Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
 
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
  22#include <linux/memblock.h>
  23#include <linux/export.h>
  24#include <linux/init.h>
  25#include <linux/mm.h>
  26#include <linux/err.h>
  27#include <linux/spinlock.h>
  28#include <linux/kernel_stat.h>
  29#include <linux/delay.h>
  30#include <linux/interrupt.h>
  31#include <linux/irqflags.h>
  32#include <linux/irq_work.h>
  33#include <linux/cpu.h>
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
  38#include <linux/kprobes.h>
  39#include <asm/asm-offsets.h>
  40#include <asm/ctlreg.h>
  41#include <asm/pfault.h>
  42#include <asm/diag.h>
  43#include <asm/switch_to.h>
  44#include <asm/facility.h>
  45#include <asm/ipl.h>
  46#include <asm/setup.h>
  47#include <asm/irq.h>
  48#include <asm/tlbflush.h>
  49#include <asm/vtimer.h>
  50#include <asm/abs_lowcore.h>
  51#include <asm/sclp.h>
 
  52#include <asm/debug.h>
  53#include <asm/os_info.h>
  54#include <asm/sigp.h>
  55#include <asm/idle.h>
  56#include <asm/nmi.h>
  57#include <asm/stacktrace.h>
  58#include <asm/topology.h>
  59#include <asm/vdso.h>
  60#include <asm/maccess.h>
  61#include "entry.h"
  62
  63enum {
  64	ec_schedule = 0,
  65	ec_call_function_single,
  66	ec_stop_cpu,
  67	ec_mcck_pending,
  68	ec_irq_work,
  69};
  70
  71enum {
  72	CPU_STATE_STANDBY,
  73	CPU_STATE_CONFIGURED,
  74};
  75
  76static DEFINE_PER_CPU(struct cpu *, cpu_device);
  77
  78struct pcpu {
 
  79	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  80	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
  81	signed char state;		/* physical cpu state */
  82	signed char polarization;	/* physical polarization */
  83	u16 address;			/* physical cpu address */
  84};
  85
  86static u8 boot_core_type;
  87static struct pcpu pcpu_devices[NR_CPUS];
  88
  89unsigned int smp_cpu_mt_shift;
  90EXPORT_SYMBOL(smp_cpu_mt_shift);
  91
  92unsigned int smp_cpu_mtid;
  93EXPORT_SYMBOL(smp_cpu_mtid);
  94
  95#ifdef CONFIG_CRASH_DUMP
  96__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  97#endif
  98
  99static unsigned int smp_max_threads __initdata = -1U;
 100cpumask_t cpu_setup_mask;
 101
 102static int __init early_nosmt(char *s)
 103{
 104	smp_max_threads = 1;
 105	return 0;
 106}
 107early_param("nosmt", early_nosmt);
 108
 109static int __init early_smt(char *s)
 110{
 111	get_option(&s, &smp_max_threads);
 112	return 0;
 113}
 114early_param("smt", early_smt);
 115
 116/*
 117 * The smp_cpu_state_mutex must be held when changing the state or polarization
 118 * member of a pcpu data structure within the pcpu_devices array.
 119 */
 120DEFINE_MUTEX(smp_cpu_state_mutex);
 121
 122/*
 123 * Signal processor helper functions.
 124 */
 125static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 126{
 127	int cc;
 128
 129	while (1) {
 130		cc = __pcpu_sigp(addr, order, parm, NULL);
 131		if (cc != SIGP_CC_BUSY)
 132			return cc;
 133		cpu_relax();
 134	}
 135}
 136
 137static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 138{
 139	int cc, retry;
 140
 141	for (retry = 0; ; retry++) {
 142		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 143		if (cc != SIGP_CC_BUSY)
 144			break;
 145		if (retry >= 3)
 146			udelay(10);
 147	}
 148	return cc;
 149}
 150
 151static inline int pcpu_stopped(struct pcpu *pcpu)
 152{
 153	u32 status;
 154
 155	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 156			0, &status) != SIGP_CC_STATUS_STORED)
 157		return 0;
 158	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 159}
 160
 161static inline int pcpu_running(struct pcpu *pcpu)
 162{
 163	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 164			0, NULL) != SIGP_CC_STATUS_STORED)
 165		return 1;
 166	/* Status stored condition code is equivalent to cpu not running. */
 167	return 0;
 168}
 169
 170/*
 171 * Find struct pcpu by cpu address.
 172 */
 173static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 174{
 175	int cpu;
 176
 177	for_each_cpu(cpu, mask)
 178		if (pcpu_devices[cpu].address == address)
 179			return pcpu_devices + cpu;
 180	return NULL;
 181}
 182
 183static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 184{
 185	int order;
 186
 187	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 188		return;
 189	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 190	pcpu->ec_clk = get_tod_clock_fast();
 191	pcpu_sigp_retry(pcpu, order, 0);
 192}
 193
 194static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 195{
 196	unsigned long async_stack, nodat_stack, mcck_stack;
 197	struct lowcore *lc;
 198
 199	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 200	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 
 
 
 
 
 
 
 201	async_stack = stack_alloc();
 202	mcck_stack = stack_alloc();
 203	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
 204		goto out;
 
 205	memcpy(lc, &S390_lowcore, 512);
 206	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 207	lc->async_stack = async_stack + STACK_INIT_OFFSET;
 208	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 209	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
 210	lc->cpu_nr = cpu;
 211	lc->spinlock_lockval = arch_spin_lockval(cpu);
 212	lc->spinlock_index = 0;
 
 213	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
 214	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
 215	lc->preempt_count = PREEMPT_DISABLED;
 216	if (nmi_alloc_mcesa(&lc->mcesad))
 217		goto out;
 218	if (abs_lowcore_map(cpu, lc, true))
 219		goto out_mcesa;
 220	lowcore_ptr[cpu] = lc;
 221	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
 222	return 0;
 223
 224out_mcesa:
 225	nmi_free_mcesa(&lc->mcesad);
 226out:
 227	stack_free(mcck_stack);
 228	stack_free(async_stack);
 229	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 230	free_pages((unsigned long) lc, LC_ORDER);
 
 
 
 231	return -ENOMEM;
 232}
 233
 234static void pcpu_free_lowcore(struct pcpu *pcpu)
 235{
 236	unsigned long async_stack, nodat_stack, mcck_stack;
 237	struct lowcore *lc;
 238	int cpu;
 
 
 239
 240	cpu = pcpu - pcpu_devices;
 241	lc = lowcore_ptr[cpu];
 242	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
 243	async_stack = lc->async_stack - STACK_INIT_OFFSET;
 244	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
 245	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 246	lowcore_ptr[cpu] = NULL;
 247	abs_lowcore_unmap(cpu);
 248	nmi_free_mcesa(&lc->mcesad);
 249	stack_free(async_stack);
 250	stack_free(mcck_stack);
 
 251	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 252	free_pages((unsigned long) lc, LC_ORDER);
 253}
 254
 255static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 256{
 257	struct lowcore *lc, *abs_lc;
 258
 259	lc = lowcore_ptr[cpu];
 260	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 261	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 262	lc->cpu_nr = cpu;
 263	lc->restart_flags = RESTART_FLAG_CTLREGS;
 264	lc->spinlock_lockval = arch_spin_lockval(cpu);
 265	lc->spinlock_index = 0;
 266	lc->percpu_offset = __per_cpu_offset[cpu];
 267	lc->kernel_asce = S390_lowcore.kernel_asce;
 268	lc->user_asce = s390_invalid_asce;
 269	lc->machine_flags = S390_lowcore.machine_flags;
 270	lc->user_timer = lc->system_timer =
 271		lc->steal_timer = lc->avg_steal_timer = 0;
 272	abs_lc = get_abs_lowcore();
 273	memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
 274	put_abs_lowcore(abs_lc);
 275	lc->cregs_save_area[1] = lc->kernel_asce;
 276	lc->cregs_save_area[7] = lc->user_asce;
 277	save_access_regs((unsigned int *) lc->access_regs_save_area);
 
 
 
