Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
   9#include <linux/sched/mm.h>
  10#include <linux/spinlock.h>
  11#include <linux/blkdev.h>
  12#include <linux/swap.h>
  13#include <linux/writeback.h>
  14#include <linux/pagevec.h>
  15#include <linux/prefetch.h>
  16#include <linux/fsverity.h>
  17#include "misc.h"
  18#include "extent_io.h"
  19#include "extent-io-tree.h"
  20#include "extent_map.h"
  21#include "ctree.h"
  22#include "btrfs_inode.h"
  23#include "bio.h"
 
  24#include "locking.h"
  25#include "rcu-string.h"
  26#include "backref.h"
  27#include "disk-io.h"
  28#include "subpage.h"
  29#include "zoned.h"
  30#include "block-group.h"
  31#include "compression.h"
  32#include "fs.h"
  33#include "accessors.h"
  34#include "file-item.h"
  35#include "file.h"
  36#include "dev-replace.h"
  37#include "super.h"
  38#include "transaction.h"
  39
 
  40static struct kmem_cache *extent_buffer_cache;
 
 
 
 
 
 
  41
  42#ifdef CONFIG_BTRFS_DEBUG
  43static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
 
 
 
 
 
  44{
  45	struct btrfs_fs_info *fs_info = eb->fs_info;
  46	unsigned long flags;
  47
  48	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  49	list_add(&eb->leak_list, &fs_info->allocated_ebs);
  50	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  51}
  52
  53static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
 
  54{
  55	struct btrfs_fs_info *fs_info = eb->fs_info;
  56	unsigned long flags;
  57
  58	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  59	list_del(&eb->leak_list);
  60	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  61}
  62
  63void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
  64{
  65	struct extent_buffer *eb;
  66	unsigned long flags;
  67
  68	/*
  69	 * If we didn't get into open_ctree our allocated_ebs will not be
  70	 * initialized, so just skip this.
  71	 */
  72	if (!fs_info->allocated_ebs.next)
  73		return;
  74
  75	WARN_ON(!list_empty(&fs_info->allocated_ebs));
  76	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  77	while (!list_empty(&fs_info->allocated_ebs)) {
  78		eb = list_first_entry(&fs_info->allocated_ebs,
  79				      struct extent_buffer, leak_list);
  80		pr_err(
  81	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
  82		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
  83		       btrfs_header_owner(eb));
  84		list_del(&eb->leak_list);
  85		kmem_cache_free(extent_buffer_cache, eb);
  86	}
  87	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  88}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89#else
  90#define btrfs_leak_debug_add_eb(eb)			do {} while (0)
  91#define btrfs_leak_debug_del_eb(eb)			do {} while (0)
 
 
  92#endif
  93
  94/*
  95 * Structure to record info about the bio being assembled, and other info like
  96 * how many bytes are there before stripe/ordered extent boundary.
  97 */
  98struct btrfs_bio_ctrl {
  99	struct btrfs_bio *bbio;
 100	enum btrfs_compression_type compress_type;
 101	u32 len_to_oe_boundary;
 102	blk_opf_t opf;
 103	btrfs_bio_end_io_t end_io_func;
 104	struct writeback_control *wbc;
 105};
 106
 107static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 108{
 109	struct btrfs_bio *bbio = bio_ctrl->bbio;
 110
 111	if (!bbio)
 112		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113
 114	/* Caller should ensure the bio has at least some range added */
 115	ASSERT(bbio->bio.bi_iter.bi_size);
 116
 117	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
 118	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
 119		btrfs_submit_compressed_read(bbio);
 120	else
 121		btrfs_submit_bio(bbio, 0);
 
 122
 123	/* The bbio is owned by the end_io handler now */
 124	bio_ctrl->bbio = NULL;
 
 
 
 
 
 
 
 
 
 
 
 125}
 126
 127/*
 128 * Submit or fail the current bio in the bio_ctrl structure.
 
 
 
 129 */
 130static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
 131{
 132	struct btrfs_bio *bbio = bio_ctrl->bbio;
 133
 134	if (!bbio)
 135		return;
 136
 137	if (ret) {
 138		ASSERT(ret < 0);
 139		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
 140		/* The bio is owned by the end_io handler now */
 141		bio_ctrl->bbio = NULL;
 142	} else {
 143		submit_one_bio(bio_ctrl);
 
 
 
 144	}
 
 145}
 146
 147int __init extent_buffer_init_cachep(void)
 
 
 
 
 
 
 
 
 
 
 148{
 149	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 150			sizeof(struct extent_buffer), 0,
 151			SLAB_MEM_SPREAD, NULL);
 152	if (!extent_buffer_cache)
 153		return -ENOMEM;
 154
 
 
 
 
 
 
 
 
 155	return 0;
 
 
 
 
 
 
 
 
 156}
 157
 158void __cold extent_buffer_free_cachep(void)
 
 
 
 
 
 
 159{
 160	/*
 161	 * Make sure all delayed rcu free are flushed before we
 162	 * destroy caches.
 163	 */
 164	rcu_barrier();
 165	kmem_cache_destroy(extent_buffer_cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166}
 167
 168void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
 169{
 170	unsigned long index = start >> PAGE_SHIFT;
 171	unsigned long end_index = end >> PAGE_SHIFT;
 172	struct page *page;
 173
 174	while (index <= end_index) {
 175		page = find_get_page(inode->i_mapping, index);
 176		BUG_ON(!page); /* Pages should be in the extent_io_tree */
 177		clear_page_dirty_for_io(page);
 178		put_page(page);
 179		index++;
 180	}
 181}
 182
 183static void process_one_page(struct btrfs_fs_info *fs_info,
 184			     struct page *page, struct page *locked_page,
 185			     unsigned long page_ops, u64 start, u64 end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186{
 187	struct folio *folio = page_folio(page);
 188	u32 len;
 189
 190	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
 191	len = end + 1 - start;
 192
 193	if (page_ops & PAGE_SET_ORDERED)
 194		btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
 
 
 195	if (page_ops & PAGE_START_WRITEBACK) {
 196		btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
 197		btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
 198	}
 199	if (page_ops & PAGE_END_WRITEBACK)
 200		btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
 
 
 
 201
 202	if (page != locked_page && (page_ops & PAGE_UNLOCK))
 203		btrfs_folio_end_writer_lock(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 204}
 205
 206static void __process_pages_contig(struct address_space *mapping,
 207				   struct page *locked_page, u64 start, u64 end,
 208				   unsigned long page_ops)
 
 209{
 210	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
 211	pgoff_t start_index = start >> PAGE_SHIFT;
 212	pgoff_t end_index = end >> PAGE_SHIFT;
 213	pgoff_t index = start_index;
 214	struct folio_batch fbatch;
 
 
 
 215	int i;
 216
 217	folio_batch_init(&fbatch);
 218	while (index <= end_index) {
 219		int found_folios;
 
 
 
 
 220
 221		found_folios = filemap_get_folios_contig(mapping, &index,
 222				end_index, &fbatch);
 223		for (i = 0; i < found_folios; i++) {
 224			struct folio *folio = fbatch.folios[i];
 225
 226			process_one_page(fs_info, &folio->page, locked_page,
 227					 page_ops, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228		}
 229		folio_batch_release(&fbatch);
 
 230		cond_resched();
 231	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232}
 233
 234static noinline void __unlock_for_delalloc(struct inode *inode,
 235					   struct page *locked_page,
 236					   u64 start, u64 end)
 237{
 238	unsigned long index = start >> PAGE_SHIFT;
 239	unsigned long end_index = end >> PAGE_SHIFT;
 240
 241	ASSERT(locked_page);
 242	if (index == locked_page->index && end_index == index)
 243		return;
 244
 245	__process_pages_contig(inode->i_mapping, locked_page, start, end,
 246			       PAGE_UNLOCK);
 247}
 248
 249static noinline int lock_delalloc_pages(struct inode *inode,
 250					struct page *locked_page,
 251					u64 start,
 252					u64 end)
 253{
 254	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 255	struct address_space *mapping = inode->i_mapping;
 256	pgoff_t start_index = start >> PAGE_SHIFT;
 257	pgoff_t end_index = end >> PAGE_SHIFT;
 258	pgoff_t index = start_index;
 259	u64 processed_end = start;
 260	struct folio_batch fbatch;
 261
 
 262	if (index == locked_page->index && index == end_index)
 263		return 0;
 264
 265	folio_batch_init(&fbatch);
 266	while (index <= end_index) {
 267		unsigned int found_folios, i;
 268
 269		found_folios = filemap_get_folios_contig(mapping, &index,
 270				end_index, &fbatch);
 271		if (found_folios == 0)
 272			goto out;
 273
 274		for (i = 0; i < found_folios; i++) {
 275			struct folio *folio = fbatch.folios[i];
 276			struct page *page = folio_page(folio, 0);
 277			u32 len = end + 1 - start;
 278
 279			if (page == locked_page)
 280				continue;
 281
 282			if (btrfs_folio_start_writer_lock(fs_info, folio, start,
 283							  len))
 284				goto out;
 285
 286			if (!PageDirty(page) || page->mapping != mapping) {
 287				btrfs_folio_end_writer_lock(fs_info, folio, start,
 288							    len);
 289				goto out;
 290			}
 291
 292			processed_end = page_offset(page) + PAGE_SIZE - 1;
 293		}
 294		folio_batch_release(&fbatch);
 295		cond_resched();
 296	}
 297
 298	return 0;
 299out:
 300	folio_batch_release(&fbatch);
 301	if (processed_end > start)
 302		__unlock_for_delalloc(inode, locked_page, start, processed_end);
 303	return -EAGAIN;
 304}
 305
 306/*
 307 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 308 * more than @max_bytes.
 309 *
 310 * @start:	The original start bytenr to search.
 311 *		Will store the extent range start bytenr.
 312 * @end:	The original end bytenr of the search range
 313 *		Will store the extent range end bytenr.
 314 *
 315 * Return true if we find a delalloc range which starts inside the original
 316 * range, and @start/@end will store the delalloc range start/end.
 317 *
 318 * Return false if we can't find any delalloc range which starts inside the
 319 * original range, and @start/@end will be the non-delalloc range start/end.
 320 */
 321EXPORT_FOR_TESTS
 322noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
 323				    struct page *locked_page, u64 *start,
 324				    u64 *end)
 325{
 326	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 327	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
 328	const u64 orig_start = *start;
 329	const u64 orig_end = *end;
 330	/* The sanity tests may not set a valid fs_info. */
 331	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
 332	u64 delalloc_start;
 333	u64 delalloc_end;
 334	bool found;
 335	struct extent_state *cached_state = NULL;
 336	int ret;
 337	int loops = 0;
 338
 339	/* Caller should pass a valid @end to indicate the search range end */
 340	ASSERT(orig_end > orig_start);
 341
 342	/* The range should at least cover part of the page */
 343	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
 344		 orig_end <= page_offset(locked_page)));
 345again:
 346	/* step one, find a bunch of delalloc bytes starting at start */
 347	delalloc_start = *start;
 348	delalloc_end = 0;
 349	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
 350					  max_bytes, &cached_state);
 351	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
 352		*start = delalloc_start;
 353
 354		/* @delalloc_end can be -1, never go beyond @orig_end */
 355		*end = min(delalloc_end, orig_end);
 356		free_extent_state(cached_state);
 357		return false;
 358	}
 359
 360	/*
 361	 * start comes from the offset of locked_page.  We have to lock
 362	 * pages in order, so we can't process delalloc bytes before
 363	 * locked_page
 364	 */
 365	if (delalloc_start < *start)
 366		delalloc_start = *start;
 367
 368	/*
 369	 * make sure to limit the number of pages we try to lock down
 370	 */
 371	if (delalloc_end + 1 - delalloc_start > max_bytes)
 372		delalloc_end = delalloc_start + max_bytes - 1;
 373
 374	/* step two, lock all the pages after the page that has start */
 375	ret = lock_delalloc_pages(inode, locked_page,
 376				  delalloc_start, delalloc_end);
 377	ASSERT(!ret || ret == -EAGAIN);
 378	if (ret == -EAGAIN) {
 379		/* some of the pages are gone, lets avoid looping by
 380		 * shortening the size of the delalloc range we're searching
 381		 */
 382		free_extent_state(cached_state);
 383		cached_state = NULL;
 384		if (!loops) {
 385			max_bytes = PAGE_SIZE;
 386			loops = 1;
 387			goto again;
 388		} else {
 389			found = false;
 390			goto out_failed;
 391		}
 392	}
 393
 394	/* step three, lock the state bits for the whole range */
 395	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
 396
 397	/* then test to make sure it is all still delalloc */
 398	ret = test_range_bit(tree, delalloc_start, delalloc_end,
 399			     EXTENT_DELALLOC, cached_state);
 400	if (!ret) {
 401		unlock_extent(tree, delalloc_start, delalloc_end,
 402			      &cached_state);
 403		__unlock_for_delalloc(inode, locked_page,
 404			      delalloc_start, delalloc_end);
 405		cond_resched();
 406		goto again;
 407	}
 408	free_extent_state(cached_state);
 409	*start = delalloc_start;
 410	*end = delalloc_end;
 411out_failed:
 412	return found;
 413}
 414
 415void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
 416				  struct page *locked_page,
 417				  u32 clear_bits, unsigned long page_ops)
 418{
 419	clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
 420
 421	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
 422			       start, end, page_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 423}
 424
 425static bool btrfs_verify_page(struct page *page, u64 start)
 
 
 
 
 
 426{
 427	if (!fsverity_active(page->mapping->host) ||
 428	    PageUptodate(page) ||
 429	    start >= i_size_read(page->mapping->host))
 430		return true;
 431	return fsverity_verify_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432}
 433
 434static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
 435{
 436	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
 437	struct folio *folio = page_folio(page);
 438
 439	ASSERT(page_offset(page) <= start &&
 440	       start + len <= page_offset(page) + PAGE_SIZE);
 441
 442	if (uptodate && btrfs_verify_page(page, start))
 443		btrfs_folio_set_uptodate(fs_info, folio, start, len);
 444	else
 445		btrfs_folio_clear_uptodate(fs_info, folio, start, len);
 
 
 446
 447	if (!btrfs_is_subpage(fs_info, page->mapping))
 448		unlock_page(page);
 449	else
 450		btrfs_subpage_end_reader(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451}
 452
 453/*
 454 * After a write IO is done, we need to:
 455 *
 456 * - clear the uptodate bits on error
 457 * - clear the writeback bits in the extent tree for the range
 458 * - filio_end_writeback()  if there is no more pending io for the folio
 459 *
 460 * Scheduling is not allowed, so the extent state tree is expected
 461 * to have one and only one object corresponding to this IO.
 462 */
 463static void end_bbio_data_write(struct btrfs_bio *bbio)
 464{
 465	struct bio *bio = &bbio->bio;
 466	int error = blk_status_to_errno(bio->bi_status);
 467	struct folio_iter fi;
 
 
 
 
 468
 469	ASSERT(!bio_flagged(bio, BIO_CLONED));
 470	bio_for_each_folio_all(fi, bio) {
 471		struct folio *folio = fi.folio;
 472		struct inode *inode = folio->mapping->host;
 473		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 474		const u32 sectorsize = fs_info->sectorsize;
 475		u64 start = folio_pos(folio) + fi.offset;
 476		u32 len = fi.length;
 477
 478		/* Only order 0 (single page) folios are allowed for data. */
 479		ASSERT(folio_order(folio) == 0);
 480
 481		/* Our read/write should always be sector aligned. */
 482		if (!IS_ALIGNED(fi.offset, sectorsize))
 483			btrfs_err(fs_info,
 484		"partial page write in btrfs with offset %zu and length %zu",
 485				  fi.offset, fi.length);
 486		else if (!IS_ALIGNED(fi.length, sectorsize))
 487			btrfs_info(fs_info,
 488		"incomplete page write with offset %zu and length %zu",
 489				   fi.offset, fi.length);
 
 
 
 
 
 
 
 
 490
 491		btrfs_finish_ordered_extent(bbio->ordered,
 492				folio_page(folio, 0), start, len, !error);
 493		if (error)
 494			mapping_set_error(folio->mapping, error);
 495		btrfs_folio_clear_writeback(fs_info, folio, start, len);
 496	}
 497
 498	bio_put(bio);
 499}
 500
 501/*
 502 * Record previously processed extent range
 503 *
 504 * For endio_readpage_release_extent() to handle a full extent range, reducing
 505 * the extent io operations.
 506 */
 507struct processed_extent {
 508	struct btrfs_inode *inode;
 509	/* Start of the range in @inode */
 510	u64 start;
 511	/* End of the range in @inode */
 512	u64 end;
 513	bool uptodate;
 514};
 515
 516/*
 517 * Try to release processed extent range
 518 *
 519 * May not release the extent range right now if the current range is
 520 * contiguous to processed extent.
 521 *
 522 * Will release processed extent when any of @inode, @uptodate, the range is
 523 * no longer contiguous to the processed range.
 524 *
 525 * Passing @inode == NULL will force processed extent to be released.
 526 */
 527static void endio_readpage_release_extent(struct processed_extent *processed,
 528			      struct btrfs_inode *inode, u64 start, u64 end,
 529			      bool uptodate)
 530{
 531	struct extent_state *cached = NULL;
 532	struct extent_io_tree *tree;
 533
 534	/* The first extent, initialize @processed */
 535	if (!processed->inode)
 536		goto update;
 537
 538	/*
 539	 * Contiguous to processed extent, just uptodate the end.
 540	 *
 541	 * Several things to notice:
 542	 *
 543	 * - bio can be merged as long as on-disk bytenr is contiguous
 544	 *   This means we can have page belonging to other inodes, thus need to
 545	 *   check if the inode still matches.
 546	 * - bvec can contain range beyond current page for multi-page bvec
 547	 *   Thus we need to do processed->end + 1 >= start check
 548	 */
 549	if (processed->inode == inode && processed->uptodate == uptodate &&
 550	    processed->end + 1 >= start && end >= processed->end) {
 551		processed->end = end;
 552		return;
 553	}
 554
 555	tree = &processed->inode->io_tree;
 556	/*
 557	 * Now we don't have range contiguous to the processed range, release
 558	 * the processed range now.
 559	 */
 560	unlock_extent(tree, processed->start, processed->end, &cached);
 
 
 
 
 561
 562update:
 563	/* Update processed to current range */
 564	processed->inode = inode;
 565	processed->start = start;
 566	processed->end = end;
 567	processed->uptodate = uptodate;
 568}
 569
 570static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
 571{
 572	struct folio *folio = page_folio(page);
 573
 574	ASSERT(folio_test_locked(folio));
 575	if (!btrfs_is_subpage(fs_info, folio->mapping))
 576		return;
 577
 578	ASSERT(folio_test_private(folio));
 579	btrfs_subpage_start_reader(fs_info, folio, page_offset(page), PAGE_SIZE);
 580}
 581
 582/*
 583 * After a data read IO is done, we need to:
 584 *
 585 * - clear the uptodate bits on error
 586 * - set the uptodate bits if things worked
 587 * - set the folio up to date if all extents in the tree are uptodate
 588 * - clear the lock bit in the extent tree
 589 * - unlock the folio if there are no other extents locked for it
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 590 *
 591 * Scheduling is not allowed, so the extent state tree is expected
 592 * to have one and only one object corresponding to this IO.
 593 */
 594static void end_bbio_data_read(struct btrfs_bio *bbio)
 595{
 596	struct bio *bio = &bbio->bio;
 
 
 597	struct processed_extent processed = { 0 };
 598	struct folio_iter fi;
 599	/*
 600	 * The offset to the beginning of a bio, since one bio can never be
 601	 * larger than UINT_MAX, u32 here is enough.
 602	 */
 603	u32 bio_offset = 0;
 
 
 
 604
 605	ASSERT(!bio_flagged(bio, BIO_CLONED));
 606	bio_for_each_folio_all(fi, &bbio->bio) {
 607		bool uptodate = !bio->bi_status;
 608		struct folio *folio = fi.folio;
 609		struct inode *inode = folio->mapping->host;
 610		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 611		const u32 sectorsize = fs_info->sectorsize;
 
 612		u64 start;
 613		u64 end;
 614		u32 len;
 615
 616		/* For now only order 0 folios are supported for data. */
 617		ASSERT(folio_order(folio) == 0);
 618		btrfs_debug(fs_info,
 619			"%s: bi_sector=%llu, err=%d, mirror=%u",
 620			__func__, bio->bi_iter.bi_sector, bio->bi_status,
 621			bbio->mirror_num);
 
 
 622
 623		/*
 624		 * We always issue full-sector reads, but if some block in a
 625		 * folio fails to read, blk_update_request() will advance
 626		 * bv_offset and adjust bv_len to compensate.  Print a warning
 627		 * for unaligned offsets, and an error if they don't add up to
 628		 * a full sector.
 629		 */
 630		if (!IS_ALIGNED(fi.offset, sectorsize))
 631			btrfs_err(fs_info,
 632		"partial page read in btrfs with offset %zu and length %zu",
 633				  fi.offset, fi.length);
 634		else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
 
 635			btrfs_info(fs_info,
 636		"incomplete page read with offset %zu and length %zu",
 637				   fi.offset, fi.length);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638
 639		start = folio_pos(folio) + fi.offset;
 640		end = start + fi.length - 1;
 641		len = fi.length;
 642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643		if (likely(uptodate)) {
 644			loff_t i_size = i_size_read(inode);
 645			pgoff_t end_index = i_size >> folio_shift(folio);
 646
 647			/*
 648			 * Zero out the remaining part if this range straddles
 649			 * i_size.
 650			 *
 651			 * Here we should only zero the range inside the folio,
 652			 * not touch anything else.
 653			 *
 654			 * NOTE: i_size is exclusive while end is inclusive.
 655			 */
 656			if (folio_index(folio) == end_index && i_size <= end) {
 657				u32 zero_start = max(offset_in_folio(folio, i_size),
 658						     offset_in_folio(folio, start));
 659				u32 zero_len = offset_in_folio(folio, end) + 1 -
 660					       zero_start;
 661
 662				folio_zero_range(folio, zero_start, zero_len);
 
 663			}
 664		}
 665
 666		/* Update page status and unlock. */
 667		end_page_read(folio_page(folio, 0), uptodate, start, len);
 668		endio_readpage_release_extent(&processed, BTRFS_I(inode),
 669					      start, end, uptodate);
 670
 671		ASSERT(bio_offset + len > bio_offset);
 672		bio_offset += len;
 673
 
 
 
 
 674	}
 675	/* Release the last extent */
 676	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
 
 677	bio_put(bio);
 678}
 679
 680/*
 681 * Populate every free slot in a provided array with pages.
 682 *
 683 * @nr_pages:   number of pages to allocate
 684 * @page_array: the array to fill with pages; any existing non-null entries in
 685 * 		the array will be skipped
 686 * @extra_gfp:	the extra GFP flags for the allocation.
 687 *
 688 * Return: 0        if all pages were able to be allocated;
 689 *         -ENOMEM  otherwise, the partially allocated pages would be freed and
 690 *                  the array slots zeroed
 691 */
 692int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
 693			   gfp_t extra_gfp)
 694{
 695	unsigned int allocated;
 
 696
 697	for (allocated = 0; allocated < nr_pages;) {
 698		unsigned int last = allocated;
 
 
 
 
 
 
 699
 700		allocated = alloc_pages_bulk_array(GFP_NOFS | extra_gfp,
 701						   nr_pages, page_array);
 
 
 
 702
 703		if (allocated == nr_pages)
 704			return 0;
 
 
 705
 706		/*
 707		 * During this iteration, no page could be allocated, even
 708		 * though alloc_pages_bulk_array() falls back to alloc_page()
 709		 * if  it could not bulk-allocate. So we must be out of memory.
 710		 */
 711		if (allocated == last) {
 712			for (int i = 0; i < allocated; i++) {
 713				__free_page(page_array[i]);
 714				page_array[i] = NULL;
 715			}
 716			return -ENOMEM;
 717		}
 718
 719		memalloc_retry_wait(GFP_NOFS);
 720	}
 721	return 0;
 
 
 
 
 
 722}
 723
 724/*
 725 * Populate needed folios for the extent buffer.
 726 *
 727 * For now, the folios populated are always in order 0 (aka, single page).
 728 */
 729static int alloc_eb_folio_array(struct extent_buffer *eb, gfp_t extra_gfp)
 730{
 731	struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
 732	int num_pages = num_extent_pages(eb);
 733	int ret;
 734
 735	ret = btrfs_alloc_page_array(num_pages, page_array, extra_gfp);
 736	if (ret < 0)
 737		return ret;
 738
 739	for (int i = 0; i < num_pages; i++)
 740		eb->folios[i] = page_folio(page_array[i]);
 741	return 0;
 
 
 
 742}
 743
 744static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
 745				struct page *page, u64 disk_bytenr,
 746				unsigned int pg_offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747{
 748	struct bio *bio = &bio_ctrl->bbio->bio;
 749	struct bio_vec *bvec = bio_last_bvec_all(bio);
 750	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
 
 
 751
 752	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
 753		/*
 754		 * For compression, all IO should have its logical bytenr set
 755		 * to the starting bytenr of the compressed extent.
 756		 */
 757		return bio->bi_iter.bi_sector == sector;
 758	}
 759
 760	/*
 761	 * The contig check requires the following conditions to be met:
 762	 *
 763	 * 1) The pages are belonging to the same inode
 764	 *    This is implied by the call chain.
 765	 *
 766	 * 2) The range has adjacent logical bytenr
 767	 *
 768	 * 3) The range has adjacent file offset
 769	 *    This is required for the usage of btrfs_bio->file_offset.
 770	 */
 771	return bio_end_sector(bio) == sector &&
 772		page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
 773		page_offset(page) + pg_offset;
 
 
 
 774}
 775
 776static void alloc_new_bio(struct btrfs_inode *inode,
 777			  struct btrfs_bio_ctrl *bio_ctrl,
 778			  u64 disk_bytenr, u64 file_offset)
 779{
 780	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 781	struct btrfs_bio *bbio;
 
 
 
 
 782
 783	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
 784			       bio_ctrl->end_io_func, NULL);
 785	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
 786	bbio->inode = inode;
 787	bbio->file_offset = file_offset;
 788	bio_ctrl->bbio = bbio;
 789	bio_ctrl->len_to_oe_boundary = U32_MAX;
 790
 791	/* Limit data write bios to the ordered boundary. */
 792	if (bio_ctrl->wbc) {
 793		struct btrfs_ordered_extent *ordered;
 794
 795		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
 796		if (ordered) {
 797			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
 798					ordered->file_offset +
 799					ordered->disk_num_bytes - file_offset);
 800			bbio->ordered = ordered;
 801		}
 
 
 
 
 
 
 802
 803		/*
 804		 * Pick the last added device to support cgroup writeback.  For
 805		 * multi-device file systems this means blk-cgroup policies have
 806		 * to always be set on the last added/replaced device.
 807		 * This is a bit odd but has been like that for a long time.
 808		 */
 809		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
 810		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
 811	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 812}
 813
 814/*
 815 * @disk_bytenr: logical bytenr where the write will be
 
 816 * @page:	page to add to the bio
 
 817 * @size:	portion of page that we want to write to
 818 * @pg_offset:	offset of the new bio or to check whether we are adding
 819 *              a contiguous page to the previous one
 820 *
 821 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
 822 * new one in @bio_ctrl->bbio.
 823 * The mirror number for this IO should already be initizlied in
 824 * @bio_ctrl->mirror_num.
 825 */
 826static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
 827			       u64 disk_bytenr, struct page *page,
 828			       size_t size, unsigned long pg_offset)
 
 
 
 
 
 
 829{
 
 
 
 830	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
 
 
 831
 832	ASSERT(pg_offset + size <= PAGE_SIZE);
 833	ASSERT(bio_ctrl->end_io_func);
 834
 835	if (bio_ctrl->bbio &&
 836	    !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
 837		submit_one_bio(bio_ctrl);
 838
 839	do {
 840		u32 len = size;
 841
 842		/* Allocate new bio if needed */
 843		if (!bio_ctrl->bbio) {
 844			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
 845				      page_offset(page) + pg_offset);
 846		}
 847
 848		/* Cap to the current ordered extent boundary if there is one. */
 849		if (len > bio_ctrl->len_to_oe_boundary) {
 850			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
 851			ASSERT(is_data_inode(&inode->vfs_inode));
 852			len = bio_ctrl->len_to_oe_boundary;
 853		}
 854
 855		if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
 856			/* bio full: move on to a new one */
 857			submit_one_bio(bio_ctrl);
 858			continue;
 
 
 
 
 
 
 
 
 
 
 
 859		}
 
 860
 861		if (bio_ctrl->wbc)
 862			wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 863
 864		size -= len;
 865		pg_offset += len;
 866		disk_bytenr += len;
 867
 868		/*
 869		 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
 870		 * sector aligned.  alloc_new_bio() then sets it to the end of
 871		 * our ordered extent for writes into zoned devices.
 872		 *
 873		 * When len_to_oe_boundary is tracking an ordered extent, we
 874		 * trust the ordered extent code to align things properly, and
 875		 * the check above to cap our write to the ordered extent
 876		 * boundary is correct.
 877		 *
 878		 * When len_to_oe_boundary is U32_MAX, the cap above would
 879		 * result in a 4095 byte IO for the last page right before
 880		 * we hit the bio limit of UINT_MAX.  bio_add_page() has all
 881		 * the checks required to make sure we don't overflow the bio,
 882		 * and we should just ignore len_to_oe_boundary completely
 883		 * unless we're using it to track an ordered extent.
 884		 *
 885		 * It's pretty hard to make a bio sized U32_MAX, but it can
 886		 * happen when the page cache is able to feed us contiguous
 887		 * pages for large extents.
 888		 */
 889		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
 890			bio_ctrl->len_to_oe_boundary -= len;
 891
 892		/* Ordered extent boundary: move on to a new bio. */
 893		if (bio_ctrl->len_to_oe_boundary == 0)
 894			submit_one_bio(bio_ctrl);
 895	} while (size);
 896}
 897
 898static int attach_extent_buffer_folio(struct extent_buffer *eb,
 899				      struct folio *folio,
 900				      struct btrfs_subpage *prealloc)
 901{
 902	struct btrfs_fs_info *fs_info = eb->fs_info;
 903	int ret = 0;
 904
 905	/*
 906	 * If the page is mapped to btree inode, we should hold the private
 907	 * lock to prevent race.
 908	 * For cloned or dummy extent buffers, their pages are not mapped and
 909	 * will not race with any other ebs.
 910	 */
 911	if (folio->mapping)
 912		lockdep_assert_held(&folio->mapping->i_private_lock);
 913
 914	if (fs_info->nodesize >= PAGE_SIZE) {
 915		if (!folio_test_private(folio))
 916			folio_attach_private(folio, eb);
 917		else
 918			WARN_ON(folio_get_private(folio) != eb);
 919		return 0;
 920	}
 921
 922	/* Already mapped, just free prealloc */
 923	if (folio_test_private(folio)) {
 924		btrfs_free_subpage(prealloc);
 925		return 0;
 926	}
 927
 928	if (prealloc)
 929		/* Has preallocated memory for subpage */
 930		folio_attach_private(folio, prealloc);
 931	else
 932		/* Do new allocation to attach subpage */
 933		ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
 
 934	return ret;
 935}
 936
 937int set_page_extent_mapped(struct page *page)
 938{
 939	struct folio *folio = page_folio(page);
 940	struct btrfs_fs_info *fs_info;
 941
 942	ASSERT(page->mapping);
 943
 944	if (folio_test_private(folio))
 945		return 0;
 946
 947	fs_info = btrfs_sb(page->mapping->host->i_sb);
 948
 949	if (btrfs_is_subpage(fs_info, page->mapping))
 950		return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
 951
 952	folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
 953	return 0;
 954}
 955
 956void clear_page_extent_mapped(struct page *page)
 957{
 958	struct folio *folio = page_folio(page);
 959	struct btrfs_fs_info *fs_info;
 960
 961	ASSERT(page->mapping);
 962
 963	if (!folio_test_private(folio))
 964		return;
 965
 966	fs_info = btrfs_sb(page->mapping->host->i_sb);
 967	if (btrfs_is_subpage(fs_info, page->mapping))
 968		return btrfs_detach_subpage(fs_info, folio);
 969
 970	folio_detach_private(folio);
 971}
 972
 973static struct extent_map *
 974__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
 975		 u64 start, u64 len, struct extent_map **em_cached)
 976{
 977	struct extent_map *em;
 978
 979	if (em_cached && *em_cached) {
 980		em = *em_cached;
 981		if (extent_map_in_tree(em) && start >= em->start &&
 982		    start < extent_map_end(em)) {
 983			refcount_inc(&em->refs);
 984			return em;
 985		}
 986
 987		free_extent_map(em);
 988		*em_cached = NULL;
 989	}
 990
 991	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
 992	if (em_cached && !IS_ERR(em)) {
 993		BUG_ON(*em_cached);
 994		refcount_inc(&em->refs);
 995		*em_cached = em;
 996	}
 997	return em;
 998}
 999/*
1000 * basic readpage implementation.  Locked extent state structs are inserted
1001 * into the tree that are removed when the IO is done (by the end_io
1002 * handlers)
1003 * XXX JDM: This needs looking at to ensure proper page locking
1004 * return 0 on success, otherwise return error
1005 */
1006static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
1007		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
 
1008{
1009	struct inode *inode = page->mapping->host;
1010	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1011	u64 start = page_offset(page);
1012	const u64 end = start + PAGE_SIZE - 1;
1013	u64 cur = start;
1014	u64 extent_offset;
1015	u64 last_byte = i_size_read(inode);
1016	u64 block_start;
 
1017	struct extent_map *em;
1018	int ret = 0;
 
1019	size_t pg_offset = 0;
1020	size_t iosize;
1021	size_t blocksize = inode->i_sb->s_blocksize;
 
1022	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1023
1024	ret = set_page_extent_mapped(page);
1025	if (ret < 0) {
1026		unlock_extent(tree, start, end, NULL);
 
1027		unlock_page(page);
1028		return ret;
 
 
 
 
 
 
 
 
 
1029	}
1030
1031	if (page->index == last_byte >> PAGE_SHIFT) {
1032		size_t zero_offset = offset_in_page(last_byte);
1033
1034		if (zero_offset) {
1035			iosize = PAGE_SIZE - zero_offset;
1036			memzero_page(page, zero_offset, iosize);
 
1037		}
1038	}
1039	bio_ctrl->end_io_func = end_bbio_data_read;
1040	begin_page_read(fs_info, page);
1041	while (cur <= end) {
1042		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1043		bool force_bio_submit = false;
1044		u64 disk_bytenr;
1045
1046		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1047		if (cur >= last_byte) {
 
 
1048			iosize = PAGE_SIZE - pg_offset;
1049			memzero_page(page, pg_offset, iosize);
1050			unlock_extent(tree, cur, cur + iosize - 1, NULL);
 
 
 
 
1051			end_page_read(page, true, cur, iosize);
1052			break;
1053		}
1054		em = __get_extent_map(inode, page, pg_offset, cur,
1055				      end - cur + 1, em_cached);
1056		if (IS_ERR(em)) {
1057			unlock_extent(tree, cur, end, NULL);
1058			end_page_read(page, false, cur, end + 1 - cur);
1059			return PTR_ERR(em);
1060		}
1061		extent_offset = cur - em->start;
1062		BUG_ON(extent_map_end(em) <= cur);
1063		BUG_ON(end < cur);
1064
1065		compress_type = extent_map_compression(em);
 
 
 
 
1066
1067		iosize = min(extent_map_end(em) - cur, end - cur + 1);
 
1068		iosize = ALIGN(iosize, blocksize);
1069		if (compress_type != BTRFS_COMPRESS_NONE)
1070			disk_bytenr = em->block_start;
1071		else
1072			disk_bytenr = em->block_start + extent_offset;
1073		block_start = em->block_start;
1074		if (em->flags & EXTENT_FLAG_PREALLOC)
1075			block_start = EXTENT_MAP_HOLE;
1076
1077		/*
1078		 * If we have a file range that points to a compressed extent
1079		 * and it's followed by a consecutive file range that points
1080		 * to the same compressed extent (possibly with a different
1081		 * offset and/or length, so it either points to the whole extent
1082		 * or only part of it), we must make sure we do not submit a
1083		 * single bio to populate the pages for the 2 ranges because
1084		 * this makes the compressed extent read zero out the pages
1085		 * belonging to the 2nd range. Imagine the following scenario:
1086		 *
1087		 *  File layout
1088		 *  [0 - 8K]                     [8K - 24K]
1089		 *    |                               |
1090		 *    |                               |
1091		 * points to extent X,         points to extent X,
1092		 * offset 4K, length of 8K     offset 0, length 16K
1093		 *
1094		 * [extent X, compressed length = 4K uncompressed length = 16K]
1095		 *
1096		 * If the bio to read the compressed extent covers both ranges,
1097		 * it will decompress extent X into the pages belonging to the
1098		 * first range and then it will stop, zeroing out the remaining
1099		 * pages that belong to the other range that points to extent X.
1100		 * So here we make sure we submit 2 bios, one for the first
1101		 * range and another one for the third range. Both will target
1102		 * the same physical extent from disk, but we can't currently
1103		 * make the compressed bio endio callback populate the pages
1104		 * for both ranges because each compressed bio is tightly
1105		 * coupled with a single extent map, and each range can have
1106		 * an extent map with a different offset value relative to the
1107		 * uncompressed data of our extent and different lengths. This
1108		 * is a corner case so we prioritize correctness over
1109		 * non-optimal behavior (submitting 2 bios for the same extent).
1110		 */
1111		if (compress_type != BTRFS_COMPRESS_NONE &&
1112		    prev_em_start && *prev_em_start != (u64)-1 &&
1113		    *prev_em_start != em->start)
1114			force_bio_submit = true;
1115
1116		if (prev_em_start)
1117			*prev_em_start = em->start;
1118
1119		free_extent_map(em);
1120		em = NULL;
1121
1122		/* we've found a hole, just zero and go on */
1123		if (block_start == EXTENT_MAP_HOLE) {
 
 
1124			memzero_page(page, pg_offset, iosize);
 
1125
1126			unlock_extent(tree, cur, cur + iosize - 1, NULL);
 
 
 
1127			end_page_read(page, true, cur, iosize);
1128			cur = cur + iosize;
1129			pg_offset += iosize;
1130			continue;
1131		}
1132		/* the get_extent function already copied into the page */
1133		if (block_start == EXTENT_MAP_INLINE) {
1134			unlock_extent(tree, cur, cur + iosize - 1, NULL);
 
 
1135			end_page_read(page, true, cur, iosize);
1136			cur = cur + iosize;
1137			pg_offset += iosize;
1138			continue;
1139		}
1140
1141		if (bio_ctrl->compress_type != compress_type) {
1142			submit_one_bio(bio_ctrl);
1143			bio_ctrl->compress_type = compress_type;
 
 
 
 
 
1144		}
1145
1146		if (force_bio_submit)
1147			submit_one_bio(bio_ctrl);
1148		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1149				   pg_offset);
 
 
 
 
 
 
 
 
 
1150		cur = cur + iosize;
1151		pg_offset += iosize;
1152	}
1153
1154	return 0;
1155}
1156
1157int btrfs_read_folio(struct file *file, struct folio *folio)
1158{
1159	struct page *page = &folio->page;
1160	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1161	u64 start = page_offset(page);
1162	u64 end = start + PAGE_SIZE - 1;
1163	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1164	int ret;
1165
1166	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1167
1168	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
1169	/*
1170	 * If btrfs_do_readpage() failed we will want to submit the assembled
1171	 * bio to do the cleanup.
1172	 */
1173	submit_one_bio(&bio_ctrl);
1174	return ret;
1175}
1176
1177static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1178					u64 start, u64 end,
1179					struct extent_map **em_cached,
1180					struct btrfs_bio_ctrl *bio_ctrl,
1181					u64 *prev_em_start)
1182{
1183	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1184	int index;
1185
1186	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1187
1188	for (index = 0; index < nr_pages; index++) {
1189		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1190				  prev_em_start);
1191		put_page(pages[index]);
1192	}
1193}
1194
 
 
 
 
 
 
1195/*
1196 * helper for __extent_writepage, doing all of the delayed allocation setup.
1197 *
1198 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1199 * to write the page (copy into inline extent).  In this case the IO has
1200 * been started and the page is already unlocked.
1201 *
1202 * This returns 0 if all went well (page still locked)
1203 * This returns < 0 if there were errors (page still locked)
1204 */
1205static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1206		struct page *page, struct writeback_control *wbc)
 
1207{
1208	const u64 page_start = page_offset(page);
1209	const u64 page_end = page_start + PAGE_SIZE - 1;
1210	u64 delalloc_start = page_start;
1211	u64 delalloc_end = page_end;
1212	u64 delalloc_to_write = 0;
1213	int ret = 0;
 
 
 
1214
1215	while (delalloc_start < page_end) {
1216		delalloc_end = page_end;
1217		if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1218					      &delalloc_start, &delalloc_end)) {
 
1219			delalloc_start = delalloc_end + 1;
1220			continue;
1221		}
1222
1223		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1224					       delalloc_end, wbc);
1225		if (ret < 0)
1226			return ret;
1227
 
 
 
 
 
 
 
 
 
 
 
 
 
1228		delalloc_start = delalloc_end + 1;
1229	}
1230
1231	/*
1232	 * delalloc_end is already one less than the total length, so
1233	 * we don't subtract one from PAGE_SIZE
1234	 */
1235	delalloc_to_write +=
1236		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1237
1238	/*
1239	 * If btrfs_run_dealloc_range() already started I/O and unlocked
1240	 * the pages, we just need to account for them here.
1241	 */
1242	if (ret == 1) {
1243		wbc->nr_to_write -= delalloc_to_write;
1244		return 1;
1245	}
1246
1247	if (wbc->nr_to_write < delalloc_to_write) {
1248		int thresh = 8192;
1249
1250		if (delalloc_to_write < thresh * 2)
1251			thresh = delalloc_to_write;
1252		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1253					 thresh);
1254	}
1255
 
 
 
 
 
 
 
 
 
 
 
 
 
1256	return 0;
1257}
1258
1259/*
1260 * Find the first byte we need to write.
1261 *
1262 * For subpage, one page can contain several sectors, and
1263 * __extent_writepage_io() will just grab all extent maps in the page
1264 * range and try to submit all non-inline/non-compressed extents.
1265 *
1266 * This is a big problem for subpage, we shouldn't re-submit already written
1267 * data at all.
1268 * This function will lookup subpage dirty bit to find which range we really
1269 * need to submit.
1270 *
1271 * Return the next dirty range in [@start, @end).
1272 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1273 */
1274static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1275				 struct page *page, u64 *start, u64 *end)
1276{
1277	struct folio *folio = page_folio(page);
1278	struct btrfs_subpage *subpage = folio_get_private(folio);
1279	struct btrfs_subpage_info *spi = fs_info->subpage_info;
1280	u64 orig_start = *start;
1281	/* Declare as unsigned long so we can use bitmap ops */
 
1282	unsigned long flags;
1283	int range_start_bit;
 
1284	int range_end_bit;
1285
1286	/*
1287	 * For regular sector size == page size case, since one page only
1288	 * contains one sector, we return the page offset directly.
1289	 */
1290	if (!btrfs_is_subpage(fs_info, page->mapping)) {
1291		*start = page_offset(page);
1292		*end = page_offset(page) + PAGE_SIZE;
1293		return;
1294	}
1295
1296	range_start_bit = spi->dirty_offset +
1297			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1298
1299	/* We should have the page locked, but just in case */
1300	spin_lock_irqsave(&subpage->lock, flags);
1301	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1302			       spi->dirty_offset + spi->bitmap_nr_bits);
1303	spin_unlock_irqrestore(&subpage->lock, flags);
1304
1305	range_start_bit -= spi->dirty_offset;
1306	range_end_bit -= spi->dirty_offset;
1307
1308	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1309	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1310}
1311
1312/*
1313 * helper for __extent_writepage.  This calls the writepage start hooks,
1314 * and does the loop to map the page into extents and bios.
1315 *
1316 * We return 1 if the IO is started and the page is unlocked,
1317 * 0 if all went well (page still locked)
1318 * < 0 if there were errors (page still locked)
1319 */
1320static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1321				 struct page *page,
1322				 struct btrfs_bio_ctrl *bio_ctrl,
 
1323				 loff_t i_size,
 
1324				 int *nr_ret)
1325{
1326	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1327	u64 cur = page_offset(page);
1328	u64 end = cur + PAGE_SIZE - 1;
 
1329	u64 extent_offset;
1330	u64 block_start;
1331	struct extent_map *em;
1332	int ret = 0;
1333	int nr = 0;
 
 
 
1334
1335	ret = btrfs_writepage_cow_fixup(page);
1336	if (ret) {
1337		/* Fixup worker will requeue */
1338		redirty_page_for_writepage(bio_ctrl->wbc, page);
 
1339		unlock_page(page);
1340		return 1;
1341	}
1342
1343	bio_ctrl->end_io_func = end_bbio_data_write;
 
 
 
 
 
1344	while (cur <= end) {
1345		u32 len = end - cur + 1;
1346		u64 disk_bytenr;
1347		u64 em_end;
1348		u64 dirty_range_start = cur;
1349		u64 dirty_range_end;
1350		u32 iosize;
1351
1352		if (cur >= i_size) {
1353			btrfs_mark_ordered_io_finished(inode, page, cur, len,
1354						       true);
1355			/*
1356			 * This range is beyond i_size, thus we don't need to
1357			 * bother writing back.
1358			 * But we still need to clear the dirty subpage bit, or
1359			 * the next time the page gets dirtied, we will try to
1360			 * writeback the sectors with subpage dirty bits,
1361			 * causing writeback without ordered extent.
1362			 */
1363			btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, len);
1364			break;
1365		}
1366
1367		find_next_dirty_byte(fs_info, page, &dirty_range_start,
1368				     &dirty_range_end);
1369		if (cur < dirty_range_start) {
1370			cur = dirty_range_start;
1371			continue;
1372		}
1373
1374		em = btrfs_get_extent(inode, NULL, 0, cur, len);
1375		if (IS_ERR(em)) {
 
1376			ret = PTR_ERR_OR_ZERO(em);
1377			goto out_error;
1378		}
1379
1380		extent_offset = cur - em->start;
1381		em_end = extent_map_end(em);
1382		ASSERT(cur <= em_end);
1383		ASSERT(cur < end);
1384		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1385		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1386
1387		block_start = em->block_start;
 
1388		disk_bytenr = em->block_start + extent_offset;
1389
1390		ASSERT(!extent_map_is_compressed(em));
1391		ASSERT(block_start != EXTENT_MAP_HOLE);
1392		ASSERT(block_start != EXTENT_MAP_INLINE);
1393
1394		/*
1395		 * Note that em_end from extent_map_end() and dirty_range_end from
1396		 * find_next_dirty_byte() are all exclusive
1397		 */
1398		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
 
 
 
 
1399		free_extent_map(em);
1400		em = NULL;
1401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1402		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1403		if (!PageWriteback(page)) {
1404			btrfs_err(inode->root->fs_info,
1405				   "page %lu not writeback, cur %llu end %llu",
1406			       page->index, cur, end);
1407		}
1408
1409		/*
1410		 * Although the PageDirty bit is cleared before entering this
1411		 * function, subpage dirty bit is not cleared.
1412		 * So clear subpage dirty bit here so next time we won't submit
1413		 * page for range already written to disk.
1414		 */
1415		btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, iosize);
 
 
 
 
 
 
 
 
 
 
 
 
 
1416
1417		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1418				   cur - page_offset(page));
1419		cur += iosize;
1420		nr++;
1421	}
1422
1423	btrfs_folio_assert_not_dirty(fs_info, page_folio(page));
1424	*nr_ret = nr;
1425	return 0;
1426
1427out_error:
1428	/*
1429	 * If we finish without problem, we should not only clear page dirty,
1430	 * but also empty subpage dirty bits
1431	 */
1432	*nr_ret = nr;
1433	return ret;
1434}
1435
1436/*
1437 * the writepage semantics are similar to regular writepage.  extent
1438 * records are inserted to lock ranges in the tree, and as dirty areas
1439 * are found, they are marked writeback.  Then the lock bits are removed
1440 * and the end_io handler clears the writeback ranges
1441 *
1442 * Return 0 if everything goes well.
1443 * Return <0 for error.
1444 */
1445static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
 
1446{
1447	struct folio *folio = page_folio(page);
1448	struct inode *inode = page->mapping->host;
1449	const u64 page_start = page_offset(page);
 
1450	int ret;
1451	int nr = 0;
1452	size_t pg_offset;
1453	loff_t i_size = i_size_read(inode);
1454	unsigned long end_index = i_size >> PAGE_SHIFT;
 
1455
1456	trace___extent_writepage(page, inode, bio_ctrl->wbc);
1457
1458	WARN_ON(!PageLocked(page));
1459
 
 
1460	pg_offset = offset_in_page(i_size);
1461	if (page->index > end_index ||
1462	   (page->index == end_index && !pg_offset)) {
1463		folio_invalidate(folio, 0, folio_size(folio));
1464		folio_unlock(folio);
1465		return 0;
1466	}
1467
1468	if (page->index == end_index)
1469		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
 
 
1470
1471	ret = set_page_extent_mapped(page);
1472	if (ret < 0)
 
1473		goto done;
 
1474
1475	ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1476	if (ret == 1)
1477		return 0;
1478	if (ret)
1479		goto done;
 
 
 
1480
1481	ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
 
1482	if (ret == 1)
1483		return 0;
1484
1485	bio_ctrl->wbc->nr_to_write--;
1486
1487done:
1488	if (nr == 0) {
1489		/* make sure the mapping tag for page dirty gets cleared */
1490		set_page_writeback(page);
1491		end_page_writeback(page);
1492	}
1493	if (ret) {
1494		btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1495					       PAGE_SIZE, !ret);
1496		mapping_set_error(page->mapping, ret);
1497	}
1498	unlock_page(page);
1499	ASSERT(ret <= 0);
1500	return ret;
1501}
1502
1503void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1504{
1505	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1506		       TASK_UNINTERRUPTIBLE);
1507}
1508
 
 
 
 
 
 
 
1509/*
1510 * Lock extent buffer status and pages for writeback.
1511 *
1512 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1513 * extent buffer is not dirty)
1514 * Return %true is the extent buffer is submitted to bio.
 
