Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
  5 * Copyright IBM Corp. 2002, 2006
  6 *
  7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  8 */
  9
 10#define pr_fmt(fmt) "kprobes: " fmt
 11
 12#include <linux/moduleloader.h>
 13#include <linux/kprobes.h>
 14#include <linux/ptrace.h>
 15#include <linux/preempt.h>
 16#include <linux/stop_machine.h>
 17#include <linux/kdebug.h>
 18#include <linux/uaccess.h>
 19#include <linux/extable.h>
 20#include <linux/module.h>
 21#include <linux/slab.h>
 22#include <linux/hardirq.h>
 23#include <linux/ftrace.h>
 24#include <asm/set_memory.h>
 25#include <asm/sections.h>
 26#include <asm/dis.h>
 27#include "kprobes.h"
 28#include "entry.h"
 29
 30DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 31DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 32
 33struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 34
 35static int insn_page_in_use;
 36
 37void *alloc_insn_page(void)
 38{
 39	void *page;
 40
 41	page = module_alloc(PAGE_SIZE);
 42	if (!page)
 43		return NULL;
 44	set_memory_rox((unsigned long)page, 1);
 45	return page;
 46}
 47
 48static void *alloc_s390_insn_page(void)
 49{
 50	if (xchg(&insn_page_in_use, 1) == 1)
 51		return NULL;
 52	return &kprobes_insn_page;
 
 53}
 54
 55static void free_s390_insn_page(void *page)
 56{
 
 57	xchg(&insn_page_in_use, 0);
 58}
 59
 60struct kprobe_insn_cache kprobe_s390_insn_slots = {
 61	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
 62	.alloc = alloc_s390_insn_page,
 63	.free = free_s390_insn_page,
 64	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
 65	.insn_size = MAX_INSN_SIZE,
 66};
 67
 68static void copy_instruction(struct kprobe *p)
 69{
 70	kprobe_opcode_t insn[MAX_INSN_SIZE];
 71	s64 disp, new_disp;
 72	u64 addr, new_addr;
 73	unsigned int len;
 74
 75	len = insn_length(*p->addr >> 8);
 76	memcpy(&insn, p->addr, len);
 77	p->opcode = insn[0];
 78	if (probe_is_insn_relative_long(&insn[0])) {
 79		/*
 80		 * For pc-relative instructions in RIL-b or RIL-c format patch
 81		 * the RI2 displacement field. We have already made sure that
 82		 * the insn slot for the patched instruction is within the same
 83		 * 2GB area as the original instruction (either kernel image or
 84		 * module area). Therefore the new displacement will always fit.
 85		 */
 86		disp = *(s32 *)&insn[1];
 87		addr = (u64)(unsigned long)p->addr;
 88		new_addr = (u64)(unsigned long)p->ainsn.insn;
 89		new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 90		*(s32 *)&insn[1] = new_disp;
 91	}
 92	s390_kernel_write(p->ainsn.insn, &insn, len);
 
 
 
 
 
 
 
 
 
 
 
 
 93}
 94NOKPROBE_SYMBOL(copy_instruction);
 95
 
 
 
 
 
 96static int s390_get_insn_slot(struct kprobe *p)
 97{
 98	/*
 99	 * Get an insn slot that is within the same 2GB area like the original
100	 * instruction. That way instructions with a 32bit signed displacement
101	 * field can be patched and executed within the insn slot.
102	 */
103	p->ainsn.insn = NULL;
104	if (is_kernel((unsigned long)p->addr))
105		p->ainsn.insn = get_s390_insn_slot();
106	else if (is_module_addr(p->addr))
107		p->ainsn.insn = get_insn_slot();
108	return p->ainsn.insn ? 0 : -ENOMEM;
109}
110NOKPROBE_SYMBOL(s390_get_insn_slot);
111
112static void s390_free_insn_slot(struct kprobe *p)
113{
114	if (!p->ainsn.insn)
115		return;
116	if (is_kernel((unsigned long)p->addr))
117		free_s390_insn_slot(p->ainsn.insn, 0);
118	else
119		free_insn_slot(p->ainsn.insn, 0);
120	p->ainsn.insn = NULL;
121}
122NOKPROBE_SYMBOL(s390_free_insn_slot);
123
124/* Check if paddr is at an instruction boundary */
125static bool can_probe(unsigned long paddr)
126{
127	unsigned long addr, offset = 0;
128	kprobe_opcode_t insn;
129	struct kprobe *kp;
130
131	if (paddr & 0x01)
132		return false;
133
134	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
135		return false;
136
137	/* Decode instructions */
138	addr = paddr - offset;
139	while (addr < paddr) {
140		if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn)))
141			return false;
142
143		if (insn >> 8 == 0) {
144			if (insn != BREAKPOINT_INSTRUCTION) {
145				/*
146				 * Note that QEMU inserts opcode 0x0000 to implement
147				 * software breakpoints for guests. Since the size of
148				 * the original instruction is unknown, stop following
149				 * instructions and prevent setting a kprobe.
150				 */
151				return false;
152			}
153			/*
154			 * Check if the instruction has been modified by another
155			 * kprobe, in which case the original instruction is
156			 * decoded.
157			 */
158			kp = get_kprobe((void *)addr);
159			if (!kp) {
160				/* not a kprobe */
161				return false;
162			}
163			insn = kp->opcode;
164		}
165		addr += insn_length(insn >> 8);
166	}
167	return addr == paddr;
168}
169
170int arch_prepare_kprobe(struct kprobe *p)
171{
172	if (!can_probe((unsigned long)p->addr))
173		return -EINVAL;
174	/* Make sure the probe isn't going on a difficult instruction */
175	if (probe_is_prohibited_opcode(p->addr))
176		return -EINVAL;
177	if (s390_get_insn_slot(p))
178		return -ENOMEM;
179	copy_instruction(p);
180	return 0;
181}
182NOKPROBE_SYMBOL(arch_prepare_kprobe);
183
 