 
 278	arch_spin_lock_setup(cpu);
 279}
 280
 281static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 282{
 283	struct lowcore *lc;
 284	int cpu;
 285
 286	cpu = pcpu - pcpu_devices;
 287	lc = lowcore_ptr[cpu];
 288	lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
 289	lc->current_task = (unsigned long)tsk;
 290	lc->lpp = LPP_MAGIC;
 291	lc->current_pid = tsk->pid;
 292	lc->user_timer = tsk->thread.user_timer;
 293	lc->guest_timer = tsk->thread.guest_timer;
 294	lc->system_timer = tsk->thread.system_timer;
 295	lc->hardirq_timer = tsk->thread.hardirq_timer;
 296	lc->softirq_timer = tsk->thread.softirq_timer;
 297	lc->steal_timer = 0;
 298}
 299
 300static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 301{
 302	struct lowcore *lc;
 303	int cpu;
 304
 305	cpu = pcpu - pcpu_devices;
 306	lc = lowcore_ptr[cpu];
 307	lc->restart_stack = lc->kernel_stack;
 308	lc->restart_fn = (unsigned long) func;
 309	lc->restart_data = (unsigned long) data;
 310	lc->restart_source = -1U;
 311	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 312}
 313
 314typedef void (pcpu_delegate_fn)(void *);
 315
 316/*
 317 * Call function via PSW restart on pcpu and stop the current cpu.
 318 */
 319static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
 320{
 321	func(data);	/* should not return */
 322}
 323
 324static void pcpu_delegate(struct pcpu *pcpu,
 325			  pcpu_delegate_fn *func,
 326			  void *data, unsigned long stack)
 327{
 328	struct lowcore *lc, *abs_lc;
 329	unsigned int source_cpu;
 330
 331	lc = lowcore_ptr[pcpu - pcpu_devices];
 332	source_cpu = stap();
 333
 334	if (pcpu->address == source_cpu) {
 335		call_on_stack(2, stack, void, __pcpu_delegate,
 336			      pcpu_delegate_fn *, func, void *, data);
 337	}
 338	/* Stop target cpu (if func returns this stops the current cpu). */
 339	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 340	pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
 341	/* Restart func on the target cpu and stop the current cpu. */
 342	if (lc) {
 343		lc->restart_stack = stack;
 344		lc->restart_fn = (unsigned long)func;
 345		lc->restart_data = (unsigned long)data;
 346		lc->restart_source = source_cpu;
 347	} else {
 348		abs_lc = get_abs_lowcore();
 349		abs_lc->restart_stack = stack;
 350		abs_lc->restart_fn = (unsigned long)func;
 351		abs_lc->restart_data = (unsigned long)data;
 352		abs_lc->restart_source = source_cpu;
 353		put_abs_lowcore(abs_lc);
 354	}
 355	asm volatile(
 356		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 357		"	brc	2,0b	# busy, try again\n"
 358		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 359		"	brc	2,1b	# busy, try again\n"
 360		: : "d" (pcpu->address), "d" (source_cpu),
 361		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 362		: "0", "1", "cc");
 363	for (;;) ;
 364}
 365
 366/*
 367 * Enable additional logical cpus for multi-threading.
 368 */
 369static int pcpu_set_smt(unsigned int mtid)
 370{
 371	int cc;
 372
 373	if (smp_cpu_mtid == mtid)
 374		return 0;
 375	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 376	if (cc == 0) {
 377		smp_cpu_mtid = mtid;
 378		smp_cpu_mt_shift = 0;
 379		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 380			smp_cpu_mt_shift++;
 381		pcpu_devices[0].address = stap();
 382	}
 383	return cc;
 384}
 385
 386/*
 387 * Call function on an online CPU.
 388 */
 389void smp_call_online_cpu(void (*func)(void *), void *data)
 390{
 391	struct pcpu *pcpu;
 392
 393	/* Use the current cpu if it is online. */
 394	pcpu = pcpu_find_address(cpu_online_mask, stap());
 395	if (!pcpu)
 396		/* Use the first online cpu. */
 397		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 398	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 399}
 400
 401/*
 402 * Call function on the ipl CPU.
 403 */
 404void smp_call_ipl_cpu(void (*func)(void *), void *data)
 405{
 406	struct lowcore *lc = lowcore_ptr[0];
 407
 408	if (pcpu_devices[0].address == stap())
 409		lc = &S390_lowcore;
 410
 411	pcpu_delegate(&pcpu_devices[0], func, data,
 412		      lc->nodat_stack);
 413}
 414
 415int smp_find_processor_id(u16 address)
 416{
 417	int cpu;
 418
 419	for_each_present_cpu(cpu)
 420		if (pcpu_devices[cpu].address == address)
 421			return cpu;
 422	return -1;
 423}
 424
 425void schedule_mcck_handler(void)
 426{
 427	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
 428}
 429
 430bool notrace arch_vcpu_is_preempted(int cpu)
 431{
 432	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 433		return false;
 434	if (pcpu_running(pcpu_devices + cpu))
 435		return false;
 436	return true;
 437}
 438EXPORT_SYMBOL(arch_vcpu_is_preempted);
 439
 440void notrace smp_yield_cpu(int cpu)
 441{
 442	if (!MACHINE_HAS_DIAG9C)
 443		return;
 444	diag_stat_inc_norecursion(DIAG_STAT_X09C);
 445	asm volatile("diag %0,0,0x9c"
 446		     : : "d" (pcpu_devices[cpu].address));
 447}
 448EXPORT_SYMBOL_GPL(smp_yield_cpu);
 449
 450/*
 451 * Send cpus emergency shutdown signal. This gives the cpus the
 452 * opportunity to complete outstanding interrupts.
 453 */
 454void notrace smp_emergency_stop(void)
 455{
 456	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
 457	static cpumask_t cpumask;
 458	u64 end;
 459	int cpu;
 460
 461	arch_spin_lock(&lock);
 462	cpumask_copy(&cpumask, cpu_online_mask);
 463	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 464
 465	end = get_tod_clock() + (1000000UL << 12);
 466	for_each_cpu(cpu, &cpumask) {
 467		struct pcpu *pcpu = pcpu_devices + cpu;
 468		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 469		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 470				   0, NULL) == SIGP_CC_BUSY &&
 471		       get_tod_clock() < end)
 472			cpu_relax();
 473	}
 474	while (get_tod_clock() < end) {
 475		for_each_cpu(cpu, &cpumask)
 476			if (pcpu_stopped(pcpu_devices + cpu))
 477				cpumask_clear_cpu(cpu, &cpumask);
 478		if (cpumask_empty(&cpumask))
 479			break;
 480		cpu_relax();
 481	}
 482	arch_spin_unlock(&lock);
 483}
 484NOKPROBE_SYMBOL(smp_emergency_stop);
 485
 486/*
 487 * Stop all cpus but the current one.
 488 */
 489void smp_send_stop(void)
 490{
 491	int cpu;
 492
 493	/* Disable all interrupts/machine checks */
 494	__load_psw_mask(PSW_KERNEL_BITS);
 495	trace_hardirqs_off();
 496
 497	debug_set_critical();
 498
 499	if (oops_in_progress)
 500		smp_emergency_stop();
 501
 502	/* stop all processors */
 503	for_each_online_cpu(cpu) {
 504		if (cpu == smp_processor_id())
 505			continue;
 506		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
 507		while (!pcpu_stopped(pcpu_devices + cpu))
 508			cpu_relax();
 509	}
 510}
 511
 512/*
 513 * This is the main routine where commands issued by other
 514 * cpus are handled.
 515 */
 516static void smp_handle_ext_call(void)
 517{
 518	unsigned long bits;
 519
 520	/* handle bit signal external calls */
 521	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 522	if (test_bit(ec_stop_cpu, &bits))
 523		smp_stop_cpu();
 524	if (test_bit(ec_schedule, &bits))
 525		scheduler_ipi();
 526	if (test_bit(ec_call_function_single, &bits))
 527		generic_smp_call_function_single_interrupt();
 528	if (test_bit(ec_mcck_pending, &bits))
 529		s390_handle_mcck();
 530	if (test_bit(ec_irq_work, &bits))
 531		irq_work_run();
 532}
 533
 534static void do_ext_call_interrupt(struct ext_code ext_code,
 535				  unsigned int param32, unsigned long param64)
 536{
 537	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 538	smp_handle_ext_call();
 539}
 540
 541void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 542{
 543	int cpu;
 544
 545	for_each_cpu(cpu, mask)
 546		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 547}
 548
 549void arch_send_call_function_single_ipi(int cpu)
 550{
 551	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 552}
 553
 554/*
 555 * this function sends a 'reschedule' IPI to another CPU.
 556 * it goes straight through and wastes no time serializing
 557 * anything. Worst case is that we lose a reschedule ...
 558 */
 559void arch_smp_send_reschedule(int cpu)
 560{
 561	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 562}
 563
 564#ifdef CONFIG_IRQ_WORK
 565void arch_irq_work_raise(void)
 
 
 
 
 
 
 
 
 
 
 
 566{
 567	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
 
 
 
 
 
 568}
 569#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570
 571#ifdef CONFIG_CRASH_DUMP
 572
 573int smp_store_status(int cpu)
 574{
 575	struct lowcore *lc;
 576	struct pcpu *pcpu;
 577	unsigned long pa;
 578
 579	pcpu = pcpu_devices + cpu;
 580	lc = lowcore_ptr[cpu];
 581	pa = __pa(&lc->floating_pt_save_area);
 582	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 583			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 584		return -EIO;
 585	if (!cpu_has_vx() && !MACHINE_HAS_GS)
 586		return 0;
 587	pa = lc->mcesad & MCESA_ORIGIN_MASK;
 588	if (MACHINE_HAS_GS)
 589		pa |= lc->mcesad & MCESA_LC_MASK;
 590	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 591			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 592		return -EIO;
 593	return 0;
 594}
 595
 596/*
 597 * Collect CPU state of the previous, crashed system.
 598 * There are four cases:
 599 * 1) standard zfcp/nvme dump
 600 *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
 601 *    The state for all CPUs except the boot CPU needs to be collected
 602 *    with sigp stop-and-store-status. The boot CPU state is located in
 603 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 604 *    will copy the boot CPU state from the HSA.
 605 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
 606 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
 607 *    The state for all CPUs except the boot CPU needs to be collected
 608 *    with sigp stop-and-store-status. The firmware or the boot-loader
 609 *    stored the registers of the boot CPU in the absolute lowcore in the
 610 *    memory of the old system.
 611 * 3) kdump and the old kernel did not store the CPU state,
 612 *    or stand-alone kdump for DASD
 613 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 614 *    The state for all CPUs except the boot CPU needs to be collected
 615 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 616 *    stored the registers of the boot CPU in the memory of the old system.
 617 * 4) kdump and the old kernel stored the CPU state
 618 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 619 *    This case does not exist for s390 anymore, setup_arch explicitly
 620 *    deactivates the elfcorehdr= kernel parameter
 621 */
 622static bool dump_available(void)
 
