Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SMP related functions
4 *
5 * Copyright IBM Corp. 1999, 2012
6 * Author(s): Denis Joseph Barrow,
7 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
14 * the translation of logical to physical cpu ids. All new code that
15 * operates on physical cpu numbers needs to go into smp.c.
16 */
17
18#define KMSG_COMPONENT "cpu"
19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21#include <linux/workqueue.h>
22#include <linux/memblock.h>
23#include <linux/export.h>
24#include <linux/init.h>
25#include <linux/mm.h>
26#include <linux/err.h>
27#include <linux/spinlock.h>
28#include <linux/kernel_stat.h>
29#include <linux/delay.h>
30#include <linux/interrupt.h>
31#include <linux/irqflags.h>
32#include <linux/irq_work.h>
33#include <linux/cpu.h>
34#include <linux/slab.h>
35#include <linux/sched/hotplug.h>
36#include <linux/sched/task_stack.h>
37#include <linux/crash_dump.h>
38#include <linux/kprobes.h>
39#include <asm/asm-offsets.h>
40#include <asm/ctlreg.h>
41#include <asm/pfault.h>
42#include <asm/diag.h>
43#include <asm/switch_to.h>
44#include <asm/facility.h>
45#include <asm/ipl.h>
46#include <asm/setup.h>
47#include <asm/irq.h>
48#include <asm/tlbflush.h>
49#include <asm/vtimer.h>
50#include <asm/abs_lowcore.h>
51#include <asm/sclp.h>
52#include <asm/debug.h>
53#include <asm/os_info.h>
54#include <asm/sigp.h>
55#include <asm/idle.h>
56#include <asm/nmi.h>
57#include <asm/stacktrace.h>
58#include <asm/topology.h>
59#include <asm/vdso.h>
60#include <asm/maccess.h>
61#include "entry.h"
62
63enum {
64 ec_schedule = 0,
65 ec_call_function_single,
66 ec_stop_cpu,
67 ec_mcck_pending,
68 ec_irq_work,
69};
70
71enum {
72 CPU_STATE_STANDBY,
73 CPU_STATE_CONFIGURED,
74};
75
76static DEFINE_PER_CPU(struct cpu *, cpu_device);
77
78struct pcpu {
79 unsigned long ec_mask; /* bit mask for ec_xxx functions */
80 unsigned long ec_clk; /* sigp timestamp for ec_xxx */
81 signed char state; /* physical cpu state */
82 signed char polarization; /* physical polarization */
83 u16 address; /* physical cpu address */
84};
85
86static u8 boot_core_type;
87static struct pcpu pcpu_devices[NR_CPUS];
88
89unsigned int smp_cpu_mt_shift;
90EXPORT_SYMBOL(smp_cpu_mt_shift);
91
92unsigned int smp_cpu_mtid;
93EXPORT_SYMBOL(smp_cpu_mtid);
94
95#ifdef CONFIG_CRASH_DUMP
96__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
97#endif
98
99static unsigned int smp_max_threads __initdata = -1U;
100cpumask_t cpu_setup_mask;
101
102static int __init early_nosmt(char *s)
103{
104 smp_max_threads = 1;
105 return 0;
106}
107early_param("nosmt", early_nosmt);
108
109static int __init early_smt(char *s)
110{
111 get_option(&s, &smp_max_threads);
112 return 0;
113}
114early_param("smt", early_smt);
115
116/*
117 * The smp_cpu_state_mutex must be held when changing the state or polarization
118 * member of a pcpu data structure within the pcpu_devices array.
119 */
120DEFINE_MUTEX(smp_cpu_state_mutex);
121
122/*
123 * Signal processor helper functions.
124 */
125static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
126{
127 int cc;
128
129 while (1) {
130 cc = __pcpu_sigp(addr, order, parm, NULL);
131 if (cc != SIGP_CC_BUSY)
132 return cc;
133 cpu_relax();
134 }
135}
136
137static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
138{
139 int cc, retry;
140
141 for (retry = 0; ; retry++) {
142 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
143 if (cc != SIGP_CC_BUSY)
144 break;
145 if (retry >= 3)
146 udelay(10);
147 }
148 return cc;
149}
150
151static inline int pcpu_stopped(struct pcpu *pcpu)
152{
153 u32 status;
154
155 if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
156 0, &status) != SIGP_CC_STATUS_STORED)
157 return 0;
158 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
159}
160
161static inline int pcpu_running(struct pcpu *pcpu)
162{
163 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
164 0, NULL) != SIGP_CC_STATUS_STORED)
165 return 1;
166 /* Status stored condition code is equivalent to cpu not running. */
167 return 0;
168}
169
170/*
171 * Find struct pcpu by cpu address.
172 */
173static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
174{
175 int cpu;
176
177 for_each_cpu(cpu, mask)
178 if (pcpu_devices[cpu].address == address)
179 return pcpu_devices + cpu;
180 return NULL;
181}
182
183static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
184{
185 int order;
186
187 if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
188 return;
189 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
190 pcpu->ec_clk = get_tod_clock_fast();
191 pcpu_sigp_retry(pcpu, order, 0);
192}
193
194static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
195{
196 unsigned long async_stack, nodat_stack, mcck_stack;
197 struct lowcore *lc;
198
199 lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
200 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
201 async_stack = stack_alloc();
202 mcck_stack = stack_alloc();
203 if (!lc || !nodat_stack || !async_stack || !mcck_stack)
204 goto out;
205 memcpy(lc, &S390_lowcore, 512);
206 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
207 lc->async_stack = async_stack + STACK_INIT_OFFSET;
208 lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
209 lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
210 lc->cpu_nr = cpu;
211 lc->spinlock_lockval = arch_spin_lockval(cpu);
212 lc->spinlock_index = 0;
213 lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
214 lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
215 lc->preempt_count = PREEMPT_DISABLED;
216 if (nmi_alloc_mcesa(&lc->mcesad))
217 goto out;
218 if (abs_lowcore_map(cpu, lc, true))
219 goto out_mcesa;
220 lowcore_ptr[cpu] = lc;
221 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
222 return 0;
223
224out_mcesa:
225 nmi_free_mcesa(&lc->mcesad);
226out:
227 stack_free(mcck_stack);
228 stack_free(async_stack);
229 free_pages(nodat_stack, THREAD_SIZE_ORDER);
230 free_pages((unsigned long) lc, LC_ORDER);
231 return -ENOMEM;
232}
233
234static void pcpu_free_lowcore(struct pcpu *pcpu)
235{
236 unsigned long async_stack, nodat_stack, mcck_stack;
237 struct lowcore *lc;
238 int cpu;
239
240 cpu = pcpu - pcpu_devices;
241 lc = lowcore_ptr[cpu];
242 nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
243 async_stack = lc->async_stack - STACK_INIT_OFFSET;
244 mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
245 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
246 lowcore_ptr[cpu] = NULL;
247 abs_lowcore_unmap(cpu);
248 nmi_free_mcesa(&lc->mcesad);
249 stack_free(async_stack);
250 stack_free(mcck_stack);
251 free_pages(nodat_stack, THREAD_SIZE_ORDER);
252 free_pages((unsigned long) lc, LC_ORDER);
253}
254
255static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
256{
257 struct lowcore *lc, *abs_lc;
258
259 lc = lowcore_ptr[cpu];
260 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
261 cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
262 lc->cpu_nr = cpu;
263 lc->restart_flags = RESTART_FLAG_CTLREGS;
264 lc->spinlock_lockval = arch_spin_lockval(cpu);
265 lc->spinlock_index = 0;
266 lc->percpu_offset = __per_cpu_offset[cpu];
267 lc->kernel_asce = S390_lowcore.kernel_asce;
268 lc->user_asce = s390_invalid_asce;
269 lc->machine_flags = S390_lowcore.machine_flags;
270 lc->user_timer = lc->system_timer =
271 lc->steal_timer = lc->avg_steal_timer = 0;
272 abs_lc = get_abs_lowcore();
273 memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
274 put_abs_lowcore(abs_lc);
275 lc->cregs_save_area[1] = lc->kernel_asce;
276 lc->cregs_save_area[7] = lc->user_asce;
277 save_access_regs((unsigned int *) lc->access_regs_save_area);
278 arch_spin_lock_setup(cpu);
279}
280
281static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
282{
283 struct lowcore *lc;
284 int cpu;
285
286 cpu = pcpu - pcpu_devices;
287 lc = lowcore_ptr[cpu];
288 lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
289 lc->current_task = (unsigned long)tsk;
290 lc->lpp = LPP_MAGIC;
291 lc->current_pid = tsk->pid;
292 lc->user_timer = tsk->thread.user_timer;
293 lc->guest_timer = tsk->thread.guest_timer;
294 lc->system_timer = tsk->thread.system_timer;
295 lc->hardirq_timer = tsk->thread.hardirq_timer;
296 lc->softirq_timer = tsk->thread.softirq_timer;
297 lc->steal_timer = 0;
298}
299
300static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
301{
302 struct lowcore *lc;
303 int cpu;
304
305 cpu = pcpu - pcpu_devices;
306 lc = lowcore_ptr[cpu];
307 lc->restart_stack = lc->kernel_stack;
308 lc->restart_fn = (unsigned long) func;
309 lc->restart_data = (unsigned long) data;
310 lc->restart_source = -1U;
311 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
312}
313
314typedef void (pcpu_delegate_fn)(void *);
315
316/*
317 * Call function via PSW restart on pcpu and stop the current cpu.
