Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  SMP related functions
   4 *
   5 *    Copyright IBM Corp. 1999, 2012
   6 *    Author(s): Denis Joseph Barrow,
   7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
 
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
  22#include <linux/memblock.h>
  23#include <linux/export.h>
  24#include <linux/init.h>
  25#include <linux/mm.h>
  26#include <linux/err.h>
  27#include <linux/spinlock.h>
  28#include <linux/kernel_stat.h>
  29#include <linux/delay.h>
  30#include <linux/interrupt.h>
  31#include <linux/irqflags.h>
  32#include <linux/irq_work.h>
  33#include <linux/cpu.h>
  34#include <linux/slab.h>
  35#include <linux/sched/hotplug.h>
  36#include <linux/sched/task_stack.h>
  37#include <linux/crash_dump.h>
  38#include <linux/kprobes.h>
  39#include <asm/asm-offsets.h>
  40#include <asm/ctlreg.h>
  41#include <asm/pfault.h>
  42#include <asm/diag.h>
  43#include <asm/switch_to.h>
  44#include <asm/facility.h>
  45#include <asm/ipl.h>
  46#include <asm/setup.h>
  47#include <asm/irq.h>
  48#include <asm/tlbflush.h>
  49#include <asm/vtimer.h>
  50#include <asm/abs_lowcore.h>
  51#include <asm/sclp.h>
 
  52#include <asm/debug.h>
  53#include <asm/os_info.h>
  54#include <asm/sigp.h>
  55#include <asm/idle.h>
  56#include <asm/nmi.h>
  57#include <asm/stacktrace.h>
  58#include <asm/topology.h>
  59#include <asm/vdso.h>
  60#include <asm/maccess.h>
  61#include "entry.h"
  62
  63enum {
  64	ec_schedule = 0,
  65	ec_call_function_single,
  66	ec_stop_cpu,
  67	ec_mcck_pending,
  68	ec_irq_work,
  69};
  70
  71enum {
  72	CPU_STATE_STANDBY,
  73	CPU_STATE_CONFIGURED,
  74};
  75
  76static DEFINE_PER_CPU(struct cpu *, cpu_device);
  77
  78struct pcpu {
 
 
 
 
  79	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  80	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
  81	signed char state;		/* physical cpu state */
  82	signed char polarization;	/* physical polarization */
  83	u16 address;			/* physical cpu address */
  84};
  85
  86static u8 boot_core_type;
 
  87static struct pcpu pcpu_devices[NR_CPUS];
  88
  89unsigned int smp_cpu_mt_shift;
  90EXPORT_SYMBOL(smp_cpu_mt_shift);
  91
  92unsigned int smp_cpu_mtid;
  93EXPORT_SYMBOL(smp_cpu_mtid);
  94
  95#ifdef CONFIG_CRASH_DUMP
  96__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
  97#endif
  98
  99static unsigned int smp_max_threads __initdata = -1U;
 100cpumask_t cpu_setup_mask;
 101
 102static int __init early_nosmt(char *s)
 103{
 104	smp_max_threads = 1;
 105	return 0;
 106}
 107early_param("nosmt", early_nosmt);
 108
 109static int __init early_smt(char *s)
 110{
 111	get_option(&s, &smp_max_threads);
 112	return 0;
 113}
 114early_param("smt", early_smt);
 115
 116/*
 117 * The smp_cpu_state_mutex must be held when changing the state or polarization
 118 * member of a pcpu data structure within the pcpu_devices array.
 119 */
 120DEFINE_MUTEX(smp_cpu_state_mutex);
 121
 122/*
 123 * Signal processor helper functions.
 124 */
 125static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
 126{
 127	int cc;
 128
 129	while (1) {
 130		cc = __pcpu_sigp(addr, order, parm, NULL);
 131		if (cc != SIGP_CC_BUSY)
 132			return cc;
 133		cpu_relax();
 134	}
 135}
 136
 137static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
 138{
 139	int cc, retry;
 140
 141	for (retry = 0; ; retry++) {
 142		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 143		if (cc != SIGP_CC_BUSY)
 144			break;
 145		if (retry >= 3)
 146			udelay(10);
 147	}
 148	return cc;
 149}
 150
 151static inline int pcpu_stopped(struct pcpu *pcpu)
 152{
 153	u32 status;
 154
 155	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 156			0, &status) != SIGP_CC_STATUS_STORED)
 157		return 0;
 158	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 159}
 160
 161static inline int pcpu_running(struct pcpu *pcpu)
 162{
 163	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 164			0, NULL) != SIGP_CC_STATUS_STORED)
 165		return 1;
 166	/* Status stored condition code is equivalent to cpu not running. */
 167	return 0;
 168}
 169
 170/*
 171 * Find struct pcpu by cpu address.
 172 */
 173static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
 174{
 175	int cpu;
 176
 177	for_each_cpu(cpu, mask)
 178		if (pcpu_devices[cpu].address == address)
 179			return pcpu_devices + cpu;
 180	return NULL;
 181}
 182
 183static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 184{
 185	int order;
 186
 187	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 188		return;
 189	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 190	pcpu->ec_clk = get_tod_clock_fast();
 191	pcpu_sigp_retry(pcpu, order, 0);
 192}
 193
 194static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 195{
 196	unsigned long async_stack, nodat_stack, mcck_stack;
 197	struct lowcore *lc;
 198
 199	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 200	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
 201	async_stack = stack_alloc();
 202	mcck_stack = stack_alloc();
 203	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
 204		goto out;
 
 
 
 205	memcpy(lc, &S390_lowcore, 512);
 206	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 207	lc->async_stack = async_stack + STACK_INIT_OFFSET;
 208	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
 209	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
 
 210	lc->cpu_nr = cpu;
 211	lc->spinlock_lockval = arch_spin_lockval(cpu);
 212	lc->spinlock_index = 0;
 213	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
 214	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
 215	lc->preempt_count = PREEMPT_DISABLED;
 216	if (nmi_alloc_mcesa(&lc->mcesad))
 
 
 217		goto out;
 218	if (abs_lowcore_map(cpu, lc, true))
 219		goto out_mcesa;
 220	lowcore_ptr[cpu] = lc;
 221	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
 222	return 0;
 223
 224out_mcesa:
 225	nmi_free_mcesa(&lc->mcesad);
 226out:
 227	stack_free(mcck_stack);
 228	stack_free(async_stack);
 229	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 230	free_pages((unsigned long) lc, LC_ORDER);
 
 231	return -ENOMEM;
 232}
 233
 
 
 234static void pcpu_free_lowcore(struct pcpu *pcpu)
 235{
 236	unsigned long async_stack, nodat_stack, mcck_stack;
 237	struct lowcore *lc;
 238	int cpu;
 239
 240	cpu = pcpu - pcpu_devices;
 241	lc = lowcore_ptr[cpu];
 242	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
 243	async_stack = lc->async_stack - STACK_INIT_OFFSET;
 244	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
 245	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 246	lowcore_ptr[cpu] = NULL;
 247	abs_lowcore_unmap(cpu);
 248	nmi_free_mcesa(&lc->mcesad);
 249	stack_free(async_stack);
 250	stack_free(mcck_stack);
 251	free_pages(nodat_stack, THREAD_SIZE_ORDER);
 252	free_pages((unsigned long) lc, LC_ORDER);
 
 
 
 
 
 
 
 
 
 253}
 254
 
 
 255static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 256{
 257	struct lowcore *lc, *abs_lc;
 258
 259	lc = lowcore_ptr[cpu];
 260	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 261	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 
 262	lc->cpu_nr = cpu;
 263	lc->restart_flags = RESTART_FLAG_CTLREGS;
 264	lc->spinlock_lockval = arch_spin_lockval(cpu);
 265	lc->spinlock_index = 0;
 266	lc->percpu_offset = __per_cpu_offset[cpu];
 267	lc->kernel_asce = S390_lowcore.kernel_asce;
 268	lc->user_asce = s390_invalid_asce;
 269	lc->machine_flags = S390_lowcore.machine_flags;
 270	lc->user_timer = lc->system_timer =
 271		lc->steal_timer = lc->avg_steal_timer = 0;
 272	abs_lc = get_abs_lowcore();
 273	memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
 274	put_abs_lowcore(abs_lc);
 275	lc->cregs_save_area[1] = lc->kernel_asce;
 276	lc->cregs_save_area[7] = lc->user_asce;
 277	save_access_regs((unsigned int *) lc->access_regs_save_area);
 278	arch_spin_lock_setup(cpu);
 
