Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2005-2006 Fen Systems Ltd.
   5 * Copyright 2005-2013 Solarflare Communications Inc.
 
 
 
 
   6 */
   7
   8#include <linux/filter.h>
   9#include <linux/module.h>
  10#include <linux/pci.h>
  11#include <linux/netdevice.h>
  12#include <linux/etherdevice.h>
  13#include <linux/delay.h>
  14#include <linux/notifier.h>
  15#include <linux/ip.h>
  16#include <linux/tcp.h>
  17#include <linux/in.h>
  18#include <linux/ethtool.h>
  19#include <linux/topology.h>
  20#include <linux/gfp.h>
 
  21#include <linux/interrupt.h>
  22#include "net_driver.h"
  23#include <net/gre.h>
  24#include <net/udp_tunnel.h>
  25#include "efx.h"
  26#include "efx_common.h"
  27#include "efx_channels.h"
  28#include "ef100.h"
  29#include "rx_common.h"
  30#include "tx_common.h"
  31#include "nic.h"
  32#include "io.h"
  33#include "selftest.h"
  34#include "sriov.h"
  35#include "efx_devlink.h"
  36
  37#include "mcdi_port_common.h"
  38#include "mcdi_pcol.h"
  39#include "workarounds.h"
  40
  41/**************************************************************************
  42 *
  43 * Configurable values
  44 *
  45 *************************************************************************/
 
  46
  47module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
  48MODULE_PARM_DESC(interrupt_mode,
  49		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50
  51module_param(rss_cpus, uint, 0444);
  52MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53
  54/*
  55 * Use separate channels for TX and RX events
  56 *
  57 * Set this to 1 to use separate channels for TX and RX. It allows us
  58 * to control interrupt affinity separately for TX and RX.
  59 *
  60 * This is only used in MSI-X interrupt mode
  61 */
  62bool efx_separate_tx_channels;
  63module_param(efx_separate_tx_channels, bool, 0444);
  64MODULE_PARM_DESC(efx_separate_tx_channels,
  65		 "Use separate channels for TX and RX");
  66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67/* Initial interrupt moderation settings.  They can be modified after
  68 * module load with ethtool.
  69 *
  70 * The default for RX should strike a balance between increasing the
  71 * round-trip latency and reducing overhead.
  72 */
  73static unsigned int rx_irq_mod_usec = 60;
  74
  75/* Initial interrupt moderation settings.  They can be modified after
  76 * module load with ethtool.
  77 *
  78 * This default is chosen to ensure that a 10G link does not go idle
  79 * while a TX queue is stopped after it has become full.  A queue is
  80 * restarted when it drops below half full.  The time this takes (assuming
  81 * worst case 3 descriptors per packet and 1024 descriptors) is
  82 *   512 / 3 * 1.2 = 205 usec.
  83 */
  84static unsigned int tx_irq_mod_usec = 150;
  85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86static bool phy_flash_cfg;
  87module_param(phy_flash_cfg, bool, 0644);
  88MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
  89
 
 
 
 
 
 
 
 
 
 
  90static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  91			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
  92			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
  93			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
  94module_param(debug, uint, 0);
  95MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
  96
  97/**************************************************************************
  98 *
  99 * Utility functions and prototypes
 100 *
 101 *************************************************************************/
 102
 
 
 
 
 
 103static void efx_remove_port(struct efx_nic *efx);
 104static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
 105static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
 106static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
 107			u32 flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108
 109/**************************************************************************
 110 *
 111 * Port handling
 112 *
 113 **************************************************************************/
 114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115static void efx_fini_port(struct efx_nic *efx);
 116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117static int efx_probe_port(struct efx_nic *efx)
 118{
 119	int rc;
 120
 121	netif_dbg(efx, probe, efx->net_dev, "create port\n");
 122
 123	if (phy_flash_cfg)
 124		efx->phy_mode = PHY_MODE_SPECIAL;
 125
 126	/* Connect up MAC/PHY operations table */
 127	rc = efx->type->probe_port(efx);
 128	if (rc)
 129		return rc;
 130
 131	/* Initialise MAC address to permanent address */
 132	eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
 133
 134	return 0;
 135}
 136
 137static int efx_init_port(struct efx_nic *efx)
 138{
 139	int rc;
 140
 141	netif_dbg(efx, drv, efx->net_dev, "init port\n");
 142
 143	mutex_lock(&efx->mac_lock);
 144
 
 
 
 
 145	efx->port_initialized = true;
 146
 
 
 
 
 147	/* Ensure the PHY advertises the correct flow control settings */
 148	rc = efx_mcdi_port_reconfigure(efx);
 149	if (rc && rc != -EPERM)
 150		goto fail;
 151
 152	mutex_unlock(&efx->mac_lock);
 153	return 0;
 154
 155fail:
 
 
 156	mutex_unlock(&efx->mac_lock);
 157	return rc;
 158}
 159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160static void efx_fini_port(struct efx_nic *efx)
 161{
 162	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
 163
 164	if (!efx->port_initialized)
 165		return;
 166
 
 167	efx->port_initialized = false;
 168
 169	efx->link_state.up = false;
 170	efx_link_status_changed(efx);
 171}
 172
 173static void efx_remove_port(struct efx_nic *efx)
 174{
 175	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
 176
 177	efx->type->remove_port(efx);
 178}
 179
 180/**************************************************************************
 181 *
 182 * NIC handling
 183 *
 184 **************************************************************************/
 185
 186static LIST_HEAD(efx_primary_list);
 187static LIST_HEAD(efx_unassociated_list);
 188
 189static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
 190{
 191	return left->type == right->type &&
 192		left->vpd_sn && right->vpd_sn &&
 193		!strcmp(left->vpd_sn, right->vpd_sn);
 194}
 195
 196static void efx_associate(struct efx_nic *efx)
 197{
 198	struct efx_nic *other, *next;
 199
 200	if (efx->primary == efx) {
 201		/* Adding primary function; look for secondaries */
 202
 203		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
 204		list_add_tail(&efx->node, &efx_primary_list);
 205
 206		list_for_each_entry_safe(other, next, &efx_unassociated_list,
 207					 node) {
 208			if (efx_same_controller(efx, other)) {
 209				list_del(&other->node);
 210				netif_dbg(other, probe, other->net_dev,
 211					  "moving to secondary list of %s %s\n",
 212					  pci_name(efx->pci_dev),
 213					  efx->net_dev->name);
 214				list_add_tail(&other->node,
 215					      &efx->secondary_list);
 216				other->primary = efx;
 217			}
 218		}
 219	} else {
 220		/* Adding secondary function; look for primary */
 221
 222		list_for_each_entry(other, &efx_primary_list, node) {
 223			if (efx_same_controller(efx, other)) {
 224				netif_dbg(efx, probe, efx->net_dev,
 225					  "adding to secondary list of %s %s\n",
 226					  pci_name(other->pci_dev),
 227					  other->net_dev->name);
 228				list_add_tail(&efx->node,
 229					      &other->secondary_list);
 230				efx->primary = other;
 231				return;
 232			}
 233		}
 234
 235		netif_dbg(efx, probe, efx->net_dev,
 236			  "adding to unassociated list\n");
 237		list_add_tail(&efx->node, &efx_unassociated_list);
 238	}
 239}
 240
 241static void efx_dissociate(struct efx_nic *efx)
 242{
 243	struct efx_nic *other, *next;
 244
 245	list_del(&efx->node);
 246	efx->primary = NULL;
 247
 248	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
 249		list_del(&other->node);
 250		netif_dbg(other, probe, other->net_dev,
 251			  "moving to unassociated list\n");
 252		list_add_tail(&other->node, &efx_unassociated_list);
 253		other->primary = NULL;
 254	}
 255}
 256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 257static int efx_probe_nic(struct efx_nic *efx)
 258{
 259	int rc;
 260
 261	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
 262
 263	/* Carry out hardware-type specific initialisation */
 264	rc = efx->type->probe(efx);
 265	if (rc)
 266		return rc;
 267
 268	do {
 269		if (!efx->max_channels || !efx->max_tx_channels) {
 270			netif_err(efx, drv, efx->net_dev,
 271				  "Insufficient resources to allocate"
 272				  " any channels\n");
 273			rc = -ENOSPC;
 274			goto fail1;
 275		}
 276
 277		/* Determine the number of channels and queues by trying
 278		 * to hook in MSI-X interrupts.
 279		 */
 280		rc = efx_probe_interrupts(efx);
 281		if (rc)
 282			goto fail1;
 283
 284		rc = efx_set_channels(efx);
 285		if (rc)
 286			goto fail1;
 287
 288		/* dimension_resources can fail with EAGAIN */
 289		rc = efx->type->dimension_resources(efx);
 290		if (rc != 0 && rc != -EAGAIN)
 291			goto fail2;
 292
 293		if (rc == -EAGAIN)
 294			/* try again with new max_channels */
 295			efx_remove_interrupts(efx);
 296
 297	} while (rc == -EAGAIN);
 298
 299	if (efx->n_channels > 1)
 300		netdev_rss_key_fill(efx->rss_context.rx_hash_key,
 301				    sizeof(efx->rss_context.rx_hash_key));
 302	efx_set_default_rx_indir_table(efx, &efx->rss_context);
 
 
 
 303
 304	/* Initialise the interrupt moderation settings */
 305	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
 306	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
 307				true);
 308
 309	return 0;
 310
 311fail2:
 312	efx_remove_interrupts(efx);
 313fail1:
 314	efx->type->remove(efx);
 315	return rc;
 316}
 317
 318static void efx_remove_nic(struct efx_nic *efx)
 319{
 320	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
 321
 322	efx_remove_interrupts(efx);
 323	efx->type->remove(efx);
 324}
 325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326/**************************************************************************
 327 *
 328 * NIC startup/shutdown
 329 *
 330 *************************************************************************/
 331
 332static int efx_probe_all(struct efx_nic *efx)
 333{
 334	int rc;
 335
 336	rc = efx_probe_nic(efx);
 337	if (rc) {
 338		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
 339		goto fail1;
 340	}
 341
 342	rc = efx_probe_port(efx);
 343	if (rc) {
 344		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
 345		goto fail2;
 346	}
 347
 348	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
 349	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
 350		rc = -EINVAL;
 351		goto fail3;
 352	}
 
 353
 354#ifdef CONFIG_SFC_SRIOV
 355	rc = efx->type->vswitching_probe(efx);
 356	if (rc) /* not fatal; the PF will still work fine */
 357		netif_warn(efx, probe, efx->net_dev,
 358			   "failed to setup vswitching rc=%d;"
 359			   " VFs may not function\n", rc);
 360#endif
 361
 362	rc = efx_probe_filters(efx);
 363	if (rc) {
 364		netif_err(efx, probe, efx->net_dev,
 365			  "failed to create filter tables\n");
 366		goto fail4;
 367	}
 368
 369	rc = efx_probe_channels(efx);
 370	if (rc)
 371		goto fail5;
 372
 373	efx->state = STATE_NET_DOWN;
 374
 375	return 0;
 376
 377 fail5:
 378	efx_remove_filters(efx);
 379 fail4:
 380#ifdef CONFIG_SFC_SRIOV
 381	efx->type->vswitching_remove(efx);
 382#endif
 383 fail3:
 384	efx_remove_port(efx);
 385 fail2:
 386	efx_remove_nic(efx);
 387 fail1:
 388	return rc;
 389}
 390
 391static void efx_remove_all(struct efx_nic *efx)
 
 
 
 
 
 
 
 392{
 393	rtnl_lock();
 394	efx_xdp_setup_prog(efx, NULL);
 395	rtnl_unlock();
 
 
 
 
 
 
 
 
 396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397	efx_remove_channels(efx);
 398	efx_remove_filters(efx);
 399#ifdef CONFIG_SFC_SRIOV
 400	efx->type->vswitching_remove(efx);
 401#endif
 402	efx_remove_port(efx);
 403	efx_remove_nic(efx);
 404}
 405
 406/**************************************************************************
 407 *
 408 * Interrupt moderation
 409 *
 410 **************************************************************************/
 411unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
 412{
 413	if (usecs == 0)
 414		return 0;
 415	if (usecs * 1000 < efx->timer_quantum_ns)
 416		return 1; /* never round down to 0 */
 417	return usecs * 1000 / efx->timer_quantum_ns;
 418}
 419
 420unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
 421{
 422	/* We must round up when converting ticks to microseconds
 423	 * because we round down when converting the other way.
 424	 */
 425	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
 426}
 427
 428/* Set interrupt moderation parameters */
 429int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
 430			    unsigned int rx_usecs, bool rx_adaptive,
 431			    bool rx_may_override_tx)
 432{
 433	struct efx_channel *channel;
 434	unsigned int timer_max_us;
 435
 436	EFX_ASSERT_RESET_SERIALISED(efx);
 437
 438	timer_max_us = efx->timer_max_ns / 1000;
 439
 440	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
 441		return -EINVAL;
 442
 443	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
 444	    !rx_may_override_tx) {
 445		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
 446			  "RX and TX IRQ moderation must be equal\n");
 447		return -EINVAL;
 448	}
 449
 450	efx->irq_rx_adaptive = rx_adaptive;
 451	efx->irq_rx_moderation_us = rx_usecs;
 452	efx_for_each_channel(channel, efx) {
 453		if (efx_channel_has_rx_queue(channel))
 454			channel->irq_moderation_us = rx_usecs;
 455		else if (efx_channel_has_tx_queues(channel))
 456			channel->irq_moderation_us = tx_usecs;
 457		else if (efx_channel_is_xdp_tx(channel))
 458			channel->irq_moderation_us = tx_usecs;
 459	}
 460
 461	return 0;
 462}
 463
 464void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
 465			    unsigned int *rx_usecs, bool *rx_adaptive)
 466{
 467	*rx_adaptive = efx->irq_rx_adaptive;
 468	*rx_usecs = efx->irq_rx_moderation_us;
 469
 470	/* If channels are shared between RX and TX, so is IRQ
 471	 * moderation.  Otherwise, IRQ moderation is the same for all
 472	 * TX channels and is not adaptive.
 473	 */
 474	if (efx->tx_channel_offset == 0) {
 475		*tx_usecs = *rx_usecs;
 476	} else {
 477		struct efx_channel *tx_channel;
 478
 479		tx_channel = efx->channel[efx->tx_channel_offset];
 480		*tx_usecs = tx_channel->irq_moderation_us;
 481	}
 482}
 483
 484/**************************************************************************
 485 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 486 * ioctls
 487 *
 488 *************************************************************************/
 489
 490/* Net device ioctl
 491 * Context: process, rtnl_lock() held.
 492 */
 493static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
 494{
 495	struct efx_nic *efx = efx_netdev_priv(net_dev);
 496	struct mii_ioctl_data *data = if_mii(ifr);
 497
 
 
 
 
 
 498	/* Convert phy_id from older PRTAD/DEVAD format */
 499	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
 500	    (data->phy_id & 0xfc00) == 0x0400)
 501		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
 502
 503	return mdio_mii_ioctl(&efx->mdio, data, cmd);
 504}
 505
 506/**************************************************************************
 507 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508 * Kernel net device interface
 509 *
 510 *************************************************************************/
 511
 512/* Context: process, rtnl_lock() held. */
 513int efx_net_open(struct net_device *net_dev)
 514{
 515	struct efx_nic *efx = efx_netdev_priv(net_dev);
 516	int rc;
 517
 518	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
 519		  raw_smp_processor_id());
 520
 521	rc = efx_check_disabled(efx);
 522	if (rc)
 523		return rc;
 524	if (efx->phy_mode & PHY_MODE_SPECIAL)
 525		return -EBUSY;
 526	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
 527		return -EIO;
 528
 529	/* Notify the kernel of the link state polled during driver load,
 530	 * before the monitor starts running */
 531	efx_link_status_changed(efx);
 532
 533	efx_start_all(efx);
 534	if (efx->state == STATE_DISABLED || efx->reset_pending)
 535		netif_device_detach(efx->net_dev);
 536	else
 537		efx->state = STATE_NET_UP;
 538
 539	return 0;
 540}
 541
 542/* Context: process, rtnl_lock() held.
 543 * Note that the kernel will ignore our return code; this method
 544 * should really be a void.
 545 */
 546int efx_net_stop(struct net_device *net_dev)
 547{
 548	struct efx_nic *efx = efx_netdev_priv(net_dev);
 549
 550	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
 551		  raw_smp_processor_id());
 552
 553	/* Stop the device and flush all the channels */
 554	efx_stop_all(efx);
 555
 556	return 0;
 557}
 558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
 560{
 561	struct efx_nic *efx = efx_netdev_priv(net_dev);
 562
 563	if (efx->type->vlan_rx_add_vid)
 564		return efx->type->vlan_rx_add_vid(efx, proto, vid);
 565	else
 566		return -EOPNOTSUPP;
 567}
 568
 569static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
 570{
 571	struct efx_nic *efx = efx_netdev_priv(net_dev);
 572
 573	if (efx->type->vlan_rx_kill_vid)
 574		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
 575	else
 576		return -EOPNOTSUPP;
 577}
 578
 579static int efx_hwtstamp_set(struct net_device *net_dev,
 580			    struct kernel_hwtstamp_config *config,
 581			    struct netlink_ext_ack *extack)
 582{
 583	struct efx_nic *efx = efx_netdev_priv(net_dev);
 584
 585	return efx_ptp_set_ts_config(efx, config, extack);
 586}
 587
 588static int efx_hwtstamp_get(struct net_device *net_dev,
 589			    struct kernel_hwtstamp_config *config)
 590{
 591	struct efx_nic *efx = efx_netdev_priv(net_dev);
 592
 593	return efx_ptp_get_ts_config(efx, config);
 594}
 595
 596static const struct net_device_ops efx_netdev_ops = {
 597	.ndo_open		= efx_net_open,
 598	.ndo_stop		= efx_net_stop,
 599	.ndo_get_stats64	= efx_net_stats,
 600	.ndo_tx_timeout		= efx_watchdog,
 601	.ndo_start_xmit		= efx_hard_start_xmit,
 602	.ndo_validate_addr	= eth_validate_addr,
 603	.ndo_eth_ioctl		= efx_ioctl,
 604	.ndo_change_mtu		= efx_change_mtu,
 605	.ndo_set_mac_address	= efx_set_mac_address,
 606	.ndo_set_rx_mode	= efx_set_rx_mode,
 607	.ndo_set_features	= efx_set_features,
 608	.ndo_features_check	= efx_features_check,
 609	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
 610	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
 611	.ndo_hwtstamp_set	= efx_hwtstamp_set,
 612	.ndo_hwtstamp_get	= efx_hwtstamp_get,
 613#ifdef CONFIG_SFC_SRIOV
 614	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
 615	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
 616	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
 617	.ndo_get_vf_config	= efx_sriov_get_vf_config,
 618	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
 
 
 
 
 
 
 
