Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
   9#include <linux/sched/mm.h>
  10#include <linux/spinlock.h>
  11#include <linux/blkdev.h>
  12#include <linux/swap.h>
  13#include <linux/writeback.h>
  14#include <linux/pagevec.h>
  15#include <linux/prefetch.h>
  16#include <linux/fsverity.h>
  17#include "misc.h"
  18#include "extent_io.h"
  19#include "extent-io-tree.h"
  20#include "extent_map.h"
  21#include "ctree.h"
  22#include "btrfs_inode.h"
  23#include "bio.h"
 
  24#include "locking.h"
  25#include "rcu-string.h"
  26#include "backref.h"
  27#include "disk-io.h"
  28#include "subpage.h"
  29#include "zoned.h"
  30#include "block-group.h"
  31#include "compression.h"
  32#include "fs.h"
  33#include "accessors.h"
  34#include "file-item.h"
  35#include "file.h"
  36#include "dev-replace.h"
  37#include "super.h"
  38#include "transaction.h"
  39
 
  40static struct kmem_cache *extent_buffer_cache;
 
  41
  42#ifdef CONFIG_BTRFS_DEBUG
  43static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
 
 
 
 
 
 
  44{
  45	struct btrfs_fs_info *fs_info = eb->fs_info;
  46	unsigned long flags;
  47
  48	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  49	list_add(&eb->leak_list, &fs_info->allocated_ebs);
  50	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  51}
  52
  53static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
 
  54{
  55	struct btrfs_fs_info *fs_info = eb->fs_info;
  56	unsigned long flags;
  57
  58	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  59	list_del(&eb->leak_list);
  60	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  61}
  62
  63void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
 
  64{
 
  65	struct extent_buffer *eb;
  66	unsigned long flags;
  67
  68	/*
  69	 * If we didn't get into open_ctree our allocated_ebs will not be
  70	 * initialized, so just skip this.
  71	 */
  72	if (!fs_info->allocated_ebs.next)
  73		return;
 
 
 
  74
  75	WARN_ON(!list_empty(&fs_info->allocated_ebs));
  76	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  77	while (!list_empty(&fs_info->allocated_ebs)) {
  78		eb = list_first_entry(&fs_info->allocated_ebs,
  79				      struct extent_buffer, leak_list);
  80		pr_err(
  81	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
  82		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
  83		       btrfs_header_owner(eb));
  84		list_del(&eb->leak_list);
  85		kmem_cache_free(extent_buffer_cache, eb);
  86	}
  87	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88}
  89#else
  90#define btrfs_leak_debug_add_eb(eb)			do {} while (0)
  91#define btrfs_leak_debug_del_eb(eb)			do {} while (0)
 
 
  92#endif
  93
  94/*
  95 * Structure to record info about the bio being assembled, and other info like
  96 * how many bytes are there before stripe/ordered extent boundary.
  97 */
  98struct btrfs_bio_ctrl {
  99	struct btrfs_bio *bbio;
 100	enum btrfs_compression_type compress_type;
 101	u32 len_to_oe_boundary;
 102	blk_opf_t opf;
 103	btrfs_bio_end_io_t end_io_func;
 104	struct writeback_control *wbc;
 
 
 
 
 
 
 
 
 
 
 105};
 106
 107static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108{
 109	struct btrfs_bio *bbio = bio_ctrl->bbio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110
 111	if (!bbio)
 
 
 112		return;
 
 
 
 
 
 
 
 113
 114	/* Caller should ensure the bio has at least some range added */
 115	ASSERT(bbio->bio.bi_iter.bi_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 116
 117	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
 118	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
 119		btrfs_submit_compressed_read(bbio);
 120	else
 121		btrfs_submit_bio(bbio, 0);
 122
 123	/* The bbio is owned by the end_io handler now */
 124	bio_ctrl->bbio = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125}
 126
 127/*
 128 * Submit or fail the current bio in the bio_ctrl structure.
 
 
 
 
 
 
 129 */
 130static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
 
 131{
 132	struct btrfs_bio *bbio = bio_ctrl->bbio;
 
 133
 134	if (!bbio)
 135		return;
 136
 137	if (ret) {
 138		ASSERT(ret < 0);
 139		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
 140		/* The bio is owned by the end_io handler now */
 141		bio_ctrl->bbio = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 142	} else {
 143		submit_one_bio(bio_ctrl);
 
 144	}
 
 145}
 146
 147int __init extent_buffer_init_cachep(void)
 
 148{
 149	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 150			sizeof(struct extent_buffer), 0,
 151			SLAB_MEM_SPREAD, NULL);
 152	if (!extent_buffer_cache)
 153		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154
 155	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156}
 157
 158void __cold extent_buffer_free_cachep(void)
 
 
 159{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160	/*
 161	 * Make sure all delayed rcu free are flushed before we
 162	 * destroy caches.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 163	 */
 164	rcu_barrier();
 165	kmem_cache_destroy(extent_buffer_cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166}
 167
 168void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
 169{
 170	unsigned long index = start >> PAGE_SHIFT;
 171	unsigned long end_index = end >> PAGE_SHIFT;
 
 
 
 
 
 
 172	struct page *page;
 173
 174	while (index <= end_index) {
 175		page = find_get_page(inode->i_mapping, index);
 176		BUG_ON(!page); /* Pages should be in the extent_io_tree */
 177		clear_page_dirty_for_io(page);
 178		put_page(page);
 179		index++;
 180	}
 
 181}
 182
 183static void process_one_page(struct btrfs_fs_info *fs_info,
 184			     struct page *page, struct page *locked_page,
 185			     unsigned long page_ops, u64 start, u64 end)
 186{
 187	struct folio *folio = page_folio(page);
 188	u32 len;
 189
 190	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
 191	len = end + 1 - start;
 192
 193	if (page_ops & PAGE_SET_ORDERED)
 194		btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
 195	if (page_ops & PAGE_START_WRITEBACK) {
 196		btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
 197		btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
 198	}
 199	if (page_ops & PAGE_END_WRITEBACK)
 200		btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
 201
 202	if (page != locked_page && (page_ops & PAGE_UNLOCK))
 203		btrfs_folio_end_writer_lock(fs_info, folio, start, len);
 204}
 205
 206static void __process_pages_contig(struct address_space *mapping,
 207				   struct page *locked_page, u64 start, u64 end,
 208				   unsigned long page_ops)
 209{
 210	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
 211	pgoff_t start_index = start >> PAGE_SHIFT;
 212	pgoff_t end_index = end >> PAGE_SHIFT;
 213	pgoff_t index = start_index;
 214	struct folio_batch fbatch;
 215	int i;
 216
 217	folio_batch_init(&fbatch);
 218	while (index <= end_index) {
 219		int found_folios;
 
 
 
 
 
 
 
 220
 221		found_folios = filemap_get_folios_contig(mapping, &index,
 222				end_index, &fbatch);
 223		for (i = 0; i < found_folios; i++) {
 224			struct folio *folio = fbatch.folios[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225
 226			process_one_page(fs_info, &folio->page, locked_page,
 227					 page_ops, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228		}
 229		folio_batch_release(&fbatch);
 230		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 231	}
 
 
 
 232}
 233
 234static noinline void __unlock_for_delalloc(struct inode *inode,
 235					   struct page *locked_page,
 236					   u64 start, u64 end)
 237{
 238	unsigned long index = start >> PAGE_SHIFT;
 239	unsigned long end_index = end >> PAGE_SHIFT;
 
 
 
 
 240
 241	ASSERT(locked_page);
 242	if (index == locked_page->index && end_index == index)
 243		return;
 244
 245	__process_pages_contig(inode->i_mapping, locked_page, start, end,
 246			       PAGE_UNLOCK);
 
 
 
 
 
 
 
 
 
 
 
 247}
 248
 249static noinline int lock_delalloc_pages(struct inode *inode,
 250					struct page *locked_page,
 251					u64 start,
 252					u64 end)
 253{
 254	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 255	struct address_space *mapping = inode->i_mapping;
 256	pgoff_t start_index = start >> PAGE_SHIFT;
 257	pgoff_t end_index = end >> PAGE_SHIFT;
 258	pgoff_t index = start_index;
 259	u64 processed_end = start;
 260	struct folio_batch fbatch;
 
 261
 
 262	if (index == locked_page->index && index == end_index)
 263		return 0;
 264
 265	folio_batch_init(&fbatch);
 266	while (index <= end_index) {
 267		unsigned int found_folios, i;
 268
 269		found_folios = filemap_get_folios_contig(mapping, &index,
 270				end_index, &fbatch);
 271		if (found_folios == 0)
 272			goto out;
 273
 274		for (i = 0; i < found_folios; i++) {
 275			struct folio *folio = fbatch.folios[i];
 276			struct page *page = folio_page(folio, 0);
 277			u32 len = end + 1 - start;
 278
 279			if (page == locked_page)
 280				continue;
 281
 282			if (btrfs_folio_start_writer_lock(fs_info, folio, start,
 283							  len))
 284				goto out;
 285
 286			if (!PageDirty(page) || page->mapping != mapping) {
 287				btrfs_folio_end_writer_lock(fs_info, folio, start,
 288							    len);
 289				goto out;
 290			}
 291
 292			processed_end = page_offset(page) + PAGE_SIZE - 1;
 293		}
 294		folio_batch_release(&fbatch);
 
 295		cond_resched();
 296	}
 297
 298	return 0;
 299out:
 300	folio_batch_release(&fbatch);
 301	if (processed_end > start)
 302		__unlock_for_delalloc(inode, locked_page, start, processed_end);
 303	return -EAGAIN;
 
 
 304}
 305
 306/*
 307 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 308 * more than @max_bytes.
 309 *
 310 * @start:	The original start bytenr to search.
 311 *		Will store the extent range start bytenr.
 312 * @end:	The original end bytenr of the search range
 313 *		Will store the extent range end bytenr.
 314 *
 315 * Return true if we find a delalloc range which starts inside the original
 316 * range, and @start/@end will store the delalloc range start/end.
 317 *
 318 * Return false if we can't find any delalloc range which starts inside the
 319 * original range, and @start/@end will be the non-delalloc range start/end.
 320 */
 321EXPORT_FOR_TESTS
 322noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
 323				    struct page *locked_page, u64 *start,
 324				    u64 *end)
 325{
 326	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 327	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
 328	const u64 orig_start = *start;
 329	const u64 orig_end = *end;
 330	/* The sanity tests may not set a valid fs_info. */
 331	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
 332	u64 delalloc_start;
 333	u64 delalloc_end;
 334	bool found;
 335	struct extent_state *cached_state = NULL;
 336	int ret;
 337	int loops = 0;
 338
 339	/* Caller should pass a valid @end to indicate the search range end */
 340	ASSERT(orig_end > orig_start);
 341
 342	/* The range should at least cover part of the page */
 343	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
 344		 orig_end <= page_offset(locked_page)));
 345again:
 346	/* step one, find a bunch of delalloc bytes starting at start */
 347	delalloc_start = *start;
 348	delalloc_end = 0;
 349	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
 350					  max_bytes, &cached_state);
 351	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
 352		*start = delalloc_start;
 353
 354		/* @delalloc_end can be -1, never go beyond @orig_end */
 355		*end = min(delalloc_end, orig_end);
 356		free_extent_state(cached_state);
 357		return false;
 358	}
 359
 360	/*
 361	 * start comes from the offset of locked_page.  We have to lock
 362	 * pages in order, so we can't process delalloc bytes before
 363	 * locked_page
 364	 */
 365	if (delalloc_start < *start)
 366		delalloc_start = *start;
 367
 368	/*
 369	 * make sure to limit the number of pages we try to lock down
 370	 */
 371	if (delalloc_end + 1 - delalloc_start > max_bytes)
 372		delalloc_end = delalloc_start + max_bytes - 1;
 373
 374	/* step two, lock all the pages after the page that has start */
 375	ret = lock_delalloc_pages(inode, locked_page,
 376				  delalloc_start, delalloc_end);
 377	ASSERT(!ret || ret == -EAGAIN);
 378	if (ret == -EAGAIN) {
 379		/* some of the pages are gone, lets avoid looping by
 380		 * shortening the size of the delalloc range we're searching
 381		 */
 382		free_extent_state(cached_state);
 383		cached_state = NULL;
 384		if (!loops) {
 385			max_bytes = PAGE_SIZE;
 386			loops = 1;
 387			goto again;
 388		} else {
 389			found = false;
 390			goto out_failed;
 391		}
 392	}
 
 393
 394	/* step three, lock the state bits for the whole range */
 395	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
 396
 397	/* then test to make sure it is all still delalloc */
 398	ret = test_range_bit(tree, delalloc_start, delalloc_end,
 399			     EXTENT_DELALLOC, cached_state);
 400	if (!ret) {
 401		unlock_extent(tree, delalloc_start, delalloc_end,
 402			      &cached_state);
 403		__unlock_for_delalloc(inode, locked_page,
 404			      delalloc_start, delalloc_end);
 405		cond_resched();
 406		goto again;
 407	}
 408	free_extent_state(cached_state);
 409	*start = delalloc_start;
 410	*end = delalloc_end;
 411out_failed:
 412	return found;
 413}
 414
 415void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
 416				  struct page *locked_page,
 417				  u32 clear_bits, unsigned long page_ops)
 
 418{
 419	clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
 
 
 
 
 
 
 
 
 
 
 420
 421	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
 422			       start, end, page_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 423}
 424
 425static bool btrfs_verify_page(struct page *page, u64 start)
 426{
 427	if (!fsverity_active(page->mapping->host) ||
 428	    PageUptodate(page) ||
 429	    start >= i_size_read(page->mapping->host))
 430		return true;
 431	return fsverity_verify_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432}
 433
 434static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
 
 
 
 
 435{
 436	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
 437	struct folio *folio = page_folio(page);
 
 438
 439	ASSERT(page_offset(page) <= start &&
 440	       start + len <= page_offset(page) + PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441
 442	if (uptodate && btrfs_verify_page(page, start))
 443		btrfs_folio_set_uptodate(fs_info, folio, start, len);
 444	else
 445		btrfs_folio_clear_uptodate(fs_info, folio, start, len);
 
 446
 447	if (!btrfs_is_subpage(fs_info, page->mapping))
 448		unlock_page(page);
 449	else
 450		btrfs_subpage_end_reader(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451}
 452
 453/*
 454 * After a write IO is done, we need to:
 455 *
 456 * - clear the uptodate bits on error
 457 * - clear the writeback bits in the extent tree for the range
 458 * - filio_end_writeback()  if there is no more pending io for the folio
 459 *
 460 * Scheduling is not allowed, so the extent state tree is expected
 461 * to have one and only one object corresponding to this IO.
 462 */
 463static void end_bbio_data_write(struct btrfs_bio *bbio)
 
 464{
 465	struct bio *bio = &bbio->bio;
 466	int error = blk_status_to_errno(bio->bi_status);
 467	struct folio_iter fi;
 468
 469	ASSERT(!bio_flagged(bio, BIO_CLONED));
 470	bio_for_each_folio_all(fi, bio) {
 471		struct folio *folio = fi.folio;
 472		struct inode *inode = folio->mapping->host;
 473		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 474		const u32 sectorsize = fs_info->sectorsize;
 475		u64 start = folio_pos(folio) + fi.offset;
 476		u32 len = fi.length;
 477
 478		/* Only order 0 (single page) folios are allowed for data. */
 479		ASSERT(folio_order(folio) == 0);
 480
 481		/* Our read/write should always be sector aligned. */
 482		if (!IS_ALIGNED(fi.offset, sectorsize))
 483			btrfs_err(fs_info,
 484		"partial page write in btrfs with offset %zu and length %zu",
 485				  fi.offset, fi.length);
 486		else if (!IS_ALIGNED(fi.length, sectorsize))
 487			btrfs_info(fs_info,
 488		"incomplete page write with offset %zu and length %zu",
 489				   fi.offset, fi.length);
 490
 491		btrfs_finish_ordered_extent(bbio->ordered,
 492				folio_page(folio, 0), start, len, !error);
 493		if (error)
 494			mapping_set_error(folio->mapping, error);
 495		btrfs_folio_clear_writeback(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 
 
 
 496	}
 
 
 
 497
 498	bio_put(bio);
 
 
 
 
 
 
 
 
 
 499}
 500
 501/*
 502 * Record previously processed extent range
 503 *
 504 * For endio_readpage_release_extent() to handle a full extent range, reducing
 505 * the extent io operations.
 
 
 506 */
 507struct processed_extent {
 508	struct btrfs_inode *inode;
 509	/* Start of the range in @inode */
 510	u64 start;
 511	/* End of the range in @inode */
 512	u64 end;
 513	bool uptodate;
 
 
 
 514};
 515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516/*
 517 * Try to release processed extent range
 518 *
 519 * May not release the extent range right now if the current range is
 520 * contiguous to processed extent.
 521 *
 522 * Will release processed extent when any of @inode, @uptodate, the range is
 523 * no longer contiguous to the processed range.
 524 *
 525 * Passing @inode == NULL will force processed extent to be released.
 526 */
 527static void endio_readpage_release_extent(struct processed_extent *processed,
 528			      struct btrfs_inode *inode, u64 start, u64 end,
 529			      bool uptodate)
 530{
 531	struct extent_state *cached = NULL;
 532	struct extent_io_tree *tree;
 
 
 
 
 
 533
 534	/* The first extent, initialize @processed */
 535	if (!processed->inode)
 536		goto update;
 537
 538	/*
 539	 * Contiguous to processed extent, just uptodate the end.
 540	 *
 541	 * Several things to notice:
 542	 *
 543	 * - bio can be merged as long as on-disk bytenr is contiguous
 544	 *   This means we can have page belonging to other inodes, thus need to
 545	 *   check if the inode still matches.
 546	 * - bvec can contain range beyond current page for multi-page bvec
 547	 *   Thus we need to do processed->end + 1 >= start check
 548	 */
 549	if (processed->inode == inode && processed->uptodate == uptodate &&
 550	    processed->end + 1 >= start && end >= processed->end) {
 551		processed->end = end;
 552		return;
 553	}
 
 
 
 
 
 
 
 
 
 
 
 554
 555	tree = &processed->inode->io_tree;
 556	/*
 557	 * Now we don't have range contiguous to the processed range, release
 558	 * the processed range now.
 559	 */
 560	unlock_extent(tree, processed->start, processed->end, &cached);
 
 
 
 
 
 561
 562update:
 563	/* Update processed to current range */
 564	processed->inode = inode;
 565	processed->start = start;
 566	processed->end = end;
 567	processed->uptodate = uptodate;
 568}
 569
 570static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
 
 571{
 572	struct folio *folio = page_folio(page);
 
 
 573
 574	ASSERT(folio_test_locked(folio));
 575	if (!btrfs_is_subpage(fs_info, folio->mapping))
 576		return;
 577
 578	ASSERT(folio_test_private(folio));
 579	btrfs_subpage_start_reader(fs_info, folio, page_offset(page), PAGE_SIZE);
 
 
 
 
 
 
 
 
 580}
 581
 582/*
 583 * After a data read IO is done, we need to:
 584 *
 585 * - clear the uptodate bits on error
 586 * - set the uptodate bits if things worked
 587 * - set the folio up to date if all extents in the tree are uptodate
 588 * - clear the lock bit in the extent tree
 589 * - unlock the folio if there are no other extents locked for it
 590 *
 591 * Scheduling is not allowed, so the extent state tree is expected
 592 * to have one and only one object corresponding to this IO.
 593 */
 594static void end_bbio_data_read(struct btrfs_bio *bbio)
 595{
 596	struct bio *bio = &bbio->bio;
 597	struct processed_extent processed = { 0 };
 598	struct folio_iter fi;
 599	/*
 600	 * The offset to the beginning of a bio, since one bio can never be
 601	 * larger than UINT_MAX, u32 here is enough.
 602	 */
 603	u32 bio_offset = 0;
 
 604
 605	ASSERT(!bio_flagged(bio, BIO_CLONED));
 606	bio_for_each_folio_all(fi, &bbio->bio) {
 607		bool uptodate = !bio->bi_status;
 608		struct folio *folio = fi.folio;
 609		struct inode *inode = folio->mapping->host;
 610		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 611		const u32 sectorsize = fs_info->sectorsize;
 612		u64 start;
 613		u64 end;
 614		u32 len;
 615
 616		/* For now only order 0 folios are supported for data. */
 617		ASSERT(folio_order(folio) == 0);
 618		btrfs_debug(fs_info,
 619			"%s: bi_sector=%llu, err=%d, mirror=%u",
 620			__func__, bio->bi_iter.bi_sector, bio->bi_status,
 621			bbio->mirror_num);
 622
 623		/*
 624		 * We always issue full-sector reads, but if some block in a
 625		 * folio fails to read, blk_update_request() will advance
 626		 * bv_offset and adjust bv_len to compensate.  Print a warning
 627		 * for unaligned offsets, and an error if they don't add up to
 628		 * a full sector.
 629		 */
 630		if (!IS_ALIGNED(fi.offset, sectorsize))
 631			btrfs_err(fs_info,
 632		"partial page read in btrfs with offset %zu and length %zu",
 633				  fi.offset, fi.length);
 634		else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
 635			btrfs_info(fs_info,
 636		"incomplete page read with offset %zu and length %zu",
 637				   fi.offset, fi.length);
 638
 639		start = folio_pos(folio) + fi.offset;
 640		end = start + fi.length - 1;
 641		len = fi.length;
 642
 643		if (likely(uptodate)) {
 644			loff_t i_size = i_size_read(inode);
 645			pgoff_t end_index = i_size >> folio_shift(folio);
 646
 647			/*
 648			 * Zero out the remaining part if this range straddles
 649			 * i_size.
 650			 *
 651			 * Here we should only zero the range inside the folio,
 652			 * not touch anything else.
 653			 *
 654			 * NOTE: i_size is exclusive while end is inclusive.
 655			 */
 656			if (folio_index(folio) == end_index && i_size <= end) {
 657				u32 zero_start = max(offset_in_folio(folio, i_size),
 658						     offset_in_folio(folio, start));
 659				u32 zero_len = offset_in_folio(folio, end) + 1 -
 660					       zero_start;
 661
 662				folio_zero_range(folio, zero_start, zero_len);
 663			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 664		}
 
 
 665
 666		/* Update page status and unlock. */
 667		end_page_read(folio_page(folio, 0), uptodate, start, len);
 668		endio_readpage_release_extent(&processed, BTRFS_I(inode),
 669					      start, end, uptodate);
 670
 671		ASSERT(bio_offset + len > bio_offset);
 672		bio_offset += len;
 673
 674	}
 675	/* Release the last extent */
 676	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
 677	bio_put(bio);
 678}
 679
 680/*
 681 * Populate every free slot in a provided array with pages.
 682 *
 683 * @nr_pages:   number of pages to allocate
 684 * @page_array: the array to fill with pages; any existing non-null entries in
 685 * 		the array will be skipped
 686 * @extra_gfp:	the extra GFP flags for the allocation.
 687 *
 688 * Return: 0        if all pages were able to be allocated;
 689 *         -ENOMEM  otherwise, the partially allocated pages would be freed and
 690 *                  the array slots zeroed
 691 */
 692int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
 693			   gfp_t extra_gfp)
 
 
 694{
 695	unsigned int allocated;
 
 
 
 
 
 
 
 
 
 
 
 
 
 696
 697	for (allocated = 0; allocated < nr_pages;) {
 698		unsigned int last = allocated;
 699
 700		allocated = alloc_pages_bulk_array(GFP_NOFS | extra_gfp,
 701						   nr_pages, page_array);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702
 703		if (allocated == nr_pages)
 704			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706		/*
 707		 * During this iteration, no page could be allocated, even
 708		 * though alloc_pages_bulk_array() falls back to alloc_page()
 709		 * if  it could not bulk-allocate. So we must be out of memory.
 710		 */
 711		if (allocated == last) {
 712			for (int i = 0; i < allocated; i++) {
 713				__free_page(page_array[i]);
 714				page_array[i] = NULL;
 715			}
 716			return -ENOMEM;
 717		}
 
 
 
 
 
 
 
 718
 719		memalloc_retry_wait(GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 720	}
 721	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722}
 723
 724/*
 725 * Populate needed folios for the extent buffer.
 726 *
 727 * For now, the folios populated are always in order 0 (aka, single page).
 728 */
 729static int alloc_eb_folio_array(struct extent_buffer *eb, gfp_t extra_gfp)
 730{
 731	struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
 732	int num_pages = num_extent_pages(eb);
 733	int ret;
 734
 735	ret = btrfs_alloc_page_array(num_pages, page_array, extra_gfp);
 736	if (ret < 0)
 737		return ret;
 
 
 
 
 
 738
 739	for (int i = 0; i < num_pages; i++)
 740		eb->folios[i] = page_folio(page_array[i]);
 
 
 741	return 0;
 742}
 743
 744static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
 745				struct page *page, u64 disk_bytenr,
 746				unsigned int pg_offset)
 747{
 748	struct bio *bio = &bio_ctrl->bbio->bio;
 749	struct bio_vec *bvec = bio_last_bvec_all(bio);
 750	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
 
 
 
 
 
 
 
 
 751
 752	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
 753		/*
 754		 * For compression, all IO should have its logical bytenr set
 755		 * to the starting bytenr of the compressed extent.
 756		 */
 757		return bio->bi_iter.bi_sector == sector;
 758	}
 759
 760	/*
 761	 * The contig check requires the following conditions to be met:
 762	 *
 763	 * 1) The pages are belonging to the same inode
 764	 *    This is implied by the call chain.
 765	 *
 766	 * 2) The range has adjacent logical bytenr
 767	 *
 768	 * 3) The range has adjacent file offset
 769	 *    This is required for the usage of btrfs_bio->file_offset.
 770	 */
 771	return bio_end_sector(bio) == sector &&
 772		page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
 773		page_offset(page) + pg_offset;
 774}
 775
 776static void alloc_new_bio(struct btrfs_inode *inode,
 777			  struct btrfs_bio_ctrl *bio_ctrl,
 778			  u64 disk_bytenr, u64 file_offset)
 779{
 780	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 781	struct btrfs_bio *bbio;
 782
 783	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
 784			       bio_ctrl->end_io_func, NULL);
 785	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
 786	bbio->inode = inode;
 787	bbio->file_offset = file_offset;
 788	bio_ctrl->bbio = bbio;
 789	bio_ctrl->len_to_oe_boundary = U32_MAX;
 790
 791	/* Limit data write bios to the ordered boundary. */
 792	if (bio_ctrl->wbc) {
 793		struct btrfs_ordered_extent *ordered;
 794
 795		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
 796		if (ordered) {
 797			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
 798					ordered->file_offset +
 799					ordered->disk_num_bytes - file_offset);
 800			bbio->ordered = ordered;
 801		}
 802
 803		/*
 804		 * Pick the last added device to support cgroup writeback.  For
 805		 * multi-device file systems this means blk-cgroup policies have
 806		 * to always be set on the last added/replaced device.
 807		 * This is a bit odd but has been like that for a long time.
 808		 */
 809		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
 810		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
 811	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 812}
 813
 814/*
 815 * @disk_bytenr: logical bytenr where the write will be
 816 * @page:	page to add to the bio
 817 * @size:	portion of page that we want to write to
 818 * @pg_offset:	offset of the new bio or to check whether we are adding
 819 *              a contiguous page to the previous one
 
 820 *
 821 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
 822 * new one in @bio_ctrl->bbio.
 823 * The mirror number for this IO should already be initizlied in
 824 * @bio_ctrl->mirror_num.
 825 */
 826static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
 827			       u64 disk_bytenr, struct page *page,
 828			       size_t size, unsigned long pg_offset)
 829{
 830	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
 831
 832	ASSERT(pg_offset + size <= PAGE_SIZE);
 833	ASSERT(bio_ctrl->end_io_func);
 834
 835	if (bio_ctrl->bbio &&
 836	    !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
 837		submit_one_bio(bio_ctrl);
 
 
 
 838
 839	do {
 840		u32 len = size;
 841
 842		/* Allocate new bio if needed */
 843		if (!bio_ctrl->bbio) {
 844			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
 845				      page_offset(page) + pg_offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846		}
 847
 848		/* Cap to the current ordered extent boundary if there is one. */
 849		if (len > bio_ctrl->len_to_oe_boundary) {
 850			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
 851			ASSERT(is_data_inode(&inode->vfs_inode));
 852			len = bio_ctrl->len_to_oe_boundary;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853		}
 
 
 
 
 
 854
 855		if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
 856			/* bio full: move on to a new one */
 857			submit_one_bio(bio_ctrl);
 858			continue;
 
 
 