318 */
319static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
320{
321 func(data); /* should not return */
322}
323
324static void pcpu_delegate(struct pcpu *pcpu,
325 pcpu_delegate_fn *func,
326 void *data, unsigned long stack)
327{
328 struct lowcore *lc, *abs_lc;
329 unsigned int source_cpu;
330
331 lc = lowcore_ptr[pcpu - pcpu_devices];
332 source_cpu = stap();
333
334 if (pcpu->address == source_cpu) {
335 call_on_stack(2, stack, void, __pcpu_delegate,
336 pcpu_delegate_fn *, func, void *, data);
337 }
338 /* Stop target cpu (if func returns this stops the current cpu). */
339 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
340 pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
341 /* Restart func on the target cpu and stop the current cpu. */
342 if (lc) {
343 lc->restart_stack = stack;
344 lc->restart_fn = (unsigned long)func;
345 lc->restart_data = (unsigned long)data;
346 lc->restart_source = source_cpu;
347 } else {
348 abs_lc = get_abs_lowcore();
349 abs_lc->restart_stack = stack;
350 abs_lc->restart_fn = (unsigned long)func;
351 abs_lc->restart_data = (unsigned long)data;
352 abs_lc->restart_source = source_cpu;
353 put_abs_lowcore(abs_lc);
354 }
355 asm volatile(
356 "0: sigp 0,%0,%2 # sigp restart to target cpu\n"
357 " brc 2,0b # busy, try again\n"
358 "1: sigp 0,%1,%3 # sigp stop to current cpu\n"
359 " brc 2,1b # busy, try again\n"
360 : : "d" (pcpu->address), "d" (source_cpu),
361 "K" (SIGP_RESTART), "K" (SIGP_STOP)
362 : "0", "1", "cc");
363 for (;;) ;
364}
365
366/*
367 * Enable additional logical cpus for multi-threading.
368 */
369static int pcpu_set_smt(unsigned int mtid)
370{
371 int cc;
372
373 if (smp_cpu_mtid == mtid)
374 return 0;
375 cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
376 if (cc == 0) {
377 smp_cpu_mtid = mtid;
378 smp_cpu_mt_shift = 0;
379 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
380 smp_cpu_mt_shift++;
381 pcpu_devices[0].address = stap();
382 }
383 return cc;
384}
385
386/*
387 * Call function on an online CPU.
388 */
389void smp_call_online_cpu(void (*func)(void *), void *data)
390{
391 struct pcpu *pcpu;
392
393 /* Use the current cpu if it is online. */
394 pcpu = pcpu_find_address(cpu_online_mask, stap());
395 if (!pcpu)
396 /* Use the first online cpu. */
397 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
398 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
399}
400
401/*
402 * Call function on the ipl CPU.
403 */
404void smp_call_ipl_cpu(void (*func)(void *), void *data)
405{
406 struct lowcore *lc = lowcore_ptr[0];
407
408 if (pcpu_devices[0].address == stap())
409 lc = &S390_lowcore;
410
411 pcpu_delegate(&pcpu_devices[0], func, data,
412 lc->nodat_stack);
413}
414
415int smp_find_processor_id(u16 address)
416{
417 int cpu;
418
419 for_each_present_cpu(cpu)
420 if (pcpu_devices[cpu].address == address)
421 return cpu;
422 return -1;
423}
424
425void schedule_mcck_handler(void)
426{
427 pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
428}
429
430bool notrace arch_vcpu_is_preempted(int cpu)
431{
432 if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
433 return false;
434 if (pcpu_running(pcpu_devices + cpu))
435 return false;
436 return true;
437}
438EXPORT_SYMBOL(arch_vcpu_is_preempted);
439
440void notrace smp_yield_cpu(int cpu)
441{
442 if (!MACHINE_HAS_DIAG9C)
443 return;
444 diag_stat_inc_norecursion(DIAG_STAT_X09C);
445 asm volatile("diag %0,0,0x9c"
446 : : "d" (pcpu_devices[cpu].address));
447}
448EXPORT_SYMBOL_GPL(smp_yield_cpu);
449
450/*
451 * Send cpus emergency shutdown signal. This gives the cpus the
452 * opportunity to complete outstanding interrupts.
453 */
454void notrace smp_emergency_stop(void)
455{
456 static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
457 static cpumask_t cpumask;
458 u64 end;
459 int cpu;
460
461 arch_spin_lock(&lock);
462 cpumask_copy(&cpumask, cpu_online_mask);
463 cpumask_clear_cpu(smp_processor_id(), &cpumask);
464
465 end = get_tod_clock() + (1000000UL << 12);
466 for_each_cpu(cpu, &cpumask) {
467 struct pcpu *pcpu = pcpu_devices + cpu;
468 set_bit(ec_stop_cpu, &pcpu->ec_mask);
469 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
470 0, NULL) == SIGP_CC_BUSY &&
471 get_tod_clock() < end)
472 cpu_relax();
473 }
474 while (get_tod_clock() < end) {
475 for_each_cpu(cpu, &cpumask)
476 if (pcpu_stopped(pcpu_devices + cpu))
477 cpumask_clear_cpu(cpu, &cpumask);
478 if (cpumask_empty(&cpumask))
479 break;
480 cpu_relax();
481 }
482 arch_spin_unlock(&lock);
483}
484NOKPROBE_SYMBOL(smp_emergency_stop);
485
486/*
487 * Stop all cpus but the current one.
488 */
489void smp_send_stop(void)
490{
491 int cpu;
492
493 /* Disable all interrupts/machine checks */
494 __load_psw_mask(PSW_KERNEL_BITS);
495 trace_hardirqs_off();
496
497 debug_set_critical();
498
499 if (oops_in_progress)
500 smp_emergency_stop();
501
502 /* stop all processors */
503 for_each_online_cpu(cpu) {
504 if (cpu == smp_processor_id())
505 continue;
506 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
507 while (!pcpu_stopped(pcpu_devices + cpu))
508 cpu_relax();
509 }
510}
511
512/*
513 * This is the main routine where commands issued by other
514 * cpus are handled.
515 */
516static void smp_handle_ext_call(void)
517{
518 unsigned long bits;
519
520 /* handle bit signal external calls */
521 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
522 if (test_bit(ec_stop_cpu, &bits))
523 smp_stop_cpu();
524 if (test_bit(ec_schedule, &bits))
525 scheduler_ipi();
526 if (test_bit(ec_call_function_single, &bits))
527 generic_smp_call_function_single_interrupt();
528 if (test_bit(ec_mcck_pending, &bits))
529 s390_handle_mcck();
530 if (test_bit(ec_irq_work, &bits))
531 irq_work_run();
532}
533
534static void do_ext_call_interrupt(struct ext_code ext_code,
535 unsigned int param32, unsigned long param64)
536{
537 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
538 smp_handle_ext_call();
539}
540
541void arch_send_call_function_ipi_mask(const struct cpumask *mask)
542{
543 int cpu;
544
545 for_each_cpu(cpu, mask)
546 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
547}
548
549void arch_send_call_function_single_ipi(int cpu)
550{
551 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
552}
553
554/*
555 * this function sends a 'reschedule' IPI to another CPU.
556 * it goes straight through and wastes no time serializing
557 * anything. Worst case is that we lose a reschedule ...
558 */
559void arch_smp_send_reschedule(int cpu)
560{
561 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
562}
563
564#ifdef CONFIG_IRQ_WORK
565void arch_irq_work_raise(void)
566{
567 pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
568}
569#endif
570
571#ifdef CONFIG_CRASH_DUMP
572
573int smp_store_status(int cpu)
574{
575 struct lowcore *lc;
576 struct pcpu *pcpu;
577 unsigned long pa;
578
579 pcpu = pcpu_devices + cpu;
580 lc = lowcore_ptr[cpu];
581 pa = __pa(&lc->floating_pt_save_area);
582 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
583 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
584 return -EIO;
585 if (!cpu_has_vx() && !MACHINE_HAS_GS)
586 return 0;
587 pa = lc->mcesad & MCESA_ORIGIN_MASK;
588 if (MACHINE_HAS_GS)
589 pa |= lc->mcesad & MCESA_LC_MASK;
590 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
591 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
592 return -EIO;
593 return 0;
594}
595
596/*
597 * Collect CPU state of the previous, crashed system.
