Linux Audio

Check our new training course

Loading...
   1/****************************************************************************
   2 * Driver for Solarflare Solarstorm network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2005-2011 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/pci.h>
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/delay.h>
  16#include <linux/notifier.h>
  17#include <linux/ip.h>
  18#include <linux/tcp.h>
  19#include <linux/in.h>
  20#include <linux/crc32.h>
  21#include <linux/ethtool.h>
  22#include <linux/topology.h>
  23#include <linux/gfp.h>
  24#include <linux/cpu_rmap.h>
  25#include "net_driver.h"
  26#include "efx.h"
  27#include "nic.h"
  28#include "selftest.h"
  29
  30#include "mcdi.h"
  31#include "workarounds.h"
  32
  33/**************************************************************************
  34 *
  35 * Type name strings
  36 *
  37 **************************************************************************
  38 */
  39
  40/* Loopback mode names (see LOOPBACK_MODE()) */
  41const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
  42const char *const efx_loopback_mode_names[] = {
  43	[LOOPBACK_NONE]		= "NONE",
  44	[LOOPBACK_DATA]		= "DATAPATH",
  45	[LOOPBACK_GMAC]		= "GMAC",
  46	[LOOPBACK_XGMII]	= "XGMII",
  47	[LOOPBACK_XGXS]		= "XGXS",
  48	[LOOPBACK_XAUI]		= "XAUI",
  49	[LOOPBACK_GMII]		= "GMII",
  50	[LOOPBACK_SGMII]	= "SGMII",
  51	[LOOPBACK_XGBR]		= "XGBR",
  52	[LOOPBACK_XFI]		= "XFI",
  53	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
  54	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
  55	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
  56	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
  57	[LOOPBACK_GPHY]		= "GPHY",
  58	[LOOPBACK_PHYXS]	= "PHYXS",
  59	[LOOPBACK_PCS]		= "PCS",
  60	[LOOPBACK_PMAPMD]	= "PMA/PMD",
  61	[LOOPBACK_XPORT]	= "XPORT",
  62	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
  63	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
  64	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
  65	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
  66	[LOOPBACK_GMII_WS]	= "GMII_WS",
  67	[LOOPBACK_XFI_WS]	= "XFI_WS",
  68	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
  69	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
  70};
  71
  72const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
  73const char *const efx_reset_type_names[] = {
  74	[RESET_TYPE_INVISIBLE]     = "INVISIBLE",
  75	[RESET_TYPE_ALL]           = "ALL",
  76	[RESET_TYPE_WORLD]         = "WORLD",
  77	[RESET_TYPE_DISABLE]       = "DISABLE",
  78	[RESET_TYPE_TX_WATCHDOG]   = "TX_WATCHDOG",
  79	[RESET_TYPE_INT_ERROR]     = "INT_ERROR",
  80	[RESET_TYPE_RX_RECOVERY]   = "RX_RECOVERY",
  81	[RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
  82	[RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
  83	[RESET_TYPE_TX_SKIP]       = "TX_SKIP",
  84	[RESET_TYPE_MC_FAILURE]    = "MC_FAILURE",
  85};
  86
  87#define EFX_MAX_MTU (9 * 1024)
  88
  89/* Reset workqueue. If any NIC has a hardware failure then a reset will be
  90 * queued onto this work queue. This is not a per-nic work queue, because
  91 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
  92 */
  93static struct workqueue_struct *reset_workqueue;
  94
  95/**************************************************************************
  96 *
  97 * Configurable values
  98 *
  99 *************************************************************************/
 100
 101/*
 102 * Use separate channels for TX and RX events
 103 *
 104 * Set this to 1 to use separate channels for TX and RX. It allows us
 105 * to control interrupt affinity separately for TX and RX.
 106 *
 107 * This is only used in MSI-X interrupt mode
 108 */
 109static unsigned int separate_tx_channels;
 110module_param(separate_tx_channels, uint, 0444);
 111MODULE_PARM_DESC(separate_tx_channels,
 112		 "Use separate channels for TX and RX");
 113
 114/* This is the weight assigned to each of the (per-channel) virtual
 115 * NAPI devices.
 116 */
 117static int napi_weight = 64;
 118
 119/* This is the time (in jiffies) between invocations of the hardware
 120 * monitor.  On Falcon-based NICs, this will:
 121 * - Check the on-board hardware monitor;
 122 * - Poll the link state and reconfigure the hardware as necessary.
 123 */
 124static unsigned int efx_monitor_interval = 1 * HZ;
 125
 126/* Initial interrupt moderation settings.  They can be modified after
 127 * module load with ethtool.
 128 *
 129 * The default for RX should strike a balance between increasing the
 130 * round-trip latency and reducing overhead.
 131 */
 132static unsigned int rx_irq_mod_usec = 60;
 133
 134/* Initial interrupt moderation settings.  They can be modified after
 135 * module load with ethtool.
 136 *
 137 * This default is chosen to ensure that a 10G link does not go idle
 138 * while a TX queue is stopped after it has become full.  A queue is
 139 * restarted when it drops below half full.  The time this takes (assuming
 140 * worst case 3 descriptors per packet and 1024 descriptors) is
 141 *   512 / 3 * 1.2 = 205 usec.
 142 */
 143static unsigned int tx_irq_mod_usec = 150;
 144
 145/* This is the first interrupt mode to try out of:
 146 * 0 => MSI-X
 147 * 1 => MSI
 148 * 2 => legacy
 149 */
 150static unsigned int interrupt_mode;
 151
 152/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 153 * i.e. the number of CPUs among which we may distribute simultaneous
 154 * interrupt handling.
 155 *
 156 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 157 * The default (0) means to assign an interrupt to each core.
 158 */
 159static unsigned int rss_cpus;
 160module_param(rss_cpus, uint, 0444);
 161MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
 162
 163static int phy_flash_cfg;
 164module_param(phy_flash_cfg, int, 0644);
 165MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
 166
 167static unsigned irq_adapt_low_thresh = 8000;
 168module_param(irq_adapt_low_thresh, uint, 0644);
 169MODULE_PARM_DESC(irq_adapt_low_thresh,
 170		 "Threshold score for reducing IRQ moderation");
 171
 172static unsigned irq_adapt_high_thresh = 16000;
 173module_param(irq_adapt_high_thresh, uint, 0644);
 174MODULE_PARM_DESC(irq_adapt_high_thresh,
 175		 "Threshold score for increasing IRQ moderation");
 176
 177static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
 178			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
 179			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
 180			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
 181module_param(debug, uint, 0);
 182MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
 183
 184/**************************************************************************
 185 *
 186 * Utility functions and prototypes
 187 *
 188 *************************************************************************/
 189
 190static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq);
 191static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq);
 192static void efx_remove_channel(struct efx_channel *channel);
 193static void efx_remove_channels(struct efx_nic *efx);
 194static const struct efx_channel_type efx_default_channel_type;
 195static void efx_remove_port(struct efx_nic *efx);
 196static void efx_init_napi_channel(struct efx_channel *channel);
 197static void efx_fini_napi(struct efx_nic *efx);
 198static void efx_fini_napi_channel(struct efx_channel *channel);
 199static void efx_fini_struct(struct efx_nic *efx);
 200static void efx_start_all(struct efx_nic *efx);
 201static void efx_stop_all(struct efx_nic *efx);
 202
 203#define EFX_ASSERT_RESET_SERIALISED(efx)		\
 204	do {						\
 205		if ((efx->state == STATE_RUNNING) ||	\
 206		    (efx->state == STATE_DISABLED))	\
 207			ASSERT_RTNL();			\
 208	} while (0)
 209
 210/**************************************************************************
 211 *
 212 * Event queue processing
 213 *
 214 *************************************************************************/
 215
 216/* Process channel's event queue
 217 *
 218 * This function is responsible for processing the event queue of a
 219 * single channel.  The caller must guarantee that this function will
 220 * never be concurrently called more than once on the same channel,
 221 * though different channels may be being processed concurrently.
 222 */
 223static int efx_process_channel(struct efx_channel *channel, int budget)
 224{
 225	int spent;
 226
 227	if (unlikely(!channel->enabled))
 228		return 0;
 229
 230	spent = efx_nic_process_eventq(channel, budget);
 231	if (spent && efx_channel_has_rx_queue(channel)) {
 232		struct efx_rx_queue *rx_queue =
 233			efx_channel_get_rx_queue(channel);
 234
 235		/* Deliver last RX packet. */
 236		if (channel->rx_pkt) {
 237			__efx_rx_packet(channel, channel->rx_pkt);
 238			channel->rx_pkt = NULL;
 239		}
 240		if (rx_queue->enabled) {
 241			efx_rx_strategy(channel);
 242			efx_fast_push_rx_descriptors(rx_queue);
 243		}
 244	}
 245
 246	return spent;
 247}
 248
 249/* Mark channel as finished processing
 250 *
 251 * Note that since we will not receive further interrupts for this
 252 * channel before we finish processing and call the eventq_read_ack()
 253 * method, there is no need to use the interrupt hold-off timers.
 254 */
 255static inline void efx_channel_processed(struct efx_channel *channel)
 256{
 257	/* The interrupt handler for this channel may set work_pending
 258	 * as soon as we acknowledge the events we've seen.  Make sure
 259	 * it's cleared before then. */
 260	channel->work_pending = false;
 261	smp_wmb();
 262
 263	efx_nic_eventq_read_ack(channel);
 264}
 265
 266/* NAPI poll handler
 267 *
 268 * NAPI guarantees serialisation of polls of the same device, which
 269 * provides the guarantee required by efx_process_channel().
 270 */
 271static int efx_poll(struct napi_struct *napi, int budget)
 272{
 273	struct efx_channel *channel =
 274		container_of(napi, struct efx_channel, napi_str);
 275	struct efx_nic *efx = channel->efx;
 276	int spent;
 277
 278	netif_vdbg(efx, intr, efx->net_dev,
 279		   "channel %d NAPI poll executing on CPU %d\n",
 280		   channel->channel, raw_smp_processor_id());
 281
 282	spent = efx_process_channel(channel, budget);
 283
 284	if (spent < budget) {
 285		if (efx_channel_has_rx_queue(channel) &&
 286		    efx->irq_rx_adaptive &&
 287		    unlikely(++channel->irq_count == 1000)) {
 288			if (unlikely(channel->irq_mod_score <
 289				     irq_adapt_low_thresh)) {
 290				if (channel->irq_moderation > 1) {
 291					channel->irq_moderation -= 1;
 292					efx->type->push_irq_moderation(channel);
 293				}
 294			} else if (unlikely(channel->irq_mod_score >
 295					    irq_adapt_high_thresh)) {
 296				if (channel->irq_moderation <
 297				    efx->irq_rx_moderation) {
 298					channel->irq_moderation += 1;
 299					efx->type->push_irq_moderation(channel);
 300				}
 301			}
 302			channel->irq_count = 0;
 303			channel->irq_mod_score = 0;
 304		}
 305
 306		efx_filter_rfs_expire(channel);
 307
 308		/* There is no race here; although napi_disable() will
 309		 * only wait for napi_complete(), this isn't a problem
 310		 * since efx_channel_processed() will have no effect if
 311		 * interrupts have already been disabled.
 312		 */
 313		napi_complete(napi);
 314		efx_channel_processed(channel);
 315	}
 316
 317	return spent;
 318}
 319
 320/* Process the eventq of the specified channel immediately on this CPU
 321 *
 322 * Disable hardware generated interrupts, wait for any existing
 323 * processing to finish, then directly poll (and ack ) the eventq.