 
 
 
 
184struct swap_insn_args {
185	struct kprobe *p;
186	unsigned int arm_kprobe : 1;
187};
188
189static int swap_instruction(void *data)
190{
191	struct swap_insn_args *args = data;
 
192	struct kprobe *p = args->p;
193	u16 opc;
194
195	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
196	s390_kernel_write(p->addr, &opc, sizeof(opc));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197	return 0;
198}
199NOKPROBE_SYMBOL(swap_instruction);
200
201void arch_arm_kprobe(struct kprobe *p)
202{
203	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
204
205	stop_machine_cpuslocked(swap_instruction, &args, NULL);
206}
207NOKPROBE_SYMBOL(arch_arm_kprobe);
208
209void arch_disarm_kprobe(struct kprobe *p)
210{
211	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
212
213	stop_machine_cpuslocked(swap_instruction, &args, NULL);
214}
215NOKPROBE_SYMBOL(arch_disarm_kprobe);
216
217void arch_remove_kprobe(struct kprobe *p)
218{
219	s390_free_insn_slot(p);
220}
221NOKPROBE_SYMBOL(arch_remove_kprobe);
222
223static void enable_singlestep(struct kprobe_ctlblk *kcb,
224			      struct pt_regs *regs,
225			      unsigned long ip)
226{
227	union {
228		struct ctlreg regs[3];
229		struct {
230			struct ctlreg control;
231			struct ctlreg start;
232			struct ctlreg end;
233		};
234	} per_kprobe;
235
236	/* Set up the PER control registers %cr9-%cr11 */
237	per_kprobe.control.val = PER_EVENT_IFETCH;
238	per_kprobe.start.val = ip;
239	per_kprobe.end.val = ip;
240
241	/* Save control regs and psw mask */
242	__local_ctl_store(9, 11, kcb->kprobe_saved_ctl);
243	kcb->kprobe_saved_imask = regs->psw.mask &
244		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
245
246	/* Set PER control regs, turns on single step for the given address */
247	__local_ctl_load(9, 11, per_kprobe.regs);
248	regs->psw.mask |= PSW_MASK_PER;
249	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
250	regs->psw.addr = ip;
251}
252NOKPROBE_SYMBOL(enable_singlestep);
253
254static void disable_singlestep(struct kprobe_ctlblk *kcb,
255			       struct pt_regs *regs,
256			       unsigned long ip)
257{
258	/* Restore control regs and psw mask, set new psw address */
259	__local_ctl_load(9, 11, kcb->kprobe_saved_ctl);
260	regs->psw.mask &= ~PSW_MASK_PER;
261	regs->psw.mask |= kcb->kprobe_saved_imask;
262	regs->psw.addr = ip;
263}
264NOKPROBE_SYMBOL(disable_singlestep);
265
266/*
267 * Activate a kprobe by storing its pointer to current_kprobe. The
268 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
269 * two kprobes can be active, see KPROBE_REENTER.
270 */
271static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
272{
273	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
274	kcb->prev_kprobe.status = kcb->kprobe_status;
275	__this_cpu_write(current_kprobe, p);
276}
277NOKPROBE_SYMBOL(push_kprobe);
278
279/*
280 * Deactivate a kprobe by backing up to the previous state. If the
281 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
282 * for any other state prev_kprobe.kp will be NULL.
283 */
284static void pop_kprobe(struct kprobe_ctlblk *kcb)
285{
286	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
287	kcb->kprobe_status = kcb->prev_kprobe.status;
288	kcb->prev_kprobe.kp = NULL;
289}
290NOKPROBE_SYMBOL(pop_kprobe);
291
 
