Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2005-2013 Solarflare Communications Inc.
 
 
 
 
   6 */
   7
   8#include <linux/filter.h>
   9#include <linux/module.h>
  10#include <linux/pci.h>
  11#include <linux/netdevice.h>
  12#include <linux/etherdevice.h>
  13#include <linux/delay.h>
  14#include <linux/notifier.h>
  15#include <linux/ip.h>
  16#include <linux/tcp.h>
  17#include <linux/in.h>
  18#include <linux/ethtool.h>
  19#include <linux/topology.h>
  20#include <linux/gfp.h>
 
  21#include <linux/interrupt.h>
  22#include "net_driver.h"
  23#include <net/gre.h>
  24#include <net/udp_tunnel.h>
  25#include "efx.h"
  26#include "efx_common.h"
  27#include "efx_channels.h"
  28#include "ef100.h"
  29#include "rx_common.h"
  30#include "tx_common.h"
  31#include "nic.h"
  32#include "io.h"
  33#include "selftest.h"
  34#include "sriov.h"
  35#include "efx_devlink.h"
  36
  37#include "mcdi_port_common.h"
  38#include "mcdi_pcol.h"
  39#include "workarounds.h"
  40
  41/**************************************************************************
  42 *
  43 * Configurable values
  44 *
  45 *************************************************************************/
 
  46
  47module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
  48MODULE_PARM_DESC(interrupt_mode,
  49		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50
  51module_param(rss_cpus, uint, 0444);
  52MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53
  54/*
  55 * Use separate channels for TX and RX events
  56 *
  57 * Set this to 1 to use separate channels for TX and RX. It allows us
  58 * to control interrupt affinity separately for TX and RX.
  59 *
  60 * This is only used in MSI-X interrupt mode
  61 */
  62bool efx_separate_tx_channels;
  63module_param(efx_separate_tx_channels, bool, 0444);
  64MODULE_PARM_DESC(efx_separate_tx_channels,
  65		 "Use separate channels for TX and RX");
  66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67/* Initial interrupt moderation settings.  They can be modified after
  68 * module load with ethtool.
  69 *
  70 * The default for RX should strike a balance between increasing the
  71 * round-trip latency and reducing overhead.
  72 */
  73static unsigned int rx_irq_mod_usec = 60;
  74
  75/* Initial interrupt moderation settings.  They can be modified after
  76 * module load with ethtool.
  77 *
  78 * This default is chosen to ensure that a 10G link does not go idle
  79 * while a TX queue is stopped after it has become full.  A queue is
  80 * restarted when it drops below half full.  The time this takes (assuming
  81 * worst case 3 descriptors per packet and 1024 descriptors) is
  82 *   512 / 3 * 1.2 = 205 usec.
  83 */
  84static unsigned int tx_irq_mod_usec = 150;
  85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86static bool phy_flash_cfg;
  87module_param(phy_flash_cfg, bool, 0644);
  88MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
  89
 
 
 
 
 
 
 
 
 
 
  90static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  91			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
  92			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
  93			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
  94module_param(debug, uint, 0);
  95MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
  96
  97/**************************************************************************
  98 *
  99 * Utility functions and prototypes
 100 *
 101 *************************************************************************/
 102
 
 
 
 
 
 103static void efx_remove_port(struct efx_nic *efx);
 104static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
 105static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
 106static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
 107			u32 flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108
 109/**************************************************************************
 110 *
 111 * Port handling
 112 *
 113 **************************************************************************/
 114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115static void efx_fini_port(struct efx_nic *efx);
 116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117static int efx_probe_port(struct efx_nic *efx)
 118{
 119	int rc;
 120
 121	netif_dbg(efx, probe, efx->net_dev, "create port\n");
 122
 123	if (phy_flash_cfg)
 124		efx->phy_mode = PHY_MODE_SPECIAL;
 125
 126	/* Connect up MAC/PHY operations table */
 127	rc = efx->type->probe_port(efx);
 128	if (rc)
 129		return rc;
 130
 131	/* Initialise MAC address to permanent address */
 132	eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
 133
 134	return 0;
 135}
 136
 137static int efx_init_port(struct efx_nic *efx)
 138{
 139	int rc;
 140
 141	netif_dbg(efx, drv, efx->net_dev, "init port\n");
 142
 143	mutex_lock(&efx->mac_lock);
 144
 
 
 
 
 145	efx->port_initialized = true;
 146
 
 
 
 
 147	/* Ensure the PHY advertises the correct flow control settings */
 148	rc = efx_mcdi_port_reconfigure(efx);
 149	if (rc && rc != -EPERM)
 150		goto fail;
 151
 152	mutex_unlock(&efx->mac_lock);
 153	return 0;
 154
 155fail:
 
 
 156	mutex_unlock(&efx->mac_lock);
 157	return rc;
 158}
 159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160static void efx_fini_port(struct efx_nic *efx)
 161{
 162	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
 163
 164	if (!efx->port_initialized)
 165		return;
 166
 
 167	efx->port_initialized = false;
 168
 169	efx->link_state.up = false;
 170	efx_link_status_changed(efx);
 171}
 172
 173static void efx_remove_port(struct efx_nic *efx)
 174{
 175	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
 176
 177	efx->type->remove_port(efx);
 178}
 179
 180/**************************************************************************
 181 *
 182 * NIC handling
 183 *
 184 **************************************************************************/
 185
 186static LIST_HEAD(efx_primary_list);
 187static LIST_HEAD(efx_unassociated_list);
 188
 189static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
 190{
 191	return left->type == right->type &&
 192		left->vpd_sn && right->vpd_sn &&
 193		!strcmp(left->vpd_sn, right->vpd_sn);
 194}
 195
 196static void efx_associate(struct efx_nic *efx)
 197{
 198	struct efx_nic *other, *next;
 199
 200	if (efx->primary == efx) {
 201		/* Adding primary function; look for secondaries */
 202
 203		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
 204		list_add_tail(&efx->node, &efx_primary_list);
 205
 206		list_for_each_entry_safe(other, next, &efx_unassociated_list,
 207					 node) {
 208			if (efx_same_controller(efx, other)) {
 209				list_del(&other->node);
 210				netif_dbg(other, probe, other->net_dev,
 211					  "moving to secondary list of %s %s\n",
 212					  pci_name(efx->pci_dev),
 213					  efx->net_dev->name);
 214				list_add_tail(&other->node,
 215					      &efx->secondary_list);
 216				other->primary = efx;
 217			}
 218		}
 219	} else {
 220		/* Adding secondary function; look for primary */
 221
 222		list_for_each_entry(other, &efx_primary_list, node) {
 223			if (efx_same_controller(efx, other)) {
 224				netif_dbg(efx, probe, efx->net_dev,
 225					  "adding to secondary list of %s %s\n",
 226					  pci_name(other->pci_dev),
 227					  other->net_dev->name);
 228				list_add_tail(&efx->node,
 229					      &other->secondary_list);
 230				efx->primary = other;
 231				return;
 232			}
 233		}
 234
 235		netif_dbg(efx, probe, efx->net_dev,
 236			  "adding to unassociated list\n");
 237		list_add_tail(&efx->node, &efx_unassociated_list);
 238	}
 239}
 240
 241static void efx_dissociate(struct efx_nic *efx)
 242{
 243	struct efx_nic *other, *next;
 244
 245	list_del(&efx->node);
 246	efx->primary = NULL;
 247
 248	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
 249		list_del(&other->node);
 250		netif_dbg(other, probe, other->net_dev,
 251			  "moving to unassociated list\n");
 252		list_add_tail(&other->node, &efx_unassociated_list);
 253		other->primary = NULL;
 254	}
 255}
 256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 257static int efx_probe_nic(struct efx_nic *efx)
 258{
 
 259	int rc;
 260
 261	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
 262
 263	/* Carry out hardware-type specific initialisation */
 264	rc = efx->type->probe(efx);
 265	if (rc)
 266		return rc;
 267
 268	do {
 269		if (!efx->max_channels || !efx->max_tx_channels) {
 270			netif_err(efx, drv, efx->net_dev,
 271				  "Insufficient resources to allocate"
 272				  " any channels\n");
 273			rc = -ENOSPC;
 274			goto fail1;
 275		}
 276
 277		/* Determine the number of channels and queues by trying
 278		 * to hook in MSI-X interrupts.
 279		 */
 280		rc = efx_probe_interrupts(efx);
 281		if (rc)
 282			goto fail1;
 283
 284		rc = efx_set_channels(efx);
 285		if (rc)
 286			goto fail1;
 287
 288		/* dimension_resources can fail with EAGAIN */
 289		rc = efx->type->dimension_resources(efx);
 290		if (rc != 0 && rc != -EAGAIN)
 291			goto fail2;
 292
 293		if (rc == -EAGAIN)
 294			/* try again with new max_channels */
 295			efx_remove_interrupts(efx);
 296
 297	} while (rc == -EAGAIN);
 
 
 298
 299	if (efx->n_channels > 1)
 300		netdev_rss_key_fill(efx->rss_context.rx_hash_key,
 301				    sizeof(efx->rss_context.rx_hash_key));
 302	efx_set_default_rx_indir_table(efx, &efx->rss_context);
 
 
 
 
 303
 304	/* Initialise the interrupt moderation settings */
 305	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
 306	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
 307				true);
 308
 309	return 0;
 310
 311fail2:
 312	efx_remove_interrupts(efx);
 313fail1:
 314	efx->type->remove(efx);
 315	return rc;
 316}
 317
 318static void efx_remove_nic(struct efx_nic *efx)
 319{
 320	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
 321
 322	efx_remove_interrupts(efx);
 323	efx->type->remove(efx);
 324}
 325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326/**************************************************************************
 327 *
 328 * NIC startup/shutdown
 329 *
 330 *************************************************************************/
 331
 332static int efx_probe_all(struct efx_nic *efx)
 333{
 334	int rc;
 335
 336	rc = efx_probe_nic(efx);
 337	if (rc) {
 338		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
 339		goto fail1;
 340	}
 341
 342	rc = efx_probe_port(efx);
 343	if (rc) {
 344		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
 345		goto fail2;
 346	}
 347
 348	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
 349	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
 350		rc = -EINVAL;
 351		goto fail3;
 352	}
 353
 354#ifdef CONFIG_SFC_SRIOV
 355	rc = efx->type->vswitching_probe(efx);
 356	if (rc) /* not fatal; the PF will still work fine */
 357		netif_warn(efx, probe, efx->net_dev,
 358			   "failed to setup vswitching rc=%d;"
 359			   " VFs may not function\n", rc);
 360#endif
 361
 362	rc = efx_probe_filters(efx);
 363	if (rc) {
 364		netif_err(efx, probe, efx->net_dev,
 365			  "failed to create filter tables\n");
 366		goto fail4;
 367	}
 368
 369	rc = efx_probe_channels(efx);
 370	if (rc)
 371		goto fail5;
 372
 373	efx->state = STATE_NET_DOWN;
 374
 375	return 0;
 376
 377 fail5:
 378	efx_remove_filters(efx);
 379 fail4:
 380#ifdef CONFIG_SFC_SRIOV
 381	efx->type->vswitching_remove(efx);
 382#endif
 383 fail3:
 384	efx_remove_port(efx);
 385 fail2:
 386	efx_remove_nic(efx);
 387 fail1:
 388	return rc;
 389}
 390
 391static void efx_remove_all(struct efx_nic *efx)
 
 
 
 
 
 
 
 392{
 393	rtnl_lock();
 394	efx_xdp_setup_prog(efx, NULL);
 395	rtnl_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397	efx_remove_channels(efx);
 398	efx_remove_filters(efx);
 399#ifdef CONFIG_SFC_SRIOV
 400	efx->type->vswitching_remove(efx);
 401#endif
 402	efx_remove_port(efx);
 403	efx_remove_nic(efx);
 404}
 405
 406/**************************************************************************
 407 *
 408 * Interrupt moderation
 409 *
 410 **************************************************************************/
 411unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
 
 412{
 413	if (usecs == 0)
 414		return 0;
 415	if (usecs * 1000 < efx->timer_quantum_ns)
 416		return 1; /* never round down to 0 */
 417	return usecs * 1000 / efx->timer_quantum_ns;
 418}
 419
 420unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
 421{
 422	/* We must round up when converting ticks to microseconds
 423	 * because we round down when converting the other way.
 424	 */
 425	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
 426}
 427
 428/* Set interrupt moderation parameters */
 429int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
 430			    unsigned int rx_usecs, bool rx_adaptive,
 431			    bool rx_may_override_tx)
 432{
 433	struct efx_channel *channel;
 434	unsigned int timer_max_us;
 
 
 
 
 435
 436	EFX_ASSERT_RESET_SERIALISED(efx);
 437
 438	timer_max_us = efx->timer_max_ns / 1000;
 439
 440	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
 441		return -EINVAL;
 442
 443	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
 
 
 
 444	    !rx_may_override_tx) {
 445		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
 446			  "RX and TX IRQ moderation must be equal\n");
 447		return -EINVAL;
 448	}
 449
 450	efx->irq_rx_adaptive = rx_adaptive;
 451	efx->irq_rx_moderation_us = rx_usecs;
 452	efx_for_each_channel(channel, efx) {
 453		if (efx_channel_has_rx_queue(channel))
 454			channel->irq_moderation_us = rx_usecs;
 455		else if (efx_channel_has_tx_queues(channel))
 456			channel->irq_moderation_us = tx_usecs;
 457		else if (efx_channel_is_xdp_tx(channel))
 458			channel->irq_moderation_us = tx_usecs;
 459	}
 460
 461	return 0;
 462}
 463
 464void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
 465			    unsigned int *rx_usecs, bool *rx_adaptive)
 466{
 
 
 
 
 467	*rx_adaptive = efx->irq_rx_adaptive;
 468	*rx_usecs = efx->irq_rx_moderation_us;
 
 
 469
 470	/* If channels are shared between RX and TX, so is IRQ
 471	 * moderation.  Otherwise, IRQ moderation is the same for all
 472	 * TX channels and is not adaptive.
 473	 */
 474	if (efx->tx_channel_offset == 0) {
 475		*tx_usecs = *rx_usecs;
 476	} else {
 477		struct efx_channel *tx_channel;
 
 
 
 
 478
 479		tx_channel = efx->channel[efx->tx_channel_offset];
 480		*tx_usecs = tx_channel->irq_moderation_us;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 481	}
 
 
 
 482}
 483
 484/**************************************************************************
 485 *
 486 * ioctls
 487 *
 488 *************************************************************************/
 489
 490/* Net device ioctl
 491 * Context: process, rtnl_lock() held.
 492 */
 493static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
 494{
 495	struct efx_nic *efx = efx_netdev_priv(net_dev);
 496	struct mii_ioctl_data *data = if_mii(ifr);
 497
 
 
 
 
 
 498	/* Convert phy_id from older PRTAD/DEVAD format */
 499	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
 500	    (data->phy_id & 0xfc00) == 0x0400)
 501		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
 502
 503	return mdio_mii_ioctl(&efx->mdio, data, cmd);
 504}
 505
 506/**************************************************************************
 507 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508 * Kernel net device interface
 509 *
 510 *************************************************************************/
 511
 512/* Context: process, rtnl_lock() held. */
 513int efx_net_open(struct net_device *net_dev)
 514{
 515	struct efx_nic *efx = efx_netdev_priv(net_dev);
 516	int rc;
 517
 518	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
 519		  raw_smp_processor_id());
 520
 521	rc = efx_check_disabled(efx);
 522	if (rc)
 523		return rc;
 524	if (efx->phy_mode & PHY_MODE_SPECIAL)
 525		return -EBUSY;
 526	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
 527		return -EIO;
 528
 529	/* Notify the kernel of the link state polled during driver load,
 530	 * before the monitor starts running */
 531	efx_link_status_changed(efx);
 532
 533	efx_start_all(efx);
 534	if (efx->state == STATE_DISABLED || efx->reset_pending)
 535		netif_device_detach(efx->net_dev);
 536	else
 537		efx->state = STATE_NET_UP;
 538
 539	return 0;
 540}
 541
 542/* Context: process, rtnl_lock() held.
 543 * Note that the kernel will ignore our return code; this method
 544 * should really be a void.
 545 */
 546int efx_net_stop(struct net_device *net_dev)
 547{
 548	struct efx_nic *efx = efx_netdev_priv(net_dev);
 549
 550	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
 551		  raw_smp_processor_id());
 552
 553	/* Stop the device and flush all the channels */
 554	efx_stop_all(efx);
 555
 556	return 0;
 557}
 558
 559static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
 
 
 560{
 561	struct efx_nic *efx = efx_netdev_priv(net_dev);
 562
 563	if (efx->type->vlan_rx_add_vid)
 564		return efx->type->vlan_rx_add_vid(efx, proto, vid);
 565	else
 566		return -EOPNOTSUPP;
 
 567}
 568
 569static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
 
 570{
 571	struct efx_nic *efx = efx_netdev_priv(net_dev);
 572
 573	if (efx->type->vlan_rx_kill_vid)
 574		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
 575	else
 576		return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 577}
 578
 579static int efx_hwtstamp_set(struct net_device *net_dev,
 580			    struct kernel_hwtstamp_config *config,
 581			    struct netlink_ext_ack *extack)
 582{
 583	struct efx_nic *efx = efx_netdev_priv(net_dev);
 584
 585	return efx_ptp_set_ts_config(efx, config, extack);
 
 
 586}
 587
 588static int efx_hwtstamp_get(struct net_device *net_dev,
 589			    struct kernel_hwtstamp_config *config)
 590{
 591	struct efx_nic *efx = efx_netdev_priv(net_dev);
 592
 593	return efx_ptp_get_ts_config(efx, config);
 
 
 