 279}
 280
 281static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 282{
 283	struct lowcore *lc;
 284	int cpu;
 285
 286	cpu = pcpu - pcpu_devices;
 287	lc = lowcore_ptr[cpu];
 288	lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
 289	lc->current_task = (unsigned long)tsk;
 290	lc->lpp = LPP_MAGIC;
 291	lc->current_pid = tsk->pid;
 292	lc->user_timer = tsk->thread.user_timer;
 293	lc->guest_timer = tsk->thread.guest_timer;
 294	lc->system_timer = tsk->thread.system_timer;
 295	lc->hardirq_timer = tsk->thread.hardirq_timer;
 296	lc->softirq_timer = tsk->thread.softirq_timer;
 297	lc->steal_timer = 0;
 298}
 299
 300static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 301{
 302	struct lowcore *lc;
 303	int cpu;
 304
 305	cpu = pcpu - pcpu_devices;
 306	lc = lowcore_ptr[cpu];
 307	lc->restart_stack = lc->kernel_stack;
 308	lc->restart_fn = (unsigned long) func;
 309	lc->restart_data = (unsigned long) data;
 310	lc->restart_source = -1U;
 311	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 312}
 313
 314typedef void (pcpu_delegate_fn)(void *);
 315
 316/*
 317 * Call function via PSW restart on pcpu and stop the current cpu.
 318 */
 319static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
 320{
 321	func(data);	/* should not return */
 322}
 323
 324static void pcpu_delegate(struct pcpu *pcpu,
 325			  pcpu_delegate_fn *func,
 326			  void *data, unsigned long stack)
 327{
 328	struct lowcore *lc, *abs_lc;
 329	unsigned int source_cpu;
 330
 331	lc = lowcore_ptr[pcpu - pcpu_devices];
 332	source_cpu = stap();
 333
 334	if (pcpu->address == source_cpu) {
 335		call_on_stack(2, stack, void, __pcpu_delegate,
 336			      pcpu_delegate_fn *, func, void *, data);
 337	}
 338	/* Stop target cpu (if func returns this stops the current cpu). */
 339	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 340	pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
 341	/* Restart func on the target cpu and stop the current cpu. */
 342	if (lc) {
 343		lc->restart_stack = stack;
 344		lc->restart_fn = (unsigned long)func;
 345		lc->restart_data = (unsigned long)data;
 346		lc->restart_source = source_cpu;
 347	} else {
 348		abs_lc = get_abs_lowcore();
 349		abs_lc->restart_stack = stack;
 350		abs_lc->restart_fn = (unsigned long)func;
 351		abs_lc->restart_data = (unsigned long)data;
 352		abs_lc->restart_source = source_cpu;
 353		put_abs_lowcore(abs_lc);
 354	}
 355	asm volatile(
 356		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 357		"	brc	2,0b	# busy, try again\n"
 358		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 359		"	brc	2,1b	# busy, try again\n"
 360		: : "d" (pcpu->address), "d" (source_cpu),
 361		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 362		: "0", "1", "cc");
 363	for (;;) ;
 364}
 365
 366/*
 367 * Enable additional logical cpus for multi-threading.
 368 */
 369static int pcpu_set_smt(unsigned int mtid)
 370{
 371	int cc;
 372
 373	if (smp_cpu_mtid == mtid)
 374		return 0;
 375	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
 376	if (cc == 0) {
 377		smp_cpu_mtid = mtid;
 378		smp_cpu_mt_shift = 0;
 379		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
 380			smp_cpu_mt_shift++;
 381		pcpu_devices[0].address = stap();
 382	}
 383	return cc;
 384}
 385
 386/*
 387 * Call function on an online CPU.
 388 */
 389void smp_call_online_cpu(void (*func)(void *), void *data)
 390{
 391	struct pcpu *pcpu;
 392
 393	/* Use the current cpu if it is online. */
 394	pcpu = pcpu_find_address(cpu_online_mask, stap());
 395	if (!pcpu)
 396		/* Use the first online cpu. */
 397		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 398	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 399}
 400
 401/*
 402 * Call function on the ipl CPU.
 403 */
 404void smp_call_ipl_cpu(void (*func)(void *), void *data)
 405{
 406	struct lowcore *lc = lowcore_ptr[0];
 407
 408	if (pcpu_devices[0].address == stap())
 409		lc = &S390_lowcore;
 410
 411	pcpu_delegate(&pcpu_devices[0], func, data,
 412		      lc->nodat_stack);
 413}
 414
 415int smp_find_processor_id(u16 address)
 416{
 417	int cpu;
 418
 419	for_each_present_cpu(cpu)
 420		if (pcpu_devices[cpu].address == address)
 421			return cpu;
 422	return -1;
 423}
 424
 425void schedule_mcck_handler(void)
 426{
 427	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
 428}
 429
 430bool notrace arch_vcpu_is_preempted(int cpu)
 431{
 432	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
 433		return false;
 434	if (pcpu_running(pcpu_devices + cpu))
 435		return false;
 436	return true;
 437}
 438EXPORT_SYMBOL(arch_vcpu_is_preempted);
 439
 440void notrace smp_yield_cpu(int cpu)
 441{
 442	if (!MACHINE_HAS_DIAG9C)
 443		return;
 444	diag_stat_inc_norecursion(DIAG_STAT_X09C);
 445	asm volatile("diag %0,0,0x9c"
 446		     : : "d" (pcpu_devices[cpu].address));
 447}
 448EXPORT_SYMBOL_GPL(smp_yield_cpu);
 449
 450/*
 451 * Send cpus emergency shutdown signal. This gives the cpus the
 452 * opportunity to complete outstanding interrupts.
 453 */
 454void notrace smp_emergency_stop(void)
 455{
 456	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
 457	static cpumask_t cpumask;
 458	u64 end;
 459	int cpu;
 460
 461	arch_spin_lock(&lock);
 462	cpumask_copy(&cpumask, cpu_online_mask);
 463	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 464
 465	end = get_tod_clock() + (1000000UL << 12);
 466	for_each_cpu(cpu, &cpumask) {
 467		struct pcpu *pcpu = pcpu_devices + cpu;
 468		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 469		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 470				   0, NULL) == SIGP_CC_BUSY &&
 471		       get_tod_clock() < end)
 472			cpu_relax();
 473	}
 474	while (get_tod_clock() < end) {
 475		for_each_cpu(cpu, &cpumask)
 476			if (pcpu_stopped(pcpu_devices + cpu))
 477				cpumask_clear_cpu(cpu, &cpumask);
 478		if (cpumask_empty(&cpumask))
 479			break;
 480		cpu_relax();
 481	}
 482	arch_spin_unlock(&lock);
 483}
 484NOKPROBE_SYMBOL(smp_emergency_stop);
 485
 486/*
 487 * Stop all cpus but the current one.
 488 */
 489void smp_send_stop(void)
 490{
 
 491	int cpu;
 492
 493	/* Disable all interrupts/machine checks */
 494	__load_psw_mask(PSW_KERNEL_BITS);
 495	trace_hardirqs_off();
 496
 497	debug_set_critical();
 
 
 498
 499	if (oops_in_progress)
 500		smp_emergency_stop();
 501
 502	/* stop all processors */
 503	for_each_online_cpu(cpu) {
 504		if (cpu == smp_processor_id())
 505			continue;
 506		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
 507		while (!pcpu_stopped(pcpu_devices + cpu))
 508			cpu_relax();
 509	}
 510}
 511
 512/*
 
 
 
 
 
 
 
 
 
 513 * This is the main routine where commands issued by other
 514 * cpus are handled.
 515 */
 516static void smp_handle_ext_call(void)
 517{
 518	unsigned long bits;
 519
 520	/* handle bit signal external calls */
 521	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 522	if (test_bit(ec_stop_cpu, &bits))
 523		smp_stop_cpu();
 524	if (test_bit(ec_schedule, &bits))
 525		scheduler_ipi();
 526	if (test_bit(ec_call_function_single, &bits))
 527		generic_smp_call_function_single_interrupt();
 528	if (test_bit(ec_mcck_pending, &bits))
 529		s390_handle_mcck();
 530	if (test_bit(ec_irq_work, &bits))
 531		irq_work_run();
 532}
 533
 534static void do_ext_call_interrupt(struct ext_code ext_code,
 535				  unsigned int param32, unsigned long param64)
 536{
 537	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 538	smp_handle_ext_call();
 539}
 540
 541void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 542{
 543	int cpu;
 544
 545	for_each_cpu(cpu, mask)
 546		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 547}
 548
 549void arch_send_call_function_single_ipi(int cpu)
 550{
 551	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 552}
 553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 554/*
 555 * this function sends a 'reschedule' IPI to another CPU.
 556 * it goes straight through and wastes no time serializing
 557 * anything. Worst case is that we lose a reschedule ...
 558 */
 559void arch_smp_send_reschedule(int cpu)
 560{
 561	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 562}
 563
 564#ifdef CONFIG_IRQ_WORK
 565void arch_irq_work_raise(void)
 
 
 
 
 
 
 
 
 
 
 
 566{
 567	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
 568}
 569#endif
 570
 571#ifdef CONFIG_CRASH_DUMP
 
 
 
 572
 573int smp_store_status(int cpu)
 
 
 
 574{
 575	struct lowcore *lc;
 576	struct pcpu *pcpu;
 577	unsigned long pa;
 578
 579	pcpu = pcpu_devices + cpu;
 580	lc = lowcore_ptr[cpu];
 581	pa = __pa(&lc->floating_pt_save_area);
 582	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
 583			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 584		return -EIO;
 585	if (!cpu_has_vx() && !MACHINE_HAS_GS)
 586		return 0;
 587	pa = lc->mcesad & MCESA_ORIGIN_MASK;
 588	if (MACHINE_HAS_GS)
 589		pa |= lc->mcesad & MCESA_LC_MASK;
 590	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
 591			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
 592		return -EIO;
 593	return 0;
 594}
 