 
 
 
 
 
 
 
 
292static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
293{
294	switch (kcb->kprobe_status) {
295	case KPROBE_HIT_SSDONE:
296	case KPROBE_HIT_ACTIVE:
297		kprobes_inc_nmissed_count(p);
298		break;
299	case KPROBE_HIT_SS:
300	case KPROBE_REENTER:
301	default:
302		/*
303		 * A kprobe on the code path to single step an instruction
304		 * is a BUG. The code path resides in the .kprobes.text
305		 * section and is executed with interrupts disabled.
306		 */
307		pr_err("Failed to recover from reentered kprobes.\n");
308		dump_kprobe(p);
309		BUG();
310	}
311}
312NOKPROBE_SYMBOL(kprobe_reenter_check);
313
314static int kprobe_handler(struct pt_regs *regs)
315{
316	struct kprobe_ctlblk *kcb;
317	struct kprobe *p;
318
319	/*
320	 * We want to disable preemption for the entire duration of kprobe
321	 * processing. That includes the calls to the pre/post handlers
322	 * and single stepping the kprobe instruction.
323	 */
324	preempt_disable();
325	kcb = get_kprobe_ctlblk();
326	p = get_kprobe((void *)(regs->psw.addr - 2));
327
328	if (p) {
329		if (kprobe_running()) {
330			/*
331			 * We have hit a kprobe while another is still
332			 * active. This can happen in the pre and post
333			 * handler. Single step the instruction of the
334			 * new probe but do not call any handler function
335			 * of this secondary kprobe.
336			 * push_kprobe and pop_kprobe saves and restores
337			 * the currently active kprobe.
338			 */
339			kprobe_reenter_check(kcb, p);
340			push_kprobe(kcb, p);
341			kcb->kprobe_status = KPROBE_REENTER;
342		} else {
343			/*
344			 * If we have no pre-handler or it returned 0, we
345			 * continue with single stepping. If we have a
346			 * pre-handler and it returned non-zero, it prepped
347			 * for changing execution path, so get out doing
348			 * nothing more here.
349			 */
350			push_kprobe(kcb, p);
351			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
352			if (p->pre_handler && p->pre_handler(p, regs)) {
353				pop_kprobe(kcb);
354				preempt_enable_no_resched();
355				return 1;
356			}
357			kcb->kprobe_status = KPROBE_HIT_SS;
358		}
359		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
360		return 1;
361	} /* else:
362	   * No kprobe at this address and no active kprobe. The trap has
363	   * not been caused by a kprobe breakpoint. The race of breakpoint
364	   * vs. kprobe remove does not exist because on s390 as we use
365	   * stop_machine to arm/disarm the breakpoints.
366	   */
367	preempt_enable_no_resched();
368	return 0;
369}
370NOKPROBE_SYMBOL(kprobe_handler);
371
372/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373 * Called after single-stepping.  p->addr is the address of the
374 * instruction whose first byte has been replaced by the "breakpoint"
375 * instruction.  To avoid the SMP problems that can occur when we
376 * temporarily put back the original opcode to single-step, we
377 * single-stepped a copy of the instruction.  The address of this
378 * copy is p->ainsn.insn.
379 */
380static void resume_execution(struct kprobe *p, struct pt_regs *regs)
381{
382	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
383	unsigned long ip = regs->psw.addr;
384	int fixup = probe_get_fixup_type(p->ainsn.insn);
385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386	if (fixup & FIXUP_PSW_NORMAL)
387		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
388
389	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
390		int ilen = insn_length(p->ainsn.insn[0] >> 8);
391		if (ip - (unsigned long) p->ainsn.insn == ilen)
392			ip = (unsigned long) p->addr + ilen;
393	}
394
395	if (fixup & FIXUP_RETURN_REGISTER) {
396		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
397		regs->gprs[reg] += (unsigned long) p->addr -
398				   (unsigned long) p->ainsn.insn;
399	}
400
401	disable_singlestep(kcb, regs, ip);
402}
403NOKPROBE_SYMBOL(resume_execution);
404
405static int post_kprobe_handler(struct pt_regs *regs)
406{
407	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
408	struct kprobe *p = kprobe_running();
409
410	if (!p)
411		return 0;
412
413	resume_execution(p, regs);
414	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
415		kcb->kprobe_status = KPROBE_HIT_SSDONE;
416		p->post_handler(p, regs, 0);
417	}
 
 
418	pop_kprobe(kcb);
419	preempt_enable_no_resched();
420
421	/*
422	 * if somebody else is singlestepping across a probe point, psw mask
423	 * will have PER set, in which case, continue the remaining processing
424	 * of do_single_step, as if this is not a probe hit.
425	 */
426	if (regs->psw.mask & PSW_MASK_PER)
427		return 0;
428
429	return 1;
430}
431NOKPROBE_SYMBOL(post_kprobe_handler);
432
433static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
434{
435	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
436	struct kprobe *p = kprobe_running();
 
