Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2005-2013 Solarflare Communications Inc.
   6 */
   7
   8#include <linux/filter.h>
   9#include <linux/module.h>
  10#include <linux/pci.h>
  11#include <linux/netdevice.h>
  12#include <linux/etherdevice.h>
  13#include <linux/delay.h>
  14#include <linux/notifier.h>
  15#include <linux/ip.h>
  16#include <linux/tcp.h>
  17#include <linux/in.h>
  18#include <linux/ethtool.h>
  19#include <linux/topology.h>
  20#include <linux/gfp.h>
 
  21#include <linux/interrupt.h>
  22#include "net_driver.h"
  23#include <net/gre.h>
  24#include <net/udp_tunnel.h>
  25#include "efx.h"
  26#include "efx_common.h"
  27#include "efx_channels.h"
  28#include "ef100.h"
  29#include "rx_common.h"
  30#include "tx_common.h"
  31#include "nic.h"
  32#include "io.h"
  33#include "selftest.h"
  34#include "sriov.h"
  35#include "efx_devlink.h"
  36
  37#include "mcdi_port_common.h"
  38#include "mcdi_pcol.h"
  39#include "workarounds.h"
  40
  41/**************************************************************************
  42 *
  43 * Configurable values
  44 *
  45 *************************************************************************/
 
  46
  47module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
  48MODULE_PARM_DESC(interrupt_mode,
  49		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50
  51module_param(rss_cpus, uint, 0444);
  52MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53
  54/*
  55 * Use separate channels for TX and RX events
  56 *
  57 * Set this to 1 to use separate channels for TX and RX. It allows us
  58 * to control interrupt affinity separately for TX and RX.
  59 *
  60 * This is only used in MSI-X interrupt mode
  61 */
  62bool efx_separate_tx_channels;
  63module_param(efx_separate_tx_channels, bool, 0444);
  64MODULE_PARM_DESC(efx_separate_tx_channels,
  65		 "Use separate channels for TX and RX");
  66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67/* Initial interrupt moderation settings.  They can be modified after
  68 * module load with ethtool.
  69 *
  70 * The default for RX should strike a balance between increasing the
  71 * round-trip latency and reducing overhead.
  72 */
  73static unsigned int rx_irq_mod_usec = 60;
  74
  75/* Initial interrupt moderation settings.  They can be modified after
  76 * module load with ethtool.
  77 *
  78 * This default is chosen to ensure that a 10G link does not go idle
  79 * while a TX queue is stopped after it has become full.  A queue is
  80 * restarted when it drops below half full.  The time this takes (assuming
  81 * worst case 3 descriptors per packet and 1024 descriptors) is
  82 *   512 / 3 * 1.2 = 205 usec.
  83 */
  84static unsigned int tx_irq_mod_usec = 150;
  85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86static bool phy_flash_cfg;
  87module_param(phy_flash_cfg, bool, 0644);
  88MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
  89
 
 
 
 
 
 
 
 
 
 
  90static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  91			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
  92			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
  93			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
  94module_param(debug, uint, 0);
  95MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
  96
  97/**************************************************************************
  98 *
  99 * Utility functions and prototypes
 100 *
 101 *************************************************************************/
 102
 
 
 
 
 
 103static void efx_remove_port(struct efx_nic *efx);
 104static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
 105static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
 106static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
 107			u32 flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108
 109/**************************************************************************
 110 *
 111 * Port handling
 112 *
 113 **************************************************************************/
 114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115static void efx_fini_port(struct efx_nic *efx);
 116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117static int efx_probe_port(struct efx_nic *efx)
 118{
 119	int rc;
 120
 121	netif_dbg(efx, probe, efx->net_dev, "create port\n");
 122
 123	if (phy_flash_cfg)
 124		efx->phy_mode = PHY_MODE_SPECIAL;
 125
 126	/* Connect up MAC/PHY operations table */
 127	rc = efx->type->probe_port(efx);
 128	if (rc)
 129		return rc;
 130
 131	/* Initialise MAC address to permanent address */
 132	eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
 133
 134	return 0;
 135}
 136
 137static int efx_init_port(struct efx_nic *efx)
 138{
 139	int rc;
 140
 141	netif_dbg(efx, drv, efx->net_dev, "init port\n");
 142
 143	mutex_lock(&efx->mac_lock);
 144
 
 
 
 
 145	efx->port_initialized = true;
 146
 
 
 
 
 147	/* Ensure the PHY advertises the correct flow control settings */
 148	rc = efx_mcdi_port_reconfigure(efx);
 149	if (rc && rc != -EPERM)
 150		goto fail;
 151
 152	mutex_unlock(&efx->mac_lock);
 153	return 0;
 154
 155fail:
 
 
 156	mutex_unlock(&efx->mac_lock);
 157	return rc;
 158}
 159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160static void efx_fini_port(struct efx_nic *efx)
 161{
 162	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
 163
 164	if (!efx->port_initialized)
 165		return;
 166
 
 167	efx->port_initialized = false;
 168
 169	efx->link_state.up = false;
 170	efx_link_status_changed(efx);
 171}
 172
 173static void efx_remove_port(struct efx_nic *efx)
 174{
 175	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
 176
 177	efx->type->remove_port(efx);
 178}
 179
 180/**************************************************************************
 181 *
 182 * NIC handling
 183 *
 184 **************************************************************************/
 185
 186static LIST_HEAD(efx_primary_list);
 187static LIST_HEAD(efx_unassociated_list);
 188
 189static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
 190{
 191	return left->type == right->type &&
 192		left->vpd_sn && right->vpd_sn &&
 193		!strcmp(left->vpd_sn, right->vpd_sn);
 194}
 195
 196static void efx_associate(struct efx_nic *efx)
 197{
 198	struct efx_nic *other, *next;
 199
 200	if (efx->primary == efx) {
 201		/* Adding primary function; look for secondaries */
 202
 203		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
 204		list_add_tail(&efx->node, &efx_primary_list);
 205
 206		list_for_each_entry_safe(other, next, &efx_unassociated_list,
 207					 node) {
 208			if (efx_same_controller(efx, other)) {
 209				list_del(&other->node);
 210				netif_dbg(other, probe, other->net_dev,
 211					  "moving to secondary list of %s %s\n",
 212					  pci_name(efx->pci_dev),
 213					  efx->net_dev->name);
 214				list_add_tail(&other->node,
 215					      &efx->secondary_list);
 216				other->primary = efx;
 217			}
 218		}
 219	} else {
 220		/* Adding secondary function; look for primary */
 221
 222		list_for_each_entry(other, &efx_primary_list, node) {
 223			if (efx_same_controller(efx, other)) {
 224				netif_dbg(efx, probe, efx->net_dev,
 225					  "adding to secondary list of %s %s\n",
 226					  pci_name(other->pci_dev),
 227					  other->net_dev->name);
 228				list_add_tail(&efx->node,
 229					      &other->secondary_list);
 230				efx->primary = other;
 231				return;
 232			}
 233		}
 234
 235		netif_dbg(efx, probe, efx->net_dev,
 236			  "adding to unassociated list\n");
 237		list_add_tail(&efx->node, &efx_unassociated_list);
 238	}
 239}
 240
 241static void efx_dissociate(struct efx_nic *efx)
 242{
 243	struct efx_nic *other, *next;
 244
 245	list_del(&efx->node);
 246	efx->primary = NULL;
 247
 248	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
 249		list_del(&other->node);
 250		netif_dbg(other, probe, other->net_dev,
 251			  "moving to unassociated list\n");
 252		list_add_tail(&other->node, &efx_unassociated_list);
 253		other->primary = NULL;
 254	}
 255}
 256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 257static int efx_probe_nic(struct efx_nic *efx)
 258{
 259	int rc;
 260
 261	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
 262
 263	/* Carry out hardware-type specific initialisation */
 264	rc = efx->type->probe(efx);
 265	if (rc)
 266		return rc;
 267
 268	do {
 269		if (!efx->max_channels || !efx->max_tx_channels) {
 270			netif_err(efx, drv, efx->net_dev,
 271				  "Insufficient resources to allocate"
 272				  " any channels\n");
 273			rc = -ENOSPC;
 274			goto fail1;
 275		}
 276
 277		/* Determine the number of channels and queues by trying
 278		 * to hook in MSI-X interrupts.
 279		 */
 280		rc = efx_probe_interrupts(efx);
 281		if (rc)
 282			goto fail1;
 283
 284		rc = efx_set_channels(efx);
 285		if (rc)
 286			goto fail1;
 287
 288		/* dimension_resources can fail with EAGAIN */
 289		rc = efx->type->dimension_resources(efx);
 290		if (rc != 0 && rc != -EAGAIN)
 291			goto fail2;
 292
 293		if (rc == -EAGAIN)
 294			/* try again with new max_channels */
 295			efx_remove_interrupts(efx);
 296
 297	} while (rc == -EAGAIN);
 298
 299	if (efx->n_channels > 1)
 300		netdev_rss_key_fill(efx->rss_context.rx_hash_key,
 301				    sizeof(efx->rss_context.rx_hash_key));
 302	efx_set_default_rx_indir_table(efx, &efx->rss_context);
 303
 
 
 
 304	/* Initialise the interrupt moderation settings */
 305	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
 306	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
 307				true);
 308
 309	return 0;
 310
 311fail2:
 312	efx_remove_interrupts(efx);
 313fail1:
 314	efx->type->remove(efx);
 315	return rc;
 316}
 317
 318static void efx_remove_nic(struct efx_nic *efx)
 319{
 320	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
 321
 322	efx_remove_interrupts(efx);
 323	efx->type->remove(efx);
 324}
 325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326/**************************************************************************
 327 *
 328 * NIC startup/shutdown
 329 *
 330 *************************************************************************/
 331
 332static int efx_probe_all(struct efx_nic *efx)
 333{
 334	int rc;
 335
 336	rc = efx_probe_nic(efx);
 337	if (rc) {
 338		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
 339		goto fail1;
 340	}
 341
 342	rc = efx_probe_port(efx);
 343	if (rc) {
 344		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
 345		goto fail2;
 346	}
 347
 348	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
 349	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
 350		rc = -EINVAL;
 351		goto fail3;
 352	}
 
 353
 354#ifdef CONFIG_SFC_SRIOV
 355	rc = efx->type->vswitching_probe(efx);
 356	if (rc) /* not fatal; the PF will still work fine */
 357		netif_warn(efx, probe, efx->net_dev,
 358			   "failed to setup vswitching rc=%d;"
 359			   " VFs may not function\n", rc);
 360#endif
 361
 362	rc = efx_probe_filters(efx);
 363	if (rc) {
 364		netif_err(efx, probe, efx->net_dev,
 365			  "failed to create filter tables\n");
 366		goto fail4;
 367	}
 368
 369	rc = efx_probe_channels(efx);
 370	if (rc)
 371		goto fail5;
 372
 373	efx->state = STATE_NET_DOWN;
 374
 375	return 0;
 376
 377 fail5:
 378	efx_remove_filters(efx);
 379 fail4:
 380#ifdef CONFIG_SFC_SRIOV
 381	efx->type->vswitching_remove(efx);
 382#endif
 383 fail3:
 384	efx_remove_port(efx);
 385 fail2:
 386	efx_remove_nic(efx);
 387 fail1:
 388	return rc;
 389}
 390
 391static void efx_remove_all(struct efx_nic *efx)
 
 
 
 
 
 
 
 392{
 393	rtnl_lock();
 394	efx_xdp_setup_prog(efx, NULL);
 395	rtnl_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397	efx_remove_channels(efx);
 398	efx_remove_filters(efx);
 399#ifdef CONFIG_SFC_SRIOV
 400	efx->type->vswitching_remove(efx);
 401#endif
 402	efx_remove_port(efx);
 403	efx_remove_nic(efx);
 404}
 405
 406/**************************************************************************
 407 *
 408 * Interrupt moderation
 409 *
 410 **************************************************************************/
 411unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
 412{
 413	if (usecs == 0)
 414		return 0;
 415	if (usecs * 1000 < efx->timer_quantum_ns)
 416		return 1; /* never round down to 0 */
 417	return usecs * 1000 / efx->timer_quantum_ns;
 418}
 419
 420unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
 421{
 422	/* We must round up when converting ticks to microseconds
 423	 * because we round down when converting the other way.
 424	 */
 425	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
 426}
 427
 428/* Set interrupt moderation parameters */
 429int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
 430			    unsigned int rx_usecs, bool rx_adaptive,
 431			    bool rx_may_override_tx)
 432{
 433	struct efx_channel *channel;
 434	unsigned int timer_max_us;
 435
 436	EFX_ASSERT_RESET_SERIALISED(efx);
 437
 438	timer_max_us = efx->timer_max_ns / 1000;
 439
 440	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
 441		return -EINVAL;
 442
 443	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
 444	    !rx_may_override_tx) {
 445		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
 446			  "RX and TX IRQ moderation must be equal\n");
 447		return -EINVAL;
 448	}
 449
 450	efx->irq_rx_adaptive = rx_adaptive;
 451	efx->irq_rx_moderation_us = rx_usecs;
 452	efx_for_each_channel(channel, efx) {
 453		if (efx_channel_has_rx_queue(channel))
 454			channel->irq_moderation_us = rx_usecs;
 455		else if (efx_channel_has_tx_queues(channel))
 456			channel->irq_moderation_us = tx_usecs;
 457		else if (efx_channel_is_xdp_tx(channel))
 458			channel->irq_moderation_us = tx_usecs;
 459	}
 460
 461	return 0;
 462}
 463
 464void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
 465			    unsigned int *rx_usecs, bool *rx_adaptive)
 466{
 467	*rx_adaptive = efx->irq_rx_adaptive;
 468	*rx_usecs = efx->irq_rx_moderation_us;
 469
 470	/* If channels are shared between RX and TX, so is IRQ
 471	 * moderation.  Otherwise, IRQ moderation is the same for all
 472	 * TX channels and is not adaptive.
 473	 */
 474	if (efx->tx_channel_offset == 0) {
 475		*tx_usecs = *rx_usecs;
 476	} else {
 477		struct efx_channel *tx_channel;
 478
 479		tx_channel = efx->channel[efx->tx_channel_offset];
 480		*tx_usecs = tx_channel->irq_moderation_us;
 481	}
 482}
 483
 484/**************************************************************************
 485 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 486 * ioctls
 487 *
 488 *************************************************************************/
 489
 490/* Net device ioctl
 491 * Context: process, rtnl_lock() held.
 492 */
 493static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
 494{
 495	struct efx_nic *efx = efx_netdev_priv(net_dev);
 496	struct mii_ioctl_data *data = if_mii(ifr);
 497
 
 
 
 
 
 498	/* Convert phy_id from older PRTAD/DEVAD format */
 499	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
 500	    (data->phy_id & 0xfc00) == 0x0400)
 501		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
 502
 503	return mdio_mii_ioctl(&efx->mdio, data, cmd);
 504}
 505
 506/**************************************************************************
 507 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508 * Kernel net device interface
 509 *
 510 *************************************************************************/
 511
 512/* Context: process, rtnl_lock() held. */
 513int efx_net_open(struct net_device *net_dev)
 514{
 515	struct efx_nic *efx = efx_netdev_priv(net_dev);
 516	int rc;
 517
 518	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
 519		  raw_smp_processor_id());
 520
 521	rc = efx_check_disabled(efx);
 522	if (rc)
 523		return rc;
 524	if (efx->phy_mode & PHY_MODE_SPECIAL)
 525		return -EBUSY;
 526	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
 527		return -EIO;
 528
 529	/* Notify the kernel of the link state polled during driver load,
 530	 * before the monitor starts running */
 531	efx_link_status_changed(efx);
 532
 533	efx_start_all(efx);
 534	if (efx->state == STATE_DISABLED || efx->reset_pending)
 535		netif_device_detach(efx->net_dev);
 536	else
 537		efx->state = STATE_NET_UP;
 538
 539	return 0;
 540}
 541
 542/* Context: process, rtnl_lock() held.
 543 * Note that the kernel will ignore our return code; this method
 544 * should really be a void.
 545 */
 546int efx_net_stop(struct net_device *net_dev)
 547{
 548	struct efx_nic *efx = efx_netdev_priv(net_dev);
 549
 550	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
 551		  raw_smp_processor_id());
 552
 553	/* Stop the device and flush all the channels */
 554	efx_stop_all(efx);
 555
 556	return 0;
 557}
 558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
 560{
 561	struct efx_nic *efx = efx_netdev_priv(net_dev);
 562
 563	if (efx->type->vlan_rx_add_vid)
 564		return efx->type->vlan_rx_add_vid(efx, proto, vid);
 565	else
 566		return -EOPNOTSUPP;
 567}
 568
 569static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
 570{
 571	struct efx_nic *efx = efx_netdev_priv(net_dev);
 572
 573	if (efx->type->vlan_rx_kill_vid)
 574		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
 575	else
 576		return -EOPNOTSUPP;
 577}
 578
 579static int efx_hwtstamp_set(struct net_device *net_dev,
 580			    struct kernel_hwtstamp_config *config,
 581			    struct netlink_ext_ack *extack)
 
 
 
 
 
 
 
 
 
 
 582{
 583	struct efx_nic *efx = efx_netdev_priv(net_dev);
 
 
 
 
 
 
 584
 585	return efx_ptp_set_ts_config(efx, config, extack);
 
 
 
 
 586}
 587
 588static int efx_hwtstamp_get(struct net_device *net_dev,
 589			    struct kernel_hwtstamp_config *config)
 590{
 591	struct efx_nic *efx = efx_netdev_priv(net_dev);
 
 
 
 
 
 
 
 
 
 592
 593	return efx_ptp_get_ts_config(efx, config);
 
 594}
 595
 596static const struct net_device_ops efx_netdev_ops = {
 597	.ndo_open		= efx_net_open,
 598	.ndo_stop		= efx_net_stop,
 599	.ndo_get_stats64	= efx_net_stats,
 600	.ndo_tx_timeout		= efx_watchdog,
 601	.ndo_start_xmit		= efx_hard_start_xmit,
 602	.ndo_validate_addr	= eth_validate_addr,
 603	.ndo_eth_ioctl		= efx_ioctl,
 604	.ndo_change_mtu		= efx_change_mtu,
 605	.ndo_set_mac_address	= efx_set_mac_address,
 606	.ndo_set_rx_mode	= efx_set_rx_mode,
 607	.ndo_set_features	= efx_set_features,
 608	.ndo_features_check	= efx_features_check,
 609	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
 610	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
 611	.ndo_hwtstamp_set	= efx_hwtstamp_set,
 612	.ndo_hwtstamp_get	= efx_hwtstamp_get,
 613#ifdef CONFIG_SFC_SRIOV
 614	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
 615	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
 616	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
 617	.ndo_get_vf_config	= efx_sriov_get_vf_config,
 618	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
 619#endif
 620	.ndo_get_phys_port_id   = efx_get_phys_port_id,
 621	.ndo_get_phys_port_name	= efx_get_phys_port_name,
 
 622#ifdef CONFIG_RFS_ACCEL
 623	.ndo_rx_flow_steer	= efx_filter_rfs,
 624#endif
 625	.ndo_xdp_xmit		= efx_xdp_xmit,
 626	.ndo_bpf		= efx_xdp
 627};
 628
 629static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
 630{
 631	struct bpf_prog *old_prog;
 632
 633	if (efx->xdp_rxq_info_failed) {
 634		netif_err(efx, drv, efx->net_dev,
 635			  "Unable to bind XDP program due to previous failure of rxq_info\n");
 636		return -EINVAL;
 637	}
 638
 639	if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
 640		netif_err(efx, drv, efx->net_dev,
 641			  "Unable to configure XDP with MTU of %d (max: %d)\n",
 642			  efx->net_dev->mtu, efx_xdp_max_mtu(efx));
 643		return -EINVAL;
 644	}
 645
 646	old_prog = rtnl_dereference(efx->xdp_prog);
 647	rcu_assign_pointer(efx->xdp_prog, prog);
 648	/* Release the reference that was originally passed by the caller. */
 649	if (old_prog)
 650		bpf_prog_put(old_prog);
 651
 652	return 0;
 653}
 654
 655/* Context: process, rtnl_lock() held. */
 656static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
 657{
 658	struct efx_nic *efx = efx_netdev_priv(dev);
 659
 660	switch (xdp->command) {
 661	case XDP_SETUP_PROG:
 662		return efx_xdp_setup_prog(efx, xdp->prog);
 663	default:
 664		return -EINVAL;
 665	}
 666}
 667
 668static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
 669			u32 flags)
 670{
 671	struct efx_nic *efx = efx_netdev_priv(dev);
 672
 673	if (!netif_running(dev))
 674		return -EINVAL;
 675
 676	return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
 677}
 678
 679static void efx_update_name(struct efx_nic *efx)
 680{
 681	strcpy(efx->name, efx->net_dev->name);
 682	efx_mtd_rename(efx);
 683	efx_set_channel_names(efx);
 684}
 685
 686static int efx_netdev_event(struct notifier_block *this,
 687			    unsigned long event, void *ptr)
 688{
 689	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
 690
 691	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
 692	    event == NETDEV_CHANGENAME)
 693		efx_update_name(efx_netdev_priv(net_dev));
 694
 695	return NOTIFY_DONE;
 696}
 697
 698static struct notifier_block efx_netdev_notifier = {
 699	.notifier_call = efx_netdev_event,
 700};
 701
 702static ssize_t phy_type_show(struct device *dev,
 703			     struct device_attribute *attr, char *buf)
 704{
 705	struct efx_nic *efx = dev_get_drvdata(dev);
 706	return sprintf(buf, "%d\n", efx->phy_type);
 707}
 708static DEVICE_ATTR_RO(phy_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 709
 710static int efx_register_netdev(struct efx_nic *efx)
 711{
 712	struct net_device *net_dev = efx->net_dev;
 713	struct efx_channel *channel;
 714	int rc;
 715
 716	net_dev->watchdog_timeo = 5 * HZ;
 717	net_dev->irq = efx->pci_dev->irq;
 718	net_dev->netdev_ops = &efx_netdev_ops;
 719	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
 720		net_dev->priv_flags |= IFF_UNICAST_FLT;
 721	net_dev->ethtool_ops = &efx_ethtool_ops;
 722	netif_set_tso_max_segs(net_dev, EFX_TSO_MAX_SEGS);
 723	net_dev->min_mtu = EFX_MIN_MTU;
 724	net_dev->max_mtu = EFX_MAX_MTU;
 725
 726	rtnl_lock();
 727
 728	/* Enable resets to be scheduled and check whether any were
 729	 * already requested.  If so, the NIC is probably hosed so we
 730	 * abort.
 731	 */
 
