Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright IBM Corp. 2002, 2006
6 *
7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8 */
9
10#define pr_fmt(fmt) "kprobes: " fmt
11
12#include <linux/moduleloader.h>
13#include <linux/kprobes.h>
14#include <linux/ptrace.h>
15#include <linux/preempt.h>
16#include <linux/stop_machine.h>
17#include <linux/kdebug.h>
18#include <linux/uaccess.h>
19#include <linux/extable.h>
20#include <linux/module.h>
21#include <linux/slab.h>
22#include <linux/hardirq.h>
23#include <linux/ftrace.h>
24#include <asm/set_memory.h>
25#include <asm/sections.h>
26#include <asm/dis.h>
27#include "kprobes.h"
28#include "entry.h"
29
30DEFINE_PER_CPU(struct kprobe *, current_kprobe);
31DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
32
33struct kretprobe_blackpoint kretprobe_blacklist[] = { };
34
35static int insn_page_in_use;
36
37void *alloc_insn_page(void)
38{
39 void *page;
40
41 page = module_alloc(PAGE_SIZE);
42 if (!page)
43 return NULL;
44 set_memory_rox((unsigned long)page, 1);
45 return page;
46}
47
48static void *alloc_s390_insn_page(void)
49{
50 if (xchg(&insn_page_in_use, 1) == 1)
51 return NULL;
52 return &kprobes_insn_page;
53}
54
55static void free_s390_insn_page(void *page)
56{
57 xchg(&insn_page_in_use, 0);
58}
59
60struct kprobe_insn_cache kprobe_s390_insn_slots = {
61 .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
62 .alloc = alloc_s390_insn_page,
63 .free = free_s390_insn_page,
64 .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
65 .insn_size = MAX_INSN_SIZE,
66};
67
68static void copy_instruction(struct kprobe *p)
69{
70 kprobe_opcode_t insn[MAX_INSN_SIZE];
71 s64 disp, new_disp;
72 u64 addr, new_addr;
73 unsigned int len;
74
75 len = insn_length(*p->addr >> 8);
76 memcpy(&insn, p->addr, len);
77 p->opcode = insn[0];
78 if (probe_is_insn_relative_long(&insn[0])) {
79 /*
80 * For pc-relative instructions in RIL-b or RIL-c format patch
81 * the RI2 displacement field. We have already made sure that
82 * the insn slot for the patched instruction is within the same
83 * 2GB area as the original instruction (either kernel image or
84 * module area). Therefore the new displacement will always fit.
85 */
86 disp = *(s32 *)&insn[1];
87 addr = (u64)(unsigned long)p->addr;
88 new_addr = (u64)(unsigned long)p->ainsn.insn;
89 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
90 *(s32 *)&insn[1] = new_disp;
91 }
92 s390_kernel_write(p->ainsn.insn, &insn, len);
93}
94NOKPROBE_SYMBOL(copy_instruction);
95
96static int s390_get_insn_slot(struct kprobe *p)
97{
98 /*
99 * Get an insn slot that is within the same 2GB area like the original
100 * instruction. That way instructions with a 32bit signed displacement
101 * field can be patched and executed within the insn slot.
102 */
103 p->ainsn.insn = NULL;
104 if (is_kernel((unsigned long)p->addr))
105 p->ainsn.insn = get_s390_insn_slot();
106 else if (is_module_addr(p->addr))
107 p->ainsn.insn = get_insn_slot();
108 return p->ainsn.insn ? 0 : -ENOMEM;
109}
110NOKPROBE_SYMBOL(s390_get_insn_slot);
111
112static void s390_free_insn_slot(struct kprobe *p)
113{
114 if (!p->ainsn.insn)
115 return;
116 if (is_kernel((unsigned long)p->addr))
117 free_s390_insn_slot(p->ainsn.insn, 0);
118 else
119 free_insn_slot(p->ainsn.insn, 0);
120 p->ainsn.insn = NULL;
121}
122NOKPROBE_SYMBOL(s390_free_insn_slot);
123
124/* Check if paddr is at an instruction boundary */
125static bool can_probe(unsigned long paddr)
126{
127 unsigned long addr, offset = 0;
128 kprobe_opcode_t insn;
129 struct kprobe *kp;
130
131 if (paddr & 0x01)
132 return false;
133
134 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
135 return false;
136
137 /* Decode instructions */
138 addr = paddr - offset;
139 while (addr < paddr) {
140 if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn)))
141 return false;
142
143 if (insn >> 8 == 0) {
144 if (insn != BREAKPOINT_INSTRUCTION) {
145 /*
146 * Note that QEMU inserts opcode 0x0000 to implement
147 * software breakpoints for guests. Since the size of
148 * the original instruction is unknown, stop following
149 * instructions and prevent setting a kprobe.
