Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 * Copyright IBM Corp. 2002, 2006
  6 *
  7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  8 */
  9
 10#define pr_fmt(fmt) "kprobes: " fmt
 11
 12#include <linux/moduleloader.h>
 13#include <linux/kprobes.h>
 14#include <linux/ptrace.h>
 15#include <linux/preempt.h>
 16#include <linux/stop_machine.h>
 17#include <linux/kdebug.h>
 18#include <linux/uaccess.h>
 19#include <linux/extable.h>
 20#include <linux/module.h>
 21#include <linux/slab.h>
 22#include <linux/hardirq.h>
 23#include <linux/ftrace.h>
 24#include <asm/set_memory.h>
 25#include <asm/sections.h>
 26#include <asm/dis.h>
 27#include "kprobes.h"
 28#include "entry.h"
 29
 30DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 31DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 32
 33struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 34
 35static int insn_page_in_use;
 36
 37void *alloc_insn_page(void)
 38{
 39	void *page;
 40
 41	page = module_alloc(PAGE_SIZE);
 42	if (!page)
 43		return NULL;
 44	set_memory_rox((unsigned long)page, 1);
 45	return page;
 46}
 47
 48static void *alloc_s390_insn_page(void)
 49{
 50	if (xchg(&insn_page_in_use, 1) == 1)
 51		return NULL;
 52	return &kprobes_insn_page;
 53}
 54
 55static void free_s390_insn_page(void *page)
 56{
 57	xchg(&insn_page_in_use, 0);
 58}
 59
 60struct kprobe_insn_cache kprobe_s390_insn_slots = {
 61	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
 62	.alloc = alloc_s390_insn_page,
 63	.free = free_s390_insn_page,
 64	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
 65	.insn_size = MAX_INSN_SIZE,
 66};
 67
 68static void copy_instruction(struct kprobe *p)
 69{
 70	kprobe_opcode_t insn[MAX_INSN_SIZE];
 71	s64 disp, new_disp;
 72	u64 addr, new_addr;
 73	unsigned int len;
 74
 75	len = insn_length(*p->addr >> 8);
 76	memcpy(&insn, p->addr, len);
 77	p->opcode = insn[0];
 78	if (probe_is_insn_relative_long(&insn[0])) {
 79		/*
 80		 * For pc-relative instructions in RIL-b or RIL-c format patch
 81		 * the RI2 displacement field. We have already made sure that
 82		 * the insn slot for the patched instruction is within the same
 83		 * 2GB area as the original instruction (either kernel image or
 84		 * module area). Therefore the new displacement will always fit.
 85		 */
 86		disp = *(s32 *)&insn[1];
 87		addr = (u64)(unsigned long)p->addr;
 88		new_addr = (u64)(unsigned long)p->ainsn.insn;
 89		new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 90		*(s32 *)&insn[1] = new_disp;
 91	}
 92	s390_kernel_write(p->ainsn.insn, &insn, len);
 
 
 
 
 
 
 
 
 
 
 
 
 93}
 94NOKPROBE_SYMBOL(copy_instruction);
 95
 
 
 
 
 
 96static int s390_get_insn_slot(struct kprobe *p)
 97{
 98	/*
 99	 * Get an insn slot that is within the same 2GB area like the original
100	 * instruction. That way instructions with a 32bit signed displacement
101	 * field can be patched and executed within the insn slot.
102	 */
103	p->ainsn.insn = NULL;
104	if (is_kernel((unsigned long)p->addr))
105		p->ainsn.insn = get_s390_insn_slot();
106	else if (is_module_addr(p->addr))
107		p->ainsn.insn = get_insn_slot();
108	return p->ainsn.insn ? 0 : -ENOMEM;
109}
110NOKPROBE_SYMBOL(s390_get_insn_slot);
111
112static void s390_free_insn_slot(struct kprobe *p)
113{
114	if (!p->ainsn.insn)
115		return;
116	if (is_kernel((unsigned long)p->addr))
117		free_s390_insn_slot(p->ainsn.insn, 0);
118	else
119		free_insn_slot(p->ainsn.insn, 0);
120	p->ainsn.insn = NULL;
121}
122NOKPROBE_SYMBOL(s390_free_insn_slot);
123
124/* Check if paddr is at an instruction boundary */
125static bool can_probe(unsigned long paddr)
126{
127	unsigned long addr, offset = 0;
128	kprobe_opcode_t insn;
129	struct kprobe *kp;
130
131	if (paddr & 0x01)
132		return false;
133
134	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
135		return false;
136
137	/* Decode instructions */
138	addr = paddr - offset;
139	while (addr < paddr) {
140		if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn)))
141			return false;
142
143		if (insn >> 8 == 0) {
144			if (insn != BREAKPOINT_INSTRUCTION) {
145				/*
146				 * Note that QEMU inserts opcode 0x0000 to implement
147				 * software breakpoints for guests. Since the size of
148				 * the original instruction is unknown, stop following
149				 * instructions and prevent setting a kprobe.
150				 */
151				return false;
152			}
153			/*
154			 * Check if the instruction has been modified by another
155			 * kprobe, in which case the original instruction is
156			 * decoded.
157			 */
158			kp = get_kprobe((void *)addr);
159			if (!kp) {
160				/* not a kprobe */
161				return false;
162			}
163			insn = kp->opcode;
164		}
165		addr += insn_length(insn >> 8);
166	}
167	return addr == paddr;
168}
169
170int arch_prepare_kprobe(struct kprobe *p)
171{
172	if (!can_probe((unsigned long)p->addr))
173		return -EINVAL;
174	/* Make sure the probe isn't going on a difficult instruction */
175	if (probe_is_prohibited_opcode(p->addr))
176		return -EINVAL;
177	if (s390_get_insn_slot(p))
178		return -ENOMEM;
179	copy_instruction(p);
180	return 0;
181}
182NOKPROBE_SYMBOL(arch_prepare_kprobe);
183
 