 
 594}
 595
 596static const struct net_device_ops efx_netdev_ops = {
 597	.ndo_open		= efx_net_open,
 598	.ndo_stop		= efx_net_stop,
 599	.ndo_get_stats64	= efx_net_stats,
 600	.ndo_tx_timeout		= efx_watchdog,
 601	.ndo_start_xmit		= efx_hard_start_xmit,
 602	.ndo_validate_addr	= eth_validate_addr,
 603	.ndo_eth_ioctl		= efx_ioctl,
 604	.ndo_change_mtu		= efx_change_mtu,
 605	.ndo_set_mac_address	= efx_set_mac_address,
 606	.ndo_set_rx_mode	= efx_set_rx_mode,
 607	.ndo_set_features	= efx_set_features,
 608	.ndo_features_check	= efx_features_check,
 609	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
 610	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
 611	.ndo_hwtstamp_set	= efx_hwtstamp_set,
 612	.ndo_hwtstamp_get	= efx_hwtstamp_get,
 613#ifdef CONFIG_SFC_SRIOV
 614	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
 615	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
 616	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
 617	.ndo_get_vf_config	= efx_sriov_get_vf_config,
 618	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
 619#endif
 620	.ndo_get_phys_port_id   = efx_get_phys_port_id,
 621	.ndo_get_phys_port_name	= efx_get_phys_port_name,
 
 
 622#ifdef CONFIG_RFS_ACCEL
 623	.ndo_rx_flow_steer	= efx_filter_rfs,
 624#endif
 625	.ndo_xdp_xmit		= efx_xdp_xmit,
 626	.ndo_bpf		= efx_xdp
 627};
 628
 629static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
 630{
 631	struct bpf_prog *old_prog;
 632
 633	if (efx->xdp_rxq_info_failed) {
 634		netif_err(efx, drv, efx->net_dev,
 635			  "Unable to bind XDP program due to previous failure of rxq_info\n");
 636		return -EINVAL;
 637	}
 638
 639	if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
 640		netif_err(efx, drv, efx->net_dev,
 641			  "Unable to configure XDP with MTU of %d (max: %d)\n",
 642			  efx->net_dev->mtu, efx_xdp_max_mtu(efx));
 643		return -EINVAL;
 644	}
 645
 646	old_prog = rtnl_dereference(efx->xdp_prog);
 647	rcu_assign_pointer(efx->xdp_prog, prog);
 648	/* Release the reference that was originally passed by the caller. */
 649	if (old_prog)
 650		bpf_prog_put(old_prog);
 651
 652	return 0;
 653}
 654
 655/* Context: process, rtnl_lock() held. */
 656static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
 657{
 658	struct efx_nic *efx = efx_netdev_priv(dev);
 659
 660	switch (xdp->command) {
 661	case XDP_SETUP_PROG:
 662		return efx_xdp_setup_prog(efx, xdp->prog);
 663	default:
 664		return -EINVAL;
 665	}
 666}
 667
 668static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
 669			u32 flags)
 670{
 671	struct efx_nic *efx = efx_netdev_priv(dev);
 672
 673	if (!netif_running(dev))
 674		return -EINVAL;
 675
 676	return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
 677}
 678
 679static void efx_update_name(struct efx_nic *efx)
 680{
 681	strcpy(efx->name, efx->net_dev->name);
 682	efx_mtd_rename(efx);
 683	efx_set_channel_names(efx);
 684}
 685
 686static int efx_netdev_event(struct notifier_block *this,
 687			    unsigned long event, void *ptr)
 688{
 689	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
 690
 691	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
 
 692	    event == NETDEV_CHANGENAME)
 693		efx_update_name(efx_netdev_priv(net_dev));
 694
 695	return NOTIFY_DONE;
 696}
 697
 698static struct notifier_block efx_netdev_notifier = {
 699	.notifier_call = efx_netdev_event,
 700};
 701
 702static ssize_t phy_type_show(struct device *dev,
 703			     struct device_attribute *attr, char *buf)
 704{
 705	struct efx_nic *efx = dev_get_drvdata(dev);
 706	return sprintf(buf, "%d\n", efx->phy_type);
 707}
 708static DEVICE_ATTR_RO(phy_type);
 709
 710static int efx_register_netdev(struct efx_nic *efx)
 711{
 712	struct net_device *net_dev = efx->net_dev;
 713	struct efx_channel *channel;
 714	int rc;
 715
 716	net_dev->watchdog_timeo = 5 * HZ;
 717	net_dev->irq = efx->pci_dev->irq;
 718	net_dev->netdev_ops = &efx_netdev_ops;
 719	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
 720		net_dev->priv_flags |= IFF_UNICAST_FLT;
 721	net_dev->ethtool_ops = &efx_ethtool_ops;
 722	netif_set_tso_max_segs(net_dev, EFX_TSO_MAX_SEGS);
 723	net_dev->min_mtu = EFX_MIN_MTU;
 724	net_dev->max_mtu = EFX_MAX_MTU;
 
 725
 726	rtnl_lock();
 727
 728	/* Enable resets to be scheduled and check whether any were
 729	 * already requested.  If so, the NIC is probably hosed so we
 730	 * abort.
 731	 */
 
 
 732	if (efx->reset_pending) {
 733		pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n");
 
 734		rc = -EIO;
 735		goto fail_locked;
 736	}
 737
 738	rc = dev_alloc_name(net_dev, net_dev->name);
 739	if (rc < 0)
 740		goto fail_locked;
 741	efx_update_name(efx);
 742
 743	/* Always start with carrier off; PHY events will detect the link */
 744	netif_carrier_off(net_dev);
 745
 746	rc = register_netdevice(net_dev);
 747	if (rc)
 748		goto fail_locked;
 749
 750	efx_for_each_channel(channel, efx) {
 751		struct efx_tx_queue *tx_queue;
 752		efx_for_each_channel_tx_queue(tx_queue, channel)
 753			efx_init_tx_queue_core_txq(tx_queue);
 754	}
 755
 756	efx_associate(efx);
 757
 758	efx->state = STATE_NET_DOWN;
 759
 760	rtnl_unlock();
 761
 762	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
 763	if (rc) {
 764		netif_err(efx, drv, efx->net_dev,
 765			  "failed to init net dev attributes\n");
 766		goto fail_registered;
 767	}
 768
 769	efx_init_mcdi_logging(efx);
 770
 771	return 0;
 772
 773fail_registered:
 774	rtnl_lock();
 775	efx_dissociate(efx);
 776	unregister_netdevice(net_dev);
 777fail_locked:
 778	efx->state = STATE_UNINIT;
 779	rtnl_unlock();
 780	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
 781	return rc;
 782}
 783
 784static void efx_unregister_netdev(struct efx_nic *efx)
 785{
 786	if (!efx->net_dev)
 787		return;
 788
 789	if (WARN_ON(efx_netdev_priv(efx->net_dev) != efx))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790		return;
 791
 792	if (efx_dev_registered(efx)) {
 793		strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
 794		efx_fini_mcdi_logging(efx);
 795		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
 796		unregister_netdev(efx->net_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798}
 799
 800/**************************************************************************
 801 *
 802 * List of NICs we support
 803 *
 804 **************************************************************************/
 805
 806/* PCI device ID table */
 807static const struct pci_device_id efx_pci_table[] = {
 
 
 
 
 
 
 
 
 
 
 808	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
 809	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 810	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
 811	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 812	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
 813	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 814	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
 815	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 816	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
 817	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 818	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
 819	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 820	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03),  /* SFC9250 PF */
 821	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 822	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03),  /* SFC9250 VF */
 823	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 824	{0}			/* end of list */
 825};
 826
 827/**************************************************************************
 828 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829 * Data housekeeping
 830 *
 831 **************************************************************************/
 832
 833void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
 
 
 
 
 834{
 835	u64 n_rx_nodesc_trunc = 0;
 836	struct efx_channel *channel;
 837
 838	efx_for_each_channel(channel, efx)
 839		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
 840	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
 841	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842}
 843
 844/**************************************************************************
 845 *
 846 * PCI interface
 847 *
 848 **************************************************************************/
 849
 850/* Main body of final NIC shutdown code
 851 * This is called only at module unload (or hotplug removal).
 852 */
 853static void efx_pci_remove_main(struct efx_nic *efx)
 854{
 855	/* Flush reset_work. It can no longer be scheduled since we
 856	 * are not READY.
 857	 */
 858	WARN_ON(efx_net_active(efx->state));
 859	efx_flush_reset_workqueue(efx);
 860
 861	efx_disable_interrupts(efx);
 862	efx_clear_interrupt_affinity(efx);
 863	efx_nic_fini_interrupt(efx);
 864	efx_fini_port(efx);
 865	efx->type->fini(efx);
 866	efx_fini_napi(efx);
 867	efx_remove_all(efx);
 868}
 869
 870/* Final NIC shutdown
 871 * This is called only at module unload (or hotplug removal).  A PF can call
 872 * this on its VFs to ensure they are unbound first.
 873 */
 874static void efx_pci_remove(struct pci_dev *pci_dev)
 875{
 876	struct efx_probe_data *probe_data;
 877	struct efx_nic *efx;
 878
 879	efx = pci_get_drvdata(pci_dev);
 880	if (!efx)
 881		return;
 882
 883	/* Mark the NIC as fini, then stop the interface */
 884	rtnl_lock();
 885	efx_dissociate(efx);
 886	dev_close(efx->net_dev);
 887	efx_disable_interrupts(efx);
 888	efx->state = STATE_UNINIT;
 889	rtnl_unlock();
 890
 891	if (efx->type->sriov_fini)
 892		efx->type->sriov_fini(efx);
 893
 894	efx_fini_devlink_lock(efx);
 895	efx_unregister_netdev(efx);
 896
 897	efx_mtd_remove(efx);
 898
 899	efx_pci_remove_main(efx);
 900
 901	efx_fini_io(efx);
 902	pci_dbg(efx->pci_dev, "shutdown successful\n");
 903
 904	efx_fini_devlink_and_unlock(efx);
 905	efx_fini_struct(efx);
 906	free_netdev(efx->net_dev);
 907	probe_data = container_of(efx, struct efx_probe_data, efx);
 908	kfree(probe_data);
 909};
 910
 911/* NIC VPD information
 912 * Called during probe to display the part number of the
 913 * installed NIC.
 
 914 */
 
 915static void efx_probe_vpd_strings(struct efx_nic *efx)
 916{
 917	struct pci_dev *dev = efx->pci_dev;
 918	unsigned int vpd_size, kw_len;
 919	u8 *vpd_data;
 920	int start;
 921
 922	vpd_data = pci_vpd_alloc(dev, &vpd_size);
 923	if (IS_ERR(vpd_data)) {
 924		pci_warn(dev, "Unable to read VPD\n");
 
 925		return;
 926	}
 927
 928	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
 929					     PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
 930	if (start < 0)
 931		pci_err(dev, "Part number not found or incomplete\n");
 932	else
 933		pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
 934
 935	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
 936					     PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
 937	if (start < 0)
 938		pci_err(dev, "Serial number not found or incomplete\n");
 939	else
 940		efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941
 942	kfree(vpd_data);
 943}
 944
 945
 946/* Main body of NIC initialisation
 947 * This is called at module load (or hotplug insertion, theoretically).
 948 */
 949static int efx_pci_probe_main(struct efx_nic *efx)
 950{
 951	int rc;
 952
 953	/* Do start-of-day initialisation */
 954	rc = efx_probe_all(efx);
 955	if (rc)
 956		goto fail1;
 957
 958	efx_init_napi(efx);
 959
 960	down_write(&efx->filter_sem);
 961	rc = efx->type->init(efx);
 962	up_write(&efx->filter_sem);
 963	if (rc) {
 964		pci_err(efx->pci_dev, "failed to initialise NIC\n");
 
 965		goto fail3;
 966	}
 967
 968	rc = efx_init_port(efx);
 969	if (rc) {
 970		netif_err(efx, probe, efx->net_dev,
 971			  "failed to initialise port\n");
 972		goto fail4;
 973	}
 974
 975	rc = efx_nic_init_interrupt(efx);
 976	if (rc)
 977		goto fail5;
 978
 979	efx_set_interrupt_affinity(efx);
 980	rc = efx_enable_interrupts(efx);
 981	if (rc)
 982		goto fail6;
 983
 984	return 0;
 985
 986 fail6:
 987	efx_clear_interrupt_affinity(efx);
 988	efx_nic_fini_interrupt(efx);
 989 fail5:
 990	efx_fini_port(efx);
 991 fail4:
 992	efx->type->fini(efx);
 993 fail3:
 994	efx_fini_napi(efx);
 995	efx_remove_all(efx);
 996 fail1:
 997	return rc;
 998}
 999
1000static int efx_pci_probe_post_io(struct efx_nic *efx)
1001{
1002	struct net_device *net_dev = efx->net_dev;
1003	int rc = efx_pci_probe_main(efx);
1004
1005	if (rc)
1006		return rc;
1007
1008	if (efx->type->sriov_init) {
1009		rc = efx->type->sriov_init(efx);
1010		if (rc)
1011			pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n",
1012				rc);
1013	}
1014
1015	/* Determine netdevice features */
1016	net_dev->features |= efx->type->offload_features;
1017
1018	/* Add TSO features */
1019	if (efx->type->tso_versions && efx->type->tso_versions(efx))
1020		net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1021
1022	/* Mask for features that also apply to VLAN devices */
1023	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1024				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1025				   NETIF_F_RXCSUM);
1026
1027	/* Determine user configurable features */
1028	net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1029
1030	/* Disable receiving frames with bad FCS, by default. */
1031	net_dev->features &= ~NETIF_F_RXALL;
1032
1033	/* Disable VLAN filtering by default.  It may be enforced if
1034	 * the feature is fixed (i.e. VLAN filters are required to
1035	 * receive VLAN tagged packets due to vPort restrictions).
1036	 */
1037	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1038	net_dev->features |= efx->fixed_features;
1039
1040	net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
1041				NETDEV_XDP_ACT_REDIRECT |
1042				NETDEV_XDP_ACT_NDO_XMIT;
1043
1044	/* devlink creation, registration and lock */
1045	rc = efx_probe_devlink_and_lock(efx);
1046	if (rc)
1047		pci_err(efx->pci_dev, "devlink registration failed");
1048
1049	rc = efx_register_netdev(efx);
1050	efx_probe_devlink_unlock(efx);
1051	if (!rc)
1052		return 0;
1053
1054	efx_pci_remove_main(efx);
1055	return rc;
1056}
1057
1058/* NIC initialisation
1059 *
1060 * This is called at module load (or hotplug insertion,
1061 * theoretically).  It sets up PCI mappings, resets the NIC,
1062 * sets up and registers the network devices with the kernel and hooks
1063 * the interrupt service routine.  It does not prepare the device for
1064 * transmission; this is left to the first time one of the network
1065 * interfaces is brought up (i.e. efx_net_open).
1066 */
1067static int efx_pci_probe(struct pci_dev *pci_dev,
1068			 const struct pci_device_id *entry)
1069{
1070	struct efx_probe_data *probe_data, **probe_ptr;
1071	struct net_device *net_dev;
1072	struct efx_nic *efx;
1073	int rc;
1074
1075	/* Allocate probe data and struct efx_nic */
1076	probe_data = kzalloc(sizeof(*probe_data), GFP_KERNEL);
1077	if (!probe_data)
 
1078		return -ENOMEM;
1079	probe_data->pci_dev = pci_dev;
1080	efx = &probe_data->efx;
1081
1082	/* Allocate and initialise a struct net_device */
1083	net_dev = alloc_etherdev_mq(sizeof(probe_data), EFX_MAX_CORE_TX_QUEUES);
1084	if (!net_dev) {
1085		rc = -ENOMEM;
1086		goto fail0;
1087	}
1088	probe_ptr = netdev_priv(net_dev);
1089	*probe_ptr = probe_data;
1090	efx->net_dev = net_dev;
1091	efx->type = (const struct efx_nic_type *) entry->driver_data;
1092	efx->fixed_features |= NETIF_F_HIGHDMA;
1093
 
 
 
 
 
 
 
 
 
1094	pci_set_drvdata(pci_dev, efx);
1095	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1096	rc = efx_init_struct(efx, pci_dev);
1097	if (rc)
1098		goto fail1;
1099	efx->mdio.dev = net_dev;
1100
1101	pci_info(pci_dev, "Solarflare NIC detected\n");
 
1102
1103	if (!efx->type->is_vf)
1104		efx_probe_vpd_strings(efx);
1105
1106	/* Set up basic I/O (BAR mappings etc) */
1107	rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1108			 efx->type->mem_map_size(efx));
1109	if (rc)
1110		goto fail2;
1111
1112	rc = efx_pci_probe_post_io(efx);
1113	if (rc) {
1114		/* On failure, retry once immediately.
1115		 * If we aborted probe due to a scheduled reset, dismiss it.
1116		 */
1117		efx->reset_pending = 0;
1118		rc = efx_pci_probe_post_io(efx);
1119		if (rc) {
1120			/* On another failure, retry once more
1121			 * after a 50-305ms delay.
1122			 */
1123			unsigned char r;
1124
1125			get_random_bytes(&r, 1);
1126			msleep((unsigned int)r + 50);
1127			efx->reset_pending = 0;
1128			rc = efx_pci_probe_post_io(efx);
1129		}
1130	}
1131	if (rc)
1132		goto fail3;
1133
 
 
 
 
 
 
 
 
 
1134	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1135
1136	/* Try to create MTDs, but allow this to fail */
1137	rtnl_lock();
1138	rc = efx_mtd_probe(efx);
1139	rtnl_unlock();
1140	if (rc && rc != -EPERM)
1141		netif_warn(efx, probe, efx->net_dev,
1142			   "failed to create MTDs (%d)\n", rc);
1143
1144	if (efx->type->udp_tnl_push_ports)
1145		efx->type->udp_tnl_push_ports(efx);
 
 
1146
1147	return 0;
1148
 
 
1149 fail3:
1150	efx_fini_io(efx);
1151 fail2:
1152	efx_fini_struct(efx);
1153 fail1:
1154	WARN_ON(rc > 0);
1155	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1156	free_netdev(net_dev);
1157 fail0:
1158	kfree(probe_data);
1159	return rc;
1160}
1161
1162/* efx_pci_sriov_configure returns the actual number of Virtual Functions
1163 * enabled on success
1164 */
1165#ifdef CONFIG_SFC_SRIOV
1166static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1167{
1168	int rc;
1169	struct efx_nic *efx = pci_get_drvdata(dev);
1170
1171	if (efx->type->sriov_configure) {
1172		rc = efx->type->sriov_configure(efx, num_vfs);
1173		if (rc)
1174			return rc;
1175		else
1176			return num_vfs;
1177	} else
1178		return -EOPNOTSUPP;
1179}
1180#endif
1181
1182static int efx_pm_freeze(struct device *dev)
1183{
1184	struct efx_nic *efx = dev_get_drvdata(dev);
1185
1186	rtnl_lock();
1187
1188	if (efx_net_active(efx->state)) {
 