 
 732	if (efx->reset_pending) {
 733		pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n");
 
 734		rc = -EIO;
 735		goto fail_locked;
 736	}
 737
 738	rc = dev_alloc_name(net_dev, net_dev->name);
 739	if (rc < 0)
 740		goto fail_locked;
 741	efx_update_name(efx);
 742
 743	/* Always start with carrier off; PHY events will detect the link */
 744	netif_carrier_off(net_dev);
 745
 746	rc = register_netdevice(net_dev);
 747	if (rc)
 748		goto fail_locked;
 749
 750	efx_for_each_channel(channel, efx) {
 751		struct efx_tx_queue *tx_queue;
 752		efx_for_each_channel_tx_queue(tx_queue, channel)
 753			efx_init_tx_queue_core_txq(tx_queue);
 754	}
 755
 756	efx_associate(efx);
 757
 758	efx->state = STATE_NET_DOWN;
 759
 760	rtnl_unlock();
 761
 762	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
 763	if (rc) {
 764		netif_err(efx, drv, efx->net_dev,
 765			  "failed to init net dev attributes\n");
 766		goto fail_registered;
 767	}
 768
 769	efx_init_mcdi_logging(efx);
 
 
 
 
 
 
 770
 771	return 0;
 772
 
 
 
 
 773fail_registered:
 774	rtnl_lock();
 775	efx_dissociate(efx);
 776	unregister_netdevice(net_dev);
 777fail_locked:
 778	efx->state = STATE_UNINIT;
 779	rtnl_unlock();
 780	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
 781	return rc;
 782}
 783
 784static void efx_unregister_netdev(struct efx_nic *efx)
 785{
 786	if (!efx->net_dev)
 787		return;
 788
 789	if (WARN_ON(efx_netdev_priv(efx->net_dev) != efx))
 790		return;
 791
 792	if (efx_dev_registered(efx)) {
 793		strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
 794		efx_fini_mcdi_logging(efx);
 
 
 795		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
 796		unregister_netdev(efx->net_dev);
 797	}
 798}
 799
 800/**************************************************************************
 801 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802 * List of NICs we support
 803 *
 804 **************************************************************************/
 805
 806/* PCI device ID table */
 807static const struct pci_device_id efx_pci_table[] = {
 
 
 
 
 808	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
 809	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 810	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
 811	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 812	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
 813	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 814	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
 815	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 816	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
 817	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 818	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
 819	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 820	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03),  /* SFC9250 PF */
 821	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 822	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03),  /* SFC9250 VF */
 823	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 824	{0}			/* end of list */
 825};
 826
 827/**************************************************************************
 828 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829 * Data housekeeping
 830 *
 831 **************************************************************************/
 832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
 834{
 835	u64 n_rx_nodesc_trunc = 0;
 836	struct efx_channel *channel;
 837
 838	efx_for_each_channel(channel, efx)
 839		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
 840	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
 841	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
 842}
 843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844/**************************************************************************
 845 *
 846 * PCI interface
 847 *
 848 **************************************************************************/
 849
 850/* Main body of final NIC shutdown code
 851 * This is called only at module unload (or hotplug removal).
 852 */
 853static void efx_pci_remove_main(struct efx_nic *efx)
 854{
 855	/* Flush reset_work. It can no longer be scheduled since we
 856	 * are not READY.
 857	 */
 858	WARN_ON(efx_net_active(efx->state));
 859	efx_flush_reset_workqueue(efx);
 860
 861	efx_disable_interrupts(efx);
 862	efx_clear_interrupt_affinity(efx);
 863	efx_nic_fini_interrupt(efx);
 864	efx_fini_port(efx);
 865	efx->type->fini(efx);
 866	efx_fini_napi(efx);
 867	efx_remove_all(efx);
 868}
 869
 870/* Final NIC shutdown
 871 * This is called only at module unload (or hotplug removal).  A PF can call
 872 * this on its VFs to ensure they are unbound first.
 873 */
 874static void efx_pci_remove(struct pci_dev *pci_dev)
 875{
 876	struct efx_probe_data *probe_data;
 877	struct efx_nic *efx;
 878
 879	efx = pci_get_drvdata(pci_dev);
 880	if (!efx)
 881		return;
 882
 883	/* Mark the NIC as fini, then stop the interface */
 884	rtnl_lock();
 885	efx_dissociate(efx);
 886	dev_close(efx->net_dev);
 887	efx_disable_interrupts(efx);
 888	efx->state = STATE_UNINIT;
 889	rtnl_unlock();
 890
 891	if (efx->type->sriov_fini)
 892		efx->type->sriov_fini(efx);
 893
 894	efx_fini_devlink_lock(efx);
 895	efx_unregister_netdev(efx);
 896
 897	efx_mtd_remove(efx);
 898
 899	efx_pci_remove_main(efx);
 900
 901	efx_fini_io(efx);
 902	pci_dbg(efx->pci_dev, "shutdown successful\n");
 903
 904	efx_fini_devlink_and_unlock(efx);
 905	efx_fini_struct(efx);
 906	free_netdev(efx->net_dev);
 907	probe_data = container_of(efx, struct efx_probe_data, efx);
 908	kfree(probe_data);
 909};
 910
 911/* NIC VPD information
 912 * Called during probe to display the part number of the
 913 * installed NIC.
 
 914 */
 
 915static void efx_probe_vpd_strings(struct efx_nic *efx)
 916{
 917	struct pci_dev *dev = efx->pci_dev;
 918	unsigned int vpd_size, kw_len;
 919	u8 *vpd_data;
 920	int start;
 
 
 
 
 
 
 
 921
 922	vpd_data = pci_vpd_alloc(dev, &vpd_size);
 923	if (IS_ERR(vpd_data)) {
 924		pci_warn(dev, "Unable to read VPD\n");
 
 925		return;
 926	}
 927
 928	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
 929					     PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
 930	if (start < 0)
 931		pci_err(dev, "Part number not found or incomplete\n");
 932	else
 933		pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
 
 
 
 
 
 
 934
 935	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
 936					     PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
 937	if (start < 0)
 938		pci_err(dev, "Serial number not found or incomplete\n");
 939	else
 940		efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
 941
 942	kfree(vpd_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943}
 944
 945
 946/* Main body of NIC initialisation
 947 * This is called at module load (or hotplug insertion, theoretically).
 948 */
 949static int efx_pci_probe_main(struct efx_nic *efx)
 950{
 951	int rc;
 952
 953	/* Do start-of-day initialisation */
 954	rc = efx_probe_all(efx);
 955	if (rc)
 956		goto fail1;
 957
 958	efx_init_napi(efx);
 959
 960	down_write(&efx->filter_sem);
 961	rc = efx->type->init(efx);
 962	up_write(&efx->filter_sem);
 963	if (rc) {
 964		pci_err(efx->pci_dev, "failed to initialise NIC\n");
 
 965		goto fail3;
 966	}
 967
 968	rc = efx_init_port(efx);
 969	if (rc) {
 970		netif_err(efx, probe, efx->net_dev,
 971			  "failed to initialise port\n");
 972		goto fail4;
 973	}
 974
 975	rc = efx_nic_init_interrupt(efx);
 976	if (rc)
 977		goto fail5;
 978
 979	efx_set_interrupt_affinity(efx);
 980	rc = efx_enable_interrupts(efx);
 981	if (rc)
 982		goto fail6;
 983
 984	return 0;
 985
 986 fail6:
 987	efx_clear_interrupt_affinity(efx);
 988	efx_nic_fini_interrupt(efx);
 989 fail5:
 990	efx_fini_port(efx);
 991 fail4:
 992	efx->type->fini(efx);
 993 fail3:
 994	efx_fini_napi(efx);
 995	efx_remove_all(efx);
 996 fail1:
 997	return rc;
 998}
 999
1000static int efx_pci_probe_post_io(struct efx_nic *efx)
1001{
1002	struct net_device *net_dev = efx->net_dev;
1003	int rc = efx_pci_probe_main(efx);
1004
1005	if (rc)
1006		return rc;
1007
1008	if (efx->type->sriov_init) {
1009		rc = efx->type->sriov_init(efx);
1010		if (rc)
1011			pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n",
1012				rc);
1013	}
1014
1015	/* Determine netdevice features */
1016	net_dev->features |= efx->type->offload_features;
1017
1018	/* Add TSO features */
1019	if (efx->type->tso_versions && efx->type->tso_versions(efx))
1020		net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1021
 
1022	/* Mask for features that also apply to VLAN devices */
1023	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1024				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1025				   NETIF_F_RXCSUM);
1026
1027	/* Determine user configurable features */
1028	net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1029
1030	/* Disable receiving frames with bad FCS, by default. */
1031	net_dev->features &= ~NETIF_F_RXALL;
1032
1033	/* Disable VLAN filtering by default.  It may be enforced if
1034	 * the feature is fixed (i.e. VLAN filters are required to
1035	 * receive VLAN tagged packets due to vPort restrictions).
1036	 */
1037	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1038	net_dev->features |= efx->fixed_features;
1039
1040	net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
1041				NETDEV_XDP_ACT_REDIRECT |
1042				NETDEV_XDP_ACT_NDO_XMIT;
1043
1044	/* devlink creation, registration and lock */
1045	rc = efx_probe_devlink_and_lock(efx);
1046	if (rc)
1047		pci_err(efx->pci_dev, "devlink registration failed");
1048
1049	rc = efx_register_netdev(efx);
1050	efx_probe_devlink_unlock(efx);
1051	if (!rc)
1052		return 0;
1053
1054	efx_pci_remove_main(efx);
1055	return rc;
1056}
1057
1058/* NIC initialisation
1059 *
1060 * This is called at module load (or hotplug insertion,
1061 * theoretically).  It sets up PCI mappings, resets the NIC,
1062 * sets up and registers the network devices with the kernel and hooks
1063 * the interrupt service routine.  It does not prepare the device for
1064 * transmission; this is left to the first time one of the network
1065 * interfaces is brought up (i.e. efx_net_open).
1066 */
1067static int efx_pci_probe(struct pci_dev *pci_dev,
1068			 const struct pci_device_id *entry)
1069{
1070	struct efx_probe_data *probe_data, **probe_ptr;
1071	struct net_device *net_dev;
1072	struct efx_nic *efx;
1073	int rc;
1074
1075	/* Allocate probe data and struct efx_nic */
1076	probe_data = kzalloc(sizeof(*probe_data), GFP_KERNEL);
1077	if (!probe_data)
 
1078		return -ENOMEM;
1079	probe_data->pci_dev = pci_dev;
1080	efx = &probe_data->efx;
1081
1082	/* Allocate and initialise a struct net_device */
1083	net_dev = alloc_etherdev_mq(sizeof(probe_data), EFX_MAX_CORE_TX_QUEUES);
1084	if (!net_dev) {
1085		rc = -ENOMEM;
1086		goto fail0;
1087	}
1088	probe_ptr = netdev_priv(net_dev);
1089	*probe_ptr = probe_data;
1090	efx->net_dev = net_dev;
1091	efx->type = (const struct efx_nic_type *) entry->driver_data;
1092	efx->fixed_features |= NETIF_F_HIGHDMA;
1093
1094	pci_set_drvdata(pci_dev, efx);
1095	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1096	rc = efx_init_struct(efx, pci_dev);
1097	if (rc)
1098		goto fail1;
1099	efx->mdio.dev = net_dev;
1100
1101	pci_info(pci_dev, "Solarflare NIC detected\n");
 
1102
1103	if (!efx->type->is_vf)
1104		efx_probe_vpd_strings(efx);
1105
1106	/* Set up basic I/O (BAR mappings etc) */
1107	rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1108			 efx->type->mem_map_size(efx));
1109	if (rc)
1110		goto fail2;
1111
1112	rc = efx_pci_probe_post_io(efx);
1113	if (rc) {
1114		/* On failure, retry once immediately.
1115		 * If we aborted probe due to a scheduled reset, dismiss it.
1116		 */
1117		efx->reset_pending = 0;
1118		rc = efx_pci_probe_post_io(efx);
1119		if (rc) {
1120			/* On another failure, retry once more
1121			 * after a 50-305ms delay.
1122			 */
1123			unsigned char r;
1124
1125			get_random_bytes(&r, 1);
1126			msleep((unsigned int)r + 50);
1127			efx->reset_pending = 0;
1128			rc = efx_pci_probe_post_io(efx);
1129		}
1130	}
1131	if (rc)
1132		goto fail3;
1133
1134	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1135
1136	/* Try to create MTDs, but allow this to fail */
1137	rtnl_lock();
1138	rc = efx_mtd_probe(efx);
1139	rtnl_unlock();
1140	if (rc && rc != -EPERM)
1141		netif_warn(efx, probe, efx->net_dev,
1142			   "failed to create MTDs (%d)\n", rc);
1143
 
 
1144	if (efx->type->udp_tnl_push_ports)
1145		efx->type->udp_tnl_push_ports(efx);
1146
1147	return 0;
1148
1149 fail3:
1150	efx_fini_io(efx);
1151 fail2:
1152	efx_fini_struct(efx);
1153 fail1:
1154	WARN_ON(rc > 0);
1155	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1156	free_netdev(net_dev);
1157 fail0:
1158	kfree(probe_data);
1159	return rc;
1160}
1161
1162/* efx_pci_sriov_configure returns the actual number of Virtual Functions
1163 * enabled on success
1164 */
1165#ifdef CONFIG_SFC_SRIOV
1166static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1167{
1168	int rc;
1169	struct efx_nic *efx = pci_get_drvdata(dev);
1170
1171	if (efx->type->sriov_configure) {
1172		rc = efx->type->sriov_configure(efx, num_vfs);
1173		if (rc)
1174			return rc;
1175		else
1176			return num_vfs;
1177	} else
1178		return -EOPNOTSUPP;
1179}
1180#endif
1181
1182static int efx_pm_freeze(struct device *dev)
1183{
1184	struct efx_nic *efx = dev_get_drvdata(dev);
1185
1186	rtnl_lock();
1187
1188	if (efx_net_active(efx->state)) {
 
 
1189		efx_device_detach_sync(efx);
1190
1191		efx_stop_all(efx);
1192		efx_disable_interrupts(efx);
1193
1194		efx->state = efx_freeze(efx->state);
1195	}
1196
1197	rtnl_unlock();
1198
1199	return 0;
1200}
1201
1202static void efx_pci_shutdown(struct pci_dev *pci_dev)
1203{
1204	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1205
1206	if (!efx)
1207		return;
1208
1209	efx_pm_freeze(&pci_dev->dev);
1210	pci_disable_device(pci_dev);
1211}
1212
1213static int efx_pm_thaw(struct device *dev)
1214{
1215	int rc;
1216	struct efx_nic *efx = dev_get_drvdata(dev);
1217
1218	rtnl_lock();
1219
1220	if (efx_frozen(efx->state)) {
1221		rc = efx_enable_interrupts(efx);
1222		if (rc)
1223			goto fail;
1224
1225		mutex_lock(&efx->mac_lock);
1226		efx_mcdi_port_reconfigure(efx);
1227		mutex_unlock(&efx->mac_lock);
1228
1229		efx_start_all(efx);
1230
1231		efx_device_attach_if_not_resetting(efx);
1232
1233		efx->state = efx_thaw(efx->state);
1234
1235		efx->type->resume_wol(efx);
1236	}
1237
1238	rtnl_unlock();
1239
1240	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1241	efx_queue_reset_work(efx);
1242
1243	return 0;
1244
1245fail:
1246	rtnl_unlock();
1247
1248	return rc;
1249}
1250
1251static int efx_pm_poweroff(struct device *dev)
1252{
1253	struct pci_dev *pci_dev = to_pci_dev(dev);
1254	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1255
1256	efx->type->fini(efx);
1257
1258	efx->reset_pending = 0;
1259
1260	pci_save_state(pci_dev);
1261	return pci_set_power_state(pci_dev, PCI_D3hot);
1262}
1263
1264/* Used for both resume and restore */
1265static int efx_pm_resume(struct device *dev)
1266{
1267	struct pci_dev *pci_dev = to_pci_dev(dev);
1268	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1269	int rc;
1270
1271	rc = pci_set_power_state(pci_dev, PCI_D0);
1272	if (rc)
1273		return rc;
1274	pci_restore_state(pci_dev);
1275	rc = pci_enable_device(pci_dev);
1276	if (rc)
1277		return rc;
1278	pci_set_master(efx->pci_dev);
1279	rc = efx->type->reset(efx, RESET_TYPE_ALL);
1280	if (rc)
1281		return rc;
1282	down_write(&efx->filter_sem);
1283	rc = efx->type->init(efx);
1284	up_write(&efx->filter_sem);
1285	if (rc)
1286		return rc;
1287	rc = efx_pm_thaw(dev);
1288	return rc;
1289}
1290
1291static int efx_pm_suspend(struct device *dev)
1292{
1293	int rc;
1294
1295	efx_pm_freeze(dev);
1296	rc = efx_pm_poweroff(dev);
1297	if (rc)
1298		efx_pm_resume(dev);
1299	return rc;
1300}
1301
1302static const struct dev_pm_ops efx_pm_ops = {
1303	.suspend	= efx_pm_suspend,
1304	.resume		= efx_pm_resume,
1305	.freeze		= efx_pm_freeze,
1306	.thaw		= efx_pm_thaw,
1307	.poweroff	= efx_pm_poweroff,
1308	.restore	= efx_pm_resume,
1309};
1310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1311static struct pci_driver efx_pci_driver = {
1312	.name		= KBUILD_MODNAME,
1313	.id_table	= efx_pci_table,
1314	.probe		= efx_pci_probe,
1315	.remove		= efx_pci_remove,
1316	.driver.pm	= &efx_pm_ops,
1317	.shutdown	= efx_pci_shutdown,
1318	.err_handler	= &efx_err_handlers,
1319#ifdef CONFIG_SFC_SRIOV
1320	.sriov_configure = efx_pci_sriov_configure,
1321#endif
1322};
1323
1324/**************************************************************************
1325 *
1326 * Kernel module interface
1327 *
1328 *************************************************************************/
1329
 
 
 
 
1330static int __init efx_init_module(void)
1331{
1332	int rc;
1333
1334	printk(KERN_INFO "Solarflare NET driver\n");
1335
1336	rc = register_netdevice_notifier(&efx_netdev_notifier);
1337	if (rc)
1338		goto err_notifier;
1339
1340	rc = efx_create_reset_workqueue();
 
1341	if (rc)
 
 
 
 
 
 
1342		goto err_reset;
 
1343
1344	rc = pci_register_driver(&efx_pci_driver);
1345	if (rc < 0)
1346		goto err_pci;
1347
1348	rc = pci_register_driver(&ef100_pci_driver);
1349	if (rc < 0)
1350		goto err_pci_ef100;
1351
1352	return 0;
1353
1354 err_pci_ef100:
1355	pci_unregister_driver(&efx_pci_driver);
1356 err_pci:
1357	efx_destroy_reset_workqueue();
1358 err_reset:
 
 
 
 
1359	unregister_netdevice_notifier(&efx_netdev_notifier);
1360 err_notifier:
1361	return rc;
1362}
1363
1364static void __exit efx_exit_module(void)
1365{
1366	printk(KERN_INFO "Solarflare NET driver unloading\n");
1367
1368	pci_unregister_driver(&ef100_pci_driver);
1369	pci_unregister_driver(&efx_pci_driver);
1370	efx_destroy_reset_workqueue();
 
 
 