 324 * Finally reenable NAPI and interrupts.
 325 *
 326 * This is for use only during a loopback self-test.  It must not
 327 * deliver any packets up the stack as this can result in deadlock.
 328 */
 329void efx_process_channel_now(struct efx_channel *channel)
 330{
 331	struct efx_nic *efx = channel->efx;
 332
 333	BUG_ON(channel->channel >= efx->n_channels);
 334	BUG_ON(!channel->enabled);
 335	BUG_ON(!efx->loopback_selftest);
 336
 337	/* Disable interrupts and wait for ISRs to complete */
 338	efx_nic_disable_interrupts(efx);
 339	if (efx->legacy_irq) {
 340		synchronize_irq(efx->legacy_irq);
 341		efx->legacy_irq_enabled = false;
 342	}
 343	if (channel->irq)
 344		synchronize_irq(channel->irq);
 345
 346	/* Wait for any NAPI processing to complete */
 347	napi_disable(&channel->napi_str);
 348
 349	/* Poll the channel */
 350	efx_process_channel(channel, channel->eventq_mask + 1);
 351
 352	/* Ack the eventq. This may cause an interrupt to be generated
 353	 * when they are reenabled */
 354	efx_channel_processed(channel);
 355
 356	napi_enable(&channel->napi_str);
 357	if (efx->legacy_irq)
 358		efx->legacy_irq_enabled = true;
 359	efx_nic_enable_interrupts(efx);
 360}
 361
 362/* Create event queue
 363 * Event queue memory allocations are done only once.  If the channel
 364 * is reset, the memory buffer will be reused; this guards against
 365 * errors during channel reset and also simplifies interrupt handling.
 366 */
 367static int efx_probe_eventq(struct efx_channel *channel)
 368{
 369	struct efx_nic *efx = channel->efx;
 370	unsigned long entries;
 371
 372	netif_dbg(efx, probe, efx->net_dev,
 373		  "chan %d create event queue\n", channel->channel);
 374
 375	/* Build an event queue with room for one event per tx and rx buffer,
 376	 * plus some extra for link state events and MCDI completions. */
 377	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
 378	EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
 379	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
 380
 381	return efx_nic_probe_eventq(channel);
 382}
 383
 384/* Prepare channel's event queue */
 385static void efx_init_eventq(struct efx_channel *channel)
 386{
 387	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 388		  "chan %d init event queue\n", channel->channel);
 389
 390	channel->eventq_read_ptr = 0;
 391
 392	efx_nic_init_eventq(channel);
 393}
 394
 395/* Enable event queue processing and NAPI */
 396static void efx_start_eventq(struct efx_channel *channel)
 397{
 398	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
 399		  "chan %d start event queue\n", channel->channel);
 400
 401	/* The interrupt handler for this channel may set work_pending
 402	 * as soon as we enable it.  Make sure it's cleared before
 403	 * then.  Similarly, make sure it sees the enabled flag set.
 404	 */
 405	channel->work_pending = false;
 406	channel->enabled = true;
 407	smp_wmb();
 408
 409	napi_enable(&channel->napi_str);
 410	efx_nic_eventq_read_ack(channel);
 411}
 412
 413/* Disable event queue processing and NAPI */
 414static void efx_stop_eventq(struct efx_channel *channel)
 415{
 416	if (!channel->enabled)
 417		return;
 418
 419	napi_disable(&channel->napi_str);
 420	channel->enabled = false;
 421}
 422
 423static void efx_fini_eventq(struct efx_channel *channel)
 424{
 425	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 426		  "chan %d fini event queue\n", channel->channel);
 427
 428	efx_nic_fini_eventq(channel);
 429}
 430
 431static void efx_remove_eventq(struct efx_channel *channel)
 432{
 433	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 434		  "chan %d remove event queue\n", channel->channel);
 435
 436	efx_nic_remove_eventq(channel);
 437}
 438
 439/**************************************************************************
 440 *
 441 * Channel handling
 442 *
 443 *************************************************************************/
 444
 445/* Allocate and initialise a channel structure. */
 446static struct efx_channel *
 447efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
 448{
 449	struct efx_channel *channel;
 450	struct efx_rx_queue *rx_queue;
 451	struct efx_tx_queue *tx_queue;
 452	int j;
 453
 454	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
 455	if (!channel)
 456		return NULL;
 457
 458	channel->efx = efx;
 459	channel->channel = i;
 460	channel->type = &efx_default_channel_type;
 461
 462	for (j = 0; j < EFX_TXQ_TYPES; j++) {
 463		tx_queue = &channel->tx_queue[j];
 464		tx_queue->efx = efx;
 465		tx_queue->queue = i * EFX_TXQ_TYPES + j;
 466		tx_queue->channel = channel;
 467	}
 468
 469	rx_queue = &channel->rx_queue;
 470	rx_queue->efx = efx;
 471	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
 472		    (unsigned long)rx_queue);
 473
 474	return channel;
 475}
 476
 477/* Allocate and initialise a channel structure, copying parameters
 478 * (but not resources) from an old channel structure.
 479 */
 480static struct efx_channel *
 481efx_copy_channel(const struct efx_channel *old_channel)
 482{
 483	struct efx_channel *channel;
 484	struct efx_rx_queue *rx_queue;
 485	struct efx_tx_queue *tx_queue;
 486	int j;
 487
 488	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
 489	if (!channel)
 490		return NULL;
 491
 492	*channel = *old_channel;
 493
 494	channel->napi_dev = NULL;
 495	memset(&channel->eventq, 0, sizeof(channel->eventq));
 496
 497	for (j = 0; j < EFX_TXQ_TYPES; j++) {
 498		tx_queue = &channel->tx_queue[j];
 499		if (tx_queue->channel)
 500			tx_queue->channel = channel;
 501		tx_queue->buffer = NULL;
 502		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
 503	}
 504
 505	rx_queue = &channel->rx_queue;
 506	rx_queue->buffer = NULL;
 507	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
 508	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
 509		    (unsigned long)rx_queue);
 510
 511	return channel;
 512}
 513
 514static int efx_probe_channel(struct efx_channel *channel)
 515{
 516	struct efx_tx_queue *tx_queue;
 517	struct efx_rx_queue *rx_queue;
 518	int rc;
 519
 520	netif_dbg(channel->efx, probe, channel->efx->net_dev,
 521		  "creating channel %d\n", channel->channel);
 522
 523	rc = channel->type->pre_probe(channel);
 524	if (rc)
 525		goto fail;
 526
 527	rc = efx_probe_eventq(channel);
 528	if (rc)
 529		goto fail;
 530
 531	efx_for_each_channel_tx_queue(tx_queue, channel) {
 532		rc = efx_probe_tx_queue(tx_queue);
 533		if (rc)
 534			goto fail;
 535	}
 536
 537	efx_for_each_channel_rx_queue(rx_queue, channel) {
 538		rc = efx_probe_rx_queue(rx_queue);
 539		if (rc)
 540			goto fail;
 541	}
 542
 543	channel->n_rx_frm_trunc = 0;
 544
 545	return 0;
 546
 547fail:
 548	efx_remove_channel(channel);
 549	return rc;
 550}
 551
 552static void
 553efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
 554{
 555	struct efx_nic *efx = channel->efx;
 556	const char *type;
 557	int number;
 558
 559	number = channel->channel;
 560	if (efx->tx_channel_offset == 0) {
 561		type = "";
 562	} else if (channel->channel < efx->tx_channel_offset) {
 563		type = "-rx";
 564	} else {
 565		type = "-tx";
 566		number -= efx->tx_channel_offset;
 567	}
 568	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
 569}
 570
 571static void efx_set_channel_names(struct efx_nic *efx)
 572{
 573	struct efx_channel *channel;
 574
 575	efx_for_each_channel(channel, efx)
 576		channel->type->get_name(channel,
 577					efx->channel_name[channel->channel],
 578					sizeof(efx->channel_name[0]));
 579}
 580
 581static int efx_probe_channels(struct efx_nic *efx)
 582{
 583	struct efx_channel *channel;
 584	int rc;
 585
 586	/* Restart special buffer allocation */
 587	efx->next_buffer_table = 0;
 588
 589	/* Probe channels in reverse, so that any 'extra' channels
 590	 * use the start of the buffer table. This allows the traffic
 591	 * channels to be resized without moving them or wasting the
 592	 * entries before them.
 593	 */
 594	efx_for_each_channel_rev(channel, efx) {
 595		rc = efx_probe_channel(channel);
 596		if (rc) {
 597			netif_err(efx, probe, efx->net_dev,
 598				  "failed to create channel %d\n",
 599				  channel->channel);
 600			goto fail;
 601		}
 602	}
 603	efx_set_channel_names(efx);
 604
 605	return 0;
 606
 607fail:
 608	efx_remove_channels(efx);
 609	return rc;
 610}
 611
 612/* Channels are shutdown and reinitialised whilst the NIC is running
 613 * to propagate configuration changes (mtu, checksum offload), or
 614 * to clear hardware error conditions
 615 */
 616static void efx_start_datapath(struct efx_nic *efx)
 617{
 618	struct efx_tx_queue *tx_queue;
 619	struct efx_rx_queue *rx_queue;
 620	struct efx_channel *channel;
 621
 622	/* Calculate the rx buffer allocation parameters required to
 623	 * support the current MTU, including padding for header
 624	 * alignment and overruns.
 625	 */
 626	efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
 627			      EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
 628			      efx->type->rx_buffer_hash_size +
 629			      efx->type->rx_buffer_padding);
 630	efx->rx_buffer_order = get_order(efx->rx_buffer_len +
 631					 sizeof(struct efx_rx_page_state));
 632
 633	/* Initialise the channels */
 634	efx_for_each_channel(channel, efx) {
 635		efx_for_each_channel_tx_queue(tx_queue, channel)
 636			efx_init_tx_queue(tx_queue);
 637
 638		/* The rx buffer allocation strategy is MTU dependent */
 639		efx_rx_strategy(channel);
 640
 641		efx_for_each_channel_rx_queue(rx_queue, channel) {
 642			efx_init_rx_queue(rx_queue);
 643			efx_nic_generate_fill_event(rx_queue);
 644		}
 645
 646		WARN_ON(channel->rx_pkt != NULL);
 647		efx_rx_strategy(channel);
 648	}
 649
 650	if (netif_device_present(efx->net_dev))
 651		netif_tx_wake_all_queues(efx->net_dev);
 652}
 653
 654static void efx_stop_datapath(struct efx_nic *efx)
 655{
 656	struct efx_channel *channel;
 657	struct efx_tx_queue *tx_queue;
 658	struct efx_rx_queue *rx_queue;
 659	struct pci_dev *dev = efx->pci_dev;
 660	int rc;
 661
 662	EFX_ASSERT_RESET_SERIALISED(efx);
 663	BUG_ON(efx->port_enabled);
 664
 665	/* Only perform flush if dma is enabled */
 666	if (dev->is_busmaster) {
 667		rc = efx_nic_flush_queues(efx);
 668
 669		if (rc && EFX_WORKAROUND_7803(efx)) {
 670			/* Schedule a reset to recover from the flush failure. The
 671			 * descriptor caches reference memory we're about to free,
 672			 * but falcon_reconfigure_mac_wrapper() won't reconnect
 673			 * the MACs because of the pending reset. */
 674			netif_err(efx, drv, efx->net_dev,
 675				  "Resetting to recover from flush failure\n");
 676			efx_schedule_reset(efx, RESET_TYPE_ALL);
 677		} else if (rc) {
 678			netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
 679		} else {
 680			netif_dbg(efx, drv, efx->net_dev,
 681				  "successfully flushed all queues\n");
 682		}
 683	}
 684
 685	efx_for_each_channel(channel, efx) {
 686		/* RX packet processing is pipelined, so wait for the
 687		 * NAPI handler to complete.  At least event queue 0
 688		 * might be kept active by non-data events, so don't
 689		 * use napi_synchronize() but actually disable NAPI
 690		 * temporarily.