 
1189		efx_device_detach_sync(efx);
1190
1191		efx_stop_all(efx);
1192		efx_disable_interrupts(efx);
1193
1194		efx->state = efx_freeze(efx->state);
1195	}
1196
1197	rtnl_unlock();
1198
1199	return 0;
1200}
1201
1202static void efx_pci_shutdown(struct pci_dev *pci_dev)
1203{
1204	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1205
1206	if (!efx)
1207		return;
1208
1209	efx_pm_freeze(&pci_dev->dev);
1210	pci_disable_device(pci_dev);
1211}
1212
1213static int efx_pm_thaw(struct device *dev)
1214{
1215	int rc;
1216	struct efx_nic *efx = dev_get_drvdata(dev);
1217
1218	rtnl_lock();
1219
1220	if (efx_frozen(efx->state)) {
1221		rc = efx_enable_interrupts(efx);
1222		if (rc)
1223			goto fail;
1224
1225		mutex_lock(&efx->mac_lock);
1226		efx_mcdi_port_reconfigure(efx);
1227		mutex_unlock(&efx->mac_lock);
1228
1229		efx_start_all(efx);
1230
1231		efx_device_attach_if_not_resetting(efx);
1232
1233		efx->state = efx_thaw(efx->state);
1234
1235		efx->type->resume_wol(efx);
1236	}
1237
1238	rtnl_unlock();
1239
1240	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1241	efx_queue_reset_work(efx);
1242
1243	return 0;
1244
1245fail:
1246	rtnl_unlock();
1247
1248	return rc;
1249}
1250
1251static int efx_pm_poweroff(struct device *dev)
1252{
1253	struct pci_dev *pci_dev = to_pci_dev(dev);
1254	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1255
1256	efx->type->fini(efx);
1257
1258	efx->reset_pending = 0;
1259
1260	pci_save_state(pci_dev);
1261	return pci_set_power_state(pci_dev, PCI_D3hot);
1262}
1263
1264/* Used for both resume and restore */
1265static int efx_pm_resume(struct device *dev)
1266{
1267	struct pci_dev *pci_dev = to_pci_dev(dev);
1268	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1269	int rc;
1270
1271	rc = pci_set_power_state(pci_dev, PCI_D0);
1272	if (rc)
1273		return rc;
1274	pci_restore_state(pci_dev);
1275	rc = pci_enable_device(pci_dev);
1276	if (rc)
1277		return rc;
1278	pci_set_master(efx->pci_dev);
1279	rc = efx->type->reset(efx, RESET_TYPE_ALL);
1280	if (rc)
1281		return rc;
1282	down_write(&efx->filter_sem);
1283	rc = efx->type->init(efx);
1284	up_write(&efx->filter_sem);
1285	if (rc)
1286		return rc;
1287	rc = efx_pm_thaw(dev);
1288	return rc;
1289}
1290
1291static int efx_pm_suspend(struct device *dev)
1292{
1293	int rc;
1294
1295	efx_pm_freeze(dev);
1296	rc = efx_pm_poweroff(dev);
1297	if (rc)
1298		efx_pm_resume(dev);
1299	return rc;
1300}
1301
1302static const struct dev_pm_ops efx_pm_ops = {
1303	.suspend	= efx_pm_suspend,
1304	.resume		= efx_pm_resume,
1305	.freeze		= efx_pm_freeze,
1306	.thaw		= efx_pm_thaw,
1307	.poweroff	= efx_pm_poweroff,
1308	.restore	= efx_pm_resume,
1309};
1310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1311static struct pci_driver efx_pci_driver = {
1312	.name		= KBUILD_MODNAME,
1313	.id_table	= efx_pci_table,
1314	.probe		= efx_pci_probe,
1315	.remove		= efx_pci_remove,
1316	.driver.pm	= &efx_pm_ops,
1317	.shutdown	= efx_pci_shutdown,
1318	.err_handler	= &efx_err_handlers,
1319#ifdef CONFIG_SFC_SRIOV
1320	.sriov_configure = efx_pci_sriov_configure,
1321#endif
1322};
1323
1324/**************************************************************************
1325 *
1326 * Kernel module interface
1327 *
1328 *************************************************************************/
1329
 
 
 
 
1330static int __init efx_init_module(void)
1331{
1332	int rc;
1333
1334	printk(KERN_INFO "Solarflare NET driver\n");
1335
1336	rc = register_netdevice_notifier(&efx_netdev_notifier);
1337	if (rc)
1338		goto err_notifier;
1339
1340	rc = efx_create_reset_workqueue();
1341	if (rc)
 
 
 
 
 
1342		goto err_reset;
 
1343
1344	rc = pci_register_driver(&efx_pci_driver);
1345	if (rc < 0)
1346		goto err_pci;
1347
1348	rc = pci_register_driver(&ef100_pci_driver);
1349	if (rc < 0)
1350		goto err_pci_ef100;
1351
1352	return 0;
1353
1354 err_pci_ef100:
1355	pci_unregister_driver(&efx_pci_driver);
1356 err_pci:
1357	efx_destroy_reset_workqueue();
1358 err_reset:
 
 
1359	unregister_netdevice_notifier(&efx_netdev_notifier);
1360 err_notifier:
1361	return rc;
1362}
1363
1364static void __exit efx_exit_module(void)
1365{
1366	printk(KERN_INFO "Solarflare NET driver unloading\n");
1367
1368	pci_unregister_driver(&ef100_pci_driver);
1369	pci_unregister_driver(&efx_pci_driver);
1370	efx_destroy_reset_workqueue();
 
1371	unregister_netdevice_notifier(&efx_netdev_notifier);
1372
1373}
1374
1375module_init(efx_init_module);
1376module_exit(efx_exit_module);
1377
1378MODULE_AUTHOR("Solarflare Communications and "
1379	      "Michael Brown <mbrown@fensystems.co.uk>");
1380MODULE_DESCRIPTION("Solarflare network driver");
1381MODULE_LICENSE("GPL");
1382MODULE_DEVICE_TABLE(pci, efx_pci_table);
v3.15
 
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2005-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
 
  11#include <linux/module.h>
  12#include <linux/pci.h>
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/delay.h>
  16#include <linux/notifier.h>
  17#include <linux/ip.h>
  18#include <linux/tcp.h>
  19#include <linux/in.h>
  20#include <linux/ethtool.h>
  21#include <linux/topology.h>
  22#include <linux/gfp.h>
  23#include <linux/aer.h>
  24#include <linux/interrupt.h>
  25#include "net_driver.h"
 
 
  26#include "efx.h"
 
 
 
 
 
  27#include "nic.h"
 
  28#include "selftest.h"
 
 
  29
  30#include "mcdi.h"
 