 
 619#endif
 620	.ndo_get_phys_port_id   = efx_get_phys_port_id,
 621	.ndo_get_phys_port_name	= efx_get_phys_port_name,
 622#ifdef CONFIG_RFS_ACCEL
 623	.ndo_rx_flow_steer	= efx_filter_rfs,
 624#endif
 625	.ndo_xdp_xmit		= efx_xdp_xmit,
 626	.ndo_bpf		= efx_xdp
 627};
 628
 629static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
 630{
 631	struct bpf_prog *old_prog;
 632
 633	if (efx->xdp_rxq_info_failed) {
 634		netif_err(efx, drv, efx->net_dev,
 635			  "Unable to bind XDP program due to previous failure of rxq_info\n");
 636		return -EINVAL;
 637	}
 638
 639	if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
 640		netif_err(efx, drv, efx->net_dev,
 641			  "Unable to configure XDP with MTU of %d (max: %d)\n",
 642			  efx->net_dev->mtu, efx_xdp_max_mtu(efx));
 643		return -EINVAL;
 644	}
 645
 646	old_prog = rtnl_dereference(efx->xdp_prog);
 647	rcu_assign_pointer(efx->xdp_prog, prog);
 648	/* Release the reference that was originally passed by the caller. */
 649	if (old_prog)
 650		bpf_prog_put(old_prog);
 651
 652	return 0;
 653}
 654
 655/* Context: process, rtnl_lock() held. */
 656static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
 657{
 658	struct efx_nic *efx = efx_netdev_priv(dev);
 659
 660	switch (xdp->command) {
 661	case XDP_SETUP_PROG:
 662		return efx_xdp_setup_prog(efx, xdp->prog);
 663	default:
 664		return -EINVAL;
 665	}
 666}
 667
 668static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
 669			u32 flags)
 670{
 671	struct efx_nic *efx = efx_netdev_priv(dev);
 672
 673	if (!netif_running(dev))
 674		return -EINVAL;
 675
 676	return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
 677}
 678
 679static void efx_update_name(struct efx_nic *efx)
 680{
 681	strcpy(efx->name, efx->net_dev->name);
 682	efx_mtd_rename(efx);
 683	efx_set_channel_names(efx);
 684}
 685
 686static int efx_netdev_event(struct notifier_block *this,
 687			    unsigned long event, void *ptr)
 688{
 689	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
 690
 691	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
 692	    event == NETDEV_CHANGENAME)
 693		efx_update_name(efx_netdev_priv(net_dev));
 694
 695	return NOTIFY_DONE;
 696}
 697
 698static struct notifier_block efx_netdev_notifier = {
 699	.notifier_call = efx_netdev_event,
 700};
 701
 702static ssize_t phy_type_show(struct device *dev,
 703			     struct device_attribute *attr, char *buf)
 704{
 705	struct efx_nic *efx = dev_get_drvdata(dev);
 706	return sprintf(buf, "%d\n", efx->phy_type);
 707}
 708static DEVICE_ATTR_RO(phy_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 709
 710static int efx_register_netdev(struct efx_nic *efx)
 711{
 712	struct net_device *net_dev = efx->net_dev;
 713	struct efx_channel *channel;
 714	int rc;
 715
 716	net_dev->watchdog_timeo = 5 * HZ;
 717	net_dev->irq = efx->pci_dev->irq;
 718	net_dev->netdev_ops = &efx_netdev_ops;
 719	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
 720		net_dev->priv_flags |= IFF_UNICAST_FLT;
 721	net_dev->ethtool_ops = &efx_ethtool_ops;
 722	netif_set_tso_max_segs(net_dev, EFX_TSO_MAX_SEGS);
 723	net_dev->min_mtu = EFX_MIN_MTU;
 724	net_dev->max_mtu = EFX_MAX_MTU;
 725
 726	rtnl_lock();
 727
 728	/* Enable resets to be scheduled and check whether any were
 729	 * already requested.  If so, the NIC is probably hosed so we
 730	 * abort.
 731	 */
 
 
 732	if (efx->reset_pending) {
 733		pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n");
 
 734		rc = -EIO;
 735		goto fail_locked;
 736	}
 737
 738	rc = dev_alloc_name(net_dev, net_dev->name);
 739	if (rc < 0)
 740		goto fail_locked;
 741	efx_update_name(efx);
 742
 743	/* Always start with carrier off; PHY events will detect the link */
 744	netif_carrier_off(net_dev);
 745
 746	rc = register_netdevice(net_dev);
 747	if (rc)
 748		goto fail_locked;
 749
 750	efx_for_each_channel(channel, efx) {
 751		struct efx_tx_queue *tx_queue;
 752		efx_for_each_channel_tx_queue(tx_queue, channel)
 753			efx_init_tx_queue_core_txq(tx_queue);
 754	}
 755
 756	efx_associate(efx);
 757
 758	efx->state = STATE_NET_DOWN;
 759
 760	rtnl_unlock();
 761
 762	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
 763	if (rc) {
 764		netif_err(efx, drv, efx->net_dev,
 765			  "failed to init net dev attributes\n");
 766		goto fail_registered;
 767	}
 768
 769	efx_init_mcdi_logging(efx);
 
 
 
 
 
 
 770
 771	return 0;
 772
 
 
 
 
 773fail_registered:
 774	rtnl_lock();
 775	efx_dissociate(efx);
 776	unregister_netdevice(net_dev);
 777fail_locked:
 778	efx->state = STATE_UNINIT;
 779	rtnl_unlock();
 780	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
 781	return rc;
 782}
 783
 784static void efx_unregister_netdev(struct efx_nic *efx)
 785{
 786	if (!efx->net_dev)
 787		return;
 788
 789	if (WARN_ON(efx_netdev_priv(efx->net_dev) != efx))
 790		return;
 791
 792	if (efx_dev_registered(efx)) {
 793		strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
 794		efx_fini_mcdi_logging(efx);
 
 
 795		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
 796		unregister_netdev(efx->net_dev);
 797	}
 798}
 799
 800/**************************************************************************
 801 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802 * List of NICs we support
 803 *
 804 **************************************************************************/
 805
 806/* PCI device ID table */
 807static const struct pci_device_id efx_pci_table[] = {
 
 
 
 
 808	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
 809	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 810	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
 811	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 812	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
 813	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 814	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
 815	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 816	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
 817	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 818	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
 819	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 820	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03),  /* SFC9250 PF */
 821	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
 822	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03),  /* SFC9250 VF */
 823	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 824	{0}			/* end of list */
 825};
 826
 827/**************************************************************************
 828 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829 * Data housekeeping
 830 *
 831 **************************************************************************/
 832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
 834{
 835	u64 n_rx_nodesc_trunc = 0;
 836	struct efx_channel *channel;
 837
 838	efx_for_each_channel(channel, efx)
 839		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
 840	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
 841	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
 842}
 843
 844/**************************************************************************
 845 *
 846 * PCI interface
 847 *
 848 **************************************************************************/
 849
 850/* Main body of final NIC shutdown code
 851 * This is called only at module unload (or hotplug removal).
 852 */
 853static void efx_pci_remove_main(struct efx_nic *efx)
 854{
 855	/* Flush reset_work. It can no longer be scheduled since we
 856	 * are not READY.
 857	 */
 858	WARN_ON(efx_net_active(efx->state));
 859	efx_flush_reset_workqueue(efx);
 860
 861	efx_disable_interrupts(efx);
 862	efx_clear_interrupt_affinity(efx);
 863	efx_nic_fini_interrupt(efx);
 864	efx_fini_port(efx);
 865	efx->type->fini(efx);
 866	efx_fini_napi(efx);
 867	efx_remove_all(efx);
 868}
 869
 870/* Final NIC shutdown
 871 * This is called only at module unload (or hotplug removal).  A PF can call
 872 * this on its VFs to ensure they are unbound first.
 873 */
 874static void efx_pci_remove(struct pci_dev *pci_dev)
 875{
 876	struct efx_probe_data *probe_data;
 877	struct efx_nic *efx;
 878
 879	efx = pci_get_drvdata(pci_dev);
 880	if (!efx)
 881		return;
 882
 883	/* Mark the NIC as fini, then stop the interface */
 884	rtnl_lock();
 885	efx_dissociate(efx);
 886	dev_close(efx->net_dev);
 887	efx_disable_interrupts(efx);
 888	efx->state = STATE_UNINIT;
 889	rtnl_unlock();
 890
 891	if (efx->type->sriov_fini)
 892		efx->type->sriov_fini(efx);
 893
 894	efx_fini_devlink_lock(efx);
 895	efx_unregister_netdev(efx);
 896
 897	efx_mtd_remove(efx);
 898
 899	efx_pci_remove_main(efx);
 900
 901	efx_fini_io(efx);
 902	pci_dbg(efx->pci_dev, "shutdown successful\n");
 903
 904	efx_fini_devlink_and_unlock(efx);
 905	efx_fini_struct(efx);
 906	free_netdev(efx->net_dev);
 907	probe_data = container_of(efx, struct efx_probe_data, efx);
 908	kfree(probe_data);
 909};
 910
 911/* NIC VPD information
 912 * Called during probe to display the part number of the
 913 * installed NIC.
 
 914 */
 
 915static void efx_probe_vpd_strings(struct efx_nic *efx)
 916{
 917	struct pci_dev *dev = efx->pci_dev;
 918	unsigned int vpd_size, kw_len;
 919	u8 *vpd_data;
 920	int start;
 921
 922	vpd_data = pci_vpd_alloc(dev, &vpd_size);
 923	if (IS_ERR(vpd_data)) {
 924		pci_warn(dev, "Unable to read VPD\n");
 
 925		return;
 926	}
 927
 928	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
 929					     PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
 930	if (start < 0)
 931		pci_err(dev, "Part number not found or incomplete\n");
 932	else
 933		pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
 934
 935	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
 936					     PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
 937	if (start < 0)
 938		pci_err(dev, "Serial number not found or incomplete\n");
 939	else
 940		efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941
 942	kfree(vpd_data);
 943}
 944
 945
 946/* Main body of NIC initialisation
 947 * This is called at module load (or hotplug insertion, theoretically).
 948 */
 949static int efx_pci_probe_main(struct efx_nic *efx)
 950{
 951	int rc;
 952
 953	/* Do start-of-day initialisation */
 954	rc = efx_probe_all(efx);
 955	if (rc)
 956		goto fail1;
 957
 958	efx_init_napi(efx);
 959
 960	down_write(&efx->filter_sem);
 961	rc = efx->type->init(efx);
 962	up_write(&efx->filter_sem);
 963	if (rc) {
 964		pci_err(efx->pci_dev, "failed to initialise NIC\n");
 
 965		goto fail3;
 966	}
 967
 968	rc = efx_init_port(efx);
 969	if (rc) {
 970		netif_err(efx, probe, efx->net_dev,
 971			  "failed to initialise port\n");
 972		goto fail4;
 973	}
 974
 975	rc = efx_nic_init_interrupt(efx);
 976	if (rc)
 977		goto fail5;
 978
 979	efx_set_interrupt_affinity(efx);
 980	rc = efx_enable_interrupts(efx);
 981	if (rc)
 982		goto fail6;
 983
 984	return 0;
 985
 986 fail6:
 987	efx_clear_interrupt_affinity(efx);
 988	efx_nic_fini_interrupt(efx);
 989 fail5:
 990	efx_fini_port(efx);
 991 fail4:
 992	efx->type->fini(efx);
 993 fail3:
 994	efx_fini_napi(efx);
 995	efx_remove_all(efx);
 996 fail1:
 997	return rc;
 998}
 999
1000static int efx_pci_probe_post_io(struct efx_nic *efx)
1001{
1002	struct net_device *net_dev = efx->net_dev;
1003	int rc = efx_pci_probe_main(efx);
1004
1005	if (rc)
1006		return rc;
1007
1008	if (efx->type->sriov_init) {
1009		rc = efx->type->sriov_init(efx);
1010		if (rc)
1011			pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n",
1012				rc);
1013	}
1014
1015	/* Determine netdevice features */
1016	net_dev->features |= efx->type->offload_features;
1017
1018	/* Add TSO features */
1019	if (efx->type->tso_versions && efx->type->tso_versions(efx))
1020		net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1021
1022	/* Mask for features that also apply to VLAN devices */
1023	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1024				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1025				   NETIF_F_RXCSUM);
1026
1027	/* Determine user configurable features */
1028	net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1029
1030	/* Disable receiving frames with bad FCS, by default. */
1031	net_dev->features &= ~NETIF_F_RXALL;
1032
1033	/* Disable VLAN filtering by default.  It may be enforced if
1034	 * the feature is fixed (i.e. VLAN filters are required to
1035	 * receive VLAN tagged packets due to vPort restrictions).
1036	 */
1037	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1038	net_dev->features |= efx->fixed_features;
1039
1040	net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
1041				NETDEV_XDP_ACT_REDIRECT |
1042				NETDEV_XDP_ACT_NDO_XMIT;
1043
1044	/* devlink creation, registration and lock */
1045	rc = efx_probe_devlink_and_lock(efx);
1046	if (rc)
1047		pci_err(efx->pci_dev, "devlink registration failed");
1048
1049	rc = efx_register_netdev(efx);
1050	efx_probe_devlink_unlock(efx);
1051	if (!rc)
1052		return 0;
1053
1054	efx_pci_remove_main(efx);
1055	return rc;
1056}
1057
1058/* NIC initialisation
1059 *
1060 * This is called at module load (or hotplug insertion,
1061 * theoretically).  It sets up PCI mappings, resets the NIC,
1062 * sets up and registers the network devices with the kernel and hooks
1063 * the interrupt service routine.  It does not prepare the device for
1064 * transmission; this is left to the first time one of the network
1065 * interfaces is brought up (i.e. efx_net_open).
1066 */
1067static int efx_pci_probe(struct pci_dev *pci_dev,
1068			 const struct pci_device_id *entry)
1069{
1070	struct efx_probe_data *probe_data, **probe_ptr;
1071	struct net_device *net_dev;
1072	struct efx_nic *efx;
1073	int rc;
1074
1075	/* Allocate probe data and struct efx_nic */
1076	probe_data = kzalloc(sizeof(*probe_data), GFP_KERNEL);
1077	if (!probe_data)
 
1078		return -ENOMEM;
1079	probe_data->pci_dev = pci_dev;
1080	efx = &probe_data->efx;
1081
1082	/* Allocate and initialise a struct net_device */
1083	net_dev = alloc_etherdev_mq(sizeof(probe_data), EFX_MAX_CORE_TX_QUEUES);
1084	if (!net_dev) {
1085		rc = -ENOMEM;
1086		goto fail0;
1087	}
1088	probe_ptr = netdev_priv(net_dev);
1089	*probe_ptr = probe_data;
1090	efx->net_dev = net_dev;
1091	efx->type = (const struct efx_nic_type *) entry->driver_data;
1092	efx->fixed_features |= NETIF_F_HIGHDMA;
1093
1094	pci_set_drvdata(pci_dev, efx);
1095	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1096	rc = efx_init_struct(efx, pci_dev);
1097	if (rc)
1098		goto fail1;
1099	efx->mdio.dev = net_dev;
1100
1101	pci_info(pci_dev, "Solarflare NIC detected\n");
 
1102
1103	if (!efx->type->is_vf)
1104		efx_probe_vpd_strings(efx);
1105
1106	/* Set up basic I/O (BAR mappings etc) */
1107	rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1108			 efx->type->mem_map_size(efx));
1109	if (rc)
1110		goto fail2;
1111
1112	rc = efx_pci_probe_post_io(efx);
1113	if (rc) {
1114		/* On failure, retry once immediately.
1115		 * If we aborted probe due to a scheduled reset, dismiss it.
1116		 */
1117		efx->reset_pending = 0;
1118		rc = efx_pci_probe_post_io(efx);
1119		if (rc) {
1120			/* On another failure, retry once more
1121			 * after a 50-305ms delay.
1122			 */
1123			unsigned char r;
1124
1125			get_random_bytes(&r, 1);
1126			msleep((unsigned int)r + 50);
1127			efx->reset_pending = 0;
1128			rc = efx_pci_probe_post_io(efx);
1129		}
1130	}
1131	if (rc)
1132		goto fail3;
1133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1135
1136	/* Try to create MTDs, but allow this to fail */
1137	rtnl_lock();
1138	rc = efx_mtd_probe(efx);
1139	rtnl_unlock();
1140	if (rc && rc != -EPERM)
1141		netif_warn(efx, probe, efx->net_dev,
1142			   "failed to create MTDs (%d)\n", rc);
1143
1144	if (efx->type->udp_tnl_push_ports)
1145		efx->type->udp_tnl_push_ports(efx);
 
 
 
1146
1147	return 0;
1148
 
 
1149 fail3:
1150	efx_fini_io(efx);
1151 fail2:
1152	efx_fini_struct(efx);
1153 fail1:
1154	WARN_ON(rc > 0);
1155	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1156	free_netdev(net_dev);
1157 fail0:
1158	kfree(probe_data);
1159	return rc;
1160}
1161
1162/* efx_pci_sriov_configure returns the actual number of Virtual Functions
1163 * enabled on success
1164 */
1165#ifdef CONFIG_SFC_SRIOV
1166static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1167{
1168	int rc;
1169	struct efx_nic *efx = pci_get_drvdata(dev);
1170
1171	if (efx->type->sriov_configure) {
1172		rc = efx->type->sriov_configure(efx, num_vfs);
1173		if (rc)
1174			return rc;
1175		else
1176			return num_vfs;
1177	} else
1178		return -EOPNOTSUPP;
1179}
1180#endif
1181
1182static int efx_pm_freeze(struct device *dev)
1183{
1184	struct efx_nic *efx = dev_get_drvdata(dev);
1185
1186	rtnl_lock();
1187
1188	if (efx_net_active(efx->state)) {
 
 
1189		efx_device_detach_sync(efx);
1190
1191		efx_stop_all(efx);
1192		efx_disable_interrupts(efx);
1193
1194		efx->state = efx_freeze(efx->state);
1195	}
1196
1197	rtnl_unlock();
1198
1199	return 0;
1200}
1201
1202static void efx_pci_shutdown(struct pci_dev *pci_dev)
1203{
1204	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1205
1206	if (!efx)
1207		return;
1208
1209	efx_pm_freeze(&pci_dev->dev);
1210	pci_disable_device(pci_dev);
1211}
1212
1213static int efx_pm_thaw(struct device *dev)
1214{
1215	int rc;
1216	struct efx_nic *efx = dev_get_drvdata(dev);
1217
1218	rtnl_lock();
1219
1220	if (efx_frozen(efx->state)) {
1221		rc = efx_enable_interrupts(efx);
1222		if (rc)
1223			goto fail;
1224
1225		mutex_lock(&efx->mac_lock);
1226		efx_mcdi_port_reconfigure(efx);
1227		mutex_unlock(&efx->mac_lock);
1228
1229		efx_start_all(efx);
1230
1231		efx_device_attach_if_not_resetting(efx);
1232
1233		efx->state = efx_thaw(efx->state);
1234
1235		efx->type->resume_wol(efx);
1236	}
1237
1238	rtnl_unlock();
1239
1240	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1241	efx_queue_reset_work(efx);
1242
1243	return 0;
1244
1245fail:
1246	rtnl_unlock();
1247
1248	return rc;
1249}
1250
1251static int efx_pm_poweroff(struct device *dev)
1252{
1253	struct pci_dev *pci_dev = to_pci_dev(dev);
1254	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1255
1256	efx->type->fini(efx);
1257
1258	efx->reset_pending = 0;
1259
1260	pci_save_state(pci_dev);
1261	return pci_set_power_state(pci_dev, PCI_D3hot);
1262}
1263
1264/* Used for both resume and restore */
1265static int efx_pm_resume(struct device *dev)
1266{
1267	struct pci_dev *pci_dev = to_pci_dev(dev);
1268	struct efx_nic *efx = pci_get_drvdata(pci_dev);
1269	int rc;
1270
1271	rc = pci_set_power_state(pci_dev, PCI_D0);
1272	if (rc)
1273		return rc;
1274	pci_restore_state(pci_dev);
1275	rc = pci_enable_device(pci_dev);
1276	if (rc)
1277		return rc;
1278	pci_set_master(efx->pci_dev);
1279	rc = efx->type->reset(efx, RESET_TYPE_ALL);
1280	if (rc)
1281		return rc;
1282	down_write(&efx->filter_sem);
1283	rc = efx->type->init(efx);
1284	up_write(&efx->filter_sem);
1285	if (rc)
1286		return rc;
1287	rc = efx_pm_thaw(dev);
1288	return rc;
1289}
1290
1291static int efx_pm_suspend(struct device *dev)
1292{
1293	int rc;
1294
1295	efx_pm_freeze(dev);
1296	rc = efx_pm_poweroff(dev);
1297	if (rc)
1298		efx_pm_resume(dev);
1299	return rc;
1300}
1301
1302static const struct dev_pm_ops efx_pm_ops = {
1303	.suspend	= efx_pm_suspend,
1304	.resume		= efx_pm_resume,
1305	.freeze		= efx_pm_freeze,
1306	.thaw		= efx_pm_thaw,
1307	.poweroff	= efx_pm_poweroff,
1308	.restore	= efx_pm_resume,
1309};
1310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1311static struct pci_driver efx_pci_driver = {
1312	.name		= KBUILD_MODNAME,
1313	.id_table	= efx_pci_table,
1314	.probe		= efx_pci_probe,
1315	.remove		= efx_pci_remove,
1316	.driver.pm	= &efx_pm_ops,
1317	.shutdown	= efx_pci_shutdown,
1318	.err_handler	= &efx_err_handlers,
1319#ifdef CONFIG_SFC_SRIOV
1320	.sriov_configure = efx_pci_sriov_configure,
1321#endif
1322};
1323
1324/**************************************************************************
1325 *
1326 * Kernel module interface
1327 *
1328 *************************************************************************/
1329
 