 691		 */
 692		if (efx_channel_has_rx_queue(channel)) {
 693			efx_stop_eventq(channel);
 694			efx_start_eventq(channel);
 695		}
 696
 697		efx_for_each_channel_rx_queue(rx_queue, channel)
 698			efx_fini_rx_queue(rx_queue);
 699		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
 700			efx_fini_tx_queue(tx_queue);
 701	}
 702}
 703
 704static void efx_remove_channel(struct efx_channel *channel)
 705{
 706	struct efx_tx_queue *tx_queue;
 707	struct efx_rx_queue *rx_queue;
 708
 709	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 710		  "destroy chan %d\n", channel->channel);
 711
 712	efx_for_each_channel_rx_queue(rx_queue, channel)
 713		efx_remove_rx_queue(rx_queue);
 714	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
 715		efx_remove_tx_queue(tx_queue);
 716	efx_remove_eventq(channel);
 717}
 718
 719static void efx_remove_channels(struct efx_nic *efx)
 720{
 721	struct efx_channel *channel;
 722
 723	efx_for_each_channel(channel, efx)
 724		efx_remove_channel(channel);
 725}
 726
 727int
 728efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
 729{
 730	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
 731	u32 old_rxq_entries, old_txq_entries;
 732	unsigned i, next_buffer_table = 0;
 733	int rc = 0;
 734
 735	/* Not all channels should be reallocated. We must avoid
 736	 * reallocating their buffer table entries.
 737	 */
 738	efx_for_each_channel(channel, efx) {
 739		struct efx_rx_queue *rx_queue;
 740		struct efx_tx_queue *tx_queue;
 741
 742		if (channel->type->copy)
 743			continue;
 744		next_buffer_table = max(next_buffer_table,
 745					channel->eventq.index +
 746					channel->eventq.entries);
 747		efx_for_each_channel_rx_queue(rx_queue, channel)
 748			next_buffer_table = max(next_buffer_table,
 749						rx_queue->rxd.index +
 750						rx_queue->rxd.entries);
 751		efx_for_each_channel_tx_queue(tx_queue, channel)
 752			next_buffer_table = max(next_buffer_table,
 753						tx_queue->txd.index +
 754						tx_queue->txd.entries);
 755	}
 756
 757	efx_stop_all(efx);
 758	efx_stop_interrupts(efx, true);
 759
 760	/* Clone channels (where possible) */
 761	memset(other_channel, 0, sizeof(other_channel));
 762	for (i = 0; i < efx->n_channels; i++) {
 763		channel = efx->channel[i];
 764		if (channel->type->copy)
 765			channel = channel->type->copy(channel);
 766		if (!channel) {
 767			rc = -ENOMEM;
 768			goto out;
 769		}
 770		other_channel[i] = channel;
 771	}
 772
 773	/* Swap entry counts and channel pointers */
 774	old_rxq_entries = efx->rxq_entries;
 775	old_txq_entries = efx->txq_entries;
 776	efx->rxq_entries = rxq_entries;
 777	efx->txq_entries = txq_entries;
 778	for (i = 0; i < efx->n_channels; i++) {
 779		channel = efx->channel[i];
 780		efx->channel[i] = other_channel[i];
 781		other_channel[i] = channel;
 782	}
 783
 784	/* Restart buffer table allocation */
 785	efx->next_buffer_table = next_buffer_table;
 786
 787	for (i = 0; i < efx->n_channels; i++) {
 788		channel = efx->channel[i];
 789		if (!channel->type->copy)
 790			continue;
 791		rc = efx_probe_channel(channel);
 792		if (rc)
 793			goto rollback;
 794		efx_init_napi_channel(efx->channel[i]);
 795	}
 796
 797out:
 798	/* Destroy unused channel structures */
 799	for (i = 0; i < efx->n_channels; i++) {
 800		channel = other_channel[i];
 801		if (channel && channel->type->copy) {
 802			efx_fini_napi_channel(channel);
 803			efx_remove_channel(channel);
 804			kfree(channel);
 805		}
 806	}
 807
 808	efx_start_interrupts(efx, true);
 809	efx_start_all(efx);
 810	return rc;
 811
 812rollback:
 813	/* Swap back */
 814	efx->rxq_entries = old_rxq_entries;
 815	efx->txq_entries = old_txq_entries;
 816	for (i = 0; i < efx->n_channels; i++) {
 817		channel = efx->channel[i];
 818		efx->channel[i] = other_channel[i];
 819		other_channel[i] = channel;
 820	}
 821	goto out;
 822}
 823
 824void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
 825{
 826	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
 827}
 828
 829static const struct efx_channel_type efx_default_channel_type = {
 830	.pre_probe		= efx_channel_dummy_op_int,
 831	.get_name		= efx_get_channel_name,
 832	.copy			= efx_copy_channel,
 833	.keep_eventq		= false,
 834};
 835
 836int efx_channel_dummy_op_int(struct efx_channel *channel)
 837{
 838	return 0;
 839}
 840
 841/**************************************************************************
 842 *
 843 * Port handling
 844 *
 845 **************************************************************************/
 846
 847/* This ensures that the kernel is kept informed (via
 848 * netif_carrier_on/off) of the link status, and also maintains the
 849 * link status's stop on the port's TX queue.
 850 */
 851void efx_link_status_changed(struct efx_nic *efx)
 852{
 853	struct efx_link_state *link_state = &efx->link_state;
 854
 855	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
 856	 * that no events are triggered between unregister_netdev() and the
 857	 * driver unloading. A more general condition is that NETDEV_CHANGE
 858	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
 859	if (!netif_running(efx->net_dev))
 860		return;
 861
 862	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
 863		efx->n_link_state_changes++;
 864
 865		if (link_state->up)
 866			netif_carrier_on(efx->net_dev);
 867		else
 868			netif_carrier_off(efx->net_dev);
 869	}
 870
 871	/* Status message for kernel log */
 872	if (link_state->up)
 873		netif_info(efx, link, efx->net_dev,
 874			   "link up at %uMbps %s-duplex (MTU %d)%s\n",
 875			   link_state->speed, link_state->fd ? "full" : "half",
 876			   efx->net_dev->mtu,
 877			   (efx->promiscuous ? " [PROMISC]" : ""));
 878	else
 879		netif_info(efx, link, efx->net_dev, "link down\n");
 880}
 881
 882void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
 883{
 884	efx->link_advertising = advertising;
 885	if (advertising) {
 886		if (advertising & ADVERTISED_Pause)
 887			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
 888		else
 889			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
 890		if (advertising & ADVERTISED_Asym_Pause)
 891			efx->wanted_fc ^= EFX_FC_TX;
 892	}
 893}
 894
 895void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
 896{
 897	efx->wanted_fc = wanted_fc;
 898	if (efx->link_advertising) {
 899		if (wanted_fc & EFX_FC_RX)
 900			efx->link_advertising |= (ADVERTISED_Pause |
 901						  ADVERTISED_Asym_Pause);
 902		else
 903			efx->link_advertising &= ~(ADVERTISED_Pause |
 904						   ADVERTISED_Asym_Pause);
 905		if (wanted_fc & EFX_FC_TX)
 906			efx->link_advertising ^= ADVERTISED_Asym_Pause;
 907	}
 908}
 909
 910static void efx_fini_port(struct efx_nic *efx);
 911
 912/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 913 * the MAC appropriately. All other PHY configuration changes are pushed
 914 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 915 * through efx_monitor().
 916 *
 917 * Callers must hold the mac_lock
 918 */
 919int __efx_reconfigure_port(struct efx_nic *efx)
 920{
 921	enum efx_phy_mode phy_mode;
 922	int rc;
 923
 924	WARN_ON(!mutex_is_locked(&efx->mac_lock));
 925
 926	/* Serialise the promiscuous flag with efx_set_rx_mode. */
 927	netif_addr_lock_bh(efx->net_dev);
 928	netif_addr_unlock_bh(efx->net_dev);
 929
 930	/* Disable PHY transmit in mac level loopbacks */
 931	phy_mode = efx->phy_mode;
 932	if (LOOPBACK_INTERNAL(efx))
 933		efx->phy_mode |= PHY_MODE_TX_DISABLED;
 934	else
 935		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
 936
 937	rc = efx->type->reconfigure_port(efx);
 938
 939	if (rc)
 940		efx->phy_mode = phy_mode;
 941
 942	return rc;
 943}
 944
 945/* Reinitialise the MAC to pick up new PHY settings, even if the port is
 946 * disabled. */
 947int efx_reconfigure_port(struct efx_nic *efx)
 948{
 949	int rc;
 950
 951	EFX_ASSERT_RESET_SERIALISED(efx);
 952
 953	mutex_lock(&efx->mac_lock);
 954	rc = __efx_reconfigure_port(efx);
 955	mutex_unlock(&efx->mac_lock);
 956
 957	return rc;
 958}
 959
 960/* Asynchronous work item for changing MAC promiscuity and multicast
 961 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
 962 * MAC directly. */
 963static void efx_mac_work(struct work_struct *data)
 964{
 965	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
 966
 967	mutex_lock(&efx->mac_lock);
 968	if (efx->port_enabled)
 969		efx->type->reconfigure_mac(efx);
 970	mutex_unlock(&efx->mac_lock);
 971}
 972
 973static int efx_probe_port(struct efx_nic *efx)
 974{
 975	int rc;
 976
 977	netif_dbg(efx, probe, efx->net_dev, "create port\n");
 978
 979	if (phy_flash_cfg)
 980		efx->phy_mode = PHY_MODE_SPECIAL;
 981
 982	/* Connect up MAC/PHY operations table */
 983	rc = efx->type->probe_port(efx);
 984	if (rc)
 985		return rc;
 986
 987	/* Initialise MAC address to permanent address */
 988	memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
 989
 990	return 0;
 991}
 992
 993static int efx_init_port(struct efx_nic *efx)
 994{
 995	int rc;
 996
 997	netif_dbg(efx, drv, efx->net_dev, "init port\n");
 998
 999	mutex_lock(&efx->mac_lock);
1000
1001	rc = efx->phy_op->init(efx);
1002	if (rc)
1003		goto fail1;
1004
1005	efx->port_initialized = true;
1006
1007	/* Reconfigure the MAC before creating dma queues (required for
1008	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1009	efx->type->reconfigure_mac(efx);
1010
1011	/* Ensure the PHY advertises the correct flow control settings */
1012	rc = efx->phy_op->reconfigure(efx);
1013	if (rc)
1014		goto fail2;
1015
1016	mutex_unlock(&efx->mac_lock);
1017	return 0;
1018
1019fail2:
1020	efx->phy_op->fini(efx);
1021fail1:
1022	mutex_unlock(&efx->mac_lock);
1023	return rc;
1024}
1025
1026static void efx_start_port(struct efx_nic *efx)
1027{
1028	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1029	BUG_ON(efx->port_enabled);
1030
1031	mutex_lock(&efx->mac_lock);
1032	efx->port_enabled = true;
1033
1034	/* efx_mac_work() might have been scheduled after efx_stop_port(),
1035	 * and then cancelled by efx_flush_all() */
1036	efx->type->reconfigure_mac(efx);
1037
1038	mutex_unlock(&efx->mac_lock);
1039}
1040
1041/* Prevent efx_mac_work() and efx_monitor() from working */
1042static void efx_stop_port(struct efx_nic *efx)
1043{
1044	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1045
1046	mutex_lock(&efx->mac_lock);
1047	efx->port_enabled = false;
1048	mutex_unlock(&efx->mac_lock);
1049
1050	/* Serialise against efx_set_multicast_list() */
1051	netif_addr_lock_bh(efx->net_dev);
1052	netif_addr_unlock_bh(efx->net_dev);
1053}
1054
1055static void efx_fini_port(struct efx_nic *efx)
1056{
1057	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1058
1059	if (!efx->port_initialized)
1060		return;
1061
1062	efx->phy_op->fini(efx);
1063	efx->port_initialized = false;
1064
1065	efx->link_state.up = false;
1066	efx_link_status_changed(efx);
1067}
1068
1069static void efx_remove_port(struct efx_nic *efx)
1070{
1071	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1072
1073	efx->type->remove_port(efx);
1074}
1075
1076/**************************************************************************
1077 *
1078 * NIC handling
1079 *
1080 **************************************************************************/
1081
1082/* This configures the PCI device to enable I/O and DMA. */
1083static int efx_init_io(struct efx_nic *efx)
1084{
1085	struct pci_dev *pci_dev = efx->pci_dev;
1086	dma_addr_t dma_mask = efx->type->max_dma_mask;
1087	int rc;
1088
1089	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1090
1091	rc = pci_enable_device(pci_dev);
1092	if (rc) {
1093		netif_err(efx, probe, efx->net_dev,
1094			  "failed to enable PCI device\n");
1095		goto fail1;
1096	}
1097
1098	pci_set_master(pci_dev);
1099
1100	/* Set the PCI DMA mask.  Try all possibilities from our
1101	 * genuine mask down to 32 bits, because some architectures
1102	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1103	 * masks event though they reject 46 bit masks.
