 1, 0);
4331 if (r) {
4332 ti->error = "Cannot allocate mempool";
4333 goto bad;
4334 }
4335
4336 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4337 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4338 if (!ic->metadata_wq) {
4339 ti->error = "Cannot allocate workqueue";
4340 r = -ENOMEM;
4341 goto bad;
4342 }
4343
4344 /*
4345 * If this workqueue weren't ordered, it would cause bio reordering
4346 * and reduced performance.
4347 */
4348 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4349 if (!ic->wait_wq) {
4350 ti->error = "Cannot allocate workqueue";
4351 r = -ENOMEM;
4352 goto bad;
4353 }
4354
4355 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4356 METADATA_WORKQUEUE_MAX_ACTIVE);
4357 if (!ic->offload_wq) {
4358 ti->error = "Cannot allocate workqueue";
4359 r = -ENOMEM;
4360 goto bad;
4361 }
4362
4363 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4364 if (!ic->commit_wq) {
4365 ti->error = "Cannot allocate workqueue";
4366 r = -ENOMEM;
4367 goto bad;
4368 }
4369 INIT_WORK(&ic->commit_work, integrity_commit);
4370
4371 if (ic->mode == 'J' || ic->mode == 'B') {
4372 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4373 if (!ic->writer_wq) {
4374 ti->error = "Cannot allocate workqueue";
4375 r = -ENOMEM;
4376 goto bad;
4377 }
4378 INIT_WORK(&ic->writer_work, integrity_writer);
4379 }
4380
4381 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4382 if (!ic->sb) {
4383 r = -ENOMEM;
4384 ti->error = "Cannot allocate superblock area";
4385 goto bad;
4386 }
4387
4388 r = sync_rw_sb(ic, REQ_OP_READ);
4389 if (r) {
4390 ti->error = "Error reading superblock";
4391 goto bad;
4392 }
4393 should_write_sb = false;
4394 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4395 if (ic->mode != 'R') {
4396 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4397 r = -EINVAL;
4398 ti->error = "The device is not initialized";
4399 goto bad;
4400 }
4401 }
4402
4403 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4404 if (r) {
4405 ti->error = "Could not initialize superblock";
4406 goto bad;
4407 }
4408 if (ic->mode != 'R')
4409 should_write_sb = true;
4410 }
4411
4412 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4413 r = -EINVAL;
4414 ti->error = "Unknown version";
4415 goto bad;
4416 }
4417 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4418 r = -EINVAL;
4419 ti->error = "Tag size doesn't match the information in superblock";
4420 goto bad;
4421 }
4422 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4423 r = -EINVAL;
4424 ti->error = "Block size doesn't match the information in superblock";
4425 goto bad;
4426 }
4427 if (!le32_to_cpu(ic->sb->journal_sections)) {
4428 r = -EINVAL;
4429 ti->error = "Corrupted superblock, journal_sections is 0";
4430 goto bad;
4431 }
4432 /* make sure that ti->max_io_len doesn't overflow */
4433 if (!ic->meta_dev) {
4434 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4435 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4436 r = -EINVAL;
4437 ti->error = "Invalid interleave_sectors in the superblock";
4438 goto bad;
4439 }
4440 } else {
4441 if (ic->sb->log2_interleave_sectors) {
4442 r = -EINVAL;
4443 ti->error = "Invalid interleave_sectors in the superblock";
4444 goto bad;
4445 }
4446 }
4447 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4448 r = -EINVAL;
4449 ti->error = "Journal mac mismatch";
4450 goto bad;
4451 }
4452
4453 get_provided_data_sectors(ic);
4454 if (!ic->provided_data_sectors) {
4455 r = -EINVAL;
4456 ti->error = "The device is too small";
4457 goto bad;
4458 }
4459
4460try_smaller_buffer:
4461 r = calculate_device_limits(ic);
4462 if (r) {
4463 if (ic->meta_dev) {
4464 if (ic->log2_buffer_sectors > 3) {
4465 ic->log2_buffer_sectors--;
4466 goto try_smaller_buffer;
4467 }
4468 }
4469 ti->error = "The device is too small";
4470 goto bad;
4471 }
4472
4473 if (log2_sectors_per_bitmap_bit < 0)
4474 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4475 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4476 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4477
4478 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4479 if (bits_in_journal > UINT_MAX)
4480 bits_in_journal = UINT_MAX;
4481 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4482 log2_sectors_per_bitmap_bit++;
4483
4484 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4485 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4486 if (should_write_sb)
4487 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4488
4489 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4490 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4491 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4492
4493 if (!ic->meta_dev)
4494 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4495
4496 if (ti->len > ic->provided_data_sectors) {
4497 r = -EINVAL;
4498 ti->error = "Not enough provided sectors for requested mapping size";
4499 goto bad;
4500 }
4501
4502
4503 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4504 threshold += 50;
4505 do_div(threshold, 100);
4506 ic->free_sectors_threshold = threshold;
4507
4508 DEBUG_print("initialized:\n");
4509 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4510 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
4511 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4512 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
4513 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
4514 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4515 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
4516 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4517 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4518 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
4519 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
4520 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
4521 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4522 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4523 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
4524
4525 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4526 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4527 ic->sb->recalc_sector = cpu_to_le64(0);
4528 }
4529
4530 if (ic->internal_hash) {
4531 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4532 if (!ic->recalc_wq) {
4533 ti->error = "Cannot allocate workqueue";
4534 r = -ENOMEM;
4535 goto bad;
4536 }
4537 INIT_WORK(&ic->recalc_work, integrity_recalc);
4538 } else {
4539 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4540 ti->error = "Recalculate can only be specified with internal_hash";
4541 r = -EINVAL;
4542 goto bad;
4543 }
4544 }
4545
4546 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4547 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4548 dm_integrity_disable_recalculate(ic)) {
4549 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4550 r = -EOPNOTSUPP;
4551 goto bad;
4552 }
4553
4554 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4555 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
4556 if (IS_ERR(ic->bufio)) {
4557 r = PTR_ERR(ic->bufio);
4558 ti->error = "Cannot initialize dm-bufio";
4559 ic->bufio = NULL;
4560 goto bad;
4561 }
4562 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4563
4564 if (ic->mode != 'R') {
4565 r = create_journal(ic, &ti->error);
4566 if (r)
4567 goto bad;
4568
4569 }
4570
4571 if (ic->mode == 'B') {
4572 unsigned int i;
4573 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4574
4575 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4576 if (!ic->recalc_bitmap) {
4577 r = -ENOMEM;
4578 goto bad;
4579 }
4580 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4581 if (!ic->may_write_bitmap) {
4582 r = -ENOMEM;
4583 goto bad;
4584 }
4585 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4586 if (!ic->bbs) {
4587 r = -ENOMEM;
4588 goto bad;
4589 }
4590 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4591 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4592 struct bitmap_block_status *bbs = &ic->bbs[i];
4593 unsigned int sector, pl_index, pl_offset;
4594
4595 INIT_WORK(&bbs->work, bitmap_block_work);
4596 bbs->ic = ic;
4597 bbs->idx = i;
4598 bio_list_init(&bbs->bio_queue);
4599 spin_lock_init(&bbs->bio_queue_lock);
4600
4601 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4602 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4603 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4604
4605 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4606 }
4607 }
4608
4609 if (should_write_sb) {
4610 init_journal(ic, 0, ic->journal_sections, 0);
4611 r = dm_integrity_failed(ic);
4612 if (unlikely(r)) {
4613 ti->error = "Error initializing journal";
4614 goto bad;
4615 }
4616 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
4617 if (r) {
4618 ti->error = "Error initializing superblock";
4619 goto bad;
4620 }
4621 ic->just_formatted = true;
4622 }
4623
4624 if (!ic->meta_dev) {
4625 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4626 if (r)
4627 goto bad;
4628 }
4629 if (ic->mode == 'B') {
4630 unsigned int max_io_len;
4631
4632 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4633 if (!max_io_len)
4634 max_io_len = 1U << 31;
4635 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4636 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4637 r = dm_set_target_max_io_len(ti, max_io_len);
4638 if (r)
4639 goto bad;
4640 }
4641 }
4642
4643 if (!ic->internal_hash)
4644 dm_integrity_set(ti, ic);
4645
4646 ti->num_flush_bios = 1;
4647 ti->flush_supported = true;
4648 if (ic->discard)
4649 ti->num_discard_bios = 1;
4650
4651 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4652 return 0;
4653
4654bad:
4655 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4656 dm_integrity_dtr(ti);
4657 return r;
4658}
4659
4660static void dm_integrity_dtr(struct dm_target *ti)
4661{
4662 struct dm_integrity_c *ic = ti->private;
4663
4664 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4665 BUG_ON(!list_empty(&ic->wait_list));
4666
4667 if (ic->mode == 'B')
4668 cancel_delayed_work_sync(&ic->bitmap_flush_work);
4669 if (ic->metadata_wq)
4670 destroy_workqueue(ic->metadata_wq);
4671 if (ic->wait_wq)
4672 destroy_workqueue(ic->wait_wq);
4673 if (ic->offload_wq)
4674 destroy_workqueue(ic->offload_wq);
4675 if (ic->commit_wq)
4676 destroy_workqueue(ic->commit_wq);
4677 if (ic->writer_wq)
4678 destroy_workqueue(ic->writer_wq);
4679 if (ic->recalc_wq)
4680 destroy_workqueue(ic->recalc_wq);
4681 kvfree(ic->bbs);
4682 if (ic->bufio)
4683 dm_bufio_client_destroy(ic->bufio);
4684 mempool_exit(&ic->recheck_pool);
4685 mempool_exit(&ic->journal_io_mempool);
4686 if (ic->io)
4687 dm_io_client_destroy(ic->io);
4688 if (ic->dev)
4689 dm_put_device(ti, ic->dev);
4690 if (ic->meta_dev)
4691 dm_put_device(ti, ic->meta_dev);
4692 dm_integrity_free_page_list(ic->journal);
4693 dm_integrity_free_page_list(ic->journal_io);
4694 dm_integrity_free_page_list(ic->journal_xor);
4695 dm_integrity_free_page_list(ic->recalc_bitmap);
4696 dm_integrity_free_page_list(ic->may_write_bitmap);
4697 if (ic->journal_scatterlist)
4698 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4699 if (ic->journal_io_scatterlist)
4700 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4701 if (ic->sk_requests) {
4702 unsigned int i;
4703
4704 for (i = 0; i < ic->journal_sections; i++) {
4705 struct skcipher_request *req;
4706
4707 req = ic->sk_requests[i];
4708 if (req) {
4709 kfree_sensitive(req->iv);
4710 skcipher_request_free(req);
4711 }
4712 }
4713 kvfree(ic->sk_requests);
4714 }
4715 kvfree(ic->journal_tree);
4716 if (ic->sb)
4717 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4718
4719 if (ic->internal_hash)
4720 crypto_free_shash(ic->internal_hash);
4721 free_alg(&ic->internal_hash_alg);
4722
4723 if (ic->journal_crypt)
4724 crypto_free_skcipher(ic->journal_crypt);
4725 free_alg(&ic->journal_crypt_alg);
4726
4727 if (ic->journal_mac)
4728 crypto_free_shash(ic->journal_mac);
4729 free_alg(&ic->journal_mac_alg);
4730
4731 kfree(ic);
4732 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4733}
4734
4735static struct target_type integrity_target = {
4736 .name = "integrity",
4737 .version = {1, 11, 0},
4738 .module = THIS_MODULE,
4739 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4740 .ctr = dm_integrity_ctr,
4741 .dtr = dm_integrity_dtr,
4742 .map = dm_integrity_map,
4743 .postsuspend = dm_integrity_postsuspend,
4744 .resume = dm_integrity_resume,
4745 .status = dm_integrity_status,
4746 .iterate_devices = dm_integrity_iterate_devices,
4747 .io_hints = dm_integrity_io_hints,
4748};
4749
4750static int __init dm_integrity_init(void)
4751{
4752 int r;
4753
4754 journal_io_cache = kmem_cache_create("integrity_journal_io",
4755 sizeof(struct journal_io), 0, 0, NULL);
4756 if (!journal_io_cache) {
4757 DMERR("can't allocate journal io cache");
4758 return -ENOMEM;
4759 }
4760
4761 r = dm_register_target(&integrity_target);
4762 if (r < 0) {
4763 kmem_cache_destroy(journal_io_cache);
4764 return r;
4765 }
4766
4767 return 0;
4768}
4769
4770static void __exit dm_integrity_exit(void)
4771{
4772 dm_unregister_target(&integrity_target);
4773 kmem_cache_destroy(journal_io_cache);
4774}
4775
4776module_init(dm_integrity_init);
4777module_exit(dm_integrity_exit);
4778
4779MODULE_AUTHOR("Milan Broz");
4780MODULE_AUTHOR("Mikulas Patocka");
4781MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4782MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
5 *
6 * This file is released under the GPL.