 
 
1515 */
1516static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1517			  struct writeback_control *wbc)
1518{
1519	struct btrfs_fs_info *fs_info = eb->fs_info;
1520	bool ret = false;
 
 
1521
1522	btrfs_tree_lock(eb);
1523	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1524		btrfs_tree_unlock(eb);
1525		if (wbc->sync_mode != WB_SYNC_ALL)
1526			return false;
1527		wait_on_extent_buffer_writeback(eb);
1528		btrfs_tree_lock(eb);
1529	}
1530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531	/*
1532	 * We need to do this to prevent races in people who check if the eb is
1533	 * under IO since we can end up having no IO bits set for a short period
1534	 * of time.
1535	 */
1536	spin_lock(&eb->refs_lock);
1537	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1538		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1539		spin_unlock(&eb->refs_lock);
1540		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1541		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1542					 -eb->len,
1543					 fs_info->dirty_metadata_batch);
1544		ret = true;
1545	} else {
1546		spin_unlock(&eb->refs_lock);
1547	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1548	btrfs_tree_unlock(eb);
1549	return ret;
1550}
1551
1552static void set_btree_ioerr(struct extent_buffer *eb)
1553{
1554	struct btrfs_fs_info *fs_info = eb->fs_info;
1555
1556	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1557
1558	/*
1559	 * A read may stumble upon this buffer later, make sure that it gets an
1560	 * error and knows there was an error.
1561	 */
1562	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1563
1564	/*
1565	 * We need to set the mapping with the io error as well because a write
1566	 * error will flip the file system readonly, and then syncfs() will
1567	 * return a 0 because we are readonly if we don't modify the err seq for
1568	 * the superblock.
1569	 */
1570	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
 
1571
1572	/*
1573	 * If writeback for a btree extent that doesn't belong to a log tree
1574	 * failed, increment the counter transaction->eb_write_errors.
1575	 * We do this because while the transaction is running and before it's
1576	 * committing (when we call filemap_fdata[write|wait]_range against
1577	 * the btree inode), we might have
1578	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1579	 * returns an error or an error happens during writeback, when we're
1580	 * committing the transaction we wouldn't know about it, since the pages
1581	 * can be no longer dirty nor marked anymore for writeback (if a
1582	 * subsequent modification to the extent buffer didn't happen before the
1583	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1584	 * able to find the pages tagged with SetPageError at transaction
1585	 * commit time. So if this happens we must abort the transaction,
1586	 * otherwise we commit a super block with btree roots that point to
1587	 * btree nodes/leafs whose content on disk is invalid - either garbage
1588	 * or the content of some node/leaf from a past generation that got
1589	 * cowed or deleted and is no longer valid.
1590	 *
1591	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1592	 * not be enough - we need to distinguish between log tree extents vs
1593	 * non-log tree extents, and the next filemap_fdatawait_range() call
1594	 * will catch and clear such errors in the mapping - and that call might
1595	 * be from a log sync and not from a transaction commit. Also, checking
1596	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1597	 * not done and would not be reliable - the eb might have been released
1598	 * from memory and reading it back again means that flag would not be
1599	 * set (since it's a runtime flag, not persisted on disk).
1600	 *
1601	 * Using the flags below in the btree inode also makes us achieve the
1602	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1603	 * writeback for all dirty pages and before filemap_fdatawait_range()
1604	 * is called, the writeback for all dirty pages had already finished
1605	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1606	 * filemap_fdatawait_range() would return success, as it could not know
1607	 * that writeback errors happened (the pages were no longer tagged for
1608	 * writeback).
1609	 */
1610	switch (eb->log_index) {
1611	case -1:
1612		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1613		break;
1614	case 0:
1615		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1616		break;
1617	case 1:
1618		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1619		break;
1620	default:
1621		BUG(); /* unexpected, logic error */
1622	}
1623}
1624
1625/*
1626 * The endio specific version which won't touch any unsafe spinlock in endio
1627 * context.
1628 */
1629static struct extent_buffer *find_extent_buffer_nolock(
1630		struct btrfs_fs_info *fs_info, u64 start)
1631{
1632	struct extent_buffer *eb;
1633
1634	rcu_read_lock();
1635	eb = radix_tree_lookup(&fs_info->buffer_radix,
1636			       start >> fs_info->sectorsize_bits);
1637	if (eb && atomic_inc_not_zero(&eb->refs)) {
1638		rcu_read_unlock();
1639		return eb;
1640	}
1641	rcu_read_unlock();
1642	return NULL;
1643}
1644
1645static void end_bbio_meta_write(struct btrfs_bio *bbio)
 
 
 
 
 
 
1646{
1647	struct extent_buffer *eb = bbio->private;
1648	struct btrfs_fs_info *fs_info = eb->fs_info;
1649	bool uptodate = !bbio->bio.bi_status;
1650	struct folio_iter fi;
1651	u32 bio_offset = 0;
1652
1653	if (!uptodate)
1654		set_btree_ioerr(eb);
1655
1656	bio_for_each_folio_all(fi, &bbio->bio) {
1657		u64 start = eb->start + bio_offset;
1658		struct folio *folio = fi.folio;
1659		u32 len = fi.length;
 
 
 
 
 
 
 
 
 
1660
1661		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1662		bio_offset += len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1663	}
 
 
1664
1665	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1666	smp_mb__after_atomic();
1667	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
 
 
 
1668
1669	bio_put(&bbio->bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1670}
1671
1672static void prepare_eb_write(struct extent_buffer *eb)
1673{
1674	u32 nritems;
1675	unsigned long start;
1676	unsigned long end;
1677
1678	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
 
1679
1680	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1681	nritems = btrfs_header_nritems(eb);
1682	if (btrfs_header_level(eb) > 0) {
1683		end = btrfs_node_key_ptr_offset(eb, nritems);
1684		memzero_extent_buffer(eb, end, eb->len - end);
1685	} else {
1686		/*
1687		 * Leaf:
1688		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1689		 */
1690		start = btrfs_item_nr_offset(eb, nritems);
1691		end = btrfs_item_nr_offset(eb, 0);
1692		if (nritems == 0)
1693			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1694		else
1695			end += btrfs_item_offset(eb, nritems - 1);
1696		memzero_extent_buffer(eb, start, end - start);
1697	}
1698}
1699
1700static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1701					    struct writeback_control *wbc)
 
 
 
 
 
1702{
1703	struct btrfs_fs_info *fs_info = eb->fs_info;
1704	struct btrfs_bio *bbio;
 
 
 
1705
1706	prepare_eb_write(eb);
1707
1708	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1709			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1710			       eb->fs_info, end_bbio_meta_write, eb);
1711	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1712	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1713	wbc_init_bio(wbc, &bbio->bio);
1714	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1715	bbio->file_offset = eb->start;
1716	if (fs_info->nodesize < PAGE_SIZE) {
1717		struct folio *folio = eb->folios[0];
1718		bool ret;
1719
1720		folio_lock(folio);
1721		btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1722		if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1723						       eb->len)) {
1724			folio_clear_dirty_for_io(folio);
1725			wbc->nr_to_write--;
1726		}
1727		ret = bio_add_folio(&bbio->bio, folio, eb->len,
1728				    eb->start - folio_pos(folio));
1729		ASSERT(ret);
1730		wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len);
1731		folio_unlock(folio);
1732	} else {
1733		int num_folios = num_extent_folios(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1734
1735		for (int i = 0; i < num_folios; i++) {
1736			struct folio *folio = eb->folios[i];
1737			bool ret;
1738
1739			folio_lock(folio);
1740			folio_clear_dirty_for_io(folio);
1741			folio_start_writeback(folio);
1742			ret = bio_add_folio(&bbio->bio, folio, folio_size(folio), 0);
1743			ASSERT(ret);
1744			wbc_account_cgroup_owner(wbc, folio_page(folio, 0),
1745						 folio_size(folio));
1746			wbc->nr_to_write -= folio_nr_pages(folio);
1747			folio_unlock(folio);
 
 
 
 
 
 
 
 
1748		}
 
 
 
1749	}
1750	btrfs_submit_bio(bbio, 0);
 
 
 
 
 
 
 
 
 
1751}
1752
1753/*
1754 * Submit one subpage btree page.
1755 *
1756 * The main difference to submit_eb_page() is:
1757 * - Page locking
1758 *   For subpage, we don't rely on page locking at all.
1759 *
1760 * - Flush write bio
1761 *   We only flush bio if we may be unable to fit current extent buffers into
1762 *   current bio.
1763 *
1764 * Return >=0 for the number of submitted extent buffers.
1765 * Return <0 for fatal error.
1766 */
1767static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
 
 
1768{
1769	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1770	struct folio *folio = page_folio(page);
1771	int submitted = 0;
1772	u64 page_start = page_offset(page);
1773	int bit_start = 0;
 
1774	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
 
1775
1776	/* Lock and write each dirty extent buffers in the range */
1777	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1778		struct btrfs_subpage *subpage = folio_get_private(folio);
1779		struct extent_buffer *eb;
1780		unsigned long flags;
1781		u64 start;
1782
1783		/*
1784		 * Take private lock to ensure the subpage won't be detached
1785		 * in the meantime.
1786		 */
1787		spin_lock(&page->mapping->i_private_lock);
1788		if (!folio_test_private(folio)) {
1789			spin_unlock(&page->mapping->i_private_lock);
1790			break;
1791		}
1792		spin_lock_irqsave(&subpage->lock, flags);
1793		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1794			      subpage->bitmaps)) {
1795			spin_unlock_irqrestore(&subpage->lock, flags);
1796			spin_unlock(&page->mapping->i_private_lock);
1797			bit_start++;
1798			continue;
1799		}
1800
1801		start = page_start + bit_start * fs_info->sectorsize;
1802		bit_start += sectors_per_node;
1803
1804		/*
1805		 * Here we just want to grab the eb without touching extra
1806		 * spin locks, so call find_extent_buffer_nolock().
1807		 */
1808		eb = find_extent_buffer_nolock(fs_info, start);
1809		spin_unlock_irqrestore(&subpage->lock, flags);
1810		spin_unlock(&page->mapping->i_private_lock);
1811
1812		/*
1813		 * The eb has already reached 0 refs thus find_extent_buffer()
1814		 * doesn't return it. We don't need to write back such eb
1815		 * anyway.
1816		 */
1817		if (!eb)
1818			continue;
1819
1820		if (lock_extent_buffer_for_io(eb, wbc)) {
1821			write_one_eb(eb, wbc);
1822			submitted++;
 
1823		}
 
 
 
 
 
1824		free_extent_buffer(eb);
 
 
 
1825	}
1826	return submitted;
 
 
 
 
 
1827}
1828
1829/*
1830 * Submit all page(s) of one extent buffer.
1831 *
1832 * @page:	the page of one extent buffer
1833 * @eb_context:	to determine if we need to submit this page, if current page
1834 *		belongs to this eb, we don't need to submit
1835 *
1836 * The caller should pass each page in their bytenr order, and here we use
1837 * @eb_context to determine if we have submitted pages of one extent buffer.
1838 *
1839 * If we have, we just skip until we hit a new page that doesn't belong to
1840 * current @eb_context.
1841 *
1842 * If not, we submit all the page(s) of the extent buffer.
1843 *
1844 * Return >0 if we have submitted the extent buffer successfully.
1845 * Return 0 if we don't need to submit the page, as it's already submitted by
1846 * previous call.
1847 * Return <0 for fatal error.
1848 */
1849static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
 
 
1850{
1851	struct writeback_control *wbc = ctx->wbc;
1852	struct address_space *mapping = page->mapping;
1853	struct folio *folio = page_folio(page);
1854	struct extent_buffer *eb;
1855	int ret;
1856
1857	if (!folio_test_private(folio))
1858		return 0;
1859
1860	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
1861		return submit_eb_subpage(page, wbc);
1862
1863	spin_lock(&mapping->i_private_lock);
1864	if (!folio_test_private(folio)) {
1865		spin_unlock(&mapping->i_private_lock);
1866		return 0;
1867	}
1868
1869	eb = folio_get_private(folio);
1870
1871	/*
1872	 * Shouldn't happen and normally this would be a BUG_ON but no point
1873	 * crashing the machine for something we can survive anyway.
1874	 */
1875	if (WARN_ON(!eb)) {
1876		spin_unlock(&mapping->i_private_lock);
1877		return 0;
1878	}
1879
1880	if (eb == ctx->eb) {
1881		spin_unlock(&mapping->i_private_lock);
1882		return 0;
1883	}
1884	ret = atomic_inc_not_zero(&eb->refs);
1885	spin_unlock(&mapping->i_private_lock);
1886	if (!ret)
1887		return 0;
1888
1889	ctx->eb = eb;
1890
1891	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1892	if (ret) {
1893		if (ret == -EBUSY)
 
 
 
1894			ret = 0;
1895		free_extent_buffer(eb);
1896		return ret;
1897	}
1898
1899	if (!lock_extent_buffer_for_io(eb, wbc)) {
 
 
 
 
 
 
1900		free_extent_buffer(eb);
1901		return 0;
1902	}
1903	/* Implies write in zoned mode. */
1904	if (ctx->zoned_bg) {
1905		/* Mark the last eb in the block group. */
1906		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1907		ctx->zoned_bg->meta_write_pointer += eb->len;
1908	}
1909	write_one_eb(eb, wbc);
 
 
1910	free_extent_buffer(eb);
 
 
1911	return 1;
1912}
1913
1914int btree_write_cache_pages(struct address_space *mapping,
1915				   struct writeback_control *wbc)
1916{
1917	struct btrfs_eb_write_context ctx = { .wbc = wbc };
 
 
 
 
 
1918	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
1919	int ret = 0;
1920	int done = 0;
1921	int nr_to_write_done = 0;
1922	struct folio_batch fbatch;
1923	unsigned int nr_folios;
1924	pgoff_t index;
1925	pgoff_t end;		/* Inclusive */
1926	int scanned = 0;
1927	xa_mark_t tag;
1928
1929	folio_batch_init(&fbatch);
1930	if (wbc->range_cyclic) {
1931		index = mapping->writeback_index; /* Start from prev offset */
1932		end = -1;
1933		/*
1934		 * Start from the beginning does not need to cycle over the
1935		 * range, mark it as scanned.
1936		 */
1937		scanned = (index == 0);
1938	} else {
1939		index = wbc->range_start >> PAGE_SHIFT;
1940		end = wbc->range_end >> PAGE_SHIFT;
1941		scanned = 1;
1942	}
1943	if (wbc->sync_mode == WB_SYNC_ALL)
1944		tag = PAGECACHE_TAG_TOWRITE;
1945	else
1946		tag = PAGECACHE_TAG_DIRTY;
1947	btrfs_zoned_meta_io_lock(fs_info);
1948retry:
1949	if (wbc->sync_mode == WB_SYNC_ALL)
1950		tag_pages_for_writeback(mapping, index, end);
1951	while (!done && !nr_to_write_done && (index <= end) &&
1952	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1953					    tag, &fbatch))) {
1954		unsigned i;
1955
1956		for (i = 0; i < nr_folios; i++) {
1957			struct folio *folio = fbatch.folios[i];
1958
1959			ret = submit_eb_page(&folio->page, &ctx);
1960			if (ret == 0)
1961				continue;
1962			if (ret < 0) {
1963				done = 1;
1964				break;
1965			}
1966
1967			/*
1968			 * the filesystem may choose to bump up nr_to_write.
1969			 * We have to make sure to honor the new nr_to_write
1970			 * at any time
1971			 */
1972			nr_to_write_done = wbc->nr_to_write <= 0;
1973		}
1974		folio_batch_release(&fbatch);
1975		cond_resched();
1976	}
1977	if (!scanned && !done) {
1978		/*
1979		 * We hit the last page and there is more work to be done: wrap
1980		 * back to the start of the file
1981		 */
1982		scanned = 1;
1983		index = 0;
1984		goto retry;
1985	}
 
 
 
 
1986	/*
1987	 * If something went wrong, don't allow any metadata write bio to be
1988	 * submitted.
1989	 *
1990	 * This would prevent use-after-free if we had dirty pages not
1991	 * cleaned up, which can still happen by fuzzed images.
1992	 *
1993	 * - Bad extent tree
1994	 *   Allowing existing tree block to be allocated for other trees.
1995	 *
1996	 * - Log tree operations
1997	 *   Exiting tree blocks get allocated to log tree, bumps its
1998	 *   generation, then get cleaned in tree re-balance.
1999	 *   Such tree block will not be written back, since it's clean,
2000	 *   thus no WRITTEN flag set.
2001	 *   And after log writes back, this tree block is not traced by
2002	 *   any dirty extent_io_tree.
2003	 *
2004	 * - Offending tree block gets re-dirtied from its original owner
2005	 *   Since it has bumped generation, no WRITTEN flag, it can be
2006	 *   reused without COWing. This tree block will not be traced
2007	 *   by btrfs_transaction::dirty_pages.
2008	 *
2009	 *   Now such dirty tree block will not be cleaned by any dirty
2010	 *   extent io tree. Thus we don't want to submit such wild eb
2011	 *   if the fs already has error.
2012	 *
2013	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2014	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2015	 */
2016	if (ret > 0)
2017		ret = 0;
2018	if (!ret && BTRFS_FS_ERROR(fs_info))
2019		ret = -EROFS;
2020
2021	if (ctx.zoned_bg)
2022		btrfs_put_block_group(ctx.zoned_bg);
2023	btrfs_zoned_meta_io_unlock(fs_info);
2024	return ret;
2025}
2026
2027/*
2028 * Walk the list of dirty pages of the given address space and write all of them.
2029 *
2030 * @mapping:   address space structure to write
2031 * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2032 * @bio_ctrl:  holds context for the write, namely the bio
2033 *
2034 * If a page is already under I/O, write_cache_pages() skips it, even
2035 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2036 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2037 * and msync() need to guarantee that all the data which was dirty at the time
2038 * the call was made get new I/O started against them.  If wbc->sync_mode is
2039 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2040 * existing IO to complete.
2041 */
2042static int extent_write_cache_pages(struct address_space *mapping,
2043			     struct btrfs_bio_ctrl *bio_ctrl)
 
2044{
2045	struct writeback_control *wbc = bio_ctrl->wbc;
2046	struct inode *inode = mapping->host;
2047	int ret = 0;
2048	int done = 0;
2049	int nr_to_write_done = 0;
2050	struct folio_batch fbatch;
2051	unsigned int nr_folios;
2052	pgoff_t index;
2053	pgoff_t end;		/* Inclusive */
2054	pgoff_t done_index;
2055	int range_whole = 0;
2056	int scanned = 0;
2057	xa_mark_t tag;
2058
2059	/*
2060	 * We have to hold onto the inode so that ordered extents can do their
2061	 * work when the IO finishes.  The alternative to this is failing to add
2062	 * an ordered extent if the igrab() fails there and that is a huge pain
2063	 * to deal with, so instead just hold onto the inode throughout the
2064	 * writepages operation.  If it fails here we are freeing up the inode
2065	 * anyway and we'd rather not waste our time writing out stuff that is
2066	 * going to be truncated anyway.
2067	 */
2068	if (!igrab(inode))
2069		return 0;
2070
2071	folio_batch_init(&fbatch);
2072	if (wbc->range_cyclic) {
2073		index = mapping->writeback_index; /* Start from prev offset */
2074		end = -1;
2075		/*
2076		 * Start from the beginning does not need to cycle over the
2077		 * range, mark it as scanned.
2078		 */
2079		scanned = (index == 0);
2080	} else {
2081		index = wbc->range_start >> PAGE_SHIFT;
2082		end = wbc->range_end >> PAGE_SHIFT;
2083		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2084			range_whole = 1;
2085		scanned = 1;
2086	}
2087
2088	/*
2089	 * We do the tagged writepage as long as the snapshot flush bit is set
2090	 * and we are the first one who do the filemap_flush() on this inode.
2091	 *
2092	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2093	 * not race in and drop the bit.
2094	 */
2095	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2096	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2097			       &BTRFS_I(inode)->runtime_flags))
2098		wbc->tagged_writepages = 1;
2099
2100	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2101		tag = PAGECACHE_TAG_TOWRITE;
2102	else
2103		tag = PAGECACHE_TAG_DIRTY;
2104retry:
2105	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2106		tag_pages_for_writeback(mapping, index, end);
2107	done_index = index;
2108	while (!done && !nr_to_write_done && (index <= end) &&
2109			(nr_folios = filemap_get_folios_tag(mapping, &index,
2110							end, tag, &fbatch))) {
2111		unsigned i;
2112
2113		for (i = 0; i < nr_folios; i++) {
2114			struct folio *folio = fbatch.folios[i];
2115
2116			done_index = folio_next_index(folio);
2117			/*
2118			 * At this point we hold neither the i_pages lock nor
2119			 * the page lock: the page may be truncated or
2120			 * invalidated (changing page->mapping to NULL),
2121			 * or even swizzled back from swapper_space to
2122			 * tmpfs file mapping
2123			 */
2124			if (!folio_trylock(folio)) {
2125				submit_write_bio(bio_ctrl, 0);
2126				folio_lock(folio);
2127			}
2128
2129			if (unlikely(folio->mapping != mapping)) {
2130				folio_unlock(folio);
2131				continue;
2132			}
2133
2134			if (!folio_test_dirty(folio)) {
2135				/* Someone wrote it for us. */
2136				folio_unlock(folio);
2137				continue;
2138			}
2139
2140			if (wbc->sync_mode != WB_SYNC_NONE) {
2141				if (folio_test_writeback(folio))
2142					submit_write_bio(bio_ctrl, 0);
2143				folio_wait_writeback(folio);
 
 
2144			}
2145
2146			if (folio_test_writeback(folio) ||
2147			    !folio_clear_dirty_for_io(folio)) {
2148				folio_unlock(folio);
2149				continue;
2150			}
2151
2152			ret = __extent_writepage(&folio->page, bio_ctrl);
2153			if (ret < 0) {
2154				done = 1;
2155				break;
2156			}
2157
2158			/*
2159			 * The filesystem may choose to bump up nr_to_write.
2160			 * We have to make sure to honor the new nr_to_write
2161			 * at any time.
2162			 */
2163			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2164					    wbc->nr_to_write <= 0);
2165		}
2166		folio_batch_release(&fbatch);
2167		cond_resched();
2168	}
2169	if (!scanned && !done) {
2170		/*
2171		 * We hit the last page and there is more work to be done: wrap
2172		 * back to the start of the file
2173		 */
2174		scanned = 1;
2175		index = 0;
2176
2177		/*
2178		 * If we're looping we could run into a page that is locked by a
2179		 * writer and that writer could be waiting on writeback for a
2180		 * page in our current bio, and thus deadlock, so flush the
2181		 * write bio here.
2182		 */
2183		submit_write_bio(bio_ctrl, 0);
2184		goto retry;
 
2185	}
2186
2187	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2188		mapping->writeback_index = done_index;
2189
2190	btrfs_add_delayed_iput(BTRFS_I(inode));
2191	return ret;
2192}
2193
2194/*
2195 * Submit the pages in the range to bio for call sites which delalloc range has
2196 * already been ran (aka, ordered extent inserted) and all pages are still
2197 * locked.
2198 */
2199void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2200			       u64 start, u64 end, struct writeback_control *wbc,
2201			       bool pages_dirty)
2202{
2203	bool found_error = false;
2204	int ret = 0;
2205	struct address_space *mapping = inode->i_mapping;
2206	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2207	const u32 sectorsize = fs_info->sectorsize;
2208	loff_t i_size = i_size_read(inode);
2209	u64 cur = start;
2210	struct btrfs_bio_ctrl bio_ctrl = {
2211		.wbc = wbc,
2212		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2213	};
2214
2215	if (wbc->no_cgroup_owner)
2216		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
 
 
 
 
2217
2218	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
 
 
 
2219
2220	while (cur <= end) {
2221		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2222		u32 cur_len = cur_end + 1 - cur;
2223		struct page *page;
2224		int nr = 0;
2225
2226		page = find_get_page(mapping, cur >> PAGE_SHIFT);
2227		ASSERT(PageLocked(page));
2228		if (pages_dirty && page != locked_page) {
2229			ASSERT(PageDirty(page));
2230			clear_page_dirty_for_io(page);
2231		}
2232
2233		ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2234					    i_size, &nr);
2235		if (ret == 1)
2236			goto next_page;
 
 
 
 
 
 
 
 
 
 
2237
2238		/* Make sure the mapping tag for page dirty gets cleared. */
2239		if (nr == 0) {
2240			set_page_writeback(page);
2241			end_page_writeback(page);
2242		}
2243		if (ret) {
2244			btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2245						       cur, cur_len, !ret);
2246			mapping_set_error(page->mapping, ret);
2247		}
2248		btrfs_folio_unlock_writer(fs_info, page_folio(page), cur, cur_len);
2249		if (ret < 0)
2250			found_error = true;
2251next_page:
2252		put_page(page);
2253		cur = cur_end + 1;
2254	}
2255
2256	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
 
 
 
 
 
 
 
2257}
2258
2259int extent_writepages(struct address_space *mapping,
2260		      struct writeback_control *wbc)
2261{
2262	struct inode *inode = mapping->host;
2263	int ret = 0;
2264	struct btrfs_bio_ctrl bio_ctrl = {
2265		.wbc = wbc,
2266		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
 
2267	};
2268
2269	/*
2270	 * Allow only a single thread to do the reloc work in zoned mode to
2271	 * protect the write pointer updates.
2272	 */
2273	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2274	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2275	submit_write_bio(&bio_ctrl, ret);
2276	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2277	return ret;
2278}
2279
2280void extent_readahead(struct readahead_control *rac)
2281{
2282	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2283	struct page *pagepool[16];
2284	struct extent_map *em_cached = NULL;
2285	u64 prev_em_start = (u64)-1;
2286	int nr;
2287
2288	while ((nr = readahead_page_batch(rac, pagepool))) {
2289		u64 contig_start = readahead_pos(rac);
2290		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2291
2292		contiguous_readpages(pagepool, nr, contig_start, contig_end,
2293				&em_cached, &bio_ctrl, &prev_em_start);
2294	}
2295
2296	if (em_cached)
2297		free_extent_map(em_cached);
2298	submit_one_bio(&bio_ctrl);
 
 
 
 
2299}
2300
2301/*
2302 * basic invalidate_folio code, this waits on any locked or writeback
2303 * ranges corresponding to the folio, and then deletes any extent state
2304 * records from the tree
2305 */
2306int extent_invalidate_folio(struct extent_io_tree *tree,
2307			  struct folio *folio, size_t offset)
2308{
2309	struct extent_state *cached_state = NULL;
2310	u64 start = folio_pos(folio);
2311	u64 end = start + folio_size(folio) - 1;
2312	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
2313
2314	/* This function is only called for the btree inode */
2315	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2316
2317	start += ALIGN(offset, blocksize);
2318	if (start > end)
2319		return 0;
2320
2321	lock_extent(tree, start, end, &cached_state);
2322	folio_wait_writeback(folio);
2323
2324	/*
2325	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2326	 * so here we only need to unlock the extent range to free any
2327	 * existing extent state.
2328	 */
2329	unlock_extent(tree, start, end, &cached_state);
2330	return 0;
2331}
2332
2333/*
2334 * a helper for release_folio, this tests for areas of the page that
2335 * are locked or under IO and drops the related state bits if it is safe
2336 * to drop the page.
2337 */
2338static int try_release_extent_state(struct extent_io_tree *tree,
2339				    struct page *page, gfp_t mask)
2340{
2341	u64 start = page_offset(page);
2342	u64 end = start + PAGE_SIZE - 1;
2343	int ret = 1;
2344
2345	if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2346		ret = 0;
2347	} else {
2348		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2349				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2350				   EXTENT_QGROUP_RESERVED);
2351
2352		/*
2353		 * At this point we can safely clear everything except the
2354		 * locked bit, the nodatasum bit and the delalloc new bit.
2355		 * The delalloc new bit will be cleared by ordered extent
2356		 * completion.
2357		 */
2358		ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
 
 
2359
2360		/* if clear_extent_bit failed for enomem reasons,
2361		 * we can't allow the release to continue.
2362		 */
2363		if (ret < 0)
2364			ret = 0;
2365		else
2366			ret = 1;
2367	}
2368	return ret;
2369}
2370
2371/*
2372 * a helper for release_folio.  As long as there are no locked extents
2373 * in the range corresponding to the page, both state records and extent
2374 * map records are removed
2375 */
2376int try_release_extent_mapping(struct page *page, gfp_t mask)
2377{
2378	struct extent_map *em;
2379	u64 start = page_offset(page);
2380	u64 end = start + PAGE_SIZE - 1;
2381	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2382	struct extent_io_tree *tree = &btrfs_inode->io_tree;
2383	struct extent_map_tree *map = &btrfs_inode->extent_tree;
2384
2385	if (gfpflags_allow_blocking(mask) &&
2386	    page->mapping->host->i_size > SZ_16M) {
2387		u64 len;
2388		while (start <= end) {
2389			struct btrfs_fs_info *fs_info;
2390			u64 cur_gen;
2391
2392			len = end - start + 1;
2393			write_lock(&map->lock);
2394			em = lookup_extent_mapping(map, start, len);
2395			if (!em) {
2396				write_unlock(&map->lock);
2397				break;
2398			}
2399			if ((em->flags & EXTENT_FLAG_PINNED) ||
2400			    em->start != start) {
2401				write_unlock(&map->lock);
2402				free_extent_map(em);
2403				break;
2404			}
2405			if (test_range_bit_exists(tree, em->start,
2406						  extent_map_end(em) - 1,
2407						  EXTENT_LOCKED))
2408				goto next;
2409			/*
2410			 * If it's not in the list of modified extents, used
2411			 * by a fast fsync, we can remove it. If it's being
2412			 * logged we can safely remove it since fsync took an
2413			 * extra reference on the em.
2414			 */
2415			if (list_empty(&em->list) ||
2416			    (em->flags & EXTENT_FLAG_LOGGING))
2417				goto remove_em;
2418			/*
2419			 * If it's in the list of modified extents, remove it
2420			 * only if its generation is older then the current one,
2421			 * in which case we don't need it for a fast fsync.
2422			 * Otherwise don't remove it, we could be racing with an
2423			 * ongoing fast fsync that could miss the new extent.
2424			 */
2425			fs_info = btrfs_inode->root->fs_info;
2426			spin_lock(&fs_info->trans_lock);
2427			cur_gen = fs_info->generation;
2428			spin_unlock(&fs_info->trans_lock);
2429			if (em->generation >= cur_gen)
2430				goto next;
2431remove_em:
2432			/*
2433			 * We only remove extent maps that are not in the list of
2434			 * modified extents or that are in the list but with a
2435			 * generation lower then the current generation, so there
2436			 * is no need to set the full fsync flag on the inode (it
2437			 * hurts the fsync performance for workloads with a data
2438			 * size that exceeds or is close to the system's memory).
2439			 */
2440			remove_extent_mapping(map, em);
2441			/* once for the rb tree */
2442			free_extent_map(em);
2443next:
2444			start = extent_map_end(em);
2445			write_unlock(&map->lock);
2446
2447			/* once for us */
2448			free_extent_map(em);
2449
2450			cond_resched(); /* Allow large-extent preemption. */
2451		}
2452	}
2453	return try_release_extent_state(tree, page, mask);
2454}
2455
2456/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2457 * To cache previous fiemap extent
2458 *
2459 * Will be used for merging fiemap extent
2460 */
2461struct fiemap_cache {
2462	u64 offset;
2463	u64 phys;
2464	u64 len;
2465	u32 flags;
2466	bool cached;
2467};
2468
2469/*
2470 * Helper to submit fiemap extent.
2471 *
2472 * Will try to merge current fiemap extent specified by @offset, @phys,
2473 * @len and @flags with cached one.
2474 * And only when we fails to merge, cached one will be submitted as
2475 * fiemap extent.
2476 *
2477 * Return value is the same as fiemap_fill_next_extent().
2478 */
2479static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2480				struct fiemap_cache *cache,
2481				u64 offset, u64 phys, u64 len, u32 flags)
2482{
2483	u64 cache_end;
2484	int ret = 0;
2485
2486	/* Set at the end of extent_fiemap(). */
2487	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2488
2489	if (!cache->cached)
2490		goto assign;
2491
2492	/*
2493	 * When iterating the extents of the inode, at extent_fiemap(), we may
2494	 * find an extent that starts at an offset behind the end offset of the
2495	 * previous extent we processed. This happens if fiemap is called
2496	 * without FIEMAP_FLAG_SYNC and there are ordered extents completing
2497	 * while we call btrfs_next_leaf() (through fiemap_next_leaf_item()).
2498	 *
2499	 * For example we are in leaf X processing its last item, which is the
2500	 * file extent item for file range [512K, 1M[, and after
2501	 * btrfs_next_leaf() releases the path, there's an ordered extent that
2502	 * completes for the file range [768K, 2M[, and that results in trimming
2503	 * the file extent item so that it now corresponds to the file range
2504	 * [512K, 768K[ and a new file extent item is inserted for the file
2505	 * range [768K, 2M[, which may end up as the last item of leaf X or as
2506	 * the first item of the next leaf - in either case btrfs_next_leaf()
2507	 * will leave us with a path pointing to the new extent item, for the
2508	 * file range [768K, 2M[, since that's the first key that follows the
2509	 * last one we processed. So in order not to report overlapping extents
2510	 * to user space, we trim the length of the previously cached extent and
2511	 * emit it.
2512	 *
2513	 * Upon calling btrfs_next_leaf() we may also find an extent with an
2514	 * offset smaller than or equals to cache->offset, and this happens
2515	 * when we had a hole or prealloc extent with several delalloc ranges in
2516	 * it, but after btrfs_next_leaf() released the path, delalloc was
2517	 * flushed and the resulting ordered extents were completed, so we can
2518	 * now have found a file extent item for an offset that is smaller than
2519	 * or equals to what we have in cache->offset. We deal with this as
2520	 * described below.
2521	 */
2522	cache_end = cache->offset + cache->len;
2523	if (cache_end > offset) {
2524		if (offset == cache->offset) {
2525			/*
2526			 * We cached a dealloc range (found in the io tree) for
2527			 * a hole or prealloc extent and we have now found a
2528			 * file extent item for the same offset. What we have
2529			 * now is more recent and up to date, so discard what
2530			 * we had in the cache and use what we have just found.
2531			 */
2532			goto assign;
2533		} else if (offset > cache->offset) {
2534			/*
2535			 * The extent range we previously found ends after the
2536			 * offset of the file extent item we found and that
2537			 * offset falls somewhere in the middle of that previous
2538			 * extent range. So adjust the range we previously found
2539			 * to end at the offset of the file extent item we have
2540			 * just found, since this extent is more up to date.
2541			 * Emit that adjusted range and cache the file extent
2542			 * item we have just found. This corresponds to the case
2543			 * where a previously found file extent item was split
2544			 * due to an ordered extent completing.
2545			 */
2546			cache->len = offset - cache->offset;
2547			goto emit;
2548		} else {
2549			const u64 range_end = offset + len;
2550
2551			/*
2552			 * The offset of the file extent item we have just found
2553			 * is behind the cached offset. This means we were
2554			 * processing a hole or prealloc extent for which we
2555			 * have found delalloc ranges (in the io tree), so what
2556			 * we have in the cache is the last delalloc range we
2557			 * found while the file extent item we found can be
2558			 * either for a whole delalloc range we previously
2559			 * emmitted or only a part of that range.
2560			 *
2561			 * We have two cases here:
2562			 *
2563			 * 1) The file extent item's range ends at or behind the
2564			 *    cached extent's end. In this case just ignore the
2565			 *    current file extent item because we don't want to
2566			 *    overlap with previous ranges that may have been
2567			 *    emmitted already;
2568			 *
2569			 * 2) The file extent item starts behind the currently
2570			 *    cached extent but its end offset goes beyond the
2571			 *    end offset of the cached extent. We don't want to
2572			 *    overlap with a previous range that may have been
2573			 *    emmitted already, so we emit the currently cached
2574			 *    extent and then partially store the current file
2575			 *    extent item's range in the cache, for the subrange
2576			 *    going the cached extent's end to the end of the
2577			 *    file extent item.
2578			 */
2579			if (range_end <= cache_end)
2580				return 0;
2581
2582			if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC)))
2583				phys += cache_end - offset;
2584
2585			offset = cache_end;
2586			len = range_end - cache_end;
2587			goto emit;
2588		}
2589	}
2590
2591	/*
2592	 * Only merges fiemap extents if
2593	 * 1) Their logical addresses are continuous
2594	 *
2595	 * 2) Their physical addresses are continuous
2596	 *    So truly compressed (physical size smaller than logical size)
2597	 *    extents won't get merged with each other
2598	 *
2599	 * 3) Share same flags
 
2600	 */
2601	if (cache->offset + cache->len  == offset &&
2602	    cache->phys + cache->len == phys  &&
2603	    cache->flags == flags) {
 
2604		cache->len += len;
2605		return 0;
 
2606	}
2607
2608emit:
2609	/* Not mergeable, need to submit cached one */
2610	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2611				      cache->len, cache->flags);
2612	cache->cached = false;
2613	if (ret)
2614		return ret;
2615assign:
2616	cache->cached = true;
2617	cache->offset = offset;
2618	cache->phys = phys;
2619	cache->len = len;
2620	cache->flags = flags;
2621
2622	return 0;
 
 
 
 
 
2623}
2624
2625/*
2626 * Emit last fiemap cache
2627 *
2628 * The last fiemap cache may still be cached in the following case:
2629 * 0		      4k		    8k
2630 * |<- Fiemap range ->|
2631 * |<------------  First extent ----------->|
2632 *
2633 * In this case, the first extent range will be cached but not emitted.
2634 * So we must emit it before ending extent_fiemap().
2635 */
2636static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2637				  struct fiemap_cache *cache)
2638{
2639	int ret;
2640
2641	if (!cache->cached)
2642		return 0;
2643
2644	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2645				      cache->len, cache->flags);
2646	cache->cached = false;
2647	if (ret > 0)
2648		ret = 0;
2649	return ret;
2650}
2651
2652static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2653{
2654	struct extent_buffer *clone;
2655	struct btrfs_key key;
2656	int slot;
2657	int ret;
2658
2659	path->slots[0]++;
2660	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2661		return 0;
2662
2663	ret = btrfs_next_leaf(inode->root, path);
2664	if (ret != 0)
2665		return ret;
2666
2667	/*
2668	 * Don't bother with cloning if there are no more file extent items for
2669	 * our inode.
2670	 */
2671	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2672	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2673		return 1;
2674
2675	/* See the comment at fiemap_search_slot() about why we clone. */
2676	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2677	if (!clone)
2678		return -ENOMEM;
2679
2680	slot = path->slots[0];
2681	btrfs_release_path(path);
2682	path->nodes[0] = clone;
2683	path->slots[0] = slot;
2684
2685	return 0;
2686}
2687
2688/*
2689 * Search for the first file extent item that starts at a given file offset or
2690 * the one that starts immediately before that offset.
2691 * Returns: 0 on success, < 0 on error, 1 if not found.
2692 */
2693static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2694			      u64 file_offset)
2695{
2696	const u64 ino = btrfs_ino(inode);
 
 
 
 
 
 
 
 
 
 
 
 
2697	struct btrfs_root *root = inode->root;
2698	struct extent_buffer *clone;
2699	struct btrfs_key key;
2700	int slot;
2701	int ret;
2702
2703	key.objectid = ino;
2704	key.type = BTRFS_EXTENT_DATA_KEY;
2705	key.offset = file_offset;
2706
2707	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2708	if (ret < 0)
2709		return ret;
2710
2711	if (ret > 0 && path->slots[0] > 0) {
2712		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2713		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2714			path->slots[0]--;
2715	}
2716
2717	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2718		ret = btrfs_next_leaf(root, path);
2719		if (ret != 0)
2720			return ret;
2721
2722		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2723		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2724			return 1;
2725	}
2726
2727	/*
2728	 * We clone the leaf and use it during fiemap. This is because while
2729	 * using the leaf we do expensive things like checking if an extent is
2730	 * shared, which can take a long time. In order to prevent blocking
2731	 * other tasks for too long, we use a clone of the leaf. We have locked
2732	 * the file range in the inode's io tree, so we know none of our file
2733	 * extent items can change. This way we avoid blocking other tasks that
2734	 * want to insert items for other inodes in the same leaf or b+tree
2735	 * rebalance operations (triggered for example when someone is trying
2736	 * to push items into this leaf when trying to insert an item in a
2737	 * neighbour leaf).
2738	 * We also need the private clone because holding a read lock on an
2739	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2740	 * when we call fiemap_fill_next_extent(), because that may cause a page
2741	 * fault when filling the user space buffer with fiemap data.
2742	 */
2743	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2744	if (!clone)
2745		return -ENOMEM;
2746
2747	slot = path->slots[0];
2748	btrfs_release_path(path);
2749	path->nodes[0] = clone;
2750	path->slots[0] = slot;
2751
2752	return 0;
2753}
2754
2755/*
2756 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2757 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2758 * extent. The end offset (@end) is inclusive.
2759 */
2760static int fiemap_process_hole(struct btrfs_inode *inode,
2761			       struct fiemap_extent_info *fieinfo,
2762			       struct fiemap_cache *cache,
2763			       struct extent_state **delalloc_cached_state,
2764			       struct btrfs_backref_share_check_ctx *backref_ctx,
2765			       u64 disk_bytenr, u64 extent_offset,
2766			       u64 extent_gen,
2767			       u64 start, u64 end)
2768{
2769	const u64 i_size = i_size_read(&inode->vfs_inode);
2770	u64 cur_offset = start;
2771	u64 last_delalloc_end = 0;
2772	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2773	bool checked_extent_shared = false;
2774	int ret;
2775
2776	/*
2777	 * There can be no delalloc past i_size, so don't waste time looking for
2778	 * it beyond i_size.
2779	 */
2780	while (cur_offset < end && cur_offset < i_size) {
2781		struct extent_state *cached_state = NULL;
2782		u64 delalloc_start;
2783		u64 delalloc_end;
2784		u64 prealloc_start;
2785		u64 lockstart;
2786		u64 lockend;
2787		u64 prealloc_len = 0;
2788		bool delalloc;
2789
2790		lockstart = round_down(cur_offset, inode->root->fs_info->sectorsize);
2791		lockend = round_up(end, inode->root->fs_info->sectorsize);
2792
2793		/*
2794		 * We are only locking for the delalloc range because that's the
2795		 * only thing that can change here.  With fiemap we have a lock
2796		 * on the inode, so no buffered or direct writes can happen.
2797		 *
2798		 * However mmaps and normal page writeback will cause this to
2799		 * change arbitrarily.  We have to lock the extent lock here to
2800		 * make sure that nobody messes with the tree while we're doing
2801		 * btrfs_find_delalloc_in_range.
2802		 */
2803		lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2804		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2805							delalloc_cached_state,
2806							&delalloc_start,
2807							&delalloc_end);
2808		unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2809		if (!delalloc)
2810			break;
2811
2812		/*
2813		 * If this is a prealloc extent we have to report every section
2814		 * of it that has no delalloc.
2815		 */
2816		if (disk_bytenr != 0) {
2817			if (last_delalloc_end == 0) {
2818				prealloc_start = start;
2819				prealloc_len = delalloc_start - start;
2820			} else {
2821				prealloc_start = last_delalloc_end + 1;
2822				prealloc_len = delalloc_start - prealloc_start;
2823			}
2824		}
2825
2826		if (prealloc_len > 0) {
2827			if (!checked_extent_shared && fieinfo->fi_extents_max) {
2828				ret = btrfs_is_data_extent_shared(inode,
2829								  disk_bytenr,
2830								  extent_gen,
2831								  backref_ctx);
2832				if (ret < 0)
2833					return ret;
2834				else if (ret > 0)
2835					prealloc_flags |= FIEMAP_EXTENT_SHARED;
2836
2837				checked_extent_shared = true;
2838			}
2839			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2840						 disk_bytenr + extent_offset,
2841						 prealloc_len, prealloc_flags);
2842			if (ret)
2843				return ret;
2844			extent_offset += prealloc_len;
2845		}
2846
2847		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2848					 delalloc_end + 1 - delalloc_start,
2849					 FIEMAP_EXTENT_DELALLOC |
2850					 FIEMAP_EXTENT_UNKNOWN);
2851		if (ret)
2852			return ret;
2853
2854		last_delalloc_end = delalloc_end;
2855		cur_offset = delalloc_end + 1;
2856		extent_offset += cur_offset - delalloc_start;
2857		cond_resched();
2858	}
2859
2860	/*
2861	 * Either we found no delalloc for the whole prealloc extent or we have
2862	 * a prealloc extent that spans i_size or starts at or after i_size.
2863	 */
2864	if (disk_bytenr != 0 && last_delalloc_end < end) {
2865		u64 prealloc_start;
2866		u64 prealloc_len;
2867
2868		if (last_delalloc_end == 0) {
2869			prealloc_start = start;
2870			prealloc_len = end + 1 - start;
2871		} else {
2872			prealloc_start = last_delalloc_end + 1;
2873			prealloc_len = end + 1 - prealloc_start;
2874		}
2875
2876		if (!checked_extent_shared && fieinfo->fi_extents_max) {
2877			ret = btrfs_is_data_extent_shared(inode,
2878							  disk_bytenr,
2879							  extent_gen,
2880							  backref_ctx);
2881			if (ret < 0)
2882				return ret;
2883			else if (ret > 0)
2884				prealloc_flags |= FIEMAP_EXTENT_SHARED;
2885		}
2886		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2887					 disk_bytenr + extent_offset,
2888					 prealloc_len, prealloc_flags);
2889		if (ret)
2890			return ret;
2891	}
2892
2893	return 0;
2894}
2895
2896static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2897					  struct btrfs_path *path,
2898					  u64 *last_extent_end_ret)
2899{
2900	const u64 ino = btrfs_ino(inode);
2901	struct btrfs_root *root = inode->root;
2902	struct extent_buffer *leaf;
2903	struct btrfs_file_extent_item *ei;
2904	struct btrfs_key key;
2905	u64 disk_bytenr;
2906	int ret;
2907
2908	/*
2909	 * Lookup the last file extent. We're not using i_size here because
2910	 * there might be preallocation past i_size.
2911	 */
2912	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2913	/* There can't be a file extent item at offset (u64)-1 */
2914	ASSERT(ret != 0);
2915	if (ret < 0)
2916		return ret;
 
 
 
 
2917
2918	/*
2919	 * For a non-existing key, btrfs_search_slot() always leaves us at a
2920	 * slot > 0, except if the btree is empty, which is impossible because
2921	 * at least it has the inode item for this inode and all the items for
2922	 * the root inode 256.
2923	 */
2924	ASSERT(path->slots[0] > 0);
2925	path->slots[0]--;
2926	leaf = path->nodes[0];
2927	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2928	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2929		/* No file extent items in the subvolume tree. */
2930		*last_extent_end_ret = 0;
2931		return 0;
2932	}
2933
2934	/*
2935	 * For an inline extent, the disk_bytenr is where inline data starts at,
2936	 * so first check if we have an inline extent item before checking if we
2937	 * have an implicit hole (disk_bytenr == 0).
2938	 */
2939	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2940	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2941		*last_extent_end_ret = btrfs_file_extent_end(path);
2942		return 0;
 
 
 
 
 
2943	}
 
2944
2945	/*
2946	 * Find the last file extent item that is not a hole (when NO_HOLES is
2947	 * not enabled). This should take at most 2 iterations in the worst
2948	 * case: we have one hole file extent item at slot 0 of a leaf and
2949	 * another hole file extent item as the last item in the previous leaf.
2950	 * This is because we merge file extent items that represent holes.
2951	 */
2952	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2953	while (disk_bytenr == 0) {
2954		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2955		if (ret < 0) {
2956			return ret;
2957		} else if (ret > 0) {
2958			/* No file extent items that are not holes. */
2959			*last_extent_end_ret = 0;
2960			return 0;
2961		}
2962		leaf = path->nodes[0];
2963		ei = btrfs_item_ptr(leaf, path->slots[0],
2964				    struct btrfs_file_extent_item);
2965		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2966	}
2967
2968	*last_extent_end_ret = btrfs_file_extent_end(path);
2969	return 0;
2970}
2971
2972int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
2973		  u64 start, u64 len)
2974{
2975	const u64 ino = btrfs_ino(inode);
2976	struct extent_state *delalloc_cached_state = NULL;
2977	struct btrfs_path *path;
2978	struct fiemap_cache cache = { 0 };
2979	struct btrfs_backref_share_check_ctx *backref_ctx;
2980	u64 last_extent_end;
2981	u64 prev_extent_end;
2982	u64 range_start;
2983	u64 range_end;
2984	const u64 sectorsize = inode->root->fs_info->sectorsize;
2985	bool stopped = false;
2986	int ret;
2987
2988	backref_ctx = btrfs_alloc_backref_share_check_ctx();
2989	path = btrfs_alloc_path();
2990	if (!backref_ctx || !path) {
2991		ret = -ENOMEM;
2992		goto out;
2993	}
2994
2995	range_start = round_down(start, sectorsize);
2996	range_end = round_up(start + len, sectorsize);
2997	prev_extent_end = range_start;
2998
2999	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3000	if (ret < 0)
3001		goto out;
3002	btrfs_release_path(path);
3003
3004	path->reada = READA_FORWARD;
3005	ret = fiemap_search_slot(inode, path, range_start);
3006	if (ret < 0) {
3007		goto out;
3008	} else if (ret > 0) {
3009		/*
3010		 * No file extent item found, but we may have delalloc between
3011		 * the current offset and i_size. So check for that.
3012		 */
3013		ret = 0;
3014		goto check_eof_delalloc;
3015	}
3016
3017	while (prev_extent_end < range_end) {
3018		struct extent_buffer *leaf = path->nodes[0];
3019		struct btrfs_file_extent_item *ei;
3020		struct btrfs_key key;
3021		u64 extent_end;
3022		u64 extent_len;
3023		u64 extent_offset = 0;
3024		u64 extent_gen;
3025		u64 disk_bytenr = 0;
3026		u64 flags = 0;
3027		int extent_type;
3028		u8 compression;
3029
3030		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3031		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3032			break;
3033
3034		extent_end = btrfs_file_extent_end(path);
3035
3036		/*
3037		 * The first iteration can leave us at an extent item that ends
3038		 * before our range's start. Move to the next item.
 