1104	 */
1105	while (dma_mask > 0x7fffffffUL) {
1106		if (pci_dma_supported(pci_dev, dma_mask)) {
1107			rc = pci_set_dma_mask(pci_dev, dma_mask);
1108			if (rc == 0)
1109				break;
1110		}
1111		dma_mask >>= 1;
1112	}
1113	if (rc) {
1114		netif_err(efx, probe, efx->net_dev,
1115			  "could not find a suitable DMA mask\n");
1116		goto fail2;
1117	}
1118	netif_dbg(efx, probe, efx->net_dev,
1119		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1120	rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
1121	if (rc) {
1122		/* pci_set_consistent_dma_mask() is not *allowed* to
1123		 * fail with a mask that pci_set_dma_mask() accepted,
1124		 * but just in case...
1125		 */
1126		netif_err(efx, probe, efx->net_dev,
1127			  "failed to set consistent DMA mask\n");
1128		goto fail2;
1129	}
1130
1131	efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
1132	rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1133	if (rc) {
1134		netif_err(efx, probe, efx->net_dev,
1135			  "request for memory BAR failed\n");
1136		rc = -EIO;
1137		goto fail3;
1138	}
1139	efx->membase = ioremap_nocache(efx->membase_phys,
1140				       efx->type->mem_map_size);
1141	if (!efx->membase) {
1142		netif_err(efx, probe, efx->net_dev,
1143			  "could not map memory BAR at %llx+%x\n",
1144			  (unsigned long long)efx->membase_phys,
1145			  efx->type->mem_map_size);
1146		rc = -ENOMEM;
1147		goto fail4;
1148	}
1149	netif_dbg(efx, probe, efx->net_dev,
1150		  "memory BAR at %llx+%x (virtual %p)\n",
1151		  (unsigned long long)efx->membase_phys,
1152		  efx->type->mem_map_size, efx->membase);
1153
1154	return 0;
1155
1156 fail4:
1157	pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1158 fail3:
1159	efx->membase_phys = 0;
1160 fail2:
1161	pci_disable_device(efx->pci_dev);
1162 fail1:
1163	return rc;
1164}
1165
1166static void efx_fini_io(struct efx_nic *efx)
1167{
1168	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1169
1170	if (efx->membase) {
1171		iounmap(efx->membase);
1172		efx->membase = NULL;
1173	}
1174
1175	if (efx->membase_phys) {
1176		pci_release_region(efx->pci_dev, EFX_MEM_BAR);
1177		efx->membase_phys = 0;
1178	}
1179
1180	pci_disable_device(efx->pci_dev);
1181}
1182
1183static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1184{
1185	cpumask_var_t thread_mask;
1186	unsigned int count;
1187	int cpu;
1188
1189	if (rss_cpus) {
1190		count = rss_cpus;
1191	} else {
1192		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1193			netif_warn(efx, probe, efx->net_dev,
1194				   "RSS disabled due to allocation failure\n");
1195			return 1;
1196		}
1197
1198		count = 0;
1199		for_each_online_cpu(cpu) {
1200			if (!cpumask_test_cpu(cpu, thread_mask)) {
1201				++count;
1202				cpumask_or(thread_mask, thread_mask,
1203					   topology_thread_cpumask(cpu));
1204			}
1205		}
1206
1207		free_cpumask_var(thread_mask);
1208	}
1209
1210	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1211	 * table entries that are inaccessible to VFs
1212	 */
1213	if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1214	    count > efx_vf_size(efx)) {
1215		netif_warn(efx, probe, efx->net_dev,
1216			   "Reducing number of RSS channels from %u to %u for "
1217			   "VF support. Increase vf-msix-limit to use more "
1218			   "channels on the PF.\n",
1219			   count, efx_vf_size(efx));
1220		count = efx_vf_size(efx);
1221	}
1222
1223	return count;
1224}
1225
1226static int
1227efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1228{
1229#ifdef CONFIG_RFS_ACCEL
1230	unsigned int i;
1231	int rc;
1232
1233	efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1234	if (!efx->net_dev->rx_cpu_rmap)
1235		return -ENOMEM;
1236	for (i = 0; i < efx->n_rx_channels; i++) {
1237		rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1238				      xentries[i].vector);
1239		if (rc) {
1240			free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1241			efx->net_dev->rx_cpu_rmap = NULL;
1242			return rc;
1243		}
1244	}
1245#endif
1246	return 0;
1247}
1248
1249/* Probe the number and type of interrupts we are able to obtain, and
1250 * the resulting numbers of channels and RX queues.
1251 */
1252static int efx_probe_interrupts(struct efx_nic *efx)
1253{
1254	unsigned int max_channels =
1255		min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1256	unsigned int extra_channels = 0;
1257	unsigned int i, j;
1258	int rc;
1259
1260	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1261		if (efx->extra_channel_type[i])
1262			++extra_channels;
1263
1264	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1265		struct msix_entry xentries[EFX_MAX_CHANNELS];
1266		unsigned int n_channels;
1267
1268		n_channels = efx_wanted_parallelism(efx);
1269		if (separate_tx_channels)
1270			n_channels *= 2;
1271		n_channels += extra_channels;
1272		n_channels = min(n_channels, max_channels);
1273
1274		for (i = 0; i < n_channels; i++)
1275			xentries[i].entry = i;
1276		rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1277		if (rc > 0) {
1278			netif_err(efx, drv, efx->net_dev,
1279				  "WARNING: Insufficient MSI-X vectors"
1280				  " available (%d < %u).\n", rc, n_channels);
1281			netif_err(efx, drv, efx->net_dev,
1282				  "WARNING: Performance may be reduced.\n");
1283			EFX_BUG_ON_PARANOID(rc >= n_channels);
1284			n_channels = rc;
1285			rc = pci_enable_msix(efx->pci_dev, xentries,
1286					     n_channels);
1287		}
1288
1289		if (rc == 0) {
1290			efx->n_channels = n_channels;
1291			if (n_channels > extra_channels)
1292				n_channels -= extra_channels;
1293			if (separate_tx_channels) {
1294				efx->n_tx_channels = max(n_channels / 2, 1U);
1295				efx->n_rx_channels = max(n_channels -
1296							 efx->n_tx_channels,
1297							 1U);
1298			} else {
1299				efx->n_tx_channels = n_channels;
1300				efx->n_rx_channels = n_channels;
1301			}
1302			rc = efx_init_rx_cpu_rmap(efx, xentries);
1303			if (rc) {
1304				pci_disable_msix(efx->pci_dev);
1305				return rc;
1306			}
1307			for (i = 0; i < efx->n_channels; i++)
1308				efx_get_channel(efx, i)->irq =
1309					xentries[i].vector;
1310		} else {
1311			/* Fall back to single channel MSI */
1312			efx->interrupt_mode = EFX_INT_MODE_MSI;
1313			netif_err(efx, drv, efx->net_dev,
1314				  "could not enable MSI-X\n");
1315		}
1316	}
1317
1318	/* Try single interrupt MSI */
1319	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1320		efx->n_channels = 1;
1321		efx->n_rx_channels = 1;
1322		efx->n_tx_channels = 1;
1323		rc = pci_enable_msi(efx->pci_dev);
1324		if (rc == 0) {
1325			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1326		} else {
1327			netif_err(efx, drv, efx->net_dev,
1328				  "could not enable MSI\n");
1329			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1330		}
1331	}
1332
1333	/* Assume legacy interrupts */
1334	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1335		efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1336		efx->n_rx_channels = 1;
1337		efx->n_tx_channels = 1;
1338		efx->legacy_irq = efx->pci_dev->irq;
1339	}
1340
1341	/* Assign extra channels if possible */
1342	j = efx->n_channels;
1343	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1344		if (!efx->extra_channel_type[i])
1345			continue;
1346		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1347		    efx->n_channels <= extra_channels) {
1348			efx->extra_channel_type[i]->handle_no_channel(efx);
1349		} else {
1350			--j;
1351			efx_get_channel(efx, j)->type =
1352				efx->extra_channel_type[i];
1353		}
1354	}
1355
1356	/* RSS might be usable on VFs even if it is disabled on the PF */
1357	efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1358			   efx->n_rx_channels : efx_vf_size(efx));
1359
1360	return 0;
1361}
1362
1363/* Enable interrupts, then probe and start the event queues */
1364static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1365{
1366	struct efx_channel *channel;
1367
1368	if (efx->legacy_irq)
1369		efx->legacy_irq_enabled = true;
1370	efx_nic_enable_interrupts(efx);
1371
1372	efx_for_each_channel(channel, efx) {
1373		if (!channel->type->keep_eventq || !may_keep_eventq)
1374			efx_init_eventq(channel);
1375		efx_start_eventq(channel);
1376	}
1377
1378	efx_mcdi_mode_event(efx);
1379}
1380
1381static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1382{
1383	struct efx_channel *channel;
1384
1385	efx_mcdi_mode_poll(efx);
1386
1387	efx_nic_disable_interrupts(efx);
1388	if (efx->legacy_irq) {
1389		synchronize_irq(efx->legacy_irq);
1390		efx->legacy_irq_enabled = false;
1391	}
1392
1393	efx_for_each_channel(channel, efx) {
1394		if (channel->irq)
1395			synchronize_irq(channel->irq);
1396
1397		efx_stop_eventq(channel);
1398		if (!channel->type->keep_eventq || !may_keep_eventq)
1399			efx_fini_eventq(channel);
1400	}
1401}
1402
1403static void efx_remove_interrupts(struct efx_nic *efx)
1404{
1405	struct efx_channel *channel;
1406
1407	/* Remove MSI/MSI-X interrupts */
1408	efx_for_each_channel(channel, efx)
1409		channel->irq = 0;
1410	pci_disable_msi(efx->pci_dev);
1411	pci_disable_msix(efx->pci_dev);
1412
1413	/* Remove legacy interrupt */
1414	efx->legacy_irq = 0;
1415}
1416
1417static void efx_set_channels(struct efx_nic *efx)
1418{
1419	struct efx_channel *channel;
1420	struct efx_tx_queue *tx_queue;
1421
1422	efx->tx_channel_offset =
1423		separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1424
1425	/* We need to adjust the TX queue numbers if we have separate
1426	 * RX-only and TX-only channels.