 
 
 
1330static int __init efx_init_module(void)
1331{
1332	int rc;
1333
1334	printk(KERN_INFO "Solarflare NET driver\n");
1335
1336	rc = register_netdevice_notifier(&efx_netdev_notifier);
1337	if (rc)
1338		goto err_notifier;
1339
1340	rc = efx_create_reset_workqueue();
 
1341	if (rc)
 
 
 
 
 
 
1342		goto err_reset;
 
1343
1344	rc = pci_register_driver(&efx_pci_driver);
1345	if (rc < 0)
1346		goto err_pci;
1347
1348	rc = pci_register_driver(&ef100_pci_driver);
1349	if (rc < 0)
1350		goto err_pci_ef100;
1351
1352	return 0;
1353
1354 err_pci_ef100:
1355	pci_unregister_driver(&efx_pci_driver);
1356 err_pci:
1357	efx_destroy_reset_workqueue();
1358 err_reset:
 
 
 
 
1359	unregister_netdevice_notifier(&efx_netdev_notifier);
1360 err_notifier:
1361	return rc;
1362}
1363
1364static void __exit efx_exit_module(void)
1365{
1366	printk(KERN_INFO "Solarflare NET driver unloading\n");
1367
1368	pci_unregister_driver(&ef100_pci_driver);
1369	pci_unregister_driver(&efx_pci_driver);
1370	efx_destroy_reset_workqueue();
 
 
 
1371	unregister_netdevice_notifier(&efx_netdev_notifier);
1372
1373}
1374
1375module_init(efx_init_module);
1376module_exit(efx_exit_module);
1377
1378MODULE_AUTHOR("Solarflare Communications and "
1379	      "Michael Brown <mbrown@fensystems.co.uk>");
1380MODULE_DESCRIPTION("Solarflare network driver");
1381MODULE_LICENSE("GPL");
1382MODULE_DEVICE_TABLE(pci, efx_pci_table);
v4.10.11
 
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2005-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
 
  11#include <linux/module.h>
  12#include <linux/pci.h>
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/delay.h>
  16#include <linux/notifier.h>
  17#include <linux/ip.h>
  18#include <linux/tcp.h>
  19#include <linux/in.h>
  20#include <linux/ethtool.h>
  21#include <linux/topology.h>
  22#include <linux/gfp.h>
  23#include <linux/aer.h>
  24#include <linux/interrupt.h>
  25#include "net_driver.h"
 
 
  26#include "efx.h"
 
 
 
 
 
  27#include "nic.h"
 
  28#include "selftest.h"
  29#include "sriov.h"
 
  30
  31#include "mcdi.h"
 