 595
 596/*
 597 * Collect CPU state of the previous, crashed system.
 598 * There are four cases:
 599 * 1) standard zfcp/nvme dump
 600 *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
 601 *    The state for all CPUs except the boot CPU needs to be collected
 602 *    with sigp stop-and-store-status. The boot CPU state is located in
 603 *    the absolute lowcore of the memory stored in the HSA. The zcore code
 604 *    will copy the boot CPU state from the HSA.
 605 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
 606 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
 607 *    The state for all CPUs except the boot CPU needs to be collected
 608 *    with sigp stop-and-store-status. The firmware or the boot-loader
 609 *    stored the registers of the boot CPU in the absolute lowcore in the
 610 *    memory of the old system.
 611 * 3) kdump and the old kernel did not store the CPU state,
 612 *    or stand-alone kdump for DASD
 613 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
 614 *    The state for all CPUs except the boot CPU needs to be collected
 615 *    with sigp stop-and-store-status. The kexec code or the boot-loader
 616 *    stored the registers of the boot CPU in the memory of the old system.
 617 * 4) kdump and the old kernel stored the CPU state
 618 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
 619 *    This case does not exist for s390 anymore, setup_arch explicitly
 620 *    deactivates the elfcorehdr= kernel parameter
 621 */
 622static bool dump_available(void)
 623{
 624	return oldmem_data.start || is_ipl_type_dump();
 
 
 625}
 
 
 
 626
 627void __init smp_save_dump_ipl_cpu(void)
 628{
 629	struct save_area *sa;
 630	void *regs;
 631
 632	if (!dump_available())
 633		return;
 634	sa = save_area_alloc(true);
 635	regs = memblock_alloc(512, 8);
 636	if (!sa || !regs)
 637		panic("could not allocate memory for boot CPU save area\n");
 638	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
 639	save_area_add_regs(sa, regs);
 640	memblock_free(regs, 512);
 641	if (cpu_has_vx())
 642		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
 643}
 644
 645void __init smp_save_dump_secondary_cpus(void)
 646{
 647	int addr, boot_cpu_addr, max_cpu_addr;
 648	struct save_area *sa;
 649	void *page;
 650
 651	if (!dump_available())
 652		return;
 653	/* Allocate a page as dumping area for the store status sigps */
 654	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
 655	if (!page)
 656		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
 657		      PAGE_SIZE, 1UL << 31);
 658
 659	/* Set multi-threading state to the previous system. */
 660	pcpu_set_smt(sclp.mtid_prev);
 661	boot_cpu_addr = stap();
 662	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
 663	for (addr = 0; addr <= max_cpu_addr; addr++) {
 664		if (addr == boot_cpu_addr)
 665			continue;
 666		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
 667		    SIGP_CC_NOT_OPERATIONAL)
 668			continue;
 669		sa = save_area_alloc(false);
 670		if (!sa)
 671			panic("could not allocate memory for save area\n");
 672		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
 673		save_area_add_regs(sa, page);
 674		if (cpu_has_vx()) {
 675			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
 676			save_area_add_vxrs(sa, page);
 677		}
 678	}
 679	memblock_free(page, PAGE_SIZE);
 680	diag_amode31_ops.diag308_reset();
 681	pcpu_set_smt(0);
 
 682}
 683#endif /* CONFIG_CRASH_DUMP */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 684
 685void smp_cpu_set_polarization(int cpu, int val)
 686{
 687	pcpu_devices[cpu].polarization = val;
 688}
 689
 690int smp_cpu_get_polarization(int cpu)
 691{
 692	return pcpu_devices[cpu].polarization;
 693}
 694
 695int smp_cpu_get_cpu_address(int cpu)
 696{
 697	return pcpu_devices[cpu].address;
 698}
 699
 700static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
 701{
 702	static int use_sigp_detection;
 
 703	int address;
 704
 705	if (use_sigp_detection || sclp_get_core_info(info, early)) {
 
 706		use_sigp_detection = 1;
 707		for (address = 0;
 708		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
 709		     address += (1U << smp_cpu_mt_shift)) {
 710			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
 711			    SIGP_CC_NOT_OPERATIONAL)
 712				continue;
 713			info->core[info->configured].core_id =
 714				address >> smp_cpu_mt_shift;
 715			info->configured++;
 716		}
 717		info->combined = info->configured;
 718	}
 
 719}
 720
 721static int smp_add_present_cpu(int cpu);
 722
 723static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
 724			bool configured, bool early)
 725{
 726	struct pcpu *pcpu;
 
 727	int cpu, nr, i;
 728	u16 address;
 729
 730	nr = 0;
 731	if (sclp.has_core_type && core->type != boot_core_type)
 732		return nr;
 733	cpu = cpumask_first(avail);
 734	address = core->core_id << smp_cpu_mt_shift;
 735	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
 736		if (pcpu_find_address(cpu_present_mask, address + i))
 737			continue;
 738		pcpu = pcpu_devices + cpu;
 739		pcpu->address = address + i;
 740		if (configured)
 741			pcpu->state = CPU_STATE_CONFIGURED;
 742		else
 743			pcpu->state = CPU_STATE_STANDBY;
 744		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 745		set_cpu_present(cpu, true);
 746		if (!early && smp_add_present_cpu(cpu) != 0)
 747			set_cpu_present(cpu, false);
 748		else
 749			nr++;
 750		cpumask_clear_cpu(cpu, avail);
 751		cpu = cpumask_next(cpu, avail);
 752	}
 753	return nr;
 754}
 755
 756static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
 757{
 758	struct sclp_core_entry *core;
 759	static cpumask_t avail;
 760	bool configured;
 761	u16 core_id;
 762	int nr, i;
 763
 764	cpus_read_lock();
 765	mutex_lock(&smp_cpu_state_mutex);
 766	nr = 0;
 767	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 768	/*
 769	 * Add IPL core first (which got logical CPU number 0) to make sure
 770	 * that all SMT threads get subsequent logical CPU numbers.
 771	 */
 772	if (early) {
 773		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
 774		for (i = 0; i < info->configured; i++) {
 775			core = &info->core[i];
 776			if (core->core_id == core_id) {
 777				nr += smp_add_core(core, &avail, true, early);
 778				break;
 779			}
 780		}
 781	}
 782	for (i = 0; i < info->combined; i++) {
 783		configured = i < info->configured;
 784		nr += smp_add_core(&info->core[i], &avail, configured, early);
 785	}
 786	mutex_unlock(&smp_cpu_state_mutex);
 787	cpus_read_unlock();
 788	return nr;
 789}
 790
 791void __init smp_detect_cpus(void)
 792{
 793	unsigned int cpu, mtid, c_cpus, s_cpus;
 794	struct sclp_core_info *info;
 795	u16 address;
 796
 797	/* Get CPU information */
 798	info = memblock_alloc(sizeof(*info), 8);
 799	if (!info)
 800		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
 801		      __func__, sizeof(*info), 8);
 802	smp_get_core_info(info, 1);
 803	/* Find boot CPU type */
 804	if (sclp.has_core_type) {
 805		address = stap();
 806		for (cpu = 0; cpu < info->combined; cpu++)
 807			if (info->core[cpu].core_id == address) {
 808				/* The boot cpu dictates the cpu type. */
 809				boot_core_type = info->core[cpu].type;
 810				break;
 811			}
 812		if (cpu >= info->combined)
 813			panic("Could not find boot CPU type");
 814	}
 815
 816	/* Set multi-threading state for the current system */
 817	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
 818	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
 819	pcpu_set_smt(mtid);
 820
 821	/* Print number of CPUs */
 822	c_cpus = s_cpus = 0;
 823	for (cpu = 0; cpu < info->combined; cpu++) {
 824		if (sclp.has_core_type &&
 825		    info->core[cpu].type != boot_core_type)
 826			continue;
 827		if (cpu < info->configured)
 828			c_cpus += smp_cpu_mtid + 1;
 829		else
 830			s_cpus += smp_cpu_mtid + 1;
 
 831	}
 832	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 833
 834	/* Add CPUs present at boot */
 835	__smp_rescan_cpus(info, true);
 836	memblock_free(info, sizeof(*info));
 837}
 838
 839/*
 840 *	Activate a secondary processor.
 841 */
 842static void smp_start_secondary(void *cpuvoid)
 843{
 844	int cpu = raw_smp_processor_id();
 845
 846	S390_lowcore.last_update_clock = get_tod_clock();
 847	S390_lowcore.restart_stack = (unsigned long)restart_stack;
 848	S390_lowcore.restart_fn = (unsigned long)do_restart;
 849	S390_lowcore.restart_data = 0;
 850	S390_lowcore.restart_source = -1U;
 851	S390_lowcore.restart_flags = 0;
 852	restore_access_regs(S390_lowcore.access_regs_save_area);
 