 
 
 
 
184struct swap_insn_args {
185	struct kprobe *p;
186	unsigned int arm_kprobe : 1;
187};
188
189static int swap_instruction(void *data)
190{
 
 
191	struct swap_insn_args *args = data;
 
192	struct kprobe *p = args->p;
193	u16 opc;
194
195	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
196	s390_kernel_write(p->addr, &opc, sizeof(opc));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197	return 0;
198}
199NOKPROBE_SYMBOL(swap_instruction);
200
201void arch_arm_kprobe(struct kprobe *p)
202{
203	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
204
205	stop_machine_cpuslocked(swap_instruction, &args, NULL);
206}
207NOKPROBE_SYMBOL(arch_arm_kprobe);
208
209void arch_disarm_kprobe(struct kprobe *p)
210{
211	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
212
213	stop_machine_cpuslocked(swap_instruction, &args, NULL);
214}
215NOKPROBE_SYMBOL(arch_disarm_kprobe);
216
217void arch_remove_kprobe(struct kprobe *p)
218{
219	s390_free_insn_slot(p);
220}
221NOKPROBE_SYMBOL(arch_remove_kprobe);
222
223static void enable_singlestep(struct kprobe_ctlblk *kcb,
224			      struct pt_regs *regs,
225			      unsigned long ip)
226{
227	union {
228		struct ctlreg regs[3];
229		struct {
230			struct ctlreg control;
231			struct ctlreg start;
232			struct ctlreg end;
233		};
234	} per_kprobe;
235
236	/* Set up the PER control registers %cr9-%cr11 */
237	per_kprobe.control.val = PER_EVENT_IFETCH;
238	per_kprobe.start.val = ip;
239	per_kprobe.end.val = ip;
240
241	/* Save control regs and psw mask */
242	__local_ctl_store(9, 11, kcb->kprobe_saved_ctl);
243	kcb->kprobe_saved_imask = regs->psw.mask &
244		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
245
246	/* Set PER control regs, turns on single step for the given address */
247	__local_ctl_load(9, 11, per_kprobe.regs);
248	regs->psw.mask |= PSW_MASK_PER;
249	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
250	regs->psw.addr = ip;
251}
252NOKPROBE_SYMBOL(enable_singlestep);
253
254static void disable_singlestep(struct kprobe_ctlblk *kcb,
255			       struct pt_regs *regs,
256			       unsigned long ip)
257{
258	/* Restore control regs and psw mask, set new psw address */
259	__local_ctl_load(9, 11, kcb->kprobe_saved_ctl);
260	regs->psw.mask &= ~PSW_MASK_PER;
261	regs->psw.mask |= kcb->kprobe_saved_imask;
262	regs->psw.addr = ip;
263}
264NOKPROBE_SYMBOL(disable_singlestep);
265
266/*
267 * Activate a kprobe by storing its pointer to current_kprobe. The
268 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
269 * two kprobes can be active, see KPROBE_REENTER.
270 */
271static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
272{
273	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
274	kcb->prev_kprobe.status = kcb->kprobe_status;
275	__this_cpu_write(current_kprobe, p);
276}
277NOKPROBE_SYMBOL(push_kprobe);
278
279/*
280 * Deactivate a kprobe by backing up to the previous state. If the
281 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
282 * for any other state prev_kprobe.kp will be NULL.
283 */
284static void pop_kprobe(struct kprobe_ctlblk *kcb)
285{
286	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
287	kcb->kprobe_status = kcb->prev_kprobe.status;
288	kcb->prev_kprobe.kp = NULL;
289}
290NOKPROBE_SYMBOL(pop_kprobe);
291
 
 
 
 
 
 
 
 
 