 
 859		}
 
 
 860
 861		if (bio_ctrl->wbc)
 862			wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
 863
 864		size -= len;
 865		pg_offset += len;
 866		disk_bytenr += len;
 867
 868		/*
 869		 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
 870		 * sector aligned.  alloc_new_bio() then sets it to the end of
 871		 * our ordered extent for writes into zoned devices.
 872		 *
 873		 * When len_to_oe_boundary is tracking an ordered extent, we
 874		 * trust the ordered extent code to align things properly, and
 875		 * the check above to cap our write to the ordered extent
 876		 * boundary is correct.
 877		 *
 878		 * When len_to_oe_boundary is U32_MAX, the cap above would
 879		 * result in a 4095 byte IO for the last page right before
 880		 * we hit the bio limit of UINT_MAX.  bio_add_page() has all
 881		 * the checks required to make sure we don't overflow the bio,
 882		 * and we should just ignore len_to_oe_boundary completely
 883		 * unless we're using it to track an ordered extent.
 884		 *
 885		 * It's pretty hard to make a bio sized U32_MAX, but it can
 886		 * happen when the page cache is able to feed us contiguous
 887		 * pages for large extents.
 888		 */
 889		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
 890			bio_ctrl->len_to_oe_boundary -= len;
 891
 892		/* Ordered extent boundary: move on to a new bio. */
 893		if (bio_ctrl->len_to_oe_boundary == 0)
 894			submit_one_bio(bio_ctrl);
 895	} while (size);
 
 
 896}
 897
 898static int attach_extent_buffer_folio(struct extent_buffer *eb,
 899				      struct folio *folio,
 900				      struct btrfs_subpage *prealloc)
 
 
 
 
 901{
 902	struct btrfs_fs_info *fs_info = eb->fs_info;
 903	int ret = 0;
 904
 905	/*
 906	 * If the page is mapped to btree inode, we should hold the private
 907	 * lock to prevent race.
 908	 * For cloned or dummy extent buffers, their pages are not mapped and
 909	 * will not race with any other ebs.
 910	 */
 911	if (folio->mapping)
 912		lockdep_assert_held(&folio->mapping->i_private_lock);
 913
 914	if (fs_info->nodesize >= PAGE_SIZE) {
 915		if (!folio_test_private(folio))
 916			folio_attach_private(folio, eb);
 917		else
 918			WARN_ON(folio_get_private(folio) != eb);
 919		return 0;
 920	}
 921
 922	/* Already mapped, just free prealloc */
 923	if (folio_test_private(folio)) {
 924		btrfs_free_subpage(prealloc);
 925		return 0;
 
 
 
 926	}
 
 
 927
 928	if (prealloc)
 929		/* Has preallocated memory for subpage */
 930		folio_attach_private(folio, prealloc);
 931	else
 932		/* Do new allocation to attach subpage */
 933		ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
 934	return ret;
 935}
 936
 937int set_page_extent_mapped(struct page *page)
 
 
 938{
 939	struct folio *folio = page_folio(page);
 940	struct btrfs_fs_info *fs_info;
 941
 942	ASSERT(page->mapping);
 
 
 
 
 
 
 
 
 943
 944	if (folio_test_private(folio))
 945		return 0;
 946
 947	fs_info = btrfs_sb(page->mapping->host->i_sb);
 
 
 
 
 
 
 
 948
 949	if (btrfs_is_subpage(fs_info, page->mapping))
 950		return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 951
 952	folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
 953	return 0;
 954}
 955
 956void clear_page_extent_mapped(struct page *page)
 
 
 
 
 
 
 
 
 
 957{
 958	struct folio *folio = page_folio(page);
 959	struct btrfs_fs_info *fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 960
 961	ASSERT(page->mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962
 963	if (!folio_test_private(folio))
 964		return;
 
 965
 966	fs_info = btrfs_sb(page->mapping->host->i_sb);
 967	if (btrfs_is_subpage(fs_info, page->mapping))
 968		return btrfs_detach_subpage(fs_info, folio);
 969
 970	folio_detach_private(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971}
 972
 973static struct extent_map *
 974__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
 975		 u64 start, u64 len, struct extent_map **em_cached)
 
 976{
 977	struct extent_map *em;
 978
 979	if (em_cached && *em_cached) {
 980		em = *em_cached;
 981		if (extent_map_in_tree(em) && start >= em->start &&
 982		    start < extent_map_end(em)) {
 983			refcount_inc(&em->refs);
 984			return em;
 985		}
 986
 987		free_extent_map(em);
 988		*em_cached = NULL;
 989	}
 990
 991	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
 992	if (em_cached && !IS_ERR(em)) {
 993		BUG_ON(*em_cached);
 994		refcount_inc(&em->refs);
 995		*em_cached = em;
 996	}
 997	return em;
 998}
 999/*
1000 * basic readpage implementation.  Locked extent state structs are inserted
1001 * into the tree that are removed when the IO is done (by the end_io
1002 * handlers)
1003 * XXX JDM: This needs looking at to ensure proper page locking
1004 * return 0 on success, otherwise return error
1005 */
1006static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
1007		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
 
 
 
 
1008{
1009	struct inode *inode = page->mapping->host;
1010	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1011	u64 start = page_offset(page);
1012	const u64 end = start + PAGE_SIZE - 1;
 
1013	u64 cur = start;
1014	u64 extent_offset;
1015	u64 last_byte = i_size_read(inode);
1016	u64 block_start;
 
 
1017	struct extent_map *em;
1018	int ret = 0;
 
 
 
1019	size_t pg_offset = 0;
1020	size_t iosize;
 
1021	size_t blocksize = inode->i_sb->s_blocksize;
1022	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1023
1024	ret = set_page_extent_mapped(page);
1025	if (ret < 0) {
1026		unlock_extent(tree, start, end, NULL);
1027		unlock_page(page);
1028		return ret;
 
 
 
 
1029	}
1030
1031	if (page->index == last_byte >> PAGE_SHIFT) {
1032		size_t zero_offset = offset_in_page(last_byte);
 
1033
1034		if (zero_offset) {
1035			iosize = PAGE_SIZE - zero_offset;
1036			memzero_page(page, zero_offset, iosize);
 
 
 
1037		}
1038	}
1039	bio_ctrl->end_io_func = end_bbio_data_read;
1040	begin_page_read(fs_info, page);
1041	while (cur <= end) {
1042		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1043		bool force_bio_submit = false;
1044		u64 disk_bytenr;
1045
1046		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1047		if (cur >= last_byte) {
1048			iosize = PAGE_SIZE - pg_offset;
1049			memzero_page(page, pg_offset, iosize);
1050			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1051			end_page_read(page, true, cur, iosize);
 
 
 
 
 
 
 
 
 
 
1052			break;
1053		}
1054		em = __get_extent_map(inode, page, pg_offset, cur,
1055				      end - cur + 1, em_cached);
1056		if (IS_ERR(em)) {
1057			unlock_extent(tree, cur, end, NULL);
1058			end_page_read(page, false, cur, end + 1 - cur);
1059			return PTR_ERR(em);
 
1060		}
1061		extent_offset = cur - em->start;
1062		BUG_ON(extent_map_end(em) <= cur);
1063		BUG_ON(end < cur);
1064
1065		compress_type = extent_map_compression(em);
 
 
 
 
1066
1067		iosize = min(extent_map_end(em) - cur, end - cur + 1);
 
1068		iosize = ALIGN(iosize, blocksize);
1069		if (compress_type != BTRFS_COMPRESS_NONE)
1070			disk_bytenr = em->block_start;
1071		else
1072			disk_bytenr = em->block_start + extent_offset;
 
 
 
 
1073		block_start = em->block_start;
1074		if (em->flags & EXTENT_FLAG_PREALLOC)
1075			block_start = EXTENT_MAP_HOLE;
1076
1077		/*
1078		 * If we have a file range that points to a compressed extent
1079		 * and it's followed by a consecutive file range that points
1080		 * to the same compressed extent (possibly with a different
1081		 * offset and/or length, so it either points to the whole extent
1082		 * or only part of it), we must make sure we do not submit a
1083		 * single bio to populate the pages for the 2 ranges because
1084		 * this makes the compressed extent read zero out the pages
1085		 * belonging to the 2nd range. Imagine the following scenario:
1086		 *
1087		 *  File layout
1088		 *  [0 - 8K]                     [8K - 24K]
1089		 *    |                               |
1090		 *    |                               |
1091		 * points to extent X,         points to extent X,
1092		 * offset 4K, length of 8K     offset 0, length 16K
1093		 *
1094		 * [extent X, compressed length = 4K uncompressed length = 16K]
1095		 *
1096		 * If the bio to read the compressed extent covers both ranges,
1097		 * it will decompress extent X into the pages belonging to the
1098		 * first range and then it will stop, zeroing out the remaining
1099		 * pages that belong to the other range that points to extent X.
1100		 * So here we make sure we submit 2 bios, one for the first
1101		 * range and another one for the third range. Both will target
1102		 * the same physical extent from disk, but we can't currently
1103		 * make the compressed bio endio callback populate the pages
1104		 * for both ranges because each compressed bio is tightly
1105		 * coupled with a single extent map, and each range can have
1106		 * an extent map with a different offset value relative to the
1107		 * uncompressed data of our extent and different lengths. This
1108		 * is a corner case so we prioritize correctness over
1109		 * non-optimal behavior (submitting 2 bios for the same extent).
1110		 */
1111		if (compress_type != BTRFS_COMPRESS_NONE &&
1112		    prev_em_start && *prev_em_start != (u64)-1 &&
1113		    *prev_em_start != em->start)
1114			force_bio_submit = true;
1115
1116		if (prev_em_start)
1117			*prev_em_start = em->start;
1118
1119		free_extent_map(em);
1120		em = NULL;
1121
1122		/* we've found a hole, just zero and go on */
1123		if (block_start == EXTENT_MAP_HOLE) {
1124			memzero_page(page, pg_offset, iosize);
 
1125
1126			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1127			end_page_read(page, true, cur, iosize);
 
 
 
 
 
 
 
1128			cur = cur + iosize;
1129			pg_offset += iosize;
1130			continue;
1131		}
1132		/* the get_extent function already copied into the page */
 
 
 
 
 
 
 
 
 
 
 
 
1133		if (block_start == EXTENT_MAP_INLINE) {
1134			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1135			end_page_read(page, true, cur, iosize);
 
1136			cur = cur + iosize;
1137			pg_offset += iosize;
1138			continue;
1139		}
1140
1141		if (bio_ctrl->compress_type != compress_type) {
1142			submit_one_bio(bio_ctrl);
1143			bio_ctrl->compress_type = compress_type;
 
 
 
 
 
 
 
 
 
 
 
1144		}
1145
1146		if (force_bio_submit)
1147			submit_one_bio(bio_ctrl);
1148		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1149				   pg_offset);
1150		cur = cur + iosize;
1151		pg_offset += iosize;
1152	}
1153
 
 
 
 
 
1154	return 0;
1155}
1156
1157int btrfs_read_folio(struct file *file, struct folio *folio)
1158{
1159	struct page *page = &folio->page;
1160	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1161	u64 start = page_offset(page);
1162	u64 end = start + PAGE_SIZE - 1;
1163	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1164	int ret;
1165
1166	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1167
1168	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
1169	/*
1170	 * If btrfs_do_readpage() failed we will want to submit the assembled
1171	 * bio to do the cleanup.
1172	 */
1173	submit_one_bio(&bio_ctrl);
1174	return ret;
1175}
1176
1177static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1178					u64 start, u64 end,
1179					struct extent_map **em_cached,
1180					struct btrfs_bio_ctrl *bio_ctrl,
1181					u64 *prev_em_start)
1182{
1183	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
 
1184	int index;
1185
1186	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
 
 
 
 
 
 
 
 
 
 
1187
1188	for (index = 0; index < nr_pages; index++) {
1189		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1190				  prev_em_start);
1191		put_page(pages[index]);
1192	}
1193}
1194
1195/*
1196 * helper for __extent_writepage, doing all of the delayed allocation setup.
1197 *
1198 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1199 * to write the page (copy into inline extent).  In this case the IO has
1200 * been started and the page is already unlocked.
1201 *
1202 * This returns 0 if all went well (page still locked)
1203 * This returns < 0 if there were errors (page still locked)
1204 */
1205static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1206		struct page *page, struct writeback_control *wbc)
1207{
1208	const u64 page_start = page_offset(page);
1209	const u64 page_end = page_start + PAGE_SIZE - 1;
1210	u64 delalloc_start = page_start;
1211	u64 delalloc_end = page_end;
1212	u64 delalloc_to_write = 0;
1213	int ret = 0;
1214
1215	while (delalloc_start < page_end) {
1216		delalloc_end = page_end;
1217		if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1218					      &delalloc_start, &delalloc_end)) {
1219			delalloc_start = delalloc_end + 1;
1220			continue;
 
 
 
 
 
 
 
 
 
 
 
1221		}
1222
1223		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1224					       delalloc_end, wbc);
1225		if (ret < 0)
1226			return ret;
1227
1228		delalloc_start = delalloc_end + 1;
1229	}
1230
1231	/*
1232	 * delalloc_end is already one less than the total length, so
1233	 * we don't subtract one from PAGE_SIZE
1234	 */
1235	delalloc_to_write +=
1236		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1237
1238	/*
1239	 * If btrfs_run_dealloc_range() already started I/O and unlocked
1240	 * the pages, we just need to account for them here.
1241	 */
1242	if (ret == 1) {
1243		wbc->nr_to_write -= delalloc_to_write;
1244		return 1;
1245	}
1246
1247	if (wbc->nr_to_write < delalloc_to_write) {
1248		int thresh = 8192;
1249
1250		if (delalloc_to_write < thresh * 2)
1251			thresh = delalloc_to_write;
1252		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1253					 thresh);
 
 
 
 
1254	}
1255
1256	return 0;
 
 
1257}
1258
1259/*
1260 * Find the first byte we need to write.
1261 *
1262 * For subpage, one page can contain several sectors, and
1263 * __extent_writepage_io() will just grab all extent maps in the page
1264 * range and try to submit all non-inline/non-compressed extents.
1265 *
1266 * This is a big problem for subpage, we shouldn't re-submit already written
1267 * data at all.
1268 * This function will lookup subpage dirty bit to find which range we really
1269 * need to submit.
1270 *
1271 * Return the next dirty range in [@start, @end).
1272 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1273 */
1274static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1275				 struct page *page, u64 *start, u64 *end)
1276{
1277	struct folio *folio = page_folio(page);
1278	struct btrfs_subpage *subpage = folio_get_private(folio);
1279	struct btrfs_subpage_info *spi = fs_info->subpage_info;
1280	u64 orig_start = *start;
1281	/* Declare as unsigned long so we can use bitmap ops */
1282	unsigned long flags;
1283	int range_start_bit;
1284	int range_end_bit;
1285
1286	/*
1287	 * For regular sector size == page size case, since one page only
1288	 * contains one sector, we return the page offset directly.
1289	 */
1290	if (!btrfs_is_subpage(fs_info, page->mapping)) {
1291		*start = page_offset(page);
1292		*end = page_offset(page) + PAGE_SIZE;
1293		return;
1294	}
1295
1296	range_start_bit = spi->dirty_offset +
1297			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
 
 
 
 
1298
1299	/* We should have the page locked, but just in case */
1300	spin_lock_irqsave(&subpage->lock, flags);
1301	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1302			       spi->dirty_offset + spi->bitmap_nr_bits);
1303	spin_unlock_irqrestore(&subpage->lock, flags);
 
1304
1305	range_start_bit -= spi->dirty_offset;
1306	range_end_bit -= spi->dirty_offset;
 
 
 
 
1307
1308	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1309	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
 
 
 
 
 
 
1310}
1311
1312/*
1313 * helper for __extent_writepage.  This calls the writepage start hooks,
1314 * and does the loop to map the page into extents and bios.
1315 *
1316 * We return 1 if the IO is started and the page is unlocked,
1317 * 0 if all went well (page still locked)
1318 * < 0 if there were errors (page still locked)
1319 */
1320static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1321				 struct page *page,
1322				 struct btrfs_bio_ctrl *bio_ctrl,
1323				 loff_t i_size,
1324				 int *nr_ret)
1325{
1326	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1327	u64 cur = page_offset(page);
1328	u64 end = cur + PAGE_SIZE - 1;
 
 
1329	u64 extent_offset;
 
1330	u64 block_start;
 
 
 
1331	struct extent_map *em;
1332	int ret = 0;
 
1333	int nr = 0;
 
 
 
 
 
 
 
 
 
 
 
1334
1335	ret = btrfs_writepage_cow_fixup(page);
1336	if (ret) {
1337		/* Fixup worker will requeue */
1338		redirty_page_for_writepage(bio_ctrl->wbc, page);
1339		unlock_page(page);
1340		return 1;
1341	}
1342
1343	bio_ctrl->end_io_func = end_bbio_data_write;
1344	while (cur <= end) {
1345		u32 len = end - cur + 1;
1346		u64 disk_bytenr;
1347		u64 em_end;
1348		u64 dirty_range_start = cur;
1349		u64 dirty_range_end;
1350		u32 iosize;
1351
1352		if (cur >= i_size) {
1353			btrfs_mark_ordered_io_finished(inode, page, cur, len,
1354						       true);
1355			/*
1356			 * This range is beyond i_size, thus we don't need to
1357			 * bother writing back.
1358			 * But we still need to clear the dirty subpage bit, or
1359			 * the next time the page gets dirtied, we will try to
1360			 * writeback the sectors with subpage dirty bits,
1361			 * causing writeback without ordered extent.
1362			 */
1363			btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, len);
1364			break;
1365		}
1366
1367		find_next_dirty_byte(fs_info, page, &dirty_range_start,
1368				     &dirty_range_end);
1369		if (cur < dirty_range_start) {
1370			cur = dirty_range_start;
1371			continue;
1372		}
1373
1374		em = btrfs_get_extent(inode, NULL, 0, cur, len);
1375		if (IS_ERR(em)) {
1376			ret = PTR_ERR_OR_ZERO(em);
1377			goto out_error;
1378		}
1379
1380		extent_offset = cur - em->start;
1381		em_end = extent_map_end(em);
1382		ASSERT(cur <= em_end);
1383		ASSERT(cur < end);
1384		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1385		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
 
1386
1387		block_start = em->block_start;
1388		disk_bytenr = em->block_start + extent_offset;
 
 
 
 
 
 
 
 
1389
1390		ASSERT(!extent_map_is_compressed(em));
1391		ASSERT(block_start != EXTENT_MAP_HOLE);
1392		ASSERT(block_start != EXTENT_MAP_INLINE);
1393
 
 
 
 
 
 
 
 
1394		/*
1395		 * Note that em_end from extent_map_end() and dirty_range_end from
1396		 * find_next_dirty_byte() are all exclusive
1397		 */
1398		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1399		free_extent_map(em);
1400		em = NULL;
1401
1402		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1403		if (!PageWriteback(page)) {
1404			btrfs_err(inode->root->fs_info,
1405				   "page %lu not writeback, cur %llu end %llu",
1406			       page->index, cur, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407		}
 
 
1408
1409		/*
1410		 * Although the PageDirty bit is cleared before entering this
1411		 * function, subpage dirty bit is not cleared.
1412		 * So clear subpage dirty bit here so next time we won't submit
1413		 * page for range already written to disk.
1414		 */
1415		btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, iosize);
1416
1417		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1418				   cur - page_offset(page));
1419		cur += iosize;
1420		nr++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421	}
1422
1423	btrfs_folio_assert_not_dirty(fs_info, page_folio(page));
1424	*nr_ret = nr;
1425	return 0;
1426
1427out_error:
1428	/*
1429	 * If we finish without problem, we should not only clear page dirty,
1430	 * but also empty subpage dirty bits
1431	 */
1432	*nr_ret = nr;
1433	return ret;
1434}
1435
1436/*
1437 * the writepage semantics are similar to regular writepage.  extent
1438 * records are inserted to lock ranges in the tree, and as dirty areas
1439 * are found, they are marked writeback.  Then the lock bits are removed
1440 * and the end_io handler clears the writeback ranges
1441 *
1442 * Return 0 if everything goes well.
1443 * Return <0 for error.
1444 */
1445static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1446{
1447	struct folio *folio = page_folio(page);
1448	struct inode *inode = page->mapping->host;
1449	const u64 page_start = page_offset(page);
1450	int ret;
1451	int nr = 0;
1452	size_t pg_offset;
1453	loff_t i_size = i_size_read(inode);
1454	unsigned long end_index = i_size >> PAGE_SHIFT;
1455
1456	trace___extent_writepage(page, inode, bio_ctrl->wbc);
 
 
 
 
 
 
1457
1458	WARN_ON(!PageLocked(page));
1459
1460	pg_offset = offset_in_page(i_size);
1461	if (page->index > end_index ||
1462	   (page->index == end_index && !pg_offset)) {
1463		folio_invalidate(folio, 0, folio_size(folio));
1464		folio_unlock(folio);
1465		return 0;
1466	}
 
 
 
 
 
 
1467
1468	if (page->index == end_index)
1469		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
 
 
 
 
 
 
 
 
 
1470
1471	ret = set_page_extent_mapped(page);
1472	if (ret < 0)
1473		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1474
1475	ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1476	if (ret == 1)
1477		return 0;
1478	if (ret)
1479		goto done;
 
 
 
 
 
 
1480
1481	ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1482	if (ret == 1)
1483		return 0;
 
 
 
 
 
 
 
1484
1485	bio_ctrl->wbc->nr_to_write--;
 
 
 
 
 
1486
 
 
 
 
 
 
 
 
 
 
 
 
1487done:
1488	if (nr == 0) {
1489		/* make sure the mapping tag for page dirty gets cleared */
1490		set_page_writeback(page);
1491		end_page_writeback(page);
1492	}
1493	if (ret) {
1494		btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1495					       PAGE_SIZE, !ret);
1496		mapping_set_error(page->mapping, ret);
1497	}
1498	unlock_page(page);
1499	ASSERT(ret <= 0);
1500	return ret;
 
 
 
 
 
 
 
 
 
 
1501}
1502
1503void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1504{
1505	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1506		       TASK_UNINTERRUPTIBLE);
1507}
1508
1509/*
1510 * Lock extent buffer status and pages for writeback.
1511 *
1512 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1513 * extent buffer is not dirty)
1514 * Return %true is the extent buffer is submitted to bio.
1515 */
1516static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1517			  struct writeback_control *wbc)
1518{
1519	struct btrfs_fs_info *fs_info = eb->fs_info;
1520	bool ret = false;
 
1521
1522	btrfs_tree_lock(eb);
1523	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1524		btrfs_tree_unlock(eb);
1525		if (wbc->sync_mode != WB_SYNC_ALL)
1526			return false;
1527		wait_on_extent_buffer_writeback(eb);
1528		btrfs_tree_lock(eb);
1529	}
1530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531	/*
1532	 * We need to do this to prevent races in people who check if the eb is
1533	 * under IO since we can end up having no IO bits set for a short period
1534	 * of time.
1535	 */
1536	spin_lock(&eb->refs_lock);
1537	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1538		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1539		spin_unlock(&eb->refs_lock);
1540		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1541		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1542					 -eb->len,
1543					 fs_info->dirty_metadata_batch);
1544		ret = true;
1545	} else {
1546		spin_unlock(&eb->refs_lock);
1547	}
1548	btrfs_tree_unlock(eb);
1549	return ret;
1550}
1551
1552static void set_btree_ioerr(struct extent_buffer *eb)
1553{
1554	struct btrfs_fs_info *fs_info = eb->fs_info;
1555
1556	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1557
1558	/*
1559	 * A read may stumble upon this buffer later, make sure that it gets an
1560	 * error and knows there was an error.
1561	 */
1562	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1563
1564	/*
1565	 * We need to set the mapping with the io error as well because a write
1566	 * error will flip the file system readonly, and then syncfs() will
1567	 * return a 0 because we are readonly if we don't modify the err seq for
1568	 * the superblock.
1569	 */
1570	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1571
1572	/*
1573	 * If writeback for a btree extent that doesn't belong to a log tree
1574	 * failed, increment the counter transaction->eb_write_errors.
1575	 * We do this because while the transaction is running and before it's
1576	 * committing (when we call filemap_fdata[write|wait]_range against
1577	 * the btree inode), we might have
1578	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1579	 * returns an error or an error happens during writeback, when we're
1580	 * committing the transaction we wouldn't know about it, since the pages
1581	 * can be no longer dirty nor marked anymore for writeback (if a
1582	 * subsequent modification to the extent buffer didn't happen before the
1583	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1584	 * able to find the pages tagged with SetPageError at transaction
1585	 * commit time. So if this happens we must abort the transaction,
1586	 * otherwise we commit a super block with btree roots that point to
1587	 * btree nodes/leafs whose content on disk is invalid - either garbage
1588	 * or the content of some node/leaf from a past generation that got
1589	 * cowed or deleted and is no longer valid.
1590	 *
1591	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1592	 * not be enough - we need to distinguish between log tree extents vs
1593	 * non-log tree extents, and the next filemap_fdatawait_range() call
1594	 * will catch and clear such errors in the mapping - and that call might
1595	 * be from a log sync and not from a transaction commit. Also, checking
1596	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1597	 * not done and would not be reliable - the eb might have been released
1598	 * from memory and reading it back again means that flag would not be
1599	 * set (since it's a runtime flag, not persisted on disk).
1600	 *
1601	 * Using the flags below in the btree inode also makes us achieve the
1602	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1603	 * writeback for all dirty pages and before filemap_fdatawait_range()
1604	 * is called, the writeback for all dirty pages had already finished
1605	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1606	 * filemap_fdatawait_range() would return success, as it could not know
1607	 * that writeback errors happened (the pages were no longer tagged for
1608	 * writeback).
1609	 */
1610	switch (eb->log_index) {
1611	case -1:
1612		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1613		break;
1614	case 0:
1615		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1616		break;
1617	case 1:
1618		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1619		break;
1620	default:
1621		BUG(); /* unexpected, logic error */
1622	}
1623}
1624
1625/*
1626 * The endio specific version which won't touch any unsafe spinlock in endio
1627 * context.
1628 */
1629static struct extent_buffer *find_extent_buffer_nolock(
1630		struct btrfs_fs_info *fs_info, u64 start)
1631{
1632	struct extent_buffer *eb;
1633
1634	rcu_read_lock();
1635	eb = radix_tree_lookup(&fs_info->buffer_radix,
1636			       start >> fs_info->sectorsize_bits);
1637	if (eb && atomic_inc_not_zero(&eb->refs)) {
1638		rcu_read_unlock();
1639		return eb;
1640	}
1641	rcu_read_unlock();
1642	return NULL;
1643}
1644
1645static void end_bbio_meta_write(struct btrfs_bio *bbio)
1646{
1647	struct extent_buffer *eb = bbio->private;
1648	struct btrfs_fs_info *fs_info = eb->fs_info;
1649	bool uptodate = !bbio->bio.bi_status;
1650	struct folio_iter fi;
1651	u32 bio_offset = 0;
1652
1653	if (!uptodate)
1654		set_btree_ioerr(eb);
1655
1656	bio_for_each_folio_all(fi, &bbio->bio) {
1657		u64 start = eb->start + bio_offset;
1658		struct folio *folio = fi.folio;
1659		u32 len = fi.length;
1660
1661		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1662		bio_offset += len;
1663	}
1664
1665	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1666	smp_mb__after_atomic();
1667	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1668
1669	bio_put(&bbio->bio);
1670}
1671
1672static void prepare_eb_write(struct extent_buffer *eb)
1673{
1674	u32 nritems;
1675	unsigned long start;
1676	unsigned long end;
1677
1678	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1679
1680	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1681	nritems = btrfs_header_nritems(eb);
1682	if (btrfs_header_level(eb) > 0) {
1683		end = btrfs_node_key_ptr_offset(eb, nritems);
1684		memzero_extent_buffer(eb, end, eb->len - end);
1685	} else {
1686		/*
1687		 * Leaf:
1688		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1689		 */
1690		start = btrfs_item_nr_offset(eb, nritems);
1691		end = btrfs_item_nr_offset(eb, 0);
1692		if (nritems == 0)
1693			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1694		else
1695			end += btrfs_item_offset(eb, nritems - 1);
1696		memzero_extent_buffer(eb, start, end - start);
1697	}
1698}
1699
1700static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1701					    struct writeback_control *wbc)
1702{
1703	struct btrfs_fs_info *fs_info = eb->fs_info;
1704	struct btrfs_bio *bbio;
1705
1706	prepare_eb_write(eb);
1707
1708	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1709			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1710			       eb->fs_info, end_bbio_meta_write, eb);
1711	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1712	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1713	wbc_init_bio(wbc, &bbio->bio);
1714	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1715	bbio->file_offset = eb->start;
1716	if (fs_info->nodesize < PAGE_SIZE) {
1717		struct folio *folio = eb->folios[0];
1718		bool ret;
1719
1720		folio_lock(folio);
1721		btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1722		if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1723						       eb->len)) {
1724			folio_clear_dirty_for_io(folio);
1725			wbc->nr_to_write--;
1726		}
1727		ret = bio_add_folio(&bbio->bio, folio, eb->len,
1728				    eb->start - folio_pos(folio));
1729		ASSERT(ret);
1730		wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len);
1731		folio_unlock(folio);
1732	} else {
1733		int num_folios = num_extent_folios(eb);
1734
1735		for (int i = 0; i < num_folios; i++) {
1736			struct folio *folio = eb->folios[i];
1737			bool ret;
1738
1739			folio_lock(folio);
1740			folio_clear_dirty_for_io(folio);
1741			folio_start_writeback(folio);
1742			ret = bio_add_folio(&bbio->bio, folio, folio_size(folio), 0);
1743			ASSERT(ret);
1744			wbc_account_cgroup_owner(wbc, folio_page(folio, 0),
1745						 folio_size(folio));
1746			wbc->nr_to_write -= folio_nr_pages(folio);
1747			folio_unlock(folio);
1748		}
1749	}
1750	btrfs_submit_bio(bbio, 0);
1751}
1752
1753/*
1754 * Submit one subpage btree page.
1755 *
1756 * The main difference to submit_eb_page() is:
1757 * - Page locking
1758 *   For subpage, we don't rely on page locking at all.
1759 *
1760 * - Flush write bio
1761 *   We only flush bio if we may be unable to fit current extent buffers into
1762 *   current bio.
1763 *
1764 * Return >=0 for the number of submitted extent buffers.
1765 * Return <0 for fatal error.
1766 */
1767static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1768{
1769	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1770	struct folio *folio = page_folio(page);
1771	int submitted = 0;
1772	u64 page_start = page_offset(page);
1773	int bit_start = 0;
1774	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1775
1776	/* Lock and write each dirty extent buffers in the range */
1777	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1778		struct btrfs_subpage *subpage = folio_get_private(folio);
1779		struct extent_buffer *eb;
1780		unsigned long flags;
1781		u64 start;
1782
1783		/*
1784		 * Take private lock to ensure the subpage won't be detached
1785		 * in the meantime.
1786		 */
1787		spin_lock(&page->mapping->i_private_lock);
1788		if (!folio_test_private(folio)) {
1789			spin_unlock(&page->mapping->i_private_lock);
1790			break;
1791		}
1792		spin_lock_irqsave(&subpage->lock, flags);
1793		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1794			      subpage->bitmaps)) {
1795			spin_unlock_irqrestore(&subpage->lock, flags);
1796			spin_unlock(&page->mapping->i_private_lock);
1797			bit_start++;
1798			continue;
1799		}
1800
1801		start = page_start + bit_start * fs_info->sectorsize;
1802		bit_start += sectors_per_node;
1803
1804		/*
1805		 * Here we just want to grab the eb without touching extra
1806		 * spin locks, so call find_extent_buffer_nolock().
1807		 */
1808		eb = find_extent_buffer_nolock(fs_info, start);
1809		spin_unlock_irqrestore(&subpage->lock, flags);
1810		spin_unlock(&page->mapping->i_private_lock);
1811
1812		/*
1813		 * The eb has already reached 0 refs thus find_extent_buffer()
1814		 * doesn't return it. We don't need to write back such eb
1815		 * anyway.
1816		 */
1817		if (!eb)
1818			continue;
1819
1820		if (lock_extent_buffer_for_io(eb, wbc)) {
1821			write_one_eb(eb, wbc);
1822			submitted++;
1823		}
1824		free_extent_buffer(eb);
1825	}
1826	return submitted;
1827}
1828
1829/*
1830 * Submit all page(s) of one extent buffer.
1831 *
1832 * @page:	the page of one extent buffer
1833 * @eb_context:	to determine if we need to submit this page, if current page
1834 *		belongs to this eb, we don't need to submit
1835 *
1836 * The caller should pass each page in their bytenr order, and here we use
1837 * @eb_context to determine if we have submitted pages of one extent buffer.
1838 *
1839 * If we have, we just skip until we hit a new page that doesn't belong to
1840 * current @eb_context.
1841 *
1842 * If not, we submit all the page(s) of the extent buffer.
1843 *
1844 * Return >0 if we have submitted the extent buffer successfully.
1845 * Return 0 if we don't need to submit the page, as it's already submitted by
1846 * previous call.
1847 * Return <0 for fatal error.
1848 */
1849static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1850{
1851	struct writeback_control *wbc = ctx->wbc;
1852	struct address_space *mapping = page->mapping;
1853	struct folio *folio = page_folio(page);
1854	struct extent_buffer *eb;
1855	int ret;
1856
1857	if (!folio_test_private(folio))
1858		return 0;
1859
1860	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
1861		return submit_eb_subpage(page, wbc);
1862
1863	spin_lock(&mapping->i_private_lock);
1864	if (!folio_test_private(folio)) {
1865		spin_unlock(&mapping->i_private_lock);
1866		return 0;
1867	}
1868
1869	eb = folio_get_private(folio);
1870
1871	/*
1872	 * Shouldn't happen and normally this would be a BUG_ON but no point
1873	 * crashing the machine for something we can survive anyway.
1874	 */
1875	if (WARN_ON(!eb)) {
1876		spin_unlock(&mapping->i_private_lock);
1877		return 0;
1878	}
 