1371	unregister_netdevice_notifier(&efx_netdev_notifier);
1372
1373}
1374
1375module_init(efx_init_module);
1376module_exit(efx_exit_module);
1377
1378MODULE_AUTHOR("Solarflare Communications and "
1379	      "Michael Brown <mbrown@fensystems.co.uk>");
1380MODULE_DESCRIPTION("Solarflare network driver");
1381MODULE_LICENSE("GPL");
1382MODULE_DEVICE_TABLE(pci, efx_pci_table);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2005-2013 Solarflare Communications Inc.
   6 */
   7
 
   8#include <linux/module.h>
   9#include <linux/pci.h>
  10#include <linux/netdevice.h>
  11#include <linux/etherdevice.h>
  12#include <linux/delay.h>
  13#include <linux/notifier.h>
  14#include <linux/ip.h>
  15#include <linux/tcp.h>
  16#include <linux/in.h>
  17#include <linux/ethtool.h>
  18#include <linux/topology.h>
  19#include <linux/gfp.h>
  20#include <linux/aer.h>
  21#include <linux/interrupt.h>
  22#include "net_driver.h"
  23#include <net/gre.h>
  24#include <net/udp_tunnel.h>
  25#include "efx.h"
 
 
 
 
 
  26#include "nic.h"
  27#include "io.h"
  28#include "selftest.h"
  29#include "sriov.h"
 