  31#include "workarounds.h"
  32
  33/**************************************************************************
  34 *
  35 * Type name strings
  36 *
  37 **************************************************************************
  38 */
  39
  40/* Loopback mode names (see LOOPBACK_MODE()) */
  41const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
  42const char *const efx_loopback_mode_names[] = {
  43	[LOOPBACK_NONE]		= "NONE",
  44	[LOOPBACK_DATA]		= "DATAPATH",
  45	[LOOPBACK_GMAC]		= "GMAC",
  46	[LOOPBACK_XGMII]	= "XGMII",
  47	[LOOPBACK_XGXS]		= "XGXS",
  48	[LOOPBACK_XAUI]		= "XAUI",
  49	[LOOPBACK_GMII]		= "GMII",
  50	[LOOPBACK_SGMII]	= "SGMII",
  51	[LOOPBACK_XGBR]		= "XGBR",
  52	[LOOPBACK_XFI]		= "XFI",
  53	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
  54	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
  55	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
  56	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
  57	[LOOPBACK_GPHY]		= "GPHY",
  58	[LOOPBACK_PHYXS]	= "PHYXS",
  59	[LOOPBACK_PCS]		= "PCS",
  60	[LOOPBACK_PMAPMD]	= "PMA/PMD",
  61	[LOOPBACK_XPORT]	= "XPORT",
  62	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
  63	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
  64	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
  65	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
  66	[LOOPBACK_GMII_WS]	= "GMII_WS",
  67	[LOOPBACK_XFI_WS]	= "XFI_WS",
  68	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
  69	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
  70};
  71
  72const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
  73const char *const efx_reset_type_names[] = {
  74	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
  75	[RESET_TYPE_ALL]                = "ALL",
  76	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
  77	[RESET_TYPE_WORLD]              = "WORLD",
  78	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
  79	[RESET_TYPE_MC_BIST]		= "MC_BIST",
  80	[RESET_TYPE_DISABLE]            = "DISABLE",
  81	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
  82	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
  83	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
  84	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
  85	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
  86	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
  87	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
  88};
  89
  90/* Reset workqueue. If any NIC has a hardware failure then a reset will be
  91 * queued onto this work queue. This is not a per-nic work queue, because
  92 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
  93 */
  94static struct workqueue_struct *reset_workqueue;
  95
  96/* How often and how many times to poll for a reset while waiting for a
  97 * BIST that another function started to complete.
  98 */
  99#define BIST_WAIT_DELAY_MS	100
 100#define BIST_WAIT_DELAY_COUNT	100
 101
 102/**************************************************************************
 103 *
 104 * Configurable values
 105 *
 106 *************************************************************************/
 107
 108/*
 109 * Use separate channels for TX and RX events
 110 *
 111 * Set this to 1 to use separate channels for TX and RX. It allows us
 112 * to control interrupt affinity separately for TX and RX.
 113 *
 114 * This is only used in MSI-X interrupt mode
 115 */
 116static bool separate_tx_channels;
 117module_param(separate_tx_channels, bool, 0444);
 118MODULE_PARM_DESC(separate_tx_channels,
 119		 "Use separate channels for TX and RX");
 120
 121/* This is the weight assigned to each of the (per-channel) virtual
 122 * NAPI devices.
 123 */
 124static int napi_weight = 64;
 125
 126/* This is the time (in jiffies) between invocations of the hardware
 127 * monitor.
 128 * On Falcon-based NICs, this will:
 129 * - Check the on-board hardware monitor;
 130 * - Poll the link state and reconfigure the hardware as necessary.
 131 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 132 * chance to start.
 133 */
 134static unsigned int efx_monitor_interval = 1 * HZ;
 135
 136/* Initial interrupt moderation settings.  They can be modified after
 137 * module load with ethtool.
 138 *
 139 * The default for RX should strike a balance between increasing the
 140 * round-trip latency and reducing overhead.
 141 */
 142static unsigned int rx_irq_mod_usec = 60;
 143
 144/* Initial interrupt moderation settings.  They can be modified after
 145 * module load with ethtool.
 146 *
 147 * This default is chosen to ensure that a 10G link does not go idle
 148 * while a TX queue is stopped after it has become full.  A queue is
 149 * restarted when it drops below half full.  The time this takes (assuming
 150 * worst case 3 descriptors per packet and 1024 descriptors) is
 151 *   512 / 3 * 1.2 = 205 usec.
 152 */
 153static unsigned int tx_irq_mod_usec = 150;
 154
 155/* This is the first interrupt mode to try out of:
 156 * 0 => MSI-X
 157 * 1 => MSI
 158 * 2 => legacy
 159 */
 160static unsigned int interrupt_mode;
 161
 162/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 163 * i.e. the number of CPUs among which we may distribute simultaneous
 164 * interrupt handling.
 165 *
 166 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 167 * The default (0) means to assign an interrupt to each core.
 168 */
 169static unsigned int rss_cpus;
 170module_param(rss_cpus, uint, 0444);
 171MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
 172
 173static bool phy_flash_cfg;
 174module_param(phy_flash_cfg, bool, 0644);
 175MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
 176
 177static unsigned irq_adapt_low_thresh = 8000;
 178module_param(irq_adapt_low_thresh, uint, 0644);
 179MODULE_PARM_DESC(irq_adapt_low_thresh,
 180		 "Threshold score for reducing IRQ moderation");
 181
 182static unsigned irq_adapt_high_thresh = 16000;
 183module_param(irq_adapt_high_thresh, uint, 0644);
 184MODULE_PARM_DESC(irq_adapt_high_thresh,
 185		 "Threshold score for increasing IRQ moderation");
 186
 187static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
 188			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
 189			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
 190			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
 191module_param(debug, uint, 0);
 192MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
 193
 194/**************************************************************************
 195 *
 196 * Utility functions and prototypes
 197 *
 198 *************************************************************************/
 199
 200static int efx_soft_enable_interrupts(struct efx_nic *efx);
 201static void efx_soft_disable_interrupts(struct efx_nic *efx);
 202static void efx_remove_channel(struct efx_channel *channel);
 203static void efx_remove_channels(struct efx_nic *efx);
 204static const struct efx_channel_type efx_default_channel_type;
 205static void efx_remove_port(struct efx_nic *efx);
 206static void efx_init_napi_channel(struct efx_channel *channel);
 207static void efx_fini_napi(struct efx_nic *efx);
 208static void efx_fini_napi_channel(struct efx_channel *channel);
 209static void efx_fini_struct(struct efx_nic *efx);
 210static void efx_start_all(struct efx_nic *efx);
 211static void efx_stop_all(struct efx_nic *efx);
 212
 213#define EFX_ASSERT_RESET_SERIALISED(efx)		\
 214	do {						\
 215		if ((efx->state == STATE_READY) ||	\
 216		    (efx->state == STATE_RECOVERY) ||	\
 217		    (efx->state == STATE_DISABLED))	\
 218			ASSERT_RTNL();			\
 219	} while (0)
 220
 221static int efx_check_disabled(struct efx_nic *efx)
 222{
 223	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
 224		netif_err(efx, drv, efx->net_dev,
 225			  "device is disabled due to earlier errors\n");
 226		return -EIO;
 227	}
 228	return 0;
 229}
 230
 231/**************************************************************************
 232 *
 233 * Event queue processing
 234 *
 235 *************************************************************************/
 236
 237/* Process channel's event queue
 238 *
 239 * This function is responsible for processing the event queue of a
 240 * single channel.  The caller must guarantee that this function will
 241 * never be concurrently called more than once on the same channel,
 242 * though different channels may be being processed concurrently.
 243 */
 244static int efx_process_channel(struct efx_channel *channel, int budget)
 245{
 246	int spent;
 247
 248	if (unlikely(!channel->enabled))
 249		return 0;
 250
 251	spent = efx_nic_process_eventq(channel, budget);
 252	if (spent && efx_channel_has_rx_queue(channel)) {
 253		struct efx_rx_queue *rx_queue =
 254			efx_channel_get_rx_queue(channel);
 255
 256		efx_rx_flush_packet(channel);
 257		efx_fast_push_rx_descriptors(rx_queue, true);
 258	}
 259
 260	return spent;
 261}
 262
 263/* NAPI poll handler
 264 *
 265 * NAPI guarantees serialisation of polls of the same device, which
 266 * provides the guarantee required by efx_process_channel().
 267 */
 268static int efx_poll(struct napi_struct *napi, int budget)
 269{
 270	struct efx_channel *channel =
 271		container_of(napi, struct efx_channel, napi_str);
 272	struct efx_nic *efx = channel->efx;
 273	int spent;
 274
 275	netif_vdbg(efx, intr, efx->net_dev,
 276		   "channel %d NAPI poll executing on CPU %d\n",
 277		   channel->channel, raw_smp_processor_id());
 278
 279	spent = efx_process_channel(channel, budget);
 280
 281	if (spent < budget) {
 282		if (efx_channel_has_rx_queue(channel) &&
 283		    efx->irq_rx_adaptive &&
 284		    unlikely(++channel->irq_count == 1000)) {
 285			if (unlikely(channel->irq_mod_score <
 286				     irq_adapt_low_thresh)) {
 287				if (channel->irq_moderation > 1) {
 288					channel->irq_moderation -= 1;
 289					efx->type->push_irq_moderation(channel);
 290				}
 291			} else if (unlikely(channel->irq_mod_score >
 292					    irq_adapt_high_thresh)) {
 293				if (channel->irq_moderation <
 294				    efx->irq_rx_moderation) {
 295					channel->irq_moderation += 1;
 296					efx->type->push_irq_moderation(channel);
 297				}
 298			}
 299			channel->irq_count = 0;
 300			channel->irq_mod_score = 0;
 301		}
 302
 303		efx_filter_rfs_expire(channel);
 304
 305		/* There is no race here; although napi_disable() will
 306		 * only wait for napi_complete(), this isn't a problem
 307		 * since efx_nic_eventq_read_ack() will have no effect if
 308		 * interrupts have already been disabled.
 309		 */
 310		napi_complete(napi);
 311		efx_nic_eventq_read_ack(channel);
 312	}
 313
 314	return spent;
 315}
 316
 317/* Create event queue
 318 * Event queue memory allocations are done only once.  If the channel
 319 * is reset, the memory buffer will be reused; this guards against
 320 * errors during channel reset and also simplifies interrupt handling.
 321 */
 322static int efx_probe_eventq(struct efx_channel *channel)
 323{
 324	struct efx_nic *efx = channel->efx;
 325	unsigned long entries;
 326
 327	netif_dbg(efx, probe, efx->net_dev,
 328		  "chan %d create event queue\n", channel->channel);
 329
 330	/* Build an event queue with room for one event per tx and rx buffer,
 331	 * plus some extra for link state events and MCDI completions. */
 332	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
 333	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
 334	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
 335
 336	return efx_nic_probe_eventq(channel);
 337}
 338
 339/* Prepare channel's event queue */
 340static int efx_init_eventq(struct efx_channel *channel)
 341{
 342	struct efx_nic *efx = channel->efx;
 343	int rc;
 344
 345	EFX_WARN_ON_PARANOID(channel->eventq_init);
 346
 347	netif_dbg(efx, drv, efx->net_dev,
 348		  "chan %d init event queue\n", channel->channel);
 349
 350	rc = efx_nic_init_eventq(channel);
 351	if (rc == 0) {
 352		efx->type->push_irq_moderation(channel);
 353		channel->eventq_read_ptr = 0;
 354		channel->eventq_init = true;
 355	}
 356	return rc;
 357}
 358
 359/* Enable event queue processing and NAPI */
 360static void efx_start_eventq(struct efx_channel *channel)
 361{
 362	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
 363		  "chan %d start event queue\n", channel->channel);
 364
 365	/* Make sure the NAPI handler sees the enabled flag set */
 366	channel->enabled = true;
 367	smp_wmb();
 368
 369	napi_enable(&channel->napi_str);
 370	efx_nic_eventq_read_ack(channel);
 371}
 372
 373/* Disable event queue processing and NAPI */
 374static void efx_stop_eventq(struct efx_channel *channel)
 375{
 376	if (!channel->enabled)
 377		return;
 378
 379	napi_disable(&channel->napi_str);
 380	channel->enabled = false;
 381}
 382
 383static void efx_fini_eventq(struct efx_channel *channel)
 384{
 385	if (!channel->eventq_init)
 386		return;
 387
 388	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 389		  "chan %d fini event queue\n", channel->channel);
 390
 391	efx_nic_fini_eventq(channel);
 392	channel->eventq_init = false;
 393}
 394
 395static void efx_remove_eventq(struct efx_channel *channel)
 396{
 397	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 398		  "chan %d remove event queue\n", channel->channel);
 399
 400	efx_nic_remove_eventq(channel);
 401}
 402
 403/**************************************************************************
 404 *
 405 * Channel handling
 406 *
 407 *************************************************************************/
 408
 409/* Allocate and initialise a channel structure. */
 410static struct efx_channel *
 411efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
 412{
 413	struct efx_channel *channel;
 414	struct efx_rx_queue *rx_queue;
 415	struct efx_tx_queue *tx_queue;
 416	int j;
 417
 418	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
 419	if (!channel)
 420		return NULL;
 421
 422	channel->efx = efx;
 423	channel->channel = i;
 424	channel->type = &efx_default_channel_type;
 425
 426	for (j = 0; j < EFX_TXQ_TYPES; j++) {
 427		tx_queue = &channel->tx_queue[j];
 428		tx_queue->efx = efx;
 429		tx_queue->queue = i * EFX_TXQ_TYPES + j;
 430		tx_queue->channel = channel;
 431	}
 432
 433	rx_queue = &channel->rx_queue;
 434	rx_queue->efx = efx;
 435	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
 436		    (unsigned long)rx_queue);
 437
 438	return channel;
 439}
 440
 441/* Allocate and initialise a channel structure, copying parameters
 442 * (but not resources) from an old channel structure.
 443 */
 444static struct efx_channel *
 445efx_copy_channel(const struct efx_channel *old_channel)
 446{
 447	struct efx_channel *channel;
 448	struct efx_rx_queue *rx_queue;
 449	struct efx_tx_queue *tx_queue;
 450	int j;
 451
 452	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
 453	if (!channel)
 454		return NULL;
 455
 456	*channel = *old_channel;
 457
 458	channel->napi_dev = NULL;
 459	memset(&channel->eventq, 0, sizeof(channel->eventq));
 460
 461	for (j = 0; j < EFX_TXQ_TYPES; j++) {
 462		tx_queue = &channel->tx_queue[j];
 463		if (tx_queue->channel)
 464			tx_queue->channel = channel;
 465		tx_queue->buffer = NULL;
 466		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
 467	}
 468
 469	rx_queue = &channel->rx_queue;
 470	rx_queue->buffer = NULL;
 471	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
 472	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
 473		    (unsigned long)rx_queue);
 474
 475	return channel;
 476}
 477
 478static int efx_probe_channel(struct efx_channel *channel)
 479{
 480	struct efx_tx_queue *tx_queue;
 481	struct efx_rx_queue *rx_queue;
 482	int rc;
 483
 484	netif_dbg(channel->efx, probe, channel->efx->net_dev,
 485		  "creating channel %d\n", channel->channel);
 486
 487	rc = channel->type->pre_probe(channel);
 488	if (rc)
 489		goto fail;
 490
 491	rc = efx_probe_eventq(channel);
 492	if (rc)
 493		goto fail;
 494
 495	efx_for_each_channel_tx_queue(tx_queue, channel) {
 496		rc = efx_probe_tx_queue(tx_queue);
 497		if (rc)
 498			goto fail;
 499	}
 500
 501	efx_for_each_channel_rx_queue(rx_queue, channel) {
 502		rc = efx_probe_rx_queue(rx_queue);
 503		if (rc)
 504			goto fail;
 505	}
 506
 507	return 0;
 508
 509fail:
 510	efx_remove_channel(channel);
 511	return rc;
 512}
 513
 514static void
 515efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
 516{
 517	struct efx_nic *efx = channel->efx;
 518	const char *type;
 519	int number;
 520
 521	number = channel->channel;
 522	if (efx->tx_channel_offset == 0) {
 523		type = "";
 524	} else if (channel->channel < efx->tx_channel_offset) {
 525		type = "-rx";
 526	} else {
 527		type = "-tx";
 528		number -= efx->tx_channel_offset;
 529	}
 530	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
 531}
 532
 533static void efx_set_channel_names(struct efx_nic *efx)
 534{
 535	struct efx_channel *channel;
 536
 537	efx_for_each_channel(channel, efx)
 538		channel->type->get_name(channel,
 539					efx->msi_context[channel->channel].name,
 540					sizeof(efx->msi_context[0].name));
 541}
 542
 543static int efx_probe_channels(struct efx_nic *efx)
 544{
 545	struct efx_channel *channel;
 546	int rc;
 547
 548	/* Restart special buffer allocation */
 549	efx->next_buffer_table = 0;
 550
 551	/* Probe channels in reverse, so that any 'extra' channels
 552	 * use the start of the buffer table. This allows the traffic
 553	 * channels to be resized without moving them or wasting the
 554	 * entries before them.
 555	 */
 556	efx_for_each_channel_rev(channel, efx) {
 557		rc = efx_probe_channel(channel);
 558		if (rc) {
 559			netif_err(efx, probe, efx->net_dev,
 560				  "failed to create channel %d\n",
 561				  channel->channel);
 562			goto fail;
 563		}
 564	}
 565	efx_set_channel_names(efx);
 566
 567	return 0;
 568
 569fail:
 570	efx_remove_channels(efx);
 571	return rc;
 572}
 573
 574/* Channels are shutdown and reinitialised whilst the NIC is running
 575 * to propagate configuration changes (mtu, checksum offload), or
 576 * to clear hardware error conditions
 577 */
 578static void efx_start_datapath(struct efx_nic *efx)
 579{
 580	bool old_rx_scatter = efx->rx_scatter;
 581	struct efx_tx_queue *tx_queue;
 582	struct efx_rx_queue *rx_queue;
 583	struct efx_channel *channel;
 584	size_t rx_buf_len;
 585
 586	/* Calculate the rx buffer allocation parameters required to
 587	 * support the current MTU, including padding for header
 588	 * alignment and overruns.
 589	 */
 590	efx->rx_dma_len = (efx->rx_prefix_size +
 591			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
 592			   efx->type->rx_buffer_padding);
 593	rx_buf_len = (sizeof(struct efx_rx_page_state) +
 594		      efx->rx_ip_align + efx->rx_dma_len);
 595	if (rx_buf_len <= PAGE_SIZE) {
 596		efx->rx_scatter = efx->type->always_rx_scatter;
 597		efx->rx_buffer_order = 0;
 598	} else if (efx->type->can_rx_scatter) {
 599		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
 600		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
 601			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
 602				       EFX_RX_BUF_ALIGNMENT) >
 603			     PAGE_SIZE);
 604		efx->rx_scatter = true;
 605		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
 606		efx->rx_buffer_order = 0;
 607	} else {
 608		efx->rx_scatter = false;
 609		efx->rx_buffer_order = get_order(rx_buf_len);
 610	}
 611
 612	efx_rx_config_page_split(efx);
 613	if (efx->rx_buffer_order)
 614		netif_dbg(efx, drv, efx->net_dev,
 615			  "RX buf len=%u; page order=%u batch=%u\n",
 616			  efx->rx_dma_len, efx->rx_buffer_order,
 617			  efx->rx_pages_per_batch);
 618	else
 619		netif_dbg(efx, drv, efx->net_dev,
 620			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
 621			  efx->rx_dma_len, efx->rx_page_buf_step,
 622			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
 623
 624	/* RX filters may also have scatter-enabled flags */
 625	if (efx->rx_scatter != old_rx_scatter)
 626		efx->type->filter_update_rx_scatter(efx);
 627
 628	/* We must keep at least one descriptor in a TX ring empty.
 629	 * We could avoid this when the queue size does not exactly
 630	 * match the hardware ring size, but it's not that important.
 631	 * Therefore we stop the queue when one more skb might fill
 632	 * the ring completely.  We wake it when half way back to
 633	 * empty.
 634	 */
 635	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
 636	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
 637
 638	/* Initialise the channels */
 639	efx_for_each_channel(channel, efx) {
 640		efx_for_each_channel_tx_queue(tx_queue, channel) {
 641			efx_init_tx_queue(tx_queue);
 642			atomic_inc(&efx->active_queues);
 643		}
 644
 645		efx_for_each_channel_rx_queue(rx_queue, channel) {
 646			efx_init_rx_queue(rx_queue);
 647			atomic_inc(&efx->active_queues);
 648			efx_stop_eventq(channel);
 649			efx_fast_push_rx_descriptors(rx_queue, false);
 650			efx_start_eventq(channel);
 651		}
 652
 653		WARN_ON(channel->rx_pkt_n_frags);
 654	}
 655
 656	efx_ptp_start_datapath(efx);
 657
 658	if (netif_device_present(efx->net_dev))
 659		netif_tx_wake_all_queues(efx->net_dev);
 660}
 661
 662static void efx_stop_datapath(struct efx_nic *efx)
 663{
 664	struct efx_channel *channel;
 665	struct efx_tx_queue *tx_queue;
 666	struct efx_rx_queue *rx_queue;
 667	int rc;
 668
 669	EFX_ASSERT_RESET_SERIALISED(efx);
 670	BUG_ON(efx->port_enabled);
 671
 672	efx_ptp_stop_datapath(efx);
 673
 674	/* Stop RX refill */
 675	efx_for_each_channel(channel, efx) {
 676		efx_for_each_channel_rx_queue(rx_queue, channel)
 677			rx_queue->refill_enabled = false;
 678	}
 679
 680	efx_for_each_channel(channel, efx) {
 681		/* RX packet processing is pipelined, so wait for the
 682		 * NAPI handler to complete.  At least event queue 0
 683		 * might be kept active by non-data events, so don't
 684		 * use napi_synchronize() but actually disable NAPI
 685		 * temporarily.
 686		 */
 687		if (efx_channel_has_rx_queue(channel)) {
 688			efx_stop_eventq(channel);
 689			efx_start_eventq(channel);
 690		}
 691	}
 692
 693	rc = efx->type->fini_dmaq(efx);
 694	if (rc && EFX_WORKAROUND_7803(efx)) {
 695		/* Schedule a reset to recover from the flush failure. The
 696		 * descriptor caches reference memory we're about to free,
 697		 * but falcon_reconfigure_mac_wrapper() won't reconnect
 698		 * the MACs because of the pending reset.
 699		 */
 700		netif_err(efx, drv, efx->net_dev,
 701			  "Resetting to recover from flush failure\n");
 702		efx_schedule_reset(efx, RESET_TYPE_ALL);
 703	} else if (rc) {
 704		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
 705	} else {
 706		netif_dbg(efx, drv, efx->net_dev,
 707			  "successfully flushed all queues\n");
 708	}
 709
 710	efx_for_each_channel(channel, efx) {
 711		efx_for_each_channel_rx_queue(rx_queue, channel)
 712			efx_fini_rx_queue(rx_queue);
 713		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
 714			efx_fini_tx_queue(tx_queue);
 715	}
 716}
 717
 718static void efx_remove_channel(struct efx_channel *channel)
 719{
 720	struct efx_tx_queue *tx_queue;
 721	struct efx_rx_queue *rx_queue;
 722
 723	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 724		  "destroy chan %d\n", channel->channel);
 725
 726	efx_for_each_channel_rx_queue(rx_queue, channel)
 727		efx_remove_rx_queue(rx_queue);
 728	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
 729		efx_remove_tx_queue(tx_queue);
 730	efx_remove_eventq(channel);
 731	channel->type->post_remove(channel);
 732}
 733
 734static void efx_remove_channels(struct efx_nic *efx)
 735{
 736	struct efx_channel *channel;
 737
 738	efx_for_each_channel(channel, efx)
 739		efx_remove_channel(channel);
 740}
 741
 742int
 743efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
 744{
 745	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
 746	u32 old_rxq_entries, old_txq_entries;
 747	unsigned i, next_buffer_table = 0;
 748	int rc, rc2;
 749
 750	rc = efx_check_disabled(efx);
 751	if (rc)
 752		return rc;
 753
 754	/* Not all channels should be reallocated. We must avoid