 623{
 624	return oldmem_data.start || is_ipl_type_dump();
 
 
 
 
 
 
 625}
 626
 627void __init smp_save_dump_ipl_cpu(void)
 
 628{
 629	struct save_area *sa;
 630	void *regs;
 631
 632	if (!dump_available())
 633		return;
 634	sa = save_area_alloc(true);
 635	regs = memblock_alloc(512, 8);
 636	if (!sa || !regs)
 637		panic("could not allocate memory for boot CPU save area\n");
 638	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
 639	save_area_add_regs(sa, regs);
 640	memblock_free(regs, 512);
 641	if (cpu_has_vx())
 642		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
 643}
 644
 645void __init smp_save_dump_secondary_cpus(void)
 646{
 647	int addr, boot_cpu_addr, max_cpu_addr;
 648	struct save_area *sa;
 649	void *page;
 
 650
 651	if (!dump_available())
 
 652		return;
 653	/* Allocate a page as dumping area for the store status sigps */
 654	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
 655	if (!page)
 656		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 657		      PAGE_SIZE, 1UL << 31);
 658
 659	/* Set multi-threading state to the previous system. */
 660	pcpu_set_smt(sclp.mtid_prev);
 661	boot_cpu_addr = stap();
 662	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 663	for (addr = 0; addr <= max_cpu_addr; addr++) {
 664		if (addr == boot_cpu_addr)
 665			continue;
 666		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 667		    SIGP_CC_NOT_OPERATIONAL)
 668			continue;
 669		sa = save_area_alloc(false);
 
 
 670		if (!sa)
 671			panic("could not allocate memory for save area\n");
 672		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
 673		save_area_add_regs(sa, page);
 674		if (cpu_has_vx()) {
 675			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
 676			save_area_add_vxrs(sa, page);
 677		}
 
 
 
 
 
 
 678	}
 679	memblock_free(page, PAGE_SIZE);
 680	diag_amode31_ops.diag308_reset();
 681	pcpu_set_smt(0);
 682}
 683#endif /* CONFIG_CRASH_DUMP */
 684
 685void smp_cpu_set_polarization(int cpu, int val)
 686{
 687	pcpu_devices[cpu].polarization = val;
 688}
 689
 690int smp_cpu_get_polarization(int cpu)
 691{
 692	return pcpu_devices[cpu].polarization;
 693}
 694
 695int smp_cpu_get_cpu_address(int cpu)
 696{
 697	return pcpu_devices[cpu].address;
 698}
 699
 700static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 701{
 702	static int use_sigp_detection;
 703	int address;
 704
 705	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 706		use_sigp_detection = 1;
 707		for (address = 0;
 708		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 709		     address += (1U << smp_cpu_mt_shift)) {
 710			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 711			    SIGP_CC_NOT_OPERATIONAL)
 712				continue;
 713			info->core[info->configured].core_id =
 714				address >> smp_cpu_mt_shift;
 715			info->configured++;
 716		}
 717		info->combined = info->configured;
 718	}
 719}
 720
 721static int smp_add_present_cpu(int cpu);
 722
 723static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
 724			bool configured, bool early)
 725{
 726	struct pcpu *pcpu;
 727	int cpu, nr, i;
 728	u16 address;
 729
 730	nr = 0;
 731	if (sclp.has_core_type && core->type != boot_core_type)
 732		return nr;
 733	cpu = cpumask_first(avail);
 734	address = core->core_id << smp_cpu_mt_shift;
 735	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
 736		if (pcpu_find_address(cpu_present_mask, address + i))
 737			continue;
 738		pcpu = pcpu_devices + cpu;
 739		pcpu->address = address + i;
 740		if (configured)
 741			pcpu->state = CPU_STATE_CONFIGURED;
 742		else
 743			pcpu->state = CPU_STATE_STANDBY;
 744		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 745		set_cpu_present(cpu, true);
 746		if (!early && smp_add_present_cpu(cpu) != 0)
 747			set_cpu_present(cpu, false);
 748		else
 749			nr++;
 750		cpumask_clear_cpu(cpu, avail);
 751		cpu = cpumask_next(cpu, avail);
 752	}
 753	return nr;
 754}
 755
 756static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
 757{
 758	struct sclp_core_entry *core;
 759	static cpumask_t avail;
 760	bool configured;
 761	u16 core_id;
 762	int nr, i;
 763
 764	cpus_read_lock();
 765	mutex_lock(&smp_cpu_state_mutex);
 766	nr = 0;
 767	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 768	/*
 769	 * Add IPL core first (which got logical CPU number 0) to make sure
 770	 * that all SMT threads get subsequent logical CPU numbers.
 771	 */
 772	if (early) {
 773		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
 774		for (i = 0; i < info->configured; i++) {
 775			core = &info->core[i];
 776			if (core->core_id == core_id) {
 777				nr += smp_add_core(core, &avail, true, early);
 778				break;
 779			}
 780		}
 781	}
 782	for (i = 0; i < info->combined; i++) {
 783		configured = i < info->configured;
 784		nr += smp_add_core(&info->core[i], &avail, configured, early);
 785	}
 786	mutex_unlock(&smp_cpu_state_mutex);
 787	cpus_read_unlock();
 788	return nr;
 789}
 790
 791void __init smp_detect_cpus(void)
 792{
 793	unsigned int cpu, mtid, c_cpus, s_cpus;
 794	struct sclp_core_info *info;
 795	u16 address;
 796
 797	/* Get CPU information */
 798	info = memblock_alloc(sizeof(*info), 8);
 799	if (!info)
 800		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 801		      __func__, sizeof(*info), 8);
 802	smp_get_core_info(info, 1);
 803	/* Find boot CPU type */
 804	if (sclp.has_core_type) {
 805		address = stap();
 806		for (cpu = 0; cpu < info->combined; cpu++)
 807			if (info->core[cpu].core_id == address) {
 808				/* The boot cpu dictates the cpu type. */
 809				boot_core_type = info->core[cpu].type;
 810				break;
 811			}
 812		if (cpu >= info->combined)
 813			panic("Could not find boot CPU type");
 814	}
 815
 816	/* Set multi-threading state for the current system */
 817	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 818	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 819	pcpu_set_smt(mtid);
 820
 821	/* Print number of CPUs */
 822	c_cpus = s_cpus = 0;
 823	for (cpu = 0; cpu < info->combined; cpu++) {
 824		if (sclp.has_core_type &&
 825		    info->core[cpu].type != boot_core_type)
 826			continue;
 827		if (cpu < info->configured)
 828			c_cpus += smp_cpu_mtid + 1;
 829		else
 830			s_cpus += smp_cpu_mtid + 1;
 831	}
 832	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 833
 834	/* Add CPUs present at boot */
 
 835	__smp_rescan_cpus(info, true);
 836	memblock_free(info, sizeof(*info));
 
 837}
 838
 839/*
 840 *	Activate a secondary processor.
 841 */
 842static void smp_start_secondary(void *cpuvoid)
 843{
 844	int cpu = raw_smp_processor_id();
 845
 846	S390_lowcore.last_update_clock = get_tod_clock();
 847	S390_lowcore.restart_stack = (unsigned long)restart_stack;
 848	S390_lowcore.restart_fn = (unsigned long)do_restart;
 849	S390_lowcore.restart_data = 0;
 850	S390_lowcore.restart_source = -1U;
 851	S390_lowcore.restart_flags = 0;
 852	restore_access_regs(S390_lowcore.access_regs_save_area);
 
 
 853	cpu_init();
 854	rcutree_report_cpu_starting(cpu);
 855	init_cpu_timer();
 856	vtime_init();
 857	vdso_getcpu_init();
 858	pfault_init();
 859	cpumask_set_cpu(cpu, &cpu_setup_mask);
 860	update_cpu_masks();
 861	notify_cpu_starting(cpu);
 862	if (topology_cpu_dedicated(cpu))
 863		set_cpu_flag(CIF_DEDICATED_CPU);
 864	else
 865		clear_cpu_flag(CIF_DEDICATED_CPU);
 866	set_cpu_online(cpu, true);
 
 867	inc_irq_stat(CPU_RST);
 868	local_irq_enable();
 869	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 870}
 871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872/* Upping and downing of CPUs */
 873int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 874{
 875	struct pcpu *pcpu = pcpu_devices + cpu;
 876	int rc;
 877
 
 878	if (pcpu->state != CPU_STATE_CONFIGURED)
 879		return -EIO;
 880	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
 
 
 
 
 
 
 
 
 
 
 