292static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
293{
294	switch (kcb->kprobe_status) {
295	case KPROBE_HIT_SSDONE:
296	case KPROBE_HIT_ACTIVE:
297		kprobes_inc_nmissed_count(p);
298		break;
299	case KPROBE_HIT_SS:
300	case KPROBE_REENTER:
301	default:
302		/*
303		 * A kprobe on the code path to single step an instruction
304		 * is a BUG. The code path resides in the .kprobes.text
305		 * section and is executed with interrupts disabled.
306		 */
307		pr_err("Failed to recover from reentered kprobes.\n");
308		dump_kprobe(p);
309		BUG();
310	}
311}
312NOKPROBE_SYMBOL(kprobe_reenter_check);
313
314static int kprobe_handler(struct pt_regs *regs)
315{
316	struct kprobe_ctlblk *kcb;
317	struct kprobe *p;
318
319	/*
320	 * We want to disable preemption for the entire duration of kprobe
321	 * processing. That includes the calls to the pre/post handlers
322	 * and single stepping the kprobe instruction.
323	 */
324	preempt_disable();
325	kcb = get_kprobe_ctlblk();
326	p = get_kprobe((void *)(regs->psw.addr - 2));
327
328	if (p) {
329		if (kprobe_running()) {
330			/*
331			 * We have hit a kprobe while another is still
332			 * active. This can happen in the pre and post
333			 * handler. Single step the instruction of the
334			 * new probe but do not call any handler function
335			 * of this secondary kprobe.
336			 * push_kprobe and pop_kprobe saves and restores
337			 * the currently active kprobe.
338			 */
339			kprobe_reenter_check(kcb, p);
340			push_kprobe(kcb, p);
341			kcb->kprobe_status = KPROBE_REENTER;
342		} else {
343			/*
344			 * If we have no pre-handler or it returned 0, we
345			 * continue with single stepping. If we have a
346			 * pre-handler and it returned non-zero, it prepped
347			 * for changing execution path, so get out doing
348			 * nothing more here.
 
349			 */
350			push_kprobe(kcb, p);
351			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
352			if (p->pre_handler && p->pre_handler(p, regs)) {
353				pop_kprobe(kcb);
354				preempt_enable_no_resched();
355				return 1;
356			}
357			kcb->kprobe_status = KPROBE_HIT_SS;
358		}
359		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
360		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361	} /* else:
362	   * No kprobe at this address and no active kprobe. The trap has
363	   * not been caused by a kprobe breakpoint. The race of breakpoint
364	   * vs. kprobe remove does not exist because on s390 as we use
365	   * stop_machine to arm/disarm the breakpoints.
366	   */
367	preempt_enable_no_resched();
368	return 0;
369}
370NOKPROBE_SYMBOL(kprobe_handler);
371
372/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373 * Called after single-stepping.  p->addr is the address of the
374 * instruction whose first byte has been replaced by the "breakpoint"
375 * instruction.  To avoid the SMP problems that can occur when we
376 * temporarily put back the original opcode to single-step, we
377 * single-stepped a copy of the instruction.  The address of this
378 * copy is p->ainsn.insn.
379 */
380static void resume_execution(struct kprobe *p, struct pt_regs *regs)
381{
382	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
383	unsigned long ip = regs->psw.addr;
384	int fixup = probe_get_fixup_type(p->ainsn.insn);
385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386	if (fixup & FIXUP_PSW_NORMAL)
387		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
388
389	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
390		int ilen = insn_length(p->ainsn.insn[0] >> 8);
391		if (ip - (unsigned long) p->ainsn.insn == ilen)
392			ip = (unsigned long) p->addr + ilen;
393	}
394
395	if (fixup & FIXUP_RETURN_REGISTER) {
396		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
397		regs->gprs[reg] += (unsigned long) p->addr -
398				   (unsigned long) p->ainsn.insn;
399	}
400
401	disable_singlestep(kcb, regs, ip);
402}
403NOKPROBE_SYMBOL(resume_execution);
404
405static int post_kprobe_handler(struct pt_regs *regs)
406{
407	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
408	struct kprobe *p = kprobe_running();
409
410	if (!p)
411		return 0;
412
413	resume_execution(p, regs);
414	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
415		kcb->kprobe_status = KPROBE_HIT_SSDONE;
416		p->post_handler(p, regs, 0);
417	}
 
 
418	pop_kprobe(kcb);
419	preempt_enable_no_resched();
420
421	/*
422	 * if somebody else is singlestepping across a probe point, psw mask
423	 * will have PER set, in which case, continue the remaining processing
424	 * of do_single_step, as if this is not a probe hit.
425	 */
426	if (regs->psw.mask & PSW_MASK_PER)
427		return 0;
428
429	return 1;
430}
431NOKPROBE_SYMBOL(post_kprobe_handler);
432
433static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
434{
435	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
436	struct kprobe *p = kprobe_running();
 
437
438	switch(kcb->kprobe_status) {
 
 
 
439	case KPROBE_HIT_SS:
440	case KPROBE_REENTER:
441		/*
442		 * We are here because the instruction being single
443		 * stepped caused a page fault. We reset the current
444		 * kprobe and the nip points back to the probe address
445		 * and allow the page fault handler to continue as a
446		 * normal page fault.
447		 */
448		disable_singlestep(kcb, regs, (unsigned long) p->addr);
449		pop_kprobe(kcb);
450		preempt_enable_no_resched();
451		break;
452	case KPROBE_HIT_ACTIVE:
453	case KPROBE_HIT_SSDONE:
454		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455		 * In case the user-specified fault handler returned
456		 * zero, try to fix up.
457		 */
458		if (fixup_exception(regs))
 