7 */
8
9#include <linux/compiler.h>
10#include <linux/module.h>
11#include <linux/device-mapper.h>
12#include <linux/dm-io.h>
13#include <linux/vmalloc.h>
14#include <linux/sort.h>
15#include <linux/rbtree.h>
16#include <linux/delay.h>
17#include <linux/random.h>
18#include <crypto/hash.h>
19#include <crypto/skcipher.h>
20#include <linux/async_tx.h>
21#include <linux/dm-bufio.h>
22
23#define DM_MSG_PREFIX "integrity"
24
25#define DEFAULT_INTERLEAVE_SECTORS 32768
26#define DEFAULT_JOURNAL_SIZE_FACTOR 7
27#define DEFAULT_BUFFER_SECTORS 128
28#define DEFAULT_JOURNAL_WATERMARK 50
29#define DEFAULT_SYNC_MSEC 10000
30#define DEFAULT_MAX_JOURNAL_SECTORS 131072
31#define MIN_LOG2_INTERLEAVE_SECTORS 3
32#define MAX_LOG2_INTERLEAVE_SECTORS 31
33#define METADATA_WORKQUEUE_MAX_ACTIVE 16
34
35/*
36 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
37 * so it should not be enabled in the official kernel
38 */
39//#define DEBUG_PRINT
40//#define INTERNAL_VERIFY
41
42/*
43 * On disk structures
44 */
45
46#define SB_MAGIC "integrt"
47#define SB_VERSION 1
48#define SB_SECTORS 8
49#define MAX_SECTORS_PER_BLOCK 8
50
51struct superblock {
52 __u8 magic[8];
53 __u8 version;
54 __u8 log2_interleave_sectors;
55 __u16 integrity_tag_size;
56 __u32 journal_sections;
57 __u64 provided_data_sectors; /* userspace uses this value */
58 __u32 flags;
59 __u8 log2_sectors_per_block;
60};
61
62#define SB_FLAG_HAVE_JOURNAL_MAC 0x1
63
64#define JOURNAL_ENTRY_ROUNDUP 8
65
66typedef __u64 commit_id_t;
67#define JOURNAL_MAC_PER_SECTOR 8
68
69struct journal_entry {
70 union {
71 struct {
72 __u32 sector_lo;
73 __u32 sector_hi;
74 } s;
75 __u64 sector;
76 } u;
77 commit_id_t last_bytes[0];
78 /* __u8 tag[0]; */
79};
80
81#define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
82
83#if BITS_PER_LONG == 64
84#define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
85#define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
86#elif defined(CONFIG_LBDAF)
87#define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
88#define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
89#else
90#define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0)
91#define journal_entry_get_sector(je) le32_to_cpu((je)->u.s.sector_lo)
92#endif
93#define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
94#define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
95#define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
96#define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
97
98#define JOURNAL_BLOCK_SECTORS 8
99#define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
100#define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
101
102struct journal_sector {
103 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
104 __u8 mac[JOURNAL_MAC_PER_SECTOR];
105 commit_id_t commit_id;
106};
107
108#define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
109
110#define METADATA_PADDING_SECTORS 8
111
112#define N_COMMIT_IDS 4
113
114static unsigned char prev_commit_seq(unsigned char seq)
115{
116 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
117}
118
119static unsigned char next_commit_seq(unsigned char seq)
120{
121 return (seq + 1) % N_COMMIT_IDS;
122}
123
124/*
125 * In-memory structures
126 */
127
128struct journal_node {
129 struct rb_node node;
130 sector_t sector;
131};
132
133struct alg_spec {
134 char *alg_string;
135 char *key_string;
136 __u8 *key;
137 unsigned key_size;
138};
139
140struct dm_integrity_c {
141 struct dm_dev *dev;
142 unsigned tag_size;
143 __s8 log2_tag_size;
144 sector_t start;
145 mempool_t *journal_io_mempool;
146 struct dm_io_client *io;
147 struct dm_bufio_client *bufio;
148 struct workqueue_struct *metadata_wq;
149 struct superblock *sb;
150 unsigned journal_pages;
151 struct page_list *journal;
152 struct page_list *journal_io;
153 struct page_list *journal_xor;
154
155 struct crypto_skcipher *journal_crypt;
156 struct scatterlist **journal_scatterlist;
157 struct scatterlist **journal_io_scatterlist;
158 struct skcipher_request **sk_requests;
159
160 struct crypto_shash *journal_mac;
161
162 struct journal_node *journal_tree;
163 struct rb_root journal_tree_root;
164
165 sector_t provided_data_sectors;
166
167 unsigned short journal_entry_size;
168 unsigned char journal_entries_per_sector;
169 unsigned char journal_section_entries;
170 unsigned short journal_section_sectors;
171 unsigned journal_sections;
172 unsigned journal_entries;
173 sector_t device_sectors;
174 unsigned initial_sectors;
175 unsigned metadata_run;
176 __s8 log2_metadata_run;
177 __u8 log2_buffer_sectors;
178 __u8 sectors_per_block;
179
180 unsigned char mode;
181 bool suspending;
182
183 int failed;
184
185 struct crypto_shash *internal_hash;
186
187 /* these variables are locked with endio_wait.lock */
188 struct rb_root in_progress;
189 wait_queue_head_t endio_wait;
190 struct workqueue_struct *wait_wq;
191
192 unsigned char commit_seq;
193 commit_id_t commit_ids[N_COMMIT_IDS];
194
195 unsigned committed_section;
196 unsigned n_committed_sections;
197
198 unsigned uncommitted_section;
199 unsigned n_uncommitted_sections;
200
201 unsigned free_section;
202 unsigned char free_section_entry;
203 unsigned free_sectors;
204
205 unsigned free_sectors_threshold;
206
207 struct workqueue_struct *commit_wq;
208 struct work_struct commit_work;
209
210 struct workqueue_struct *writer_wq;
211 struct work_struct writer_work;
212
213 struct bio_list flush_bio_list;
214
215 unsigned long autocommit_jiffies;
216 struct timer_list autocommit_timer;
217 unsigned autocommit_msec;
218
219 wait_queue_head_t copy_to_journal_wait;
220
221 struct completion crypto_backoff;
222
223 bool journal_uptodate;
224 bool just_formatted;
225
226 struct alg_spec internal_hash_alg;
227 struct alg_spec journal_crypt_alg;
228 struct alg_spec journal_mac_alg;
229
230 atomic64_t number_of_mismatches;
231};
232
233struct dm_integrity_range {
234 sector_t logical_sector;
235 unsigned n_sectors;
236 struct rb_node node;
237};
238
239struct dm_integrity_io {
240 struct work_struct work;
241
242 struct dm_integrity_c *ic;
243 bool write;
244 bool fua;
245
246 struct dm_integrity_range range;
247
248 sector_t metadata_block;
249 unsigned metadata_offset;
250
251 atomic_t in_flight;
252 blk_status_t bi_status;
253
254 struct completion *completion;
255
256 struct gendisk *orig_bi_disk;
257 u8 orig_bi_partno;
258 bio_end_io_t *orig_bi_end_io;
259 struct bio_integrity_payload *orig_bi_integrity;
260 struct bvec_iter orig_bi_iter;
261};
262
263struct journal_completion {
264 struct dm_integrity_c *ic;
265 atomic_t in_flight;
266 struct completion comp;
267};
268
269struct journal_io {
270 struct dm_integrity_range range;
271 struct journal_completion *comp;
272};
273
274static struct kmem_cache *journal_io_cache;
275
276#define JOURNAL_IO_MEMPOOL 32
277
278#ifdef DEBUG_PRINT
279#define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
280static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
281{
282 va_list args;
283 va_start(args, msg);
284 vprintk(msg, args);
285 va_end(args);
286 if (len)
287 pr_cont(":");
288 while (len) {
289 pr_cont(" %02x", *bytes);
290 bytes++;
291 len--;
292 }
293 pr_cont("\n");
294}
295#define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
296#else
297#define DEBUG_print(x, ...) do { } while (0)
298#define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
299#endif
300
301/*
302 * DM Integrity profile, protection is performed layer above (dm-crypt)
303 */
304static const struct blk_integrity_profile dm_integrity_profile = {
305 .name = "DM-DIF-EXT-TAG",
306 .generate_fn = NULL,
307 .verify_fn = NULL,
308};
309
310static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
311static void integrity_bio_wait(struct work_struct *w);
312static void dm_integrity_dtr(struct dm_target *ti);
313
314static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
315{
316 if (err == -EILSEQ)
317 atomic64_inc(&ic->number_of_mismatches);
318 if (!cmpxchg(&ic->failed, 0, err))
319 DMERR("Error on %s: %d", msg, err);
320}
321
322static int dm_integrity_failed(struct dm_integrity_c *ic)
323{
324 return READ_ONCE(ic->failed);
325}
326
327static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
328 unsigned j, unsigned char seq)
329{
330 /*
331 * Xor the number with section and sector, so that if a piece of
332 * journal is written at wrong place, it is detected.
333 */
334 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
335}
336
337static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
338 sector_t *area, sector_t *offset)
339{
340 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
341
342 *area = data_sector >> log2_interleave_sectors;
343 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
344}
345
346#define sector_to_block(ic, n) \
347do { \
348 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
349 (n) >>= (ic)->sb->log2_sectors_per_block; \
350} while (0)
351
352static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
353 sector_t offset, unsigned *metadata_offset)
354{
355 __u64 ms;
356 unsigned mo;
357
358 ms = area << ic->sb->log2_interleave_sectors;
359 if (likely(ic->log2_metadata_run >= 0))
360 ms += area << ic->log2_metadata_run;
361 else
362 ms += area * ic->metadata_run;
363 ms >>= ic->log2_buffer_sectors;
364
365 sector_to_block(ic, offset);
366
367 if (likely(ic->log2_tag_size >= 0)) {
368 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
369 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
370 } else {
371 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
372 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
373 }
374 *metadata_offset = mo;
375 return ms;
376}
377
378static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
379{
380 sector_t result;
381
382 result = area << ic->sb->log2_interleave_sectors;
383 if (likely(ic->log2_metadata_run >= 0))
384 result += (area + 1) << ic->log2_metadata_run;
385 else
386 result += (area + 1) * ic->metadata_run;
387
388 result += (sector_t)ic->initial_sectors + offset;
389 return result;
390}
391
392static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
393{
394 if (unlikely(*sec_ptr >= ic->journal_sections))
395 *sec_ptr -= ic->journal_sections;
396}
397
398static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
399{
400 struct dm_io_request io_req;
401 struct dm_io_region io_loc;
402
403 io_req.bi_op = op;
404 io_req.bi_op_flags = op_flags;
405 io_req.mem.type = DM_IO_KMEM;
406 io_req.mem.ptr.addr = ic->sb;
407 io_req.notify.fn = NULL;
408 io_req.client = ic->io;
409 io_loc.bdev = ic->dev->bdev;
410 io_loc.sector = ic->start;
411 io_loc.count = SB_SECTORS;
412
413 return dm_io(&io_req, 1, &io_loc, NULL);
414}
415
416static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
417 bool e, const char *function)
418{
419#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
420 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
421
422 if (unlikely(section >= ic->journal_sections) ||
423 unlikely(offset >= limit)) {
424 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
425 function, section, offset, ic->journal_sections, limit);
426 BUG();
427 }
428#endif
429}
430
431static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
432 unsigned *pl_index, unsigned *pl_offset)
433{
434 unsigned sector;
435
436 access_journal_check(ic, section, offset, false, "page_list_location");
437
438 sector = section * ic->journal_section_sectors + offset;
439
440 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
441 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
442}
443
444static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
445 unsigned section, unsigned offset, unsigned *n_sectors)
446{
447 unsigned pl_index, pl_offset;
448 char *va;
449
450 page_list_location(ic, section, offset, &pl_index, &pl_offset);
451
452 if (n_sectors)
453 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
454
455 va = lowmem_page_address(pl[pl_index].page);
456
457 return (struct journal_sector *)(va + pl_offset);
458}
459
460static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
461{
462 return access_page_list(ic, ic->journal, section, offset, NULL);
463}
464
465static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
466{
467 unsigned rel_sector, offset;
468 struct journal_sector *js;
469
470 access_journal_check(ic, section, n, true, "access_journal_entry");
471
472 rel_sector = n % JOURNAL_BLOCK_SECTORS;
473 offset = n / JOURNAL_BLOCK_SECTORS;
474
475 js = access_journal(ic, section, rel_sector);
476 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
477}
478
479static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
480{
481 n <<= ic->sb->log2_sectors_per_block;
482
483 n += JOURNAL_BLOCK_SECTORS;
484
485 access_journal_check(ic, section, n, false, "access_journal_data");
486
487 return access_journal(ic, section, n);
488}
489
490static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
491{
492 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
493 int r;
494 unsigned j, size;
495
496 desc->tfm = ic->journal_mac;
497 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
498
499 r = crypto_shash_init(desc);
500 if (unlikely(r)) {
501 dm_integrity_io_error(ic, "crypto_shash_init", r);
502 goto err;
503 }
504
505 for (j = 0; j < ic->journal_section_entries; j++) {
506 struct journal_entry *je = access_journal_entry(ic, section, j);
507 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
508 if (unlikely(r)) {
509 dm_integrity_io_error(ic, "crypto_shash_update", r);
510 goto err;
511 }
512 }
513
514 size = crypto_shash_digestsize(ic->journal_mac);
515
516 if (likely(size <= JOURNAL_MAC_SIZE)) {