 881	    SIGP_CC_ORDER_CODE_ACCEPTED)
 882		return -EIO;
 883
 884	rc = pcpu_alloc_lowcore(pcpu, cpu);
 885	if (rc)
 886		return rc;
 887	/*
 888	 * Make sure global control register contents do not change
 889	 * until new CPU has initialized control registers.
 890	 */
 891	system_ctlreg_lock();
 892	pcpu_prepare_secondary(pcpu, cpu);
 893	pcpu_attach_task(pcpu, tidle);
 894	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 895	/* Wait until cpu puts itself in the online & active maps */
 896	while (!cpu_online(cpu))
 897		cpu_relax();
 898	system_ctlreg_unlock();
 899	return 0;
 900}
 901
 902static unsigned int setup_possible_cpus __initdata;
 903
 904static int __init _setup_possible_cpus(char *s)
 905{
 906	get_option(&s, &setup_possible_cpus);
 907	return 0;
 908}
 909early_param("possible_cpus", _setup_possible_cpus);
 910
 911int __cpu_disable(void)
 912{
 913	struct ctlreg cregs[16];
 914	int cpu;
 915
 916	/* Handle possible pending IPIs */
 917	smp_handle_ext_call();
 918	cpu = smp_processor_id();
 919	set_cpu_online(cpu, false);
 920	cpumask_clear_cpu(cpu, &cpu_setup_mask);
 921	update_cpu_masks();
 922	/* Disable pseudo page faults on this cpu. */
 923	pfault_fini();
 924	/* Disable interrupt sources via control register. */
 925	__local_ctl_store(0, 15, cregs);
 926	cregs[0].val  &= ~0x0000ee70UL;	/* disable all external interrupts */
 927	cregs[6].val  &= ~0xff000000UL;	/* disable all I/O interrupts */
 928	cregs[14].val &= ~0x1f000000UL;	/* disable most machine checks */
 929	__local_ctl_load(0, 15, cregs);
 930	clear_cpu_flag(CIF_NOHZ_DELAY);
 931	return 0;
 932}
 933
 934void __cpu_die(unsigned int cpu)
 935{
 936	struct pcpu *pcpu;
 937
 938	/* Wait until target cpu is down */
 939	pcpu = pcpu_devices + cpu;
 940	while (!pcpu_stopped(pcpu))
 941		cpu_relax();
 942	pcpu_free_lowcore(pcpu);
 943	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 944	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 945}
 946
 947void __noreturn cpu_die(void)
 948{
 949	idle_task_exit();
 
 950	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 951	for (;;) ;
 952}
 953
 954void __init smp_fill_possible_mask(void)
 955{
 956	unsigned int possible, sclp_max, cpu;
 957
 958	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 959	sclp_max = min(smp_max_threads, sclp_max);
 960	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 961	possible = setup_possible_cpus ?: nr_cpu_ids;
 962	possible = min(possible, sclp_max);
 963	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 964		set_cpu_possible(cpu, true);
 965}
 966
 967void __init smp_prepare_cpus(unsigned int max_cpus)
 968{
 
 969	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 970		panic("Couldn't request external interrupt 0x1201");
 971	system_ctl_set_bit(0, 14);
 972	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 973		panic("Couldn't request external interrupt 0x1202");
 974	system_ctl_set_bit(0, 13);
 975}
 976
 977void __init smp_prepare_boot_cpu(void)
 978{
 979	struct pcpu *pcpu = pcpu_devices;
 980
 981	WARN_ON(!cpu_present(0) || !cpu_online(0));
 982	pcpu->state = CPU_STATE_CONFIGURED;
 
 983	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 984	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 985}
 986
 987void __init smp_setup_processor_id(void)
 988{
 989	pcpu_devices[0].address = stap();
 990	S390_lowcore.cpu_nr = 0;
 991	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
 992	S390_lowcore.spinlock_index = 0;
 993}
 994
 995/*
 996 * the frequency of the profiling timer can be changed
 997 * by writing a multiplier value into /proc/profile.
 998 *
 999 * usually you want to run this on all CPUs ;)
1000 */
1001int setup_profiling_timer(unsigned int multiplier)
1002{
1003	return 0;
1004}
1005
1006static ssize_t cpu_configure_show(struct device *dev,
1007				  struct device_attribute *attr, char *buf)
1008{
1009	ssize_t count;
1010
1011	mutex_lock(&smp_cpu_state_mutex);
1012	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1013	mutex_unlock(&smp_cpu_state_mutex);
1014	return count;
1015}
1016
1017static ssize_t cpu_configure_store(struct device *dev,
1018				   struct device_attribute *attr,
1019				   const char *buf, size_t count)
1020{
1021	struct pcpu *pcpu;
1022	int cpu, val, rc, i;
1023	char delim;
1024
1025	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1026		return -EINVAL;
1027	if (val != 0 && val != 1)
1028		return -EINVAL;
1029	cpus_read_lock();
1030	mutex_lock(&smp_cpu_state_mutex);
1031	rc = -EBUSY;
1032	/* disallow configuration changes of online cpus */
1033	cpu = dev->id;
1034	cpu = smp_get_base_cpu(cpu);
 
 
1035	for (i = 0; i <= smp_cpu_mtid; i++)
1036		if (cpu_online(cpu + i))
1037			goto out;
1038	pcpu = pcpu_devices + cpu;
1039	rc = 0;
1040	switch (val) {
1041	case 0:
1042		if (pcpu->state != CPU_STATE_CONFIGURED)
1043			break;
1044		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1045		if (rc)
1046			break;
1047		for (i = 0; i <= smp_cpu_mtid; i++) {
1048			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1049				continue;
1050			pcpu[i].state = CPU_STATE_STANDBY;
1051			smp_cpu_set_polarization(cpu + i,
1052						 POLARIZATION_UNKNOWN);
1053		}
1054		topology_expect_change();
1055		break;
1056	case 1:
1057		if (pcpu->state != CPU_STATE_STANDBY)
1058			break;
1059		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1060		if (rc)
1061			break;
1062		for (i = 0; i <= smp_cpu_mtid; i++) {
1063			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1064				continue;
1065			pcpu[i].state = CPU_STATE_CONFIGURED;
1066			smp_cpu_set_polarization(cpu + i,
1067						 POLARIZATION_UNKNOWN);
1068		}
1069		topology_expect_change();
1070		break;
1071	default:
1072		break;
1073	}
1074out:
1075	mutex_unlock(&smp_cpu_state_mutex);
1076	cpus_read_unlock();
1077	return rc ? rc : count;
1078}
1079static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1080
1081static ssize_t show_cpu_address(struct device *dev,
1082				struct device_attribute *attr, char *buf)
1083{
1084	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1085}
1086static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1087
1088static struct attribute *cpu_common_attrs[] = {
1089	&dev_attr_configure.attr,
1090	&dev_attr_address.attr,
1091	NULL,
1092};
1093
1094static struct attribute_group cpu_common_attr_group = {
1095	.attrs = cpu_common_attrs,
1096};
1097
1098static struct attribute *cpu_online_attrs[] = {
1099	&dev_attr_idle_count.attr,
1100	&dev_attr_idle_time_us.attr,
1101	NULL,
1102};
1103
1104static struct attribute_group cpu_online_attr_group = {
1105	.attrs = cpu_online_attrs,
1106};
1107
1108static int smp_cpu_online(unsigned int cpu)
1109{
1110	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1111
1112	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1113}
1114
1115static int smp_cpu_pre_down(unsigned int cpu)
1116{
1117	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1118
1119	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1120	return 0;
1121}
1122
1123static int smp_add_present_cpu(int cpu)
1124{
1125	struct device *s;
1126	struct cpu *c;
1127	int rc;
1128
1129	c = kzalloc(sizeof(*c), GFP_KERNEL);
1130	if (!c)
1131		return -ENOMEM;
1132	per_cpu(cpu_device, cpu) = c;
1133	s = &c->dev;
1134	c->hotpluggable = !!cpu;
1135	rc = register_cpu(c, cpu);
1136	if (rc)
1137		goto out;
1138	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1139	if (rc)
1140		goto out_cpu;
1141	rc = topology_cpu_init(c);
1142	if (rc)
1143		goto out_topology;
1144	return 0;
1145
1146out_topology:
1147	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1148out_cpu:
1149	unregister_cpu(c);
1150out:
1151	return rc;
1152}
1153
1154int __ref smp_rescan_cpus(void)
1155{
1156	struct sclp_core_info *info;
1157	int nr;
1158
1159	info = kzalloc(sizeof(*info), GFP_KERNEL);
1160	if (!info)
1161		return -ENOMEM;
1162	smp_get_core_info(info, 0);
 
 
1163	nr = __smp_rescan_cpus(info, false);
 
 
1164	kfree(info);
1165	if (nr)
1166		topology_schedule_update();
1167	return 0;
1168}
1169
1170static ssize_t __ref rescan_store(struct device *dev,
1171				  struct device_attribute *attr,
1172				  const char *buf,
1173				  size_t count)
1174{
1175	int rc;
1176
1177	rc = lock_device_hotplug_sysfs();
1178	if (rc)
1179		return rc;
1180	rc = smp_rescan_cpus();
1181	unlock_device_hotplug();
1182	return rc ? rc : count;
1183}
1184static DEVICE_ATTR_WO(rescan);
1185
1186static int __init s390_smp_init(void)
1187{
1188	struct device *dev_root;
1189	int cpu, rc = 0;
1190
1191	dev_root = bus_get_dev_root(&cpu_subsys);
1192	if (dev_root) {
1193		rc = device_create_file(dev_root, &dev_attr_rescan);
1194		put_device(dev_root);
1195		if (rc)
1196			return rc;
1197	}
1198
1199	for_each_present_cpu(cpu) {
1200		rc = smp_add_present_cpu(cpu);
1201		if (rc)
1202			goto out;
1203	}
1204
1205	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1206			       smp_cpu_online, smp_cpu_pre_down);
1207	rc = rc <= 0 ? rc : 0;
1208out:
1209	return rc;
1210}
1211subsys_initcall(s390_smp_init);
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
   8 *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
   9 *
  10 *  based on other smp stuff by
  11 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  12 *    (c) 1998 Ingo Molnar
  13 *
  14 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  15 * the translation of logical to physical cpu ids. All new code that
  16 * operates on physical cpu numbers needs to go into smp.c.
  17 */
  18
  19#define KMSG_COMPONENT "cpu"
  20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  21
  22#include <linux/workqueue.h>
  23#include <linux/memblock.h>
  24#include <linux/export.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/err.h>
  28#include <linux/spinlock.h>
  29#include <linux/kernel_stat.h>
  30#include <linux/delay.h>
  31#include <linux/interrupt.h>
  32#include <linux/irqflags.h>
 