  32#include "workarounds.h"
  33
  34/**************************************************************************
  35 *
  36 * Type name strings
  37 *
  38 **************************************************************************
  39 */
  40
  41/* Loopback mode names (see LOOPBACK_MODE()) */
  42const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
  43const char *const efx_loopback_mode_names[] = {
  44	[LOOPBACK_NONE]		= "NONE",
  45	[LOOPBACK_DATA]		= "DATAPATH",
  46	[LOOPBACK_GMAC]		= "GMAC",
  47	[LOOPBACK_XGMII]	= "XGMII",
  48	[LOOPBACK_XGXS]		= "XGXS",
  49	[LOOPBACK_XAUI]		= "XAUI",
  50	[LOOPBACK_GMII]		= "GMII",
  51	[LOOPBACK_SGMII]	= "SGMII",
  52	[LOOPBACK_XGBR]		= "XGBR",
  53	[LOOPBACK_XFI]		= "XFI",
  54	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
  55	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
  56	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
  57	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
  58	[LOOPBACK_GPHY]		= "GPHY",
  59	[LOOPBACK_PHYXS]	= "PHYXS",
  60	[LOOPBACK_PCS]		= "PCS",
  61	[LOOPBACK_PMAPMD]	= "PMA/PMD",
  62	[LOOPBACK_XPORT]	= "XPORT",
  63	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
  64	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
  65	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
  66	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
  67	[LOOPBACK_GMII_WS]	= "GMII_WS",
  68	[LOOPBACK_XFI_WS]	= "XFI_WS",
  69	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
  70	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
  71};
  72
  73const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
  74const char *const efx_reset_type_names[] = {
  75	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
  76	[RESET_TYPE_ALL]                = "ALL",
  77	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
  78	[RESET_TYPE_WORLD]              = "WORLD",
  79	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
  80	[RESET_TYPE_DATAPATH]           = "DATAPATH",
  81	[RESET_TYPE_MC_BIST]		= "MC_BIST",
  82	[RESET_TYPE_DISABLE]            = "DISABLE",
  83	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
  84	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
  85	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
  86	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
  87	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
  88	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
  89};
  90
  91/* Reset workqueue. If any NIC has a hardware failure then a reset will be
  92 * queued onto this work queue. This is not a per-nic work queue, because
  93 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
  94 */
  95static struct workqueue_struct *reset_workqueue;
  96
  97/* How often and how many times to poll for a reset while waiting for a
  98 * BIST that another function started to complete.
  99 */
 100#define BIST_WAIT_DELAY_MS	100
 101#define BIST_WAIT_DELAY_COUNT	100
 102
 103/**************************************************************************
 104 *
 105 * Configurable values
 106 *
 107 *************************************************************************/
 108
 109/*
 110 * Use separate channels for TX and RX events
 111 *
 112 * Set this to 1 to use separate channels for TX and RX. It allows us
 113 * to control interrupt affinity separately for TX and RX.
 114 *
 115 * This is only used in MSI-X interrupt mode
 116 */
 117bool efx_separate_tx_channels;
 118module_param(efx_separate_tx_channels, bool, 0444);
 119MODULE_PARM_DESC(efx_separate_tx_channels,
 120		 "Use separate channels for TX and RX");
 121
 122/* This is the weight assigned to each of the (per-channel) virtual
 123 * NAPI devices.
 124 */
 125static int napi_weight = 64;
 126
 127/* This is the time (in jiffies) between invocations of the hardware
 128 * monitor.
 129 * On Falcon-based NICs, this will:
 130 * - Check the on-board hardware monitor;
 131 * - Poll the link state and reconfigure the hardware as necessary.
 132 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 133 * chance to start.
 134 */
 135static unsigned int efx_monitor_interval = 1 * HZ;
 136
 137/* Initial interrupt moderation settings.  They can be modified after
 138 * module load with ethtool.
 139 *
 140 * The default for RX should strike a balance between increasing the
 141 * round-trip latency and reducing overhead.
 142 */
 143static unsigned int rx_irq_mod_usec = 60;
 144
 145/* Initial interrupt moderation settings.  They can be modified after
 146 * module load with ethtool.
 147 *
 148 * This default is chosen to ensure that a 10G link does not go idle
 149 * while a TX queue is stopped after it has become full.  A queue is
 150 * restarted when it drops below half full.  The time this takes (assuming
 151 * worst case 3 descriptors per packet and 1024 descriptors) is
 152 *   512 / 3 * 1.2 = 205 usec.
 153 */
 154static unsigned int tx_irq_mod_usec = 150;
 155
 156/* This is the first interrupt mode to try out of:
 157 * 0 => MSI-X
 158 * 1 => MSI
 159 * 2 => legacy
 160 */
 161static unsigned int interrupt_mode;
 162
 163/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 164 * i.e. the number of CPUs among which we may distribute simultaneous
 165 * interrupt handling.
 166 *
 167 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 168 * The default (0) means to assign an interrupt to each core.
 169 */
 170static unsigned int rss_cpus;
 171module_param(rss_cpus, uint, 0444);
 172MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
 173
 174static bool phy_flash_cfg;
 175module_param(phy_flash_cfg, bool, 0644);
 176MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
 177
 178static unsigned irq_adapt_low_thresh = 8000;
 179module_param(irq_adapt_low_thresh, uint, 0644);
 180MODULE_PARM_DESC(irq_adapt_low_thresh,
 181		 "Threshold score for reducing IRQ moderation");
 182
 183static unsigned irq_adapt_high_thresh = 16000;
 184module_param(irq_adapt_high_thresh, uint, 0644);
 185MODULE_PARM_DESC(irq_adapt_high_thresh,
 186		 "Threshold score for increasing IRQ moderation");
 187
 188static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
 189			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
 190			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
 191			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
 192module_param(debug, uint, 0);
 193MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
 194
 195/**************************************************************************
 196 *
 197 * Utility functions and prototypes
 198 *
 199 *************************************************************************/
 200
 201static int efx_soft_enable_interrupts(struct efx_nic *efx);
 202static void efx_soft_disable_interrupts(struct efx_nic *efx);
 203static void efx_remove_channel(struct efx_channel *channel);
 204static void efx_remove_channels(struct efx_nic *efx);
 205static const struct efx_channel_type efx_default_channel_type;
 206static void efx_remove_port(struct efx_nic *efx);
 207static void efx_init_napi_channel(struct efx_channel *channel);
 208static void efx_fini_napi(struct efx_nic *efx);
 209static void efx_fini_napi_channel(struct efx_channel *channel);
 210static void efx_fini_struct(struct efx_nic *efx);
 211static void efx_start_all(struct efx_nic *efx);
 212static void efx_stop_all(struct efx_nic *efx);
 213
 214#define EFX_ASSERT_RESET_SERIALISED(efx)		\
 215	do {						\
 216		if ((efx->state == STATE_READY) ||	\
 217		    (efx->state == STATE_RECOVERY) ||	\
 218		    (efx->state == STATE_DISABLED))	\
 219			ASSERT_RTNL();			\
 220	} while (0)
 221
 222static int efx_check_disabled(struct efx_nic *efx)
 223{
 224	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
 225		netif_err(efx, drv, efx->net_dev,
 226			  "device is disabled due to earlier errors\n");
 227		return -EIO;
 228	}
 229	return 0;
 230}
 231
 232/**************************************************************************
 233 *
 234 * Event queue processing
 235 *
 236 *************************************************************************/
 237
 238/* Process channel's event queue
 239 *
 240 * This function is responsible for processing the event queue of a
 241 * single channel.  The caller must guarantee that this function will
 242 * never be concurrently called more than once on the same channel,
 243 * though different channels may be being processed concurrently.
 244 */
 245static int efx_process_channel(struct efx_channel *channel, int budget)
 246{
 247	struct efx_tx_queue *tx_queue;
 248	int spent;
 249
 250	if (unlikely(!channel->enabled))
 251		return 0;
 252
 253	efx_for_each_channel_tx_queue(tx_queue, channel) {
 254		tx_queue->pkts_compl = 0;
 255		tx_queue->bytes_compl = 0;
 256	}
 257
 258	spent = efx_nic_process_eventq(channel, budget);
 259	if (spent && efx_channel_has_rx_queue(channel)) {
 260		struct efx_rx_queue *rx_queue =
 261			efx_channel_get_rx_queue(channel);
 262
 263		efx_rx_flush_packet(channel);
 264		efx_fast_push_rx_descriptors(rx_queue, true);
 265	}
 266
 267	/* Update BQL */
 268	efx_for_each_channel_tx_queue(tx_queue, channel) {
 269		if (tx_queue->bytes_compl) {
 270			netdev_tx_completed_queue(tx_queue->core_txq,
 271				tx_queue->pkts_compl, tx_queue->bytes_compl);
 272		}
 273	}
 274
 275	return spent;
 276}
 277
 278/* NAPI poll handler
 279 *
 280 * NAPI guarantees serialisation of polls of the same device, which
 281 * provides the guarantee required by efx_process_channel().
 282 */
 283static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel)
 284{
 285	int step = efx->irq_mod_step_us;
 286
 287	if (channel->irq_mod_score < irq_adapt_low_thresh) {
 288		if (channel->irq_moderation_us > step) {
 289			channel->irq_moderation_us -= step;
 290			efx->type->push_irq_moderation(channel);
 291		}
 292	} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
 293		if (channel->irq_moderation_us <
 294		    efx->irq_rx_moderation_us) {
 295			channel->irq_moderation_us += step;
 296			efx->type->push_irq_moderation(channel);
 297		}
 298	}
 299
 300	channel->irq_count = 0;
 301	channel->irq_mod_score = 0;
 302}
 303
 304static int efx_poll(struct napi_struct *napi, int budget)
 305{
 306	struct efx_channel *channel =
 307		container_of(napi, struct efx_channel, napi_str);
 308	struct efx_nic *efx = channel->efx;
 309	int spent;
 310
 311	if (!efx_channel_lock_napi(channel))
 312		return budget;
 313
 314	netif_vdbg(efx, intr, efx->net_dev,
 315		   "channel %d NAPI poll executing on CPU %d\n",
 316		   channel->channel, raw_smp_processor_id());
 317
 318	spent = efx_process_channel(channel, budget);
 319
 320	if (spent < budget) {
 321		if (efx_channel_has_rx_queue(channel) &&
 322		    efx->irq_rx_adaptive &&
 323		    unlikely(++channel->irq_count == 1000)) {
 324			efx_update_irq_mod(efx, channel);
 325		}
 326
 327		efx_filter_rfs_expire(channel);
 328
 329		/* There is no race here; although napi_disable() will
 330		 * only wait for napi_complete(), this isn't a problem
 331		 * since efx_nic_eventq_read_ack() will have no effect if
 332		 * interrupts have already been disabled.
 333		 */
 334		napi_complete(napi);
 335		efx_nic_eventq_read_ack(channel);
 336	}
 337
 338	efx_channel_unlock_napi(channel);
 339	return spent;
 340}
 341
 342/* Create event queue
 343 * Event queue memory allocations are done only once.  If the channel
 344 * is reset, the memory buffer will be reused; this guards against
 345 * errors during channel reset and also simplifies interrupt handling.
 346 */
 347static int efx_probe_eventq(struct efx_channel *channel)
 348{
 349	struct efx_nic *efx = channel->efx;
 350	unsigned long entries;
 351
 352	netif_dbg(efx, probe, efx->net_dev,
 353		  "chan %d create event queue\n", channel->channel);
 354
 355	/* Build an event queue with room for one event per tx and rx buffer,
 356	 * plus some extra for link state events and MCDI completions. */
 357	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
 358	EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
 359	channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
 360
 361	return efx_nic_probe_eventq(channel);
 362}
 363
 364/* Prepare channel's event queue */
 365static int efx_init_eventq(struct efx_channel *channel)
 366{
 367	struct efx_nic *efx = channel->efx;
 368	int rc;
 369
 370	EFX_WARN_ON_PARANOID(channel->eventq_init);
 371
 372	netif_dbg(efx, drv, efx->net_dev,
 373		  "chan %d init event queue\n", channel->channel);
 374
 375	rc = efx_nic_init_eventq(channel);
 376	if (rc == 0) {
 377		efx->type->push_irq_moderation(channel);
 378		channel->eventq_read_ptr = 0;
 379		channel->eventq_init = true;
 380	}
 381	return rc;
 382}
 383
 384/* Enable event queue processing and NAPI */
 385void efx_start_eventq(struct efx_channel *channel)
 386{
 387	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
 388		  "chan %d start event queue\n", channel->channel);
 389
 390	/* Make sure the NAPI handler sees the enabled flag set */
 391	channel->enabled = true;
 392	smp_wmb();
 393
 394	efx_channel_enable(channel);
 395	napi_enable(&channel->napi_str);
 396	efx_nic_eventq_read_ack(channel);
 397}
 398
 399/* Disable event queue processing and NAPI */
 400void efx_stop_eventq(struct efx_channel *channel)
 401{
 402	if (!channel->enabled)
 403		return;
 404
 405	napi_disable(&channel->napi_str);
 406	while (!efx_channel_disable(channel))
 407		usleep_range(1000, 20000);
 408	channel->enabled = false;
 409}
 410
 411static void efx_fini_eventq(struct efx_channel *channel)
 412{
 413	if (!channel->eventq_init)
 414		return;
 415
 416	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 417		  "chan %d fini event queue\n", channel->channel);
 418
 419	efx_nic_fini_eventq(channel);
 420	channel->eventq_init = false;
 421}
 422
 423static void efx_remove_eventq(struct efx_channel *channel)
 424{
 425	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 426		  "chan %d remove event queue\n", channel->channel);
 427
 428	efx_nic_remove_eventq(channel);
 429}
 430
 431/**************************************************************************
 432 *
 433 * Channel handling
 434 *
 435 *************************************************************************/
 436
 437/* Allocate and initialise a channel structure. */
 438static struct efx_channel *
 439efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
 440{
 441	struct efx_channel *channel;
 442	struct efx_rx_queue *rx_queue;
 443	struct efx_tx_queue *tx_queue;
 444	int j;
 445
 446	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
 447	if (!channel)
 448		return NULL;
 449
 450	channel->efx = efx;
 451	channel->channel = i;
 452	channel->type = &efx_default_channel_type;
 453
 454	for (j = 0; j < EFX_TXQ_TYPES; j++) {
 455		tx_queue = &channel->tx_queue[j];
 456		tx_queue->efx = efx;
 457		tx_queue->queue = i * EFX_TXQ_TYPES + j;
 458		tx_queue->channel = channel;
 459	}
 460
 461	rx_queue = &channel->rx_queue;
 462	rx_queue->efx = efx;
 463	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
 464		    (unsigned long)rx_queue);
 465
 466	return channel;
 467}
 468
 469/* Allocate and initialise a channel structure, copying parameters
 470 * (but not resources) from an old channel structure.
 471 */
 472static struct efx_channel *
 473efx_copy_channel(const struct efx_channel *old_channel)
 474{
 475	struct efx_channel *channel;
 476	struct efx_rx_queue *rx_queue;
 477	struct efx_tx_queue *tx_queue;
 478	int j;
 479
 480	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
 481	if (!channel)
 482		return NULL;
 483
 484	*channel = *old_channel;
 485
 486	channel->napi_dev = NULL;
 487	INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
 488	channel->napi_str.napi_id = 0;
 489	channel->napi_str.state = 0;
 490	memset(&channel->eventq, 0, sizeof(channel->eventq));
 491
 492	for (j = 0; j < EFX_TXQ_TYPES; j++) {
 493		tx_queue = &channel->tx_queue[j];
 494		if (tx_queue->channel)
 495			tx_queue->channel = channel;
 496		tx_queue->buffer = NULL;
 497		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
 498	}
 499
 500	rx_queue = &channel->rx_queue;
 501	rx_queue->buffer = NULL;
 502	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
 503	setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
 504		    (unsigned long)rx_queue);
 505
 506	return channel;
 507}
 508
 509static int efx_probe_channel(struct efx_channel *channel)
 510{
 511	struct efx_tx_queue *tx_queue;
 512	struct efx_rx_queue *rx_queue;
 513	int rc;
 514
 515	netif_dbg(channel->efx, probe, channel->efx->net_dev,
 516		  "creating channel %d\n", channel->channel);
 517
 518	rc = channel->type->pre_probe(channel);
 519	if (rc)
 520		goto fail;
 521
 522	rc = efx_probe_eventq(channel);
 523	if (rc)
 524		goto fail;
 525
 526	efx_for_each_channel_tx_queue(tx_queue, channel) {
 527		rc = efx_probe_tx_queue(tx_queue);
 528		if (rc)
 529			goto fail;
 530	}
 531
 532	efx_for_each_channel_rx_queue(rx_queue, channel) {
 533		rc = efx_probe_rx_queue(rx_queue);
 534		if (rc)
 535			goto fail;
 536	}
 537
 538	return 0;
 539
 540fail:
 541	efx_remove_channel(channel);
 542	return rc;
 543}
 544
 545static void
 546efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
 547{
 548	struct efx_nic *efx = channel->efx;
 549	const char *type;
 550	int number;
 551
 552	number = channel->channel;
 553	if (efx->tx_channel_offset == 0) {
 554		type = "";
 555	} else if (channel->channel < efx->tx_channel_offset) {
 556		type = "-rx";
 557	} else {
 558		type = "-tx";
 559		number -= efx->tx_channel_offset;
 560	}
 561	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
 562}
 563
 564static void efx_set_channel_names(struct efx_nic *efx)
 565{
 566	struct efx_channel *channel;
 567
 568	efx_for_each_channel(channel, efx)
 569		channel->type->get_name(channel,
 570					efx->msi_context[channel->channel].name,
 571					sizeof(efx->msi_context[0].name));
 572}
 573
 574static int efx_probe_channels(struct efx_nic *efx)
 575{
 576	struct efx_channel *channel;
 577	int rc;
 578
 579	/* Restart special buffer allocation */
 580	efx->next_buffer_table = 0;
 581
 582	/* Probe channels in reverse, so that any 'extra' channels
 583	 * use the start of the buffer table. This allows the traffic
 584	 * channels to be resized without moving them or wasting the
 585	 * entries before them.
 586	 */
 587	efx_for_each_channel_rev(channel, efx) {
 588		rc = efx_probe_channel(channel);
 589		if (rc) {
 590			netif_err(efx, probe, efx->net_dev,
 591				  "failed to create channel %d\n",
 592				  channel->channel);
 593			goto fail;
 594		}
 595	}
 596	efx_set_channel_names(efx);
 597
 598	return 0;
 599
 600fail:
 601	efx_remove_channels(efx);
 602	return rc;
 603}
 604
 605/* Channels are shutdown and reinitialised whilst the NIC is running
 606 * to propagate configuration changes (mtu, checksum offload), or
 607 * to clear hardware error conditions
 608 */
 609static void efx_start_datapath(struct efx_nic *efx)
 610{
 611	netdev_features_t old_features = efx->net_dev->features;
 612	bool old_rx_scatter = efx->rx_scatter;
 613	struct efx_tx_queue *tx_queue;
 614	struct efx_rx_queue *rx_queue;
 615	struct efx_channel *channel;
 616	size_t rx_buf_len;
 617
 618	/* Calculate the rx buffer allocation parameters required to
 619	 * support the current MTU, including padding for header
 620	 * alignment and overruns.
 621	 */
 622	efx->rx_dma_len = (efx->rx_prefix_size +
 623			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
 624			   efx->type->rx_buffer_padding);
 625	rx_buf_len = (sizeof(struct efx_rx_page_state) +
 626		      efx->rx_ip_align + efx->rx_dma_len);
 627	if (rx_buf_len <= PAGE_SIZE) {
 628		efx->rx_scatter = efx->type->always_rx_scatter;
 629		efx->rx_buffer_order = 0;
 630	} else if (efx->type->can_rx_scatter) {
 631		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
 632		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
 633			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
 634				       EFX_RX_BUF_ALIGNMENT) >
 635			     PAGE_SIZE);
 636		efx->rx_scatter = true;
 637		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
 638		efx->rx_buffer_order = 0;
 639	} else {
 640		efx->rx_scatter = false;
 641		efx->rx_buffer_order = get_order(rx_buf_len);
 642	}
 643
 644	efx_rx_config_page_split(efx);
 645	if (efx->rx_buffer_order)
 646		netif_dbg(efx, drv, efx->net_dev,
 647			  "RX buf len=%u; page order=%u batch=%u\n",
 648			  efx->rx_dma_len, efx->rx_buffer_order,
 649			  efx->rx_pages_per_batch);
 650	else
 651		netif_dbg(efx, drv, efx->net_dev,
 652			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
 653			  efx->rx_dma_len, efx->rx_page_buf_step,
 654			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
 655
 656	/* Restore previously fixed features in hw_features and remove
 657	 * features which are fixed now
 658	 */
 659	efx->net_dev->hw_features |= efx->net_dev->features;
 660	efx->net_dev->hw_features &= ~efx->fixed_features;
 661	efx->net_dev->features |= efx->fixed_features;
 662	if (efx->net_dev->features != old_features)
 663		netdev_features_change(efx->net_dev);
 664
 665	/* RX filters may also have scatter-enabled flags */
 666	if (efx->rx_scatter != old_rx_scatter)
 667		efx->type->filter_update_rx_scatter(efx);
 668
 669	/* We must keep at least one descriptor in a TX ring empty.
 670	 * We could avoid this when the queue size does not exactly
 671	 * match the hardware ring size, but it's not that important.
 672	 * Therefore we stop the queue when one more skb might fill
 673	 * the ring completely.  We wake it when half way back to
 674	 * empty.
 675	 */
 676	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
 677	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
 678
 679	/* Initialise the channels */
 680	efx_for_each_channel(channel, efx) {
 681		efx_for_each_channel_tx_queue(tx_queue, channel) {
 682			efx_init_tx_queue(tx_queue);
 683			atomic_inc(&efx->active_queues);
 684		}
 685
 686		efx_for_each_channel_rx_queue(rx_queue, channel) {
 687			efx_init_rx_queue(rx_queue);
 688			atomic_inc(&efx->active_queues);
 689			efx_stop_eventq(channel);
 690			efx_fast_push_rx_descriptors(rx_queue, false);
 691			efx_start_eventq(channel);
 692		}
 693
 694		WARN_ON(channel->rx_pkt_n_frags);
 695	}
 696
 697	efx_ptp_start_datapath(efx);
 698
 699	if (netif_device_present(efx->net_dev))
 700		netif_tx_wake_all_queues(efx->net_dev);
 701}
 702
 703static void efx_stop_datapath(struct efx_nic *efx)
 704{
 705	struct efx_channel *channel;
 706	struct efx_tx_queue *tx_queue;
 707	struct efx_rx_queue *rx_queue;
 708	int rc;
 709
 710	EFX_ASSERT_RESET_SERIALISED(efx);
 711	BUG_ON(efx->port_enabled);
 712
 713	efx_ptp_stop_datapath(efx);
 714
 715	/* Stop RX refill */
 716	efx_for_each_channel(channel, efx) {
 717		efx_for_each_channel_rx_queue(rx_queue, channel)
 718			rx_queue->refill_enabled = false;
 719	}
 720
 721	efx_for_each_channel(channel, efx) {
 722		/* RX packet processing is pipelined, so wait for the
 723		 * NAPI handler to complete.  At least event queue 0
 724		 * might be kept active by non-data events, so don't
 725		 * use napi_synchronize() but actually disable NAPI
 726		 * temporarily.
 727		 */
 728		if (efx_channel_has_rx_queue(channel)) {
 729			efx_stop_eventq(channel);
 730			efx_start_eventq(channel);
 731		}
 732	}
 733
 734	rc = efx->type->fini_dmaq(efx);
 735	if (rc) {
 736		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
 737	} else {
 738		netif_dbg(efx, drv, efx->net_dev,
 739			  "successfully flushed all queues\n");
 740	}
 741
 742	efx_for_each_channel(channel, efx) {
 743		efx_for_each_channel_rx_queue(rx_queue, channel)
 744			efx_fini_rx_queue(rx_queue);
 745		efx_for_each_possible_channel_tx_queue(tx_queue, channel)
 746			efx_fini_tx_queue(tx_queue);
 747	}
 748}
 749
 750static void efx_remove_channel(struct efx_channel *channel)
 751{
 752	struct efx_tx_queue *tx_queue;
 753	struct efx_rx_queue *rx_queue;
 754
 755	netif_dbg(channel->efx, drv, channel->efx->net_dev,
 756		  "destroy chan %d\n", channel->channel);
 757
 758	efx_for_each_channel_rx_queue(rx_queue, channel)
 759		efx_remove_rx_queue(rx_queue);
 760	efx_for_each_possible_channel_tx_queue(tx_queue, channel)
 761		efx_remove_tx_queue(tx_queue);
 762	efx_remove_eventq(channel);
 763	channel->type->post_remove(channel);
 764}
 765
 766static void efx_remove_channels(struct efx_nic *efx)
 767{
 768	struct efx_channel *channel;
 769
 770	efx_for_each_channel(channel, efx)
 771		efx_remove_channel(channel);
 772}
 773
 774int
 775efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
 776{
 777	struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
 778	u32 old_rxq_entries, old_txq_entries;
 779	unsigned i, next_buffer_table = 0;
 780	int rc, rc2;
 781
 782	rc = efx_check_disabled(efx);
 783	if (rc)
 784		return rc;
 785
 786	/* Not all channels should be reallocated. We must avoid
 787	 * reallocating their buffer table entries.
 788	 */
 789	efx_for_each_channel(channel, efx) {
 790		struct efx_rx_queue *rx_queue;
 791		struct efx_tx_queue *tx_queue;
 792
 793		if (channel->type->copy)
 794			continue;
 795		next_buffer_table = max(next_buffer_table,
 796					channel->eventq.index +
 797					channel->eventq.entries);
 798		efx_for_each_channel_rx_queue(rx_queue, channel)
 799			next_buffer_table = max(next_buffer_table,
 800						rx_queue->rxd.index +
 801						rx_queue->rxd.entries);
 802		efx_for_each_channel_tx_queue(tx_queue, channel)
 803			next_buffer_table = max(next_buffer_table,
 804						tx_queue->txd.index +
 805						tx_queue->txd.entries);
 806	}
 807
 808	efx_device_detach_sync(efx);
 809	efx_stop_all(efx);
 810	efx_soft_disable_interrupts(efx);
 811
 812	/* Clone channels (where possible) */
 813	memset(other_channel, 0, sizeof(other_channel));
 814	for (i = 0; i < efx->n_channels; i++) {
 815		channel = efx->channel[i];
 816		if (channel->type->copy)
 817			channel = channel->type->copy(channel);
 818		if (!channel) {
 819			rc = -ENOMEM;
 820			goto out;
 821		}
 822		other_channel[i] = channel;
 823	}
 824
 825	/* Swap entry counts and channel pointers */
 826	old_rxq_entries = efx->rxq_entries;
 827	old_txq_entries = efx->txq_entries;
 828	efx->rxq_entries = rxq_entries;
 829	efx->txq_entries = txq_entries;
 830	for (i = 0; i < efx->n_channels; i++) {
 831		channel = efx->channel[i];
 832		efx->channel[i] = other_channel[i];
 833		other_channel[i] = channel;
 834	}
 835
 836	/* Restart buffer table allocation */
 837	efx->next_buffer_table = next_buffer_table;
 838
 839	for (i = 0; i < efx->n_channels; i++) {
 840		channel = efx->channel[i];
 841		if (!channel->type->copy)
 842			continue;
 843		rc = efx_probe_channel(channel);
 844		if (rc)
 845			goto rollback;
 846		efx_init_napi_channel(efx->channel[i]);
 847	}
 848
 849out:
 850	/* Destroy unused channel structures */
 851	for (i = 0; i < efx->n_channels; i++) {
 852		channel = other_channel[i];
 853		if (channel && channel->type->copy) {
 854			efx_fini_napi_channel(channel);
 855			efx_remove_channel(channel);
 856			kfree(channel);
 857		}
 858	}
 859
 860	rc2 = efx_soft_enable_interrupts(efx);
 861	if (rc2) {
 862		rc = rc ? rc : rc2;
 863		netif_err(efx, drv, efx->net_dev,
 864			  "unable to restart interrupts on channel reallocation\n");
 865		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
 866	} else {
 867		efx_start_all(efx);
 868		netif_device_attach(efx->net_dev);
 869	}
 870	return rc;
 871
 872rollback:
 873	/* Swap back */
 874	efx->rxq_entries = old_rxq_entries;
 875	efx->txq_entries = old_txq_entries;
 876	for (i = 0; i < efx->n_channels; i++) {
 877		channel = efx->channel[i];
 878		efx->channel[i] = other_channel[i];
 879		other_channel[i] = channel;
 880	}
 881	goto out;
 882}
 883
 884void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
 885{
 886	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
 887}
 888
 889static const struct efx_channel_type efx_default_channel_type = {
 890	.pre_probe		= efx_channel_dummy_op_int,
 891	.post_remove		= efx_channel_dummy_op_void,
 892	.get_name		= efx_get_channel_name,
 893	.copy			= efx_copy_channel,
 894	.keep_eventq		= false,
 895};
 896
 897int efx_channel_dummy_op_int(struct efx_channel *channel)
 898{
 899	return 0;
 900}
 901
 902void efx_channel_dummy_op_void(struct efx_channel *channel)
 903{
 904}
 905
 906/**************************************************************************
 907 *
 908 * Port handling
 909 *
 910 **************************************************************************/
 911
 912/* This ensures that the kernel is kept informed (via
 913 * netif_carrier_on/off) of the link status, and also maintains the
 914 * link status's stop on the port's TX queue.
 915 */
 916void efx_link_status_changed(struct efx_nic *efx)
 917{
 918	struct efx_link_state *link_state = &efx->link_state;
 919
 920	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
 921	 * that no events are triggered between unregister_netdev() and the
 922	 * driver unloading. A more general condition is that NETDEV_CHANGE
 923	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
 924	if (!netif_running(efx->net_dev))
 925		return;
 926
 927	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
 928		efx->n_link_state_changes++;
 929
 930		if (link_state->up)
 931			netif_carrier_on(efx->net_dev);
 932		else
 933			netif_carrier_off(efx->net_dev);
 934	}
 935
 936	/* Status message for kernel log */
 937	if (link_state->up)
 938		netif_info(efx, link, efx->net_dev,
 939			   "link up at %uMbps %s-duplex (MTU %d)\n",
 940			   link_state->speed, link_state->fd ? "full" : "half",
 941			   efx->net_dev->mtu);
 942	else
 943		netif_info(efx, link, efx->net_dev, "link down\n");
 944}
 945
 946void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
 947{
 948	efx->link_advertising = advertising;
 949	if (advertising) {
 950		if (advertising & ADVERTISED_Pause)
 951			efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
 952		else
 953			efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
 954		if (advertising & ADVERTISED_Asym_Pause)
 955			efx->wanted_fc ^= EFX_FC_TX;
 956	}
 957}
 958
 959void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
 960{
 961	efx->wanted_fc = wanted_fc;
 962	if (efx->link_advertising) {
 963		if (wanted_fc & EFX_FC_RX)
 964			efx->link_advertising |= (ADVERTISED_Pause |
 965						  ADVERTISED_Asym_Pause);
 966		else
 967			efx->link_advertising &= ~(ADVERTISED_Pause |
 968						   ADVERTISED_Asym_Pause);
 969		if (wanted_fc & EFX_FC_TX)
 970			efx->link_advertising ^= ADVERTISED_Asym_Pause;
 971	}
 972}
 973
 974static void efx_fini_port(struct efx_nic *efx);
 975
 976/* We assume that efx->type->reconfigure_mac will always try to sync RX
 977 * filters and therefore needs to read-lock the filter table against freeing
 978 */
 979void efx_mac_reconfigure(struct efx_nic *efx)
 980{
 981	down_read(&efx->filter_sem);
 982	efx->type->reconfigure_mac(efx);
 983	up_read(&efx->filter_sem);
 984}
 985
 986/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 987 * the MAC appropriately. All other PHY configuration changes are pushed
 988 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 989 * through efx_monitor().
 990 *
 991 * Callers must hold the mac_lock
 992 */
 993int __efx_reconfigure_port(struct efx_nic *efx)
 994{
 995	enum efx_phy_mode phy_mode;
 996	int rc;
 997
 998	WARN_ON(!mutex_is_locked(&efx->mac_lock));
 999
1000	/* Disable PHY transmit in mac level loopbacks */
1001	phy_mode = efx->phy_mode;
1002	if (LOOPBACK_INTERNAL(efx))
1003		efx->phy_mode |= PHY_MODE_TX_DISABLED;
1004	else
1005		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
1006
1007	rc = efx->type->reconfigure_port(efx);
1008
1009	if (rc)
1010		efx->phy_mode = phy_mode;
1011
1012	return rc;
1013}
1014
1015/* Reinitialise the MAC to pick up new PHY settings, even if the port is
1016 * disabled. */
1017int efx_reconfigure_port(struct efx_nic *efx)
1018{
1019	int rc;
1020
1021	EFX_ASSERT_RESET_SERIALISED(efx);
1022
1023	mutex_lock(&efx->mac_lock);
1024	rc = __efx_reconfigure_port(efx);
1025	mutex_unlock(&efx->mac_lock);
1026
1027	return rc;
1028}
1029
1030/* Asynchronous work item for changing MAC promiscuity and multicast
1031 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1032 * MAC directly. */
1033static void efx_mac_work(struct work_struct *data)
1034{
1035	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1036
1037	mutex_lock(&efx->mac_lock);
1038	if (efx->port_enabled)
1039		efx_mac_reconfigure(efx);
1040	mutex_unlock(&efx->mac_lock);
1041}
1042
1043static int efx_probe_port(struct efx_nic *efx)
1044{
1045	int rc;
1046
1047	netif_dbg(efx, probe, efx->net_dev, "create port\n");
1048
1049	if (phy_flash_cfg)
1050		efx->phy_mode = PHY_MODE_SPECIAL;
1051
1052	/* Connect up MAC/PHY operations table */
1053	rc = efx->type->probe_port(efx);
1054	if (rc)
1055		return rc;
1056
1057	/* Initialise MAC address to permanent address */
1058	ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1059
1060	return 0;
1061}
1062
1063static int efx_init_port(struct efx_nic *efx)
1064{
1065	int rc;
1066
1067	netif_dbg(efx, drv, efx->net_dev, "init port\n");
1068
1069	mutex_lock(&efx->mac_lock);
1070
1071	rc = efx->phy_op->init(efx);
1072	if (rc)
1073		goto fail1;
1074
1075	efx->port_initialized = true;
1076
1077	/* Reconfigure the MAC before creating dma queues (required for
1078	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1079	efx_mac_reconfigure(efx);
1080
1081	/* Ensure the PHY advertises the correct flow control settings */
1082	rc = efx->phy_op->reconfigure(efx);
1083	if (rc && rc != -EPERM)
1084		goto fail2;
1085
1086	mutex_unlock(&efx->mac_lock);
1087	return 0;
1088
1089fail2:
1090	efx->phy_op->fini(efx);
1091fail1:
1092	mutex_unlock(&efx->mac_lock);
1093	return rc;
1094}
1095
1096static void efx_start_port(struct efx_nic *efx)
1097{
1098	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1099	BUG_ON(efx->port_enabled);
1100
1101	mutex_lock(&efx->mac_lock);
1102	efx->port_enabled = true;
1103
1104	/* Ensure MAC ingress/egress is enabled */
1105	efx_mac_reconfigure(efx);
1106
1107	mutex_unlock(&efx->mac_lock);
1108}
1109
1110/* Cancel work for MAC reconfiguration, periodic hardware monitoring
1111 * and the async self-test, wait for them to finish and prevent them
1112 * being scheduled again.  This doesn't cover online resets, which
1113 * should only be cancelled when removing the device.
1114 */
1115static void efx_stop_port(struct efx_nic *efx)
1116{
1117	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1118
1119	EFX_ASSERT_RESET_SERIALISED(efx);
1120
1121	mutex_lock(&efx->mac_lock);
1122	efx->port_enabled = false;
1123	mutex_unlock(&efx->mac_lock);
1124
1125	/* Serialise against efx_set_multicast_list() */
1126	netif_addr_lock_bh(efx->net_dev);
1127	netif_addr_unlock_bh(efx->net_dev);
1128
1129	cancel_delayed_work_sync(&efx->monitor_work);
1130	efx_selftest_async_cancel(efx);
1131	cancel_work_sync(&efx->mac_work);
1132}
1133
1134static void efx_fini_port(struct efx_nic *efx)
1135{
1136	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1137
1138	if (!efx->port_initialized)
1139		return;
1140
1141	efx->phy_op->fini(efx);
1142	efx->port_initialized = false;
1143
1144	efx->link_state.up = false;
1145	efx_link_status_changed(efx);
1146}
1147
1148static void efx_remove_port(struct efx_nic *efx)
1149{
1150	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1151
1152	efx->type->remove_port(efx);
1153}
1154
1155/**************************************************************************
1156 *
1157 * NIC handling
1158 *
1159 **************************************************************************/
1160
1161static LIST_HEAD(efx_primary_list);
1162static LIST_HEAD(efx_unassociated_list);
1163
1164static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1165{
1166	return left->type == right->type &&
1167		left->vpd_sn && right->vpd_sn &&
1168		!strcmp(left->vpd_sn, right->vpd_sn);
1169}
1170
1171static void efx_associate(struct efx_nic *efx)
1172{
1173	struct efx_nic *other, *next;
1174
1175	if (efx->primary == efx) {
1176		/* Adding primary function; look for secondaries */
1177
1178		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1179		list_add_tail(&efx->node, &efx_primary_list);
1180
1181		list_for_each_entry_safe(other, next, &efx_unassociated_list,
1182					 node) {
1183			if (efx_same_controller(efx, other)) {
1184				list_del(&other->node);
1185				netif_dbg(other, probe, other->net_dev,
1186					  "moving to secondary list of %s %s\n",
1187					  pci_name(efx->pci_dev),
1188					  efx->net_dev->name);
1189				list_add_tail(&other->node,
1190					      &efx->secondary_list);
1191				other->primary = efx;
1192			}
1193		}
1194	} else {
1195		/* Adding secondary function; look for primary */
1196
1197		list_for_each_entry(other, &efx_primary_list, node) {
1198			if (efx_same_controller(efx, other)) {
1199				netif_dbg(efx, probe, efx->net_dev,
1200					  "adding to secondary list of %s %s\n",
1201					  pci_name(other->pci_dev),
1202					  other->net_dev->name);
1203				list_add_tail(&efx->node,
1204					      &other->secondary_list);
1205				efx->primary = other;
1206				return;
1207			}
1208		}
1209
1210		netif_dbg(efx, probe, efx->net_dev,
1211			  "adding to unassociated list\n");
1212		list_add_tail(&efx->node, &efx_unassociated_list);
1213	}
1214}
1215
1216static void efx_dissociate(struct efx_nic *efx)
1217{
1218	struct efx_nic *other, *next;
1219
1220	list_del(&efx->node);
1221	efx->primary = NULL;
1222
1223	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1224		list_del(&other->node);
1225		netif_dbg(other, probe, other->net_dev,
1226			  "moving to unassociated list\n");
1227		list_add_tail(&other->node, &efx_unassociated_list);
1228		other->primary = NULL;
1229	}
1230}
1231
1232/* This configures the PCI device to enable I/O and DMA. */
1233static int efx_init_io(struct efx_nic *efx)
1234{
1235	struct pci_dev *pci_dev = efx->pci_dev;
1236	dma_addr_t dma_mask = efx->type->max_dma_mask;
1237	unsigned int mem_map_size = efx->type->mem_map_size(efx);
1238	int rc, bar;
1239
1240	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1241
1242	bar = efx->type->mem_bar;
1243
1244	rc = pci_enable_device(pci_dev);
1245	if (rc) {
1246		netif_err(efx, probe, efx->net_dev,
1247			  "failed to enable PCI device\n");
1248		goto fail1;
1249	}
1250
1251	pci_set_master(pci_dev);
1252
1253	/* Set the PCI DMA mask.  Try all possibilities from our
1254	 * genuine mask down to 32 bits, because some architectures
1255	 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1256	 * masks event though they reject 46 bit masks.
1257	 */
1258	while (dma_mask > 0x7fffffffUL) {
1259		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1260		if (rc == 0)
1261			break;
1262		dma_mask >>= 1;
1263	}
1264	if (rc) {
1265		netif_err(efx, probe, efx->net_dev,
1266			  "could not find a suitable DMA mask\n");
1267		goto fail2;
1268	}
1269	netif_dbg(efx, probe, efx->net_dev,
1270		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1271
1272	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1273	rc = pci_request_region(pci_dev, bar, "sfc");
1274	if (rc) {
1275		netif_err(efx, probe, efx->net_dev,
1276			  "request for memory BAR failed\n");
1277		rc = -EIO;
1278		goto fail3;
1279	}
1280	efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1281	if (!efx->membase) {
1282		netif_err(efx, probe, efx->net_dev,
1283			  "could not map memory BAR at %llx+%x\n",
1284			  (unsigned long long)efx->membase_phys, mem_map_size);
1285		rc = -ENOMEM;
1286		goto fail4;
1287	}
1288	netif_dbg(efx, probe, efx->net_dev,
1289		  "memory BAR at %llx+%x (virtual %p)\n",
1290		  (unsigned long long)efx->membase_phys, mem_map_size,
1291		  efx->membase);
1292
1293	return 0;
1294
1295 fail4:
1296	pci_release_region(efx->pci_dev, bar);
1297 fail3:
1298	efx->membase_phys = 0;
1299 fail2:
1300	pci_disable_device(efx->pci_dev);
1301 fail1:
1302	return rc;
1303}
1304
1305static void efx_fini_io(struct efx_nic *efx)
1306{
1307	int bar;
1308
1309	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1310
1311	if (efx->membase) {
1312		iounmap(efx->membase);
1313		efx->membase = NULL;
1314	}
1315
1316	if (efx->membase_phys) {
1317		bar = efx->type->mem_bar;
1318		pci_release_region(efx->pci_dev, bar);
1319		efx->membase_phys = 0;
1320	}
1321
1322	/* Don't disable bus-mastering if VFs are assigned */
1323	if (!pci_vfs_assigned(efx->pci_dev))
1324		pci_disable_device(efx->pci_dev);
1325}
1326
1327void efx_set_default_rx_indir_table(struct efx_nic *efx)
1328{
1329	size_t i;
1330
1331	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1332		efx->rx_indir_table[i] =
1333			ethtool_rxfh_indir_default(i, efx->rss_spread);
1334}
1335
1336static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1337{
1338	cpumask_var_t thread_mask;
1339	unsigned int count;
1340	int cpu;
1341
1342	if (rss_cpus) {
1343		count = rss_cpus;
1344	} else {
1345		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1346			netif_warn(efx, probe, efx->net_dev,
1347				   "RSS disabled due to allocation failure\n");
1348			return 1;
1349		}
1350
1351		count = 0;
1352		for_each_online_cpu(cpu) {
1353			if (!cpumask_test_cpu(cpu, thread_mask)) {
1354				++count;
1355				cpumask_or(thread_mask, thread_mask,
1356					   topology_sibling_cpumask(cpu));
1357			}
1358		}
1359
1360		free_cpumask_var(thread_mask);
1361	}
1362
1363	/* If RSS is requested for the PF *and* VFs then we can't write RSS
1364	 * table entries that are inaccessible to VFs
1365	 */
1366#ifdef CONFIG_SFC_SRIOV
1367	if (efx->type->sriov_wanted) {
1368		if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1369		    count > efx_vf_size(efx)) {
1370			netif_warn(efx, probe, efx->net_dev,
1371				   "Reducing number of RSS channels from %u to %u for "
1372				   "VF support. Increase vf-msix-limit to use more "
1373				   "channels on the PF.\n",
1374				   count, efx_vf_size(efx));
1375			count = efx_vf_size(efx);
1376		}
1377	}
1378#endif
1379
1380	return count;
1381}
1382
1383/* Probe the number and type of interrupts we are able to obtain, and
1384 * the resulting numbers of channels and RX queues.
1385 */
1386static int efx_probe_interrupts(struct efx_nic *efx)
1387{
1388	unsigned int extra_channels = 0;
1389	unsigned int i, j;
1390	int rc;
1391
1392	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1393		if (efx->extra_channel_type[i])
1394			++extra_channels;
1395
1396	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1397		struct msix_entry xentries[EFX_MAX_CHANNELS];
1398		unsigned int n_channels;
1399
1400		n_channels = efx_wanted_parallelism(efx);
1401		if (efx_separate_tx_channels)
1402			n_channels *= 2;
1403		n_channels += extra_channels;
1404		n_channels = min(n_channels, efx->max_channels);
1405
1406		for (i = 0; i < n_channels; i++)
1407			xentries[i].entry = i;
1408		rc = pci_enable_msix_range(efx->pci_dev,
1409					   xentries, 1, n_channels);
1410		if (rc < 0) {
1411			/* Fall back to single channel MSI */
1412			efx->interrupt_mode = EFX_INT_MODE_MSI;
1413			netif_err(efx, drv, efx->net_dev,
1414				  "could not enable MSI-X\n");
1415		} else if (rc < n_channels) {
1416			netif_err(efx, drv, efx->net_dev,
1417				  "WARNING: Insufficient MSI-X vectors"
1418				  " available (%d < %u).\n", rc, n_channels);
1419			netif_err(efx, drv, efx->net_dev,
1420				  "WARNING: Performance may be reduced.\n");
1421			n_channels = rc;
1422		}
1423
1424		if (rc > 0) {
1425			efx->n_channels = n_channels;
1426			if (n_channels > extra_channels)
1427				n_channels -= extra_channels;
1428			if (efx_separate_tx_channels) {
1429				efx->n_tx_channels = min(max(n_channels / 2,
1430							     1U),
1431							 efx->max_tx_channels);
1432				efx->n_rx_channels = max(n_channels -
1433							 efx->n_tx_channels,
1434							 1U);
1435			} else {
1436				efx->n_tx_channels = min(n_channels,
1437							 efx->max_tx_channels);
1438				efx->n_rx_channels = n_channels;
1439			}
1440			for (i = 0; i < efx->n_channels; i++)
1441				efx_get_channel(efx, i)->irq =
1442					xentries[i].vector;
1443		}
1444	}
1445
1446	/* Try single interrupt MSI */
1447	if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1448		efx->n_channels = 1;
1449		efx->n_rx_channels = 1;
1450		efx->n_tx_channels = 1;
1451		rc = pci_enable_msi(efx->pci_dev);
1452		if (rc == 0) {
1453			efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1454		} else {
1455			netif_err(efx, drv, efx->net_dev,
1456				  "could not enable MSI\n");
1457			efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1458		}
1459	}
1460
1461	/* Assume legacy interrupts */
1462	if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1463		efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
1464		efx->n_rx_channels = 1;
1465		efx->n_tx_channels = 1;
1466		efx->legacy_irq = efx->pci_dev->irq;
1467	}
1468
1469	/* Assign extra channels if possible */
1470	j = efx->n_channels;
1471	for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1472		if (!efx->extra_channel_type[i])
1473			continue;
1474		if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1475		    efx->n_channels <= extra_channels) {
1476			efx->extra_channel_type[i]->handle_no_channel(efx);
1477		} else {
1478			--j;
1479			efx_get_channel(efx, j)->type =
1480				efx->extra_channel_type[i];
1481		}
1482	}
1483
1484	/* RSS might be usable on VFs even if it is disabled on the PF */
1485#ifdef CONFIG_SFC_SRIOV
1486	if (efx->type->sriov_wanted) {
1487		efx->rss_spread = ((efx->n_rx_channels > 1 ||
1488				    !efx->type->sriov_wanted(efx)) ?
1489				   efx->n_rx_channels : efx_vf_size(efx));
1490		return 0;
1491	}
1492#endif
1493	efx->rss_spread = efx->n_rx_channels;
1494
1495	return 0;
1496}
1497
1498static int efx_soft_enable_interrupts(struct efx_nic *efx)
1499{
1500	struct efx_channel *channel, *end_channel;
1501	int rc;
1502
1503	BUG_ON(efx->state == STATE_DISABLED);
1504
1505	efx->irq_soft_enabled = true;
1506	smp_wmb();
1507
1508	efx_for_each_channel(channel, efx) {
1509		if (!channel->type->keep_eventq) {
1510			rc = efx_init_eventq(channel);
1511			if (rc)
1512				goto fail;
1513		}
1514		efx_start_eventq(channel);
1515	}
1516
1517	efx_mcdi_mode_event(efx);
1518
1519	return 0;
1520fail:
1521	end_channel = channel;
1522	efx_for_each_channel(channel, efx) {
1523		if (channel == end_channel)
1524			break;
1525		efx_stop_eventq(channel);
1526		if (!channel->type->keep_eventq)
1527			efx_fini_eventq(channel);
1528	}
1529
1530	return rc;
1531}
1532
1533static void efx_soft_disable_interrupts(struct efx_nic *efx)
1534{
1535	struct efx_channel *channel;
1536
1537	if (efx->state == STATE_DISABLED)
1538		return;
1539
1540	efx_mcdi_mode_poll(efx);
1541
1542	efx->irq_soft_enabled = false;
1543	smp_wmb();
1544
1545	if (efx->legacy_irq)
1546		synchronize_irq(efx->legacy_irq);
1547
1548	efx_for_each_channel(channel, efx) {
1549		if (channel->irq)
1550			synchronize_irq(channel->irq);
1551
1552		efx_stop_eventq(channel);
1553		if (!channel->type->keep_eventq)
1554			efx_fini_eventq(channel);
1555	}
1556
1557	/* Flush the asynchronous MCDI request queue */
1558	efx_mcdi_flush_async(efx);
1559}
1560
1561static int efx_enable_interrupts(struct efx_nic *efx)
1562{
1563	struct efx_channel *channel, *end_channel;
1564	int rc;
1565
1566	BUG_ON(efx->state == STATE_DISABLED);
1567
1568	if (efx->eeh_disabled_legacy_irq) {
1569		enable_irq(efx->legacy_irq);
1570		efx->eeh_disabled_legacy_irq = false;
1571	}
1572
1573	efx->type->irq_enable_master(efx);
1574
1575	efx_for_each_channel(channel, efx) {
1576		if (channel->type->keep_eventq) {
1577			rc = efx_init_eventq(channel);
1578			if (rc)
1579				goto fail;
1580		}
1581	}
1582
1583	rc = efx_soft_enable_interrupts(efx);
1584	if (rc)
1585		goto fail;
1586
1587	return 0;
1588
1589fail:
1590	end_channel = channel;
1591	efx_for_each_channel(channel, efx) {
1592		if (channel == end_channel)
1593			break;
1594		if (channel->type->keep_eventq)
1595			efx_fini_eventq(channel);
1596	}
1597
1598	efx->type->irq_disable_non_ev(efx);
1599
1600	return rc;
1601}
1602
1603static void efx_disable_interrupts(struct efx_nic *efx)
1604{
1605	struct efx_channel *channel;
1606
1607	efx_soft_disable_interrupts(efx);
1608
1609	efx_for_each_channel(channel, efx) {
1610		if (channel->type->keep_eventq)
1611			efx_fini_eventq(channel);
1612	}
1613
1614	efx->type->irq_disable_non_ev(efx);
1615}
1616
1617static void efx_remove_interrupts(struct efx_nic *efx)
1618{
1619	struct efx_channel *channel;
1620
1621	/* Remove MSI/MSI-X interrupts */
1622	efx_for_each_channel(channel, efx)
1623		channel->irq = 0;
1624	pci_disable_msi(efx->pci_dev);
1625	pci_disable_msix(efx->pci_dev);
1626
1627	/* Remove legacy interrupt */
1628	efx->legacy_irq = 0;
1629}
1630
1631static void efx_set_channels(struct efx_nic *efx)
1632{
1633	struct efx_channel *channel;
1634	struct efx_tx_queue *tx_queue;
1635
1636	efx->tx_channel_offset =
1637		efx_separate_tx_channels ?
1638		efx->n_channels - efx->n_tx_channels : 0;
1639
1640	/* We need to mark which channels really have RX and TX
1641	 * queues, and adjust the TX queue numbers if we have separate
1642	 * RX-only and TX-only channels.
1643	 */
1644	efx_for_each_channel(channel, efx) {
1645		if (channel->channel < efx->n_rx_channels)
1646			channel->rx_queue.core_index = channel->channel;
1647		else
1648			channel->rx_queue.core_index = -1;
1649
1650		efx_for_each_channel_tx_queue(tx_queue, channel)
1651			tx_queue->queue -= (efx->tx_channel_offset *
1652					    EFX_TXQ_TYPES);
1653	}
1654}
1655
1656static int efx_probe_nic(struct efx_nic *efx)
1657{
1658	int rc;
1659
1660	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1661
1662	/* Carry out hardware-type specific initialisation */
1663	rc = efx->type->probe(efx);
1664	if (rc)
1665		return rc;
1666
1667	do {
1668		if (!efx->max_channels || !efx->max_tx_channels) {
1669			netif_err(efx, drv, efx->net_dev,
1670				  "Insufficient resources to allocate"
1671				  " any channels\n");
1672			rc = -ENOSPC;
1673			goto fail1;
1674		}
1675
1676		/* Determine the number of channels and queues by trying
1677		 * to hook in MSI-X interrupts.
1678		 */
1679		rc = efx_probe_interrupts(efx);
1680		if (rc)
1681			goto fail1;
1682
1683		efx_set_channels(efx);
 
