Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
  5 * Copyright IBM Corp. 2002, 2006
  6 *
  7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  8 */
  9
 10#define pr_fmt(fmt) "kprobes: " fmt
 11
 12#include <linux/moduleloader.h>
 13#include <linux/kprobes.h>
 14#include <linux/ptrace.h>
 15#include <linux/preempt.h>
 16#include <linux/stop_machine.h>
 17#include <linux/kdebug.h>
 18#include <linux/uaccess.h>
 19#include <linux/extable.h>
 20#include <linux/module.h>
 21#include <linux/slab.h>
 22#include <linux/hardirq.h>
 23#include <linux/ftrace.h>
 24#include <asm/set_memory.h>
 25#include <asm/sections.h>
 26#include <asm/dis.h>
 27#include "kprobes.h"
 28#include "entry.h"
 29
 30DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 31DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 32
 33struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 34
 35static int insn_page_in_use;
 36
 37void *alloc_insn_page(void)
 38{
 39	void *page;
 40
 41	page = module_alloc(PAGE_SIZE);
 42	if (!page)
 43		return NULL;
 44	set_memory_rox((unsigned long)page, 1);
 45	return page;
 46}
 47
 48static void *alloc_s390_insn_page(void)
 49{
 50	if (xchg(&insn_page_in_use, 1) == 1)
 51		return NULL;
 52	return &kprobes_insn_page;
 
 53}
 54
 55static void free_s390_insn_page(void *page)
 56{
 
 57	xchg(&insn_page_in_use, 0);
 58}
 59
 60struct kprobe_insn_cache kprobe_s390_insn_slots = {
 61	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
 62	.alloc = alloc_s390_insn_page,
 63	.free = free_s390_insn_page,
 64	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
 65	.insn_size = MAX_INSN_SIZE,
 66};
 67
 68static void copy_instruction(struct kprobe *p)
 69{
 70	kprobe_opcode_t insn[MAX_INSN_SIZE];
 71	s64 disp, new_disp;
 72	u64 addr, new_addr;
 73	unsigned int len;
 74
 75	len = insn_length(*p->addr >> 8);
 76	memcpy(&insn, p->addr, len);
 77	p->opcode = insn[0];
 78	if (probe_is_insn_relative_long(&insn[0])) {
 79		/*
 80		 * For pc-relative instructions in RIL-b or RIL-c format patch
 81		 * the RI2 displacement field. We have already made sure that
 82		 * the insn slot for the patched instruction is within the same
 83		 * 2GB area as the original instruction (either kernel image or
 84		 * module area). Therefore the new displacement will always fit.
 85		 */
 86		disp = *(s32 *)&insn[1];
 87		addr = (u64)(unsigned long)p->addr;
 88		new_addr = (u64)(unsigned long)p->ainsn.insn;
 89		new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 90		*(s32 *)&insn[1] = new_disp;
 91	}
 92	s390_kernel_write(p->ainsn.insn, &insn, len);
 93}
 94NOKPROBE_SYMBOL(copy_instruction);
 95
 
 
 
 
 