 
3039		 */
3040		if (extent_end <= range_start)
3041			goto next_item;
3042
3043		backref_ctx->curr_leaf_bytenr = leaf->start;
3044
3045		/* We have in implicit hole (NO_HOLES feature enabled). */
3046		if (prev_extent_end < key.offset) {
3047			const u64 hole_end = min(key.offset, range_end) - 1;
3048
3049			ret = fiemap_process_hole(inode, fieinfo, &cache,
3050						  &delalloc_cached_state,
3051						  backref_ctx, 0, 0, 0,
3052						  prev_extent_end, hole_end);
3053			if (ret < 0) {
3054				goto out;
3055			} else if (ret > 0) {
3056				/* fiemap_fill_next_extent() told us to stop. */
3057				stopped = true;
3058				break;
3059			}
 
 
 
 
3060
3061			/* We've reached the end of the fiemap range, stop. */
3062			if (key.offset >= range_end) {
3063				stopped = true;
3064				break;
3065			}
3066		}
 
 
 
 
 
 
 
 
 
 
 
 
 
3067
3068		extent_len = extent_end - key.offset;
3069		ei = btrfs_item_ptr(leaf, path->slots[0],
3070				    struct btrfs_file_extent_item);
3071		compression = btrfs_file_extent_compression(leaf, ei);
3072		extent_type = btrfs_file_extent_type(leaf, ei);
3073		extent_gen = btrfs_file_extent_generation(leaf, ei);
3074
3075		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3076			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3077			if (compression == BTRFS_COMPRESS_NONE)
3078				extent_offset = btrfs_file_extent_offset(leaf, ei);
 
 
 
3079		}
3080
3081		if (compression != BTRFS_COMPRESS_NONE)
3082			flags |= FIEMAP_EXTENT_ENCODED;
 
 
3083
3084		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3085			flags |= FIEMAP_EXTENT_DATA_INLINE;
3086			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3087			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3088						 extent_len, flags);
3089		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3090			ret = fiemap_process_hole(inode, fieinfo, &cache,
3091						  &delalloc_cached_state,
3092						  backref_ctx,
3093						  disk_bytenr, extent_offset,
3094						  extent_gen, key.offset,
3095						  extent_end - 1);
3096		} else if (disk_bytenr == 0) {
3097			/* We have an explicit hole. */
3098			ret = fiemap_process_hole(inode, fieinfo, &cache,
3099						  &delalloc_cached_state,
3100						  backref_ctx, 0, 0, 0,
3101						  key.offset, extent_end - 1);
3102		} else {
3103			/* We have a regular extent. */
3104			if (fieinfo->fi_extents_max) {
3105				ret = btrfs_is_data_extent_shared(inode,
3106								  disk_bytenr,
3107								  extent_gen,
3108								  backref_ctx);
3109				if (ret < 0)
3110					goto out;
3111				else if (ret > 0)
3112					flags |= FIEMAP_EXTENT_SHARED;
3113			}
3114
3115			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3116						 disk_bytenr + extent_offset,
3117						 extent_len, flags);
3118		}
3119
3120		if (ret < 0) {
3121			goto out;
3122		} else if (ret > 0) {
3123			/* fiemap_fill_next_extent() told us to stop. */
3124			stopped = true;
3125			break;
3126		}
3127
3128		prev_extent_end = extent_end;
3129next_item:
3130		if (fatal_signal_pending(current)) {
3131			ret = -EINTR;
3132			goto out;
3133		}
3134
3135		ret = fiemap_next_leaf_item(inode, path);
3136		if (ret < 0) {
3137			goto out;
3138		} else if (ret > 0) {
3139			/* No more file extent items for this inode. */
3140			break;
3141		}
3142		cond_resched();
3143	}
3144
3145check_eof_delalloc:
3146	/*
3147	 * Release (and free) the path before emitting any final entries to
3148	 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3149	 * once we find no more file extent items exist, we may have a
3150	 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3151	 * faults when copying data to the user space buffer.
3152	 */
3153	btrfs_free_path(path);
3154	path = NULL;
3155
3156	if (!stopped && prev_extent_end < range_end) {
3157		ret = fiemap_process_hole(inode, fieinfo, &cache,
3158					  &delalloc_cached_state, backref_ctx,
3159					  0, 0, 0, prev_extent_end, range_end - 1);
3160		if (ret < 0)
3161			goto out;
3162		prev_extent_end = range_end;
3163	}
3164
3165	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3166		const u64 i_size = i_size_read(&inode->vfs_inode);
3167
3168		if (prev_extent_end < i_size) {
3169			struct extent_state *cached_state = NULL;
3170			u64 delalloc_start;
3171			u64 delalloc_end;
3172			u64 lockstart;
3173			u64 lockend;
3174			bool delalloc;
3175
3176			lockstart = round_down(prev_extent_end, sectorsize);
3177			lockend = round_up(i_size, sectorsize);
3178
3179			/*
3180			 * See the comment in fiemap_process_hole as to why
3181			 * we're doing the locking here.
3182			 */
3183			lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3184			delalloc = btrfs_find_delalloc_in_range(inode,
3185								prev_extent_end,
3186								i_size - 1,
3187								&delalloc_cached_state,
3188								&delalloc_start,
3189								&delalloc_end);
3190			unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3191			if (!delalloc)
3192				cache.flags |= FIEMAP_EXTENT_LAST;
3193		} else {
3194			cache.flags |= FIEMAP_EXTENT_LAST;
3195		}
3196	}
3197
3198	ret = emit_last_fiemap_cache(fieinfo, &cache);
 
 
3199out:
3200	free_extent_state(delalloc_cached_state);
3201	btrfs_free_backref_share_ctx(backref_ctx);
 
 
3202	btrfs_free_path(path);
 
 
3203	return ret;
3204}
3205
3206static void __free_extent_buffer(struct extent_buffer *eb)
3207{
3208	kmem_cache_free(extent_buffer_cache, eb);
3209}
3210
3211static int extent_buffer_under_io(const struct extent_buffer *eb)
3212{
3213	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
 
3214		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3215}
3216
3217static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio)
3218{
3219	struct btrfs_subpage *subpage;
3220
3221	lockdep_assert_held(&folio->mapping->i_private_lock);
3222
3223	if (folio_test_private(folio)) {
3224		subpage = folio_get_private(folio);
3225		if (atomic_read(&subpage->eb_refs))
3226			return true;
3227		/*
3228		 * Even there is no eb refs here, we may still have
3229		 * end_page_read() call relying on page::private.
3230		 */
3231		if (atomic_read(&subpage->readers))
3232			return true;
3233	}
3234	return false;
3235}
3236
3237static void detach_extent_buffer_folio(struct extent_buffer *eb, struct folio *folio)
3238{
3239	struct btrfs_fs_info *fs_info = eb->fs_info;
3240	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3241
3242	/*
3243	 * For mapped eb, we're going to change the folio private, which should
3244	 * be done under the i_private_lock.
3245	 */
3246	if (mapped)
3247		spin_lock(&folio->mapping->i_private_lock);
3248
3249	if (!folio_test_private(folio)) {
3250		if (mapped)
3251			spin_unlock(&folio->mapping->i_private_lock);
3252		return;
3253	}
3254
3255	if (fs_info->nodesize >= PAGE_SIZE) {
3256		/*
3257		 * We do this since we'll remove the pages after we've
3258		 * removed the eb from the radix tree, so we could race
3259		 * and have this page now attached to the new eb.  So
3260		 * only clear folio if it's still connected to
3261		 * this eb.
3262		 */
3263		if (folio_test_private(folio) && folio_get_private(folio) == eb) {
 
3264			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3265			BUG_ON(folio_test_dirty(folio));
3266			BUG_ON(folio_test_writeback(folio));
3267			/* We need to make sure we haven't be attached to a new eb. */
3268			folio_detach_private(folio);
 
 
 
3269		}
3270		if (mapped)
3271			spin_unlock(&folio->mapping->i_private_lock);
3272		return;
3273	}
3274
3275	/*
3276	 * For subpage, we can have dummy eb with folio private attached.  In
3277	 * this case, we can directly detach the private as such folio is only
3278	 * attached to one dummy eb, no sharing.
3279	 */
3280	if (!mapped) {
3281		btrfs_detach_subpage(fs_info, folio);
3282		return;
3283	}
3284
3285	btrfs_folio_dec_eb_refs(fs_info, folio);
3286
3287	/*
3288	 * We can only detach the folio private if there are no other ebs in the
3289	 * page range and no unfinished IO.
3290	 */
3291	if (!folio_range_has_eb(fs_info, folio))
3292		btrfs_detach_subpage(fs_info, folio);
3293
3294	spin_unlock(&folio->mapping->i_private_lock);
3295}
3296
3297/* Release all pages attached to the extent buffer */
3298static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3299{
 
 
 
3300	ASSERT(!extent_buffer_under_io(eb));
3301
3302	for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
3303		struct folio *folio = eb->folios[i];
 
3304
3305		if (!folio)
3306			continue;
3307
3308		detach_extent_buffer_folio(eb, folio);
3309
3310		/* One for when we allocated the folio. */
3311		folio_put(folio);
3312	}
3313}
3314
3315/*
3316 * Helper for releasing the extent buffer.
3317 */
3318static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3319{
3320	btrfs_release_extent_buffer_pages(eb);
3321	btrfs_leak_debug_del_eb(eb);
3322	__free_extent_buffer(eb);
3323}
3324
3325static struct extent_buffer *
3326__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3327		      unsigned long len)
3328{
3329	struct extent_buffer *eb = NULL;
3330
3331	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3332	eb->start = start;
3333	eb->len = len;
3334	eb->fs_info = fs_info;
 
3335	init_rwsem(&eb->lock);
3336
3337	btrfs_leak_debug_add_eb(eb);
 
 
3338
3339	spin_lock_init(&eb->refs_lock);
3340	atomic_set(&eb->refs, 1);
 
3341
3342	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3343
3344	return eb;
3345}
3346
3347struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3348{
 
 
3349	struct extent_buffer *new;
3350	int num_folios = num_extent_folios(src);
3351	int ret;
3352
3353	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3354	if (new == NULL)
3355		return NULL;
3356
3357	/*
3358	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3359	 * btrfs_release_extent_buffer() have different behavior for
3360	 * UNMAPPED subpage extent buffer.
3361	 */
3362	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3363
3364	ret = alloc_eb_folio_array(new, 0);
3365	if (ret) {
3366		btrfs_release_extent_buffer(new);
3367		return NULL;
3368	}
3369
3370	for (int i = 0; i < num_folios; i++) {
3371		struct folio *folio = new->folios[i];
3372		int ret;
3373
3374		ret = attach_extent_buffer_folio(new, folio, NULL);
 
 
 
 
 
3375		if (ret < 0) {
 
3376			btrfs_release_extent_buffer(new);
3377			return NULL;
3378		}
3379		WARN_ON(folio_test_dirty(folio));
 
 
3380	}
3381	copy_extent_buffer_full(new, src);
3382	set_extent_buffer_uptodate(new);
3383
3384	return new;
3385}
3386
3387struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3388						  u64 start, unsigned long len)
3389{
3390	struct extent_buffer *eb;
3391	int num_folios = 0;
3392	int ret;
3393
3394	eb = __alloc_extent_buffer(fs_info, start, len);
3395	if (!eb)
3396		return NULL;
3397
3398	ret = alloc_eb_folio_array(eb, 0);
3399	if (ret)
3400		goto err;
3401
3402	num_folios = num_extent_folios(eb);
3403	for (int i = 0; i < num_folios; i++) {
3404		ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
 
3405		if (ret < 0)
3406			goto err;
3407	}
3408
3409	set_extent_buffer_uptodate(eb);
3410	btrfs_set_header_nritems(eb, 0);
3411	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3412
3413	return eb;
3414err:
3415	for (int i = 0; i < num_folios; i++) {
3416		if (eb->folios[i]) {
3417			detach_extent_buffer_folio(eb, eb->folios[i]);
3418			__folio_put(eb->folios[i]);
3419		}
3420	}
3421	__free_extent_buffer(eb);
3422	return NULL;
3423}
3424
3425struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3426						u64 start)
3427{
3428	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3429}
3430
3431static void check_buffer_tree_ref(struct extent_buffer *eb)
3432{
3433	int refs;
3434	/*
3435	 * The TREE_REF bit is first set when the extent_buffer is added
3436	 * to the radix tree. It is also reset, if unset, when a new reference
3437	 * is created by find_extent_buffer.
3438	 *
3439	 * It is only cleared in two cases: freeing the last non-tree
3440	 * reference to the extent_buffer when its STALE bit is set or
3441	 * calling release_folio when the tree reference is the only reference.
3442	 *
3443	 * In both cases, care is taken to ensure that the extent_buffer's
3444	 * pages are not under io. However, release_folio can be concurrently
3445	 * called with creating new references, which is prone to race
3446	 * conditions between the calls to check_buffer_tree_ref in those
3447	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3448	 *
3449	 * The actual lifetime of the extent_buffer in the radix tree is
3450	 * adequately protected by the refcount, but the TREE_REF bit and
3451	 * its corresponding reference are not. To protect against this
3452	 * class of races, we call check_buffer_tree_ref from the codepaths
3453	 * which trigger io. Note that once io is initiated, TREE_REF can no
3454	 * longer be cleared, so that is the moment at which any such race is
3455	 * best fixed.
3456	 */
3457	refs = atomic_read(&eb->refs);
3458	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3459		return;
3460
3461	spin_lock(&eb->refs_lock);
3462	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3463		atomic_inc(&eb->refs);
3464	spin_unlock(&eb->refs_lock);
3465}
3466
3467static void mark_extent_buffer_accessed(struct extent_buffer *eb)
 
3468{
3469	int num_folios= num_extent_folios(eb);
3470
3471	check_buffer_tree_ref(eb);
3472
3473	for (int i = 0; i < num_folios; i++)
3474		folio_mark_accessed(eb->folios[i]);
 
 
 
 
 
3475}
3476
3477struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3478					 u64 start)
3479{
3480	struct extent_buffer *eb;
3481
3482	eb = find_extent_buffer_nolock(fs_info, start);
3483	if (!eb)
3484		return NULL;
3485	/*
3486	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3487	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3488	 * another task running free_extent_buffer() might have seen that flag
3489	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3490	 * writeback flags not set) and it's still in the tree (flag
3491	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3492	 * decrementing the extent buffer's reference count twice.  So here we
3493	 * could race and increment the eb's reference count, clear its stale
3494	 * flag, mark it as dirty and drop our reference before the other task
3495	 * finishes executing free_extent_buffer, which would later result in
3496	 * an attempt to free an extent buffer that is dirty.
3497	 */
3498	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3499		spin_lock(&eb->refs_lock);
3500		spin_unlock(&eb->refs_lock);
3501	}
3502	mark_extent_buffer_accessed(eb);
3503	return eb;
3504}
3505
3506#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3507struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3508					u64 start)
3509{
3510	struct extent_buffer *eb, *exists = NULL;
3511	int ret;
3512
3513	eb = find_extent_buffer(fs_info, start);
3514	if (eb)
3515		return eb;
3516	eb = alloc_dummy_extent_buffer(fs_info, start);
3517	if (!eb)
3518		return ERR_PTR(-ENOMEM);
3519	eb->fs_info = fs_info;
3520again:
3521	ret = radix_tree_preload(GFP_NOFS);
3522	if (ret) {
3523		exists = ERR_PTR(ret);
3524		goto free_eb;
3525	}
3526	spin_lock(&fs_info->buffer_lock);
3527	ret = radix_tree_insert(&fs_info->buffer_radix,
3528				start >> fs_info->sectorsize_bits, eb);
3529	spin_unlock(&fs_info->buffer_lock);
3530	radix_tree_preload_end();
3531	if (ret == -EEXIST) {
3532		exists = find_extent_buffer(fs_info, start);
3533		if (exists)
3534			goto free_eb;
3535		else
3536			goto again;
3537	}
3538	check_buffer_tree_ref(eb);
3539	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3540
3541	return eb;
3542free_eb:
3543	btrfs_release_extent_buffer(eb);
3544	return exists;
3545}
3546#endif
3547
3548static struct extent_buffer *grab_extent_buffer(
3549		struct btrfs_fs_info *fs_info, struct page *page)
3550{
3551	struct folio *folio = page_folio(page);
3552	struct extent_buffer *exists;
3553
3554	/*
3555	 * For subpage case, we completely rely on radix tree to ensure we
3556	 * don't try to insert two ebs for the same bytenr.  So here we always
3557	 * return NULL and just continue.
3558	 */
3559	if (fs_info->nodesize < PAGE_SIZE)
3560		return NULL;
3561
3562	/* Page not yet attached to an extent buffer */
3563	if (!folio_test_private(folio))
3564		return NULL;
3565
3566	/*
3567	 * We could have already allocated an eb for this page and attached one
3568	 * so lets see if we can get a ref on the existing eb, and if we can we
3569	 * know it's good and we can just return that one, else we know we can
3570	 * just overwrite folio private.
3571	 */
3572	exists = folio_get_private(folio);
3573	if (atomic_inc_not_zero(&exists->refs))
3574		return exists;
3575
3576	WARN_ON(PageDirty(page));
3577	folio_detach_private(folio);
3578	return NULL;
3579}
3580
3581static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3582{
3583	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3584		btrfs_err(fs_info, "bad tree block start %llu", start);
3585		return -EINVAL;
3586	}
3587
3588	if (fs_info->nodesize < PAGE_SIZE &&
3589	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3590		btrfs_err(fs_info,
3591		"tree block crosses page boundary, start %llu nodesize %u",
3592			  start, fs_info->nodesize);
3593		return -EINVAL;
3594	}
3595	if (fs_info->nodesize >= PAGE_SIZE &&
3596	    !PAGE_ALIGNED(start)) {
3597		btrfs_err(fs_info,
3598		"tree block is not page aligned, start %llu nodesize %u",
3599			  start, fs_info->nodesize);
3600		return -EINVAL;
3601	}
3602	if (!IS_ALIGNED(start, fs_info->nodesize) &&
3603	    !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3604		btrfs_warn(fs_info,
3605"tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3606			      start, fs_info->nodesize);
3607	}
3608	return 0;
3609}
3610
3611
3612/*
3613 * Return 0 if eb->folios[i] is attached to btree inode successfully.
3614 * Return >0 if there is already another extent buffer for the range,
3615 * and @found_eb_ret would be updated.
3616 * Return -EAGAIN if the filemap has an existing folio but with different size
3617 * than @eb.
3618 * The caller needs to free the existing folios and retry using the same order.
3619 */
3620static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3621				      struct extent_buffer **found_eb_ret)
3622{
3623
3624	struct btrfs_fs_info *fs_info = eb->fs_info;
3625	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3626	const unsigned long index = eb->start >> PAGE_SHIFT;
3627	struct folio *existing_folio;
3628	int ret;
3629
3630	ASSERT(found_eb_ret);
3631
3632	/* Caller should ensure the folio exists. */
3633	ASSERT(eb->folios[i]);
3634
3635retry:
3636	ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3637				GFP_NOFS | __GFP_NOFAIL);
3638	if (!ret)
3639		return 0;
3640
3641	existing_folio = filemap_lock_folio(mapping, index + i);
3642	/* The page cache only exists for a very short time, just retry. */
3643	if (IS_ERR(existing_folio))
3644		goto retry;
3645
3646	/* For now, we should only have single-page folios for btree inode. */
3647	ASSERT(folio_nr_pages(existing_folio) == 1);
3648
3649	if (folio_size(existing_folio) != folio_size(eb->folios[0])) {
3650		folio_unlock(existing_folio);
3651		folio_put(existing_folio);
3652		return -EAGAIN;
3653	}
3654
3655	if (fs_info->nodesize < PAGE_SIZE) {
3656		/*
3657		 * We're going to reuse the existing page, can drop our page
3658		 * and subpage structure now.
3659		 */
3660		__free_page(folio_page(eb->folios[i], 0));
3661		eb->folios[i] = existing_folio;
3662	} else {
3663		struct extent_buffer *existing_eb;
3664
3665		existing_eb = grab_extent_buffer(fs_info,
3666						 folio_page(existing_folio, 0));
3667		if (existing_eb) {
3668			/* The extent buffer still exists, we can use it directly. */
3669			*found_eb_ret = existing_eb;
3670			folio_unlock(existing_folio);
3671			folio_put(existing_folio);
3672			return 1;
3673		}
3674		/* The extent buffer no longer exists, we can reuse the folio. */
3675		__free_page(folio_page(eb->folios[i], 0));
3676		eb->folios[i] = existing_folio;
3677	}
3678	return 0;
3679}
3680
3681struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3682					  u64 start, u64 owner_root, int level)
3683{
3684	unsigned long len = fs_info->nodesize;
3685	int num_folios;
3686	int attached = 0;
 
3687	struct extent_buffer *eb;
3688	struct extent_buffer *existing_eb = NULL;
 
3689	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3690	struct btrfs_subpage *prealloc = NULL;
3691	u64 lockdep_owner = owner_root;
3692	bool page_contig = true;
3693	int uptodate = 1;
3694	int ret;
3695
3696	if (check_eb_alignment(fs_info, start))
 
3697		return ERR_PTR(-EINVAL);
 
3698
3699#if BITS_PER_LONG == 32
3700	if (start >= MAX_LFS_FILESIZE) {
3701		btrfs_err_rl(fs_info,
3702		"extent buffer %llu is beyond 32bit page cache limit", start);
3703		btrfs_err_32bit_limit(fs_info);
3704		return ERR_PTR(-EOVERFLOW);
3705	}
3706	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3707		btrfs_warn_32bit_limit(fs_info);
3708#endif
3709
 
 
 
 
 
 
 
 
3710	eb = find_extent_buffer(fs_info, start);
3711	if (eb)
3712		return eb;
3713
3714	eb = __alloc_extent_buffer(fs_info, start, len);
3715	if (!eb)
3716		return ERR_PTR(-ENOMEM);
 
3717
3718	/*
3719	 * The reloc trees are just snapshots, so we need them to appear to be
3720	 * just like any other fs tree WRT lockdep.
3721	 */
3722	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3723		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3724
3725	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3726
3727	/*
3728	 * Preallocate folio private for subpage case, so that we won't
3729	 * allocate memory with i_private_lock nor page lock hold.
3730	 *
3731	 * The memory will be freed by attach_extent_buffer_page() or freed
3732	 * manually if we exit earlier.
3733	 */
3734	if (fs_info->nodesize < PAGE_SIZE) {
3735		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3736		if (IS_ERR(prealloc)) {
3737			ret = PTR_ERR(prealloc);
3738			goto out;
3739		}
3740	}
3741
3742reallocate:
3743	/* Allocate all pages first. */
3744	ret = alloc_eb_folio_array(eb, __GFP_NOFAIL);
3745	if (ret < 0) {
3746		btrfs_free_subpage(prealloc);
3747		goto out;
3748	}
3749
3750	num_folios = num_extent_folios(eb);
3751	/* Attach all pages to the filemap. */
3752	for (int i = 0; i < num_folios; i++) {
3753		struct folio *folio;
3754
3755		ret = attach_eb_folio_to_filemap(eb, i, &existing_eb);
3756		if (ret > 0) {
3757			ASSERT(existing_eb);
3758			goto out;
3759		}
3760
3761		/*
3762		 * TODO: Special handling for a corner case where the order of
3763		 * folios mismatch between the new eb and filemap.
3764		 *
3765		 * This happens when:
3766		 *
3767		 * - the new eb is using higher order folio
3768		 *
3769		 * - the filemap is still using 0-order folios for the range
3770		 *   This can happen at the previous eb allocation, and we don't
3771		 *   have higher order folio for the call.
3772		 *
3773		 * - the existing eb has already been freed
3774		 *
3775		 * In this case, we have to free the existing folios first, and
3776		 * re-allocate using the same order.
3777		 * Thankfully this is not going to happen yet, as we're still
3778		 * using 0-order folios.
3779		 */
3780		if (unlikely(ret == -EAGAIN)) {
3781			ASSERT(0);
3782			goto reallocate;
 
 
 
 
3783		}
3784		attached++;
3785
3786		/*
3787		 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3788		 * reliable, as we may choose to reuse the existing page cache
3789		 * and free the allocated page.
3790		 */
3791		folio = eb->folios[i];
3792		spin_lock(&mapping->i_private_lock);
 
 
 
3793		/* Should not fail, as we have preallocated the memory */
3794		ret = attach_extent_buffer_folio(eb, folio, prealloc);
3795		ASSERT(!ret);
3796		/*
3797		 * To inform we have extra eb under allocation, so that
3798		 * detach_extent_buffer_page() won't release the folio private
3799		 * when the eb hasn't yet been inserted into radix tree.
3800		 *
3801		 * The ref will be decreased when the eb released the page, in
3802		 * detach_extent_buffer_page().
3803		 * Thus needs no special handling in error path.
3804		 */
3805		btrfs_folio_inc_eb_refs(fs_info, folio);
3806		spin_unlock(&mapping->i_private_lock);
3807
3808		WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3809
3810		/*
3811		 * Check if the current page is physically contiguous with previous eb
3812		 * page.
3813		 * At this stage, either we allocated a large folio, thus @i
3814		 * would only be 0, or we fall back to per-page allocation.
3815		 */
3816		if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3817			page_contig = false;
3818
3819		if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
3820			uptodate = 0;
3821
3822		/*
3823		 * We can't unlock the pages just yet since the extent buffer
3824		 * hasn't been properly inserted in the radix tree, this
3825		 * opens a race with btree_release_folio which can free a page
3826		 * while we are still filling in all pages for the buffer and
3827		 * we could crash.
3828		 */
3829	}
3830	if (uptodate)
3831		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3832	/* All pages are physically contiguous, can skip cross page handling. */
3833	if (page_contig)
3834		eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3835again:
3836	ret = radix_tree_preload(GFP_NOFS);
3837	if (ret)
3838		goto out;
 
 
3839
3840	spin_lock(&fs_info->buffer_lock);
3841	ret = radix_tree_insert(&fs_info->buffer_radix,
3842				start >> fs_info->sectorsize_bits, eb);
3843	spin_unlock(&fs_info->buffer_lock);
3844	radix_tree_preload_end();
3845	if (ret == -EEXIST) {
3846		ret = 0;
3847		existing_eb = find_extent_buffer(fs_info, start);
3848		if (existing_eb)
3849			goto out;
3850		else
3851			goto again;
3852	}
3853	/* add one reference for the tree */
3854	check_buffer_tree_ref(eb);
3855	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3856
3857	/*
3858	 * Now it's safe to unlock the pages because any calls to
3859	 * btree_release_folio will correctly detect that a page belongs to a
3860	 * live buffer and won't free them prematurely.
3861	 */
3862	for (int i = 0; i < num_folios; i++)
3863		unlock_page(folio_page(eb->folios[i], 0));
3864	return eb;
3865
3866out:
3867	WARN_ON(!atomic_dec_and_test(&eb->refs));
3868
3869	/*
3870	 * Any attached folios need to be detached before we unlock them.  This
3871	 * is because when we're inserting our new folios into the mapping, and
3872	 * then attaching our eb to that folio.  If we fail to insert our folio
3873	 * we'll lookup the folio for that index, and grab that EB.  We do not
3874	 * want that to grab this eb, as we're getting ready to free it.  So we
3875	 * have to detach it first and then unlock it.
3876	 *
3877	 * We have to drop our reference and NULL it out here because in the
3878	 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3879	 * Below when we call btrfs_release_extent_buffer() we will call
3880	 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3881	 * case.  If we left eb->folios[i] populated in the subpage case we'd
3882	 * double put our reference and be super sad.
3883	 */
3884	for (int i = 0; i < attached; i++) {
3885		ASSERT(eb->folios[i]);
3886		detach_extent_buffer_folio(eb, eb->folios[i]);
3887		unlock_page(folio_page(eb->folios[i], 0));
3888		folio_put(eb->folios[i]);
3889		eb->folios[i] = NULL;
3890	}
3891	/*
3892	 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
3893	 * so it can be cleaned up without utlizing page->mapping.
3894	 */
3895	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3896
3897	btrfs_release_extent_buffer(eb);
3898	if (ret < 0)
3899		return ERR_PTR(ret);
3900	ASSERT(existing_eb);
3901	return existing_eb;
3902}
3903
3904static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3905{
3906	struct extent_buffer *eb =
3907			container_of(head, struct extent_buffer, rcu_head);
3908
3909	__free_extent_buffer(eb);
3910}
3911
3912static int release_extent_buffer(struct extent_buffer *eb)
3913	__releases(&eb->refs_lock)
3914{
3915	lockdep_assert_held(&eb->refs_lock);
3916
3917	WARN_ON(atomic_read(&eb->refs) == 0);
3918	if (atomic_dec_and_test(&eb->refs)) {
3919		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3920			struct btrfs_fs_info *fs_info = eb->fs_info;
3921
3922			spin_unlock(&eb->refs_lock);
3923
3924			spin_lock(&fs_info->buffer_lock);
3925			radix_tree_delete(&fs_info->buffer_radix,
3926					  eb->start >> fs_info->sectorsize_bits);
3927			spin_unlock(&fs_info->buffer_lock);
3928		} else {
3929			spin_unlock(&eb->refs_lock);
3930		}
3931
3932		btrfs_leak_debug_del_eb(eb);
3933		/* Should be safe to release our pages at this point */
3934		btrfs_release_extent_buffer_pages(eb);
3935#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3936		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3937			__free_extent_buffer(eb);
3938			return 1;
3939		}
3940#endif
3941		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3942		return 1;
3943	}
3944	spin_unlock(&eb->refs_lock);
3945
3946	return 0;
3947}
3948
3949void free_extent_buffer(struct extent_buffer *eb)
3950{
3951	int refs;
 
3952	if (!eb)
3953		return;
3954
3955	refs = atomic_read(&eb->refs);
3956	while (1) {
 
3957		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3958		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3959			refs == 1))
3960			break;
3961		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
 
3962			return;
3963	}
3964
3965	spin_lock(&eb->refs_lock);
3966	if (atomic_read(&eb->refs) == 2 &&
3967	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3968	    !extent_buffer_under_io(eb) &&
3969	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3970		atomic_dec(&eb->refs);
3971
3972	/*
3973	 * I know this is terrible, but it's temporary until we stop tracking
3974	 * the uptodate bits and such for the extent buffers.
3975	 */
3976	release_extent_buffer(eb);
3977}
3978
3979void free_extent_buffer_stale(struct extent_buffer *eb)
3980{
3981	if (!eb)
3982		return;
3983
3984	spin_lock(&eb->refs_lock);
3985	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3986
3987	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3988	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3989		atomic_dec(&eb->refs);
3990	release_extent_buffer(eb);
3991}
3992
3993static void btree_clear_folio_dirty(struct folio *folio)
3994{
3995	ASSERT(folio_test_dirty(folio));
3996	ASSERT(folio_test_locked(folio));
3997	folio_clear_dirty_for_io(folio);
3998	xa_lock_irq(&folio->mapping->i_pages);
3999	if (!folio_test_dirty(folio))
4000		__xa_clear_mark(&folio->mapping->i_pages,
4001				folio_index(folio), PAGECACHE_TAG_DIRTY);
4002	xa_unlock_irq(&folio->mapping->i_pages);
4003}
4004
4005static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4006{
4007	struct btrfs_fs_info *fs_info = eb->fs_info;
4008	struct folio *folio = eb->folios[0];
4009	bool last;
4010
4011	/* btree_clear_folio_dirty() needs page locked. */
4012	folio_lock(folio);
4013	last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
 
4014	if (last)
4015		btree_clear_folio_dirty(folio);
4016	folio_unlock(folio);
4017	WARN_ON(atomic_read(&eb->refs) == 0);
4018}
4019
4020void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
4021			      struct extent_buffer *eb)
4022{
4023	struct btrfs_fs_info *fs_info = eb->fs_info;
4024	int num_folios;
4025
4026	btrfs_assert_tree_write_locked(eb);
4027
4028	if (trans && btrfs_header_generation(eb) != trans->transid)
4029		return;
4030
4031	/*
4032	 * Instead of clearing the dirty flag off of the buffer, mark it as
4033	 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
4034	 * write-ordering in zoned mode, without the need to later re-dirty
4035	 * the extent_buffer.
4036	 *
4037	 * The actual zeroout of the buffer will happen later in
4038	 * btree_csum_one_bio.
4039	 */
4040	if (btrfs_is_zoned(fs_info)) {
4041		set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
4042		return;
4043	}
4044
4045	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
4046		return;
4047
4048	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
4049				 fs_info->dirty_metadata_batch);
4050
4051	if (eb->fs_info->nodesize < PAGE_SIZE)
4052		return clear_subpage_extent_buffer_dirty(eb);
4053
4054	num_folios = num_extent_folios(eb);
4055	for (int i = 0; i < num_folios; i++) {
4056		struct folio *folio = eb->folios[i];
4057
4058		if (!folio_test_dirty(folio))
 
 
4059			continue;
4060		folio_lock(folio);
4061		btree_clear_folio_dirty(folio);
4062		folio_unlock(folio);
 
4063	}
4064	WARN_ON(atomic_read(&eb->refs) == 0);
4065}
4066
4067void set_extent_buffer_dirty(struct extent_buffer *eb)
4068{
4069	int num_folios;
 
4070	bool was_dirty;
4071
4072	check_buffer_tree_ref(eb);
4073
4074	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4075
4076	num_folios = num_extent_folios(eb);
4077	WARN_ON(atomic_read(&eb->refs) == 0);
4078	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4079
4080	if (!was_dirty) {
4081		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
4082
4083		/*
4084		 * For subpage case, we can have other extent buffers in the
4085		 * same page, and in clear_subpage_extent_buffer_dirty() we
4086		 * have to clear page dirty without subpage lock held.
4087		 * This can cause race where our page gets dirty cleared after
4088		 * we just set it.
4089		 *
4090		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4091		 * its page for other reasons, we can use page lock to prevent
4092		 * the above race.
4093		 */
4094		if (subpage)
4095			lock_page(folio_page(eb->folios[0], 0));
4096		for (int i = 0; i < num_folios; i++)
4097			btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
4098					      eb->start, eb->len);
4099		if (subpage)
4100			unlock_page(folio_page(eb->folios[0], 0));
4101		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
4102					 eb->len,
4103					 eb->fs_info->dirty_metadata_batch);
4104	}
4105#ifdef CONFIG_BTRFS_DEBUG
4106	for (int i = 0; i < num_folios; i++)
4107		ASSERT(folio_test_dirty(eb->folios[i]));
4108#endif
 
 
4109}
4110
4111void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4112{
4113	struct btrfs_fs_info *fs_info = eb->fs_info;
4114	int num_folios = num_extent_folios(eb);
 
 
4115
4116	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4117	for (int i = 0; i < num_folios; i++) {
4118		struct folio *folio = eb->folios[i];
4119
4120		if (!folio)
4121			continue;
4122
4123		/*
4124		 * This is special handling for metadata subpage, as regular
4125		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4126		 */
4127		if (fs_info->nodesize >= PAGE_SIZE)
4128			folio_clear_uptodate(folio);
4129		else
4130			btrfs_subpage_clear_uptodate(fs_info, folio,
4131						     eb->start, eb->len);
4132	}
4133}
4134
4135void set_extent_buffer_uptodate(struct extent_buffer *eb)
4136{
4137	struct btrfs_fs_info *fs_info = eb->fs_info;
4138	int num_folios = num_extent_folios(eb);
 
 
4139
4140	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4141	for (int i = 0; i < num_folios; i++) {
4142		struct folio *folio = eb->folios[i];
4143
4144		/*
4145		 * This is special handling for metadata subpage, as regular
4146		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4147		 */
4148		if (fs_info->nodesize >= PAGE_SIZE)
4149			folio_mark_uptodate(folio);
4150		else
4151			btrfs_subpage_set_uptodate(fs_info, folio,
4152						   eb->start, eb->len);
4153	}
4154}
4155
4156static void end_bbio_meta_read(struct btrfs_bio *bbio)
 
4157{
4158	struct extent_buffer *eb = bbio->private;
4159	struct btrfs_fs_info *fs_info = eb->fs_info;
4160	bool uptodate = !bbio->bio.bi_status;
4161	struct folio_iter fi;
4162	u32 bio_offset = 0;
4163
4164	eb->read_mirror = bbio->mirror_num;
4165
4166	if (uptodate &&
4167	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
4168		uptodate = false;
4169
4170	if (uptodate) {
4171		set_extent_buffer_uptodate(eb);
 
 
 
 
 
4172	} else {
4173		clear_extent_buffer_uptodate(eb);
4174		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 
4175	}
4176
4177	bio_for_each_folio_all(fi, &bbio->bio) {
4178		struct folio *folio = fi.folio;
4179		u64 start = eb->start + bio_offset;
4180		u32 len = fi.length;
 
 
 
 
4181
4182		if (uptodate)
4183			btrfs_folio_set_uptodate(fs_info, folio, start, len);
4184		else
4185			btrfs_folio_clear_uptodate(fs_info, folio, start, len);
 
4186
4187		bio_offset += len;
 
 
 
 
 
 
 
 
 
 
 
 
4188	}
 
 
4189
4190	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4191	smp_mb__after_atomic();
4192	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4193	free_extent_buffer(eb);
 
 
 
4194
4195	bio_put(&bbio->bio);
 
 
 
4196}
4197
4198int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4199			     struct btrfs_tree_parent_check *check)
4200{
4201	struct btrfs_bio *bbio;
4202	bool ret;
 
 
 
 
 
 
 
4203
4204	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4205		return 0;
4206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4207	/*
4208	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4209	 * operation, which could potentially still be in flight.  In this case
4210	 * we simply want to return an error.
4211	 */
4212	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4213		return -EIO;
 
 
 
 
 
4214
4215	/* Someone else is already reading the buffer, just wait for it. */
4216	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
4217		goto done;
 
4218
4219	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4220	eb->read_mirror = 0;
 
 
 
 
 
4221	check_buffer_tree_ref(eb);
4222	atomic_inc(&eb->refs);
4223
4224	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
4225			       REQ_OP_READ | REQ_META, eb->fs_info,
4226			       end_bbio_meta_read, eb);
4227	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
4228	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
4229	bbio->file_offset = eb->start;
4230	memcpy(&bbio->parent_check, check, sizeof(*check));
4231	if (eb->fs_info->nodesize < PAGE_SIZE) {
4232		ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
4233				    eb->start - folio_pos(eb->folios[0]));
4234		ASSERT(ret);
4235	} else {
4236		int num_folios = num_extent_folios(eb);
4237
4238		for (int i = 0; i < num_folios; i++) {
4239			struct folio *folio = eb->folios[i];
 
 
 
 
4240
4241			ret = bio_add_folio(&bbio->bio, folio, folio_size(folio), 0);
4242			ASSERT(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4243		}
4244	}
4245	btrfs_submit_bio(bbio, mirror_num);
4246
4247done:
4248	if (wait == WAIT_COMPLETE) {
4249		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
4250		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4251			return -EIO;
4252	}
4253
4254	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4255}
4256
4257static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4258			    unsigned long len)
4259{
4260	btrfs_warn(eb->fs_info,
4261		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
4262		eb->start, eb->len, start, len);
4263	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4264
4265	return true;
4266}
4267
4268/*
4269 * Check if the [start, start + len) range is valid before reading/writing
4270 * the eb.
4271 * NOTE: @start and @len are offset inside the eb, not logical address.
4272 *
4273 * Caller should not touch the dst/src memory if this function returns error.
4274 */
4275static inline int check_eb_range(const struct extent_buffer *eb,
4276				 unsigned long start, unsigned long len)
4277{
4278	unsigned long offset;
4279
4280	/* start, start + len should not go beyond eb->len nor overflow */
4281	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4282		return report_eb_range(eb, start, len);
4283
4284	return false;
4285}
4286
4287void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4288			unsigned long start, unsigned long len)
4289{
4290	const int unit_size = folio_size(eb->folios[0]);
4291	size_t cur;
4292	size_t offset;
 
 
4293	char *dst = (char *)dstv;
4294	unsigned long i = get_eb_folio_index(eb, start);
4295
4296	if (check_eb_range(eb, start, len)) {
4297		/*
4298		 * Invalid range hit, reset the memory, so callers won't get
4299		 * some random garbage for their uninitialized memory.
4300		 */
4301		memset(dstv, 0, len);
4302		return;
4303	}
4304
4305	if (eb->addr) {
4306		memcpy(dstv, eb->addr + start, len);
4307		return;
4308	}
4309
4310	offset = get_eb_offset_in_folio(eb, start);
4311
4312	while (len > 0) {
4313		char *kaddr;
4314
4315		cur = min(len, unit_size - offset);
4316		kaddr = folio_address(eb->folios[i]);
4317		memcpy(dst, kaddr + offset, cur);
4318
4319		dst += cur;
4320		len -= cur;
4321		offset = 0;
4322		i++;
4323	}
4324}
4325
4326int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4327				       void __user *dstv,
4328				       unsigned long start, unsigned long len)
4329{
4330	const int unit_size = folio_size(eb->folios[0]);
4331	size_t cur;
4332	size_t offset;
 
 
4333	char __user *dst = (char __user *)dstv;
4334	unsigned long i = get_eb_folio_index(eb, start);
4335	int ret = 0;
4336
4337	WARN_ON(start > eb->len);
4338	WARN_ON(start + len > eb->start + eb->len);
4339
4340	if (eb->addr) {
4341		if (copy_to_user_nofault(dstv, eb->addr + start, len))
4342			ret = -EFAULT;
4343		return ret;
4344	}
4345
4346	offset = get_eb_offset_in_folio(eb, start);
4347
4348	while (len > 0) {
4349		char *kaddr;
4350
4351		cur = min(len, unit_size - offset);
4352		kaddr = folio_address(eb->folios[i]);
4353		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4354			ret = -EFAULT;
4355			break;
4356		}
4357
4358		dst += cur;
4359		len -= cur;
4360		offset = 0;
4361		i++;
4362	}
4363
4364	return ret;
4365}
4366
4367int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4368			 unsigned long start, unsigned long len)
4369{
4370	const int unit_size = folio_size(eb->folios[0]);
4371	size_t cur;
4372	size_t offset;
 
4373	char *kaddr;
4374	char *ptr = (char *)ptrv;
4375	unsigned long i = get_eb_folio_index(eb, start);
4376	int ret = 0;
4377
4378	if (check_eb_range(eb, start, len))
4379		return -EINVAL;
4380
4381	if (eb->addr)
4382		return memcmp(ptrv, eb->addr + start, len);
4383
4384	offset = get_eb_offset_in_folio(eb, start);
4385
4386	while (len > 0) {
4387		cur = min(len, unit_size - offset);
4388		kaddr = folio_address(eb->folios[i]);
 
 
 
4389		ret = memcmp(ptr, kaddr + offset, cur);
4390		if (ret)
4391			break;
4392
4393		ptr += cur;
4394		len -= cur;
4395		offset = 0;
4396		i++;
4397	}
4398	return ret;
4399}
4400
4401/*
4402 * Check that the extent buffer is uptodate.
4403 *
4404 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4405 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4406 */
4407static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
 