 
 
 
1879
1880	if (eb == ctx->eb) {
1881		spin_unlock(&mapping->i_private_lock);
1882		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1883	}
1884	ret = atomic_inc_not_zero(&eb->refs);
1885	spin_unlock(&mapping->i_private_lock);
1886	if (!ret)
1887		return 0;
1888
1889	ctx->eb = eb;
1890
1891	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1892	if (ret) {
1893		if (ret == -EBUSY)
1894			ret = 0;
1895		free_extent_buffer(eb);
1896		return ret;
1897	}
1898
1899	if (!lock_extent_buffer_for_io(eb, wbc)) {
1900		free_extent_buffer(eb);
1901		return 0;
1902	}
1903	/* Implies write in zoned mode. */
1904	if (ctx->zoned_bg) {
1905		/* Mark the last eb in the block group. */
1906		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1907		ctx->zoned_bg->meta_write_pointer += eb->len;
1908	}
1909	write_one_eb(eb, wbc);
1910	free_extent_buffer(eb);
1911	return 1;
1912}
1913
1914int btree_write_cache_pages(struct address_space *mapping,
1915				   struct writeback_control *wbc)
1916{
1917	struct btrfs_eb_write_context ctx = { .wbc = wbc };
1918	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
 
 
 
 
 
 
 
 
1919	int ret = 0;
1920	int done = 0;
1921	int nr_to_write_done = 0;
1922	struct folio_batch fbatch;
1923	unsigned int nr_folios;
1924	pgoff_t index;
1925	pgoff_t end;		/* Inclusive */
1926	int scanned = 0;
1927	xa_mark_t tag;
1928
1929	folio_batch_init(&fbatch);
1930	if (wbc->range_cyclic) {
1931		index = mapping->writeback_index; /* Start from prev offset */
1932		end = -1;
1933		/*
1934		 * Start from the beginning does not need to cycle over the
1935		 * range, mark it as scanned.
1936		 */
1937		scanned = (index == 0);
1938	} else {
1939		index = wbc->range_start >> PAGE_SHIFT;
1940		end = wbc->range_end >> PAGE_SHIFT;
1941		scanned = 1;
1942	}
1943	if (wbc->sync_mode == WB_SYNC_ALL)
1944		tag = PAGECACHE_TAG_TOWRITE;
1945	else
1946		tag = PAGECACHE_TAG_DIRTY;
1947	btrfs_zoned_meta_io_lock(fs_info);
1948retry:
1949	if (wbc->sync_mode == WB_SYNC_ALL)
1950		tag_pages_for_writeback(mapping, index, end);
1951	while (!done && !nr_to_write_done && (index <= end) &&
1952	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1953					    tag, &fbatch))) {
1954		unsigned i;
1955
1956		for (i = 0; i < nr_folios; i++) {
1957			struct folio *folio = fbatch.folios[i];
 
1958
1959			ret = submit_eb_page(&folio->page, &ctx);
1960			if (ret == 0)
1961				continue;
1962			if (ret < 0) {
 
1963				done = 1;
1964				break;
1965			}
1966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1967			/*
1968			 * the filesystem may choose to bump up nr_to_write.
1969			 * We have to make sure to honor the new nr_to_write
1970			 * at any time
1971			 */
1972			nr_to_write_done = wbc->nr_to_write <= 0;
1973		}
1974		folio_batch_release(&fbatch);
1975		cond_resched();
1976	}
1977	if (!scanned && !done) {
1978		/*
1979		 * We hit the last page and there is more work to be done: wrap
1980		 * back to the start of the file
1981		 */
1982		scanned = 1;
1983		index = 0;
1984		goto retry;
1985	}
1986	/*
1987	 * If something went wrong, don't allow any metadata write bio to be
1988	 * submitted.
1989	 *
1990	 * This would prevent use-after-free if we had dirty pages not
1991	 * cleaned up, which can still happen by fuzzed images.
1992	 *
1993	 * - Bad extent tree
1994	 *   Allowing existing tree block to be allocated for other trees.
1995	 *
1996	 * - Log tree operations
1997	 *   Exiting tree blocks get allocated to log tree, bumps its
1998	 *   generation, then get cleaned in tree re-balance.
1999	 *   Such tree block will not be written back, since it's clean,
2000	 *   thus no WRITTEN flag set.
2001	 *   And after log writes back, this tree block is not traced by
2002	 *   any dirty extent_io_tree.
2003	 *
2004	 * - Offending tree block gets re-dirtied from its original owner
2005	 *   Since it has bumped generation, no WRITTEN flag, it can be
2006	 *   reused without COWing. This tree block will not be traced
2007	 *   by btrfs_transaction::dirty_pages.
2008	 *
2009	 *   Now such dirty tree block will not be cleaned by any dirty
2010	 *   extent io tree. Thus we don't want to submit such wild eb
2011	 *   if the fs already has error.
2012	 *
2013	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2014	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2015	 */
2016	if (ret > 0)
2017		ret = 0;
2018	if (!ret && BTRFS_FS_ERROR(fs_info))
2019		ret = -EROFS;
2020
2021	if (ctx.zoned_bg)
2022		btrfs_put_block_group(ctx.zoned_bg);
2023	btrfs_zoned_meta_io_unlock(fs_info);
2024	return ret;
2025}
2026
2027/*
2028 * Walk the list of dirty pages of the given address space and write all of them.
2029 *
2030 * @mapping:   address space structure to write
2031 * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2032 * @bio_ctrl:  holds context for the write, namely the bio
2033 *
2034 * If a page is already under I/O, write_cache_pages() skips it, even
2035 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2036 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2037 * and msync() need to guarantee that all the data which was dirty at the time
2038 * the call was made get new I/O started against them.  If wbc->sync_mode is
2039 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2040 * existing IO to complete.
2041 */
2042static int extent_write_cache_pages(struct address_space *mapping,
2043			     struct btrfs_bio_ctrl *bio_ctrl)
 
 
 
2044{
2045	struct writeback_control *wbc = bio_ctrl->wbc;
2046	struct inode *inode = mapping->host;
2047	int ret = 0;
2048	int done = 0;
2049	int nr_to_write_done = 0;
2050	struct folio_batch fbatch;
2051	unsigned int nr_folios;
2052	pgoff_t index;
2053	pgoff_t end;		/* Inclusive */
2054	pgoff_t done_index;
2055	int range_whole = 0;
2056	int scanned = 0;
2057	xa_mark_t tag;
2058
2059	/*
2060	 * We have to hold onto the inode so that ordered extents can do their
2061	 * work when the IO finishes.  The alternative to this is failing to add
2062	 * an ordered extent if the igrab() fails there and that is a huge pain
2063	 * to deal with, so instead just hold onto the inode throughout the
2064	 * writepages operation.  If it fails here we are freeing up the inode
2065	 * anyway and we'd rather not waste our time writing out stuff that is
2066	 * going to be truncated anyway.
2067	 */
2068	if (!igrab(inode))
2069		return 0;
2070
2071	folio_batch_init(&fbatch);
2072	if (wbc->range_cyclic) {
2073		index = mapping->writeback_index; /* Start from prev offset */
2074		end = -1;
2075		/*
2076		 * Start from the beginning does not need to cycle over the
2077		 * range, mark it as scanned.
2078		 */
2079		scanned = (index == 0);
2080	} else {
2081		index = wbc->range_start >> PAGE_SHIFT;
2082		end = wbc->range_end >> PAGE_SHIFT;
2083		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2084			range_whole = 1;
2085		scanned = 1;
2086	}
2087
2088	/*
2089	 * We do the tagged writepage as long as the snapshot flush bit is set
2090	 * and we are the first one who do the filemap_flush() on this inode.
2091	 *
2092	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2093	 * not race in and drop the bit.
2094	 */
2095	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2096	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2097			       &BTRFS_I(inode)->runtime_flags))
2098		wbc->tagged_writepages = 1;
2099
2100	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2101		tag = PAGECACHE_TAG_TOWRITE;
2102	else
2103		tag = PAGECACHE_TAG_DIRTY;
2104retry:
2105	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2106		tag_pages_for_writeback(mapping, index, end);
2107	done_index = index;
2108	while (!done && !nr_to_write_done && (index <= end) &&
2109			(nr_folios = filemap_get_folios_tag(mapping, &index,
2110							end, tag, &fbatch))) {
2111		unsigned i;
2112
2113		for (i = 0; i < nr_folios; i++) {
2114			struct folio *folio = fbatch.folios[i];
 
2115
2116			done_index = folio_next_index(folio);
2117			/*
2118			 * At this point we hold neither the i_pages lock nor
2119			 * the page lock: the page may be truncated or
2120			 * invalidated (changing page->mapping to NULL),
2121			 * or even swizzled back from swapper_space to
2122			 * tmpfs file mapping
2123			 */
2124			if (!folio_trylock(folio)) {
2125				submit_write_bio(bio_ctrl, 0);
2126				folio_lock(folio);
2127			}
2128
2129			if (unlikely(folio->mapping != mapping)) {
2130				folio_unlock(folio);
2131				continue;
2132			}
2133
2134			if (!folio_test_dirty(folio)) {
2135				/* Someone wrote it for us. */
2136				folio_unlock(folio);
2137				continue;
2138			}
2139
2140			if (wbc->sync_mode != WB_SYNC_NONE) {
2141				if (folio_test_writeback(folio))
2142					submit_write_bio(bio_ctrl, 0);
2143				folio_wait_writeback(folio);
2144			}
2145
2146			if (folio_test_writeback(folio) ||
2147			    !folio_clear_dirty_for_io(folio)) {
2148				folio_unlock(folio);
2149				continue;
2150			}
2151
2152			ret = __extent_writepage(&folio->page, bio_ctrl);
2153			if (ret < 0) {
2154				done = 1;
2155				break;
 
2156			}
 
 
2157
2158			/*
2159			 * The filesystem may choose to bump up nr_to_write.
2160			 * We have to make sure to honor the new nr_to_write
2161			 * at any time.
2162			 */
2163			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2164					    wbc->nr_to_write <= 0);
2165		}
2166		folio_batch_release(&fbatch);
2167		cond_resched();
2168	}
2169	if (!scanned && !done) {
2170		/*
2171		 * We hit the last page and there is more work to be done: wrap
2172		 * back to the start of the file
2173		 */
2174		scanned = 1;
2175		index = 0;
2176
2177		/*
2178		 * If we're looping we could run into a page that is locked by a
2179		 * writer and that writer could be waiting on writeback for a
2180		 * page in our current bio, and thus deadlock, so flush the
2181		 * write bio here.
2182		 */
2183		submit_write_bio(bio_ctrl, 0);
2184		goto retry;
2185	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186
2187	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2188		mapping->writeback_index = done_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
2189
2190	btrfs_add_delayed_iput(BTRFS_I(inode));
2191	return ret;
2192}
2193
2194/*
2195 * Submit the pages in the range to bio for call sites which delalloc range has
2196 * already been ran (aka, ordered extent inserted) and all pages are still
2197 * locked.
2198 */
2199void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2200			       u64 start, u64 end, struct writeback_control *wbc,
2201			       bool pages_dirty)
2202{
2203	bool found_error = false;
2204	int ret = 0;
2205	struct address_space *mapping = inode->i_mapping;
2206	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2207	const u32 sectorsize = fs_info->sectorsize;
2208	loff_t i_size = i_size_read(inode);
2209	u64 cur = start;
2210	struct btrfs_bio_ctrl bio_ctrl = {
2211		.wbc = wbc,
2212		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2213	};
2214
2215	if (wbc->no_cgroup_owner)
2216		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2217
2218	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
 
 
 
 
 
 
 
 
 
 
 
 
 
2219
2220	while (cur <= end) {
2221		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2222		u32 cur_len = cur_end + 1 - cur;
2223		struct page *page;
2224		int nr = 0;
2225
2226		page = find_get_page(mapping, cur >> PAGE_SHIFT);
2227		ASSERT(PageLocked(page));
2228		if (pages_dirty && page != locked_page) {
2229			ASSERT(PageDirty(page));
2230			clear_page_dirty_for_io(page);
2231		}
2232
2233		ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2234					    i_size, &nr);
2235		if (ret == 1)
2236			goto next_page;
2237
2238		/* Make sure the mapping tag for page dirty gets cleared. */
2239		if (nr == 0) {
2240			set_page_writeback(page);
2241			end_page_writeback(page);
2242		}
2243		if (ret) {
2244			btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2245						       cur, cur_len, !ret);
2246			mapping_set_error(page->mapping, ret);
2247		}
2248		btrfs_folio_unlock_writer(fs_info, page_folio(page), cur, cur_len);
2249		if (ret < 0)
2250			found_error = true;
2251next_page:
2252		put_page(page);
2253		cur = cur_end + 1;
2254	}
2255
2256	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
 
2257}
2258
2259int extent_writepages(struct address_space *mapping,
 
 
2260		      struct writeback_control *wbc)
2261{
2262	struct inode *inode = mapping->host;
2263	int ret = 0;
2264	struct btrfs_bio_ctrl bio_ctrl = {
2265		.wbc = wbc,
2266		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
 
 
 
 
2267	};
2268
2269	/*
2270	 * Allow only a single thread to do the reloc work in zoned mode to
2271	 * protect the write pointer updates.
2272	 */
2273	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2274	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2275	submit_write_bio(&bio_ctrl, ret);
2276	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2277	return ret;
2278}
2279
2280void extent_readahead(struct readahead_control *rac)
2281{
2282	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
 
 
 
 
 
2283	struct page *pagepool[16];
 
2284	struct extent_map *em_cached = NULL;
2285	u64 prev_em_start = (u64)-1;
2286	int nr;
2287
2288	while ((nr = readahead_page_batch(rac, pagepool))) {
2289		u64 contig_start = readahead_pos(rac);
2290		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2291
2292		contiguous_readpages(pagepool, nr, contig_start, contig_end,
2293				&em_cached, &bio_ctrl, &prev_em_start);
2294	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2295
2296	if (em_cached)
2297		free_extent_map(em_cached);
2298	submit_one_bio(&bio_ctrl);
 
 
 
 
2299}
2300
2301/*
2302 * basic invalidate_folio code, this waits on any locked or writeback
2303 * ranges corresponding to the folio, and then deletes any extent state
2304 * records from the tree
2305 */
2306int extent_invalidate_folio(struct extent_io_tree *tree,
2307			  struct folio *folio, size_t offset)
2308{
2309	struct extent_state *cached_state = NULL;
2310	u64 start = folio_pos(folio);
2311	u64 end = start + folio_size(folio) - 1;
2312	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
2313
2314	/* This function is only called for the btree inode */
2315	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2316
2317	start += ALIGN(offset, blocksize);
2318	if (start > end)
2319		return 0;
2320
2321	lock_extent(tree, start, end, &cached_state);
2322	folio_wait_writeback(folio);
2323
2324	/*
2325	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2326	 * so here we only need to unlock the extent range to free any
2327	 * existing extent state.
2328	 */
2329	unlock_extent(tree, start, end, &cached_state);
2330	return 0;
2331}
2332
2333/*
2334 * a helper for release_folio, this tests for areas of the page that
2335 * are locked or under IO and drops the related state bits if it is safe
2336 * to drop the page.
2337 */
2338static int try_release_extent_state(struct extent_io_tree *tree,
 
2339				    struct page *page, gfp_t mask)
2340{
2341	u64 start = page_offset(page);
2342	u64 end = start + PAGE_SIZE - 1;
2343	int ret = 1;
2344
2345	if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
 
2346		ret = 0;
2347	} else {
2348		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2349				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2350				   EXTENT_QGROUP_RESERVED);
2351
2352		/*
2353		 * At this point we can safely clear everything except the
2354		 * locked bit, the nodatasum bit and the delalloc new bit.
2355		 * The delalloc new bit will be cleared by ordered extent
2356		 * completion.
2357		 */
2358		ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
 
 
2359
2360		/* if clear_extent_bit failed for enomem reasons,
2361		 * we can't allow the release to continue.
2362		 */
2363		if (ret < 0)
2364			ret = 0;
2365		else
2366			ret = 1;
2367	}
2368	return ret;
2369}
2370
2371/*
2372 * a helper for release_folio.  As long as there are no locked extents
2373 * in the range corresponding to the page, both state records and extent
2374 * map records are removed
2375 */
2376int try_release_extent_mapping(struct page *page, gfp_t mask)
 
 
2377{
2378	struct extent_map *em;
2379	u64 start = page_offset(page);
2380	u64 end = start + PAGE_SIZE - 1;
2381	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2382	struct extent_io_tree *tree = &btrfs_inode->io_tree;
2383	struct extent_map_tree *map = &btrfs_inode->extent_tree;
2384
2385	if (gfpflags_allow_blocking(mask) &&
2386	    page->mapping->host->i_size > SZ_16M) {
2387		u64 len;
2388		while (start <= end) {
2389			struct btrfs_fs_info *fs_info;
2390			u64 cur_gen;
2391
2392			len = end - start + 1;
2393			write_lock(&map->lock);
2394			em = lookup_extent_mapping(map, start, len);
2395			if (!em) {
2396				write_unlock(&map->lock);
2397				break;
2398			}
2399			if ((em->flags & EXTENT_FLAG_PINNED) ||
2400			    em->start != start) {
2401				write_unlock(&map->lock);
2402				free_extent_map(em);
2403				break;
2404			}
2405			if (test_range_bit_exists(tree, em->start,
2406						  extent_map_end(em) - 1,
2407						  EXTENT_LOCKED))
2408				goto next;
2409			/*
2410			 * If it's not in the list of modified extents, used
2411			 * by a fast fsync, we can remove it. If it's being
2412			 * logged we can safely remove it since fsync took an
2413			 * extra reference on the em.
2414			 */
2415			if (list_empty(&em->list) ||
2416			    (em->flags & EXTENT_FLAG_LOGGING))
2417				goto remove_em;
2418			/*
2419			 * If it's in the list of modified extents, remove it
2420			 * only if its generation is older then the current one,
2421			 * in which case we don't need it for a fast fsync.
2422			 * Otherwise don't remove it, we could be racing with an
2423			 * ongoing fast fsync that could miss the new extent.
2424			 */
2425			fs_info = btrfs_inode->root->fs_info;
2426			spin_lock(&fs_info->trans_lock);
2427			cur_gen = fs_info->generation;
2428			spin_unlock(&fs_info->trans_lock);
2429			if (em->generation >= cur_gen)
2430				goto next;
2431remove_em:
2432			/*
2433			 * We only remove extent maps that are not in the list of
2434			 * modified extents or that are in the list but with a
2435			 * generation lower then the current generation, so there
2436			 * is no need to set the full fsync flag on the inode (it
2437			 * hurts the fsync performance for workloads with a data
2438			 * size that exceeds or is close to the system's memory).
2439			 */
2440			remove_extent_mapping(map, em);
2441			/* once for the rb tree */
2442			free_extent_map(em);
2443next:
2444			start = extent_map_end(em);
2445			write_unlock(&map->lock);
2446
2447			/* once for us */
2448			free_extent_map(em);
2449
2450			cond_resched(); /* Allow large-extent preemption. */
2451		}
2452	}
2453	return try_release_extent_state(tree, page, mask);
2454}
2455
2456/*
2457 * To cache previous fiemap extent
2458 *
2459 * Will be used for merging fiemap extent
2460 */
2461struct fiemap_cache {
2462	u64 offset;
2463	u64 phys;
2464	u64 len;
2465	u32 flags;
2466	bool cached;
2467};
2468
2469/*
2470 * Helper to submit fiemap extent.
2471 *
2472 * Will try to merge current fiemap extent specified by @offset, @phys,
2473 * @len and @flags with cached one.
2474 * And only when we fails to merge, cached one will be submitted as
2475 * fiemap extent.
2476 *
2477 * Return value is the same as fiemap_fill_next_extent().
2478 */
2479static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2480				struct fiemap_cache *cache,
2481				u64 offset, u64 phys, u64 len, u32 flags)
2482{
2483	u64 cache_end;
2484	int ret = 0;
2485
2486	/* Set at the end of extent_fiemap(). */
2487	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2488
2489	if (!cache->cached)
2490		goto assign;
2491
2492	/*
2493	 * When iterating the extents of the inode, at extent_fiemap(), we may
2494	 * find an extent that starts at an offset behind the end offset of the
2495	 * previous extent we processed. This happens if fiemap is called
2496	 * without FIEMAP_FLAG_SYNC and there are ordered extents completing
2497	 * while we call btrfs_next_leaf() (through fiemap_next_leaf_item()).
2498	 *
2499	 * For example we are in leaf X processing its last item, which is the
2500	 * file extent item for file range [512K, 1M[, and after
2501	 * btrfs_next_leaf() releases the path, there's an ordered extent that
2502	 * completes for the file range [768K, 2M[, and that results in trimming
2503	 * the file extent item so that it now corresponds to the file range
2504	 * [512K, 768K[ and a new file extent item is inserted for the file
2505	 * range [768K, 2M[, which may end up as the last item of leaf X or as
2506	 * the first item of the next leaf - in either case btrfs_next_leaf()
2507	 * will leave us with a path pointing to the new extent item, for the
2508	 * file range [768K, 2M[, since that's the first key that follows the
2509	 * last one we processed. So in order not to report overlapping extents
2510	 * to user space, we trim the length of the previously cached extent and
2511	 * emit it.
2512	 *
2513	 * Upon calling btrfs_next_leaf() we may also find an extent with an
2514	 * offset smaller than or equals to cache->offset, and this happens
2515	 * when we had a hole or prealloc extent with several delalloc ranges in
2516	 * it, but after btrfs_next_leaf() released the path, delalloc was
2517	 * flushed and the resulting ordered extents were completed, so we can
2518	 * now have found a file extent item for an offset that is smaller than
2519	 * or equals to what we have in cache->offset. We deal with this as
2520	 * described below.
2521	 */
2522	cache_end = cache->offset + cache->len;
2523	if (cache_end > offset) {
2524		if (offset == cache->offset) {
2525			/*
2526			 * We cached a dealloc range (found in the io tree) for
2527			 * a hole or prealloc extent and we have now found a
2528			 * file extent item for the same offset. What we have
2529			 * now is more recent and up to date, so discard what
2530			 * we had in the cache and use what we have just found.
2531			 */
2532			goto assign;
2533		} else if (offset > cache->offset) {
2534			/*
2535			 * The extent range we previously found ends after the
2536			 * offset of the file extent item we found and that
2537			 * offset falls somewhere in the middle of that previous
2538			 * extent range. So adjust the range we previously found
2539			 * to end at the offset of the file extent item we have
2540			 * just found, since this extent is more up to date.
2541			 * Emit that adjusted range and cache the file extent
2542			 * item we have just found. This corresponds to the case
2543			 * where a previously found file extent item was split
2544			 * due to an ordered extent completing.
2545			 */
2546			cache->len = offset - cache->offset;
2547			goto emit;
2548		} else {
2549			const u64 range_end = offset + len;
2550
2551			/*
2552			 * The offset of the file extent item we have just found
2553			 * is behind the cached offset. This means we were
2554			 * processing a hole or prealloc extent for which we
2555			 * have found delalloc ranges (in the io tree), so what
2556			 * we have in the cache is the last delalloc range we
2557			 * found while the file extent item we found can be
2558			 * either for a whole delalloc range we previously
2559			 * emmitted or only a part of that range.
2560			 *
2561			 * We have two cases here:
2562			 *
2563			 * 1) The file extent item's range ends at or behind the
2564			 *    cached extent's end. In this case just ignore the
2565			 *    current file extent item because we don't want to
2566			 *    overlap with previous ranges that may have been
2567			 *    emmitted already;
2568			 *
2569			 * 2) The file extent item starts behind the currently
2570			 *    cached extent but its end offset goes beyond the
2571			 *    end offset of the cached extent. We don't want to
2572			 *    overlap with a previous range that may have been
2573			 *    emmitted already, so we emit the currently cached
2574			 *    extent and then partially store the current file
2575			 *    extent item's range in the cache, for the subrange
2576			 *    going the cached extent's end to the end of the
2577			 *    file extent item.
2578			 */
2579			if (range_end <= cache_end)
2580				return 0;
2581
2582			if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC)))
2583				phys += cache_end - offset;
 