 96static int s390_get_insn_slot(struct kprobe *p)
 97{
 98	/*
 99	 * Get an insn slot that is within the same 2GB area like the original
100	 * instruction. That way instructions with a 32bit signed displacement
101	 * field can be patched and executed within the insn slot.
102	 */
103	p->ainsn.insn = NULL;
104	if (is_kernel((unsigned long)p->addr))
105		p->ainsn.insn = get_s390_insn_slot();
106	else if (is_module_addr(p->addr))
107		p->ainsn.insn = get_insn_slot();
108	return p->ainsn.insn ? 0 : -ENOMEM;
109}
110NOKPROBE_SYMBOL(s390_get_insn_slot);
111
112static void s390_free_insn_slot(struct kprobe *p)
113{
114	if (!p->ainsn.insn)
115		return;
116	if (is_kernel((unsigned long)p->addr))
117		free_s390_insn_slot(p->ainsn.insn, 0);
118	else
119		free_insn_slot(p->ainsn.insn, 0);
120	p->ainsn.insn = NULL;
121}
122NOKPROBE_SYMBOL(s390_free_insn_slot);
123
124/* Check if paddr is at an instruction boundary */
125static bool can_probe(unsigned long paddr)
126{
127	unsigned long addr, offset = 0;
128	kprobe_opcode_t insn;
129	struct kprobe *kp;
130
131	if (paddr & 0x01)
132		return false;
133
134	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
135		return false;
136
137	/* Decode instructions */
138	addr = paddr - offset;
139	while (addr < paddr) {
140		if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn)))
141			return false;
142
143		if (insn >> 8 == 0) {
144			if (insn != BREAKPOINT_INSTRUCTION) {
145				/*
146				 * Note that QEMU inserts opcode 0x0000 to implement
147				 * software breakpoints for guests. Since the size of
148				 * the original instruction is unknown, stop following
149				 * instructions and prevent setting a kprobe.
150				 */
151				return false;
152			}
153			/*
154			 * Check if the instruction has been modified by another
155			 * kprobe, in which case the original instruction is
156			 * decoded.
157			 */
158			kp = get_kprobe((void *)addr);
159			if (!kp) {
160				/* not a kprobe */
161				return false;
162			}
163			insn = kp->opcode;
164		}
165		addr += insn_length(insn >> 8);
166	}
167	return addr == paddr;
168}
169
170int arch_prepare_kprobe(struct kprobe *p)
171{
172	if (!can_probe((unsigned long)p->addr))
173		return -EINVAL;
174	/* Make sure the probe isn't going on a difficult instruction */
175	if (probe_is_prohibited_opcode(p->addr))
176		return -EINVAL;
177	if (s390_get_insn_slot(p))
178		return -ENOMEM;
179	copy_instruction(p);
180	return 0;
181}
182NOKPROBE_SYMBOL(arch_prepare_kprobe);
183
184struct swap_insn_args {
185	struct kprobe *p;
186	unsigned int arm_kprobe : 1;
187};
188
189static int swap_instruction(void *data)
190{
191	struct swap_insn_args *args = data;
192	struct kprobe *p = args->p;
193	u16 opc;
194
195	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
196	s390_kernel_write(p->addr, &opc, sizeof(opc));
197	return 0;
198}
199NOKPROBE_SYMBOL(swap_instruction);
200
201void arch_arm_kprobe(struct kprobe *p)
202{
203	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
204
205	stop_machine_cpuslocked(swap_instruction, &args, NULL);
206}
207NOKPROBE_SYMBOL(arch_arm_kprobe);
208
209void arch_disarm_kprobe(struct kprobe *p)
210{
211	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
212
213	stop_machine_cpuslocked(swap_instruction, &args, NULL);
214}
215NOKPROBE_SYMBOL(arch_disarm_kprobe);
216
217void arch_remove_kprobe(struct kprobe *p)
218{
219	s390_free_insn_slot(p);
220}
221NOKPROBE_SYMBOL(arch_remove_kprobe);
222
223static void enable_singlestep(struct kprobe_ctlblk *kcb,
224			      struct pt_regs *regs,
225			      unsigned long ip)
226{
227	union {
228		struct ctlreg regs[3];
229		struct {
230			struct ctlreg control;
231			struct ctlreg start;
232			struct ctlreg end;
233		};
234	} per_kprobe;
235
236	/* Set up the PER control registers %cr9-%cr11 */
237	per_kprobe.control.val = PER_EVENT_IFETCH;
238	per_kprobe.start.val = ip;
239	per_kprobe.end.val = ip;
240
241	/* Save control regs and psw mask */
242	__local_ctl_store(9, 11, kcb->kprobe_saved_ctl);
243	kcb->kprobe_saved_imask = regs->psw.mask &
244		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
245
246	/* Set PER control regs, turns on single step for the given address */
247	__local_ctl_load(9, 11, per_kprobe.regs);
248	regs->psw.mask |= PSW_MASK_PER;
249	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
250	regs->psw.addr = ip;
251}
252NOKPROBE_SYMBOL(enable_singlestep);
253
254static void disable_singlestep(struct kprobe_ctlblk *kcb,
255			       struct pt_regs *regs,
256			       unsigned long ip)
257{
258	/* Restore control regs and psw mask, set new psw address */
259	__local_ctl_load(9, 11, kcb->kprobe_saved_ctl);
260	regs->psw.mask &= ~PSW_MASK_PER;
261	regs->psw.mask |= kcb->kprobe_saved_imask;
262	regs->psw.addr = ip;
263}
264NOKPROBE_SYMBOL(disable_singlestep);
265
266/*
267 * Activate a kprobe by storing its pointer to current_kprobe. The
268 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
269 * two kprobes can be active, see KPROBE_REENTER.
270 */
271static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
272{
273	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
274	kcb->prev_kprobe.status = kcb->kprobe_status;
275	__this_cpu_write(current_kprobe, p);
276}
277NOKPROBE_SYMBOL(push_kprobe);
278
279/*
280 * Deactivate a kprobe by backing up to the previous state. If the
281 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
282 * for any other state prev_kprobe.kp will be NULL.
283 */
284static void pop_kprobe(struct kprobe_ctlblk *kcb)
285{
286	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
287	kcb->kprobe_status = kcb->prev_kprobe.status;
288	kcb->prev_kprobe.kp = NULL;
289}
290NOKPROBE_SYMBOL(pop_kprobe);
291
 