  33#include <linux/cpu.h>
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
  38#include <linux/kprobes.h>
  39#include <asm/asm-offsets.h>
 
 
  40#include <asm/diag.h>
  41#include <asm/switch_to.h>
  42#include <asm/facility.h>
  43#include <asm/ipl.h>
  44#include <asm/setup.h>
  45#include <asm/irq.h>
  46#include <asm/tlbflush.h>
  47#include <asm/vtimer.h>
  48#include <asm/lowcore.h>
  49#include <asm/sclp.h>
  50#include <asm/vdso.h>
  51#include <asm/debug.h>
  52#include <asm/os_info.h>
  53#include <asm/sigp.h>
  54#include <asm/idle.h>
  55#include <asm/nmi.h>
  56#include <asm/stacktrace.h>
  57#include <asm/topology.h>
 
 
  58#include "entry.h"
  59
  60enum {
  61	ec_schedule = 0,
  62	ec_call_function_single,
  63	ec_stop_cpu,
  64	ec_mcck_pending,
 
  65};
  66
  67enum {
  68	CPU_STATE_STANDBY,
  69	CPU_STATE_CONFIGURED,
  70};
  71
  72static DEFINE_PER_CPU(struct cpu *, cpu_device);
  73
  74struct pcpu {
  75	struct lowcore *lowcore;	/* lowcore page(s) for the cpu */
  76	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  77	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
  78	signed char state;		/* physical cpu state */
  79	signed char polarization;	/* physical polarization */
  80	u16 address;			/* physical cpu address */
  81};
  82
  83static u8 boot_core_type;
  84static struct pcpu pcpu_devices[NR_CPUS];
  85
  86unsigned int smp_cpu_mt_shift;
  87EXPORT_SYMBOL(smp_cpu_mt_shift);
  88
  89unsigned int smp_cpu_mtid;
  90EXPORT_SYMBOL(smp_cpu_mtid);
  91
  92#ifdef CONFIG_CRASH_DUMP
  93__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  94#endif
  95
  96static unsigned int smp_max_threads __initdata = -1U;
 
  97
  98static int __init early_nosmt(char *s)
  99{
 100	smp_max_threads = 1;
 101	return 0;
 102}
 103early_param("nosmt", early_nosmt);
 104
 105static int __init early_smt(char *s)
 106{
 107	get_option(&s, &smp_max_threads);
 108	return 0;
 109}
 110early_param("smt", early_smt);
 111
 112/*
 113 * The smp_cpu_state_mutex must be held when changing the state or polarization
 114 * member of a pcpu data structure within the pcpu_devices arreay.
 115 */
 116DEFINE_MUTEX(smp_cpu_state_mutex);
 117
 118/*
 119 * Signal processor helper functions.
 120 */
 121static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 122{
 123	int cc;
 124
 125	while (1) {
 126		cc = __pcpu_sigp(addr, order, parm, NULL);
 127		if (cc != SIGP_CC_BUSY)
 128			return cc;
 129		cpu_relax();
 130	}
 131}
 132
 133static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 134{
 135	int cc, retry;
 136
 137	for (retry = 0; ; retry++) {
 138		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 139		if (cc != SIGP_CC_BUSY)
 140			break;
 141		if (retry >= 3)
 142			udelay(10);
 143	}
 144	return cc;
 145}
 146
 147static inline int pcpu_stopped(struct pcpu *pcpu)
 148{
 149	u32 status;
 150
 151	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 152			0, &status) != SIGP_CC_STATUS_STORED)
 153		return 0;
 154	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 155}
 156
 157static inline int pcpu_running(struct pcpu *pcpu)
 158{
 159	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 160			0, NULL) != SIGP_CC_STATUS_STORED)
 161		return 1;
 162	/* Status stored condition code is equivalent to cpu not running. */
 163	return 0;
 164}
 165
 166/*
 167 * Find struct pcpu by cpu address.
 168 */
 169static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 170{
 171	int cpu;
 172
 173	for_each_cpu(cpu, mask)
 174		if (pcpu_devices[cpu].address == address)
 175			return pcpu_devices + cpu;
 176	return NULL;
 177}
 178
 179static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 180{
 181	int order;
 182
 183	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 184		return;
 185	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 186	pcpu->ec_clk = get_tod_clock_fast();
 187	pcpu_sigp_retry(pcpu, order, 0);
 188}
 189
 190static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 191{
 192	unsigned long async_stack, nodat_stack;
 193	struct lowcore *lc;
 194
 195	if (pcpu != &pcpu_devices[0]) {
 196		pcpu->lowcore =	(struct lowcore *)
 197			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 198		nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 199		if (!pcpu->lowcore || !nodat_stack)
 200			goto out;
 201	} else {
 202		nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
 203	}
 204	async_stack = stack_alloc();
 205	if (!async_stack)
 
 206		goto out;
 207	lc = pcpu->lowcore;
 208	memcpy(lc, &S390_lowcore, 512);
 209	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 210	lc->async_stack = async_stack + STACK_INIT_OFFSET;
 211	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 
 212	lc->cpu_nr = cpu;
 213	lc->spinlock_lockval = arch_spin_lockval(cpu);
 214	lc->spinlock_index = 0;
 215	lc->br_r1_trampoline = 0x07f1;	/* br %r1 */
 216	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
 217	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
 218	if (nmi_alloc_per_cpu(lc))
 219		goto out_async;
 220	if (vdso_alloc_per_cpu(lc))
 
 221		goto out_mcesa;
 222	lowcore_ptr[cpu] = lc;
 223	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
 224	return 0;
 225
 226out_mcesa:
 227	nmi_free_per_cpu(lc);
 228out_async:
 
 229	stack_free(async_stack);
 230out:
 231	if (pcpu != &pcpu_devices[0]) {
 232		free_pages(nodat_stack, THREAD_SIZE_ORDER);
 233		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 234	}
 235	return -ENOMEM;
 236}
 237
 238static void pcpu_free_lowcore(struct pcpu *pcpu)
 239{
 240	unsigned long async_stack, nodat_stack, lowcore;
 241
 242	nodat_stack = pcpu->lowcore->nodat_stack - STACK_INIT_OFFSET;
 243	async_stack = pcpu->lowcore->async_stack - STACK_INIT_OFFSET;
 244	lowcore = (unsigned long) pcpu->lowcore;
 245
 
 
 
 
 
 246	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 247	lowcore_ptr[pcpu - pcpu_devices] = NULL;
 248	vdso_free_per_cpu(pcpu->lowcore);
 249	nmi_free_per_cpu(pcpu->lowcore);
 250	stack_free(async_stack);
 251	if (pcpu == &pcpu_devices[0])
 252		return;
 253	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 254	free_pages(lowcore, LC_ORDER);
 255}
 256
 257static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 258{
 259	struct lowcore *lc = pcpu->lowcore;
 260
 
 261	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 262	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 263	lc->cpu_nr = cpu;
 
 264	lc->spinlock_lockval = arch_spin_lockval(cpu);
 265	lc->spinlock_index = 0;
 266	lc->percpu_offset = __per_cpu_offset[cpu];
 267	lc->kernel_asce = S390_lowcore.kernel_asce;
 268	lc->user_asce = S390_lowcore.kernel_asce;
 269	lc->machine_flags = S390_lowcore.machine_flags;
 270	lc->user_timer = lc->system_timer =
 271		lc->steal_timer = lc->avg_steal_timer = 0;
 272	__ctl_store(lc->cregs_save_area, 0, 15);
 
 
 273	lc->cregs_save_area[1] = lc->kernel_asce;
 274	lc->cregs_save_area[7] = lc->vdso_asce;
 275	save_access_regs((unsigned int *) lc->access_regs_save_area);
 276	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
 277	       sizeof(lc->stfle_fac_list));
 278	memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
 279	       sizeof(lc->alt_stfle_fac_list));
 280	arch_spin_lock_setup(cpu);
 281}
 282
 283static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 284{
 285	struct lowcore *lc = pcpu->lowcore;
 
 286
 287	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 288		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 289	lc->current_task = (unsigned long) tsk;
 
 290	lc->lpp = LPP_MAGIC;
 291	lc->current_pid = tsk->pid;
 292	lc->user_timer = tsk->thread.user_timer;
 293	lc->guest_timer = tsk->thread.guest_timer;
 294	lc->system_timer = tsk->thread.system_timer;
 295	lc->hardirq_timer = tsk->thread.hardirq_timer;
 296	lc->softirq_timer = tsk->thread.softirq_timer;
 297	lc->steal_timer = 0;
 298}
 299
 300static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 301{
 302	struct lowcore *lc = pcpu->lowcore;
 
 303
 304	lc->restart_stack = lc->nodat_stack;
 
 
 305	lc->restart_fn = (unsigned long) func;
 306	lc->restart_data = (unsigned long) data;
 307	lc->restart_source = -1UL;
 308	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 309}
 310
 