4408{
4409	struct btrfs_fs_info *fs_info = eb->fs_info;
4410	struct folio *folio = eb->folios[i];
4411
4412	ASSERT(folio);
4413
4414	/*
4415	 * If we are using the commit root we could potentially clear a page
4416	 * Uptodate while we're using the extent buffer that we've previously
4417	 * looked up.  We don't want to complain in this case, as the page was
4418	 * valid before, we just didn't write it out.  Instead we want to catch
4419	 * the case where we didn't actually read the block properly, which
4420	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4421	 */
4422	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4423		return;
4424
4425	if (fs_info->nodesize < PAGE_SIZE) {
4426		struct folio *folio = eb->folios[0];
4427
4428		ASSERT(i == 0);
4429		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
4430							 eb->start, eb->len)))
4431			btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
4432	} else {
4433		WARN_ON(!folio_test_uptodate(folio));
4434	}
4435}
4436
4437static void __write_extent_buffer(const struct extent_buffer *eb,
4438				  const void *srcv, unsigned long start,
4439				  unsigned long len, bool use_memmove)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4440{
4441	const int unit_size = folio_size(eb->folios[0]);
4442	size_t cur;
4443	size_t offset;
 
4444	char *kaddr;
4445	char *src = (char *)srcv;
4446	unsigned long i = get_eb_folio_index(eb, start);
4447	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
4448	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4449
4450	if (check_eb_range(eb, start, len))
4451		return;
4452
4453	if (eb->addr) {
4454		if (use_memmove)
4455			memmove(eb->addr + start, srcv, len);
4456		else
4457			memcpy(eb->addr + start, srcv, len);
4458		return;
4459	}
4460
4461	offset = get_eb_offset_in_folio(eb, start);
4462
4463	while (len > 0) {
4464		if (check_uptodate)
4465			assert_eb_folio_uptodate(eb, i);
4466
4467		cur = min(len, unit_size - offset);
4468		kaddr = folio_address(eb->folios[i]);
4469		if (use_memmove)
4470			memmove(kaddr + offset, src, cur);
4471		else
4472			memcpy(kaddr + offset, src, cur);
4473
4474		src += cur;
4475		len -= cur;
4476		offset = 0;
4477		i++;
4478	}
4479}
4480
4481void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4482			 unsigned long start, unsigned long len)
4483{
4484	return __write_extent_buffer(eb, srcv, start, len, false);
4485}
4486
4487static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4488				 unsigned long start, unsigned long len)
4489{
4490	const int unit_size = folio_size(eb->folios[0]);
4491	unsigned long cur = start;
 
 
 
4492
4493	if (eb->addr) {
4494		memset(eb->addr + start, c, len);
4495		return;
4496	}
4497
4498	while (cur < start + len) {
4499		unsigned long index = get_eb_folio_index(eb, cur);
4500		unsigned int offset = get_eb_offset_in_folio(eb, cur);
4501		unsigned int cur_len = min(start + len - cur, unit_size - offset);
4502
4503		assert_eb_folio_uptodate(eb, index);
4504		memset(folio_address(eb->folios[index]) + offset, c, cur_len);
 
4505
4506		cur += cur_len;
4507	}
4508}
4509
4510void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4511			   unsigned long len)
4512{
4513	if (check_eb_range(eb, start, len))
4514		return;
4515	return memset_extent_buffer(eb, 0, start, len);
4516}
4517
4518void copy_extent_buffer_full(const struct extent_buffer *dst,
4519			     const struct extent_buffer *src)
4520{
4521	const int unit_size = folio_size(src->folios[0]);
4522	unsigned long cur = 0;
4523
4524	ASSERT(dst->len == src->len);
4525
4526	while (cur < src->len) {
4527		unsigned long index = get_eb_folio_index(src, cur);
4528		unsigned long offset = get_eb_offset_in_folio(src, cur);
4529		unsigned long cur_len = min(src->len, unit_size - offset);
4530		void *addr = folio_address(src->folios[index]) + offset;
4531
4532		write_extent_buffer(dst, addr, cur, cur_len);
 
4533
4534		cur += cur_len;
 
 
 
4535	}
4536}
4537
4538void copy_extent_buffer(const struct extent_buffer *dst,
4539			const struct extent_buffer *src,
4540			unsigned long dst_offset, unsigned long src_offset,
4541			unsigned long len)
4542{
4543	const int unit_size = folio_size(dst->folios[0]);
4544	u64 dst_len = dst->len;
4545	size_t cur;
4546	size_t offset;
 
4547	char *kaddr;
4548	unsigned long i = get_eb_folio_index(dst, dst_offset);
4549
4550	if (check_eb_range(dst, dst_offset, len) ||
4551	    check_eb_range(src, src_offset, len))
4552		return;
4553
4554	WARN_ON(src->len != dst_len);
4555
4556	offset = get_eb_offset_in_folio(dst, dst_offset);
4557
4558	while (len > 0) {
4559		assert_eb_folio_uptodate(dst, i);
 
4560
4561		cur = min(len, (unsigned long)(unit_size - offset));
4562
4563		kaddr = folio_address(dst->folios[i]);
4564		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4565
4566		src_offset += cur;
4567		len -= cur;
4568		offset = 0;
4569		i++;
4570	}
4571}
4572
4573/*
4574 * Calculate the folio and offset of the byte containing the given bit number.
4575 *
4576 * @eb:           the extent buffer
4577 * @start:        offset of the bitmap item in the extent buffer
4578 * @nr:           bit number
4579 * @folio_index:  return index of the folio in the extent buffer that contains
4580 *                the given bit number
4581 * @folio_offset: return offset into the folio given by folio_index
4582 *
4583 * This helper hides the ugliness of finding the byte in an extent buffer which
4584 * contains a given bit.
4585 */
4586static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4587				    unsigned long start, unsigned long nr,
4588				    unsigned long *folio_index,
4589				    size_t *folio_offset)
4590{
4591	size_t byte_offset = BIT_BYTE(nr);
4592	size_t offset;
4593
4594	/*
4595	 * The byte we want is the offset of the extent buffer + the offset of
4596	 * the bitmap item in the extent buffer + the offset of the byte in the
4597	 * bitmap item.
4598	 */
4599	offset = start + offset_in_folio(eb->folios[0], eb->start) + byte_offset;
4600
4601	*folio_index = offset >> folio_shift(eb->folios[0]);
4602	*folio_offset = offset_in_folio(eb->folios[0], offset);
4603}
4604
4605/*
4606 * Determine whether a bit in a bitmap item is set.
4607 *
4608 * @eb:     the extent buffer
4609 * @start:  offset of the bitmap item in the extent buffer
4610 * @nr:     bit number to test
4611 */
4612int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4613			   unsigned long nr)
4614{
 
 
4615	unsigned long i;
4616	size_t offset;
4617	u8 *kaddr;
4618
4619	eb_bitmap_offset(eb, start, nr, &i, &offset);
4620	assert_eb_folio_uptodate(eb, i);
4621	kaddr = folio_address(eb->folios[i]);
 
4622	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4623}
4624
4625static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4626{
4627	unsigned long index = get_eb_folio_index(eb, bytenr);
4628
4629	if (check_eb_range(eb, bytenr, 1))
4630		return NULL;
4631	return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4632}
4633
4634/*
4635 * Set an area of a bitmap to 1.
4636 *
4637 * @eb:     the extent buffer
4638 * @start:  offset of the bitmap item in the extent buffer
4639 * @pos:    bit number of the first bit
4640 * @len:    number of bits to set
4641 */
4642void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4643			      unsigned long pos, unsigned long len)
4644{
4645	unsigned int first_byte = start + BIT_BYTE(pos);
4646	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4647	const bool same_byte = (first_byte == last_byte);
4648	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4649	u8 *kaddr;
4650
4651	if (same_byte)
4652		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4653
4654	/* Handle the first byte. */
4655	kaddr = extent_buffer_get_byte(eb, first_byte);
4656	*kaddr |= mask;
4657	if (same_byte)
4658		return;
4659
4660	/* Handle the byte aligned part. */
4661	ASSERT(first_byte + 1 <= last_byte);
4662	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4663
4664	/* Handle the last byte. */
4665	kaddr = extent_buffer_get_byte(eb, last_byte);
4666	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
 
 
 
 
 
 
 
 
 
 
 
4667}
4668
4669
4670/*
4671 * Clear an area of a bitmap.
4672 *
4673 * @eb:     the extent buffer
4674 * @start:  offset of the bitmap item in the extent buffer
4675 * @pos:    bit number of the first bit
4676 * @len:    number of bits to clear
4677 */
4678void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4679				unsigned long start, unsigned long pos,
4680				unsigned long len)
4681{
4682	unsigned int first_byte = start + BIT_BYTE(pos);
4683	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4684	const bool same_byte = (first_byte == last_byte);
4685	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4686	u8 *kaddr;
4687
4688	if (same_byte)
4689		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4690
4691	/* Handle the first byte. */
4692	kaddr = extent_buffer_get_byte(eb, first_byte);
4693	*kaddr &= ~mask;
4694	if (same_byte)
4695		return;
4696
4697	/* Handle the byte aligned part. */
4698	ASSERT(first_byte + 1 <= last_byte);
4699	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4700
4701	/* Handle the last byte. */
4702	kaddr = extent_buffer_get_byte(eb, last_byte);
4703	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
 
 
 
 
 
 
 
 
 
 
 
4704}
4705
4706static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4707{
4708	unsigned long distance = (src > dst) ? src - dst : dst - src;
4709	return distance < len;
4710}
4711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4712void memcpy_extent_buffer(const struct extent_buffer *dst,
4713			  unsigned long dst_offset, unsigned long src_offset,
4714			  unsigned long len)
4715{
4716	const int unit_size = folio_size(dst->folios[0]);
4717	unsigned long cur_off = 0;
 
 
 
4718
4719	if (check_eb_range(dst, dst_offset, len) ||
4720	    check_eb_range(dst, src_offset, len))
4721		return;
4722
4723	if (dst->addr) {
4724		const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
 
4725
4726		if (use_memmove)
4727			memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4728		else
4729			memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4730		return;
4731	}
 
4732
4733	while (cur_off < len) {
4734		unsigned long cur_src = cur_off + src_offset;
4735		unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4736		unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4737		unsigned long cur_len = min(src_offset + len - cur_src,
4738					    unit_size - folio_off);
4739		void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4740		const bool use_memmove = areas_overlap(src_offset + cur_off,
4741						       dst_offset + cur_off, cur_len);
4742
4743		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4744				      use_memmove);
4745		cur_off += cur_len;
4746	}
4747}
4748
4749void memmove_extent_buffer(const struct extent_buffer *dst,
4750			   unsigned long dst_offset, unsigned long src_offset,
4751			   unsigned long len)
4752{
 
 
 
4753	unsigned long dst_end = dst_offset + len - 1;
4754	unsigned long src_end = src_offset + len - 1;
 
 
4755
4756	if (check_eb_range(dst, dst_offset, len) ||
4757	    check_eb_range(dst, src_offset, len))
4758		return;
4759
4760	if (dst_offset < src_offset) {
4761		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4762		return;
4763	}
4764
4765	if (dst->addr) {
4766		memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4767		return;
4768	}
4769
4770	while (len > 0) {
4771		unsigned long src_i;
4772		size_t cur;
4773		size_t dst_off_in_folio;
4774		size_t src_off_in_folio;
4775		void *src_addr;
4776		bool use_memmove;
4777
4778		src_i = get_eb_folio_index(dst, src_end);
4779
4780		dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4781		src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4782
4783		cur = min_t(unsigned long, len, src_off_in_folio + 1);
4784		cur = min(cur, dst_off_in_folio + 1);
4785
4786		src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4787					 cur + 1;
4788		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4789					    cur);
4790
4791		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4792				      use_memmove);
 
 
 
 
 
 
4793
4794		dst_end -= cur;
4795		src_end -= cur;
4796		len -= cur;
4797	}
4798}
4799
4800#define GANG_LOOKUP_SIZE	16
4801static struct extent_buffer *get_next_extent_buffer(
4802		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4803{
4804	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4805	struct extent_buffer *found = NULL;
4806	u64 page_start = page_offset(page);
4807	u64 cur = page_start;
 
4808
4809	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
 
4810	lockdep_assert_held(&fs_info->buffer_lock);
4811
4812	while (cur < page_start + PAGE_SIZE) {
4813		int ret;
4814		int i;
4815
4816		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4817				(void **)gang, cur >> fs_info->sectorsize_bits,
4818				min_t(unsigned int, GANG_LOOKUP_SIZE,
4819				      PAGE_SIZE / fs_info->nodesize));
4820		if (ret == 0)
4821			goto out;
4822		for (i = 0; i < ret; i++) {
4823			/* Already beyond page end */
4824			if (gang[i]->start >= page_start + PAGE_SIZE)
4825				goto out;
4826			/* Found one */
4827			if (gang[i]->start >= bytenr) {
4828				found = gang[i];
4829				goto out;
4830			}
4831		}
4832		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4833	}
4834out:
4835	return found;
4836}
4837
4838static int try_release_subpage_extent_buffer(struct page *page)
4839{
4840	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4841	u64 cur = page_offset(page);
4842	const u64 end = page_offset(page) + PAGE_SIZE;
4843	int ret;
4844
4845	while (cur < end) {
4846		struct extent_buffer *eb = NULL;
4847
4848		/*
4849		 * Unlike try_release_extent_buffer() which uses folio private
4850		 * to grab buffer, for subpage case we rely on radix tree, thus
4851		 * we need to ensure radix tree consistency.
4852		 *
4853		 * We also want an atomic snapshot of the radix tree, thus go
4854		 * with spinlock rather than RCU.
4855		 */
4856		spin_lock(&fs_info->buffer_lock);
4857		eb = get_next_extent_buffer(fs_info, page, cur);
4858		if (!eb) {
4859			/* No more eb in the page range after or at cur */
4860			spin_unlock(&fs_info->buffer_lock);
4861			break;
4862		}
4863		cur = eb->start + eb->len;
4864
4865		/*
4866		 * The same as try_release_extent_buffer(), to ensure the eb
4867		 * won't disappear out from under us.
4868		 */
4869		spin_lock(&eb->refs_lock);
4870		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4871			spin_unlock(&eb->refs_lock);
4872			spin_unlock(&fs_info->buffer_lock);
4873			break;
4874		}
4875		spin_unlock(&fs_info->buffer_lock);
4876
4877		/*
4878		 * If tree ref isn't set then we know the ref on this eb is a
4879		 * real ref, so just return, this eb will likely be freed soon
4880		 * anyway.
4881		 */
4882		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4883			spin_unlock(&eb->refs_lock);
4884			break;
4885		}
4886
4887		/*
4888		 * Here we don't care about the return value, we will always
4889		 * check the folio private at the end.  And
4890		 * release_extent_buffer() will release the refs_lock.
4891		 */
4892		release_extent_buffer(eb);
4893	}
4894	/*
4895	 * Finally to check if we have cleared folio private, as if we have
4896	 * released all ebs in the page, the folio private should be cleared now.
4897	 */
4898	spin_lock(&page->mapping->i_private_lock);
4899	if (!folio_test_private(page_folio(page)))
4900		ret = 1;
4901	else
4902		ret = 0;
4903	spin_unlock(&page->mapping->i_private_lock);
4904	return ret;
4905
4906}
4907
4908int try_release_extent_buffer(struct page *page)
4909{
4910	struct folio *folio = page_folio(page);
4911	struct extent_buffer *eb;
4912
4913	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4914		return try_release_subpage_extent_buffer(page);
4915
4916	/*
4917	 * We need to make sure nobody is changing folio private, as we rely on
4918	 * folio private as the pointer to extent buffer.
4919	 */
4920	spin_lock(&page->mapping->i_private_lock);
4921	if (!folio_test_private(folio)) {
4922		spin_unlock(&page->mapping->i_private_lock);
4923		return 1;
4924	}
4925
4926	eb = folio_get_private(folio);
4927	BUG_ON(!eb);
4928
4929	/*
4930	 * This is a little awful but should be ok, we need to make sure that
4931	 * the eb doesn't disappear out from under us while we're looking at
4932	 * this page.
4933	 */
4934	spin_lock(&eb->refs_lock);
4935	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4936		spin_unlock(&eb->refs_lock);
4937		spin_unlock(&page->mapping->i_private_lock);
4938		return 0;
4939	}
4940	spin_unlock(&page->mapping->i_private_lock);
4941
4942	/*
4943	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4944	 * so just return, this page will likely be freed soon anyway.
4945	 */
4946	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4947		spin_unlock(&eb->refs_lock);
4948		return 0;
4949	}
4950
4951	return release_extent_buffer(eb);
4952}
4953
4954/*
4955 * Attempt to readahead a child block.
4956 *
4957 * @fs_info:	the fs_info
4958 * @bytenr:	bytenr to read
4959 * @owner_root: objectid of the root that owns this eb
4960 * @gen:	generation for the uptodate check, can be 0
4961 * @level:	level for the eb
4962 *
4963 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
4964 * normal uptodate check of the eb, without checking the generation.  If we have
4965 * to read the block we will not block on anything.
4966 */
4967void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4968				u64 bytenr, u64 owner_root, u64 gen, int level)
4969{
4970	struct btrfs_tree_parent_check check = {
4971		.has_first_key = 0,
4972		.level = level,
4973		.transid = gen
4974	};
4975	struct extent_buffer *eb;
4976	int ret;
4977
4978	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4979	if (IS_ERR(eb))
4980		return;
4981
4982	if (btrfs_buffer_uptodate(eb, gen, 1)) {
4983		free_extent_buffer(eb);
4984		return;
4985	}
4986
4987	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4988	if (ret < 0)
4989		free_extent_buffer_stale(eb);
4990	else
4991		free_extent_buffer(eb);
4992}
4993
4994/*
4995 * Readahead a node's child block.
4996 *
4997 * @node:	parent node we're reading from
4998 * @slot:	slot in the parent node for the child we want to read
4999 *
5000 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5001 * the slot in the node provided.
5002 */
5003void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5004{
5005	btrfs_readahead_tree_block(node->fs_info,
5006				   btrfs_node_blockptr(node, slot),
5007				   btrfs_header_owner(node),
5008				   btrfs_node_ptr_generation(node, slot),
5009				   btrfs_header_level(node) - 1);
5010}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
 
   9#include <linux/spinlock.h>
  10#include <linux/blkdev.h>
  11#include <linux/swap.h>
  12#include <linux/writeback.h>
  13#include <linux/pagevec.h>
  14#include <linux/prefetch.h>
  15#include <linux/cleancache.h>
  16#include "misc.h"
  17#include "extent_io.h"
  18#include "extent-io-tree.h"
  19#include "extent_map.h"
  20#include "ctree.h"
  21#include "btrfs_inode.h"
  22#include "volumes.h"
  23#include "check-integrity.h"
  24#include "locking.h"
  25#include "rcu-string.h"
  26#include "backref.h"
  27#include "disk-io.h"
  28#include "subpage.h"
  29#include "zoned.h"
  30#include "block-group.h"
 
 
 
 
 
 
 
 
  31
  32static struct kmem_cache *extent_state_cache;
  33static struct kmem_cache *extent_buffer_cache;
  34static struct bio_set btrfs_bioset;
  35
  36static inline bool extent_state_in_tree(const struct extent_state *state)
  37{
  38	return !RB_EMPTY_NODE(&state->rb_node);
  39}
  40
  41#ifdef CONFIG_BTRFS_DEBUG
  42static LIST_HEAD(states);
  43static DEFINE_SPINLOCK(leak_lock);
  44
  45static inline void btrfs_leak_debug_add(spinlock_t *lock,
  46					struct list_head *new,
  47					struct list_head *head)
  48{
 
  49	unsigned long flags;
  50
  51	spin_lock_irqsave(lock, flags);
  52	list_add(new, head);
  53	spin_unlock_irqrestore(lock, flags);
  54}
  55
  56static inline void btrfs_leak_debug_del(spinlock_t *lock,
  57					struct list_head *entry)
  58{
 
  59	unsigned long flags;
  60
  61	spin_lock_irqsave(lock, flags);
  62	list_del(entry);
  63	spin_unlock_irqrestore(lock, flags);
  64}
  65
  66void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
  67{
  68	struct extent_buffer *eb;
  69	unsigned long flags;
  70
  71	/*
  72	 * If we didn't get into open_ctree our allocated_ebs will not be
  73	 * initialized, so just skip this.
  74	 */
  75	if (!fs_info->allocated_ebs.next)
  76		return;
  77
 
  78	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  79	while (!list_empty(&fs_info->allocated_ebs)) {
  80		eb = list_first_entry(&fs_info->allocated_ebs,
  81				      struct extent_buffer, leak_list);
  82		pr_err(
  83	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
  84		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
  85		       btrfs_header_owner(eb));
  86		list_del(&eb->leak_list);
  87		kmem_cache_free(extent_buffer_cache, eb);
  88	}
  89	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  90}
  91
  92static inline void btrfs_extent_state_leak_debug_check(void)
  93{
  94	struct extent_state *state;
  95
  96	while (!list_empty(&states)) {
  97		state = list_entry(states.next, struct extent_state, leak_list);
  98		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  99		       state->start, state->end, state->state,
 100		       extent_state_in_tree(state),
 101		       refcount_read(&state->refs));
 102		list_del(&state->leak_list);
 103		kmem_cache_free(extent_state_cache, state);
 104	}
 105}
 106
 107#define btrfs_debug_check_extent_io_range(tree, start, end)		\
 108	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
 109static inline void __btrfs_debug_check_extent_io_range(const char *caller,
 110		struct extent_io_tree *tree, u64 start, u64 end)
 111{
 112	struct inode *inode = tree->private_data;
 113	u64 isize;
 114
 115	if (!inode || !is_data_inode(inode))
 116		return;
 117
 118	isize = i_size_read(inode);
 119	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
 120		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
 121		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
 122			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
 123	}
 124}
 125#else
 126#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
 127#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
 128#define btrfs_extent_state_leak_debug_check()	do {} while (0)
 129#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
 130#endif
 131
 132struct tree_entry {
 133	u64 start;
 134	u64 end;
 135	struct rb_node rb_node;
 
 
 
 
 
 
 
 136};
 137
 138struct extent_page_data {
 139	struct btrfs_bio_ctrl bio_ctrl;
 140	/* tells writepage not to lock the state bits for this range
 141	 * it still does the unlocking
 142	 */
 143	unsigned int extent_locked:1;
 144
 145	/* tells the submit_bio code to use REQ_SYNC */
 146	unsigned int sync_io:1;
 147};
 148
 149static int add_extent_changeset(struct extent_state *state, u32 bits,
 150				 struct extent_changeset *changeset,
 151				 int set)
 152{
 153	int ret;
 154
 155	if (!changeset)
 156		return 0;
 157	if (set && (state->state & bits) == bits)
 158		return 0;
 159	if (!set && (state->state & bits) == 0)
 160		return 0;
 161	changeset->bytes_changed += state->end - state->start + 1;
 162	ret = ulist_add(&changeset->range_changed, state->start, state->end,
 163			GFP_ATOMIC);
 164	return ret;
 165}
 166
 167int __must_check submit_one_bio(struct bio *bio, int mirror_num,
 168				unsigned long bio_flags)
 169{
 170	blk_status_t ret = 0;
 171	struct extent_io_tree *tree = bio->bi_private;
 172
 173	bio->bi_private = NULL;
 
 174
 175	if (is_data_inode(tree->private_data))
 176		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
 177					    bio_flags);
 178	else
 179		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
 180						mirror_num, bio_flags);
 181
 182	return blk_status_to_errno(ret);
 183}
 184
 185/* Cleanup unsubmitted bios */
 186static void end_write_bio(struct extent_page_data *epd, int ret)
 187{
 188	struct bio *bio = epd->bio_ctrl.bio;
 189
 190	if (bio) {
 191		bio->bi_status = errno_to_blk_status(ret);
 192		bio_endio(bio);
 193		epd->bio_ctrl.bio = NULL;
 194	}
 195}
 196
 197/*
 198 * Submit bio from extent page data via submit_one_bio
 199 *
 200 * Return 0 if everything is OK.
 201 * Return <0 for error.
 202 */
 203static int __must_check flush_write_bio(struct extent_page_data *epd)
 204{
 205	int ret = 0;
 206	struct bio *bio = epd->bio_ctrl.bio;
 
 
 207
 208	if (bio) {
 209		ret = submit_one_bio(bio, 0, 0);
 210		/*
 211		 * Clean up of epd->bio is handled by its endio function.
 212		 * And endio is either triggered by successful bio execution
 213		 * or the error handler of submit bio hook.
 214		 * So at this point, no matter what happened, we don't need
 215		 * to clean up epd->bio.
 216		 */
 217		epd->bio_ctrl.bio = NULL;
 218	}
 219	return ret;
 220}
 221
 222int __init extent_state_cache_init(void)
 223{
 224	extent_state_cache = kmem_cache_create("btrfs_extent_state",
 225			sizeof(struct extent_state), 0,
 226			SLAB_MEM_SPREAD, NULL);
 227	if (!extent_state_cache)
 228		return -ENOMEM;
 229	return 0;
 230}
 231
 232int __init extent_io_init(void)
 233{
 234	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 235			sizeof(struct extent_buffer), 0,
 236			SLAB_MEM_SPREAD, NULL);
 237	if (!extent_buffer_cache)
 238		return -ENOMEM;
 239
 240	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
 241			offsetof(struct btrfs_io_bio, bio),
 242			BIOSET_NEED_BVECS))
 243		goto free_buffer_cache;
 244
 245	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
 246		goto free_bioset;
 247
 248	return 0;
 249
 250free_bioset:
 251	bioset_exit(&btrfs_bioset);
 252
 253free_buffer_cache:
 254	kmem_cache_destroy(extent_buffer_cache);
 255	extent_buffer_cache = NULL;
 256	return -ENOMEM;
 257}
 258
 259void __cold extent_state_cache_exit(void)
 260{
 261	btrfs_extent_state_leak_debug_check();
 262	kmem_cache_destroy(extent_state_cache);
 263}
 264
 265void __cold extent_io_exit(void)
 266{
 267	/*
 268	 * Make sure all delayed rcu free are flushed before we
 269	 * destroy caches.
 270	 */
 271	rcu_barrier();
 272	kmem_cache_destroy(extent_buffer_cache);
 273	bioset_exit(&btrfs_bioset);
 274}
 275
 276/*
 277 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 278 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 279 * the tree lock and get the inode lock when setting delalloc.  These two things
 280 * are unrelated, so make a class for the file_extent_tree so we don't get the
 281 * two locking patterns mixed up.
 282 */
 283static struct lock_class_key file_extent_tree_class;
 284
 285void extent_io_tree_init(struct btrfs_fs_info *fs_info,
 286			 struct extent_io_tree *tree, unsigned int owner,
 287			 void *private_data)
 288{
 289	tree->fs_info = fs_info;
 290	tree->state = RB_ROOT;
 291	tree->dirty_bytes = 0;
 292	spin_lock_init(&tree->lock);
 293	tree->private_data = private_data;
 294	tree->owner = owner;
 295	if (owner == IO_TREE_INODE_FILE_EXTENT)
 296		lockdep_set_class(&tree->lock, &file_extent_tree_class);
 297}
 298
 299void extent_io_tree_release(struct extent_io_tree *tree)
 300{
 301	spin_lock(&tree->lock);
 302	/*
 303	 * Do a single barrier for the waitqueue_active check here, the state
 304	 * of the waitqueue should not change once extent_io_tree_release is
 305	 * called.
 306	 */
 307	smp_mb();
 308	while (!RB_EMPTY_ROOT(&tree->state)) {
 309		struct rb_node *node;
 310		struct extent_state *state;
 311
 312		node = rb_first(&tree->state);
 313		state = rb_entry(node, struct extent_state, rb_node);
 314		rb_erase(&state->rb_node, &tree->state);
 315		RB_CLEAR_NODE(&state->rb_node);
 316		/*
 317		 * btree io trees aren't supposed to have tasks waiting for
 318		 * changes in the flags of extent states ever.
 319		 */
 320		ASSERT(!waitqueue_active(&state->wq));
 321		free_extent_state(state);
 322
 323		cond_resched_lock(&tree->lock);
 324	}
 325	spin_unlock(&tree->lock);
 326}
 327
 328static struct extent_state *alloc_extent_state(gfp_t mask)
 329{
 330	struct extent_state *state;
 331
 332	/*
 333	 * The given mask might be not appropriate for the slab allocator,
 334	 * drop the unsupported bits
 335	 */
 336	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
 337	state = kmem_cache_alloc(extent_state_cache, mask);
 338	if (!state)
 339		return state;
 340	state->state = 0;
 341	state->failrec = NULL;
 342	RB_CLEAR_NODE(&state->rb_node);
 343	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
 344	refcount_set(&state->refs, 1);
 345	init_waitqueue_head(&state->wq);
 346	trace_alloc_extent_state(state, mask, _RET_IP_);
 347	return state;
 348}
 349
 350void free_extent_state(struct extent_state *state)
 351{
 352	if (!state)
 353		return;
 354	if (refcount_dec_and_test(&state->refs)) {
 355		WARN_ON(extent_state_in_tree(state));
 356		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
 357		trace_free_extent_state(state, _RET_IP_);
 358		kmem_cache_free(extent_state_cache, state);
 359	}
 360}
 361
 362static struct rb_node *tree_insert(struct rb_root *root,
 363				   struct rb_node *search_start,
 364				   u64 offset,
 365				   struct rb_node *node,
 366				   struct rb_node ***p_in,
 367				   struct rb_node **parent_in)
 368{
 369	struct rb_node **p;
 370	struct rb_node *parent = NULL;
 371	struct tree_entry *entry;
 372
 373	if (p_in && parent_in) {
 374		p = *p_in;
 375		parent = *parent_in;
 376		goto do_insert;
 377	}
 378
 379	p = search_start ? &search_start : &root->rb_node;
 380	while (*p) {
 381		parent = *p;
 382		entry = rb_entry(parent, struct tree_entry, rb_node);
 383
 384		if (offset < entry->start)
 385			p = &(*p)->rb_left;
 386		else if (offset > entry->end)
 387			p = &(*p)->rb_right;
 388		else
 389			return parent;
 390	}
 391
 392do_insert:
 393	rb_link_node(node, parent, p);
 394	rb_insert_color(node, root);
 395	return NULL;
 396}
 397
 398/**
 399 * Search @tree for an entry that contains @offset. Such entry would have
 400 * entry->start <= offset && entry->end >= offset.
 401 *
 402 * @tree:       the tree to search
 403 * @offset:     offset that should fall within an entry in @tree
 404 * @next_ret:   pointer to the first entry whose range ends after @offset
 405 * @prev_ret:   pointer to the first entry whose range begins before @offset
 406 * @p_ret:      pointer where new node should be anchored (used when inserting an
 407 *	        entry in the tree)
 408 * @parent_ret: points to entry which would have been the parent of the entry,
 409 *               containing @offset
 410 *
 411 * This function returns a pointer to the entry that contains @offset byte
 412 * address. If no such entry exists, then NULL is returned and the other
 413 * pointer arguments to the function are filled, otherwise the found entry is
 414 * returned and other pointers are left untouched.
 415 */
 416static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 417				      struct rb_node **next_ret,
 418				      struct rb_node **prev_ret,
 419				      struct rb_node ***p_ret,
 420				      struct rb_node **parent_ret)
 421{
 422	struct rb_root *root = &tree->state;
 423	struct rb_node **n = &root->rb_node;
 424	struct rb_node *prev = NULL;
 425	struct rb_node *orig_prev = NULL;
 426	struct tree_entry *entry;
 427	struct tree_entry *prev_entry = NULL;
 428
 429	while (*n) {
 430		prev = *n;
 431		entry = rb_entry(prev, struct tree_entry, rb_node);
 432		prev_entry = entry;
 433
 434		if (offset < entry->start)
 435			n = &(*n)->rb_left;
 436		else if (offset > entry->end)
 437			n = &(*n)->rb_right;
 438		else
 439			return *n;
 440	}
 441
 442	if (p_ret)
 443		*p_ret = n;
 444	if (parent_ret)
 445		*parent_ret = prev;
 446
 447	if (next_ret) {
 448		orig_prev = prev;
 449		while (prev && offset > prev_entry->end) {
 450			prev = rb_next(prev);
 451			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 452		}
 453		*next_ret = prev;
 454		prev = orig_prev;
 455	}
 456
 457	if (prev_ret) {
 458		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 459		while (prev && offset < prev_entry->start) {
 460			prev = rb_prev(prev);
 461			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 462		}
 463		*prev_ret = prev;
 464	}
 465	return NULL;
 466}
 467
 468static inline struct rb_node *
 469tree_search_for_insert(struct extent_io_tree *tree,
 470		       u64 offset,
 471		       struct rb_node ***p_ret,
 472		       struct rb_node **parent_ret)
 473{
 474	struct rb_node *next= NULL;
 475	struct rb_node *ret;
 476
 477	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
 478	if (!ret)
 479		return next;
 480	return ret;
 481}
 482
 483static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 484					  u64 offset)
 485{
 486	return tree_search_for_insert(tree, offset, NULL, NULL);
 487}
 488
 489/*
 490 * utility function to look for merge candidates inside a given range.
 491 * Any extents with matching state are merged together into a single
 492 * extent in the tree.  Extents with EXTENT_IO in their state field
 493 * are not merged because the end_io handlers need to be able to do
 494 * operations on them without sleeping (or doing allocations/splits).
 495 *
 496 * This should be called with the tree lock held.
 497 */
 498static void merge_state(struct extent_io_tree *tree,
 499		        struct extent_state *state)
 500{
 501	struct extent_state *other;
 502	struct rb_node *other_node;
 503
 504	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 505		return;
 506
 507	other_node = rb_prev(&state->rb_node);
 508	if (other_node) {
 509		other = rb_entry(other_node, struct extent_state, rb_node);
 510		if (other->end == state->start - 1 &&
 511		    other->state == state->state) {
 512			if (tree->private_data &&
 513			    is_data_inode(tree->private_data))
 514				btrfs_merge_delalloc_extent(tree->private_data,
 515							    state, other);
 516			state->start = other->start;
 517			rb_erase(&other->rb_node, &tree->state);
 518			RB_CLEAR_NODE(&other->rb_node);
 519			free_extent_state(other);
 520		}
 521	}
 522	other_node = rb_next(&state->rb_node);
 523	if (other_node) {
 524		other = rb_entry(other_node, struct extent_state, rb_node);
 525		if (other->start == state->end + 1 &&
 526		    other->state == state->state) {
 527			if (tree->private_data &&
 528			    is_data_inode(tree->private_data))
 529				btrfs_merge_delalloc_extent(tree->private_data,
 530							    state, other);
 531			state->end = other->end;
 532			rb_erase(&other->rb_node, &tree->state);
 533			RB_CLEAR_NODE(&other->rb_node);
 534			free_extent_state(other);
 535		}
 536	}
 537}
 538
 539static void set_state_bits(struct extent_io_tree *tree,
 540			   struct extent_state *state, u32 *bits,
 541			   struct extent_changeset *changeset);
 542
 543/*
 544 * insert an extent_state struct into the tree.  'bits' are set on the
 545 * struct before it is inserted.
 546 *
 547 * This may return -EEXIST if the extent is already there, in which case the
 548 * state struct is freed.
 549 *
 550 * The tree lock is not taken internally.  This is a utility function and
 551 * probably isn't what you want to call (see set/clear_extent_bit).
 552 */
 553static int insert_state(struct extent_io_tree *tree,
 554			struct extent_state *state, u64 start, u64 end,
 555			struct rb_node ***p,
 556			struct rb_node **parent,
 557			u32 *bits, struct extent_changeset *changeset)
 558{
 559	struct rb_node *node;
 560
 561	if (end < start) {
 562		btrfs_err(tree->fs_info,
 563			"insert state: end < start %llu %llu", end, start);
 564		WARN_ON(1);
 565	}
 566	state->start = start;
 567	state->end = end;
 568
 569	set_state_bits(tree, state, bits, changeset);
 570
 571	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 572	if (node) {
 573		struct extent_state *found;
 574		found = rb_entry(node, struct extent_state, rb_node);
 575		btrfs_err(tree->fs_info,
 576		       "found node %llu %llu on insert of %llu %llu",
 577		       found->start, found->end, start, end);
 578		return -EEXIST;
 579	}
 580	merge_state(tree, state);
 581	return 0;
 582}
 583
 584/*
 585 * split a given extent state struct in two, inserting the preallocated
 586 * struct 'prealloc' as the newly created second half.  'split' indicates an
 587 * offset inside 'orig' where it should be split.
 588 *
 589 * Before calling,
 590 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 591 * are two extent state structs in the tree:
 592 * prealloc: [orig->start, split - 1]
 593 * orig: [ split, orig->end ]
 594 *
 595 * The tree locks are not taken by this function. They need to be held
 596 * by the caller.
 597 */
 598static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 599		       struct extent_state *prealloc, u64 split)
 600{
 601	struct rb_node *node;
 602
 603	if (tree->private_data && is_data_inode(tree->private_data))
 604		btrfs_split_delalloc_extent(tree->private_data, orig, split);
 605
 606	prealloc->start = orig->start;
 607	prealloc->end = split - 1;
 608	prealloc->state = orig->state;
 609	orig->start = split;
 610
 611	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 612			   &prealloc->rb_node, NULL, NULL);
 613	if (node) {
 614		free_extent_state(prealloc);
 615		return -EEXIST;
 616	}
 617	return 0;
 618}
 619
 620static struct extent_state *next_state(struct extent_state *state)
 621{
 622	struct rb_node *next = rb_next(&state->rb_node);
 623	if (next)
 624		return rb_entry(next, struct extent_state, rb_node);
 625	else
 626		return NULL;
 627}
 628
 629/*
 630 * utility function to clear some bits in an extent state struct.
 631 * it will optionally wake up anyone waiting on this state (wake == 1).
 632 *
 633 * If no bits are set on the state struct after clearing things, the
 634 * struct is freed and removed from the tree
 635 */
 636static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 637					    struct extent_state *state,
 638					    u32 *bits, int wake,
 639					    struct extent_changeset *changeset)
 640{
 641	struct extent_state *next;
 642	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
 643	int ret;
 644
 645	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 646		u64 range = state->end - state->start + 1;
 647		WARN_ON(range > tree->dirty_bytes);
 648		tree->dirty_bytes -= range;
 649	}
 650
 651	if (tree->private_data && is_data_inode(tree->private_data))
 652		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
 653
 654	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
 655	BUG_ON(ret < 0);
 656	state->state &= ~bits_to_clear;
 657	if (wake)
 658		wake_up(&state->wq);
 659	if (state->state == 0) {
 660		next = next_state(state);
 661		if (extent_state_in_tree(state)) {
 662			rb_erase(&state->rb_node, &tree->state);
 663			RB_CLEAR_NODE(&state->rb_node);
 664			free_extent_state(state);
 665		} else {
 666			WARN_ON(1);
 667		}
 668	} else {
 669		merge_state(tree, state);
 670		next = next_state(state);
 671	}
 672	return next;
 673}
 674
 675static struct extent_state *
 676alloc_extent_state_atomic(struct extent_state *prealloc)
 677{
 678	if (!prealloc)
 679		prealloc = alloc_extent_state(GFP_ATOMIC);
 680
 681	return prealloc;
 682}
 683
 684static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 685{
 686	btrfs_panic(tree->fs_info, err,
 687	"locking error: extent tree was modified by another thread while locked");
 688}
 689
 690/*
 691 * clear some bits on a range in the tree.  This may require splitting
 692 * or inserting elements in the tree, so the gfp mask is used to
 693 * indicate which allocations or sleeping are allowed.
 694 *
 695 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 696 * the given range from the tree regardless of state (ie for truncate).
 697 *
 698 * the range [start, end] is inclusive.
 699 *
 700 * This takes the tree lock, and returns 0 on success and < 0 on error.
 701 */
 702int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 703		       u32 bits, int wake, int delete,
 704		       struct extent_state **cached_state,
 705		       gfp_t mask, struct extent_changeset *changeset)
 706{
 707	struct extent_state *state;
 708	struct extent_state *cached;
 709	struct extent_state *prealloc = NULL;
 710	struct rb_node *node;
 711	u64 last_end;
 712	int err;
 713	int clear = 0;
 714
 715	btrfs_debug_check_extent_io_range(tree, start, end);
 716	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
 717
 718	if (bits & EXTENT_DELALLOC)
 719		bits |= EXTENT_NORESERVE;
 720
 721	if (delete)
 722		bits |= ~EXTENT_CTLBITS;
 723
 724	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 725		clear = 1;
 726again:
 727	if (!prealloc && gfpflags_allow_blocking(mask)) {
 728		/*
 729		 * Don't care for allocation failure here because we might end
 730		 * up not needing the pre-allocated extent state at all, which
 731		 * is the case if we only have in the tree extent states that
 732		 * cover our input range and don't cover too any other range.
 733		 * If we end up needing a new extent state we allocate it later.
 734		 */
 735		prealloc = alloc_extent_state(mask);
 736	}
 737
 738	spin_lock(&tree->lock);
 739	if (cached_state) {
 740		cached = *cached_state;
 741
 742		if (clear) {
 743			*cached_state = NULL;
 744			cached_state = NULL;
 745		}
 746
 747		if (cached && extent_state_in_tree(cached) &&
 748		    cached->start <= start && cached->end > start) {
 749			if (clear)
 750				refcount_dec(&cached->refs);
 751			state = cached;
 752			goto hit_next;
 753		}
 754		if (clear)
 755			free_extent_state(cached);
 756	}
 757	/*
 758	 * this search will find the extents that end after
 759	 * our range starts
 760	 */
 761	node = tree_search(tree, start);
 762	if (!node)
 763		goto out;
 764	state = rb_entry(node, struct extent_state, rb_node);
 765hit_next:
 766	if (state->start > end)
 767		goto out;
 768	WARN_ON(state->end < start);
 769	last_end = state->end;
 770
 771	/* the state doesn't have the wanted bits, go ahead */
 772	if (!(state->state & bits)) {
 773		state = next_state(state);
 774		goto next;
 775	}
 776
 777	/*
 778	 *     | ---- desired range ---- |
 779	 *  | state | or
 780	 *  | ------------- state -------------- |
 781	 *
 782	 * We need to split the extent we found, and may flip
 783	 * bits on second half.
 784	 *
 785	 * If the extent we found extends past our range, we
 786	 * just split and search again.  It'll get split again
 787	 * the next time though.
 788	 *
 789	 * If the extent we found is inside our range, we clear
 790	 * the desired bit on it.
 791	 */
 792
 793	if (state->start < start) {
 794		prealloc = alloc_extent_state_atomic(prealloc);
 795		BUG_ON(!prealloc);
 796		err = split_state(tree, state, prealloc, start);
 797		if (err)
 798			extent_io_tree_panic(tree, err);
 799
 800		prealloc = NULL;
 801		if (err)
 802			goto out;
 803		if (state->end <= end) {
 804			state = clear_state_bit(tree, state, &bits, wake,
 805						changeset);
 806			goto next;
 807		}
 808		goto search_again;
 809	}
 810	/*
 811	 * | ---- desired range ---- |
 812	 *                        | state |
 813	 * We need to split the extent, and clear the bit
 814	 * on the first half
 815	 */
 816	if (state->start <= end && state->end > end) {
 817		prealloc = alloc_extent_state_atomic(prealloc);
 818		BUG_ON(!prealloc);
 819		err = split_state(tree, state, prealloc, end + 1);
 820		if (err)
 821			extent_io_tree_panic(tree, err);
 822
 823		if (wake)
 824			wake_up(&state->wq);
 825
 826		clear_state_bit(tree, prealloc, &bits, wake, changeset);
 827
 828		prealloc = NULL;
 829		goto out;
 830	}
 831
 832	state = clear_state_bit(tree, state, &bits, wake, changeset);
 833next:
 834	if (last_end == (u64)-1)
 835		goto out;
 836	start = last_end + 1;
 837	if (start <= end && state && !need_resched())
 838		goto hit_next;
 839
 840search_again:
 841	if (start > end)
 842		goto out;
 843	spin_unlock(&tree->lock);
 844	if (gfpflags_allow_blocking(mask))
 845		cond_resched();
 846	goto again;
 847
 848out:
 849	spin_unlock(&tree->lock);
 850	if (prealloc)
 851		free_extent_state(prealloc);
 852
 853	return 0;
 854
 855}
 856
 857static void wait_on_state(struct extent_io_tree *tree,
 858			  struct extent_state *state)
 859		__releases(tree->lock)
 860		__acquires(tree->lock)
 861{
 862	DEFINE_WAIT(wait);
 863	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 864	spin_unlock(&tree->lock);
 865	schedule();
 866	spin_lock(&tree->lock);
 867	finish_wait(&state->wq, &wait);
 868}
 869
 870/*
 871 * waits for one or more bits to clear on a range in the state tree.
 872 * The range [start, end] is inclusive.
 873 * The tree lock is taken by this function
 874 */
 875static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 876			    u32 bits)
 877{
 878	struct extent_state *state;
 879	struct rb_node *node;
 880
 881	btrfs_debug_check_extent_io_range(tree, start, end);
 882
 883	spin_lock(&tree->lock);
 884again:
 885	while (1) {
 886		/*
 887		 * this search will find all the extents that end after
 888		 * our range starts
 889		 */
 890		node = tree_search(tree, start);
 891process_node:
 892		if (!node)
 893			break;
 894
 895		state = rb_entry(node, struct extent_state, rb_node);
 896
 897		if (state->start > end)
 898			goto out;
 899
 900		if (state->state & bits) {
 901			start = state->start;
 902			refcount_inc(&state->refs);
 903			wait_on_state(tree, state);
 904			free_extent_state(state);
 905			goto again;
 906		}
 907		start = state->end + 1;
 908
 909		if (start > end)
 910			break;
 911
 912		if (!cond_resched_lock(&tree->lock)) {
 913			node = rb_next(node);
 914			goto process_node;
 915		}
 916	}
 917out:
 918	spin_unlock(&tree->lock);
 919}
 920
 921static void set_state_bits(struct extent_io_tree *tree,
 922			   struct extent_state *state,
 923			   u32 *bits, struct extent_changeset *changeset)
 924{
 925	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
 926	int ret;
 927
 928	if (tree->private_data && is_data_inode(tree->private_data))
 929		btrfs_set_delalloc_extent(tree->private_data, state, bits);
 930
 931	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 932		u64 range = state->end - state->start + 1;
 933		tree->dirty_bytes += range;
 934	}
 935	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
 936	BUG_ON(ret < 0);
 937	state->state |= bits_to_set;
 938}
 939
 940static void cache_state_if_flags(struct extent_state *state,
 941				 struct extent_state **cached_ptr,
 942				 unsigned flags)
 943{
 944	if (cached_ptr && !(*cached_ptr)) {
 945		if (!flags || (state->state & flags)) {
 946			*cached_ptr = state;
 947			refcount_inc(&state->refs);
 948		}
 949	}
 950}
 951
 952static void cache_state(struct extent_state *state,
 953			struct extent_state **cached_ptr)
 954{
 955	return cache_state_if_flags(state, cached_ptr,
 956				    EXTENT_LOCKED | EXTENT_BOUNDARY);
 957}
 958
 959/*
 960 * set some bits on a range in the tree.  This may require allocations or
 961 * sleeping, so the gfp mask is used to indicate what is allowed.
 962 *
 963 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 964 * part of the range already has the desired bits set.  The start of the
 965 * existing range is returned in failed_start in this case.
 966 *
 967 * [start, end] is inclusive This takes the tree lock.
 968 */
 969int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
 970		   u32 exclusive_bits, u64 *failed_start,
 971		   struct extent_state **cached_state, gfp_t mask,
 972		   struct extent_changeset *changeset)
 973{
 974	struct extent_state *state;
 975	struct extent_state *prealloc = NULL;
 976	struct rb_node *node;
 977	struct rb_node **p;
 978	struct rb_node *parent;
 979	int err = 0;
 980	u64 last_start;
 981	u64 last_end;
 982
 983	btrfs_debug_check_extent_io_range(tree, start, end);
 984	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
 985
 986	if (exclusive_bits)
 987		ASSERT(failed_start);
 988	else
 989		ASSERT(failed_start == NULL);
 990again:
 991	if (!prealloc && gfpflags_allow_blocking(mask)) {
 992		/*
 993		 * Don't care for allocation failure here because we might end
 994		 * up not needing the pre-allocated extent state at all, which
 995		 * is the case if we only have in the tree extent states that
 996		 * cover our input range and don't cover too any other range.
 997		 * If we end up needing a new extent state we allocate it later.
 998		 */
 999		prealloc = alloc_extent_state(mask);
1000	}
1001
1002	spin_lock(&tree->lock);
1003	if (cached_state && *cached_state) {
1004		state = *cached_state;
1005		if (state->start <= start && state->end > start &&
1006		    extent_state_in_tree(state)) {
1007			node = &state->rb_node;
1008			goto hit_next;
1009		}
1010	}
1011	/*
1012	 * this search will find all the extents that end after
1013	 * our range starts.
1014	 */
1015	node = tree_search_for_insert(tree, start, &p, &parent);
1016	if (!node) {
1017		prealloc = alloc_extent_state_atomic(prealloc);
1018		BUG_ON(!prealloc);
1019		err = insert_state(tree, prealloc, start, end,
1020				   &p, &parent, &bits, changeset);
1021		if (err)
1022			extent_io_tree_panic(tree, err);
1023
1024		cache_state(prealloc, cached_state);
1025		prealloc = NULL;
1026		goto out;
1027	}
1028	state = rb_entry(node, struct extent_state, rb_node);
1029hit_next:
1030	last_start = state->start;
1031	last_end = state->end;
1032
1033	/*
1034	 * | ---- desired range ---- |
1035	 * | state |
1036	 *
1037	 * Just lock what we found and keep going
1038	 */
1039	if (state->start == start && state->end <= end) {
1040		if (state->state & exclusive_bits) {
1041			*failed_start = state->start;
1042			err = -EEXIST;
1043			goto out;
1044		}
1045
1046		set_state_bits(tree, state, &bits, changeset);
1047		cache_state(state, cached_state);
1048		merge_state(tree, state);
1049		if (last_end == (u64)-1)
1050			goto out;
1051		start = last_end + 1;
1052		state = next_state(state);
1053		if (start < end && state && state->start == start &&
1054		    !need_resched())
1055			goto hit_next;
1056		goto search_again;
1057	}
1058
1059	/*
1060	 *     | ---- desired range ---- |
1061	 * | state |
1062	 *   or
1063	 * | ------------- state -------------- |
1064	 *
1065	 * We need to split the extent we found, and may flip bits on
1066	 * second half.
1067	 *
1068	 * If the extent we found extends past our
1069	 * range, we just split and search again.  It'll get split
1070	 * again the next time though.
1071	 *
1072	 * If the extent we found is inside our range, we set the
1073	 * desired bit on it.
1074	 */
1075	if (state->start < start) {
1076		if (state->state & exclusive_bits) {
1077			*failed_start = start;
1078			err = -EEXIST;
1079			goto out;
1080		}
1081
1082		/*
1083		 * If this extent already has all the bits we want set, then
1084		 * skip it, not necessary to split it or do anything with it.
1085		 */
1086		if ((state->state & bits) == bits) {
1087			start = state->end + 1;
1088			cache_state(state, cached_state);
1089			goto search_again;
1090		}
1091
1092		prealloc = alloc_extent_state_atomic(prealloc);
1093		BUG_ON(!prealloc);
1094		err = split_state(tree, state, prealloc, start);
1095		if (err)
1096			extent_io_tree_panic(tree, err);
1097
1098		prealloc = NULL;
1099		if (err)
1100			goto out;
1101		if (state->end <= end) {
1102			set_state_bits(tree, state, &bits, changeset);
1103			cache_state(state, cached_state);
1104			merge_state(tree, state);
1105			if (last_end == (u64)-1)
1106				goto out;
1107			start = last_end + 1;
1108			state = next_state(state);
1109			if (start < end && state && state->start == start &&
1110			    !need_resched())
1111				goto hit_next;
1112		}
1113		goto search_again;
1114	}
1115	/*
1116	 * | ---- desired range ---- |
1117	 *     | state | or               | state |
1118	 *
1119	 * There's a hole, we need to insert something in it and
1120	 * ignore the extent we found.
1121	 */
1122	if (state->start > start) {
1123		u64 this_end;
1124		if (end < last_start)
1125			this_end = end;
1126		else
1127			this_end = last_start - 1;
1128
1129		prealloc = alloc_extent_state_atomic(prealloc);
1130		BUG_ON(!prealloc);
1131
1132		/*
1133		 * Avoid to free 'prealloc' if it can be merged with
1134		 * the later extent.
1135		 */
1136		err = insert_state(tree, prealloc, start, this_end,
1137				   NULL, NULL, &bits, changeset);
1138		if (err)
1139			extent_io_tree_panic(tree, err);
1140
1141		cache_state(prealloc, cached_state);
1142		prealloc = NULL;
1143		start = this_end + 1;
1144		goto search_again;
1145	}
1146	/*
1147	 * | ---- desired range ---- |
1148	 *                        | state |
1149	 * We need to split the extent, and set the bit
1150	 * on the first half
1151	 */
1152	if (state->start <= end && state->end > end) {
1153		if (state->state & exclusive_bits) {
1154			*failed_start = start;
1155			err = -EEXIST;
1156			goto out;
1157		}
1158
1159		prealloc = alloc_extent_state_atomic(prealloc);
1160		BUG_ON(!prealloc);
1161		err = split_state(tree, state, prealloc, end + 1);
1162		if (err)
1163			extent_io_tree_panic(tree, err);
1164
1165		set_state_bits(tree, prealloc, &bits, changeset);
1166		cache_state(prealloc, cached_state);
1167		merge_state(tree, prealloc);
1168		prealloc = NULL;
1169		goto out;
1170	}
1171
1172search_again:
1173	if (start > end)
1174		goto out;
1175	spin_unlock(&tree->lock);
1176	if (gfpflags_allow_blocking(mask))
1177		cond_resched();
1178	goto again;
1179
1180out:
1181	spin_unlock(&tree->lock);
1182	if (prealloc)
1183		free_extent_state(prealloc);
1184
1185	return err;
1186
1187}
1188
1189/**
1190 * convert_extent_bit - convert all bits in a given range from one bit to
1191 * 			another
1192 * @tree:	the io tree to search
1193 * @start:	the start offset in bytes
1194 * @end:	the end offset in bytes (inclusive)
1195 * @bits:	the bits to set in this range
1196 * @clear_bits:	the bits to clear in this range
1197 * @cached_state:	state that we're going to cache
1198 *
1199 * This will go through and set bits for the given range.  If any states exist
1200 * already in this range they are set with the given bit and cleared of the
1201 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1202 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1203 * boundary bits like LOCK.
1204 *
1205 * All allocations are done with GFP_NOFS.
1206 */
1207int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1208		       u32 bits, u32 clear_bits,
1209		       struct extent_state **cached_state)
1210{
1211	struct extent_state *state;
1212	struct extent_state *prealloc = NULL;
1213	struct rb_node *node;
1214	struct rb_node **p;
1215	struct rb_node *parent;
1216	int err = 0;
1217	u64 last_start;
1218	u64 last_end;
1219	bool first_iteration = true;
1220
1221	btrfs_debug_check_extent_io_range(tree, start, end);
1222	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1223				       clear_bits);
1224
1225again:
1226	if (!prealloc) {
1227		/*
1228		 * Best effort, don't worry if extent state allocation fails
1229		 * here for the first iteration. We might have a cached state
1230		 * that matches exactly the target range, in which case no
1231		 * extent state allocations are needed. We'll only know this
1232		 * after locking the tree.
1233		 */
1234		prealloc = alloc_extent_state(GFP_NOFS);
1235		if (!prealloc && !first_iteration)
1236			return -ENOMEM;
1237	}
1238
1239	spin_lock(&tree->lock);
1240	if (cached_state && *cached_state) {
1241		state = *cached_state;
1242		if (state->start <= start && state->end > start &&
1243		    extent_state_in_tree(state)) {
1244			node = &state->rb_node;
1245			goto hit_next;
1246		}
1247	}
1248
1249	/*
1250	 * this search will find all the extents that end after
1251	 * our range starts.
1252	 */
1253	node = tree_search_for_insert(tree, start, &p, &parent);
1254	if (!node) {
1255		prealloc = alloc_extent_state_atomic(prealloc);
1256		if (!prealloc) {
1257			err = -ENOMEM;
1258			goto out;
1259		}
1260		err = insert_state(tree, prealloc, start, end,
1261				   &p, &parent, &bits, NULL);
1262		if (err)
1263			extent_io_tree_panic(tree, err);
1264		cache_state(prealloc, cached_state);
1265		prealloc = NULL;
1266		goto out;
1267	}
1268	state = rb_entry(node, struct extent_state, rb_node);
1269hit_next:
1270	last_start = state->start;
1271	last_end = state->end;
1272
1273	/*
1274	 * | ---- desired range ---- |
1275	 * | state |
1276	 *
1277	 * Just lock what we found and keep going
1278	 */
1279	if (state->start == start && state->end <= end) {
1280		set_state_bits(tree, state, &bits, NULL);
1281		cache_state(state, cached_state);
1282		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1283		if (last_end == (u64)-1)
1284			goto out;
1285		start = last_end + 1;
1286		if (start < end && state && state->start == start &&
1287		    !need_resched())
1288			goto hit_next;
1289		goto search_again;
1290	}
1291
1292	/*
1293	 *     | ---- desired range ---- |
1294	 * | state |
1295	 *   or
1296	 * | ------------- state -------------- |
1297	 *
1298	 * We need to split the extent we found, and may flip bits on
1299	 * second half.
1300	 *
1301	 * If the extent we found extends past our
1302	 * range, we just split and search again.  It'll get split
1303	 * again the next time though.
1304	 *
1305	 * If the extent we found is inside our range, we set the
1306	 * desired bit on it.
1307	 */
1308	if (state->start < start) {
1309		prealloc = alloc_extent_state_atomic(prealloc);
1310		if (!prealloc) {
1311			err = -ENOMEM;
1312			goto out;
1313		}
1314		err = split_state(tree, state, prealloc, start);
1315		if (err)
1316			extent_io_tree_panic(tree, err);
1317		prealloc = NULL;
1318		if (err)
1319			goto out;
1320		if (state->end <= end) {
1321			set_state_bits(tree, state, &bits, NULL);
1322			cache_state(state, cached_state);
1323			state = clear_state_bit(tree, state, &clear_bits, 0,
1324						NULL);
1325			if (last_end == (u64)-1)
1326				goto out;
1327			start = last_end + 1;
1328			if (start < end && state && state->start == start &&
1329			    !need_resched())
1330				goto hit_next;
1331		}
1332		goto search_again;
1333	}
1334	/*
1335	 * | ---- desired range ---- |
1336	 *     | state | or               | state |
1337	 *
1338	 * There's a hole, we need to insert something in it and
1339	 * ignore the extent we found.
1340	 */
1341	if (state->start > start) {
1342		u64 this_end;
1343		if (end < last_start)
1344			this_end = end;
1345		else
1346			this_end = last_start - 1;
1347
1348		prealloc = alloc_extent_state_atomic(prealloc);
1349		if (!prealloc) {
1350			err = -ENOMEM;
1351			goto out;
1352		}
1353
1354		/*
1355		 * Avoid to free 'prealloc' if it can be merged with
1356		 * the later extent.
1357		 */
1358		err = insert_state(tree, prealloc, start, this_end,
1359				   NULL, NULL, &bits, NULL);
1360		if (err)
1361			extent_io_tree_panic(tree, err);
1362		cache_state(prealloc, cached_state);
1363		prealloc = NULL;
1364		start = this_end + 1;
1365		goto search_again;
1366	}
1367	/*
1368	 * | ---- desired range ---- |
1369	 *                        | state |
1370	 * We need to split the extent, and set the bit
1371	 * on the first half
1372	 */
1373	if (state->start <= end && state->end > end) {
1374		prealloc = alloc_extent_state_atomic(prealloc);
1375		if (!prealloc) {
1376			err = -ENOMEM;
1377			goto out;
1378		}
1379
1380		err = split_state(tree, state, prealloc, end + 1);
1381		if (err)
1382			extent_io_tree_panic(tree, err);
1383
1384		set_state_bits(tree, prealloc, &bits, NULL);
1385		cache_state(prealloc, cached_state);
1386		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1387		prealloc = NULL;
1388		goto out;
1389	}
1390
1391search_again:
1392	if (start > end)
1393		goto out;
1394	spin_unlock(&tree->lock);
1395	cond_resched();
1396	first_iteration = false;
1397	goto again;
1398
1399out:
1400	spin_unlock(&tree->lock);
1401	if (prealloc)
1402		free_extent_state(prealloc);
1403
1404	return err;
1405}
1406
1407/* wrappers around set/clear extent bit */
1408int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1409			   u32 bits, struct extent_changeset *changeset)
1410{
1411	/*
1412	 * We don't support EXTENT_LOCKED yet, as current changeset will
1413	 * record any bits changed, so for EXTENT_LOCKED case, it will
1414	 * either fail with -EEXIST or changeset will record the whole
1415	 * range.
1416	 */
1417	BUG_ON(bits & EXTENT_LOCKED);
1418
1419	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1420			      changeset);
1421}
1422
1423int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1424			   u32 bits)
1425{
1426	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1427			      GFP_NOWAIT, NULL);
1428}
1429
1430int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1431		     u32 bits, int wake, int delete,
1432		     struct extent_state **cached)
1433{
1434	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1435				  cached, GFP_NOFS, NULL);
1436}
1437
1438int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1439		u32 bits, struct extent_changeset *changeset)
1440{
1441	/*
1442	 * Don't support EXTENT_LOCKED case, same reason as
1443	 * set_record_extent_bits().
1444	 */
1445	BUG_ON(bits & EXTENT_LOCKED);
1446
1447	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1448				  changeset);
1449}
1450
1451/*
1452 * either insert or lock state struct between start and end use mask to tell
1453 * us if waiting is desired.
1454 */
1455int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1456		     struct extent_state **cached_state)
1457{
1458	int err;
1459	u64 failed_start;
1460
1461	while (1) {
1462		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1463				     EXTENT_LOCKED, &failed_start,
1464				     cached_state, GFP_NOFS, NULL);
1465		if (err == -EEXIST) {
1466			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1467			start = failed_start;
1468		} else
1469			break;
1470		WARN_ON(start > end);
1471	}
1472	return err;
1473}
1474
1475int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1476{
1477	int err;
1478	u64 failed_start;
1479
1480	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1481			     &failed_start, NULL, GFP_NOFS, NULL);
1482	if (err == -EEXIST) {
1483		if (failed_start > start)
1484			clear_extent_bit(tree, start, failed_start - 1,
1485					 EXTENT_LOCKED, 1, 0, NULL);
1486		return 0;
1487	}
1488	return 1;
1489}
1490
1491void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1492{
1493	unsigned long index = start >> PAGE_SHIFT;
1494	unsigned long end_index = end >> PAGE_SHIFT;
1495	struct page *page;
1496
1497	while (index <= end_index) {
1498		page = find_get_page(inode->i_mapping, index);
1499		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1500		clear_page_dirty_for_io(page);
1501		put_page(page);
1502		index++;
1503	}
1504}
1505
1506void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1507{
1508	unsigned long index = start >> PAGE_SHIFT;
1509	unsigned long end_index = end >> PAGE_SHIFT;
1510	struct page *page;
1511
1512	while (index <= end_index) {
1513		page = find_get_page(inode->i_mapping, index);
1514		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1515		__set_page_dirty_nobuffers(page);
1516		account_page_redirty(page);
1517		put_page(page);
1518		index++;
1519	}
1520}
1521
1522/* find the first state struct with 'bits' set after 'start', and
1523 * return it.  tree->lock must be held.  NULL will returned if
1524 * nothing was found after 'start'
1525 */
1526static struct extent_state *
1527find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
1528{
1529	struct rb_node *node;
1530	struct extent_state *state;
1531
1532	/*
1533	 * this search will find all the extents that end after
1534	 * our range starts.
1535	 */
1536	node = tree_search(tree, start);
1537	if (!node)
1538		goto out;
1539
1540	while (1) {
1541		state = rb_entry(node, struct extent_state, rb_node);
1542		if (state->end >= start && (state->state & bits))
1543			return state;
1544
1545		node = rb_next(node);
1546		if (!node)
1547			break;
1548	}
1549out:
1550	return NULL;
1551}
1552
1553/*
1554 * Find the first offset in the io tree with one or more @bits set.
1555 *
1556 * Note: If there are multiple bits set in @bits, any of them will match.
1557 *
1558 * Return 0 if we find something, and update @start_ret and @end_ret.
1559 * Return 1 if we found nothing.
1560 */
1561int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1562			  u64 *start_ret, u64 *end_ret, u32 bits,
1563			  struct extent_state **cached_state)
1564{
1565	struct extent_state *state;
1566	int ret = 1;
1567
1568	spin_lock(&tree->lock);
1569	if (cached_state && *cached_state) {
1570		state = *cached_state;
1571		if (state->end == start - 1 && extent_state_in_tree(state)) {
1572			while ((state = next_state(state)) != NULL) {
1573				if (state->state & bits)
1574					goto got_it;
1575			}
1576			free_extent_state(*cached_state);
1577			*cached_state = NULL;
1578			goto out;
1579		}
1580		free_extent_state(*cached_state);
1581		*cached_state = NULL;
1582	}
1583
1584	state = find_first_extent_bit_state(tree, start, bits);
1585got_it:
1586	if (state) {
1587		cache_state_if_flags(state, cached_state, 0);
1588		*start_ret = state->start;
1589		*end_ret = state->end;
1590		ret = 0;
1591	}
1592out:
1593	spin_unlock(&tree->lock);
1594	return ret;
1595}
1596
1597/**
1598 * Find a contiguous area of bits
1599 *
1600 * @tree:      io tree to check
1601 * @start:     offset to start the search from
1602 * @start_ret: the first offset we found with the bits set
1603 * @end_ret:   the final contiguous range of the bits that were set
1604 * @bits:      bits to look for
1605 *
1606 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1607 * to set bits appropriately, and then merge them again.  During this time it
1608 * will drop the tree->lock, so use this helper if you want to find the actual
1609 * contiguous area for given bits.  We will search to the first bit we find, and
1610 * then walk down the tree until we find a non-contiguous area.  The area
1611 * returned will be the full contiguous area with the bits set.
1612 */
1613int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1614			       u64 *start_ret, u64 *end_ret, u32 bits)
1615{
1616	struct extent_state *state;
1617	int ret = 1;
1618
1619	spin_lock(&tree->lock);
1620	state = find_first_extent_bit_state(tree, start, bits);
1621	if (state) {
1622		*start_ret = state->start;
1623		*end_ret = state->end;
1624		while ((state = next_state(state)) != NULL) {
1625			if (state->start > (*end_ret + 1))
1626				break;
1627			*end_ret = state->end;
1628		}
1629		ret = 0;
1630	}
1631	spin_unlock(&tree->lock);
1632	return ret;
1633}
1634
1635/**
1636 * Find the first range that has @bits not set. This range could start before
1637 * @start.
1638 *
1639 * @tree:      the tree to search
1640 * @start:     offset at/after which the found extent should start
1641 * @start_ret: records the beginning of the range
1642 * @end_ret:   records the end of the range (inclusive)
1643 * @bits:      the set of bits which must be unset
1644 *
1645 * Since unallocated range is also considered one which doesn't have the bits
1646 * set it's possible that @end_ret contains -1, this happens in case the range
1647 * spans (last_range_end, end of device]. In this case it's up to the caller to
1648 * trim @end_ret to the appropriate size.
1649 */
1650void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1651				 u64 *start_ret, u64 *end_ret, u32 bits)
1652{
1653	struct extent_state *state;
1654	struct rb_node *node, *prev = NULL, *next;
1655
1656	spin_lock(&tree->lock);
1657
1658	/* Find first extent with bits cleared */
1659	while (1) {
1660		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1661		if (!node && !next && !prev) {
1662			/*
1663			 * Tree is completely empty, send full range and let
1664			 * caller deal with it
1665			 */
1666			*start_ret = 0;
1667			*end_ret = -1;
1668			goto out;
1669		} else if (!node && !next) {
1670			/*
1671			 * We are past the last allocated chunk, set start at
1672			 * the end of the last extent.
1673			 */
1674			state = rb_entry(prev, struct extent_state, rb_node);
1675			*start_ret = state->end + 1;
1676			*end_ret = -1;
1677			goto out;
1678		} else if (!node) {
1679			node = next;
1680		}
1681		/*
1682		 * At this point 'node' either contains 'start' or start is
1683		 * before 'node'
1684		 */
1685		state = rb_entry(node, struct extent_state, rb_node);
1686
1687		if (in_range(start, state->start, state->end - state->start + 1)) {
1688			if (state->state & bits) {
1689				/*
1690				 * |--range with bits sets--|
1691				 *    |
1692				 *    start
1693				 */
1694				start = state->end + 1;
1695			} else {
1696				/*
1697				 * 'start' falls within a range that doesn't
1698				 * have the bits set, so take its start as
1699				 * the beginning of the desired range
1700				 *
1701				 * |--range with bits cleared----|
1702				 *      |
1703				 *      start
1704				 */
1705				*start_ret = state->start;
1706				break;
1707			}
1708		} else {
1709			/*
1710			 * |---prev range---|---hole/unset---|---node range---|
1711			 *                          |
1712			 *                        start
1713			 *
1714			 *                        or
1715			 *
1716			 * |---hole/unset--||--first node--|
1717			 * 0   |
1718			 *    start
1719			 */
1720			if (prev) {
1721				state = rb_entry(prev, struct extent_state,
1722						 rb_node);
1723				*start_ret = state->end + 1;
1724			} else {
1725				*start_ret = 0;
1726			}
1727			break;
1728		}
1729	}
1730
1731	/*
1732	 * Find the longest stretch from start until an entry which has the
1733	 * bits set
1734	 */
1735	while (1) {
1736		state = rb_entry(node, struct extent_state, rb_node);
1737		if (state->end >= start && !(state->state & bits)) {
1738			*end_ret = state->end;
1739		} else {
1740			*end_ret = state->start - 1;
1741			break;
1742		}
1743
1744		node = rb_next(node);
1745		if (!node)
1746			break;
1747	}
1748out:
1749	spin_unlock(&tree->lock);
1750}
1751
1752/*
1753 * find a contiguous range of bytes in the file marked as delalloc, not
1754 * more than 'max_bytes'.  start and end are used to return the range,
1755 *
1756 * true is returned if we find something, false if nothing was in the tree
1757 */
1758bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1759			       u64 *end, u64 max_bytes,
1760			       struct extent_state **cached_state)
1761{
1762	struct rb_node *node;
1763	struct extent_state *state;
1764	u64 cur_start = *start;
1765	bool found = false;
1766	u64 total_bytes = 0;
1767
1768	spin_lock(&tree->lock);
1769
1770	/*
1771	 * this search will find all the extents that end after
1772	 * our range starts.
1773	 */
1774	node = tree_search(tree, cur_start);
1775	if (!node) {
1776		*end = (u64)-1;
1777		goto out;
1778	}
1779
1780	while (1) {
1781		state = rb_entry(node, struct extent_state, rb_node);
1782		if (found && (state->start != cur_start ||
1783			      (state->state & EXTENT_BOUNDARY))) {
1784			goto out;
1785		}
1786		if (!(state->state & EXTENT_DELALLOC)) {
1787			if (!found)
1788				*end = state->end;
1789			goto out;
1790		}
1791		if (!found) {
1792			*start = state->start;
1793			*cached_state = state;
1794			refcount_inc(&state->refs);
1795		}
1796		found = true;
1797		*end = state->end;
1798		cur_start = state->end + 1;
1799		node = rb_next(node);
1800		total_bytes += state->end - state->start + 1;
1801		if (total_bytes >= max_bytes)
1802			break;
1803		if (!node)
1804			break;
1805	}
1806out:
1807	spin_unlock(&tree->lock);
1808	return found;
1809}
1810
1811/*
1812 * Process one page for __process_pages_contig().
1813 *
1814 * Return >0 if we hit @page == @locked_page.
1815 * Return 0 if we updated the page status.
1816 * Return -EGAIN if the we need to try again.
1817 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1818 */
1819static int process_one_page(struct btrfs_fs_info *fs_info,
1820			    struct address_space *mapping,
1821			    struct page *page, struct page *locked_page,
1822			    unsigned long page_ops, u64 start, u64 end)
1823{
 