150 */
151 return false;
152 }
153 /*
154 * Check if the instruction has been modified by another
155 * kprobe, in which case the original instruction is
156 * decoded.
157 */
158 kp = get_kprobe((void *)addr);
159 if (!kp) {
160 /* not a kprobe */
161 return false;
162 }
163 insn = kp->opcode;
164 }
165 addr += insn_length(insn >> 8);
166 }
167 return addr == paddr;
168}
169
170int arch_prepare_kprobe(struct kprobe *p)
171{
172 if (!can_probe((unsigned long)p->addr))
173 return -EINVAL;
174 /* Make sure the probe isn't going on a difficult instruction */
175 if (probe_is_prohibited_opcode(p->addr))
176 return -EINVAL;
177 if (s390_get_insn_slot(p))
178 return -ENOMEM;
179 copy_instruction(p);
180 return 0;
181}
182NOKPROBE_SYMBOL(arch_prepare_kprobe);
183
184struct swap_insn_args {
185 struct kprobe *p;
186 unsigned int arm_kprobe : 1;
187};
188
189static int swap_instruction(void *data)
190{
191 struct swap_insn_args *args = data;
192 struct kprobe *p = args->p;
193 u16 opc;
194
195 opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
196 s390_kernel_write(p->addr, &opc, sizeof(opc));
197 return 0;
198}
199NOKPROBE_SYMBOL(swap_instruction);
200
201void arch_arm_kprobe(struct kprobe *p)
202{
203 struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
204
205 stop_machine_cpuslocked(swap_instruction, &args, NULL);
206}
207NOKPROBE_SYMBOL(arch_arm_kprobe);
208
209void arch_disarm_kprobe(struct kprobe *p)
210{
211 struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
212
213 stop_machine_cpuslocked(swap_instruction, &args, NULL);
214}
215NOKPROBE_SYMBOL(arch_disarm_kprobe);
216
217void arch_remove_kprobe(struct kprobe *p)
218{
219 s390_free_insn_slot(p);
220}
221NOKPROBE_SYMBOL(arch_remove_kprobe);
222
223static void enable_singlestep(struct kprobe_ctlblk *kcb,
224 struct pt_regs *regs,
225 unsigned long ip)
226{
227 union {
228 struct ctlreg regs[3];
229 struct {
230 struct ctlreg control;
231 struct ctlreg start;
232 struct ctlreg end;
233 };
234 } per_kprobe;
235
236 /* Set up the PER control registers %cr9-%cr11 */
237 per_kprobe.control.val = PER_EVENT_IFETCH;
238 per_kprobe.start.val = ip;
239 per_kprobe.end.val = ip;
240
241 /* Save control regs and psw mask */
242 __local_ctl_store(9, 11, kcb->kprobe_saved_ctl);
243 kcb->kprobe_saved_imask = regs->psw.mask &
244 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
245
246 /* Set PER control regs, turns on single step for the given address */
247 __local_ctl_load(9, 11, per_kprobe.regs);
248 regs->psw.mask |= PSW_MASK_PER;
249 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
250 regs->psw.addr = ip;
251}
252NOKPROBE_SYMBOL(enable_singlestep);
253
254static void disable_singlestep(struct kprobe_ctlblk *kcb,
255 struct pt_regs *regs,
256 unsigned long ip)
257{
258 /* Restore control regs and psw mask, set new psw address */
259 __local_ctl_load(9, 11, kcb->kprobe_saved_ctl);
260 regs->psw.mask &= ~PSW_MASK_PER;
261 regs->psw.mask |= kcb->kprobe_saved_imask;
262 regs->psw.addr = ip;
263}
264NOKPROBE_SYMBOL(disable_singlestep);
265
266/*
267 * Activate a kprobe by storing its pointer to current_kprobe. The
268 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
269 * two kprobes can be active, see KPROBE_REENTER.