598 * There are four cases:
599 * 1) standard zfcp/nvme dump
600 * condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
601 * The state for all CPUs except the boot CPU needs to be collected
602 * with sigp stop-and-store-status. The boot CPU state is located in
603 * the absolute lowcore of the memory stored in the HSA. The zcore code
604 * will copy the boot CPU state from the HSA.
605 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
606 * condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
607 * The state for all CPUs except the boot CPU needs to be collected
608 * with sigp stop-and-store-status. The firmware or the boot-loader
609 * stored the registers of the boot CPU in the absolute lowcore in the
610 * memory of the old system.
611 * 3) kdump and the old kernel did not store the CPU state,
612 * or stand-alone kdump for DASD
613 * condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
614 * The state for all CPUs except the boot CPU needs to be collected
615 * with sigp stop-and-store-status. The kexec code or the boot-loader
616 * stored the registers of the boot CPU in the memory of the old system.
617 * 4) kdump and the old kernel stored the CPU state
618 * condition: OLDMEM_BASE != NULL && is_kdump_kernel()
619 * This case does not exist for s390 anymore, setup_arch explicitly
620 * deactivates the elfcorehdr= kernel parameter
621 */
622static bool dump_available(void)
623{
624 return oldmem_data.start || is_ipl_type_dump();
625}
626
627void __init smp_save_dump_ipl_cpu(void)
628{
629 struct save_area *sa;
630 void *regs;
631
632 if (!dump_available())
633 return;
634 sa = save_area_alloc(true);
635 regs = memblock_alloc(512, 8);
636 if (!sa || !regs)
637 panic("could not allocate memory for boot CPU save area\n");
638 copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
639 save_area_add_regs(sa, regs);
640 memblock_free(regs, 512);
641 if (cpu_has_vx())
642 save_area_add_vxrs(sa, boot_cpu_vector_save_area);
643}
644
645void __init smp_save_dump_secondary_cpus(void)
646{
647 int addr, boot_cpu_addr, max_cpu_addr;
648 struct save_area *sa;
649 void *page;
650
651 if (!dump_available())
652 return;
653 /* Allocate a page as dumping area for the store status sigps */
654 page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
655 if (!page)
656 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
657 PAGE_SIZE, 1UL << 31);
658
659 /* Set multi-threading state to the previous system. */
660 pcpu_set_smt(sclp.mtid_prev);
661 boot_cpu_addr = stap();
662 max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
663 for (addr = 0; addr <= max_cpu_addr; addr++) {
664 if (addr == boot_cpu_addr)
665 continue;
666 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
667 SIGP_CC_NOT_OPERATIONAL)
668 continue;
669 sa = save_area_alloc(false);
670 if (!sa)
671 panic("could not allocate memory for save area\n");
672 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
673 save_area_add_regs(sa, page);
674 if (cpu_has_vx()) {
675 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
676 save_area_add_vxrs(sa, page);
677 }
678 }
679 memblock_free(page, PAGE_SIZE);
680 diag_amode31_ops.diag308_reset();
681 pcpu_set_smt(0);
682}
683#endif /* CONFIG_CRASH_DUMP */
684
685void smp_cpu_set_polarization(int cpu, int val)
686{
687 pcpu_devices[cpu].polarization = val;
688}
689
690int smp_cpu_get_polarization(int cpu)
691{
692 return pcpu_devices[cpu].polarization;
693}
694
695int smp_cpu_get_cpu_address(int cpu)
696{
697 return pcpu_devices[cpu].address;
698}
699
700static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
701{
702 static int use_sigp_detection;
703 int address;
704
705 if (use_sigp_detection || sclp_get_core_info(info, early)) {
706 use_sigp_detection = 1;
707 for (address = 0;
708 address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
709 address += (1U << smp_cpu_mt_shift)) {
710 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
711 SIGP_CC_NOT_OPERATIONAL)
712 continue;
713 info->core[info->configured].core_id =
714 address >> smp_cpu_mt_shift;
715 info->configured++;
716 }
717 info->combined = info->configured;
718 }
719}
720
721static int smp_add_present_cpu(int cpu);
722
723static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
724 bool configured, bool early)
725{
726 struct pcpu *pcpu;
727 int cpu, nr, i;
728 u16 address;
729
730 nr = 0;
731 if (sclp.has_core_type && core->type != boot_core_type)
732 return nr;
733 cpu = cpumask_first(avail);
734 address = core->core_id << smp_cpu_mt_shift;
735 for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
736 if (pcpu_find_address(cpu_present_mask, address + i))
737 continue;
738 pcpu = pcpu_devices + cpu;
739 pcpu->address = address + i;
740 if (configured)
741 pcpu->state = CPU_STATE_CONFIGURED;
742 else
743 pcpu->state = CPU_STATE_STANDBY;
744 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
745 set_cpu_present(cpu, true);
746 if (!early && smp_add_present_cpu(cpu) != 0)
747 set_cpu_present(cpu, false);
748 else
749 nr++;
750 cpumask_clear_cpu(cpu, avail);
751 cpu = cpumask_next(cpu, avail);
752 }
753 return nr;
754}
755
756static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
757{
758 struct sclp_core_entry *core;
759 static cpumask_t avail;
760 bool configured;
761 u16 core_id;
762 int nr, i;
763
764 cpus_read_lock();
765 mutex_lock(&smp_cpu_state_mutex);
766 nr = 0;
767 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
768 /*
769 * Add IPL core first (which got logical CPU number 0) to make sure
770 * that all SMT threads get subsequent logical CPU numbers.
771 */
772 if (early) {
773 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
774 for (i = 0; i < info->configured; i++) {
775 core = &info->core[i];
776 if (core->core_id == core_id) {
777 nr += smp_add_core(core, &avail, true, early);
778 break;
779 }
780 }
781 }
782 for (i = 0; i < info->combined; i++) {
783 configured = i < info->configured;
784 nr += smp_add_core(&info->core[i], &avail, configured, early);
785 }
786 mutex_unlock(&smp_cpu_state_mutex);
787 cpus_read_unlock();
788 return nr;
789}
790
791void __init smp_detect_cpus(void)
792{
793 unsigned int cpu, mtid, c_cpus, s_cpus;
794 struct sclp_core_info *info;
795 u16 address;
796
797 /* Get CPU information */
798 info = memblock_alloc(sizeof(*info), 8);
799 if (!info)
800 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
801 __func__, sizeof(*info), 8);
802 smp_get_core_info(info, 1);
803 /* Find boot CPU type */
804 if (sclp.has_core_type) {
805 address = stap();
806 for (cpu = 0; cpu < info->combined; cpu++)
807 if (info->core[cpu].core_id == address) {
808 /* The boot cpu dictates the cpu type. */
809 boot_core_type = info->core[cpu].type;
810 break;
811 }
812 if (cpu >= info->combined)
813 panic("Could not find boot CPU type");
814 }
815
816 /* Set multi-threading state for the current system */
817 mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
818 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
819 pcpu_set_smt(mtid);
820
821 /* Print number of CPUs */
822 c_cpus = s_cpus = 0;
823 for (cpu = 0; cpu < info->combined; cpu++) {
824 if (sclp.has_core_type &&
825 info->core[cpu].type != boot_core_type)
826 continue;
827 if (cpu < info->configured)
828 c_cpus += smp_cpu_mtid + 1;
829 else
830 s_cpus += smp_cpu_mtid + 1;
831 }
832 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
833
834 /* Add CPUs present at boot */
835 __smp_rescan_cpus(info, true);
836 memblock_free(info, sizeof(*info));
837}
838
839/*
840 * Activate a secondary processor.