 755	 * reallocating their buffer table entries.
 756	 */
 757	efx_for_each_channel(channel, efx) {
 758		struct efx_rx_queue *rx_queue;
 759		struct efx_tx_queue *tx_queue;
 760
 761		if (channel->type->copy)
 762			continue;
 763		next_buffer_table = max(next_buffer_table,
 764					channel->eventq.index +
 765					channel->eventq.entries);
 766		efx_for_each_channel_rx_queue(rx_queue, channel)
 767			next_buffer_table = max(next_buffer_table,
 768						rx_queue->rxd.index +
 769						rx_queue->rxd.entries);
 770		efx_for_each_channel_tx_queue(tx_queue, channel)
 771			next_buffer_table = max(next_buffer_table,
 772						tx_queue->txd.index +
 773						tx_queue->txd.entries);
 774	}
 775
 776	efx_device_detach_sync(efx);
 777	efx_stop_all(efx);
 778	efx_soft_disable_interrupts(efx);
 779
 780	/* Clone channels (where possible) */
 781	memset(other_channel, 0, sizeof(other_channel));
 782	for (i = 0; i < efx->n_channels; i++) {
 783		channel = efx->channel[i];
 784		if (channel->type->copy)
 785			channel = channel->type->copy(channel);
 786		if (!channel) {
 787			rc = -ENOMEM;
 788			goto out;
 789		}
 790		other_channel[i] = channel;
 791	}
 792
 793	/* Swap entry counts and channel pointers */
 794	old_rxq_entries = efx->rxq_entries;
 795	old_txq_entries = efx->txq_entries;
 796	efx->rxq_entries = rxq_entries;
 797	efx->txq_entries = txq_entries;
 798	for (i = 0; i < efx->n_channels; i++) {
 799		channel = efx->channel[i];
 800		efx->channel[i] = other_channel[i];
 801		other_channel[i] = channel;
 802	}
 803
 804	/* Restart buffer table allocation */
 805	efx->next_buffer_table = next_buffer_table;
 806
 807	for (i = 0; i < efx->n_channels; i++) {
 808		channel = efx->channel[i];
 809		if (!channel->type->copy)
 810			continue;
 811		rc = efx_probe_channel(channel);
 812		if (rc)
 813			goto rollback;
 814		efx_init_napi_channel(efx->channel[i]);
 815	}
 816
 817out:
 818	/* Destroy unused channel structures */
 819	for (i = 0; i < efx->n_channels; i++) {
 820		channel = other_channel[i];
 821		if (channel && channel->type->copy) {
 822			efx_fini_napi_channel(channel);
 823			efx_remove_channel(channel);
 824			kfree(channel);
 825		}
 826	}
 827
 828	rc2 = efx_soft_enable_interrupts(efx);
 829	if (rc2) {
 830		rc = rc ? rc : rc2;
 831		netif_err(efx, drv, efx->net_dev,
 832			  "unable to restart interrupts on channel reallocation\n");
 833		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
 834	} else {
 835		efx_start_all(efx);
 836		netif_device_attach(efx->net_dev);
 837	}
 838	return rc;
 839
 840rollback:
 841	/* Swap back */
 842	efx->rxq_entries = old_rxq_entries;
 843	efx->txq_entries = old_txq_entries;
 844	for (i = 0; i < efx->n_channels; i++) {
 845		channel = efx->channel[i];
 846		efx->channel[i] = other_channel[i];
 847		other_channel[i] = channel;
 848	}
 849	goto out;
 850}
 851
 852void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
 853{
 854	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
 855}
 856
 857static const struct efx_channel_type efx_default_channel_type = {
 858	.pre_probe		= efx_channel_dummy_op_int,
 859	.post_remove		= efx_channel_dummy_op_void,
 860	.get_name		= efx_get_channel_name,
 861	.copy			= efx_copy_channel,
 862	.keep_eventq		= false,
 863};
 864
 865int efx_channel_dummy_op_int(struct efx_channel *channel)
 866{
 867	return 0;
 868}
 869
 870void efx_channel_dummy_op_void(struct efx_channel *channel)
 871{
 872}
 873
 874/**************************************************************************
 875 *
 876 * Port handling
 877 *
 878 **************************************************************************/
 879
 880/* This ensures that the kernel is kept informed (via
 881 * netif_carrier_on/off) of the link status, and also maintains the
 882 * link status's stop on the port's TX queue.
 883 */
 884void efx_link_status_changed(struct efx_nic *efx)
 885{
 886	struct efx_link_state *link_state = &efx->link_state;
 887
 888	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
 889	 * that no events are triggered between unregister_netdev() and the
 890	 * driver unloading. A more general condition is that NETDEV_CHANGE
 891	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
 892	if (!netif_running(efx->net_dev))
 893		return;
 894
 895	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
 896		efx->n_link_state_changes++;
 897
 898		if (link_state->up)
 899			netif_carrier_on(efx->net_dev);
 900		else
 901			netif_carrier_off(efx->net_dev);
 902	}
 903
 904	/* Status message for kernel log */
 905	if (link_state->up)
 906		netif_info(efx, link, efx->net_dev,
 907			   "link up at %uMbps %s-duplex (MTU %d)\n",
 908			   link_state->speed, link_state->fd ? "full" : "half",
 909			   efx->net_dev->mtu);
 910	else
 911		netif_info(efx, link, efx->net_dev, "link down\n");
 912}
 913
 914void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
 915{
 916	efx->link_advertising = advertising;
 917	if (advertising) {
 918		if (advertising & ADVERTISED_Pause)
 919			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
 920		else
 921			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
 922		if (advertising & ADVERTISED_Asym_Pause)
 923			efx->wanted_fc ^= EFX_FC_TX;
 924	}
 925}
 926
 927void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
 928{
 929	efx->wanted_fc = wanted_fc;
 930	if (efx->link_advertising) {
 931		if (wanted_fc & EFX_FC_RX)
 932			efx->link_advertising |= (ADVERTISED_Pause |
 933						  ADVERTISED_Asym_Pause);
 934		else
 935			efx->link_advertising &= ~(ADVERTISED_Pause |
 936						   ADVERTISED_Asym_Pause);
 937		if (wanted_fc & EFX_FC_TX)
 938			efx->link_advertising ^= ADVERTISED_Asym_Pause;
 939	}
 940}
 941
 942static void efx_fini_port(struct efx_nic *efx);
 943
 944/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 945 * the MAC appropriately. All other PHY configuration changes are pushed
 946 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 947 * through efx_monitor().
 948 *
 949 * Callers must hold the mac_lock
 950 */
 951int __efx_reconfigure_port(struct efx_nic *efx)
 952{
 953	enum efx_phy_mode phy_mode;
 954	int rc;
 955
 956	WARN_ON(!mutex_is_locked(&efx->mac_lock));
 957
 958	/* Disable PHY transmit in mac level loopbacks */
 959	phy_mode = efx->phy_mode;
 960	if (LOOPBACK_INTERNAL(efx))
 961		efx->phy_mode |= PHY_MODE_TX_DISABLED;
 962	else
 963		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
 964
 965	rc = efx->type->reconfigure_port(efx);
 966
 967	if (rc)
 968		efx->phy_mode = phy_mode;
 969
 970	return rc;
 971}
 972
 973/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 974 * disabled. */
 975int efx_reconfigure_port(struct efx_nic *efx)
 976{
 977	int rc;
 978
 979	EFX_ASSERT_RESET_SERIALISED(efx);
 980
 981	mutex_lock(&efx->mac_lock);
 982	rc = __efx_reconfigure_port(efx);
 983	mutex_unlock(&efx->mac_lock);
 984
 985	return rc;
 986}
 987
 988/* Asynchronous work item for changing MAC promiscuity and multicast
 989 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 990 * MAC directly. */
 991static void efx_mac_work(struct work_struct *data)
 992{
 993	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
 994
 995	mutex_lock(&efx->mac_lock);
 996	if (efx->port_enabled)
 997		efx->type->reconfigure_mac(efx);
 998	mutex_unlock(&efx->mac_lock);
 999}
1000
1001static int efx_probe_port(struct efx_nic *efx)
1002{
1003	int rc;
1004
1005	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1006
1007	if (phy_flash_cfg)
1008		efx->phy_mode = PHY_MODE_SPECIAL;
1009
1010	/* Connect up MAC/PHY operations table */
1011	rc = efx->type->probe_port(efx);
1012	if (rc)
1013		return rc;
1014
1015	/* Initialise MAC address to permanent address */
1016	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1017
1018	return 0;
1019}
1020
1021static int efx_init_port(struct efx_nic *efx)
1022{
1023	int rc;
1024
1025	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1026
1027	mutex_lock(&efx->mac_lock);
1028
1029	rc = efx->phy_op->init(efx);
1030	if (rc)
1031		goto fail1;
1032
1033	efx->port_initialized = true;
1034
1035	/* Reconfigure the MAC before creating dma queues (required for
1036	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1037	efx->type->reconfigure_mac(efx);
1038
1039	/* Ensure the PHY advertises the correct flow control settings */
1040	rc = efx->phy_op->reconfigure(efx);
1041	if (rc)
1042		goto fail2;
1043
1044	mutex_unlock(&efx->mac_lock);
1045	return 0;
1046
1047fail2:
1048	efx->phy_op->fini(efx);
1049fail1:
1050	mutex_unlock(&efx->mac_lock);
1051	return rc;
1052}
1053
1054static void efx_start_port(struct efx_nic *efx)
1055{
1056	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1057	BUG_ON(efx->port_enabled);
1058
1059	mutex_lock(&efx->mac_lock);
1060	efx->port_enabled = true;
1061
1062	/* Ensure MAC ingress/egress is enabled */
1063	efx->type->reconfigure_mac(efx);
1064
1065	mutex_unlock(&efx->mac_lock);
1066}
1067
1068/* Cancel work for MAC reconfiguration, periodic hardware monitoring
1069 * and the async self-test, wait for them to finish and prevent them
1070 * being scheduled again.  This doesn't cover online resets, which
1071 * should only be cancelled when removing the device.
1072 */
1073static void efx_stop_port(struct efx_nic *efx)
1074{
1075	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1076
1077	EFX_ASSERT_RESET_SERIALISED(efx);
1078
1079	mutex_lock(&efx->mac_lock);
1080	efx->port_enabled = false;
1081	mutex_unlock(&efx->mac_lock);
1082
1083	/* Serialise against efx_set_multicast_list() */
1084	netif_addr_lock_bh(efx->net_dev);
1085	netif_addr_unlock_bh(efx->net_dev);
1086
1087	cancel_delayed_work_sync(&efx->monitor_work);
1088	efx_selftest_async_cancel(efx);
1089	cancel_work_sync(&efx->mac_work);
1090}
1091
1092static void efx_fini_port(struct efx_nic *efx)
1093{
1094	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1095
1096	if (!efx->port_initialized)
1097		return;
1098
1099	efx->phy_op->fini(efx);
1100	efx->port_initialized = false;
1101
1102	efx->link_state.up = false;
1103	efx_link_status_changed(efx);
1104}
1105
1106static void efx_remove_port(struct efx_nic *efx)
1107{
1108	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1109
1110	efx->type->remove_port(efx);
1111}
1112
1113/**************************************************************************
1114 *
1115 * NIC handling
1116 *
1117 **************************************************************************/
1118
1119static LIST_HEAD(efx_primary_list);
1120static LIST_HEAD(efx_unassociated_list);
1121
1122static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1123{
1124	return left->type == right->type &&
1125		left->vpd_sn && right->vpd_sn &&
1126		!strcmp(left->vpd_sn, right->vpd_sn);
1127}
1128
1129static void efx_associate(struct efx_nic *efx)
1130{
1131	struct efx_nic *other, *next;
1132
1133	if (efx->primary == efx) {
1134		/* Adding primary function; look for secondaries */
1135
1136		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1137		list_add_tail(&efx->node, &efx_primary_list);
1138
1139		list_for_each_entry_safe(other, next, &efx_unassociated_list,
1140					 node) {
1141			if (efx_same_controller(efx, other)) {
1142				list_del(&other->node);
1143				netif_dbg(other, probe, other->net_dev,
1144					  "moving to secondary list of %s %s\n",
1145					  pci_name(efx->pci_dev),
1146					  efx->net_dev->name);
1147				list_add_tail(&other->node,
1148					      &efx->secondary_list);
1149				other->primary = efx;
1150			}
1151		}
1152	} else {
1153		/* Adding secondary function; look for primary */
1154
1155		list_for_each_entry(other, &efx_primary_list, node) {
1156			if (efx_same_controller(efx, other)) {
1157				netif_dbg(efx, probe, efx->net_dev,
1158					  "adding to secondary list of %s %s\n",
1159					  pci_name(other->pci_dev),
1160					  other->net_dev->name);
1161				list_add_tail(&efx->node,
1162					      &other->secondary_list);
1163				efx->primary = other;
1164				return;
1165			}
1166		}
1167
1168		netif_dbg(efx, probe, efx->net_dev,
1169			  "adding to unassociated list\n");
1170		list_add_tail(&efx->node, &efx_unassociated_list);
1171	}
1172}
1173
1174static void efx_dissociate(struct efx_nic *efx)
1175{
1176	struct efx_nic *other, *next;
1177
1178	list_del(&efx->node);
1179	efx->primary = NULL;
1180
1181	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1182		list_del(&other->node);
1183		netif_dbg(other, probe, other->net_dev,
1184			  "moving to unassociated list\n");
1185		list_add_tail(&other->node, &efx_unassociated_list);
1186		other->primary = NULL;
1187	}
1188}
1189
1190/* This configures the PCI device to enable I/O and DMA. */
1191static int efx_init_io(struct efx_nic *efx)
1192{
1193	struct pci_dev *pci_dev = efx->pci_dev;
1194	dma_addr_t dma_mask = efx->type->max_dma_mask;
1195	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1196	int rc;
1197
1198	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1199
1200	rc = pci_enable_device(pci_dev);
1201	if (rc) {
1202		netif_err(efx, probe, efx->net_dev,
1203			  "failed to enable PCI device\n");
1204		goto fail1;
1205	}
1206
1207	pci_set_master(pci_dev);
1208
1209	/* Set the PCI DMA mask.  Try all possibilities from our
1210	 * genuine mask down to 32 bits, because some architectures
1211	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1212	 * masks event though they reject 46 bit masks.
1213	 */
1214	while (dma_mask > 0x7fffffffUL) {
1215		if (dma_supported(&pci_dev->dev, dma_mask)) {
1216			rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1217			if (rc == 0)
1218				break;
1219		}
1220		dma_mask >>= 1;
1221	}
1222	if (rc) {
1223		netif_err(efx, probe, efx->net_dev,
1224			  "could not find a suitable DMA mask\n");
1225		goto fail2;
1226	}
1227	netif_dbg(efx, probe, efx->net_dev,
1228		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1229
1230	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1231	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1232	if (rc) {
1233		netif_err(efx, probe, efx->net_dev,
1234			  "request for memory BAR failed\n");
1235		rc = -EIO;
1236		goto fail3;
1237	}
1238	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1239	if (!efx->membase) {
1240		netif_err(efx, probe, efx->net_dev,
1241			  "could not map memory BAR at %llx+%x\n",
1242			  (unsigned long long)efx->membase_phys, mem_map_size);
1243		rc = -ENOMEM;
1244		goto fail4;
1245	}
1246	netif_dbg(efx, probe, efx->net_dev,
1247		  "memory BAR at %llx+%x (virtual %p)\n",
1248		  (unsigned long long)efx->membase_phys, mem_map_size,
1249		  efx->membase);
1250
1251	return 0;
1252
1253 fail4:
1254	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1255 fail3:
1256	efx->membase_phys = 0;
1257 fail2:
1258	pci_disable_device(efx->pci_dev);
1259 fail1:
1260	return rc;
1261}
1262
1263static void efx_fini_io(struct efx_nic *efx)
1264{
1265	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1266
1267	if (efx->membase) {
1268		iounmap(efx->membase);
1269		efx->membase = NULL;
1270	}
1271
1272	if (efx->membase_phys) {
1273		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1274		efx->membase_phys = 0;
1275	}
1276
1277	pci_disable_device(efx->pci_dev);
1278}
1279
1280static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1281{
1282	cpumask_var_t thread_mask;
1283	unsigned int count;
1284	int cpu;
1285
1286	if (rss_cpus) {
1287		count = rss_cpus;
1288	} else {
1289		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1290			netif_warn(efx, probe, efx->net_dev,
1291				   "RSS disabled due to allocation failure\n");
1292			return 1;
1293		}
1294
1295		count = 0;
1296		for_each_online_cpu(cpu) {
1297			if (!cpumask_test_cpu(cpu, thread_mask)) {
1298				++count;
1299				cpumask_or(thread_mask, thread_mask,
1300					   topology_thread_cpumask(cpu));
1301			}
1302		}
1303
1304		free_cpumask_var(thread_mask);
1305	}
1306
1307	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1308	 * table entries that are inaccessible to VFs
1309	 */
1310	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1311	    count > efx_vf_size(efx)) {
1312		netif_warn(efx, probe, efx->net_dev,
1313			   "Reducing number of RSS channels from %u to %u for "
1314			   "VF support. Increase vf-msix-limit to use more "
1315			   "channels on the PF.\n",
1316			   count, efx_vf_size(efx));
1317		count = efx_vf_size(efx);
1318	}
1319
1320	return count;
1321}
1322
1323/* Probe the number and type of interrupts we are able to obtain, and
1324 * the resulting numbers of channels and RX queues.
1325 */
1326static int efx_probe_interrupts(struct efx_nic *efx)
1327{
1328	unsigned int extra_channels = 0;
1329	unsigned int i, j;
1330	int rc;
1331
1332	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1333		if (efx->extra_channel_type[i])
1334			++extra_channels;
1335
1336	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1337		struct msix_entry xentries[EFX_MAX_CHANNELS];
1338		unsigned int n_channels;
1339
1340		n_channels = efx_wanted_parallelism(efx);
1341		if (separate_tx_channels)
1342			n_channels *= 2;
1343		n_channels += extra_channels;
1344		n_channels = min(n_channels, efx->max_channels);
1345
1346		for (i = 0; i < n_channels; i++)
1347			xentries[i].entry = i;
1348		rc = pci_enable_msix_range(efx->pci_dev,
1349					   xentries, 1, n_channels);
1350		if (rc < 0) {
1351			/* Fall back to single channel MSI */
1352			efx->interrupt_mode = EFX_INT_MODE_MSI;
1353			netif_err(efx, drv, efx->net_dev,
1354				  "could not enable MSI-X\n");
1355		} else if (rc < n_channels) {
1356			netif_err(efx, drv, efx->net_dev,
1357				  "WARNING: Insufficient MSI-X vectors"
1358				  " available (%d < %u).\n", rc, n_channels);
1359			netif_err(efx, drv, efx->net_dev,
1360				  "WARNING: Performance may be reduced.\n");
1361			n_channels = rc;
1362		}
1363
1364		if (rc > 0) {
1365			efx->n_channels = n_channels;
1366			if (n_channels > extra_channels)
1367				n_channels -= extra_channels;
1368			if (separate_tx_channels) {
1369				efx->n_tx_channels = max(n_channels / 2, 1U);
1370				efx->n_rx_channels = max(n_channels -
1371							 efx->n_tx_channels,
1372							 1U);
1373			} else {
1374				efx->n_tx_channels = n_channels;
1375				efx->n_rx_channels = n_channels;
1376			}
1377			for (i = 0; i < efx->n_channels; i++)
1378				efx_get_channel(efx, i)->irq =
1379					xentries[i].vector;
1380		}
1381	}
1382
1383	/* Try single interrupt MSI */
1384	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1385		efx->n_channels = 1;
1386		efx->n_rx_channels = 1;
1387		efx->n_tx_channels = 1;
1388		rc = pci_enable_msi(efx->pci_dev);
1389		if (rc == 0) {
1390			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1391		} else {
1392			netif_err(efx, drv, efx->net_dev,
1393				  "could not enable MSI\n");
1394			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1395		}
1396	}
1397
1398	/* Assume legacy interrupts */
1399	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1400		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1401		efx->n_rx_channels = 1;
1402		efx->n_tx_channels = 1;
1403		efx->legacy_irq = efx->pci_dev->irq;
1404	}
1405
1406	/* Assign extra channels if possible */
1407	j = efx->n_channels;
1408	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1409		if (!efx->extra_channel_type[i])
1410			continue;
1411		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1412		    efx->n_channels <= extra_channels) {
1413			efx->extra_channel_type[i]->handle_no_channel(efx);
1414		} else {
1415			--j;
1416			efx_get_channel(efx, j)->type =
1417				efx->extra_channel_type[i];
1418		}
1419	}
1420
1421	/* RSS might be usable on VFs even if it is disabled on the PF */
1422	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1423			   efx->n_rx_channels : efx_vf_size(efx));
1424
1425	return 0;
1426}
1427
1428static int efx_soft_enable_interrupts(struct efx_nic *efx)
1429{
1430	struct efx_channel *channel, *end_channel;
1431	int rc;
1432
1433	BUG_ON(efx->state == STATE_DISABLED);
1434
1435	efx->irq_soft_enabled = true;
1436	smp_wmb();
1437
1438	efx_for_each_channel(channel, efx) {
1439		if (!channel->type->keep_eventq) {
1440			rc = efx_init_eventq(channel);
1441			if (rc)
1442				goto fail;
1443		}
1444		efx_start_eventq(channel);
1445	}
1446
1447	efx_mcdi_mode_event(efx);
1448
1449	return 0;
1450fail:
1451	end_channel = channel;
1452	efx_for_each_channel(channel, efx) {
1453		if (channel == end_channel)
1454			break;
1455		efx_stop_eventq(channel);
1456		if (!channel->type->keep_eventq)
1457			efx_fini_eventq(channel);
1458	}
1459
1460	return rc;
1461}
1462
1463static void efx_soft_disable_interrupts(struct efx_nic *efx)
1464{
1465	struct efx_channel *channel;
1466
1467	if (efx->state == STATE_DISABLED)
1468		return;
1469
1470	efx_mcdi_mode_poll(efx);
1471
1472	efx->irq_soft_enabled = false;
1473	smp_wmb();
1474
1475	if (efx->legacy_irq)
1476		synchronize_irq(efx->legacy_irq);
1477
1478	efx_for_each_channel(channel, efx) {
1479		if (channel->irq)
1480			synchronize_irq(channel->irq);
1481
1482		efx_stop_eventq(channel);
1483		if (!channel->type->keep_eventq)
1484			efx_fini_eventq(channel);
1485	}
1486
1487	/* Flush the asynchronous MCDI request queue */
1488	efx_mcdi_flush_async(efx);
1489}
1490
1491static int efx_enable_interrupts(struct efx_nic *efx)
1492{
1493	struct efx_channel *channel, *end_channel;
1494	int rc;
1495
1496	BUG_ON(efx->state == STATE_DISABLED);
1497
1498	if (efx->eeh_disabled_legacy_irq) {
1499		enable_irq(efx->legacy_irq);
1500		efx->eeh_disabled_legacy_irq = false;
1501	}
1502
1503	efx->type->irq_enable_master(efx);
1504
1505	efx_for_each_channel(channel, efx) {
1506		if (channel->type->keep_eventq) {
1507			rc = efx_init_eventq(channel);
1508			if (rc)
1509				goto fail;
1510		}
1511	}
1512
1513	rc = efx_soft_enable_interrupts(efx);
1514	if (rc)
1515		goto fail;
1516
1517	return 0;
1518
1519fail:
1520	end_channel = channel;
1521	efx_for_each_channel(channel, efx) {
1522		if (channel == end_channel)
1523			break;
1524		if (channel->type->keep_eventq)
1525			efx_fini_eventq(channel);
1526	}
1527
1528	efx->type->irq_disable_non_ev(efx);
1529
1530	return rc;
1531}
1532
1533static void efx_disable_interrupts(struct efx_nic *efx)
1534{
1535	struct efx_channel *channel;
1536
1537	efx_soft_disable_interrupts(efx);
1538
1539	efx_for_each_channel(channel, efx) {
1540		if (channel->type->keep_eventq)
1541			efx_fini_eventq(channel);
1542	}
1543
1544	efx->type->irq_disable_non_ev(efx);
1545}
1546
1547static void efx_remove_interrupts(struct efx_nic *efx)
1548{
1549	struct efx_channel *channel;
1550
1551	/* Remove MSI/MSI-X interrupts */
1552	efx_for_each_channel(channel, efx)
1553		channel->irq = 0;
1554	pci_disable_msi(efx->pci_dev);
1555	pci_disable_msix(efx->pci_dev);
1556
1557	/* Remove legacy interrupt */
1558	efx->legacy_irq = 0;
1559}
1560
1561static void efx_set_channels(struct efx_nic *efx)
1562{
1563	struct efx_channel *channel;
1564	struct efx_tx_queue *tx_queue;
1565
1566	efx->tx_channel_offset =
1567		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1568
1569	/* We need to mark which channels really have RX and TX
1570	 * queues, and adjust the TX queue numbers if we have separate
1571	 * RX-only and TX-only channels.
1572	 */
1573	efx_for_each_channel(channel, efx) {
1574		if (channel->channel < efx->n_rx_channels)
1575			channel->rx_queue.core_index = channel->channel;
1576		else
1577			channel->rx_queue.core_index = -1;
1578
1579		efx_for_each_channel_tx_queue(tx_queue, channel)
1580			tx_queue->queue -= (efx->tx_channel_offset *
1581					    EFX_TXQ_TYPES);
1582	}
1583}
1584
1585static int efx_probe_nic(struct efx_nic *efx)
1586{
1587	size_t i;
1588	int rc;
1589
1590	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1591
1592	/* Carry out hardware-type specific initialisation */
1593	rc = efx->type->probe(efx);
1594	if (rc)
1595		return rc;
1596
1597	/* Determine the number of channels and queues by trying to hook
1598	 * in MSI-X interrupts. */
1599	rc = efx_probe_interrupts(efx);
1600	if (rc)
1601		goto fail1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602
1603	efx_set_channels(efx);
 