 
 
 
 
 
2584
2585			offset = cache_end;
2586			len = range_end - cache_end;
2587			goto emit;
 
2588		}
2589	}
2590
2591	/*
2592	 * Only merges fiemap extents if
2593	 * 1) Their logical addresses are continuous
2594	 *
2595	 * 2) Their physical addresses are continuous
2596	 *    So truly compressed (physical size smaller than logical size)
2597	 *    extents won't get merged with each other
2598	 *
2599	 * 3) Share same flags
2600	 */
2601	if (cache->offset + cache->len  == offset &&
2602	    cache->phys + cache->len == phys  &&
2603	    cache->flags == flags) {
2604		cache->len += len;
2605		return 0;
2606	}
2607
2608emit:
2609	/* Not mergeable, need to submit cached one */
2610	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2611				      cache->len, cache->flags);
2612	cache->cached = false;
2613	if (ret)
2614		return ret;
2615assign:
2616	cache->cached = true;
2617	cache->offset = offset;
2618	cache->phys = phys;
2619	cache->len = len;
2620	cache->flags = flags;
2621
2622	return 0;
2623}
2624
2625/*
2626 * Emit last fiemap cache
2627 *
2628 * The last fiemap cache may still be cached in the following case:
2629 * 0		      4k		    8k
2630 * |<- Fiemap range ->|
2631 * |<------------  First extent ----------->|
2632 *
2633 * In this case, the first extent range will be cached but not emitted.
2634 * So we must emit it before ending extent_fiemap().
2635 */
2636static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2637				  struct fiemap_cache *cache)
2638{
2639	int ret;
2640
2641	if (!cache->cached)
2642		return 0;
2643
2644	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2645				      cache->len, cache->flags);
2646	cache->cached = false;
2647	if (ret > 0)
2648		ret = 0;
2649	return ret;
2650}
2651
2652static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2653{
2654	struct extent_buffer *clone;
2655	struct btrfs_key key;
2656	int slot;
2657	int ret;
2658
2659	path->slots[0]++;
2660	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2661		return 0;
2662
2663	ret = btrfs_next_leaf(inode->root, path);
2664	if (ret != 0)
2665		return ret;
2666
2667	/*
2668	 * Don't bother with cloning if there are no more file extent items for
2669	 * our inode.
2670	 */
2671	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2672	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2673		return 1;
2674
2675	/* See the comment at fiemap_search_slot() about why we clone. */
2676	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2677	if (!clone)
2678		return -ENOMEM;
2679
2680	slot = path->slots[0];
2681	btrfs_release_path(path);
2682	path->nodes[0] = clone;
2683	path->slots[0] = slot;
2684
2685	return 0;
2686}
2687
2688/*
2689 * Search for the first file extent item that starts at a given file offset or
2690 * the one that starts immediately before that offset.
2691 * Returns: 0 on success, < 0 on error, 1 if not found.
2692 */
2693static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2694			      u64 file_offset)
2695{
2696	const u64 ino = btrfs_ino(inode);
2697	struct btrfs_root *root = inode->root;
2698	struct extent_buffer *clone;
2699	struct btrfs_key key;
2700	int slot;
2701	int ret;
2702
2703	key.objectid = ino;
2704	key.type = BTRFS_EXTENT_DATA_KEY;
2705	key.offset = file_offset;
2706
2707	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2708	if (ret < 0)
2709		return ret;
2710
2711	if (ret > 0 && path->slots[0] > 0) {
2712		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2713		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2714			path->slots[0]--;
2715	}
2716
2717	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2718		ret = btrfs_next_leaf(root, path);
2719		if (ret != 0)
2720			return ret;
2721
2722		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2723		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2724			return 1;
2725	}
2726
2727	/*
2728	 * We clone the leaf and use it during fiemap. This is because while
2729	 * using the leaf we do expensive things like checking if an extent is
2730	 * shared, which can take a long time. In order to prevent blocking
2731	 * other tasks for too long, we use a clone of the leaf. We have locked
2732	 * the file range in the inode's io tree, so we know none of our file
2733	 * extent items can change. This way we avoid blocking other tasks that
2734	 * want to insert items for other inodes in the same leaf or b+tree
2735	 * rebalance operations (triggered for example when someone is trying
2736	 * to push items into this leaf when trying to insert an item in a
2737	 * neighbour leaf).
2738	 * We also need the private clone because holding a read lock on an
2739	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2740	 * when we call fiemap_fill_next_extent(), because that may cause a page
2741	 * fault when filling the user space buffer with fiemap data.
2742	 */
2743	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2744	if (!clone)
2745		return -ENOMEM;
 
2746
2747	slot = path->slots[0];
2748	btrfs_release_path(path);
2749	path->nodes[0] = clone;
2750	path->slots[0] = slot;
2751
2752	return 0;
2753}
2754
2755/*
2756 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2757 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2758 * extent. The end offset (@end) is inclusive.
2759 */
2760static int fiemap_process_hole(struct btrfs_inode *inode,
2761			       struct fiemap_extent_info *fieinfo,
2762			       struct fiemap_cache *cache,
2763			       struct extent_state **delalloc_cached_state,
2764			       struct btrfs_backref_share_check_ctx *backref_ctx,
2765			       u64 disk_bytenr, u64 extent_offset,
2766			       u64 extent_gen,
2767			       u64 start, u64 end)
2768{
2769	const u64 i_size = i_size_read(&inode->vfs_inode);
2770	u64 cur_offset = start;
2771	u64 last_delalloc_end = 0;
2772	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2773	bool checked_extent_shared = false;
2774	int ret;
2775
2776	/*
2777	 * There can be no delalloc past i_size, so don't waste time looking for
2778	 * it beyond i_size.
2779	 */
2780	while (cur_offset < end && cur_offset < i_size) {
2781		struct extent_state *cached_state = NULL;
2782		u64 delalloc_start;
2783		u64 delalloc_end;
2784		u64 prealloc_start;
2785		u64 lockstart;
2786		u64 lockend;
2787		u64 prealloc_len = 0;
2788		bool delalloc;
2789
2790		lockstart = round_down(cur_offset, inode->root->fs_info->sectorsize);
2791		lockend = round_up(end, inode->root->fs_info->sectorsize);
2792
2793		/*
2794		 * We are only locking for the delalloc range because that's the
2795		 * only thing that can change here.  With fiemap we have a lock
2796		 * on the inode, so no buffered or direct writes can happen.
2797		 *
2798		 * However mmaps and normal page writeback will cause this to
2799		 * change arbitrarily.  We have to lock the extent lock here to
2800		 * make sure that nobody messes with the tree while we're doing
2801		 * btrfs_find_delalloc_in_range.
2802		 */
2803		lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2804		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2805							delalloc_cached_state,
2806							&delalloc_start,
2807							&delalloc_end);
2808		unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2809		if (!delalloc)
2810			break;
2811
2812		/*
2813		 * If this is a prealloc extent we have to report every section
2814		 * of it that has no delalloc.
2815		 */
2816		if (disk_bytenr != 0) {
2817			if (last_delalloc_end == 0) {
2818				prealloc_start = start;
2819				prealloc_len = delalloc_start - start;
2820			} else {
2821				prealloc_start = last_delalloc_end + 1;
2822				prealloc_len = delalloc_start - prealloc_start;
2823			}
2824		}
2825
2826		if (prealloc_len > 0) {
2827			if (!checked_extent_shared && fieinfo->fi_extents_max) {
2828				ret = btrfs_is_data_extent_shared(inode,
2829								  disk_bytenr,
2830								  extent_gen,
2831								  backref_ctx);
2832				if (ret < 0)
2833					return ret;
2834				else if (ret > 0)
2835					prealloc_flags |= FIEMAP_EXTENT_SHARED;
2836
2837				checked_extent_shared = true;
2838			}
2839			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2840						 disk_bytenr + extent_offset,
2841						 prealloc_len, prealloc_flags);
2842			if (ret)
2843				return ret;
2844			extent_offset += prealloc_len;
2845		}
2846
2847		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2848					 delalloc_end + 1 - delalloc_start,
2849					 FIEMAP_EXTENT_DELALLOC |
2850					 FIEMAP_EXTENT_UNKNOWN);
2851		if (ret)
2852			return ret;
2853
2854		last_delalloc_end = delalloc_end;
2855		cur_offset = delalloc_end + 1;
2856		extent_offset += cur_offset - delalloc_start;
2857		cond_resched();
2858	}
2859
2860	/*
2861	 * Either we found no delalloc for the whole prealloc extent or we have
2862	 * a prealloc extent that spans i_size or starts at or after i_size.
2863	 */
2864	if (disk_bytenr != 0 && last_delalloc_end < end) {
2865		u64 prealloc_start;
2866		u64 prealloc_len;
2867
2868		if (last_delalloc_end == 0) {
2869			prealloc_start = start;
2870			prealloc_len = end + 1 - start;
2871		} else {
2872			prealloc_start = last_delalloc_end + 1;
2873			prealloc_len = end + 1 - prealloc_start;
2874		}
2875
2876		if (!checked_extent_shared && fieinfo->fi_extents_max) {
2877			ret = btrfs_is_data_extent_shared(inode,
2878							  disk_bytenr,
2879							  extent_gen,
2880							  backref_ctx);
2881			if (ret < 0)
2882				return ret;
2883			else if (ret > 0)
2884				prealloc_flags |= FIEMAP_EXTENT_SHARED;
2885		}
2886		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2887					 disk_bytenr + extent_offset,
2888					 prealloc_len, prealloc_flags);
2889		if (ret)
2890			return ret;
2891	}
2892
2893	return 0;
2894}
2895
2896static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2897					  struct btrfs_path *path,
2898					  u64 *last_extent_end_ret)
2899{
2900	const u64 ino = btrfs_ino(inode);
2901	struct btrfs_root *root = inode->root;
2902	struct extent_buffer *leaf;
2903	struct btrfs_file_extent_item *ei;
2904	struct btrfs_key key;
2905	u64 disk_bytenr;
2906	int ret;
2907
2908	/*
2909	 * Lookup the last file extent. We're not using i_size here because
2910	 * there might be preallocation past i_size.
2911	 */
2912	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2913	/* There can't be a file extent item at offset (u64)-1 */
2914	ASSERT(ret != 0);
2915	if (ret < 0)
2916		return ret;
2917
2918	/*
2919	 * For a non-existing key, btrfs_search_slot() always leaves us at a
2920	 * slot > 0, except if the btree is empty, which is impossible because
2921	 * at least it has the inode item for this inode and all the items for
2922	 * the root inode 256.
2923	 */
2924	ASSERT(path->slots[0] > 0);
2925	path->slots[0]--;
2926	leaf = path->nodes[0];
2927	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2928	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2929		/* No file extent items in the subvolume tree. */
2930		*last_extent_end_ret = 0;
2931		return 0;
2932	}
 
 
 
 
2933
2934	/*
2935	 * For an inline extent, the disk_bytenr is where inline data starts at,
2936	 * so first check if we have an inline extent item before checking if we
2937	 * have an implicit hole (disk_bytenr == 0).
2938	 */
2939	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2940	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2941		*last_extent_end_ret = btrfs_file_extent_end(path);
2942		return 0;
 
 
 
 
 
2943	}
 
2944
2945	/*
2946	 * Find the last file extent item that is not a hole (when NO_HOLES is
2947	 * not enabled). This should take at most 2 iterations in the worst
2948	 * case: we have one hole file extent item at slot 0 of a leaf and
2949	 * another hole file extent item as the last item in the previous leaf.
2950	 * This is because we merge file extent items that represent holes.
2951	 */
2952	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2953	while (disk_bytenr == 0) {
2954		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2955		if (ret < 0) {
2956			return ret;
2957		} else if (ret > 0) {
2958			/* No file extent items that are not holes. */
2959			*last_extent_end_ret = 0;
2960			return 0;
2961		}
2962		leaf = path->nodes[0];
2963		ei = btrfs_item_ptr(leaf, path->slots[0],
2964				    struct btrfs_file_extent_item);
2965		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2966	}
2967
2968	*last_extent_end_ret = btrfs_file_extent_end(path);
2969	return 0;
2970}
2971
2972int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
2973		  u64 start, u64 len)
2974{
2975	const u64 ino = btrfs_ino(inode);
2976	struct extent_state *delalloc_cached_state = NULL;
2977	struct btrfs_path *path;
2978	struct fiemap_cache cache = { 0 };
2979	struct btrfs_backref_share_check_ctx *backref_ctx;
2980	u64 last_extent_end;
2981	u64 prev_extent_end;
2982	u64 range_start;
2983	u64 range_end;
2984	const u64 sectorsize = inode->root->fs_info->sectorsize;
2985	bool stopped = false;
2986	int ret;
2987
2988	backref_ctx = btrfs_alloc_backref_share_check_ctx();
2989	path = btrfs_alloc_path();
2990	if (!backref_ctx || !path) {
2991		ret = -ENOMEM;
2992		goto out;
2993	}
2994
2995	range_start = round_down(start, sectorsize);
2996	range_end = round_up(start + len, sectorsize);
2997	prev_extent_end = range_start;
2998
2999	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3000	if (ret < 0)
3001		goto out;
3002	btrfs_release_path(path);
3003
3004	path->reada = READA_FORWARD;
3005	ret = fiemap_search_slot(inode, path, range_start);
3006	if (ret < 0) {
3007		goto out;
3008	} else if (ret > 0) {
3009		/*
3010		 * No file extent item found, but we may have delalloc between
3011		 * the current offset and i_size. So check for that.
3012		 */
3013		ret = 0;
3014		goto check_eof_delalloc;
3015	}
3016
3017	while (prev_extent_end < range_end) {
3018		struct extent_buffer *leaf = path->nodes[0];
3019		struct btrfs_file_extent_item *ei;
3020		struct btrfs_key key;
3021		u64 extent_end;
3022		u64 extent_len;
3023		u64 extent_offset = 0;
3024		u64 extent_gen;
3025		u64 disk_bytenr = 0;
3026		u64 flags = 0;
3027		int extent_type;
3028		u8 compression;
3029
3030		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3031		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3032			break;
3033
3034		extent_end = btrfs_file_extent_end(path);
 
 
 
 
 
 
3035
3036		/*
3037		 * The first iteration can leave us at an extent item that ends
3038		 * before our range's start. Move to the next item.
 
 
3039		 */
3040		if (extent_end <= range_start)
3041			goto next_item;
 
 
 
 
3042
3043		backref_ctx->curr_leaf_bytenr = leaf->start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3044
3045		/* We have in implicit hole (NO_HOLES feature enabled). */
3046		if (prev_extent_end < key.offset) {
3047			const u64 hole_end = min(key.offset, range_end) - 1;
3048
3049			ret = fiemap_process_hole(inode, fieinfo, &cache,
3050						  &delalloc_cached_state,
3051						  backref_ctx, 0, 0, 0,
3052						  prev_extent_end, hole_end);
3053			if (ret < 0) {
3054				goto out;
3055			} else if (ret > 0) {
3056				/* fiemap_fill_next_extent() told us to stop. */
3057				stopped = true;
3058				break;
3059			}
3060
3061			/* We've reached the end of the fiemap range, stop. */
3062			if (key.offset >= range_end) {
3063				stopped = true;
3064				break;
3065			}
3066		}
 
 
 
 
 
3067
3068		extent_len = extent_end - key.offset;
3069		ei = btrfs_item_ptr(leaf, path->slots[0],
3070				    struct btrfs_file_extent_item);
3071		compression = btrfs_file_extent_compression(leaf, ei);
3072		extent_type = btrfs_file_extent_type(leaf, ei);
3073		extent_gen = btrfs_file_extent_generation(leaf, ei);
3074
3075		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3076			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3077			if (compression == BTRFS_COMPRESS_NONE)
3078				extent_offset = btrfs_file_extent_offset(leaf, ei);
3079		}
3080
3081		if (compression != BTRFS_COMPRESS_NONE)
3082			flags |= FIEMAP_EXTENT_ENCODED;
3083
3084		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3085			flags |= FIEMAP_EXTENT_DATA_INLINE;
3086			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3087			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3088						 extent_len, flags);
3089		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3090			ret = fiemap_process_hole(inode, fieinfo, &cache,
3091						  &delalloc_cached_state,
3092						  backref_ctx,
3093						  disk_bytenr, extent_offset,
3094						  extent_gen, key.offset,
3095						  extent_end - 1);
3096		} else if (disk_bytenr == 0) {
3097			/* We have an explicit hole. */
3098			ret = fiemap_process_hole(inode, fieinfo, &cache,
3099						  &delalloc_cached_state,
3100						  backref_ctx, 0, 0, 0,
3101						  key.offset, extent_end - 1);
3102		} else {
3103			/* We have a regular extent. */
3104			if (fieinfo->fi_extents_max) {
3105				ret = btrfs_is_data_extent_shared(inode,
3106								  disk_bytenr,
3107								  extent_gen,
3108								  backref_ctx);
3109				if (ret < 0)
3110					goto out;
3111				else if (ret > 0)
3112					flags |= FIEMAP_EXTENT_SHARED;
3113			}
3114
3115			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3116						 disk_bytenr + extent_offset,
3117						 extent_len, flags);
3118		}
3119
3120		if (ret < 0) {
3121			goto out;
3122		} else if (ret > 0) {
3123			/* fiemap_fill_next_extent() told us to stop. */
3124			stopped = true;
3125			break;
3126		}
3127
3128		prev_extent_end = extent_end;
3129next_item:
3130		if (fatal_signal_pending(current)) {
3131			ret = -EINTR;
3132			goto out;
3133		}
3134
3135		ret = fiemap_next_leaf_item(inode, path);
3136		if (ret < 0) {
 
 
 
3137			goto out;
3138		} else if (ret > 0) {
3139			/* No more file extent items for this inode. */
3140			break;
3141		}
3142		cond_resched();
3143	}
3144
3145check_eof_delalloc:
3146	/*
3147	 * Release (and free) the path before emitting any final entries to
3148	 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3149	 * once we find no more file extent items exist, we may have a
3150	 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3151	 * faults when copying data to the user space buffer.
3152	 */
3153	btrfs_free_path(path);
3154	path = NULL;
3155
3156	if (!stopped && prev_extent_end < range_end) {
3157		ret = fiemap_process_hole(inode, fieinfo, &cache,
3158					  &delalloc_cached_state, backref_ctx,
3159					  0, 0, 0, prev_extent_end, range_end - 1);
3160		if (ret < 0)
3161			goto out;
3162		prev_extent_end = range_end;
3163	}
3164
3165	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3166		const u64 i_size = i_size_read(&inode->vfs_inode);
3167
3168		if (prev_extent_end < i_size) {
3169			struct extent_state *cached_state = NULL;
3170			u64 delalloc_start;
3171			u64 delalloc_end;
3172			u64 lockstart;
3173			u64 lockend;
3174			bool delalloc;
3175
3176			lockstart = round_down(prev_extent_end, sectorsize);
3177			lockend = round_up(i_size, sectorsize);
3178
3179			/*
3180			 * See the comment in fiemap_process_hole as to why
3181			 * we're doing the locking here.
3182			 */
3183			lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3184			delalloc = btrfs_find_delalloc_in_range(inode,
3185								prev_extent_end,
3186								i_size - 1,
3187								&delalloc_cached_state,
3188								&delalloc_start,
3189								&delalloc_end);
3190			unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3191			if (!delalloc)
3192				cache.flags |= FIEMAP_EXTENT_LAST;
3193		} else {
3194			cache.flags |= FIEMAP_EXTENT_LAST;
3195		}
 
 
 
 
3196	}
3197
3198	ret = emit_last_fiemap_cache(fieinfo, &cache);
3199out:
3200	free_extent_state(delalloc_cached_state);
3201	btrfs_free_backref_share_ctx(backref_ctx);
3202	btrfs_free_path(path);
 
 
3203	return ret;
3204}
3205
3206static void __free_extent_buffer(struct extent_buffer *eb)
3207{
 
3208	kmem_cache_free(extent_buffer_cache, eb);
3209}
3210
3211static int extent_buffer_under_io(const struct extent_buffer *eb)
3212{
3213	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
 
3214		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3215}
3216
3217static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio)
3218{
3219	struct btrfs_subpage *subpage;
3220
3221	lockdep_assert_held(&folio->mapping->i_private_lock);
3222
3223	if (folio_test_private(folio)) {
3224		subpage = folio_get_private(folio);
3225		if (atomic_read(&subpage->eb_refs))
3226			return true;
3227		/*
3228		 * Even there is no eb refs here, we may still have
3229		 * end_page_read() call relying on page::private.
3230		 */
3231		if (atomic_read(&subpage->readers))
3232			return true;
3233	}
3234	return false;
3235}
3236
3237static void detach_extent_buffer_folio(struct extent_buffer *eb, struct folio *folio)
3238{
3239	struct btrfs_fs_info *fs_info = eb->fs_info;
3240	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
 
 
3241
3242	/*
3243	 * For mapped eb, we're going to change the folio private, which should
3244	 * be done under the i_private_lock.
3245	 */
3246	if (mapped)
3247		spin_lock(&folio->mapping->i_private_lock);
3248
3249	if (!folio_test_private(folio)) {
3250		if (mapped)
3251			spin_unlock(&folio->mapping->i_private_lock);
3252		return;
3253	}
3254
3255	if (fs_info->nodesize >= PAGE_SIZE) {
3256		/*
3257		 * We do this since we'll remove the pages after we've
3258		 * removed the eb from the radix tree, so we could race
3259		 * and have this page now attached to the new eb.  So
3260		 * only clear folio if it's still connected to
3261		 * this eb.
3262		 */
3263		if (folio_test_private(folio) && folio_get_private(folio) == eb) {
3264			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3265			BUG_ON(folio_test_dirty(folio));
3266			BUG_ON(folio_test_writeback(folio));
3267			/* We need to make sure we haven't be attached to a new eb. */
3268			folio_detach_private(folio);
3269		}
3270		if (mapped)
3271			spin_unlock(&folio->mapping->i_private_lock);
3272		return;
3273	}
3274
3275	/*
3276	 * For subpage, we can have dummy eb with folio private attached.  In
3277	 * this case, we can directly detach the private as such folio is only
3278	 * attached to one dummy eb, no sharing.
3279	 */
3280	if (!mapped) {
3281		btrfs_detach_subpage(fs_info, folio);
3282		return;
3283	}
3284
3285	btrfs_folio_dec_eb_refs(fs_info, folio);
3286
3287	/*
3288	 * We can only detach the folio private if there are no other ebs in the
3289	 * page range and no unfinished IO.
3290	 */
3291	if (!folio_range_has_eb(fs_info, folio))
3292		btrfs_detach_subpage(fs_info, folio);
3293
3294	spin_unlock(&folio->mapping->i_private_lock);
3295}
3296
3297/* Release all pages attached to the extent buffer */
3298static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3299{
3300	ASSERT(!extent_buffer_under_io(eb));
3301
3302	for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
3303		struct folio *folio = eb->folios[i];
3304
3305		if (!folio)
3306			continue;
3307
3308		detach_extent_buffer_folio(eb, folio);
 
 
 
 
 
3309
3310		/* One for when we allocated the folio. */
3311		folio_put(folio);
3312	}
 
 
 
3313}
3314
3315/*
3316 * Helper for releasing the extent buffer.
3317 */
3318static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3319{
3320	btrfs_release_extent_buffer_pages(eb);
3321	btrfs_leak_debug_del_eb(eb);
3322	__free_extent_buffer(eb);
3323}
3324
3325static struct extent_buffer *
3326__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3327		      unsigned long len)
3328{
3329	struct extent_buffer *eb = NULL;
3330
3331	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
 
 
3332	eb->start = start;
3333	eb->len = len;
3334	eb->fs_info = fs_info;
3335	init_rwsem(&eb->lock);
 
 
 
 
 
 
 
 
 
 
3336
3337	btrfs_leak_debug_add_eb(eb);
3338
3339	spin_lock_init(&eb->refs_lock);
3340	atomic_set(&eb->refs, 1);
 
3341
3342	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
 
 
 
 
 
3343
3344	return eb;
3345}
3346
3347struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3348{
 
 
3349	struct extent_buffer *new;
3350	int num_folios = num_extent_folios(src);
3351	int ret;
3352
3353	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3354	if (new == NULL)
3355		return NULL;
3356
3357	/*
3358	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3359	 * btrfs_release_extent_buffer() have different behavior for
3360	 * UNMAPPED subpage extent buffer.
3361	 */
3362	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3363
3364	ret = alloc_eb_folio_array(new, 0);
3365	if (ret) {
3366		btrfs_release_extent_buffer(new);
3367		return NULL;
3368	}
3369
3370	for (int i = 0; i < num_folios; i++) {
3371		struct folio *folio = new->folios[i];
3372		int ret;
3373
3374		ret = attach_extent_buffer_folio(new, folio, NULL);
3375		if (ret < 0) {
3376			btrfs_release_extent_buffer(new);
3377			return NULL;
3378		}
3379		WARN_ON(folio_test_dirty(folio));
 
 
 
3380	}
3381	copy_extent_buffer_full(new, src);
3382	set_extent_buffer_uptodate(new);
 
 
3383
3384	return new;
3385}
3386
3387struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3388						  u64 start, unsigned long len)
3389{
3390	struct extent_buffer *eb;
3391	int num_folios = 0;
3392	int ret;
3393
3394	eb = __alloc_extent_buffer(fs_info, start, len);
3395	if (!eb)
3396		return NULL;
3397
3398	ret = alloc_eb_folio_array(eb, 0);
3399	if (ret)
3400		goto err;
3401
3402	num_folios = num_extent_folios(eb);
3403	for (int i = 0; i < num_folios; i++) {
3404		ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
3405		if (ret < 0)
3406			goto err;
3407	}
3408
3409	set_extent_buffer_uptodate(eb);
3410	btrfs_set_header_nritems(eb, 0);
3411	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3412
3413	return eb;
3414err:
3415	for (int i = 0; i < num_folios; i++) {
3416		if (eb->folios[i]) {
3417			detach_extent_buffer_folio(eb, eb->folios[i]);
3418			__folio_put(eb->folios[i]);
3419		}
3420	}
3421	__free_extent_buffer(eb);
3422	return NULL;
3423}
3424
3425struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3426						u64 start)
3427{
3428	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3429}
3430
3431static void check_buffer_tree_ref(struct extent_buffer *eb)
3432{
3433	int refs;
3434	/*
3435	 * The TREE_REF bit is first set when the extent_buffer is added
3436	 * to the radix tree. It is also reset, if unset, when a new reference
3437	 * is created by find_extent_buffer.
3438	 *
3439	 * It is only cleared in two cases: freeing the last non-tree
3440	 * reference to the extent_buffer when its STALE bit is set or
3441	 * calling release_folio when the tree reference is the only reference.
 