1427	 */
1428	efx_for_each_channel(channel, efx) {
1429		efx_for_each_channel_tx_queue(tx_queue, channel)
1430			tx_queue->queue -= (efx->tx_channel_offset *
1431					    EFX_TXQ_TYPES);
1432	}
1433}
1434
1435static int efx_probe_nic(struct efx_nic *efx)
1436{
1437	size_t i;
1438	int rc;
1439
1440	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1441
1442	/* Carry out hardware-type specific initialisation */
1443	rc = efx->type->probe(efx);
1444	if (rc)
1445		return rc;
1446
1447	/* Determine the number of channels and queues by trying to hook
1448	 * in MSI-X interrupts. */
1449	rc = efx_probe_interrupts(efx);
1450	if (rc)
1451		goto fail;
1452
1453	efx->type->dimension_resources(efx);
1454
1455	if (efx->n_channels > 1)
1456		get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1457	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1458		efx->rx_indir_table[i] =
1459			ethtool_rxfh_indir_default(i, efx->rss_spread);
1460
1461	efx_set_channels(efx);
1462	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1463	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1464
1465	/* Initialise the interrupt moderation settings */
1466	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1467				true);
1468
1469	return 0;
1470
1471fail:
1472	efx->type->remove(efx);
1473	return rc;
1474}
1475
1476static void efx_remove_nic(struct efx_nic *efx)
1477{
1478	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1479
1480	efx_remove_interrupts(efx);
1481	efx->type->remove(efx);
1482}
1483
1484/**************************************************************************
1485 *
1486 * NIC startup/shutdown
1487 *
1488 *************************************************************************/
1489
1490static int efx_probe_all(struct efx_nic *efx)
1491{
1492	int rc;
1493
1494	rc = efx_probe_nic(efx);
1495	if (rc) {
1496		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1497		goto fail1;
1498	}
1499
1500	rc = efx_probe_port(efx);
1501	if (rc) {
1502		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1503		goto fail2;
1504	}
1505
1506	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1507	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1508		rc = -EINVAL;
1509		goto fail3;
1510	}
1511	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1512
1513	rc = efx_probe_filters(efx);
1514	if (rc) {
1515		netif_err(efx, probe, efx->net_dev,
1516			  "failed to create filter tables\n");
1517		goto fail3;
1518	}
1519
1520	rc = efx_probe_channels(efx);
1521	if (rc)
1522		goto fail4;
1523
1524	return 0;
1525
1526 fail4:
1527	efx_remove_filters(efx);
1528 fail3:
1529	efx_remove_port(efx);
1530 fail2:
1531	efx_remove_nic(efx);
1532 fail1:
1533	return rc;
1534}
1535
1536/* Called after previous invocation(s) of efx_stop_all, restarts the port,
1537 * kernel transmit queues and NAPI processing, and ensures that the port is
1538 * scheduled to be reconfigured. This function is safe to call multiple
1539 * times when the NIC is in any state.
1540 */
1541static void efx_start_all(struct efx_nic *efx)
1542{
1543	EFX_ASSERT_RESET_SERIALISED(efx);
1544
1545	/* Check that it is appropriate to restart the interface. All
1546	 * of these flags are safe to read under just the rtnl lock */
1547	if (efx->port_enabled)
1548		return;
1549	if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1550		return;
1551	if (!netif_running(efx->net_dev))
1552		return;
1553
1554	efx_start_port(efx);
1555	efx_start_datapath(efx);
1556
1557	/* Start the hardware monitor if there is one. Otherwise (we're link
1558	 * event driven), we have to poll the PHY because after an event queue
1559	 * flush, we could have a missed a link state change */
1560	if (efx->type->monitor != NULL) {
1561		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1562				   efx_monitor_interval);
1563	} else {
1564		mutex_lock(&efx->mac_lock);
1565		if (efx->phy_op->poll(efx))
1566			efx_link_status_changed(efx);
1567		mutex_unlock(&efx->mac_lock);
1568	}
1569
1570	efx->type->start_stats(efx);
1571}
1572
1573/* Flush all delayed work. Should only be called when no more delayed work
1574 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1575 * since we're holding the rtnl_lock at this point. */
1576static void efx_flush_all(struct efx_nic *efx)
1577{
1578	/* Make sure the hardware monitor and event self-test are stopped */
1579	cancel_delayed_work_sync(&efx->monitor_work);
1580	efx_selftest_async_cancel(efx);
1581	/* Stop scheduled port reconfigurations */
1582	cancel_work_sync(&efx->mac_work);
1583}
1584
1585/* Quiesce hardware and software without bringing the link down.
1586 * Safe to call multiple times, when the nic and interface is in any
1587 * state. The caller is guaranteed to subsequently be in a position
1588 * to modify any hardware and software state they see fit without
1589 * taking locks. */
1590static void efx_stop_all(struct efx_nic *efx)
1591{
1592	EFX_ASSERT_RESET_SERIALISED(efx);
1593
1594	/* port_enabled can be read safely under the rtnl lock */
1595	if (!efx->port_enabled)
1596		return;
1597
1598	efx->type->stop_stats(efx);
1599	efx_stop_port(efx);
1600
1601	/* Flush efx_mac_work(), refill_workqueue, monitor_work */
1602	efx_flush_all(efx);
1603
1604	/* Stop the kernel transmit interface late, so the watchdog
1605	 * timer isn't ticking over the flush */
1606	netif_tx_disable(efx->net_dev);
1607
1608	efx_stop_datapath(efx);
1609}
1610
1611static void efx_remove_all(struct efx_nic *efx)
1612{
1613	efx_remove_channels(efx);
1614	efx_remove_filters(efx);
1615	efx_remove_port(efx);
1616	efx_remove_nic(efx);
1617}
1618
1619/**************************************************************************
1620 *
1621 * Interrupt moderation
1622 *
1623 **************************************************************************/
1624
1625static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1626{
1627	if (usecs == 0)
1628		return 0;
1629	if (usecs * 1000 < quantum_ns)
1630		return 1; /* never round down to 0 */
1631	return usecs * 1000 / quantum_ns;
1632}
1633
1634/* Set interrupt moderation parameters */
1635int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1636			    unsigned int rx_usecs, bool rx_adaptive,
1637			    bool rx_may_override_tx)
1638{
1639	struct efx_channel *channel;
1640	unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1641						efx->timer_quantum_ns,
1642						1000);
1643	unsigned int tx_ticks;
1644	unsigned int rx_ticks;
1645
1646	EFX_ASSERT_RESET_SERIALISED(efx);
1647
1648	if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1649		return -EINVAL;
1650
1651	tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1652	rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1653
1654	if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1655	    !rx_may_override_tx) {
1656		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1657			  "RX and TX IRQ moderation must be equal\n");
1658		return -EINVAL;
1659	}
1660
1661	efx->irq_rx_adaptive = rx_adaptive;
1662	efx->irq_rx_moderation = rx_ticks;
1663	efx_for_each_channel(channel, efx) {
1664		if (efx_channel_has_rx_queue(channel))
1665			channel->irq_moderation = rx_ticks;
1666		else if (efx_channel_has_tx_queues(channel))
1667			channel->irq_moderation = tx_ticks;
1668	}
1669
1670	return 0;
1671}
1672
1673void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1674			    unsigned int *rx_usecs, bool *rx_adaptive)
1675{
1676	/* We must round up when converting ticks to microseconds
1677	 * because we round down when converting the other way.
1678	 */
1679
1680	*rx_adaptive = efx->irq_rx_adaptive;
1681	*rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1682				 efx->timer_quantum_ns,
1683				 1000);
1684
1685	/* If channels are shared between RX and TX, so is IRQ
1686	 * moderation.  Otherwise, IRQ moderation is the same for all
1687	 * TX channels and is not adaptive.
1688	 */
1689	if (efx->tx_channel_offset == 0)
1690		*tx_usecs = *rx_usecs;
1691	else
1692		*tx_usecs = DIV_ROUND_UP(
1693			efx->channel[efx->tx_channel_offset]->irq_moderation *
1694			efx->timer_quantum_ns,
1695			1000);
1696}
1697
1698/**************************************************************************
1699 *
1700 * Hardware monitor
1701 *
1702 **************************************************************************/
1703
1704/* Run periodically off the general workqueue */
1705static void efx_monitor(struct work_struct *data)
1706{
1707	struct efx_nic *efx = container_of(data, struct efx_nic,
1708					   monitor_work.work);
1709
1710	netif_vdbg(efx, timer, efx->net_dev,
1711		   "hardware monitor executing on CPU %d\n",
1712		   raw_smp_processor_id());
1713	BUG_ON(efx->type->monitor == NULL);
1714
1715	/* If the mac_lock is already held then it is likely a port
1716	 * reconfiguration is already in place, which will likely do
1717	 * most of the work of monitor() anyway. */
1718	if (mutex_trylock(&efx->mac_lock)) {
1719		if (efx->port_enabled)
1720			efx->type->monitor(efx);
1721		mutex_unlock(&efx->mac_lock);
1722	}
1723
1724	queue_delayed_work(efx->workqueue, &efx->monitor_work,
1725			   efx_monitor_interval);
1726}
1727
1728/**************************************************************************
1729 *
1730 * ioctls
1731 *
1732 *************************************************************************/
1733
1734/* Net device ioctl
1735 * Context: process, rtnl_lock() held.
1736 */
1737static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1738{
1739	struct efx_nic *efx = netdev_priv(net_dev);
1740	struct mii_ioctl_data *data = if_mii(ifr);
1741
1742	EFX_ASSERT_RESET_SERIALISED(efx);
1743
1744	/* Convert phy_id from older PRTAD/DEVAD format */
1745	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1746	    (data->phy_id & 0xfc00) == 0x0400)
1747		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1748
1749	return mdio_mii_ioctl(&efx->mdio, data, cmd);
1750}
1751
1752/**************************************************************************
1753 *
1754 * NAPI interface
1755 *
1756 **************************************************************************/
1757
1758static void efx_init_napi_channel(struct efx_channel *channel)
1759{
1760	struct efx_nic *efx = channel->efx;
1761
1762	channel->napi_dev = efx->net_dev;
1763	netif_napi_add(channel->napi_dev, &channel->napi_str,
1764		       efx_poll, napi_weight);
1765}
1766
1767static void efx_init_napi(struct efx_nic *efx)
1768{
1769	struct efx_channel *channel;
1770
1771	efx_for_each_channel(channel, efx)
1772		efx_init_napi_channel(channel);
1773}
1774
1775static void efx_fini_napi_channel(struct efx_channel *channel)
1776{
1777	if (channel->napi_dev)
1778		netif_napi_del(&channel->napi_str);
1779	channel->napi_dev = NULL;
1780}
1781
1782static void efx_fini_napi(struct efx_nic *efx)
1783{
1784	struct efx_channel *channel;
1785
1786	efx_for_each_channel(channel, efx)
1787		efx_fini_napi_channel(channel);
1788}
1789
1790/**************************************************************************
1791 *
1792 * Kernel netpoll interface
1793 *
1794 *************************************************************************/
1795
1796#ifdef CONFIG_NET_POLL_CONTROLLER
1797
1798/* Although in the common case interrupts will be disabled, this is not
1799 * guaranteed. However, all our work happens inside the NAPI callback,
1800 * so no locking is required.