270 */
271static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
272{
273 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
274 kcb->prev_kprobe.status = kcb->kprobe_status;
275 __this_cpu_write(current_kprobe, p);
276}
277NOKPROBE_SYMBOL(push_kprobe);
278
279/*
280 * Deactivate a kprobe by backing up to the previous state. If the
281 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
282 * for any other state prev_kprobe.kp will be NULL.
283 */
284static void pop_kprobe(struct kprobe_ctlblk *kcb)
285{
286 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
287 kcb->kprobe_status = kcb->prev_kprobe.status;
288 kcb->prev_kprobe.kp = NULL;
289}
290NOKPROBE_SYMBOL(pop_kprobe);
291
292static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
293{
294 switch (kcb->kprobe_status) {
295 case KPROBE_HIT_SSDONE:
296 case KPROBE_HIT_ACTIVE:
297 kprobes_inc_nmissed_count(p);
298 break;
299 case KPROBE_HIT_SS:
300 case KPROBE_REENTER:
301 default:
302 /*
303 * A kprobe on the code path to single step an instruction
304 * is a BUG. The code path resides in the .kprobes.text
305 * section and is executed with interrupts disabled.
306 */
307 pr_err("Failed to recover from reentered kprobes.\n");
308 dump_kprobe(p);
309 BUG();
310 }
311}
312NOKPROBE_SYMBOL(kprobe_reenter_check);
313
314static int kprobe_handler(struct pt_regs *regs)
315{
316 struct kprobe_ctlblk *kcb;
317 struct kprobe *p;
318
319 /*
320 * We want to disable preemption for the entire duration of kprobe
321 * processing. That includes the calls to the pre/post handlers
322 * and single stepping the kprobe instruction.
323 */
324 preempt_disable();
325 kcb = get_kprobe_ctlblk();
326 p = get_kprobe((void *)(regs->psw.addr - 2));
327
328 if (p) {
329 if (kprobe_running()) {
330 /*
331 * We have hit a kprobe while another is still
332 * active. This can happen in the pre and post
333 * handler. Single step the instruction of the
334 * new probe but do not call any handler function
335 * of this secondary kprobe.
336 * push_kprobe and pop_kprobe saves and restores
337 * the currently active kprobe.
338 */
339 kprobe_reenter_check(kcb, p);
340 push_kprobe(kcb, p);
341 kcb->kprobe_status = KPROBE_REENTER;
342 } else {
343 /*
344 * If we have no pre-handler or it returned 0, we
345 * continue with single stepping. If we have a
346 * pre-handler and it returned non-zero, it prepped
347 * for changing execution path, so get out doing
348 * nothing more here.
349 */
350 push_kprobe(kcb, p);
351 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
352 if (p->pre_handler && p->pre_handler(p, regs)) {
353 pop_kprobe(kcb);
354 preempt_enable_no_resched();
355 return 1;
356 }
357 kcb->kprobe_status = KPROBE_HIT_SS;
358 }
359 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
360 return 1;
361 } /* else:
362 * No kprobe at this address and no active kprobe. The trap has
363 * not been caused by a kprobe breakpoint. The race of breakpoint
364 * vs. kprobe remove does not exist because on s390 as we use
365 * stop_machine to arm/disarm the breakpoints.