841 */
842static void smp_start_secondary(void *cpuvoid)
843{
844 int cpu = raw_smp_processor_id();
845
846 S390_lowcore.last_update_clock = get_tod_clock();
847 S390_lowcore.restart_stack = (unsigned long)restart_stack;
848 S390_lowcore.restart_fn = (unsigned long)do_restart;
849 S390_lowcore.restart_data = 0;
850 S390_lowcore.restart_source = -1U;
851 S390_lowcore.restart_flags = 0;
852 restore_access_regs(S390_lowcore.access_regs_save_area);
853 cpu_init();
854 rcutree_report_cpu_starting(cpu);
855 init_cpu_timer();
856 vtime_init();
857 vdso_getcpu_init();
858 pfault_init();
859 cpumask_set_cpu(cpu, &cpu_setup_mask);
860 update_cpu_masks();
861 notify_cpu_starting(cpu);
862 if (topology_cpu_dedicated(cpu))
863 set_cpu_flag(CIF_DEDICATED_CPU);
864 else
865 clear_cpu_flag(CIF_DEDICATED_CPU);
866 set_cpu_online(cpu, true);
867 inc_irq_stat(CPU_RST);
868 local_irq_enable();
869 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
870}
871
872/* Upping and downing of CPUs */
873int __cpu_up(unsigned int cpu, struct task_struct *tidle)
874{
875 struct pcpu *pcpu = pcpu_devices + cpu;
876 int rc;
877
878 if (pcpu->state != CPU_STATE_CONFIGURED)
879 return -EIO;
880 if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
881 SIGP_CC_ORDER_CODE_ACCEPTED)
882 return -EIO;
883
884 rc = pcpu_alloc_lowcore(pcpu, cpu);
885 if (rc)
886 return rc;
887 /*
888 * Make sure global control register contents do not change
889 * until new CPU has initialized control registers.
890 */
891 system_ctlreg_lock();
892 pcpu_prepare_secondary(pcpu, cpu);
893 pcpu_attach_task(pcpu, tidle);
894 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
895 /* Wait until cpu puts itself in the online & active maps */
896 while (!cpu_online(cpu))
897 cpu_relax();
898 system_ctlreg_unlock();
899 return 0;
900}
901
902static unsigned int setup_possible_cpus __initdata;
903
904static int __init _setup_possible_cpus(char *s)
905{
906 get_option(&s, &setup_possible_cpus);
907 return 0;
908}
909early_param("possible_cpus", _setup_possible_cpus);
910
911int __cpu_disable(void)
912{
913 struct ctlreg cregs[16];
914 int cpu;
915
916 /* Handle possible pending IPIs */
917 smp_handle_ext_call();
918 cpu = smp_processor_id();
919 set_cpu_online(cpu, false);
920 cpumask_clear_cpu(cpu, &cpu_setup_mask);
921 update_cpu_masks();
922 /* Disable pseudo page faults on this cpu. */
923 pfault_fini();
924 /* Disable interrupt sources via control register. */
925 __local_ctl_store(0, 15, cregs);
926 cregs[0].val &= ~0x0000ee70UL; /* disable all external interrupts */
927 cregs[6].val &= ~0xff000000UL; /* disable all I/O interrupts */
928 cregs[14].val &= ~0x1f000000UL; /* disable most machine checks */
929 __local_ctl_load(0, 15, cregs);
930 clear_cpu_flag(CIF_NOHZ_DELAY);
931 return 0;
932}
933
934void __cpu_die(unsigned int cpu)
935{
936 struct pcpu *pcpu;
937
938 /* Wait until target cpu is down */
939 pcpu = pcpu_devices + cpu;
940 while (!pcpu_stopped(pcpu))
941 cpu_relax();
942 pcpu_free_lowcore(pcpu);
943 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
944 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
945}
946
947void __noreturn cpu_die(void)
948{
949 idle_task_exit();
950 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
951 for (;;) ;
952}
953
954void __init smp_fill_possible_mask(void)
955{
956 unsigned int possible, sclp_max, cpu;
957
958 sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
959 sclp_max = min(smp_max_threads, sclp_max);
960 sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
961 possible = setup_possible_cpus ?: nr_cpu_ids;
962 possible = min(possible, sclp_max);
963 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
964 set_cpu_possible(cpu, true);
965}
966
967void __init smp_prepare_cpus(unsigned int max_cpus)
968{
969 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
970 panic("Couldn't request external interrupt 0x1201");
971 system_ctl_set_bit(0, 14);
972 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
973 panic("Couldn't request external interrupt 0x1202");
974 system_ctl_set_bit(0, 13);
975}
976
977void __init smp_prepare_boot_cpu(void)
978{
979 struct pcpu *pcpu = pcpu_devices;
980
981 WARN_ON(!cpu_present(0) || !cpu_online(0));
982 pcpu->state = CPU_STATE_CONFIGURED;
983 S390_lowcore.percpu_offset = __per_cpu_offset[0];
984 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
985}
986
987void __init smp_setup_processor_id(void)
988{
989 pcpu_devices[0].address = stap();
990 S390_lowcore.cpu_nr = 0;
991 S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
992 S390_lowcore.spinlock_index = 0;
993}
994
995/*
996 * the frequency of the profiling timer can be changed
997 * by writing a multiplier value into /proc/profile.
998 *
999 * usually you want to run this on all CPUs ;)
1000 */
1001int setup_profiling_timer(unsigned int multiplier)
1002{
1003 return 0;
1004}
1005
1006static ssize_t cpu_configure_show(struct device *dev,
1007 struct device_attribute *attr, char *buf)
1008{
1009 ssize_t count;
1010
1011 mutex_lock(&smp_cpu_state_mutex);
1012 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1013 mutex_unlock(&smp_cpu_state_mutex);
1014 return count;
1015}
1016
1017static ssize_t cpu_configure_store(struct device *dev,
1018 struct device_attribute *attr,
1019 const char *buf, size_t count)
1020{
1021 struct pcpu *pcpu;
1022 int cpu, val, rc, i;
1023 char delim;
1024
1025 if (sscanf(buf, "%d %c", &val, &delim) != 1)
1026 return -EINVAL;
1027 if (val != 0 && val != 1)
1028 return -EINVAL;
1029 cpus_read_lock();
1030 mutex_lock(&smp_cpu_state_mutex);
1031 rc = -EBUSY;
1032 /* disallow configuration changes of online cpus */
1033 cpu = dev->id;
1034 cpu = smp_get_base_cpu(cpu);
1035 for (i = 0; i <= smp_cpu_mtid; i++)
1036 if (cpu_online(cpu + i))
1037 goto out;
1038 pcpu = pcpu_devices + cpu;
1039 rc = 0;
1040 switch (val) {
1041 case 0:
1042 if (pcpu->state != CPU_STATE_CONFIGURED)
1043 break;
1044 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1045 if (rc)
1046 break;
1047 for (i = 0; i <= smp_cpu_mtid; i++) {
1048 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1049 continue;
1050 pcpu[i].state = CPU_STATE_STANDBY;
1051 smp_cpu_set_polarization(cpu + i,
1052 POLARIZATION_UNKNOWN);
1053 }
1054 topology_expect_change();
1055 break;
1056 case 1:
1057 if (pcpu->state != CPU_STATE_STANDBY)
1058 break;
1059 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1060 if (rc)
1061 break;
1062 for (i = 0; i <= smp_cpu_mtid; i++) {
1063 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1064 continue;
1065 pcpu[i].state = CPU_STATE_CONFIGURED;
1066 smp_cpu_set_polarization(cpu + i,
1067 POLARIZATION_UNKNOWN);
1068 }
1069 topology_expect_change();
1070 break;
1071 default:
1072 break;
1073 }
1074out:
1075 mutex_unlock(&smp_cpu_state_mutex);
1076 cpus_read_unlock();
1077 return rc ? rc : count;
1078}
1079static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1080
1081static ssize_t show_cpu_address(struct device *dev,
1082 struct device_attribute *attr, char *buf)
1083{
1084 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1085}
1086static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1087
1088static struct attribute *cpu_common_attrs[] = {
1089 &dev_attr_configure.attr,
1090 &dev_attr_address.attr,
1091 NULL,
1092};
1093
1094static struct attribute_group cpu_common_attr_group = {
1095 .attrs = cpu_common_attrs,
1096};
1097
1098static struct attribute *cpu_online_attrs[] = {
1099 &dev_attr_idle_count.attr,
1100 &dev_attr_idle_time_us.attr,
1101 NULL,
1102};
1103
1104static struct attribute_group cpu_online_attr_group = {
1105 .attrs = cpu_online_attrs,
1106};
1107
1108static int smp_cpu_online(unsigned int cpu)
1109{
1110 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1111
1112 return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1113}
1114
1115static int smp_cpu_pre_down(unsigned int cpu)
1116{
1117 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1118
1119 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1120 return 0;
1121}
1122
1123static int smp_add_present_cpu(int cpu)
1124{
1125 struct device *s;
1126 struct cpu *c;
1127 int rc;
1128
1129 c = kzalloc(sizeof(*c), GFP_KERNEL);
1130 if (!c)
1131 return -ENOMEM;
1132 per_cpu(cpu_device, cpu) = c;
1133 s = &c->dev;
1134 c->hotpluggable = !!cpu;
1135 rc = register_cpu(c, cpu);
1136 if (rc)
1137 goto out;
1138 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1139 if (rc)
1140 goto out_cpu;
1141 rc = topology_cpu_init(c);
1142 if (rc)
1143 goto out_topology;
1144 return 0;
1145
1146out_topology:
1147 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1148out_cpu:
1149 unregister_cpu(c);
1150out:
1151 return rc;
1152}
1153
1154int __ref smp_rescan_cpus(void)
1155{
1156 struct sclp_core_info *info;
1157 int nr;
1158
1159 info = kzalloc(sizeof(*info), GFP_KERNEL);
1160 if (!info)
1161 return -ENOMEM;
1162 smp_get_core_info(info, 0);
1163 nr = __smp_rescan_cpus(info, false);
1164 kfree(info);
1165 if (nr)
1166 topology_schedule_update();
1167 return 0;
1168}
1169
1170static ssize_t __ref rescan_store(struct device *dev,
1171 struct device_attribute *attr,
1172 const char *buf,
1173 size_t count)
1174{
1175 int rc;
1176
1177 rc = lock_device_hotplug_sysfs();
1178 if (rc)
1179 return rc;
1180 rc = smp_rescan_cpus();
1181 unlock_device_hotplug();
1182 return rc ? rc : count;
1183}
1184static DEVICE_ATTR_WO(rescan);
1185
1186static int __init s390_smp_init(void)
1187{
1188 struct device *dev_root;
1189 int cpu, rc = 0;
1190
1191 dev_root = bus_get_dev_root(&cpu_subsys);
1192 if (dev_root) {
1193 rc = device_create_file(dev_root, &dev_attr_rescan);
1194 put_device(dev_root);
1195 if (rc)
1196 return rc;
1197 }
1198
1199 for_each_present_cpu(cpu) {
1200 rc = smp_add_present_cpu(cpu);
1201 if (rc)
1202 goto out;
1203 }
1204
1205 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1206 smp_cpu_online, smp_cpu_pre_down);
1207 rc = rc <= 0 ? rc : 0;
1208out:
1209 return rc;
1210}
1211subsys_initcall(s390_smp_init);
1/*
2 * SMP related functions
3 *
4 * Copyright IBM Corp. 1999,2012
5 * Author(s): Denis Joseph Barrow,
6 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
7 * Heiko Carstens <heiko.carstens@de.ibm.com>,
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
14 * the translation of logical to physical cpu ids. All new code that
15 * operates on physical cpu numbers needs to go into smp.c.