517 r = crypto_shash_final(desc, result);
518 if (unlikely(r)) {
519 dm_integrity_io_error(ic, "crypto_shash_final", r);
520 goto err;
521 }
522 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
523 } else {
524 __u8 digest[size];
525 r = crypto_shash_final(desc, digest);
526 if (unlikely(r)) {
527 dm_integrity_io_error(ic, "crypto_shash_final", r);
528 goto err;
529 }
530 memcpy(result, digest, JOURNAL_MAC_SIZE);
531 }
532
533 return;
534err:
535 memset(result, 0, JOURNAL_MAC_SIZE);
536}
537
538static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
539{
540 __u8 result[JOURNAL_MAC_SIZE];
541 unsigned j;
542
543 if (!ic->journal_mac)
544 return;
545
546 section_mac(ic, section, result);
547
548 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
549 struct journal_sector *js = access_journal(ic, section, j);
550
551 if (likely(wr))
552 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
553 else {
554 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
555 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
556 }
557 }
558}
559
560static void complete_journal_op(void *context)
561{
562 struct journal_completion *comp = context;
563 BUG_ON(!atomic_read(&comp->in_flight));
564 if (likely(atomic_dec_and_test(&comp->in_flight)))
565 complete(&comp->comp);
566}
567
568static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
569 unsigned n_sections, struct journal_completion *comp)
570{
571 struct async_submit_ctl submit;
572 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
573 unsigned pl_index, pl_offset, section_index;
574 struct page_list *source_pl, *target_pl;
575
576 if (likely(encrypt)) {
577 source_pl = ic->journal;
578 target_pl = ic->journal_io;
579 } else {
580 source_pl = ic->journal_io;
581 target_pl = ic->journal;
582 }
583
584 page_list_location(ic, section, 0, &pl_index, &pl_offset);
585
586 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
587
588 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
589
590 section_index = pl_index;
591
592 do {
593 size_t this_step;
594 struct page *src_pages[2];
595 struct page *dst_page;
596
597 while (unlikely(pl_index == section_index)) {
598 unsigned dummy;
599 if (likely(encrypt))
600 rw_section_mac(ic, section, true);
601 section++;
602 n_sections--;
603 if (!n_sections)
604 break;
605 page_list_location(ic, section, 0, §ion_index, &dummy);
606 }
607
608 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
609 dst_page = target_pl[pl_index].page;
610 src_pages[0] = source_pl[pl_index].page;
611 src_pages[1] = ic->journal_xor[pl_index].page;
612
613 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
614
615 pl_index++;
616 pl_offset = 0;
617 n_bytes -= this_step;
618 } while (n_bytes);
619
620 BUG_ON(n_sections);
621
622 async_tx_issue_pending_all();
623}
624
625static void complete_journal_encrypt(struct crypto_async_request *req, int err)
626{
627 struct journal_completion *comp = req->data;
628 if (unlikely(err)) {
629 if (likely(err == -EINPROGRESS)) {
630 complete(&comp->ic->crypto_backoff);
631 return;
632 }
633 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
634 }
635 complete_journal_op(comp);
636}
637
638static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
639{
640 int r;
641 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
642 complete_journal_encrypt, comp);
643 if (likely(encrypt))
644 r = crypto_skcipher_encrypt(req);
645 else
646 r = crypto_skcipher_decrypt(req);
647 if (likely(!r))
648 return false;
649 if (likely(r == -EINPROGRESS))
650 return true;
651 if (likely(r == -EBUSY)) {
652 wait_for_completion(&comp->ic->crypto_backoff);
653 reinit_completion(&comp->ic->crypto_backoff);
654 return true;
655 }
656 dm_integrity_io_error(comp->ic, "encrypt", r);
657 return false;
658}
659
660static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
661 unsigned n_sections, struct journal_completion *comp)
662{
663 struct scatterlist **source_sg;
664 struct scatterlist **target_sg;
665
666 atomic_add(2, &comp->in_flight);
667
668 if (likely(encrypt)) {
669 source_sg = ic->journal_scatterlist;
670 target_sg = ic->journal_io_scatterlist;
671 } else {
672 source_sg = ic->journal_io_scatterlist;
673 target_sg = ic->journal_scatterlist;
674 }
675
676 do {
677 struct skcipher_request *req;
678 unsigned ivsize;
679 char *iv;
680
681 if (likely(encrypt))
682 rw_section_mac(ic, section, true);
683
684 req = ic->sk_requests[section];
685 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
686 iv = req->iv;
687
688 memcpy(iv, iv + ivsize, ivsize);
689
690 req->src = source_sg[section];
691 req->dst = target_sg[section];
692
693 if (unlikely(do_crypt(encrypt, req, comp)))
694 atomic_inc(&comp->in_flight);
695
696 section++;
697 n_sections--;
698 } while (n_sections);
699
700 atomic_dec(&comp->in_flight);
701 complete_journal_op(comp);
702}
703
704static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
705 unsigned n_sections, struct journal_completion *comp)
706{
707 if (ic->journal_xor)
708 return xor_journal(ic, encrypt, section, n_sections, comp);
709 else
710 return crypt_journal(ic, encrypt, section, n_sections, comp);
711}
712
713static void complete_journal_io(unsigned long error, void *context)
714{
715 struct journal_completion *comp = context;
716 if (unlikely(error != 0))
717 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
718 complete_journal_op(comp);
719}
720
721static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
722 unsigned n_sections, struct journal_completion *comp)
723{
724 struct dm_io_request io_req;
725 struct dm_io_region io_loc;
726 unsigned sector, n_sectors, pl_index, pl_offset;
727 int r;
728
729 if (unlikely(dm_integrity_failed(ic))) {
730 if (comp)
731 complete_journal_io(-1UL, comp);
732 return;
733 }
734
735 sector = section * ic->journal_section_sectors;
736 n_sectors = n_sections * ic->journal_section_sectors;
737
738 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
739 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
740
741 io_req.bi_op = op;
742 io_req.bi_op_flags = op_flags;
743 io_req.mem.type = DM_IO_PAGE_LIST;
744 if (ic->journal_io)
745 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
746 else
747 io_req.mem.ptr.pl = &ic->journal[pl_index];
748 io_req.mem.offset = pl_offset;
749 if (likely(comp != NULL)) {
750 io_req.notify.fn = complete_journal_io;
751 io_req.notify.context = comp;
752 } else {
753 io_req.notify.fn = NULL;
754 }
755 io_req.client = ic->io;
756 io_loc.bdev = ic->dev->bdev;
757 io_loc.sector = ic->start + SB_SECTORS + sector;
758 io_loc.count = n_sectors;
759
760 r = dm_io(&io_req, 1, &io_loc, NULL);
761 if (unlikely(r)) {
762 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
763 if (comp) {
764 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
765 complete_journal_io(-1UL, comp);
766 }
767 }
768}
769
770static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
771{
772 struct journal_completion io_comp;
773 struct journal_completion crypt_comp_1;
774 struct journal_completion crypt_comp_2;
775 unsigned i;
776
777 io_comp.ic = ic;
778 init_completion(&io_comp.comp);
779
780 if (commit_start + commit_sections <= ic->journal_sections) {
781 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
782 if (ic->journal_io) {
783 crypt_comp_1.ic = ic;
784 init_completion(&crypt_comp_1.comp);
785 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
786 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
787 wait_for_completion_io(&crypt_comp_1.comp);
788 } else {
789 for (i = 0; i < commit_sections; i++)
790 rw_section_mac(ic, commit_start + i, true);
791 }
792 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
793 commit_sections, &io_comp);
794 } else {
795 unsigned to_end;
796 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
797 to_end = ic->journal_sections - commit_start;
798 if (ic->journal_io) {
799 crypt_comp_1.ic = ic;
800 init_completion(&crypt_comp_1.comp);
801 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
802 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
803 if (try_wait_for_completion(&crypt_comp_1.comp)) {
804 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
805 reinit_completion(&crypt_comp_1.comp);
806 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
807 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
808 wait_for_completion_io(&crypt_comp_1.comp);
809 } else {
810 crypt_comp_2.ic = ic;
811 init_completion(&crypt_comp_2.comp);
812 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
813 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
814 wait_for_completion_io(&crypt_comp_1.comp);
815 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
816 wait_for_completion_io(&crypt_comp_2.comp);
817 }
818 } else {
819 for (i = 0; i < to_end; i++)
820 rw_section_mac(ic, commit_start + i, true);
821 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
822 for (i = 0; i < commit_sections - to_end; i++)
823 rw_section_mac(ic, i, true);
824 }
825 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
826 }
827
828 wait_for_completion_io(&io_comp.comp);
829}
830
831static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
832 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
833{
834 struct dm_io_request io_req;
835 struct dm_io_region io_loc;
836 int r;
837 unsigned sector, pl_index, pl_offset;
838
839 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
840
841 if (unlikely(dm_integrity_failed(ic))) {
842 fn(-1UL, data);
843 return;
844 }
845
846 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
847
848 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
849 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
850
851 io_req.bi_op = REQ_OP_WRITE;
852 io_req.bi_op_flags = 0;
853 io_req.mem.type = DM_IO_PAGE_LIST;
854 io_req.mem.ptr.pl = &ic->journal[pl_index];
855 io_req.mem.offset = pl_offset;
856 io_req.notify.fn = fn;
857 io_req.notify.context = data;
858 io_req.client = ic->io;
859 io_loc.bdev = ic->dev->bdev;
860 io_loc.sector = ic->start + target;
861 io_loc.count = n_sectors;
862
863 r = dm_io(&io_req, 1, &io_loc, NULL);
864 if (unlikely(r)) {
865 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
866 fn(-1UL, data);
867 }
868}
869
870static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
871{
872 struct rb_node **n = &ic->in_progress.rb_node;
873 struct rb_node *parent;
874
875 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
876
877 parent = NULL;
878
879 while (*n) {
880 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
881
882 parent = *n;
883 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
884 n = &range->node.rb_left;
885 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
886 n = &range->node.rb_right;
887 } else {
888 return false;
889 }
890 }
891
892 rb_link_node(&new_range->node, parent, n);
893 rb_insert_color(&new_range->node, &ic->in_progress);
894
895 return true;
896}
897
898static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
899{
900 rb_erase(&range->node, &ic->in_progress);
901 wake_up_locked(&ic->endio_wait);
902}
903
904static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
905{
906 unsigned long flags;
907
908 spin_lock_irqsave(&ic->endio_wait.lock, flags);
909 remove_range_unlocked(ic, range);
910 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
911}
912
913static void init_journal_node(struct journal_node *node)
914{
915 RB_CLEAR_NODE(&node->node);
916 node->sector = (sector_t)-1;
917}
918
919static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
920{
921 struct rb_node **link;
922 struct rb_node *parent;
923
924 node->sector = sector;
925 BUG_ON(!RB_EMPTY_NODE(&node->node));
926
927 link = &ic->journal_tree_root.rb_node;
928 parent = NULL;
929
930 while (*link) {
931 struct journal_node *j;
932 parent = *link;
933 j = container_of(parent, struct journal_node, node);
934 if (sector < j->sector)
935 link = &j->node.rb_left;
936 else
937 link = &j->node.rb_right;
938 }
939
940 rb_link_node(&node->node, parent, link);
941 rb_insert_color(&node->node, &ic->journal_tree_root);
942}
943
944static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
945{
946 BUG_ON(RB_EMPTY_NODE(&node->node));
947 rb_erase(&node->node, &ic->journal_tree_root);
948 init_journal_node(node);
949}
950
951#define NOT_FOUND (-1U)
952
953static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
954{
955 struct rb_node *n = ic->journal_tree_root.rb_node;
956 unsigned found = NOT_FOUND;
957 *next_sector = (sector_t)-1;
958 while (n) {
959 struct journal_node *j = container_of(n, struct journal_node, node);
960 if (sector == j->sector) {
961 found = j - ic->journal_tree;
962 }
963 if (sector < j->sector) {
964 *next_sector = j->sector;
965 n = j->node.rb_left;
966 } else {
967 n = j->node.rb_right;
968 }
969 }
970
971 return found;
972}
973
974static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
975{
976 struct journal_node *node, *next_node;
977 struct rb_node *next;
978
979 if (unlikely(pos >= ic->journal_entries))
980 return false;
981 node = &ic->journal_tree[pos];
982 if (unlikely(RB_EMPTY_NODE(&node->node)))
983 return false;
984 if (unlikely(node->sector != sector))
985 return false;
986
987 next = rb_next(&node->node);
988 if (unlikely(!next))
989 return true;
990
991 next_node = container_of(next, struct journal_node, node);
992 return next_node->sector != sector;
993}
994
995static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
996{
997 struct rb_node *next;
998 struct journal_node *next_node;
999 unsigned next_section;
1000
1001 BUG_ON(RB_EMPTY_NODE(&node->node));
1002
1003 next = rb_next(&node->node);
1004 if (unlikely(!next))
1005 return false;
1006
1007 next_node = container_of(next, struct journal_node, node);