 
 853	cpu_init();
 854	rcutree_report_cpu_starting(cpu);
 855	init_cpu_timer();
 856	vtime_init();
 857	vdso_getcpu_init();
 858	pfault_init();
 859	cpumask_set_cpu(cpu, &cpu_setup_mask);
 860	update_cpu_masks();
 861	notify_cpu_starting(cpu);
 862	if (topology_cpu_dedicated(cpu))
 863		set_cpu_flag(CIF_DEDICATED_CPU);
 864	else
 865		clear_cpu_flag(CIF_DEDICATED_CPU);
 866	set_cpu_online(cpu, true);
 867	inc_irq_stat(CPU_RST);
 868	local_irq_enable();
 869	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 870}
 871
 872/* Upping and downing of CPUs */
 873int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 874{
 875	struct pcpu *pcpu = pcpu_devices + cpu;
 876	int rc;
 877
 
 878	if (pcpu->state != CPU_STATE_CONFIGURED)
 879		return -EIO;
 880	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
 881	    SIGP_CC_ORDER_CODE_ACCEPTED)
 882		return -EIO;
 883
 884	rc = pcpu_alloc_lowcore(pcpu, cpu);
 885	if (rc)
 886		return rc;
 887	/*
 888	 * Make sure global control register contents do not change
 889	 * until new CPU has initialized control registers.
 890	 */
 891	system_ctlreg_lock();
 892	pcpu_prepare_secondary(pcpu, cpu);
 893	pcpu_attach_task(pcpu, tidle);
 894	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 895	/* Wait until cpu puts itself in the online & active maps */
 896	while (!cpu_online(cpu))
 897		cpu_relax();
 898	system_ctlreg_unlock();
 899	return 0;
 900}
 901
 902static unsigned int setup_possible_cpus __initdata;
 903
 904static int __init _setup_possible_cpus(char *s)
 905{
 906	get_option(&s, &setup_possible_cpus);
 907	return 0;
 908}
 909early_param("possible_cpus", _setup_possible_cpus);
 910
 
 
 911int __cpu_disable(void)
 912{
 913	struct ctlreg cregs[16];
 914	int cpu;
 915
 916	/* Handle possible pending IPIs */
 917	smp_handle_ext_call();
 918	cpu = smp_processor_id();
 919	set_cpu_online(cpu, false);
 920	cpumask_clear_cpu(cpu, &cpu_setup_mask);
 921	update_cpu_masks();
 922	/* Disable pseudo page faults on this cpu. */
 923	pfault_fini();
 924	/* Disable interrupt sources via control register. */
 925	__local_ctl_store(0, 15, cregs);
 926	cregs[0].val  &= ~0x0000ee70UL;	/* disable all external interrupts */
 927	cregs[6].val  &= ~0xff000000UL;	/* disable all I/O interrupts */
 928	cregs[14].val &= ~0x1f000000UL;	/* disable most machine checks */
 929	__local_ctl_load(0, 15, cregs);
 930	clear_cpu_flag(CIF_NOHZ_DELAY);
 931	return 0;
 932}
 933
 934void __cpu_die(unsigned int cpu)
 935{
 936	struct pcpu *pcpu;
 937
 938	/* Wait until target cpu is down */
 939	pcpu = pcpu_devices + cpu;
 940	while (!pcpu_stopped(pcpu))
 941		cpu_relax();
 942	pcpu_free_lowcore(pcpu);
 
 943	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 944	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 
 945}
 946
 947void __noreturn cpu_die(void)
 948{
 949	idle_task_exit();
 950	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 951	for (;;) ;
 952}
 953
 
 
 954void __init smp_fill_possible_mask(void)
 955{
 956	unsigned int possible, sclp_max, cpu;
 957
 958	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
 959	sclp_max = min(smp_max_threads, sclp_max);
 960	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
 961	possible = setup_possible_cpus ?: nr_cpu_ids;
 962	possible = min(possible, sclp_max);
 963	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 964		set_cpu_possible(cpu, true);
 965}
 966
 967void __init smp_prepare_cpus(unsigned int max_cpus)
 968{
 
 969	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 970		panic("Couldn't request external interrupt 0x1201");
 971	system_ctl_set_bit(0, 14);
 972	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 973		panic("Couldn't request external interrupt 0x1202");
 974	system_ctl_set_bit(0, 13);
 975}
 976
 977void __init smp_prepare_boot_cpu(void)
 978{
 979	struct pcpu *pcpu = pcpu_devices;
 980
 981	WARN_ON(!cpu_present(0) || !cpu_online(0));
 982	pcpu->state = CPU_STATE_CONFIGURED;
 
 
 
 
 
 
 983	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 984	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 
 
 
 
 
 
 985}
 986
 987void __init smp_setup_processor_id(void)
 988{
 989	pcpu_devices[0].address = stap();
 990	S390_lowcore.cpu_nr = 0;
 991	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
 992	S390_lowcore.spinlock_index = 0;
 993}
 994
 995/*
 996 * the frequency of the profiling timer can be changed
 997 * by writing a multiplier value into /proc/profile.
 998 *
 999 * usually you want to run this on all CPUs ;)
1000 */
1001int setup_profiling_timer(unsigned int multiplier)
1002{
1003	return 0;
1004}
1005
 
1006static ssize_t cpu_configure_show(struct device *dev,
1007				  struct device_attribute *attr, char *buf)
1008{
1009	ssize_t count;
1010
1011	mutex_lock(&smp_cpu_state_mutex);
1012	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1013	mutex_unlock(&smp_cpu_state_mutex);
1014	return count;
1015}
1016
1017static ssize_t cpu_configure_store(struct device *dev,
1018				   struct device_attribute *attr,
1019				   const char *buf, size_t count)
1020{
1021	struct pcpu *pcpu;
1022	int cpu, val, rc, i;
1023	char delim;
1024
1025	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1026		return -EINVAL;
1027	if (val != 0 && val != 1)
1028		return -EINVAL;
1029	cpus_read_lock();
1030	mutex_lock(&smp_cpu_state_mutex);
1031	rc = -EBUSY;
1032	/* disallow configuration changes of online cpus */
1033	cpu = dev->id;
1034	cpu = smp_get_base_cpu(cpu);
1035	for (i = 0; i <= smp_cpu_mtid; i++)
1036		if (cpu_online(cpu + i))
1037			goto out;
1038	pcpu = pcpu_devices + cpu;
1039	rc = 0;
1040	switch (val) {
1041	case 0:
1042		if (pcpu->state != CPU_STATE_CONFIGURED)
1043			break;
1044		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1045		if (rc)
1046			break;
1047		for (i = 0; i <= smp_cpu_mtid; i++) {
1048			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1049				continue;
1050			pcpu[i].state = CPU_STATE_STANDBY;
1051			smp_cpu_set_polarization(cpu + i,
1052						 POLARIZATION_UNKNOWN);
1053		}
1054		topology_expect_change();
1055		break;
1056	case 1:
1057		if (pcpu->state != CPU_STATE_STANDBY)
1058			break;
1059		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1060		if (rc)
1061			break;
1062		for (i = 0; i <= smp_cpu_mtid; i++) {
1063			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1064				continue;
1065			pcpu[i].state = CPU_STATE_CONFIGURED;
1066			smp_cpu_set_polarization(cpu + i,
1067						 POLARIZATION_UNKNOWN);
1068		}
1069		topology_expect_change();
1070		break;
1071	default:
1072		break;
1073	}
1074out:
1075	mutex_unlock(&smp_cpu_state_mutex);
1076	cpus_read_unlock();
1077	return rc ? rc : count;
1078}
1079static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
 
1080
1081static ssize_t show_cpu_address(struct device *dev,
1082				struct device_attribute *attr, char *buf)
1083{
1084	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1085}
1086static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1087
1088static struct attribute *cpu_common_attrs[] = {
 
1089	&dev_attr_configure.attr,
 
1090	&dev_attr_address.attr,
1091	NULL,
1092};
1093
1094static struct attribute_group cpu_common_attr_group = {
1095	.attrs = cpu_common_attrs,
1096};
1097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098static struct attribute *cpu_online_attrs[] = {
1099	&dev_attr_idle_count.attr,
1100	&dev_attr_idle_time_us.attr,
1101	NULL,
1102};
1103
1104static struct attribute_group cpu_online_attr_group = {
1105	.attrs = cpu_online_attrs,
1106};
1107
1108static int smp_cpu_online(unsigned int cpu)
 
1109{
1110	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1111
1112	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1113}
1114
1115static int smp_cpu_pre_down(unsigned int cpu)
1116{
1117	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1118
1119	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1120	return 0;
 
 
 
1121}
1122
1123static int smp_add_present_cpu(int cpu)
1124{
1125	struct device *s;
1126	struct cpu *c;
1127	int rc;
1128
1129	c = kzalloc(sizeof(*c), GFP_KERNEL);
1130	if (!c)
1131		return -ENOMEM;
1132	per_cpu(cpu_device, cpu) = c;
1133	s = &c->dev;
1134	c->hotpluggable = !!cpu;
1135	rc = register_cpu(c, cpu);
1136	if (rc)
1137		goto out;
1138	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1139	if (rc)
1140		goto out_cpu;
 