437
438	switch(kcb->kprobe_status) {
439	case KPROBE_HIT_SS:
440	case KPROBE_REENTER:
441		/*
442		 * We are here because the instruction being single
443		 * stepped caused a page fault. We reset the current
444		 * kprobe and the nip points back to the probe address
445		 * and allow the page fault handler to continue as a
446		 * normal page fault.
447		 */
448		disable_singlestep(kcb, regs, (unsigned long) p->addr);
449		pop_kprobe(kcb);
450		preempt_enable_no_resched();
451		break;
452	case KPROBE_HIT_ACTIVE:
453	case KPROBE_HIT_SSDONE:
454		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455		 * In case the user-specified fault handler returned
456		 * zero, try to fix up.
457		 */
458		if (fixup_exception(regs))
 
 
459			return 1;
 
 
460		/*
461		 * fixup_exception() could not handle it,
462		 * Let do_page_fault() fix it.
463		 */
464		break;
465	default:
466		break;
467	}
468	return 0;
469}
470NOKPROBE_SYMBOL(kprobe_trap_handler);
471
472int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
473{
474	int ret;
475
476	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
477		local_irq_disable();
478	ret = kprobe_trap_handler(regs, trapnr);
479	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
480		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
481	return ret;
482}
483NOKPROBE_SYMBOL(kprobe_fault_handler);
484
485/*
486 * Wrapper routine to for handling exceptions.
487 */
488int kprobe_exceptions_notify(struct notifier_block *self,
489			     unsigned long val, void *data)
490{
491	struct die_args *args = (struct die_args *) data;
492	struct pt_regs *regs = args->regs;
493	int ret = NOTIFY_DONE;
494
495	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
496		local_irq_disable();
497
498	switch (val) {
499	case DIE_BPT:
500		if (kprobe_handler(regs))
501			ret = NOTIFY_STOP;
502		break;
503	case DIE_SSTEP:
504		if (post_kprobe_handler(regs))
505			ret = NOTIFY_STOP;
506		break;
507	case DIE_TRAP:
508		if (!preemptible() && kprobe_running() &&
509		    kprobe_trap_handler(regs, args->trapnr))
510			ret = NOTIFY_STOP;
511		break;
512	default:
513		break;
514	}
515
516	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
517		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
518
519	return ret;
520}
521NOKPROBE_SYMBOL(kprobe_exceptions_notify);
522
 
 
 
 
 
523int __init arch_init_kprobes(void)
524{
525	return 0;
526}
527
528int arch_trampoline_kprobe(struct kprobe *p)
529{
530	return 0;
531}
532NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v5.4
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
  5 * Copyright IBM Corp. 2002, 2006
  6 *
  7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  8 */
  9
 
 
 
 10#include <linux/kprobes.h>
 11#include <linux/ptrace.h>
 12#include <linux/preempt.h>
 13#include <linux/stop_machine.h>
 14#include <linux/kdebug.h>
 15#include <linux/uaccess.h>
 16#include <linux/extable.h>
 17#include <linux/module.h>
 18#include <linux/slab.h>
 19#include <linux/hardirq.h>
 20#include <linux/ftrace.h>
 21#include <asm/set_memory.h>
 22#include <asm/sections.h>
 23#include <asm/dis.h>
 
 
 24
 25DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 27
 28struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 29
 30DEFINE_INSN_CACHE_OPS(s390_insn);
 
 
 
 
 31
 32static int insn_page_in_use;
 33static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
 
 
 
 
 34
 35static void *alloc_s390_insn_page(void)
 36{
 37	if (xchg(&insn_page_in_use, 1) == 1)
 38		return NULL;
 39	set_memory_x((unsigned long) &insn_page, 1);
 40	return &insn_page;
 41}
 42
 43static void free_s390_insn_page(void *page)
 44{
 45	set_memory_nx((unsigned long) page, 1);
 46	xchg(&insn_page_in_use, 0);
 47}
 48
 49struct kprobe_insn_cache kprobe_s390_insn_slots = {
 50	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
 51	.alloc = alloc_s390_insn_page,
 52	.free = free_s390_insn_page,
 53	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
 54	.insn_size = MAX_INSN_SIZE,
 55};
 56
 57static void copy_instruction(struct kprobe *p)
 58{
 59	unsigned long ip = (unsigned long) p->addr;
 60	s64 disp, new_disp;
 61	u64 addr, new_addr;
 
 62
 63	if (ftrace_location(ip) == ip) {
 
 
 
 64		/*
 65		 * If kprobes patches the instruction that is morphed by
 66		 * ftrace make sure that kprobes always sees the branch
 67		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
 68		 * in case of hotpatch.
 