366 */
367 preempt_enable_no_resched();
368 return 0;
369}
370NOKPROBE_SYMBOL(kprobe_handler);
371
372/*
373 * Called after single-stepping. p->addr is the address of the
374 * instruction whose first byte has been replaced by the "breakpoint"
375 * instruction. To avoid the SMP problems that can occur when we
376 * temporarily put back the original opcode to single-step, we
377 * single-stepped a copy of the instruction. The address of this
378 * copy is p->ainsn.insn.
379 */
380static void resume_execution(struct kprobe *p, struct pt_regs *regs)
381{
382 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
383 unsigned long ip = regs->psw.addr;
384 int fixup = probe_get_fixup_type(p->ainsn.insn);
385
386 if (fixup & FIXUP_PSW_NORMAL)
387 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
388
389 if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
390 int ilen = insn_length(p->ainsn.insn[0] >> 8);
391 if (ip - (unsigned long) p->ainsn.insn == ilen)
392 ip = (unsigned long) p->addr + ilen;
393 }
394
395 if (fixup & FIXUP_RETURN_REGISTER) {
396 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
397 regs->gprs[reg] += (unsigned long) p->addr -
398 (unsigned long) p->ainsn.insn;
399 }
400
401 disable_singlestep(kcb, regs, ip);
402}
403NOKPROBE_SYMBOL(resume_execution);
404
405static int post_kprobe_handler(struct pt_regs *regs)
406{
407 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
408 struct kprobe *p = kprobe_running();
409
410 if (!p)
411 return 0;
412
413 resume_execution(p, regs);
414 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
415 kcb->kprobe_status = KPROBE_HIT_SSDONE;
416 p->post_handler(p, regs, 0);
417 }
418 pop_kprobe(kcb);
419 preempt_enable_no_resched();
420
421 /*
422 * if somebody else is singlestepping across a probe point, psw mask
423 * will have PER set, in which case, continue the remaining processing
424 * of do_single_step, as if this is not a probe hit.
425 */
426 if (regs->psw.mask & PSW_MASK_PER)
427 return 0;
428
429 return 1;
430}
431NOKPROBE_SYMBOL(post_kprobe_handler);
432
433static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
434{
435 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
436 struct kprobe *p = kprobe_running();
437
438 switch(kcb->kprobe_status) {
439 case KPROBE_HIT_SS:
440 case KPROBE_REENTER:
441 /*
442 * We are here because the instruction being single
443 * stepped caused a page fault. We reset the current
444 * kprobe and the nip points back to the probe address
445 * and allow the page fault handler to continue as a
446 * normal page fault.
447 */
448 disable_singlestep(kcb, regs, (unsigned long) p->addr);
449 pop_kprobe(kcb);
450 preempt_enable_no_resched();
451 break;
452 case KPROBE_HIT_ACTIVE:
453 case KPROBE_HIT_SSDONE:
454 /*
455 * In case the user-specified fault handler returned
456 * zero, try to fix up.
457 */
458 if (fixup_exception(regs))
459 return 1;
460 /*
461 * fixup_exception() could not handle it,
462 * Let do_page_fault() fix it.
463 */
464 break;
465 default:
466 break;
467 }
468 return 0;
469}
470NOKPROBE_SYMBOL(kprobe_trap_handler);
471
472int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
473{
474 int ret;
475
476 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
477 local_irq_disable();
478 ret = kprobe_trap_handler(regs, trapnr);
479 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
480 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
481 return ret;
482}
483NOKPROBE_SYMBOL(kprobe_fault_handler);
484
485/*
486 * Wrapper routine to for handling exceptions.