1008
1009 if (next_node->sector != node->sector)
1010 return false;
1011
1012 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1013 if (next_section >= ic->committed_section &&
1014 next_section < ic->committed_section + ic->n_committed_sections)
1015 return true;
1016 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1017 return true;
1018
1019 return false;
1020}
1021
1022#define TAG_READ 0
1023#define TAG_WRITE 1
1024#define TAG_CMP 2
1025
1026static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1027 unsigned *metadata_offset, unsigned total_size, int op)
1028{
1029 do {
1030 unsigned char *data, *dp;
1031 struct dm_buffer *b;
1032 unsigned to_copy;
1033 int r;
1034
1035 r = dm_integrity_failed(ic);
1036 if (unlikely(r))
1037 return r;
1038
1039 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1040 if (unlikely(IS_ERR(data)))
1041 return PTR_ERR(data);
1042
1043 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1044 dp = data + *metadata_offset;
1045 if (op == TAG_READ) {
1046 memcpy(tag, dp, to_copy);
1047 } else if (op == TAG_WRITE) {
1048 memcpy(dp, tag, to_copy);
1049 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1050 } else {
1051 /* e.g.: op == TAG_CMP */
1052 if (unlikely(memcmp(dp, tag, to_copy))) {
1053 unsigned i;
1054
1055 for (i = 0; i < to_copy; i++) {
1056 if (dp[i] != tag[i])
1057 break;
1058 total_size--;
1059 }
1060 dm_bufio_release(b);
1061 return total_size;
1062 }
1063 }
1064 dm_bufio_release(b);
1065
1066 tag += to_copy;
1067 *metadata_offset += to_copy;
1068 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1069 (*metadata_block)++;
1070 *metadata_offset = 0;
1071 }
1072 total_size -= to_copy;
1073 } while (unlikely(total_size));
1074
1075 return 0;
1076}
1077
1078static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1079{
1080 int r;
1081 r = dm_bufio_write_dirty_buffers(ic->bufio);
1082 if (unlikely(r))
1083 dm_integrity_io_error(ic, "writing tags", r);
1084}
1085
1086static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1087{
1088 DECLARE_WAITQUEUE(wait, current);
1089 __add_wait_queue(&ic->endio_wait, &wait);
1090 __set_current_state(TASK_UNINTERRUPTIBLE);
1091 spin_unlock_irq(&ic->endio_wait.lock);
1092 io_schedule();
1093 spin_lock_irq(&ic->endio_wait.lock);
1094 __remove_wait_queue(&ic->endio_wait, &wait);
1095}
1096
1097static void autocommit_fn(struct timer_list *t)
1098{
1099 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1100
1101 if (likely(!dm_integrity_failed(ic)))
1102 queue_work(ic->commit_wq, &ic->commit_work);
1103}
1104
1105static void schedule_autocommit(struct dm_integrity_c *ic)
1106{
1107 if (!timer_pending(&ic->autocommit_timer))
1108 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1109}
1110
1111static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1112{
1113 struct bio *bio;
1114 unsigned long flags;
1115
1116 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1117 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1118 bio_list_add(&ic->flush_bio_list, bio);
1119 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1120
1121 queue_work(ic->commit_wq, &ic->commit_work);
1122}
1123
1124static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1125{
1126 int r = dm_integrity_failed(ic);
1127 if (unlikely(r) && !bio->bi_status)
1128 bio->bi_status = errno_to_blk_status(r);
1129 bio_endio(bio);
1130}
1131
1132static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1133{
1134 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1135
1136 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1137 submit_flush_bio(ic, dio);
1138 else
1139 do_endio(ic, bio);
1140}
1141
1142static void dec_in_flight(struct dm_integrity_io *dio)
1143{
1144 if (atomic_dec_and_test(&dio->in_flight)) {
1145 struct dm_integrity_c *ic = dio->ic;
1146 struct bio *bio;
1147
1148 remove_range(ic, &dio->range);
1149
1150 if (unlikely(dio->write))
1151 schedule_autocommit(ic);
1152
1153 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1154
1155 if (unlikely(dio->bi_status) && !bio->bi_status)
1156 bio->bi_status = dio->bi_status;
1157 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1158 dio->range.logical_sector += dio->range.n_sectors;
1159 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1160 INIT_WORK(&dio->work, integrity_bio_wait);
1161 queue_work(ic->wait_wq, &dio->work);
1162 return;
1163 }
1164 do_endio_flush(ic, dio);
1165 }
1166}
1167
1168static void integrity_end_io(struct bio *bio)
1169{
1170 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1171
1172 bio->bi_iter = dio->orig_bi_iter;
1173 bio->bi_disk = dio->orig_bi_disk;
1174 bio->bi_partno = dio->orig_bi_partno;
1175 if (dio->orig_bi_integrity) {
1176 bio->bi_integrity = dio->orig_bi_integrity;
1177 bio->bi_opf |= REQ_INTEGRITY;
1178 }
1179 bio->bi_end_io = dio->orig_bi_end_io;
1180
1181 if (dio->completion)
1182 complete(dio->completion);
1183
1184 dec_in_flight(dio);
1185}
1186
1187static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1188 const char *data, char *result)
1189{
1190 __u64 sector_le = cpu_to_le64(sector);
1191 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1192 int r;
1193 unsigned digest_size;
1194
1195 req->tfm = ic->internal_hash;
1196 req->flags = 0;
1197
1198 r = crypto_shash_init(req);
1199 if (unlikely(r < 0)) {
1200 dm_integrity_io_error(ic, "crypto_shash_init", r);
1201 goto failed;
1202 }
1203
1204 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le);
1205 if (unlikely(r < 0)) {
1206 dm_integrity_io_error(ic, "crypto_shash_update", r);
1207 goto failed;
1208 }
1209
1210 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1211 if (unlikely(r < 0)) {
1212 dm_integrity_io_error(ic, "crypto_shash_update", r);
1213 goto failed;
1214 }
1215
1216 r = crypto_shash_final(req, result);
1217 if (unlikely(r < 0)) {
1218 dm_integrity_io_error(ic, "crypto_shash_final", r);
1219 goto failed;
1220 }
1221
1222 digest_size = crypto_shash_digestsize(ic->internal_hash);
1223 if (unlikely(digest_size < ic->tag_size))
1224 memset(result + digest_size, 0, ic->tag_size - digest_size);
1225
1226 return;
1227
1228failed:
1229 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1230 get_random_bytes(result, ic->tag_size);
1231}
1232
1233static void integrity_metadata(struct work_struct *w)
1234{
1235 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1236 struct dm_integrity_c *ic = dio->ic;
1237
1238 int r;
1239
1240 if (ic->internal_hash) {
1241 struct bvec_iter iter;
1242 struct bio_vec bv;
1243 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1244 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1245 char *checksums;
1246 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1247 char checksums_onstack[ic->tag_size + extra_space];
1248 unsigned sectors_to_process = dio->range.n_sectors;
1249 sector_t sector = dio->range.logical_sector;
1250
1251 if (unlikely(ic->mode == 'R'))
1252 goto skip_io;
1253
1254 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1255 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1256 if (!checksums)
1257 checksums = checksums_onstack;
1258
1259 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1260 unsigned pos;
1261 char *mem, *checksums_ptr;
1262
1263again:
1264 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1265 pos = 0;
1266 checksums_ptr = checksums;
1267 do {
1268 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1269 checksums_ptr += ic->tag_size;
1270 sectors_to_process -= ic->sectors_per_block;
1271 pos += ic->sectors_per_block << SECTOR_SHIFT;
1272 sector += ic->sectors_per_block;
1273 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1274 kunmap_atomic(mem);
1275
1276 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1277 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1278 if (unlikely(r)) {
1279 if (r > 0) {
1280 DMERR("Checksum failed at sector 0x%llx",
1281 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1282 r = -EILSEQ;
1283 atomic64_inc(&ic->number_of_mismatches);
1284 }
1285 if (likely(checksums != checksums_onstack))
1286 kfree(checksums);
1287 goto error;
1288 }
1289
1290 if (!sectors_to_process)
1291 break;
1292
1293 if (unlikely(pos < bv.bv_len)) {
1294 bv.bv_offset += pos;
1295 bv.bv_len -= pos;
1296 goto again;
1297 }
1298 }
1299
1300 if (likely(checksums != checksums_onstack))
1301 kfree(checksums);
1302 } else {
1303 struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1304
1305 if (bip) {
1306 struct bio_vec biv;
1307 struct bvec_iter iter;
1308 unsigned data_to_process = dio->range.n_sectors;
1309 sector_to_block(ic, data_to_process);
1310 data_to_process *= ic->tag_size;
1311
1312 bip_for_each_vec(biv, bip, iter) {
1313 unsigned char *tag;
1314 unsigned this_len;
1315
1316 BUG_ON(PageHighMem(biv.bv_page));
1317 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1318 this_len = min(biv.bv_len, data_to_process);
1319 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1320 this_len, !dio->write ? TAG_READ : TAG_WRITE);
1321 if (unlikely(r))
1322 goto error;
1323 data_to_process -= this_len;
1324 if (!data_to_process)
1325 break;
1326 }
1327 }
1328 }
1329skip_io:
1330 dec_in_flight(dio);
1331 return;
1332error:
1333 dio->bi_status = errno_to_blk_status(r);
1334 dec_in_flight(dio);
1335}
1336
1337static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1338{
1339 struct dm_integrity_c *ic = ti->private;
1340 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1341 struct bio_integrity_payload *bip;
1342
1343 sector_t area, offset;
1344
1345 dio->ic = ic;
1346 dio->bi_status = 0;
1347
1348 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1349 submit_flush_bio(ic, dio);
1350 return DM_MAPIO_SUBMITTED;
1351 }
1352
1353 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1354 dio->write = bio_op(bio) == REQ_OP_WRITE;
1355 dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1356 if (unlikely(dio->fua)) {
1357 /*
1358 * Don't pass down the FUA flag because we have to flush
1359 * disk cache anyway.
1360 */
1361 bio->bi_opf &= ~REQ_FUA;
1362 }
1363 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1364 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1365 (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1366 (unsigned long long)ic->provided_data_sectors);
1367 return DM_MAPIO_KILL;
1368 }
1369 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1370 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1371 ic->sectors_per_block,
1372 (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1373 return DM_MAPIO_KILL;
1374 }
1375
1376 if (ic->sectors_per_block > 1) {
1377 struct bvec_iter iter;
1378 struct bio_vec bv;
1379 bio_for_each_segment(bv, bio, iter) {
1380 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1381 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1382 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1383 return DM_MAPIO_KILL;
1384 }
1385 }
1386 }
1387
1388 bip = bio_integrity(bio);
1389 if (!ic->internal_hash) {
1390 if (bip) {
1391 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1392 if (ic->log2_tag_size >= 0)
1393 wanted_tag_size <<= ic->log2_tag_size;
1394 else
1395 wanted_tag_size *= ic->tag_size;
1396 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1397 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
1398 return DM_MAPIO_KILL;
1399 }
1400 }
1401 } else {
1402 if (unlikely(bip != NULL)) {
1403 DMERR("Unexpected integrity data when using internal hash");
1404 return DM_MAPIO_KILL;
1405 }
1406 }
1407
1408 if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1409 return DM_MAPIO_KILL;
1410
1411 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1412 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1413 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1414
1415 dm_integrity_map_continue(dio, true);
1416 return DM_MAPIO_SUBMITTED;
1417}
1418
1419static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1420 unsigned journal_section, unsigned journal_entry)
1421{
1422 struct dm_integrity_c *ic = dio->ic;
1423 sector_t logical_sector;
1424 unsigned n_sectors;
1425
1426 logical_sector = dio->range.logical_sector;
1427 n_sectors = dio->range.n_sectors;
1428 do {
1429 struct bio_vec bv = bio_iovec(bio);
1430 char *mem;
1431
1432 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1433 bv.bv_len = n_sectors << SECTOR_SHIFT;
1434 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1435 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1436retry_kmap:
1437 mem = kmap_atomic(bv.bv_page);
1438 if (likely(dio->write))
1439 flush_dcache_page(bv.bv_page);
1440
1441 do {
1442 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1443
1444 if (unlikely(!dio->write)) {
1445 struct journal_sector *js;
1446 char *mem_ptr;
1447 unsigned s;
1448
1449 if (unlikely(journal_entry_is_inprogress(je))) {
1450 flush_dcache_page(bv.bv_page);
1451 kunmap_atomic(mem);
1452
1453 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1454 goto retry_kmap;
1455 }
1456 smp_rmb();
1457 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1458 js = access_journal_data(ic, journal_section, journal_entry);
1459 mem_ptr = mem + bv.bv_offset;
1460 s = 0;
1461 do {
1462 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1463 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1464 js++;
1465 mem_ptr += 1 << SECTOR_SHIFT;
1466 } while (++s < ic->sectors_per_block);
1467#ifdef INTERNAL_VERIFY
1468 if (ic->internal_hash) {
1469 char checksums_onstack[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1470
1471 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1472 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1473 DMERR("Checksum failed when reading from journal, at sector 0x%llx",