 
 
 
 
 
 
 
 
292static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
293{
294	switch (kcb->kprobe_status) {
295	case KPROBE_HIT_SSDONE:
296	case KPROBE_HIT_ACTIVE:
297		kprobes_inc_nmissed_count(p);
298		break;
299	case KPROBE_HIT_SS:
300	case KPROBE_REENTER:
301	default:
302		/*
303		 * A kprobe on the code path to single step an instruction
304		 * is a BUG. The code path resides in the .kprobes.text
305		 * section and is executed with interrupts disabled.
306		 */
307		pr_err("Failed to recover from reentered kprobes.\n");
308		dump_kprobe(p);
309		BUG();
310	}
311}
312NOKPROBE_SYMBOL(kprobe_reenter_check);
313
314static int kprobe_handler(struct pt_regs *regs)
315{
316	struct kprobe_ctlblk *kcb;
317	struct kprobe *p;
318
319	/*
320	 * We want to disable preemption for the entire duration of kprobe
321	 * processing. That includes the calls to the pre/post handlers
322	 * and single stepping the kprobe instruction.
323	 */
324	preempt_disable();
325	kcb = get_kprobe_ctlblk();
326	p = get_kprobe((void *)(regs->psw.addr - 2));
327
328	if (p) {
329		if (kprobe_running()) {
330			/*
331			 * We have hit a kprobe while another is still
332			 * active. This can happen in the pre and post
333			 * handler. Single step the instruction of the
334			 * new probe but do not call any handler function
335			 * of this secondary kprobe.
336			 * push_kprobe and pop_kprobe saves and restores
337			 * the currently active kprobe.
338			 */
339			kprobe_reenter_check(kcb, p);
340			push_kprobe(kcb, p);
341			kcb->kprobe_status = KPROBE_REENTER;
342		} else {
343			/*
344			 * If we have no pre-handler or it returned 0, we
345			 * continue with single stepping. If we have a
346			 * pre-handler and it returned non-zero, it prepped
347			 * for changing execution path, so get out doing
348			 * nothing more here.
349			 */
350			push_kprobe(kcb, p);
351			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
352			if (p->pre_handler && p->pre_handler(p, regs)) {
353				pop_kprobe(kcb);
354				preempt_enable_no_resched();
355				return 1;
356			}
357			kcb->kprobe_status = KPROBE_HIT_SS;
358		}
359		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
360		return 1;
361	} /* else:
362	   * No kprobe at this address and no active kprobe. The trap has
363	   * not been caused by a kprobe breakpoint. The race of breakpoint
364	   * vs. kprobe remove does not exist because on s390 as we use
365	   * stop_machine to arm/disarm the breakpoints.
366	   */
367	preempt_enable_no_resched();
368	return 0;
369}
370NOKPROBE_SYMBOL(kprobe_handler);
371
372/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373 * Called after single-stepping.  p->addr is the address of the
374 * instruction whose first byte has been replaced by the "breakpoint"
375 * instruction.  To avoid the SMP problems that can occur when we
376 * temporarily put back the original opcode to single-step, we
377 * single-stepped a copy of the instruction.  The address of this
378 * copy is p->ainsn.insn.
379 */
380static void resume_execution(struct kprobe *p, struct pt_regs *regs)
381{
382	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
383	unsigned long ip = regs->psw.addr;
384	int fixup = probe_get_fixup_type(p->ainsn.insn);
385
386	if (fixup & FIXUP_PSW_NORMAL)
387		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
388
389	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
390		int ilen = insn_length(p->ainsn.insn[0] >> 8);
391		if (ip - (unsigned long) p->ainsn.insn == ilen)
392			ip = (unsigned long) p->addr + ilen;
393	}
394
395	if (fixup & FIXUP_RETURN_REGISTER) {
396		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
397		regs->gprs[reg] += (unsigned long) p->addr -
398				   (unsigned long) p->ainsn.insn;
399	}
400
401	disable_singlestep(kcb, regs, ip);
402}
403NOKPROBE_SYMBOL(resume_execution);
404
405static int post_kprobe_handler(struct pt_regs *regs)
406{
407	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
408	struct kprobe *p = kprobe_running();
409
410	if (!p)
411		return 0;
412
413	resume_execution(p, regs);
414	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
415		kcb->kprobe_status = KPROBE_HIT_SSDONE;
416		p->post_handler(p, regs, 0);
417	}
 