 
 311/*
 312 * Call function via PSW restart on pcpu and stop the current cpu.
 313 */
 314static void __pcpu_delegate(void (*func)(void*), void *data)
 315{
 316	func(data);	/* should not return */
 317}
 318
 319static void __no_sanitize_address pcpu_delegate(struct pcpu *pcpu,
 320						void (*func)(void *),
 321						void *data, unsigned long stack)
 322{
 323	struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
 324	unsigned long source_cpu = stap();
 325
 326	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 327	if (pcpu->address == source_cpu)
 328		CALL_ON_STACK(__pcpu_delegate, stack, 2, func, data);
 
 
 
 
 329	/* Stop target cpu (if func returns this stops the current cpu). */
 330	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 
 331	/* Restart func on the target cpu and stop the current cpu. */
 332	mem_assign_absolute(lc->restart_stack, stack);
 333	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
 334	mem_assign_absolute(lc->restart_data, (unsigned long) data);
 335	mem_assign_absolute(lc->restart_source, source_cpu);
 336	__bpon();
 
 
 
 
 
 
 
 
 337	asm volatile(
 338		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 339		"	brc	2,0b	# busy, try again\n"
 340		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 341		"	brc	2,1b	# busy, try again\n"
 342		: : "d" (pcpu->address), "d" (source_cpu),
 343		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 344		: "0", "1", "cc");
 345	for (;;) ;
 346}
 347
 348/*
 349 * Enable additional logical cpus for multi-threading.
 350 */
 351static int pcpu_set_smt(unsigned int mtid)
 352{
 353	int cc;
 354
 355	if (smp_cpu_mtid == mtid)
 356		return 0;
 357	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 358	if (cc == 0) {
 359		smp_cpu_mtid = mtid;
 360		smp_cpu_mt_shift = 0;
 361		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 362			smp_cpu_mt_shift++;
 363		pcpu_devices[0].address = stap();
 364	}
 365	return cc;
 366}
 367
 368/*
 369 * Call function on an online CPU.
 370 */
 371void smp_call_online_cpu(void (*func)(void *), void *data)
 372{
 373	struct pcpu *pcpu;
 374
 375	/* Use the current cpu if it is online. */
 376	pcpu = pcpu_find_address(cpu_online_mask, stap());
 377	if (!pcpu)
 378		/* Use the first online cpu. */
 379		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 380	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 381}
 382
 383/*
 384 * Call function on the ipl CPU.
 385 */
 386void smp_call_ipl_cpu(void (*func)(void *), void *data)
 387{
 388	struct lowcore *lc = pcpu_devices->lowcore;
 389
 390	if (pcpu_devices[0].address == stap())
 391		lc = &S390_lowcore;
 392
 393	pcpu_delegate(&pcpu_devices[0], func, data,
 394		      lc->nodat_stack);
 395}
 396
 397int smp_find_processor_id(u16 address)
 398{
 399	int cpu;
 400
 401	for_each_present_cpu(cpu)
 402		if (pcpu_devices[cpu].address == address)
 403			return cpu;
 404	return -1;
 405}
 406
 407void schedule_mcck_handler(void)
 408{
 409	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
 410}
 411
 412bool notrace arch_vcpu_is_preempted(int cpu)
 413{
 414	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 415		return false;
 416	if (pcpu_running(pcpu_devices + cpu))
 417		return false;
 418	return true;
 419}
 420EXPORT_SYMBOL(arch_vcpu_is_preempted);
 421
 422void notrace smp_yield_cpu(int cpu)
 423{
 424	if (!MACHINE_HAS_DIAG9C)
 425		return;
 426	diag_stat_inc_norecursion(DIAG_STAT_X09C);
 427	asm volatile("diag %0,0,0x9c"
 428		     : : "d" (pcpu_devices[cpu].address));
 429}
 
 430
 431/*
 432 * Send cpus emergency shutdown signal. This gives the cpus the
 433 * opportunity to complete outstanding interrupts.
 434 */
 435void notrace smp_emergency_stop(void)
 436{
 437	cpumask_t cpumask;
 
 438	u64 end;
 439	int cpu;
 440
 
 441	cpumask_copy(&cpumask, cpu_online_mask);
 442	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 443
 444	end = get_tod_clock() + (1000000UL << 12);
 445	for_each_cpu(cpu, &cpumask) {
 446		struct pcpu *pcpu = pcpu_devices + cpu;
 447		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 448		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 449				   0, NULL) == SIGP_CC_BUSY &&
 450		       get_tod_clock() < end)
 451			cpu_relax();
 452	}
 453	while (get_tod_clock() < end) {
 454		for_each_cpu(cpu, &cpumask)
 455			if (pcpu_stopped(pcpu_devices + cpu))
 456				cpumask_clear_cpu(cpu, &cpumask);
 457		if (cpumask_empty(&cpumask))
 458			break;
 459		cpu_relax();
 460	}
 
 461}
 462NOKPROBE_SYMBOL(smp_emergency_stop);
 463
 464/*
 465 * Stop all cpus but the current one.
 466 */
 467void smp_send_stop(void)
 468{
 469	int cpu;
 470
 471	/* Disable all interrupts/machine checks */
 472	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 473	trace_hardirqs_off();
 474
 475	debug_set_critical();
 476
 477	if (oops_in_progress)
 478		smp_emergency_stop();
 479
 480	/* stop all processors */
 481	for_each_online_cpu(cpu) {
 482		if (cpu == smp_processor_id())
 483			continue;
 484		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
 485		while (!pcpu_stopped(pcpu_devices + cpu))
 486			cpu_relax();
 487	}
 488}
 489
 490/*
 491 * This is the main routine where commands issued by other
 492 * cpus are handled.
 493 */
 494static void smp_handle_ext_call(void)
 495{
 496	unsigned long bits;
 497
 498	/* handle bit signal external calls */
 499	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 500	if (test_bit(ec_stop_cpu, &bits))
 501		smp_stop_cpu();
 502	if (test_bit(ec_schedule, &bits))
 503		scheduler_ipi();
 504	if (test_bit(ec_call_function_single, &bits))
 505		generic_smp_call_function_single_interrupt();
 506	if (test_bit(ec_mcck_pending, &bits))
 507		s390_handle_mcck();
 
 
 508}
 509
 510static void do_ext_call_interrupt(struct ext_code ext_code,
 511				  unsigned int param32, unsigned long param64)
 512{
 513	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 514	smp_handle_ext_call();
 515}
 516
 517void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 518{
 519	int cpu;
 520
 521	for_each_cpu(cpu, mask)
 522		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 523}
 524
 525void arch_send_call_function_single_ipi(int cpu)
 526{
 527	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 528}
 529
 530/*
 531 * this function sends a 'reschedule' IPI to another CPU.
 532 * it goes straight through and wastes no time serializing
 533 * anything. Worst case is that we lose a reschedule ...
 534 */
 535void smp_send_reschedule(int cpu)
 536{
 537	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 538}
 539
 540/*
 541 * parameter area for the set/clear control bit callbacks
 542 */
 543struct ec_creg_mask_parms {
 544	unsigned long orval;
 545	unsigned long andval;
 546	int cr;
 547};
 548
 549/*
 550 * callback for setting/clearing control bits
 551 */
 552static void smp_ctl_bit_callback(void *info)
 553{
 554	struct ec_creg_mask_parms *pp = info;
 555	unsigned long cregs[16];
 556
 557	__ctl_store(cregs, 0, 15);
 558	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 559	__ctl_load(cregs, 0, 15);
 560}
 561
 562/*
 563 * Set a bit in a control register of all cpus
 564 */
 565void smp_ctl_set_bit(int cr, int bit)
 566{
 567	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
 568
 569	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 570}
 571EXPORT_SYMBOL(smp_ctl_set_bit);
 572
 573/*
 574 * Clear a bit in a control register of all cpus
 575 */
 576void smp_ctl_clear_bit(int cr, int bit)
 577{
 578	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
 579
 580	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 581}
 582EXPORT_SYMBOL(smp_ctl_clear_bit);
 583
 584#ifdef CONFIG_CRASH_DUMP
 585
 586int smp_store_status(int cpu)
 587{
 588	struct pcpu *pcpu = pcpu_devices + cpu;
 
 589	unsigned long pa;
 590
 591	pa = __pa(&pcpu->lowcore->floating_pt_save_area);
 
 
 592	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 593			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 594		return -EIO;
 595	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
 596		return 0;
 597	pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
 598	if (MACHINE_HAS_GS)
 599		pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
 600	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 601			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 602		return -EIO;
 603	return 0;
 604}
 605
 606/*
 607 * Collect CPU state of the previous, crashed system.
 608 * There are four cases:
 609 * 1) standard zfcp dump
 610 *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 611 *    The state for all CPUs except the boot CPU needs to be collected
 612 *    with sigp stop-and-store-status. The boot CPU state is located in
 613 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 614 *    will copy the boot CPU state from the HSA.
 615 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
 616 *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
 617 *    The state for all CPUs except the boot CPU needs to be collected
 618 *    with sigp stop-and-store-status. The firmware or the boot-loader
 619 *    stored the registers of the boot CPU in the absolute lowcore in the
 620 *    memory of the old system.
 621 * 3) kdump and the old kernel did not store the CPU state,
 622 *    or stand-alone kdump for DASD
 623 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 624 *    The state for all CPUs except the boot CPU needs to be collected
 625 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 626 *    stored the registers of the boot CPU in the memory of the old system.
 627 * 4) kdump and the old kernel stored the CPU state
 628 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 629 *    This case does not exist for s390 anymore, setup_arch explicitly
 630 *    deactivates the elfcorehdr= kernel parameter
 631 */
 632static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
 633				     bool is_boot_cpu, unsigned long page)
 634{
 635	__vector128 *vxrs = (__vector128 *) page;
 636
 637	if (is_boot_cpu)
 638		vxrs = boot_cpu_vector_save_area;
 639	else
 640		__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
 641	save_area_add_vxrs(sa, vxrs);
 642}
 643
 644static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
 645				     bool is_boot_cpu, unsigned long page)
 646{
 647	void *regs = (void *) page;
 