  30
  31#include "mcdi.h"
  32#include "mcdi_pcol.h"
  33#include "workarounds.h"
  34
  35/**************************************************************************
  36 *
  37 * Type name strings
  38 *
  39 **************************************************************************
  40 */
  41
  42/* Loopback mode names (see LOOPBACK_MODE()) */
  43const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
  44const char *const efx_loopback_mode_names[] = {
  45	[LOOPBACK_NONE]		= "NONE",
  46	[LOOPBACK_DATA]		= "DATAPATH",
  47	[LOOPBACK_GMAC]		= "GMAC",
  48	[LOOPBACK_XGMII]	= "XGMII",
  49	[LOOPBACK_XGXS]		= "XGXS",
  50	[LOOPBACK_XAUI]		= "XAUI",
  51	[LOOPBACK_GMII]		= "GMII",
  52	[LOOPBACK_SGMII]	= "SGMII",
  53	[LOOPBACK_XGBR]		= "XGBR",
  54	[LOOPBACK_XFI]		= "XFI",
  55	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
  56	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
  57	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
  58	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
  59	[LOOPBACK_GPHY]		= "GPHY",
  60	[LOOPBACK_PHYXS]	= "PHYXS",
  61	[LOOPBACK_PCS]		= "PCS",
  62	[LOOPBACK_PMAPMD]	= "PMA/PMD",
  63	[LOOPBACK_XPORT]	= "XPORT",
  64	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
  65	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
  66	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
  67	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
  68	[LOOPBACK_GMII_WS]	= "GMII_WS",
  69	[LOOPBACK_XFI_WS]	= "XFI_WS",
  70	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
  71	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
  72};
  73
  74const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
  75const char *const efx_reset_type_names[] = {
  76	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
  77	[RESET_TYPE_ALL]                = "ALL",
  78	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
  79	[RESET_TYPE_WORLD]              = "WORLD",
  80	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
  81	[RESET_TYPE_DATAPATH]           = "DATAPATH",
  82	[RESET_TYPE_MC_BIST]		= "MC_BIST",
  83	[RESET_TYPE_DISABLE]            = "DISABLE",
  84	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
  85	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
  86	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
  87	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
  88	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
  89	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
  90};
  91
  92/* UDP tunnel type names */
  93static const char *const efx_udp_tunnel_type_names[] = {
  94	[TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN] = "vxlan",
  95	[TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE] = "geneve",
  96};
  97
  98void efx_get_udp_tunnel_type_name(u16 type, char *buf, size_t buflen)
  99{
 100	if (type < ARRAY_SIZE(efx_udp_tunnel_type_names) &&
 101	    efx_udp_tunnel_type_names[type] != NULL)
 102		snprintf(buf, buflen, "%s", efx_udp_tunnel_type_names[type]);
 103	else
 104		snprintf(buf, buflen, "type %d", type);
 105}
 106
 107/* Reset workqueue. If any NIC has a hardware failure then a reset will be
 108 * queued onto this work queue. This is not a per-nic work queue, because
 109 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
 110 */
 111static struct workqueue_struct *reset_workqueue;
 112
 113/* How often and how many times to poll for a reset while waiting for a
 114 * BIST that another function started to complete.
 115 */
 116#define BIST_WAIT_DELAY_MS	100
 117#define BIST_WAIT_DELAY_COUNT	100
 118
 119/**************************************************************************
 120 *
 121 * Configurable values
 122 *
 123 *************************************************************************/
 124
 125/*
 126 * Use separate channels for TX and RX events
 127 *
 128 * Set this to 1 to use separate channels for TX and RX. It allows us
 129 * to control interrupt affinity separately for TX and RX.
 130 *
 131 * This is only used in MSI-X interrupt mode
 132 */
 133bool efx_separate_tx_channels;
 134module_param(efx_separate_tx_channels, bool, 0444);
 135MODULE_PARM_DESC(efx_separate_tx_channels,
 136		 "Use separate channels for TX and RX");
 137
 138/* This is the weight assigned to each of the (per-channel) virtual
 139 * NAPI devices.
 140 */
 141static int napi_weight = 64;
 142
 143/* This is the time (in jiffies) between invocations of the hardware
 144 * monitor.
 145 * On Falcon-based NICs, this will:
 146 * - Check the on-board hardware monitor;
 147 * - Poll the link state and reconfigure the hardware as necessary.
 148 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 149 * chance to start.
 150 */
 151static unsigned int efx_monitor_interval = 1 * HZ;
 152
 153/* Initial interrupt moderation settings.  They can be modified after
 154 * module load with ethtool.
 155 *
 156 * The default for RX should strike a balance between increasing the
 157 * round-trip latency and reducing overhead.
 158 */
 159static unsigned int rx_irq_mod_usec = 60;
 160
 161/* Initial interrupt moderation settings.  They can be modified after
 162 * module load with ethtool.
 163 *
 164 * This default is chosen to ensure that a 10G link does not go idle
 165 * while a TX queue is stopped after it has become full.  A queue is
 166 * restarted when it drops below half full.  The time this takes (assuming
 167 * worst case 3 descriptors per packet and 1024 descriptors) is
 168 *   512 / 3 * 1.2 = 205 usec.
 169 */
 170static unsigned int tx_irq_mod_usec = 150;
 171
 172/* This is the first interrupt mode to try out of:
 173 * 0 => MSI-X
 174 * 1 => MSI
 175 * 2 => legacy
 176 */
 177static unsigned int interrupt_mode;
 178
 179/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 180 * i.e. the number of CPUs among which we may distribute simultaneous
 181 * interrupt handling.
 182 *
 183 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 184 * The default (0) means to assign an interrupt to each core.
 185 */
 186static unsigned int rss_cpus;
 187module_param(rss_cpus, uint, 0444);
 188MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
 189
 190static bool phy_flash_cfg;
 191module_param(phy_flash_cfg, bool, 0644);
 192MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
 193
 194static unsigned irq_adapt_low_thresh = 8000;
 195module_param(irq_adapt_low_thresh, uint, 0644);
 196MODULE_PARM_DESC(irq_adapt_low_thresh,
 197		 "Threshold score for reducing IRQ moderation");
 198
 199static unsigned irq_adapt_high_thresh = 16000;
 200module_param(irq_adapt_high_thresh, uint, 0644);
 201MODULE_PARM_DESC(irq_adapt_high_thresh,
 202		 "Threshold score for increasing IRQ moderation");
 203
 204static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
 205			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
 206			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
 207			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
 208module_param(debug, uint, 0);
 209MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
 210
 211/**************************************************************************
 212 *
 213 * Utility functions and prototypes
 214 *
 215 *************************************************************************/
 216
 217static int efx_soft_enable_interrupts(struct efx_nic *efx);
 218static void efx_soft_disable_interrupts(struct efx_nic *efx);
 219static void efx_remove_channel(struct efx_channel *channel);
 220static void efx_remove_channels(struct efx_nic *efx);
 221static const struct efx_channel_type efx_default_channel_type;
 222static void efx_remove_port(struct efx_nic *efx);
 223static void efx_init_napi_channel(struct efx_channel *channel);
 224static void efx_fini_napi(struct efx_nic *efx);
 225static void efx_fini_napi_channel(struct efx_channel *channel);
 226static void efx_fini_struct(struct efx_nic *efx);
 227static void efx_start_all(struct efx_nic *efx);
 228static void efx_stop_all(struct efx_nic *efx);
 229
 230#define EFX_ASSERT_RESET_SERIALISED(efx)		\
 231	do {						\
 232		if ((efx->state == STATE_READY) ||	\
 233		    (efx->state == STATE_RECOVERY) ||	\
 234		    (efx->state == STATE_DISABLED))	\
 235			ASSERT_RTNL();			\
 236	} while (0)
 237
 238static int efx_check_disabled(struct efx_nic *efx)
 239{
 240	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
 241		netif_err(efx, drv, efx->net_dev,
 242			  "device is disabled due to earlier errors\n");
 243		return -EIO;
 244	}
 245	return 0;
 246}
 247
 248/**************************************************************************
 249 *
 250 * Event queue processing
 251 *
 252 *************************************************************************/
 253
 254/* Process channel's event queue
 255 *
 256 * This function is responsible for processing the event queue of a
 257 * single channel.  The caller must guarantee that this function will
 258 * never be concurrently called more than once on the same channel,
 259 * though different channels may be being processed concurrently.
 260 */
 261static int efx_process_channel(struct efx_channel *channel, int budget)
 262{
 263	struct efx_tx_queue *tx_queue;
 264	struct list_head rx_list;
 265	int spent;
 266
 267	if (unlikely(!channel->enabled))
 268		return 0;
 269
 270	/* Prepare the batch receive list */
 271	EFX_WARN_ON_PARANOID(channel->rx_list != NULL);
 272	INIT_LIST_HEAD(&rx_list);
 273	channel->rx_list = &rx_list;
 274
 275	efx_for_each_channel_tx_queue(tx_queue, channel) {
 276		tx_queue->pkts_compl = 0;
 277		tx_queue->bytes_compl = 0;
 278	}
 279
 280	spent = efx_nic_process_eventq(channel, budget);
 281	if (spent && efx_channel_has_rx_queue(channel)) {
 282		struct efx_rx_queue *rx_queue =
 283			efx_channel_get_rx_queue(channel);
 284
 285		efx_rx_flush_packet(channel);
 286		efx_fast_push_rx_descriptors(rx_queue, true);
 287	}
 288
 289	/* Update BQL */
 290	efx_for_each_channel_tx_queue(tx_queue, channel) {
 291		if (tx_queue->bytes_compl) {
 292			netdev_tx_completed_queue(tx_queue->core_txq,
 293				tx_queue->pkts_compl, tx_queue->bytes_compl);
 294		}
 295	}
 296
 297	/* Receive any packets we queued up */
 298	netif_receive_skb_list(channel->rx_list);
 299	channel->rx_list = NULL;
 300
 301	return spent;
 302}
 303
 304/* NAPI poll handler
 305 *
 306 * NAPI guarantees serialisation of polls of the same device, which
 307 * provides the guarantee required by efx_process_channel().
 308 */
 309static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel)
 310{
 311	int step = efx->irq_mod_step_us;
 312
 313	if (channel->irq_mod_score < irq_adapt_low_thresh) {
 314		if (channel->irq_moderation_us > step) {
 315			channel->irq_moderation_us -= step;
 316			efx->type->push_irq_moderation(channel);
 317		}
 318	} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
 319		if (channel->irq_moderation_us <
 320		    efx->irq_rx_moderation_us) {
 321			channel->irq_moderation_us += step;
 322			efx->type->push_irq_moderation(channel);
 323		}
 324	}
 325
 326	channel->irq_count = 0;
 327	channel->irq_mod_score = 0;
 328}
 329
 330static int efx_poll(struct napi_struct *napi, int budget)
 331{
 332	struct efx_channel *channel =
 333		container_of(napi, struct efx_channel, napi_str);
 334	struct efx_nic *efx = channel->efx;
 335	int spent;
 336
 337	netif_vdbg(efx, intr, efx->net_dev,
 338		   "channel %d NAPI poll executing on CPU %d\n",
 339		   channel->channel, raw_smp_processor_id());
 340
 341	spent = efx_process_channel(channel, budget);
 342
 343	if (spent < budget) {
 344		if (efx_channel_has_rx_queue(channel) &&
 345		    efx->irq_rx_adaptive &&
 346		    unlikely(++channel->irq_count == 1000)) {
 347			efx_update_irq_mod(efx, channel);
 348		}
 349
 350#ifdef CONFIG_RFS_ACCEL
 351		/* Perhaps expire some ARFS filters */
 352		schedule_work(&channel->filter_work);
 353#endif
 354
 355		/* There is no race here; although napi_disable() will
 356		 * only wait for napi_complete(), this isn't a problem
 357		 * since efx_nic_eventq_read_ack() will have no effect if
 358		 * interrupts have already been disabled.
 359		 */
 360		if (napi_complete_done(napi, spent))
 361			efx_nic_eventq_read_ack(channel);
 362	}
 363
 364	return spent;
 365}
 366
 367/* Create event queue
 368 * Event queue memory allocations are done only once.  If the channel
 369 * is reset, the memory buffer will be reused; this guards against
 370 * errors during channel reset and also simplifies interrupt handling.
 371 */
 372static int efx_probe_eventq(struct efx_channel *channel)
 373{
 374	struct efx_nic *efx = channel->efx;
 375	unsigned long entries;
 376
 377	netif_dbg(efx, probe, efx->net_dev,
 378		  "chan %d create event queue\n", channel->channel);
 379
 380	/* Build an event queue with room for one event per tx and rx buffer,
 381	 * plus some extra for link state events and MCDI completions. */
 382	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
 383	EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
 384	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
 385
 386	return efx_nic_probe_eventq(channel);
 387}
 388
 389/* Prepare channel's event queue */
 390static int efx_init_eventq(struct efx_channel *channel)
 391{
 392	struct efx_nic *efx = channel->efx;
 393	int rc;
 394
 395	EFX_WARN_ON_PARANOID(channel->eventq_init);
 396
 397	netif_dbg(efx, drv, efx->net_dev,
 398		  "chan %d init event queue\n", channel->channel);
 399
 400	rc = efx_nic_init_eventq(channel);
 401	if (rc == 0) {
 402		efx->type->push_irq_moderation(channel);
 403		channel->eventq_read_ptr = 0;
 404		channel->eventq_init = true;
 405	}
 406	return rc;
 407}
 408
 409/* Enable event queue processing and NAPI */
 410void efx_start_eventq(struct efx_channel *channel)
 411{
 412	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
 413		  "chan %d start event queue\n", channel->channel);
 414
 415	/* Make sure the NAPI handler sees the enabled flag set */
 416	channel->enabled = true;
 417	smp_wmb();
 418
 419	napi_enable(&channel->napi_str);
 420	efx_nic_eventq_read_ack(channel);
 421}
 422
 423/* Disable event queue processing and NAPI */
 424void efx_stop_eventq(struct efx_channel *channel)
 425{
 426	if (!channel->enabled)
 427		return;
 428
 429	napi_disable(&channel->napi_str);
 430	channel->enabled = false;
 431}
 432
 433static void efx_fini_eventq(struct efx_channel *channel)
 434{
 435	if (!channel->eventq_init)
 436		return;
 437
 438	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 439		  "chan %d fini event queue\n", channel->channel);
 440
 441	efx_nic_fini_eventq(channel);
 442	channel->eventq_init = false;
 443}
 444
 445static void efx_remove_eventq(struct efx_channel *channel)
 446{
 447	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 448		  "chan %d remove event queue\n", channel->channel);
 449
 450	efx_nic_remove_eventq(channel);
 451}
 452
 453/**************************************************************************
 454 *
 455 * Channel handling
 456 *
 457 *************************************************************************/
 458
 459/* Allocate and initialise a channel structure. */
 460static struct efx_channel *
 461efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
 462{
 463	struct efx_channel *channel;
 464	struct efx_rx_queue *rx_queue;
 465	struct efx_tx_queue *tx_queue;
 466	int j;
 467
 468	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
 469	if (!channel)
 470		return NULL;
 471
 472	channel->efx = efx;
 473	channel->channel = i;
 474	channel->type = &efx_default_channel_type;
 475
 476	for (j = 0; j < EFX_TXQ_TYPES; j++) {
 477		tx_queue = &channel->tx_queue[j];
 478		tx_queue->efx = efx;
 479		tx_queue->queue = i * EFX_TXQ_TYPES + j;
 480		tx_queue->channel = channel;
 481	}
 482
 483#ifdef CONFIG_RFS_ACCEL
 484	INIT_WORK(&channel->filter_work, efx_filter_rfs_expire);
 485#endif
 486
 487	rx_queue = &channel->rx_queue;
 488	rx_queue->efx = efx;
 489	timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0);
 490
 491	return channel;
 492}
 493
 494/* Allocate and initialise a channel structure, copying parameters
 495 * (but not resources) from an old channel structure.
 496 */
 497static struct efx_channel *
 498efx_copy_channel(const struct efx_channel *old_channel)
 499{
 500	struct efx_channel *channel;
 501	struct efx_rx_queue *rx_queue;
 502	struct efx_tx_queue *tx_queue;
 503	int j;
 504
 505	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
 506	if (!channel)
 507		return NULL;
 508
 509	*channel = *old_channel;
 510
 511	channel->napi_dev = NULL;
 512	INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
 513	channel->napi_str.napi_id = 0;
 514	channel->napi_str.state = 0;
 515	memset(&channel->eventq, 0, sizeof(channel->eventq));
 516
 517	for (j = 0; j < EFX_TXQ_TYPES; j++) {
 518		tx_queue = &channel->tx_queue[j];
 519		if (tx_queue->channel)
 520			tx_queue->channel = channel;
 521		tx_queue->buffer = NULL;
 522		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
 523	}
 524
 525	rx_queue = &channel->rx_queue;
 526	rx_queue->buffer = NULL;
 527	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
 528	timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0);
 529#ifdef CONFIG_RFS_ACCEL
 530	INIT_WORK(&channel->filter_work, efx_filter_rfs_expire);
 531#endif
 532
 533	return channel;
 534}
 535
 536static int efx_probe_channel(struct efx_channel *channel)
 537{
 538	struct efx_tx_queue *tx_queue;
 539	struct efx_rx_queue *rx_queue;
 540	int rc;
 541
 542	netif_dbg(channel->efx, probe, channel->efx->net_dev,
 543		  "creating channel %d\n", channel->channel);
 544
 545	rc = channel->type->pre_probe(channel);
 546	if (rc)
 547		goto fail;
 548
 549	rc = efx_probe_eventq(channel);
 550	if (rc)
 551		goto fail;
 552
 553	efx_for_each_channel_tx_queue(tx_queue, channel) {
 554		rc = efx_probe_tx_queue(tx_queue);
 555		if (rc)
 556			goto fail;
 557	}
 558
 559	efx_for_each_channel_rx_queue(rx_queue, channel) {
 560		rc = efx_probe_rx_queue(rx_queue);
 561		if (rc)
 562			goto fail;
 563	}
 564
 565	channel->rx_list = NULL;
 566
 567	return 0;
 568
 569fail:
 570	efx_remove_channel(channel);
 571	return rc;
 572}
 573
 574static void
 575efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
 576{
 577	struct efx_nic *efx = channel->efx;
 578	const char *type;
 579	int number;
 580
 581	number = channel->channel;
 582	if (efx->tx_channel_offset == 0) {
 583		type = "";
 584	} else if (channel->channel < efx->tx_channel_offset) {
 585		type = "-rx";
 586	} else {
 587		type = "-tx";
 588		number -= efx->tx_channel_offset;
 589	}
 590	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
 591}
 592
 593static void efx_set_channel_names(struct efx_nic *efx)
 594{
 595	struct efx_channel *channel;
 596
 597	efx_for_each_channel(channel, efx)
 598		channel->type->get_name(channel,
 599					efx->msi_context[channel->channel].name,
 600					sizeof(efx->msi_context[0].name));
 601}
 602
 603static int efx_probe_channels(struct efx_nic *efx)
 604{
 605	struct efx_channel *channel;
 606	int rc;
 607
 608	/* Restart special buffer allocation */
 609	efx->next_buffer_table = 0;
 610
 611	/* Probe channels in reverse, so that any 'extra' channels
 612	 * use the start of the buffer table. This allows the traffic
 613	 * channels to be resized without moving them or wasting the
 614	 * entries before them.
 615	 */
 616	efx_for_each_channel_rev(channel, efx) {
 617		rc = efx_probe_channel(channel);
 618		if (rc) {
 619			netif_err(efx, probe, efx->net_dev,
 620				  "failed to create channel %d\n",
 621				  channel->channel);
 622			goto fail;
 623		}
 624	}
 625	efx_set_channel_names(efx);
 626
 627	return 0;
 628
 629fail:
 630	efx_remove_channels(efx);
 631	return rc;
 632}
 633
 634/* Channels are shutdown and reinitialised whilst the NIC is running
 635 * to propagate configuration changes (mtu, checksum offload), or
 636 * to clear hardware error conditions
 637 */
 638static void efx_start_datapath(struct efx_nic *efx)
 639{
 640	netdev_features_t old_features = efx->net_dev->features;
 641	bool old_rx_scatter = efx->rx_scatter;
 642	struct efx_tx_queue *tx_queue;
 643	struct efx_rx_queue *rx_queue;
 644	struct efx_channel *channel;
 645	size_t rx_buf_len;
 646
 647	/* Calculate the rx buffer allocation parameters required to
 648	 * support the current MTU, including padding for header
 649	 * alignment and overruns.
 650	 */
 651	efx->rx_dma_len = (efx->rx_prefix_size +
 652			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
 653			   efx->type->rx_buffer_padding);
 654	rx_buf_len = (sizeof(struct efx_rx_page_state) +
 655		      efx->rx_ip_align + efx->rx_dma_len);
 656	if (rx_buf_len <= PAGE_SIZE) {
 657		efx->rx_scatter = efx->type->always_rx_scatter;
 658		efx->rx_buffer_order = 0;
 659	} else if (efx->type->can_rx_scatter) {
 660		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
 661		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
 662			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
 663				       EFX_RX_BUF_ALIGNMENT) >
 664			     PAGE_SIZE);
 665		efx->rx_scatter = true;
 666		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
 667		efx->rx_buffer_order = 0;
 668	} else {
 669		efx->rx_scatter = false;
 670		efx->rx_buffer_order = get_order(rx_buf_len);
 671	}
 672
 673	efx_rx_config_page_split(efx);
 674	if (efx->rx_buffer_order)
 675		netif_dbg(efx, drv, efx->net_dev,
 676			  "RX buf len=%u; page order=%u batch=%u\n",
 677			  efx->rx_dma_len, efx->rx_buffer_order,
 678			  efx->rx_pages_per_batch);
 679	else
 680		netif_dbg(efx, drv, efx->net_dev,
 681			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
 682			  efx->rx_dma_len, efx->rx_page_buf_step,
 683			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
 684
 685	/* Restore previously fixed features in hw_features and remove
 686	 * features which are fixed now
 687	 */
 688	efx->net_dev->hw_features |= efx->net_dev->features;
 689	efx->net_dev->hw_features &= ~efx->fixed_features;
 690	efx->net_dev->features |= efx->fixed_features;
 691	if (efx->net_dev->features != old_features)
 692		netdev_features_change(efx->net_dev);
 693
 694	/* RX filters may also have scatter-enabled flags */
 695	if (efx->rx_scatter != old_rx_scatter)
 696		efx->type->filter_update_rx_scatter(efx);
 697
 698	/* We must keep at least one descriptor in a TX ring empty.
 699	 * We could avoid this when the queue size does not exactly
 700	 * match the hardware ring size, but it's not that important.
 701	 * Therefore we stop the queue when one more skb might fill
 702	 * the ring completely.  We wake it when half way back to
 703	 * empty.
 704	 */
 705	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
 706	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
 707
 708	/* Initialise the channels */
 709	efx_for_each_channel(channel, efx) {
 710		efx_for_each_channel_tx_queue(tx_queue, channel) {
 711			efx_init_tx_queue(tx_queue);
 712			atomic_inc(&efx->active_queues);
 713		}
 714
 715		efx_for_each_channel_rx_queue(rx_queue, channel) {
 716			efx_init_rx_queue(rx_queue);
 717			atomic_inc(&efx->active_queues);
 718			efx_stop_eventq(channel);
 719			efx_fast_push_rx_descriptors(rx_queue, false);
 720			efx_start_eventq(channel);
 721		}
 722
 723		WARN_ON(channel->rx_pkt_n_frags);
 724	}
 725
 726	efx_ptp_start_datapath(efx);
 727
 728	if (netif_device_present(efx->net_dev))
 729		netif_tx_wake_all_queues(efx->net_dev);
 730}
 731
 732static void efx_stop_datapath(struct efx_nic *efx)
 733{
 734	struct efx_channel *channel;
 735	struct efx_tx_queue *tx_queue;
 736	struct efx_rx_queue *rx_queue;
 737	int rc;
 738
 739	EFX_ASSERT_RESET_SERIALISED(efx);
 740	BUG_ON(efx->port_enabled);
 741
 742	efx_ptp_stop_datapath(efx);
 743
 744	/* Stop RX refill */
 745	efx_for_each_channel(channel, efx) {
 746		efx_for_each_channel_rx_queue(rx_queue, channel)
 747			rx_queue->refill_enabled = false;
 748	}
 749
 750	efx_for_each_channel(channel, efx) {
 751		/* RX packet processing is pipelined, so wait for the
 752		 * NAPI handler to complete.  At least event queue 0
 753		 * might be kept active by non-data events, so don't
 754		 * use napi_synchronize() but actually disable NAPI
 755		 * temporarily.
 756		 */
 757		if (efx_channel_has_rx_queue(channel)) {
 758			efx_stop_eventq(channel);
 759			efx_start_eventq(channel);
 760		}
 761	}
 762
 763	rc = efx->type->fini_dmaq(efx);
 764	if (rc) {
 765		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
 766	} else {
 767		netif_dbg(efx, drv, efx->net_dev,
 768			  "successfully flushed all queues\n");
 769	}
 770
 771	efx_for_each_channel(channel, efx) {
 772		efx_for_each_channel_rx_queue(rx_queue, channel)
 773			efx_fini_rx_queue(rx_queue);
 774		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
 775			efx_fini_tx_queue(tx_queue);
 776	}
 777}
 778
 779static void efx_remove_channel(struct efx_channel *channel)
 780{
 781	struct efx_tx_queue *tx_queue;
 782	struct efx_rx_queue *rx_queue;
 783
 784	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 785		  "destroy chan %d\n", channel->channel);
 786
 787	efx_for_each_channel_rx_queue(rx_queue, channel)
 788		efx_remove_rx_queue(rx_queue);
 789	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
 790		efx_remove_tx_queue(tx_queue);
 791	efx_remove_eventq(channel);
 792	channel->type->post_remove(channel);
 793}
 794
 795static void efx_remove_channels(struct efx_nic *efx)
 796{
 797	struct efx_channel *channel;
 798
 799	efx_for_each_channel(channel, efx)
 800		efx_remove_channel(channel);
 801}
 802
 803int
 804efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
 805{
 806	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
 807	u32 old_rxq_entries, old_txq_entries;
 808	unsigned i, next_buffer_table = 0;
 809	int rc, rc2;
 810
 811	rc = efx_check_disabled(efx);
 812	if (rc)
 813		return rc;
 814
 815	/* Not all channels should be reallocated. We must avoid
 816	 * reallocating their buffer table entries.
 817	 */
 818	efx_for_each_channel(channel, efx) {
 819		struct efx_rx_queue *rx_queue;
 820		struct efx_tx_queue *tx_queue;
 821
 822		if (channel->type->copy)
 823			continue;
 824		next_buffer_table = max(next_buffer_table,
 825					channel->eventq.index +
 826					channel->eventq.entries);
 827		efx_for_each_channel_rx_queue(rx_queue, channel)
 828			next_buffer_table = max(next_buffer_table,
 829						rx_queue->rxd.index +
 830						rx_queue->rxd.entries);
 831		efx_for_each_channel_tx_queue(tx_queue, channel)
 832			next_buffer_table = max(next_buffer_table,
 833						tx_queue->txd.index +
 834						tx_queue->txd.entries);
 835	}
 836
 837	efx_device_detach_sync(efx);
 838	efx_stop_all(efx);
 839	efx_soft_disable_interrupts(efx);
 840
 841	/* Clone channels (where possible) */
 842	memset(other_channel, 0, sizeof(other_channel));
 843	for (i = 0; i < efx->n_channels; i++) {
 844		channel = efx->channel[i];
 845		if (channel->type->copy)
 846			channel = channel->type->copy(channel);
 847		if (!channel) {
 848			rc = -ENOMEM;
 849			goto out;
 850		}
 851		other_channel[i] = channel;
 852	}
 853
 854	/* Swap entry counts and channel pointers */
 855	old_rxq_entries = efx->rxq_entries;
 856	old_txq_entries = efx->txq_entries;
 857	efx->rxq_entries = rxq_entries;
 858	efx->txq_entries = txq_entries;
 859	for (i = 0; i < efx->n_channels; i++) {
 860		channel = efx->channel[i];
 861		efx->channel[i] = other_channel[i];
 862		other_channel[i] = channel;
 863	}
 864
 865	/* Restart buffer table allocation */
 866	efx->next_buffer_table = next_buffer_table;
 867
 868	for (i = 0; i < efx->n_channels; i++) {
 869		channel = efx->channel[i];
 870		if (!channel->type->copy)
 871			continue;
 872		rc = efx_probe_channel(channel);
 873		if (rc)
 874			goto rollback;
 875		efx_init_napi_channel(efx->channel[i]);
 876	}
 877
 878out:
 879	/* Destroy unused channel structures */
 880	for (i = 0; i < efx->n_channels; i++) {
 881		channel = other_channel[i];
 882		if (channel && channel->type->copy) {
 883			efx_fini_napi_channel(channel);
 884			efx_remove_channel(channel);
 885			kfree(channel);
 886		}
 887	}
 888
 889	rc2 = efx_soft_enable_interrupts(efx);
 890	if (rc2) {
 891		rc = rc ? rc : rc2;
 892		netif_err(efx, drv, efx->net_dev,
 893			  "unable to restart interrupts on channel reallocation\n");
 894		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
 895	} else {
 896		efx_start_all(efx);
 897		efx_device_attach_if_not_resetting(efx);
 898	}
 899	return rc;
 900
 901rollback:
 902	/* Swap back */
 903	efx->rxq_entries = old_rxq_entries;
 904	efx->txq_entries = old_txq_entries;
 905	for (i = 0; i < efx->n_channels; i++) {
 906		channel = efx->channel[i];
 907		efx->channel[i] = other_channel[i];
 908		other_channel[i] = channel;
 909	}
 910	goto out;
 911}
 912
 913void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
 914{
 915	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
 916}
 917
 918static bool efx_default_channel_want_txqs(struct efx_channel *channel)
 919{
 920	return channel->channel - channel->efx->tx_channel_offset <
 921		channel->efx->n_tx_channels;
 922}
 923
 924static const struct efx_channel_type efx_default_channel_type = {
 925	.pre_probe		= efx_channel_dummy_op_int,
 926	.post_remove		= efx_channel_dummy_op_void,
 927	.get_name		= efx_get_channel_name,
 928	.copy			= efx_copy_channel,
 929	.want_txqs		= efx_default_channel_want_txqs,
 930	.keep_eventq		= false,
 931	.want_pio		= true,
 932};
 933
 934int efx_channel_dummy_op_int(struct efx_channel *channel)
 935{
 936	return 0;
 937}
 938
 939void efx_channel_dummy_op_void(struct efx_channel *channel)
 940{
 941}
 942
 943/**************************************************************************
 944 *
 945 * Port handling
 946 *
 947 **************************************************************************/
 948
 949/* This ensures that the kernel is kept informed (via
 950 * netif_carrier_on/off) of the link status, and also maintains the
 951 * link status's stop on the port's TX queue.
 952 */
 953void efx_link_status_changed(struct efx_nic *efx)
 954{
 955	struct efx_link_state *link_state = &efx->link_state;
 956
 957	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
 958	 * that no events are triggered between unregister_netdev() and the
 959	 * driver unloading. A more general condition is that NETDEV_CHANGE
 960	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
 961	if (!netif_running(efx->net_dev))
 962		return;
 963
 964	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
 965		efx->n_link_state_changes++;
 966
 967		if (link_state->up)
 968			netif_carrier_on(efx->net_dev);
 969		else
 970			netif_carrier_off(efx->net_dev);
 971	}
 972
 973	/* Status message for kernel log */
 974	if (link_state->up)
 975		netif_info(efx, link, efx->net_dev,
 976			   "link up at %uMbps %s-duplex (MTU %d)\n",
 977			   link_state->speed, link_state->fd ? "full" : "half",
 978			   efx->net_dev->mtu);
 979	else
 980		netif_info(efx, link, efx->net_dev, "link down\n");
 981}
 982
 983void efx_link_set_advertising(struct efx_nic *efx,
 984			      const unsigned long *advertising)
 985{
 986	memcpy(efx->link_advertising, advertising,
 987	       sizeof(__ETHTOOL_DECLARE_LINK_MODE_MASK()));
 988
 989	efx->link_advertising[0] |= ADVERTISED_Autoneg;
 990	if (advertising[0] & ADVERTISED_Pause)
 991		efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
 992	else
 993		efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
 994	if (advertising[0] & ADVERTISED_Asym_Pause)
 995		efx->wanted_fc ^= EFX_FC_TX;
 996}
 997
 998/* Equivalent to efx_link_set_advertising with all-zeroes, except does not
 999 * force the Autoneg bit on.
1000 */
1001void efx_link_clear_advertising(struct efx_nic *efx)
1002{
1003	bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS);
1004	efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
1005}
1006
1007void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
1008{
1009	efx->wanted_fc = wanted_fc;
1010	if (efx->link_advertising[0]) {
1011		if (wanted_fc & EFX_FC_RX)
1012			efx->link_advertising[0] |= (ADVERTISED_Pause |
1013						     ADVERTISED_Asym_Pause);
1014		else
1015			efx->link_advertising[0] &= ~(ADVERTISED_Pause |
1016						      ADVERTISED_Asym_Pause);
1017		if (wanted_fc & EFX_FC_TX)
1018			efx->link_advertising[0] ^= ADVERTISED_Asym_Pause;
1019	}
1020}
1021
1022static void efx_fini_port(struct efx_nic *efx);
1023
1024/* We assume that efx->type->reconfigure_mac will always try to sync RX
1025 * filters and therefore needs to read-lock the filter table against freeing
1026 */
1027void efx_mac_reconfigure(struct efx_nic *efx)
1028{
1029	down_read(&efx->filter_sem);
1030	efx->type->reconfigure_mac(efx);
1031	up_read(&efx->filter_sem);
1032}
1033
1034/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
1035 * the MAC appropriately. All other PHY configuration changes are pushed
1036 * through phy_op->set_settings(), and pushed asynchronously to the MAC
1037 * through efx_monitor().
1038 *
1039 * Callers must hold the mac_lock
1040 */
1041int __efx_reconfigure_port(struct efx_nic *efx)
1042{
1043	enum efx_phy_mode phy_mode;
1044	int rc;
1045
1046	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1047
1048	/* Disable PHY transmit in mac level loopbacks */
1049	phy_mode = efx->phy_mode;
1050	if (LOOPBACK_INTERNAL(efx))
1051		efx->phy_mode |= PHY_MODE_TX_DISABLED;
1052	else
1053		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
1054
1055	rc = efx->type->reconfigure_port(efx);
1056
1057	if (rc)
1058		efx->phy_mode = phy_mode;
1059
1060	return rc;
1061}
1062
1063/* Reinitialise the MAC to pick up new PHY settings, even if the port is
1064 * disabled. */
1065int efx_reconfigure_port(struct efx_nic *efx)
1066{
1067	int rc;
1068
1069	EFX_ASSERT_RESET_SERIALISED(efx);
1070
1071	mutex_lock(&efx->mac_lock);
1072	rc = __efx_reconfigure_port(efx);
1073	mutex_unlock(&efx->mac_lock);
1074
1075	return rc;
1076}
1077
1078/* Asynchronous work item for changing MAC promiscuity and multicast
1079 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1080 * MAC directly. */
1081static void efx_mac_work(struct work_struct *data)
1082{
1083	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1084
1085	mutex_lock(&efx->mac_lock);
1086	if (efx->port_enabled)
1087		efx_mac_reconfigure(efx);
1088	mutex_unlock(&efx->mac_lock);
1089}
1090
1091static int efx_probe_port(struct efx_nic *efx)
1092{
1093	int rc;
1094
1095	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1096
1097	if (phy_flash_cfg)
1098		efx->phy_mode = PHY_MODE_SPECIAL;
1099
1100	/* Connect up MAC/PHY operations table */
1101	rc = efx->type->probe_port(efx);
1102	if (rc)
1103		return rc;
1104
1105	/* Initialise MAC address to permanent address */
1106	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1107
1108	return 0;
1109}
1110
1111static int efx_init_port(struct efx_nic *efx)
1112{
1113	int rc;
1114
1115	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1116
1117	mutex_lock(&efx->mac_lock);
1118
1119	rc = efx->phy_op->init(efx);
1120	if (rc)
1121		goto fail1;
1122
1123	efx->port_initialized = true;
1124
1125	/* Reconfigure the MAC before creating dma queues (required for
1126	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1127	efx_mac_reconfigure(efx);
1128
1129	/* Ensure the PHY advertises the correct flow control settings */
1130	rc = efx->phy_op->reconfigure(efx);
1131	if (rc && rc != -EPERM)
1132		goto fail2;
1133
1134	mutex_unlock(&efx->mac_lock);
1135	return 0;
1136
1137fail2:
1138	efx->phy_op->fini(efx);
1139fail1:
1140	mutex_unlock(&efx->mac_lock);
1141	return rc;
1142}
1143
1144static void efx_start_port(struct efx_nic *efx)
1145{
1146	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1147	BUG_ON(efx->port_enabled);
1148
1149	mutex_lock(&efx->mac_lock);
1150	efx->port_enabled = true;
1151
1152	/* Ensure MAC ingress/egress is enabled */
1153	efx_mac_reconfigure(efx);
1154
1155	mutex_unlock(&efx->mac_lock);
1156}
1157
1158/* Cancel work for MAC reconfiguration, periodic hardware monitoring
1159 * and the async self-test, wait for them to finish and prevent them
1160 * being scheduled again.  This doesn't cover online resets, which
1161 * should only be cancelled when removing the device.
1162 */
1163static void efx_stop_port(struct efx_nic *efx)
1164{
1165	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1166
1167	EFX_ASSERT_RESET_SERIALISED(efx);
1168
1169	mutex_lock(&efx->mac_lock);
1170	efx->port_enabled = false;
1171	mutex_unlock(&efx->mac_lock);
1172
1173	/* Serialise against efx_set_multicast_list() */
1174	netif_addr_lock_bh(efx->net_dev);
1175	netif_addr_unlock_bh(efx->net_dev);
1176
1177	cancel_delayed_work_sync(&efx->monitor_work);
1178	efx_selftest_async_cancel(efx);
1179	cancel_work_sync(&efx->mac_work);
1180}
1181
1182static void efx_fini_port(struct efx_nic *efx)
1183{
1184	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1185
1186	if (!efx->port_initialized)
1187		return;
1188
1189	efx->phy_op->fini(efx);
1190	efx->port_initialized = false;
1191
1192	efx->link_state.up = false;
1193	efx_link_status_changed(efx);
1194}
1195
1196static void efx_remove_port(struct efx_nic *efx)
1197{
1198	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1199
1200	efx->type->remove_port(efx);
1201}
1202
1203/**************************************************************************
1204 *
1205 * NIC handling
1206 *
1207 **************************************************************************/
1208
1209static LIST_HEAD(efx_primary_list);
1210static LIST_HEAD(efx_unassociated_list);
1211
1212static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1213{
1214	return left->type == right->type &&
1215		left->vpd_sn && right->vpd_sn &&
1216		!strcmp(left->vpd_sn, right->vpd_sn);
1217}
1218
1219static void efx_associate(struct efx_nic *efx)
1220{
1221	struct efx_nic *other, *next;
1222
1223	if (efx->primary == efx) {
1224		/* Adding primary function; look for secondaries */
1225
1226		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1227		list_add_tail(&efx->node, &efx_primary_list);
1228
1229		list_for_each_entry_safe(other, next, &efx_unassociated_list,
1230					 node) {
1231			if (efx_same_controller(efx, other)) {
1232				list_del(&other->node);
1233				netif_dbg(other, probe, other->net_dev,
1234					  "moving to secondary list of %s %s\n",
1235					  pci_name(efx->pci_dev),
1236					  efx->net_dev->name);
1237				list_add_tail(&other->node,
1238					      &efx->secondary_list);
1239				other->primary = efx;
1240			}
1241		}
1242	} else {
1243		/* Adding secondary function; look for primary */
1244
1245		list_for_each_entry(other, &efx_primary_list, node) {
1246			if (efx_same_controller(efx, other)) {
1247				netif_dbg(efx, probe, efx->net_dev,
1248					  "adding to secondary list of %s %s\n",
1249					  pci_name(other->pci_dev),
1250					  other->net_dev->name);
1251				list_add_tail(&efx->node,
1252					      &other->secondary_list);
1253				efx->primary = other;
1254				return;
1255			}
1256		}
1257
1258		netif_dbg(efx, probe, efx->net_dev,
1259			  "adding to unassociated list\n");
1260		list_add_tail(&efx->node, &efx_unassociated_list);
1261	}
1262}
1263
1264static void efx_dissociate(struct efx_nic *efx)
1265{
1266	struct efx_nic *other, *next;
1267
1268	list_del(&efx->node);
1269	efx->primary = NULL;
1270
1271	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1272		list_del(&other->node);
1273		netif_dbg(other, probe, other->net_dev,
1274			  "moving to unassociated list\n");
1275		list_add_tail(&other->node, &efx_unassociated_list);
1276		other->primary = NULL;
1277	}
1278}
1279
1280/* This configures the PCI device to enable I/O and DMA. */
1281static int efx_init_io(struct efx_nic *efx)
1282{
1283	struct pci_dev *pci_dev = efx->pci_dev;
1284	dma_addr_t dma_mask = efx->type->max_dma_mask;
1285	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1286	int rc, bar;
1287
1288	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1289
1290	bar = efx->type->mem_bar(efx);
1291
1292	rc = pci_enable_device(pci_dev);
1293	if (rc) {
1294		netif_err(efx, probe, efx->net_dev,
1295			  "failed to enable PCI device\n");
1296		goto fail1;
1297	}
1298
1299	pci_set_master(pci_dev);
1300
1301	/* Set the PCI DMA mask.  Try all possibilities from our genuine mask
1302	 * down to 32 bits, because some architectures will allow 40 bit
1303	 * masks event though they reject 46 bit masks.
1304	 */
1305	while (dma_mask > 0x7fffffffUL) {
1306		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1307		if (rc == 0)
1308			break;
1309		dma_mask >>= 1;
1310	}
1311	if (rc) {
1312		netif_err(efx, probe, efx->net_dev,
1313			  "could not find a suitable DMA mask\n");
1314		goto fail2;
1315	}
1316	netif_dbg(efx, probe, efx->net_dev,
1317		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1318
1319	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1320	rc = pci_request_region(pci_dev, bar, "sfc");
1321	if (rc) {
1322		netif_err(efx, probe, efx->net_dev,
1323			  "request for memory BAR failed\n");
1324		rc = -EIO;
1325		goto fail3;
1326	}
1327	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1328	if (!efx->membase) {
1329		netif_err(efx, probe, efx->net_dev,
1330			  "could not map memory BAR at %llx+%x\n",
1331			  (unsigned long long)efx->membase_phys, mem_map_size);
1332		rc = -ENOMEM;
1333		goto fail4;
1334	}
1335	netif_dbg(efx, probe, efx->net_dev,
1336		  "memory BAR at %llx+%x (virtual %p)\n",
1337		  (unsigned long long)efx->membase_phys, mem_map_size,
1338		  efx->membase);
1339
1340	return 0;
1341
1342 fail4:
1343	pci_release_region(efx->pci_dev, bar);
1344 fail3:
1345	efx->membase_phys = 0;
1346 fail2:
1347	pci_disable_device(efx->pci_dev);
1348 fail1:
1349	return rc;
1350}
1351
1352static void efx_fini_io(struct efx_nic *efx)
1353{
1354	int bar;
1355
1356	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1357
1358	if (efx->membase) {
1359		iounmap(efx->membase);
1360		efx->membase = NULL;
1361	}
1362
1363	if (efx->membase_phys) {
1364		bar = efx->type->mem_bar(efx);
1365		pci_release_region(efx->pci_dev, bar);
1366		efx->membase_phys = 0;
1367	}
1368
1369	/* Don't disable bus-mastering if VFs are assigned */
1370	if (!pci_vfs_assigned(efx->pci_dev))
1371		pci_disable_device(efx->pci_dev);
1372}
1373
1374void efx_set_default_rx_indir_table(struct efx_nic *efx,
1375				    struct efx_rss_context *ctx)
1376{
1377	size_t i;
1378
1379	for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
1380		ctx->rx_indir_table[i] =
1381			ethtool_rxfh_indir_default(i, efx->rss_spread);
1382}
1383
1384static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1385{
1386	cpumask_var_t thread_mask;
1387	unsigned int count;
1388	int cpu;
1389
1390	if (rss_cpus) {
1391		count = rss_cpus;
1392	} else {
1393		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1394			netif_warn(efx, probe, efx->net_dev,
1395				   "RSS disabled due to allocation failure\n");
1396			return 1;
1397		}
1398
1399		count = 0;
1400		for_each_online_cpu(cpu) {
1401			if (!cpumask_test_cpu(cpu, thread_mask)) {
1402				++count;
1403				cpumask_or(thread_mask, thread_mask,
1404					   topology_sibling_cpumask(cpu));
1405			}
1406		}
1407
1408		free_cpumask_var(thread_mask);
1409	}
1410
1411	if (count > EFX_MAX_RX_QUEUES) {
1412		netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1413			       "Reducing number of rx queues from %u to %u.\n",
1414			       count, EFX_MAX_RX_QUEUES);
1415		count = EFX_MAX_RX_QUEUES;
1416	}
1417
1418	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1419	 * table entries that are inaccessible to VFs
1420	 */
1421#ifdef CONFIG_SFC_SRIOV
1422	if (efx->type->sriov_wanted) {
1423		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1424		    count > efx_vf_size(efx)) {
1425			netif_warn(efx, probe, efx->net_dev,
1426				   "Reducing number of RSS channels from %u to %u for "
1427				   "VF support. Increase vf-msix-limit to use more "
1428				   "channels on the PF.\n",
1429				   count, efx_vf_size(efx));
1430			count = efx_vf_size(efx);
1431		}
1432	}
1433#endif
1434
1435	return count;
1436}
1437
1438/* Probe the number and type of interrupts we are able to obtain, and
1439 * the resulting numbers of channels and RX queues.
1440 */
1441static int efx_probe_interrupts(struct efx_nic *efx)
1442{
1443	unsigned int extra_channels = 0;
1444	unsigned int i, j;
1445	int rc;
1446
1447	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1448		if (efx->extra_channel_type[i])
1449			++extra_channels;
1450
1451	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1452		struct msix_entry xentries[EFX_MAX_CHANNELS];
1453		unsigned int n_channels;
1454
1455		n_channels = efx_wanted_parallelism(efx);
1456		if (efx_separate_tx_channels)
1457			n_channels *= 2;
1458		n_channels += extra_channels;
1459		n_channels = min(n_channels, efx->max_channels);
1460
1461		for (i = 0; i < n_channels; i++)
1462			xentries[i].entry = i;
1463		rc = pci_enable_msix_range(efx->pci_dev,
1464					   xentries, 1, n_channels);
1465		if (rc < 0) {
1466			/* Fall back to single channel MSI */
1467			netif_err(efx, drv, efx->net_dev,
1468				  "could not enable MSI-X\n");
1469			if (efx->type->min_interrupt_mode >= EFX_INT_MODE_MSI)
1470				efx->interrupt_mode = EFX_INT_MODE_MSI;
1471			else
1472				return rc;
1473		} else if (rc < n_channels) {
1474			netif_err(efx, drv, efx->net_dev,
1475				  "WARNING: Insufficient MSI-X vectors"
1476				  " available (%d < %u).\n", rc, n_channels);
1477			netif_err(efx, drv, efx->net_dev,
1478				  "WARNING: Performance may be reduced.\n");
1479			n_channels = rc;
1480		}
1481
1482		if (rc > 0) {
1483			efx->n_channels = n_channels;
1484			if (n_channels > extra_channels)
1485				n_channels -= extra_channels;
1486			if (efx_separate_tx_channels) {
1487				efx->n_tx_channels = min(max(n_channels / 2,
1488							     1U),
1489							 efx->max_tx_channels);
1490				efx->n_rx_channels = max(n_channels -
1491							 efx->n_tx_channels,
1492							 1U);
1493			} else {
1494				efx->n_tx_channels = min(n_channels,
1495							 efx->max_tx_channels);
1496				efx->n_rx_channels = n_channels;
1497			}
1498			for (i = 0; i < efx->n_channels; i++)
1499				efx_get_channel(efx, i)->irq =
1500					xentries[i].vector;
1501		}
1502	}
1503
1504	/* Try single interrupt MSI */
1505	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1506		efx->n_channels = 1;
1507		efx->n_rx_channels = 1;
1508		efx->n_tx_channels = 1;
1509		rc = pci_enable_msi(efx->pci_dev);
1510		if (rc == 0) {
1511			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1512		} else {
1513			netif_err(efx, drv, efx->net_dev,
1514				  "could not enable MSI\n");
1515			if (efx->type->min_interrupt_mode >= EFX_INT_MODE_LEGACY)
1516				efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1517			else
1518				return rc;
1519		}
1520	}
1521
1522	/* Assume legacy interrupts */
1523	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1524		efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
1525		efx->n_rx_channels = 1;
1526		efx->n_tx_channels = 1;
1527		efx->legacy_irq = efx->pci_dev->irq;
1528	}
1529
1530	/* Assign extra channels if possible */
1531	efx->n_extra_tx_channels = 0;
1532	j = efx->n_channels;
1533	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1534		if (!efx->extra_channel_type[i])
1535			continue;
1536		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1537		    efx->n_channels <= extra_channels) {
1538			efx->extra_channel_type[i]->handle_no_channel(efx);
1539		} else {
1540			--j;
1541			efx_get_channel(efx, j)->type =
1542				efx->extra_channel_type[i];
1543			if (efx_channel_has_tx_queues(efx_get_channel(efx, j)))
1544				efx->n_extra_tx_channels++;
1545		}
1546	}
1547
1548	/* RSS might be usable on VFs even if it is disabled on the PF */
1549#ifdef CONFIG_SFC_SRIOV
1550	if (efx->type->sriov_wanted) {
1551		efx->rss_spread = ((efx->n_rx_channels > 1 ||
1552				    !efx->type->sriov_wanted(efx)) ?
1553				   efx->n_rx_channels : efx_vf_size(efx));
1554		return 0;
1555	}
1556#endif
1557	efx->rss_spread = efx->n_rx_channels;
1558
1559	return 0;
1560}
1561
1562#if defined(CONFIG_SMP)
1563static void efx_set_interrupt_affinity(struct efx_nic *efx)
1564{
1565	struct efx_channel *channel;
1566	unsigned int cpu;
1567
1568	efx_for_each_channel(channel, efx) {
1569		cpu = cpumask_local_spread(channel->channel,
1570					   pcibus_to_node(efx->pci_dev->bus));
1571		irq_set_affinity_hint(channel->irq, cpumask_of(cpu));
1572	}
1573}
1574
1575static void efx_clear_interrupt_affinity(struct efx_nic *efx)
1576{
1577	struct efx_channel *channel;
1578
1579	efx_for_each_channel(channel, efx)
1580		irq_set_affinity_hint(channel->irq, NULL);
1581}
1582#else
1583static void
1584efx_set_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused)))
1585{
1586}
1587
1588static void
1589efx_clear_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused)))
1590{
1591}
1592#endif /* CONFIG_SMP */
1593
1594static int efx_soft_enable_interrupts(struct efx_nic *efx)
1595{
1596	struct efx_channel *channel, *end_channel;
1597	int rc;
1598
1599	BUG_ON(efx->state == STATE_DISABLED);
1600
1601	efx->irq_soft_enabled = true;
1602	smp_wmb();
1603
1604	efx_for_each_channel(channel, efx) {
1605		if (!channel->type->keep_eventq) {
1606			rc = efx_init_eventq(channel);
1607			if (rc)
1608				goto fail;
1609		}
1610		efx_start_eventq(channel);
1611	}
1612
1613	efx_mcdi_mode_event(efx);
1614
1615	return 0;
1616fail:
1617	end_channel = channel;
1618	efx_for_each_channel(channel, efx) {
1619		if (channel == end_channel)
1620			break;
1621		efx_stop_eventq(channel);
1622		if (!channel->type->keep_eventq)
1623			efx_fini_eventq(channel);
1624	}
1625
1626	return rc;
1627}
1628
1629static void efx_soft_disable_interrupts(struct efx_nic *efx)
1630{
1631	struct efx_channel *channel;
1632
1633	if (efx->state == STATE_DISABLED)
1634		return;
1635
1636	efx_mcdi_mode_poll(efx);
1637
1638	efx->irq_soft_enabled = false;
1639	smp_wmb();
1640
1641	if (efx->legacy_irq)
1642		synchronize_irq(efx->legacy_irq);
1643
1644	efx_for_each_channel(channel, efx) {
1645		if (channel->irq)
1646			synchronize_irq(channel->irq);
1647
1648		efx_stop_eventq(channel);
1649		if (!channel->type->keep_eventq)
1650			efx_fini_eventq(channel);
1651	}
1652
1653	/* Flush the asynchronous MCDI request queue */
1654	efx_mcdi_flush_async(efx);
1655}
1656
1657static int efx_enable_interrupts(struct efx_nic *efx)
1658{
1659	struct efx_channel *channel, *end_channel;
1660	int rc;
1661
1662	BUG_ON(efx->state == STATE_DISABLED);
1663
1664	if (efx->eeh_disabled_legacy_irq) {
1665		enable_irq(efx->legacy_irq);
1666		efx->eeh_disabled_legacy_irq = false;
1667	}
1668
1669	efx->type->irq_enable_master(efx);
1670
1671	efx_for_each_channel(channel, efx) {
1672		if (channel->type->keep_eventq) {
1673			rc = efx_init_eventq(channel);
1674			if (rc)
1675				goto fail;
1676		}
1677	}
1678
1679	rc = efx_soft_enable_interrupts(efx);
1680	if (rc)
1681		goto fail;
1682
1683	return 0;
1684
1685fail:
1686	end_channel = channel;
1687	efx_for_each_channel(channel, efx) {
1688		if (channel == end_channel)
1689			break;
1690		if (channel->type->keep_eventq)
1691			efx_fini_eventq(channel);
1692	}
1693
1694	efx->type->irq_disable_non_ev(efx);
1695
1696	return rc;
1697}
1698
1699static void efx_disable_interrupts(struct efx_nic *efx)
1700{
1701	struct efx_channel *channel;
1702
1703	efx_soft_disable_interrupts(efx);
1704
1705	efx_for_each_channel(channel, efx) {
1706		if (channel->type->keep_eventq)
1707			efx_fini_eventq(channel);
1708	}
1709
1710	efx->type->irq_disable_non_ev(efx);
1711}
1712
1713static void efx_remove_interrupts(struct efx_nic *efx)
1714{
1715	struct efx_channel *channel;
1716
1717	/* Remove MSI/MSI-X interrupts */
1718	efx_for_each_channel(channel, efx)
1719		channel->irq = 0;
1720	pci_disable_msi(efx->pci_dev);
1721	pci_disable_msix(efx->pci_dev);
1722
1723	/* Remove legacy interrupt */
1724	efx->legacy_irq = 0;
1725}
1726
1727static void efx_set_channels(struct efx_nic *efx)
1728{
1729	struct efx_channel *channel;
1730	struct efx_tx_queue *tx_queue;
1731
1732	efx->tx_channel_offset =
1733		efx_separate_tx_channels ?
1734		efx->n_channels - efx->n_tx_channels : 0;
1735
1736	/* We need to mark which channels really have RX and TX
1737	 * queues, and adjust the TX queue numbers if we have separate
1738	 * RX-only and TX-only channels.
1739	 */
1740	efx_for_each_channel(channel, efx) {
1741		if (channel->channel < efx->n_rx_channels)
1742			channel->rx_queue.core_index = channel->channel;
1743		else
1744			channel->rx_queue.core_index = -1;
1745
1746		efx_for_each_channel_tx_queue(tx_queue, channel)
1747			tx_queue->queue -= (efx->tx_channel_offset *
1748					    EFX_TXQ_TYPES);
1749	}
1750}
1751
1752static int efx_probe_nic(struct efx_nic *efx)
1753{
1754	int rc;
1755
1756	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1757
1758	/* Carry out hardware-type specific initialisation */
1759	rc = efx->type->probe(efx);
1760	if (rc)
1761		return rc;
1762
1763	do {
1764		if (!efx->max_channels || !efx->max_tx_channels) {
1765			netif_err(efx, drv, efx->net_dev,
1766				  "Insufficient resources to allocate"
1767				  " any channels\n");
1768			rc = -ENOSPC;
1769			goto fail1;
1770		}
1771
1772		/* Determine the number of channels and queues by trying
1773		 * to hook in MSI-X interrupts.
1774		 */
1775		rc = efx_probe_interrupts(efx);
1776		if (rc)
1777			goto fail1;
1778
1779		efx_set_channels(efx);
 