 
1684
1685		/* dimension_resources can fail with EAGAIN */
1686		rc = efx->type->dimension_resources(efx);
1687		if (rc != 0 && rc != -EAGAIN)
1688			goto fail2;
1689
1690		if (rc == -EAGAIN)
1691			/* try again with new max_channels */
1692			efx_remove_interrupts(efx);
1693
1694	} while (rc == -EAGAIN);
1695
1696	if (efx->n_channels > 1)
1697		netdev_rss_key_fill(&efx->rx_hash_key,
1698				    sizeof(efx->rx_hash_key));
1699	efx_set_default_rx_indir_table(efx);
1700
1701	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1702	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1703
1704	/* Initialise the interrupt moderation settings */
1705	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1706	efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1707				true);
1708
1709	return 0;
1710
1711fail2:
1712	efx_remove_interrupts(efx);
1713fail1:
1714	efx->type->remove(efx);
1715	return rc;
1716}
1717
1718static void efx_remove_nic(struct efx_nic *efx)
1719{
1720	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1721
1722	efx_remove_interrupts(efx);
1723	efx->type->remove(efx);
1724}
1725
1726static int efx_probe_filters(struct efx_nic *efx)
1727{
1728	int rc;
1729
1730	spin_lock_init(&efx->filter_lock);
1731	init_rwsem(&efx->filter_sem);
1732	mutex_lock(&efx->mac_lock);
1733	down_write(&efx->filter_sem);
1734	rc = efx->type->filter_table_probe(efx);
1735	if (rc)
1736		goto out_unlock;
1737
1738#ifdef CONFIG_RFS_ACCEL
1739	if (efx->type->offload_features & NETIF_F_NTUPLE) {
1740		struct efx_channel *channel;
1741		int i, success = 1;
1742
1743		efx_for_each_channel(channel, efx) {
1744			channel->rps_flow_id =
1745				kcalloc(efx->type->max_rx_ip_filters,
1746					sizeof(*channel->rps_flow_id),
1747					GFP_KERNEL);
1748			if (!channel->rps_flow_id)
1749				success = 0;
1750			else
1751				for (i = 0;
1752				     i < efx->type->max_rx_ip_filters;
1753				     ++i)
1754					channel->rps_flow_id[i] =
1755						RPS_FLOW_ID_INVALID;
1756		}
1757
1758		if (!success) {
1759			efx_for_each_channel(channel, efx)
1760				kfree(channel->rps_flow_id);
1761			efx->type->filter_table_remove(efx);
1762			rc = -ENOMEM;
1763			goto out_unlock;
1764		}
1765
1766		efx->rps_expire_index = efx->rps_expire_channel = 0;
1767	}
1768#endif
1769out_unlock:
1770	up_write(&efx->filter_sem);
1771	mutex_unlock(&efx->mac_lock);
1772	return rc;
1773}
1774
1775static void efx_remove_filters(struct efx_nic *efx)
1776{
1777#ifdef CONFIG_RFS_ACCEL
1778	struct efx_channel *channel;
1779
1780	efx_for_each_channel(channel, efx)
1781		kfree(channel->rps_flow_id);
1782#endif
1783	down_write(&efx->filter_sem);
1784	efx->type->filter_table_remove(efx);
1785	up_write(&efx->filter_sem);
1786}
1787
1788static void efx_restore_filters(struct efx_nic *efx)
1789{
1790	down_read(&efx->filter_sem);
1791	efx->type->filter_table_restore(efx);
1792	up_read(&efx->filter_sem);
1793}
1794
1795/**************************************************************************
1796 *
1797 * NIC startup/shutdown
1798 *
1799 *************************************************************************/
1800
1801static int efx_probe_all(struct efx_nic *efx)
1802{
1803	int rc;
1804
1805	rc = efx_probe_nic(efx);
1806	if (rc) {
1807		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1808		goto fail1;
1809	}
1810
1811	rc = efx_probe_port(efx);
1812	if (rc) {
1813		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1814		goto fail2;
1815	}
1816
1817	BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1818	if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1819		rc = -EINVAL;
1820		goto fail3;
1821	}
1822	efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1823
1824#ifdef CONFIG_SFC_SRIOV
1825	rc = efx->type->vswitching_probe(efx);
1826	if (rc) /* not fatal; the PF will still work fine */
1827		netif_warn(efx, probe, efx->net_dev,
1828			   "failed to setup vswitching rc=%d;"
1829			   " VFs may not function\n", rc);
1830#endif
1831
1832	rc = efx_probe_filters(efx);
1833	if (rc) {
1834		netif_err(efx, probe, efx->net_dev,
1835			  "failed to create filter tables\n");
1836		goto fail4;
1837	}
1838
1839	rc = efx_probe_channels(efx);
1840	if (rc)
1841		goto fail5;
1842
 