16 */
17
18#define KMSG_COMPONENT "cpu"
19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21#include <linux/workqueue.h>
22#include <linux/module.h>
23#include <linux/init.h>
24#include <linux/mm.h>
25#include <linux/err.h>
26#include <linux/spinlock.h>
27#include <linux/kernel_stat.h>
28#include <linux/delay.h>
29#include <linux/interrupt.h>
30#include <linux/irqflags.h>
31#include <linux/cpu.h>
32#include <linux/slab.h>
33#include <linux/crash_dump.h>
34#include <asm/asm-offsets.h>
35#include <asm/switch_to.h>
36#include <asm/facility.h>
37#include <asm/ipl.h>
38#include <asm/setup.h>
39#include <asm/irq.h>
40#include <asm/tlbflush.h>
41#include <asm/timer.h>
42#include <asm/lowcore.h>
43#include <asm/sclp.h>
44#include <asm/vdso.h>
45#include <asm/debug.h>
46#include <asm/os_info.h>
47#include "entry.h"
48
49enum {
50 sigp_sense = 1,
51 sigp_external_call = 2,
52 sigp_emergency_signal = 3,
53 sigp_start = 4,
54 sigp_stop = 5,
55 sigp_restart = 6,
56 sigp_stop_and_store_status = 9,
57 sigp_initial_cpu_reset = 11,
58 sigp_cpu_reset = 12,
59 sigp_set_prefix = 13,
60 sigp_store_status_at_address = 14,
61 sigp_store_extended_status_at_address = 15,
62 sigp_set_architecture = 18,
63 sigp_conditional_emergency_signal = 19,
64 sigp_sense_running = 21,
65};
66
67enum {
68 sigp_order_code_accepted = 0,
69 sigp_status_stored = 1,
70 sigp_busy = 2,
71 sigp_not_operational = 3,
72};
73
74enum {
75 ec_schedule = 0,
76 ec_call_function,
77 ec_call_function_single,
78 ec_stop_cpu,
79};
80
81enum {
82 CPU_STATE_STANDBY,
83 CPU_STATE_CONFIGURED,
84};
85
86struct pcpu {
87 struct cpu cpu;
88 struct _lowcore *lowcore; /* lowcore page(s) for the cpu */
89 unsigned long async_stack; /* async stack for the cpu */
90 unsigned long panic_stack; /* panic stack for the cpu */
91 unsigned long ec_mask; /* bit mask for ec_xxx functions */
92 int state; /* physical cpu state */
93 u32 status; /* last status received via sigp */
94 u16 address; /* physical cpu address */
95};
96
97static u8 boot_cpu_type;
98static u16 boot_cpu_address;
99static struct pcpu pcpu_devices[NR_CPUS];
100
101DEFINE_MUTEX(smp_cpu_state_mutex);
102
103/*
104 * Signal processor helper functions.
105 */
106static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status)
107{
108 register unsigned int reg1 asm ("1") = parm;
109 int cc;
110
111 asm volatile(
112 " sigp %1,%2,0(%3)\n"
113 " ipm %0\n"
114 " srl %0,28\n"
115 : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc");
116 if (status && cc == 1)
117 *status = reg1;
118 return cc;
119}
120
121static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
122{
123 int cc;
124
125 while (1) {
126 cc = __pcpu_sigp(addr, order, parm, status);
127 if (cc != sigp_busy)
128 return cc;
129 cpu_relax();
130 }
131}
132
133static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
134{
135 int cc, retry;
136
137 for (retry = 0; ; retry++) {
138 cc = __pcpu_sigp(pcpu->address, order, parm, &pcpu->status);
139 if (cc != sigp_busy)
140 break;
141 if (retry >= 3)
142 udelay(10);
143 }
144 return cc;
145}
146
147static inline int pcpu_stopped(struct pcpu *pcpu)
148{
149 if (__pcpu_sigp(pcpu->address, sigp_sense,
150 0, &pcpu->status) != sigp_status_stored)
151 return 0;
152 /* Check for stopped and check stop state */
153 return !!(pcpu->status & 0x50);
154}
155
156static inline int pcpu_running(struct pcpu *pcpu)
157{
158 if (__pcpu_sigp(pcpu->address, sigp_sense_running,
159 0, &pcpu->status) != sigp_status_stored)
160 return 1;
161 /* Check for running status */
162 return !(pcpu->status & 0x400);
163}
164
165/*
166 * Find struct pcpu by cpu address.
167 */
168static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
169{
170 int cpu;
171
172 for_each_cpu(cpu, mask)
173 if (pcpu_devices[cpu].address == address)
174 return pcpu_devices + cpu;
175 return NULL;
176}
177
178static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
179{
180 int order;
181
182 set_bit(ec_bit, &pcpu->ec_mask);
183 order = pcpu_running(pcpu) ?