 
459			return 1;
 
 
460		/*
461		 * fixup_exception() could not handle it,
462		 * Let do_page_fault() fix it.
463		 */
464		break;
465	default:
466		break;
467	}
468	return 0;
469}
470NOKPROBE_SYMBOL(kprobe_trap_handler);
471
472int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
473{
474	int ret;
475
476	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
477		local_irq_disable();
478	ret = kprobe_trap_handler(regs, trapnr);
479	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
480		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
481	return ret;
482}
483NOKPROBE_SYMBOL(kprobe_fault_handler);
484
485/*
486 * Wrapper routine to for handling exceptions.
487 */
488int kprobe_exceptions_notify(struct notifier_block *self,
489			     unsigned long val, void *data)
490{
491	struct die_args *args = (struct die_args *) data;
492	struct pt_regs *regs = args->regs;
493	int ret = NOTIFY_DONE;
494
495	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
496		local_irq_disable();
497
498	switch (val) {
499	case DIE_BPT:
500		if (kprobe_handler(regs))
501			ret = NOTIFY_STOP;
502		break;
503	case DIE_SSTEP:
504		if (post_kprobe_handler(regs))
505			ret = NOTIFY_STOP;
506		break;
507	case DIE_TRAP:
508		if (!preemptible() && kprobe_running() &&
509		    kprobe_trap_handler(regs, args->trapnr))
510			ret = NOTIFY_STOP;
511		break;
512	default:
513		break;
514	}
515
516	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
517		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
518
519	return ret;
520}
521NOKPROBE_SYMBOL(kprobe_exceptions_notify);
522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
523int __init arch_init_kprobes(void)
524{
525	return 0;
526}
527
528int arch_trampoline_kprobe(struct kprobe *p)
529{
530	return 0;
531}
532NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v4.6
 
  1/*
  2 *  Kernel Probes (KProbes)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright IBM Corp. 2002, 2006
 19 *
 20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
 21 */
 22
 
 
 
 23#include <linux/kprobes.h>
 24#include <linux/ptrace.h>
 25#include <linux/preempt.h>
 26#include <linux/stop_machine.h>
 27#include <linux/kdebug.h>
 28#include <linux/uaccess.h>
 
 29#include <linux/module.h>
 30#include <linux/slab.h>
 31#include <linux/hardirq.h>
 32#include <linux/ftrace.h>
 33#include <asm/cacheflush.h>
 34#include <asm/sections.h>
 35#include <asm/dis.h>
 
 
 36
 37DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 38DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 39
 40struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 41
 42DEFINE_INSN_CACHE_OPS(dmainsn);
 
 
 
 
 
 
 
 
 
 
 
 43
 44static void *alloc_dmainsn_page(void)
 45{
 46	return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
 
 
 47}
 48
 49static void free_dmainsn_page(void *page)
 50{
 51	free_page((unsigned long)page);
 52}
 53
 54struct kprobe_insn_cache kprobe_dmainsn_slots = {
 55	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
 56	.alloc = alloc_dmainsn_page,
 57	.free = free_dmainsn_page,
 58	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
 59	.insn_size = MAX_INSN_SIZE,
 60};
 61
 62static void copy_instruction(struct kprobe *p)
 63{
 64	unsigned long ip = (unsigned long) p->addr;
 65	s64 disp, new_disp;
 66	u64 addr, new_addr;
 
 67
 68	if (ftrace_location(ip) == ip) {
 
 
 
 69		/*
 70		 * If kprobes patches the instruction that is morphed by
 71		 * ftrace make sure that kprobes always sees the branch
 72		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
 73		 * in case of hotpatch.
 