3442	 *
3443	 * In both cases, care is taken to ensure that the extent_buffer's
3444	 * pages are not under io. However, release_folio can be concurrently
3445	 * called with creating new references, which is prone to race
3446	 * conditions between the calls to check_buffer_tree_ref in those
3447	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
 
3448	 *
3449	 * The actual lifetime of the extent_buffer in the radix tree is
3450	 * adequately protected by the refcount, but the TREE_REF bit and
3451	 * its corresponding reference are not. To protect against this
3452	 * class of races, we call check_buffer_tree_ref from the codepaths
3453	 * which trigger io. Note that once io is initiated, TREE_REF can no
3454	 * longer be cleared, so that is the moment at which any such race is
3455	 * best fixed.
3456	 */
3457	refs = atomic_read(&eb->refs);
3458	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3459		return;
3460
3461	spin_lock(&eb->refs_lock);
3462	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3463		atomic_inc(&eb->refs);
3464	spin_unlock(&eb->refs_lock);
3465}
3466
3467static void mark_extent_buffer_accessed(struct extent_buffer *eb)
3468{
3469	int num_folios= num_extent_folios(eb);
3470
3471	check_buffer_tree_ref(eb);
3472
3473	for (int i = 0; i < num_folios; i++)
3474		folio_mark_accessed(eb->folios[i]);
 
 
 
3475}
3476
3477struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3478					 u64 start)
3479{
3480	struct extent_buffer *eb;
3481
3482	eb = find_extent_buffer_nolock(fs_info, start);
3483	if (!eb)
3484		return NULL;
3485	/*
3486	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3487	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3488	 * another task running free_extent_buffer() might have seen that flag
3489	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3490	 * writeback flags not set) and it's still in the tree (flag
3491	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3492	 * decrementing the extent buffer's reference count twice.  So here we
3493	 * could race and increment the eb's reference count, clear its stale
3494	 * flag, mark it as dirty and drop our reference before the other task
3495	 * finishes executing free_extent_buffer, which would later result in
3496	 * an attempt to free an extent buffer that is dirty.
3497	 */
3498	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3499		spin_lock(&eb->refs_lock);
3500		spin_unlock(&eb->refs_lock);
3501	}
3502	mark_extent_buffer_accessed(eb);
3503	return eb;
3504}
3505
3506#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3507struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3508					u64 start)
3509{
3510	struct extent_buffer *eb, *exists = NULL;
3511	int ret;
3512
3513	eb = find_extent_buffer(fs_info, start);
3514	if (eb)
3515		return eb;
3516	eb = alloc_dummy_extent_buffer(fs_info, start);
3517	if (!eb)
3518		return ERR_PTR(-ENOMEM);
3519	eb->fs_info = fs_info;
3520again:
3521	ret = radix_tree_preload(GFP_NOFS);
3522	if (ret) {
3523		exists = ERR_PTR(ret);
3524		goto free_eb;
3525	}
3526	spin_lock(&fs_info->buffer_lock);
3527	ret = radix_tree_insert(&fs_info->buffer_radix,
3528				start >> fs_info->sectorsize_bits, eb);
3529	spin_unlock(&fs_info->buffer_lock);
3530	radix_tree_preload_end();
3531	if (ret == -EEXIST) {
3532		exists = find_extent_buffer(fs_info, start);
3533		if (exists)
3534			goto free_eb;
3535		else
3536			goto again;
3537	}
3538	check_buffer_tree_ref(eb);
3539	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3540
3541	return eb;
3542free_eb:
3543	btrfs_release_extent_buffer(eb);
3544	return exists;
3545}
3546#endif
3547
3548static struct extent_buffer *grab_extent_buffer(
3549		struct btrfs_fs_info *fs_info, struct page *page)
3550{
3551	struct folio *folio = page_folio(page);
3552	struct extent_buffer *exists;
3553
3554	/*
3555	 * For subpage case, we completely rely on radix tree to ensure we
3556	 * don't try to insert two ebs for the same bytenr.  So here we always
3557	 * return NULL and just continue.
3558	 */
3559	if (fs_info->nodesize < PAGE_SIZE)
3560		return NULL;
3561
3562	/* Page not yet attached to an extent buffer */
3563	if (!folio_test_private(folio))
3564		return NULL;
3565
3566	/*
3567	 * We could have already allocated an eb for this page and attached one
3568	 * so lets see if we can get a ref on the existing eb, and if we can we
3569	 * know it's good and we can just return that one, else we know we can
3570	 * just overwrite folio private.
3571	 */
3572	exists = folio_get_private(folio);
3573	if (atomic_inc_not_zero(&exists->refs))
3574		return exists;
3575
3576	WARN_ON(PageDirty(page));
3577	folio_detach_private(folio);
3578	return NULL;
3579}
3580
3581static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3582{
3583	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3584		btrfs_err(fs_info, "bad tree block start %llu", start);
3585		return -EINVAL;
3586	}
3587
3588	if (fs_info->nodesize < PAGE_SIZE &&
3589	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3590		btrfs_err(fs_info,
3591		"tree block crosses page boundary, start %llu nodesize %u",
3592			  start, fs_info->nodesize);
3593		return -EINVAL;
3594	}
3595	if (fs_info->nodesize >= PAGE_SIZE &&
3596	    !PAGE_ALIGNED(start)) {
3597		btrfs_err(fs_info,
3598		"tree block is not page aligned, start %llu nodesize %u",
3599			  start, fs_info->nodesize);
3600		return -EINVAL;
3601	}
3602	if (!IS_ALIGNED(start, fs_info->nodesize) &&
3603	    !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3604		btrfs_warn(fs_info,
3605"tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3606			      start, fs_info->nodesize);
3607	}
3608	return 0;
3609}
3610
3611
3612/*
3613 * Return 0 if eb->folios[i] is attached to btree inode successfully.
3614 * Return >0 if there is already another extent buffer for the range,
3615 * and @found_eb_ret would be updated.
3616 * Return -EAGAIN if the filemap has an existing folio but with different size
3617 * than @eb.
3618 * The caller needs to free the existing folios and retry using the same order.
3619 */
3620static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3621				      struct extent_buffer **found_eb_ret)
3622{
3623
3624	struct btrfs_fs_info *fs_info = eb->fs_info;
3625	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3626	const unsigned long index = eb->start >> PAGE_SHIFT;
3627	struct folio *existing_folio;
3628	int ret;
3629
3630	ASSERT(found_eb_ret);
3631
3632	/* Caller should ensure the folio exists. */
3633	ASSERT(eb->folios[i]);
3634
3635retry:
3636	ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3637				GFP_NOFS | __GFP_NOFAIL);
3638	if (!ret)
3639		return 0;
3640
3641	existing_folio = filemap_lock_folio(mapping, index + i);
3642	/* The page cache only exists for a very short time, just retry. */
3643	if (IS_ERR(existing_folio))
3644		goto retry;
3645
3646	/* For now, we should only have single-page folios for btree inode. */
3647	ASSERT(folio_nr_pages(existing_folio) == 1);
3648
3649	if (folio_size(existing_folio) != folio_size(eb->folios[0])) {
3650		folio_unlock(existing_folio);
3651		folio_put(existing_folio);
3652		return -EAGAIN;
3653	}
3654
3655	if (fs_info->nodesize < PAGE_SIZE) {
3656		/*
3657		 * We're going to reuse the existing page, can drop our page
3658		 * and subpage structure now.
3659		 */
3660		__free_page(folio_page(eb->folios[i], 0));
3661		eb->folios[i] = existing_folio;
3662	} else {
3663		struct extent_buffer *existing_eb;
3664
3665		existing_eb = grab_extent_buffer(fs_info,
3666						 folio_page(existing_folio, 0));
3667		if (existing_eb) {
3668			/* The extent buffer still exists, we can use it directly. */
3669			*found_eb_ret = existing_eb;
3670			folio_unlock(existing_folio);
3671			folio_put(existing_folio);
3672			return 1;
3673		}
3674		/* The extent buffer no longer exists, we can reuse the folio. */
3675		__free_page(folio_page(eb->folios[i], 0));
3676		eb->folios[i] = existing_folio;
3677	}
3678	return 0;
3679}
3680
3681struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3682					  u64 start, u64 owner_root, int level)
3683{
3684	unsigned long len = fs_info->nodesize;
3685	int num_folios;
3686	int attached = 0;
3687	struct extent_buffer *eb;
3688	struct extent_buffer *existing_eb = NULL;
 
3689	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3690	struct btrfs_subpage *prealloc = NULL;
3691	u64 lockdep_owner = owner_root;
3692	bool page_contig = true;
3693	int uptodate = 1;
3694	int ret;
3695
3696	if (check_eb_alignment(fs_info, start))
3697		return ERR_PTR(-EINVAL);
3698
3699#if BITS_PER_LONG == 32
3700	if (start >= MAX_LFS_FILESIZE) {
3701		btrfs_err_rl(fs_info,
3702		"extent buffer %llu is beyond 32bit page cache limit", start);
3703		btrfs_err_32bit_limit(fs_info);
3704		return ERR_PTR(-EOVERFLOW);
3705	}
3706	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3707		btrfs_warn_32bit_limit(fs_info);
3708#endif
3709
3710	eb = find_extent_buffer(fs_info, start);
3711	if (eb)
3712		return eb;
3713
3714	eb = __alloc_extent_buffer(fs_info, start, len);
3715	if (!eb)
3716		return ERR_PTR(-ENOMEM);
3717
3718	/*
3719	 * The reloc trees are just snapshots, so we need them to appear to be
3720	 * just like any other fs tree WRT lockdep.
3721	 */
3722	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3723		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3724
3725	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3726
3727	/*
3728	 * Preallocate folio private for subpage case, so that we won't
3729	 * allocate memory with i_private_lock nor page lock hold.
3730	 *
3731	 * The memory will be freed by attach_extent_buffer_page() or freed
3732	 * manually if we exit earlier.
3733	 */
3734	if (fs_info->nodesize < PAGE_SIZE) {
3735		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3736		if (IS_ERR(prealloc)) {
3737			ret = PTR_ERR(prealloc);
3738			goto out;
3739		}
3740	}
3741
3742reallocate:
3743	/* Allocate all pages first. */
3744	ret = alloc_eb_folio_array(eb, __GFP_NOFAIL);
3745	if (ret < 0) {
3746		btrfs_free_subpage(prealloc);
3747		goto out;
3748	}
3749
3750	num_folios = num_extent_folios(eb);
3751	/* Attach all pages to the filemap. */
3752	for (int i = 0; i < num_folios; i++) {
3753		struct folio *folio;
3754
3755		ret = attach_eb_folio_to_filemap(eb, i, &existing_eb);
3756		if (ret > 0) {
3757			ASSERT(existing_eb);
3758			goto out;
3759		}
3760
3761		/*
3762		 * TODO: Special handling for a corner case where the order of
3763		 * folios mismatch between the new eb and filemap.
3764		 *
3765		 * This happens when:
3766		 *
3767		 * - the new eb is using higher order folio
3768		 *
3769		 * - the filemap is still using 0-order folios for the range
3770		 *   This can happen at the previous eb allocation, and we don't
3771		 *   have higher order folio for the call.
3772		 *
3773		 * - the existing eb has already been freed
3774		 *
3775		 * In this case, we have to free the existing folios first, and
3776		 * re-allocate using the same order.
3777		 * Thankfully this is not going to happen yet, as we're still
3778		 * using 0-order folios.
3779		 */
3780		if (unlikely(ret == -EAGAIN)) {
3781			ASSERT(0);
3782			goto reallocate;
3783		}
3784		attached++;
3785
3786		/*
3787		 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3788		 * reliable, as we may choose to reuse the existing page cache
3789		 * and free the allocated page.
3790		 */
3791		folio = eb->folios[i];
3792		spin_lock(&mapping->i_private_lock);
3793		/* Should not fail, as we have preallocated the memory */
3794		ret = attach_extent_buffer_folio(eb, folio, prealloc);
3795		ASSERT(!ret);
3796		/*
3797		 * To inform we have extra eb under allocation, so that
3798		 * detach_extent_buffer_page() won't release the folio private
3799		 * when the eb hasn't yet been inserted into radix tree.
3800		 *
3801		 * The ref will be decreased when the eb released the page, in
3802		 * detach_extent_buffer_page().
3803		 * Thus needs no special handling in error path.
3804		 */
3805		btrfs_folio_inc_eb_refs(fs_info, folio);
3806		spin_unlock(&mapping->i_private_lock);
3807
3808		WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
 
 
 
3809
3810		/*
3811		 * Check if the current page is physically contiguous with previous eb
3812		 * page.
3813		 * At this stage, either we allocated a large folio, thus @i
3814		 * would only be 0, or we fall back to per-page allocation.
3815		 */
3816		if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3817			page_contig = false;
 
 
 
 
 
 
 
 
 
3818
3819		if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
 
 
 
 
 
 
 
 
 
 
 
 
 
3820			uptodate = 0;
3821
3822		/*
3823		 * We can't unlock the pages just yet since the extent buffer
3824		 * hasn't been properly inserted in the radix tree, this
3825		 * opens a race with btree_release_folio which can free a page
3826		 * while we are still filling in all pages for the buffer and
3827		 * we could crash.
3828		 */
3829	}
3830	if (uptodate)
3831		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3832	/* All pages are physically contiguous, can skip cross page handling. */
3833	if (page_contig)
3834		eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3835again:
3836	ret = radix_tree_preload(GFP_NOFS);
3837	if (ret)
3838		goto out;
3839
3840	spin_lock(&fs_info->buffer_lock);
3841	ret = radix_tree_insert(&fs_info->buffer_radix,
3842				start >> fs_info->sectorsize_bits, eb);
3843	spin_unlock(&fs_info->buffer_lock);
3844	radix_tree_preload_end();
3845	if (ret == -EEXIST) {
3846		ret = 0;
3847		existing_eb = find_extent_buffer(fs_info, start);
3848		if (existing_eb)
3849			goto out;
3850		else
3851			goto again;
3852	}
3853	/* add one reference for the tree */
3854	check_buffer_tree_ref(eb);
3855	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3856
3857	/*
3858	 * Now it's safe to unlock the pages because any calls to
3859	 * btree_release_folio will correctly detect that a page belongs to a
3860	 * live buffer and won't free them prematurely.
3861	 */
3862	for (int i = 0; i < num_folios; i++)
3863		unlock_page(folio_page(eb->folios[i], 0));
 
 
 
 
 
 
 
 
 
3864	return eb;
3865
3866out:
3867	WARN_ON(!atomic_dec_and_test(&eb->refs));
3868
3869	/*
3870	 * Any attached folios need to be detached before we unlock them.  This
3871	 * is because when we're inserting our new folios into the mapping, and
3872	 * then attaching our eb to that folio.  If we fail to insert our folio
3873	 * we'll lookup the folio for that index, and grab that EB.  We do not
3874	 * want that to grab this eb, as we're getting ready to free it.  So we
3875	 * have to detach it first and then unlock it.
3876	 *
3877	 * We have to drop our reference and NULL it out here because in the
3878	 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3879	 * Below when we call btrfs_release_extent_buffer() we will call
3880	 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3881	 * case.  If we left eb->folios[i] populated in the subpage case we'd
3882	 * double put our reference and be super sad.
3883	 */
3884	for (int i = 0; i < attached; i++) {
3885		ASSERT(eb->folios[i]);
3886		detach_extent_buffer_folio(eb, eb->folios[i]);
3887		unlock_page(folio_page(eb->folios[i], 0));
3888		folio_put(eb->folios[i]);
3889		eb->folios[i] = NULL;
3890	}
3891	/*
3892	 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
3893	 * so it can be cleaned up without utlizing page->mapping.
3894	 */
3895	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3896
 
3897	btrfs_release_extent_buffer(eb);
3898	if (ret < 0)
3899		return ERR_PTR(ret);
3900	ASSERT(existing_eb);
3901	return existing_eb;
3902}
3903
3904static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3905{
3906	struct extent_buffer *eb =
3907			container_of(head, struct extent_buffer, rcu_head);
3908
3909	__free_extent_buffer(eb);
3910}
3911
 
3912static int release_extent_buffer(struct extent_buffer *eb)
3913	__releases(&eb->refs_lock)
3914{
3915	lockdep_assert_held(&eb->refs_lock);
3916
3917	WARN_ON(atomic_read(&eb->refs) == 0);
3918	if (atomic_dec_and_test(&eb->refs)) {
3919		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3920			struct btrfs_fs_info *fs_info = eb->fs_info;
3921
3922			spin_unlock(&eb->refs_lock);
3923
3924			spin_lock(&fs_info->buffer_lock);
3925			radix_tree_delete(&fs_info->buffer_radix,
3926					  eb->start >> fs_info->sectorsize_bits);
3927			spin_unlock(&fs_info->buffer_lock);
3928		} else {
3929			spin_unlock(&eb->refs_lock);
3930		}
3931
3932		btrfs_leak_debug_del_eb(eb);
3933		/* Should be safe to release our pages at this point */
3934		btrfs_release_extent_buffer_pages(eb);
3935#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3936		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3937			__free_extent_buffer(eb);
3938			return 1;
3939		}
3940#endif
3941		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3942		return 1;
3943	}
3944	spin_unlock(&eb->refs_lock);
3945
3946	return 0;
3947}
3948
3949void free_extent_buffer(struct extent_buffer *eb)
3950{
3951	int refs;
 
3952	if (!eb)
3953		return;
3954
3955	refs = atomic_read(&eb->refs);
3956	while (1) {
3957		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3958		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3959			refs == 1))
3960			break;
3961		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
 
3962			return;
3963	}
3964
3965	spin_lock(&eb->refs_lock);
3966	if (atomic_read(&eb->refs) == 2 &&
 
 
 
 
3967	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3968	    !extent_buffer_under_io(eb) &&
3969	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3970		atomic_dec(&eb->refs);
3971
3972	/*
3973	 * I know this is terrible, but it's temporary until we stop tracking
3974	 * the uptodate bits and such for the extent buffers.
3975	 */
3976	release_extent_buffer(eb);
3977}
3978
3979void free_extent_buffer_stale(struct extent_buffer *eb)
3980{
3981	if (!eb)
3982		return;
3983
3984	spin_lock(&eb->refs_lock);
3985	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3986
3987	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3988	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3989		atomic_dec(&eb->refs);
3990	release_extent_buffer(eb);
3991}
3992
3993static void btree_clear_folio_dirty(struct folio *folio)
3994{
3995	ASSERT(folio_test_dirty(folio));
3996	ASSERT(folio_test_locked(folio));
3997	folio_clear_dirty_for_io(folio);
3998	xa_lock_irq(&folio->mapping->i_pages);
3999	if (!folio_test_dirty(folio))
4000		__xa_clear_mark(&folio->mapping->i_pages,
4001				folio_index(folio), PAGECACHE_TAG_DIRTY);
4002	xa_unlock_irq(&folio->mapping->i_pages);
4003}
4004
4005static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4006{
4007	struct btrfs_fs_info *fs_info = eb->fs_info;
4008	struct folio *folio = eb->folios[0];
4009	bool last;
4010
4011	/* btree_clear_folio_dirty() needs page locked. */
4012	folio_lock(folio);
4013	last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
4014	if (last)
4015		btree_clear_folio_dirty(folio);
4016	folio_unlock(folio);
4017	WARN_ON(atomic_read(&eb->refs) == 0);
4018}
4019
4020void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
4021			      struct extent_buffer *eb)
4022{
4023	struct btrfs_fs_info *fs_info = eb->fs_info;
4024	int num_folios;
4025
4026	btrfs_assert_tree_write_locked(eb);
4027
4028	if (trans && btrfs_header_generation(eb) != trans->transid)
4029		return;
4030
4031	/*
4032	 * Instead of clearing the dirty flag off of the buffer, mark it as
4033	 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
4034	 * write-ordering in zoned mode, without the need to later re-dirty
4035	 * the extent_buffer.
4036	 *
4037	 * The actual zeroout of the buffer will happen later in
4038	 * btree_csum_one_bio.
4039	 */
4040	if (btrfs_is_zoned(fs_info)) {
4041		set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
4042		return;
4043	}
4044
4045	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
4046		return;
4047
4048	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
4049				 fs_info->dirty_metadata_batch);
4050
4051	if (eb->fs_info->nodesize < PAGE_SIZE)
4052		return clear_subpage_extent_buffer_dirty(eb);
 
 
4053
4054	num_folios = num_extent_folios(eb);
4055	for (int i = 0; i < num_folios; i++) {
4056		struct folio *folio = eb->folios[i];
4057
4058		if (!folio_test_dirty(folio))
4059			continue;
4060		folio_lock(folio);
4061		btree_clear_folio_dirty(folio);
4062		folio_unlock(folio);
 
 
 
 
 
4063	}
4064	WARN_ON(atomic_read(&eb->refs) == 0);
4065}
4066
4067void set_extent_buffer_dirty(struct extent_buffer *eb)
4068{
4069	int num_folios;
4070	bool was_dirty;
 
4071
4072	check_buffer_tree_ref(eb);
4073
4074	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4075
4076	num_folios = num_extent_folios(eb);
4077	WARN_ON(atomic_read(&eb->refs) == 0);
4078	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4079
4080	if (!was_dirty) {
4081		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
4082
4083		/*
4084		 * For subpage case, we can have other extent buffers in the
4085		 * same page, and in clear_subpage_extent_buffer_dirty() we
4086		 * have to clear page dirty without subpage lock held.
4087		 * This can cause race where our page gets dirty cleared after
4088		 * we just set it.
4089		 *
4090		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4091		 * its page for other reasons, we can use page lock to prevent
4092		 * the above race.
4093		 */
4094		if (subpage)
4095			lock_page(folio_page(eb->folios[0], 0));
4096		for (int i = 0; i < num_folios; i++)
4097			btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
4098					      eb->start, eb->len);
4099		if (subpage)
4100			unlock_page(folio_page(eb->folios[0], 0));
4101		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
4102					 eb->len,
4103					 eb->fs_info->dirty_metadata_batch);
4104	}
4105#ifdef CONFIG_BTRFS_DEBUG
4106	for (int i = 0; i < num_folios; i++)
4107		ASSERT(folio_test_dirty(eb->folios[i]));
4108#endif
4109}
4110
4111void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4112{
4113	struct btrfs_fs_info *fs_info = eb->fs_info;
4114	int num_folios = num_extent_folios(eb);
 
4115
4116	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4117	for (int i = 0; i < num_folios; i++) {
4118		struct folio *folio = eb->folios[i];
4119
4120		if (!folio)
4121			continue;
4122
4123		/*
4124		 * This is special handling for metadata subpage, as regular
4125		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4126		 */
4127		if (fs_info->nodesize >= PAGE_SIZE)
4128			folio_clear_uptodate(folio);
4129		else
4130			btrfs_subpage_clear_uptodate(fs_info, folio,
4131						     eb->start, eb->len);
4132	}
 
4133}
4134
4135void set_extent_buffer_uptodate(struct extent_buffer *eb)
4136{
4137	struct btrfs_fs_info *fs_info = eb->fs_info;
4138	int num_folios = num_extent_folios(eb);
 
4139
4140	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4141	for (int i = 0; i < num_folios; i++) {
4142		struct folio *folio = eb->folios[i];
4143
4144		/*
4145		 * This is special handling for metadata subpage, as regular
4146		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4147		 */
4148		if (fs_info->nodesize >= PAGE_SIZE)
4149			folio_mark_uptodate(folio);
4150		else
4151			btrfs_subpage_set_uptodate(fs_info, folio,
4152						   eb->start, eb->len);
4153	}
 
4154}
4155
4156static void end_bbio_meta_read(struct btrfs_bio *bbio)
4157{
4158	struct extent_buffer *eb = bbio->private;
4159	struct btrfs_fs_info *fs_info = eb->fs_info;
4160	bool uptodate = !bbio->bio.bi_status;
4161	struct folio_iter fi;
4162	u32 bio_offset = 0;
4163
4164	eb->read_mirror = bbio->mirror_num;
4165
4166	if (uptodate &&
4167	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
4168		uptodate = false;
4169
4170	if (uptodate) {
4171		set_extent_buffer_uptodate(eb);
4172	} else {
4173		clear_extent_buffer_uptodate(eb);
4174		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4175	}
4176
4177	bio_for_each_folio_all(fi, &bbio->bio) {
4178		struct folio *folio = fi.folio;
4179		u64 start = eb->start + bio_offset;
4180		u32 len = fi.length;
4181
4182		if (uptodate)
4183			btrfs_folio_set_uptodate(fs_info, folio, start, len);
4184		else
4185			btrfs_folio_clear_uptodate(fs_info, folio, start, len);
4186
4187		bio_offset += len;
4188	}
4189
4190	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4191	smp_mb__after_atomic();
4192	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4193	free_extent_buffer(eb);
4194
4195	bio_put(&bbio->bio);
4196}
4197
4198int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4199			     struct btrfs_tree_parent_check *check)
 
4200{
4201	struct btrfs_bio *bbio;
4202	bool ret;
 
 
 
 
 
 
 
 
 
4203
4204	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4205		return 0;
4206
4207	/*
4208	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4209	 * operation, which could potentially still be in flight.  In this case
4210	 * we simply want to return an error.
4211	 */
4212	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4213		return -EIO;
4214
4215	/* Someone else is already reading the buffer, just wait for it. */
4216	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
4217		goto done;
4218
4219	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4220	eb->read_mirror = 0;
4221	check_buffer_tree_ref(eb);
4222	atomic_inc(&eb->refs);
4223
4224	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
4225			       REQ_OP_READ | REQ_META, eb->fs_info,
4226			       end_bbio_meta_read, eb);
4227	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
4228	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
4229	bbio->file_offset = eb->start;
4230	memcpy(&bbio->parent_check, check, sizeof(*check));
4231	if (eb->fs_info->nodesize < PAGE_SIZE) {
4232		ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
4233				    eb->start - folio_pos(eb->folios[0]));
4234		ASSERT(ret);
4235	} else {
4236		int num_folios = num_extent_folios(eb);
4237
4238		for (int i = 0; i < num_folios; i++) {
4239			struct folio *folio = eb->folios[i];
4240
4241			ret = bio_add_folio(&bbio->bio, folio, folio_size(folio), 0);
4242			ASSERT(ret);
 
 
 
 
 
 
 
 
 
 
 
4243		}
4244	}
4245	btrfs_submit_bio(bbio, mirror_num);
4246
4247done:
4248	if (wait == WAIT_COMPLETE) {
4249		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
4250		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4251			return -EIO;
4252	}
4253
4254	return 0;
4255}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4256
4257static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4258			    unsigned long len)
4259{
4260	btrfs_warn(eb->fs_info,
4261		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
4262		eb->start, eb->len, start, len);
4263	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4264
4265	return true;
4266}
4267
4268/*
4269 * Check if the [start, start + len) range is valid before reading/writing
4270 * the eb.
4271 * NOTE: @start and @len are offset inside the eb, not logical address.
4272 *
4273 * Caller should not touch the dst/src memory if this function returns error.
4274 */
4275static inline int check_eb_range(const struct extent_buffer *eb,
4276				 unsigned long start, unsigned long len)
4277{
4278	unsigned long offset;
4279
4280	/* start, start + len should not go beyond eb->len nor overflow */
4281	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4282		return report_eb_range(eb, start, len);
4283
4284	return false;
 
 
 
 
 
 
 
 
4285}
4286
4287void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4288			unsigned long start, unsigned long len)
 
4289{
4290	const int unit_size = folio_size(eb->folios[0]);
4291	size_t cur;
4292	size_t offset;
 
 
4293	char *dst = (char *)dstv;
4294	unsigned long i = get_eb_folio_index(eb, start);
 
4295
4296	if (check_eb_range(eb, start, len)) {
4297		/*
4298		 * Invalid range hit, reset the memory, so callers won't get
4299		 * some random garbage for their uninitialized memory.
4300		 */
4301		memset(dstv, 0, len);
4302		return;
4303	}
4304
4305	if (eb->addr) {
4306		memcpy(dstv, eb->addr + start, len);
4307		return;
4308	}
4309
4310	offset = get_eb_offset_in_folio(eb, start);
4311
4312	while (len > 0) {
4313		char *kaddr;
4314
4315		cur = min(len, unit_size - offset);
4316		kaddr = folio_address(eb->folios[i]);
4317		memcpy(dst, kaddr + offset, cur);
4318
4319		dst += cur;
4320		len -= cur;
4321		offset = 0;
4322		i++;
4323	}
4324}
4325
4326int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4327				       void __user *dstv,
4328				       unsigned long start, unsigned long len)
 
4329{
4330	const int unit_size = folio_size(eb->folios[0]);
4331	size_t cur;
4332	size_t offset;
4333	char __user *dst = (char __user *)dstv;
4334	unsigned long i = get_eb_folio_index(eb, start);
4335	int ret = 0;
 
4336
4337	WARN_ON(start > eb->len);
4338	WARN_ON(start + len > eb->start + eb->len);
4339
4340	if (eb->addr) {
4341		if (copy_to_user_nofault(dstv, eb->addr + start, len))
4342			ret = -EFAULT;
4343		return ret;
 
 
4344	}
4345
4346	offset = get_eb_offset_in_folio(eb, start);
4347
4348	while (len > 0) {
4349		char *kaddr;
4350
4351		cur = min(len, unit_size - offset);
4352		kaddr = folio_address(eb->folios[i]);
4353		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4354			ret = -EFAULT;
4355			break;
4356		}
4357
4358		dst += cur;
4359		len -= cur;
4360		offset = 0;
4361		i++;
4362	}
4363
4364	return ret;
 
 
 
 
4365}
4366
4367int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4368			 unsigned long start, unsigned long len)
 
4369{
4370	const int unit_size = folio_size(eb->folios[0]);
4371	size_t cur;
4372	size_t offset;
 
4373	char *kaddr;
4374	char *ptr = (char *)ptrv;
4375	unsigned long i = get_eb_folio_index(eb, start);
 
4376	int ret = 0;
4377
4378	if (check_eb_range(eb, start, len))
4379		return -EINVAL;
4380
4381	if (eb->addr)
4382		return memcmp(ptrv, eb->addr + start, len);
4383
4384	offset = get_eb_offset_in_folio(eb, start);
4385
4386	while (len > 0) {
4387		cur = min(len, unit_size - offset);
4388		kaddr = folio_address(eb->folios[i]);
 
 
 