184 sigp_external_call : sigp_emergency_signal;
185 pcpu_sigp_retry(pcpu, order, 0);
186}
187
188static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
189{
190 struct _lowcore *lc;
191
192 if (pcpu != &pcpu_devices[0]) {
193 pcpu->lowcore = (struct _lowcore *)
194 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
195 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
196 pcpu->panic_stack = __get_free_page(GFP_KERNEL);
197 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
198 goto out;
199 }
200 lc = pcpu->lowcore;
201 memcpy(lc, &S390_lowcore, 512);
202 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
203 lc->async_stack = pcpu->async_stack + ASYNC_SIZE;
204 lc->panic_stack = pcpu->panic_stack + PAGE_SIZE;
205 lc->cpu_nr = cpu;
206#ifndef CONFIG_64BIT
207 if (MACHINE_HAS_IEEE) {
208 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
209 if (!lc->extended_save_area_addr)
210 goto out;
211 }
212#else
213 if (vdso_alloc_per_cpu(lc))
214 goto out;
215#endif
216 lowcore_ptr[cpu] = lc;
217 pcpu_sigp_retry(pcpu, sigp_set_prefix, (u32)(unsigned long) lc);
218 return 0;
219out:
220 if (pcpu != &pcpu_devices[0]) {
221 free_page(pcpu->panic_stack);
222 free_pages(pcpu->async_stack, ASYNC_ORDER);
223 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
224 }
225 return -ENOMEM;
226}
227
228#ifdef CONFIG_HOTPLUG_CPU
229
230static void pcpu_free_lowcore(struct pcpu *pcpu)
231{
232 pcpu_sigp_retry(pcpu, sigp_set_prefix, 0);
233 lowcore_ptr[pcpu - pcpu_devices] = NULL;
234#ifndef CONFIG_64BIT
235 if (MACHINE_HAS_IEEE) {
236 struct _lowcore *lc = pcpu->lowcore;
237
238 free_page((unsigned long) lc->extended_save_area_addr);
239 lc->extended_save_area_addr = 0;
240 }
241#else
242 vdso_free_per_cpu(pcpu->lowcore);
243#endif
244 if (pcpu != &pcpu_devices[0]) {
245 free_page(pcpu->panic_stack);
246 free_pages(pcpu->async_stack, ASYNC_ORDER);
247 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
248 }
249}
250
251#endif /* CONFIG_HOTPLUG_CPU */
252
253static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
254{
255 struct _lowcore *lc = pcpu->lowcore;
256
257 atomic_inc(&init_mm.context.attach_count);
258 lc->cpu_nr = cpu;
259 lc->percpu_offset = __per_cpu_offset[cpu];
260 lc->kernel_asce = S390_lowcore.kernel_asce;
261 lc->machine_flags = S390_lowcore.machine_flags;
262 lc->ftrace_func = S390_lowcore.ftrace_func;
263 lc->user_timer = lc->system_timer = lc->steal_timer = 0;
264 __ctl_store(lc->cregs_save_area, 0, 15);
265 save_access_regs((unsigned int *) lc->access_regs_save_area);
266 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
267 MAX_FACILITY_BIT/8);
268}
269
270static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
271{
272 struct _lowcore *lc = pcpu->lowcore;
273 struct thread_info *ti = task_thread_info(tsk);
274
275 lc->kernel_stack = (unsigned long) task_stack_page(tsk) + THREAD_SIZE;
276 lc->thread_info = (unsigned long) task_thread_info(tsk);
277 lc->current_task = (unsigned long) tsk;
278 lc->user_timer = ti->user_timer;
279 lc->system_timer = ti->system_timer;
280 lc->steal_timer = 0;
281}
282
283static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
284{
285 struct _lowcore *lc = pcpu->lowcore;
286
287 lc->restart_stack = lc->kernel_stack;
288 lc->restart_fn = (unsigned long) func;
289 lc->restart_data = (unsigned long) data;
290 lc->restart_source = -1UL;
291 pcpu_sigp_retry(pcpu, sigp_restart, 0);
292}
293
294/*
295 * Call function via PSW restart on pcpu and stop the current cpu.
296 */
297static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
298 void *data, unsigned long stack)
299{
300 struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
301 struct {
302 unsigned long stack;
303 void *func;
304 void *data;
305 unsigned long source;
306 } restart = { stack, func, data, stap() };
307
308 __load_psw_mask(psw_kernel_bits);
309 if (pcpu->address == restart.source)
310 func(data); /* should not return */
311 /* Stop target cpu (if func returns this stops the current cpu). */
312 pcpu_sigp_retry(pcpu, sigp_stop, 0);
313 /* Restart func on the target cpu and stop the current cpu. */
314 memcpy_absolute(&lc->restart_stack, &restart, sizeof(restart));
315 asm volatile(
316 "0: sigp 0,%0,6 # sigp restart to target cpu\n"
317 " brc 2,0b # busy, try again\n"
318 "1: sigp 0,%1,5 # sigp stop to current cpu\n"
319 " brc 2,1b # busy, try again\n"
320 : : "d" (pcpu->address), "d" (restart.source) : "0", "1", "cc");
321 for (;;) ;
322}
323
324/*
325 * Call function on an online CPU.
326 */
327void smp_call_online_cpu(void (*func)(void *), void *data)
328{
329 struct pcpu *pcpu;
330
331 /* Use the current cpu if it is online. */
332 pcpu = pcpu_find_address(cpu_online_mask, stap());
333 if (!pcpu)
334 /* Use the first online cpu. */
335 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
336 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
337}
338
339/*
340 * Call function on the ipl CPU.
341 */
342void smp_call_ipl_cpu(void (*func)(void *), void *data)
343{
344 pcpu_delegate(&pcpu_devices[0], func, data,
345 pcpu_devices->panic_stack + PAGE_SIZE);
346}
347
348int smp_find_processor_id(u16 address)
349{
350 int cpu;
351
352 for_each_present_cpu(cpu)
353 if (pcpu_devices[cpu].address == address)
354 return cpu;
355 return -1;
356}
357
358int smp_vcpu_scheduled(int cpu)
359{
360 return pcpu_running(pcpu_devices + cpu);
361}
362
363void smp_yield(void)
364{
365 if (MACHINE_HAS_DIAG44)
366 asm volatile("diag 0,0,0x44");
367}
368
369void smp_yield_cpu(int cpu)
370{
371 if (MACHINE_HAS_DIAG9C)
372 asm volatile("diag %0,0,0x9c"
373 : : "d" (pcpu_devices[cpu].address));
374 else if (MACHINE_HAS_DIAG44)
375 asm volatile("diag 0,0,0x44");
376}
377
378/*
379 * Send cpus emergency shutdown signal. This gives the cpus the
380 * opportunity to complete outstanding interrupts.
381 */
382void smp_emergency_stop(cpumask_t *cpumask)
383{
384 u64 end;
385 int cpu;
386
387 end = get_clock() + (1000000UL << 12);
388 for_each_cpu(cpu, cpumask) {
389 struct pcpu *pcpu = pcpu_devices + cpu;
390 set_bit(ec_stop_cpu, &pcpu->ec_mask);
391 while (__pcpu_sigp(pcpu->address, sigp_emergency_signal,
392 0, NULL) == sigp_busy &&
393 get_clock() < end)
394 cpu_relax();
395 }
396 while (get_clock() < end) {
397 for_each_cpu(cpu, cpumask)
398 if (pcpu_stopped(pcpu_devices + cpu))
399 cpumask_clear_cpu(cpu, cpumask);
400 if (cpumask_empty(cpumask))
401 break;
402 cpu_relax();
403 }
404}
405
406/*
407 * Stop all cpus but the current one.
408 */
409void smp_send_stop(void)
410{
411 cpumask_t cpumask;
412 int cpu;
413
414 /* Disable all interrupts/machine checks */
415 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
416 trace_hardirqs_off();
417
418 debug_set_critical();
419 cpumask_copy(&cpumask, cpu_online_mask);
420 cpumask_clear_cpu(smp_processor_id(), &cpumask);
421
422 if (oops_in_progress)
423 smp_emergency_stop(&cpumask);
424
425 /* stop all processors */
426 for_each_cpu(cpu, &cpumask) {
427 struct pcpu *pcpu = pcpu_devices + cpu;
428 pcpu_sigp_retry(pcpu, sigp_stop, 0);
429 while (!pcpu_stopped(pcpu))
430 cpu_relax();
431 }
432}
433
434/*
435 * Stop the current cpu.
436 */
437void smp_stop_cpu(void)
438{
439 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
440 for (;;) ;
441}
442
443/*
444 * This is the main routine where commands issued by other
445 * cpus are handled.
446 */
447static void do_ext_call_interrupt(struct ext_code ext_code,
448 unsigned int param32, unsigned long param64)
449{
450 unsigned long bits;
451 int cpu;
452
453 cpu = smp_processor_id();
454 if (ext_code.code == 0x1202)
455 kstat_cpu(cpu).irqs[EXTINT_EXC]++;
456 else
457 kstat_cpu(cpu).irqs[EXTINT_EMS]++;
458 /*
459 * handle bit signal external calls
460 */
461 bits = xchg(&pcpu_devices[cpu].ec_mask, 0);
462
463 if (test_bit(ec_stop_cpu, &bits))
464 smp_stop_cpu();
465
466 if (test_bit(ec_schedule, &bits))
467 scheduler_ipi();
468
469 if (test_bit(ec_call_function, &bits))
470 generic_smp_call_function_interrupt();
471
472 if (test_bit(ec_call_function_single, &bits))
473 generic_smp_call_function_single_interrupt();
474
475}
476
477void arch_send_call_function_ipi_mask(const struct cpumask *mask)
478{
479 int cpu;
480
481 for_each_cpu(cpu, mask)
482 pcpu_ec_call(pcpu_devices + cpu, ec_call_function);
483}
484
485void arch_send_call_function_single_ipi(int cpu)
486{
487 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
488}
489
490#ifndef CONFIG_64BIT
491/*
492 * this function sends a 'purge tlb' signal to another CPU.