 74		 */
 75		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
 76		p->ainsn.is_ftrace_insn = 1;
 77	} else
 78		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
 79	p->opcode = p->ainsn.insn[0];
 80	if (!probe_is_insn_relative_long(p->ainsn.insn))
 81		return;
 82	/*
 83	 * For pc-relative instructions in RIL-b or RIL-c format patch the
 84	 * RI2 displacement field. We have already made sure that the insn
 85	 * slot for the patched instruction is within the same 2GB area
 86	 * as the original instruction (either kernel image or module area).
 87	 * Therefore the new displacement will always fit.
 88	 */
 89	disp = *(s32 *)&p->ainsn.insn[1];
 90	addr = (u64)(unsigned long)p->addr;
 91	new_addr = (u64)(unsigned long)p->ainsn.insn;
 92	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 93	*(s32 *)&p->ainsn.insn[1] = new_disp;
 94}
 95NOKPROBE_SYMBOL(copy_instruction);
 96
 97static inline int is_kernel_addr(void *addr)
 98{
 99	return addr < (void *)_end;
100}
101
102static int s390_get_insn_slot(struct kprobe *p)
103{
104	/*
105	 * Get an insn slot that is within the same 2GB area like the original
106	 * instruction. That way instructions with a 32bit signed displacement
107	 * field can be patched and executed within the insn slot.
108	 */
109	p->ainsn.insn = NULL;
110	if (is_kernel_addr(p->addr))
111		p->ainsn.insn = get_dmainsn_slot();
112	else if (is_module_addr(p->addr))
113		p->ainsn.insn = get_insn_slot();
114	return p->ainsn.insn ? 0 : -ENOMEM;
115}
116NOKPROBE_SYMBOL(s390_get_insn_slot);
117
118static void s390_free_insn_slot(struct kprobe *p)
119{
120	if (!p->ainsn.insn)
121		return;
122	if (is_kernel_addr(p->addr))
123		free_dmainsn_slot(p->ainsn.insn, 0);
124	else
125		free_insn_slot(p->ainsn.insn, 0);
126	p->ainsn.insn = NULL;
127}
128NOKPROBE_SYMBOL(s390_free_insn_slot);
129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130int arch_prepare_kprobe(struct kprobe *p)
131{
132	if ((unsigned long) p->addr & 0x01)
133		return -EINVAL;
134	/* Make sure the probe isn't going on a difficult instruction */
135	if (probe_is_prohibited_opcode(p->addr))
136		return -EINVAL;
137	if (s390_get_insn_slot(p))
138		return -ENOMEM;
139	copy_instruction(p);
140	return 0;
141}
142NOKPROBE_SYMBOL(arch_prepare_kprobe);
143
144int arch_check_ftrace_location(struct kprobe *p)
145{
146	return 0;
147}
148
149struct swap_insn_args {
150	struct kprobe *p;
151	unsigned int arm_kprobe : 1;
152};
153
154static int swap_instruction(void *data)
155{
156	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
157	unsigned long status = kcb->kprobe_status;
158	struct swap_insn_args *args = data;
159	struct ftrace_insn new_insn, *insn;
160	struct kprobe *p = args->p;
161	size_t len;
162
163	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
164	len = sizeof(new_insn.opc);
165	if (!p->ainsn.is_ftrace_insn)
166		goto skip_ftrace;
167	len = sizeof(new_insn);
168	insn = (struct ftrace_insn *) p->addr;
169	if (args->arm_kprobe) {
170		if (is_ftrace_nop(insn))
171			new_insn.disp = KPROBE_ON_FTRACE_NOP;
172		else
173			new_insn.disp = KPROBE_ON_FTRACE_CALL;
174	} else {
175		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
176		if (insn->disp == KPROBE_ON_FTRACE_NOP)
177			ftrace_generate_nop_insn(&new_insn);
178	}
179skip_ftrace:
180	kcb->kprobe_status = KPROBE_SWAP_INST;
181	s390_kernel_write(p->addr, &new_insn, len);
182	kcb->kprobe_status = status;
183	return 0;
184}
185NOKPROBE_SYMBOL(swap_instruction);
186
187void arch_arm_kprobe(struct kprobe *p)
188{
189	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
190
191	stop_machine(swap_instruction, &args, NULL);
192}
193NOKPROBE_SYMBOL(arch_arm_kprobe);
194
195void arch_disarm_kprobe(struct kprobe *p)
196{
197	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
198
199	stop_machine(swap_instruction, &args, NULL);
200}
201NOKPROBE_SYMBOL(arch_disarm_kprobe);
202
203void arch_remove_kprobe(struct kprobe *p)
204{
205	s390_free_insn_slot(p);
206}
207NOKPROBE_SYMBOL(arch_remove_kprobe);
208
209static void enable_singlestep(struct kprobe_ctlblk *kcb,
210			      struct pt_regs *regs,
211			      unsigned long ip)
212{
213	struct per_regs per_kprobe;
 
 
 
 
 
 
 
214
215	/* Set up the PER control registers %cr9-%cr11 */
216	per_kprobe.control = PER_EVENT_IFETCH;
217	per_kprobe.start = ip;
218	per_kprobe.end = ip;
219
220	/* Save control regs and psw mask */
221	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
222	kcb->kprobe_saved_imask = regs->psw.mask &
223		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
224
225	/* Set PER control regs, turns on single step for the given address */
226	__ctl_load(per_kprobe, 9, 11);
227	regs->psw.mask |= PSW_MASK_PER;
228	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
229	regs->psw.addr = ip;
230}
231NOKPROBE_SYMBOL(enable_singlestep);
232
233static void disable_singlestep(struct kprobe_ctlblk *kcb,
234			       struct pt_regs *regs,
235			       unsigned long ip)
236{
237	/* Restore control regs and psw mask, set new psw address */
238	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
239	regs->psw.mask &= ~PSW_MASK_PER;
240	regs->psw.mask |= kcb->kprobe_saved_imask;
241	regs->psw.addr = ip;
242}
243NOKPROBE_SYMBOL(disable_singlestep);
244
245/*
246 * Activate a kprobe by storing its pointer to current_kprobe. The
247 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
248 * two kprobes can be active, see KPROBE_REENTER.
249 */
250static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
251{
252	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
253	kcb->prev_kprobe.status = kcb->kprobe_status;
254	__this_cpu_write(current_kprobe, p);
255}
256NOKPROBE_SYMBOL(push_kprobe);
257
258/*
259 * Deactivate a kprobe by backing up to the previous state. If the
260 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
261 * for any other state prev_kprobe.kp will be NULL.
262 */
263static void pop_kprobe(struct kprobe_ctlblk *kcb)
264{
265	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
266	kcb->kprobe_status = kcb->prev_kprobe.status;
 