 
1843	return 0;
1844
1845 fail5:
1846	efx_remove_filters(efx);
1847 fail4:
1848#ifdef CONFIG_SFC_SRIOV
1849	efx->type->vswitching_remove(efx);
1850#endif
1851 fail3:
1852	efx_remove_port(efx);
1853 fail2:
1854	efx_remove_nic(efx);
1855 fail1:
1856	return rc;
1857}
1858
1859/* If the interface is supposed to be running but is not, start
1860 * the hardware and software data path, regular activity for the port
1861 * (MAC statistics, link polling, etc.) and schedule the port to be
1862 * reconfigured.  Interrupts must already be enabled.  This function
1863 * is safe to call multiple times, so long as the NIC is not disabled.
1864 * Requires the RTNL lock.
1865 */
1866static void efx_start_all(struct efx_nic *efx)
1867{
1868	EFX_ASSERT_RESET_SERIALISED(efx);
1869	BUG_ON(efx->state == STATE_DISABLED);
1870
1871	/* Check that it is appropriate to restart the interface. All
1872	 * of these flags are safe to read under just the rtnl lock */
1873	if (efx->port_enabled || !netif_running(efx->net_dev) ||
1874	    efx->reset_pending)
1875		return;
1876
1877	efx_start_port(efx);
1878	efx_start_datapath(efx);
1879
1880	/* Start the hardware monitor if there is one */
1881	if (efx->type->monitor != NULL)
1882		queue_delayed_work(efx->workqueue, &efx->monitor_work,
1883				   efx_monitor_interval);
1884
1885	/* Link state detection is normally event-driven; we have
1886	 * to poll now because we could have missed a change
1887	 */
1888	mutex_lock(&efx->mac_lock);
1889	if (efx->phy_op->poll(efx))
1890		efx_link_status_changed(efx);
1891	mutex_unlock(&efx->mac_lock);
1892
1893	efx->type->start_stats(efx);
1894	efx->type->pull_stats(efx);
1895	spin_lock_bh(&efx->stats_lock);
1896	efx->type->update_stats(efx, NULL, NULL);
1897	spin_unlock_bh(&efx->stats_lock);
1898}
1899
1900/* Quiesce the hardware and software data path, and regular activity
1901 * for the port without bringing the link down.  Safe to call multiple
1902 * times with the NIC in almost any state, but interrupts should be
1903 * enabled.  Requires the RTNL lock.
1904 */
1905static void efx_stop_all(struct efx_nic *efx)
1906{
1907	EFX_ASSERT_RESET_SERIALISED(efx);
1908
1909	/* port_enabled can be read safely under the rtnl lock */
1910	if (!efx->port_enabled)
1911		return;
1912
1913	/* update stats before we go down so we can accurately count
1914	 * rx_nodesc_drops
1915	 */
1916	efx->type->pull_stats(efx);
1917	spin_lock_bh(&efx->stats_lock);
1918	efx->type->update_stats(efx, NULL, NULL);
1919	spin_unlock_bh(&efx->stats_lock);
1920	efx->type->stop_stats(efx);
1921	efx_stop_port(efx);
1922
1923	/* Stop the kernel transmit interface.  This is only valid if
1924	 * the device is stopped or detached; otherwise the watchdog
1925	 * may fire immediately.
1926	 */
1927	WARN_ON(netif_running(efx->net_dev) &&
1928		netif_device_present(efx->net_dev));
1929	netif_tx_disable(efx->net_dev);
1930
1931	efx_stop_datapath(efx);
1932}
1933
1934static void efx_remove_all(struct efx_nic *efx)
1935{
1936	efx_remove_channels(efx);
1937	efx_remove_filters(efx);
1938#ifdef CONFIG_SFC_SRIOV
1939	efx->type->vswitching_remove(efx);
1940#endif
1941	efx_remove_port(efx);
1942	efx_remove_nic(efx);
1943}
1944
1945/**************************************************************************
1946 *
1947 * Interrupt moderation
1948 *
1949 **************************************************************************/
1950unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
1951{
1952	if (usecs == 0)
1953		return 0;
1954	if (usecs * 1000 < efx->timer_quantum_ns)
1955		return 1; /* never round down to 0 */
1956	return usecs * 1000 / efx->timer_quantum_ns;
1957}
1958
1959unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
1960{
1961	/* We must round up when converting ticks to microseconds
1962	 * because we round down when converting the other way.
1963	 */
1964	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1965}
1966
1967/* Set interrupt moderation parameters */
1968int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1969			    unsigned int rx_usecs, bool rx_adaptive,
1970			    bool rx_may_override_tx)
1971{
1972	struct efx_channel *channel;
1973	unsigned int timer_max_us;
1974
1975	EFX_ASSERT_RESET_SERIALISED(efx);
1976
1977	timer_max_us = efx->timer_max_ns / 1000;
1978
1979	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1980		return -EINVAL;
1981
1982	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1983	    !rx_may_override_tx) {
1984		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1985			  "RX and TX IRQ moderation must be equal\n");
1986		return -EINVAL;
1987	}
1988
1989	efx->irq_rx_adaptive = rx_adaptive;
1990	efx->irq_rx_moderation_us = rx_usecs;
1991	efx_for_each_channel(channel, efx) {
1992		if (efx_channel_has_rx_queue(channel))
1993			channel->irq_moderation_us = rx_usecs;
1994		else if (efx_channel_has_tx_queues(channel))
1995			channel->irq_moderation_us = tx_usecs;
 
 
1996	}
1997
1998	return 0;
1999}
2000
2001void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
2002			    unsigned int *rx_usecs, bool *rx_adaptive)
2003{
2004	*rx_adaptive = efx->irq_rx_adaptive;
2005	*rx_usecs = efx->irq_rx_moderation_us;
2006
2007	/* If channels are shared between RX and TX, so is IRQ
2008	 * moderation.  Otherwise, IRQ moderation is the same for all
2009	 * TX channels and is not adaptive.
2010	 */
2011	if (efx->tx_channel_offset == 0) {
2012		*tx_usecs = *rx_usecs;
2013	} else {
2014		struct efx_channel *tx_channel;
2015
2016		tx_channel = efx->channel[efx->tx_channel_offset];
2017		*tx_usecs = tx_channel->irq_moderation_us;
2018	}
2019}
2020
2021/**************************************************************************
2022 *
2023 * Hardware monitor
2024 *
2025 **************************************************************************/
2026
2027/* Run periodically off the general workqueue */
2028static void efx_monitor(struct work_struct *data)
2029{
2030	struct efx_nic *efx = container_of(data, struct efx_nic,
2031					   monitor_work.work);
2032
2033	netif_vdbg(efx, timer, efx->net_dev,
2034		   "hardware monitor executing on CPU %d\n",
2035		   raw_smp_processor_id());
2036	BUG_ON(efx->type->monitor == NULL);
2037
2038	/* If the mac_lock is already held then it is likely a port
2039	 * reconfiguration is already in place, which will likely do
2040	 * most of the work of monitor() anyway. */
2041	if (mutex_trylock(&efx->mac_lock)) {
2042		if (efx->port_enabled)
2043			efx->type->monitor(efx);
2044		mutex_unlock(&efx->mac_lock);
2045	}
2046
2047	queue_delayed_work(efx->workqueue, &efx->monitor_work,
2048			   efx_monitor_interval);
2049}
2050
2051/**************************************************************************
2052 *
2053 * ioctls
2054 *
2055 *************************************************************************/
2056
2057/* Net device ioctl
2058 * Context: process, rtnl_lock() held.
2059 */
2060static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2061{
2062	struct efx_nic *efx = netdev_priv(net_dev);
2063	struct mii_ioctl_data *data = if_mii(ifr);
2064
2065	if (cmd == SIOCSHWTSTAMP)
2066		return efx_ptp_set_ts_config(efx, ifr);
2067	if (cmd == SIOCGHWTSTAMP)
2068		return efx_ptp_get_ts_config(efx, ifr);
2069
2070	/* Convert phy_id from older PRTAD/DEVAD format */
2071	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2072	    (data->phy_id & 0xfc00) == 0x0400)
2073		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2074
2075	return mdio_mii_ioctl(&efx->mdio, data, cmd);
2076}
2077
2078/**************************************************************************
2079 *
2080 * NAPI interface
2081 *
2082 **************************************************************************/
2083
2084static void efx_init_napi_channel(struct efx_channel *channel)
2085{
2086	struct efx_nic *efx = channel->efx;
2087
2088	channel->napi_dev = efx->net_dev;
2089	netif_napi_add(channel->napi_dev, &channel->napi_str,
2090		       efx_poll, napi_weight);
2091	efx_channel_busy_poll_init(channel);
2092}
2093
2094static void efx_init_napi(struct efx_nic *efx)
2095{
2096	struct efx_channel *channel;
2097
2098	efx_for_each_channel(channel, efx)
2099		efx_init_napi_channel(channel);
2100}
2101
2102static void efx_fini_napi_channel(struct efx_channel *channel)
2103{
2104	if (channel->napi_dev)
2105		netif_napi_del(&channel->napi_str);
2106
2107	channel->napi_dev = NULL;
2108}
2109
2110static void efx_fini_napi(struct efx_nic *efx)
2111{
2112	struct efx_channel *channel;
2113
2114	efx_for_each_channel(channel, efx)
2115		efx_fini_napi_channel(channel);
2116}
2117
2118/**************************************************************************
2119 *
2120 * Kernel netpoll interface
2121 *
2122 *************************************************************************/
2123
2124#ifdef CONFIG_NET_POLL_CONTROLLER
2125
2126/* Although in the common case interrupts will be disabled, this is not
2127 * guaranteed. However, all our work happens inside the NAPI callback,
2128 * so no locking is required.
2129 */
2130static void efx_netpoll(struct net_device *net_dev)
2131{
2132	struct efx_nic *efx = netdev_priv(net_dev);
2133	struct efx_channel *channel;
2134
2135	efx_for_each_channel(channel, efx)
2136		efx_schedule_channel(channel);
2137}
2138
2139#endif
2140
2141#ifdef CONFIG_NET_RX_BUSY_POLL
2142static int efx_busy_poll(struct napi_struct *napi)
2143{
2144	struct efx_channel *channel =
2145		container_of(napi, struct efx_channel, napi_str);
2146	struct efx_nic *efx = channel->efx;
2147	int budget = 4;
2148	int old_rx_packets, rx_packets;
2149
2150	if (!netif_running(efx->net_dev))
2151		return LL_FLUSH_FAILED;
2152
2153	if (!efx_channel_try_lock_poll(channel))
2154		return LL_FLUSH_BUSY;
2155
2156	old_rx_packets = channel->rx_queue.rx_packets;
2157	efx_process_channel(channel, budget);
2158
2159	rx_packets = channel->rx_queue.rx_packets - old_rx_packets;
2160
2161	/* There is no race condition with NAPI here.
2162	 * NAPI will automatically be rescheduled if it yielded during busy
2163	 * polling, because it was not able to take the lock and thus returned
2164	 * the full budget.
2165	 */
2166	efx_channel_unlock_poll(channel);
2167
2168	return rx_packets;
2169}
2170#endif
2171
2172/**************************************************************************
2173 *
2174 * Kernel net device interface
2175 *
2176 *************************************************************************/
2177
2178/* Context: process, rtnl_lock() held. */
2179int efx_net_open(struct net_device *net_dev)
2180{
2181	struct efx_nic *efx = netdev_priv(net_dev);
2182	int rc;
2183
2184	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2185		  raw_smp_processor_id());
2186
2187	rc = efx_check_disabled(efx);
2188	if (rc)
2189		return rc;
2190	if (efx->phy_mode & PHY_MODE_SPECIAL)
2191		return -EBUSY;
2192	if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2193		return -EIO;
2194
2195	/* Notify the kernel of the link state polled during driver load,
2196	 * before the monitor starts running */
2197	efx_link_status_changed(efx);
2198
2199	efx_start_all(efx);
2200	efx_selftest_async_start(efx);
 
 
 
 
2201	return 0;
2202}
2203
2204/* Context: process, rtnl_lock() held.
2205 * Note that the kernel will ignore our return code; this method
2206 * should really be a void.
2207 */
2208int efx_net_stop(struct net_device *net_dev)
2209{
2210	struct efx_nic *efx = netdev_priv(net_dev);
2211
2212	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2213		  raw_smp_processor_id());
2214
2215	/* Stop the device and flush all the channels */
2216	efx_stop_all(efx);
2217
2218	return 0;
2219}
2220
2221/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2222static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2223					       struct rtnl_link_stats64 *stats)
2224{
2225	struct efx_nic *efx = netdev_priv(net_dev);
2226
2227	spin_lock_bh(&efx->stats_lock);
2228	efx->type->update_stats(efx, NULL, stats);
2229	spin_unlock_bh(&efx->stats_lock);
2230
2231	return stats;
2232}
2233
2234/* Context: netif_tx_lock held, BHs disabled. */
2235static void efx_watchdog(struct net_device *net_dev)
2236{
2237	struct efx_nic *efx = netdev_priv(net_dev);
2238
2239	netif_err(efx, tx_err, efx->net_dev,
2240		  "TX stuck with port_enabled=%d: resetting channels\n",
2241		  efx->port_enabled);
2242
2243	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2244}
2245
2246
2247/* Context: process, rtnl_lock() held. */
2248static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2249{
2250	struct efx_nic *efx = netdev_priv(net_dev);
2251	int rc;
2252
2253	rc = efx_check_disabled(efx);
2254	if (rc)
2255		return rc;
2256
2257	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2258
2259	efx_device_detach_sync(efx);
2260	efx_stop_all(efx);
2261
2262	mutex_lock(&efx->mac_lock);
2263	net_dev->mtu = new_mtu;
2264	efx_mac_reconfigure(efx);
2265	mutex_unlock(&efx->mac_lock);
2266
2267	efx_start_all(efx);
2268	netif_device_attach(efx->net_dev);
2269	return 0;
2270}
2271
2272static int efx_set_mac_address(struct net_device *net_dev, void *data)
2273{
2274	struct efx_nic *efx = netdev_priv(net_dev);
2275	struct sockaddr *addr = data;
2276	u8 *new_addr = addr->sa_data;
2277	u8 old_addr[6];
2278	int rc;
2279
2280	if (!is_valid_ether_addr(new_addr)) {
2281		netif_err(efx, drv, efx->net_dev,
2282			  "invalid ethernet MAC address requested: %pM\n",
2283			  new_addr);
2284		return -EADDRNOTAVAIL;
2285	}
2286
2287	/* save old address */
2288	ether_addr_copy(old_addr, net_dev->dev_addr);
2289	ether_addr_copy(net_dev->dev_addr, new_addr);
2290	if (efx->type->set_mac_address) {
2291		rc = efx->type->set_mac_address(efx);
2292		if (rc) {
2293			ether_addr_copy(net_dev->dev_addr, old_addr);
2294			return rc;
2295		}
2296	}
2297
2298	/* Reconfigure the MAC */
2299	mutex_lock(&efx->mac_lock);
2300	efx_mac_reconfigure(efx);
2301	mutex_unlock(&efx->mac_lock);
2302
2303	return 0;
2304}
2305
2306/* Context: netif_addr_lock held, BHs disabled. */
2307static void efx_set_rx_mode(struct net_device *net_dev)
2308{
2309	struct efx_nic *efx = netdev_priv(net_dev);
2310
2311	if (efx->port_enabled)
2312		queue_work(efx->workqueue, &efx->mac_work);
2313	/* Otherwise efx_start_port() will do this */
2314}
2315
2316static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2317{
2318	struct efx_nic *efx = netdev_priv(net_dev);
2319	int rc;
2320
2321	/* If disabling RX n-tuple filtering, clear existing filters */
2322	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2323		rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2324		if (rc)
2325			return rc;
2326	}
2327
2328	/* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2329	if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2330		/* efx_set_rx_mode() will schedule MAC work to update filters
2331		 * when a new features are finally set in net_dev.
2332		 */
2333		efx_set_rx_mode(net_dev);
2334	}
2335
2336	return 0;
2337}
2338
2339static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
2340{
2341	struct efx_nic *efx = netdev_priv(net_dev);
2342
2343	if (efx->type->vlan_rx_add_vid)
2344		return efx->type->vlan_rx_add_vid(efx, proto, vid);
2345	else
2346		return -EOPNOTSUPP;
2347}
2348
2349static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
2350{
2351	struct efx_nic *efx = netdev_priv(net_dev);
2352
2353	if (efx->type->vlan_rx_kill_vid)
2354		return efx->type->vlan_rx_kill_vid(efx, proto, vid);
2355	else
2356		return -EOPNOTSUPP;
2357}
2358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2359static const struct net_device_ops efx_netdev_ops = {
2360	.ndo_open		= efx_net_open,
2361	.ndo_stop		= efx_net_stop,
2362	.ndo_get_stats64	= efx_net_stats,
2363	.ndo_tx_timeout		= efx_watchdog,
2364	.ndo_start_xmit		= efx_hard_start_xmit,
2365	.ndo_validate_addr	= eth_validate_addr,
2366	.ndo_do_ioctl		= efx_ioctl,
2367	.ndo_change_mtu		= efx_change_mtu,
2368	.ndo_set_mac_address	= efx_set_mac_address,
2369	.ndo_set_rx_mode	= efx_set_rx_mode,
2370	.ndo_set_features	= efx_set_features,
 