 
1780
1781		/* dimension_resources can fail with EAGAIN */
1782		rc = efx->type->dimension_resources(efx);
1783		if (rc != 0 && rc != -EAGAIN)
1784			goto fail2;
1785
1786		if (rc == -EAGAIN)
1787			/* try again with new max_channels */
1788			efx_remove_interrupts(efx);
1789
1790	} while (rc == -EAGAIN);
1791
1792	if (efx->n_channels > 1)
1793		netdev_rss_key_fill(efx->rss_context.rx_hash_key,
1794				    sizeof(efx->rss_context.rx_hash_key));
1795	efx_set_default_rx_indir_table(efx, &efx->rss_context);
1796
1797	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1798	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1799
1800	/* Initialise the interrupt moderation settings */
1801	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1802	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1803				true);
1804
1805	return 0;
1806
1807fail2:
1808	efx_remove_interrupts(efx);
1809fail1:
1810	efx->type->remove(efx);
1811	return rc;
1812}
1813
1814static void efx_remove_nic(struct efx_nic *efx)
1815{
1816	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1817
1818	efx_remove_interrupts(efx);
1819	efx->type->remove(efx);
1820}
1821
1822static int efx_probe_filters(struct efx_nic *efx)
1823{
1824	int rc;
1825
1826	init_rwsem(&efx->filter_sem);
1827	mutex_lock(&efx->mac_lock);
1828	down_write(&efx->filter_sem);
1829	rc = efx->type->filter_table_probe(efx);
1830	if (rc)
1831		goto out_unlock;
1832
1833#ifdef CONFIG_RFS_ACCEL
1834	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1835		struct efx_channel *channel;
1836		int i, success = 1;
1837
1838		efx_for_each_channel(channel, efx) {
1839			channel->rps_flow_id =
1840				kcalloc(efx->type->max_rx_ip_filters,
1841					sizeof(*channel->rps_flow_id),
1842					GFP_KERNEL);
1843			if (!channel->rps_flow_id)
1844				success = 0;
1845			else
1846				for (i = 0;
1847				     i < efx->type->max_rx_ip_filters;
1848				     ++i)
1849					channel->rps_flow_id[i] =
1850						RPS_FLOW_ID_INVALID;
1851		}
1852
1853		if (!success) {
1854			efx_for_each_channel(channel, efx)
1855				kfree(channel->rps_flow_id);
1856			efx->type->filter_table_remove(efx);
1857			rc = -ENOMEM;
1858			goto out_unlock;
1859		}
1860
1861		efx->rps_expire_index = efx->rps_expire_channel = 0;
1862	}
1863#endif
1864out_unlock:
1865	up_write(&efx->filter_sem);
1866	mutex_unlock(&efx->mac_lock);
1867	return rc;
1868}
1869
1870static void efx_remove_filters(struct efx_nic *efx)
1871{
1872#ifdef CONFIG_RFS_ACCEL
1873	struct efx_channel *channel;
1874
1875	efx_for_each_channel(channel, efx)
1876		kfree(channel->rps_flow_id);
1877#endif
1878	down_write(&efx->filter_sem);
1879	efx->type->filter_table_remove(efx);
1880	up_write(&efx->filter_sem);
1881}
1882
1883
1884/**************************************************************************
1885 *
1886 * NIC startup/shutdown
1887 *
1888 *************************************************************************/
1889
1890static int efx_probe_all(struct efx_nic *efx)
1891{
1892	int rc;
1893
1894	rc = efx_probe_nic(efx);
1895	if (rc) {
1896		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1897		goto fail1;
1898	}
1899
1900	rc = efx_probe_port(efx);
1901	if (rc) {
1902		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1903		goto fail2;
1904	}
1905
1906	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1907	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1908		rc = -EINVAL;
1909		goto fail3;
1910	}
1911	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1912
1913#ifdef CONFIG_SFC_SRIOV
1914	rc = efx->type->vswitching_probe(efx);
1915	if (rc) /* not fatal; the PF will still work fine */
1916		netif_warn(efx, probe, efx->net_dev,
1917			   "failed to setup vswitching rc=%d;"
1918			   " VFs may not function\n", rc);
1919#endif
1920
1921	rc = efx_probe_filters(efx);
1922	if (rc) {
1923		netif_err(efx, probe, efx->net_dev,
1924			  "failed to create filter tables\n");
1925		goto fail4;
1926	}
1927
1928	rc = efx_probe_channels(efx);
1929	if (rc)
1930		goto fail5;
1931
 