1824	u32 len;
1825
1826	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1827	len = end + 1 - start;
1828
1829	if (page_ops & PAGE_SET_ORDERED)
1830		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1831	if (page_ops & PAGE_SET_ERROR)
1832		btrfs_page_clamp_set_error(fs_info, page, start, len);
1833	if (page_ops & PAGE_START_WRITEBACK) {
1834		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1835		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1836	}
1837	if (page_ops & PAGE_END_WRITEBACK)
1838		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1839
1840	if (page == locked_page)
1841		return 1;
1842
1843	if (page_ops & PAGE_LOCK) {
1844		int ret;
1845
1846		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1847		if (ret)
1848			return ret;
1849		if (!PageDirty(page) || page->mapping != mapping) {
1850			btrfs_page_end_writer_lock(fs_info, page, start, len);
1851			return -EAGAIN;
1852		}
1853	}
1854	if (page_ops & PAGE_UNLOCK)
1855		btrfs_page_end_writer_lock(fs_info, page, start, len);
1856	return 0;
1857}
1858
1859static int __process_pages_contig(struct address_space *mapping,
1860				  struct page *locked_page,
1861				  u64 start, u64 end, unsigned long page_ops,
1862				  u64 *processed_end)
1863{
1864	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1865	pgoff_t start_index = start >> PAGE_SHIFT;
1866	pgoff_t end_index = end >> PAGE_SHIFT;
1867	pgoff_t index = start_index;
1868	unsigned long nr_pages = end_index - start_index + 1;
1869	unsigned long pages_processed = 0;
1870	struct page *pages[16];
1871	int err = 0;
1872	int i;
1873
1874	if (page_ops & PAGE_LOCK) {
1875		ASSERT(page_ops == PAGE_LOCK);
1876		ASSERT(processed_end && *processed_end == start);
1877	}
1878
1879	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1880		mapping_set_error(mapping, -EIO);
1881
1882	while (nr_pages > 0) {
1883		int found_pages;
 
 
1884
1885		found_pages = find_get_pages_contig(mapping, index,
1886				     min_t(unsigned long,
1887				     nr_pages, ARRAY_SIZE(pages)), pages);
1888		if (found_pages == 0) {
1889			/*
1890			 * Only if we're going to lock these pages, we can find
1891			 * nothing at @index.
1892			 */
1893			ASSERT(page_ops & PAGE_LOCK);
1894			err = -EAGAIN;
1895			goto out;
1896		}
1897
1898		for (i = 0; i < found_pages; i++) {
1899			int process_ret;
1900
1901			process_ret = process_one_page(fs_info, mapping,
1902					pages[i], locked_page, page_ops,
1903					start, end);
1904			if (process_ret < 0) {
1905				for (; i < found_pages; i++)
1906					put_page(pages[i]);
1907				err = -EAGAIN;
1908				goto out;
1909			}
1910			put_page(pages[i]);
1911			pages_processed++;
1912		}
1913		nr_pages -= found_pages;
1914		index += found_pages;
1915		cond_resched();
1916	}
1917out:
1918	if (err && processed_end) {
1919		/*
1920		 * Update @processed_end. I know this is awful since it has
1921		 * two different return value patterns (inclusive vs exclusive).
1922		 *
1923		 * But the exclusive pattern is necessary if @start is 0, or we
1924		 * underflow and check against processed_end won't work as
1925		 * expected.
1926		 */
1927		if (pages_processed)
1928			*processed_end = min(end,
1929			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1930		else
1931			*processed_end = start;
1932	}
1933	return err;
1934}
1935
1936static noinline void __unlock_for_delalloc(struct inode *inode,
1937					   struct page *locked_page,
1938					   u64 start, u64 end)
1939{
1940	unsigned long index = start >> PAGE_SHIFT;
1941	unsigned long end_index = end >> PAGE_SHIFT;
1942
1943	ASSERT(locked_page);
1944	if (index == locked_page->index && end_index == index)
1945		return;
1946
1947	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1948			       PAGE_UNLOCK, NULL);
1949}
1950
1951static noinline int lock_delalloc_pages(struct inode *inode,
1952					struct page *locked_page,
1953					u64 delalloc_start,
1954					u64 delalloc_end)
1955{
1956	unsigned long index = delalloc_start >> PAGE_SHIFT;
1957	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1958	u64 processed_end = delalloc_start;
1959	int ret;
 
 
 
1960
1961	ASSERT(locked_page);
1962	if (index == locked_page->index && index == end_index)
1963		return 0;
1964
1965	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1966				     delalloc_end, PAGE_LOCK, &processed_end);
1967	if (ret == -EAGAIN && processed_end > delalloc_start)
1968		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1969				      processed_end);
1970	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971}
1972
1973/*
1974 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1975 * more than @max_bytes.  @Start and @end are used to return the range,
 
 
 
 
 
 
 
 
1976 *
1977 * Return: true if we find something
1978 *         false if nothing was in the tree
1979 */
1980EXPORT_FOR_TESTS
1981noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1982				    struct page *locked_page, u64 *start,
1983				    u64 *end)
1984{
 
1985	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1986	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
 
 
 
1987	u64 delalloc_start;
1988	u64 delalloc_end;
1989	bool found;
1990	struct extent_state *cached_state = NULL;
1991	int ret;
1992	int loops = 0;
1993
 
 
 
 
 
 
1994again:
1995	/* step one, find a bunch of delalloc bytes starting at start */
1996	delalloc_start = *start;
1997	delalloc_end = 0;
1998	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1999					  max_bytes, &cached_state);
2000	if (!found || delalloc_end <= *start) {
2001		*start = delalloc_start;
2002		*end = delalloc_end;
 
 
2003		free_extent_state(cached_state);
2004		return false;
2005	}
2006
2007	/*
2008	 * start comes from the offset of locked_page.  We have to lock
2009	 * pages in order, so we can't process delalloc bytes before
2010	 * locked_page
2011	 */
2012	if (delalloc_start < *start)
2013		delalloc_start = *start;
2014
2015	/*
2016	 * make sure to limit the number of pages we try to lock down
2017	 */
2018	if (delalloc_end + 1 - delalloc_start > max_bytes)
2019		delalloc_end = delalloc_start + max_bytes - 1;
2020
2021	/* step two, lock all the pages after the page that has start */
2022	ret = lock_delalloc_pages(inode, locked_page,
2023				  delalloc_start, delalloc_end);
2024	ASSERT(!ret || ret == -EAGAIN);
2025	if (ret == -EAGAIN) {
2026		/* some of the pages are gone, lets avoid looping by
2027		 * shortening the size of the delalloc range we're searching
2028		 */
2029		free_extent_state(cached_state);
2030		cached_state = NULL;
2031		if (!loops) {
2032			max_bytes = PAGE_SIZE;
2033			loops = 1;
2034			goto again;
2035		} else {
2036			found = false;
2037			goto out_failed;
2038		}
2039	}
2040
2041	/* step three, lock the state bits for the whole range */
2042	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
2043
2044	/* then test to make sure it is all still delalloc */
2045	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2046			     EXTENT_DELALLOC, 1, cached_state);
2047	if (!ret) {
2048		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2049				     &cached_state);
2050		__unlock_for_delalloc(inode, locked_page,
2051			      delalloc_start, delalloc_end);
2052		cond_resched();
2053		goto again;
2054	}
2055	free_extent_state(cached_state);
2056	*start = delalloc_start;
2057	*end = delalloc_end;
2058out_failed:
2059	return found;
2060}
2061
2062void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2063				  struct page *locked_page,
2064				  u32 clear_bits, unsigned long page_ops)
2065{
2066	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2067
2068	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2069			       start, end, page_ops, NULL);
2070}
2071
2072/*
2073 * count the number of bytes in the tree that have a given bit(s)
2074 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2075 * cached.  The total number found is returned.
2076 */
2077u64 count_range_bits(struct extent_io_tree *tree,
2078		     u64 *start, u64 search_end, u64 max_bytes,
2079		     u32 bits, int contig)
2080{
2081	struct rb_node *node;
2082	struct extent_state *state;
2083	u64 cur_start = *start;
2084	u64 total_bytes = 0;
2085	u64 last = 0;
2086	int found = 0;
2087
2088	if (WARN_ON(search_end <= cur_start))
2089		return 0;
2090
2091	spin_lock(&tree->lock);
2092	if (cur_start == 0 && bits == EXTENT_DIRTY) {
2093		total_bytes = tree->dirty_bytes;
2094		goto out;
2095	}
2096	/*
2097	 * this search will find all the extents that end after
2098	 * our range starts.
2099	 */
2100	node = tree_search(tree, cur_start);
2101	if (!node)
2102		goto out;
2103
2104	while (1) {
2105		state = rb_entry(node, struct extent_state, rb_node);
2106		if (state->start > search_end)
2107			break;
2108		if (contig && found && state->start > last + 1)
2109			break;
2110		if (state->end >= cur_start && (state->state & bits) == bits) {
2111			total_bytes += min(search_end, state->end) + 1 -
2112				       max(cur_start, state->start);
2113			if (total_bytes >= max_bytes)
2114				break;
2115			if (!found) {
2116				*start = max(cur_start, state->start);
2117				found = 1;
2118			}
2119			last = state->end;
2120		} else if (contig && found) {
2121			break;
2122		}
2123		node = rb_next(node);
2124		if (!node)
2125			break;
2126	}
2127out:
2128	spin_unlock(&tree->lock);
2129	return total_bytes;
2130}
2131
2132/*
2133 * set the private field for a given byte offset in the tree.  If there isn't
2134 * an extent_state there already, this does nothing.
2135 */
2136int set_state_failrec(struct extent_io_tree *tree, u64 start,
2137		      struct io_failure_record *failrec)
2138{
2139	struct rb_node *node;
2140	struct extent_state *state;
2141	int ret = 0;
2142
2143	spin_lock(&tree->lock);
2144	/*
2145	 * this search will find all the extents that end after
2146	 * our range starts.
2147	 */
2148	node = tree_search(tree, start);
2149	if (!node) {
2150		ret = -ENOENT;
2151		goto out;
2152	}
2153	state = rb_entry(node, struct extent_state, rb_node);
2154	if (state->start != start) {
2155		ret = -ENOENT;
2156		goto out;
2157	}
2158	state->failrec = failrec;
2159out:
2160	spin_unlock(&tree->lock);
2161	return ret;
2162}
2163
2164struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2165{
2166	struct rb_node *node;
2167	struct extent_state *state;
2168	struct io_failure_record *failrec;
2169
2170	spin_lock(&tree->lock);
2171	/*
2172	 * this search will find all the extents that end after
2173	 * our range starts.
2174	 */
2175	node = tree_search(tree, start);
2176	if (!node) {
2177		failrec = ERR_PTR(-ENOENT);
2178		goto out;
2179	}
2180	state = rb_entry(node, struct extent_state, rb_node);
2181	if (state->start != start) {
2182		failrec = ERR_PTR(-ENOENT);
2183		goto out;
2184	}
2185
2186	failrec = state->failrec;
2187out:
2188	spin_unlock(&tree->lock);
2189	return failrec;
2190}
2191
2192/*
2193 * searches a range in the state tree for a given mask.
2194 * If 'filled' == 1, this returns 1 only if every extent in the tree
2195 * has the bits set.  Otherwise, 1 is returned if any bit in the
2196 * range is found set.
2197 */
2198int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2199		   u32 bits, int filled, struct extent_state *cached)
2200{
2201	struct extent_state *state = NULL;
2202	struct rb_node *node;
2203	int bitset = 0;
2204
2205	spin_lock(&tree->lock);
2206	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2207	    cached->end > start)
2208		node = &cached->rb_node;
2209	else
2210		node = tree_search(tree, start);
2211	while (node && start <= end) {
2212		state = rb_entry(node, struct extent_state, rb_node);
2213
2214		if (filled && state->start > start) {
2215			bitset = 0;
2216			break;
2217		}
2218
2219		if (state->start > end)
2220			break;
2221
2222		if (state->state & bits) {
2223			bitset = 1;
2224			if (!filled)
2225				break;
2226		} else if (filled) {
2227			bitset = 0;
2228			break;
2229		}
2230
2231		if (state->end == (u64)-1)
2232			break;
2233
2234		start = state->end + 1;
2235		if (start > end)
2236			break;
2237		node = rb_next(node);
2238		if (!node) {
2239			if (filled)
2240				bitset = 0;
2241			break;
2242		}
2243	}
2244	spin_unlock(&tree->lock);
2245	return bitset;
2246}
2247
2248/*
2249 * helper function to set a given page up to date if all the
2250 * extents in the tree for that page are up to date
2251 */
2252static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2253{
2254	u64 start = page_offset(page);
2255	u64 end = start + PAGE_SIZE - 1;
2256	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2257		SetPageUptodate(page);
2258}
2259
2260int free_io_failure(struct extent_io_tree *failure_tree,
2261		    struct extent_io_tree *io_tree,
2262		    struct io_failure_record *rec)
2263{
2264	int ret;
2265	int err = 0;
2266
2267	set_state_failrec(failure_tree, rec->start, NULL);
2268	ret = clear_extent_bits(failure_tree, rec->start,
2269				rec->start + rec->len - 1,
2270				EXTENT_LOCKED | EXTENT_DIRTY);
2271	if (ret)
2272		err = ret;
2273
2274	ret = clear_extent_bits(io_tree, rec->start,
2275				rec->start + rec->len - 1,
2276				EXTENT_DAMAGED);
2277	if (ret && !err)
2278		err = ret;
2279
2280	kfree(rec);
2281	return err;
2282}
2283
2284/*
2285 * this bypasses the standard btrfs submit functions deliberately, as
2286 * the standard behavior is to write all copies in a raid setup. here we only
2287 * want to write the one bad copy. so we do the mapping for ourselves and issue
2288 * submit_bio directly.
2289 * to avoid any synchronization issues, wait for the data after writing, which
2290 * actually prevents the read that triggered the error from finishing.
2291 * currently, there can be no more than two copies of every data bit. thus,
2292 * exactly one rewrite is required.
2293 */
2294int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2295		      u64 length, u64 logical, struct page *page,
2296		      unsigned int pg_offset, int mirror_num)
2297{
2298	struct bio *bio;
2299	struct btrfs_device *dev;
2300	u64 map_length = 0;
2301	u64 sector;
2302	struct btrfs_bio *bbio = NULL;
2303	int ret;
2304
2305	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2306	BUG_ON(!mirror_num);
2307
2308	if (btrfs_is_zoned(fs_info))
2309		return btrfs_repair_one_zone(fs_info, logical);
2310
2311	bio = btrfs_io_bio_alloc(1);
2312	bio->bi_iter.bi_size = 0;
2313	map_length = length;
2314
2315	/*
2316	 * Avoid races with device replace and make sure our bbio has devices
2317	 * associated to its stripes that don't go away while we are doing the
2318	 * read repair operation.
2319	 */
2320	btrfs_bio_counter_inc_blocked(fs_info);
2321	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2322		/*
2323		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2324		 * to update all raid stripes, but here we just want to correct
2325		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2326		 * stripe's dev and sector.
2327		 */
2328		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2329				      &map_length, &bbio, 0);
2330		if (ret) {
2331			btrfs_bio_counter_dec(fs_info);
2332			bio_put(bio);
2333			return -EIO;
2334		}
2335		ASSERT(bbio->mirror_num == 1);
2336	} else {
2337		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2338				      &map_length, &bbio, mirror_num);
2339		if (ret) {
2340			btrfs_bio_counter_dec(fs_info);
2341			bio_put(bio);
2342			return -EIO;
2343		}
2344		BUG_ON(mirror_num != bbio->mirror_num);
2345	}
2346
2347	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2348	bio->bi_iter.bi_sector = sector;
2349	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2350	btrfs_put_bbio(bbio);
2351	if (!dev || !dev->bdev ||
2352	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2353		btrfs_bio_counter_dec(fs_info);
2354		bio_put(bio);
2355		return -EIO;
2356	}
2357	bio_set_dev(bio, dev->bdev);
2358	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2359	bio_add_page(bio, page, length, pg_offset);
2360
2361	if (btrfsic_submit_bio_wait(bio)) {
2362		/* try to remap that extent elsewhere? */
2363		btrfs_bio_counter_dec(fs_info);
2364		bio_put(bio);
2365		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2366		return -EIO;
2367	}
2368
2369	btrfs_info_rl_in_rcu(fs_info,
2370		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2371				  ino, start,
2372				  rcu_str_deref(dev->name), sector);
2373	btrfs_bio_counter_dec(fs_info);
2374	bio_put(bio);
2375	return 0;
2376}
2377
2378int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2379{
2380	struct btrfs_fs_info *fs_info = eb->fs_info;
2381	u64 start = eb->start;
2382	int i, num_pages = num_extent_pages(eb);
2383	int ret = 0;
2384
2385	if (sb_rdonly(fs_info->sb))
2386		return -EROFS;
2387
2388	for (i = 0; i < num_pages; i++) {
2389		struct page *p = eb->pages[i];
2390
2391		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2392					start - page_offset(p), mirror_num);
2393		if (ret)
2394			break;
2395		start += PAGE_SIZE;
2396	}
2397
2398	return ret;
2399}
2400
2401/*
2402 * each time an IO finishes, we do a fast check in the IO failure tree
2403 * to see if we need to process or clean up an io_failure_record
2404 */
2405int clean_io_failure(struct btrfs_fs_info *fs_info,
2406		     struct extent_io_tree *failure_tree,
2407		     struct extent_io_tree *io_tree, u64 start,
2408		     struct page *page, u64 ino, unsigned int pg_offset)
2409{
2410	u64 private;
2411	struct io_failure_record *failrec;
2412	struct extent_state *state;
2413	int num_copies;
2414	int ret;
2415
2416	private = 0;
2417	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2418			       EXTENT_DIRTY, 0);
2419	if (!ret)
2420		return 0;
2421
2422	failrec = get_state_failrec(failure_tree, start);
2423	if (IS_ERR(failrec))
2424		return 0;
2425
2426	BUG_ON(!failrec->this_mirror);
2427
2428	if (sb_rdonly(fs_info->sb))
2429		goto out;
2430
2431	spin_lock(&io_tree->lock);
2432	state = find_first_extent_bit_state(io_tree,
2433					    failrec->start,
2434					    EXTENT_LOCKED);
2435	spin_unlock(&io_tree->lock);
2436
2437	if (state && state->start <= failrec->start &&
2438	    state->end >= failrec->start + failrec->len - 1) {
2439		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2440					      failrec->len);
2441		if (num_copies > 1)  {
2442			repair_io_failure(fs_info, ino, start, failrec->len,
2443					  failrec->logical, page, pg_offset,
2444					  failrec->failed_mirror);
2445		}
2446	}
2447
2448out:
2449	free_io_failure(failure_tree, io_tree, failrec);
2450
2451	return 0;
2452}
2453
2454/*
2455 * Can be called when
2456 * - hold extent lock
2457 * - under ordered extent
2458 * - the inode is freeing
2459 */
2460void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2461{
2462	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2463	struct io_failure_record *failrec;
2464	struct extent_state *state, *next;
2465
2466	if (RB_EMPTY_ROOT(&failure_tree->state))
2467		return;
2468
2469	spin_lock(&failure_tree->lock);
2470	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2471	while (state) {
2472		if (state->start > end)
2473			break;
2474
2475		ASSERT(state->end <= end);
2476
2477		next = next_state(state);
2478
2479		failrec = state->failrec;
2480		free_extent_state(state);
2481		kfree(failrec);
2482
2483		state = next;
2484	}
2485	spin_unlock(&failure_tree->lock);
2486}
2487
2488static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2489							     u64 start)
2490{
2491	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2492	struct io_failure_record *failrec;
2493	struct extent_map *em;
2494	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2495	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2496	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2497	const u32 sectorsize = fs_info->sectorsize;
2498	int ret;
2499	u64 logical;
2500
2501	failrec = get_state_failrec(failure_tree, start);
2502	if (!IS_ERR(failrec)) {
2503		btrfs_debug(fs_info,
2504	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2505			failrec->logical, failrec->start, failrec->len);
2506		/*
2507		 * when data can be on disk more than twice, add to failrec here
2508		 * (e.g. with a list for failed_mirror) to make
2509		 * clean_io_failure() clean all those errors at once.
2510		 */
2511
2512		return failrec;
2513	}
2514
2515	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2516	if (!failrec)
2517		return ERR_PTR(-ENOMEM);
2518
2519	failrec->start = start;
2520	failrec->len = sectorsize;
2521	failrec->this_mirror = 0;
2522	failrec->bio_flags = 0;
2523
2524	read_lock(&em_tree->lock);
2525	em = lookup_extent_mapping(em_tree, start, failrec->len);
2526	if (!em) {
2527		read_unlock(&em_tree->lock);
2528		kfree(failrec);
2529		return ERR_PTR(-EIO);
2530	}
2531
2532	if (em->start > start || em->start + em->len <= start) {
2533		free_extent_map(em);
2534		em = NULL;
2535	}
2536	read_unlock(&em_tree->lock);
2537	if (!em) {
2538		kfree(failrec);
2539		return ERR_PTR(-EIO);
2540	}
2541
2542	logical = start - em->start;
2543	logical = em->block_start + logical;
2544	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2545		logical = em->block_start;
2546		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2547		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2548	}
2549
2550	btrfs_debug(fs_info,
2551		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2552		    logical, start, failrec->len);
2553
2554	failrec->logical = logical;
2555	free_extent_map(em);
2556
2557	/* Set the bits in the private failure tree */
2558	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2559			      EXTENT_LOCKED | EXTENT_DIRTY);
2560	if (ret >= 0) {
2561		ret = set_state_failrec(failure_tree, start, failrec);
2562		/* Set the bits in the inode's tree */
2563		ret = set_extent_bits(tree, start, start + sectorsize - 1,
2564				      EXTENT_DAMAGED);
2565	} else if (ret < 0) {
2566		kfree(failrec);
2567		return ERR_PTR(ret);
2568	}
2569
2570	return failrec;
2571}
2572
2573static bool btrfs_check_repairable(struct inode *inode,
2574				   struct io_failure_record *failrec,
2575				   int failed_mirror)
2576{
2577	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2578	int num_copies;
2579
2580	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2581	if (num_copies == 1) {
2582		/*
2583		 * we only have a single copy of the data, so don't bother with
2584		 * all the retry and error correction code that follows. no
2585		 * matter what the error is, it is very likely to persist.
2586		 */
2587		btrfs_debug(fs_info,
2588			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2589			num_copies, failrec->this_mirror, failed_mirror);
2590		return false;
2591	}
2592
2593	/* The failure record should only contain one sector */
2594	ASSERT(failrec->len == fs_info->sectorsize);
2595
2596	/*
2597	 * There are two premises:
2598	 * a) deliver good data to the caller
2599	 * b) correct the bad sectors on disk
2600	 *
2601	 * Since we're only doing repair for one sector, we only need to get
2602	 * a good copy of the failed sector and if we succeed, we have setup
2603	 * everything for repair_io_failure to do the rest for us.
2604	 */
2605	failrec->failed_mirror = failed_mirror;
2606	failrec->this_mirror++;
2607	if (failrec->this_mirror == failed_mirror)
2608		failrec->this_mirror++;
2609
2610	if (failrec->this_mirror > num_copies) {
2611		btrfs_debug(fs_info,
2612			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2613			num_copies, failrec->this_mirror, failed_mirror);
2614		return false;
2615	}
2616
2617	return true;
2618}
2619
2620int btrfs_repair_one_sector(struct inode *inode,
2621			    struct bio *failed_bio, u32 bio_offset,
2622			    struct page *page, unsigned int pgoff,
2623			    u64 start, int failed_mirror,
2624			    submit_bio_hook_t *submit_bio_hook)
2625{
2626	struct io_failure_record *failrec;
2627	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2628	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2629	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2630	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2631	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2632	struct bio *repair_bio;
2633	struct btrfs_io_bio *repair_io_bio;
2634	blk_status_t status;
2635
2636	btrfs_debug(fs_info,
2637		   "repair read error: read error at %llu", start);
2638
2639	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2640
2641	failrec = btrfs_get_io_failure_record(inode, start);
2642	if (IS_ERR(failrec))
2643		return PTR_ERR(failrec);
2644
2645
2646	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2647		free_io_failure(failure_tree, tree, failrec);
2648		return -EIO;
2649	}
2650
2651	repair_bio = btrfs_io_bio_alloc(1);
2652	repair_io_bio = btrfs_io_bio(repair_bio);
2653	repair_bio->bi_opf = REQ_OP_READ;
2654	repair_bio->bi_end_io = failed_bio->bi_end_io;
2655	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2656	repair_bio->bi_private = failed_bio->bi_private;
2657
2658	if (failed_io_bio->csum) {
2659		const u32 csum_size = fs_info->csum_size;
2660
2661		repair_io_bio->csum = repair_io_bio->csum_inline;
2662		memcpy(repair_io_bio->csum,
2663		       failed_io_bio->csum + csum_size * icsum, csum_size);
2664	}
2665
2666	bio_add_page(repair_bio, page, failrec->len, pgoff);
2667	repair_io_bio->logical = failrec->start;
2668	repair_io_bio->iter = repair_bio->bi_iter;
2669
2670	btrfs_debug(btrfs_sb(inode->i_sb),
2671		    "repair read error: submitting new read to mirror %d",
2672		    failrec->this_mirror);
2673
2674	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2675				 failrec->bio_flags);
2676	if (status) {
2677		free_io_failure(failure_tree, tree, failrec);
2678		bio_put(repair_bio);
2679	}
2680	return blk_status_to_errno(status);
2681}
2682
2683static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2684{
2685	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
 