4389		ret = memcmp(ptr, kaddr + offset, cur);
4390		if (ret)
4391			break;
4392
4393		ptr += cur;
4394		len -= cur;
4395		offset = 0;
4396		i++;
4397	}
4398	return ret;
4399}
4400
4401/*
4402 * Check that the extent buffer is uptodate.
4403 *
4404 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4405 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4406 */
4407static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
4408{
4409	struct btrfs_fs_info *fs_info = eb->fs_info;
4410	struct folio *folio = eb->folios[i];
4411
4412	ASSERT(folio);
4413
4414	/*
4415	 * If we are using the commit root we could potentially clear a page
4416	 * Uptodate while we're using the extent buffer that we've previously
4417	 * looked up.  We don't want to complain in this case, as the page was
4418	 * valid before, we just didn't write it out.  Instead we want to catch
4419	 * the case where we didn't actually read the block properly, which
4420	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4421	 */
4422	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4423		return;
4424
4425	if (fs_info->nodesize < PAGE_SIZE) {
4426		struct folio *folio = eb->folios[0];
4427
4428		ASSERT(i == 0);
4429		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
4430							 eb->start, eb->len)))
4431			btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
4432	} else {
4433		WARN_ON(!folio_test_uptodate(folio));
4434	}
4435}
4436
4437static void __write_extent_buffer(const struct extent_buffer *eb,
4438				  const void *srcv, unsigned long start,
4439				  unsigned long len, bool use_memmove)
4440{
4441	const int unit_size = folio_size(eb->folios[0]);
4442	size_t cur;
4443	size_t offset;
 
4444	char *kaddr;
4445	char *src = (char *)srcv;
4446	unsigned long i = get_eb_folio_index(eb, start);
4447	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
4448	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4449
4450	if (check_eb_range(eb, start, len))
4451		return;
4452
4453	if (eb->addr) {
4454		if (use_memmove)
4455			memmove(eb->addr + start, srcv, len);
4456		else
4457			memcpy(eb->addr + start, srcv, len);
4458		return;
4459	}
4460
4461	offset = get_eb_offset_in_folio(eb, start);
4462
4463	while (len > 0) {
4464		if (check_uptodate)
4465			assert_eb_folio_uptodate(eb, i);
4466
4467		cur = min(len, unit_size - offset);
4468		kaddr = folio_address(eb->folios[i]);
4469		if (use_memmove)
4470			memmove(kaddr + offset, src, cur);
4471		else
4472			memcpy(kaddr + offset, src, cur);
4473
4474		src += cur;
4475		len -= cur;
4476		offset = 0;
4477		i++;
4478	}
4479}
4480
4481void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4482			 unsigned long start, unsigned long len)
4483{
4484	return __write_extent_buffer(eb, srcv, start, len, false);
4485}
4486
4487static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4488				 unsigned long start, unsigned long len)
4489{
4490	const int unit_size = folio_size(eb->folios[0]);
4491	unsigned long cur = start;
4492
4493	if (eb->addr) {
4494		memset(eb->addr + start, c, len);
4495		return;
4496	}
4497
4498	while (cur < start + len) {
4499		unsigned long index = get_eb_folio_index(eb, cur);
4500		unsigned int offset = get_eb_offset_in_folio(eb, cur);
4501		unsigned int cur_len = min(start + len - cur, unit_size - offset);
4502
4503		assert_eb_folio_uptodate(eb, index);
4504		memset(folio_address(eb->folios[index]) + offset, c, cur_len);
4505
4506		cur += cur_len;
4507	}
4508}
4509
4510void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4511			   unsigned long len)
4512{
4513	if (check_eb_range(eb, start, len))
4514		return;
4515	return memset_extent_buffer(eb, 0, start, len);
4516}
4517
4518void copy_extent_buffer_full(const struct extent_buffer *dst,
4519			     const struct extent_buffer *src)
4520{
4521	const int unit_size = folio_size(src->folios[0]);
4522	unsigned long cur = 0;
4523
4524	ASSERT(dst->len == src->len);
4525
4526	while (cur < src->len) {
4527		unsigned long index = get_eb_folio_index(src, cur);
4528		unsigned long offset = get_eb_offset_in_folio(src, cur);
4529		unsigned long cur_len = min(src->len, unit_size - offset);
4530		void *addr = folio_address(src->folios[index]) + offset;
4531
4532		write_extent_buffer(dst, addr, cur, cur_len);
 
 
4533
4534		cur += cur_len;
 
 
4535	}
4536}
4537
4538void copy_extent_buffer(const struct extent_buffer *dst,
4539			const struct extent_buffer *src,
4540			unsigned long dst_offset, unsigned long src_offset,
4541			unsigned long len)
4542{
4543	const int unit_size = folio_size(dst->folios[0]);
4544	u64 dst_len = dst->len;
4545	size_t cur;
4546	size_t offset;
 
4547	char *kaddr;
4548	unsigned long i = get_eb_folio_index(dst, dst_offset);
4549
4550	if (check_eb_range(dst, dst_offset, len) ||
4551	    check_eb_range(src, src_offset, len))
4552		return;
4553
4554	WARN_ON(src->len != dst_len);
4555
4556	offset = get_eb_offset_in_folio(dst, dst_offset);
 
4557
4558	while (len > 0) {
4559		assert_eb_folio_uptodate(dst, i);
 
4560
4561		cur = min(len, (unsigned long)(unit_size - offset));
4562
4563		kaddr = folio_address(dst->folios[i]);
4564		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4565
4566		src_offset += cur;
4567		len -= cur;
4568		offset = 0;
4569		i++;
4570	}
4571}
4572
4573/*
4574 * Calculate the folio and offset of the byte containing the given bit number.
4575 *
4576 * @eb:           the extent buffer
4577 * @start:        offset of the bitmap item in the extent buffer
4578 * @nr:           bit number
4579 * @folio_index:  return index of the folio in the extent buffer that contains
4580 *                the given bit number
4581 * @folio_offset: return offset into the folio given by folio_index
4582 *
4583 * This helper hides the ugliness of finding the byte in an extent buffer which
4584 * contains a given bit.
4585 */
4586static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4587				    unsigned long start, unsigned long nr,
4588				    unsigned long *folio_index,
4589				    size_t *folio_offset)
4590{
4591	size_t byte_offset = BIT_BYTE(nr);
4592	size_t offset;
4593
4594	/*
4595	 * The byte we want is the offset of the extent buffer + the offset of
4596	 * the bitmap item in the extent buffer + the offset of the byte in the
4597	 * bitmap item.
4598	 */
4599	offset = start + offset_in_folio(eb->folios[0], eb->start) + byte_offset;
4600
4601	*folio_index = offset >> folio_shift(eb->folios[0]);
4602	*folio_offset = offset_in_folio(eb->folios[0], offset);
4603}
4604
4605/*
4606 * Determine whether a bit in a bitmap item is set.
4607 *
4608 * @eb:     the extent buffer
4609 * @start:  offset of the bitmap item in the extent buffer
4610 * @nr:     bit number to test
4611 */
4612int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4613			   unsigned long nr)
4614{
4615	unsigned long i;
4616	size_t offset;
4617	u8 *kaddr;
4618
4619	eb_bitmap_offset(eb, start, nr, &i, &offset);
4620	assert_eb_folio_uptodate(eb, i);
4621	kaddr = folio_address(eb->folios[i]);
4622	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4623}
4624
4625static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4626{
4627	unsigned long index = get_eb_folio_index(eb, bytenr);
4628
4629	if (check_eb_range(eb, bytenr, 1))
4630		return NULL;
4631	return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4632}
4633
4634/*
4635 * Set an area of a bitmap to 1.
4636 *
4637 * @eb:     the extent buffer
4638 * @start:  offset of the bitmap item in the extent buffer
4639 * @pos:    bit number of the first bit
4640 * @len:    number of bits to set
4641 */
4642void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4643			      unsigned long pos, unsigned long len)
4644{
4645	unsigned int first_byte = start + BIT_BYTE(pos);
4646	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4647	const bool same_byte = (first_byte == last_byte);
4648	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4649	u8 *kaddr;
4650
4651	if (same_byte)
4652		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4653
4654	/* Handle the first byte. */
4655	kaddr = extent_buffer_get_byte(eb, first_byte);
4656	*kaddr |= mask;
4657	if (same_byte)
4658		return;
4659
4660	/* Handle the byte aligned part. */
4661	ASSERT(first_byte + 1 <= last_byte);
4662	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4663
4664	/* Handle the last byte. */
4665	kaddr = extent_buffer_get_byte(eb, last_byte);
4666	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4667}
4668
4669
4670/*
4671 * Clear an area of a bitmap.
4672 *
4673 * @eb:     the extent buffer
4674 * @start:  offset of the bitmap item in the extent buffer
4675 * @pos:    bit number of the first bit
4676 * @len:    number of bits to clear
4677 */
4678void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4679				unsigned long start, unsigned long pos,
4680				unsigned long len)
4681{
4682	unsigned int first_byte = start + BIT_BYTE(pos);
4683	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4684	const bool same_byte = (first_byte == last_byte);
4685	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4686	u8 *kaddr;
4687
4688	if (same_byte)
4689		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4690
4691	/* Handle the first byte. */
4692	kaddr = extent_buffer_get_byte(eb, first_byte);
4693	*kaddr &= ~mask;
4694	if (same_byte)
4695		return;
4696
4697	/* Handle the byte aligned part. */
4698	ASSERT(first_byte + 1 <= last_byte);
4699	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4700
4701	/* Handle the last byte. */
4702	kaddr = extent_buffer_get_byte(eb, last_byte);
4703	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4704}
4705
4706static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4707{
4708	unsigned long distance = (src > dst) ? src - dst : dst - src;
4709	return distance < len;
4710}
4711
4712void memcpy_extent_buffer(const struct extent_buffer *dst,
4713			  unsigned long dst_offset, unsigned long src_offset,
4714			  unsigned long len)
4715{
4716	const int unit_size = folio_size(dst->folios[0]);
4717	unsigned long cur_off = 0;
 
4718
4719	if (check_eb_range(dst, dst_offset, len) ||
4720	    check_eb_range(dst, src_offset, len))
4721		return;
 
 
 
 
4722
4723	if (dst->addr) {
4724		const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
 
 
 
4725
4726		if (use_memmove)
4727			memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4728		else
4729			memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4730		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4731	}
4732
4733	while (cur_off < len) {
4734		unsigned long cur_src = cur_off + src_offset;
4735		unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4736		unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4737		unsigned long cur_len = min(src_offset + len - cur_src,
4738					    unit_size - folio_off);
4739		void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4740		const bool use_memmove = areas_overlap(src_offset + cur_off,
4741						       dst_offset + cur_off, cur_len);
4742
4743		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4744				      use_memmove);
4745		cur_off += cur_len;
 
 
 
 
 
 
 
 
4746	}
4747}
4748
4749void memmove_extent_buffer(const struct extent_buffer *dst,
4750			   unsigned long dst_offset, unsigned long src_offset,
4751			   unsigned long len)
4752{
 
 
 
4753	unsigned long dst_end = dst_offset + len - 1;
4754	unsigned long src_end = src_offset + len - 1;
4755
4756	if (check_eb_range(dst, dst_offset, len) ||
4757	    check_eb_range(dst, src_offset, len))
4758		return;
4759
 
 
 
 
 
 
 
 
 
4760	if (dst_offset < src_offset) {
4761		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4762		return;
4763	}
4764
4765	if (dst->addr) {
4766		memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4767		return;
4768	}
4769
4770	while (len > 0) {
4771		unsigned long src_i;
4772		size_t cur;
4773		size_t dst_off_in_folio;
4774		size_t src_off_in_folio;
4775		void *src_addr;
4776		bool use_memmove;
4777
4778		src_i = get_eb_folio_index(dst, src_end);
4779
4780		dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4781		src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4782
4783		cur = min_t(unsigned long, len, src_off_in_folio + 1);
4784		cur = min(cur, dst_off_in_folio + 1);
4785
4786		src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4787					 cur + 1;
4788		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4789					    cur);
4790
4791		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4792				      use_memmove);
 
 
 
 
 
 
 
 
 
4793
4794		dst_end -= cur;
4795		src_end -= cur;
4796		len -= cur;
4797	}
4798}
4799
4800#define GANG_LOOKUP_SIZE	16
4801static struct extent_buffer *get_next_extent_buffer(
4802		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4803{
4804	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4805	struct extent_buffer *found = NULL;
4806	u64 page_start = page_offset(page);
4807	u64 cur = page_start;
4808
4809	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4810	lockdep_assert_held(&fs_info->buffer_lock);
4811
4812	while (cur < page_start + PAGE_SIZE) {
4813		int ret;
4814		int i;
4815
4816		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4817				(void **)gang, cur >> fs_info->sectorsize_bits,
4818				min_t(unsigned int, GANG_LOOKUP_SIZE,
4819				      PAGE_SIZE / fs_info->nodesize));
4820		if (ret == 0)
4821			goto out;
4822		for (i = 0; i < ret; i++) {
4823			/* Already beyond page end */
4824			if (gang[i]->start >= page_start + PAGE_SIZE)
4825				goto out;
4826			/* Found one */
4827			if (gang[i]->start >= bytenr) {
4828				found = gang[i];
4829				goto out;
4830			}
4831		}
4832		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4833	}
4834out:
4835	return found;
4836}
4837
4838static int try_release_subpage_extent_buffer(struct page *page)
4839{
4840	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4841	u64 cur = page_offset(page);
4842	const u64 end = page_offset(page) + PAGE_SIZE;
4843	int ret;
4844
4845	while (cur < end) {
4846		struct extent_buffer *eb = NULL;
4847
4848		/*
4849		 * Unlike try_release_extent_buffer() which uses folio private
4850		 * to grab buffer, for subpage case we rely on radix tree, thus
4851		 * we need to ensure radix tree consistency.
4852		 *
4853		 * We also want an atomic snapshot of the radix tree, thus go
4854		 * with spinlock rather than RCU.
4855		 */
4856		spin_lock(&fs_info->buffer_lock);
4857		eb = get_next_extent_buffer(fs_info, page, cur);
4858		if (!eb) {
4859			/* No more eb in the page range after or at cur */
4860			spin_unlock(&fs_info->buffer_lock);
4861			break;
4862		}
4863		cur = eb->start + eb->len;
4864
4865		/*
4866		 * The same as try_release_extent_buffer(), to ensure the eb
4867		 * won't disappear out from under us.
4868		 */
4869		spin_lock(&eb->refs_lock);
4870		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4871			spin_unlock(&eb->refs_lock);
4872			spin_unlock(&fs_info->buffer_lock);
4873			break;
4874		}
4875		spin_unlock(&fs_info->buffer_lock);
4876
4877		/*
4878		 * If tree ref isn't set then we know the ref on this eb is a
4879		 * real ref, so just return, this eb will likely be freed soon
4880		 * anyway.
4881		 */
4882		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4883			spin_unlock(&eb->refs_lock);
4884			break;
4885		}
4886
4887		/*
4888		 * Here we don't care about the return value, we will always
4889		 * check the folio private at the end.  And
4890		 * release_extent_buffer() will release the refs_lock.
4891		 */
4892		release_extent_buffer(eb);
4893	}
4894	/*
4895	 * Finally to check if we have cleared folio private, as if we have
4896	 * released all ebs in the page, the folio private should be cleared now.
4897	 */
4898	spin_lock(&page->mapping->i_private_lock);
4899	if (!folio_test_private(page_folio(page)))
4900		ret = 1;
4901	else
4902		ret = 0;
4903	spin_unlock(&page->mapping->i_private_lock);
4904	return ret;
4905
4906}
4907
4908int try_release_extent_buffer(struct page *page)
4909{
4910	struct folio *folio = page_folio(page);
4911	struct extent_buffer *eb;
4912
4913	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4914		return try_release_subpage_extent_buffer(page);
4915
4916	/*
4917	 * We need to make sure nobody is changing folio private, as we rely on
4918	 * folio private as the pointer to extent buffer.
4919	 */
4920	spin_lock(&page->mapping->i_private_lock);
4921	if (!folio_test_private(folio)) {
4922		spin_unlock(&page->mapping->i_private_lock);
4923		return 1;
4924	}
4925
4926	eb = folio_get_private(folio);
4927	BUG_ON(!eb);
4928
4929	/*
4930	 * This is a little awful but should be ok, we need to make sure that
4931	 * the eb doesn't disappear out from under us while we're looking at
4932	 * this page.
4933	 */
4934	spin_lock(&eb->refs_lock);
4935	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4936		spin_unlock(&eb->refs_lock);
4937		spin_unlock(&page->mapping->i_private_lock);
4938		return 0;
4939	}
4940	spin_unlock(&page->mapping->i_private_lock);
4941
4942	/*
4943	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4944	 * so just return, this page will likely be freed soon anyway.
4945	 */
4946	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4947		spin_unlock(&eb->refs_lock);
4948		return 0;
4949	}
4950
4951	return release_extent_buffer(eb);
4952}
4953
4954/*
4955 * Attempt to readahead a child block.
4956 *
4957 * @fs_info:	the fs_info
4958 * @bytenr:	bytenr to read
4959 * @owner_root: objectid of the root that owns this eb
4960 * @gen:	generation for the uptodate check, can be 0
4961 * @level:	level for the eb
4962 *
4963 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
4964 * normal uptodate check of the eb, without checking the generation.  If we have
4965 * to read the block we will not block on anything.
4966 */
4967void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4968				u64 bytenr, u64 owner_root, u64 gen, int level)
4969{
4970	struct btrfs_tree_parent_check check = {
4971		.has_first_key = 0,
4972		.level = level,
4973		.transid = gen
4974	};
4975	struct extent_buffer *eb;
4976	int ret;
4977
4978	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4979	if (IS_ERR(eb))
4980		return;
4981
4982	if (btrfs_buffer_uptodate(eb, gen, 1)) {
4983		free_extent_buffer(eb);
4984		return;
4985	}
4986
4987	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4988	if (ret < 0)
4989		free_extent_buffer_stale(eb);
4990	else
4991		free_extent_buffer(eb);
4992}
4993
4994/*
4995 * Readahead a node's child block.
4996 *
4997 * @node:	parent node we're reading from
4998 * @slot:	slot in the parent node for the child we want to read
4999 *
5000 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5001 * the slot in the node provided.
5002 */
5003void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5004{
5005	btrfs_readahead_tree_block(node->fs_info,
5006				   btrfs_node_blockptr(node, slot),
5007				   btrfs_header_owner(node),
5008				   btrfs_node_ptr_generation(node, slot),
5009				   btrfs_header_level(node) - 1);
5010}
v3.15
 
 
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
 
   7#include <linux/spinlock.h>
   8#include <linux/blkdev.h>
   9#include <linux/swap.h>
  10#include <linux/writeback.h>
  11#include <linux/pagevec.h>
  12#include <linux/prefetch.h>
  13#include <linux/cleancache.h>
 
  14#include "extent_io.h"
 
  15#include "extent_map.h"
  16#include "ctree.h"
  17#include "btrfs_inode.h"
  18#include "volumes.h"
  19#include "check-integrity.h"
  20#include "locking.h"
  21#include "rcu-string.h"
  22#include "backref.h"
 
 
 
 
 
 
 
 
 
 
 
 
  23
  24static struct kmem_cache *extent_state_cache;
  25static struct kmem_cache *extent_buffer_cache;
  26static struct bio_set *btrfs_bioset;
  27
  28#ifdef CONFIG_BTRFS_DEBUG
  29static LIST_HEAD(buffers);
  30static LIST_HEAD(states);
  31
  32static DEFINE_SPINLOCK(leak_lock);
  33
  34static inline
  35void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
  36{
 
  37	unsigned long flags;
  38
  39	spin_lock_irqsave(&leak_lock, flags);
  40	list_add(new, head);
  41	spin_unlock_irqrestore(&leak_lock, flags);
  42}
  43
  44static inline
  45void btrfs_leak_debug_del(struct list_head *entry)
  46{
 
  47	unsigned long flags;
  48
  49	spin_lock_irqsave(&leak_lock, flags);
  50	list_del(entry);
  51	spin_unlock_irqrestore(&leak_lock, flags);
  52}
  53
  54static inline
  55void btrfs_leak_debug_check(void)
  56{
  57	struct extent_state *state;
  58	struct extent_buffer *eb;
 
  59
  60	while (!list_empty(&states)) {
  61		state = list_entry(states.next, struct extent_state, leak_list);
  62		printk(KERN_ERR "BTRFS: state leak: start %llu end %llu "
  63		       "state %lu in tree %p refs %d\n",
  64		       state->start, state->end, state->state, state->tree,
  65		       atomic_read(&state->refs));
  66		list_del(&state->leak_list);
  67		kmem_cache_free(extent_state_cache, state);
  68	}
  69
  70	while (!list_empty(&buffers)) {
  71		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  72		printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
  73		       "refs %d\n",
  74		       eb->start, eb->len, atomic_read(&eb->refs));
 
 
 