493 */
494static void smp_ptlb_callback(void *info)
495{
496 __tlb_flush_local();
497}
498
499void smp_ptlb_all(void)
500{
501 on_each_cpu(smp_ptlb_callback, NULL, 1);
502}
503EXPORT_SYMBOL(smp_ptlb_all);
504#endif /* ! CONFIG_64BIT */
505
506/*
507 * this function sends a 'reschedule' IPI to another CPU.
508 * it goes straight through and wastes no time serializing
509 * anything. Worst case is that we lose a reschedule ...
510 */
511void smp_send_reschedule(int cpu)
512{
513 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
514}
515
516/*
517 * parameter area for the set/clear control bit callbacks
518 */
519struct ec_creg_mask_parms {
520 unsigned long orval;
521 unsigned long andval;
522 int cr;
523};
524
525/*
526 * callback for setting/clearing control bits
527 */
528static void smp_ctl_bit_callback(void *info)
529{
530 struct ec_creg_mask_parms *pp = info;
531 unsigned long cregs[16];
532
533 __ctl_store(cregs, 0, 15);
534 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
535 __ctl_load(cregs, 0, 15);
536}
537
538/*
539 * Set a bit in a control register of all cpus
540 */
541void smp_ctl_set_bit(int cr, int bit)
542{
543 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
544
545 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
546}
547EXPORT_SYMBOL(smp_ctl_set_bit);
548
549/*
550 * Clear a bit in a control register of all cpus
551 */
552void smp_ctl_clear_bit(int cr, int bit)
553{
554 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
555
556 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
557}
558EXPORT_SYMBOL(smp_ctl_clear_bit);
559
560#if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
561
562struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
563EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
564
565static void __init smp_get_save_area(int cpu, u16 address)
566{
567 void *lc = pcpu_devices[0].lowcore;
568 struct save_area *save_area;
569
570 if (is_kdump_kernel())
571 return;
572 if (!OLDMEM_BASE && (address == boot_cpu_address ||
573 ipl_info.type != IPL_TYPE_FCP_DUMP))
574 return;
575 if (cpu >= NR_CPUS) {
576 pr_warning("CPU %i exceeds the maximum %i and is excluded "
577 "from the dump\n", cpu, NR_CPUS - 1);
578 return;
579 }
580 save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL);
581 if (!save_area)
582 panic("could not allocate memory for save area\n");
583 zfcpdump_save_areas[cpu] = save_area;
584#ifdef CONFIG_CRASH_DUMP
585 if (address == boot_cpu_address) {
586 /* Copy the registers of the boot cpu. */
587 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
588 SAVE_AREA_BASE - PAGE_SIZE, 0);
589 return;
590 }
591#endif
592 /* Get the registers of a non-boot cpu. */
593 __pcpu_sigp_relax(address, sigp_stop_and_store_status, 0, NULL);
594 memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
595}
596
597int smp_store_status(int cpu)
598{
599 struct pcpu *pcpu;
600
601 pcpu = pcpu_devices + cpu;
602 if (__pcpu_sigp_relax(pcpu->address, sigp_stop_and_store_status,
603 0, NULL) != sigp_order_code_accepted)
604 return -EIO;
605 return 0;
606}
607
608#else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
609
610static inline void smp_get_save_area(int cpu, u16 address) { }
611
612#endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
613
614static struct sclp_cpu_info *smp_get_cpu_info(void)
615{
616 static int use_sigp_detection;
617 struct sclp_cpu_info *info;
618 int address;
619
620 info = kzalloc(sizeof(*info), GFP_KERNEL);
621 if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
622 use_sigp_detection = 1;
623 for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
624 if (__pcpu_sigp_relax(address, sigp_sense, 0, NULL) ==
625 sigp_not_operational)
626 continue;
627 info->cpu[info->configured].address = address;
628 info->configured++;
629 }
630 info->combined = info->configured;
631 }
632 return info;
633}
634
635static int __devinit smp_add_present_cpu(int cpu);
636
637static int __devinit __smp_rescan_cpus(struct sclp_cpu_info *info,
638 int sysfs_add)
639{
640 struct pcpu *pcpu;
641 cpumask_t avail;
642 int cpu, nr, i;
643
644 nr = 0;
645 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
646 cpu = cpumask_first(&avail);
647 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
648 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
649 continue;
650 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
651 continue;
652 pcpu = pcpu_devices + cpu;
653 pcpu->address = info->cpu[i].address;
654 pcpu->state = (cpu >= info->configured) ?
655 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
656 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
657 set_cpu_present(cpu, true);
658 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
659 set_cpu_present(cpu, false);
660 else
661 nr++;
662 cpu = cpumask_next(cpu, &avail);
663 }
664 return nr;
665}
666
667static void __init smp_detect_cpus(void)
668{
669 unsigned int cpu, c_cpus, s_cpus;
670 struct sclp_cpu_info *info;
671
672 info = smp_get_cpu_info();
673 if (!info)
674 panic("smp_detect_cpus failed to allocate memory\n");
675 if (info->has_cpu_type) {
676 for (cpu = 0; cpu < info->combined; cpu++) {
677 if (info->cpu[cpu].address != boot_cpu_address)
678 continue;
679 /* The boot cpu dictates the cpu type. */
680 boot_cpu_type = info->cpu[cpu].type;
681 break;
682 }
683 }
684 c_cpus = s_cpus = 0;
685 for (cpu = 0; cpu < info->combined; cpu++) {
686 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
687 continue;
688 if (cpu < info->configured) {
689 smp_get_save_area(c_cpus, info->cpu[cpu].address);
690 c_cpus++;
691 } else
692 s_cpus++;
693 }
694 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
695 get_online_cpus();
696 __smp_rescan_cpus(info, 0);
697 put_online_cpus();
698 kfree(info);
699}
700
701/*
702 * Activate a secondary processor.
703 */
704static void __cpuinit smp_start_secondary(void *cpuvoid)
705{
706 S390_lowcore.last_update_clock = get_clock();
707 S390_lowcore.restart_stack = (unsigned long) restart_stack;
708 S390_lowcore.restart_fn = (unsigned long) do_restart;
709 S390_lowcore.restart_data = 0;
710 S390_lowcore.restart_source = -1UL;
711 restore_access_regs(S390_lowcore.access_regs_save_area);
712 __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
713 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
714 cpu_init();
715 preempt_disable();
716 init_cpu_timer();
717 init_cpu_vtimer();
718 pfault_init();
719 notify_cpu_starting(smp_processor_id());
720 ipi_call_lock();
721 set_cpu_online(smp_processor_id(), true);
722 ipi_call_unlock();
723 local_irq_enable();
724 /* cpu_idle will call schedule for us */
725 cpu_idle();
726}
727
728/* Upping and downing of CPUs */
729int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
730{
731 struct pcpu *pcpu;
732 int rc;
733
734 pcpu = pcpu_devices + cpu;
735 if (pcpu->state != CPU_STATE_CONFIGURED)
736 return -EIO;
737 if (pcpu_sigp_retry(pcpu, sigp_initial_cpu_reset, 0) !=
738 sigp_order_code_accepted)
739 return -EIO;
740
741 rc = pcpu_alloc_lowcore(pcpu, cpu);
742 if (rc)
743 return rc;
744 pcpu_prepare_secondary(pcpu, cpu);
745 pcpu_attach_task(pcpu, tidle);
746 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
747 while (!cpu_online(cpu))
748 cpu_relax();
749 return 0;
750}
751
752static int __init setup_possible_cpus(char *s)
753{
754 int max, cpu;
755
756 if (kstrtoint(s, 0, &max) < 0)
757 return 0;
758 init_cpu_possible(cpumask_of(0));
759 for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++)
760 set_cpu_possible(cpu, true);
761 return 0;
762}
763early_param("possible_cpus", setup_possible_cpus);
764
765#ifdef CONFIG_HOTPLUG_CPU
766
767int __cpu_disable(void)
768{
769 unsigned long cregs[16];
770
771 set_cpu_online(smp_processor_id(), false);
772 /* Disable pseudo page faults on this cpu. */
773 pfault_fini();
774 /* Disable interrupt sources via control register. */
775 __ctl_store(cregs, 0, 15);
776 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
777 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
778 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
779 __ctl_load(cregs, 0, 15);
780 return 0;
781}
782
783void __cpu_die(unsigned int cpu)
784{
785 struct pcpu *pcpu;
786
787 /* Wait until target cpu is down */
788 pcpu = pcpu_devices + cpu;
789 while (!pcpu_stopped(pcpu))
790 cpu_relax();
791 pcpu_free_lowcore(pcpu);
792 atomic_dec(&init_mm.context.attach_count);
793}
794
795void __noreturn cpu_die(void)
796{
797 idle_task_exit();
798 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
799 for (;;) ;
800}
801
802#endif /* CONFIG_HOTPLUG_CPU */
803
804void __init smp_prepare_cpus(unsigned int max_cpus)
805{
806 /* request the 0x1201 emergency signal external interrupt */
807 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
808 panic("Couldn't request external interrupt 0x1201");
809 /* request the 0x1202 external call external interrupt */
810 if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
811 panic("Couldn't request external interrupt 0x1202");
812 smp_detect_cpus();
813}
814
815void __init smp_prepare_boot_cpu(void)
816{
817 struct pcpu *pcpu = pcpu_devices;
818
819 boot_cpu_address = stap();
820 pcpu->state = CPU_STATE_CONFIGURED;
821 pcpu->address = boot_cpu_address;
822 pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
823 pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE;
824 pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE;
825 S390_lowcore.percpu_offset = __per_cpu_offset[0];
826 cpu_set_polarization(0, POLARIZATION_UNKNOWN);
827 set_cpu_present(0, true);
828 set_cpu_online(0, true);
829}
830
831void __init smp_cpus_done(unsigned int max_cpus)
832{
833}
834
835void __init smp_setup_processor_id(void)
836{
837 S390_lowcore.cpu_nr = 0;
838}
839
840/*
841 * the frequency of the profiling timer can be changed
842 * by writing a multiplier value into /proc/profile.