487 */
488int kprobe_exceptions_notify(struct notifier_block *self,
489 unsigned long val, void *data)
490{
491 struct die_args *args = (struct die_args *) data;
492 struct pt_regs *regs = args->regs;
493 int ret = NOTIFY_DONE;
494
495 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
496 local_irq_disable();
497
498 switch (val) {
499 case DIE_BPT:
500 if (kprobe_handler(regs))
501 ret = NOTIFY_STOP;
502 break;
503 case DIE_SSTEP:
504 if (post_kprobe_handler(regs))
505 ret = NOTIFY_STOP;
506 break;
507 case DIE_TRAP:
508 if (!preemptible() && kprobe_running() &&
509 kprobe_trap_handler(regs, args->trapnr))
510 ret = NOTIFY_STOP;
511 break;
512 default:
513 break;
514 }
515
516 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
517 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
518
519 return ret;
520}
521NOKPROBE_SYMBOL(kprobe_exceptions_notify);
522
523int __init arch_init_kprobes(void)
524{
525 return 0;
526}
527
528int arch_trampoline_kprobe(struct kprobe *p)
529{
530 return 0;
531}
532NOKPROBE_SYMBOL(arch_trampoline_kprobe);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright IBM Corp. 2002, 2006
6 *
7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8 */
9
10#define pr_fmt(fmt) "kprobes: " fmt
11
12#include <linux/kprobes.h>
13#include <linux/ptrace.h>
14#include <linux/preempt.h>
15#include <linux/stop_machine.h>
16#include <linux/kdebug.h>
17#include <linux/uaccess.h>
18#include <linux/extable.h>
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/hardirq.h>
22#include <linux/ftrace.h>
23#include <linux/execmem.h>
24#include <asm/text-patching.h>
25#include <asm/set_memory.h>
26#include <asm/sections.h>
27#include <asm/dis.h>
28#include "entry.h"
29
30DEFINE_PER_CPU(struct kprobe *, current_kprobe);
31DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
32
33struct kretprobe_blackpoint kretprobe_blacklist[] = { };
34
35void *alloc_insn_page(void)
36{
37 void *page;
38
39 page = execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE);
40 if (!page)
41 return NULL;
42 set_memory_rox((unsigned long)page, 1);
43 return page;
44}
45
46static void copy_instruction(struct kprobe *p)
47{
48 kprobe_opcode_t insn[MAX_INSN_SIZE];
49 s64 disp, new_disp;
50 u64 addr, new_addr;
51 unsigned int len;
52
53 len = insn_length(*p->addr >> 8);
54 memcpy(&insn, p->addr, len);
55 p->opcode = insn[0];
56 if (probe_is_insn_relative_long(&insn[0])) {
57 /*
58 * For pc-relative instructions in RIL-b or RIL-c format patch
59 * the RI2 displacement field. The insn slot for the to be
60 * patched instruction is within the same 4GB area like the
61 * original instruction. Therefore the new displacement will
62 * always fit.
63 */
64 disp = *(s32 *)&insn[1];
65 addr = (u64)(unsigned long)p->addr;
66 new_addr = (u64)(unsigned long)p->ainsn.insn;
67 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
68 *(s32 *)&insn[1] = new_disp;
69 }
70 s390_kernel_write(p->ainsn.insn, &insn, len);
71}
72NOKPROBE_SYMBOL(copy_instruction);
73
74/* Check if paddr is at an instruction boundary */
75static bool can_probe(unsigned long paddr)
76{
77 unsigned long addr, offset = 0;
78 kprobe_opcode_t insn;
79 struct kprobe *kp;
80
81 if (paddr & 0x01)
82 return false;
83
84 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
85 return false;
86
87 /* Decode instructions */
88 addr = paddr - offset;
89 while (addr < paddr) {
90 if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn)))
91 return false;
92
93 if (insn >> 8 == 0) {
94 if (insn != BREAKPOINT_INSTRUCTION) {
95 /*
96 * Note that QEMU inserts opcode 0x0000 to implement
97 * software breakpoints for guests. Since the size of
98 * the original instruction is unknown, stop following
99 * instructions and prevent setting a kprobe.
100 */
101 return false;
102 }
103 /*
104 * Check if the instruction has been modified by another
105 * kprobe, in which case the original instruction is
106 * decoded.