 
1932	return 0;
1933
1934 fail5:
1935	efx_remove_filters(efx);
1936 fail4:
1937#ifdef CONFIG_SFC_SRIOV
1938	efx->type->vswitching_remove(efx);
1939#endif
1940 fail3:
1941	efx_remove_port(efx);
1942 fail2:
1943	efx_remove_nic(efx);
1944 fail1:
1945	return rc;
1946}
1947
1948/* If the interface is supposed to be running but is not, start
1949 * the hardware and software data path, regular activity for the port
1950 * (MAC statistics, link polling, etc.) and schedule the port to be
1951 * reconfigured.  Interrupts must already be enabled.  This function
1952 * is safe to call multiple times, so long as the NIC is not disabled.
1953 * Requires the RTNL lock.
1954 */
1955static void efx_start_all(struct efx_nic *efx)
1956{
1957	EFX_ASSERT_RESET_SERIALISED(efx);
1958	BUG_ON(efx->state == STATE_DISABLED);
1959
1960	/* Check that it is appropriate to restart the interface. All
1961	 * of these flags are safe to read under just the rtnl lock */
1962	if (efx->port_enabled || !netif_running(efx->net_dev) ||
1963	    efx->reset_pending)
1964		return;
1965
1966	efx_start_port(efx);
1967	efx_start_datapath(efx);
1968
1969	/* Start the hardware monitor if there is one */
1970	if (efx->type->monitor != NULL)
1971		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1972				   efx_monitor_interval);
1973
1974	/* Link state detection is normally event-driven; we have
1975	 * to poll now because we could have missed a change
1976	 */
1977	mutex_lock(&efx->mac_lock);
1978	if (efx->phy_op->poll(efx))
1979		efx_link_status_changed(efx);
1980	mutex_unlock(&efx->mac_lock);
1981
1982	efx->type->start_stats(efx);
1983	efx->type->pull_stats(efx);
1984	spin_lock_bh(&efx->stats_lock);
1985	efx->type->update_stats(efx, NULL, NULL);
1986	spin_unlock_bh(&efx->stats_lock);
1987}
1988
1989/* Quiesce the hardware and software data path, and regular activity
1990 * for the port without bringing the link down.  Safe to call multiple
1991 * times with the NIC in almost any state, but interrupts should be
1992 * enabled.  Requires the RTNL lock.
1993 */
1994static void efx_stop_all(struct efx_nic *efx)
1995{
1996	EFX_ASSERT_RESET_SERIALISED(efx);
1997
1998	/* port_enabled can be read safely under the rtnl lock */
1999	if (!efx->port_enabled)
2000		return;
2001
2002	/* update stats before we go down so we can accurately count
2003	 * rx_nodesc_drops
2004	 */
2005	efx->type->pull_stats(efx);
2006	spin_lock_bh(&efx->stats_lock);
2007	efx->type->update_stats(efx, NULL, NULL);
2008	spin_unlock_bh(&efx->stats_lock);
2009	efx->type->stop_stats(efx);
2010	efx_stop_port(efx);
2011
2012	/* Stop the kernel transmit interface.  This is only valid if
2013	 * the device is stopped or detached; otherwise the watchdog
2014	 * may fire immediately.
2015	 */
2016	WARN_ON(netif_running(efx->net_dev) &&
2017		netif_device_present(efx->net_dev));
2018	netif_tx_disable(efx->net_dev);
2019
2020	efx_stop_datapath(efx);
2021}
2022
2023static void efx_remove_all(struct efx_nic *efx)
2024{
2025	efx_remove_channels(efx);
2026	efx_remove_filters(efx);
2027#ifdef CONFIG_SFC_SRIOV
2028	efx->type->vswitching_remove(efx);
2029#endif
2030	efx_remove_port(efx);
2031	efx_remove_nic(efx);
2032}
2033
2034/**************************************************************************
2035 *
2036 * Interrupt moderation
2037 *
2038 **************************************************************************/
2039unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
2040{
2041	if (usecs == 0)
2042		return 0;
2043	if (usecs * 1000 < efx->timer_quantum_ns)
2044		return 1; /* never round down to 0 */
2045	return usecs * 1000 / efx->timer_quantum_ns;
2046}
2047
2048unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
2049{
2050	/* We must round up when converting ticks to microseconds
2051	 * because we round down when converting the other way.
2052	 */
2053	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
2054}
2055
2056/* Set interrupt moderation parameters */
2057int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
2058			    unsigned int rx_usecs, bool rx_adaptive,
2059			    bool rx_may_override_tx)
2060{
2061	struct efx_channel *channel;
2062	unsigned int timer_max_us;
2063
2064	EFX_ASSERT_RESET_SERIALISED(efx);
2065
2066	timer_max_us = efx->timer_max_ns / 1000;
2067
2068	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
2069		return -EINVAL;
2070
2071	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
2072	    !rx_may_override_tx) {
2073		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
2074			  "RX and TX IRQ moderation must be equal\n");
2075		return -EINVAL;
2076	}
2077
2078	efx->irq_rx_adaptive = rx_adaptive;
2079	efx->irq_rx_moderation_us = rx_usecs;
2080	efx_for_each_channel(channel, efx) {
2081		if (efx_channel_has_rx_queue(channel))
2082			channel->irq_moderation_us = rx_usecs;
2083		else if (efx_channel_has_tx_queues(channel))
2084			channel->irq_moderation_us = tx_usecs;
 
 
2085	}
2086
2087	return 0;
2088}
2089
2090void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
2091			    unsigned int *rx_usecs, bool *rx_adaptive)
2092{
2093	*rx_adaptive = efx->irq_rx_adaptive;
2094	*rx_usecs = efx->irq_rx_moderation_us;
2095
2096	/* If channels are shared between RX and TX, so is IRQ
2097	 * moderation.  Otherwise, IRQ moderation is the same for all
2098	 * TX channels and is not adaptive.
2099	 */
2100	if (efx->tx_channel_offset == 0) {
2101		*tx_usecs = *rx_usecs;
2102	} else {
2103		struct efx_channel *tx_channel;
2104
2105		tx_channel = efx->channel[efx->tx_channel_offset];
2106		*tx_usecs = tx_channel->irq_moderation_us;
2107	}
2108}
2109
2110/**************************************************************************
2111 *
2112 * Hardware monitor
2113 *
2114 **************************************************************************/
2115
2116/* Run periodically off the general workqueue */
2117static void efx_monitor(struct work_struct *data)
2118{
2119	struct efx_nic *efx = container_of(data, struct efx_nic,
2120					   monitor_work.work);
2121
2122	netif_vdbg(efx, timer, efx->net_dev,
2123		   "hardware monitor executing on CPU %d\n",
2124		   raw_smp_processor_id());
2125	BUG_ON(efx->type->monitor == NULL);
2126
2127	/* If the mac_lock is already held then it is likely a port
2128	 * reconfiguration is already in place, which will likely do
2129	 * most of the work of monitor() anyway. */
2130	if (mutex_trylock(&efx->mac_lock)) {
2131		if (efx->port_enabled)
2132			efx->type->monitor(efx);
2133		mutex_unlock(&efx->mac_lock);
2134	}
2135
2136	queue_delayed_work(efx->workqueue, &efx->monitor_work,
2137			   efx_monitor_interval);
2138}
2139
2140/**************************************************************************
2141 *
2142 * ioctls
2143 *
2144 *************************************************************************/
2145
2146/* Net device ioctl
2147 * Context: process, rtnl_lock() held.
2148 */
2149static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2150{
2151	struct efx_nic *efx = netdev_priv(net_dev);
2152	struct mii_ioctl_data *data = if_mii(ifr);
2153
2154	if (cmd == SIOCSHWTSTAMP)
2155		return efx_ptp_set_ts_config(efx, ifr);
2156	if (cmd == SIOCGHWTSTAMP)
2157		return efx_ptp_get_ts_config(efx, ifr);
2158
2159	/* Convert phy_id from older PRTAD/DEVAD format */
2160	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2161	    (data->phy_id & 0xfc00) == 0x0400)
2162		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2163
2164	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2165}
2166
2167/**************************************************************************
2168 *
2169 * NAPI interface
2170 *
2171 **************************************************************************/
2172
2173static void efx_init_napi_channel(struct efx_channel *channel)
2174{
2175	struct efx_nic *efx = channel->efx;
2176
2177	channel->napi_dev = efx->net_dev;
2178	netif_napi_add(channel->napi_dev, &channel->napi_str,
2179		       efx_poll, napi_weight);
2180}
2181
2182static void efx_init_napi(struct efx_nic *efx)
2183{
2184	struct efx_channel *channel;
2185
2186	efx_for_each_channel(channel, efx)
2187		efx_init_napi_channel(channel);
2188}
2189
2190static void efx_fini_napi_channel(struct efx_channel *channel)
2191{
2192	if (channel->napi_dev)
2193		netif_napi_del(&channel->napi_str);
2194
2195	channel->napi_dev = NULL;
2196}
2197
2198static void efx_fini_napi(struct efx_nic *efx)
2199{
2200	struct efx_channel *channel;
2201
2202	efx_for_each_channel(channel, efx)
2203		efx_fini_napi_channel(channel);
2204}
2205
2206/**************************************************************************
2207 *
2208 * Kernel net device interface
2209 *
2210 *************************************************************************/
2211
2212/* Context: process, rtnl_lock() held. */
2213int efx_net_open(struct net_device *net_dev)
2214{
2215	struct efx_nic *efx = netdev_priv(net_dev);
2216	int rc;
2217
2218	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2219		  raw_smp_processor_id());
2220
2221	rc = efx_check_disabled(efx);
2222	if (rc)
2223		return rc;
2224	if (efx->phy_mode & PHY_MODE_SPECIAL)
2225		return -EBUSY;
2226	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2227		return -EIO;
2228
2229	/* Notify the kernel of the link state polled during driver load,
2230	 * before the monitor starts running */
2231	efx_link_status_changed(efx);
2232
2233	efx_start_all(efx);
2234	if (efx->state == STATE_DISABLED || efx->reset_pending)
2235		netif_device_detach(efx->net_dev);
2236	efx_selftest_async_start(efx);
 
 
2237	return 0;
2238}
2239
2240/* Context: process, rtnl_lock() held.
2241 * Note that the kernel will ignore our return code; this method
2242 * should really be a void.
2243 */
2244int efx_net_stop(struct net_device *net_dev)
2245{
2246	struct efx_nic *efx = netdev_priv(net_dev);
2247
2248	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2249		  raw_smp_processor_id());
2250
2251	/* Stop the device and flush all the channels */
2252	efx_stop_all(efx);
2253
2254	return 0;
2255}
2256
2257/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2258static void efx_net_stats(struct net_device *net_dev,
2259			  struct rtnl_link_stats64 *stats)
2260{
2261	struct efx_nic *efx = netdev_priv(net_dev);
2262
2263	spin_lock_bh(&efx->stats_lock);
2264	efx->type->update_stats(efx, NULL, stats);
2265	spin_unlock_bh(&efx->stats_lock);
2266}
2267
2268/* Context: netif_tx_lock held, BHs disabled. */
2269static void efx_watchdog(struct net_device *net_dev)
2270{
2271	struct efx_nic *efx = netdev_priv(net_dev);
2272
2273	netif_err(efx, tx_err, efx->net_dev,
2274		  "TX stuck with port_enabled=%d: resetting channels\n",
2275		  efx->port_enabled);
2276
2277	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2278}
2279
2280
2281/* Context: process, rtnl_lock() held. */
2282static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2283{
2284	struct efx_nic *efx = netdev_priv(net_dev);
2285	int rc;
2286
2287	rc = efx_check_disabled(efx);
2288	if (rc)
2289		return rc;
2290
2291	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2292
2293	efx_device_detach_sync(efx);
2294	efx_stop_all(efx);
2295
2296	mutex_lock(&efx->mac_lock);
2297	net_dev->mtu = new_mtu;
2298	efx_mac_reconfigure(efx);
2299	mutex_unlock(&efx->mac_lock);
2300
2301	efx_start_all(efx);
2302	efx_device_attach_if_not_resetting(efx);
2303	return 0;
2304}
2305
2306static int efx_set_mac_address(struct net_device *net_dev, void *data)
2307{
2308	struct efx_nic *efx = netdev_priv(net_dev);
2309	struct sockaddr *addr = data;
2310	u8 *new_addr = addr->sa_data;
2311	u8 old_addr[6];
2312	int rc;
2313
2314	if (!is_valid_ether_addr(new_addr)) {
2315		netif_err(efx, drv, efx->net_dev,
2316			  "invalid ethernet MAC address requested: %pM\n",
2317			  new_addr);
2318		return -EADDRNOTAVAIL;
2319	}
2320
2321	/* save old address */
2322	ether_addr_copy(old_addr, net_dev->dev_addr);
2323	ether_addr_copy(net_dev->dev_addr, new_addr);
2324	if (efx->type->set_mac_address) {
2325		rc = efx->type->set_mac_address(efx);
2326		if (rc) {
2327			ether_addr_copy(net_dev->dev_addr, old_addr);
2328			return rc;
2329		}
2330	}
2331
2332	/* Reconfigure the MAC */
2333	mutex_lock(&efx->mac_lock);
2334	efx_mac_reconfigure(efx);
2335	mutex_unlock(&efx->mac_lock);
2336
2337	return 0;
2338}
2339
2340/* Context: netif_addr_lock held, BHs disabled. */
2341static void efx_set_rx_mode(struct net_device *net_dev)
2342{
2343	struct efx_nic *efx = netdev_priv(net_dev);
2344
2345	if (efx->port_enabled)
2346		queue_work(efx->workqueue, &efx->mac_work);
2347	/* Otherwise efx_start_port() will do this */
2348}
2349
2350static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2351{
2352	struct efx_nic *efx = netdev_priv(net_dev);
2353	int rc;
2354
2355	/* If disabling RX n-tuple filtering, clear existing filters */
2356	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2357		rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2358		if (rc)
2359			return rc;
2360	}
2361
2362	/* If Rx VLAN filter is changed, update filters via mac_reconfigure.
2363	 * If rx-fcs is changed, mac_reconfigure updates that too.
2364	 */
2365	if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
2366					  NETIF_F_RXFCS)) {
2367		/* efx_set_rx_mode() will schedule MAC work to update filters
2368		 * when a new features are finally set in net_dev.
2369		 */
2370		efx_set_rx_mode(net_dev);
2371	}
2372
2373	return 0;
2374}
2375
2376static int efx_get_phys_port_id(struct net_device *net_dev,
2377				struct netdev_phys_item_id *ppid)
2378{
2379	struct efx_nic *efx = netdev_priv(net_dev);
2380
2381	if (efx->type->get_phys_port_id)
2382		return efx->type->get_phys_port_id(efx, ppid);
2383	else
2384		return -EOPNOTSUPP;
2385}
2386
2387static int efx_get_phys_port_name(struct net_device *net_dev,
2388				  char *name, size_t len)
2389{
2390	struct efx_nic *efx = netdev_priv(net_dev);
2391
2392	if (snprintf(name, len, "p%u", efx->port_num) >= len)
2393		return -EINVAL;
2394	return 0;
2395}
2396
2397static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
2398{
2399	struct efx_nic *efx = netdev_priv(net_dev);
2400
2401	if (efx->type->vlan_rx_add_vid)
2402		return efx->type->vlan_rx_add_vid(efx, proto, vid);
2403	else
2404		return -EOPNOTSUPP;
2405}
2406
2407static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
2408{
2409	struct efx_nic *efx = netdev_priv(net_dev);
2410
2411	if (efx->type->vlan_rx_kill_vid)
2412		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
2413	else
2414		return -EOPNOTSUPP;
2415}
2416
2417static int efx_udp_tunnel_type_map(enum udp_parsable_tunnel_type in)
2418{
2419	switch (in) {
2420	case UDP_TUNNEL_TYPE_VXLAN:
2421		return TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
2422	case UDP_TUNNEL_TYPE_GENEVE:
2423		return TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
2424	default:
2425		return -1;
2426	}
2427}
2428
2429static void efx_udp_tunnel_add(struct net_device *dev, struct udp_tunnel_info *ti)
2430{
2431	struct efx_nic *efx = netdev_priv(dev);
2432	struct efx_udp_tunnel tnl;
2433	int efx_tunnel_type;
2434
2435	efx_tunnel_type = efx_udp_tunnel_type_map(ti->type);
2436	if (efx_tunnel_type < 0)
2437		return;
2438
2439	tnl.type = (u16)efx_tunnel_type;
2440	tnl.port = ti->port;
2441
2442	if (efx->type->udp_tnl_add_port)
2443		(void)efx->type->udp_tnl_add_port(efx, tnl);
2444}
2445
2446static void efx_udp_tunnel_del(struct net_device *dev, struct udp_tunnel_info *ti)
 
2447{
2448	struct efx_nic *efx = netdev_priv(dev);
2449	struct efx_udp_tunnel tnl;
2450	int efx_tunnel_type;
2451
2452	efx_tunnel_type = efx_udp_tunnel_type_map(ti->type);
2453	if (efx_tunnel_type < 0)
2454		return;
2455
2456	tnl.type = (u16)efx_tunnel_type;
2457	tnl.port = ti->port;
2458
2459	if (efx->type->udp_tnl_del_port)
2460		(void)efx->type->udp_tnl_del_port(efx, tnl);
2461}
2462
2463static const struct net_device_ops efx_netdev_ops = {
2464	.ndo_open		= efx_net_open,
2465	.ndo_stop		= efx_net_stop,
2466	.ndo_get_stats64	= efx_net_stats,
2467	.ndo_tx_timeout		= efx_watchdog,
2468	.ndo_start_xmit		= efx_hard_start_xmit,
2469	.ndo_validate_addr	= eth_validate_addr,
2470	.ndo_do_ioctl		= efx_ioctl,
2471	.ndo_change_mtu		= efx_change_mtu,
2472	.ndo_set_mac_address	= efx_set_mac_address,
2473	.ndo_set_rx_mode	= efx_set_rx_mode,
2474	.ndo_set_features	= efx_set_features,
 
2475	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
2476	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
 
 
2477#ifdef CONFIG_SFC_SRIOV
2478	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2479	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2480	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2481	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2482	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
2483#endif
2484	.ndo_get_phys_port_id   = efx_get_phys_port_id,
2485	.ndo_get_phys_port_name	= efx_get_phys_port_name,
2486	.ndo_setup_tc		= efx_setup_tc,
2487#ifdef CONFIG_RFS_ACCEL
2488	.ndo_rx_flow_steer	= efx_filter_rfs,
2489#endif
2490	.ndo_udp_tunnel_add	= efx_udp_tunnel_add,
2491	.ndo_udp_tunnel_del	= efx_udp_tunnel_del,
2492};
2493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2494static void efx_update_name(struct efx_nic *efx)
2495{
2496	strcpy(efx->name, efx->net_dev->name);
2497	efx_mtd_rename(efx);
2498	efx_set_channel_names(efx);
2499}
2500
2501static int efx_netdev_event(struct notifier_block *this,
2502			    unsigned long event, void *ptr)
2503{
2504	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2505
2506	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2507	    event == NETDEV_CHANGENAME)
2508		efx_update_name(netdev_priv(net_dev));
2509
2510	return NOTIFY_DONE;
2511}
2512
2513static struct notifier_block efx_netdev_notifier = {
2514	.notifier_call = efx_netdev_event,
2515};
2516
2517static ssize_t
2518show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2519{
2520	struct efx_nic *efx = dev_get_drvdata(dev);
2521	return sprintf(buf, "%d\n", efx->phy_type);
2522}
2523static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2524
2525#ifdef CONFIG_SFC_MCDI_LOGGING
2526static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
2527			     char *buf)
2528{
2529	struct efx_nic *efx = dev_get_drvdata(dev);
2530	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2531
2532	return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
2533}
2534static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
2535			    const char *buf, size_t count)
2536{
2537	struct efx_nic *efx = dev_get_drvdata(dev);
2538	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2539	bool enable = count > 0 && *buf != '0';
2540
2541	mcdi->logging_enabled = enable;
2542	return count;
2543}
2544static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
2545#endif
2546
2547static int efx_register_netdev(struct efx_nic *efx)
2548{
2549	struct net_device *net_dev = efx->net_dev;
2550	struct efx_channel *channel;
2551	int rc;
2552
2553	net_dev->watchdog_timeo = 5 * HZ;
2554	net_dev->irq = efx->pci_dev->irq;
2555	net_dev->netdev_ops = &efx_netdev_ops;
2556	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2557		net_dev->priv_flags |= IFF_UNICAST_FLT;
2558	net_dev->ethtool_ops = &efx_ethtool_ops;
2559	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2560	net_dev->min_mtu = EFX_MIN_MTU;
2561	net_dev->max_mtu = EFX_MAX_MTU;
2562
2563	rtnl_lock();
2564
2565	/* Enable resets to be scheduled and check whether any were
2566	 * already requested.  If so, the NIC is probably hosed so we
2567	 * abort.
2568	 */
2569	efx->state = STATE_READY;
2570	smp_mb(); /* ensure we change state before checking reset_pending */
2571	if (efx->reset_pending) {
2572		netif_err(efx, probe, efx->net_dev,
2573			  "aborting probe due to scheduled reset\n");
2574		rc = -EIO;
2575		goto fail_locked;
2576	}
2577
2578	rc = dev_alloc_name(net_dev, net_dev->name);
2579	if (rc < 0)
2580		goto fail_locked;
2581	efx_update_name(efx);
2582
2583	/* Always start with carrier off; PHY events will detect the link */
2584	netif_carrier_off(net_dev);
2585
2586	rc = register_netdevice(net_dev);
2587	if (rc)
2588		goto fail_locked;
2589
2590	efx_for_each_channel(channel, efx) {
2591		struct efx_tx_queue *tx_queue;
2592		efx_for_each_channel_tx_queue(tx_queue, channel)
2593			efx_init_tx_queue_core_txq(tx_queue);
2594	}
2595
2596	efx_associate(efx);
2597
 