 
418	pop_kprobe(kcb);
419	preempt_enable_no_resched();
420
421	/*
422	 * if somebody else is singlestepping across a probe point, psw mask
423	 * will have PER set, in which case, continue the remaining processing
424	 * of do_single_step, as if this is not a probe hit.
425	 */
426	if (regs->psw.mask & PSW_MASK_PER)
427		return 0;
428
429	return 1;
430}
431NOKPROBE_SYMBOL(post_kprobe_handler);
432
433static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
434{
435	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
436	struct kprobe *p = kprobe_running();
 
437
438	switch(kcb->kprobe_status) {
439	case KPROBE_HIT_SS:
440	case KPROBE_REENTER:
441		/*
442		 * We are here because the instruction being single
443		 * stepped caused a page fault. We reset the current
444		 * kprobe and the nip points back to the probe address
445		 * and allow the page fault handler to continue as a
446		 * normal page fault.
447		 */
448		disable_singlestep(kcb, regs, (unsigned long) p->addr);
449		pop_kprobe(kcb);
450		preempt_enable_no_resched();
451		break;
452	case KPROBE_HIT_ACTIVE:
453	case KPROBE_HIT_SSDONE:
454		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455		 * In case the user-specified fault handler returned
456		 * zero, try to fix up.
457		 */
458		if (fixup_exception(regs))
 
459			return 1;
 
460		/*
461		 * fixup_exception() could not handle it,
462		 * Let do_page_fault() fix it.
463		 */
464		break;
465	default:
466		break;
467	}
468	return 0;
469}
470NOKPROBE_SYMBOL(kprobe_trap_handler);
471
472int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
473{
474	int ret;
475
476	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
477		local_irq_disable();
478	ret = kprobe_trap_handler(regs, trapnr);
479	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
480		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
481	return ret;
482}
483NOKPROBE_SYMBOL(kprobe_fault_handler);
484
485/*
486 * Wrapper routine to for handling exceptions.
487 */
488int kprobe_exceptions_notify(struct notifier_block *self,
489			     unsigned long val, void *data)
490{
491	struct die_args *args = (struct die_args *) data;
492	struct pt_regs *regs = args->regs;
493	int ret = NOTIFY_DONE;
494
495	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
496		local_irq_disable();
497
498	switch (val) {
499	case DIE_BPT:
500		if (kprobe_handler(regs))
501			ret = NOTIFY_STOP;
502		break;
503	case DIE_SSTEP:
504		if (post_kprobe_handler(regs))
505			ret = NOTIFY_STOP;
506		break;
507	case DIE_TRAP:
508		if (!preemptible() && kprobe_running() &&
509		    kprobe_trap_handler(regs, args->trapnr))
510			ret = NOTIFY_STOP;
511		break;
512	default:
513		break;
514	}
515
516	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
517		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
518
519	return ret;
520}
521NOKPROBE_SYMBOL(kprobe_exceptions_notify);
522
 
 
 
 
 
523int __init arch_init_kprobes(void)
524{
525	return 0;
526}
527
528int arch_trampoline_kprobe(struct kprobe *p)
529{
530	return 0;
531}
532NOKPROBE_SYMBOL(arch_trampoline_kprobe);
v5.9
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 *  Kernel Probes (KProbes)
  4 *
  5 * Copyright IBM Corp. 2002, 2006
  6 *
  7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  8 */
  9
 
 
 
 10#include <linux/kprobes.h>
 11#include <linux/ptrace.h>
 12#include <linux/preempt.h>
 13#include <linux/stop_machine.h>
 14#include <linux/kdebug.h>
 15#include <linux/uaccess.h>
 16#include <linux/extable.h>
 17#include <linux/module.h>
 18#include <linux/slab.h>
 19#include <linux/hardirq.h>
 20#include <linux/ftrace.h>
 21#include <asm/set_memory.h>
 22#include <asm/sections.h>
 23#include <asm/dis.h>
 
 
 24
 25DEFINE_PER_CPU(struct kprobe *, current_kprobe);
 26DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 27
 28struct kretprobe_blackpoint kretprobe_blacklist[] = { };
 29
 30DEFINE_INSN_CACHE_OPS(s390_insn);
 31
 32static int insn_page_in_use;
 33static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
 
 
 
 
 
 
 