107 */
108 kp = get_kprobe((void *)addr);
109 if (!kp) {
110 /* not a kprobe */
111 return false;
112 }
113 insn = kp->opcode;
114 }
115 addr += insn_length(insn >> 8);
116 }
117 return addr == paddr;
118}
119
120int arch_prepare_kprobe(struct kprobe *p)
121{
122 if (!can_probe((unsigned long)p->addr))
123 return -EINVAL;
124 /* Make sure the probe isn't going on a difficult instruction */
125 if (probe_is_prohibited_opcode(p->addr))
126 return -EINVAL;
127 p->ainsn.insn = get_insn_slot();
128 if (!p->ainsn.insn)
129 return -ENOMEM;
130 copy_instruction(p);
131 return 0;
132}
133NOKPROBE_SYMBOL(arch_prepare_kprobe);
134
135struct swap_insn_args {
136 struct kprobe *p;
137 unsigned int arm_kprobe : 1;
138};
139
140static int swap_instruction(void *data)
141{
142 struct swap_insn_args *args = data;
143 struct kprobe *p = args->p;
144 u16 opc;
145
146 opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
147 s390_kernel_write(p->addr, &opc, sizeof(opc));
148 return 0;
149}
150NOKPROBE_SYMBOL(swap_instruction);
151
152void arch_arm_kprobe(struct kprobe *p)
153{
154 struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
155
156 if (MACHINE_HAS_SEQ_INSN) {
157 swap_instruction(&args);
158 text_poke_sync();
159 } else {
160 stop_machine_cpuslocked(swap_instruction, &args, NULL);
161 }
162}
163NOKPROBE_SYMBOL(arch_arm_kprobe);
164
165void arch_disarm_kprobe(struct kprobe *p)
166{
167 struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
168
169 if (MACHINE_HAS_SEQ_INSN) {
170 swap_instruction(&args);
171 text_poke_sync();
172 } else {
173 stop_machine_cpuslocked(swap_instruction, &args, NULL);
174 }
175}
176NOKPROBE_SYMBOL(arch_disarm_kprobe);
177
178void arch_remove_kprobe(struct kprobe *p)
179{
180 if (!p->ainsn.insn)
181 return;
182 free_insn_slot(p->ainsn.insn, 0);
183 p->ainsn.insn = NULL;
184}
185NOKPROBE_SYMBOL(arch_remove_kprobe);
186
187static void enable_singlestep(struct kprobe_ctlblk *kcb,
188 struct pt_regs *regs,
189 unsigned long ip)
190{
191 union {
192 struct ctlreg regs[3];
193 struct {
194 struct ctlreg control;
195 struct ctlreg start;
196 struct ctlreg end;
197 };
198 } per_kprobe;
199
200 /* Set up the PER control registers %cr9-%cr11 */
201 per_kprobe.control.val = PER_EVENT_IFETCH;
202 per_kprobe.start.val = ip;
203 per_kprobe.end.val = ip;
204
205 /* Save control regs and psw mask */
206 __local_ctl_store(9, 11, kcb->kprobe_saved_ctl);
207 kcb->kprobe_saved_imask = regs->psw.mask &
208 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
209
210 /* Set PER control regs, turns on single step for the given address */
211 __local_ctl_load(9, 11, per_kprobe.regs);
212 regs->psw.mask |= PSW_MASK_PER;
213 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
214 regs->psw.addr = ip;
215}
216NOKPROBE_SYMBOL(enable_singlestep);
217
218static void disable_singlestep(struct kprobe_ctlblk *kcb,
219 struct pt_regs *regs,
220 unsigned long ip)
221{
222 /* Restore control regs and psw mask, set new psw address */
223 __local_ctl_load(9, 11, kcb->kprobe_saved_ctl);
224 regs->psw.mask &= ~PSW_MASK_PER;
225 regs->psw.mask |= kcb->kprobe_saved_imask;
226 regs->psw.addr = ip;
227}
228NOKPROBE_SYMBOL(disable_singlestep);
229
230/*
231 * Activate a kprobe by storing its pointer to current_kprobe. The
232 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
233 * two kprobes can be active, see KPROBE_REENTER.