 
 
 
 
1141	rc = topology_cpu_init(c);
1142	if (rc)
1143		goto out_topology;
1144	return 0;
1145
1146out_topology:
 
 
 
1147	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1148out_cpu:
 
1149	unregister_cpu(c);
 
1150out:
1151	return rc;
1152}
1153
 
 
1154int __ref smp_rescan_cpus(void)
1155{
1156	struct sclp_core_info *info;
1157	int nr;
1158
1159	info = kzalloc(sizeof(*info), GFP_KERNEL);
1160	if (!info)
1161		return -ENOMEM;
1162	smp_get_core_info(info, 0);
1163	nr = __smp_rescan_cpus(info, false);
 
 
 
1164	kfree(info);
1165	if (nr)
1166		topology_schedule_update();
1167	return 0;
1168}
1169
1170static ssize_t __ref rescan_store(struct device *dev,
1171				  struct device_attribute *attr,
1172				  const char *buf,
1173				  size_t count)
1174{
1175	int rc;
1176
1177	rc = lock_device_hotplug_sysfs();
1178	if (rc)
1179		return rc;
1180	rc = smp_rescan_cpus();
1181	unlock_device_hotplug();
1182	return rc ? rc : count;
1183}
1184static DEVICE_ATTR_WO(rescan);
 
1185
1186static int __init s390_smp_init(void)
1187{
1188	struct device *dev_root;
1189	int cpu, rc = 0;
1190
1191	dev_root = bus_get_dev_root(&cpu_subsys);
1192	if (dev_root) {
1193		rc = device_create_file(dev_root, &dev_attr_rescan);
1194		put_device(dev_root);
1195		if (rc)
1196			return rc;
1197	}
1198
1199	for_each_present_cpu(cpu) {
1200		rc = smp_add_present_cpu(cpu);
1201		if (rc)
1202			goto out;
1203	}
1204
1205	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1206			       smp_cpu_online, smp_cpu_pre_down);
1207	rc = rc <= 0 ? rc : 0;
1208out:
 
1209	return rc;
1210}
1211subsys_initcall(s390_smp_init);
v3.15
 
   1/*
   2 *  SMP related functions
   3 *
   4 *    Copyright IBM Corp. 1999, 2012
   5 *    Author(s): Denis Joseph Barrow,
   6 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
   7 *		 Heiko Carstens <heiko.carstens@de.ibm.com>,
   8 *
   9 *  based on other smp stuff by
  10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
  11 *    (c) 1998 Ingo Molnar
  12 *
  13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
  14 * the translation of logical to physical cpu ids. All new code that
  15 * operates on physical cpu numbers needs to go into smp.c.
  16 */
  17
  18#define KMSG_COMPONENT "cpu"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/workqueue.h>
  22#include <linux/module.h>
 
  23#include <linux/init.h>
  24#include <linux/mm.h>
  25#include <linux/err.h>
  26#include <linux/spinlock.h>
  27#include <linux/kernel_stat.h>
  28#include <linux/delay.h>
  29#include <linux/interrupt.h>
  30#include <linux/irqflags.h>
 
  31#include <linux/cpu.h>
  32#include <linux/slab.h>
 
 
  33#include <linux/crash_dump.h>
 
  34#include <asm/asm-offsets.h>
 
 
 
  35#include <asm/switch_to.h>
  36#include <asm/facility.h>
  37#include <asm/ipl.h>
  38#include <asm/setup.h>
  39#include <asm/irq.h>
  40#include <asm/tlbflush.h>
  41#include <asm/vtimer.h>
  42#include <asm/lowcore.h>
  43#include <asm/sclp.h>
  44#include <asm/vdso.h>
  45#include <asm/debug.h>
  46#include <asm/os_info.h>
  47#include <asm/sigp.h>
 
 
 
 
 
 
  48#include "entry.h"
  49
  50enum {
  51	ec_schedule = 0,
  52	ec_call_function_single,
  53	ec_stop_cpu,
 
 
  54};
  55
  56enum {
  57	CPU_STATE_STANDBY,
  58	CPU_STATE_CONFIGURED,
  59};
  60
 
 
  61struct pcpu {
  62	struct cpu *cpu;
  63	struct _lowcore *lowcore;	/* lowcore page(s) for the cpu */
  64	unsigned long async_stack;	/* async stack for the cpu */
  65	unsigned long panic_stack;	/* panic stack for the cpu */
  66	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
  67	int state;			/* physical cpu state */
  68	int polarization;		/* physical polarization */
 
  69	u16 address;			/* physical cpu address */
  70};
  71
  72static u8 boot_cpu_type;
  73static u16 boot_cpu_address;
  74static struct pcpu pcpu_devices[NR_CPUS];
  75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76/*
  77 * The smp_cpu_state_mutex must be held when changing the state or polarization
  78 * member of a pcpu data structure within the pcpu_devices arreay.
  79 */
  80DEFINE_MUTEX(smp_cpu_state_mutex);
  81
  82/*
  83 * Signal processor helper functions.
  84 */
  85static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
  86{
  87	int cc;
  88
  89	while (1) {
  90		cc = __pcpu_sigp(addr, order, parm, NULL);
  91		if (cc != SIGP_CC_BUSY)
  92			return cc;
  93		cpu_relax();
  94	}
  95}
  96
  97static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
  98{
  99	int cc, retry;
 100
 101	for (retry = 0; ; retry++) {
 102		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
 103		if (cc != SIGP_CC_BUSY)
 104			break;
 105		if (retry >= 3)
 106			udelay(10);
 107	}
 108	return cc;
 109}
 110
 111static inline int pcpu_stopped(struct pcpu *pcpu)
 112{
 113	u32 uninitialized_var(status);
 114
 115	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
 116			0, &status) != SIGP_CC_STATUS_STORED)
 117		return 0;
 118	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
 119}
 120
 121static inline int pcpu_running(struct pcpu *pcpu)
 122{
 123	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
 124			0, NULL) != SIGP_CC_STATUS_STORED)
 125		return 1;
 126	/* Status stored condition code is equivalent to cpu not running. */
 127	return 0;
 128}
 129
 130/*
 131 * Find struct pcpu by cpu address.
 132 */
 133static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
 134{
 135	int cpu;
 136
 137	for_each_cpu(cpu, mask)
 138		if (pcpu_devices[cpu].address == address)
 139			return pcpu_devices + cpu;
 140	return NULL;
 141}
 142
 143static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
 144{
 145	int order;
 146
 147	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
 148		return;
 149	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
 
 150	pcpu_sigp_retry(pcpu, order, 0);
 151}
 152
 153static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
 154{
 155	struct _lowcore *lc;
 
 156
 157	if (pcpu != &pcpu_devices[0]) {
 158		pcpu->lowcore =	(struct _lowcore *)
 159			__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
 160		pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
 161		pcpu->panic_stack = __get_free_page(GFP_KERNEL);
 162		if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
 163			goto out;
 164	}
 165	lc = pcpu->lowcore;
 166	memcpy(lc, &S390_lowcore, 512);
 167	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
 168	lc->async_stack = pcpu->async_stack + ASYNC_SIZE
 169		- STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 170	lc->panic_stack = pcpu->panic_stack + PAGE_SIZE
 171		- STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 172	lc->cpu_nr = cpu;
 173#ifndef CONFIG_64BIT
 174	if (MACHINE_HAS_IEEE) {
 175		lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
 176		if (!lc->extended_save_area_addr)
 177			goto out;
 178	}
 179#else
 180	if (vdso_alloc_per_cpu(lc))
 181		goto out;
 182#endif
 
 183	lowcore_ptr[cpu] = lc;
 184	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
 185	return 0;
 
 
 
 186out:
 187	if (pcpu != &pcpu_devices[0]) {
 188		free_page(pcpu->panic_stack);
 189		free_pages(pcpu->async_stack, ASYNC_ORDER);
 190		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 191	}
 192	return -ENOMEM;
 193}
 194
 195#ifdef CONFIG_HOTPLUG_CPU
 196
 197static void pcpu_free_lowcore(struct pcpu *pcpu)
 198{
 
 
 
 
 
 
 
 
 
 199	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
 200	lowcore_ptr[pcpu - pcpu_devices] = NULL;
 201#ifndef CONFIG_64BIT
 202	if (MACHINE_HAS_IEEE) {
 203		struct _lowcore *lc = pcpu->lowcore;
 204
 205		free_page((unsigned long) lc->extended_save_area_addr);
 206		lc->extended_save_area_addr = 0;
 207	}
 208#else
 209	vdso_free_per_cpu(pcpu->lowcore);
 210#endif
 211	if (pcpu != &pcpu_devices[0]) {
 212		free_page(pcpu->panic_stack);
 213		free_pages(pcpu->async_stack, ASYNC_ORDER);
 214		free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
 215	}
 216}
 217
 218#endif /* CONFIG_HOTPLUG_CPU */
 219
 220static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
 221{
 222	struct _lowcore *lc = pcpu->lowcore;
 223
 224	if (MACHINE_HAS_TLB_LC)
 225		cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
 226	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
 227	atomic_inc(&init_mm.context.attach_count);
 228	lc->cpu_nr = cpu;
 