 648
 649	if (is_boot_cpu)
 650		copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
 651	else
 652		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
 
 
 
 653	save_area_add_regs(sa, regs);
 
 
 
 654}
 655
 656void __init smp_save_dump_cpus(void)
 657{
 658	int addr, boot_cpu_addr, max_cpu_addr;
 659	struct save_area *sa;
 660	unsigned long page;
 661	bool is_boot_cpu;
 662
 663	if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
 664		/* No previous system present, normal boot. */
 665		return;
 666	/* Allocate a page as dumping area for the store status sigps */
 667	page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
 668	if (!page)
 669		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 670		      PAGE_SIZE, 1UL << 31);
 671
 672	/* Set multi-threading state to the previous system. */
 673	pcpu_set_smt(sclp.mtid_prev);
 674	boot_cpu_addr = stap();
 675	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 676	for (addr = 0; addr <= max_cpu_addr; addr++) {
 
 
 677		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 678		    SIGP_CC_NOT_OPERATIONAL)
 679			continue;
 680		is_boot_cpu = (addr == boot_cpu_addr);
 681		/* Allocate save area */
 682		sa = save_area_alloc(is_boot_cpu);
 683		if (!sa)
 684			panic("could not allocate memory for save area\n");
 685		if (MACHINE_HAS_VX)
 686			/* Get the vector registers */
 687			smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
 688		/*
 689		 * For a zfcp dump OLDMEM_BASE == NULL and the registers
 690		 * of the boot CPU are stored in the HSA. To retrieve
 691		 * these registers an SCLP request is required which is
 692		 * done by drivers/s390/char/zcore.c:init_cpu_info()
 693		 */
 694		if (!is_boot_cpu || OLDMEM_BASE)
 695			/* Get the CPU registers */
 696			smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
 697	}
 698	memblock_free(page, PAGE_SIZE);
 699	diag_dma_ops.diag308_reset();
 700	pcpu_set_smt(0);
 701}
 702#endif /* CONFIG_CRASH_DUMP */
 703
 704void smp_cpu_set_polarization(int cpu, int val)
 705{
 706	pcpu_devices[cpu].polarization = val;
 707}
 708
 709int smp_cpu_get_polarization(int cpu)
 710{
 711	return pcpu_devices[cpu].polarization;
 712}
 713
 714int smp_cpu_get_cpu_address(int cpu)
 715{
 716	return pcpu_devices[cpu].address;
 717}
 718
 719static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 720{
 721	static int use_sigp_detection;
 722	int address;
 723
 724	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 725		use_sigp_detection = 1;
 726		for (address = 0;
 727		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 728		     address += (1U << smp_cpu_mt_shift)) {
 729			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 730			    SIGP_CC_NOT_OPERATIONAL)
 731				continue;
 732			info->core[info->configured].core_id =
 733				address >> smp_cpu_mt_shift;
 734			info->configured++;
 735		}
 736		info->combined = info->configured;
 737	}
 738}
 739
 740static int smp_add_present_cpu(int cpu);
 741
 742static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
 743			bool configured, bool early)
 744{
 745	struct pcpu *pcpu;
 746	int cpu, nr, i;
 747	u16 address;
 748
 749	nr = 0;
 750	if (sclp.has_core_type && core->type != boot_core_type)
 751		return nr;
 752	cpu = cpumask_first(avail);
 753	address = core->core_id << smp_cpu_mt_shift;
 754	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
 755		if (pcpu_find_address(cpu_present_mask, address + i))
 756			continue;
 757		pcpu = pcpu_devices + cpu;
 758		pcpu->address = address + i;
 759		if (configured)
 760			pcpu->state = CPU_STATE_CONFIGURED;
 761		else
 762			pcpu->state = CPU_STATE_STANDBY;
 763		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 764		set_cpu_present(cpu, true);
 765		if (!early && smp_add_present_cpu(cpu) != 0)
 766			set_cpu_present(cpu, false);
 767		else
 768			nr++;
 769		cpumask_clear_cpu(cpu, avail);
 770		cpu = cpumask_next(cpu, avail);
 771	}
 772	return nr;
 773}
 774
 775static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
 776{
 777	struct sclp_core_entry *core;
 778	cpumask_t avail;
 779	bool configured;
 780	u16 core_id;
 781	int nr, i;
 782
 
 
 783	nr = 0;
 784	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 785	/*
 786	 * Add IPL core first (which got logical CPU number 0) to make sure
 787	 * that all SMT threads get subsequent logical CPU numbers.
 788	 */
 789	if (early) {
 790		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
 791		for (i = 0; i < info->configured; i++) {
 792			core = &info->core[i];
 793			if (core->core_id == core_id) {
 794				nr += smp_add_core(core, &avail, true, early);
 795				break;
 796			}
 797		}
 798	}
 799	for (i = 0; i < info->combined; i++) {
 800		configured = i < info->configured;
 801		nr += smp_add_core(&info->core[i], &avail, configured, early);
 802	}
 
 
 803	return nr;
 804}
 805
 806void __init smp_detect_cpus(void)
 807{
 808	unsigned int cpu, mtid, c_cpus, s_cpus;
 809	struct sclp_core_info *info;
 810	u16 address;
 811
 812	/* Get CPU information */
 813	info = memblock_alloc(sizeof(*info), 8);
 814	if (!info)
 815		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 816		      __func__, sizeof(*info), 8);
 817	smp_get_core_info(info, 1);
 818	/* Find boot CPU type */
 819	if (sclp.has_core_type) {
 820		address = stap();
 821		for (cpu = 0; cpu < info->combined; cpu++)
 822			if (info->core[cpu].core_id == address) {
 823				/* The boot cpu dictates the cpu type. */
 824				boot_core_type = info->core[cpu].type;
 825				break;
 826			}
 827		if (cpu >= info->combined)
 828			panic("Could not find boot CPU type");
 829	}
 830
 831	/* Set multi-threading state for the current system */
 832	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 833	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 834	pcpu_set_smt(mtid);
 835
 836	/* Print number of CPUs */
 837	c_cpus = s_cpus = 0;
 838	for (cpu = 0; cpu < info->combined; cpu++) {
 839		if (sclp.has_core_type &&
 840		    info->core[cpu].type != boot_core_type)
 841			continue;
 842		if (cpu < info->configured)
 843			c_cpus += smp_cpu_mtid + 1;
 844		else
 845			s_cpus += smp_cpu_mtid + 1;
 846	}
 847	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 848
 849	/* Add CPUs present at boot */
 850	get_online_cpus();
 851	__smp_rescan_cpus(info, true);
 852	put_online_cpus();
 853	memblock_free_early((unsigned long)info, sizeof(*info));
 854}
 855
 856static void smp_init_secondary(void)
 
 
 
 857{
 858	int cpu = smp_processor_id();
 859
 860	S390_lowcore.last_update_clock = get_tod_clock();
 
 
 
 
 
 861	restore_access_regs(S390_lowcore.access_regs_save_area);
 862	set_cpu_flag(CIF_ASCE_PRIMARY);
 863	set_cpu_flag(CIF_ASCE_SECONDARY);
 864	cpu_init();
 865	preempt_disable();
 866	init_cpu_timer();
 867	vtime_init();
 
 868	pfault_init();
 
 
 869	notify_cpu_starting(cpu);
 870	if (topology_cpu_dedicated(cpu))
 871		set_cpu_flag(CIF_DEDICATED_CPU);
 872	else
 873		clear_cpu_flag(CIF_DEDICATED_CPU);
 874	set_cpu_online(cpu, true);
 875	update_cpu_masks();
 876	inc_irq_stat(CPU_RST);
 877	local_irq_enable();
 878	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 879}
 880
 881/*
 882 *	Activate a secondary processor.
 883 */
 884static void __no_sanitize_address smp_start_secondary(void *cpuvoid)
 885{
 886	S390_lowcore.restart_stack = (unsigned long) restart_stack;
 887	S390_lowcore.restart_fn = (unsigned long) do_restart;
 888	S390_lowcore.restart_data = 0;
 889	S390_lowcore.restart_source = -1UL;
 890	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
 891	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 892	CALL_ON_STACK_NORETURN(smp_init_secondary, S390_lowcore.kernel_stack);
 893}
 894
 895/* Upping and downing of CPUs */
 896int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 897{
 898	struct pcpu *pcpu;
 899	int base, i, rc;
 900
 901	pcpu = pcpu_devices + cpu;
 902	if (pcpu->state != CPU_STATE_CONFIGURED)
 903		return -EIO;
 904	base = smp_get_base_cpu(cpu);
 905	for (i = 0; i <= smp_cpu_mtid; i++) {
 906		if (base + i < nr_cpu_ids)
 907			if (cpu_online(base + i))
 908				break;
 909	}
 910	/*
 911	 * If this is the first CPU of the core to get online
 912	 * do an initial CPU reset.
 913	 */
 914	if (i > smp_cpu_mtid &&
 915	    pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
 916	    SIGP_CC_ORDER_CODE_ACCEPTED)
 917		return -EIO;
 918
 919	rc = pcpu_alloc_lowcore(pcpu, cpu);
 920	if (rc)
 921		return rc;
 