 69		 */
 70		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
 71		p->ainsn.is_ftrace_insn = 1;
 72	} else
 73		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
 74	p->opcode = p->ainsn.insn[0];
 75	if (!probe_is_insn_relative_long(p->ainsn.insn))
 76		return;
 77	/*
 78	 * For pc-relative instructions in RIL-b or RIL-c format patch the
 79	 * RI2 displacement field. We have already made sure that the insn
 80	 * slot for the patched instruction is within the same 2GB area
 81	 * as the original instruction (either kernel image or module area).
 82	 * Therefore the new displacement will always fit.
 83	 */
 84	disp = *(s32 *)&p->ainsn.insn[1];
 85	addr = (u64)(unsigned long)p->addr;
 86	new_addr = (u64)(unsigned long)p->ainsn.insn;
 87	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 88	*(s32 *)&p->ainsn.insn[1] = new_disp;
 89}
 90NOKPROBE_SYMBOL(copy_instruction);
 91
 92static inline int is_kernel_addr(void *addr)
 93{
 94	return addr < (void *)_end;
 95}
 96
 97static int s390_get_insn_slot(struct kprobe *p)
 98{
 99	/*
100	 * Get an insn slot that is within the same 2GB area like the original
101	 * instruction. That way instructions with a 32bit signed displacement
102	 * field can be patched and executed within the insn slot.
103	 */
104	p->ainsn.insn = NULL;
105	if (is_kernel_addr(p->addr))
106		p->ainsn.insn = get_s390_insn_slot();
107	else if (is_module_addr(p->addr))
108		p->ainsn.insn = get_insn_slot();
109	return p->ainsn.insn ? 0 : -ENOMEM;
110}
111NOKPROBE_SYMBOL(s390_get_insn_slot);
112
113static void s390_free_insn_slot(struct kprobe *p)
114{
115	if (!p->ainsn.insn)
116		return;
117	if (is_kernel_addr(p->addr))
118		free_s390_insn_slot(p->ainsn.insn, 0);
119	else
120		free_insn_slot(p->ainsn.insn, 0);
121	p->ainsn.insn = NULL;
122}
123NOKPROBE_SYMBOL(s390_free_insn_slot);
124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125int arch_prepare_kprobe(struct kprobe *p)
126{
127	if ((unsigned long) p->addr & 0x01)
128		return -EINVAL;
129	/* Make sure the probe isn't going on a difficult instruction */
130	if (probe_is_prohibited_opcode(p->addr))
131		return -EINVAL;
132	if (s390_get_insn_slot(p))
133		return -ENOMEM;
134	copy_instruction(p);
135	return 0;
136}
137NOKPROBE_SYMBOL(arch_prepare_kprobe);
138
139int arch_check_ftrace_location(struct kprobe *p)
140{
141	return 0;
142}
143
144struct swap_insn_args {
145	struct kprobe *p;
146	unsigned int arm_kprobe : 1;
147};
148
149static int swap_instruction(void *data)
150{
151	struct swap_insn_args *args = data;
152	struct ftrace_insn new_insn, *insn;
153	struct kprobe *p = args->p;
154	size_t len;
155
156	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
157	len = sizeof(new_insn.opc);
158	if (!p->ainsn.is_ftrace_insn)
159		goto skip_ftrace;
160	len = sizeof(new_insn);
161	insn = (struct ftrace_insn *) p->addr;
162	if (args->arm_kprobe) {
163		if (is_ftrace_nop(insn))
164			new_insn.disp = KPROBE_ON_FTRACE_NOP;
165		else
166			new_insn.disp = KPROBE_ON_FTRACE_CALL;
167	} else {
168		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
169		if (insn->disp == KPROBE_ON_FTRACE_NOP)
170			ftrace_generate_nop_insn(&new_insn);
171	}
172skip_ftrace:
173	s390_kernel_write(p->addr, &new_insn, len);
174	return 0;
175}
176NOKPROBE_SYMBOL(swap_instruction);
177
178void arch_arm_kprobe(struct kprobe *p)
179{
180	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
181
182	stop_machine_cpuslocked(swap_instruction, &args, NULL);
183}
184NOKPROBE_SYMBOL(arch_arm_kprobe);
185
186void arch_disarm_kprobe(struct kprobe *p)
187{
188	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
189
190	stop_machine_cpuslocked(swap_instruction, &args, NULL);
191}
192NOKPROBE_SYMBOL(arch_disarm_kprobe);
193
194void arch_remove_kprobe(struct kprobe *p)
195{
196	s390_free_insn_slot(p);
197}
198NOKPROBE_SYMBOL(arch_remove_kprobe);
199
200static void enable_singlestep(struct kprobe_ctlblk *kcb,
201			      struct pt_regs *regs,
202			      unsigned long ip)
203{
204	struct per_regs per_kprobe;
 