 
 34
 35static void *alloc_s390_insn_page(void)
 36{
 37	if (xchg(&insn_page_in_use, 1) == 1)
 38		return NULL;
 39	set_memory_x((unsigned long) &insn_page, 1);
 40	return &insn_page;
 41}
 42
 43static void free_s390_insn_page(void *page)
 44{
 45	set_memory_nx((unsigned long) page, 1);
 46	xchg(&insn_page_in_use, 0);
 47}
 48
 49struct kprobe_insn_cache kprobe_s390_insn_slots = {
 50	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
 51	.alloc = alloc_s390_insn_page,
 52	.free = free_s390_insn_page,
 53	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
 54	.insn_size = MAX_INSN_SIZE,
 55};
 56
 57static void copy_instruction(struct kprobe *p)
 58{
 
 59	s64 disp, new_disp;
 60	u64 addr, new_addr;
 
 61
 62	memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
 63	p->opcode = p->ainsn.insn[0];
 64	if (!probe_is_insn_relative_long(p->ainsn.insn))
 65		return;
 66	/*
 67	 * For pc-relative instructions in RIL-b or RIL-c format patch the
 68	 * RI2 displacement field. We have already made sure that the insn
 69	 * slot for the patched instruction is within the same 2GB area
 70	 * as the original instruction (either kernel image or module area).
 71	 * Therefore the new displacement will always fit.
 72	 */
 73	disp = *(s32 *)&p->ainsn.insn[1];
 74	addr = (u64)(unsigned long)p->addr;
 75	new_addr = (u64)(unsigned long)p->ainsn.insn;
 76	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
 77	*(s32 *)&p->ainsn.insn[1] = new_disp;
 
 
 78}
 79NOKPROBE_SYMBOL(copy_instruction);
 80
 81static inline int is_kernel_addr(void *addr)
 82{
 83	return addr < (void *)_end;
 84}
 85
 86static int s390_get_insn_slot(struct kprobe *p)
 87{
 88	/*
 89	 * Get an insn slot that is within the same 2GB area like the original
 90	 * instruction. That way instructions with a 32bit signed displacement
 91	 * field can be patched and executed within the insn slot.
 92	 */
 93	p->ainsn.insn = NULL;
 94	if (is_kernel_addr(p->addr))
 95		p->ainsn.insn = get_s390_insn_slot();
 96	else if (is_module_addr(p->addr))
 97		p->ainsn.insn = get_insn_slot();
 98	return p->ainsn.insn ? 0 : -ENOMEM;
 99}
100NOKPROBE_SYMBOL(s390_get_insn_slot);
101
102static void s390_free_insn_slot(struct kprobe *p)
103{
104	if (!p->ainsn.insn)
105		return;
106	if (is_kernel_addr(p->addr))
107		free_s390_insn_slot(p->ainsn.insn, 0);
108	else
109		free_insn_slot(p->ainsn.insn, 0);
110	p->ainsn.insn = NULL;
111}
112NOKPROBE_SYMBOL(s390_free_insn_slot);
113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114int arch_prepare_kprobe(struct kprobe *p)
115{
116	if ((unsigned long) p->addr & 0x01)
117		return -EINVAL;
118	/* Make sure the probe isn't going on a difficult instruction */
119	if (probe_is_prohibited_opcode(p->addr))
120		return -EINVAL;
121	if (s390_get_insn_slot(p))
122		return -ENOMEM;
123	copy_instruction(p);
124	return 0;
125}
126NOKPROBE_SYMBOL(arch_prepare_kprobe);
127
128struct swap_insn_args {
129	struct kprobe *p;
130	unsigned int arm_kprobe : 1;
131};
132
133static int swap_instruction(void *data)
134{
135	struct swap_insn_args *args = data;
136	struct kprobe *p = args->p;
137	u16 opc;
138
139	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
140	s390_kernel_write(p->addr, &opc, sizeof(opc));
141	return 0;
142}
143NOKPROBE_SYMBOL(swap_instruction);
144
145void arch_arm_kprobe(struct kprobe *p)
146{
147	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
148
149	stop_machine_cpuslocked(swap_instruction, &args, NULL);
150}
151NOKPROBE_SYMBOL(arch_arm_kprobe);
152
153void arch_disarm_kprobe(struct kprobe *p)
154{
155	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
156
157	stop_machine_cpuslocked(swap_instruction, &args, NULL);
158}
159NOKPROBE_SYMBOL(arch_disarm_kprobe);
160
161void arch_remove_kprobe(struct kprobe *p)
162{
163	s390_free_insn_slot(p);
164}
165NOKPROBE_SYMBOL(arch_remove_kprobe);
166
167static void enable_singlestep(struct kprobe_ctlblk *kcb,
168			      struct pt_regs *regs,
169			      unsigned long ip)
170{
171	struct per_regs per_kprobe;
 