267}
268NOKPROBE_SYMBOL(pop_kprobe);
269
270void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
271{
272	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
273
274	/* Replace the return addr with trampoline addr */
275	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
276}
277NOKPROBE_SYMBOL(arch_prepare_kretprobe);
278
279static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
280{
281	switch (kcb->kprobe_status) {
282	case KPROBE_HIT_SSDONE:
283	case KPROBE_HIT_ACTIVE:
284		kprobes_inc_nmissed_count(p);
285		break;
286	case KPROBE_HIT_SS:
287	case KPROBE_REENTER:
288	default:
289		/*
290		 * A kprobe on the code path to single step an instruction
291		 * is a BUG. The code path resides in the .kprobes.text
292		 * section and is executed with interrupts disabled.
293		 */
294		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
295		dump_kprobe(p);
296		BUG();
297	}
298}
299NOKPROBE_SYMBOL(kprobe_reenter_check);
300
301static int kprobe_handler(struct pt_regs *regs)
302{
303	struct kprobe_ctlblk *kcb;
304	struct kprobe *p;
305
306	/*
307	 * We want to disable preemption for the entire duration of kprobe
308	 * processing. That includes the calls to the pre/post handlers
309	 * and single stepping the kprobe instruction.
310	 */
311	preempt_disable();
312	kcb = get_kprobe_ctlblk();
313	p = get_kprobe((void *)(regs->psw.addr - 2));
314
315	if (p) {
316		if (kprobe_running()) {
317			/*
318			 * We have hit a kprobe while another is still
319			 * active. This can happen in the pre and post
320			 * handler. Single step the instruction of the
321			 * new probe but do not call any handler function
322			 * of this secondary kprobe.
323			 * push_kprobe and pop_kprobe saves and restores
324			 * the currently active kprobe.
325			 */
326			kprobe_reenter_check(kcb, p);
327			push_kprobe(kcb, p);
328			kcb->kprobe_status = KPROBE_REENTER;
329		} else {
330			/*
331			 * If we have no pre-handler or it returned 0, we
332			 * continue with single stepping. If we have a
333			 * pre-handler and it returned non-zero, it prepped
334			 * for calling the break_handler below on re-entry
335			 * for jprobe processing, so get out doing nothing
336			 * more here.
337			 */
338			push_kprobe(kcb, p);
339			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
340			if (p->pre_handler && p->pre_handler(p, regs))
 
 
341				return 1;
 