 
 
 
 
 
 
205
206	/* Set up the PER control registers %cr9-%cr11 */
207	per_kprobe.control = PER_EVENT_IFETCH;
208	per_kprobe.start = ip;
209	per_kprobe.end = ip;
210
211	/* Save control regs and psw mask */
212	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
213	kcb->kprobe_saved_imask = regs->psw.mask &
214		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
215
216	/* Set PER control regs, turns on single step for the given address */
217	__ctl_load(per_kprobe, 9, 11);
218	regs->psw.mask |= PSW_MASK_PER;
219	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
220	regs->psw.addr = ip;
221}
222NOKPROBE_SYMBOL(enable_singlestep);
223
224static void disable_singlestep(struct kprobe_ctlblk *kcb,
225			       struct pt_regs *regs,
226			       unsigned long ip)
227{
228	/* Restore control regs and psw mask, set new psw address */
229	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
230	regs->psw.mask &= ~PSW_MASK_PER;
231	regs->psw.mask |= kcb->kprobe_saved_imask;
232	regs->psw.addr = ip;
233}
234NOKPROBE_SYMBOL(disable_singlestep);
235
236/*
237 * Activate a kprobe by storing its pointer to current_kprobe. The
238 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
239 * two kprobes can be active, see KPROBE_REENTER.
240 */
241static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
242{
243	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
244	kcb->prev_kprobe.status = kcb->kprobe_status;
245	__this_cpu_write(current_kprobe, p);
246}
247NOKPROBE_SYMBOL(push_kprobe);
248
249/*
250 * Deactivate a kprobe by backing up to the previous state. If the
251 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
252 * for any other state prev_kprobe.kp will be NULL.
253 */
254static void pop_kprobe(struct kprobe_ctlblk *kcb)
255{
256	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
257	kcb->kprobe_status = kcb->prev_kprobe.status;
 