234 */
235static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
236{
237 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
238 kcb->prev_kprobe.status = kcb->kprobe_status;
239 __this_cpu_write(current_kprobe, p);
240}
241NOKPROBE_SYMBOL(push_kprobe);
242
243/*
244 * Deactivate a kprobe by backing up to the previous state. If the
245 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
246 * for any other state prev_kprobe.kp will be NULL.
247 */
248static void pop_kprobe(struct kprobe_ctlblk *kcb)
249{
250 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
251 kcb->kprobe_status = kcb->prev_kprobe.status;
252 kcb->prev_kprobe.kp = NULL;
253}
254NOKPROBE_SYMBOL(pop_kprobe);
255
256static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
257{
258 switch (kcb->kprobe_status) {
259 case KPROBE_HIT_SSDONE:
260 case KPROBE_HIT_ACTIVE:
261 kprobes_inc_nmissed_count(p);
262 break;
263 case KPROBE_HIT_SS:
264 case KPROBE_REENTER:
265 default:
266 /*
267 * A kprobe on the code path to single step an instruction
268 * is a BUG. The code path resides in the .kprobes.text
269 * section and is executed with interrupts disabled.
270 */
271 pr_err("Failed to recover from reentered kprobes.\n");
272 dump_kprobe(p);
273 BUG();
274 }
275}
276NOKPROBE_SYMBOL(kprobe_reenter_check);
277
278static int kprobe_handler(struct pt_regs *regs)
279{
280 struct kprobe_ctlblk *kcb;
281 struct kprobe *p;
282
283 /*
284 * We want to disable preemption for the entire duration of kprobe
285 * processing. That includes the calls to the pre/post handlers
286 * and single stepping the kprobe instruction.
287 */
288 preempt_disable();
289 kcb = get_kprobe_ctlblk();
290 p = get_kprobe((void *)(regs->psw.addr - 2));
291
292 if (p) {
293 if (kprobe_running()) {
294 /*
295 * We have hit a kprobe while another is still
296 * active. This can happen in the pre and post
297 * handler. Single step the instruction of the
298 * new probe but do not call any handler function
299 * of this secondary kprobe.
300 * push_kprobe and pop_kprobe saves and restores
301 * the currently active kprobe.
302 */
303 kprobe_reenter_check(kcb, p);
304 push_kprobe(kcb, p);
305 kcb->kprobe_status = KPROBE_REENTER;
306 } else {
307 /*
308 * If we have no pre-handler or it returned 0, we
309 * continue with single stepping. If we have a
310 * pre-handler and it returned non-zero, it prepped
311 * for changing execution path, so get out doing
312 * nothing more here.
313 */
314 push_kprobe(kcb, p);
315 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
316 if (p->pre_handler && p->pre_handler(p, regs)) {
317 pop_kprobe(kcb);
318 preempt_enable_no_resched();
319 return 1;
320 }
321 kcb->kprobe_status = KPROBE_HIT_SS;
322 }
323 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
324 return 1;
325 } /* else:
326 * No kprobe at this address and no active kprobe. The trap has
327 * not been caused by a kprobe breakpoint. The race of breakpoint
328 * vs. kprobe remove does not exist because on s390 as we use
329 * stop_machine to arm/disarm the breakpoints.
330 */
331 preempt_enable_no_resched();
332 return 0;
333}
334NOKPROBE_SYMBOL(kprobe_handler);
335
336/*
337 * Called after single-stepping. p->addr is the address of the
338 * instruction whose first byte has been replaced by the "breakpoint"
339 * instruction. To avoid the SMP problems that can occur when we
340 * temporarily put back the original opcode to single-step, we
341 * single-stepped a copy of the instruction. The address of this
342 * copy is p->ainsn.insn.