 
 
 
 
 
 
172
173	/* Set up the PER control registers %cr9-%cr11 */
174	per_kprobe.control = PER_EVENT_IFETCH;
175	per_kprobe.start = ip;
176	per_kprobe.end = ip;
177
178	/* Save control regs and psw mask */
179	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
180	kcb->kprobe_saved_imask = regs->psw.mask &
181		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
182
183	/* Set PER control regs, turns on single step for the given address */
184	__ctl_load(per_kprobe, 9, 11);
185	regs->psw.mask |= PSW_MASK_PER;
186	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
187	regs->psw.addr = ip;
188}
189NOKPROBE_SYMBOL(enable_singlestep);
190
191static void disable_singlestep(struct kprobe_ctlblk *kcb,
192			       struct pt_regs *regs,
193			       unsigned long ip)
194{
195	/* Restore control regs and psw mask, set new psw address */
196	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
197	regs->psw.mask &= ~PSW_MASK_PER;
198	regs->psw.mask |= kcb->kprobe_saved_imask;
199	regs->psw.addr = ip;
200}
201NOKPROBE_SYMBOL(disable_singlestep);
202
203/*
204 * Activate a kprobe by storing its pointer to current_kprobe. The
205 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
206 * two kprobes can be active, see KPROBE_REENTER.
207 */
208static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
209{
210	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
211	kcb->prev_kprobe.status = kcb->kprobe_status;
212	__this_cpu_write(current_kprobe, p);
213}
214NOKPROBE_SYMBOL(push_kprobe);
215
216/*
217 * Deactivate a kprobe by backing up to the previous state. If the
218 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
219 * for any other state prev_kprobe.kp will be NULL.
220 */
221static void pop_kprobe(struct kprobe_ctlblk *kcb)
222{
223	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
224	kcb->kprobe_status = kcb->prev_kprobe.status;
 