 
 
 229	lc->percpu_offset = __per_cpu_offset[cpu];
 230	lc->kernel_asce = S390_lowcore.kernel_asce;
 
 231	lc->machine_flags = S390_lowcore.machine_flags;
 232	lc->ftrace_func = S390_lowcore.ftrace_func;
 233	lc->user_timer = lc->system_timer = lc->steal_timer = 0;
 234	__ctl_store(lc->cregs_save_area, 0, 15);
 
 
 
 
 235	save_access_regs((unsigned int *) lc->access_regs_save_area);
 236	memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
 237	       MAX_FACILITY_BIT/8);
 238}
 239
 240static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
 241{
 242	struct _lowcore *lc = pcpu->lowcore;
 243	struct thread_info *ti = task_thread_info(tsk);
 244
 245	lc->kernel_stack = (unsigned long) task_stack_page(tsk)
 246		+ THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
 247	lc->thread_info = (unsigned long) task_thread_info(tsk);
 248	lc->current_task = (unsigned long) tsk;
 249	lc->user_timer = ti->user_timer;
 250	lc->system_timer = ti->system_timer;
 
 
 
 
 
 251	lc->steal_timer = 0;
 252}
 253
 254static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
 255{
 256	struct _lowcore *lc = pcpu->lowcore;
 
 257
 
 
 258	lc->restart_stack = lc->kernel_stack;
 259	lc->restart_fn = (unsigned long) func;
 260	lc->restart_data = (unsigned long) data;
 261	lc->restart_source = -1UL;
 262	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
 263}
 264
 
 
 265/*
 266 * Call function via PSW restart on pcpu and stop the current cpu.
 267 */
 268static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
 
 
 
 
 
 
 269			  void *data, unsigned long stack)
 270{
 271	struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
 272	unsigned long source_cpu = stap();
 
 
 
 273
 274	__load_psw_mask(PSW_KERNEL_BITS);
 275	if (pcpu->address == source_cpu)
 276		func(data);	/* should not return */
 
 277	/* Stop target cpu (if func returns this stops the current cpu). */
 278	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 
 279	/* Restart func on the target cpu and stop the current cpu. */
 280	mem_assign_absolute(lc->restart_stack, stack);
 281	mem_assign_absolute(lc->restart_fn, (unsigned long) func);
 282	mem_assign_absolute(lc->restart_data, (unsigned long) data);
 283	mem_assign_absolute(lc->restart_source, source_cpu);
 
 
 
 
 
 
 
 
 
 284	asm volatile(
 285		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
 286		"	brc	2,0b	# busy, try again\n"
 287		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
 288		"	brc	2,1b	# busy, try again\n"
 289		: : "d" (pcpu->address), "d" (source_cpu),
 290		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
 291		: "0", "1", "cc");
 292	for (;;) ;
 293}
 294
 295/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296 * Call function on an online CPU.
 297 */
 298void smp_call_online_cpu(void (*func)(void *), void *data)
 299{
 300	struct pcpu *pcpu;
 301
 302	/* Use the current cpu if it is online. */
 303	pcpu = pcpu_find_address(cpu_online_mask, stap());
 304	if (!pcpu)
 305		/* Use the first online cpu. */
 306		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
 307	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
 308}
 309
 310/*
 311 * Call function on the ipl CPU.
 312 */
 313void smp_call_ipl_cpu(void (*func)(void *), void *data)
 314{
 
 
 
 
 
 315	pcpu_delegate(&pcpu_devices[0], func, data,
 316		      pcpu_devices->panic_stack + PAGE_SIZE);
 317}
 318
 319int smp_find_processor_id(u16 address)
 320{
 321	int cpu;
 322
 323	for_each_present_cpu(cpu)
 324		if (pcpu_devices[cpu].address == address)
 325			return cpu;
 326	return -1;
 327}
 328
 329int smp_vcpu_scheduled(int cpu)
 330{
 331	return pcpu_running(pcpu_devices + cpu);
 332}
 333
 334void smp_yield(void)
 335{
 336	if (MACHINE_HAS_DIAG44)
 337		asm volatile("diag 0,0,0x44");
 
 
 
 338}
 
 339
 340void smp_yield_cpu(int cpu)
 341{
 342	if (MACHINE_HAS_DIAG9C)
 343		asm volatile("diag %0,0,0x9c"
 344			     : : "d" (pcpu_devices[cpu].address));
 345	else if (MACHINE_HAS_DIAG44)
 346		asm volatile("diag 0,0,0x44");
 347}
 
 348
 349/*
 350 * Send cpus emergency shutdown signal. This gives the cpus the
 351 * opportunity to complete outstanding interrupts.
 352 */
 353static void smp_emergency_stop(cpumask_t *cpumask)
 354{
 
 
 355	u64 end;
 356	int cpu;
 357
 
 
 
 
 358	end = get_tod_clock() + (1000000UL << 12);
 359	for_each_cpu(cpu, cpumask) {
 360		struct pcpu *pcpu = pcpu_devices + cpu;
 361		set_bit(ec_stop_cpu, &pcpu->ec_mask);
 362		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
 363				   0, NULL) == SIGP_CC_BUSY &&
 364		       get_tod_clock() < end)
 365			cpu_relax();
 366	}
 367	while (get_tod_clock() < end) {
 368		for_each_cpu(cpu, cpumask)
 369			if (pcpu_stopped(pcpu_devices + cpu))
 370				cpumask_clear_cpu(cpu, cpumask);
 371		if (cpumask_empty(cpumask))
 372			break;
 373		cpu_relax();
 374	}
 
 375}
 
 376
 377/*
 378 * Stop all cpus but the current one.
 379 */
 380void smp_send_stop(void)
 381{
 382	cpumask_t cpumask;
 383	int cpu;
 384
 385	/* Disable all interrupts/machine checks */
 386	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 387	trace_hardirqs_off();
 388
 389	debug_set_critical();
 390	cpumask_copy(&cpumask, cpu_online_mask);
 391	cpumask_clear_cpu(smp_processor_id(), &cpumask);
 392
 393	if (oops_in_progress)
 394		smp_emergency_stop(&cpumask);
 395
 396	/* stop all processors */
 397	for_each_cpu(cpu, &cpumask) {
 398		struct pcpu *pcpu = pcpu_devices + cpu;
 399		pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
 400		while (!pcpu_stopped(pcpu))
 
 401			cpu_relax();
 402	}
 403}
 404
 405/*
 406 * Stop the current cpu.
 407 */
 408void smp_stop_cpu(void)
 409{
 410	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 411	for (;;) ;
 412}
 413
 414/*
 415 * This is the main routine where commands issued by other
 416 * cpus are handled.
 417 */
 418static void smp_handle_ext_call(void)
 419{
 420	unsigned long bits;
 421
 422	/* handle bit signal external calls */
 423	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
 424	if (test_bit(ec_stop_cpu, &bits))
 425		smp_stop_cpu();
 426	if (test_bit(ec_schedule, &bits))
 427		scheduler_ipi();
 428	if (test_bit(ec_call_function_single, &bits))
 429		generic_smp_call_function_single_interrupt();
 
 
 
 
 430}
 431
 432static void do_ext_call_interrupt(struct ext_code ext_code,
 433				  unsigned int param32, unsigned long param64)
 434{
 435	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
 436	smp_handle_ext_call();
 437}
 438
 439void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 440{
 441	int cpu;
 442
 443	for_each_cpu(cpu, mask)
 444		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 445}
 446
 447void arch_send_call_function_single_ipi(int cpu)
 448{
 449	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
 450}
 451
 452#ifndef CONFIG_64BIT
 453/*
 454 * this function sends a 'purge tlb' signal to another CPU.
 455 */
 456static void smp_ptlb_callback(void *info)
 457{
 458	__tlb_flush_local();
 459}
 460
 461void smp_ptlb_all(void)
 462{
 463	on_each_cpu(smp_ptlb_callback, NULL, 1);
 464}
 465EXPORT_SYMBOL(smp_ptlb_all);
 466#endif /* ! CONFIG_64BIT */
 467
 468/*
 469 * this function sends a 'reschedule' IPI to another CPU.
 470 * it goes straight through and wastes no time serializing
 471 * anything. Worst case is that we lose a reschedule ...
 472 */
 473void smp_send_reschedule(int cpu)
 474{
 475	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
 476}
 477
 478/*
 479 * parameter area for the set/clear control bit callbacks
 480 */
 481struct ec_creg_mask_parms {
 482	unsigned long orval;
 483	unsigned long andval;
 484	int cr;
 485};
 486
 487/*
 488 * callback for setting/clearing control bits
 489 */
 490static void smp_ctl_bit_callback(void *info)
 491{
 492	struct ec_creg_mask_parms *pp = info;
 493	unsigned long cregs[16];
 
 494
 495	__ctl_store(cregs, 0, 15);
 496	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
 497	__ctl_load(cregs, 0, 15);
 498}
 499
 500/*
 501 * Set a bit in a control register of all cpus
 502 */
 503void smp_ctl_set_bit(int cr, int bit)
 504{
 505	struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
 