2371	.ndo_vlan_rx_add_vid	= efx_vlan_rx_add_vid,
2372	.ndo_vlan_rx_kill_vid	= efx_vlan_rx_kill_vid,
 
 
2373#ifdef CONFIG_SFC_SRIOV
2374	.ndo_set_vf_mac		= efx_sriov_set_vf_mac,
2375	.ndo_set_vf_vlan	= efx_sriov_set_vf_vlan,
2376	.ndo_set_vf_spoofchk	= efx_sriov_set_vf_spoofchk,
2377	.ndo_get_vf_config	= efx_sriov_get_vf_config,
2378	.ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
2379	.ndo_get_phys_port_id   = efx_sriov_get_phys_port_id,
2380#endif
2381#ifdef CONFIG_NET_POLL_CONTROLLER
2382	.ndo_poll_controller = efx_netpoll,
2383#endif
2384	.ndo_setup_tc		= efx_setup_tc,
2385#ifdef CONFIG_NET_RX_BUSY_POLL
2386	.ndo_busy_poll		= efx_busy_poll,
2387#endif
 
 
2388#ifdef CONFIG_RFS_ACCEL
2389	.ndo_rx_flow_steer	= efx_filter_rfs,
2390#endif
 
 
2391};
2392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2393static void efx_update_name(struct efx_nic *efx)
2394{
2395	strcpy(efx->name, efx->net_dev->name);
2396	efx_mtd_rename(efx);
2397	efx_set_channel_names(efx);
2398}
2399
2400static int efx_netdev_event(struct notifier_block *this,
2401			    unsigned long event, void *ptr)
2402{
2403	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2404
2405	if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2406	    event == NETDEV_CHANGENAME)
2407		efx_update_name(netdev_priv(net_dev));
2408
2409	return NOTIFY_DONE;
2410}
2411
2412static struct notifier_block efx_netdev_notifier = {
2413	.notifier_call = efx_netdev_event,
2414};
2415
2416static ssize_t
2417show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2418{
2419	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2420	return sprintf(buf, "%d\n", efx->phy_type);
2421}
2422static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2423
2424#ifdef CONFIG_SFC_MCDI_LOGGING
2425static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
2426			     char *buf)
2427{
2428	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2429	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2430
2431	return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
2432}
2433static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
2434			    const char *buf, size_t count)
2435{
2436	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2437	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2438	bool enable = count > 0 && *buf != '0';
2439
2440	mcdi->logging_enabled = enable;
2441	return count;
2442}
2443static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
2444#endif
2445
2446static int efx_register_netdev(struct efx_nic *efx)
2447{
2448	struct net_device *net_dev = efx->net_dev;
2449	struct efx_channel *channel;
2450	int rc;
2451
2452	net_dev->watchdog_timeo = 5 * HZ;
2453	net_dev->irq = efx->pci_dev->irq;
2454	net_dev->netdev_ops = &efx_netdev_ops;
2455	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2456		net_dev->priv_flags |= IFF_UNICAST_FLT;
2457	net_dev->ethtool_ops = &efx_ethtool_ops;
2458	net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2459	net_dev->min_mtu = EFX_MIN_MTU;
2460	net_dev->max_mtu = EFX_MAX_MTU;
2461
2462	rtnl_lock();
2463
2464	/* Enable resets to be scheduled and check whether any were
2465	 * already requested.  If so, the NIC is probably hosed so we
2466	 * abort.
2467	 */
2468	efx->state = STATE_READY;
2469	smp_mb(); /* ensure we change state before checking reset_pending */
2470	if (efx->reset_pending) {
2471		netif_err(efx, probe, efx->net_dev,
2472			  "aborting probe due to scheduled reset\n");
2473		rc = -EIO;
2474		goto fail_locked;
2475	}
2476
2477	rc = dev_alloc_name(net_dev, net_dev->name);
2478	if (rc < 0)
2479		goto fail_locked;
2480	efx_update_name(efx);
2481
2482	/* Always start with carrier off; PHY events will detect the link */
2483	netif_carrier_off(net_dev);
2484
2485	rc = register_netdevice(net_dev);
2486	if (rc)
2487		goto fail_locked;
2488
2489	efx_for_each_channel(channel, efx) {
2490		struct efx_tx_queue *tx_queue;
2491		efx_for_each_channel_tx_queue(tx_queue, channel)
2492			efx_init_tx_queue_core_txq(tx_queue);
2493	}
2494
2495	efx_associate(efx);
2496
 
 
2497	rtnl_unlock();
2498
2499	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2500	if (rc) {
2501		netif_err(efx, drv, efx->net_dev,
2502			  "failed to init net dev attributes\n");
2503		goto fail_registered;
2504	}
2505#ifdef CONFIG_SFC_MCDI_LOGGING
2506	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2507	if (rc) {
2508		netif_err(efx, drv, efx->net_dev,
2509			  "failed to init net dev attributes\n");
2510		goto fail_attr_mcdi_logging;
2511	}
2512#endif
2513
2514	return 0;
2515
2516#ifdef CONFIG_SFC_MCDI_LOGGING
2517fail_attr_mcdi_logging:
2518	device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2519#endif
2520fail_registered:
2521	rtnl_lock();
2522	efx_dissociate(efx);
2523	unregister_netdevice(net_dev);
2524fail_locked:
2525	efx->state = STATE_UNINIT;
2526	rtnl_unlock();
2527	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2528	return rc;
2529}
2530
2531static void efx_unregister_netdev(struct efx_nic *efx)
2532{
2533	if (!efx->net_dev)
2534		return;
2535
2536	BUG_ON(netdev_priv(efx->net_dev) != efx);
 
2537
2538	if (efx_dev_registered(efx)) {
2539		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2540#ifdef CONFIG_SFC_MCDI_LOGGING
2541		device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2542#endif
2543		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2544		unregister_netdev(efx->net_dev);
2545	}
2546}
2547
2548/**************************************************************************
2549 *
2550 * Device reset and suspend
2551 *
2552 **************************************************************************/
2553
2554/* Tears down the entire software state and most of the hardware state
2555 * before reset.  */
2556void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2557{
2558	EFX_ASSERT_RESET_SERIALISED(efx);
2559
2560	if (method == RESET_TYPE_MCDI_TIMEOUT)
2561		efx->type->prepare_flr(efx);
2562
2563	efx_stop_all(efx);
2564	efx_disable_interrupts(efx);
2565
2566	mutex_lock(&efx->mac_lock);
2567	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2568	    method != RESET_TYPE_DATAPATH)
2569		efx->phy_op->fini(efx);
2570	efx->type->fini(efx);
2571}
2572
2573/* This function will always ensure that the locks acquired in
2574 * efx_reset_down() are released. A failure return code indicates
2575 * that we were unable to reinitialise the hardware, and the
2576 * driver should be disabled. If ok is false, then the rx and tx
2577 * engines are not restarted, pending a RESET_DISABLE. */
2578int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2579{
2580	int rc;
2581
2582	EFX_ASSERT_RESET_SERIALISED(efx);
2583
2584	if (method == RESET_TYPE_MCDI_TIMEOUT)
2585		efx->type->finish_flr(efx);
2586
2587	/* Ensure that SRAM is initialised even if we're disabling the device */
2588	rc = efx->type->init(efx);
2589	if (rc) {
2590		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2591		goto fail;
2592	}
2593
2594	if (!ok)
2595		goto fail;
2596
2597	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2598	    method != RESET_TYPE_DATAPATH) {
2599		rc = efx->phy_op->init(efx);
2600		if (rc)
2601			goto fail;
2602		rc = efx->phy_op->reconfigure(efx);
2603		if (rc && rc != -EPERM)
2604			netif_err(efx, drv, efx->net_dev,
2605				  "could not restore PHY settings\n");
2606	}
2607
2608	rc = efx_enable_interrupts(efx);
2609	if (rc)
2610		goto fail;
2611
2612#ifdef CONFIG_SFC_SRIOV
2613	rc = efx->type->vswitching_restore(efx);
2614	if (rc) /* not fatal; the PF will still work fine */
2615		netif_warn(efx, probe, efx->net_dev,
2616			   "failed to restore vswitching rc=%d;"
2617			   " VFs may not function\n", rc);
2618#endif
2619
2620	down_read(&efx->filter_sem);
2621	efx_restore_filters(efx);
2622	up_read(&efx->filter_sem);
2623	if (efx->type->sriov_reset)
2624		efx->type->sriov_reset(efx);
2625
2626	mutex_unlock(&efx->mac_lock);
2627
2628	efx_start_all(efx);
2629
2630	return 0;
2631
2632fail:
2633	efx->port_initialized = false;
2634
2635	mutex_unlock(&efx->mac_lock);
2636
2637	return rc;
2638}
2639
2640/* Reset the NIC using the specified method.  Note that the reset may
2641 * fail, in which case the card will be left in an unusable state.
2642 *
2643 * Caller must hold the rtnl_lock.
2644 */
2645int efx_reset(struct efx_nic *efx, enum reset_type method)
2646{
2647	int rc, rc2;
2648	bool disabled;
2649
2650	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2651		   RESET_TYPE(method));
2652
2653	efx_device_detach_sync(efx);
2654	efx_reset_down(efx, method);
2655
2656	rc = efx->type->reset(efx, method);
2657	if (rc) {
2658		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2659		goto out;
2660	}
2661
2662	/* Clear flags for the scopes we covered.  We assume the NIC and
2663	 * driver are now quiescent so that there is no race here.
2664	 */
2665	if (method < RESET_TYPE_MAX_METHOD)
2666		efx->reset_pending &= -(1 << (method + 1));
2667	else /* it doesn't fit into the well-ordered scope hierarchy */
2668		__clear_bit(method, &efx->reset_pending);
2669
2670	/* Reinitialise bus-mastering, which may have been turned off before
2671	 * the reset was scheduled. This is still appropriate, even in the
2672	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2673	 * can respond to requests. */
2674	pci_set_master(efx->pci_dev);
2675
2676out:
2677	/* Leave device stopped if necessary */
2678	disabled = rc ||
2679		method == RESET_TYPE_DISABLE ||
2680		method == RESET_TYPE_RECOVER_OR_DISABLE;
2681	rc2 = efx_reset_up(efx, method, !disabled);
2682	if (rc2) {
2683		disabled = true;
2684		if (!rc)
2685			rc = rc2;
2686	}
2687
2688	if (disabled) {
2689		dev_close(efx->net_dev);
2690		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2691		efx->state = STATE_DISABLED;
2692	} else {
2693		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2694		netif_device_attach(efx->net_dev);
2695	}
2696	return rc;
2697}
2698
2699/* Try recovery mechanisms.
2700 * For now only EEH is supported.
2701 * Returns 0 if the recovery mechanisms are unsuccessful.
2702 * Returns a non-zero value otherwise.
2703 */
2704int efx_try_recovery(struct efx_nic *efx)
2705{
2706#ifdef CONFIG_EEH
2707	/* A PCI error can occur and not be seen by EEH because nothing
2708	 * happens on the PCI bus. In this case the driver may fail and
2709	 * schedule a 'recover or reset', leading to this recovery handler.
2710	 * Manually call the eeh failure check function.
2711	 */
2712	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2713	if (eeh_dev_check_failure(eehdev)) {
2714		/* The EEH mechanisms will handle the error and reset the
2715		 * device if necessary.
2716		 */
2717		return 1;
2718	}
2719#endif
2720	return 0;
2721}
2722
2723static void efx_wait_for_bist_end(struct efx_nic *efx)
2724{
2725	int i;
2726
2727	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2728		if (efx_mcdi_poll_reboot(efx))
2729			goto out;
2730		msleep(BIST_WAIT_DELAY_MS);
2731	}
2732
2733	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2734out:
2735	/* Either way unset the BIST flag. If we found no reboot we probably
2736	 * won't recover, but we should try.
2737	 */
2738	efx->mc_bist_for_other_fn = false;
2739}
2740
2741/* The worker thread exists so that code that cannot sleep can
2742 * schedule a reset for later.
2743 */
2744static void efx_reset_work(struct work_struct *data)
2745{
2746	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2747	unsigned long pending;
2748	enum reset_type method;
2749
2750	pending = ACCESS_ONCE(efx->reset_pending);
2751	method = fls(pending) - 1;
2752
2753	if (method == RESET_TYPE_MC_BIST)
2754		efx_wait_for_bist_end(efx);
2755
2756	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2757	     method == RESET_TYPE_RECOVER_OR_ALL) &&
2758	    efx_try_recovery(efx))
2759		return;
2760
2761	if (!pending)
2762		return;
2763
2764	rtnl_lock();
2765
2766	/* We checked the state in efx_schedule_reset() but it may
2767	 * have changed by now.  Now that we have the RTNL lock,
2768	 * it cannot change again.
2769	 */
2770	if (efx->state == STATE_READY)
2771		(void)efx_reset(efx, method);
2772
2773	rtnl_unlock();
2774}
2775
2776void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2777{
2778	enum reset_type method;
2779
2780	if (efx->state == STATE_RECOVERY) {
2781		netif_dbg(efx, drv, efx->net_dev,
2782			  "recovering: skip scheduling %s reset\n",
2783			  RESET_TYPE(type));
2784		return;
2785	}
2786
2787	switch (type) {
2788	case RESET_TYPE_INVISIBLE:
2789	case RESET_TYPE_ALL:
2790	case RESET_TYPE_RECOVER_OR_ALL:
2791	case RESET_TYPE_WORLD:
2792	case RESET_TYPE_DISABLE:
2793	case RESET_TYPE_RECOVER_OR_DISABLE:
2794	case RESET_TYPE_DATAPATH:
2795	case RESET_TYPE_MC_BIST:
2796	case RESET_TYPE_MCDI_TIMEOUT:
2797		method = type;
2798		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2799			  RESET_TYPE(method));
2800		break;
2801	default:
2802		method = efx->type->map_reset_reason(type);
2803		netif_dbg(efx, drv, efx->net_dev,
2804			  "scheduling %s reset for %s\n",
2805			  RESET_TYPE(method), RESET_TYPE(type));
2806		break;
2807	}
2808
2809	set_bit(method, &efx->reset_pending);
2810	smp_mb(); /* ensure we change reset_pending before checking state */
2811
2812	/* If we're not READY then just leave the flags set as the cue
2813	 * to abort probing or reschedule the reset later.
2814	 */
2815	if (ACCESS_ONCE(efx->state) != STATE_READY)
2816		return;
2817
2818	/* efx_process_channel() will no longer read events once a
2819	 * reset is scheduled. So switch back to poll'd MCDI completions. */
2820	efx_mcdi_mode_poll(efx);
2821
2822	queue_work(reset_workqueue, &efx->reset_work);
2823}
2824
2825/**************************************************************************
2826 *
2827 * List of NICs we support
2828 *
2829 **************************************************************************/
2830
2831/* PCI device ID table */
2832static const struct pci_device_id efx_pci_table[] = {
2833	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),	/* SFC9020 */
2834	 .driver_data = (unsigned long) &siena_a0_nic_type},
2835	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),	/* SFL9021 */
2836	 .driver_data = (unsigned long) &siena_a0_nic_type},
2837	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2838	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2839	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
2840	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2841	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
2842	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2843	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
2844	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2845	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
2846	 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2847	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
2848	 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
 
 
 
 
2849	{0}			/* end of list */
2850};
2851
2852/**************************************************************************
2853 *
2854 * Dummy PHY/MAC operations
2855 *
2856 * Can be used for some unimplemented operations
2857 * Needed so all function pointers are valid and do not have to be tested
2858 * before use
2859 *
2860 **************************************************************************/
2861int efx_port_dummy_op_int(struct efx_nic *efx)
2862{
2863	return 0;
2864}
2865void efx_port_dummy_op_void(struct efx_nic *efx) {}
2866
2867static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2868{
2869	return false;
2870}
2871
2872static const struct efx_phy_operations efx_dummy_phy_operations = {
2873	.init		 = efx_port_dummy_op_int,
2874	.reconfigure	 = efx_port_dummy_op_int,
2875	.poll		 = efx_port_dummy_op_poll,
2876	.fini		 = efx_port_dummy_op_void,
2877};
2878
2879/**************************************************************************
2880 *
2881 * Data housekeeping
2882 *
2883 **************************************************************************/
2884
2885/* This zeroes out and then fills in the invariants in a struct
2886 * efx_nic (including all sub-structures).
2887 */
2888static int efx_init_struct(struct efx_nic *efx,
2889			   struct pci_dev *pci_dev, struct net_device *net_dev)
2890{
2891	int i;
2892
2893	/* Initialise common structures */
2894	INIT_LIST_HEAD(&efx->node);
2895	INIT_LIST_HEAD(&efx->secondary_list);
2896	spin_lock_init(&efx->biu_lock);
2897#ifdef CONFIG_SFC_MTD
2898	INIT_LIST_HEAD(&efx->mtd_list);
2899#endif
2900	INIT_WORK(&efx->reset_work, efx_reset_work);
2901	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2902	INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2903	efx->pci_dev = pci_dev;
2904	efx->msg_enable = debug;
2905	efx->state = STATE_UNINIT;
2906	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2907
2908	efx->net_dev = net_dev;
2909	efx->rx_prefix_size = efx->type->rx_prefix_size;
2910	efx->rx_ip_align =
2911		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2912	efx->rx_packet_hash_offset =
2913		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2914	efx->rx_packet_ts_offset =
2915		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2916	spin_lock_init(&efx->stats_lock);
2917	mutex_init(&efx->mac_lock);
2918	efx->phy_op = &efx_dummy_phy_operations;
2919	efx->mdio.dev = net_dev;
2920	INIT_WORK(&efx->mac_work, efx_mac_work);
2921	init_waitqueue_head(&efx->flush_wq);
2922
2923	for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2924		efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2925		if (!efx->channel[i])
2926			goto fail;
2927		efx->msi_context[i].efx = efx;
2928		efx->msi_context[i].index = i;
2929	}
2930
2931	/* Higher numbered interrupt modes are less capable! */
2932	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2933				  interrupt_mode);
2934
2935	/* Would be good to use the net_dev name, but we're too early */
2936	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2937		 pci_name(pci_dev));
2938	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2939	if (!efx->workqueue)
2940		goto fail;
2941
2942	return 0;
2943
2944fail:
2945	efx_fini_struct(efx);
2946	return -ENOMEM;
2947}
2948
2949static void efx_fini_struct(struct efx_nic *efx)
2950{
2951	int i;
2952
2953	for (i = 0; i < EFX_MAX_CHANNELS; i++)
2954		kfree(efx->channel[i]);
2955
2956	kfree(efx->vpd_sn);
2957
2958	if (efx->workqueue) {
2959		destroy_workqueue(efx->workqueue);
2960		efx->workqueue = NULL;
2961	}
2962}
2963
2964void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
2965{
2966	u64 n_rx_nodesc_trunc = 0;
2967	struct efx_channel *channel;
2968
2969	efx_for_each_channel(channel, efx)
2970		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2971	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2972	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2973}
2974
2975/**************************************************************************
2976 *
2977 * PCI interface
2978 *
2979 **************************************************************************/
2980
2981/* Main body of final NIC shutdown code
2982 * This is called only at module unload (or hotplug removal).
2983 */
2984static void efx_pci_remove_main(struct efx_nic *efx)
2985{
2986	/* Flush reset_work. It can no longer be scheduled since we
2987	 * are not READY.
2988	 */
2989	BUG_ON(efx->state == STATE_READY);
2990	cancel_work_sync(&efx->reset_work);
2991
2992	efx_disable_interrupts(efx);
 