 
 
 
 
 
 
1604
1605	rc = efx->type->dimension_resources(efx);
1606	if (rc)
1607		goto fail2;
1608
1609	if (efx->n_channels > 1)
1610		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1611	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1612		efx->rx_indir_table[i] =
1613			ethtool_rxfh_indir_default(i, efx->rss_spread);
1614
1615	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1616	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1617
1618	/* Initialise the interrupt moderation settings */
 
1619	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1620				true);
1621
1622	return 0;
1623
1624fail2:
1625	efx_remove_interrupts(efx);
1626fail1:
1627	efx->type->remove(efx);
1628	return rc;
1629}
1630
1631static void efx_remove_nic(struct efx_nic *efx)
1632{
1633	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1634
1635	efx_remove_interrupts(efx);
1636	efx->type->remove(efx);
1637}
1638
1639static int efx_probe_filters(struct efx_nic *efx)
1640{
1641	int rc;
1642
1643	spin_lock_init(&efx->filter_lock);
1644
1645	rc = efx->type->filter_table_probe(efx);
1646	if (rc)
1647		return rc;
1648
1649#ifdef CONFIG_RFS_ACCEL
1650	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1651		efx->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters,
1652					   sizeof(*efx->rps_flow_id),
1653					   GFP_KERNEL);
1654		if (!efx->rps_flow_id) {
1655			efx->type->filter_table_remove(efx);
1656			return -ENOMEM;
1657		}
1658	}
1659#endif
1660
1661	return 0;
1662}
1663
1664static void efx_remove_filters(struct efx_nic *efx)
1665{
1666#ifdef CONFIG_RFS_ACCEL
1667	kfree(efx->rps_flow_id);
1668#endif
1669	efx->type->filter_table_remove(efx);
1670}
1671
1672static void efx_restore_filters(struct efx_nic *efx)
1673{
1674	efx->type->filter_table_restore(efx);
1675}
1676
1677/**************************************************************************
1678 *
1679 * NIC startup/shutdown
1680 *
1681 *************************************************************************/
1682
1683static int efx_probe_all(struct efx_nic *efx)
1684{
1685	int rc;
1686
1687	rc = efx_probe_nic(efx);
1688	if (rc) {
1689		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1690		goto fail1;
1691	}
1692
1693	rc = efx_probe_port(efx);
1694	if (rc) {
1695		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1696		goto fail2;
1697	}
1698
1699	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1700	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1701		rc = -EINVAL;
1702		goto fail3;
1703	}
1704	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
 
 
 
 
 
 
 
1705
1706	rc = efx_probe_filters(efx);
1707	if (rc) {
1708		netif_err(efx, probe, efx->net_dev,
1709			  "failed to create filter tables\n");
1710		goto fail3;
1711	}
1712
1713	rc = efx_probe_channels(efx);
1714	if (rc)
1715		goto fail4;
 
 
1716
1717	return 0;
1718
 
 
1719 fail4:
1720	efx_remove_filters(efx);
 
 
1721 fail3:
1722	efx_remove_port(efx);
1723 fail2:
1724	efx_remove_nic(efx);
1725 fail1:
1726	return rc;
1727}
1728
1729/* If the interface is supposed to be running but is not, start
1730 * the hardware and software data path, regular activity for the port
1731 * (MAC statistics, link polling, etc.) and schedule the port to be
1732 * reconfigured.  Interrupts must already be enabled.  This function
1733 * is safe to call multiple times, so long as the NIC is not disabled.
1734 * Requires the RTNL lock.
1735 */
1736static void efx_start_all(struct efx_nic *efx)
1737{
1738	EFX_ASSERT_RESET_SERIALISED(efx);
1739	BUG_ON(efx->state == STATE_DISABLED);
1740
1741	/* Check that it is appropriate to restart the interface. All
1742	 * of these flags are safe to read under just the rtnl lock */
1743	if (efx->port_enabled || !netif_running(efx->net_dev) ||
1744	    efx->reset_pending)
1745		return;
1746
1747	efx_start_port(efx);
1748	efx_start_datapath(efx);
1749
1750	/* Start the hardware monitor if there is one */
1751	if (efx->type->monitor != NULL)
1752		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1753				   efx_monitor_interval);
1754
1755	/* If link state detection is normally event-driven, we have
1756	 * to poll now because we could have missed a change
1757	 */
1758	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1759		mutex_lock(&efx->mac_lock);
1760		if (efx->phy_op->poll(efx))
1761			efx_link_status_changed(efx);
1762		mutex_unlock(&efx->mac_lock);
1763	}
1764
1765	efx->type->start_stats(efx);
1766	efx->type->pull_stats(efx);
1767	spin_lock_bh(&efx->stats_lock);
1768	efx->type->update_stats(efx, NULL, NULL);
1769	spin_unlock_bh(&efx->stats_lock);
1770}
1771
1772/* Quiesce the hardware and software data path, and regular activity
1773 * for the port without bringing the link down.  Safe to call multiple
1774 * times with the NIC in almost any state, but interrupts should be
1775 * enabled.  Requires the RTNL lock.
1776 */
1777static void efx_stop_all(struct efx_nic *efx)
1778{
1779	EFX_ASSERT_RESET_SERIALISED(efx);
1780
1781	/* port_enabled can be read safely under the rtnl lock */
1782	if (!efx->port_enabled)
1783		return;
1784
1785	/* update stats before we go down so we can accurately count
1786	 * rx_nodesc_drops
1787	 */
1788	efx->type->pull_stats(efx);
1789	spin_lock_bh(&efx->stats_lock);
1790	efx->type->update_stats(efx, NULL, NULL);
1791	spin_unlock_bh(&efx->stats_lock);
1792	efx->type->stop_stats(efx);
1793	efx_stop_port(efx);
1794
1795	/* Stop the kernel transmit interface.  This is only valid if
1796	 * the device is stopped or detached; otherwise the watchdog
1797	 * may fire immediately.
1798	 */
1799	WARN_ON(netif_running(efx->net_dev) &&
1800		netif_device_present(efx->net_dev));
1801	netif_tx_disable(efx->net_dev);
1802
1803	efx_stop_datapath(efx);
1804}
1805
1806static void efx_remove_all(struct efx_nic *efx)
1807{
1808	efx_remove_channels(efx);
1809	efx_remove_filters(efx);
 
 
 
1810	efx_remove_port(efx);
1811	efx_remove_nic(efx);
1812}
1813
1814/**************************************************************************
1815 *
1816 * Interrupt moderation
1817 *
1818 **************************************************************************/
1819
1820static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1821{
1822	if (usecs == 0)
1823		return 0;
1824	if (usecs * 1000 < quantum_ns)
1825		return 1; /* never round down to 0 */
1826	return usecs * 1000 / quantum_ns;
 
 
 
 
 
 
 
 
1827}
1828
1829/* Set interrupt moderation parameters */
1830int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1831			    unsigned int rx_usecs, bool rx_adaptive,
1832			    bool rx_may_override_tx)
1833{
1834	struct efx_channel *channel;
1835	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1836						efx->timer_quantum_ns,
1837						1000);
1838	unsigned int tx_ticks;
1839	unsigned int rx_ticks;
1840
1841	EFX_ASSERT_RESET_SERIALISED(efx);
1842
1843	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
 
 
1844		return -EINVAL;
1845
1846	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1847	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1848
1849	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1850	    !rx_may_override_tx) {
1851		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1852			  "RX and TX IRQ moderation must be equal\n");
1853		return -EINVAL;
1854	}
1855
1856	efx->irq_rx_adaptive = rx_adaptive;
1857	efx->irq_rx_moderation = rx_ticks;
1858	efx_for_each_channel(channel, efx) {
1859		if (efx_channel_has_rx_queue(channel))
1860			channel->irq_moderation = rx_ticks;
1861		else if (efx_channel_has_tx_queues(channel))
1862			channel->irq_moderation = tx_ticks;
 
 
1863	}
1864
1865	return 0;
1866}
1867
1868void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1869			    unsigned int *rx_usecs, bool *rx_adaptive)
1870{
1871	/* We must round up when converting ticks to microseconds
1872	 * because we round down when converting the other way.
1873	 */
1874
1875	*rx_adaptive = efx->irq_rx_adaptive;
1876	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1877				 efx->timer_quantum_ns,
1878				 1000);
1879
1880	/* If channels are shared between RX and TX, so is IRQ
1881	 * moderation.  Otherwise, IRQ moderation is the same for all
1882	 * TX channels and is not adaptive.
1883	 */
1884	if (efx->tx_channel_offset == 0)
1885		*tx_usecs = *rx_usecs;
1886	else
1887		*tx_usecs = DIV_ROUND_UP(
1888			efx->channel[efx->tx_channel_offset]->irq_moderation *
1889			efx->timer_quantum_ns,
1890			1000);
1891}
1892
1893/**************************************************************************
1894 *
1895 * Hardware monitor
1896 *
1897 **************************************************************************/
1898
1899/* Run periodically off the general workqueue */
1900static void efx_monitor(struct work_struct *data)
1901{
1902	struct efx_nic *efx = container_of(data, struct efx_nic,
1903					   monitor_work.work);
1904
1905	netif_vdbg(efx, timer, efx->net_dev,
1906		   "hardware monitor executing on CPU %d\n",
1907		   raw_smp_processor_id());
1908	BUG_ON(efx->type->monitor == NULL);
1909
1910	/* If the mac_lock is already held then it is likely a port
1911	 * reconfiguration is already in place, which will likely do
1912	 * most of the work of monitor() anyway. */
1913	if (mutex_trylock(&efx->mac_lock)) {
1914		if (efx->port_enabled)
1915			efx->type->monitor(efx);
1916		mutex_unlock(&efx->mac_lock);
1917	}
1918
1919	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1920			   efx_monitor_interval);
1921}
1922
1923/**************************************************************************
1924 *
1925 * ioctls
1926 *
1927 *************************************************************************/
1928
1929/* Net device ioctl
1930 * Context: process, rtnl_lock() held.
1931 */
1932static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1933{
1934	struct efx_nic *efx = netdev_priv(net_dev);
1935	struct mii_ioctl_data *data = if_mii(ifr);
1936
1937	if (cmd == SIOCSHWTSTAMP)
1938		return efx_ptp_set_ts_config(efx, ifr);
1939	if (cmd == SIOCGHWTSTAMP)
1940		return efx_ptp_get_ts_config(efx, ifr);
1941
1942	/* Convert phy_id from older PRTAD/DEVAD format */
1943	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1944	    (data->phy_id & 0xfc00) == 0x0400)
1945		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1946
1947	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1948}
1949
1950/**************************************************************************
1951 *
1952 * NAPI interface
1953 *
1954 **************************************************************************/
1955
1956static void efx_init_napi_channel(struct efx_channel *channel)
1957{
1958	struct efx_nic *efx = channel->efx;
1959
1960	channel->napi_dev = efx->net_dev;
1961	netif_napi_add(channel->napi_dev, &channel->napi_str,
1962		       efx_poll, napi_weight);
1963}
1964
1965static void efx_init_napi(struct efx_nic *efx)
1966{
1967	struct efx_channel *channel;
1968
1969	efx_for_each_channel(channel, efx)
1970		efx_init_napi_channel(channel);
1971}
1972
1973static void efx_fini_napi_channel(struct efx_channel *channel)
1974{
1975	if (channel->napi_dev)
1976		netif_napi_del(&channel->napi_str);
1977	channel->napi_dev = NULL;
1978}
1979
1980static void efx_fini_napi(struct efx_nic *efx)
1981{
1982	struct efx_channel *channel;
1983
1984	efx_for_each_channel(channel, efx)
1985		efx_fini_napi_channel(channel);
1986}
1987
1988/**************************************************************************
1989 *
1990 * Kernel netpoll interface
1991 *
1992 *************************************************************************/
1993
1994#ifdef CONFIG_NET_POLL_CONTROLLER
1995
1996/* Although in the common case interrupts will be disabled, this is not
1997 * guaranteed. However, all our work happens inside the NAPI callback,
1998 * so no locking is required.
1999 */
2000static void efx_netpoll(struct net_device *net_dev)
2001{
2002	struct efx_nic *efx = netdev_priv(net_dev);
2003	struct efx_channel *channel;
2004
2005	efx_for_each_channel(channel, efx)
2006		efx_schedule_channel(channel);
2007}
2008
2009#endif
2010
2011/**************************************************************************
2012 *
2013 * Kernel net device interface
2014 *
2015 *************************************************************************/
2016
2017/* Context: process, rtnl_lock() held. */
2018static int efx_net_open(struct net_device *net_dev)
2019{
2020	struct efx_nic *efx = netdev_priv(net_dev);
2021	int rc;
2022
2023	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2024		  raw_smp_processor_id());
2025
2026	rc = efx_check_disabled(efx);
2027	if (rc)
2028		return rc;
2029	if (efx->phy_mode & PHY_MODE_SPECIAL)
2030		return -EBUSY;
2031	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2032		return -EIO;
2033
2034	/* Notify the kernel of the link state polled during driver load,
2035	 * before the monitor starts running */
2036	efx_link_status_changed(efx);
2037
2038	efx_start_all(efx);
2039	efx_selftest_async_start(efx);
 
 
 
 
2040	return 0;
2041}
2042
2043/* Context: process, rtnl_lock() held.
2044 * Note that the kernel will ignore our return code; this method
2045 * should really be a void.
2046 */
2047static int efx_net_stop(struct net_device *net_dev)
2048{
2049	struct efx_nic *efx = netdev_priv(net_dev);
2050
2051	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2052		  raw_smp_processor_id());
2053
2054	/* Stop the device and flush all the channels */
2055	efx_stop_all(efx);
2056
2057	return 0;
2058}
2059
2060/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2061static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2062					       struct rtnl_link_stats64 *stats)
2063{
2064	struct efx_nic *efx = netdev_priv(net_dev);
2065
2066	spin_lock_bh(&efx->stats_lock);
2067	efx->type->update_stats(efx, NULL, stats);
2068	spin_unlock_bh(&efx->stats_lock);
2069
2070	return stats;
2071}
2072
2073/* Context: netif_tx_lock held, BHs disabled. */
2074static void efx_watchdog(struct net_device *net_dev)
2075{
2076	struct efx_nic *efx = netdev_priv(net_dev);
2077
2078	netif_err(efx, tx_err, efx->net_dev,
2079		  "TX stuck with port_enabled=%d: resetting channels\n",
2080		  efx->port_enabled);
2081
2082	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2083}
2084
2085
2086/* Context: process, rtnl_lock() held. */
2087static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2088{
2089	struct efx_nic *efx = netdev_priv(net_dev);
2090	int rc;
2091
2092	rc = efx_check_disabled(efx);
2093	if (rc)
2094		return rc;
2095	if (new_mtu > EFX_MAX_MTU)
2096		return -EINVAL;
2097
2098	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2099
2100	efx_device_detach_sync(efx);
2101	efx_stop_all(efx);
2102
2103	mutex_lock(&efx->mac_lock);
2104	net_dev->mtu = new_mtu;
2105	efx->type->reconfigure_mac(efx);
2106	mutex_unlock(&efx->mac_lock);
2107
2108	efx_start_all(efx);
2109	netif_device_attach(efx->net_dev);
2110	return 0;
2111}
2112
2113static int efx_set_mac_address(struct net_device *net_dev, void *data)
2114{
2115	struct efx_nic *efx = netdev_priv(net_dev);
2116	struct sockaddr *addr = data;
2117	u8 *new_addr = addr->sa_data;
2118
2119	if (!is_valid_ether_addr(new_addr)) {
2120		netif_err(efx, drv, efx->net_dev,
2121			  "invalid ethernet MAC address requested: %pM\n",
2122			  new_addr);
2123		return -EADDRNOTAVAIL;
2124	}
2125
2126	ether_addr_copy(net_dev->dev_addr, new_addr);
2127	efx_sriov_mac_address_changed(efx);
2128
2129	/* Reconfigure the MAC */
2130	mutex_lock(&efx->mac_lock);
2131	efx->type->reconfigure_mac(efx);
2132	mutex_unlock(&efx->mac_lock);
2133
2134	return 0;
2135}
2136
2137/* Context: netif_addr_lock held, BHs disabled. */
2138static void efx_set_rx_mode(struct net_device *net_dev)
 