342			kcb->kprobe_status = KPROBE_HIT_SS;
343		}
344		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
345		return 1;
346	} else if (kprobe_running()) {
347		p = __this_cpu_read(current_kprobe);
348		if (p->break_handler && p->break_handler(p, regs)) {
349			/*
350			 * Continuation after the jprobe completed and
351			 * caused the jprobe_return trap. The jprobe
352			 * break_handler "returns" to the original
353			 * function that still has the kprobe breakpoint
354			 * installed. We continue with single stepping.
355			 */
356			kcb->kprobe_status = KPROBE_HIT_SS;
357			enable_singlestep(kcb, regs,
358					  (unsigned long) p->ainsn.insn);
359			return 1;
360		} /* else:
361		   * No kprobe at this address and the current kprobe
362		   * has no break handler (no jprobe!). The kernel just
363		   * exploded, let the standard trap handler pick up the
364		   * pieces.
365		   */
366	} /* else:
367	   * No kprobe at this address and no active kprobe. The trap has
368	   * not been caused by a kprobe breakpoint. The race of breakpoint
369	   * vs. kprobe remove does not exist because on s390 as we use
370	   * stop_machine to arm/disarm the breakpoints.
371	   */
372	preempt_enable_no_resched();
373	return 0;
374}
375NOKPROBE_SYMBOL(kprobe_handler);
376
377/*
378 * Function return probe trampoline:
379 *	- init_kprobes() establishes a probepoint here
380 *	- When the probed function returns, this probe
381 *		causes the handlers to fire
382 */
383static void __used kretprobe_trampoline_holder(void)
384{
385	asm volatile(".global kretprobe_trampoline\n"
386		     "kretprobe_trampoline: bcr 0,0\n");
387}
388
389/*
390 * Called when the probe at kretprobe trampoline is hit
391 */
392static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
393{
394	struct kretprobe_instance *ri;
395	struct hlist_head *head, empty_rp;
396	struct hlist_node *tmp;
397	unsigned long flags, orig_ret_address;
398	unsigned long trampoline_address;
399	kprobe_opcode_t *correct_ret_addr;
400
401	INIT_HLIST_HEAD(&empty_rp);
402	kretprobe_hash_lock(current, &head, &flags);
403
404	/*
405	 * It is possible to have multiple instances associated with a given
406	 * task either because an multiple functions in the call path
407	 * have a return probe installed on them, and/or more than one return
408	 * return probe was registered for a target function.
409	 *
410	 * We can handle this because:
411	 *     - instances are always inserted at the head of the list
412	 *     - when multiple return probes are registered for the same
413	 *	 function, the first instance's ret_addr will point to the
414	 *	 real return address, and all the rest will point to
415	 *	 kretprobe_trampoline
416	 */
417	ri = NULL;
418	orig_ret_address = 0;
419	correct_ret_addr = NULL;
420	trampoline_address = (unsigned long) &kretprobe_trampoline;
421	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
422		if (ri->task != current)
423			/* another task is sharing our hash bucket */
424			continue;
425
426		orig_ret_address = (unsigned long) ri->ret_addr;
427
428		if (orig_ret_address != trampoline_address)
429			/*
430			 * This is the real return address. Any other
431			 * instances associated with this task are for
432			 * other calls deeper on the call stack
433			 */
434			break;
435	}
436
437	kretprobe_assert(ri, orig_ret_address, trampoline_address);
438
439	correct_ret_addr = ri->ret_addr;
440	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
441		if (ri->task != current)
442			/* another task is sharing our hash bucket */
443			continue;
444
445		orig_ret_address = (unsigned long) ri->ret_addr;
446
447		if (ri->rp && ri->rp->handler) {
448			ri->ret_addr = correct_ret_addr;
449			ri->rp->handler(ri, regs);
450		}
451
452		recycle_rp_inst(ri, &empty_rp);
453
454		if (orig_ret_address != trampoline_address)
455			/*
456			 * This is the real return address. Any other
457			 * instances associated with this task are for
458			 * other calls deeper on the call stack
459			 */
460			break;
461	}
462
463	regs->psw.addr = orig_ret_address;
464
465	pop_kprobe(get_kprobe_ctlblk());
466	kretprobe_hash_unlock(current, &flags);
467	preempt_enable_no_resched();
468
469	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
470		hlist_del(&ri->hlist);
471		kfree(ri);
472	}
473	/*
474	 * By returning a non-zero value, we are telling
475	 * kprobe_handler() that we don't want the post_handler
476	 * to run (and have re-enabled preemption)
477	 */
478	return 1;
479}
480NOKPROBE_SYMBOL(trampoline_probe_handler);
481
482/*
483 * Called after single-stepping.  p->addr is the address of the
484 * instruction whose first byte has been replaced by the "breakpoint"
485 * instruction.  To avoid the SMP problems that can occur when we
486 * temporarily put back the original opcode to single-step, we
487 * single-stepped a copy of the instruction.  The address of this
488 * copy is p->ainsn.insn.
489 */
490static void resume_execution(struct kprobe *p, struct pt_regs *regs)
491{
492	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
493	unsigned long ip = regs->psw.addr;
494	int fixup = probe_get_fixup_type(p->ainsn.insn);
495
496	/* Check if the kprobes location is an enabled ftrace caller */
497	if (p->ainsn.is_ftrace_insn) {
498		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
499		struct ftrace_insn call_insn;
500
501		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
502		/*
503		 * A kprobe on an enabled ftrace call site actually single
504		 * stepped an unconditional branch (ftrace nop equivalent).
505		 * Now we need to fixup things and pretend that a brasl r0,...
506		 * was executed instead.
507		 */
508		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
509			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
510			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
511		}
512	}
513
514	if (fixup & FIXUP_PSW_NORMAL)
515		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
516
517	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
518		int ilen = insn_length(p->ainsn.insn[0] >> 8);
519		if (ip - (unsigned long) p->ainsn.insn == ilen)
520			ip = (unsigned long) p->addr + ilen;
521	}
522
523	if (fixup & FIXUP_RETURN_REGISTER) {
524		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
525		regs->gprs[reg] += (unsigned long) p->addr -
526				   (unsigned long) p->ainsn.insn;
527	}
528
529	disable_singlestep(kcb, regs, ip);
530}
531NOKPROBE_SYMBOL(resume_execution);
532
533static int post_kprobe_handler(struct pt_regs *regs)
534{
535	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536	struct kprobe *p = kprobe_running();
537
538	if (!p)
539		return 0;
540
 