2993	efx_nic_fini_interrupt(efx);
2994	efx_fini_port(efx);
2995	efx->type->fini(efx);
2996	efx_fini_napi(efx);
2997	efx_remove_all(efx);
2998}
2999
3000/* Final NIC shutdown
3001 * This is called only at module unload (or hotplug removal).  A PF can call
3002 * this on its VFs to ensure they are unbound first.
3003 */
3004static void efx_pci_remove(struct pci_dev *pci_dev)
3005{
 
3006	struct efx_nic *efx;
3007
3008	efx = pci_get_drvdata(pci_dev);
3009	if (!efx)
3010		return;
3011
3012	/* Mark the NIC as fini, then stop the interface */
3013	rtnl_lock();
3014	efx_dissociate(efx);
3015	dev_close(efx->net_dev);
3016	efx_disable_interrupts(efx);
3017	efx->state = STATE_UNINIT;
3018	rtnl_unlock();
3019
3020	if (efx->type->sriov_fini)
3021		efx->type->sriov_fini(efx);
3022
 
3023	efx_unregister_netdev(efx);
3024
3025	efx_mtd_remove(efx);
3026
3027	efx_pci_remove_main(efx);
3028
3029	efx_fini_io(efx);
3030	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
3031
 
3032	efx_fini_struct(efx);
3033	free_netdev(efx->net_dev);
3034
3035	pci_disable_pcie_error_reporting(pci_dev);
3036};
3037
3038/* NIC VPD information
3039 * Called during probe to display the part number of the
3040 * installed NIC.  VPD is potentially very large but this should
3041 * always appear within the first 512 bytes.
3042 */
3043#define SFC_VPD_LEN 512
3044static void efx_probe_vpd_strings(struct efx_nic *efx)
3045{
3046	struct pci_dev *dev = efx->pci_dev;
3047	char vpd_data[SFC_VPD_LEN];
3048	ssize_t vpd_size;
3049	int ro_start, ro_size, i, j;
3050
3051	/* Get the vpd data from the device */
3052	vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
3053	if (vpd_size <= 0) {
3054		netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
3055		return;
3056	}
3057
3058	/* Get the Read only section */
3059	ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
3060	if (ro_start < 0) {
3061		netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
3062		return;
3063	}
3064
3065	ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
3066	j = ro_size;
3067	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3068	if (i + j > vpd_size)
3069		j = vpd_size - i;
3070
3071	/* Get the Part number */
3072	i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
3073	if (i < 0) {
3074		netif_err(efx, drv, efx->net_dev, "Part number not found\n");
3075		return;
3076	}
3077
3078	j = pci_vpd_info_field_size(&vpd_data[i]);
3079	i += PCI_VPD_INFO_FLD_HDR_SIZE;
3080	if (i + j > vpd_size) {
3081		netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
3082		return;
3083	}
3084
3085	netif_info(efx, drv, efx->net_dev,
3086		   "Part Number : %.*s\n", j, &vpd_data[i]);
3087
3088	i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3089	j = ro_size;
3090	i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
3091	if (i < 0) {
3092		netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
3093		return;
3094	}
3095
3096	j = pci_vpd_info_field_size(&vpd_data[i]);
3097	i += PCI_VPD_INFO_FLD_HDR_SIZE;
3098	if (i + j > vpd_size) {
3099		netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
3100		return;
3101	}
3102
3103	efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
3104	if (!efx->vpd_sn)
3105		return;
3106
3107	snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3108}
3109
3110
3111/* Main body of NIC initialisation
3112 * This is called at module load (or hotplug insertion, theoretically).
3113 */
3114static int efx_pci_probe_main(struct efx_nic *efx)
3115{
3116	int rc;
3117
3118	/* Do start-of-day initialisation */
3119	rc = efx_probe_all(efx);
3120	if (rc)
3121		goto fail1;
3122
3123	efx_init_napi(efx);
3124
 
3125	rc = efx->type->init(efx);
 
3126	if (rc) {
3127		netif_err(efx, probe, efx->net_dev,
3128			  "failed to initialise NIC\n");
3129		goto fail3;
3130	}
3131
3132	rc = efx_init_port(efx);
3133	if (rc) {
3134		netif_err(efx, probe, efx->net_dev,
3135			  "failed to initialise port\n");
3136		goto fail4;
3137	}
3138
3139	rc = efx_nic_init_interrupt(efx);
3140	if (rc)
3141		goto fail5;
 
 
3142	rc = efx_enable_interrupts(efx);
3143	if (rc)
3144		goto fail6;
3145
3146	return 0;
3147
3148 fail6:
 
3149	efx_nic_fini_interrupt(efx);
3150 fail5:
3151	efx_fini_port(efx);
3152 fail4:
3153	efx->type->fini(efx);
3154 fail3:
3155	efx_fini_napi(efx);
3156	efx_remove_all(efx);
3157 fail1:
3158	return rc;
3159}
3160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3161/* NIC initialisation
3162 *
3163 * This is called at module load (or hotplug insertion,
3164 * theoretically).  It sets up PCI mappings, resets the NIC,
3165 * sets up and registers the network devices with the kernel and hooks
3166 * the interrupt service routine.  It does not prepare the device for
3167 * transmission; this is left to the first time one of the network
3168 * interfaces is brought up (i.e. efx_net_open).
3169 */
3170static int efx_pci_probe(struct pci_dev *pci_dev,
3171			 const struct pci_device_id *entry)
3172{
 
3173	struct net_device *net_dev;
3174	struct efx_nic *efx;
3175	int rc;
3176
3177	/* Allocate and initialise a struct net_device and struct efx_nic */
3178	net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
3179				     EFX_MAX_RX_QUEUES);
3180	if (!net_dev)
3181		return -ENOMEM;
3182	efx = netdev_priv(net_dev);
 
 
 
 
 
 
 
 
 
 
 
3183	efx->type = (const struct efx_nic_type *) entry->driver_data;
3184	efx->fixed_features |= NETIF_F_HIGHDMA;
3185
3186	pci_set_drvdata(pci_dev, efx);
3187	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3188	rc = efx_init_struct(efx, pci_dev, net_dev);
3189	if (rc)
3190		goto fail1;
 
3191
3192	netif_info(efx, probe, efx->net_dev,
3193		   "Solarflare NIC detected\n");
3194
3195	if (!efx->type->is_vf)
3196		efx_probe_vpd_strings(efx);
3197
3198	/* Set up basic I/O (BAR mappings etc) */
3199	rc = efx_init_io(efx);
 
3200	if (rc)
3201		goto fail2;
3202
3203	rc = efx_pci_probe_main(efx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3204	if (rc)
3205		goto fail3;
3206
3207	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
3208			      NETIF_F_TSO | NETIF_F_RXCSUM);
3209	if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
3210		net_dev->features |= NETIF_F_TSO6;
3211	/* Check whether device supports TSO */
3212	if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
3213		net_dev->features &= ~NETIF_F_ALL_TSO;
3214	/* Mask for features that also apply to VLAN devices */
3215	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
3216				   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
3217				   NETIF_F_RXCSUM);
3218
3219	net_dev->hw_features = net_dev->features & ~efx->fixed_features;
3220
3221	/* Disable VLAN filtering by default.  It may be enforced if
3222	 * the feature is fixed (i.e. VLAN filters are required to
3223	 * receive VLAN tagged packets due to vPort restrictions).
3224	 */
3225	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3226	net_dev->features |= efx->fixed_features;
3227
3228	rc = efx_register_netdev(efx);
3229	if (rc)
3230		goto fail4;
3231
3232	if (efx->type->sriov_init) {
3233		rc = efx->type->sriov_init(efx);
3234		if (rc)
3235			netif_err(efx, probe, efx->net_dev,
3236				  "SR-IOV can't be enabled rc %d\n", rc);
3237	}
3238
3239	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3240
3241	/* Try to create MTDs, but allow this to fail */
3242	rtnl_lock();
3243	rc = efx_mtd_probe(efx);
3244	rtnl_unlock();
3245	if (rc && rc != -EPERM)
3246		netif_warn(efx, probe, efx->net_dev,
3247			   "failed to create MTDs (%d)\n", rc);
3248
3249	rc = pci_enable_pcie_error_reporting(pci_dev);
3250	if (rc && rc != -EINVAL)
3251		netif_notice(efx, probe, efx->net_dev,
3252			     "PCIE error reporting unavailable (%d).\n",
3253			     rc);
3254
3255	return 0;
3256
3257 fail4:
3258	efx_pci_remove_main(efx);
3259 fail3:
3260	efx_fini_io(efx);
3261 fail2:
3262	efx_fini_struct(efx);
3263 fail1:
3264	WARN_ON(rc > 0);
3265	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3266	free_netdev(net_dev);
 
 
3267	return rc;
3268}
3269
3270/* efx_pci_sriov_configure returns the actual number of Virtual Functions
3271 * enabled on success
3272 */
3273#ifdef CONFIG_SFC_SRIOV
3274static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
3275{
3276	int rc;
3277	struct efx_nic *efx = pci_get_drvdata(dev);
3278
3279	if (efx->type->sriov_configure) {
3280		rc = efx->type->sriov_configure(efx, num_vfs);
3281		if (rc)
3282			return rc;
3283		else
3284			return num_vfs;
3285	} else
3286		return -EOPNOTSUPP;
3287}
3288#endif
3289
3290static int efx_pm_freeze(struct device *dev)
3291{
3292	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3293
3294	rtnl_lock();
3295
3296	if (efx->state != STATE_DISABLED) {
3297		efx->state = STATE_UNINIT;
3298
3299		efx_device_detach_sync(efx);
3300
3301		efx_stop_all(efx);
3302		efx_disable_interrupts(efx);
 
 
3303	}
3304
3305	rtnl_unlock();
3306
3307	return 0;
3308}
3309
 
 
 
 
 
 
 
 
 
 
 
3310static int efx_pm_thaw(struct device *dev)
3311{
3312	int rc;
3313	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3314
3315	rtnl_lock();
3316
3317	if (efx->state != STATE_DISABLED) {
3318		rc = efx_enable_interrupts(efx);
3319		if (rc)
3320			goto fail;
3321
3322		mutex_lock(&efx->mac_lock);
3323		efx->phy_op->reconfigure(efx);
3324		mutex_unlock(&efx->mac_lock);
3325
3326		efx_start_all(efx);
3327
3328		netif_device_attach(efx->net_dev);
3329
3330		efx->state = STATE_READY;
3331
3332		efx->type->resume_wol(efx);
3333	}
3334
3335	rtnl_unlock();
3336
3337	/* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3338	queue_work(reset_workqueue, &efx->reset_work);
3339
3340	return 0;
3341
3342fail:
3343	rtnl_unlock();
3344
3345	return rc;
3346}
3347
3348static int efx_pm_poweroff(struct device *dev)
3349{
3350	struct pci_dev *pci_dev = to_pci_dev(dev);
3351	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3352
3353	efx->type->fini(efx);
3354
3355	efx->reset_pending = 0;
3356
3357	pci_save_state(pci_dev);
3358	return pci_set_power_state(pci_dev, PCI_D3hot);
3359}
3360
3361/* Used for both resume and restore */
3362static int efx_pm_resume(struct device *dev)
3363{
3364	struct pci_dev *pci_dev = to_pci_dev(dev);
3365	struct efx_nic *efx = pci_get_drvdata(pci_dev);
3366	int rc;
3367
3368	rc = pci_set_power_state(pci_dev, PCI_D0);
3369	if (rc)
3370		return rc;
3371	pci_restore_state(pci_dev);
3372	rc = pci_enable_device(pci_dev);
3373	if (rc)
3374		return rc;
3375	pci_set_master(efx->pci_dev);
3376	rc = efx->type->reset(efx, RESET_TYPE_ALL);
3377	if (rc)
3378		return rc;
 
3379	rc = efx->type->init(efx);
 
3380	if (rc)
3381		return rc;
3382	rc = efx_pm_thaw(dev);
3383	return rc;
3384}
3385
3386static int efx_pm_suspend(struct device *dev)
3387{
3388	int rc;
3389
3390	efx_pm_freeze(dev);
3391	rc = efx_pm_poweroff(dev);
3392	if (rc)
3393		efx_pm_resume(dev);
3394	return rc;
3395}
3396
3397static const struct dev_pm_ops efx_pm_ops = {
3398	.suspend	= efx_pm_suspend,
3399	.resume		= efx_pm_resume,
3400	.freeze		= efx_pm_freeze,
3401	.thaw		= efx_pm_thaw,
3402	.poweroff	= efx_pm_poweroff,
3403	.restore	= efx_pm_resume,
3404};
3405
3406/* A PCI error affecting this device was detected.
3407 * At this point MMIO and DMA may be disabled.
3408 * Stop the software path and request a slot reset.
3409 */
3410static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3411					      enum pci_channel_state state)
3412{
3413	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3414	struct efx_nic *efx = pci_get_drvdata(pdev);
3415
3416	if (state == pci_channel_io_perm_failure)
3417		return PCI_ERS_RESULT_DISCONNECT;
3418
3419	rtnl_lock();
3420
3421	if (efx->state != STATE_DISABLED) {
3422		efx->state = STATE_RECOVERY;
3423		efx->reset_pending = 0;
3424
3425		efx_device_detach_sync(efx);
3426
3427		efx_stop_all(efx);
3428		efx_disable_interrupts(efx);
3429
3430		status = PCI_ERS_RESULT_NEED_RESET;
3431	} else {
3432		/* If the interface is disabled we don't want to do anything
3433		 * with it.
3434		 */
3435		status = PCI_ERS_RESULT_RECOVERED;
3436	}
3437
3438	rtnl_unlock();
3439
3440	pci_disable_device(pdev);
3441
3442	return status;
3443}
3444
3445/* Fake a successful reset, which will be performed later in efx_io_resume. */
3446static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3447{
3448	struct efx_nic *efx = pci_get_drvdata(pdev);
3449	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3450	int rc;
3451
3452	if (pci_enable_device(pdev)) {
3453		netif_err(efx, hw, efx->net_dev,
3454			  "Cannot re-enable PCI device after reset.\n");
3455		status =  PCI_ERS_RESULT_DISCONNECT;
3456	}
3457
3458	rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3459	if (rc) {
3460		netif_err(efx, hw, efx->net_dev,
3461		"pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3462		/* Non-fatal error. Continue. */
3463	}
3464
3465	return status;
3466}
3467
3468/* Perform the actual reset and resume I/O operations. */
3469static void efx_io_resume(struct pci_dev *pdev)
3470{
3471	struct efx_nic *efx = pci_get_drvdata(pdev);
3472	int rc;
3473
3474	rtnl_lock();
3475
3476	if (efx->state == STATE_DISABLED)
3477		goto out;
3478
3479	rc = efx_reset(efx, RESET_TYPE_ALL);
3480	if (rc) {
3481		netif_err(efx, hw, efx->net_dev,
3482			  "efx_reset failed after PCI error (%d)\n", rc);
3483	} else {
3484		efx->state = STATE_READY;
3485		netif_dbg(efx, hw, efx->net_dev,
3486			  "Done resetting and resuming IO after PCI error.\n");
3487	}
3488
3489out:
3490	rtnl_unlock();
3491}
3492
3493/* For simplicity and reliability, we always require a slot reset and try to
3494 * reset the hardware when a pci error affecting the device is detected.
3495 * We leave both the link_reset and mmio_enabled callback unimplemented:
3496 * with our request for slot reset the mmio_enabled callback will never be
3497 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3498 */
3499static const struct pci_error_handlers efx_err_handlers = {
3500	.error_detected = efx_io_error_detected,
3501	.slot_reset	= efx_io_slot_reset,
3502	.resume		= efx_io_resume,
3503};
3504
3505static struct pci_driver efx_pci_driver = {
3506	.name		= KBUILD_MODNAME,
3507	.id_table	= efx_pci_table,
3508	.probe		= efx_pci_probe,
3509	.remove		= efx_pci_remove,
3510	.driver.pm	= &efx_pm_ops,
 
3511	.err_handler	= &efx_err_handlers,
3512#ifdef CONFIG_SFC_SRIOV
3513	.sriov_configure = efx_pci_sriov_configure,
3514#endif
3515};
3516
3517/**************************************************************************
3518 *
3519 * Kernel module interface
3520 *
3521 *************************************************************************/
3522
3523module_param(interrupt_mode, uint, 0444);
3524MODULE_PARM_DESC(interrupt_mode,
3525		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3526
3527static int __init efx_init_module(void)
3528{
3529	int rc;
3530
3531	printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3532
3533	rc = register_netdevice_notifier(&efx_netdev_notifier);
3534	if (rc)
3535		goto err_notifier;
3536
3537#ifdef CONFIG_SFC_SRIOV
3538	rc = efx_init_sriov();
3539	if (rc)
3540		goto err_sriov;
3541#endif
3542
3543	reset_workqueue = create_singlethread_workqueue("sfc_reset");
3544	if (!reset_workqueue) {
3545		rc = -ENOMEM;
3546		goto err_reset;
3547	}
3548
3549	rc = pci_register_driver(&efx_pci_driver);
3550	if (rc < 0)
3551		goto err_pci;
3552
 
 
 
 
3553	return 0;
3554
 
 
3555 err_pci:
3556	destroy_workqueue(reset_workqueue);
3557 err_reset:
3558#ifdef CONFIG_SFC_SRIOV
3559	efx_fini_sriov();
3560 err_sriov:
3561#endif
3562	unregister_netdevice_notifier(&efx_netdev_notifier);
3563 err_notifier:
3564	return rc;
3565}
3566
3567static void __exit efx_exit_module(void)
3568{
3569	printk(KERN_INFO "Solarflare NET driver unloading\n");
3570
 
3571	pci_unregister_driver(&efx_pci_driver);
3572	destroy_workqueue(reset_workqueue);
3573#ifdef CONFIG_SFC_SRIOV
3574	efx_fini_sriov();
3575#endif
3576	unregister_netdevice_notifier(&efx_netdev_notifier);
3577
3578}
3579
3580module_init(efx_init_module);
3581module_exit(efx_exit_module);
3582
3583MODULE_AUTHOR("Solarflare Communications and "
3584	      "Michael Brown <mbrown@fensystems.co.uk>");
3585MODULE_DESCRIPTION("Solarflare network driver");
3586MODULE_LICENSE("GPL");
3587MODULE_DEVICE_TABLE(pci, efx_pci_table);