258}
259NOKPROBE_SYMBOL(pop_kprobe);
260
261void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
262{
263	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
264
265	/* Replace the return addr with trampoline addr */
266	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
267}
268NOKPROBE_SYMBOL(arch_prepare_kretprobe);
269
270static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
271{
272	switch (kcb->kprobe_status) {
273	case KPROBE_HIT_SSDONE:
274	case KPROBE_HIT_ACTIVE:
275		kprobes_inc_nmissed_count(p);
276		break;
277	case KPROBE_HIT_SS:
278	case KPROBE_REENTER:
279	default:
280		/*
281		 * A kprobe on the code path to single step an instruction
282		 * is a BUG. The code path resides in the .kprobes.text
283		 * section and is executed with interrupts disabled.
284		 */
285		pr_err("Invalid kprobe detected.\n");
286		dump_kprobe(p);
287		BUG();
288	}
289}
290NOKPROBE_SYMBOL(kprobe_reenter_check);
291
292static int kprobe_handler(struct pt_regs *regs)
293{
294	struct kprobe_ctlblk *kcb;
295	struct kprobe *p;
296
297	/*
298	 * We want to disable preemption for the entire duration of kprobe
299	 * processing. That includes the calls to the pre/post handlers
300	 * and single stepping the kprobe instruction.
301	 */
302	preempt_disable();
303	kcb = get_kprobe_ctlblk();
304	p = get_kprobe((void *)(regs->psw.addr - 2));
305
306	if (p) {
307		if (kprobe_running()) {
308			/*
309			 * We have hit a kprobe while another is still
310			 * active. This can happen in the pre and post
311			 * handler. Single step the instruction of the
312			 * new probe but do not call any handler function
313			 * of this secondary kprobe.
314			 * push_kprobe and pop_kprobe saves and restores
315			 * the currently active kprobe.
316			 */
317			kprobe_reenter_check(kcb, p);
318			push_kprobe(kcb, p);
319			kcb->kprobe_status = KPROBE_REENTER;
320		} else {
321			/*
322			 * If we have no pre-handler or it returned 0, we
323			 * continue with single stepping. If we have a
324			 * pre-handler and it returned non-zero, it prepped
325			 * for changing execution path, so get out doing
326			 * nothing more here.
327			 */
328			push_kprobe(kcb, p);
329			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
330			if (p->pre_handler && p->pre_handler(p, regs)) {
331				pop_kprobe(kcb);
332				preempt_enable_no_resched();
333				return 1;
334			}
335			kcb->kprobe_status = KPROBE_HIT_SS;
336		}
337		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
338		return 1;
339	} /* else:
340	   * No kprobe at this address and no active kprobe. The trap has
341	   * not been caused by a kprobe breakpoint. The race of breakpoint
342	   * vs. kprobe remove does not exist because on s390 as we use
343	   * stop_machine to arm/disarm the breakpoints.
344	   */
345	preempt_enable_no_resched();
346	return 0;
347}
348NOKPROBE_SYMBOL(kprobe_handler);
349
350/*
351 * Function return probe trampoline:
352 *	- init_kprobes() establishes a probepoint here
353 *	- When the probed function returns, this probe
354 *		causes the handlers to fire
355 */
356static void __used kretprobe_trampoline_holder(void)
357{
358	asm volatile(".global kretprobe_trampoline\n"
359		     "kretprobe_trampoline: bcr 0,0\n");
360}
361
362/*
363 * Called when the probe at kretprobe trampoline is hit
364 */
365static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
366{
367	struct kretprobe_instance *ri;
368	struct hlist_head *head, empty_rp;
369	struct hlist_node *tmp;
370	unsigned long flags, orig_ret_address;
371	unsigned long trampoline_address;
372	kprobe_opcode_t *correct_ret_addr;
373
374	INIT_HLIST_HEAD(&empty_rp);
375	kretprobe_hash_lock(current, &head, &flags);
376
377	/*
378	 * It is possible to have multiple instances associated with a given
379	 * task either because an multiple functions in the call path
380	 * have a return probe installed on them, and/or more than one return
381	 * return probe was registered for a target function.
382	 *
383	 * We can handle this because:
384	 *     - instances are always inserted at the head of the list
385	 *     - when multiple return probes are registered for the same
386	 *	 function, the first instance's ret_addr will point to the
387	 *	 real return address, and all the rest will point to
388	 *	 kretprobe_trampoline
389	 */
390	ri = NULL;
391	orig_ret_address = 0;
392	correct_ret_addr = NULL;
393	trampoline_address = (unsigned long) &kretprobe_trampoline;
394	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
395		if (ri->task != current)
396			/* another task is sharing our hash bucket */
397			continue;
398
399		orig_ret_address = (unsigned long) ri->ret_addr;
400
401		if (orig_ret_address != trampoline_address)
402			/*
403			 * This is the real return address. Any other
404			 * instances associated with this task are for
405			 * other calls deeper on the call stack
406			 */
407			break;
408	}
409
410	kretprobe_assert(ri, orig_ret_address, trampoline_address);
411
412	correct_ret_addr = ri->ret_addr;
413	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
414		if (ri->task != current)
415			/* another task is sharing our hash bucket */
416			continue;
417
418		orig_ret_address = (unsigned long) ri->ret_addr;
419
420		if (ri->rp && ri->rp->handler) {
421			ri->ret_addr = correct_ret_addr;
422			ri->rp->handler(ri, regs);
423		}
424
425		recycle_rp_inst(ri, &empty_rp);
426
427		if (orig_ret_address != trampoline_address)
428			/*
429			 * This is the real return address. Any other
430			 * instances associated with this task are for
431			 * other calls deeper on the call stack
432			 */
433			break;
434	}
435
436	regs->psw.addr = orig_ret_address;
437
438	kretprobe_hash_unlock(current, &flags);
439
440	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
441		hlist_del(&ri->hlist);
442		kfree(ri);
443	}
444	/*
445	 * By returning a non-zero value, we are telling
446	 * kprobe_handler() that we don't want the post_handler
447	 * to run (and have re-enabled preemption)
448	 */
449	return 1;
450}
451NOKPROBE_SYMBOL(trampoline_probe_handler);
452
453/*
454 * Called after single-stepping.  p->addr is the address of the
455 * instruction whose first byte has been replaced by the "breakpoint"
456 * instruction.  To avoid the SMP problems that can occur when we
457 * temporarily put back the original opcode to single-step, we
458 * single-stepped a copy of the instruction.  The address of this
459 * copy is p->ainsn.insn.
460 */
461static void resume_execution(struct kprobe *p, struct pt_regs *regs)
462{
463	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
464	unsigned long ip = regs->psw.addr;
465	int fixup = probe_get_fixup_type(p->ainsn.insn);
466
467	/* Check if the kprobes location is an enabled ftrace caller */
468	if (p->ainsn.is_ftrace_insn) {
469		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
470		struct ftrace_insn call_insn;
471
472		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
473		/*
474		 * A kprobe on an enabled ftrace call site actually single
475		 * stepped an unconditional branch (ftrace nop equivalent).
476		 * Now we need to fixup things and pretend that a brasl r0,...
477		 * was executed instead.
478		 */
479		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
480			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
481			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
482		}
483	}
484
485	if (fixup & FIXUP_PSW_NORMAL)
486		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
487
488	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
489		int ilen = insn_length(p->ainsn.insn[0] >> 8);
490		if (ip - (unsigned long) p->ainsn.insn == ilen)
491			ip = (unsigned long) p->addr + ilen;
492	}
493
494	if (fixup & FIXUP_RETURN_REGISTER) {
495		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
496		regs->gprs[reg] += (unsigned long) p->addr -
497				   (unsigned long) p->ainsn.insn;
498	}
499
500	disable_singlestep(kcb, regs, ip);
501}
502NOKPROBE_SYMBOL(resume_execution);
503
504static int post_kprobe_handler(struct pt_regs *regs)
505{
506	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
507	struct kprobe *p = kprobe_running();
508
509	if (!p)
510		return 0;
511
 