 
 506
 507	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508}
 509EXPORT_SYMBOL(smp_ctl_set_bit);
 510
 511/*
 512 * Clear a bit in a control register of all cpus
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513 */
 514void smp_ctl_clear_bit(int cr, int bit)
 515{
 516	struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
 517
 518	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
 519}
 520EXPORT_SYMBOL(smp_ctl_clear_bit);
 521
 522#if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
 523
 524static void __init smp_get_save_area(int cpu, u16 address)
 525{
 526	void *lc = pcpu_devices[0].lowcore;
 527	struct save_area *save_area;
 528
 529	if (is_kdump_kernel())
 530		return;
 531	if (!OLDMEM_BASE && (address == boot_cpu_address ||
 532			     ipl_info.type != IPL_TYPE_FCP_DUMP))
 533		return;
 534	save_area = dump_save_area_create(cpu);
 535	if (!save_area)
 536		panic("could not allocate memory for save area\n");
 537#ifdef CONFIG_CRASH_DUMP
 538	if (address == boot_cpu_address) {
 539		/* Copy the registers of the boot cpu. */
 540		copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
 541				 SAVE_AREA_BASE - PAGE_SIZE, 0);
 
 
 
 
 
 
 
 542		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543	}
 544#endif
 545	/* Get the registers of a non-boot cpu. */
 546	__pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
 547	memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
 548}
 549
 550int smp_store_status(int cpu)
 551{
 552	struct pcpu *pcpu;
 553
 554	pcpu = pcpu_devices + cpu;
 555	if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
 556			      0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
 557		return -EIO;
 558	return 0;
 559}
 560
 561#else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
 562
 563static inline void smp_get_save_area(int cpu, u16 address) { }
 564
 565#endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
 566
 567void smp_cpu_set_polarization(int cpu, int val)
 568{
 569	pcpu_devices[cpu].polarization = val;
 570}
 571
 572int smp_cpu_get_polarization(int cpu)
 573{
 574	return pcpu_devices[cpu].polarization;
 575}
 576
 577static struct sclp_cpu_info *smp_get_cpu_info(void)
 
 
 
 
 
 578{
 579	static int use_sigp_detection;
 580	struct sclp_cpu_info *info;
 581	int address;
 582
 583	info = kzalloc(sizeof(*info), GFP_KERNEL);
 584	if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
 585		use_sigp_detection = 1;
 586		for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
 587			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
 
 
 588			    SIGP_CC_NOT_OPERATIONAL)
 589				continue;
 590			info->cpu[info->configured].address = address;
 
 591			info->configured++;
 592		}
 593		info->combined = info->configured;
 594	}
 595	return info;
 596}
 597
 598static int smp_add_present_cpu(int cpu);
 599
 600static int __smp_rescan_cpus(struct sclp_cpu_info *info, int sysfs_add)
 
 601{
 602	struct pcpu *pcpu;
 603	cpumask_t avail;
 604	int cpu, nr, i;
 
 605
 606	nr = 0;
 607	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
 608	cpu = cpumask_first(&avail);
 609	for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
 610		if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
 611			continue;
 612		if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
 613			continue;
 614		pcpu = pcpu_devices + cpu;
 615		pcpu->address = info->cpu[i].address;
 616		pcpu->state = (i >= info->configured) ?
 617			CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
 
 
 618		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 619		set_cpu_present(cpu, true);
 620		if (sysfs_add && smp_add_present_cpu(cpu) != 0)
 621			set_cpu_present(cpu, false);
 622		else
 623			nr++;
 624		cpu = cpumask_next(cpu, &avail);
 
 625	}
 626	return nr;
 627}
 628
 629static void __init smp_detect_cpus(void)
 630{
 631	unsigned int cpu, c_cpus, s_cpus;
 632	struct sclp_cpu_info *info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633
 634	info = smp_get_cpu_info();
 
 
 
 
 
 
 
 635	if (!info)
 636		panic("smp_detect_cpus failed to allocate memory\n");
 637	if (info->has_cpu_type) {
 638		for (cpu = 0; cpu < info->combined; cpu++) {
 639			if (info->cpu[cpu].address != boot_cpu_address)
 640				continue;
 641			/* The boot cpu dictates the cpu type. */
 642			boot_cpu_type = info->cpu[cpu].type;
 643			break;
 644		}
 
 
 
 
 
 645	}
 
 
 
 
 
 
 
 646	c_cpus = s_cpus = 0;
 647	for (cpu = 0; cpu < info->combined; cpu++) {
 648		if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
 
 649			continue;
 650		if (cpu < info->configured) {
 651			smp_get_save_area(c_cpus, info->cpu[cpu].address);
 652			c_cpus++;
 653		} else
 654			s_cpus++;
 655	}
 656	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
 657	get_online_cpus();
 658	__smp_rescan_cpus(info, 0);
 659	put_online_cpus();
 660	kfree(info);
 661}
 662
 663/*
 664 *	Activate a secondary processor.
 665 */
 666static void smp_start_secondary(void *cpuvoid)
 667{
 
 
 668	S390_lowcore.last_update_clock = get_tod_clock();
 669	S390_lowcore.restart_stack = (unsigned long) restart_stack;
 670	S390_lowcore.restart_fn = (unsigned long) do_restart;
 671	S390_lowcore.restart_data = 0;
 672	S390_lowcore.restart_source = -1UL;
 
 673	restore_access_regs(S390_lowcore.access_regs_save_area);
 674	__ctl_load(S390_lowcore.cregs_save_area, 0, 15);
 675	__load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
 676	cpu_init();
 677	preempt_disable();
 678	init_cpu_timer();
 679	init_cpu_vtimer();
 
 680	pfault_init();
 681	notify_cpu_starting(smp_processor_id());
 682	set_cpu_online(smp_processor_id(), true);
 
 
 
 
 
 
 683	inc_irq_stat(CPU_RST);
 684	local_irq_enable();
 685	cpu_startup_entry(CPUHP_ONLINE);
 686}
 687
 688/* Upping and downing of CPUs */
 689int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 690{
 691	struct pcpu *pcpu;
 692	int rc;
 693
 694	pcpu = pcpu_devices + cpu;
 695	if (pcpu->state != CPU_STATE_CONFIGURED)
 696		return -EIO;
 697	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
 698	    SIGP_CC_ORDER_CODE_ACCEPTED)
 699		return -EIO;
 700
 701	rc = pcpu_alloc_lowcore(pcpu, cpu);
 702	if (rc)
 703		return rc;
 
 
 
 
 
 704	pcpu_prepare_secondary(pcpu, cpu);
 705	pcpu_attach_task(pcpu, tidle);
 706	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
 
 707	while (!cpu_online(cpu))
 708		cpu_relax();
 
 709	return 0;
 710}
 711
 712static unsigned int setup_possible_cpus __initdata;
 713
 714static int __init _setup_possible_cpus(char *s)
 715{
 716	get_option(&s, &setup_possible_cpus);
 717	return 0;
 718}
 719early_param("possible_cpus", _setup_possible_cpus);
 720
 721#ifdef CONFIG_HOTPLUG_CPU
 722
 723int __cpu_disable(void)
 724{
 725	unsigned long cregs[16];
 
 726
 727	/* Handle possible pending IPIs */
 728	smp_handle_ext_call();
 729	set_cpu_online(smp_processor_id(), false);
 
 
 
 730	/* Disable pseudo page faults on this cpu. */
 731	pfault_fini();
 732	/* Disable interrupt sources via control register. */
 733	__ctl_store(cregs, 0, 15);
 734	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
 735	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
 736	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
 737	__ctl_load(cregs, 0, 15);
 
 738	return 0;
 739}
 740
 741void __cpu_die(unsigned int cpu)
 742{
 743	struct pcpu *pcpu;
 744
 745	/* Wait until target cpu is down */
 746	pcpu = pcpu_devices + cpu;
 747	while (!pcpu_stopped(pcpu))
 748		cpu_relax();
 749	pcpu_free_lowcore(pcpu);
 750	atomic_dec(&init_mm.context.attach_count);
 751	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
 752	if (MACHINE_HAS_TLB_LC)
 753		cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
 754}
 755
 756void __noreturn cpu_die(void)
 757{
 758	idle_task_exit();
 759	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
 760	for (;;) ;
 761}
 762
 763#endif /* CONFIG_HOTPLUG_CPU */
 764
 765void __init smp_fill_possible_mask(void)
 766{
 767	unsigned int possible, sclp, cpu;
 768
 769	sclp = sclp_get_max_cpu() ?: nr_cpu_ids;
 