 
2598	rtnl_unlock();
2599
2600	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2601	if (rc) {
2602		netif_err(efx, drv, efx->net_dev,
2603			  "failed to init net dev attributes\n");
2604		goto fail_registered;
2605	}
2606#ifdef CONFIG_SFC_MCDI_LOGGING
2607	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2608	if (rc) {
2609		netif_err(efx, drv, efx->net_dev,
2610			  "failed to init net dev attributes\n");
2611		goto fail_attr_mcdi_logging;
2612	}
2613#endif
2614
2615	return 0;
2616
2617#ifdef CONFIG_SFC_MCDI_LOGGING
2618fail_attr_mcdi_logging:
2619	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2620#endif
2621fail_registered:
2622	rtnl_lock();
2623	efx_dissociate(efx);
2624	unregister_netdevice(net_dev);
2625fail_locked:
2626	efx->state = STATE_UNINIT;
2627	rtnl_unlock();
2628	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2629	return rc;
2630}
2631
2632static void efx_unregister_netdev(struct efx_nic *efx)
2633{
2634	if (!efx->net_dev)
2635		return;
2636
2637	BUG_ON(netdev_priv(efx->net_dev) != efx);
 
2638
2639	if (efx_dev_registered(efx)) {
2640		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2641#ifdef CONFIG_SFC_MCDI_LOGGING
2642		device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2643#endif
2644		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2645		unregister_netdev(efx->net_dev);
2646	}
2647}
2648
2649/**************************************************************************
2650 *
2651 * Device reset and suspend
2652 *
2653 **************************************************************************/
2654
2655/* Tears down the entire software state and most of the hardware state
2656 * before reset.  */
2657void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2658{
2659	EFX_ASSERT_RESET_SERIALISED(efx);
2660
2661	if (method == RESET_TYPE_MCDI_TIMEOUT)
2662		efx->type->prepare_flr(efx);
2663
2664	efx_stop_all(efx);
2665	efx_disable_interrupts(efx);
2666
2667	mutex_lock(&efx->mac_lock);
2668	down_write(&efx->filter_sem);
2669	mutex_lock(&efx->rss_lock);
2670	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2671	    method != RESET_TYPE_DATAPATH)
2672		efx->phy_op->fini(efx);
2673	efx->type->fini(efx);
2674}
2675
2676/* This function will always ensure that the locks acquired in
2677 * efx_reset_down() are released. A failure return code indicates
2678 * that we were unable to reinitialise the hardware, and the
2679 * driver should be disabled. If ok is false, then the rx and tx
2680 * engines are not restarted, pending a RESET_DISABLE. */
2681int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2682{
2683	int rc;
2684
2685	EFX_ASSERT_RESET_SERIALISED(efx);
2686
2687	if (method == RESET_TYPE_MCDI_TIMEOUT)
2688		efx->type->finish_flr(efx);
2689
2690	/* Ensure that SRAM is initialised even if we're disabling the device */
2691	rc = efx->type->init(efx);
2692	if (rc) {
2693		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2694		goto fail;
2695	}
2696
2697	if (!ok)
2698		goto fail;
2699
2700	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2701	    method != RESET_TYPE_DATAPATH) {
2702		rc = efx->phy_op->init(efx);
2703		if (rc)
2704			goto fail;
2705		rc = efx->phy_op->reconfigure(efx);
2706		if (rc && rc != -EPERM)
2707			netif_err(efx, drv, efx->net_dev,
2708				  "could not restore PHY settings\n");
2709	}
2710
2711	rc = efx_enable_interrupts(efx);
2712	if (rc)
2713		goto fail;
2714
2715#ifdef CONFIG_SFC_SRIOV
2716	rc = efx->type->vswitching_restore(efx);
2717	if (rc) /* not fatal; the PF will still work fine */
2718		netif_warn(efx, probe, efx->net_dev,
2719			   "failed to restore vswitching rc=%d;"
2720			   " VFs may not function\n", rc);
2721#endif
2722
2723	if (efx->type->rx_restore_rss_contexts)
2724		efx->type->rx_restore_rss_contexts(efx);
2725	mutex_unlock(&efx->rss_lock);
2726	efx->type->filter_table_restore(efx);
2727	up_write(&efx->filter_sem);
2728	if (efx->type->sriov_reset)
2729		efx->type->sriov_reset(efx);
2730
2731	mutex_unlock(&efx->mac_lock);
2732
2733	efx_start_all(efx);
2734
2735	if (efx->type->udp_tnl_push_ports)
2736		efx->type->udp_tnl_push_ports(efx);
2737
2738	return 0;
2739
2740fail:
2741	efx->port_initialized = false;
2742
2743	mutex_unlock(&efx->rss_lock);
2744	up_write(&efx->filter_sem);
2745	mutex_unlock(&efx->mac_lock);
2746
2747	return rc;
2748}
2749
2750/* Reset the NIC using the specified method.  Note that the reset may
2751 * fail, in which case the card will be left in an unusable state.
2752 *
2753 * Caller must hold the rtnl_lock.
2754 */
2755int efx_reset(struct efx_nic *efx, enum reset_type method)
2756{
2757	int rc, rc2;
2758	bool disabled;
2759
2760	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2761		   RESET_TYPE(method));
2762
2763	efx_device_detach_sync(efx);
2764	efx_reset_down(efx, method);
2765
2766	rc = efx->type->reset(efx, method);
2767	if (rc) {
2768		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2769		goto out;
2770	}
2771
2772	/* Clear flags for the scopes we covered.  We assume the NIC and
2773	 * driver are now quiescent so that there is no race here.
2774	 */
2775	if (method < RESET_TYPE_MAX_METHOD)
2776		efx->reset_pending &= -(1 << (method + 1));
2777	else /* it doesn't fit into the well-ordered scope hierarchy */
2778		__clear_bit(method, &efx->reset_pending);
2779
2780	/* Reinitialise bus-mastering, which may have been turned off before
2781	 * the reset was scheduled. This is still appropriate, even in the
2782	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2783	 * can respond to requests. */
2784	pci_set_master(efx->pci_dev);
2785
2786out:
2787	/* Leave device stopped if necessary */
2788	disabled = rc ||
2789		method == RESET_TYPE_DISABLE ||
2790		method == RESET_TYPE_RECOVER_OR_DISABLE;
2791	rc2 = efx_reset_up(efx, method, !disabled);
2792	if (rc2) {
2793		disabled = true;
2794		if (!rc)
2795			rc = rc2;
2796	}
2797
2798	if (disabled) {
2799		dev_close(efx->net_dev);
2800		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2801		efx->state = STATE_DISABLED;
2802	} else {
2803		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2804		efx_device_attach_if_not_resetting(efx);
2805	}
2806	return rc;
2807}
2808
2809/* Try recovery mechanisms.
2810 * For now only EEH is supported.
2811 * Returns 0 if the recovery mechanisms are unsuccessful.
2812 * Returns a non-zero value otherwise.
2813 */
2814int efx_try_recovery(struct efx_nic *efx)
2815{
2816#ifdef CONFIG_EEH
2817	/* A PCI error can occur and not be seen by EEH because nothing
2818	 * happens on the PCI bus. In this case the driver may fail and
2819	 * schedule a 'recover or reset', leading to this recovery handler.
2820	 * Manually call the eeh failure check function.
2821	 */
2822	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2823	if (eeh_dev_check_failure(eehdev)) {
2824		/* The EEH mechanisms will handle the error and reset the
2825		 * device if necessary.
2826		 */
2827		return 1;
2828	}
2829#endif
2830	return 0;
2831}
2832
2833static void efx_wait_for_bist_end(struct efx_nic *efx)
2834{
2835	int i;
2836
2837	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2838		if (efx_mcdi_poll_reboot(efx))
2839			goto out;
2840		msleep(BIST_WAIT_DELAY_MS);
2841	}
2842
2843	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2844out:
2845	/* Either way unset the BIST flag. If we found no reboot we probably
2846	 * won't recover, but we should try.
2847	 */
2848	efx->mc_bist_for_other_fn = false;
2849}
2850
2851/* The worker thread exists so that code that cannot sleep can
2852 * schedule a reset for later.
2853 */
2854static void efx_reset_work(struct work_struct *data)
2855{
2856	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2857	unsigned long pending;
2858	enum reset_type method;
2859
2860	pending = READ_ONCE(efx->reset_pending);
2861	method = fls(pending) - 1;
2862
2863	if (method == RESET_TYPE_MC_BIST)
2864		efx_wait_for_bist_end(efx);
2865
2866	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2867	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2868	    efx_try_recovery(efx))
2869		return;
2870
2871	if (!pending)
2872		return;
2873
2874	rtnl_lock();
2875
2876	/* We checked the state in efx_schedule_reset() but it may
2877	 * have changed by now.  Now that we have the RTNL lock,
2878	 * it cannot change again.
2879	 */
2880	if (efx->state == STATE_READY)
2881		(void)efx_reset(efx, method);
2882
2883	rtnl_unlock();
2884}
2885
2886void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2887{
2888	enum reset_type method;
2889
2890	if (efx->state == STATE_RECOVERY) {
2891		netif_dbg(efx, drv, efx->net_dev,
2892			  "recovering: skip scheduling %s reset\n",
2893			  RESET_TYPE(type));
2894		return;
2895	}
2896
2897	switch (type) {
2898	case RESET_TYPE_INVISIBLE:
2899	case RESET_TYPE_ALL:
2900	case RESET_TYPE_RECOVER_OR_ALL:
2901	case RESET_TYPE_WORLD:
2902	case RESET_TYPE_DISABLE:
2903	case RESET_TYPE_RECOVER_OR_DISABLE:
2904	case RESET_TYPE_DATAPATH:
2905	case RESET_TYPE_MC_BIST:
2906	case RESET_TYPE_MCDI_TIMEOUT:
2907		method = type;
2908		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2909			  RESET_TYPE(method));
2910		break;
2911	default:
2912		method = efx->type->map_reset_reason(type);
2913		netif_dbg(efx, drv, efx->net_dev,
2914			  "scheduling %s reset for %s\n",
2915			  RESET_TYPE(method), RESET_TYPE(type));
2916		break;
2917	}
2918
2919	set_bit(method, &efx->reset_pending);
2920	smp_mb(); /* ensure we change reset_pending before checking state */
2921
2922	/* If we're not READY then just leave the flags set as the cue
2923	 * to abort probing or reschedule the reset later.
2924	 */
2925	if (READ_ONCE(efx->state) != STATE_READY)
2926		return;
2927
2928	/* efx_process_channel() will no longer read events once a
2929	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2930	efx_mcdi_mode_poll(efx);
2931
2932	queue_work(reset_workqueue, &efx->reset_work);
2933}
2934
2935/**************************************************************************
2936 *
2937 * List of NICs we support
2938 *
2939 **************************************************************************/
2940
2941/* PCI device ID table */
2942static const struct pci_device_id efx_pci_table[] = {
2943	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2944	 .driver_data = (unsigned long) &siena_a0_nic_type},
2945	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2946	 .driver_data = (unsigned long) &siena_a0_nic_type},
2947	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2948	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2949	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
2950	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2951	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
2952	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2953	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
2954	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2955	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
2956	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2957	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
2958	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2959	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03),  /* SFC9250 PF */
2960	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2961	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03),  /* SFC9250 VF */
2962	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2963	{0}			/* end of list */
2964};
2965
2966/**************************************************************************
2967 *
2968 * Dummy PHY/MAC operations
2969 *
2970 * Can be used for some unimplemented operations
2971 * Needed so all function pointers are valid and do not have to be tested
2972 * before use
2973 *
2974 **************************************************************************/
2975int efx_port_dummy_op_int(struct efx_nic *efx)
2976{
2977	return 0;
2978}
2979void efx_port_dummy_op_void(struct efx_nic *efx) {}
2980
2981static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2982{
2983	return false;
2984}
2985
2986static const struct efx_phy_operations efx_dummy_phy_operations = {
2987	.init		 = efx_port_dummy_op_int,
2988	.reconfigure	 = efx_port_dummy_op_int,
2989	.poll		 = efx_port_dummy_op_poll,
2990	.fini		 = efx_port_dummy_op_void,
2991};
2992
2993/**************************************************************************
2994 *
2995 * Data housekeeping
2996 *
2997 **************************************************************************/
2998
2999/* This zeroes out and then fills in the invariants in a struct
3000 * efx_nic (including all sub-structures).
3001 */
3002static int efx_init_struct(struct efx_nic *efx,
3003			   struct pci_dev *pci_dev, struct net_device *net_dev)
3004{
3005	int rc = -ENOMEM, i;
3006
3007	/* Initialise common structures */
3008	INIT_LIST_HEAD(&efx->node);
3009	INIT_LIST_HEAD(&efx->secondary_list);
3010	spin_lock_init(&efx->biu_lock);
3011#ifdef CONFIG_SFC_MTD
3012	INIT_LIST_HEAD(&efx->mtd_list);
3013#endif
3014	INIT_WORK(&efx->reset_work, efx_reset_work);
3015	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
3016	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
3017	efx->pci_dev = pci_dev;
3018	efx->msg_enable = debug;
3019	efx->state = STATE_UNINIT;
3020	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
3021
3022	efx->net_dev = net_dev;
3023	efx->rx_prefix_size = efx->type->rx_prefix_size;
3024	efx->rx_ip_align =
3025		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
3026	efx->rx_packet_hash_offset =
3027		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
3028	efx->rx_packet_ts_offset =
3029		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
3030	INIT_LIST_HEAD(&efx->rss_context.list);
3031	mutex_init(&efx->rss_lock);
3032	spin_lock_init(&efx->stats_lock);
3033	efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
3034	efx->num_mac_stats = MC_CMD_MAC_NSTATS;
3035	BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
3036	mutex_init(&efx->mac_lock);
3037#ifdef CONFIG_RFS_ACCEL
3038	mutex_init(&efx->rps_mutex);
3039	spin_lock_init(&efx->rps_hash_lock);
3040	/* Failure to allocate is not fatal, but may degrade ARFS performance */
3041	efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
3042				      sizeof(*efx->rps_hash_table), GFP_KERNEL);
3043#endif
3044	efx->phy_op = &efx_dummy_phy_operations;
3045	efx->mdio.dev = net_dev;
3046	INIT_WORK(&efx->mac_work, efx_mac_work);
3047	init_waitqueue_head(&efx->flush_wq);
3048
3049	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
3050		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
3051		if (!efx->channel[i])
3052			goto fail;
3053		efx->msi_context[i].efx = efx;
3054		efx->msi_context[i].index = i;
3055	}
3056
3057	/* Higher numbered interrupt modes are less capable! */
3058	if (WARN_ON_ONCE(efx->type->max_interrupt_mode >
3059			 efx->type->min_interrupt_mode)) {
3060		rc = -EIO;
3061		goto fail;
3062	}
3063	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
3064				  interrupt_mode);
3065	efx->interrupt_mode = min(efx->type->min_interrupt_mode,
3066				  interrupt_mode);
3067
3068	/* Would be good to use the net_dev name, but we're too early */
3069	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
3070		 pci_name(pci_dev));
3071	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
3072	if (!efx->workqueue)
3073		goto fail;
3074
3075	return 0;
3076
3077fail:
3078	efx_fini_struct(efx);
3079	return rc;
3080}
3081
3082static void efx_fini_struct(struct efx_nic *efx)
3083{
3084	int i;
3085
3086#ifdef CONFIG_RFS_ACCEL
3087	kfree(efx->rps_hash_table);
3088#endif
3089
3090	for (i = 0; i < EFX_MAX_CHANNELS; i++)
3091		kfree(efx->channel[i]);
3092
3093	kfree(efx->vpd_sn);
3094
3095	if (efx->workqueue) {
3096		destroy_workqueue(efx->workqueue);
3097		efx->workqueue = NULL;
3098	}
3099}
3100
3101void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
3102{
3103	u64 n_rx_nodesc_trunc = 0;
3104	struct efx_channel *channel;
3105
3106	efx_for_each_channel(channel, efx)
3107		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
3108	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
3109	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
3110}
3111
3112bool efx_filter_spec_equal(const struct efx_filter_spec *left,
3113			   const struct efx_filter_spec *right)
3114{
3115	if ((left->match_flags ^ right->match_flags) |
3116	    ((left->flags ^ right->flags) &
3117	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
3118		return false;
3119
3120	return memcmp(&left->outer_vid, &right->outer_vid,
3121		      sizeof(struct efx_filter_spec) -
3122		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
3123}
3124
3125u32 efx_filter_spec_hash(const struct efx_filter_spec *spec)
3126{
3127	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
3128	return jhash2((const u32 *)&spec->outer_vid,
3129		      (sizeof(struct efx_filter_spec) -
3130		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
3131		      0);
3132}
3133
3134#ifdef CONFIG_RFS_ACCEL
3135bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
3136			bool *force)
3137{
3138	if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
3139		/* ARFS is currently updating this entry, leave it */
3140		return false;
3141	}
3142	if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
3143		/* ARFS tried and failed to update this, so it's probably out
3144		 * of date.  Remove the filter and the ARFS rule entry.
3145		 */
3146		rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
3147		*force = true;
3148		return true;
3149	} else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
3150		/* ARFS has moved on, so old filter is not needed.  Since we did
3151		 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
3152		 * not be removed by efx_rps_hash_del() subsequently.
3153		 */
3154		*force = true;
3155		return true;
3156	}
3157	/* Remove it iff ARFS wants to. */
3158	return true;
3159}
3160
3161static
3162struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
3163				       const struct efx_filter_spec *spec)
3164{
3165	u32 hash = efx_filter_spec_hash(spec);
3166
3167	lockdep_assert_held(&efx->rps_hash_lock);
3168	if (!efx->rps_hash_table)
3169		return NULL;
3170	return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
3171}
3172
3173struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
3174					const struct efx_filter_spec *spec)
3175{
3176	struct efx_arfs_rule *rule;
3177	struct hlist_head *head;
3178	struct hlist_node *node;
3179
3180	head = efx_rps_hash_bucket(efx, spec);
3181	if (!head)
3182		return NULL;
3183	hlist_for_each(node, head) {
3184		rule = container_of(node, struct efx_arfs_rule, node);
3185		if (efx_filter_spec_equal(spec, &rule->spec))
3186			return rule;
3187	}
3188	return NULL;
3189}
3190
3191struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
3192				       const struct efx_filter_spec *spec,
3193				       bool *new)
3194{
3195	struct efx_arfs_rule *rule;
3196	struct hlist_head *head;
3197	struct hlist_node *node;
3198
3199	head = efx_rps_hash_bucket(efx, spec);
3200	if (!head)
3201		return NULL;
3202	hlist_for_each(node, head) {
3203		rule = container_of(node, struct efx_arfs_rule, node);
3204		if (efx_filter_spec_equal(spec, &rule->spec)) {
3205			*new = false;
3206			return rule;
3207		}
3208	}
3209	rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
3210	*new = true;
3211	if (rule) {
3212		memcpy(&rule->spec, spec, sizeof(rule->spec));
3213		hlist_add_head(&rule->node, head);
3214	}
3215	return rule;
3216}
3217
3218void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec)
3219{
3220	struct efx_arfs_rule *rule;
3221	struct hlist_head *head;
3222	struct hlist_node *node;
3223
3224	head = efx_rps_hash_bucket(efx, spec);
3225	if (WARN_ON(!head))
3226		return;
3227	hlist_for_each(node, head) {
3228		rule = container_of(node, struct efx_arfs_rule, node);
3229		if (efx_filter_spec_equal(spec, &rule->spec)) {
3230			/* Someone already reused the entry.  We know that if
3231			 * this check doesn't fire (i.e. filter_id == REMOVING)
3232			 * then the REMOVING mark was put there by our caller,
3233			 * because caller is holding a lock on filter table and
3234			 * only holders of that lock set REMOVING.
3235			 */
3236			if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
3237				return;
3238			hlist_del(node);
3239			kfree(rule);
3240			return;
3241		}
3242	}
3243	/* We didn't find it. */
3244	WARN_ON(1);
3245}
3246#endif
3247
3248/* RSS contexts.  We're using linked lists and crappy O(n) algorithms, because
3249 * (a) this is an infrequent control-plane operation and (b) n is small (max 64)
3250 */
3251struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx)
3252{
3253	struct list_head *head = &efx->rss_context.list;
3254	struct efx_rss_context *ctx, *new;
3255	u32 id = 1; /* Don't use zero, that refers to the master RSS context */
3256
3257	WARN_ON(!mutex_is_locked(&efx->rss_lock));
3258
3259	/* Search for first gap in the numbering */
3260	list_for_each_entry(ctx, head, list) {
3261		if (ctx->user_id != id)
3262			break;
3263		id++;
3264		/* Check for wrap.  If this happens, we have nearly 2^32
3265		 * allocated RSS contexts, which seems unlikely.
3266		 */
3267		if (WARN_ON_ONCE(!id))
3268			return NULL;
3269	}
3270
3271	/* Create the new entry */
3272	new = kmalloc(sizeof(struct efx_rss_context), GFP_KERNEL);
3273	if (!new)
3274		return NULL;
3275	new->context_id = EFX_EF10_RSS_CONTEXT_INVALID;
3276	new->rx_hash_udp_4tuple = false;
3277
3278	/* Insert the new entry into the gap */
3279	new->user_id = id;
3280	list_add_tail(&new->list, &ctx->list);
3281	return new;
3282}
3283
3284struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id)
3285{
3286	struct list_head *head = &efx->rss_context.list;
3287	struct efx_rss_context *ctx;
3288
3289	WARN_ON(!mutex_is_locked(&efx->rss_lock));
3290
3291	list_for_each_entry(ctx, head, list)
3292		if (ctx->user_id == id)
3293			return ctx;
3294	return NULL;
3295}
3296
3297void efx_free_rss_context_entry(struct efx_rss_context *ctx)
3298{
3299	list_del(&ctx->list);
3300	kfree(ctx);
3301}
3302
3303/**************************************************************************
3304 *
3305 * PCI interface
3306 *
3307 **************************************************************************/
3308
3309/* Main body of final NIC shutdown code
3310 * This is called only at module unload (or hotplug removal).
3311 */
3312static void efx_pci_remove_main(struct efx_nic *efx)
3313{
3314	/* Flush reset_work. It can no longer be scheduled since we
3315	 * are not READY.
3316	 */
3317	BUG_ON(efx->state == STATE_READY);
3318	cancel_work_sync(&efx->reset_work);
3319
3320	efx_disable_interrupts(efx);
3321	efx_clear_interrupt_affinity(efx);
3322	efx_nic_fini_interrupt(efx);
3323	efx_fini_port(efx);
3324	efx->type->fini(efx);
3325	efx_fini_napi(efx);
3326	efx_remove_all(efx);
3327}
3328
3329/* Final NIC shutdown
3330 * This is called only at module unload (or hotplug removal).  A PF can call
3331 * this on its VFs to ensure they are unbound first.
3332 */
3333static void efx_pci_remove(struct pci_dev *pci_dev)
3334{
 