541	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
542		kcb->kprobe_status = KPROBE_HIT_SSDONE;
543		p->post_handler(p, regs, 0);
544	}
545
546	resume_execution(p, regs);
547	pop_kprobe(kcb);
548	preempt_enable_no_resched();
549
550	/*
551	 * if somebody else is singlestepping across a probe point, psw mask
552	 * will have PER set, in which case, continue the remaining processing
553	 * of do_single_step, as if this is not a probe hit.
554	 */
555	if (regs->psw.mask & PSW_MASK_PER)
556		return 0;
557
558	return 1;
559}
560NOKPROBE_SYMBOL(post_kprobe_handler);
561
562static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
563{
564	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
565	struct kprobe *p = kprobe_running();
566	const struct exception_table_entry *entry;
567
568	switch(kcb->kprobe_status) {
569	case KPROBE_SWAP_INST:
570		/* We are here because the instruction replacement failed */
571		return 0;
572	case KPROBE_HIT_SS:
573	case KPROBE_REENTER:
574		/*
575		 * We are here because the instruction being single
576		 * stepped caused a page fault. We reset the current
577		 * kprobe and the nip points back to the probe address
578		 * and allow the page fault handler to continue as a
579		 * normal page fault.
580		 */
581		disable_singlestep(kcb, regs, (unsigned long) p->addr);
582		pop_kprobe(kcb);
583		preempt_enable_no_resched();
584		break;
585	case KPROBE_HIT_ACTIVE:
586	case KPROBE_HIT_SSDONE:
587		/*
588		 * We increment the nmissed count for accounting,
589		 * we can also use npre/npostfault count for accounting
590		 * these specific fault cases.
591		 */
592		kprobes_inc_nmissed_count(p);
593
594		/*
595		 * We come here because instructions in the pre/post
596		 * handler caused the page_fault, this could happen
597		 * if handler tries to access user space by
598		 * copy_from_user(), get_user() etc. Let the
599		 * user-specified handler try to fix it first.
600		 */
601		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
602			return 1;
603
604		/*
605		 * In case the user-specified fault handler returned
606		 * zero, try to fix up.
607		 */
608		entry = search_exception_tables(regs->psw.addr);
609		if (entry) {
610			regs->psw.addr = extable_fixup(entry);
611			return 1;
612		}
613
614		/*
615		 * fixup_exception() could not handle it,
616		 * Let do_page_fault() fix it.
617		 */
618		break;
619	default:
620		break;
621	}
622	return 0;
623}
624NOKPROBE_SYMBOL(kprobe_trap_handler);
625
626int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
627{
628	int ret;
629
630	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
631		local_irq_disable();
632	ret = kprobe_trap_handler(regs, trapnr);
633	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
634		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
635	return ret;
636}
637NOKPROBE_SYMBOL(kprobe_fault_handler);
638
639/*
640 * Wrapper routine to for handling exceptions.
641 */
642int kprobe_exceptions_notify(struct notifier_block *self,
643			     unsigned long val, void *data)
644{
645	struct die_args *args = (struct die_args *) data;
646	struct pt_regs *regs = args->regs;
647	int ret = NOTIFY_DONE;
648
649	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
650		local_irq_disable();
651
652	switch (val) {
653	case DIE_BPT:
654		if (kprobe_handler(regs))
655			ret = NOTIFY_STOP;
656		break;
657	case DIE_SSTEP:
658		if (post_kprobe_handler(regs))
659			ret = NOTIFY_STOP;
660		break;
661	case DIE_TRAP:
662		if (!preemptible() && kprobe_running() &&
663		    kprobe_trap_handler(regs, args->trapnr))
664			ret = NOTIFY_STOP;
665		break;
666	default:
667		break;
668	}
669
670	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
671		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
672
673	return ret;
674}
675NOKPROBE_SYMBOL(kprobe_exceptions_notify);
676
677int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
678{
679	struct jprobe *jp = container_of(p, struct jprobe, kp);
680	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
681	unsigned long stack;
682
683	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
684
685	/* setup return addr to the jprobe handler routine */
686	regs->psw.addr = (unsigned long) jp->entry;
687	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
688
689	/* r15 is the stack pointer */
690	stack = (unsigned long) regs->gprs[15];
691
692	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
693	return 1;
694}
695NOKPROBE_SYMBOL(setjmp_pre_handler);
696
697void jprobe_return(void)
698{
699	asm volatile(".word 0x0002");
700}
701NOKPROBE_SYMBOL(jprobe_return);
702
703int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
704{
705	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
706	unsigned long stack;
707
708	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
709
710	/* Put the regs back */
711	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
712	/* put the stack back */
713	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
714	preempt_enable_no_resched();
715	return 1;
716}
717NOKPROBE_SYMBOL(longjmp_break_handler);
718
719static struct kprobe trampoline = {
720	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
721	.pre_handler = trampoline_probe_handler
722};
723
724int __init arch_init_kprobes(void)
725{
726	return register_kprobe(&trampoline);
727}
728
729int arch_trampoline_kprobe(struct kprobe *p)
730{
731	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
732}
733NOKPROBE_SYMBOL(arch_trampoline_kprobe);