843 *
844 * usually you want to run this on all CPUs ;)
845 */
846int setup_profiling_timer(unsigned int multiplier)
847{
848 return 0;
849}
850
851#ifdef CONFIG_HOTPLUG_CPU
852static ssize_t cpu_configure_show(struct device *dev,
853 struct device_attribute *attr, char *buf)
854{
855 ssize_t count;
856
857 mutex_lock(&smp_cpu_state_mutex);
858 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
859 mutex_unlock(&smp_cpu_state_mutex);
860 return count;
861}
862
863static ssize_t cpu_configure_store(struct device *dev,
864 struct device_attribute *attr,
865 const char *buf, size_t count)
866{
867 struct pcpu *pcpu;
868 int cpu, val, rc;
869 char delim;
870
871 if (sscanf(buf, "%d %c", &val, &delim) != 1)
872 return -EINVAL;
873 if (val != 0 && val != 1)
874 return -EINVAL;
875 get_online_cpus();
876 mutex_lock(&smp_cpu_state_mutex);
877 rc = -EBUSY;
878 /* disallow configuration changes of online cpus and cpu 0 */
879 cpu = dev->id;
880 if (cpu_online(cpu) || cpu == 0)
881 goto out;
882 pcpu = pcpu_devices + cpu;
883 rc = 0;
884 switch (val) {
885 case 0:
886 if (pcpu->state != CPU_STATE_CONFIGURED)
887 break;
888 rc = sclp_cpu_deconfigure(pcpu->address);
889 if (rc)
890 break;
891 pcpu->state = CPU_STATE_STANDBY;
892 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
893 topology_expect_change();
894 break;
895 case 1:
896 if (pcpu->state != CPU_STATE_STANDBY)
897 break;
898 rc = sclp_cpu_configure(pcpu->address);
899 if (rc)
900 break;
901 pcpu->state = CPU_STATE_CONFIGURED;
902 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
903 topology_expect_change();
904 break;
905 default:
906 break;
907 }
908out:
909 mutex_unlock(&smp_cpu_state_mutex);
910 put_online_cpus();
911 return rc ? rc : count;
912}
913static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
914#endif /* CONFIG_HOTPLUG_CPU */
915
916static ssize_t show_cpu_address(struct device *dev,
917 struct device_attribute *attr, char *buf)
918{
919 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
920}
921static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
922
923static struct attribute *cpu_common_attrs[] = {
924#ifdef CONFIG_HOTPLUG_CPU
925 &dev_attr_configure.attr,
926#endif
927 &dev_attr_address.attr,
928 NULL,
929};
930
931static struct attribute_group cpu_common_attr_group = {
932 .attrs = cpu_common_attrs,
933};
934
935static ssize_t show_idle_count(struct device *dev,
936 struct device_attribute *attr, char *buf)
937{
938 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
939 unsigned long long idle_count;
940 unsigned int sequence;
941
942 do {
943 sequence = ACCESS_ONCE(idle->sequence);
944 idle_count = ACCESS_ONCE(idle->idle_count);
945 if (ACCESS_ONCE(idle->idle_enter))
946 idle_count++;
947 } while ((sequence & 1) || (idle->sequence != sequence));
948 return sprintf(buf, "%llu\n", idle_count);
949}
950static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
951
952static ssize_t show_idle_time(struct device *dev,
953 struct device_attribute *attr, char *buf)
954{
955 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
956 unsigned long long now, idle_time, idle_enter, idle_exit;
957 unsigned int sequence;
958
959 do {
960 now = get_clock();
961 sequence = ACCESS_ONCE(idle->sequence);
962 idle_time = ACCESS_ONCE(idle->idle_time);
963 idle_enter = ACCESS_ONCE(idle->idle_enter);
964 idle_exit = ACCESS_ONCE(idle->idle_exit);
965 } while ((sequence & 1) || (idle->sequence != sequence));
966 idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
967 return sprintf(buf, "%llu\n", idle_time >> 12);
968}
969static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
970
971static struct attribute *cpu_online_attrs[] = {
972 &dev_attr_idle_count.attr,
973 &dev_attr_idle_time_us.attr,
974 NULL,
975};
976
977static struct attribute_group cpu_online_attr_group = {
978 .attrs = cpu_online_attrs,
979};
980
981static int __cpuinit smp_cpu_notify(struct notifier_block *self,
982 unsigned long action, void *hcpu)
983{
984 unsigned int cpu = (unsigned int)(long)hcpu;
985 struct cpu *c = &pcpu_devices[cpu].cpu;
986 struct device *s = &c->dev;
987 int err = 0;
988
989 switch (action) {
990 case CPU_ONLINE:
991 case CPU_ONLINE_FROZEN:
992 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
993 break;
994 case CPU_DEAD:
995 case CPU_DEAD_FROZEN:
996 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
997 break;
998 }
999 return notifier_from_errno(err);
1000}
1001
1002static struct notifier_block __cpuinitdata smp_cpu_nb = {
1003 .notifier_call = smp_cpu_notify,
1004};
1005
1006static int __devinit smp_add_present_cpu(int cpu)
1007{
1008 struct cpu *c = &pcpu_devices[cpu].cpu;
1009 struct device *s = &c->dev;
1010 int rc;
1011
1012 c->hotpluggable = 1;
1013 rc = register_cpu(c, cpu);
1014 if (rc)
1015 goto out;
1016 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1017 if (rc)
1018 goto out_cpu;
1019 if (cpu_online(cpu)) {
1020 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1021 if (rc)
1022 goto out_online;
1023 }
1024 rc = topology_cpu_init(c);
1025 if (rc)
1026 goto out_topology;
1027 return 0;
1028
1029out_topology:
1030 if (cpu_online(cpu))
1031 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1032out_online:
1033 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1034out_cpu:
1035#ifdef CONFIG_HOTPLUG_CPU
1036 unregister_cpu(c);
1037#endif
1038out:
1039 return rc;
1040}
1041
1042#ifdef CONFIG_HOTPLUG_CPU
1043
1044int __ref smp_rescan_cpus(void)
1045{
1046 struct sclp_cpu_info *info;
1047 int nr;
1048
1049 info = smp_get_cpu_info();
1050 if (!info)
1051 return -ENOMEM;
1052 get_online_cpus();
1053 mutex_lock(&smp_cpu_state_mutex);
1054 nr = __smp_rescan_cpus(info, 1);
1055 mutex_unlock(&smp_cpu_state_mutex);
1056 put_online_cpus();
1057 kfree(info);
1058 if (nr)
1059 topology_schedule_update();
1060 return 0;
1061}
1062
1063static ssize_t __ref rescan_store(struct device *dev,
1064 struct device_attribute *attr,
1065 const char *buf,
1066 size_t count)
1067{
1068 int rc;
1069
1070 rc = smp_rescan_cpus();
1071 return rc ? rc : count;
1072}
1073static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1074#endif /* CONFIG_HOTPLUG_CPU */
1075
1076static int __init s390_smp_init(void)
1077{
1078 int cpu, rc;
1079
1080 register_cpu_notifier(&smp_cpu_nb);
1081#ifdef CONFIG_HOTPLUG_CPU
1082 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1083 if (rc)
1084 return rc;
1085#endif
1086 for_each_present_cpu(cpu) {
1087 rc = smp_add_present_cpu(cpu);
1088 if (rc)
1089 return rc;
1090 }
1091 return 0;
1092}
1093subsys_initcall(s390_smp_init);