 
 
 
 
 922	pcpu_prepare_secondary(pcpu, cpu);
 923	pcpu_attach_task(pcpu, tidle);
 924	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 925	/* Wait until cpu puts itself in the online & active maps */
 926	while (!cpu_online(cpu))
 927		cpu_relax();
 
 928	return 0;
 929}
 930
 931static unsigned int setup_possible_cpus __initdata;
 932
 933static int __init _setup_possible_cpus(char *s)
 934{
 935	get_option(&s, &setup_possible_cpus);
 936	return 0;
 937}
 938early_param("possible_cpus", _setup_possible_cpus);
 939
 940int __cpu_disable(void)
 941{
 942	unsigned long cregs[16];
 
 943
 944	/* Handle possible pending IPIs */
 945	smp_handle_ext_call();
 946	set_cpu_online(smp_processor_id(), false);
 
 
 947	update_cpu_masks();
 948	/* Disable pseudo page faults on this cpu. */
 949	pfault_fini();
 950	/* Disable interrupt sources via control register. */
 951	__ctl_store(cregs, 0, 15);
 952	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
 953	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
 954	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
 955	__ctl_load(cregs, 0, 15);
 956	clear_cpu_flag(CIF_NOHZ_DELAY);
 957	return 0;
 958}
 959
 960void __cpu_die(unsigned int cpu)
 961{
 962	struct pcpu *pcpu;
 963
 964	/* Wait until target cpu is down */
 965	pcpu = pcpu_devices + cpu;
 966	while (!pcpu_stopped(pcpu))
 967		cpu_relax();
 968	pcpu_free_lowcore(pcpu);
 969	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 970	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 971}
 972
 973void __noreturn cpu_die(void)
 974{
 975	idle_task_exit();
 976	__bpon();
 977	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 978	for (;;) ;
 979}
 980
 981void __init smp_fill_possible_mask(void)
 982{
 983	unsigned int possible, sclp_max, cpu;
 984
 985	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 986	sclp_max = min(smp_max_threads, sclp_max);
 987	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 988	possible = setup_possible_cpus ?: nr_cpu_ids;
 989	possible = min(possible, sclp_max);
 990	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 991		set_cpu_possible(cpu, true);
 992}
 993
 994void __init smp_prepare_cpus(unsigned int max_cpus)
 995{
 996	/* request the 0x1201 emergency signal external interrupt */
 997	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 998		panic("Couldn't request external interrupt 0x1201");
 999	/* request the 0x1202 external call external interrupt */
1000	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1001		panic("Couldn't request external interrupt 0x1202");
 
1002}
1003
1004void __init smp_prepare_boot_cpu(void)
1005{
1006	struct pcpu *pcpu = pcpu_devices;
1007
1008	WARN_ON(!cpu_present(0) || !cpu_online(0));
1009	pcpu->state = CPU_STATE_CONFIGURED;
1010	pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
1011	S390_lowcore.percpu_offset = __per_cpu_offset[0];
1012	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1013}
1014
1015void __init smp_setup_processor_id(void)
1016{
1017	pcpu_devices[0].address = stap();
1018	S390_lowcore.cpu_nr = 0;
1019	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1020	S390_lowcore.spinlock_index = 0;
1021}
1022
1023/*
1024 * the frequency of the profiling timer can be changed
1025 * by writing a multiplier value into /proc/profile.
1026 *
1027 * usually you want to run this on all CPUs ;)
1028 */
1029int setup_profiling_timer(unsigned int multiplier)
1030{
1031	return 0;
1032}
1033
1034static ssize_t cpu_configure_show(struct device *dev,
1035				  struct device_attribute *attr, char *buf)
1036{
1037	ssize_t count;
1038
1039	mutex_lock(&smp_cpu_state_mutex);
1040	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1041	mutex_unlock(&smp_cpu_state_mutex);
1042	return count;
1043}
1044
1045static ssize_t cpu_configure_store(struct device *dev,
1046				   struct device_attribute *attr,
1047				   const char *buf, size_t count)
1048{
1049	struct pcpu *pcpu;
1050	int cpu, val, rc, i;
1051	char delim;
1052
1053	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1054		return -EINVAL;
1055	if (val != 0 && val != 1)
1056		return -EINVAL;
1057	get_online_cpus();
1058	mutex_lock(&smp_cpu_state_mutex);
1059	rc = -EBUSY;
1060	/* disallow configuration changes of online cpus and cpu 0 */
1061	cpu = dev->id;
1062	cpu = smp_get_base_cpu(cpu);
1063	if (cpu == 0)
1064		goto out;
1065	for (i = 0; i <= smp_cpu_mtid; i++)
1066		if (cpu_online(cpu + i))
1067			goto out;
1068	pcpu = pcpu_devices + cpu;
1069	rc = 0;
1070	switch (val) {
1071	case 0:
1072		if (pcpu->state != CPU_STATE_CONFIGURED)
1073			break;
1074		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1075		if (rc)
1076			break;
1077		for (i = 0; i <= smp_cpu_mtid; i++) {
1078			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1079				continue;
1080			pcpu[i].state = CPU_STATE_STANDBY;
1081			smp_cpu_set_polarization(cpu + i,
1082						 POLARIZATION_UNKNOWN);
1083		}
1084		topology_expect_change();
1085		break;
1086	case 1:
1087		if (pcpu->state != CPU_STATE_STANDBY)
1088			break;
1089		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1090		if (rc)
1091			break;
1092		for (i = 0; i <= smp_cpu_mtid; i++) {
1093			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1094				continue;
1095			pcpu[i].state = CPU_STATE_CONFIGURED;
1096			smp_cpu_set_polarization(cpu + i,
1097						 POLARIZATION_UNKNOWN);
1098		}
1099		topology_expect_change();
1100		break;
1101	default:
1102		break;
1103	}
1104out:
1105	mutex_unlock(&smp_cpu_state_mutex);
1106	put_online_cpus();
1107	return rc ? rc : count;
1108}
1109static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1110
1111static ssize_t show_cpu_address(struct device *dev,
1112				struct device_attribute *attr, char *buf)
1113{
1114	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1115}
1116static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1117
1118static struct attribute *cpu_common_attrs[] = {
1119	&dev_attr_configure.attr,
1120	&dev_attr_address.attr,
1121	NULL,
1122};
1123
1124static struct attribute_group cpu_common_attr_group = {
1125	.attrs = cpu_common_attrs,
1126};
1127
1128static struct attribute *cpu_online_attrs[] = {
1129	&dev_attr_idle_count.attr,
1130	&dev_attr_idle_time_us.attr,
1131	NULL,
1132};
1133
1134static struct attribute_group cpu_online_attr_group = {
1135	.attrs = cpu_online_attrs,
1136};
1137
1138static int smp_cpu_online(unsigned int cpu)
1139{
1140	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1141
1142	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1143}
1144
1145static int smp_cpu_pre_down(unsigned int cpu)
1146{
1147	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1148
1149	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1150	return 0;
1151}
1152
1153static int smp_add_present_cpu(int cpu)
1154{
1155	struct device *s;
1156	struct cpu *c;
1157	int rc;
1158
1159	c = kzalloc(sizeof(*c), GFP_KERNEL);
1160	if (!c)
1161		return -ENOMEM;
1162	per_cpu(cpu_device, cpu) = c;
1163	s = &c->dev;
1164	c->hotpluggable = 1;
1165	rc = register_cpu(c, cpu);
1166	if (rc)
1167		goto out;
1168	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1169	if (rc)
1170		goto out_cpu;
1171	rc = topology_cpu_init(c);
1172	if (rc)
1173		goto out_topology;
1174	return 0;
1175
1176out_topology:
1177	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1178out_cpu:
1179	unregister_cpu(c);
1180out:
1181	return rc;
1182}
1183
1184int __ref smp_rescan_cpus(void)
1185{
1186	struct sclp_core_info *info;
1187	int nr;
1188
1189	info = kzalloc(sizeof(*info), GFP_KERNEL);
1190	if (!info)
1191		return -ENOMEM;
1192	smp_get_core_info(info, 0);
1193	get_online_cpus();
1194	mutex_lock(&smp_cpu_state_mutex);
1195	nr = __smp_rescan_cpus(info, false);
1196	mutex_unlock(&smp_cpu_state_mutex);
1197	put_online_cpus();
1198	kfree(info);
1199	if (nr)
1200		topology_schedule_update();
1201	return 0;
1202}
1203
1204static ssize_t __ref rescan_store(struct device *dev,
1205				  struct device_attribute *attr,
1206				  const char *buf,
1207				  size_t count)
1208{
1209	int rc;
1210
1211	rc = lock_device_hotplug_sysfs();
1212	if (rc)
1213		return rc;
1214	rc = smp_rescan_cpus();
1215	unlock_device_hotplug();
1216	return rc ? rc : count;
1217}
1218static DEVICE_ATTR_WO(rescan);
1219
1220static int __init s390_smp_init(void)
1221{
 
1222	int cpu, rc = 0;
1223
1224	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1225	if (rc)
1226		return rc;
 
 
 
 
 
1227	for_each_present_cpu(cpu) {
1228		rc = smp_add_present_cpu(cpu);
1229		if (rc)
1230			goto out;
1231	}
1232
1233	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1234			       smp_cpu_online, smp_cpu_pre_down);
1235	rc = rc <= 0 ? rc : 0;
1236out:
1237	return rc;
1238}
1239subsys_initcall(s390_smp_init);