1801 */
1802static void efx_netpoll(struct net_device *net_dev)
1803{
1804	struct efx_nic *efx = netdev_priv(net_dev);
1805	struct efx_channel *channel;
1806
1807	efx_for_each_channel(channel, efx)
1808		efx_schedule_channel(channel);
1809}
1810
1811#endif
1812
1813/**************************************************************************
1814 *
1815 * Kernel net device interface
1816 *
1817 *************************************************************************/
1818
1819/* Context: process, rtnl_lock() held. */
1820static int efx_net_open(struct net_device *net_dev)
1821{
1822	struct efx_nic *efx = netdev_priv(net_dev);
1823	EFX_ASSERT_RESET_SERIALISED(efx);
1824
1825	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1826		  raw_smp_processor_id());
1827
1828	if (efx->state == STATE_DISABLED)
1829		return -EIO;
1830	if (efx->phy_mode & PHY_MODE_SPECIAL)
1831		return -EBUSY;
1832	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1833		return -EIO;
1834
1835	/* Notify the kernel of the link state polled during driver load,
1836	 * before the monitor starts running */
1837	efx_link_status_changed(efx);
1838
1839	efx_start_all(efx);
1840	efx_selftest_async_start(efx);
1841	return 0;
1842}
1843
1844/* Context: process, rtnl_lock() held.
1845 * Note that the kernel will ignore our return code; this method
1846 * should really be a void.
1847 */
1848static int efx_net_stop(struct net_device *net_dev)
1849{
1850	struct efx_nic *efx = netdev_priv(net_dev);
1851
1852	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1853		  raw_smp_processor_id());
1854
1855	if (efx->state != STATE_DISABLED) {
1856		/* Stop the device and flush all the channels */
1857		efx_stop_all(efx);
1858	}
1859
1860	return 0;
1861}
1862
1863/* Context: process, dev_base_lock or RTNL held, non-blocking. */
1864static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
1865					       struct rtnl_link_stats64 *stats)
1866{
1867	struct efx_nic *efx = netdev_priv(net_dev);
1868	struct efx_mac_stats *mac_stats = &efx->mac_stats;
1869
1870	spin_lock_bh(&efx->stats_lock);
1871
1872	efx->type->update_stats(efx);
1873
1874	stats->rx_packets = mac_stats->rx_packets;
1875	stats->tx_packets = mac_stats->tx_packets;
1876	stats->rx_bytes = mac_stats->rx_bytes;
1877	stats->tx_bytes = mac_stats->tx_bytes;
1878	stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1879	stats->multicast = mac_stats->rx_multicast;
1880	stats->collisions = mac_stats->tx_collision;
1881	stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1882				   mac_stats->rx_length_error);
1883	stats->rx_crc_errors = mac_stats->rx_bad;
1884	stats->rx_frame_errors = mac_stats->rx_align_error;
1885	stats->rx_fifo_errors = mac_stats->rx_overflow;
1886	stats->rx_missed_errors = mac_stats->rx_missed;
1887	stats->tx_window_errors = mac_stats->tx_late_collision;
1888
1889	stats->rx_errors = (stats->rx_length_errors +
1890			    stats->rx_crc_errors +
1891			    stats->rx_frame_errors +
1892			    mac_stats->rx_symbol_error);
1893	stats->tx_errors = (stats->tx_window_errors +
1894			    mac_stats->tx_bad);
1895
1896	spin_unlock_bh(&efx->stats_lock);
1897
1898	return stats;
1899}
1900
1901/* Context: netif_tx_lock held, BHs disabled. */
1902static void efx_watchdog(struct net_device *net_dev)
1903{
1904	struct efx_nic *efx = netdev_priv(net_dev);
1905
1906	netif_err(efx, tx_err, efx->net_dev,
1907		  "TX stuck with port_enabled=%d: resetting channels\n",
1908		  efx->port_enabled);
1909
1910	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1911}
1912
1913
1914/* Context: process, rtnl_lock() held. */
1915static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1916{
1917	struct efx_nic *efx = netdev_priv(net_dev);
1918
1919	EFX_ASSERT_RESET_SERIALISED(efx);
1920
1921	if (new_mtu > EFX_MAX_MTU)
1922		return -EINVAL;
1923
1924	efx_stop_all(efx);
1925
1926	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1927
1928	mutex_lock(&efx->mac_lock);
1929	/* Reconfigure the MAC before enabling the dma queues so that
1930	 * the RX buffers don't overflow */
1931	net_dev->mtu = new_mtu;
1932	efx->type->reconfigure_mac(efx);
1933	mutex_unlock(&efx->mac_lock);
1934
1935	efx_start_all(efx);
1936	return 0;
1937}
1938
1939static int efx_set_mac_address(struct net_device *net_dev, void *data)
1940{
1941	struct efx_nic *efx = netdev_priv(net_dev);
1942	struct sockaddr *addr = data;
1943	char *new_addr = addr->sa_data;
1944
1945	EFX_ASSERT_RESET_SERIALISED(efx);
1946
1947	if (!is_valid_ether_addr(new_addr)) {
1948		netif_err(efx, drv, efx->net_dev,
1949			  "invalid ethernet MAC address requested: %pM\n",
1950			  new_addr);
1951		return -EADDRNOTAVAIL;
1952	}
1953
1954	memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1955	efx_sriov_mac_address_changed(efx);
1956
1957	/* Reconfigure the MAC */
1958	mutex_lock(&efx->mac_lock);
1959	efx->type->reconfigure_mac(efx);
1960	mutex_unlock(&efx->mac_lock);
1961
1962	return 0;
1963}
1964
1965/* Context: netif_addr_lock held, BHs disabled. */
1966static void efx_set_rx_mode(struct net_device *net_dev)
1967{
1968	struct efx_nic *efx = netdev_priv(net_dev);
1969	struct netdev_hw_addr *ha;
1970	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1971	u32 crc;
1972	int bit;
1973
1974	efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1975
1976	/* Build multicast hash table */
1977	if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1978		memset(mc_hash, 0xff, sizeof(*mc_hash));
1979	} else {
1980		memset(mc_hash, 0x00, sizeof(*mc_hash));
1981		netdev_for_each_mc_addr(ha, net_dev) {
1982			crc = ether_crc_le(ETH_ALEN, ha->addr);
1983			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1984			set_bit_le(bit, mc_hash->byte);
1985		}
1986
1987		/* Broadcast packets go through the multicast hash filter.
1988		 * ether_crc_le() of the broadcast address is 0xbe2612ff
1989		 * so we always add bit 0xff to the mask.
1990		 */
1991		set_bit_le(0xff, mc_hash->byte);
1992	}
1993
1994	if (efx->port_enabled)
1995		queue_work(efx->workqueue, &efx->mac_work);
1996	/* Otherwise efx_start_port() will do this */
1997}
1998
1999static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2000{
2001	struct efx_nic *efx = netdev_priv(net_dev);
2002
2003	/* If disabling RX n-tuple filtering, clear existing filters */
2004	if (net_dev->features & ~data & NETIF_F_NTUPLE)
2005		efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2006
2007	return 0;
2008}
2009
2010static const struct net_device_ops efx_netdev_ops = {
2011	.ndo_open		= efx_net_open,
2012	.ndo_stop		= efx_net_stop,
2013	.ndo_get_stats64	= efx_net_stats,
2014	.ndo_tx_timeout		= efx_watchdog,
2015	.ndo_start_xmit		= efx_hard_start_xmit,
2016	.ndo_validate_addr	= eth_validate_addr,
2017	.ndo_do_ioctl		= efx_ioctl,
2018	.ndo_change_mtu		= efx_change_mtu,
2019	.ndo_set_mac_address	= efx_set_mac_address,
2020	.ndo_set_rx_mode	= efx_set_rx_mode,
2021	.ndo_set_features	= efx_set_features,
2022#ifdef CONFIG_SFC_SRIOV
2023	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2024	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2025	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2026	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2027#endif
2028#ifdef CONFIG_NET_POLL_CONTROLLER
2029	.ndo_poll_controller = efx_netpoll,
2030#endif
2031	.ndo_setup_tc		= efx_setup_tc,
2032#ifdef CONFIG_RFS_ACCEL
2033	.ndo_rx_flow_steer	= efx_filter_rfs,
2034#endif
2035};
2036
2037static void efx_update_name(struct efx_nic *efx)
2038{
2039	strcpy(efx->name, efx->net_dev->name);
2040	efx_mtd_rename(efx);
2041	efx_set_channel_names(efx);
2042}
2043
2044static int efx_netdev_event(struct notifier_block *this,
2045			    unsigned long event, void *ptr)
2046{
2047	struct net_device *net_dev = ptr;
2048
2049	if (net_dev->netdev_ops == &efx_netdev_ops &&
2050	    event == NETDEV_CHANGENAME)
2051		efx_update_name(netdev_priv(net_dev));
2052
2053	return NOTIFY_DONE;
2054}
2055
2056static struct notifier_block efx_netdev_notifier = {
2057	.notifier_call = efx_netdev_event,
2058};
2059
2060static ssize_t
2061show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2062{
2063	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2064	return sprintf(buf, "%d\n", efx->phy_type);
2065}
2066static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
2067
2068static int efx_register_netdev(struct efx_nic *efx)
2069{
2070	struct net_device *net_dev = efx->net_dev;
2071	struct efx_channel *channel;
2072	int rc;
2073
2074	net_dev->watchdog_timeo = 5 * HZ;
2075	net_dev->irq = efx->pci_dev->irq;
2076	net_dev->netdev_ops = &efx_netdev_ops;
2077	SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2078	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2079
2080	rtnl_lock();
2081
2082	rc = dev_alloc_name(net_dev, net_dev->name);
2083	if (rc < 0)
2084		goto fail_locked;
2085	efx_update_name(efx);
2086
2087	rc = register_netdevice(net_dev);
2088	if (rc)
2089		goto fail_locked;
2090
2091	efx_for_each_channel(channel, efx) {
2092		struct efx_tx_queue *tx_queue;
2093		efx_for_each_channel_tx_queue(tx_queue, channel)
2094			efx_init_tx_queue_core_txq(tx_queue);
2095	}
2096
2097	/* Always start with carrier off; PHY events will detect the link */
2098	netif_carrier_off(net_dev);
2099
2100	rtnl_unlock();
2101
2102	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2103	if (rc) {
2104		netif_err(efx, drv, efx->net_dev,
2105			  "failed to init net dev attributes\n");
2106		goto fail_registered;
2107	}
2108
2109	return 0;
2110
2111fail_locked:
2112	rtnl_unlock();
2113	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2114	return rc;
2115
2116fail_registered:
2117	unregister_netdev(net_dev);
2118	return rc;
2119}
2120
2121static void efx_unregister_netdev(struct efx_nic *efx)
2122{
2123	struct efx_channel *channel;
2124	struct efx_tx_queue *tx_queue;
2125
2126	if (!efx->net_dev)
2127		return;
2128
2129	BUG_ON(netdev_priv(efx->net_dev) != efx);
2130
2131	/* Free up any skbs still remaining. This has to happen before
2132	 * we try to unregister the netdev as running their destructors
2133	 * may be needed to get the device ref. count to 0. */
2134	efx_for_each_channel(channel, efx) {
2135		efx_for_each_channel_tx_queue(tx_queue, channel)
2136			efx_release_tx_buffers(tx_queue);
2137	}
2138
2139	strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2140	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2141	unregister_netdev(efx->net_dev);
2142}
2143
2144/**************************************************************************
2145 *
2146 * Device reset and suspend
2147 *
2148 **************************************************************************/
2149
2150/* Tears down the entire software state and most of the hardware state
2151 * before reset.  */
2152void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2153{
2154	EFX_ASSERT_RESET_SERIALISED(efx);
2155
2156	efx_stop_all(efx);
2157	mutex_lock(&efx->mac_lock);
2158
2159	efx_stop_interrupts(efx, false);
2160	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2161		efx->phy_op->fini(efx);
2162	efx->type->fini(efx);
2163}
2164
2165/* This function will always ensure that the locks acquired in
2166 * efx_reset_down() are released. A failure return code indicates
2167 * that we were unable to reinitialise the hardware, and the
2168 * driver should be disabled. If ok is false, then the rx and tx
2169 * engines are not restarted, pending a RESET_DISABLE. */
2170int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2171{
2172	int rc;
2173
2174	EFX_ASSERT_RESET_SERIALISED(efx);
2175
2176	rc = efx->type->init(efx);
2177	if (rc) {
2178		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2179		goto fail;
2180	}
2181
2182	if (!ok)
2183		goto fail;
2184
2185	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2186		rc = efx->phy_op->init(efx);
2187		if (rc)
2188			goto fail;
2189		if (efx->phy_op->reconfigure(efx))
2190			netif_err(efx, drv, efx->net_dev,
2191				  "could not restore PHY settings\n");
2192	}
2193
2194	efx->type->reconfigure_mac(efx);
2195
2196	efx_start_interrupts(efx, false);
2197	efx_restore_filters(efx);
2198	efx_sriov_reset(efx);
2199
2200	mutex_unlock(&efx->mac_lock);
2201
2202	efx_start_all(efx);
2203
2204	return 0;
2205
2206fail:
2207	efx->port_initialized = false;
2208
2209	mutex_unlock(&efx->mac_lock);
2210
2211	return rc;
2212}
2213
2214/* Reset the NIC using the specified method.  Note that the reset may
2215 * fail, in which case the card will be left in an unusable state.