2139{
2140	struct efx_nic *efx = netdev_priv(net_dev);
2141
2142	if (efx->port_enabled)
2143		queue_work(efx->workqueue, &efx->mac_work);
2144	/* Otherwise efx_start_port() will do this */
2145}
2146
2147static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
 
2148{
2149	struct efx_nic *efx = netdev_priv(net_dev);
2150
2151	/* If disabling RX n-tuple filtering, clear existing filters */
2152	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2153		return efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2154
2155	return 0;
2156}
2157
2158static const struct net_device_ops efx_farch_netdev_ops = {
2159	.ndo_open		= efx_net_open,
2160	.ndo_stop		= efx_net_stop,
2161	.ndo_get_stats64	= efx_net_stats,
2162	.ndo_tx_timeout		= efx_watchdog,
2163	.ndo_start_xmit		= efx_hard_start_xmit,
2164	.ndo_validate_addr	= eth_validate_addr,
2165	.ndo_do_ioctl		= efx_ioctl,
2166	.ndo_change_mtu		= efx_change_mtu,
2167	.ndo_set_mac_address	= efx_set_mac_address,
2168	.ndo_set_rx_mode	= efx_set_rx_mode,
2169	.ndo_set_features	= efx_set_features,
 
 
 
 
 
2170#ifdef CONFIG_SFC_SRIOV
2171	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2172	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2173	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2174	.ndo_get_vf_config	= efx_sriov_get_vf_config,
 
2175#endif
2176#ifdef CONFIG_NET_POLL_CONTROLLER
2177	.ndo_poll_controller = efx_netpoll,
2178#endif
2179	.ndo_setup_tc		= efx_setup_tc,
2180#ifdef CONFIG_RFS_ACCEL
2181	.ndo_rx_flow_steer	= efx_filter_rfs,
2182#endif
 
 
2183};
2184
2185static const struct net_device_ops efx_ef10_netdev_ops = {
2186	.ndo_open		= efx_net_open,
2187	.ndo_stop		= efx_net_stop,
2188	.ndo_get_stats64	= efx_net_stats,
2189	.ndo_tx_timeout		= efx_watchdog,
2190	.ndo_start_xmit		= efx_hard_start_xmit,
2191	.ndo_validate_addr	= eth_validate_addr,
2192	.ndo_do_ioctl		= efx_ioctl,
2193	.ndo_change_mtu		= efx_change_mtu,
2194	.ndo_set_mac_address	= efx_set_mac_address,
2195	.ndo_set_rx_mode	= efx_set_rx_mode,
2196	.ndo_set_features	= efx_set_features,
2197#ifdef CONFIG_NET_POLL_CONTROLLER
2198	.ndo_poll_controller	= efx_netpoll,
2199#endif
2200#ifdef CONFIG_RFS_ACCEL
2201	.ndo_rx_flow_steer	= efx_filter_rfs,
2202#endif
2203};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2204
2205static void efx_update_name(struct efx_nic *efx)
2206{
2207	strcpy(efx->name, efx->net_dev->name);
2208	efx_mtd_rename(efx);
2209	efx_set_channel_names(efx);
2210}
2211
2212static int efx_netdev_event(struct notifier_block *this,
2213			    unsigned long event, void *ptr)
2214{
2215	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2216
2217	if ((net_dev->netdev_ops == &efx_farch_netdev_ops ||
2218	     net_dev->netdev_ops == &efx_ef10_netdev_ops) &&
2219	    event == NETDEV_CHANGENAME)
2220		efx_update_name(netdev_priv(net_dev));
2221
2222	return NOTIFY_DONE;
2223}
2224
2225static struct notifier_block efx_netdev_notifier = {
2226	.notifier_call = efx_netdev_event,
2227};
2228
2229static ssize_t
2230show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2231{
2232	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2233	return sprintf(buf, "%d\n", efx->phy_type);
2234}
2235static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2236
2237static int efx_register_netdev(struct efx_nic *efx)
2238{
2239	struct net_device *net_dev = efx->net_dev;
2240	struct efx_channel *channel;
2241	int rc;
2242
2243	net_dev->watchdog_timeo = 5 * HZ;
2244	net_dev->irq = efx->pci_dev->irq;
2245	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
2246		net_dev->netdev_ops = &efx_ef10_netdev_ops;
2247		net_dev->priv_flags |= IFF_UNICAST_FLT;
2248	} else {
2249		net_dev->netdev_ops = &efx_farch_netdev_ops;
2250	}
2251	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2252	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2253
2254	rtnl_lock();
2255
2256	/* Enable resets to be scheduled and check whether any were
2257	 * already requested.  If so, the NIC is probably hosed so we
2258	 * abort.
2259	 */
2260	efx->state = STATE_READY;
2261	smp_mb(); /* ensure we change state before checking reset_pending */
2262	if (efx->reset_pending) {
2263		netif_err(efx, probe, efx->net_dev,
2264			  "aborting probe due to scheduled reset\n");
2265		rc = -EIO;
2266		goto fail_locked;
2267	}
2268
2269	rc = dev_alloc_name(net_dev, net_dev->name);
2270	if (rc < 0)
2271		goto fail_locked;
2272	efx_update_name(efx);
2273
2274	/* Always start with carrier off; PHY events will detect the link */
2275	netif_carrier_off(net_dev);
2276
2277	rc = register_netdevice(net_dev);
2278	if (rc)
2279		goto fail_locked;
2280
2281	efx_for_each_channel(channel, efx) {
2282		struct efx_tx_queue *tx_queue;
2283		efx_for_each_channel_tx_queue(tx_queue, channel)
2284			efx_init_tx_queue_core_txq(tx_queue);
2285	}
2286
2287	efx_associate(efx);
2288
 
 
2289	rtnl_unlock();
2290
2291	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2292	if (rc) {
2293		netif_err(efx, drv, efx->net_dev,
2294			  "failed to init net dev attributes\n");
2295		goto fail_registered;
2296	}
2297
 
 
2298	return 0;
2299
2300fail_registered:
2301	rtnl_lock();
2302	efx_dissociate(efx);
2303	unregister_netdevice(net_dev);
2304fail_locked:
2305	efx->state = STATE_UNINIT;
2306	rtnl_unlock();
2307	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2308	return rc;
2309}
2310
2311static void efx_unregister_netdev(struct efx_nic *efx)
2312{
2313	if (!efx->net_dev)
2314		return;
2315
2316	BUG_ON(netdev_priv(efx->net_dev) != efx);
2317
2318	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2319	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2320
2321	rtnl_lock();
2322	unregister_netdevice(efx->net_dev);
2323	efx->state = STATE_UNINIT;
2324	rtnl_unlock();
2325}
2326
2327/**************************************************************************
2328 *
2329 * Device reset and suspend
2330 *
2331 **************************************************************************/
2332
2333/* Tears down the entire software state and most of the hardware state
2334 * before reset.  */
2335void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2336{
2337	EFX_ASSERT_RESET_SERIALISED(efx);
2338
2339	if (method == RESET_TYPE_MCDI_TIMEOUT)
2340		efx->type->prepare_flr(efx);
2341
2342	efx_stop_all(efx);
2343	efx_disable_interrupts(efx);
2344
2345	mutex_lock(&efx->mac_lock);
2346	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2347		efx->phy_op->fini(efx);
2348	efx->type->fini(efx);
2349}
2350
2351/* This function will always ensure that the locks acquired in
2352 * efx_reset_down() are released. A failure return code indicates
2353 * that we were unable to reinitialise the hardware, and the
2354 * driver should be disabled. If ok is false, then the rx and tx
2355 * engines are not restarted, pending a RESET_DISABLE. */
2356int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2357{
2358	int rc;
2359
2360	EFX_ASSERT_RESET_SERIALISED(efx);
2361
2362	if (method == RESET_TYPE_MCDI_TIMEOUT)
2363		efx->type->finish_flr(efx);
2364
2365	/* Ensure that SRAM is initialised even if we're disabling the device */
2366	rc = efx->type->init(efx);
2367	if (rc) {
2368		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2369		goto fail;
2370	}
2371
2372	if (!ok)
2373		goto fail;
2374
2375	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2376		rc = efx->phy_op->init(efx);
2377		if (rc)
2378			goto fail;
2379		if (efx->phy_op->reconfigure(efx))
2380			netif_err(efx, drv, efx->net_dev,
2381				  "could not restore PHY settings\n");
2382	}
2383
2384	rc = efx_enable_interrupts(efx);
2385	if (rc)
2386		goto fail;
2387	efx_restore_filters(efx);
2388	efx_sriov_reset(efx);
2389
2390	mutex_unlock(&efx->mac_lock);
2391
2392	efx_start_all(efx);
2393
2394	return 0;
2395
2396fail:
2397	efx->port_initialized = false;
2398
2399	mutex_unlock(&efx->mac_lock);
2400
2401	return rc;
2402}
2403
2404/* Reset the NIC using the specified method.  Note that the reset may
2405 * fail, in which case the card will be left in an unusable state.
2406 *
2407 * Caller must hold the rtnl_lock.
2408 */
2409int efx_reset(struct efx_nic *efx, enum reset_type method)
2410{
2411	int rc, rc2;
2412	bool disabled;
2413
2414	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2415		   RESET_TYPE(method));
2416
2417	efx_device_detach_sync(efx);
2418	efx_reset_down(efx, method);
2419
2420	rc = efx->type->reset(efx, method);
2421	if (rc) {
2422		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2423		goto out;
2424	}
2425
2426	/* Clear flags for the scopes we covered.  We assume the NIC and
2427	 * driver are now quiescent so that there is no race here.
2428	 */
2429	if (method < RESET_TYPE_MAX_METHOD)
2430		efx->reset_pending &= -(1 << (method + 1));
2431	else /* it doesn't fit into the well-ordered scope hierarchy */
2432		__clear_bit(method, &efx->reset_pending);
2433
2434	/* Reinitialise bus-mastering, which may have been turned off before
2435	 * the reset was scheduled. This is still appropriate, even in the
2436	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2437	 * can respond to requests. */
2438	pci_set_master(efx->pci_dev);
2439
2440out:
2441	/* Leave device stopped if necessary */
2442	disabled = rc ||
2443		method == RESET_TYPE_DISABLE ||
2444		method == RESET_TYPE_RECOVER_OR_DISABLE;
2445	rc2 = efx_reset_up(efx, method, !disabled);
2446	if (rc2) {
2447		disabled = true;
2448		if (!rc)
2449			rc = rc2;
2450	}
2451
2452	if (disabled) {
2453		dev_close(efx->net_dev);
2454		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2455		efx->state = STATE_DISABLED;
2456	} else {
2457		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2458		netif_device_attach(efx->net_dev);
2459	}
2460	return rc;
2461}
2462
2463/* Try recovery mechanisms.
2464 * For now only EEH is supported.
2465 * Returns 0 if the recovery mechanisms are unsuccessful.
2466 * Returns a non-zero value otherwise.
2467 */
2468int efx_try_recovery(struct efx_nic *efx)
2469{
2470#ifdef CONFIG_EEH
2471	/* A PCI error can occur and not be seen by EEH because nothing
2472	 * happens on the PCI bus. In this case the driver may fail and
2473	 * schedule a 'recover or reset', leading to this recovery handler.
2474	 * Manually call the eeh failure check function.
2475	 */
2476	struct eeh_dev *eehdev =
2477		of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
2478
2479	if (eeh_dev_check_failure(eehdev)) {
2480		/* The EEH mechanisms will handle the error and reset the
2481		 * device if necessary.
2482		 */
2483		return 1;
2484	}
2485#endif
2486	return 0;
2487}
2488
2489static void efx_wait_for_bist_end(struct efx_nic *efx)
2490{
2491	int i;
2492
2493	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2494		if (efx_mcdi_poll_reboot(efx))
2495			goto out;
2496		msleep(BIST_WAIT_DELAY_MS);
2497	}
2498
2499	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2500out:
2501	/* Either way unset the BIST flag. If we found no reboot we probably
2502	 * won't recover, but we should try.
2503	 */
2504	efx->mc_bist_for_other_fn = false;
2505}
2506
2507/* The worker thread exists so that code that cannot sleep can
2508 * schedule a reset for later.
2509 */
2510static void efx_reset_work(struct work_struct *data)
2511{
2512	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2513	unsigned long pending;
2514	enum reset_type method;
2515
2516	pending = ACCESS_ONCE(efx->reset_pending);
2517	method = fls(pending) - 1;
2518
2519	if (method == RESET_TYPE_MC_BIST)
2520		efx_wait_for_bist_end(efx);
2521
2522	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2523	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2524	    efx_try_recovery(efx))
2525		return;
2526
2527	if (!pending)
2528		return;
2529
2530	rtnl_lock();
2531
2532	/* We checked the state in efx_schedule_reset() but it may
2533	 * have changed by now.  Now that we have the RTNL lock,
2534	 * it cannot change again.
2535	 */
2536	if (efx->state == STATE_READY)
2537		(void)efx_reset(efx, method);
2538
2539	rtnl_unlock();
2540}
2541
2542void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2543{
2544	enum reset_type method;
2545
2546	if (efx->state == STATE_RECOVERY) {
2547		netif_dbg(efx, drv, efx->net_dev,
2548			  "recovering: skip scheduling %s reset\n",
2549			  RESET_TYPE(type));
2550		return;
2551	}
2552
2553	switch (type) {
2554	case RESET_TYPE_INVISIBLE:
2555	case RESET_TYPE_ALL:
2556	case RESET_TYPE_RECOVER_OR_ALL:
2557	case RESET_TYPE_WORLD:
2558	case RESET_TYPE_DISABLE:
2559	case RESET_TYPE_RECOVER_OR_DISABLE:
2560	case RESET_TYPE_MC_BIST:
2561	case RESET_TYPE_MCDI_TIMEOUT:
2562		method = type;
2563		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2564			  RESET_TYPE(method));
2565		break;
2566	default:
2567		method = efx->type->map_reset_reason(type);
2568		netif_dbg(efx, drv, efx->net_dev,
2569			  "scheduling %s reset for %s\n",
2570			  RESET_TYPE(method), RESET_TYPE(type));
2571		break;
2572	}
2573
2574	set_bit(method, &efx->reset_pending);
2575	smp_mb(); /* ensure we change reset_pending before checking state */
2576
2577	/* If we're not READY then just leave the flags set as the cue
2578	 * to abort probing or reschedule the reset later.
2579	 */
2580	if (ACCESS_ONCE(efx->state) != STATE_READY)
2581		return;
2582
2583	/* efx_process_channel() will no longer read events once a
2584	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2585	efx_mcdi_mode_poll(efx);
2586
2587	queue_work(reset_workqueue, &efx->reset_work);
2588}
2589
2590/**************************************************************************
2591 *
2592 * List of NICs we support
2593 *
2594 **************************************************************************/
2595
2596/* PCI device ID table */
2597static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2598	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2599		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2600	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2601	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2602		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2603	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2604	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2605	 .driver_data = (unsigned long) &siena_a0_nic_type},
2606	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2607	 .driver_data = (unsigned long) &siena_a0_nic_type},
2608	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2609	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2610	{0}			/* end of list */
2611};
2612
2613/**************************************************************************
2614 *
2615 * Dummy PHY/MAC operations
2616 *
2617 * Can be used for some unimplemented operations
2618 * Needed so all function pointers are valid and do not have to be tested
2619 * before use
2620 *
2621 **************************************************************************/
2622int efx_port_dummy_op_int(struct efx_nic *efx)
2623{
2624	return 0;
2625}
2626void efx_port_dummy_op_void(struct efx_nic *efx) {}
2627
2628static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2629{
2630	return false;
2631}
2632
2633static const struct efx_phy_operations efx_dummy_phy_operations = {
2634	.init		 = efx_port_dummy_op_int,
2635	.reconfigure	 = efx_port_dummy_op_int,
2636	.poll		 = efx_port_dummy_op_poll,
2637	.fini		 = efx_port_dummy_op_void,
2638};
2639
2640/**************************************************************************
2641 *
2642 * Data housekeeping
2643 *
2644 **************************************************************************/
2645
2646/* This zeroes out and then fills in the invariants in a struct
2647 * efx_nic (including all sub-structures).
2648 */
2649static int efx_init_struct(struct efx_nic *efx,
2650			   struct pci_dev *pci_dev, struct net_device *net_dev)
2651{
2652	int i;
 
2653
2654	/* Initialise common structures */
2655	INIT_LIST_HEAD(&efx->node);
2656	INIT_LIST_HEAD(&efx->secondary_list);
2657	spin_lock_init(&efx->biu_lock);
2658#ifdef CONFIG_SFC_MTD
2659	INIT_LIST_HEAD(&efx->mtd_list);
2660#endif
2661	INIT_WORK(&efx->reset_work, efx_reset_work);
2662	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2663	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2664	efx->pci_dev = pci_dev;
2665	efx->msg_enable = debug;
2666	efx->state = STATE_UNINIT;
2667	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2668
2669	efx->net_dev = net_dev;
2670	efx->rx_prefix_size = efx->type->rx_prefix_size;
2671	efx->rx_ip_align =
2672		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2673	efx->rx_packet_hash_offset =
2674		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2675	efx->rx_packet_ts_offset =
2676		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2677	spin_lock_init(&efx->stats_lock);
2678	mutex_init(&efx->mac_lock);
2679	efx->phy_op = &efx_dummy_phy_operations;
2680	efx->mdio.dev = net_dev;
2681	INIT_WORK(&efx->mac_work, efx_mac_work);
2682	init_waitqueue_head(&efx->flush_wq);
2683
2684	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2685		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2686		if (!efx->channel[i])
2687			goto fail;
2688		efx->msi_context[i].efx = efx;
2689		efx->msi_context[i].index = i;
2690	}
2691
2692	/* Higher numbered interrupt modes are less capable! */
2693	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2694				  interrupt_mode);
2695
2696	/* Would be good to use the net_dev name, but we're too early */
2697	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2698		 pci_name(pci_dev));
2699	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2700	if (!efx->workqueue)
2701		goto fail;
2702
2703	return 0;
2704
2705fail:
2706	efx_fini_struct(efx);
2707	return -ENOMEM;
2708}
2709
2710static void efx_fini_struct(struct efx_nic *efx)
2711{
2712	int i;
2713
2714	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2715		kfree(efx->channel[i]);
2716
2717	kfree(efx->vpd_sn);
2718
2719	if (efx->workqueue) {
2720		destroy_workqueue(efx->workqueue);
2721		efx->workqueue = NULL;
2722	}
2723}
2724
2725/**************************************************************************
2726 *
2727 * PCI interface
2728 *
2729 **************************************************************************/
2730
2731/* Main body of final NIC shutdown code
2732 * This is called only at module unload (or hotplug removal).
2733 */
2734static void efx_pci_remove_main(struct efx_nic *efx)
2735{
2736	/* Flush reset_work. It can no longer be scheduled since we
2737	 * are not READY.
2738	 */
2739	BUG_ON(efx->state == STATE_READY);
2740	cancel_work_sync(&efx->reset_work);
2741
2742	efx_disable_interrupts(efx);
 
2743	efx_nic_fini_interrupt(efx);
2744	efx_fini_port(efx);
2745	efx->type->fini(efx);
2746	efx_fini_napi(efx);
2747	efx_remove_all(efx);
2748}
2749
2750/* Final NIC shutdown
2751 * This is called only at module unload (or hotplug removal).
 