1474 (unsigned long long)logical_sector);
1475 }
1476 }
1477#endif
1478 }
1479
1480 if (!ic->internal_hash) {
1481 struct bio_integrity_payload *bip = bio_integrity(bio);
1482 unsigned tag_todo = ic->tag_size;
1483 char *tag_ptr = journal_entry_tag(ic, je);
1484
1485 if (bip) do {
1486 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1487 unsigned tag_now = min(biv.bv_len, tag_todo);
1488 char *tag_addr;
1489 BUG_ON(PageHighMem(biv.bv_page));
1490 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1491 if (likely(dio->write))
1492 memcpy(tag_ptr, tag_addr, tag_now);
1493 else
1494 memcpy(tag_addr, tag_ptr, tag_now);
1495 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1496 tag_ptr += tag_now;
1497 tag_todo -= tag_now;
1498 } while (unlikely(tag_todo)); else {
1499 if (likely(dio->write))
1500 memset(tag_ptr, 0, tag_todo);
1501 }
1502 }
1503
1504 if (likely(dio->write)) {
1505 struct journal_sector *js;
1506 unsigned s;
1507
1508 js = access_journal_data(ic, journal_section, journal_entry);
1509 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1510
1511 s = 0;
1512 do {
1513 je->last_bytes[s] = js[s].commit_id;
1514 } while (++s < ic->sectors_per_block);
1515
1516 if (ic->internal_hash) {
1517 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1518 if (unlikely(digest_size > ic->tag_size)) {
1519 char checksums_onstack[digest_size];
1520 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1521 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1522 } else
1523 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1524 }
1525
1526 journal_entry_set_sector(je, logical_sector);
1527 }
1528 logical_sector += ic->sectors_per_block;
1529
1530 journal_entry++;
1531 if (unlikely(journal_entry == ic->journal_section_entries)) {
1532 journal_entry = 0;
1533 journal_section++;
1534 wraparound_section(ic, &journal_section);
1535 }
1536
1537 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1538 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1539
1540 if (unlikely(!dio->write))
1541 flush_dcache_page(bv.bv_page);
1542 kunmap_atomic(mem);
1543 } while (n_sectors);
1544
1545 if (likely(dio->write)) {
1546 smp_mb();
1547 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1548 wake_up(&ic->copy_to_journal_wait);
1549 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1550 queue_work(ic->commit_wq, &ic->commit_work);
1551 } else {
1552 schedule_autocommit(ic);
1553 }
1554 } else {
1555 remove_range(ic, &dio->range);
1556 }
1557
1558 if (unlikely(bio->bi_iter.bi_size)) {
1559 sector_t area, offset;
1560
1561 dio->range.logical_sector = logical_sector;
1562 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1563 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1564 return true;
1565 }
1566
1567 return false;
1568}
1569
1570static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1571{
1572 struct dm_integrity_c *ic = dio->ic;
1573 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1574 unsigned journal_section, journal_entry;
1575 unsigned journal_read_pos;
1576 struct completion read_comp;
1577 bool need_sync_io = ic->internal_hash && !dio->write;
1578
1579 if (need_sync_io && from_map) {
1580 INIT_WORK(&dio->work, integrity_bio_wait);
1581 queue_work(ic->metadata_wq, &dio->work);
1582 return;
1583 }
1584
1585lock_retry:
1586 spin_lock_irq(&ic->endio_wait.lock);
1587retry:
1588 if (unlikely(dm_integrity_failed(ic))) {
1589 spin_unlock_irq(&ic->endio_wait.lock);
1590 do_endio(ic, bio);
1591 return;
1592 }
1593 dio->range.n_sectors = bio_sectors(bio);
1594 journal_read_pos = NOT_FOUND;
1595 if (likely(ic->mode == 'J')) {
1596 if (dio->write) {
1597 unsigned next_entry, i, pos;
1598 unsigned ws, we, range_sectors;
1599
1600 dio->range.n_sectors = min(dio->range.n_sectors,
1601 ic->free_sectors << ic->sb->log2_sectors_per_block);
1602 if (unlikely(!dio->range.n_sectors))
1603 goto sleep;
1604 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1605 ic->free_sectors -= range_sectors;
1606 journal_section = ic->free_section;
1607 journal_entry = ic->free_section_entry;
1608
1609 next_entry = ic->free_section_entry + range_sectors;
1610 ic->free_section_entry = next_entry % ic->journal_section_entries;
1611 ic->free_section += next_entry / ic->journal_section_entries;
1612 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1613 wraparound_section(ic, &ic->free_section);
1614
1615 pos = journal_section * ic->journal_section_entries + journal_entry;
1616 ws = journal_section;
1617 we = journal_entry;
1618 i = 0;
1619 do {
1620 struct journal_entry *je;
1621
1622 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1623 pos++;
1624 if (unlikely(pos >= ic->journal_entries))
1625 pos = 0;
1626
1627 je = access_journal_entry(ic, ws, we);
1628 BUG_ON(!journal_entry_is_unused(je));
1629 journal_entry_set_inprogress(je);
1630 we++;
1631 if (unlikely(we == ic->journal_section_entries)) {
1632 we = 0;
1633 ws++;
1634 wraparound_section(ic, &ws);
1635 }
1636 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1637
1638 spin_unlock_irq(&ic->endio_wait.lock);
1639 goto journal_read_write;
1640 } else {
1641 sector_t next_sector;
1642 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1643 if (likely(journal_read_pos == NOT_FOUND)) {
1644 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1645 dio->range.n_sectors = next_sector - dio->range.logical_sector;
1646 } else {
1647 unsigned i;
1648 unsigned jp = journal_read_pos + 1;
1649 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1650 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1651 break;
1652 }
1653 dio->range.n_sectors = i;
1654 }
1655 }
1656 }
1657 if (unlikely(!add_new_range(ic, &dio->range))) {
1658 /*
1659 * We must not sleep in the request routine because it could
1660 * stall bios on current->bio_list.
1661 * So, we offload the bio to a workqueue if we have to sleep.
1662 */
1663sleep:
1664 if (from_map) {
1665 spin_unlock_irq(&ic->endio_wait.lock);
1666 INIT_WORK(&dio->work, integrity_bio_wait);
1667 queue_work(ic->wait_wq, &dio->work);
1668 return;
1669 } else {
1670 sleep_on_endio_wait(ic);
1671 goto retry;
1672 }
1673 }
1674 spin_unlock_irq(&ic->endio_wait.lock);
1675
1676 if (unlikely(journal_read_pos != NOT_FOUND)) {
1677 journal_section = journal_read_pos / ic->journal_section_entries;
1678 journal_entry = journal_read_pos % ic->journal_section_entries;
1679 goto journal_read_write;
1680 }
1681
1682 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1683
1684 if (need_sync_io) {
1685 init_completion(&read_comp);
1686 dio->completion = &read_comp;
1687 } else
1688 dio->completion = NULL;
1689
1690 dio->orig_bi_iter = bio->bi_iter;
1691
1692 dio->orig_bi_disk = bio->bi_disk;
1693 dio->orig_bi_partno = bio->bi_partno;
1694 bio_set_dev(bio, ic->dev->bdev);
1695
1696 dio->orig_bi_integrity = bio_integrity(bio);
1697 bio->bi_integrity = NULL;
1698 bio->bi_opf &= ~REQ_INTEGRITY;
1699
1700 dio->orig_bi_end_io = bio->bi_end_io;
1701 bio->bi_end_io = integrity_end_io;
1702
1703 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1704 bio->bi_iter.bi_sector += ic->start;
1705 generic_make_request(bio);
1706
1707 if (need_sync_io) {
1708 wait_for_completion_io(&read_comp);
1709 if (likely(!bio->bi_status))
1710 integrity_metadata(&dio->work);
1711 else
1712 dec_in_flight(dio);
1713
1714 } else {
1715 INIT_WORK(&dio->work, integrity_metadata);
1716 queue_work(ic->metadata_wq, &dio->work);
1717 }
1718
1719 return;
1720
1721journal_read_write:
1722 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
1723 goto lock_retry;
1724
1725 do_endio_flush(ic, dio);
1726}
1727
1728
1729static void integrity_bio_wait(struct work_struct *w)
1730{
1731 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1732
1733 dm_integrity_map_continue(dio, false);
1734}
1735
1736static void pad_uncommitted(struct dm_integrity_c *ic)
1737{
1738 if (ic->free_section_entry) {
1739 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
1740 ic->free_section_entry = 0;
1741 ic->free_section++;
1742 wraparound_section(ic, &ic->free_section);
1743 ic->n_uncommitted_sections++;
1744 }
1745 WARN_ON(ic->journal_sections * ic->journal_section_entries !=
1746 (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
1747}
1748
1749static void integrity_commit(struct work_struct *w)
1750{
1751 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
1752 unsigned commit_start, commit_sections;
1753 unsigned i, j, n;
1754 struct bio *flushes;
1755
1756 del_timer(&ic->autocommit_timer);
1757
1758 spin_lock_irq(&ic->endio_wait.lock);
1759 flushes = bio_list_get(&ic->flush_bio_list);
1760 if (unlikely(ic->mode != 'J')) {
1761 spin_unlock_irq(&ic->endio_wait.lock);
1762 dm_integrity_flush_buffers(ic);
1763 goto release_flush_bios;
1764 }
1765
1766 pad_uncommitted(ic);
1767 commit_start = ic->uncommitted_section;
1768 commit_sections = ic->n_uncommitted_sections;
1769 spin_unlock_irq(&ic->endio_wait.lock);
1770
1771 if (!commit_sections)
1772 goto release_flush_bios;
1773
1774 i = commit_start;
1775 for (n = 0; n < commit_sections; n++) {
1776 for (j = 0; j < ic->journal_section_entries; j++) {
1777 struct journal_entry *je;
1778 je = access_journal_entry(ic, i, j);
1779 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1780 }
1781 for (j = 0; j < ic->journal_section_sectors; j++) {
1782 struct journal_sector *js;
1783 js = access_journal(ic, i, j);
1784 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
1785 }
1786 i++;
1787 if (unlikely(i >= ic->journal_sections))
1788 ic->commit_seq = next_commit_seq(ic->commit_seq);
1789 wraparound_section(ic, &i);
1790 }
1791 smp_rmb();
1792
1793 write_journal(ic, commit_start, commit_sections);
1794
1795 spin_lock_irq(&ic->endio_wait.lock);
1796 ic->uncommitted_section += commit_sections;
1797 wraparound_section(ic, &ic->uncommitted_section);
1798 ic->n_uncommitted_sections -= commit_sections;
1799 ic->n_committed_sections += commit_sections;
1800 spin_unlock_irq(&ic->endio_wait.lock);
1801
1802 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
1803 queue_work(ic->writer_wq, &ic->writer_work);
1804
1805release_flush_bios:
1806 while (flushes) {
1807 struct bio *next = flushes->bi_next;
1808 flushes->bi_next = NULL;
1809 do_endio(ic, flushes);
1810 flushes = next;
1811 }
1812}
1813
1814static void complete_copy_from_journal(unsigned long error, void *context)
1815{
1816 struct journal_io *io = context;
1817 struct journal_completion *comp = io->comp;
1818 struct dm_integrity_c *ic = comp->ic;
1819 remove_range(ic, &io->range);
1820 mempool_free(io, ic->journal_io_mempool);
1821 if (unlikely(error != 0))
1822 dm_integrity_io_error(ic, "copying from journal", -EIO);
1823 complete_journal_op(comp);
1824}
1825
1826static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
1827 struct journal_entry *je)
1828{
1829 unsigned s = 0;
1830 do {
1831 js->commit_id = je->last_bytes[s];
1832 js++;
1833 } while (++s < ic->sectors_per_block);
1834}
1835
1836static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
1837 unsigned write_sections, bool from_replay)
1838{
1839 unsigned i, j, n;
1840 struct journal_completion comp;
1841 struct blk_plug plug;
1842
1843 blk_start_plug(&plug);
1844
1845 comp.ic = ic;
1846 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1847 init_completion(&comp.comp);
1848
1849 i = write_start;
1850 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
1851#ifndef INTERNAL_VERIFY
1852 if (unlikely(from_replay))
1853#endif
1854 rw_section_mac(ic, i, false);
1855 for (j = 0; j < ic->journal_section_entries; j++) {
1856 struct journal_entry *je = access_journal_entry(ic, i, j);
1857 sector_t sec, area, offset;
1858 unsigned k, l, next_loop;
1859 sector_t metadata_block;
1860 unsigned metadata_offset;
1861 struct journal_io *io;
1862
1863 if (journal_entry_is_unused(je))
1864 continue;
1865 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
1866 sec = journal_entry_get_sector(je);
1867 if (unlikely(from_replay)) {
1868 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
1869 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
1870 sec &= ~(sector_t)(ic->sectors_per_block - 1);
1871 }
1872 }
1873 get_area_and_offset(ic, sec, &area, &offset);
1874 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
1875 for (k = j + 1; k < ic->journal_section_entries; k++) {
1876 struct journal_entry *je2 = access_journal_entry(ic, i, k);
1877 sector_t sec2, area2, offset2;
1878 if (journal_entry_is_unused(je2))
1879 break;
1880 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
1881 sec2 = journal_entry_get_sector(je2);
1882 get_area_and_offset(ic, sec2, &area2, &offset2);
1883 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
1884 break;
1885 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
1886 }
1887 next_loop = k - 1;
1888
1889 io = mempool_alloc(ic->journal_io_mempool, GFP_NOIO);
1890 io->comp = ∁
1891 io->range.logical_sector = sec;
1892 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
1893
1894 spin_lock_irq(&ic->endio_wait.lock);
1895 while (unlikely(!add_new_range(ic, &io->range)))
1896 sleep_on_endio_wait(ic);
1897
1898 if (likely(!from_replay)) {
1899 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
1900
1901 /* don't write if there is newer committed sector */
1902 while (j < k && find_newer_committed_node(ic, §ion_node[j])) {
1903 struct journal_entry *je2 = access_journal_entry(ic, i, j);
1904
1905 journal_entry_set_unused(je2);
1906 remove_journal_node(ic, §ion_node[j]);
1907 j++;
1908 sec += ic->sectors_per_block;
1909 offset += ic->sectors_per_block;
1910 }
1911 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) {