 
 770	possible = setup_possible_cpus ?: nr_cpu_ids;
 771	possible = min(possible, sclp);
 772	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
 773		set_cpu_possible(cpu, true);
 774}
 775
 776void __init smp_prepare_cpus(unsigned int max_cpus)
 777{
 778	/* request the 0x1201 emergency signal external interrupt */
 779	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
 780		panic("Couldn't request external interrupt 0x1201");
 781	/* request the 0x1202 external call external interrupt */
 782	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
 783		panic("Couldn't request external interrupt 0x1202");
 784	smp_detect_cpus();
 785}
 786
 787void __init smp_prepare_boot_cpu(void)
 788{
 789	struct pcpu *pcpu = pcpu_devices;
 790
 791	boot_cpu_address = stap();
 792	pcpu->state = CPU_STATE_CONFIGURED;
 793	pcpu->address = boot_cpu_address;
 794	pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
 795	pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE
 796		+ STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
 797	pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE
 798		+ STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
 799	S390_lowcore.percpu_offset = __per_cpu_offset[0];
 800	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
 801	set_cpu_present(0, true);
 802	set_cpu_online(0, true);
 803}
 804
 805void __init smp_cpus_done(unsigned int max_cpus)
 806{
 807}
 808
 809void __init smp_setup_processor_id(void)
 810{
 
 811	S390_lowcore.cpu_nr = 0;
 
 
 812}
 813
 814/*
 815 * the frequency of the profiling timer can be changed
 816 * by writing a multiplier value into /proc/profile.
 817 *
 818 * usually you want to run this on all CPUs ;)
 819 */
 820int setup_profiling_timer(unsigned int multiplier)
 821{
 822	return 0;
 823}
 824
 825#ifdef CONFIG_HOTPLUG_CPU
 826static ssize_t cpu_configure_show(struct device *dev,
 827				  struct device_attribute *attr, char *buf)
 828{
 829	ssize_t count;
 830
 831	mutex_lock(&smp_cpu_state_mutex);
 832	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
 833	mutex_unlock(&smp_cpu_state_mutex);
 834	return count;
 835}
 836
 837static ssize_t cpu_configure_store(struct device *dev,
 838				   struct device_attribute *attr,
 839				   const char *buf, size_t count)
 840{
 841	struct pcpu *pcpu;
 842	int cpu, val, rc;
 843	char delim;
 844
 845	if (sscanf(buf, "%d %c", &val, &delim) != 1)
 846		return -EINVAL;
 847	if (val != 0 && val != 1)
 848		return -EINVAL;
 849	get_online_cpus();
 850	mutex_lock(&smp_cpu_state_mutex);
 851	rc = -EBUSY;
 852	/* disallow configuration changes of online cpus and cpu 0 */
 853	cpu = dev->id;
 854	if (cpu_online(cpu) || cpu == 0)
 855		goto out;
 
 
 856	pcpu = pcpu_devices + cpu;
 857	rc = 0;
 858	switch (val) {
 859	case 0:
 860		if (pcpu->state != CPU_STATE_CONFIGURED)
 861			break;
 862		rc = sclp_cpu_deconfigure(pcpu->address);
 863		if (rc)
 864			break;
 865		pcpu->state = CPU_STATE_STANDBY;
 866		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 
 
 
 
 
 867		topology_expect_change();
 868		break;
 869	case 1:
 870		if (pcpu->state != CPU_STATE_STANDBY)
 871			break;
 872		rc = sclp_cpu_configure(pcpu->address);
 873		if (rc)
 874			break;
 875		pcpu->state = CPU_STATE_CONFIGURED;
 876		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
 
 
 
 
 
 877		topology_expect_change();
 878		break;
 879	default:
 880		break;
 881	}
 882out:
 883	mutex_unlock(&smp_cpu_state_mutex);
 884	put_online_cpus();
 885	return rc ? rc : count;
 886}
 887static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
 888#endif /* CONFIG_HOTPLUG_CPU */
 889
 890static ssize_t show_cpu_address(struct device *dev,
 891				struct device_attribute *attr, char *buf)
 892{
 893	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
 894}
 895static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
 896
 897static struct attribute *cpu_common_attrs[] = {
 898#ifdef CONFIG_HOTPLUG_CPU
 899	&dev_attr_configure.attr,
 900#endif
 901	&dev_attr_address.attr,
 902	NULL,
 903};
 904
 905static struct attribute_group cpu_common_attr_group = {
 906	.attrs = cpu_common_attrs,
 907};
 908
 909static ssize_t show_idle_count(struct device *dev,
 910				struct device_attribute *attr, char *buf)
 911{
 912	struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
 913	unsigned long long idle_count;
 914	unsigned int sequence;
 915
 916	do {
 917		sequence = ACCESS_ONCE(idle->sequence);
 918		idle_count = ACCESS_ONCE(idle->idle_count);
 919		if (ACCESS_ONCE(idle->clock_idle_enter))
 920			idle_count++;
 921	} while ((sequence & 1) || (ACCESS_ONCE(idle->sequence) != sequence));
 922	return sprintf(buf, "%llu\n", idle_count);
 923}
 924static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
 925
 926static ssize_t show_idle_time(struct device *dev,
 927				struct device_attribute *attr, char *buf)
 928{
 929	struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
 930	unsigned long long now, idle_time, idle_enter, idle_exit;
 931	unsigned int sequence;
 932
 933	do {
 934		now = get_tod_clock();
 935		sequence = ACCESS_ONCE(idle->sequence);
 936		idle_time = ACCESS_ONCE(idle->idle_time);
 937		idle_enter = ACCESS_ONCE(idle->clock_idle_enter);
 938		idle_exit = ACCESS_ONCE(idle->clock_idle_exit);
 939	} while ((sequence & 1) || (ACCESS_ONCE(idle->sequence) != sequence));
 940	idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
 941	return sprintf(buf, "%llu\n", idle_time >> 12);
 942}
 943static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
 944
 945static struct attribute *cpu_online_attrs[] = {
 946	&dev_attr_idle_count.attr,
 947	&dev_attr_idle_time_us.attr,
 948	NULL,
 949};
 950
 951static struct attribute_group cpu_online_attr_group = {
 952	.attrs = cpu_online_attrs,
 953};
 954
 955static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
 956			  void *hcpu)
 957{
 958	unsigned int cpu = (unsigned int)(long)hcpu;
 959	struct cpu *c = pcpu_devices[cpu].cpu;
 960	struct device *s = &c->dev;
 961	int err = 0;
 962
 963	switch (action & ~CPU_TASKS_FROZEN) {
 964	case CPU_ONLINE:
 965		err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
 966		break;
 967	case CPU_DEAD:
 968		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
 969		break;
 970	}
 971	return notifier_from_errno(err);
 972}
 973
 974static int smp_add_present_cpu(int cpu)
 975{
 976	struct device *s;
 977	struct cpu *c;
 978	int rc;
 979
 980	c = kzalloc(sizeof(*c), GFP_KERNEL);
 981	if (!c)
 982		return -ENOMEM;
 983	pcpu_devices[cpu].cpu = c;
 984	s = &c->dev;
 985	c->hotpluggable = 1;
 986	rc = register_cpu(c, cpu);
 987	if (rc)
 988		goto out;
 989	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
 990	if (rc)
 991		goto out_cpu;
 992	if (cpu_online(cpu)) {
 993		rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
 994		if (rc)
 995			goto out_online;
 996	}
 997	rc = topology_cpu_init(c);
 998	if (rc)
 999		goto out_topology;
1000	return 0;
1001
1002out_topology:
1003	if (cpu_online(cpu))
1004		sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1005out_online:
1006	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1007out_cpu:
1008#ifdef CONFIG_HOTPLUG_CPU
1009	unregister_cpu(c);
1010#endif
1011out:
1012	return rc;
1013}
1014
1015#ifdef CONFIG_HOTPLUG_CPU
1016
1017int __ref smp_rescan_cpus(void)
1018{
1019	struct sclp_cpu_info *info;
1020	int nr;
1021
1022	info = smp_get_cpu_info();
1023	if (!info)
1024		return -ENOMEM;
1025	get_online_cpus();
1026	mutex_lock(&smp_cpu_state_mutex);
1027	nr = __smp_rescan_cpus(info, 1);
1028	mutex_unlock(&smp_cpu_state_mutex);
1029	put_online_cpus();
1030	kfree(info);
1031	if (nr)
1032		topology_schedule_update();
1033	return 0;
1034}
1035
1036static ssize_t __ref rescan_store(struct device *dev,
1037				  struct device_attribute *attr,
1038				  const char *buf,
1039				  size_t count)
1040{
1041	int rc;
1042
 
 
 
1043	rc = smp_rescan_cpus();
 
1044	return rc ? rc : count;
1045}
1046static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1047#endif /* CONFIG_HOTPLUG_CPU */
1048
1049static int __init s390_smp_init(void)
1050{
 
1051	int cpu, rc = 0;
1052
1053#ifdef CONFIG_HOTPLUG_CPU
1054	rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1055	if (rc)
1056		return rc;
1057#endif
1058	cpu_notifier_register_begin();
 
 
1059	for_each_present_cpu(cpu) {
1060		rc = smp_add_present_cpu(cpu);
1061		if (rc)
1062			goto out;
1063	}
1064
1065	__hotcpu_notifier(smp_cpu_notify, 0);
1066
 
1067out:
1068	cpu_notifier_register_done();
1069	return rc;
1070}
1071subsys_initcall(s390_smp_init);