3335	struct efx_nic *efx;
3336
3337	efx = pci_get_drvdata(pci_dev);
3338	if (!efx)
3339		return;
3340
3341	/* Mark the NIC as fini, then stop the interface */
3342	rtnl_lock();
3343	efx_dissociate(efx);
3344	dev_close(efx->net_dev);
3345	efx_disable_interrupts(efx);
3346	efx->state = STATE_UNINIT;
3347	rtnl_unlock();
3348
3349	if (efx->type->sriov_fini)
3350		efx->type->sriov_fini(efx);
3351
 
3352	efx_unregister_netdev(efx);
3353
3354	efx_mtd_remove(efx);
3355
3356	efx_pci_remove_main(efx);
3357
3358	efx_fini_io(efx);
3359	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
3360
 
3361	efx_fini_struct(efx);
3362	free_netdev(efx->net_dev);
3363
3364	pci_disable_pcie_error_reporting(pci_dev);
3365};
3366
3367/* NIC VPD information
3368 * Called during probe to display the part number of the
3369 * installed NIC.  VPD is potentially very large but this should
3370 * always appear within the first 512 bytes.
3371 */
3372#define SFC_VPD_LEN 512
3373static void efx_probe_vpd_strings(struct efx_nic *efx)
3374{
3375	struct pci_dev *dev = efx->pci_dev;
3376	char vpd_data[SFC_VPD_LEN];
3377	ssize_t vpd_size;
3378	int ro_start, ro_size, i, j;
3379
3380	/* Get the vpd data from the device */
3381	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
3382	if (vpd_size <= 0) {
3383		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
3384		return;
3385	}
3386
3387	/* Get the Read only section */
3388	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
3389	if (ro_start < 0) {
3390		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
3391		return;
3392	}
3393
3394	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
3395	j = ro_size;
3396	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3397	if (i + j > vpd_size)
3398		j = vpd_size - i;
3399
3400	/* Get the Part number */
3401	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
3402	if (i < 0) {
3403		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
3404		return;
3405	}
3406
3407	j = pci_vpd_info_field_size(&vpd_data[i]);
3408	i += PCI_VPD_INFO_FLD_HDR_SIZE;
3409	if (i + j > vpd_size) {
3410		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
3411		return;
3412	}
3413
3414	netif_info(efx, drv, efx->net_dev,
3415		   "Part Number : %.*s\n", j, &vpd_data[i]);
3416
3417	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3418	j = ro_size;
3419	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
3420	if (i < 0) {
3421		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
3422		return;
3423	}
3424
3425	j = pci_vpd_info_field_size(&vpd_data[i]);
3426	i += PCI_VPD_INFO_FLD_HDR_SIZE;
3427	if (i + j > vpd_size) {
3428		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
3429		return;
3430	}
3431
3432	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
3433	if (!efx->vpd_sn)
3434		return;
3435
3436	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3437}
3438
3439
3440/* Main body of NIC initialisation
3441 * This is called at module load (or hotplug insertion, theoretically).
3442 */
3443static int efx_pci_probe_main(struct efx_nic *efx)
3444{
3445	int rc;
3446
3447	/* Do start-of-day initialisation */
3448	rc = efx_probe_all(efx);
3449	if (rc)
3450		goto fail1;
3451
3452	efx_init_napi(efx);
3453
3454	down_write(&efx->filter_sem);
3455	rc = efx->type->init(efx);
3456	up_write(&efx->filter_sem);
3457	if (rc) {
3458		netif_err(efx, probe, efx->net_dev,
3459			  "failed to initialise NIC\n");
3460		goto fail3;
3461	}
3462
3463	rc = efx_init_port(efx);
3464	if (rc) {
3465		netif_err(efx, probe, efx->net_dev,
3466			  "failed to initialise port\n");
3467		goto fail4;
3468	}
3469
3470	rc = efx_nic_init_interrupt(efx);
3471	if (rc)
3472		goto fail5;
3473
3474	efx_set_interrupt_affinity(efx);
3475	rc = efx_enable_interrupts(efx);
3476	if (rc)
3477		goto fail6;
3478
3479	return 0;
3480
3481 fail6:
3482	efx_clear_interrupt_affinity(efx);
3483	efx_nic_fini_interrupt(efx);
3484 fail5:
3485	efx_fini_port(efx);
3486 fail4:
3487	efx->type->fini(efx);
3488 fail3:
3489	efx_fini_napi(efx);
3490	efx_remove_all(efx);
3491 fail1:
3492	return rc;
3493}
3494
3495static int efx_pci_probe_post_io(struct efx_nic *efx)
3496{
3497	struct net_device *net_dev = efx->net_dev;
3498	int rc = efx_pci_probe_main(efx);
3499
3500	if (rc)
3501		return rc;
3502
3503	if (efx->type->sriov_init) {
3504		rc = efx->type->sriov_init(efx);
3505		if (rc)
3506			netif_err(efx, probe, efx->net_dev,
3507				  "SR-IOV can't be enabled rc %d\n", rc);
3508	}
3509
3510	/* Determine netdevice features */
3511	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
3512			      NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL);
3513	if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
3514		net_dev->features |= NETIF_F_TSO6;
3515	/* Check whether device supports TSO */
3516	if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
3517		net_dev->features &= ~NETIF_F_ALL_TSO;
3518	/* Mask for features that also apply to VLAN devices */
3519	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
3520				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
3521				   NETIF_F_RXCSUM);
3522
 
3523	net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
3524
3525	/* Disable receiving frames with bad FCS, by default. */
3526	net_dev->features &= ~NETIF_F_RXALL;
3527
3528	/* Disable VLAN filtering by default.  It may be enforced if
3529	 * the feature is fixed (i.e. VLAN filters are required to
3530	 * receive VLAN tagged packets due to vPort restrictions).
3531	 */
3532	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3533	net_dev->features |= efx->fixed_features;
3534
 
 
 
 
 
 
 
 
 
3535	rc = efx_register_netdev(efx);
 
3536	if (!rc)
3537		return 0;
3538
3539	efx_pci_remove_main(efx);
3540	return rc;
3541}
3542
3543/* NIC initialisation
3544 *
3545 * This is called at module load (or hotplug insertion,
3546 * theoretically).  It sets up PCI mappings, resets the NIC,
3547 * sets up and registers the network devices with the kernel and hooks
3548 * the interrupt service routine.  It does not prepare the device for
3549 * transmission; this is left to the first time one of the network
3550 * interfaces is brought up (i.e. efx_net_open).
3551 */
3552static int efx_pci_probe(struct pci_dev *pci_dev,
3553			 const struct pci_device_id *entry)
3554{
 
3555	struct net_device *net_dev;
3556	struct efx_nic *efx;
3557	int rc;
3558
3559	/* Allocate and initialise a struct net_device and struct efx_nic */
3560	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
3561				     EFX_MAX_RX_QUEUES);
3562	if (!net_dev)
3563		return -ENOMEM;
3564	efx = netdev_priv(net_dev);
 
 
 
 
 
 
 
 
 
 
 
3565	efx->type = (const struct efx_nic_type *) entry->driver_data;
3566	efx->fixed_features |= NETIF_F_HIGHDMA;
3567
3568	pci_set_drvdata(pci_dev, efx);
3569	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3570	rc = efx_init_struct(efx, pci_dev, net_dev);
3571	if (rc)
3572		goto fail1;
 
3573
3574	netif_info(efx, probe, efx->net_dev,
3575		   "Solarflare NIC detected\n");
3576
3577	if (!efx->type->is_vf)
3578		efx_probe_vpd_strings(efx);
3579
3580	/* Set up basic I/O (BAR mappings etc) */
3581	rc = efx_init_io(efx);
 
3582	if (rc)
3583		goto fail2;
3584
3585	rc = efx_pci_probe_post_io(efx);
3586	if (rc) {
3587		/* On failure, retry once immediately.
3588		 * If we aborted probe due to a scheduled reset, dismiss it.
3589		 */
3590		efx->reset_pending = 0;
3591		rc = efx_pci_probe_post_io(efx);
3592		if (rc) {
3593			/* On another failure, retry once more
3594			 * after a 50-305ms delay.
3595			 */
3596			unsigned char r;
3597
3598			get_random_bytes(&r, 1);
3599			msleep((unsigned int)r + 50);
3600			efx->reset_pending = 0;
3601			rc = efx_pci_probe_post_io(efx);
3602		}
3603	}
3604	if (rc)
3605		goto fail3;
3606
3607	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3608
3609	/* Try to create MTDs, but allow this to fail */
3610	rtnl_lock();
3611	rc = efx_mtd_probe(efx);
3612	rtnl_unlock();
3613	if (rc && rc != -EPERM)
3614		netif_warn(efx, probe, efx->net_dev,
3615			   "failed to create MTDs (%d)\n", rc);
3616
3617	(void)pci_enable_pcie_error_reporting(pci_dev);
3618
3619	if (efx->type->udp_tnl_push_ports)
3620		efx->type->udp_tnl_push_ports(efx);
3621
3622	return 0;
3623
3624 fail3:
3625	efx_fini_io(efx);
3626 fail2:
3627	efx_fini_struct(efx);
3628 fail1:
3629	WARN_ON(rc > 0);
3630	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3631	free_netdev(net_dev);
 
 
3632	return rc;
3633}
3634
3635/* efx_pci_sriov_configure returns the actual number of Virtual Functions
3636 * enabled on success
3637 */
3638#ifdef CONFIG_SFC_SRIOV
3639static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
3640{
3641	int rc;
3642	struct efx_nic *efx = pci_get_drvdata(dev);
3643
3644	if (efx->type->sriov_configure) {
3645		rc = efx->type->sriov_configure(efx, num_vfs);
3646		if (rc)
3647			return rc;
3648		else
3649			return num_vfs;
3650	} else
3651		return -EOPNOTSUPP;
3652}
3653#endif
3654
3655static int efx_pm_freeze(struct device *dev)
3656{
3657	struct efx_nic *efx = dev_get_drvdata(dev);
3658
3659	rtnl_lock();
3660
3661	if (efx->state != STATE_DISABLED) {
3662		efx->state = STATE_UNINIT;
3663
3664		efx_device_detach_sync(efx);
3665
3666		efx_stop_all(efx);
3667		efx_disable_interrupts(efx);
 
 
3668	}
3669
3670	rtnl_unlock();
3671
3672	return 0;
3673}
3674
 
 
 
 
 
 
 
 
 
 
 
3675static int efx_pm_thaw(struct device *dev)
3676{
3677	int rc;
3678	struct efx_nic *efx = dev_get_drvdata(dev);
3679
3680	rtnl_lock();
3681
3682	if (efx->state != STATE_DISABLED) {
3683		rc = efx_enable_interrupts(efx);
3684		if (rc)
3685			goto fail;
3686
3687		mutex_lock(&efx->mac_lock);
3688		efx->phy_op->reconfigure(efx);
3689		mutex_unlock(&efx->mac_lock);
3690
3691		efx_start_all(efx);
3692
3693		efx_device_attach_if_not_resetting(efx);
3694
3695		efx->state = STATE_READY;
3696
3697		efx->type->resume_wol(efx);
3698	}
3699
3700	rtnl_unlock();
3701
3702	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3703	queue_work(reset_workqueue, &efx->reset_work);
3704
3705	return 0;
3706
3707fail:
3708	rtnl_unlock();
3709
3710	return rc;
3711}
3712
3713static int efx_pm_poweroff(struct device *dev)
3714{
3715	struct pci_dev *pci_dev = to_pci_dev(dev);
3716	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3717
3718	efx->type->fini(efx);
3719
3720	efx->reset_pending = 0;
3721
3722	pci_save_state(pci_dev);
3723	return pci_set_power_state(pci_dev, PCI_D3hot);
3724}
3725
3726/* Used for both resume and restore */
3727static int efx_pm_resume(struct device *dev)
3728{
3729	struct pci_dev *pci_dev = to_pci_dev(dev);
3730	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3731	int rc;
3732
3733	rc = pci_set_power_state(pci_dev, PCI_D0);
3734	if (rc)
3735		return rc;
3736	pci_restore_state(pci_dev);
3737	rc = pci_enable_device(pci_dev);
3738	if (rc)
3739		return rc;
3740	pci_set_master(efx->pci_dev);
3741	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3742	if (rc)
3743		return rc;
3744	down_write(&efx->filter_sem);
3745	rc = efx->type->init(efx);
3746	up_write(&efx->filter_sem);
3747	if (rc)
3748		return rc;
3749	rc = efx_pm_thaw(dev);
3750	return rc;
3751}
3752
3753static int efx_pm_suspend(struct device *dev)
3754{
3755	int rc;
3756
3757	efx_pm_freeze(dev);
3758	rc = efx_pm_poweroff(dev);
3759	if (rc)
3760		efx_pm_resume(dev);
3761	return rc;
3762}
3763
3764static const struct dev_pm_ops efx_pm_ops = {
3765	.suspend	= efx_pm_suspend,
3766	.resume		= efx_pm_resume,
3767	.freeze		= efx_pm_freeze,
3768	.thaw		= efx_pm_thaw,
3769	.poweroff	= efx_pm_poweroff,
3770	.restore	= efx_pm_resume,
3771};
3772
3773/* A PCI error affecting this device was detected.
3774 * At this point MMIO and DMA may be disabled.
3775 * Stop the software path and request a slot reset.
3776 */
3777static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3778					      enum pci_channel_state state)
3779{
3780	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3781	struct efx_nic *efx = pci_get_drvdata(pdev);
3782
3783	if (state == pci_channel_io_perm_failure)
3784		return PCI_ERS_RESULT_DISCONNECT;
3785
3786	rtnl_lock();
3787
3788	if (efx->state != STATE_DISABLED) {
3789		efx->state = STATE_RECOVERY;
3790		efx->reset_pending = 0;
3791
3792		efx_device_detach_sync(efx);
3793
3794		efx_stop_all(efx);
3795		efx_disable_interrupts(efx);
3796
3797		status = PCI_ERS_RESULT_NEED_RESET;
3798	} else {
3799		/* If the interface is disabled we don't want to do anything
3800		 * with it.
3801		 */
3802		status = PCI_ERS_RESULT_RECOVERED;
3803	}
3804
3805	rtnl_unlock();
3806
3807	pci_disable_device(pdev);
3808
3809	return status;
3810}
3811
3812/* Fake a successful reset, which will be performed later in efx_io_resume. */
3813static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3814{
3815	struct efx_nic *efx = pci_get_drvdata(pdev);
3816	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3817
3818	if (pci_enable_device(pdev)) {
3819		netif_err(efx, hw, efx->net_dev,
3820			  "Cannot re-enable PCI device after reset.\n");
3821		status =  PCI_ERS_RESULT_DISCONNECT;
3822	}
3823
3824	return status;
3825}
3826
3827/* Perform the actual reset and resume I/O operations. */
3828static void efx_io_resume(struct pci_dev *pdev)
3829{
3830	struct efx_nic *efx = pci_get_drvdata(pdev);
3831	int rc;
3832
3833	rtnl_lock();
3834
3835	if (efx->state == STATE_DISABLED)
3836		goto out;
3837
3838	rc = efx_reset(efx, RESET_TYPE_ALL);
3839	if (rc) {
3840		netif_err(efx, hw, efx->net_dev,
3841			  "efx_reset failed after PCI error (%d)\n", rc);
3842	} else {
3843		efx->state = STATE_READY;
3844		netif_dbg(efx, hw, efx->net_dev,
3845			  "Done resetting and resuming IO after PCI error.\n");
3846	}
3847
3848out:
3849	rtnl_unlock();
3850}
3851
3852/* For simplicity and reliability, we always require a slot reset and try to
3853 * reset the hardware when a pci error affecting the device is detected.
3854 * We leave both the link_reset and mmio_enabled callback unimplemented:
3855 * with our request for slot reset the mmio_enabled callback will never be
3856 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3857 */
3858static const struct pci_error_handlers efx_err_handlers = {
3859	.error_detected = efx_io_error_detected,
3860	.slot_reset	= efx_io_slot_reset,
3861	.resume		= efx_io_resume,
3862};
3863
3864static struct pci_driver efx_pci_driver = {
3865	.name		= KBUILD_MODNAME,
3866	.id_table	= efx_pci_table,
3867	.probe		= efx_pci_probe,
3868	.remove		= efx_pci_remove,
3869	.driver.pm	= &efx_pm_ops,
 
3870	.err_handler	= &efx_err_handlers,
3871#ifdef CONFIG_SFC_SRIOV
3872	.sriov_configure = efx_pci_sriov_configure,
3873#endif
3874};
3875
3876/**************************************************************************
3877 *
3878 * Kernel module interface
3879 *
3880 *************************************************************************/
3881
3882module_param(interrupt_mode, uint, 0444);
3883MODULE_PARM_DESC(interrupt_mode,
3884		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3885
3886static int __init efx_init_module(void)
3887{
3888	int rc;
3889
3890	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3891
3892	rc = register_netdevice_notifier(&efx_netdev_notifier);
3893	if (rc)
3894		goto err_notifier;
3895
3896#ifdef CONFIG_SFC_SRIOV
3897	rc = efx_init_sriov();
3898	if (rc)
3899		goto err_sriov;
3900#endif
3901
3902	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3903	if (!reset_workqueue) {
3904		rc = -ENOMEM;
3905		goto err_reset;
3906	}
3907
3908	rc = pci_register_driver(&efx_pci_driver);
3909	if (rc < 0)
3910		goto err_pci;
3911
 
 
 
 
3912	return 0;
3913
 
 
3914 err_pci:
3915	destroy_workqueue(reset_workqueue);
3916 err_reset:
3917#ifdef CONFIG_SFC_SRIOV
3918	efx_fini_sriov();
3919 err_sriov:
3920#endif
3921	unregister_netdevice_notifier(&efx_netdev_notifier);
3922 err_notifier:
3923	return rc;
3924}
3925
3926static void __exit efx_exit_module(void)
3927{
3928	printk(KERN_INFO "Solarflare NET driver unloading\n");
3929
 
3930	pci_unregister_driver(&efx_pci_driver);
3931	destroy_workqueue(reset_workqueue);
3932#ifdef CONFIG_SFC_SRIOV
3933	efx_fini_sriov();
3934#endif
3935	unregister_netdevice_notifier(&efx_netdev_notifier);
3936
3937}
3938
3939module_init(efx_init_module);
3940module_exit(efx_exit_module);
3941
3942MODULE_AUTHOR("Solarflare Communications and "
3943	      "Michael Brown <mbrown@fensystems.co.uk>");
3944MODULE_DESCRIPTION("Solarflare network driver");
3945MODULE_LICENSE("GPL");
3946MODULE_DEVICE_TABLE(pci, efx_pci_table);
3947MODULE_VERSION(EFX_DRIVER_VERSION);