1912 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
1913
1914 journal_entry_set_unused(je2);
1915 remove_journal_node(ic, §ion_node[k - 1]);
1916 k--;
1917 }
1918 if (j == k) {
1919 remove_range_unlocked(ic, &io->range);
1920 spin_unlock_irq(&ic->endio_wait.lock);
1921 mempool_free(io, ic->journal_io_mempool);
1922 goto skip_io;
1923 }
1924 for (l = j; l < k; l++) {
1925 remove_journal_node(ic, §ion_node[l]);
1926 }
1927 }
1928 spin_unlock_irq(&ic->endio_wait.lock);
1929
1930 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
1931 for (l = j; l < k; l++) {
1932 int r;
1933 struct journal_entry *je2 = access_journal_entry(ic, i, l);
1934
1935 if (
1936#ifndef INTERNAL_VERIFY
1937 unlikely(from_replay) &&
1938#endif
1939 ic->internal_hash) {
1940 char test_tag[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1941
1942 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
1943 (char *)access_journal_data(ic, i, l), test_tag);
1944 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
1945 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
1946 }
1947
1948 journal_entry_set_unused(je2);
1949 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
1950 ic->tag_size, TAG_WRITE);
1951 if (unlikely(r)) {
1952 dm_integrity_io_error(ic, "reading tags", r);
1953 }
1954 }
1955
1956 atomic_inc(&comp.in_flight);
1957 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
1958 (k - j) << ic->sb->log2_sectors_per_block,
1959 get_data_sector(ic, area, offset),
1960 complete_copy_from_journal, io);
1961skip_io:
1962 j = next_loop;
1963 }
1964 }
1965
1966 dm_bufio_write_dirty_buffers_async(ic->bufio);
1967
1968 blk_finish_plug(&plug);
1969
1970 complete_journal_op(&comp);
1971 wait_for_completion_io(&comp.comp);
1972
1973 dm_integrity_flush_buffers(ic);
1974}
1975
1976static void integrity_writer(struct work_struct *w)
1977{
1978 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
1979 unsigned write_start, write_sections;
1980
1981 unsigned prev_free_sectors;
1982
1983 /* the following test is not needed, but it tests the replay code */
1984 if (READ_ONCE(ic->suspending))
1985 return;
1986
1987 spin_lock_irq(&ic->endio_wait.lock);
1988 write_start = ic->committed_section;
1989 write_sections = ic->n_committed_sections;
1990 spin_unlock_irq(&ic->endio_wait.lock);
1991
1992 if (!write_sections)
1993 return;
1994
1995 do_journal_write(ic, write_start, write_sections, false);
1996
1997 spin_lock_irq(&ic->endio_wait.lock);
1998
1999 ic->committed_section += write_sections;
2000 wraparound_section(ic, &ic->committed_section);
2001 ic->n_committed_sections -= write_sections;
2002
2003 prev_free_sectors = ic->free_sectors;
2004 ic->free_sectors += write_sections * ic->journal_section_entries;
2005 if (unlikely(!prev_free_sectors))
2006 wake_up_locked(&ic->endio_wait);
2007
2008 spin_unlock_irq(&ic->endio_wait.lock);
2009}
2010
2011static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2012 unsigned n_sections, unsigned char commit_seq)
2013{
2014 unsigned i, j, n;
2015
2016 if (!n_sections)
2017 return;
2018
2019 for (n = 0; n < n_sections; n++) {
2020 i = start_section + n;
2021 wraparound_section(ic, &i);
2022 for (j = 0; j < ic->journal_section_sectors; j++) {
2023 struct journal_sector *js = access_journal(ic, i, j);
2024 memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2025 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2026 }
2027 for (j = 0; j < ic->journal_section_entries; j++) {
2028 struct journal_entry *je = access_journal_entry(ic, i, j);
2029 journal_entry_set_unused(je);
2030 }
2031 }
2032
2033 write_journal(ic, start_section, n_sections);
2034}
2035
2036static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2037{
2038 unsigned char k;
2039 for (k = 0; k < N_COMMIT_IDS; k++) {
2040 if (dm_integrity_commit_id(ic, i, j, k) == id)
2041 return k;
2042 }
2043 dm_integrity_io_error(ic, "journal commit id", -EIO);
2044 return -EIO;
2045}
2046
2047static void replay_journal(struct dm_integrity_c *ic)
2048{
2049 unsigned i, j;
2050 bool used_commit_ids[N_COMMIT_IDS];
2051 unsigned max_commit_id_sections[N_COMMIT_IDS];
2052 unsigned write_start, write_sections;
2053 unsigned continue_section;
2054 bool journal_empty;
2055 unsigned char unused, last_used, want_commit_seq;
2056
2057 if (ic->mode == 'R')
2058 return;
2059
2060 if (ic->journal_uptodate)
2061 return;
2062
2063 last_used = 0;
2064 write_start = 0;
2065
2066 if (!ic->just_formatted) {
2067 DEBUG_print("reading journal\n");
2068 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2069 if (ic->journal_io)
2070 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2071 if (ic->journal_io) {
2072 struct journal_completion crypt_comp;
2073 crypt_comp.ic = ic;
2074 init_completion(&crypt_comp.comp);
2075 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2076 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2077 wait_for_completion(&crypt_comp.comp);
2078 }
2079 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2080 }
2081
2082 if (dm_integrity_failed(ic))
2083 goto clear_journal;
2084
2085 journal_empty = true;
2086 memset(used_commit_ids, 0, sizeof used_commit_ids);
2087 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2088 for (i = 0; i < ic->journal_sections; i++) {
2089 for (j = 0; j < ic->journal_section_sectors; j++) {
2090 int k;
2091 struct journal_sector *js = access_journal(ic, i, j);
2092 k = find_commit_seq(ic, i, j, js->commit_id);
2093 if (k < 0)
2094 goto clear_journal;
2095 used_commit_ids[k] = true;
2096 max_commit_id_sections[k] = i;
2097 }
2098 if (journal_empty) {
2099 for (j = 0; j < ic->journal_section_entries; j++) {
2100 struct journal_entry *je = access_journal_entry(ic, i, j);
2101 if (!journal_entry_is_unused(je)) {
2102 journal_empty = false;
2103 break;
2104 }
2105 }
2106 }
2107 }
2108
2109 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2110 unused = N_COMMIT_IDS - 1;
2111 while (unused && !used_commit_ids[unused - 1])
2112 unused--;
2113 } else {
2114 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2115 if (!used_commit_ids[unused])
2116 break;
2117 if (unused == N_COMMIT_IDS) {
2118 dm_integrity_io_error(ic, "journal commit ids", -EIO);
2119 goto clear_journal;
2120 }
2121 }
2122 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2123 unused, used_commit_ids[0], used_commit_ids[1],
2124 used_commit_ids[2], used_commit_ids[3]);
2125
2126 last_used = prev_commit_seq(unused);
2127 want_commit_seq = prev_commit_seq(last_used);
2128
2129 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2130 journal_empty = true;
2131
2132 write_start = max_commit_id_sections[last_used] + 1;
2133 if (unlikely(write_start >= ic->journal_sections))
2134 want_commit_seq = next_commit_seq(want_commit_seq);
2135 wraparound_section(ic, &write_start);
2136
2137 i = write_start;
2138 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2139 for (j = 0; j < ic->journal_section_sectors; j++) {
2140 struct journal_sector *js = access_journal(ic, i, j);
2141
2142 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2143 /*
2144 * This could be caused by crash during writing.
2145 * We won't replay the inconsistent part of the
2146 * journal.
2147 */
2148 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2149 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2150 goto brk;
2151 }
2152 }
2153 i++;
2154 if (unlikely(i >= ic->journal_sections))
2155 want_commit_seq = next_commit_seq(want_commit_seq);
2156 wraparound_section(ic, &i);
2157 }
2158brk:
2159
2160 if (!journal_empty) {
2161 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2162 write_sections, write_start, want_commit_seq);
2163 do_journal_write(ic, write_start, write_sections, true);
2164 }
2165
2166 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2167 continue_section = write_start;
2168 ic->commit_seq = want_commit_seq;
2169 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2170 } else {
2171 unsigned s;
2172 unsigned char erase_seq;
2173clear_journal:
2174 DEBUG_print("clearing journal\n");
2175
2176 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2177 s = write_start;
2178 init_journal(ic, s, 1, erase_seq);
2179 s++;
2180 wraparound_section(ic, &s);
2181 if (ic->journal_sections >= 2) {
2182 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2183 s += ic->journal_sections - 2;
2184 wraparound_section(ic, &s);
2185 init_journal(ic, s, 1, erase_seq);
2186 }
2187
2188 continue_section = 0;
2189 ic->commit_seq = next_commit_seq(erase_seq);
2190 }
2191
2192 ic->committed_section = continue_section;
2193 ic->n_committed_sections = 0;
2194
2195 ic->uncommitted_section = continue_section;
2196 ic->n_uncommitted_sections = 0;
2197
2198 ic->free_section = continue_section;
2199 ic->free_section_entry = 0;
2200 ic->free_sectors = ic->journal_entries;
2201
2202 ic->journal_tree_root = RB_ROOT;
2203 for (i = 0; i < ic->journal_entries; i++)
2204 init_journal_node(&ic->journal_tree[i]);
2205}
2206
2207static void dm_integrity_postsuspend(struct dm_target *ti)
2208{
2209 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2210
2211 del_timer_sync(&ic->autocommit_timer);
2212
2213 ic->suspending = true;
2214
2215 queue_work(ic->commit_wq, &ic->commit_work);
2216 drain_workqueue(ic->commit_wq);
2217
2218 if (ic->mode == 'J') {
2219 drain_workqueue(ic->writer_wq);
2220 dm_integrity_flush_buffers(ic);
2221 }
2222
2223 ic->suspending = false;
2224
2225 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2226
2227 ic->journal_uptodate = true;
2228}
2229
2230static void dm_integrity_resume(struct dm_target *ti)
2231{
2232 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2233
2234 replay_journal(ic);
2235}
2236
2237static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2238 unsigned status_flags, char *result, unsigned maxlen)
2239{
2240 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2241 unsigned arg_count;
2242 size_t sz = 0;
2243
2244 switch (type) {
2245 case STATUSTYPE_INFO:
2246 DMEMIT("%llu", (unsigned long long)atomic64_read(&ic->number_of_mismatches));
2247 break;
2248
2249 case STATUSTYPE_TABLE: {
2250 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2251 watermark_percentage += ic->journal_entries / 2;
2252 do_div(watermark_percentage, ic->journal_entries);
2253 arg_count = 5;
2254 arg_count += ic->sectors_per_block != 1;
2255 arg_count += !!ic->internal_hash_alg.alg_string;
2256 arg_count += !!ic->journal_crypt_alg.alg_string;
2257 arg_count += !!ic->journal_mac_alg.alg_string;
2258 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2259 ic->tag_size, ic->mode, arg_count);
2260 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2261 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2262 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2263 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2264 DMEMIT(" commit_time:%u", ic->autocommit_msec);
2265 if (ic->sectors_per_block != 1)
2266 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2267
2268#define EMIT_ALG(a, n) \
2269 do { \
2270 if (ic->a.alg_string) { \
2271 DMEMIT(" %s:%s", n, ic->a.alg_string); \
2272 if (ic->a.key_string) \
2273 DMEMIT(":%s", ic->a.key_string);\
2274 } \
2275 } while (0)
2276 EMIT_ALG(internal_hash_alg, "internal_hash");
2277 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2278 EMIT_ALG(journal_mac_alg, "journal_mac");
2279 break;
2280 }
2281 }
2282}
2283
2284static int dm_integrity_iterate_devices(struct dm_target *ti,
2285 iterate_devices_callout_fn fn, void *data)
2286{
2287 struct dm_integrity_c *ic = ti->private;
2288
2289 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2290}
2291
2292static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2293{
2294 struct dm_integrity_c *ic = ti->private;
2295
2296 if (ic->sectors_per_block > 1) {
2297 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2298 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2299 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2300 }
2301}
2302
2303static void calculate_journal_section_size(struct dm_integrity_c *ic)
2304{
2305 unsigned sector_space = JOURNAL_SECTOR_DATA;
2306
2307 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2308 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2309 JOURNAL_ENTRY_ROUNDUP);
2310
2311 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2312 sector_space -= JOURNAL_MAC_PER_SECTOR;
2313 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
2314 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
2315 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
2316 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
2317}
2318
2319static int calculate_device_limits(struct dm_integrity_c *ic)
2320{
2321 __u64 initial_sectors;
2322 sector_t last_sector, last_area, last_offset;
2323
2324 calculate_journal_section_size(ic);
2325 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
2326 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->device_sectors || initial_sectors > UINT_MAX)
2327 return -EINVAL;
2328 ic->initial_sectors = initial_sectors;
2329
2330 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
2331 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
2332 if (!(ic->metadata_run & (ic->metadata_run - 1)))
2333 ic->log2_metadata_run = __ffs(ic->metadata_run);
2334 else
2335 ic->log2_metadata_run = -1;
2336
2337 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
2338 last_sector = get_data_sector(ic, last_area, last_offset);
2339
2340 if (ic->start + last_sector < last_sector || ic->start + last_sector >= ic->device_sectors)
2341 return -EINVAL;
2342
2343 return 0;
2344}
2345
2346static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
2347{
2348 unsigned journal_sections;