 
  75		list_del(&eb->leak_list);
  76		kmem_cache_free(extent_buffer_cache, eb);
  77	}
  78}
  79
  80#define btrfs_debug_check_extent_io_range(tree, start, end)		\
  81	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
  82static inline void __btrfs_debug_check_extent_io_range(const char *caller,
  83		struct extent_io_tree *tree, u64 start, u64 end)
  84{
  85	struct inode *inode;
  86	u64 isize;
  87
  88	if (!tree->mapping)
  89		return;
  90
  91	inode = tree->mapping->host;
  92	isize = i_size_read(inode);
  93	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
  94		printk_ratelimited(KERN_DEBUG
  95		    "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
  96				caller, btrfs_ino(inode), isize, start, end);
  97	}
  98}
  99#else
 100#define btrfs_leak_debug_add(new, head)	do {} while (0)
 101#define btrfs_leak_debug_del(entry)	do {} while (0)
 102#define btrfs_leak_debug_check()	do {} while (0)
 103#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
 104#endif
 105
 106#define BUFFER_LRU_MAX 64
 107
 108struct tree_entry {
 109	u64 start;
 110	u64 end;
 111	struct rb_node rb_node;
 112};
 113
 114struct extent_page_data {
 115	struct bio *bio;
 116	struct extent_io_tree *tree;
 117	get_extent_t *get_extent;
 118	unsigned long bio_flags;
 119
 120	/* tells writepage not to lock the state bits for this range
 121	 * it still does the unlocking
 122	 */
 123	unsigned int extent_locked:1;
 124
 125	/* tells the submit_bio code to use a WRITE_SYNC */
 126	unsigned int sync_io:1;
 127};
 128
 129static noinline void flush_write_bio(void *data);
 130static inline struct btrfs_fs_info *
 131tree_fs_info(struct extent_io_tree *tree)
 132{
 133	if (!tree->mapping)
 134		return NULL;
 135	return btrfs_sb(tree->mapping->host->i_sb);
 136}
 137
 138int __init extent_io_init(void)
 139{
 140	extent_state_cache = kmem_cache_create("btrfs_extent_state",
 141			sizeof(struct extent_state), 0,
 142			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 143	if (!extent_state_cache)
 144		return -ENOMEM;
 145
 146	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 147			sizeof(struct extent_buffer), 0,
 148			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 149	if (!extent_buffer_cache)
 150		goto free_state_cache;
 151
 152	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
 153				     offsetof(struct btrfs_io_bio, bio));
 154	if (!btrfs_bioset)
 155		goto free_buffer_cache;
 156
 157	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
 158		goto free_bioset;
 159
 160	return 0;
 161
 162free_bioset:
 163	bioset_free(btrfs_bioset);
 164	btrfs_bioset = NULL;
 165
 166free_buffer_cache:
 167	kmem_cache_destroy(extent_buffer_cache);
 168	extent_buffer_cache = NULL;
 169
 170free_state_cache:
 171	kmem_cache_destroy(extent_state_cache);
 172	extent_state_cache = NULL;
 173	return -ENOMEM;
 174}
 175
 176void extent_io_exit(void)
 177{
 178	btrfs_leak_debug_check();
 179
 180	/*
 181	 * Make sure all delayed rcu free are flushed before we
 182	 * destroy caches.
 183	 */
 184	rcu_barrier();
 185	if (extent_state_cache)
 186		kmem_cache_destroy(extent_state_cache);
 187	if (extent_buffer_cache)
 188		kmem_cache_destroy(extent_buffer_cache);
 189	if (btrfs_bioset)
 190		bioset_free(btrfs_bioset);
 191}
 192
 193void extent_io_tree_init(struct extent_io_tree *tree,
 194			 struct address_space *mapping)
 195{
 196	tree->state = RB_ROOT;
 197	tree->ops = NULL;
 198	tree->dirty_bytes = 0;
 199	spin_lock_init(&tree->lock);
 200	tree->mapping = mapping;
 201}
 202
 203static struct extent_state *alloc_extent_state(gfp_t mask)
 204{
 205	struct extent_state *state;
 206
 207	state = kmem_cache_alloc(extent_state_cache, mask);
 208	if (!state)
 209		return state;
 210	state->state = 0;
 211	state->private = 0;
 212	state->tree = NULL;
 213	btrfs_leak_debug_add(&state->leak_list, &states);
 214	atomic_set(&state->refs, 1);
 215	init_waitqueue_head(&state->wq);
 216	trace_alloc_extent_state(state, mask, _RET_IP_);
 217	return state;
 218}
 219
 220void free_extent_state(struct extent_state *state)
 221{
 222	if (!state)
 223		return;
 224	if (atomic_dec_and_test(&state->refs)) {
 225		WARN_ON(state->tree);
 226		btrfs_leak_debug_del(&state->leak_list);
 227		trace_free_extent_state(state, _RET_IP_);
 228		kmem_cache_free(extent_state_cache, state);
 229	}
 230}
 231
 232static struct rb_node *tree_insert(struct rb_root *root,
 233				   struct rb_node *search_start,
 234				   u64 offset,
 235				   struct rb_node *node,
 236				   struct rb_node ***p_in,
 237				   struct rb_node **parent_in)
 238{
 239	struct rb_node **p;
 240	struct rb_node *parent = NULL;
 241	struct tree_entry *entry;
 242
 243	if (p_in && parent_in) {
 244		p = *p_in;
 245		parent = *parent_in;
 246		goto do_insert;
 247	}
 248
 249	p = search_start ? &search_start : &root->rb_node;
 250	while (*p) {
 251		parent = *p;
 252		entry = rb_entry(parent, struct tree_entry, rb_node);
 253
 254		if (offset < entry->start)
 255			p = &(*p)->rb_left;
 256		else if (offset > entry->end)
 257			p = &(*p)->rb_right;
 258		else
 259			return parent;
 260	}
 261
 262do_insert:
 263	rb_link_node(node, parent, p);
 264	rb_insert_color(node, root);
 265	return NULL;
 266}
 267
 268static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 269				      struct rb_node **prev_ret,
 270				      struct rb_node **next_ret,
 271				      struct rb_node ***p_ret,
 272				      struct rb_node **parent_ret)
 273{
 274	struct rb_root *root = &tree->state;
 275	struct rb_node **n = &root->rb_node;
 276	struct rb_node *prev = NULL;
 277	struct rb_node *orig_prev = NULL;
 278	struct tree_entry *entry;
 279	struct tree_entry *prev_entry = NULL;
 280
 281	while (*n) {
 282		prev = *n;
 283		entry = rb_entry(prev, struct tree_entry, rb_node);
 284		prev_entry = entry;
 285
 286		if (offset < entry->start)
 287			n = &(*n)->rb_left;
 288		else if (offset > entry->end)
 289			n = &(*n)->rb_right;
 290		else
 291			return *n;
 292	}
 293
 294	if (p_ret)
 295		*p_ret = n;
 296	if (parent_ret)
 297		*parent_ret = prev;
 298
 299	if (prev_ret) {
 300		orig_prev = prev;
 301		while (prev && offset > prev_entry->end) {
 302			prev = rb_next(prev);
 303			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 304		}
 305		*prev_ret = prev;
 306		prev = orig_prev;
 307	}
 308
 309	if (next_ret) {
 310		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 311		while (prev && offset < prev_entry->start) {
 312			prev = rb_prev(prev);
 313			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 314		}
 315		*next_ret = prev;
 316	}
 317	return NULL;
 318}
 319
 320static inline struct rb_node *
 321tree_search_for_insert(struct extent_io_tree *tree,
 322		       u64 offset,
 323		       struct rb_node ***p_ret,
 324		       struct rb_node **parent_ret)
 325{
 326	struct rb_node *prev = NULL;
 327	struct rb_node *ret;
 328
 329	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
 330	if (!ret)
 331		return prev;
 332	return ret;
 333}
 334
 335static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 336					  u64 offset)
 337{
 338	return tree_search_for_insert(tree, offset, NULL, NULL);
 339}
 340
 341static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 342		     struct extent_state *other)
 343{
 344	if (tree->ops && tree->ops->merge_extent_hook)
 345		tree->ops->merge_extent_hook(tree->mapping->host, new,
 346					     other);
 347}
 348
 349/*
 350 * utility function to look for merge candidates inside a given range.
 351 * Any extents with matching state are merged together into a single
 352 * extent in the tree.  Extents with EXTENT_IO in their state field
 353 * are not merged because the end_io handlers need to be able to do
 354 * operations on them without sleeping (or doing allocations/splits).
 355 *
 356 * This should be called with the tree lock held.
 357 */
 358static void merge_state(struct extent_io_tree *tree,
 359		        struct extent_state *state)
 360{
 361	struct extent_state *other;
 362	struct rb_node *other_node;
 363
 364	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 365		return;
 366
 367	other_node = rb_prev(&state->rb_node);
 368	if (other_node) {
 369		other = rb_entry(other_node, struct extent_state, rb_node);
 370		if (other->end == state->start - 1 &&
 371		    other->state == state->state) {
 372			merge_cb(tree, state, other);
 373			state->start = other->start;
 374			other->tree = NULL;
 375			rb_erase(&other->rb_node, &tree->state);
 376			free_extent_state(other);
 377		}
 378	}
 379	other_node = rb_next(&state->rb_node);
 380	if (other_node) {
 381		other = rb_entry(other_node, struct extent_state, rb_node);
 382		if (other->start == state->end + 1 &&
 383		    other->state == state->state) {
 384			merge_cb(tree, state, other);
 385			state->end = other->end;
 386			other->tree = NULL;
 387			rb_erase(&other->rb_node, &tree->state);
 388			free_extent_state(other);
 389		}
 390	}
 391}
 392
 393static void set_state_cb(struct extent_io_tree *tree,
 394			 struct extent_state *state, unsigned long *bits)
 395{
 396	if (tree->ops && tree->ops->set_bit_hook)
 397		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 398}
 399
 400static void clear_state_cb(struct extent_io_tree *tree,
 401			   struct extent_state *state, unsigned long *bits)
 402{
 403	if (tree->ops && tree->ops->clear_bit_hook)
 404		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 405}
 406
 407static void set_state_bits(struct extent_io_tree *tree,
 408			   struct extent_state *state, unsigned long *bits);
 409
 410/*
 411 * insert an extent_state struct into the tree.  'bits' are set on the
 412 * struct before it is inserted.
 413 *
 414 * This may return -EEXIST if the extent is already there, in which case the
 415 * state struct is freed.
 416 *
 417 * The tree lock is not taken internally.  This is a utility function and
 418 * probably isn't what you want to call (see set/clear_extent_bit).
 419 */
 420static int insert_state(struct extent_io_tree *tree,
 421			struct extent_state *state, u64 start, u64 end,
 422			struct rb_node ***p,
 423			struct rb_node **parent,
 424			unsigned long *bits)
 425{
 426	struct rb_node *node;
 427
 428	if (end < start)
 429		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
 430		       end, start);
 431	state->start = start;
 432	state->end = end;
 433
 434	set_state_bits(tree, state, bits);
 435
 436	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 437	if (node) {
 438		struct extent_state *found;
 439		found = rb_entry(node, struct extent_state, rb_node);
 440		printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
 441		       "%llu %llu\n",
 442		       found->start, found->end, start, end);
 443		return -EEXIST;
 444	}
 445	state->tree = tree;
 446	merge_state(tree, state);
 447	return 0;
 448}
 449
 450static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 451		     u64 split)
 452{
 453	if (tree->ops && tree->ops->split_extent_hook)
 454		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 455}
 456
 457/*
 458 * split a given extent state struct in two, inserting the preallocated
 459 * struct 'prealloc' as the newly created second half.  'split' indicates an
 460 * offset inside 'orig' where it should be split.
 461 *
 462 * Before calling,
 463 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 464 * are two extent state structs in the tree:
 465 * prealloc: [orig->start, split - 1]
 466 * orig: [ split, orig->end ]
 467 *
 468 * The tree locks are not taken by this function. They need to be held
 469 * by the caller.
 470 */
 471static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 472		       struct extent_state *prealloc, u64 split)
 473{
 474	struct rb_node *node;
 475
 476	split_cb(tree, orig, split);
 477
 478	prealloc->start = orig->start;
 479	prealloc->end = split - 1;
 480	prealloc->state = orig->state;
 481	orig->start = split;
 482
 483	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 484			   &prealloc->rb_node, NULL, NULL);
 485	if (node) {
 486		free_extent_state(prealloc);
 487		return -EEXIST;
 488	}
 489	prealloc->tree = tree;
 490	return 0;
 491}
 492
 493static struct extent_state *next_state(struct extent_state *state)
 494{
 495	struct rb_node *next = rb_next(&state->rb_node);
 496	if (next)
 497		return rb_entry(next, struct extent_state, rb_node);
 498	else
 499		return NULL;
 500}
 501
 502/*
 503 * utility function to clear some bits in an extent state struct.
 504 * it will optionally wake up any one waiting on this state (wake == 1).
 505 *
 506 * If no bits are set on the state struct after clearing things, the
 507 * struct is freed and removed from the tree
 508 */
 509static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 510					    struct extent_state *state,
 511					    unsigned long *bits, int wake)
 512{
 513	struct extent_state *next;
 514	unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
 515
 516	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 517		u64 range = state->end - state->start + 1;
 518		WARN_ON(range > tree->dirty_bytes);
 519		tree->dirty_bytes -= range;
 520	}
 521	clear_state_cb(tree, state, bits);
 522	state->state &= ~bits_to_clear;
 523	if (wake)
 524		wake_up(&state->wq);
 525	if (state->state == 0) {
 526		next = next_state(state);
 527		if (state->tree) {
 528			rb_erase(&state->rb_node, &tree->state);
 529			state->tree = NULL;
 530			free_extent_state(state);
 531		} else {
 532			WARN_ON(1);
 533		}
 534	} else {
 535		merge_state(tree, state);
 536		next = next_state(state);
 537	}
 538	return next;
 539}
 540
 541static struct extent_state *
 542alloc_extent_state_atomic(struct extent_state *prealloc)
 543{
 544	if (!prealloc)
 545		prealloc = alloc_extent_state(GFP_ATOMIC);
 546
 547	return prealloc;
 548}
 549
 550static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 551{
 552	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
 553		    "Extent tree was modified by another "
 554		    "thread while locked.");
 555}
 556
 557/*
 558 * clear some bits on a range in the tree.  This may require splitting
 559 * or inserting elements in the tree, so the gfp mask is used to
 560 * indicate which allocations or sleeping are allowed.
 561 *
 562 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 563 * the given range from the tree regardless of state (ie for truncate).
 564 *
 565 * the range [start, end] is inclusive.
 566 *
 567 * This takes the tree lock, and returns 0 on success and < 0 on error.
 568 */
 569int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 570		     unsigned long bits, int wake, int delete,
 571		     struct extent_state **cached_state,
 572		     gfp_t mask)
 573{
 574	struct extent_state *state;
 575	struct extent_state *cached;
 576	struct extent_state *prealloc = NULL;
 577	struct rb_node *node;
 578	u64 last_end;
 579	int err;
 580	int clear = 0;
 581
 582	btrfs_debug_check_extent_io_range(tree, start, end);
 583
 584	if (bits & EXTENT_DELALLOC)
 585		bits |= EXTENT_NORESERVE;
 586
 587	if (delete)
 588		bits |= ~EXTENT_CTLBITS;
 589	bits |= EXTENT_FIRST_DELALLOC;
 590
 591	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 592		clear = 1;
 593again:
 594	if (!prealloc && (mask & __GFP_WAIT)) {
 595		prealloc = alloc_extent_state(mask);
 596		if (!prealloc)
 597			return -ENOMEM;
 598	}
 599
 600	spin_lock(&tree->lock);
 601	if (cached_state) {
 602		cached = *cached_state;
 603
 604		if (clear) {
 605			*cached_state = NULL;
 606			cached_state = NULL;
 607		}
 608
 609		if (cached && cached->tree && cached->start <= start &&
 610		    cached->end > start) {
 611			if (clear)
 612				atomic_dec(&cached->refs);
 613			state = cached;
 614			goto hit_next;
 615		}
 616		if (clear)
 617			free_extent_state(cached);
 618	}
 619	/*
 620	 * this search will find the extents that end after
 621	 * our range starts
 622	 */
 623	node = tree_search(tree, start);
 624	if (!node)
 625		goto out;
 626	state = rb_entry(node, struct extent_state, rb_node);
 627hit_next:
 628	if (state->start > end)
 629		goto out;
 630	WARN_ON(state->end < start);
 631	last_end = state->end;
 632
 633	/* the state doesn't have the wanted bits, go ahead */
 634	if (!(state->state & bits)) {
 635		state = next_state(state);
 636		goto next;
 637	}
 638
 639	/*
 640	 *     | ---- desired range ---- |
 641	 *  | state | or
 642	 *  | ------------- state -------------- |
 643	 *
 644	 * We need to split the extent we found, and may flip
 645	 * bits on second half.
 646	 *
 647	 * If the extent we found extends past our range, we
 648	 * just split and search again.  It'll get split again
 649	 * the next time though.
 650	 *
 651	 * If the extent we found is inside our range, we clear
 652	 * the desired bit on it.
 653	 */
 654
 655	if (state->start < start) {
 656		prealloc = alloc_extent_state_atomic(prealloc);
 657		BUG_ON(!prealloc);
 658		err = split_state(tree, state, prealloc, start);
 659		if (err)
 660			extent_io_tree_panic(tree, err);
 661
 662		prealloc = NULL;
 663		if (err)
 664			goto out;
 665		if (state->end <= end) {
 666			state = clear_state_bit(tree, state, &bits, wake);
 667			goto next;
 668		}
 669		goto search_again;
 670	}
 671	/*
 672	 * | ---- desired range ---- |
 673	 *                        | state |
 674	 * We need to split the extent, and clear the bit
 675	 * on the first half
 676	 */
 677	if (state->start <= end && state->end > end) {
 678		prealloc = alloc_extent_state_atomic(prealloc);
 679		BUG_ON(!prealloc);
 680		err = split_state(tree, state, prealloc, end + 1);
 681		if (err)
 682			extent_io_tree_panic(tree, err);
 683
 684		if (wake)
 685			wake_up(&state->wq);
 686
 687		clear_state_bit(tree, prealloc, &bits, wake);
 688
 689		prealloc = NULL;
 690		goto out;
 691	}
 692
 693	state = clear_state_bit(tree, state, &bits, wake);
 694next:
 695	if (last_end == (u64)-1)
 696		goto out;
 697	start = last_end + 1;
 698	if (start <= end && state && !need_resched())
 699		goto hit_next;
 700	goto search_again;
 701
 702out:
 703	spin_unlock(&tree->lock);
 704	if (prealloc)
 705		free_extent_state(prealloc);
 706
 707	return 0;
 708
 709search_again:
 710	if (start > end)
 711		goto out;
 712	spin_unlock(&tree->lock);
 713	if (mask & __GFP_WAIT)
 714		cond_resched();
 715	goto again;
 716}
 717
 718static void wait_on_state(struct extent_io_tree *tree,
 719			  struct extent_state *state)
 720		__releases(tree->lock)
 721		__acquires(tree->lock)
 722{
 723	DEFINE_WAIT(wait);
 724	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 725	spin_unlock(&tree->lock);
 726	schedule();
 727	spin_lock(&tree->lock);
 728	finish_wait(&state->wq, &wait);
 729}
 730
 731/*
 732 * waits for one or more bits to clear on a range in the state tree.
 733 * The range [start, end] is inclusive.
 734 * The tree lock is taken by this function
 735 */
 736static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 737			    unsigned long bits)
 738{
 739	struct extent_state *state;
 740	struct rb_node *node;
 741
 742	btrfs_debug_check_extent_io_range(tree, start, end);
 743
 744	spin_lock(&tree->lock);
 745again:
 746	while (1) {
 747		/*
 748		 * this search will find all the extents that end after
 749		 * our range starts
 750		 */
 751		node = tree_search(tree, start);
 752process_node:
 753		if (!node)
 754			break;
 755
 756		state = rb_entry(node, struct extent_state, rb_node);
 757
 758		if (state->start > end)
 759			goto out;
 760
 761		if (state->state & bits) {
 762			start = state->start;
 763			atomic_inc(&state->refs);
 764			wait_on_state(tree, state);
 765			free_extent_state(state);
 766			goto again;
 767		}
 768		start = state->end + 1;
 769
 770		if (start > end)
 771			break;
 772
 773		if (!cond_resched_lock(&tree->lock)) {
 774			node = rb_next(node);
 775			goto process_node;
 776		}
 777	}
 778out:
 779	spin_unlock(&tree->lock);
 780}
 781
 782static void set_state_bits(struct extent_io_tree *tree,
 783			   struct extent_state *state,
 784			   unsigned long *bits)
 785{
 786	unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
 787
 788	set_state_cb(tree, state, bits);
 789	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 790		u64 range = state->end - state->start + 1;
 791		tree->dirty_bytes += range;
 792	}
 793	state->state |= bits_to_set;
 794}
 795
 796static void cache_state(struct extent_state *state,
 797			struct extent_state **cached_ptr)
 798{
 799	if (cached_ptr && !(*cached_ptr)) {
 800		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
 801			*cached_ptr = state;
 802			atomic_inc(&state->refs);
 803		}
 804	}
 805}
 806
 807/*
 808 * set some bits on a range in the tree.  This may require allocations or
 809 * sleeping, so the gfp mask is used to indicate what is allowed.
 810 *
 811 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 812 * part of the range already has the desired bits set.  The start of the
 813 * existing range is returned in failed_start in this case.
 814 *
 815 * [start, end] is inclusive This takes the tree lock.
 816 */
 817
 818static int __must_check
 819__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 820		 unsigned long bits, unsigned long exclusive_bits,
 821		 u64 *failed_start, struct extent_state **cached_state,
 822		 gfp_t mask)
 823{
 824	struct extent_state *state;
 825	struct extent_state *prealloc = NULL;
 826	struct rb_node *node;
 827	struct rb_node **p;
 828	struct rb_node *parent;
 829	int err = 0;
 830	u64 last_start;
 831	u64 last_end;
 832
 833	btrfs_debug_check_extent_io_range(tree, start, end);
 834
 835	bits |= EXTENT_FIRST_DELALLOC;
 836again:
 837	if (!prealloc && (mask & __GFP_WAIT)) {
 838		prealloc = alloc_extent_state(mask);
 839		BUG_ON(!prealloc);
 840	}
 841
 842	spin_lock(&tree->lock);
 843	if (cached_state && *cached_state) {
 844		state = *cached_state;
 845		if (state->start <= start && state->end > start &&
 846		    state->tree) {
 847			node = &state->rb_node;
 848			goto hit_next;
 849		}
 850	}
 851	/*
 852	 * this search will find all the extents that end after
 853	 * our range starts.
 854	 */
 855	node = tree_search_for_insert(tree, start, &p, &parent);
 856	if (!node) {
 857		prealloc = alloc_extent_state_atomic(prealloc);
 858		BUG_ON(!prealloc);
 859		err = insert_state(tree, prealloc, start, end,
 860				   &p, &parent, &bits);
 861		if (err)
 862			extent_io_tree_panic(tree, err);
 863
 864		cache_state(prealloc, cached_state);
 865		prealloc = NULL;
 866		goto out;
 867	}
 868	state = rb_entry(node, struct extent_state, rb_node);
 869hit_next:
 870	last_start = state->start;
 871	last_end = state->end;
 872
 873	/*
 874	 * | ---- desired range ---- |
 875	 * | state |
 876	 *
 877	 * Just lock what we found and keep going
 878	 */
 879	if (state->start == start && state->end <= end) {
 880		if (state->state & exclusive_bits) {
 881			*failed_start = state->start;
 882			err = -EEXIST;
 883			goto out;
 884		}
 885
 886		set_state_bits(tree, state, &bits);
 887		cache_state(state, cached_state);
 888		merge_state(tree, state);
 889		if (last_end == (u64)-1)
 890			goto out;
 891		start = last_end + 1;
 892		state = next_state(state);
 893		if (start < end && state && state->start == start &&
 894		    !need_resched())
 895			goto hit_next;
 896		goto search_again;
 897	}
 898
 899	/*
 900	 *     | ---- desired range ---- |
 901	 * | state |
 902	 *   or
 903	 * | ------------- state -------------- |
 904	 *
 905	 * We need to split the extent we found, and may flip bits on
 906	 * second half.
 907	 *
 908	 * If the extent we found extends past our
 909	 * range, we just split and search again.  It'll get split
 910	 * again the next time though.
 911	 *
 912	 * If the extent we found is inside our range, we set the
 913	 * desired bit on it.
 914	 */
 915	if (state->start < start) {
 916		if (state->state & exclusive_bits) {
 917			*failed_start = start;
 918			err = -EEXIST;
 919			goto out;
 920		}
 921
 922		prealloc = alloc_extent_state_atomic(prealloc);
 923		BUG_ON(!prealloc);
 924		err = split_state(tree, state, prealloc, start);
 925		if (err)
 926			extent_io_tree_panic(tree, err);
 927
 928		prealloc = NULL;
 929		if (err)
 930			goto out;
 931		if (state->end <= end) {
 932			set_state_bits(tree, state, &bits);
 933			cache_state(state, cached_state);
 934			merge_state(tree, state);
 935			if (last_end == (u64)-1)
 936				goto out;
 937			start = last_end + 1;
 938			state = next_state(state);
 939			if (start < end && state && state->start == start &&
 940			    !need_resched())
 941				goto hit_next;
 942		}
 943		goto search_again;
 944	}
 945	/*
 946	 * | ---- desired range ---- |
 947	 *     | state | or               | state |
 948	 *
 949	 * There's a hole, we need to insert something in it and
 950	 * ignore the extent we found.
 951	 */
 952	if (state->start > start) {
 953		u64 this_end;
 954		if (end < last_start)
 955			this_end = end;
 956		else
 957			this_end = last_start - 1;
 958
 959		prealloc = alloc_extent_state_atomic(prealloc);
 960		BUG_ON(!prealloc);
 961
 962		/*
 963		 * Avoid to free 'prealloc' if it can be merged with
 964		 * the later extent.
 965		 */
 966		err = insert_state(tree, prealloc, start, this_end,
 967				   NULL, NULL, &bits);
 968		if (err)
 969			extent_io_tree_panic(tree, err);
 970
 971		cache_state(prealloc, cached_state);
 972		prealloc = NULL;
 973		start = this_end + 1;
 974		goto search_again;
 975	}
 976	/*
 977	 * | ---- desired range ---- |
 978	 *                        | state |
 979	 * We need to split the extent, and set the bit
 980	 * on the first half
 981	 */
 982	if (state->start <= end && state->end > end) {
 983		if (state->state & exclusive_bits) {
 984			*failed_start = start;
 985			err = -EEXIST;
 986			goto out;
 987		}
 988
 989		prealloc = alloc_extent_state_atomic(prealloc);
 990		BUG_ON(!prealloc);
 991		err = split_state(tree, state, prealloc, end + 1);
 992		if (err)
 993			extent_io_tree_panic(tree, err);
 994
 995		set_state_bits(tree, prealloc, &bits);
 996		cache_state(prealloc, cached_state);
 997		merge_state(tree, prealloc);
 998		prealloc = NULL;
 999		goto out;
1000	}
1001
1002	goto search_again;
1003
1004out:
1005	spin_unlock(&tree->lock);
1006	if (prealloc)
1007		free_extent_state(prealloc);
1008
1009	return err;
1010
1011search_again:
1012	if (start > end)
1013		goto out;
1014	spin_unlock(&tree->lock);
1015	if (mask & __GFP_WAIT)
1016		cond_resched();
1017	goto again;
1018}
1019
1020int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1021		   unsigned long bits, u64 * failed_start,
1022		   struct extent_state **cached_state, gfp_t mask)
1023{
1024	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1025				cached_state, mask);
1026}
1027
1028
1029/**
1030 * convert_extent_bit - convert all bits in a given range from one bit to
1031 * 			another
1032 * @tree:	the io tree to search
1033 * @start:	the start offset in bytes
1034 * @end:	the end offset in bytes (inclusive)
1035 * @bits:	the bits to set in this range
1036 * @clear_bits:	the bits to clear in this range
1037 * @cached_state:	state that we're going to cache
1038 * @mask:	the allocation mask
1039 *
1040 * This will go through and set bits for the given range.  If any states exist
1041 * already in this range they are set with the given bit and cleared of the
1042 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1043 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1044 * boundary bits like LOCK.
1045 */
1046int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1047		       unsigned long bits, unsigned long clear_bits,
1048		       struct extent_state **cached_state, gfp_t mask)
1049{
1050	struct extent_state *state;
1051	struct extent_state *prealloc = NULL;
1052	struct rb_node *node;
1053	struct rb_node **p;
1054	struct rb_node *parent;
1055	int err = 0;
1056	u64 last_start;
1057	u64 last_end;
1058
1059	btrfs_debug_check_extent_io_range(tree, start, end);
1060
1061again:
1062	if (!prealloc && (mask & __GFP_WAIT)) {
1063		prealloc = alloc_extent_state(mask);
1064		if (!prealloc)
1065			return -ENOMEM;
1066	}
1067
1068	spin_lock(&tree->lock);
1069	if (cached_state && *cached_state) {
1070		state = *cached_state;
1071		if (state->start <= start && state->end > start &&
1072		    state->tree) {
1073			node = &state->rb_node;
1074			goto hit_next;
1075		}
1076	}
1077
1078	/*
1079	 * this search will find all the extents that end after
1080	 * our range starts.
1081	 */
1082	node = tree_search_for_insert(tree, start, &p, &parent);
1083	if (!node) {
1084		prealloc = alloc_extent_state_atomic(prealloc);
1085		if (!prealloc) {
1086			err = -ENOMEM;
1087			goto out;
1088		}
1089		err = insert_state(tree, prealloc, start, end,
1090				   &p, &parent, &bits);
1091		if (err)
1092			extent_io_tree_panic(tree, err);
1093		cache_state(prealloc, cached_state);
1094		prealloc = NULL;
1095		goto out;
1096	}
1097	state = rb_entry(node, struct extent_state, rb_node);
1098hit_next:
1099	last_start = state->start;
1100	last_end = state->end;
1101
1102	/*
1103	 * | ---- desired range ---- |
1104	 * | state |
1105	 *
1106	 * Just lock what we found and keep going
1107	 */
1108	if (state->start == start && state->end <= end) {
1109		set_state_bits(tree, state, &bits);
1110		cache_state(state, cached_state);
1111		state = clear_state_bit(tree, state, &clear_bits, 0);
1112		if (last_end == (u64)-1)
1113			goto out;
1114		start = last_end + 1;
1115		if (start < end && state && state->start == start &&
1116		    !need_resched())
1117			goto hit_next;
1118		goto search_again;
1119	}
1120
1121	/*
1122	 *     | ---- desired range ---- |
1123	 * | state |
1124	 *   or
1125	 * | ------------- state -------------- |
1126	 *
1127	 * We need to split the extent we found, and may flip bits on
1128	 * second half.
1129	 *
1130	 * If the extent we found extends past our
1131	 * range, we just split and search again.  It'll get split
1132	 * again the next time though.
1133	 *
1134	 * If the extent we found is inside our range, we set the
1135	 * desired bit on it.
1136	 */
1137	if (state->start < start) {
1138		prealloc = alloc_extent_state_atomic(prealloc);
1139		if (!prealloc) {
1140			err = -ENOMEM;
1141			goto out;
1142		}
1143		err = split_state(tree, state, prealloc, start);
1144		if (err)
1145			extent_io_tree_panic(tree, err);
1146		prealloc = NULL;
1147		if (err)
1148			goto out;
1149		if (state->end <= end) {
1150			set_state_bits(tree, state, &bits);
1151			cache_state(state, cached_state);
1152			state = clear_state_bit(tree, state, &clear_bits, 0);
1153			if (last_end == (u64)-1)
1154				goto out;
1155			start = last_end + 1;
1156			if (start < end && state && state->start == start &&
1157			    !need_resched())
1158				goto hit_next;
1159		}
1160		goto search_again;
1161	}
1162	/*
1163	 * | ---- desired range ---- |
1164	 *     | state | or               | state |
1165	 *
1166	 * There's a hole, we need to insert something in it and
1167	 * ignore the extent we found.
1168	 */
1169	if (state->start > start) {
1170		u64 this_end;
1171		if (end < last_start)
1172			this_end = end;
1173		else
1174			this_end = last_start - 1;
1175
1176		prealloc = alloc_extent_state_atomic(prealloc);
1177		if (!prealloc) {
1178			err = -ENOMEM;
1179			goto out;
1180		}
1181
1182		/*
1183		 * Avoid to free 'prealloc' if it can be merged with
1184		 * the later extent.
1185		 */
1186		err = insert_state(tree, prealloc, start, this_end,
1187				   NULL, NULL, &bits);
1188		if (err)
1189			extent_io_tree_panic(tree, err);
1190		cache_state(prealloc, cached_state);
1191		prealloc = NULL;
1192		start = this_end + 1;
1193		goto search_again;
1194	}
1195	/*
1196	 * | ---- desired range ---- |
1197	 *                        | state |
1198	 * We need to split the extent, and set the bit
1199	 * on the first half
1200	 */
1201	if (state->start <= end && state->end > end) {
1202		prealloc = alloc_extent_state_atomic(prealloc);
1203		if (!prealloc) {
1204			err = -ENOMEM;
1205			goto out;
1206		}
1207
1208		err = split_state(tree, state, prealloc, end + 1);
1209		if (err)
1210			extent_io_tree_panic(tree, err);
1211
1212		set_state_bits(tree, prealloc, &bits);
1213		cache_state(prealloc, cached_state);
1214		clear_state_bit(tree, prealloc, &clear_bits, 0);
1215		prealloc = NULL;
1216		goto out;
1217	}
1218
1219	goto search_again;
1220
1221out:
1222	spin_unlock(&tree->lock);
1223	if (prealloc)
1224		free_extent_state(prealloc);
1225
1226	return err;
1227
1228search_again:
1229	if (start > end)
1230		goto out;
1231	spin_unlock(&tree->lock);
1232	if (mask & __GFP_WAIT)
1233		cond_resched();
1234	goto again;
1235}
1236
1237/* wrappers around set/clear extent bit */
1238int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1239		     gfp_t mask)
1240{
1241	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1242			      NULL, mask);
1243}
1244
1245int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1246		    unsigned long bits, gfp_t mask)
1247{
1248	return set_extent_bit(tree, start, end, bits, NULL,
1249			      NULL, mask);
1250}
1251
1252int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1253		      unsigned long bits, gfp_t mask)
1254{
1255	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1256}
1257
1258int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1259			struct extent_state **cached_state, gfp_t mask)
1260{
1261	return set_extent_bit(tree, start, end,
1262			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1263			      NULL, cached_state, mask);
1264}
1265
1266int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1267		      struct extent_state **cached_state, gfp_t mask)
1268{
1269	return set_extent_bit(tree, start, end,
1270			      EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1271			      NULL, cached_state, mask);
1272}
1273
1274int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1275		       gfp_t mask)
1276{
1277	return clear_extent_bit(tree, start, end,
1278				EXTENT_DIRTY | EXTENT_DELALLOC |
1279				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1280}
1281
1282int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1283		     gfp_t mask)
1284{
1285	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1286			      NULL, mask);
1287}
1288
1289int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1290			struct extent_state **cached_state, gfp_t mask)
1291{
1292	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1293			      cached_state, mask);
1294}
1295
1296int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1297			  struct extent_state **cached_state, gfp_t mask)
1298{
1299	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1300				cached_state, mask);
1301}
1302
1303/*
1304 * either insert or lock state struct between start and end use mask to tell
1305 * us if waiting is desired.
1306 */
1307int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1308		     unsigned long bits, struct extent_state **cached_state)
1309{
1310	int err;
1311	u64 failed_start;
1312	while (1) {
1313		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1314				       EXTENT_LOCKED, &failed_start,
1315				       cached_state, GFP_NOFS);
1316		if (err == -EEXIST) {
1317			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1318			start = failed_start;
1319		} else
1320			break;
1321		WARN_ON(start > end);
1322	}
1323	return err;
1324}
1325
1326int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1327{
1328	return lock_extent_bits(tree, start, end, 0, NULL);
1329}
1330
1331int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1332{
1333	int err;
1334	u64 failed_start;
1335
1336	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1337			       &failed_start, NULL, GFP_NOFS);
1338	if (err == -EEXIST) {
1339		if (failed_start > start)
1340			clear_extent_bit(tree, start, failed_start - 1,
1341					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1342		return 0;
1343	}
1344	return 1;
1345}
1346
1347int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1348			 struct extent_state **cached, gfp_t mask)
1349{
1350	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1351				mask);
1352}
1353
1354int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1355{
1356	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1357				GFP_NOFS);
1358}
1359
1360int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1361{
1362	unsigned long index = start >> PAGE_CACHE_SHIFT;
1363	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1364	struct page *page;
1365
1366	while (index <= end_index) {
1367		page = find_get_page(inode->i_mapping, index);
1368		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1369		clear_page_dirty_for_io(page);
1370		page_cache_release(page);
1371		index++;
1372	}
1373	return 0;
1374}
1375
1376int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1377{
1378	unsigned long index = start >> PAGE_CACHE_SHIFT;
1379	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1380	struct page *page;
1381
1382	while (index <= end_index) {
1383		page = find_get_page(inode->i_mapping, index);
1384		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1385		account_page_redirty(page);
1386		__set_page_dirty_nobuffers(page);
1387		page_cache_release(page);
1388		index++;
1389	}
1390	return 0;
1391}
1392
1393/*
1394 * helper function to set both pages and extents in the tree writeback
1395 */
1396static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1397{
1398	unsigned long index = start >> PAGE_CACHE_SHIFT;
1399	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1400	struct page *page;
 