2686
2687	ASSERT(page_offset(page) <= start &&
2688	       start + len <= page_offset(page) + PAGE_SIZE);
2689
2690	if (uptodate) {
2691		btrfs_page_set_uptodate(fs_info, page, start, len);
2692	} else {
2693		btrfs_page_clear_uptodate(fs_info, page, start, len);
2694		btrfs_page_set_error(fs_info, page, start, len);
2695	}
2696
2697	if (fs_info->sectorsize == PAGE_SIZE)
2698		unlock_page(page);
2699	else
2700		btrfs_subpage_end_reader(fs_info, page, start, len);
2701}
2702
2703static blk_status_t submit_read_repair(struct inode *inode,
2704				      struct bio *failed_bio, u32 bio_offset,
2705				      struct page *page, unsigned int pgoff,
2706				      u64 start, u64 end, int failed_mirror,
2707				      unsigned int error_bitmap,
2708				      submit_bio_hook_t *submit_bio_hook)
2709{
2710	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2711	const u32 sectorsize = fs_info->sectorsize;
2712	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2713	int error = 0;
2714	int i;
2715
2716	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2717
2718	/* We're here because we had some read errors or csum mismatch */
2719	ASSERT(error_bitmap);
2720
2721	/*
2722	 * We only get called on buffered IO, thus page must be mapped and bio
2723	 * must not be cloned.
2724	 */
2725	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2726
2727	/* Iterate through all the sectors in the range */
2728	for (i = 0; i < nr_bits; i++) {
2729		const unsigned int offset = i * sectorsize;
2730		struct extent_state *cached = NULL;
2731		bool uptodate = false;
2732		int ret;
2733
2734		if (!(error_bitmap & (1U << i))) {
2735			/*
2736			 * This sector has no error, just end the page read
2737			 * and unlock the range.
2738			 */
2739			uptodate = true;
2740			goto next;
2741		}
2742
2743		ret = btrfs_repair_one_sector(inode, failed_bio,
2744				bio_offset + offset,
2745				page, pgoff + offset, start + offset,
2746				failed_mirror, submit_bio_hook);
2747		if (!ret) {
2748			/*
2749			 * We have submitted the read repair, the page release
2750			 * will be handled by the endio function of the
2751			 * submitted repair bio.
2752			 * Thus we don't need to do any thing here.
2753			 */
2754			continue;
2755		}
2756		/*
2757		 * Repair failed, just record the error but still continue.
2758		 * Or the remaining sectors will not be properly unlocked.
2759		 */
2760		if (!error)
2761			error = ret;
2762next:
2763		end_page_read(page, uptodate, start + offset, sectorsize);
2764		if (uptodate)
2765			set_extent_uptodate(&BTRFS_I(inode)->io_tree,
2766					start + offset,
2767					start + offset + sectorsize - 1,
2768					&cached, GFP_ATOMIC);
2769		unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
2770				start + offset,
2771				start + offset + sectorsize - 1,
2772				&cached);
2773	}
2774	return errno_to_blk_status(error);
2775}
2776
2777/* lots and lots of room for performance fixes in the end_bio funcs */
2778
2779void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2780{
2781	struct btrfs_inode *inode;
2782	int uptodate = (err == 0);
2783	int ret = 0;
2784
2785	ASSERT(page && page->mapping);
2786	inode = BTRFS_I(page->mapping->host);
2787	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2788
2789	if (!uptodate) {
2790		ClearPageUptodate(page);
2791		SetPageError(page);
2792		ret = err < 0 ? err : -EIO;
2793		mapping_set_error(page->mapping, ret);
2794	}
2795}
2796
2797/*
2798 * after a writepage IO is done, we need to:
2799 * clear the uptodate bits on error
2800 * clear the writeback bits in the extent tree for this IO
2801 * end_page_writeback if the page has no more pending IO
 
2802 *
2803 * Scheduling is not allowed, so the extent state tree is expected
2804 * to have one and only one object corresponding to this IO.
2805 */
2806static void end_bio_extent_writepage(struct bio *bio)
2807{
 
2808	int error = blk_status_to_errno(bio->bi_status);
2809	struct bio_vec *bvec;
2810	u64 start;
2811	u64 end;
2812	struct bvec_iter_all iter_all;
2813	bool first_bvec = true;
2814
2815	ASSERT(!bio_flagged(bio, BIO_CLONED));
2816	bio_for_each_segment_all(bvec, bio, iter_all) {
2817		struct page *page = bvec->bv_page;
2818		struct inode *inode = page->mapping->host;
2819		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2820		const u32 sectorsize = fs_info->sectorsize;
 
 
 
 
 
2821
2822		/* Our read/write should always be sector aligned. */
2823		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2824			btrfs_err(fs_info,
2825		"partial page write in btrfs with offset %u and length %u",
2826				  bvec->bv_offset, bvec->bv_len);
2827		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2828			btrfs_info(fs_info,
2829		"incomplete page write with offset %u and length %u",
2830				   bvec->bv_offset, bvec->bv_len);
2831
2832		start = page_offset(page) + bvec->bv_offset;
2833		end = start + bvec->bv_len - 1;
2834
2835		if (first_bvec) {
2836			btrfs_record_physical_zoned(inode, start, bio);
2837			first_bvec = false;
2838		}
2839
2840		end_extent_writepage(page, error, start, end);
2841
2842		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
 
 
2843	}
2844
2845	bio_put(bio);
2846}
2847
2848/*
2849 * Record previously processed extent range
2850 *
2851 * For endio_readpage_release_extent() to handle a full extent range, reducing
2852 * the extent io operations.
2853 */
2854struct processed_extent {
2855	struct btrfs_inode *inode;
2856	/* Start of the range in @inode */
2857	u64 start;
2858	/* End of the range in @inode */
2859	u64 end;
2860	bool uptodate;
2861};
2862
2863/*
2864 * Try to release processed extent range
2865 *
2866 * May not release the extent range right now if the current range is
2867 * contiguous to processed extent.
2868 *
2869 * Will release processed extent when any of @inode, @uptodate, the range is
2870 * no longer contiguous to the processed range.
2871 *
2872 * Passing @inode == NULL will force processed extent to be released.
2873 */
2874static void endio_readpage_release_extent(struct processed_extent *processed,
2875			      struct btrfs_inode *inode, u64 start, u64 end,
2876			      bool uptodate)
2877{
2878	struct extent_state *cached = NULL;
2879	struct extent_io_tree *tree;
2880
2881	/* The first extent, initialize @processed */
2882	if (!processed->inode)
2883		goto update;
2884
2885	/*
2886	 * Contiguous to processed extent, just uptodate the end.
2887	 *
2888	 * Several things to notice:
2889	 *
2890	 * - bio can be merged as long as on-disk bytenr is contiguous
2891	 *   This means we can have page belonging to other inodes, thus need to
2892	 *   check if the inode still matches.
2893	 * - bvec can contain range beyond current page for multi-page bvec
2894	 *   Thus we need to do processed->end + 1 >= start check
2895	 */
2896	if (processed->inode == inode && processed->uptodate == uptodate &&
2897	    processed->end + 1 >= start && end >= processed->end) {
2898		processed->end = end;
2899		return;
2900	}
2901
2902	tree = &processed->inode->io_tree;
2903	/*
2904	 * Now we don't have range contiguous to the processed range, release
2905	 * the processed range now.
2906	 */
2907	if (processed->uptodate && tree->track_uptodate)
2908		set_extent_uptodate(tree, processed->start, processed->end,
2909				    &cached, GFP_ATOMIC);
2910	unlock_extent_cached_atomic(tree, processed->start, processed->end,
2911				    &cached);
2912
2913update:
2914	/* Update processed to current range */
2915	processed->inode = inode;
2916	processed->start = start;
2917	processed->end = end;
2918	processed->uptodate = uptodate;
2919}
2920
2921static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2922{
2923	ASSERT(PageLocked(page));
2924	if (fs_info->sectorsize == PAGE_SIZE)
 
 
2925		return;
2926
2927	ASSERT(PagePrivate(page));
2928	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2929}
2930
2931/*
2932 * Find extent buffer for a givne bytenr.
2933 *
2934 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2935 * in endio context.
2936 */
2937static struct extent_buffer *find_extent_buffer_readpage(
2938		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2939{
2940	struct extent_buffer *eb;
2941
2942	/*
2943	 * For regular sectorsize, we can use page->private to grab extent
2944	 * buffer
2945	 */
2946	if (fs_info->sectorsize == PAGE_SIZE) {
2947		ASSERT(PagePrivate(page) && page->private);
2948		return (struct extent_buffer *)page->private;
2949	}
2950
2951	/* For subpage case, we need to lookup buffer radix tree */
2952	rcu_read_lock();
2953	eb = radix_tree_lookup(&fs_info->buffer_radix,
2954			       bytenr >> fs_info->sectorsize_bits);
2955	rcu_read_unlock();
2956	ASSERT(eb);
2957	return eb;
2958}
2959
2960/*
2961 * after a readpage IO is done, we need to:
2962 * clear the uptodate bits on error
2963 * set the uptodate bits if things worked
2964 * set the page up to date if all extents in the tree are uptodate
2965 * clear the lock bit in the extent tree
2966 * unlock the page if there are no other extents locked for it
2967 *
2968 * Scheduling is not allowed, so the extent state tree is expected
2969 * to have one and only one object corresponding to this IO.
2970 */
2971static void end_bio_extent_readpage(struct bio *bio)
2972{
2973	struct bio_vec *bvec;
2974	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2975	struct extent_io_tree *tree, *failure_tree;
2976	struct processed_extent processed = { 0 };
 
2977	/*
2978	 * The offset to the beginning of a bio, since one bio can never be
2979	 * larger than UINT_MAX, u32 here is enough.
2980	 */
2981	u32 bio_offset = 0;
2982	int mirror;
2983	int ret;
2984	struct bvec_iter_all iter_all;
2985
2986	ASSERT(!bio_flagged(bio, BIO_CLONED));
2987	bio_for_each_segment_all(bvec, bio, iter_all) {
2988		bool uptodate = !bio->bi_status;
2989		struct page *page = bvec->bv_page;
2990		struct inode *inode = page->mapping->host;
2991		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2992		const u32 sectorsize = fs_info->sectorsize;
2993		unsigned int error_bitmap = (unsigned int)-1;
2994		u64 start;
2995		u64 end;
2996		u32 len;
2997
 
 
2998		btrfs_debug(fs_info,
2999			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
3000			bio->bi_iter.bi_sector, bio->bi_status,
3001			io_bio->mirror_num);
3002		tree = &BTRFS_I(inode)->io_tree;
3003		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3004
3005		/*
3006		 * We always issue full-sector reads, but if some block in a
3007		 * page fails to read, blk_update_request() will advance
3008		 * bv_offset and adjust bv_len to compensate.  Print a warning
3009		 * for unaligned offsets, and an error if they don't add up to
3010		 * a full sector.
3011		 */
3012		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3013			btrfs_err(fs_info,
3014		"partial page read in btrfs with offset %u and length %u",
3015				  bvec->bv_offset, bvec->bv_len);
3016		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3017				     sectorsize))
3018			btrfs_info(fs_info,
3019		"incomplete page read with offset %u and length %u",
3020				   bvec->bv_offset, bvec->bv_len);
3021
3022		start = page_offset(page) + bvec->bv_offset;
3023		end = start + bvec->bv_len - 1;
3024		len = bvec->bv_len;
3025
3026		mirror = io_bio->mirror_num;
3027		if (likely(uptodate)) {
3028			if (is_data_inode(inode)) {
3029				error_bitmap = btrfs_verify_data_csum(io_bio,
3030						bio_offset, page, start, end);
3031				ret = error_bitmap;
3032			} else {
3033				ret = btrfs_validate_metadata_buffer(io_bio,
3034					page, start, end, mirror);
3035			}
3036			if (ret)
3037				uptodate = false;
3038			else
3039				clean_io_failure(BTRFS_I(inode)->root->fs_info,
3040						 failure_tree, tree, start,
3041						 page,
3042						 btrfs_ino(BTRFS_I(inode)), 0);
3043		}
3044
3045		if (likely(uptodate))
3046			goto readpage_ok;
 
3047
3048		if (is_data_inode(inode)) {
3049			/*
3050			 * btrfs_submit_read_repair() will handle all the good
3051			 * and bad sectors, we just continue to the next bvec.
3052			 */
3053			submit_read_repair(inode, bio, bio_offset, page,
3054					   start - page_offset(page), start,
3055					   end, mirror, error_bitmap,
3056					   btrfs_submit_data_bio);
3057
3058			ASSERT(bio_offset + len > bio_offset);
3059			bio_offset += len;
3060			continue;
3061		} else {
3062			struct extent_buffer *eb;
3063
3064			eb = find_extent_buffer_readpage(fs_info, page, start);
3065			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3066			eb->read_mirror = mirror;
3067			atomic_dec(&eb->io_pages);
3068			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
3069					       &eb->bflags))
3070				btree_readahead_hook(eb, -EIO);
3071		}
3072readpage_ok:
3073		if (likely(uptodate)) {
3074			loff_t i_size = i_size_read(inode);
3075			pgoff_t end_index = i_size >> PAGE_SHIFT;
3076
3077			/*
3078			 * Zero out the remaining part if this range straddles
3079			 * i_size.
3080			 *
3081			 * Here we should only zero the range inside the bvec,
3082			 * not touch anything else.
3083			 *
3084			 * NOTE: i_size is exclusive while end is inclusive.
3085			 */
3086			if (page->index == end_index && i_size <= end) {
3087				u32 zero_start = max(offset_in_page(i_size),
3088						     offset_in_page(start));
 
 
3089
3090				zero_user_segment(page, zero_start,
3091						  offset_in_page(end) + 1);
3092			}
3093		}
 
 
 
 
 
 
3094		ASSERT(bio_offset + len > bio_offset);
3095		bio_offset += len;
3096
3097		/* Update page status and unlock */
3098		end_page_read(page, uptodate, start, len);
3099		endio_readpage_release_extent(&processed, BTRFS_I(inode),
3100					      start, end, uptodate);
3101	}
3102	/* Release the last extent */
3103	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3104	btrfs_io_bio_free_csum(io_bio);
3105	bio_put(bio);
3106}
3107
3108/*
3109 * Initialize the members up to but not including 'bio'. Use after allocating a
3110 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3111 * 'bio' because use of __GFP_ZERO is not supported.
 
 
 
 
 
 
 
3112 */
3113static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
 
3114{
3115	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
3116}
3117
3118/*
3119 * The following helpers allocate a bio. As it's backed by a bioset, it'll
3120 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
3121 * for the appropriate container_of magic
3122 */
3123struct bio *btrfs_bio_alloc(u64 first_byte)
3124{
3125	struct bio *bio;
3126
3127	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
3128	bio->bi_iter.bi_sector = first_byte >> 9;
3129	btrfs_io_bio_init(btrfs_io_bio(bio));
3130	return bio;
3131}
3132
3133struct bio *btrfs_bio_clone(struct bio *bio)
3134{
3135	struct btrfs_io_bio *btrfs_bio;
3136	struct bio *new;
3137
3138	/* Bio allocation backed by a bioset does not fail */
3139	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3140	btrfs_bio = btrfs_io_bio(new);
3141	btrfs_io_bio_init(btrfs_bio);
3142	btrfs_bio->iter = bio->bi_iter;
3143	return new;
3144}
 
 
 
 
 
3145
3146struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3147{
3148	struct bio *bio;
3149
3150	/* Bio allocation backed by a bioset does not fail */
3151	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3152	btrfs_io_bio_init(btrfs_io_bio(bio));
3153	return bio;
3154}
3155
3156struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
 
 
 
 
 
3157{
3158	struct bio *bio;
3159	struct btrfs_io_bio *btrfs_bio;
 
3160
3161	/* this will never fail when it's backed by a bioset */
3162	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3163	ASSERT(bio);
3164
3165	btrfs_bio = btrfs_io_bio(bio);
3166	btrfs_io_bio_init(btrfs_bio);
3167
3168	bio_trim(bio, offset >> 9, size >> 9);
3169	btrfs_bio->iter = bio->bi_iter;
3170	return bio;
3171}
3172
3173/**
3174 * Attempt to add a page to bio
3175 *
3176 * @bio:	destination bio
3177 * @page:	page to add to the bio
3178 * @disk_bytenr:  offset of the new bio or to check whether we are adding
3179 *                a contiguous page to the previous one
3180 * @pg_offset:	starting offset in the page
3181 * @size:	portion of page that we want to write
3182 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3183 * @bio_flags:	flags of the current bio to see if we can merge them
3184 * @return:	true if page was added, false otherwise
3185 *
3186 * Attempt to add a page to bio considering stripe alignment etc.
3187 *
3188 * Return true if successfully page added. Otherwise, return false.
3189 */
3190static bool btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3191			       struct page *page,
3192			       u64 disk_bytenr, unsigned int size,
3193			       unsigned int pg_offset,
3194			       unsigned long bio_flags)
3195{
3196	struct bio *bio = bio_ctrl->bio;
3197	u32 bio_size = bio->bi_iter.bi_size;
3198	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3199	bool contig;
3200	int ret;
3201
3202	ASSERT(bio);
3203	/* The limit should be calculated when bio_ctrl->bio is allocated */
3204	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3205	if (bio_ctrl->bio_flags != bio_flags)
3206		return false;
 
 
3207
3208	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3209		contig = bio->bi_iter.bi_sector == sector;
3210	else
3211		contig = bio_end_sector(bio) == sector;
3212	if (!contig)
3213		return false;
3214
3215	if (bio_size + size > bio_ctrl->len_to_oe_boundary ||
3216	    bio_size + size > bio_ctrl->len_to_stripe_boundary)
3217		return false;
3218
3219	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3220		ret = bio_add_zone_append_page(bio, page, size, pg_offset);
3221	else
3222		ret = bio_add_page(bio, page, size, pg_offset);
3223
3224	return ret == size;
3225}
3226
3227static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3228			       struct btrfs_inode *inode)
 
3229{
3230	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3231	struct btrfs_io_geometry geom;
3232	struct btrfs_ordered_extent *ordered;
3233	struct extent_map *em;
3234	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3235	int ret;
3236
3237	/*
3238	 * Pages for compressed extent are never submitted to disk directly,
3239	 * thus it has no real boundary, just set them to U32_MAX.
3240	 *
3241	 * The split happens for real compressed bio, which happens in
3242	 * btrfs_submit_compressed_read/write().
3243	 */
3244	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
3245		bio_ctrl->len_to_oe_boundary = U32_MAX;
3246		bio_ctrl->len_to_stripe_boundary = U32_MAX;
3247		return 0;
3248	}
3249	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3250	if (IS_ERR(em))
3251		return PTR_ERR(em);
3252	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3253				    logical, &geom);
3254	free_extent_map(em);
3255	if (ret < 0) {
3256		return ret;
3257	}
3258	if (geom.len > U32_MAX)
3259		bio_ctrl->len_to_stripe_boundary = U32_MAX;
3260	else
3261		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3262
3263	if (!btrfs_is_zoned(fs_info) ||
3264	    bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3265		bio_ctrl->len_to_oe_boundary = U32_MAX;
3266		return 0;
 
 
 
 
3267	}
3268
3269	ASSERT(fs_info->max_zone_append_size > 0);
3270	/* Ordered extent not yet created, so we're good */
3271	ordered = btrfs_lookup_ordered_extent(inode, logical);
3272	if (!ordered) {
3273		bio_ctrl->len_to_oe_boundary = U32_MAX;
3274		return 0;
3275	}
3276
3277	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3278		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3279	btrfs_put_ordered_extent(ordered);
3280	return 0;
3281}
3282
3283/*
3284 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3285 * @wbc:	optional writeback control for io accounting
3286 * @page:	page to add to the bio
3287 * @disk_bytenr: logical bytenr where the write will be
3288 * @size:	portion of page that we want to write to
3289 * @pg_offset:	offset of the new bio or to check whether we are adding
3290 *              a contiguous page to the previous one
3291 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3292 * @end_io_func:     end_io callback for new bio
3293 * @mirror_num:	     desired mirror to read/write
3294 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3295 * @bio_flags:	flags of the current bio to see if we can merge them
3296 */
3297static int submit_extent_page(unsigned int opf,
3298			      struct writeback_control *wbc,
3299			      struct btrfs_bio_ctrl *bio_ctrl,
3300			      struct page *page, u64 disk_bytenr,
3301			      size_t size, unsigned long pg_offset,
3302			      bio_end_io_t end_io_func,
3303			      int mirror_num,
3304			      unsigned long bio_flags,
3305			      bool force_bio_submit)
3306{
3307	int ret = 0;
3308	struct bio *bio;
3309	size_t io_size = min_t(size_t, size, PAGE_SIZE);
3310	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3311	struct extent_io_tree *tree = &inode->io_tree;
3312	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3313
3314	ASSERT(bio_ctrl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3315
3316	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3317	       pg_offset + size <= PAGE_SIZE);
3318	if (bio_ctrl->bio) {
3319		bio = bio_ctrl->bio;
3320		if (force_bio_submit ||
3321		    !btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, io_size,
3322					pg_offset, bio_flags)) {
3323			ret = submit_one_bio(bio, mirror_num, bio_ctrl->bio_flags);
3324			bio_ctrl->bio = NULL;
3325			if (ret < 0)
3326				return ret;
3327		} else {
3328			if (wbc)
3329				wbc_account_cgroup_owner(wbc, page, io_size);
3330			return 0;
3331		}
3332	}
3333
3334	bio = btrfs_bio_alloc(disk_bytenr);
3335	bio_add_page(bio, page, io_size, pg_offset);
3336	bio->bi_end_io = end_io_func;
3337	bio->bi_private = tree;
3338	bio->bi_write_hint = page->mapping->host->i_write_hint;
3339	bio->bi_opf = opf;
3340	if (wbc) {
3341		struct block_device *bdev;
3342
3343		bdev = fs_info->fs_devices->latest_bdev;
3344		bio_set_dev(bio, bdev);
3345		wbc_init_bio(wbc, bio);
3346		wbc_account_cgroup_owner(wbc, page, io_size);
3347	}
3348	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
3349		struct btrfs_device *device;
3350
3351		device = btrfs_zoned_get_device(fs_info, disk_bytenr, io_size);
3352		if (IS_ERR(device))
3353			return PTR_ERR(device);
3354
3355		btrfs_io_bio(bio)->device = device;
3356	}
3357
3358	bio_ctrl->bio = bio;
3359	bio_ctrl->bio_flags = bio_flags;
3360	ret = calc_bio_boundaries(bio_ctrl, inode);
3361
3362	return ret;
3363}
 
3364
3365static int attach_extent_buffer_page(struct extent_buffer *eb,
3366				     struct page *page,
3367				     struct btrfs_subpage *prealloc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3368{
3369	struct btrfs_fs_info *fs_info = eb->fs_info;
3370	int ret = 0;
3371
3372	/*
3373	 * If the page is mapped to btree inode, we should hold the private
3374	 * lock to prevent race.
3375	 * For cloned or dummy extent buffers, their pages are not mapped and
3376	 * will not race with any other ebs.
3377	 */
3378	if (page->mapping)
3379		lockdep_assert_held(&page->mapping->private_lock);
3380
3381	if (fs_info->sectorsize == PAGE_SIZE) {
3382		if (!PagePrivate(page))
3383			attach_page_private(page, eb);
3384		else
3385			WARN_ON(page->private != (unsigned long)eb);
3386		return 0;
3387	}
3388
3389	/* Already mapped, just free prealloc */
3390	if (PagePrivate(page)) {
3391		btrfs_free_subpage(prealloc);
3392		return 0;
3393	}
3394
3395	if (prealloc)
3396		/* Has preallocated memory for subpage */
3397		attach_page_private(page, prealloc);
3398	else
3399		/* Do new allocation to attach subpage */
3400		ret = btrfs_attach_subpage(fs_info, page,
3401					   BTRFS_SUBPAGE_METADATA);
3402	return ret;
3403}
3404
3405int set_page_extent_mapped(struct page *page)
3406{
 
3407	struct btrfs_fs_info *fs_info;
3408
3409	ASSERT(page->mapping);
3410
3411	if (PagePrivate(page))
3412		return 0;
3413
3414	fs_info = btrfs_sb(page->mapping->host->i_sb);
3415
3416	if (fs_info->sectorsize < PAGE_SIZE)
3417		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3418
3419	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3420	return 0;
3421}
3422
3423void clear_page_extent_mapped(struct page *page)
3424{
 
3425	struct btrfs_fs_info *fs_info;
3426
3427	ASSERT(page->mapping);
3428
3429	if (!PagePrivate(page))
3430		return;
3431
3432	fs_info = btrfs_sb(page->mapping->host->i_sb);
3433	if (fs_info->sectorsize < PAGE_SIZE)
3434		return btrfs_detach_subpage(fs_info, page);
3435
3436	detach_page_private(page);
3437}
3438
3439static struct extent_map *
3440__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3441		 u64 start, u64 len, struct extent_map **em_cached)
3442{
3443	struct extent_map *em;
3444
3445	if (em_cached && *em_cached) {
3446		em = *em_cached;
3447		if (extent_map_in_tree(em) && start >= em->start &&
3448		    start < extent_map_end(em)) {
3449			refcount_inc(&em->refs);
3450			return em;
3451		}
3452
3453		free_extent_map(em);
3454		*em_cached = NULL;
3455	}
3456
3457	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3458	if (em_cached && !IS_ERR_OR_NULL(em)) {
3459		BUG_ON(*em_cached);
3460		refcount_inc(&em->refs);
3461		*em_cached = em;
3462	}
3463	return em;
3464}
3465/*
3466 * basic readpage implementation.  Locked extent state structs are inserted
3467 * into the tree that are removed when the IO is done (by the end_io
3468 * handlers)
3469 * XXX JDM: This needs looking at to ensure proper page locking
3470 * return 0 on success, otherwise return error
3471 */
3472int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3473		      struct btrfs_bio_ctrl *bio_ctrl,
3474		      unsigned int read_flags, u64 *prev_em_start)
3475{
3476	struct inode *inode = page->mapping->host;
3477	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3478	u64 start = page_offset(page);
3479	const u64 end = start + PAGE_SIZE - 1;
3480	u64 cur = start;
3481	u64 extent_offset;
3482	u64 last_byte = i_size_read(inode);
3483	u64 block_start;
3484	u64 cur_end;
3485	struct extent_map *em;
3486	int ret = 0;
3487	int nr = 0;
3488	size_t pg_offset = 0;
3489	size_t iosize;
3490	size_t blocksize = inode->i_sb->s_blocksize;
3491	unsigned long this_bio_flag = 0;
3492	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3493
3494	ret = set_page_extent_mapped(page);
3495	if (ret < 0) {
3496		unlock_extent(tree, start, end);
3497		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3498		unlock_page(page);
3499		goto out;
3500	}
3501
3502	if (!PageUptodate(page)) {
3503		if (cleancache_get_page(page) == 0) {
3504			BUG_ON(blocksize != PAGE_SIZE);
3505			unlock_extent(tree, start, end);
3506			unlock_page(page);
3507			goto out;
3508		}
3509	}
3510
3511	if (page->index == last_byte >> PAGE_SHIFT) {
3512		size_t zero_offset = offset_in_page(last_byte);
3513
3514		if (zero_offset) {
3515			iosize = PAGE_SIZE - zero_offset;
3516			memzero_page(page, zero_offset, iosize);
3517			flush_dcache_page(page);
3518		}
3519	}
 
3520	begin_page_read(fs_info, page);
3521	while (cur <= end) {
 
3522		bool force_bio_submit = false;
3523		u64 disk_bytenr;
3524
 
3525		if (cur >= last_byte) {
3526			struct extent_state *cached = NULL;
3527
3528			iosize = PAGE_SIZE - pg_offset;
3529			memzero_page(page, pg_offset, iosize);
3530			flush_dcache_page(page);
3531			set_extent_uptodate(tree, cur, cur + iosize - 1,
3532					    &cached, GFP_NOFS);
3533			unlock_extent_cached(tree, cur,
3534					     cur + iosize - 1, &cached);
3535			end_page_read(page, true, cur, iosize);
3536			break;
3537		}
3538		em = __get_extent_map(inode, page, pg_offset, cur,
3539				      end - cur + 1, em_cached);
3540		if (IS_ERR_OR_NULL(em)) {
3541			unlock_extent(tree, cur, end);
3542			end_page_read(page, false, cur, end + 1 - cur);
3543			break;
3544		}
3545		extent_offset = cur - em->start;
3546		BUG_ON(extent_map_end(em) <= cur);
3547		BUG_ON(end < cur);
3548
3549		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3550			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3551			extent_set_compress_type(&this_bio_flag,
3552						 em->compress_type);
3553		}
3554
3555		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3556		cur_end = min(extent_map_end(em) - 1, end);
3557		iosize = ALIGN(iosize, blocksize);
3558		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3559			disk_bytenr = em->block_start;
3560		else
3561			disk_bytenr = em->block_start + extent_offset;
3562		block_start = em->block_start;
3563		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3564			block_start = EXTENT_MAP_HOLE;
3565
3566		/*
3567		 * If we have a file range that points to a compressed extent
3568		 * and it's followed by a consecutive file range that points
3569		 * to the same compressed extent (possibly with a different
3570		 * offset and/or length, so it either points to the whole extent
3571		 * or only part of it), we must make sure we do not submit a
3572		 * single bio to populate the pages for the 2 ranges because
3573		 * this makes the compressed extent read zero out the pages
3574		 * belonging to the 2nd range. Imagine the following scenario:
3575		 *
3576		 *  File layout
3577		 *  [0 - 8K]                     [8K - 24K]
3578		 *    |                               |
3579		 *    |                               |
3580		 * points to extent X,         points to extent X,
3581		 * offset 4K, length of 8K     offset 0, length 16K
3582		 *
3583		 * [extent X, compressed length = 4K uncompressed length = 16K]
3584		 *
3585		 * If the bio to read the compressed extent covers both ranges,
3586		 * it will decompress extent X into the pages belonging to the
3587		 * first range and then it will stop, zeroing out the remaining
3588		 * pages that belong to the other range that points to extent X.
3589		 * So here we make sure we submit 2 bios, one for the first
3590		 * range and another one for the third range. Both will target
3591		 * the same physical extent from disk, but we can't currently
3592		 * make the compressed bio endio callback populate the pages
3593		 * for both ranges because each compressed bio is tightly
3594		 * coupled with a single extent map, and each range can have
3595		 * an extent map with a different offset value relative to the
3596		 * uncompressed data of our extent and different lengths. This
3597		 * is a corner case so we prioritize correctness over
3598		 * non-optimal behavior (submitting 2 bios for the same extent).
3599		 */
3600		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3601		    prev_em_start && *prev_em_start != (u64)-1 &&
3602		    *prev_em_start != em->start)
3603			force_bio_submit = true;
3604
3605		if (prev_em_start)
3606			*prev_em_start = em->start;
3607
3608		free_extent_map(em);
3609		em = NULL;
3610
3611		/* we've found a hole, just zero and go on */
3612		if (block_start == EXTENT_MAP_HOLE) {
3613			struct extent_state *cached = NULL;
3614
3615			memzero_page(page, pg_offset, iosize);
3616			flush_dcache_page(page);
3617
3618			set_extent_uptodate(tree, cur, cur + iosize - 1,
3619					    &cached, GFP_NOFS);
3620			unlock_extent_cached(tree, cur,
3621					     cur + iosize - 1, &cached);
3622			end_page_read(page, true, cur, iosize);
3623			cur = cur + iosize;
3624			pg_offset += iosize;
3625			continue;
3626		}
3627		/* the get_extent function already copied into the page */
3628		if (test_range_bit(tree, cur, cur_end,
3629				   EXTENT_UPTODATE, 1, NULL)) {
3630			check_page_uptodate(tree, page);
3631			unlock_extent(tree, cur, cur + iosize - 1);
3632			end_page_read(page, true, cur, iosize);
3633			cur = cur + iosize;
3634			pg_offset += iosize;
3635			continue;
3636		}
3637		/* we have an inline extent but it didn't get marked up
3638		 * to date.  Error out
3639		 */
3640		if (block_start == EXTENT_MAP_INLINE) {
3641			unlock_extent(tree, cur, cur + iosize - 1);
3642			end_page_read(page, false, cur, iosize);
3643			cur = cur + iosize;
3644			pg_offset += iosize;
3645			continue;
3646		}
3647
3648		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3649					 bio_ctrl, page, disk_bytenr, iosize,
3650					 pg_offset,
3651					 end_bio_extent_readpage, 0,
3652					 this_bio_flag,
3653					 force_bio_submit);
3654		if (!ret) {
3655			nr++;
3656		} else {
3657			unlock_extent(tree, cur, cur + iosize - 1);
3658			end_page_read(page, false, cur, iosize);
3659			goto out;
3660		}
3661		cur = cur + iosize;
3662		pg_offset += iosize;
3663	}
3664out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3665	return ret;
3666}
3667
3668static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3669					u64 start, u64 end,
3670					struct extent_map **em_cached,
3671					struct btrfs_bio_ctrl *bio_ctrl,
3672					u64 *prev_em_start)
3673{
3674	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3675	int index;
3676
3677	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3678
3679	for (index = 0; index < nr_pages; index++) {
3680		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3681				  REQ_RAHEAD, prev_em_start);
3682		put_page(pages[index]);
3683	}
3684}
3685
3686static void update_nr_written(struct writeback_control *wbc,
3687			      unsigned long nr_written)
3688{
3689	wbc->nr_to_write -= nr_written;
3690}
3691
3692/*
3693 * helper for __extent_writepage, doing all of the delayed allocation setup.
3694 *
3695 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3696 * to write the page (copy into inline extent).  In this case the IO has
3697 * been started and the page is already unlocked.
3698 *
3699 * This returns 0 if all went well (page still locked)
3700 * This returns < 0 if there were errors (page still locked)
3701 */
3702static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3703		struct page *page, struct writeback_control *wbc,
3704		u64 delalloc_start, unsigned long *nr_written)
3705{
3706	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3707	bool found;
 
 
3708	u64 delalloc_to_write = 0;
3709	u64 delalloc_end = 0;
3710	int ret;
3711	int page_started = 0;
3712
3713
3714	while (delalloc_end < page_end) {
3715		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3716					       &delalloc_start,
3717					       &delalloc_end);
3718		if (!found) {
3719			delalloc_start = delalloc_end + 1;
3720			continue;
3721		}
 
3722		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3723				delalloc_end, &page_started, nr_written, wbc);
3724		if (ret) {
3725			SetPageError(page);
3726			/*
3727			 * btrfs_run_delalloc_range should return < 0 for error
3728			 * but just in case, we use > 0 here meaning the IO is
3729			 * started, so we don't want to return > 0 unless
3730			 * things are going well.
3731			 */
3732			return ret < 0 ? ret : -EIO;
3733		}
3734		/*
3735		 * delalloc_end is already one less than the total length, so
3736		 * we don't subtract one from PAGE_SIZE
3737		 */
3738		delalloc_to_write += (delalloc_end - delalloc_start +
3739				      PAGE_SIZE) >> PAGE_SHIFT;
3740		delalloc_start = delalloc_end + 1;
3741	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3742	if (wbc->nr_to_write < delalloc_to_write) {
3743		int thresh = 8192;
3744
3745		if (delalloc_to_write < thresh * 2)
3746			thresh = delalloc_to_write;
3747		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3748					 thresh);
3749	}
3750
3751	/* did the fill delalloc function already unlock and start
3752	 * the IO?
3753	 */
3754	if (page_started) {
3755		/*
3756		 * we've unlocked the page, so we can't update
3757		 * the mapping's writeback index, just update
3758		 * nr_to_write.
3759		 */
3760		wbc->nr_to_write -= *nr_written;
3761		return 1;
3762	}
3763
3764	return 0;
3765}
3766
3767/*
3768 * Find the first byte we need to write.
3769 *
3770 * For subpage, one page can contain several sectors, and
3771 * __extent_writepage_io() will just grab all extent maps in the page
3772 * range and try to submit all non-inline/non-compressed extents.
3773 *
3774 * This is a big problem for subpage, we shouldn't re-submit already written
3775 * data at all.
3776 * This function will lookup subpage dirty bit to find which range we really
3777 * need to submit.
3778 *
3779 * Return the next dirty range in [@start, @end).
3780 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3781 */
3782static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3783				 struct page *page, u64 *start, u64 *end)
3784{
3785	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
 
 
3786	u64 orig_start = *start;
3787	/* Declare as unsigned long so we can use bitmap ops */
3788	unsigned long dirty_bitmap;
3789	unsigned long flags;
3790	int nbits = (orig_start - page_offset(page)) >> fs_info->sectorsize_bits;
3791	int range_start_bit = nbits;
3792	int range_end_bit;
3793
3794	/*
3795	 * For regular sector size == page size case, since one page only
3796	 * contains one sector, we return the page offset directly.
3797	 */
3798	if (fs_info->sectorsize == PAGE_SIZE) {
3799		*start = page_offset(page);
3800		*end = page_offset(page) + PAGE_SIZE;
3801		return;
3802	}
3803
 
 
 
3804	/* We should have the page locked, but just in case */
3805	spin_lock_irqsave(&subpage->lock, flags);
3806	dirty_bitmap = subpage->dirty_bitmap;
 
3807	spin_unlock_irqrestore(&subpage->lock, flags);
3808
3809	bitmap_next_set_region(&dirty_bitmap, &range_start_bit, &range_end_bit,
3810			       BTRFS_SUBPAGE_BITMAP_SIZE);
 
3811	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3812	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3813}
3814
3815/*
3816 * helper for __extent_writepage.  This calls the writepage start hooks,
3817 * and does the loop to map the page into extents and bios.
3818 *
3819 * We return 1 if the IO is started and the page is unlocked,
3820 * 0 if all went well (page still locked)
3821 * < 0 if there were errors (page still locked)
3822 */
3823static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3824				 struct page *page,
3825				 struct writeback_control *wbc,
3826				 struct extent_page_data *epd,
3827				 loff_t i_size,
3828				 unsigned long nr_written,
3829				 int *nr_ret)
3830{
3831	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3832	u64 start = page_offset(page);
3833	u64 end = start + PAGE_SIZE - 1;
3834	u64 cur = start;
3835	u64 extent_offset;
3836	u64 block_start;
3837	struct extent_map *em;
3838	int ret = 0;
3839	int nr = 0;
3840	u32 opf = REQ_OP_WRITE;
3841	const unsigned int write_flags = wbc_to_write_flags(wbc);
3842	bool compressed;
3843
3844	ret = btrfs_writepage_cow_fixup(page, start, end);
3845	if (ret) {
3846		/* Fixup worker will requeue */
3847		redirty_page_for_writepage(wbc, page);
3848		update_nr_written(wbc, nr_written);
3849		unlock_page(page);
3850		return 1;
3851	}
3852
3853	/*
3854	 * we don't want to touch the inode after unlocking the page,
3855	 * so we update the mapping writeback index now
3856	 */
3857	update_nr_written(wbc, nr_written + 1);
3858
3859	while (cur <= end) {
 
3860		u64 disk_bytenr;
3861		u64 em_end;
3862		u64 dirty_range_start = cur;
3863		u64 dirty_range_end;
3864		u32 iosize;
3865
3866		if (cur >= i_size) {
3867			btrfs_writepage_endio_finish_ordered(inode, page, cur,
3868							     end, 1);
 
 
 
 
 
 
 
 
 
3869			break;
3870		}
3871
3872		find_next_dirty_byte(fs_info, page, &dirty_range_start,
3873				     &dirty_range_end);
3874		if (cur < dirty_range_start) {
3875			cur = dirty_range_start;
3876			continue;
3877		}
3878
3879		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3880		if (IS_ERR_OR_NULL(em)) {
3881			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3882			ret = PTR_ERR_OR_ZERO(em);
3883			break;
3884		}
3885
3886		extent_offset = cur - em->start;
3887		em_end = extent_map_end(em);
3888		ASSERT(cur <= em_end);
3889		ASSERT(cur < end);
3890		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
3891		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
 
3892		block_start = em->block_start;
3893		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3894		disk_bytenr = em->block_start + extent_offset;
3895
 
 
 
 
3896		/*
3897		 * Note that em_end from extent_map_end() and dirty_range_end from
3898		 * find_next_dirty_byte() are all exclusive
3899		 */
3900		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3901
3902		if (btrfs_use_zone_append(inode, em->block_start))
3903			opf = REQ_OP_ZONE_APPEND;
3904
3905		free_extent_map(em);
3906		em = NULL;
3907
3908		/*
3909		 * compressed and inline extents are written through other
3910		 * paths in the FS
3911		 */
3912		if (compressed || block_start == EXTENT_MAP_HOLE ||
3913		    block_start == EXTENT_MAP_INLINE) {
3914			if (compressed)
3915				nr++;
3916			else
3917				btrfs_writepage_endio_finish_ordered(inode,
3918						page, cur, cur + iosize - 1, 1);
3919			cur += iosize;
3920			continue;
3921		}
3922
3923		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
3924		if (!PageWriteback(page)) {
3925			btrfs_err(inode->root->fs_info,
3926				   "page %lu not writeback, cur %llu end %llu",
3927			       page->index, cur, end);
3928		}
3929
3930		/*
3931		 * Although the PageDirty bit is cleared before entering this
3932		 * function, subpage dirty bit is not cleared.
3933		 * So clear subpage dirty bit here so next time we won't submit
3934		 * page for range already written to disk.
3935		 */
3936		btrfs_page_clear_dirty(fs_info, page, cur, iosize);
3937
3938		ret = submit_extent_page(opf | write_flags, wbc,
3939					 &epd->bio_ctrl, page,
3940					 disk_bytenr, iosize,
3941					 cur - page_offset(page),
3942					 end_bio_extent_writepage,
3943					 0, 0, false);
3944		if (ret) {
3945			btrfs_page_set_error(fs_info, page, cur, iosize);
3946			if (PageWriteback(page))
3947				btrfs_page_clear_writeback(fs_info, page, cur,
3948							   iosize);
3949		}
3950
 
 
3951		cur += iosize;
3952		nr++;
3953	}
 
 
 
 
 
 
 
 
 
 
3954	*nr_ret = nr;
3955	return ret;
3956}
3957
3958/*
3959 * the writepage semantics are similar to regular writepage.  extent
3960 * records are inserted to lock ranges in the tree, and as dirty areas
3961 * are found, they are marked writeback.  Then the lock bits are removed
3962 * and the end_io handler clears the writeback ranges
3963 *
3964 * Return 0 if everything goes well.
3965 * Return <0 for error.
3966 */
3967static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3968			      struct extent_page_data *epd)
3969{
 
3970	struct inode *inode = page->mapping->host;
3971	u64 start = page_offset(page);
3972	u64 page_end = start + PAGE_SIZE - 1;
3973	int ret;
3974	int nr = 0;
3975	size_t pg_offset;
3976	loff_t i_size = i_size_read(inode);
3977	unsigned long end_index = i_size >> PAGE_SHIFT;
3978	unsigned long nr_written = 0;
3979
3980	trace___extent_writepage(page, inode, wbc);
3981
3982	WARN_ON(!PageLocked(page));
3983
3984	ClearPageError(page);
3985
3986	pg_offset = offset_in_page(i_size);
3987	if (page->index > end_index ||
3988	   (page->index == end_index && !pg_offset)) {
3989		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3990		unlock_page(page);
3991		return 0;
3992	}
3993
3994	if (page->index == end_index) {
3995		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
3996		flush_dcache_page(page);
3997	}
3998
3999	ret = set_page_extent_mapped(page);
4000	if (ret < 0) {
4001		SetPageError(page);
4002		goto done;
4003	}
4004
4005	if (!epd->extent_locked) {
4006		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
4007					 &nr_written);
4008		if (ret == 1)
4009			return 0;
4010		if (ret)
4011			goto done;
4012	}
4013
4014	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4015				    nr_written, &nr);
4016	if (ret == 1)
4017		return 0;
4018
 
 
4019done:
4020	if (nr == 0) {
4021		/* make sure the mapping tag for page dirty gets cleared */
4022		set_page_writeback(page);
4023		end_page_writeback(page);
4024	}
4025	if (PageError(page)) {
4026		ret = ret < 0 ? ret : -EIO;
4027		end_extent_writepage(page, ret, start, page_end);
 
4028	}
4029	unlock_page(page);
4030	ASSERT(ret <= 0);
4031	return ret;
4032}
4033
4034void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4035{
4036	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4037		       TASK_UNINTERRUPTIBLE);
4038}
4039
4040static void end_extent_buffer_writeback(struct extent_buffer *eb)
4041{
4042	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4043	smp_mb__after_atomic();
4044	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4045}
4046
4047/*
4048 * Lock extent buffer status and pages for writeback.
4049 *
4050 * May try to flush write bio if we can't get the lock.
4051 *
4052 * Return  0 if the extent buffer doesn't need to be submitted.
4053 *           (E.g. the extent buffer is not dirty)
4054 * Return >0 is the extent buffer is submitted to bio.
4055 * Return <0 if something went wrong, no page is locked.
4056 */
4057static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4058			  struct extent_page_data *epd)
4059{
4060	struct btrfs_fs_info *fs_info = eb->fs_info;
4061	int i, num_pages, failed_page_nr;
4062	int flush = 0;
4063	int ret = 0;
4064
4065	if (!btrfs_try_tree_write_lock(eb)) {
4066		ret = flush_write_bio(epd);
4067		if (ret < 0)
4068			return ret;
4069		flush = 1;
 
4070		btrfs_tree_lock(eb);
4071	}
4072
4073	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4074		btrfs_tree_unlock(eb);
4075		if (!epd->sync_io)
4076			return 0;
4077		if (!flush) {
4078			ret = flush_write_bio(epd);
4079			if (ret < 0)
4080				return ret;
4081			flush = 1;
4082		}
4083		while (1) {
4084			wait_on_extent_buffer_writeback(eb);
4085			btrfs_tree_lock(eb);
4086			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4087				break;
4088			btrfs_tree_unlock(eb);
4089		}
4090	}
4091
4092	/*
4093	 * We need to do this to prevent races in people who check if the eb is
4094	 * under IO since we can end up having no IO bits set for a short period
4095	 * of time.
4096	 */
4097	spin_lock(&eb->refs_lock);
4098	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4099		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4100		spin_unlock(&eb->refs_lock);
4101		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4102		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4103					 -eb->len,
4104					 fs_info->dirty_metadata_batch);
4105		ret = 1;
4106	} else {
4107		spin_unlock(&eb->refs_lock);
4108	}
4109
4110	btrfs_tree_unlock(eb);
4111
4112	/*
4113	 * Either we don't need to submit any tree block, or we're submitting
4114	 * subpage eb.
4115	 * Subpage metadata doesn't use page locking at all, so we can skip
4116	 * the page locking.
4117	 */
4118	if (!ret || fs_info->sectorsize < PAGE_SIZE)
4119		return ret;
4120
4121	num_pages = num_extent_pages(eb);
4122	for (i = 0; i < num_pages; i++) {
4123		struct page *p = eb->pages[i];
4124
4125		if (!trylock_page(p)) {
4126			if (!flush) {
4127				int err;
4128
4129				err = flush_write_bio(epd);
4130				if (err < 0) {
4131					ret = err;
4132					failed_page_nr = i;
4133					goto err_unlock;
4134				}
4135				flush = 1;
4136			}
4137			lock_page(p);
4138		}
4139	}
4140
4141	return ret;
4142err_unlock:
4143	/* Unlock already locked pages */
4144	for (i = 0; i < failed_page_nr; i++)
4145		unlock_page(eb->pages[i]);
4146	/*
4147	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
4148	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
4149	 * be made and undo everything done before.
4150	 */
4151	btrfs_tree_lock(eb);
4152	spin_lock(&eb->refs_lock);
4153	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4154	end_extent_buffer_writeback(eb);
4155	spin_unlock(&eb->refs_lock);
4156	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
4157				 fs_info->dirty_metadata_batch);
4158	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4159	btrfs_tree_unlock(eb);
4160	return ret;
4161}
4162
4163static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4164{
4165	struct btrfs_fs_info *fs_info = eb->fs_info;
4166
4167	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4168	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4169		return;
 
 
 
 
4170
4171	/*
4172	 * If we error out, we should add back the dirty_metadata_bytes
4173	 * to make it consistent.
 