2349 int test_bit;
2350
2351 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
2352 memcpy(ic->sb->magic, SB_MAGIC, 8);
2353 ic->sb->version = SB_VERSION;
2354 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
2355 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
2356 if (ic->journal_mac_alg.alg_string)
2357 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
2358
2359 calculate_journal_section_size(ic);
2360 journal_sections = journal_sectors / ic->journal_section_sectors;
2361 if (!journal_sections)
2362 journal_sections = 1;
2363 ic->sb->journal_sections = cpu_to_le32(journal_sections);
2364
2365 if (!interleave_sectors)
2366 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2367 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
2368 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2369 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2370
2371 ic->provided_data_sectors = 0;
2372 for (test_bit = fls64(ic->device_sectors) - 1; test_bit >= 3; test_bit--) {
2373 __u64 prev_data_sectors = ic->provided_data_sectors;
2374
2375 ic->provided_data_sectors |= (sector_t)1 << test_bit;
2376 if (calculate_device_limits(ic))
2377 ic->provided_data_sectors = prev_data_sectors;
2378 }
2379
2380 if (!ic->provided_data_sectors)
2381 return -EINVAL;
2382
2383 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2384
2385 return 0;
2386}
2387
2388static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
2389{
2390 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
2391 struct blk_integrity bi;
2392
2393 memset(&bi, 0, sizeof(bi));
2394 bi.profile = &dm_integrity_profile;
2395 bi.tuple_size = ic->tag_size;
2396 bi.tag_size = bi.tuple_size;
2397 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
2398
2399 blk_integrity_register(disk, &bi);
2400 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
2401}
2402
2403static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
2404{
2405 unsigned i;
2406
2407 if (!pl)
2408 return;
2409 for (i = 0; i < ic->journal_pages; i++)
2410 if (pl[i].page)
2411 __free_page(pl[i].page);
2412 kvfree(pl);
2413}
2414
2415static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
2416{
2417 size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
2418 struct page_list *pl;
2419 unsigned i;
2420
2421 pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
2422 if (!pl)
2423 return NULL;
2424
2425 for (i = 0; i < ic->journal_pages; i++) {
2426 pl[i].page = alloc_page(GFP_KERNEL);
2427 if (!pl[i].page) {
2428 dm_integrity_free_page_list(ic, pl);
2429 return NULL;
2430 }
2431 if (i)
2432 pl[i - 1].next = &pl[i];
2433 }
2434
2435 return pl;
2436}
2437
2438static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
2439{
2440 unsigned i;
2441 for (i = 0; i < ic->journal_sections; i++)
2442 kvfree(sl[i]);
2443 kvfree(sl);
2444}
2445
2446static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
2447{
2448 struct scatterlist **sl;
2449 unsigned i;
2450
2451 sl = kvmalloc(ic->journal_sections * sizeof(struct scatterlist *), GFP_KERNEL | __GFP_ZERO);
2452 if (!sl)
2453 return NULL;
2454
2455 for (i = 0; i < ic->journal_sections; i++) {
2456 struct scatterlist *s;
2457 unsigned start_index, start_offset;
2458 unsigned end_index, end_offset;
2459 unsigned n_pages;
2460 unsigned idx;
2461
2462 page_list_location(ic, i, 0, &start_index, &start_offset);
2463 page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
2464
2465 n_pages = (end_index - start_index + 1);
2466
2467 s = kvmalloc(n_pages * sizeof(struct scatterlist), GFP_KERNEL);
2468 if (!s) {
2469 dm_integrity_free_journal_scatterlist(ic, sl);
2470 return NULL;
2471 }
2472
2473 sg_init_table(s, n_pages);
2474 for (idx = start_index; idx <= end_index; idx++) {
2475 char *va = lowmem_page_address(pl[idx].page);
2476 unsigned start = 0, end = PAGE_SIZE;
2477 if (idx == start_index)
2478 start = start_offset;
2479 if (idx == end_index)
2480 end = end_offset + (1 << SECTOR_SHIFT);
2481 sg_set_buf(&s[idx - start_index], va + start, end - start);
2482 }
2483
2484 sl[i] = s;
2485 }
2486
2487 return sl;
2488}
2489
2490static void free_alg(struct alg_spec *a)
2491{
2492 kzfree(a->alg_string);
2493 kzfree(a->key);
2494 memset(a, 0, sizeof *a);
2495}
2496
2497static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
2498{
2499 char *k;
2500
2501 free_alg(a);
2502
2503 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
2504 if (!a->alg_string)
2505 goto nomem;
2506
2507 k = strchr(a->alg_string, ':');
2508 if (k) {
2509 *k = 0;
2510 a->key_string = k + 1;
2511 if (strlen(a->key_string) & 1)
2512 goto inval;
2513
2514 a->key_size = strlen(a->key_string) / 2;
2515 a->key = kmalloc(a->key_size, GFP_KERNEL);
2516 if (!a->key)
2517 goto nomem;
2518 if (hex2bin(a->key, a->key_string, a->key_size))
2519 goto inval;
2520 }
2521
2522 return 0;
2523inval:
2524 *error = error_inval;
2525 return -EINVAL;
2526nomem:
2527 *error = "Out of memory for an argument";
2528 return -ENOMEM;
2529}
2530
2531static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
2532 char *error_alg, char *error_key)
2533{
2534 int r;
2535
2536 if (a->alg_string) {
2537 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC);
2538 if (IS_ERR(*hash)) {
2539 *error = error_alg;
2540 r = PTR_ERR(*hash);
2541 *hash = NULL;
2542 return r;
2543 }
2544
2545 if (a->key) {
2546 r = crypto_shash_setkey(*hash, a->key, a->key_size);
2547 if (r) {
2548 *error = error_key;
2549 return r;
2550 }
2551 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
2552 *error = error_key;
2553 return -ENOKEY;
2554 }
2555 }
2556
2557 return 0;
2558}
2559
2560static int create_journal(struct dm_integrity_c *ic, char **error)
2561{
2562 int r = 0;
2563 unsigned i;
2564 __u64 journal_pages, journal_desc_size, journal_tree_size;
2565 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
2566 struct skcipher_request *req = NULL;
2567
2568 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
2569 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
2570 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
2571 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
2572
2573 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
2574 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
2575 journal_desc_size = journal_pages * sizeof(struct page_list);
2576 if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) {
2577 *error = "Journal doesn't fit into memory";
2578 r = -ENOMEM;
2579 goto bad;
2580 }
2581 ic->journal_pages = journal_pages;
2582
2583 ic->journal = dm_integrity_alloc_page_list(ic);
2584 if (!ic->journal) {
2585 *error = "Could not allocate memory for journal";
2586 r = -ENOMEM;
2587 goto bad;
2588 }
2589 if (ic->journal_crypt_alg.alg_string) {
2590 unsigned ivsize, blocksize;
2591 struct journal_completion comp;
2592
2593 comp.ic = ic;
2594 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
2595 if (IS_ERR(ic->journal_crypt)) {
2596 *error = "Invalid journal cipher";
2597 r = PTR_ERR(ic->journal_crypt);
2598 ic->journal_crypt = NULL;
2599 goto bad;
2600 }
2601 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
2602 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
2603
2604 if (ic->journal_crypt_alg.key) {
2605 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
2606 ic->journal_crypt_alg.key_size);
2607 if (r) {
2608 *error = "Error setting encryption key";
2609 goto bad;
2610 }
2611 }
2612 DEBUG_print("cipher %s, block size %u iv size %u\n",
2613 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
2614
2615 ic->journal_io = dm_integrity_alloc_page_list(ic);
2616 if (!ic->journal_io) {
2617 *error = "Could not allocate memory for journal io";
2618 r = -ENOMEM;
2619 goto bad;
2620 }
2621
2622 if (blocksize == 1) {
2623 struct scatterlist *sg;
2624
2625 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2626 if (!req) {
2627 *error = "Could not allocate crypt request";
2628 r = -ENOMEM;
2629 goto bad;
2630 }
2631
2632 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2633 if (!crypt_iv) {
2634 *error = "Could not allocate iv";
2635 r = -ENOMEM;
2636 goto bad;
2637 }
2638
2639 ic->journal_xor = dm_integrity_alloc_page_list(ic);
2640 if (!ic->journal_xor) {
2641 *error = "Could not allocate memory for journal xor";
2642 r = -ENOMEM;
2643 goto bad;
2644 }
2645
2646 sg = kvmalloc((ic->journal_pages + 1) * sizeof(struct scatterlist), GFP_KERNEL);
2647 if (!sg) {
2648 *error = "Unable to allocate sg list";
2649 r = -ENOMEM;
2650 goto bad;
2651 }
2652 sg_init_table(sg, ic->journal_pages + 1);
2653 for (i = 0; i < ic->journal_pages; i++) {
2654 char *va = lowmem_page_address(ic->journal_xor[i].page);
2655 clear_page(va);
2656 sg_set_buf(&sg[i], va, PAGE_SIZE);
2657 }
2658 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
2659 memset(crypt_iv, 0x00, ivsize);
2660
2661 skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
2662 init_completion(&comp.comp);
2663 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2664 if (do_crypt(true, req, &comp))
2665 wait_for_completion(&comp.comp);
2666 kvfree(sg);
2667 r = dm_integrity_failed(ic);
2668 if (r) {
2669 *error = "Unable to encrypt journal";
2670 goto bad;
2671 }
2672 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
2673
2674 crypto_free_skcipher(ic->journal_crypt);
2675 ic->journal_crypt = NULL;
2676 } else {
2677 unsigned crypt_len = roundup(ivsize, blocksize);
2678
2679 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2680 if (!req) {
2681 *error = "Could not allocate crypt request";
2682 r = -ENOMEM;
2683 goto bad;
2684 }
2685
2686 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2687 if (!crypt_iv) {
2688 *error = "Could not allocate iv";
2689 r = -ENOMEM;
2690 goto bad;
2691 }
2692
2693 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
2694 if (!crypt_data) {
2695 *error = "Unable to allocate crypt data";
2696 r = -ENOMEM;
2697 goto bad;
2698 }
2699
2700 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
2701 if (!ic->journal_scatterlist) {
2702 *error = "Unable to allocate sg list";
2703 r = -ENOMEM;
2704 goto bad;
2705 }
2706 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
2707 if (!ic->journal_io_scatterlist) {
2708 *error = "Unable to allocate sg list";
2709 r = -ENOMEM;
2710 goto bad;
2711 }
2712 ic->sk_requests = kvmalloc(ic->journal_sections * sizeof(struct skcipher_request *), GFP_KERNEL | __GFP_ZERO);
2713 if (!ic->sk_requests) {
2714 *error = "Unable to allocate sk requests";
2715 r = -ENOMEM;
2716 goto bad;
2717 }
2718 for (i = 0; i < ic->journal_sections; i++) {
2719 struct scatterlist sg;
2720 struct skcipher_request *section_req;
2721 __u32 section_le = cpu_to_le32(i);
2722
2723 memset(crypt_iv, 0x00, ivsize);
2724 memset(crypt_data, 0x00, crypt_len);
2725 memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le)));
2726
2727 sg_init_one(&sg, crypt_data, crypt_len);
2728 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
2729 init_completion(&comp.comp);
2730 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2731 if (do_crypt(true, req, &comp))
2732 wait_for_completion(&comp.comp);
2733
2734 r = dm_integrity_failed(ic);
2735 if (r) {
2736 *error = "Unable to generate iv";
2737 goto bad;
2738 }
2739
2740 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2741 if (!section_req) {
2742 *error = "Unable to allocate crypt request";
2743 r = -ENOMEM;
2744 goto bad;
2745 }
2746 section_req->iv = kmalloc(ivsize * 2, GFP_KERNEL);
2747 if (!section_req->iv) {
2748 skcipher_request_free(section_req);
2749 *error = "Unable to allocate iv";
2750 r = -ENOMEM;
2751 goto bad;
2752 }
2753 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
2754 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
2755 ic->sk_requests[i] = section_req;
2756 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
2757 }
2758 }
2759 }
2760
2761 for (i = 0; i < N_COMMIT_IDS; i++) {
2762 unsigned j;
2763retest_commit_id:
2764 for (j = 0; j < i; j++) {
2765 if (ic->commit_ids[j] == ic->commit_ids[i]) {
2766 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
2767 goto retest_commit_id;
2768 }
2769 }
2770 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
2771 }
2772
2773 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
2774 if (journal_tree_size > ULONG_MAX) {
2775 *error = "Journal doesn't fit into memory";
2776 r = -ENOMEM;
2777 goto bad;
2778 }
2779 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
2780 if (!ic->journal_tree) {
2781 *error = "Could not allocate memory for journal tree";
2782 r = -ENOMEM;
2783 }
2784bad:
2785 kfree(crypt_data);
2786 kfree(crypt_iv);
2787 skcipher_request_free(req);
2788
2789 return r;
2790}
2791
2792/*
2793 * Construct a integrity mapping
2794 *
2795 * Arguments:
2796 * device
2797 * offset from the start of the device
2798 * tag size
2799 * D - direct writes, J - journal writes, R - recovery mode
2800 * number of optional arguments
2801 * optional arguments:
2802 * journal_sectors
2803 * interleave_sectors
2804 * buffer_sectors
2805 * journal_watermark
2806 * commit_time
2807 * internal_hash
2808 * journal_crypt
2809 * journal_mac
2810 * block_size
2811 */
2812static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
2813{
2814 struct dm_integrity_c *ic;
2815 char dummy;
2816 int r;
2817 unsigned extra_args;
2818 struct dm_arg_set as;
2819 static const struct dm_arg _args[] = {
2820 {0, 9, "Invalid number of feature args"},
2821 };
2822 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
2823 bool should_write_sb;
2824 __u64 threshold;
2825 unsigned long long start;
2826
2827#define DIRECT_ARGUMENTS 4
2828
2829 if (argc <= DIRECT_ARGUMENTS) {
2830 ti->error = "Invalid argument count";
2831 return -EINVAL;
2832 }
2833