2752 */
2753static void efx_pci_remove(struct pci_dev *pci_dev)
2754{
 
2755	struct efx_nic *efx;
2756
2757	efx = pci_get_drvdata(pci_dev);
2758	if (!efx)
2759		return;
2760
2761	/* Mark the NIC as fini, then stop the interface */
2762	rtnl_lock();
2763	efx_dissociate(efx);
2764	dev_close(efx->net_dev);
2765	efx_disable_interrupts(efx);
 
2766	rtnl_unlock();
2767
2768	efx_sriov_fini(efx);
 
 
 
2769	efx_unregister_netdev(efx);
2770
2771	efx_mtd_remove(efx);
2772
2773	efx_pci_remove_main(efx);
2774
2775	efx_fini_io(efx);
2776	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2777
 
2778	efx_fini_struct(efx);
2779	free_netdev(efx->net_dev);
2780
2781	pci_disable_pcie_error_reporting(pci_dev);
2782};
2783
2784/* NIC VPD information
2785 * Called during probe to display the part number of the
2786 * installed NIC.  VPD is potentially very large but this should
2787 * always appear within the first 512 bytes.
2788 */
2789#define SFC_VPD_LEN 512
2790static void efx_probe_vpd_strings(struct efx_nic *efx)
2791{
2792	struct pci_dev *dev = efx->pci_dev;
2793	char vpd_data[SFC_VPD_LEN];
2794	ssize_t vpd_size;
2795	int ro_start, ro_size, i, j;
2796
2797	/* Get the vpd data from the device */
2798	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2799	if (vpd_size <= 0) {
2800		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2801		return;
2802	}
2803
2804	/* Get the Read only section */
2805	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2806	if (ro_start < 0) {
2807		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2808		return;
2809	}
2810
2811	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
2812	j = ro_size;
2813	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2814	if (i + j > vpd_size)
2815		j = vpd_size - i;
2816
2817	/* Get the Part number */
2818	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2819	if (i < 0) {
2820		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2821		return;
2822	}
2823
2824	j = pci_vpd_info_field_size(&vpd_data[i]);
2825	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2826	if (i + j > vpd_size) {
2827		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2828		return;
2829	}
2830
2831	netif_info(efx, drv, efx->net_dev,
2832		   "Part Number : %.*s\n", j, &vpd_data[i]);
2833
2834	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
2835	j = ro_size;
2836	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
2837	if (i < 0) {
2838		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
2839		return;
2840	}
2841
2842	j = pci_vpd_info_field_size(&vpd_data[i]);
2843	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2844	if (i + j > vpd_size) {
2845		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
2846		return;
2847	}
2848
2849	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
2850	if (!efx->vpd_sn)
2851		return;
2852
2853	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
2854}
2855
2856
2857/* Main body of NIC initialisation
2858 * This is called at module load (or hotplug insertion, theoretically).
2859 */
2860static int efx_pci_probe_main(struct efx_nic *efx)
2861{
2862	int rc;
2863
2864	/* Do start-of-day initialisation */
2865	rc = efx_probe_all(efx);
2866	if (rc)
2867		goto fail1;
2868
2869	efx_init_napi(efx);
2870
 
2871	rc = efx->type->init(efx);
 
2872	if (rc) {
2873		netif_err(efx, probe, efx->net_dev,
2874			  "failed to initialise NIC\n");
2875		goto fail3;
2876	}
2877
2878	rc = efx_init_port(efx);
2879	if (rc) {
2880		netif_err(efx, probe, efx->net_dev,
2881			  "failed to initialise port\n");
2882		goto fail4;
2883	}
2884
2885	rc = efx_nic_init_interrupt(efx);
2886	if (rc)
2887		goto fail5;
 
 
2888	rc = efx_enable_interrupts(efx);
2889	if (rc)
2890		goto fail6;
2891
2892	return 0;
2893
2894 fail6:
 
2895	efx_nic_fini_interrupt(efx);
2896 fail5:
2897	efx_fini_port(efx);
2898 fail4:
2899	efx->type->fini(efx);
2900 fail3:
2901	efx_fini_napi(efx);
2902	efx_remove_all(efx);
2903 fail1:
2904	return rc;
2905}
2906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2907/* NIC initialisation
2908 *
2909 * This is called at module load (or hotplug insertion,
2910 * theoretically).  It sets up PCI mappings, resets the NIC,
2911 * sets up and registers the network devices with the kernel and hooks
2912 * the interrupt service routine.  It does not prepare the device for
2913 * transmission; this is left to the first time one of the network
2914 * interfaces is brought up (i.e. efx_net_open).
2915 */
2916static int efx_pci_probe(struct pci_dev *pci_dev,
2917			 const struct pci_device_id *entry)
2918{
 
2919	struct net_device *net_dev;
2920	struct efx_nic *efx;
2921	int rc;
2922
2923	/* Allocate and initialise a struct net_device and struct efx_nic */
2924	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2925				     EFX_MAX_RX_QUEUES);
2926	if (!net_dev)
2927		return -ENOMEM;
2928	efx = netdev_priv(net_dev);
 
 
 
 
 
 
 
 
 
 
 
2929	efx->type = (const struct efx_nic_type *) entry->driver_data;
2930	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2931			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2932			      NETIF_F_RXCSUM);
2933	if (efx->type->offload_features & NETIF_F_V6_CSUM)
2934		net_dev->features |= NETIF_F_TSO6;
2935	/* Mask for features that also apply to VLAN devices */
2936	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2937				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2938				   NETIF_F_RXCSUM);
2939	/* All offloads can be toggled */
2940	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2941	pci_set_drvdata(pci_dev, efx);
2942	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2943	rc = efx_init_struct(efx, pci_dev, net_dev);
2944	if (rc)
2945		goto fail1;
 
2946
2947	netif_info(efx, probe, efx->net_dev,
2948		   "Solarflare NIC detected\n");
2949
2950	efx_probe_vpd_strings(efx);
 
2951
2952	/* Set up basic I/O (BAR mappings etc) */
2953	rc = efx_init_io(efx);
 
2954	if (rc)
2955		goto fail2;
2956
2957	rc = efx_pci_probe_main(efx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2958	if (rc)
2959		goto fail3;
2960
2961	rc = efx_register_netdev(efx);
2962	if (rc)
2963		goto fail4;
2964
2965	rc = efx_sriov_init(efx);
2966	if (rc)
2967		netif_err(efx, probe, efx->net_dev,
2968			  "SR-IOV can't be enabled rc %d\n", rc);
2969
2970	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2971
2972	/* Try to create MTDs, but allow this to fail */
2973	rtnl_lock();
2974	rc = efx_mtd_probe(efx);
2975	rtnl_unlock();
2976	if (rc)
2977		netif_warn(efx, probe, efx->net_dev,
2978			   "failed to create MTDs (%d)\n", rc);
2979
2980	rc = pci_enable_pcie_error_reporting(pci_dev);
2981	if (rc && rc != -EINVAL)
2982		netif_warn(efx, probe, efx->net_dev,
2983			   "pci_enable_pcie_error_reporting failed (%d)\n", rc);
2984
2985	return 0;
2986
2987 fail4:
2988	efx_pci_remove_main(efx);
2989 fail3:
2990	efx_fini_io(efx);
2991 fail2:
2992	efx_fini_struct(efx);
2993 fail1:
2994	WARN_ON(rc > 0);
2995	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2996	free_netdev(net_dev);
 
 
2997	return rc;
2998}
2999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3000static int efx_pm_freeze(struct device *dev)
3001{
3002	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3003
3004	rtnl_lock();
3005
3006	if (efx->state != STATE_DISABLED) {
3007		efx->state = STATE_UNINIT;
3008
3009		efx_device_detach_sync(efx);
3010
3011		efx_stop_all(efx);
3012		efx_disable_interrupts(efx);
 
 
3013	}
3014
3015	rtnl_unlock();
3016
3017	return 0;
3018}
3019
 
 
 
 
 
 
 
 
 
 
 
3020static int efx_pm_thaw(struct device *dev)
3021{
3022	int rc;
3023	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3024
3025	rtnl_lock();
3026
3027	if (efx->state != STATE_DISABLED) {
3028		rc = efx_enable_interrupts(efx);
3029		if (rc)
3030			goto fail;
3031
3032		mutex_lock(&efx->mac_lock);
3033		efx->phy_op->reconfigure(efx);
3034		mutex_unlock(&efx->mac_lock);
3035
3036		efx_start_all(efx);
3037
3038		netif_device_attach(efx->net_dev);
3039
3040		efx->state = STATE_READY;
3041
3042		efx->type->resume_wol(efx);
3043	}
3044
3045	rtnl_unlock();
3046
3047	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3048	queue_work(reset_workqueue, &efx->reset_work);
3049
3050	return 0;
3051
3052fail:
3053	rtnl_unlock();
3054
3055	return rc;
3056}
3057
3058static int efx_pm_poweroff(struct device *dev)
3059{
3060	struct pci_dev *pci_dev = to_pci_dev(dev);
3061	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3062
3063	efx->type->fini(efx);
3064
3065	efx->reset_pending = 0;
3066
3067	pci_save_state(pci_dev);
3068	return pci_set_power_state(pci_dev, PCI_D3hot);
3069}
3070
3071/* Used for both resume and restore */
3072static int efx_pm_resume(struct device *dev)
3073{
3074	struct pci_dev *pci_dev = to_pci_dev(dev);
3075	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3076	int rc;
3077
3078	rc = pci_set_power_state(pci_dev, PCI_D0);
3079	if (rc)
3080		return rc;
3081	pci_restore_state(pci_dev);
3082	rc = pci_enable_device(pci_dev);
3083	if (rc)
3084		return rc;
3085	pci_set_master(efx->pci_dev);
3086	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3087	if (rc)
3088		return rc;
 
3089	rc = efx->type->init(efx);
 
3090	if (rc)
3091		return rc;
3092	rc = efx_pm_thaw(dev);
3093	return rc;
3094}
3095
3096static int efx_pm_suspend(struct device *dev)
3097{
3098	int rc;
3099
3100	efx_pm_freeze(dev);
3101	rc = efx_pm_poweroff(dev);
3102	if (rc)
3103		efx_pm_resume(dev);
3104	return rc;
3105}
3106
3107static const struct dev_pm_ops efx_pm_ops = {
3108	.suspend	= efx_pm_suspend,
3109	.resume		= efx_pm_resume,
3110	.freeze		= efx_pm_freeze,
3111	.thaw		= efx_pm_thaw,
3112	.poweroff	= efx_pm_poweroff,
3113	.restore	= efx_pm_resume,
3114};
3115
3116/* A PCI error affecting this device was detected.
3117 * At this point MMIO and DMA may be disabled.
3118 * Stop the software path and request a slot reset.
3119 */
3120static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3121					      enum pci_channel_state state)
3122{
3123	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3124	struct efx_nic *efx = pci_get_drvdata(pdev);
3125
3126	if (state == pci_channel_io_perm_failure)
3127		return PCI_ERS_RESULT_DISCONNECT;
3128
3129	rtnl_lock();
3130
3131	if (efx->state != STATE_DISABLED) {
3132		efx->state = STATE_RECOVERY;
3133		efx->reset_pending = 0;
3134
3135		efx_device_detach_sync(efx);
3136
3137		efx_stop_all(efx);
3138		efx_disable_interrupts(efx);
3139
3140		status = PCI_ERS_RESULT_NEED_RESET;
3141	} else {
3142		/* If the interface is disabled we don't want to do anything
3143		 * with it.
3144		 */
3145		status = PCI_ERS_RESULT_RECOVERED;
3146	}
3147
3148	rtnl_unlock();
3149
3150	pci_disable_device(pdev);
3151
3152	return status;
3153}
3154
3155/* Fake a successfull reset, which will be performed later in efx_io_resume. */
3156static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3157{
3158	struct efx_nic *efx = pci_get_drvdata(pdev);
3159	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3160	int rc;
3161
3162	if (pci_enable_device(pdev)) {
3163		netif_err(efx, hw, efx->net_dev,
3164			  "Cannot re-enable PCI device after reset.\n");
3165		status =  PCI_ERS_RESULT_DISCONNECT;
3166	}
3167
3168	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3169	if (rc) {
3170		netif_err(efx, hw, efx->net_dev,
3171		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3172		/* Non-fatal error. Continue. */
3173	}
3174
3175	return status;
3176}
3177
3178/* Perform the actual reset and resume I/O operations. */
3179static void efx_io_resume(struct pci_dev *pdev)
3180{
3181	struct efx_nic *efx = pci_get_drvdata(pdev);
3182	int rc;
3183
3184	rtnl_lock();
3185
3186	if (efx->state == STATE_DISABLED)
3187		goto out;
3188
3189	rc = efx_reset(efx, RESET_TYPE_ALL);
3190	if (rc) {
3191		netif_err(efx, hw, efx->net_dev,
3192			  "efx_reset failed after PCI error (%d)\n", rc);
3193	} else {
3194		efx->state = STATE_READY;
3195		netif_dbg(efx, hw, efx->net_dev,
3196			  "Done resetting and resuming IO after PCI error.\n");
3197	}
3198
3199out:
3200	rtnl_unlock();
3201}
3202
3203/* For simplicity and reliability, we always require a slot reset and try to
3204 * reset the hardware when a pci error affecting the device is detected.
3205 * We leave both the link_reset and mmio_enabled callback unimplemented:
3206 * with our request for slot reset the mmio_enabled callback will never be
3207 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3208 */
3209static struct pci_error_handlers efx_err_handlers = {
3210	.error_detected = efx_io_error_detected,
3211	.slot_reset	= efx_io_slot_reset,
3212	.resume		= efx_io_resume,
3213};
3214
3215static struct pci_driver efx_pci_driver = {
3216	.name		= KBUILD_MODNAME,
3217	.id_table	= efx_pci_table,
3218	.probe		= efx_pci_probe,
3219	.remove		= efx_pci_remove,
3220	.driver.pm	= &efx_pm_ops,
 
3221	.err_handler	= &efx_err_handlers,
 
 
 
3222};
3223
3224/**************************************************************************
3225 *
3226 * Kernel module interface
3227 *
3228 *************************************************************************/
3229
3230module_param(interrupt_mode, uint, 0444);
3231MODULE_PARM_DESC(interrupt_mode,
3232		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3233
3234static int __init efx_init_module(void)
3235{
3236	int rc;
3237
3238	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3239
3240	rc = register_netdevice_notifier(&efx_netdev_notifier);
3241	if (rc)
3242		goto err_notifier;
3243
3244	rc = efx_init_sriov();
3245	if (rc)
3246		goto err_sriov;
3247
3248	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3249	if (!reset_workqueue) {
3250		rc = -ENOMEM;
3251		goto err_reset;
3252	}
3253
3254	rc = pci_register_driver(&efx_pci_driver);
3255	if (rc < 0)
3256		goto err_pci;
3257
 
 
 
 
3258	return 0;
3259
 
 
3260 err_pci:
3261	destroy_workqueue(reset_workqueue);
3262 err_reset:
3263	efx_fini_sriov();
3264 err_sriov:
3265	unregister_netdevice_notifier(&efx_netdev_notifier);
3266 err_notifier:
3267	return rc;
3268}
3269
3270static void __exit efx_exit_module(void)
3271{
3272	printk(KERN_INFO "Solarflare NET driver unloading\n");
3273
 
3274	pci_unregister_driver(&efx_pci_driver);
3275	destroy_workqueue(reset_workqueue);
3276	efx_fini_sriov();
3277	unregister_netdevice_notifier(&efx_netdev_notifier);
3278
3279}
3280
3281module_init(efx_init_module);
3282module_exit(efx_exit_module);
3283
3284MODULE_AUTHOR("Solarflare Communications and "
3285	      "Michael Brown <mbrown@fensystems.co.uk>");
3286MODULE_DESCRIPTION("Solarflare network driver");
3287MODULE_LICENSE("GPL");
3288MODULE_DEVICE_TABLE(pci, efx_pci_table);