225}
226NOKPROBE_SYMBOL(pop_kprobe);
227
228void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
229{
230	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
231
232	/* Replace the return addr with trampoline addr */
233	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
234}
235NOKPROBE_SYMBOL(arch_prepare_kretprobe);
236
237static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
238{
239	switch (kcb->kprobe_status) {
240	case KPROBE_HIT_SSDONE:
241	case KPROBE_HIT_ACTIVE:
242		kprobes_inc_nmissed_count(p);
243		break;
244	case KPROBE_HIT_SS:
245	case KPROBE_REENTER:
246	default:
247		/*
248		 * A kprobe on the code path to single step an instruction
249		 * is a BUG. The code path resides in the .kprobes.text
250		 * section and is executed with interrupts disabled.
251		 */
252		pr_err("Invalid kprobe detected.\n");
253		dump_kprobe(p);
254		BUG();
255	}
256}
257NOKPROBE_SYMBOL(kprobe_reenter_check);
258
259static int kprobe_handler(struct pt_regs *regs)
260{
261	struct kprobe_ctlblk *kcb;
262	struct kprobe *p;
263
264	/*
265	 * We want to disable preemption for the entire duration of kprobe
266	 * processing. That includes the calls to the pre/post handlers
267	 * and single stepping the kprobe instruction.
268	 */
269	preempt_disable();
270	kcb = get_kprobe_ctlblk();
271	p = get_kprobe((void *)(regs->psw.addr - 2));
272
273	if (p) {
274		if (kprobe_running()) {
275			/*
276			 * We have hit a kprobe while another is still
277			 * active. This can happen in the pre and post
278			 * handler. Single step the instruction of the
279			 * new probe but do not call any handler function
280			 * of this secondary kprobe.
281			 * push_kprobe and pop_kprobe saves and restores
282			 * the currently active kprobe.
283			 */
284			kprobe_reenter_check(kcb, p);
285			push_kprobe(kcb, p);
286			kcb->kprobe_status = KPROBE_REENTER;
287		} else {
288			/*
289			 * If we have no pre-handler or it returned 0, we
290			 * continue with single stepping. If we have a
291			 * pre-handler and it returned non-zero, it prepped
292			 * for changing execution path, so get out doing
293			 * nothing more here.
294			 */
295			push_kprobe(kcb, p);
296			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
297			if (p->pre_handler && p->pre_handler(p, regs)) {
298				pop_kprobe(kcb);
299				preempt_enable_no_resched();
300				return 1;
301			}
302			kcb->kprobe_status = KPROBE_HIT_SS;
303		}
304		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
305		return 1;
306	} /* else:
307	   * No kprobe at this address and no active kprobe. The trap has
308	   * not been caused by a kprobe breakpoint. The race of breakpoint
309	   * vs. kprobe remove does not exist because on s390 as we use
310	   * stop_machine to arm/disarm the breakpoints.
311	   */
312	preempt_enable_no_resched();
313	return 0;
314}
315NOKPROBE_SYMBOL(kprobe_handler);
316
317/*
318 * Function return probe trampoline:
319 *	- init_kprobes() establishes a probepoint here
320 *	- When the probed function returns, this probe
321 *		causes the handlers to fire
322 */
323static void __used kretprobe_trampoline_holder(void)
324{
325	asm volatile(".global kretprobe_trampoline\n"
326		     "kretprobe_trampoline: bcr 0,0\n");
327}
328
329/*
330 * Called when the probe at kretprobe trampoline is hit
331 */
332static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
333{
334	struct kretprobe_instance *ri;
335	struct hlist_head *head, empty_rp;
336	struct hlist_node *tmp;
337	unsigned long flags, orig_ret_address;
338	unsigned long trampoline_address;
339	kprobe_opcode_t *correct_ret_addr;
340
341	INIT_HLIST_HEAD(&empty_rp);
342	kretprobe_hash_lock(current, &head, &flags);
343
344	/*
345	 * It is possible to have multiple instances associated with a given
346	 * task either because an multiple functions in the call path
347	 * have a return probe installed on them, and/or more than one return
348	 * return probe was registered for a target function.
349	 *
350	 * We can handle this because:
351	 *     - instances are always inserted at the head of the list
352	 *     - when multiple return probes are registered for the same
353	 *	 function, the first instance's ret_addr will point to the
354	 *	 real return address, and all the rest will point to
355	 *	 kretprobe_trampoline
356	 */
357	ri = NULL;
358	orig_ret_address = 0;
359	correct_ret_addr = NULL;
360	trampoline_address = (unsigned long) &kretprobe_trampoline;
361	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
362		if (ri->task != current)
363			/* another task is sharing our hash bucket */
364			continue;
365
366		orig_ret_address = (unsigned long) ri->ret_addr;
367
368		if (orig_ret_address != trampoline_address)
369			/*
370			 * This is the real return address. Any other
371			 * instances associated with this task are for
372			 * other calls deeper on the call stack
373			 */
374			break;
375	}
376
377	kretprobe_assert(ri, orig_ret_address, trampoline_address);
378
379	correct_ret_addr = ri->ret_addr;
380	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
381		if (ri->task != current)
382			/* another task is sharing our hash bucket */
383			continue;
384
385		orig_ret_address = (unsigned long) ri->ret_addr;
386
387		if (ri->rp && ri->rp->handler) {
388			ri->ret_addr = correct_ret_addr;
389			ri->rp->handler(ri, regs);
390		}
391
392		recycle_rp_inst(ri, &empty_rp);
393
394		if (orig_ret_address != trampoline_address)
395			/*
396			 * This is the real return address. Any other
397			 * instances associated with this task are for
398			 * other calls deeper on the call stack
399			 */
400			break;
401	}
402
403	regs->psw.addr = orig_ret_address;
404
405	kretprobe_hash_unlock(current, &flags);
406
407	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
408		hlist_del(&ri->hlist);
409		kfree(ri);
410	}
411	/*
412	 * By returning a non-zero value, we are telling
413	 * kprobe_handler() that we don't want the post_handler
414	 * to run (and have re-enabled preemption)
415	 */
416	return 1;
417}
418NOKPROBE_SYMBOL(trampoline_probe_handler);
419
420/*
421 * Called after single-stepping.  p->addr is the address of the
422 * instruction whose first byte has been replaced by the "breakpoint"
423 * instruction.  To avoid the SMP problems that can occur when we
424 * temporarily put back the original opcode to single-step, we
425 * single-stepped a copy of the instruction.  The address of this
426 * copy is p->ainsn.insn.
427 */
428static void resume_execution(struct kprobe *p, struct pt_regs *regs)
429{
430	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
431	unsigned long ip = regs->psw.addr;
432	int fixup = probe_get_fixup_type(p->ainsn.insn);
433
434	if (fixup & FIXUP_PSW_NORMAL)
435		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
436
437	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
438		int ilen = insn_length(p->ainsn.insn[0] >> 8);
439		if (ip - (unsigned long) p->ainsn.insn == ilen)
440			ip = (unsigned long) p->addr + ilen;
441	}
442
443	if (fixup & FIXUP_RETURN_REGISTER) {
444		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
445		regs->gprs[reg] += (unsigned long) p->addr -
446				   (unsigned long) p->ainsn.insn;
447	}
448
449	disable_singlestep(kcb, regs, ip);
450}
451NOKPROBE_SYMBOL(resume_execution);
452
453static int post_kprobe_handler(struct pt_regs *regs)
454{
455	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
456	struct kprobe *p = kprobe_running();
457
458	if (!p)
459		return 0;
460
 