2834 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
2835 if (!ic) {
2836 ti->error = "Cannot allocate integrity context";
2837 return -ENOMEM;
2838 }
2839 ti->private = ic;
2840 ti->per_io_data_size = sizeof(struct dm_integrity_io);
2841
2842 ic->in_progress = RB_ROOT;
2843 init_waitqueue_head(&ic->endio_wait);
2844 bio_list_init(&ic->flush_bio_list);
2845 init_waitqueue_head(&ic->copy_to_journal_wait);
2846 init_completion(&ic->crypto_backoff);
2847 atomic64_set(&ic->number_of_mismatches, 0);
2848
2849 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
2850 if (r) {
2851 ti->error = "Device lookup failed";
2852 goto bad;
2853 }
2854
2855 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
2856 ti->error = "Invalid starting offset";
2857 r = -EINVAL;
2858 goto bad;
2859 }
2860 ic->start = start;
2861
2862 if (strcmp(argv[2], "-")) {
2863 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
2864 ti->error = "Invalid tag size";
2865 r = -EINVAL;
2866 goto bad;
2867 }
2868 }
2869
2870 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
2871 ic->mode = argv[3][0];
2872 else {
2873 ti->error = "Invalid mode (expecting J, D, R)";
2874 r = -EINVAL;
2875 goto bad;
2876 }
2877
2878 ic->device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
2879 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
2880 ic->device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
2881 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2882 buffer_sectors = DEFAULT_BUFFER_SECTORS;
2883 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
2884 sync_msec = DEFAULT_SYNC_MSEC;
2885 ic->sectors_per_block = 1;
2886
2887 as.argc = argc - DIRECT_ARGUMENTS;
2888 as.argv = argv + DIRECT_ARGUMENTS;
2889 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
2890 if (r)
2891 goto bad;
2892
2893 while (extra_args--) {
2894 const char *opt_string;
2895 unsigned val;
2896 opt_string = dm_shift_arg(&as);
2897 if (!opt_string) {
2898 r = -EINVAL;
2899 ti->error = "Not enough feature arguments";
2900 goto bad;
2901 }
2902 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
2903 journal_sectors = val;
2904 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
2905 interleave_sectors = val;
2906 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
2907 buffer_sectors = val;
2908 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
2909 journal_watermark = val;
2910 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
2911 sync_msec = val;
2912 else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
2913 if (val < 1 << SECTOR_SHIFT ||
2914 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
2915 (val & (val -1))) {
2916 r = -EINVAL;
2917 ti->error = "Invalid block_size argument";
2918 goto bad;
2919 }
2920 ic->sectors_per_block = val >> SECTOR_SHIFT;
2921 } else if (!memcmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
2922 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
2923 "Invalid internal_hash argument");
2924 if (r)
2925 goto bad;
2926 } else if (!memcmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
2927 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
2928 "Invalid journal_crypt argument");
2929 if (r)
2930 goto bad;
2931 } else if (!memcmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
2932 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
2933 "Invalid journal_mac argument");
2934 if (r)
2935 goto bad;
2936 } else {
2937 r = -EINVAL;
2938 ti->error = "Invalid argument";
2939 goto bad;
2940 }
2941 }
2942
2943 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
2944 "Invalid internal hash", "Error setting internal hash key");
2945 if (r)
2946 goto bad;
2947
2948 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
2949 "Invalid journal mac", "Error setting journal mac key");
2950 if (r)
2951 goto bad;
2952
2953 if (!ic->tag_size) {
2954 if (!ic->internal_hash) {
2955 ti->error = "Unknown tag size";
2956 r = -EINVAL;
2957 goto bad;
2958 }
2959 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
2960 }
2961 if (ic->tag_size > MAX_TAG_SIZE) {
2962 ti->error = "Too big tag size";
2963 r = -EINVAL;
2964 goto bad;
2965 }
2966 if (!(ic->tag_size & (ic->tag_size - 1)))
2967 ic->log2_tag_size = __ffs(ic->tag_size);
2968 else
2969 ic->log2_tag_size = -1;
2970
2971 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
2972 ic->autocommit_msec = sync_msec;
2973 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
2974
2975 ic->io = dm_io_client_create();
2976 if (IS_ERR(ic->io)) {
2977 r = PTR_ERR(ic->io);
2978 ic->io = NULL;
2979 ti->error = "Cannot allocate dm io";
2980 goto bad;
2981 }
2982
2983 ic->journal_io_mempool = mempool_create_slab_pool(JOURNAL_IO_MEMPOOL, journal_io_cache);
2984 if (!ic->journal_io_mempool) {
2985 r = -ENOMEM;
2986 ti->error = "Cannot allocate mempool";
2987 goto bad;
2988 }
2989
2990 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
2991 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
2992 if (!ic->metadata_wq) {
2993 ti->error = "Cannot allocate workqueue";
2994 r = -ENOMEM;
2995 goto bad;
2996 }
2997
2998 /*
2999 * If this workqueue were percpu, it would cause bio reordering
3000 * and reduced performance.
3001 */
3002 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3003 if (!ic->wait_wq) {
3004 ti->error = "Cannot allocate workqueue";
3005 r = -ENOMEM;
3006 goto bad;
3007 }
3008
3009 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
3010 if (!ic->commit_wq) {
3011 ti->error = "Cannot allocate workqueue";
3012 r = -ENOMEM;
3013 goto bad;
3014 }
3015 INIT_WORK(&ic->commit_work, integrity_commit);
3016
3017 if (ic->mode == 'J') {
3018 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
3019 if (!ic->writer_wq) {
3020 ti->error = "Cannot allocate workqueue";
3021 r = -ENOMEM;
3022 goto bad;
3023 }
3024 INIT_WORK(&ic->writer_work, integrity_writer);
3025 }
3026
3027 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3028 if (!ic->sb) {
3029 r = -ENOMEM;
3030 ti->error = "Cannot allocate superblock area";
3031 goto bad;
3032 }
3033
3034 r = sync_rw_sb(ic, REQ_OP_READ, 0);
3035 if (r) {
3036 ti->error = "Error reading superblock";
3037 goto bad;
3038 }
3039 should_write_sb = false;
3040 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3041 if (ic->mode != 'R') {
3042 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3043 r = -EINVAL;
3044 ti->error = "The device is not initialized";
3045 goto bad;
3046 }
3047 }
3048
3049 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3050 if (r) {
3051 ti->error = "Could not initialize superblock";
3052 goto bad;
3053 }
3054 if (ic->mode != 'R')
3055 should_write_sb = true;
3056 }
3057
3058 if (ic->sb->version != SB_VERSION) {
3059 r = -EINVAL;
3060 ti->error = "Unknown version";
3061 goto bad;
3062 }
3063 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3064 r = -EINVAL;
3065 ti->error = "Tag size doesn't match the information in superblock";
3066 goto bad;
3067 }
3068 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3069 r = -EINVAL;
3070 ti->error = "Block size doesn't match the information in superblock";
3071 goto bad;
3072 }
3073 if (!le32_to_cpu(ic->sb->journal_sections)) {
3074 r = -EINVAL;
3075 ti->error = "Corrupted superblock, journal_sections is 0";
3076 goto bad;
3077 }
3078 /* make sure that ti->max_io_len doesn't overflow */
3079 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3080 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3081 r = -EINVAL;
3082 ti->error = "Invalid interleave_sectors in the superblock";
3083 goto bad;
3084 }
3085 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3086 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3087 /* test for overflow */
3088 r = -EINVAL;
3089 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3090 goto bad;
3091 }
3092 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3093 r = -EINVAL;
3094 ti->error = "Journal mac mismatch";
3095 goto bad;
3096 }
3097 r = calculate_device_limits(ic);
3098 if (r) {
3099 ti->error = "The device is too small";
3100 goto bad;
3101 }
3102 if (ti->len > ic->provided_data_sectors) {
3103 r = -EINVAL;
3104 ti->error = "Not enough provided sectors for requested mapping size";
3105 goto bad;
3106 }
3107
3108 if (!buffer_sectors)
3109 buffer_sectors = 1;
3110 ic->log2_buffer_sectors = min3((int)__fls(buffer_sectors), (int)__ffs(ic->metadata_run), 31 - SECTOR_SHIFT);
3111
3112 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3113 threshold += 50;
3114 do_div(threshold, 100);
3115 ic->free_sectors_threshold = threshold;
3116
3117 DEBUG_print("initialized:\n");
3118 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3119 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
3120 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3121 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
3122 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
3123 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3124 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
3125 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3126 DEBUG_print(" device_sectors 0x%llx\n", (unsigned long long)ic->device_sectors);
3127 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
3128 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
3129 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
3130 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3131 (unsigned long long)ic->provided_data_sectors);
3132 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3133
3134 ic->bufio = dm_bufio_client_create(ic->dev->bdev, 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors),
3135 1, 0, NULL, NULL);
3136 if (IS_ERR(ic->bufio)) {
3137 r = PTR_ERR(ic->bufio);
3138 ti->error = "Cannot initialize dm-bufio";
3139 ic->bufio = NULL;
3140 goto bad;
3141 }
3142 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
3143
3144 if (ic->mode != 'R') {
3145 r = create_journal(ic, &ti->error);
3146 if (r)
3147 goto bad;
3148 }
3149
3150 if (should_write_sb) {
3151 int r;
3152
3153 init_journal(ic, 0, ic->journal_sections, 0);
3154 r = dm_integrity_failed(ic);
3155 if (unlikely(r)) {
3156 ti->error = "Error initializing journal";
3157 goto bad;
3158 }
3159 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3160 if (r) {
3161 ti->error = "Error initializing superblock";
3162 goto bad;
3163 }
3164 ic->just_formatted = true;
3165 }
3166
3167 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
3168 if (r)
3169 goto bad;
3170
3171 if (!ic->internal_hash)
3172 dm_integrity_set(ti, ic);
3173
3174 ti->num_flush_bios = 1;
3175 ti->flush_supported = true;
3176
3177 return 0;
3178bad:
3179 dm_integrity_dtr(ti);
3180 return r;
3181}
3182
3183static void dm_integrity_dtr(struct dm_target *ti)
3184{
3185 struct dm_integrity_c *ic = ti->private;
3186
3187 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3188
3189 if (ic->metadata_wq)
3190 destroy_workqueue(ic->metadata_wq);
3191 if (ic->wait_wq)
3192 destroy_workqueue(ic->wait_wq);
3193 if (ic->commit_wq)
3194 destroy_workqueue(ic->commit_wq);
3195 if (ic->writer_wq)
3196 destroy_workqueue(ic->writer_wq);
3197 if (ic->bufio)
3198 dm_bufio_client_destroy(ic->bufio);
3199 mempool_destroy(ic->journal_io_mempool);
3200 if (ic->io)
3201 dm_io_client_destroy(ic->io);
3202 if (ic->dev)
3203 dm_put_device(ti, ic->dev);
3204 dm_integrity_free_page_list(ic, ic->journal);
3205 dm_integrity_free_page_list(ic, ic->journal_io);
3206 dm_integrity_free_page_list(ic, ic->journal_xor);
3207 if (ic->journal_scatterlist)
3208 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
3209 if (ic->journal_io_scatterlist)
3210 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
3211 if (ic->sk_requests) {
3212 unsigned i;
3213
3214 for (i = 0; i < ic->journal_sections; i++) {
3215 struct skcipher_request *req = ic->sk_requests[i];
3216 if (req) {
3217 kzfree(req->iv);
3218 skcipher_request_free(req);
3219 }
3220 }
3221 kvfree(ic->sk_requests);
3222 }
3223 kvfree(ic->journal_tree);
3224 if (ic->sb)
3225 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
3226
3227 if (ic->internal_hash)
3228 crypto_free_shash(ic->internal_hash);
3229 free_alg(&ic->internal_hash_alg);
3230
3231 if (ic->journal_crypt)
3232 crypto_free_skcipher(ic->journal_crypt);
3233 free_alg(&ic->journal_crypt_alg);
3234
3235 if (ic->journal_mac)
3236 crypto_free_shash(ic->journal_mac);
3237 free_alg(&ic->journal_mac_alg);
3238
3239 kfree(ic);
3240}
3241
3242static struct target_type integrity_target = {
3243 .name = "integrity",
3244 .version = {1, 1, 0},
3245 .module = THIS_MODULE,
3246 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
3247 .ctr = dm_integrity_ctr,
3248 .dtr = dm_integrity_dtr,
3249 .map = dm_integrity_map,
3250 .postsuspend = dm_integrity_postsuspend,
3251 .resume = dm_integrity_resume,
3252 .status = dm_integrity_status,
3253 .iterate_devices = dm_integrity_iterate_devices,
3254 .io_hints = dm_integrity_io_hints,
3255};
3256
3257int __init dm_integrity_init(void)
3258{
3259 int r;
3260
3261 journal_io_cache = kmem_cache_create("integrity_journal_io",
3262 sizeof(struct journal_io), 0, 0, NULL);
3263 if (!journal_io_cache) {
3264 DMERR("can't allocate journal io cache");
3265 return -ENOMEM;
3266 }
3267
3268 r = dm_register_target(&integrity_target);
3269
3270 if (r < 0)
3271 DMERR("register failed %d", r);
3272
3273 return r;
3274}
3275
3276void dm_integrity_exit(void)
3277{
3278 dm_unregister_target(&integrity_target);
3279 kmem_cache_destroy(journal_io_cache);
3280}
3281
3282module_init(dm_integrity_init);
3283module_exit(dm_integrity_exit);
3284
3285MODULE_AUTHOR("Milan Broz");
3286MODULE_AUTHOR("Mikulas Patocka");
3287MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
3288MODULE_LICENSE("GPL");