 
4174	 */
4175	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4176				 eb->len, fs_info->dirty_metadata_batch);
4177
4178	/*
4179	 * If writeback for a btree extent that doesn't belong to a log tree
4180	 * failed, increment the counter transaction->eb_write_errors.
4181	 * We do this because while the transaction is running and before it's
4182	 * committing (when we call filemap_fdata[write|wait]_range against
4183	 * the btree inode), we might have
4184	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4185	 * returns an error or an error happens during writeback, when we're
4186	 * committing the transaction we wouldn't know about it, since the pages
4187	 * can be no longer dirty nor marked anymore for writeback (if a
4188	 * subsequent modification to the extent buffer didn't happen before the
4189	 * transaction commit), which makes filemap_fdata[write|wait]_range not
4190	 * able to find the pages tagged with SetPageError at transaction
4191	 * commit time. So if this happens we must abort the transaction,
4192	 * otherwise we commit a super block with btree roots that point to
4193	 * btree nodes/leafs whose content on disk is invalid - either garbage
4194	 * or the content of some node/leaf from a past generation that got
4195	 * cowed or deleted and is no longer valid.
4196	 *
4197	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4198	 * not be enough - we need to distinguish between log tree extents vs
4199	 * non-log tree extents, and the next filemap_fdatawait_range() call
4200	 * will catch and clear such errors in the mapping - and that call might
4201	 * be from a log sync and not from a transaction commit. Also, checking
4202	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4203	 * not done and would not be reliable - the eb might have been released
4204	 * from memory and reading it back again means that flag would not be
4205	 * set (since it's a runtime flag, not persisted on disk).
4206	 *
4207	 * Using the flags below in the btree inode also makes us achieve the
4208	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4209	 * writeback for all dirty pages and before filemap_fdatawait_range()
4210	 * is called, the writeback for all dirty pages had already finished
4211	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4212	 * filemap_fdatawait_range() would return success, as it could not know
4213	 * that writeback errors happened (the pages were no longer tagged for
4214	 * writeback).
4215	 */
4216	switch (eb->log_index) {
4217	case -1:
4218		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4219		break;
4220	case 0:
4221		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4222		break;
4223	case 1:
4224		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4225		break;
4226	default:
4227		BUG(); /* unexpected, logic error */
4228	}
4229}
4230
4231/*
4232 * The endio specific version which won't touch any unsafe spinlock in endio
4233 * context.
4234 */
4235static struct extent_buffer *find_extent_buffer_nolock(
4236		struct btrfs_fs_info *fs_info, u64 start)
4237{
4238	struct extent_buffer *eb;
4239
4240	rcu_read_lock();
4241	eb = radix_tree_lookup(&fs_info->buffer_radix,
4242			       start >> fs_info->sectorsize_bits);
4243	if (eb && atomic_inc_not_zero(&eb->refs)) {
4244		rcu_read_unlock();
4245		return eb;
4246	}
4247	rcu_read_unlock();
4248	return NULL;
4249}
4250
4251/*
4252 * The endio function for subpage extent buffer write.
4253 *
4254 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4255 * after all extent buffers in the page has finished their writeback.
4256 */
4257static void end_bio_subpage_eb_writepage(struct bio *bio)
4258{
4259	struct btrfs_fs_info *fs_info;
4260	struct bio_vec *bvec;
4261	struct bvec_iter_all iter_all;
 
 
4262
4263	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4264	ASSERT(fs_info->sectorsize < PAGE_SIZE);
4265
4266	ASSERT(!bio_flagged(bio, BIO_CLONED));
4267	bio_for_each_segment_all(bvec, bio, iter_all) {
4268		struct page *page = bvec->bv_page;
4269		u64 bvec_start = page_offset(page) + bvec->bv_offset;
4270		u64 bvec_end = bvec_start + bvec->bv_len - 1;
4271		u64 cur_bytenr = bvec_start;
4272
4273		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4274
4275		/* Iterate through all extent buffers in the range */
4276		while (cur_bytenr <= bvec_end) {
4277			struct extent_buffer *eb;
4278			int done;
4279
4280			/*
4281			 * Here we can't use find_extent_buffer(), as it may
4282			 * try to lock eb->refs_lock, which is not safe in endio
4283			 * context.
4284			 */
4285			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4286			ASSERT(eb);
4287
4288			cur_bytenr = eb->start + eb->len;
4289
4290			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4291			done = atomic_dec_and_test(&eb->io_pages);
4292			ASSERT(done);
4293
4294			if (bio->bi_status ||
4295			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4296				ClearPageUptodate(page);
4297				set_btree_ioerr(page, eb);
4298			}
4299
4300			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4301						      eb->len);
4302			end_extent_buffer_writeback(eb);
4303			/*
4304			 * free_extent_buffer() will grab spinlock which is not
4305			 * safe in endio context. Thus here we manually dec
4306			 * the ref.
4307			 */
4308			atomic_dec(&eb->refs);
4309		}
4310	}
4311	bio_put(bio);
4312}
4313
4314static void end_bio_extent_buffer_writepage(struct bio *bio)
4315{
4316	struct bio_vec *bvec;
4317	struct extent_buffer *eb;
4318	int done;
4319	struct bvec_iter_all iter_all;
4320
4321	ASSERT(!bio_flagged(bio, BIO_CLONED));
4322	bio_for_each_segment_all(bvec, bio, iter_all) {
4323		struct page *page = bvec->bv_page;
4324
4325		eb = (struct extent_buffer *)page->private;
4326		BUG_ON(!eb);
4327		done = atomic_dec_and_test(&eb->io_pages);
4328
4329		if (bio->bi_status ||
4330		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4331			ClearPageUptodate(page);
4332			set_btree_ioerr(page, eb);
4333		}
4334
4335		end_page_writeback(page);
4336
4337		if (!done)
4338			continue;
4339
4340		end_extent_buffer_writeback(eb);
4341	}
4342
4343	bio_put(bio);
4344}
4345
4346static void prepare_eb_write(struct extent_buffer *eb)
4347{
4348	u32 nritems;
4349	unsigned long start;
4350	unsigned long end;
4351
4352	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4353	atomic_set(&eb->io_pages, num_extent_pages(eb));
4354
4355	/* Set btree blocks beyond nritems with 0 to avoid stale content */
4356	nritems = btrfs_header_nritems(eb);
4357	if (btrfs_header_level(eb) > 0) {
4358		end = btrfs_node_key_ptr_offset(nritems);
4359		memzero_extent_buffer(eb, end, eb->len - end);
4360	} else {
4361		/*
4362		 * Leaf:
4363		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4364		 */
4365		start = btrfs_item_nr_offset(nritems);
4366		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
 
 
 
 
4367		memzero_extent_buffer(eb, start, end - start);
4368	}
4369}
4370
4371/*
4372 * Unlike the work in write_one_eb(), we rely completely on extent locking.
4373 * Page locking is only utilized at minimum to keep the VMM code happy.
4374 */
4375static int write_one_subpage_eb(struct extent_buffer *eb,
4376				struct writeback_control *wbc,
4377				struct extent_page_data *epd)
4378{
4379	struct btrfs_fs_info *fs_info = eb->fs_info;
4380	struct page *page = eb->pages[0];
4381	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4382	bool no_dirty_ebs = false;
4383	int ret;
4384
4385	prepare_eb_write(eb);
4386
4387	/* clear_page_dirty_for_io() in subpage helper needs page locked */
4388	lock_page(page);
4389	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4390
4391	/* Check if this is the last dirty bit to update nr_written */
4392	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4393							  eb->start, eb->len);
4394	if (no_dirty_ebs)
4395		clear_page_dirty_for_io(page);
4396
4397	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4398			&epd->bio_ctrl, page, eb->start, eb->len,
4399			eb->start - page_offset(page),
4400			end_bio_subpage_eb_writepage, 0, 0, false);
4401	if (ret) {
4402		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4403		set_btree_ioerr(page, eb);
4404		unlock_page(page);
4405
4406		if (atomic_dec_and_test(&eb->io_pages))
4407			end_extent_buffer_writeback(eb);
4408		return -EIO;
4409	}
4410	unlock_page(page);
4411	/*
4412	 * Submission finished without problem, if no range of the page is
4413	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
4414	 */
4415	if (no_dirty_ebs)
4416		update_nr_written(wbc, 1);
4417	return ret;
4418}
4419
4420static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4421			struct writeback_control *wbc,
4422			struct extent_page_data *epd)
4423{
4424	u64 disk_bytenr = eb->start;
4425	int i, num_pages;
4426	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4427	int ret = 0;
4428
4429	prepare_eb_write(eb);
4430
4431	num_pages = num_extent_pages(eb);
4432	for (i = 0; i < num_pages; i++) {
4433		struct page *p = eb->pages[i];
4434
4435		clear_page_dirty_for_io(p);
4436		set_page_writeback(p);
4437		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4438					 &epd->bio_ctrl, p, disk_bytenr,
4439					 PAGE_SIZE, 0,
4440					 end_bio_extent_buffer_writepage,
4441					 0, 0, false);
4442		if (ret) {
4443			set_btree_ioerr(p, eb);
4444			if (PageWriteback(p))
4445				end_page_writeback(p);
4446			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4447				end_extent_buffer_writeback(eb);
4448			ret = -EIO;
4449			break;
4450		}
4451		disk_bytenr += PAGE_SIZE;
4452		update_nr_written(wbc, 1);
4453		unlock_page(p);
4454	}
4455
4456	if (unlikely(ret)) {
4457		for (; i < num_pages; i++) {
4458			struct page *p = eb->pages[i];
4459			clear_page_dirty_for_io(p);
4460			unlock_page(p);
4461		}
4462	}
4463
4464	return ret;
4465}
4466
4467/*
4468 * Submit one subpage btree page.
4469 *
4470 * The main difference to submit_eb_page() is:
4471 * - Page locking
4472 *   For subpage, we don't rely on page locking at all.
4473 *
4474 * - Flush write bio
4475 *   We only flush bio if we may be unable to fit current extent buffers into
4476 *   current bio.
4477 *
4478 * Return >=0 for the number of submitted extent buffers.
4479 * Return <0 for fatal error.
4480 */
4481static int submit_eb_subpage(struct page *page,
4482			     struct writeback_control *wbc,
4483			     struct extent_page_data *epd)
4484{
4485	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
 
4486	int submitted = 0;
4487	u64 page_start = page_offset(page);
4488	int bit_start = 0;
4489	const int nbits = BTRFS_SUBPAGE_BITMAP_SIZE;
4490	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4491	int ret;
4492
4493	/* Lock and write each dirty extent buffers in the range */
4494	while (bit_start < nbits) {
4495		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4496		struct extent_buffer *eb;
4497		unsigned long flags;
4498		u64 start;
4499
4500		/*
4501		 * Take private lock to ensure the subpage won't be detached
4502		 * in the meantime.
4503		 */
4504		spin_lock(&page->mapping->private_lock);
4505		if (!PagePrivate(page)) {
4506			spin_unlock(&page->mapping->private_lock);
4507			break;
4508		}
4509		spin_lock_irqsave(&subpage->lock, flags);
4510		if (!((1 << bit_start) & subpage->dirty_bitmap)) {
 
4511			spin_unlock_irqrestore(&subpage->lock, flags);
4512			spin_unlock(&page->mapping->private_lock);
4513			bit_start++;
4514			continue;
4515		}
4516
4517		start = page_start + bit_start * fs_info->sectorsize;
4518		bit_start += sectors_per_node;
4519
4520		/*
4521		 * Here we just want to grab the eb without touching extra
4522		 * spin locks, so call find_extent_buffer_nolock().
4523		 */
4524		eb = find_extent_buffer_nolock(fs_info, start);
4525		spin_unlock_irqrestore(&subpage->lock, flags);
4526		spin_unlock(&page->mapping->private_lock);
4527
4528		/*
4529		 * The eb has already reached 0 refs thus find_extent_buffer()
4530		 * doesn't return it. We don't need to write back such eb
4531		 * anyway.
4532		 */
4533		if (!eb)
4534			continue;
4535
4536		ret = lock_extent_buffer_for_io(eb, epd);
4537		if (ret == 0) {
4538			free_extent_buffer(eb);
4539			continue;
4540		}
4541		if (ret < 0) {
4542			free_extent_buffer(eb);
4543			goto cleanup;
4544		}
4545		ret = write_one_subpage_eb(eb, wbc, epd);
4546		free_extent_buffer(eb);
4547		if (ret < 0)
4548			goto cleanup;
4549		submitted++;
4550	}
4551	return submitted;
4552
4553cleanup:
4554	/* We hit error, end bio for the submitted extent buffers */
4555	end_write_bio(epd, ret);
4556	return ret;
4557}
4558
4559/*
4560 * Submit all page(s) of one extent buffer.
4561 *
4562 * @page:	the page of one extent buffer
4563 * @eb_context:	to determine if we need to submit this page, if current page
4564 *		belongs to this eb, we don't need to submit
4565 *
4566 * The caller should pass each page in their bytenr order, and here we use
4567 * @eb_context to determine if we have submitted pages of one extent buffer.
4568 *
4569 * If we have, we just skip until we hit a new page that doesn't belong to
4570 * current @eb_context.
4571 *
4572 * If not, we submit all the page(s) of the extent buffer.
4573 *
4574 * Return >0 if we have submitted the extent buffer successfully.
4575 * Return 0 if we don't need to submit the page, as it's already submitted by
4576 * previous call.
4577 * Return <0 for fatal error.
4578 */
4579static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4580			  struct extent_page_data *epd,
4581			  struct extent_buffer **eb_context)
4582{
 
4583	struct address_space *mapping = page->mapping;
4584	struct btrfs_block_group *cache = NULL;
4585	struct extent_buffer *eb;
4586	int ret;
4587
4588	if (!PagePrivate(page))
4589		return 0;
4590
4591	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
4592		return submit_eb_subpage(page, wbc, epd);
4593
4594	spin_lock(&mapping->private_lock);
4595	if (!PagePrivate(page)) {
4596		spin_unlock(&mapping->private_lock);
4597		return 0;
4598	}
4599
4600	eb = (struct extent_buffer *)page->private;
4601
4602	/*
4603	 * Shouldn't happen and normally this would be a BUG_ON but no point
4604	 * crashing the machine for something we can survive anyway.
4605	 */
4606	if (WARN_ON(!eb)) {
4607		spin_unlock(&mapping->private_lock);
4608		return 0;
4609	}
4610
4611	if (eb == *eb_context) {
4612		spin_unlock(&mapping->private_lock);
4613		return 0;
4614	}
4615	ret = atomic_inc_not_zero(&eb->refs);
4616	spin_unlock(&mapping->private_lock);
4617	if (!ret)
4618		return 0;
4619
4620	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4621		/*
4622		 * If for_sync, this hole will be filled with
4623		 * trasnsaction commit.
4624		 */
4625		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4626			ret = -EAGAIN;
4627		else
4628			ret = 0;
4629		free_extent_buffer(eb);
4630		return ret;
4631	}
4632
4633	*eb_context = eb;
4634
4635	ret = lock_extent_buffer_for_io(eb, epd);
4636	if (ret <= 0) {
4637		btrfs_revert_meta_write_pointer(cache, eb);
4638		if (cache)
4639			btrfs_put_block_group(cache);
4640		free_extent_buffer(eb);
4641		return ret;
 
 
 
 
 
 
4642	}
4643	if (cache)
4644		btrfs_put_block_group(cache);
4645	ret = write_one_eb(eb, wbc, epd);
4646	free_extent_buffer(eb);
4647	if (ret < 0)
4648		return ret;
4649	return 1;
4650}
4651
4652int btree_write_cache_pages(struct address_space *mapping,
4653				   struct writeback_control *wbc)
4654{
4655	struct extent_buffer *eb_context = NULL;
4656	struct extent_page_data epd = {
4657		.bio_ctrl = { 0 },
4658		.extent_locked = 0,
4659		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4660	};
4661	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4662	int ret = 0;
4663	int done = 0;
4664	int nr_to_write_done = 0;
4665	struct pagevec pvec;
4666	int nr_pages;
4667	pgoff_t index;
4668	pgoff_t end;		/* Inclusive */
4669	int scanned = 0;
4670	xa_mark_t tag;
4671
4672	pagevec_init(&pvec);
4673	if (wbc->range_cyclic) {
4674		index = mapping->writeback_index; /* Start from prev offset */
4675		end = -1;
4676		/*
4677		 * Start from the beginning does not need to cycle over the
4678		 * range, mark it as scanned.
4679		 */
4680		scanned = (index == 0);
4681	} else {
4682		index = wbc->range_start >> PAGE_SHIFT;
4683		end = wbc->range_end >> PAGE_SHIFT;
4684		scanned = 1;
4685	}
4686	if (wbc->sync_mode == WB_SYNC_ALL)
4687		tag = PAGECACHE_TAG_TOWRITE;
4688	else
4689		tag = PAGECACHE_TAG_DIRTY;
4690	btrfs_zoned_meta_io_lock(fs_info);
4691retry:
4692	if (wbc->sync_mode == WB_SYNC_ALL)
4693		tag_pages_for_writeback(mapping, index, end);
4694	while (!done && !nr_to_write_done && (index <= end) &&
4695	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4696			tag))) {
4697		unsigned i;
4698
4699		for (i = 0; i < nr_pages; i++) {
4700			struct page *page = pvec.pages[i];
4701
4702			ret = submit_eb_page(page, wbc, &epd, &eb_context);
4703			if (ret == 0)
4704				continue;
4705			if (ret < 0) {
4706				done = 1;
4707				break;
4708			}
4709
4710			/*
4711			 * the filesystem may choose to bump up nr_to_write.
4712			 * We have to make sure to honor the new nr_to_write
4713			 * at any time
4714			 */
4715			nr_to_write_done = wbc->nr_to_write <= 0;
4716		}
4717		pagevec_release(&pvec);
4718		cond_resched();
4719	}
4720	if (!scanned && !done) {
4721		/*
4722		 * We hit the last page and there is more work to be done: wrap
4723		 * back to the start of the file
4724		 */
4725		scanned = 1;
4726		index = 0;
4727		goto retry;
4728	}
4729	if (ret < 0) {
4730		end_write_bio(&epd, ret);
4731		goto out;
4732	}
4733	/*
4734	 * If something went wrong, don't allow any metadata write bio to be
4735	 * submitted.
4736	 *
4737	 * This would prevent use-after-free if we had dirty pages not
4738	 * cleaned up, which can still happen by fuzzed images.
4739	 *
4740	 * - Bad extent tree
4741	 *   Allowing existing tree block to be allocated for other trees.
4742	 *
4743	 * - Log tree operations
4744	 *   Exiting tree blocks get allocated to log tree, bumps its
4745	 *   generation, then get cleaned in tree re-balance.
4746	 *   Such tree block will not be written back, since it's clean,
4747	 *   thus no WRITTEN flag set.
4748	 *   And after log writes back, this tree block is not traced by
4749	 *   any dirty extent_io_tree.
4750	 *
4751	 * - Offending tree block gets re-dirtied from its original owner
4752	 *   Since it has bumped generation, no WRITTEN flag, it can be
4753	 *   reused without COWing. This tree block will not be traced
4754	 *   by btrfs_transaction::dirty_pages.
4755	 *
4756	 *   Now such dirty tree block will not be cleaned by any dirty
4757	 *   extent io tree. Thus we don't want to submit such wild eb
4758	 *   if the fs already has error.
 
 
 
4759	 */
4760	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4761		ret = flush_write_bio(&epd);
4762	} else {
4763		ret = -EROFS;
4764		end_write_bio(&epd, ret);
4765	}
4766out:
4767	btrfs_zoned_meta_io_unlock(fs_info);
4768	return ret;
4769}
4770
4771/**
4772 * Walk the list of dirty pages of the given address space and write all of them.
4773 *
4774 * @mapping: address space structure to write
4775 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
4776 * @epd:     holds context for the write, namely the bio
4777 *
4778 * If a page is already under I/O, write_cache_pages() skips it, even
4779 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4780 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4781 * and msync() need to guarantee that all the data which was dirty at the time
4782 * the call was made get new I/O started against them.  If wbc->sync_mode is
4783 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4784 * existing IO to complete.
4785 */
4786static int extent_write_cache_pages(struct address_space *mapping,
4787			     struct writeback_control *wbc,
4788			     struct extent_page_data *epd)
4789{
 
4790	struct inode *inode = mapping->host;
4791	int ret = 0;
4792	int done = 0;
4793	int nr_to_write_done = 0;
4794	struct pagevec pvec;
4795	int nr_pages;
4796	pgoff_t index;
4797	pgoff_t end;		/* Inclusive */
4798	pgoff_t done_index;
4799	int range_whole = 0;
4800	int scanned = 0;
4801	xa_mark_t tag;
4802
4803	/*
4804	 * We have to hold onto the inode so that ordered extents can do their
4805	 * work when the IO finishes.  The alternative to this is failing to add
4806	 * an ordered extent if the igrab() fails there and that is a huge pain
4807	 * to deal with, so instead just hold onto the inode throughout the
4808	 * writepages operation.  If it fails here we are freeing up the inode
4809	 * anyway and we'd rather not waste our time writing out stuff that is
4810	 * going to be truncated anyway.
4811	 */
4812	if (!igrab(inode))
4813		return 0;
4814
4815	pagevec_init(&pvec);
4816	if (wbc->range_cyclic) {
4817		index = mapping->writeback_index; /* Start from prev offset */
4818		end = -1;
4819		/*
4820		 * Start from the beginning does not need to cycle over the
4821		 * range, mark it as scanned.
4822		 */
4823		scanned = (index == 0);
4824	} else {
4825		index = wbc->range_start >> PAGE_SHIFT;
4826		end = wbc->range_end >> PAGE_SHIFT;
4827		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4828			range_whole = 1;
4829		scanned = 1;
4830	}
4831
4832	/*
4833	 * We do the tagged writepage as long as the snapshot flush bit is set
4834	 * and we are the first one who do the filemap_flush() on this inode.
4835	 *
4836	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4837	 * not race in and drop the bit.
4838	 */
4839	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4840	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4841			       &BTRFS_I(inode)->runtime_flags))
4842		wbc->tagged_writepages = 1;
4843
4844	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4845		tag = PAGECACHE_TAG_TOWRITE;
4846	else
4847		tag = PAGECACHE_TAG_DIRTY;
4848retry:
4849	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4850		tag_pages_for_writeback(mapping, index, end);
4851	done_index = index;
4852	while (!done && !nr_to_write_done && (index <= end) &&
4853			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4854						&index, end, tag))) {
4855		unsigned i;
4856
4857		for (i = 0; i < nr_pages; i++) {
4858			struct page *page = pvec.pages[i];
4859
4860			done_index = page->index + 1;
4861			/*
4862			 * At this point we hold neither the i_pages lock nor
4863			 * the page lock: the page may be truncated or
4864			 * invalidated (changing page->mapping to NULL),
4865			 * or even swizzled back from swapper_space to
4866			 * tmpfs file mapping
4867			 */
4868			if (!trylock_page(page)) {
4869				ret = flush_write_bio(epd);
4870				BUG_ON(ret < 0);
4871				lock_page(page);
 
 
 
 
4872			}
4873
4874			if (unlikely(page->mapping != mapping)) {
4875				unlock_page(page);
 
4876				continue;
4877			}
4878
4879			if (wbc->sync_mode != WB_SYNC_NONE) {
4880				if (PageWriteback(page)) {
4881					ret = flush_write_bio(epd);
4882					BUG_ON(ret < 0);
4883				}
4884				wait_on_page_writeback(page);
4885			}
4886
4887			if (PageWriteback(page) ||
4888			    !clear_page_dirty_for_io(page)) {
4889				unlock_page(page);
4890				continue;
4891			}
4892
4893			ret = __extent_writepage(page, wbc, epd);
4894			if (ret < 0) {
4895				done = 1;
4896				break;
4897			}
4898
4899			/*
4900			 * the filesystem may choose to bump up nr_to_write.
4901			 * We have to make sure to honor the new nr_to_write
4902			 * at any time
4903			 */
4904			nr_to_write_done = wbc->nr_to_write <= 0;
 
4905		}
4906		pagevec_release(&pvec);
4907		cond_resched();
4908	}
4909	if (!scanned && !done) {
4910		/*
4911		 * We hit the last page and there is more work to be done: wrap
4912		 * back to the start of the file
4913		 */
4914		scanned = 1;
4915		index = 0;
4916
4917		/*
4918		 * If we're looping we could run into a page that is locked by a
4919		 * writer and that writer could be waiting on writeback for a
4920		 * page in our current bio, and thus deadlock, so flush the
4921		 * write bio here.
4922		 */
4923		ret = flush_write_bio(epd);
4924		if (!ret)
4925			goto retry;
4926	}
4927
4928	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4929		mapping->writeback_index = done_index;
4930
4931	btrfs_add_delayed_iput(inode);
4932	return ret;
4933}
4934
4935int extent_write_full_page(struct page *page, struct writeback_control *wbc)
 
 
 
 
 
 
 
4936{
4937	int ret;
4938	struct extent_page_data epd = {
4939		.bio_ctrl = { 0 },
4940		.extent_locked = 0,
4941		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
 
 
 
 
 
4942	};
4943
4944	ret = __extent_writepage(page, wbc, &epd);
4945	ASSERT(ret <= 0);
4946	if (ret < 0) {
4947		end_write_bio(&epd, ret);
4948		return ret;
4949	}
4950
4951	ret = flush_write_bio(&epd);
4952	ASSERT(ret <= 0);
4953	return ret;
4954}
4955
4956int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4957			      int mode)
4958{
4959	int ret = 0;
4960	struct address_space *mapping = inode->i_mapping;
4961	struct page *page;
4962	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4963		PAGE_SHIFT;
 
 
 
 
4964
4965	struct extent_page_data epd = {
4966		.bio_ctrl = { 0 },
4967		.extent_locked = 1,
4968		.sync_io = mode == WB_SYNC_ALL,
4969	};
4970	struct writeback_control wbc_writepages = {
4971		.sync_mode	= mode,
4972		.nr_to_write	= nr_pages * 2,
4973		.range_start	= start,
4974		.range_end	= end + 1,
4975		/* We're called from an async helper function */
4976		.punt_to_cgroup	= 1,
4977		.no_cgroup_owner = 1,
4978	};
4979
4980	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4981	while (start <= end) {
4982		page = find_get_page(mapping, start >> PAGE_SHIFT);
4983		if (clear_page_dirty_for_io(page))
4984			ret = __extent_writepage(page, &wbc_writepages, &epd);
4985		else {
4986			btrfs_writepage_endio_finish_ordered(BTRFS_I(inode),
4987					page, start, start + PAGE_SIZE - 1, 1);
4988			unlock_page(page);
4989		}
 
 
 
 
4990		put_page(page);
4991		start += PAGE_SIZE;
4992	}
4993
4994	ASSERT(ret <= 0);
4995	if (ret == 0)
4996		ret = flush_write_bio(&epd);
4997	else
4998		end_write_bio(&epd, ret);
4999
5000	wbc_detach_inode(&wbc_writepages);
5001	return ret;
5002}
5003
5004int extent_writepages(struct address_space *mapping,
5005		      struct writeback_control *wbc)
5006{
 
5007	int ret = 0;
5008	struct extent_page_data epd = {
5009		.bio_ctrl = { 0 },
5010		.extent_locked = 0,
5011		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5012	};
5013
5014	ret = extent_write_cache_pages(mapping, wbc, &epd);
5015	ASSERT(ret <= 0);
5016	if (ret < 0) {
5017		end_write_bio(&epd, ret);
5018		return ret;
5019	}
5020	ret = flush_write_bio(&epd);
 
5021	return ret;
5022}
5023
5024void extent_readahead(struct readahead_control *rac)
5025{
5026	struct btrfs_bio_ctrl bio_ctrl = { 0 };
5027	struct page *pagepool[16];
5028	struct extent_map *em_cached = NULL;
5029	u64 prev_em_start = (u64)-1;
5030	int nr;
5031
5032	while ((nr = readahead_page_batch(rac, pagepool))) {
5033		u64 contig_start = readahead_pos(rac);
5034		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5035
5036		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5037				&em_cached, &bio_ctrl, &prev_em_start);
5038	}
5039
5040	if (em_cached)
5041		free_extent_map(em_cached);
5042
5043	if (bio_ctrl.bio) {
5044		if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
5045			return;
5046	}
5047}
5048
5049/*
5050 * basic invalidatepage code, this waits on any locked or writeback
5051 * ranges corresponding to the page, and then deletes any extent state
5052 * records from the tree
5053 */
5054int extent_invalidatepage(struct extent_io_tree *tree,
5055			  struct page *page, unsigned long offset)
5056{
5057	struct extent_state *cached_state = NULL;
5058	u64 start = page_offset(page);
5059	u64 end = start + PAGE_SIZE - 1;
5060	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
5061
5062	/* This function is only called for the btree inode */
5063	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5064
5065	start += ALIGN(offset, blocksize);
5066	if (start > end)
5067		return 0;
5068
5069	lock_extent_bits(tree, start, end, &cached_state);
5070	wait_on_page_writeback(page);
5071
5072	/*
5073	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5074	 * so here we only need to unlock the extent range to free any
5075	 * existing extent state.
5076	 */
5077	unlock_extent_cached(tree, start, end, &cached_state);
5078	return 0;
5079}
5080
5081/*
5082 * a helper for releasepage, this tests for areas of the page that
5083 * are locked or under IO and drops the related state bits if it is safe
5084 * to drop the page.
5085 */
5086static int try_release_extent_state(struct extent_io_tree *tree,
5087				    struct page *page, gfp_t mask)
5088{
5089	u64 start = page_offset(page);
5090	u64 end = start + PAGE_SIZE - 1;
5091	int ret = 1;
5092
5093	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5094		ret = 0;
5095	} else {
 
 
 
 
5096		/*
5097		 * At this point we can safely clear everything except the
5098		 * locked bit, the nodatasum bit and the delalloc new bit.
5099		 * The delalloc new bit will be cleared by ordered extent
5100		 * completion.
5101		 */
5102		ret = __clear_extent_bit(tree, start, end,
5103			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5104			 0, 0, NULL, mask, NULL);
5105
5106		/* if clear_extent_bit failed for enomem reasons,
5107		 * we can't allow the release to continue.
5108		 */
5109		if (ret < 0)
5110			ret = 0;
5111		else
5112			ret = 1;
5113	}
5114	return ret;
5115}
5116
5117/*
5118 * a helper for releasepage.  As long as there are no locked extents
5119 * in the range corresponding to the page, both state records and extent
5120 * map records are removed
5121 */
5122int try_release_extent_mapping(struct page *page, gfp_t mask)
5123{
5124	struct extent_map *em;
5125	u64 start = page_offset(page);
5126	u64 end = start + PAGE_SIZE - 1;
5127	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5128	struct extent_io_tree *tree = &btrfs_inode->io_tree;
5129	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5130
5131	if (gfpflags_allow_blocking(mask) &&
5132	    page->mapping->host->i_size > SZ_16M) {
5133		u64 len;
5134		while (start <= end) {
5135			struct btrfs_fs_info *fs_info;
5136			u64 cur_gen;
5137
5138			len = end - start + 1;
5139			write_lock(&map->lock);
5140			em = lookup_extent_mapping(map, start, len);
5141			if (!em) {
5142				write_unlock(&map->lock);
5143				break;
5144			}
5145			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5146			    em->start != start) {
5147				write_unlock(&map->lock);
5148				free_extent_map(em);
5149				break;
5150			}
5151			if (test_range_bit(tree, em->start,
5152					   extent_map_end(em) - 1,
5153					   EXTENT_LOCKED, 0, NULL))
5154				goto next;
5155			/*
5156			 * If it's not in the list of modified extents, used
5157			 * by a fast fsync, we can remove it. If it's being
5158			 * logged we can safely remove it since fsync took an
5159			 * extra reference on the em.
5160			 */
5161			if (list_empty(&em->list) ||
5162			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5163				goto remove_em;
5164			/*
5165			 * If it's in the list of modified extents, remove it
5166			 * only if its generation is older then the current one,
5167			 * in which case we don't need it for a fast fsync.
5168			 * Otherwise don't remove it, we could be racing with an
5169			 * ongoing fast fsync that could miss the new extent.
5170			 */
5171			fs_info = btrfs_inode->root->fs_info;
5172			spin_lock(&fs_info->trans_lock);
5173			cur_gen = fs_info->generation;
5174			spin_unlock(&fs_info->trans_lock);
5175			if (em->generation >= cur_gen)
5176				goto next;
5177remove_em:
5178			/*
5179			 * We only remove extent maps that are not in the list of
5180			 * modified extents or that are in the list but with a
5181			 * generation lower then the current generation, so there
5182			 * is no need to set the full fsync flag on the inode (it
5183			 * hurts the fsync performance for workloads with a data
5184			 * size that exceeds or is close to the system's memory).
5185			 */
5186			remove_extent_mapping(map, em);
5187			/* once for the rb tree */
5188			free_extent_map(em);
5189next:
5190			start = extent_map_end(em);
5191			write_unlock(&map->lock);
5192
5193			/* once for us */
5194			free_extent_map(em);
5195
5196			cond_resched(); /* Allow large-extent preemption. */
5197		}
5198	}
5199	return try_release_extent_state(tree, page, mask);
5200}
5201
5202/*
5203 * helper function for fiemap, which doesn't want to see any holes.
5204 * This maps until we find something past 'last'
5205 */
5206static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5207						u64 offset, u64 last)
5208{
5209	u64 sectorsize = btrfs_inode_sectorsize(inode);
5210	struct extent_map *em;
5211	u64 len;
5212
5213	if (offset >= last)
5214		return NULL;
5215
5216	while (1) {
5217		len = last - offset;
5218		if (len == 0)
5219			break;
5220		len = ALIGN(len, sectorsize);
5221		em = btrfs_get_extent_fiemap(inode, offset, len);
5222		if (IS_ERR_OR_NULL(em))
5223			return em;
5224
5225		/* if this isn't a hole return it */
5226		if (em->block_start != EXTENT_MAP_HOLE)
5227			return em;
5228
5229		/* this is a hole, advance to the next extent */
5230		offset = extent_map_end(em);
5231		free_extent_map(em);
5232		if (offset >= last)
5233			break;
5234	}
5235	return NULL;
5236}
5237
5238/*
5239 * To cache previous fiemap extent
5240 *
5241 * Will be used for merging fiemap extent
5242 */
5243struct fiemap_cache {
5244	u64 offset;
5245	u64 phys;
5246	u64 len;
5247	u32 flags;
5248	bool cached;
5249};
5250
5251/*
5252 * Helper to submit fiemap extent.
5253 *
5254 * Will try to merge current fiemap extent specified by @offset, @phys,
5255 * @len and @flags with cached one.
5256 * And only when we fails to merge, cached one will be submitted as
5257 * fiemap extent.
5258 *
5259 * Return value is the same as fiemap_fill_next_extent().
5260 */
5261static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5262				struct fiemap_cache *cache,
5263				u64 offset, u64 phys, u64 len, u32 flags)
5264{
 
5265	int ret = 0;
5266
 
 
 
5267	if (!cache->cached)
5268		goto assign;
5269
5270	/*
5271	 * Sanity check, extent_fiemap() should have ensured that new
5272	 * fiemap extent won't overlap with cached one.
5273	 * Not recoverable.
 
 
5274	 *
5275	 * NOTE: Physical address can overlap, due to compression
5276	 */
5277	if (cache->offset + cache->len > offset) {
5278		WARN_ON(1);
5279		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5280	}
5281
5282	/*
5283	 * Only merges fiemap extents if
5284	 * 1) Their logical addresses are continuous
5285	 *
5286	 * 2) Their physical addresses are continuous
5287	 *    So truly compressed (physical size smaller than logical size)
5288	 *    extents won't get merged with each other
5289	 *
5290	 * 3) Share same flags except FIEMAP_EXTENT_LAST
5291	 *    So regular extent won't get merged with prealloc extent
5292	 */
5293	if (cache->offset + cache->len  == offset &&
5294	    cache->phys + cache->len == phys  &&
5295	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5296			(flags & ~FIEMAP_EXTENT_LAST)) {
5297		cache->len += len;
5298		cache->flags |= flags;
5299		goto try_submit_last;
5300	}
5301
 
5302	/* Not mergeable, need to submit cached one */
5303	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5304				      cache->len, cache->flags);
5305	cache->cached = false;
5306	if (ret)
5307		return ret;
5308assign:
5309	cache->cached = true;
5310	cache->offset = offset;
5311	cache->phys = phys;
5312	cache->len = len;
5313	cache->flags = flags;
5314try_submit_last:
5315	if (cache->flags & FIEMAP_EXTENT_LAST) {
5316		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5317				cache->phys, cache->len, cache->flags);
5318		cache->cached = false;
5319	}
5320	return ret;
5321}
5322
5323/*
5324 * Emit last fiemap cache
5325 *
5326 * The last fiemap cache may still be cached in the following case:
5327 * 0		      4k		    8k
5328 * |<- Fiemap range ->|
5329 * |<------------  First extent ----------->|
5330 *
5331 * In this case, the first extent range will be cached but not emitted.
5332 * So we must emit it before ending extent_fiemap().
5333 */
5334static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5335				  struct fiemap_cache *cache)
5336{
5337	int ret;
5338
5339	if (!cache->cached)
5340		return 0;
5341
5342	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5343				      cache->len, cache->flags);
5344	cache->cached = false;
5345	if (ret > 0)
5346		ret = 0;
5347	return ret;
5348}
5349
5350int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5351		  u64 start, u64 len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5352{
5353	int ret = 0;
5354	u64 off;
5355	u64 max = start + len;
5356	u32 flags = 0;
5357	u32 found_type;
5358	u64 last;
5359	u64 last_for_get_extent = 0;
5360	u64 disko = 0;
5361	u64 isize = i_size_read(&inode->vfs_inode);
5362	struct btrfs_key found_key;
5363	struct extent_map *em = NULL;
5364	struct extent_state *cached_state = NULL;
5365	struct btrfs_path *path;
5366	struct btrfs_root *root = inode->root;
5367	struct fiemap_cache cache = { 0 };
5368	struct ulist *roots;
5369	struct ulist *tmp_ulist;
5370	int end = 0;
5371	u64 em_start = 0;
5372	u64 em_len = 0;
5373	u64 em_end = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5374
5375	if (len == 0)
5376		return -EINVAL;
 
 
5377
5378	path = btrfs_alloc_path();
5379	if (!path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5380		return -ENOMEM;
5381
5382	roots = ulist_alloc(GFP_KERNEL);
5383	tmp_ulist = ulist_alloc(GFP_KERNEL);
5384	if (!roots || !tmp_ulist) {
5385		ret = -ENOMEM;
5386		goto out_free_ulist;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5387	}
5388
5389	/*
5390	 * We can't initialize that to 'start' as this could miss extents due
5391	 * to extent item merging
5392	 */
5393	off = 0;
5394	start = round_down(start, btrfs_inode_sectorsize(inode));
5395	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5396
5397	/*
5398	 * lookup the last file extent.  We're not using i_size here
5399	 * because there might be preallocation past i_size
5400	 */
5401	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5402				       0);
5403	if (ret < 0) {
5404		goto out_free_ulist;
5405	} else {
5406		WARN_ON(!ret);
5407		if (ret == 1)
5408			ret = 0;
5409	}
5410
 
 
 
 
 
 
 
5411	path->slots[0]--;
5412	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5413	found_type = found_key.type;
 
 
 
 
 
5414
5415	/* No extents, but there might be delalloc bits */
5416	if (found_key.objectid != btrfs_ino(inode) ||
5417	    found_type != BTRFS_EXTENT_DATA_KEY) {
5418		/* have to trust i_size as the end */
5419		last = (u64)-1;
5420		last_for_get_extent = isize;
5421	} else {
5422		/*
5423		 * remember the start of the last extent.  There are a
5424		 * bunch of different factors that go into the length of the
5425		 * extent, so its much less complex to remember where it started
5426		 */
5427		last = found_key.offset;
5428		last_for_get_extent = last + 1;
5429	}
5430	btrfs_release_path(path);
5431
5432	/*
5433	 * we might have some extents allocated but more delalloc past those
5434	 * extents.  so, we trust isize unless the start of the last extent is
5435	 * beyond isize
5436	 */
5437	if (last < isize) {
5438		last = (u64)-1;
5439		last_for_get_extent = isize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5440	}
5441
5442	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5443			 &cached_state);
 
5444
5445	em = get_extent_skip_holes(inode, start, last_for_get_extent);
5446	if (!em)
5447		goto out;
5448	if (IS_ERR(em)) {
5449		ret = PTR_ERR(em);
 
 
 
5450		goto out;
 
 
 
 
 
 
 
5451	}
5452
5453	while (!end) {
5454		u64 offset_in_extent = 0;
 
 
 
 
 
 
 
 
 
 
5455
5456		/* break if the extent we found is outside the range */
5457		if (em->start >= max || extent_map_end(em) < off)
5458			break;
5459
 
 
5460		/*
5461		 * get_extent may return an extent that starts before our
5462		 * requested range.  We have to make sure the ranges
5463		 * we return to fiemap always move forward and don't
5464		 * overlap, so adjust the offsets here
5465		 */
5466		em_start = max(em->start, off);
 
 
 
 
 
 
 
5467
5468		/*
5469		 * record the offset from the start of the extent
5470		 * for adjusting the disk offset below.  Only do this if the
5471		 * extent isn't compressed since our in ram offset may be past
5472		 * what we have actually allocated on disk.
5473		 */
5474		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5475			offset_in_extent = em_start - em->start;
5476		em_end = extent_map_end(em);
5477		em_len = em_end - em_start;
5478		flags = 0;
5479		if (em->block_start < EXTENT_MAP_LAST_BYTE)
5480			disko = em->block_start + offset_in_extent;
5481		else
5482			disko = 0;
5483
5484		/*
5485		 * bump off for our next call to get_extent
5486		 */
5487		off = extent_map_end(em);
5488		if (off >= max)
5489			end = 1;
5490
5491		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
5492			end = 1;
5493			flags |= FIEMAP_EXTENT_LAST;
5494		} else if (em->block_start == EXTENT_MAP_INLINE) {
5495			flags |= (FIEMAP_EXTENT_DATA_INLINE |
5496				  FIEMAP_EXTENT_NOT_ALIGNED);
5497		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
5498			flags |= (FIEMAP_EXTENT_DELALLOC |
5499				  FIEMAP_EXTENT_UNKNOWN);
5500		} else if (fieinfo->fi_extents_max) {
5501			u64 bytenr = em->block_start -
5502				(em->start - em->orig_start);
5503
5504			/*
5505			 * As btrfs supports shared space, this information
5506			 * can be exported to userspace tools via
5507			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
5508			 * then we're just getting a count and we can skip the
5509			 * lookup stuff.
5510			 */
5511			ret = btrfs_check_shared(root, btrfs_ino(inode),
5512						 bytenr, roots, tmp_ulist);
5513			if (ret < 0)
5514				goto out_free;
5515			if (ret)
5516				flags |= FIEMAP_EXTENT_SHARED;
5517			ret = 0;
5518		}
5519		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
 
5520			flags |= FIEMAP_EXTENT_ENCODED;
5521		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5522			flags |= FIEMAP_EXTENT_UNWRITTEN;
5523
5524		free_extent_map(em);
5525		em = NULL;
5526		if ((em_start >= last) || em_len == (u64)-1 ||
5527		   (last == (u64)-1 && isize <= em_end)) {
5528			flags |= FIEMAP_EXTENT_LAST;
5529			end = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5530		}
5531
5532		/* now scan forward to see if this is really the last extent. */
5533		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5534		if (IS_ERR(em)) {
5535			ret = PTR_ERR(em);
5536			goto out;
5537		}
5538		if (!em) {
5539			flags |= FIEMAP_EXTENT_LAST;
5540			end = 1;
 
 
 
 
5541		}
5542		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5543					   em_len, flags);
5544		if (ret) {
5545			if (ret == 1)
5546				ret = 0;
5547			goto out_free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5548		}
5549	}
5550out_free:
5551	if (!ret)
5552		ret = emit_last_fiemap_cache(fieinfo, &cache);
5553	free_extent_map(em);
5554out:
5555	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5556			     &cached_state);
5557
5558out_free_ulist:
5559	btrfs_free_path(path);
5560	ulist_free(roots);
5561	ulist_free(tmp_ulist);
5562	return ret;
5563}
5564
5565static void __free_extent_buffer(struct extent_buffer *eb)
5566{
5567	kmem_cache_free(extent_buffer_cache, eb);
5568}
5569
5570int extent_buffer_under_io(const struct extent_buffer *eb)
5571{
5572	return (atomic_read(&eb->io_pages) ||
5573		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5574		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5575}
5576
5577static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5578{
5579	struct btrfs_subpage *subpage;
5580
5581	lockdep_assert_held(&page->mapping->private_lock);
5582
5583	if (PagePrivate(page)) {
5584		subpage = (struct btrfs_subpage *)page->private;
5585		if (atomic_read(&subpage->eb_refs))
5586			return true;
5587		/*
5588		 * Even there is no eb refs here, we may still have
5589		 * end_page_read() call relying on page::private.
5590		 */
5591		if (atomic_read(&subpage->readers))
5592			return true;
5593	}
5594	return false;
5595}
5596
5597static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5598{
5599	struct btrfs_fs_info *fs_info = eb->fs_info;
5600	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5601
5602	/*
5603	 * For mapped eb, we're going to change the page private, which should
5604	 * be done under the private_lock.
5605	 */
5606	if (mapped)
5607		spin_lock(&page->mapping->private_lock);
5608
5609	if (!PagePrivate(page)) {
5610		if (mapped)
5611			spin_unlock(&page->mapping->private_lock);
5612		return;
5613	}
5614
5615	if (fs_info->sectorsize == PAGE_SIZE) {
5616		/*
5617		 * We do this since we'll remove the pages after we've
5618		 * removed the eb from the radix tree, so we could race
5619		 * and have this page now attached to the new eb.  So
5620		 * only clear page_private if it's still connected to
5621		 * this eb.
5622		 */
5623		if (PagePrivate(page) &&
5624		    page->private == (unsigned long)eb) {
5625			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5626			BUG_ON(PageDirty(page));
5627			BUG_ON(PageWriteback(page));
5628			/*
5629			 * We need to make sure we haven't be attached
5630			 * to a new eb.
5631			 */
5632			detach_page_private(page);
5633		}
5634		if (mapped)
5635			spin_unlock(&page->mapping->private_lock);
5636		return;
5637	}
5638
5639	/*
5640	 * For subpage, we can have dummy eb with page private.  In this case,
5641	 * we can directly detach the private as such page is only attached to
5642	 * one dummy eb, no sharing.
5643	 */
5644	if (!mapped) {
5645		btrfs_detach_subpage(fs_info, page);
5646		return;
5647	}
5648
5649	btrfs_page_dec_eb_refs(fs_info, page);
5650
5651	/*
5652	 * We can only detach the page private if there are no other ebs in the
5653	 * page range and no unfinished IO.
5654	 */
5655	if (!page_range_has_eb(fs_info, page))
5656		btrfs_detach_subpage(fs_info, page);
5657
5658	spin_unlock(&page->mapping->private_lock);
5659}
5660
5661/* Release all pages attached to the extent buffer */
5662static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5663{
5664	int i;
5665	int num_pages;
5666
5667	ASSERT(!extent_buffer_under_io(eb));
5668
5669	num_pages = num_extent_pages(eb);
5670	for (i = 0; i < num_pages; i++) {
5671		struct page *page = eb->pages[i];
5672
5673		if (!page)
5674			continue;
5675
5676		detach_extent_buffer_page(eb, page);
5677
5678		/* One for when we allocated the page */
5679		put_page(page);
5680	}
5681}
5682
5683/*
5684 * Helper for releasing the extent buffer.
5685 */
5686static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5687{
5688	btrfs_release_extent_buffer_pages(eb);
5689	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5690	__free_extent_buffer(eb);
5691}
5692
5693static struct extent_buffer *
5694__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5695		      unsigned long len)
5696{
5697	struct extent_buffer *eb = NULL;
5698
5699	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5700	eb->start = start;
5701	eb->len = len;
5702	eb->fs_info = fs_info;
5703	eb->bflags = 0;
5704	init_rwsem(&eb->lock);
5705
5706	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5707			     &fs_info->allocated_ebs);
5708	INIT_LIST_HEAD(&eb->release_list);
5709
5710	spin_lock_init(&eb->refs_lock);
5711	atomic_set(&eb->refs, 1);
5712	atomic_set(&eb->io_pages, 0);
5713
5714	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5715
5716	return eb;
5717}
5718
5719struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5720{
5721	int i;
5722	struct page *p;
5723	struct extent_buffer *new;
5724	int num_pages = num_extent_pages(src);
 