2216 *
2217 * Caller must hold the rtnl_lock.
2218 */
2219int efx_reset(struct efx_nic *efx, enum reset_type method)
2220{
2221	int rc, rc2;
2222	bool disabled;
2223
2224	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2225		   RESET_TYPE(method));
2226
2227	netif_device_detach(efx->net_dev);
2228	efx_reset_down(efx, method);
2229
2230	rc = efx->type->reset(efx, method);
2231	if (rc) {
2232		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2233		goto out;
2234	}
2235
2236	/* Clear flags for the scopes we covered.  We assume the NIC and
2237	 * driver are now quiescent so that there is no race here.
2238	 */
2239	efx->reset_pending &= -(1 << (method + 1));
2240
2241	/* Reinitialise bus-mastering, which may have been turned off before
2242	 * the reset was scheduled. This is still appropriate, even in the
2243	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2244	 * can respond to requests. */
2245	pci_set_master(efx->pci_dev);
2246
2247out:
2248	/* Leave device stopped if necessary */
2249	disabled = rc || method == RESET_TYPE_DISABLE;
2250	rc2 = efx_reset_up(efx, method, !disabled);
2251	if (rc2) {
2252		disabled = true;
2253		if (!rc)
2254			rc = rc2;
2255	}
2256
2257	if (disabled) {
2258		dev_close(efx->net_dev);
2259		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2260		efx->state = STATE_DISABLED;
2261	} else {
2262		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2263		netif_device_attach(efx->net_dev);
2264	}
2265	return rc;
2266}
2267
2268/* The worker thread exists so that code that cannot sleep can
2269 * schedule a reset for later.
2270 */
2271static void efx_reset_work(struct work_struct *data)
2272{
2273	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2274	unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2275
2276	if (!pending)
2277		return;
2278
2279	/* If we're not RUNNING then don't reset. Leave the reset_pending
2280	 * flags set so that efx_pci_probe_main will be retried */
2281	if (efx->state != STATE_RUNNING) {
2282		netif_info(efx, drv, efx->net_dev,
2283			   "scheduled reset quenched. NIC not RUNNING\n");
2284		return;
2285	}
2286
2287	rtnl_lock();
2288	(void)efx_reset(efx, fls(pending) - 1);
2289	rtnl_unlock();
2290}
2291
2292void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2293{
2294	enum reset_type method;
2295
2296	switch (type) {
2297	case RESET_TYPE_INVISIBLE:
2298	case RESET_TYPE_ALL:
2299	case RESET_TYPE_WORLD:
2300	case RESET_TYPE_DISABLE:
2301		method = type;
2302		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2303			  RESET_TYPE(method));
2304		break;
2305	default:
2306		method = efx->type->map_reset_reason(type);
2307		netif_dbg(efx, drv, efx->net_dev,
2308			  "scheduling %s reset for %s\n",
2309			  RESET_TYPE(method), RESET_TYPE(type));
2310		break;
2311	}
2312
2313	set_bit(method, &efx->reset_pending);
2314
2315	/* efx_process_channel() will no longer read events once a
2316	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2317	efx_mcdi_mode_poll(efx);
2318
2319	queue_work(reset_workqueue, &efx->reset_work);
2320}
2321
2322/**************************************************************************
2323 *
2324 * List of NICs we support
2325 *
2326 **************************************************************************/
2327
2328/* PCI device ID table */
2329static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2330	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2331		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2332	 .driver_data = (unsigned long) &falcon_a1_nic_type},
2333	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2334		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2335	 .driver_data = (unsigned long) &falcon_b0_nic_type},
2336	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2337	 .driver_data = (unsigned long) &siena_a0_nic_type},
2338	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2339	 .driver_data = (unsigned long) &siena_a0_nic_type},
2340	{0}			/* end of list */
2341};
2342
2343/**************************************************************************
2344 *
2345 * Dummy PHY/MAC operations
2346 *
2347 * Can be used for some unimplemented operations
2348 * Needed so all function pointers are valid and do not have to be tested
2349 * before use
2350 *
2351 **************************************************************************/
2352int efx_port_dummy_op_int(struct efx_nic *efx)
2353{
2354	return 0;
2355}
2356void efx_port_dummy_op_void(struct efx_nic *efx) {}
2357
2358static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2359{
2360	return false;
2361}
2362
2363static const struct efx_phy_operations efx_dummy_phy_operations = {
2364	.init		 = efx_port_dummy_op_int,
2365	.reconfigure	 = efx_port_dummy_op_int,
2366	.poll		 = efx_port_dummy_op_poll,
2367	.fini		 = efx_port_dummy_op_void,
2368};
2369
2370/**************************************************************************
2371 *
2372 * Data housekeeping
2373 *
2374 **************************************************************************/
2375
2376/* This zeroes out and then fills in the invariants in a struct
2377 * efx_nic (including all sub-structures).
2378 */
2379static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
2380			   struct pci_dev *pci_dev, struct net_device *net_dev)
2381{
2382	int i;
2383
2384	/* Initialise common structures */
2385	memset(efx, 0, sizeof(*efx));
2386	spin_lock_init(&efx->biu_lock);
2387#ifdef CONFIG_SFC_MTD
2388	INIT_LIST_HEAD(&efx->mtd_list);
2389#endif
2390	INIT_WORK(&efx->reset_work, efx_reset_work);
2391	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2392	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2393	efx->pci_dev = pci_dev;
2394	efx->msg_enable = debug;
2395	efx->state = STATE_INIT;
2396	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2397
2398	efx->net_dev = net_dev;
2399	spin_lock_init(&efx->stats_lock);
2400	mutex_init(&efx->mac_lock);
2401	efx->phy_op = &efx_dummy_phy_operations;
2402	efx->mdio.dev = net_dev;
2403	INIT_WORK(&efx->mac_work, efx_mac_work);
2404	init_waitqueue_head(&efx->flush_wq);
2405
2406	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2407		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2408		if (!efx->channel[i])
2409			goto fail;
2410	}
2411
2412	efx->type = type;
2413
2414	EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2415
2416	/* Higher numbered interrupt modes are less capable! */
2417	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2418				  interrupt_mode);
2419
2420	/* Would be good to use the net_dev name, but we're too early */
2421	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2422		 pci_name(pci_dev));
2423	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2424	if (!efx->workqueue)
2425		goto fail;
2426
2427	return 0;
2428
2429fail:
2430	efx_fini_struct(efx);
2431	return -ENOMEM;
2432}
2433
2434static void efx_fini_struct(struct efx_nic *efx)
2435{
2436	int i;
2437
2438	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2439		kfree(efx->channel[i]);
2440
2441	if (efx->workqueue) {
2442		destroy_workqueue(efx->workqueue);
2443		efx->workqueue = NULL;
2444	}
2445}
2446
2447/**************************************************************************
2448 *
2449 * PCI interface
2450 *
2451 **************************************************************************/
2452
2453/* Main body of final NIC shutdown code
2454 * This is called only at module unload (or hotplug removal).
2455 */
2456static void efx_pci_remove_main(struct efx_nic *efx)
2457{
2458#ifdef CONFIG_RFS_ACCEL
2459	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2460	efx->net_dev->rx_cpu_rmap = NULL;
2461#endif
2462	efx_stop_interrupts(efx, false);
2463	efx_nic_fini_interrupt(efx);
2464	efx_fini_port(efx);
2465	efx->type->fini(efx);
2466	efx_fini_napi(efx);
2467	efx_remove_all(efx);
2468}
2469
2470/* Final NIC shutdown
2471 * This is called only at module unload (or hotplug removal).
2472 */
2473static void efx_pci_remove(struct pci_dev *pci_dev)
2474{
2475	struct efx_nic *efx;
2476
2477	efx = pci_get_drvdata(pci_dev);
2478	if (!efx)
2479		return;
2480
2481	/* Mark the NIC as fini, then stop the interface */
2482	rtnl_lock();
2483	efx->state = STATE_FINI;
2484	dev_close(efx->net_dev);
2485
2486	/* Allow any queued efx_resets() to complete */
2487	rtnl_unlock();
2488
2489	efx_stop_interrupts(efx, false);
2490	efx_sriov_fini(efx);
2491	efx_unregister_netdev(efx);
2492
2493	efx_mtd_remove(efx);
2494
2495	/* Wait for any scheduled resets to complete. No more will be
2496	 * scheduled from this point because efx_stop_all() has been
2497	 * called, we are no longer registered with driverlink, and
2498	 * the net_device's have been removed. */
2499	cancel_work_sync(&efx->reset_work);
2500
2501	efx_pci_remove_main(efx);
2502
2503	efx_fini_io(efx);
2504	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2505
2506	efx_fini_struct(efx);
2507	pci_set_drvdata(pci_dev, NULL);
2508	free_netdev(efx->net_dev);
2509};
2510
2511/* NIC VPD information
2512 * Called during probe to display the part number of the
2513 * installed NIC.  VPD is potentially very large but this should
2514 * always appear within the first 512 bytes.