512	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
513		kcb->kprobe_status = KPROBE_HIT_SSDONE;
514		p->post_handler(p, regs, 0);
515	}
516
517	resume_execution(p, regs);
518	pop_kprobe(kcb);
519	preempt_enable_no_resched();
520
521	/*
522	 * if somebody else is singlestepping across a probe point, psw mask
523	 * will have PER set, in which case, continue the remaining processing
524	 * of do_single_step, as if this is not a probe hit.
525	 */
526	if (regs->psw.mask & PSW_MASK_PER)
527		return 0;
528
529	return 1;
530}
531NOKPROBE_SYMBOL(post_kprobe_handler);
532
533static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
534{
535	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536	struct kprobe *p = kprobe_running();
537	const struct exception_table_entry *entry;
538
539	switch(kcb->kprobe_status) {
540	case KPROBE_HIT_SS:
541	case KPROBE_REENTER:
542		/*
543		 * We are here because the instruction being single
544		 * stepped caused a page fault. We reset the current
545		 * kprobe and the nip points back to the probe address
546		 * and allow the page fault handler to continue as a
547		 * normal page fault.
548		 */
549		disable_singlestep(kcb, regs, (unsigned long) p->addr);
550		pop_kprobe(kcb);
551		preempt_enable_no_resched();
552		break;
553	case KPROBE_HIT_ACTIVE:
554	case KPROBE_HIT_SSDONE:
555		/*
556		 * We increment the nmissed count for accounting,
557		 * we can also use npre/npostfault count for accounting
558		 * these specific fault cases.
559		 */
560		kprobes_inc_nmissed_count(p);
561
562		/*
563		 * We come here because instructions in the pre/post
564		 * handler caused the page_fault, this could happen
565		 * if handler tries to access user space by
566		 * copy_from_user(), get_user() etc. Let the
567		 * user-specified handler try to fix it first.
568		 */
569		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
570			return 1;
571
572		/*
573		 * In case the user-specified fault handler returned
574		 * zero, try to fix up.
575		 */
576		entry = s390_search_extables(regs->psw.addr);
577		if (entry) {
578			regs->psw.addr = extable_fixup(entry);
579			return 1;
580		}
581
582		/*
583		 * fixup_exception() could not handle it,
584		 * Let do_page_fault() fix it.
585		 */
586		break;
587	default:
588		break;
589	}
590	return 0;
591}
592NOKPROBE_SYMBOL(kprobe_trap_handler);
593
594int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
595{
596	int ret;
597
598	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
599		local_irq_disable();
600	ret = kprobe_trap_handler(regs, trapnr);
601	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
602		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
603	return ret;
604}
605NOKPROBE_SYMBOL(kprobe_fault_handler);
606
607/*
608 * Wrapper routine to for handling exceptions.
609 */
610int kprobe_exceptions_notify(struct notifier_block *self,
611			     unsigned long val, void *data)
612{
613	struct die_args *args = (struct die_args *) data;
614	struct pt_regs *regs = args->regs;
615	int ret = NOTIFY_DONE;
616
617	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
618		local_irq_disable();
619
620	switch (val) {
621	case DIE_BPT:
622		if (kprobe_handler(regs))
623			ret = NOTIFY_STOP;
624		break;
625	case DIE_SSTEP:
626		if (post_kprobe_handler(regs))
627			ret = NOTIFY_STOP;
628		break;
629	case DIE_TRAP:
630		if (!preemptible() && kprobe_running() &&
631		    kprobe_trap_handler(regs, args->trapnr))
632			ret = NOTIFY_STOP;
633		break;
634	default:
635		break;
636	}
637
638	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
639		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
640
641	return ret;
642}
643NOKPROBE_SYMBOL(kprobe_exceptions_notify);
644
645static struct kprobe trampoline = {
646	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
647	.pre_handler = trampoline_probe_handler
648};
649
650int __init arch_init_kprobes(void)
651{
652	return register_kprobe(&trampoline);
653}
654
655int arch_trampoline_kprobe(struct kprobe *p)
656{
657	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
658}
659NOKPROBE_SYMBOL(arch_trampoline_kprobe);