5725
5726	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5727	if (new == NULL)
5728		return NULL;
5729
5730	/*
5731	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5732	 * btrfs_release_extent_buffer() have different behavior for
5733	 * UNMAPPED subpage extent buffer.
5734	 */
5735	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5736
5737	for (i = 0; i < num_pages; i++) {
 
 
 
 
 
 
 
5738		int ret;
5739
5740		p = alloc_page(GFP_NOFS);
5741		if (!p) {
5742			btrfs_release_extent_buffer(new);
5743			return NULL;
5744		}
5745		ret = attach_extent_buffer_page(new, p, NULL);
5746		if (ret < 0) {
5747			put_page(p);
5748			btrfs_release_extent_buffer(new);
5749			return NULL;
5750		}
5751		WARN_ON(PageDirty(p));
5752		new->pages[i] = p;
5753		copy_page(page_address(p), page_address(src->pages[i]));
5754	}
 
5755	set_extent_buffer_uptodate(new);
5756
5757	return new;
5758}
5759
5760struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5761						  u64 start, unsigned long len)
5762{
5763	struct extent_buffer *eb;
5764	int num_pages;
5765	int i;
5766
5767	eb = __alloc_extent_buffer(fs_info, start, len);
5768	if (!eb)
5769		return NULL;
5770
5771	num_pages = num_extent_pages(eb);
5772	for (i = 0; i < num_pages; i++) {
5773		int ret;
5774
5775		eb->pages[i] = alloc_page(GFP_NOFS);
5776		if (!eb->pages[i])
5777			goto err;
5778		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
5779		if (ret < 0)
5780			goto err;
5781	}
 
5782	set_extent_buffer_uptodate(eb);
5783	btrfs_set_header_nritems(eb, 0);
5784	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5785
5786	return eb;
5787err:
5788	for (; i > 0; i--) {
5789		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5790		__free_page(eb->pages[i - 1]);
 
 
5791	}
5792	__free_extent_buffer(eb);
5793	return NULL;
5794}
5795
5796struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5797						u64 start)
5798{
5799	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5800}
5801
5802static void check_buffer_tree_ref(struct extent_buffer *eb)
5803{
5804	int refs;
5805	/*
5806	 * The TREE_REF bit is first set when the extent_buffer is added
5807	 * to the radix tree. It is also reset, if unset, when a new reference
5808	 * is created by find_extent_buffer.
5809	 *
5810	 * It is only cleared in two cases: freeing the last non-tree
5811	 * reference to the extent_buffer when its STALE bit is set or
5812	 * calling releasepage when the tree reference is the only reference.
5813	 *
5814	 * In both cases, care is taken to ensure that the extent_buffer's
5815	 * pages are not under io. However, releasepage can be concurrently
5816	 * called with creating new references, which is prone to race
5817	 * conditions between the calls to check_buffer_tree_ref in those
5818	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5819	 *
5820	 * The actual lifetime of the extent_buffer in the radix tree is
5821	 * adequately protected by the refcount, but the TREE_REF bit and
5822	 * its corresponding reference are not. To protect against this
5823	 * class of races, we call check_buffer_tree_ref from the codepaths
5824	 * which trigger io after they set eb->io_pages. Note that once io is
5825	 * initiated, TREE_REF can no longer be cleared, so that is the
5826	 * moment at which any such race is best fixed.
5827	 */
5828	refs = atomic_read(&eb->refs);
5829	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5830		return;
5831
5832	spin_lock(&eb->refs_lock);
5833	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5834		atomic_inc(&eb->refs);
5835	spin_unlock(&eb->refs_lock);
5836}
5837
5838static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5839		struct page *accessed)
5840{
5841	int num_pages, i;
5842
5843	check_buffer_tree_ref(eb);
5844
5845	num_pages = num_extent_pages(eb);
5846	for (i = 0; i < num_pages; i++) {
5847		struct page *p = eb->pages[i];
5848
5849		if (p != accessed)
5850			mark_page_accessed(p);
5851	}
5852}
5853
5854struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5855					 u64 start)
5856{
5857	struct extent_buffer *eb;
5858
5859	eb = find_extent_buffer_nolock(fs_info, start);
5860	if (!eb)
5861		return NULL;
5862	/*
5863	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
5864	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
5865	 * another task running free_extent_buffer() might have seen that flag
5866	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
5867	 * writeback flags not set) and it's still in the tree (flag
5868	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
5869	 * decrementing the extent buffer's reference count twice.  So here we
5870	 * could race and increment the eb's reference count, clear its stale
5871	 * flag, mark it as dirty and drop our reference before the other task
5872	 * finishes executing free_extent_buffer, which would later result in
5873	 * an attempt to free an extent buffer that is dirty.
5874	 */
5875	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5876		spin_lock(&eb->refs_lock);
5877		spin_unlock(&eb->refs_lock);
5878	}
5879	mark_extent_buffer_accessed(eb, NULL);
5880	return eb;
5881}
5882
5883#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5884struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5885					u64 start)
5886{
5887	struct extent_buffer *eb, *exists = NULL;
5888	int ret;
5889
5890	eb = find_extent_buffer(fs_info, start);
5891	if (eb)
5892		return eb;
5893	eb = alloc_dummy_extent_buffer(fs_info, start);
5894	if (!eb)
5895		return ERR_PTR(-ENOMEM);
5896	eb->fs_info = fs_info;
5897again:
5898	ret = radix_tree_preload(GFP_NOFS);
5899	if (ret) {
5900		exists = ERR_PTR(ret);
5901		goto free_eb;
5902	}
5903	spin_lock(&fs_info->buffer_lock);
5904	ret = radix_tree_insert(&fs_info->buffer_radix,
5905				start >> fs_info->sectorsize_bits, eb);
5906	spin_unlock(&fs_info->buffer_lock);
5907	radix_tree_preload_end();
5908	if (ret == -EEXIST) {
5909		exists = find_extent_buffer(fs_info, start);
5910		if (exists)
5911			goto free_eb;
5912		else
5913			goto again;
5914	}
5915	check_buffer_tree_ref(eb);
5916	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5917
5918	return eb;
5919free_eb:
5920	btrfs_release_extent_buffer(eb);
5921	return exists;
5922}
5923#endif
5924
5925static struct extent_buffer *grab_extent_buffer(
5926		struct btrfs_fs_info *fs_info, struct page *page)
5927{
 
5928	struct extent_buffer *exists;
5929
5930	/*
5931	 * For subpage case, we completely rely on radix tree to ensure we
5932	 * don't try to insert two ebs for the same bytenr.  So here we always
5933	 * return NULL and just continue.
5934	 */
5935	if (fs_info->sectorsize < PAGE_SIZE)
5936		return NULL;
5937
5938	/* Page not yet attached to an extent buffer */
5939	if (!PagePrivate(page))
5940		return NULL;
5941
5942	/*
5943	 * We could have already allocated an eb for this page and attached one
5944	 * so lets see if we can get a ref on the existing eb, and if we can we
5945	 * know it's good and we can just return that one, else we know we can
5946	 * just overwrite page->private.
5947	 */
5948	exists = (struct extent_buffer *)page->private;
5949	if (atomic_inc_not_zero(&exists->refs))
5950		return exists;
5951
5952	WARN_ON(PageDirty(page));
5953	detach_page_private(page);
5954	return NULL;
5955}
5956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5957struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5958					  u64 start, u64 owner_root, int level)
5959{
5960	unsigned long len = fs_info->nodesize;
5961	int num_pages;
5962	int i;
5963	unsigned long index = start >> PAGE_SHIFT;
5964	struct extent_buffer *eb;
5965	struct extent_buffer *exists = NULL;
5966	struct page *p;
5967	struct address_space *mapping = fs_info->btree_inode->i_mapping;
 
 
 
5968	int uptodate = 1;
5969	int ret;
5970
5971	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5972		btrfs_err(fs_info, "bad tree block start %llu", start);
5973		return ERR_PTR(-EINVAL);
5974	}
5975
5976#if BITS_PER_LONG == 32
5977	if (start >= MAX_LFS_FILESIZE) {
5978		btrfs_err_rl(fs_info,
5979		"extent buffer %llu is beyond 32bit page cache limit", start);
5980		btrfs_err_32bit_limit(fs_info);
5981		return ERR_PTR(-EOVERFLOW);
5982	}
5983	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
5984		btrfs_warn_32bit_limit(fs_info);
5985#endif
5986
5987	if (fs_info->sectorsize < PAGE_SIZE &&
5988	    offset_in_page(start) + len > PAGE_SIZE) {
5989		btrfs_err(fs_info,
5990		"tree block crosses page boundary, start %llu nodesize %lu",
5991			  start, len);
5992		return ERR_PTR(-EINVAL);
5993	}
5994
5995	eb = find_extent_buffer(fs_info, start);
5996	if (eb)
5997		return eb;
5998
5999	eb = __alloc_extent_buffer(fs_info, start, len);
6000	if (!eb)
6001		return ERR_PTR(-ENOMEM);
6002	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6003
6004	num_pages = num_extent_pages(eb);
6005	for (i = 0; i < num_pages; i++, index++) {
6006		struct btrfs_subpage *prealloc = NULL;
6007
6008		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6009		if (!p) {
6010			exists = ERR_PTR(-ENOMEM);
6011			goto free_eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6012		}
6013
6014		/*
6015		 * Preallocate page->private for subpage case, so that we won't
6016		 * allocate memory with private_lock hold.  The memory will be
6017		 * freed by attach_extent_buffer_page() or freed manually if
6018		 * we exit earlier.
 
 
6019		 *
6020		 * Although we have ensured one subpage eb can only have one
6021		 * page, but it may change in the future for 16K page size
6022		 * support, so we still preallocate the memory in the loop.
 
 
 
 
 
 
 
6023		 */
6024		ret = btrfs_alloc_subpage(fs_info, &prealloc,
6025					  BTRFS_SUBPAGE_METADATA);
6026		if (ret < 0) {
6027			unlock_page(p);
6028			put_page(p);
6029			exists = ERR_PTR(ret);
6030			goto free_eb;
6031		}
 
6032
6033		spin_lock(&mapping->private_lock);
6034		exists = grab_extent_buffer(fs_info, p);
6035		if (exists) {
6036			spin_unlock(&mapping->private_lock);
6037			unlock_page(p);
6038			put_page(p);
6039			mark_extent_buffer_accessed(exists, p);
6040			btrfs_free_subpage(prealloc);
6041			goto free_eb;
6042		}
6043		/* Should not fail, as we have preallocated the memory */
6044		ret = attach_extent_buffer_page(eb, p, prealloc);
6045		ASSERT(!ret);
6046		/*
6047		 * To inform we have extra eb under allocation, so that
6048		 * detach_extent_buffer_page() won't release the page private
6049		 * when the eb hasn't yet been inserted into radix tree.
6050		 *
6051		 * The ref will be decreased when the eb released the page, in
6052		 * detach_extent_buffer_page().
6053		 * Thus needs no special handling in error path.
6054		 */
6055		btrfs_page_inc_eb_refs(fs_info, p);
6056		spin_unlock(&mapping->private_lock);
6057
6058		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6059		eb->pages[i] = p;
6060		if (!PageUptodate(p))
 
 
 
 
 
 
 
 
 
6061			uptodate = 0;
6062
6063		/*
6064		 * We can't unlock the pages just yet since the extent buffer
6065		 * hasn't been properly inserted in the radix tree, this
6066		 * opens a race with btree_releasepage which can free a page
6067		 * while we are still filling in all pages for the buffer and
6068		 * we could crash.
6069		 */
6070	}
6071	if (uptodate)
6072		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 
 
 
6073again:
6074	ret = radix_tree_preload(GFP_NOFS);
6075	if (ret) {
6076		exists = ERR_PTR(ret);
6077		goto free_eb;
6078	}
6079
6080	spin_lock(&fs_info->buffer_lock);
6081	ret = radix_tree_insert(&fs_info->buffer_radix,
6082				start >> fs_info->sectorsize_bits, eb);
6083	spin_unlock(&fs_info->buffer_lock);
6084	radix_tree_preload_end();
6085	if (ret == -EEXIST) {
6086		exists = find_extent_buffer(fs_info, start);
6087		if (exists)
6088			goto free_eb;
 
6089		else
6090			goto again;
6091	}
6092	/* add one reference for the tree */
6093	check_buffer_tree_ref(eb);
6094	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6095
6096	/*
6097	 * Now it's safe to unlock the pages because any calls to
6098	 * btree_releasepage will correctly detect that a page belongs to a
6099	 * live buffer and won't free them prematurely.
6100	 */
6101	for (i = 0; i < num_pages; i++)
6102		unlock_page(eb->pages[i]);
6103	return eb;
6104
6105free_eb:
6106	WARN_ON(!atomic_dec_and_test(&eb->refs));
6107	for (i = 0; i < num_pages; i++) {
6108		if (eb->pages[i])
6109			unlock_page(eb->pages[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6110	}
 
 
 
 
 
6111
6112	btrfs_release_extent_buffer(eb);
6113	return exists;
 
 
 
6114}
6115
6116static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6117{
6118	struct extent_buffer *eb =
6119			container_of(head, struct extent_buffer, rcu_head);
6120
6121	__free_extent_buffer(eb);
6122}
6123
6124static int release_extent_buffer(struct extent_buffer *eb)
6125	__releases(&eb->refs_lock)
6126{
6127	lockdep_assert_held(&eb->refs_lock);
6128
6129	WARN_ON(atomic_read(&eb->refs) == 0);
6130	if (atomic_dec_and_test(&eb->refs)) {
6131		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6132			struct btrfs_fs_info *fs_info = eb->fs_info;
6133
6134			spin_unlock(&eb->refs_lock);
6135
6136			spin_lock(&fs_info->buffer_lock);
6137			radix_tree_delete(&fs_info->buffer_radix,
6138					  eb->start >> fs_info->sectorsize_bits);
6139			spin_unlock(&fs_info->buffer_lock);
6140		} else {
6141			spin_unlock(&eb->refs_lock);
6142		}
6143
6144		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6145		/* Should be safe to release our pages at this point */
6146		btrfs_release_extent_buffer_pages(eb);
6147#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6148		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6149			__free_extent_buffer(eb);
6150			return 1;
6151		}
6152#endif
6153		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6154		return 1;
6155	}
6156	spin_unlock(&eb->refs_lock);
6157
6158	return 0;
6159}
6160
6161void free_extent_buffer(struct extent_buffer *eb)
6162{
6163	int refs;
6164	int old;
6165	if (!eb)
6166		return;
6167
 
6168	while (1) {
6169		refs = atomic_read(&eb->refs);
6170		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6171		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6172			refs == 1))
6173			break;
6174		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6175		if (old == refs)
6176			return;
6177	}
6178
6179	spin_lock(&eb->refs_lock);
6180	if (atomic_read(&eb->refs) == 2 &&
6181	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6182	    !extent_buffer_under_io(eb) &&
6183	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6184		atomic_dec(&eb->refs);
6185
6186	/*
6187	 * I know this is terrible, but it's temporary until we stop tracking
6188	 * the uptodate bits and such for the extent buffers.
6189	 */
6190	release_extent_buffer(eb);
6191}
6192
6193void free_extent_buffer_stale(struct extent_buffer *eb)
6194{
6195	if (!eb)
6196		return;
6197
6198	spin_lock(&eb->refs_lock);
6199	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6200
6201	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6202	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6203		atomic_dec(&eb->refs);
6204	release_extent_buffer(eb);
6205}
6206
6207static void btree_clear_page_dirty(struct page *page)
6208{
6209	ASSERT(PageDirty(page));
6210	ASSERT(PageLocked(page));
6211	clear_page_dirty_for_io(page);
6212	xa_lock_irq(&page->mapping->i_pages);
6213	if (!PageDirty(page))
6214		__xa_clear_mark(&page->mapping->i_pages,
6215				page_index(page), PAGECACHE_TAG_DIRTY);
6216	xa_unlock_irq(&page->mapping->i_pages);
6217}
6218
6219static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6220{
6221	struct btrfs_fs_info *fs_info = eb->fs_info;
6222	struct page *page = eb->pages[0];
6223	bool last;
6224
6225	/* btree_clear_page_dirty() needs page locked */
6226	lock_page(page);
6227	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6228						  eb->len);
6229	if (last)
6230		btree_clear_page_dirty(page);
6231	unlock_page(page);
6232	WARN_ON(atomic_read(&eb->refs) == 0);
6233}
6234
6235void clear_extent_buffer_dirty(const struct extent_buffer *eb)
 
6236{
6237	int i;
6238	int num_pages;
6239	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6240
6241	if (eb->fs_info->sectorsize < PAGE_SIZE)
6242		return clear_subpage_extent_buffer_dirty(eb);
6243
6244	num_pages = num_extent_pages(eb);
 
 
6245
6246	for (i = 0; i < num_pages; i++) {
6247		page = eb->pages[i];
6248		if (!PageDirty(page))
6249			continue;
6250		lock_page(page);
6251		btree_clear_page_dirty(page);
6252		ClearPageError(page);
6253		unlock_page(page);
6254	}
6255	WARN_ON(atomic_read(&eb->refs) == 0);
6256}
6257
6258bool set_extent_buffer_dirty(struct extent_buffer *eb)
6259{
6260	int i;
6261	int num_pages;
6262	bool was_dirty;
6263
6264	check_buffer_tree_ref(eb);
6265
6266	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6267
6268	num_pages = num_extent_pages(eb);
6269	WARN_ON(atomic_read(&eb->refs) == 0);
6270	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6271
6272	if (!was_dirty) {
6273		bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
6274
6275		/*
6276		 * For subpage case, we can have other extent buffers in the
6277		 * same page, and in clear_subpage_extent_buffer_dirty() we
6278		 * have to clear page dirty without subpage lock held.
6279		 * This can cause race where our page gets dirty cleared after
6280		 * we just set it.
6281		 *
6282		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6283		 * its page for other reasons, we can use page lock to prevent
6284		 * the above race.
6285		 */
6286		if (subpage)
6287			lock_page(eb->pages[0]);
6288		for (i = 0; i < num_pages; i++)
6289			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6290					     eb->start, eb->len);
6291		if (subpage)
6292			unlock_page(eb->pages[0]);
 
 
 
6293	}
6294#ifdef CONFIG_BTRFS_DEBUG
6295	for (i = 0; i < num_pages; i++)
6296		ASSERT(PageDirty(eb->pages[i]));
6297#endif
6298
6299	return was_dirty;
6300}
6301
6302void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6303{
6304	struct btrfs_fs_info *fs_info = eb->fs_info;
6305	struct page *page;
6306	int num_pages;
6307	int i;
6308
6309	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6310	num_pages = num_extent_pages(eb);
6311	for (i = 0; i < num_pages; i++) {
6312		page = eb->pages[i];
6313		if (page)
6314			btrfs_page_clear_uptodate(fs_info, page,
6315						  eb->start, eb->len);
 
 
 
 
 
 
 
 
 
6316	}
6317}
6318
6319void set_extent_buffer_uptodate(struct extent_buffer *eb)
6320{
6321	struct btrfs_fs_info *fs_info = eb->fs_info;
6322	struct page *page;
6323	int num_pages;
6324	int i;
6325
6326	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6327	num_pages = num_extent_pages(eb);
6328	for (i = 0; i < num_pages; i++) {
6329		page = eb->pages[i];
6330		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
 
 
 
 
 
 
 
 
6331	}
6332}
6333
6334static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6335				      int mirror_num)
6336{
 
6337	struct btrfs_fs_info *fs_info = eb->fs_info;
6338	struct extent_io_tree *io_tree;
6339	struct page *page = eb->pages[0];
6340	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6341	int ret = 0;
 
 
 
 
 
6342
6343	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6344	ASSERT(PagePrivate(page));
6345	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6346
6347	if (wait == WAIT_NONE) {
6348		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6349			return -EAGAIN;
6350	} else {
6351		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6352		if (ret < 0)
6353			return ret;
6354	}
6355
6356	ret = 0;
6357	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6358	    PageUptodate(page) ||
6359	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6360		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6361		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6362		return ret;
6363	}
6364
6365	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6366	eb->read_mirror = 0;
6367	atomic_set(&eb->io_pages, 1);
6368	check_buffer_tree_ref(eb);
6369	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6370
6371	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6372	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
6373				 page, eb->start, eb->len,
6374				 eb->start - page_offset(page),
6375				 end_bio_extent_readpage, mirror_num, 0,
6376				 true);
6377	if (ret) {
6378		/*
6379		 * In the endio function, if we hit something wrong we will
6380		 * increase the io_pages, so here we need to decrease it for
6381		 * error path.
6382		 */
6383		atomic_dec(&eb->io_pages);
6384	}
6385	if (bio_ctrl.bio) {
6386		int tmp;
6387
6388		tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6389		bio_ctrl.bio = NULL;
6390		if (tmp < 0)
6391			return tmp;
6392	}
6393	if (ret || wait != WAIT_COMPLETE)
6394		return ret;
6395
6396	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6397	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6398		ret = -EIO;
6399	return ret;
6400}
6401
6402int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
 
6403{
6404	int i;
6405	struct page *page;
6406	int err;
6407	int ret = 0;
6408	int locked_pages = 0;
6409	int all_uptodate = 1;
6410	int num_pages;
6411	unsigned long num_reads = 0;
6412	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6413
6414	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6415		return 0;
6416
6417	if (eb->fs_info->sectorsize < PAGE_SIZE)
6418		return read_extent_buffer_subpage(eb, wait, mirror_num);
6419
6420	num_pages = num_extent_pages(eb);
6421	for (i = 0; i < num_pages; i++) {
6422		page = eb->pages[i];
6423		if (wait == WAIT_NONE) {
6424			/*
6425			 * WAIT_NONE is only utilized by readahead. If we can't
6426			 * acquire the lock atomically it means either the eb
6427			 * is being read out or under modification.
6428			 * Either way the eb will be or has been cached,
6429			 * readahead can exit safely.
6430			 */
6431			if (!trylock_page(page))
6432				goto unlock_exit;
6433		} else {
6434			lock_page(page);
6435		}
6436		locked_pages++;
6437	}
6438	/*
6439	 * We need to firstly lock all pages to make sure that
6440	 * the uptodate bit of our pages won't be affected by
6441	 * clear_extent_buffer_uptodate().
6442	 */
6443	for (i = 0; i < num_pages; i++) {
6444		page = eb->pages[i];
6445		if (!PageUptodate(page)) {
6446			num_reads++;
6447			all_uptodate = 0;
6448		}
6449	}
6450
6451	if (all_uptodate) {
6452		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6453		goto unlock_exit;
6454	}
6455
6456	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6457	eb->read_mirror = 0;
6458	atomic_set(&eb->io_pages, num_reads);
6459	/*
6460	 * It is possible for releasepage to clear the TREE_REF bit before we
6461	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6462	 */
6463	check_buffer_tree_ref(eb);
6464	for (i = 0; i < num_pages; i++) {
6465		page = eb->pages[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
6466
6467		if (!PageUptodate(page)) {
6468			if (ret) {
6469				atomic_dec(&eb->io_pages);
6470				unlock_page(page);
6471				continue;
6472			}
6473
6474			ClearPageError(page);
6475			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6476					 &bio_ctrl, page, page_offset(page),
6477					 PAGE_SIZE, 0, end_bio_extent_readpage,
6478					 mirror_num, 0, false);
6479			if (err) {
6480				/*
6481				 * We failed to submit the bio so it's the
6482				 * caller's responsibility to perform cleanup
6483				 * i.e unlock page/set error bit.
6484				 */
6485				ret = err;
6486				SetPageError(page);
6487				unlock_page(page);
6488				atomic_dec(&eb->io_pages);
6489			}
6490		} else {
6491			unlock_page(page);
6492		}
6493	}
 
6494
6495	if (bio_ctrl.bio) {
6496		err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
6497		bio_ctrl.bio = NULL;
6498		if (err)
6499			return err;
6500	}
6501
6502	if (ret || wait != WAIT_COMPLETE)
6503		return ret;
6504
6505	for (i = 0; i < num_pages; i++) {
6506		page = eb->pages[i];
6507		wait_on_page_locked(page);
6508		if (!PageUptodate(page))
6509			ret = -EIO;
6510	}
6511
6512	return ret;
6513
6514unlock_exit:
6515	while (locked_pages > 0) {
6516		locked_pages--;
6517		page = eb->pages[locked_pages];
6518		unlock_page(page);
6519	}
6520	return ret;
6521}
6522
6523static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6524			    unsigned long len)
6525{
6526	btrfs_warn(eb->fs_info,
6527		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
6528		eb->start, eb->len, start, len);
6529	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6530
6531	return true;
6532}
6533
6534/*
6535 * Check if the [start, start + len) range is valid before reading/writing
6536 * the eb.
6537 * NOTE: @start and @len are offset inside the eb, not logical address.
6538 *
6539 * Caller should not touch the dst/src memory if this function returns error.
6540 */
6541static inline int check_eb_range(const struct extent_buffer *eb,
6542				 unsigned long start, unsigned long len)
6543{
6544	unsigned long offset;
6545
6546	/* start, start + len should not go beyond eb->len nor overflow */
6547	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6548		return report_eb_range(eb, start, len);
6549
6550	return false;
6551}
6552
6553void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6554			unsigned long start, unsigned long len)
6555{
 
6556	size_t cur;
6557	size_t offset;
6558	struct page *page;
6559	char *kaddr;
6560	char *dst = (char *)dstv;
6561	unsigned long i = get_eb_page_index(start);
 
 
 
 
 
 
 
 
 
6562
6563	if (check_eb_range(eb, start, len))
 
6564		return;
 
6565
6566	offset = get_eb_offset_in_page(eb, start);
6567
6568	while (len > 0) {
6569		page = eb->pages[i];
6570
6571		cur = min(len, (PAGE_SIZE - offset));
6572		kaddr = page_address(page);
6573		memcpy(dst, kaddr + offset, cur);
6574
6575		dst += cur;
6576		len -= cur;
6577		offset = 0;
6578		i++;
6579	}
6580}
6581
6582int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6583				       void __user *dstv,
6584				       unsigned long start, unsigned long len)
6585{
 
6586	size_t cur;
6587	size_t offset;
6588	struct page *page;
6589	char *kaddr;
6590	char __user *dst = (char __user *)dstv;
6591	unsigned long i = get_eb_page_index(start);
6592	int ret = 0;
6593
6594	WARN_ON(start > eb->len);
6595	WARN_ON(start + len > eb->start + eb->len);
6596
6597	offset = get_eb_offset_in_page(eb, start);
 
 
 
 
 
 
6598
6599	while (len > 0) {
6600		page = eb->pages[i];
6601
6602		cur = min(len, (PAGE_SIZE - offset));
6603		kaddr = page_address(page);
6604		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6605			ret = -EFAULT;
6606			break;
6607		}
6608
6609		dst += cur;
6610		len -= cur;
6611		offset = 0;
6612		i++;
6613	}
6614
6615	return ret;
6616}
6617
6618int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6619			 unsigned long start, unsigned long len)
6620{
 
6621	size_t cur;
6622	size_t offset;
6623	struct page *page;
6624	char *kaddr;
6625	char *ptr = (char *)ptrv;
6626	unsigned long i = get_eb_page_index(start);
6627	int ret = 0;
6628
6629	if (check_eb_range(eb, start, len))
6630		return -EINVAL;
6631
6632	offset = get_eb_offset_in_page(eb, start);
 
 
 
6633
6634	while (len > 0) {
6635		page = eb->pages[i];
6636
6637		cur = min(len, (PAGE_SIZE - offset));
6638
6639		kaddr = page_address(page);
6640		ret = memcmp(ptr, kaddr + offset, cur);
6641		if (ret)
6642			break;
6643
6644		ptr += cur;
6645		len -= cur;
6646		offset = 0;
6647		i++;
6648	}
6649	return ret;
6650}
6651
6652/*
6653 * Check that the extent buffer is uptodate.
6654 *
6655 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6656 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6657 */
6658static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6659				    struct page *page)
6660{
6661	struct btrfs_fs_info *fs_info = eb->fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6662
6663	if (fs_info->sectorsize < PAGE_SIZE) {
6664		bool uptodate;
6665
6666		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6667						       eb->start, eb->len);
6668		WARN_ON(!uptodate);
 
6669	} else {
6670		WARN_ON(!PageUptodate(page));
6671	}
6672}
6673
6674void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6675		const void *srcv)
6676{
6677	char *kaddr;
6678
6679	assert_eb_page_uptodate(eb, eb->pages[0]);
6680	kaddr = page_address(eb->pages[0]) +
6681		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6682						   chunk_tree_uuid));
6683	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6684}
6685
6686void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6687{
6688	char *kaddr;
6689
6690	assert_eb_page_uptodate(eb, eb->pages[0]);
6691	kaddr = page_address(eb->pages[0]) +
6692		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6693	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6694}
6695
6696void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6697			 unsigned long start, unsigned long len)
6698{
 
6699	size_t cur;
6700	size_t offset;
6701	struct page *page;
6702	char *kaddr;
6703	char *src = (char *)srcv;
6704	unsigned long i = get_eb_page_index(start);
 
 
6705
6706	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
 
6707
6708	if (check_eb_range(eb, start, len))
 
 
 
 
6709		return;
 
6710
6711	offset = get_eb_offset_in_page(eb, start);
6712
6713	while (len > 0) {
6714		page = eb->pages[i];
6715		assert_eb_page_uptodate(eb, page);
6716
6717		cur = min(len, PAGE_SIZE - offset);
6718		kaddr = page_address(page);
6719		memcpy(kaddr + offset, src, cur);
 
 
 
6720
6721		src += cur;
6722		len -= cur;
6723		offset = 0;
6724		i++;
6725	}
6726}
6727
6728void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6729		unsigned long len)
 
 
 
 
 
 
6730{
6731	size_t cur;
6732	size_t offset;
6733	struct page *page;
6734	char *kaddr;
6735	unsigned long i = get_eb_page_index(start);
6736
6737	if (check_eb_range(eb, start, len))
 
6738		return;
 
6739
6740	offset = get_eb_offset_in_page(eb, start);
 
 
 
6741
6742	while (len > 0) {
6743		page = eb->pages[i];
6744		assert_eb_page_uptodate(eb, page);
6745
6746		cur = min(len, PAGE_SIZE - offset);
6747		kaddr = page_address(page);
6748		memset(kaddr + offset, 0, cur);
6749
6750		len -= cur;
6751		offset = 0;
6752		i++;
6753	}
 
 
6754}
6755
6756void copy_extent_buffer_full(const struct extent_buffer *dst,
6757			     const struct extent_buffer *src)
6758{
6759	int i;
6760	int num_pages;
6761
6762	ASSERT(dst->len == src->len);
6763
6764	if (dst->fs_info->sectorsize == PAGE_SIZE) {
6765		num_pages = num_extent_pages(dst);
6766		for (i = 0; i < num_pages; i++)
6767			copy_page(page_address(dst->pages[i]),
6768				  page_address(src->pages[i]));
6769	} else {
6770		size_t src_offset = get_eb_offset_in_page(src, 0);
6771		size_t dst_offset = get_eb_offset_in_page(dst, 0);
6772
6773		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
6774		memcpy(page_address(dst->pages[0]) + dst_offset,
6775		       page_address(src->pages[0]) + src_offset,
6776		       src->len);
6777	}
6778}
6779
6780void copy_extent_buffer(const struct extent_buffer *dst,
6781			const struct extent_buffer *src,
6782			unsigned long dst_offset, unsigned long src_offset,
6783			unsigned long len)
6784{
 
6785	u64 dst_len = dst->len;
6786	size_t cur;
6787	size_t offset;
6788	struct page *page;
6789	char *kaddr;
6790	unsigned long i = get_eb_page_index(dst_offset);
6791
6792	if (check_eb_range(dst, dst_offset, len) ||
6793	    check_eb_range(src, src_offset, len))
6794		return;
6795
6796	WARN_ON(src->len != dst_len);
6797
6798	offset = get_eb_offset_in_page(dst, dst_offset);
6799
6800	while (len > 0) {
6801		page = dst->pages[i];
6802		assert_eb_page_uptodate(dst, page);
6803
6804		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6805
6806		kaddr = page_address(page);
6807		read_extent_buffer(src, kaddr + offset, src_offset, cur);
6808
6809		src_offset += cur;
6810		len -= cur;
6811		offset = 0;
6812		i++;
6813	}
6814}
6815
6816/*
6817 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
6818 * given bit number
6819 * @eb: the extent buffer
6820 * @start: offset of the bitmap item in the extent buffer
6821 * @nr: bit number
6822 * @page_index: return index of the page in the extent buffer that contains the
6823 * given bit number
6824 * @page_offset: return offset into the page given by page_index
6825 *
6826 * This helper hides the ugliness of finding the byte in an extent buffer which
6827 * contains a given bit.
6828 */
6829static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6830				    unsigned long start, unsigned long nr,
6831				    unsigned long *page_index,
6832				    size_t *page_offset)
6833{
6834	size_t byte_offset = BIT_BYTE(nr);
6835	size_t offset;
6836
6837	/*
6838	 * The byte we want is the offset of the extent buffer + the offset of
6839	 * the bitmap item in the extent buffer + the offset of the byte in the
6840	 * bitmap item.
6841	 */
6842	offset = start + offset_in_page(eb->start) + byte_offset;
6843
6844	*page_index = offset >> PAGE_SHIFT;
6845	*page_offset = offset_in_page(offset);
6846}
6847
6848/**
6849 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
6850 * @eb: the extent buffer
6851 * @start: offset of the bitmap item in the extent buffer
6852 * @nr: bit number to test
 
6853 */
6854int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6855			   unsigned long nr)
6856{
6857	u8 *kaddr;
6858	struct page *page;
6859	unsigned long i;
6860	size_t offset;
 
6861
6862	eb_bitmap_offset(eb, start, nr, &i, &offset);
6863	page = eb->pages[i];
6864	assert_eb_page_uptodate(eb, page);
6865	kaddr = page_address(page);
6866	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
6867}
6868
6869/**
6870 * extent_buffer_bitmap_set - set an area of a bitmap
6871 * @eb: the extent buffer
6872 * @start: offset of the bitmap item in the extent buffer
6873 * @pos: bit number of the first bit
6874 * @len: number of bits to set
 
 
 
 
 
 
 
 
 
 
6875 */
6876void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6877			      unsigned long pos, unsigned long len)
6878{
 
 
 
 
6879	u8 *kaddr;
6880	struct page *page;
6881	unsigned long i;
6882	size_t offset;
6883	const unsigned int size = pos + len;
6884	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6885	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
6886
6887	eb_bitmap_offset(eb, start, pos, &i, &offset);
6888	page = eb->pages[i];
6889	assert_eb_page_uptodate(eb, page);
6890	kaddr = page_address(page);
6891
6892	while (len >= bits_to_set) {
6893		kaddr[offset] |= mask_to_set;
6894		len -= bits_to_set;
6895		bits_to_set = BITS_PER_BYTE;
6896		mask_to_set = ~0;
6897		if (++offset >= PAGE_SIZE && len > 0) {
6898			offset = 0;
6899			page = eb->pages[++i];
6900			assert_eb_page_uptodate(eb, page);
6901			kaddr = page_address(page);
6902		}
6903	}
6904	if (len) {
6905		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
6906		kaddr[offset] |= mask_to_set;
6907	}
6908}
6909
6910
6911/**
6912 * extent_buffer_bitmap_clear - clear an area of a bitmap
6913 * @eb: the extent buffer
6914 * @start: offset of the bitmap item in the extent buffer
6915 * @pos: bit number of the first bit
6916 * @len: number of bits to clear
 
6917 */
6918void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
6919				unsigned long start, unsigned long pos,
6920				unsigned long len)
6921{
 
 
 
 
6922	u8 *kaddr;
6923	struct page *page;
6924	unsigned long i;
6925	size_t offset;
6926	const unsigned int size = pos + len;
6927	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6928	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6929
6930	eb_bitmap_offset(eb, start, pos, &i, &offset);
6931	page = eb->pages[i];
6932	assert_eb_page_uptodate(eb, page);
6933	kaddr = page_address(page);
6934
6935	while (len >= bits_to_clear) {
6936		kaddr[offset] &= ~mask_to_clear;
6937		len -= bits_to_clear;
6938		bits_to_clear = BITS_PER_BYTE;
6939		mask_to_clear = ~0;
6940		if (++offset >= PAGE_SIZE && len > 0) {
6941			offset = 0;
6942			page = eb->pages[++i];
6943			assert_eb_page_uptodate(eb, page);
6944			kaddr = page_address(page);
6945		}
6946	}
6947	if (len) {
6948		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
6949		kaddr[offset] &= ~mask_to_clear;
6950	}
6951}
6952
6953static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
6954{
6955	unsigned long distance = (src > dst) ? src - dst : dst - src;
6956	return distance < len;
6957}
6958
6959static void copy_pages(struct page *dst_page, struct page *src_page,
6960		       unsigned long dst_off, unsigned long src_off,
6961		       unsigned long len)
6962{
6963	char *dst_kaddr = page_address(dst_page);
6964	char *src_kaddr;
6965	int must_memmove = 0;
6966
6967	if (dst_page != src_page) {
6968		src_kaddr = page_address(src_page);
6969	} else {
6970		src_kaddr = dst_kaddr;
6971		if (areas_overlap(src_off, dst_off, len))
6972			must_memmove = 1;
6973	}
6974
6975	if (must_memmove)
6976		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6977	else
6978		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6979}
6980
6981void memcpy_extent_buffer(const struct extent_buffer *dst,
6982			  unsigned long dst_offset, unsigned long src_offset,
6983			  unsigned long len)
6984{
6985	size_t cur;
6986	size_t dst_off_in_page;
6987	size_t src_off_in_page;
6988	unsigned long dst_i;
6989	unsigned long src_i;
6990
6991	if (check_eb_range(dst, dst_offset, len) ||
6992	    check_eb_range(dst, src_offset, len))
6993		return;
6994
6995	while (len > 0) {
6996		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
6997		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
6998
6999		dst_i = get_eb_page_index(dst_offset);
7000		src_i = get_eb_page_index(src_offset);
7001
7002		cur = min(len, (unsigned long)(PAGE_SIZE -
7003					       src_off_in_page));
7004		cur = min_t(unsigned long, cur,
7005			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7006
7007		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7008			   dst_off_in_page, src_off_in_page, cur);
7009
7010		src_offset += cur;
7011		dst_offset += cur;
7012		len -= cur;
 
 
 
 
 
 
 
7013	}
7014}
7015
7016void memmove_extent_buffer(const struct extent_buffer *dst,
7017			   unsigned long dst_offset, unsigned long src_offset,
7018			   unsigned long len)
7019{
7020	size_t cur;
7021	size_t dst_off_in_page;
7022	size_t src_off_in_page;
7023	unsigned long dst_end = dst_offset + len - 1;
7024	unsigned long src_end = src_offset + len - 1;
7025	unsigned long dst_i;
7026	unsigned long src_i;
7027
7028	if (check_eb_range(dst, dst_offset, len) ||
7029	    check_eb_range(dst, src_offset, len))
7030		return;
 
7031	if (dst_offset < src_offset) {
7032		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7033		return;
7034	}
 
 
 
 
 
 
7035	while (len > 0) {
7036		dst_i = get_eb_page_index(dst_end);
7037		src_i = get_eb_page_index(src_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7038
7039		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7040		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7041
7042		cur = min_t(unsigned long, len, src_off_in_page + 1);
7043		cur = min(cur, dst_off_in_page + 1);
7044		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7045			   dst_off_in_page - cur + 1,
7046			   src_off_in_page - cur + 1, cur);
7047
7048		dst_end -= cur;
7049		src_end -= cur;
7050		len -= cur;
7051	}
7052}
7053
 
7054static struct extent_buffer *get_next_extent_buffer(
7055		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7056{
7057	struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
7058	struct extent_buffer *found = NULL;
7059	u64 page_start = page_offset(page);
7060	int ret;
7061	int i;
7062
7063	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
7064	ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
7065	lockdep_assert_held(&fs_info->buffer_lock);
7066
7067	ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
7068			bytenr >> fs_info->sectorsize_bits,
7069			PAGE_SIZE / fs_info->nodesize);
7070	for (i = 0; i < ret; i++) {
7071		/* Already beyond page end */
7072		if (gang[i]->start >= page_start + PAGE_SIZE)
7073			break;
7074		/* Found one */
7075		if (gang[i]->start >= bytenr) {
7076			found = gang[i];
7077			break;
 
 
 
 
 
 
 
 
7078		}
 
7079	}
 
7080	return found;
7081}
7082
7083static int try_release_subpage_extent_buffer(struct page *page)
7084{
7085	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7086	u64 cur = page_offset(page);
7087	const u64 end = page_offset(page) + PAGE_SIZE;
7088	int ret;
7089
7090	while (cur < end) {
7091		struct extent_buffer *eb = NULL;
7092
7093		/*
7094		 * Unlike try_release_extent_buffer() which uses page->private
7095		 * to grab buffer, for subpage case we rely on radix tree, thus
7096		 * we need to ensure radix tree consistency.
7097		 *
7098		 * We also want an atomic snapshot of the radix tree, thus go
7099		 * with spinlock rather than RCU.
7100		 */
7101		spin_lock(&fs_info->buffer_lock);
7102		eb = get_next_extent_buffer(fs_info, page, cur);
7103		if (!eb) {
7104			/* No more eb in the page range after or at cur */
7105			spin_unlock(&fs_info->buffer_lock);
7106			break;
7107		}
7108		cur = eb->start + eb->len;
7109
7110		/*
7111		 * The same as try_release_extent_buffer(), to ensure the eb
7112		 * won't disappear out from under us.
7113		 */
7114		spin_lock(&eb->refs_lock);
7115		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7116			spin_unlock(&eb->refs_lock);
7117			spin_unlock(&fs_info->buffer_lock);
7118			break;
7119		}
7120		spin_unlock(&fs_info->buffer_lock);
7121
7122		/*
7123		 * If tree ref isn't set then we know the ref on this eb is a
7124		 * real ref, so just return, this eb will likely be freed soon
7125		 * anyway.
7126		 */
7127		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7128			spin_unlock(&eb->refs_lock);
7129			break;
7130		}
7131
7132		/*
7133		 * Here we don't care about the return value, we will always
7134		 * check the page private at the end.  And
7135		 * release_extent_buffer() will release the refs_lock.
7136		 */
7137		release_extent_buffer(eb);
7138	}
7139	/*
7140	 * Finally to check if we have cleared page private, as if we have
7141	 * released all ebs in the page, the page private should be cleared now.
7142	 */
7143	spin_lock(&page->mapping->private_lock);
7144	if (!PagePrivate(page))
7145		ret = 1;
7146	else
7147		ret = 0;
7148	spin_unlock(&page->mapping->private_lock);
7149	return ret;
7150
7151}
7152
7153int try_release_extent_buffer(struct page *page)
7154{
 
7155	struct extent_buffer *eb;
7156
7157	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
7158		return try_release_subpage_extent_buffer(page);
7159
7160	/*
7161	 * We need to make sure nobody is changing page->private, as we rely on
7162	 * page->private as the pointer to extent buffer.
7163	 */
7164	spin_lock(&page->mapping->private_lock);
7165	if (!PagePrivate(page)) {
7166		spin_unlock(&page->mapping->private_lock);
7167		return 1;
7168	}
7169
7170	eb = (struct extent_buffer *)page->private;
7171	BUG_ON(!eb);
7172
7173	/*
7174	 * This is a little awful but should be ok, we need to make sure that
7175	 * the eb doesn't disappear out from under us while we're looking at
7176	 * this page.
7177	 */
7178	spin_lock(&eb->refs_lock);
7179	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7180		spin_unlock(&eb->refs_lock);
7181		spin_unlock(&page->mapping->private_lock);
7182		return 0;
7183	}
7184	spin_unlock(&page->mapping->private_lock);
7185
7186	/*
7187	 * If tree ref isn't set then we know the ref on this eb is a real ref,
7188	 * so just return, this page will likely be freed soon anyway.
7189	 */
7190	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7191		spin_unlock(&eb->refs_lock);
7192		return 0;
7193	}
7194
7195	return release_extent_buffer(eb);
7196}
7197
7198/*
7199 * btrfs_readahead_tree_block - attempt to readahead a child block
 
7200 * @fs_info:	the fs_info
7201 * @bytenr:	bytenr to read
7202 * @owner_root: objectid of the root that owns this eb
7203 * @gen:	generation for the uptodate check, can be 0
7204 * @level:	level for the eb
7205 *
7206 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
7207 * normal uptodate check of the eb, without checking the generation.  If we have
7208 * to read the block we will not block on anything.
7209 */
7210void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7211				u64 bytenr, u64 owner_root, u64 gen, int level)
7212{
 
 
 
 
 
7213	struct extent_buffer *eb;
7214	int ret;
7215
7216	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7217	if (IS_ERR(eb))
7218		return;
7219
7220	if (btrfs_buffer_uptodate(eb, gen, 1)) {
7221		free_extent_buffer(eb);
7222		return;
7223	}
7224
7225	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7226	if (ret < 0)
7227		free_extent_buffer_stale(eb);
7228	else
7229		free_extent_buffer(eb);
7230}
7231
7232/*
7233 * btrfs_readahead_node_child - readahead a node's child block
 
7234 * @node:	parent node we're reading from
7235 * @slot:	slot in the parent node for the child we want to read
7236 *
7237 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7238 * the slot in the node provided.
7239 */
7240void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7241{
7242	btrfs_readahead_tree_block(node->fs_info,
7243				   btrfs_node_blockptr(node, slot),
7244				   btrfs_header_owner(node),
7245				   btrfs_node_ptr_generation(node, slot),
7246				   btrfs_header_level(node) - 1);
7247}