2515 */
2516#define SFC_VPD_LEN 512
2517static void efx_print_product_vpd(struct efx_nic *efx)
2518{
2519	struct pci_dev *dev = efx->pci_dev;
2520	char vpd_data[SFC_VPD_LEN];
2521	ssize_t vpd_size;
2522	int i, j;
2523
2524	/* Get the vpd data from the device */
2525	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2526	if (vpd_size <= 0) {
2527		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2528		return;
2529	}
2530
2531	/* Get the Read only section */
2532	i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2533	if (i < 0) {
2534		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2535		return;
2536	}
2537
2538	j = pci_vpd_lrdt_size(&vpd_data[i]);
2539	i += PCI_VPD_LRDT_TAG_SIZE;
2540	if (i + j > vpd_size)
2541		j = vpd_size - i;
2542
2543	/* Get the Part number */
2544	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2545	if (i < 0) {
2546		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2547		return;
2548	}
2549
2550	j = pci_vpd_info_field_size(&vpd_data[i]);
2551	i += PCI_VPD_INFO_FLD_HDR_SIZE;
2552	if (i + j > vpd_size) {
2553		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2554		return;
2555	}
2556
2557	netif_info(efx, drv, efx->net_dev,
2558		   "Part Number : %.*s\n", j, &vpd_data[i]);
2559}
2560
2561
2562/* Main body of NIC initialisation
2563 * This is called at module load (or hotplug insertion, theoretically).
2564 */
2565static int efx_pci_probe_main(struct efx_nic *efx)
2566{
2567	int rc;
2568
2569	/* Do start-of-day initialisation */
2570	rc = efx_probe_all(efx);
2571	if (rc)
2572		goto fail1;
2573
2574	efx_init_napi(efx);
2575
2576	rc = efx->type->init(efx);
2577	if (rc) {
2578		netif_err(efx, probe, efx->net_dev,
2579			  "failed to initialise NIC\n");
2580		goto fail3;
2581	}
2582
2583	rc = efx_init_port(efx);
2584	if (rc) {
2585		netif_err(efx, probe, efx->net_dev,
2586			  "failed to initialise port\n");
2587		goto fail4;
2588	}
2589
2590	rc = efx_nic_init_interrupt(efx);
2591	if (rc)
2592		goto fail5;
2593	efx_start_interrupts(efx, false);
2594
2595	return 0;
2596
2597 fail5:
2598	efx_fini_port(efx);
2599 fail4:
2600	efx->type->fini(efx);
2601 fail3:
2602	efx_fini_napi(efx);
2603	efx_remove_all(efx);
2604 fail1:
2605	return rc;
2606}
2607
2608/* NIC initialisation
2609 *
2610 * This is called at module load (or hotplug insertion,
2611 * theoretically).  It sets up PCI mappings, resets the NIC,
2612 * sets up and registers the network devices with the kernel and hooks
2613 * the interrupt service routine.  It does not prepare the device for
2614 * transmission; this is left to the first time one of the network
2615 * interfaces is brought up (i.e. efx_net_open).
2616 */
2617static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2618				   const struct pci_device_id *entry)
2619{
2620	const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data;
2621	struct net_device *net_dev;
2622	struct efx_nic *efx;
2623	int rc;
2624
2625	/* Allocate and initialise a struct net_device and struct efx_nic */
2626	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2627				     EFX_MAX_RX_QUEUES);
2628	if (!net_dev)
2629		return -ENOMEM;
2630	net_dev->features |= (type->offload_features | NETIF_F_SG |
2631			      NETIF_F_HIGHDMA | NETIF_F_TSO |
2632			      NETIF_F_RXCSUM);
2633	if (type->offload_features & NETIF_F_V6_CSUM)
2634		net_dev->features |= NETIF_F_TSO6;
2635	/* Mask for features that also apply to VLAN devices */
2636	net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2637				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
2638				   NETIF_F_RXCSUM);
2639	/* All offloads can be toggled */
2640	net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2641	efx = netdev_priv(net_dev);
2642	pci_set_drvdata(pci_dev, efx);
2643	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2644	rc = efx_init_struct(efx, type, pci_dev, net_dev);
2645	if (rc)
2646		goto fail1;
2647
2648	netif_info(efx, probe, efx->net_dev,
2649		   "Solarflare NIC detected\n");
2650
2651	efx_print_product_vpd(efx);
2652
2653	/* Set up basic I/O (BAR mappings etc) */
2654	rc = efx_init_io(efx);
2655	if (rc)
2656		goto fail2;
2657
2658	rc = efx_pci_probe_main(efx);
2659
2660	/* Serialise against efx_reset(). No more resets will be
2661	 * scheduled since efx_stop_all() has been called, and we have
2662	 * not and never have been registered.
2663	 */
2664	cancel_work_sync(&efx->reset_work);
2665
2666	if (rc)
2667		goto fail3;
2668
2669	/* If there was a scheduled reset during probe, the NIC is
2670	 * probably hosed anyway.
2671	 */
2672	if (efx->reset_pending) {
2673		rc = -EIO;
2674		goto fail4;
2675	}
2676
2677	/* Switch to the running state before we expose the device to the OS,
2678	 * so that dev_open()|efx_start_all() will actually start the device */
2679	efx->state = STATE_RUNNING;
2680
2681	rc = efx_register_netdev(efx);
2682	if (rc)
2683		goto fail4;
2684
2685	rc = efx_sriov_init(efx);
2686	if (rc)
2687		netif_err(efx, probe, efx->net_dev,
2688			  "SR-IOV can't be enabled rc %d\n", rc);
2689
2690	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2691
2692	/* Try to create MTDs, but allow this to fail */
2693	rtnl_lock();
2694	rc = efx_mtd_probe(efx);
2695	rtnl_unlock();
2696	if (rc)
2697		netif_warn(efx, probe, efx->net_dev,
2698			   "failed to create MTDs (%d)\n", rc);
2699
2700	return 0;
2701
2702 fail4:
2703	efx_pci_remove_main(efx);
2704 fail3:
2705	efx_fini_io(efx);
2706 fail2:
2707	efx_fini_struct(efx);
2708 fail1:
2709	pci_set_drvdata(pci_dev, NULL);
2710	WARN_ON(rc > 0);
2711	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2712	free_netdev(net_dev);
2713	return rc;
2714}
2715
2716static int efx_pm_freeze(struct device *dev)
2717{
2718	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2719
2720	efx->state = STATE_FINI;
2721
2722	netif_device_detach(efx->net_dev);
2723
2724	efx_stop_all(efx);
2725	efx_stop_interrupts(efx, false);
2726
2727	return 0;
2728}
2729
2730static int efx_pm_thaw(struct device *dev)
2731{
2732	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2733
2734	efx->state = STATE_INIT;
2735
2736	efx_start_interrupts(efx, false);
2737
2738	mutex_lock(&efx->mac_lock);
2739	efx->phy_op->reconfigure(efx);
2740	mutex_unlock(&efx->mac_lock);
2741
2742	efx_start_all(efx);
2743
2744	netif_device_attach(efx->net_dev);
2745
2746	efx->state = STATE_RUNNING;
2747
2748	efx->type->resume_wol(efx);
2749
2750	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2751	queue_work(reset_workqueue, &efx->reset_work);
2752
2753	return 0;
2754}
2755
2756static int efx_pm_poweroff(struct device *dev)
2757{
2758	struct pci_dev *pci_dev = to_pci_dev(dev);
2759	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2760
2761	efx->type->fini(efx);
2762
2763	efx->reset_pending = 0;
2764
2765	pci_save_state(pci_dev);
2766	return pci_set_power_state(pci_dev, PCI_D3hot);
2767}
2768
2769/* Used for both resume and restore */
2770static int efx_pm_resume(struct device *dev)
2771{
2772	struct pci_dev *pci_dev = to_pci_dev(dev);
2773	struct efx_nic *efx = pci_get_drvdata(pci_dev);
2774	int rc;
2775
2776	rc = pci_set_power_state(pci_dev, PCI_D0);
2777	if (rc)
2778		return rc;
2779	pci_restore_state(pci_dev);
2780	rc = pci_enable_device(pci_dev);
2781	if (rc)
2782		return rc;
2783	pci_set_master(efx->pci_dev);
2784	rc = efx->type->reset(efx, RESET_TYPE_ALL);
2785	if (rc)
2786		return rc;
2787	rc = efx->type->init(efx);
2788	if (rc)
2789		return rc;
2790	efx_pm_thaw(dev);
2791	return 0;
2792}
2793
2794static int efx_pm_suspend(struct device *dev)
2795{
2796	int rc;
2797
2798	efx_pm_freeze(dev);
2799	rc = efx_pm_poweroff(dev);
2800	if (rc)
2801		efx_pm_resume(dev);
2802	return rc;
2803}
2804
2805static const struct dev_pm_ops efx_pm_ops = {
2806	.suspend	= efx_pm_suspend,
2807	.resume		= efx_pm_resume,
2808	.freeze		= efx_pm_freeze,
2809	.thaw		= efx_pm_thaw,
2810	.poweroff	= efx_pm_poweroff,
2811	.restore	= efx_pm_resume,
2812};
2813
2814static struct pci_driver efx_pci_driver = {
2815	.name		= KBUILD_MODNAME,
2816	.id_table	= efx_pci_table,
2817	.probe		= efx_pci_probe,
2818	.remove		= efx_pci_remove,
2819	.driver.pm	= &efx_pm_ops,
2820};
2821
2822/**************************************************************************
2823 *
2824 * Kernel module interface
2825 *
2826 *************************************************************************/
2827
2828module_param(interrupt_mode, uint, 0444);
2829MODULE_PARM_DESC(interrupt_mode,
2830		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2831
2832static int __init efx_init_module(void)
2833{
2834	int rc;
2835
2836	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2837
2838	rc = register_netdevice_notifier(&efx_netdev_notifier);
2839	if (rc)
2840		goto err_notifier;
2841
2842	rc = efx_init_sriov();
2843	if (rc)
2844		goto err_sriov;
2845
2846	reset_workqueue = create_singlethread_workqueue("sfc_reset");
2847	if (!reset_workqueue) {
2848		rc = -ENOMEM;
2849		goto err_reset;
2850	}
2851
2852	rc = pci_register_driver(&efx_pci_driver);
2853	if (rc < 0)
2854		goto err_pci;
2855
2856	return 0;
2857
2858 err_pci:
2859	destroy_workqueue(reset_workqueue);
2860 err_reset:
2861	efx_fini_sriov();
2862 err_sriov:
2863	unregister_netdevice_notifier(&efx_netdev_notifier);
2864 err_notifier:
2865	return rc;
2866}
2867
2868static void __exit efx_exit_module(void)
2869{
2870	printk(KERN_INFO "Solarflare NET driver unloading\n");
2871
2872	pci_unregister_driver(&efx_pci_driver);
2873	destroy_workqueue(reset_workqueue);
2874	efx_fini_sriov();
2875	unregister_netdevice_notifier(&efx_netdev_notifier);
2876
2877}
2878
2879module_init(efx_init_module);
2880module_exit(efx_exit_module);
2881
2882MODULE_AUTHOR("Solarflare Communications and "
2883	      "Michael Brown <mbrown@fensystems.co.uk>");
2884MODULE_DESCRIPTION("Solarflare Communications network driver");
2885MODULE_LICENSE("GPL");
2886MODULE_DEVICE_TABLE(pci, efx_pci_table);