343 */
344static void resume_execution(struct kprobe *p, struct pt_regs *regs)
345{
346 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
347 unsigned long ip = regs->psw.addr;
348 int fixup = probe_get_fixup_type(p->ainsn.insn);
349
350 if (fixup & FIXUP_PSW_NORMAL)
351 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
352
353 if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
354 int ilen = insn_length(p->ainsn.insn[0] >> 8);
355 if (ip - (unsigned long) p->ainsn.insn == ilen)
356 ip = (unsigned long) p->addr + ilen;
357 }
358
359 if (fixup & FIXUP_RETURN_REGISTER) {
360 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
361 regs->gprs[reg] += (unsigned long) p->addr -
362 (unsigned long) p->ainsn.insn;
363 }
364
365 disable_singlestep(kcb, regs, ip);
366}
367NOKPROBE_SYMBOL(resume_execution);
368
369static int post_kprobe_handler(struct pt_regs *regs)
370{
371 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
372 struct kprobe *p = kprobe_running();
373
374 if (!p)
375 return 0;
376
377 resume_execution(p, regs);
378 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
379 kcb->kprobe_status = KPROBE_HIT_SSDONE;
380 p->post_handler(p, regs, 0);
381 }
382 pop_kprobe(kcb);
383 preempt_enable_no_resched();
384
385 /*
386 * if somebody else is singlestepping across a probe point, psw mask
387 * will have PER set, in which case, continue the remaining processing
388 * of do_single_step, as if this is not a probe hit.
389 */
390 if (regs->psw.mask & PSW_MASK_PER)
391 return 0;
392
393 return 1;
394}
395NOKPROBE_SYMBOL(post_kprobe_handler);
396
397static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
398{
399 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
400 struct kprobe *p = kprobe_running();
401
402 switch(kcb->kprobe_status) {
403 case KPROBE_HIT_SS:
404 case KPROBE_REENTER:
405 /*
406 * We are here because the instruction being single
407 * stepped caused a page fault. We reset the current
408 * kprobe and the nip points back to the probe address
409 * and allow the page fault handler to continue as a
410 * normal page fault.
411 */
412 disable_singlestep(kcb, regs, (unsigned long) p->addr);
413 pop_kprobe(kcb);
414 preempt_enable_no_resched();
415 break;
416 case KPROBE_HIT_ACTIVE:
417 case KPROBE_HIT_SSDONE:
418 /*
419 * In case the user-specified fault handler returned
420 * zero, try to fix up.
421 */
422 if (fixup_exception(regs))
423 return 1;
424 /*
425 * fixup_exception() could not handle it,
426 * Let do_page_fault() fix it.
427 */
428 break;
429 default:
430 break;
431 }
432 return 0;
433}
434NOKPROBE_SYMBOL(kprobe_trap_handler);
435
436int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
437{
438 int ret;
439
440 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
441 local_irq_disable();
442 ret = kprobe_trap_handler(regs, trapnr);
443 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
444 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
445 return ret;
446}
447NOKPROBE_SYMBOL(kprobe_fault_handler);
448
449/*
450 * Wrapper routine to for handling exceptions.
451 */
452int kprobe_exceptions_notify(struct notifier_block *self,
453 unsigned long val, void *data)
454{
455 struct die_args *args = (struct die_args *) data;
456 struct pt_regs *regs = args->regs;
457 int ret = NOTIFY_DONE;
458
459 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
460 local_irq_disable();
461
462 switch (val) {
463 case DIE_BPT:
464 if (kprobe_handler(regs))
465 ret = NOTIFY_STOP;
466 break;
467 case DIE_SSTEP:
468 if (post_kprobe_handler(regs))
469 ret = NOTIFY_STOP;
470 break;
471 case DIE_TRAP:
472 if (!preemptible() && kprobe_running() &&
473 kprobe_trap_handler(regs, args->trapnr))
474 ret = NOTIFY_STOP;
475 break;
476 default:
477 break;
478 }
479
480 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
481 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
482
483 return ret;
484}
485NOKPROBE_SYMBOL(kprobe_exceptions_notify);
486
487int __init arch_init_kprobes(void)
488{
489 return 0;
490}
491
492int __init arch_populate_kprobe_blacklist(void)
493{
494 return kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
495 (unsigned long)__irqentry_text_end);
496}
497
498int arch_trampoline_kprobe(struct kprobe *p)
499{
500 return 0;
501}
502NOKPROBE_SYMBOL(arch_trampoline_kprobe);