461	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
462		kcb->kprobe_status = KPROBE_HIT_SSDONE;
463		p->post_handler(p, regs, 0);
464	}
465
466	resume_execution(p, regs);
467	pop_kprobe(kcb);
468	preempt_enable_no_resched();
469
470	/*
471	 * if somebody else is singlestepping across a probe point, psw mask
472	 * will have PER set, in which case, continue the remaining processing
473	 * of do_single_step, as if this is not a probe hit.
474	 */
475	if (regs->psw.mask & PSW_MASK_PER)
476		return 0;
477
478	return 1;
479}
480NOKPROBE_SYMBOL(post_kprobe_handler);
481
482static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
483{
484	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
485	struct kprobe *p = kprobe_running();
486	const struct exception_table_entry *entry;
487
488	switch(kcb->kprobe_status) {
489	case KPROBE_HIT_SS:
490	case KPROBE_REENTER:
491		/*
492		 * We are here because the instruction being single
493		 * stepped caused a page fault. We reset the current
494		 * kprobe and the nip points back to the probe address
495		 * and allow the page fault handler to continue as a
496		 * normal page fault.
497		 */
498		disable_singlestep(kcb, regs, (unsigned long) p->addr);
499		pop_kprobe(kcb);
500		preempt_enable_no_resched();
501		break;
502	case KPROBE_HIT_ACTIVE:
503	case KPROBE_HIT_SSDONE:
504		/*
505		 * We increment the nmissed count for accounting,
506		 * we can also use npre/npostfault count for accounting
507		 * these specific fault cases.
508		 */
509		kprobes_inc_nmissed_count(p);
510
511		/*
512		 * We come here because instructions in the pre/post
513		 * handler caused the page_fault, this could happen
514		 * if handler tries to access user space by
515		 * copy_from_user(), get_user() etc. Let the
516		 * user-specified handler try to fix it first.
517		 */
518		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
519			return 1;
520
521		/*
522		 * In case the user-specified fault handler returned
523		 * zero, try to fix up.
524		 */
525		entry = s390_search_extables(regs->psw.addr);
526		if (entry && ex_handle(entry, regs))
527			return 1;
528
529		/*
530		 * fixup_exception() could not handle it,
531		 * Let do_page_fault() fix it.
532		 */
533		break;
534	default:
535		break;
536	}
537	return 0;
538}
539NOKPROBE_SYMBOL(kprobe_trap_handler);
540
541int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
542{
543	int ret;
544
545	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
546		local_irq_disable();
547	ret = kprobe_trap_handler(regs, trapnr);
548	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
549		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
550	return ret;
551}
552NOKPROBE_SYMBOL(kprobe_fault_handler);
553
554/*
555 * Wrapper routine to for handling exceptions.
556 */
557int kprobe_exceptions_notify(struct notifier_block *self,
558			     unsigned long val, void *data)
559{
560	struct die_args *args = (struct die_args *) data;
561	struct pt_regs *regs = args->regs;
562	int ret = NOTIFY_DONE;
563
564	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
565		local_irq_disable();
566
567	switch (val) {
568	case DIE_BPT:
569		if (kprobe_handler(regs))
570			ret = NOTIFY_STOP;
571		break;
572	case DIE_SSTEP:
573		if (post_kprobe_handler(regs))
574			ret = NOTIFY_STOP;
575		break;
576	case DIE_TRAP:
577		if (!preemptible() && kprobe_running() &&
578		    kprobe_trap_handler(regs, args->trapnr))
579			ret = NOTIFY_STOP;
580		break;
581	default:
582		break;
583	}
584
585	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
586		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
587
588	return ret;
589}
590NOKPROBE_SYMBOL(kprobe_exceptions_notify);
591
592static struct kprobe trampoline = {
593	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
594	.pre_handler = trampoline_probe_handler
595};
596
597int __init arch_init_kprobes(void)
598{
599	return register_kprobe(&trampoline);
600}
601
602int arch_trampoline_kprobe(struct kprobe *p)
603{
604	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
605}
606NOKPROBE_SYMBOL(arch_trampoline_kprobe);