 
 
 
 
 
 
 
1401
 
1402	while (index <= end_index) {
1403		page = find_get_page(tree->mapping, index);
1404		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1405		set_page_writeback(page);
1406		page_cache_release(page);
1407		index++;
1408	}
1409	return 0;
1410}
1411
1412/* find the first state struct with 'bits' set after 'start', and
1413 * return it.  tree->lock must be held.  NULL will returned if
1414 * nothing was found after 'start'
1415 */
1416static struct extent_state *
1417find_first_extent_bit_state(struct extent_io_tree *tree,
1418			    u64 start, unsigned long bits)
1419{
1420	struct rb_node *node;
1421	struct extent_state *state;
1422
1423	/*
1424	 * this search will find all the extents that end after
1425	 * our range starts.
1426	 */
1427	node = tree_search(tree, start);
1428	if (!node)
1429		goto out;
1430
1431	while (1) {
1432		state = rb_entry(node, struct extent_state, rb_node);
1433		if (state->end >= start && (state->state & bits))
1434			return state;
1435
1436		node = rb_next(node);
1437		if (!node)
1438			break;
1439	}
1440out:
1441	return NULL;
1442}
1443
1444/*
1445 * find the first offset in the io tree with 'bits' set. zero is
1446 * returned if we find something, and *start_ret and *end_ret are
1447 * set to reflect the state struct that was found.
1448 *
1449 * If nothing was found, 1 is returned. If found something, return 0.
1450 */
1451int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1452			  u64 *start_ret, u64 *end_ret, unsigned long bits,
1453			  struct extent_state **cached_state)
1454{
1455	struct extent_state *state;
1456	struct rb_node *n;
1457	int ret = 1;
1458
1459	spin_lock(&tree->lock);
1460	if (cached_state && *cached_state) {
1461		state = *cached_state;
1462		if (state->end == start - 1 && state->tree) {
1463			n = rb_next(&state->rb_node);
1464			while (n) {
1465				state = rb_entry(n, struct extent_state,
1466						 rb_node);
1467				if (state->state & bits)
1468					goto got_it;
1469				n = rb_next(n);
1470			}
1471			free_extent_state(*cached_state);
1472			*cached_state = NULL;
1473			goto out;
1474		}
1475		free_extent_state(*cached_state);
1476		*cached_state = NULL;
1477	}
1478
1479	state = find_first_extent_bit_state(tree, start, bits);
1480got_it:
1481	if (state) {
1482		cache_state(state, cached_state);
1483		*start_ret = state->start;
1484		*end_ret = state->end;
1485		ret = 0;
1486	}
1487out:
1488	spin_unlock(&tree->lock);
1489	return ret;
1490}
1491
1492/*
1493 * find a contiguous range of bytes in the file marked as delalloc, not
1494 * more than 'max_bytes'.  start and end are used to return the range,
1495 *
1496 * 1 is returned if we find something, 0 if nothing was in the tree
1497 */
1498static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1499					u64 *start, u64 *end, u64 max_bytes,
1500					struct extent_state **cached_state)
1501{
1502	struct rb_node *node;
1503	struct extent_state *state;
1504	u64 cur_start = *start;
1505	u64 found = 0;
1506	u64 total_bytes = 0;
1507
1508	spin_lock(&tree->lock);
1509
1510	/*
1511	 * this search will find all the extents that end after
1512	 * our range starts.
1513	 */
1514	node = tree_search(tree, cur_start);
1515	if (!node) {
1516		if (!found)
1517			*end = (u64)-1;
1518		goto out;
1519	}
1520
1521	while (1) {
1522		state = rb_entry(node, struct extent_state, rb_node);
1523		if (found && (state->start != cur_start ||
1524			      (state->state & EXTENT_BOUNDARY))) {
1525			goto out;
1526		}
1527		if (!(state->state & EXTENT_DELALLOC)) {
1528			if (!found)
1529				*end = state->end;
1530			goto out;
1531		}
1532		if (!found) {
1533			*start = state->start;
1534			*cached_state = state;
1535			atomic_inc(&state->refs);
1536		}
1537		found++;
1538		*end = state->end;
1539		cur_start = state->end + 1;
1540		node = rb_next(node);
1541		total_bytes += state->end - state->start + 1;
1542		if (total_bytes >= max_bytes)
1543			break;
1544		if (!node)
1545			break;
1546	}
1547out:
1548	spin_unlock(&tree->lock);
1549	return found;
1550}
1551
1552static noinline void __unlock_for_delalloc(struct inode *inode,
1553					   struct page *locked_page,
1554					   u64 start, u64 end)
1555{
1556	int ret;
1557	struct page *pages[16];
1558	unsigned long index = start >> PAGE_CACHE_SHIFT;
1559	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1560	unsigned long nr_pages = end_index - index + 1;
1561	int i;
1562
 
1563	if (index == locked_page->index && end_index == index)
1564		return;
1565
1566	while (nr_pages > 0) {
1567		ret = find_get_pages_contig(inode->i_mapping, index,
1568				     min_t(unsigned long, nr_pages,
1569				     ARRAY_SIZE(pages)), pages);
1570		for (i = 0; i < ret; i++) {
1571			if (pages[i] != locked_page)
1572				unlock_page(pages[i]);
1573			page_cache_release(pages[i]);
1574		}
1575		nr_pages -= ret;
1576		index += ret;
1577		cond_resched();
1578	}
1579}
1580
1581static noinline int lock_delalloc_pages(struct inode *inode,
1582					struct page *locked_page,
1583					u64 delalloc_start,
1584					u64 delalloc_end)
1585{
1586	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1587	unsigned long start_index = index;
1588	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1589	unsigned long pages_locked = 0;
1590	struct page *pages[16];
1591	unsigned long nrpages;
1592	int ret;
1593	int i;
1594
1595	/* the caller is responsible for locking the start index */
1596	if (index == locked_page->index && index == end_index)
1597		return 0;
1598
1599	/* skip the page at the start index */
1600	nrpages = end_index - index + 1;
1601	while (nrpages > 0) {
1602		ret = find_get_pages_contig(inode->i_mapping, index,
1603				     min_t(unsigned long,
1604				     nrpages, ARRAY_SIZE(pages)), pages);
1605		if (ret == 0) {
1606			ret = -EAGAIN;
1607			goto done;
1608		}
1609		/* now we have an array of pages, lock them all */
1610		for (i = 0; i < ret; i++) {
1611			/*
1612			 * the caller is taking responsibility for
1613			 * locked_page
1614			 */
1615			if (pages[i] != locked_page) {
1616				lock_page(pages[i]);
1617				if (!PageDirty(pages[i]) ||
1618				    pages[i]->mapping != inode->i_mapping) {
1619					ret = -EAGAIN;
1620					unlock_page(pages[i]);
1621					page_cache_release(pages[i]);
1622					goto done;
1623				}
1624			}
1625			page_cache_release(pages[i]);
1626			pages_locked++;
1627		}
1628		nrpages -= ret;
1629		index += ret;
1630		cond_resched();
1631	}
1632	ret = 0;
1633done:
1634	if (ret && pages_locked) {
1635		__unlock_for_delalloc(inode, locked_page,
1636			      delalloc_start,
1637			      ((u64)(start_index + pages_locked - 1)) <<
1638			      PAGE_CACHE_SHIFT);
1639	}
1640	return ret;
1641}
1642
1643/*
1644 * find a contiguous range of bytes in the file marked as delalloc, not
1645 * more than 'max_bytes'.  start and end are used to return the range,
 
 
 
 
 
1646 *
1647 * 1 is returned if we find something, 0 if nothing was in the tree
 
 
 
 
1648 */
1649STATIC u64 find_lock_delalloc_range(struct inode *inode,
1650				    struct extent_io_tree *tree,
1651				    struct page *locked_page, u64 *start,
1652				    u64 *end, u64 max_bytes)
1653{
 
 
 
 
 
 
1654	u64 delalloc_start;
1655	u64 delalloc_end;
1656	u64 found;
1657	struct extent_state *cached_state = NULL;
1658	int ret;
1659	int loops = 0;
1660
 
 
 
 
 
 
1661again:
1662	/* step one, find a bunch of delalloc bytes starting at start */
1663	delalloc_start = *start;
1664	delalloc_end = 0;
1665	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1666				    max_bytes, &cached_state);
1667	if (!found || delalloc_end <= *start) {
1668		*start = delalloc_start;
1669		*end = delalloc_end;
 
 
1670		free_extent_state(cached_state);
1671		return 0;
1672	}
1673
1674	/*
1675	 * start comes from the offset of locked_page.  We have to lock
1676	 * pages in order, so we can't process delalloc bytes before
1677	 * locked_page
1678	 */
1679	if (delalloc_start < *start)
1680		delalloc_start = *start;
1681
1682	/*
1683	 * make sure to limit the number of pages we try to lock down
1684	 */
1685	if (delalloc_end + 1 - delalloc_start > max_bytes)
1686		delalloc_end = delalloc_start + max_bytes - 1;
1687
1688	/* step two, lock all the pages after the page that has start */
1689	ret = lock_delalloc_pages(inode, locked_page,
1690				  delalloc_start, delalloc_end);
 
1691	if (ret == -EAGAIN) {
1692		/* some of the pages are gone, lets avoid looping by
1693		 * shortening the size of the delalloc range we're searching
1694		 */
1695		free_extent_state(cached_state);
 
1696		if (!loops) {
1697			max_bytes = PAGE_CACHE_SIZE;
1698			loops = 1;
1699			goto again;
1700		} else {
1701			found = 0;
1702			goto out_failed;
1703		}
1704	}
1705	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1706
1707	/* step three, lock the state bits for the whole range */
1708	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1709
1710	/* then test to make sure it is all still delalloc */
1711	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1712			     EXTENT_DELALLOC, 1, cached_state);
1713	if (!ret) {
1714		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1715				     &cached_state, GFP_NOFS);
1716		__unlock_for_delalloc(inode, locked_page,
1717			      delalloc_start, delalloc_end);
1718		cond_resched();
1719		goto again;
1720	}
1721	free_extent_state(cached_state);
1722	*start = delalloc_start;
1723	*end = delalloc_end;
1724out_failed:
1725	return found;
1726}
1727
1728int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1729				 struct page *locked_page,
1730				 unsigned long clear_bits,
1731				 unsigned long page_ops)
1732{
1733	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1734	int ret;
1735	struct page *pages[16];
1736	unsigned long index = start >> PAGE_CACHE_SHIFT;
1737	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1738	unsigned long nr_pages = end_index - index + 1;
1739	int i;
1740
1741	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1742	if (page_ops == 0)
1743		return 0;
1744
1745	while (nr_pages > 0) {
1746		ret = find_get_pages_contig(inode->i_mapping, index,
1747				     min_t(unsigned long,
1748				     nr_pages, ARRAY_SIZE(pages)), pages);
1749		for (i = 0; i < ret; i++) {
1750
1751			if (page_ops & PAGE_SET_PRIVATE2)
1752				SetPagePrivate2(pages[i]);
1753
1754			if (pages[i] == locked_page) {
1755				page_cache_release(pages[i]);
1756				continue;
1757			}
1758			if (page_ops & PAGE_CLEAR_DIRTY)
1759				clear_page_dirty_for_io(pages[i]);
1760			if (page_ops & PAGE_SET_WRITEBACK)
1761				set_page_writeback(pages[i]);
1762			if (page_ops & PAGE_END_WRITEBACK)
1763				end_page_writeback(pages[i]);
1764			if (page_ops & PAGE_UNLOCK)
1765				unlock_page(pages[i]);
1766			page_cache_release(pages[i]);
1767		}
1768		nr_pages -= ret;
1769		index += ret;
1770		cond_resched();
1771	}
1772	return 0;
1773}
1774
1775/*
1776 * count the number of bytes in the tree that have a given bit(s)
1777 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1778 * cached.  The total number found is returned.
1779 */
1780u64 count_range_bits(struct extent_io_tree *tree,
1781		     u64 *start, u64 search_end, u64 max_bytes,
1782		     unsigned long bits, int contig)
1783{
1784	struct rb_node *node;
1785	struct extent_state *state;
1786	u64 cur_start = *start;
1787	u64 total_bytes = 0;
1788	u64 last = 0;
1789	int found = 0;
1790
1791	if (WARN_ON(search_end <= cur_start))
1792		return 0;
1793
1794	spin_lock(&tree->lock);
1795	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1796		total_bytes = tree->dirty_bytes;
1797		goto out;
1798	}
1799	/*
1800	 * this search will find all the extents that end after
1801	 * our range starts.
1802	 */
1803	node = tree_search(tree, cur_start);
1804	if (!node)
1805		goto out;
1806
1807	while (1) {
1808		state = rb_entry(node, struct extent_state, rb_node);
1809		if (state->start > search_end)
1810			break;
1811		if (contig && found && state->start > last + 1)
1812			break;
1813		if (state->end >= cur_start && (state->state & bits) == bits) {
1814			total_bytes += min(search_end, state->end) + 1 -
1815				       max(cur_start, state->start);
1816			if (total_bytes >= max_bytes)
1817				break;
1818			if (!found) {
1819				*start = max(cur_start, state->start);
1820				found = 1;
1821			}
1822			last = state->end;
1823		} else if (contig && found) {
1824			break;
1825		}
1826		node = rb_next(node);
1827		if (!node)
1828			break;
1829	}
1830out:
1831	spin_unlock(&tree->lock);
1832	return total_bytes;
1833}
1834
1835/*
1836 * set the private field for a given byte offset in the tree.  If there isn't
1837 * an extent_state there already, this does nothing.
1838 */
1839static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1840{
1841	struct rb_node *node;
1842	struct extent_state *state;
1843	int ret = 0;
1844
1845	spin_lock(&tree->lock);
1846	/*
1847	 * this search will find all the extents that end after
1848	 * our range starts.
1849	 */
1850	node = tree_search(tree, start);
1851	if (!node) {
1852		ret = -ENOENT;
1853		goto out;
1854	}
1855	state = rb_entry(node, struct extent_state, rb_node);
1856	if (state->start != start) {
1857		ret = -ENOENT;
1858		goto out;
1859	}
1860	state->private = private;
1861out:
1862	spin_unlock(&tree->lock);
1863	return ret;
1864}
1865
1866int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1867{
1868	struct rb_node *node;
1869	struct extent_state *state;
1870	int ret = 0;
1871
1872	spin_lock(&tree->lock);
1873	/*
1874	 * this search will find all the extents that end after
1875	 * our range starts.
1876	 */
1877	node = tree_search(tree, start);
1878	if (!node) {
1879		ret = -ENOENT;
1880		goto out;
1881	}
1882	state = rb_entry(node, struct extent_state, rb_node);
1883	if (state->start != start) {
1884		ret = -ENOENT;
1885		goto out;
1886	}
1887	*private = state->private;
1888out:
1889	spin_unlock(&tree->lock);
1890	return ret;
1891}
1892
1893/*
1894 * searches a range in the state tree for a given mask.
1895 * If 'filled' == 1, this returns 1 only if every extent in the tree
1896 * has the bits set.  Otherwise, 1 is returned if any bit in the
1897 * range is found set.
 
 
 
 
1898 */
1899int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1900		   unsigned long bits, int filled, struct extent_state *cached)
1901{
1902	struct extent_state *state = NULL;
1903	struct rb_node *node;
1904	int bitset = 0;
1905
1906	spin_lock(&tree->lock);
1907	if (cached && cached->tree && cached->start <= start &&
1908	    cached->end > start)
1909		node = &cached->rb_node;
1910	else
1911		node = tree_search(tree, start);
1912	while (node && start <= end) {
1913		state = rb_entry(node, struct extent_state, rb_node);
1914
1915		if (filled && state->start > start) {
1916			bitset = 0;
1917			break;
1918		}
1919
1920		if (state->start > end)
1921			break;
1922
1923		if (state->state & bits) {
1924			bitset = 1;
1925			if (!filled)
1926				break;
1927		} else if (filled) {
1928			bitset = 0;
1929			break;
1930		}
1931
1932		if (state->end == (u64)-1)
1933			break;
1934
1935		start = state->end + 1;
1936		if (start > end)
1937			break;
1938		node = rb_next(node);
1939		if (!node) {
1940			if (filled)
1941				bitset = 0;
1942			break;
1943		}
1944	}
1945	spin_unlock(&tree->lock);
1946	return bitset;
1947}
1948
1949/*
1950 * helper function to set a given page up to date if all the
1951 * extents in the tree for that page are up to date
1952 */
1953static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1954{
1955	u64 start = page_offset(page);
1956	u64 end = start + PAGE_CACHE_SIZE - 1;
1957	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1958		SetPageUptodate(page);
1959}
1960
1961/*
1962 * When IO fails, either with EIO or csum verification fails, we
1963 * try other mirrors that might have a good copy of the data.  This
1964 * io_failure_record is used to record state as we go through all the
1965 * mirrors.  If another mirror has good data, the page is set up to date
1966 * and things continue.  If a good mirror can't be found, the original
1967 * bio end_io callback is called to indicate things have failed.
1968 */
1969struct io_failure_record {
1970	struct page *page;
 
1971	u64 start;
1972	u64 len;
1973	u64 logical;
1974	unsigned long bio_flags;
1975	int this_mirror;
1976	int failed_mirror;
1977	int in_validation;
1978};
1979
1980static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1981				int did_repair)
1982{
1983	int ret;
1984	int err = 0;
1985	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1986
1987	set_state_private(failure_tree, rec->start, 0);
1988	ret = clear_extent_bits(failure_tree, rec->start,
1989				rec->start + rec->len - 1,
1990				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1991	if (ret)
1992		err = ret;
1993
1994	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1995				rec->start + rec->len - 1,
1996				EXTENT_DAMAGED, GFP_NOFS);
1997	if (ret && !err)
1998		err = ret;
1999
2000	kfree(rec);
2001	return err;
2002}
2003
2004/*
2005 * this bypasses the standard btrfs submit functions deliberately, as
2006 * the standard behavior is to write all copies in a raid setup. here we only
2007 * want to write the one bad copy. so we do the mapping for ourselves and issue
2008 * submit_bio directly.
2009 * to avoid any synchronization issues, wait for the data after writing, which
2010 * actually prevents the read that triggered the error from finishing.
2011 * currently, there can be no more than two copies of every data bit. thus,
2012 * exactly one rewrite is required.
 
2013 */
2014int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2015			u64 length, u64 logical, struct page *page,
2016			int mirror_num)
2017{
2018	struct bio *bio;
2019	struct btrfs_device *dev;
2020	u64 map_length = 0;
2021	u64 sector;
2022	struct btrfs_bio *bbio = NULL;
2023	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2024	int ret;
2025
2026	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2027	BUG_ON(!mirror_num);
 
2028
2029	/* we can't repair anything in raid56 yet */
2030	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2031		return 0;
2032
2033	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2034	if (!bio)
2035		return -EIO;
2036	bio->bi_iter.bi_size = 0;
2037	map_length = length;
2038
2039	ret = btrfs_map_block(fs_info, WRITE, logical,
2040			      &map_length, &bbio, mirror_num);
2041	if (ret) {
2042		bio_put(bio);
2043		return -EIO;
2044	}
2045	BUG_ON(mirror_num != bbio->mirror_num);
2046	sector = bbio->stripes[mirror_num-1].physical >> 9;
2047	bio->bi_iter.bi_sector = sector;
2048	dev = bbio->stripes[mirror_num-1].dev;
2049	kfree(bbio);
2050	if (!dev || !dev->bdev || !dev->writeable) {
2051		bio_put(bio);
2052		return -EIO;
2053	}
2054	bio->bi_bdev = dev->bdev;
2055	bio_add_page(bio, page, length, start - page_offset(page));
2056
2057	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2058		/* try to remap that extent elsewhere? */
2059		bio_put(bio);
2060		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2061		return -EIO;
2062	}
2063
2064	printk_ratelimited_in_rcu(KERN_INFO
2065			"BTRFS: read error corrected: ino %lu off %llu "
2066		    "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2067		    start, rcu_str_deref(dev->name), sector);
2068
2069	bio_put(bio);
2070	return 0;
 
 
 
 
2071}
2072
2073int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2074			 int mirror_num)
2075{
2076	u64 start = eb->start;
2077	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2078	int ret = 0;
2079
2080	if (root->fs_info->sb->s_flags & MS_RDONLY)
2081		return -EROFS;
 
2082
2083	for (i = 0; i < num_pages; i++) {
2084		struct page *p = extent_buffer_page(eb, i);
2085		ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2086					start, p, mirror_num);
2087		if (ret)
2088			break;
2089		start += PAGE_CACHE_SIZE;
2090	}
2091
2092	return ret;
2093}
2094
2095/*
2096 * each time an IO finishes, we do a fast check in the IO failure tree
2097 * to see if we need to process or clean up an io_failure_record
 
 
 
 
 
 
 
 
2098 */
2099static int clean_io_failure(u64 start, struct page *page)
2100{
2101	u64 private;
2102	u64 private_failure;
2103	struct io_failure_record *failrec;
2104	struct inode *inode = page->mapping->host;
2105	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2106	struct extent_state *state;
2107	int num_copies;
2108	int did_repair = 0;
2109	int ret;
2110
2111	private = 0;
2112	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2113				(u64)-1, 1, EXTENT_DIRTY, 0);
2114	if (!ret)
2115		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
2116
2117	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2118				&private_failure);
2119	if (ret)
2120		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2121
2122	failrec = (struct io_failure_record *)(unsigned long) private_failure;
2123	BUG_ON(!failrec->this_mirror);
 
2124
2125	if (failrec->in_validation) {
2126		/* there was no real error, just free the record */
2127		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2128			 failrec->start);
2129		did_repair = 1;
2130		goto out;
2131	}
2132	if (fs_info->sb->s_flags & MS_RDONLY)
2133		goto out;
 
 
 
 
 
2134
2135	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2136	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2137					    failrec->start,
2138					    EXTENT_LOCKED);
2139	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2140
2141	if (state && state->start <= failrec->start &&
2142	    state->end >= failrec->start + failrec->len - 1) {
2143		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2144					      failrec->len);
2145		if (num_copies > 1)  {
2146			ret = repair_io_failure(fs_info, start, failrec->len,
2147						failrec->logical, page,
2148						failrec->failed_mirror);
2149			did_repair = !ret;
2150		}
2151		ret = 0;
2152	}
2153
2154out:
2155	if (!ret)
2156		ret = free_io_failure(inode, failrec, did_repair);
 
 
 
 
2157
2158	return ret;
 
 
 
2159}
2160
2161/*
2162 * this is a generic handler for readpage errors (default
2163 * readpage_io_failed_hook). if other copies exist, read those and write back
2164 * good data to the failed position. does not investigate in remapping the
2165 * failed extent elsewhere, hoping the device will be smart enough to do this as
2166 * needed
 
 
 
 
 
2167 */
2168
2169static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2170			      struct page *page, u64 start, u64 end,
2171			      int failed_mirror)
2172{
2173	struct io_failure_record *failrec = NULL;
2174	u64 private;
2175	struct extent_map *em;
2176	struct inode *inode = page->mapping->host;
2177	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2178	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2179	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2180	struct bio *bio;
2181	struct btrfs_io_bio *btrfs_failed_bio;
2182	struct btrfs_io_bio *btrfs_bio;
2183	int num_copies;
2184	int ret;
2185	int read_mode;
2186	u64 logical;
2187
2188	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
 
2189
2190	ret = get_state_private(failure_tree, start, &private);
2191	if (ret) {
2192		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2193		if (!failrec)
2194			return -ENOMEM;
2195		failrec->start = start;
2196		failrec->len = end - start + 1;
2197		failrec->this_mirror = 0;
2198		failrec->bio_flags = 0;
2199		failrec->in_validation = 0;
2200
2201		read_lock(&em_tree->lock);
2202		em = lookup_extent_mapping(em_tree, start, failrec->len);
2203		if (!em) {
2204			read_unlock(&em_tree->lock);
2205			kfree(failrec);
2206			return -EIO;
2207		}
2208
2209		if (em->start > start || em->start + em->len <= start) {
2210			free_extent_map(em);
2211			em = NULL;
2212		}
2213		read_unlock(&em_tree->lock);
2214
2215		if (!em) {
2216			kfree(failrec);
2217			return -EIO;
2218		}
2219		logical = start - em->start;
2220		logical = em->block_start + logical;
2221		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2222			logical = em->block_start;
2223			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2224			extent_set_compress_type(&failrec->bio_flags,
2225						 em->compress_type);
2226		}
2227		pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2228			 "len=%llu\n", logical, start, failrec->len);
2229		failrec->logical = logical;
2230		free_extent_map(em);
2231
2232		/* set the bits in the private failure tree */
2233		ret = set_extent_bits(failure_tree, start, end,
2234					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2235		if (ret >= 0)
2236			ret = set_state_private(failure_tree, start,
2237						(u64)(unsigned long)failrec);
2238		/* set the bits in the inode's tree */
2239		if (ret >= 0)
2240			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2241						GFP_NOFS);
2242		if (ret < 0) {
2243			kfree(failrec);
2244			return ret;
2245		}
2246	} else {
2247		failrec = (struct io_failure_record *)(unsigned long)private;
2248		pr_debug("bio_readpage_error: (found) logical=%llu, "
2249			 "start=%llu, len=%llu, validation=%d\n",
2250			 failrec->logical, failrec->start, failrec->len,
2251			 failrec->in_validation);
2252		/*
2253		 * when data can be on disk more than twice, add to failrec here
2254		 * (e.g. with a list for failed_mirror) to make
2255		 * clean_io_failure() clean all those errors at once.
2256		 */
2257	}
2258	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2259				      failrec->logical, failrec->len);
2260	if (num_copies == 1) {
2261		/*
2262		 * we only have a single copy of the data, so don't bother with
2263		 * all the retry and error correction code that follows. no
2264		 * matter what the error is, it is very likely to persist.
2265		 */
2266		pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2267			 num_copies, failrec->this_mirror, failed_mirror);
2268		free_io_failure(inode, failrec, 0);
2269		return -EIO;
2270	}
2271
2272	/*
2273	 * there are two premises:
2274	 *	a) deliver good data to the caller
2275	 *	b) correct the bad sectors on disk
2276	 */
2277	if (failed_bio->bi_vcnt > 1) {
2278		/*
2279		 * to fulfill b), we need to know the exact failing sectors, as
2280		 * we don't want to rewrite any more than the failed ones. thus,
2281		 * we need separate read requests for the failed bio
2282		 *
2283		 * if the following BUG_ON triggers, our validation request got
2284		 * merged. we need separate requests for our algorithm to work.
2285		 */
2286		BUG_ON(failrec->in_validation);
2287		failrec->in_validation = 1;
2288		failrec->this_mirror = failed_mirror;
2289		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2290	} else {
2291		/*
2292		 * we're ready to fulfill a) and b) alongside. get a good copy
2293		 * of the failed sector and if we succeed, we have setup
2294		 * everything for repair_io_failure to do the rest for us.
2295		 */
2296		if (failrec->in_validation) {
2297			BUG_ON(failrec->this_mirror != failed_mirror);
2298			failrec->in_validation = 0;
2299			failrec->this_mirror = 0;
2300		}
2301		failrec->failed_mirror = failed_mirror;
2302		failrec->this_mirror++;
2303		if (failrec->this_mirror == failed_mirror)
2304			failrec->this_mirror++;
2305		read_mode = READ_SYNC;
2306	}
2307
2308	if (failrec->this_mirror > num_copies) {
2309		pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2310			 num_copies, failrec->this_mirror, failed_mirror);
2311		free_io_failure(inode, failrec, 0);
2312		return -EIO;
2313	}
2314
2315	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2316	if (!bio) {
2317		free_io_failure(inode, failrec, 0);
2318		return -EIO;
2319	}
2320	bio->bi_end_io = failed_bio->bi_end_io;
2321	bio->bi_iter.bi_sector = failrec->logical >> 9;
2322	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2323	bio->bi_iter.bi_size = 0;
2324
2325	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2326	if (btrfs_failed_bio->csum) {
2327		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2328		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2329
2330		btrfs_bio = btrfs_io_bio(bio);
2331		btrfs_bio->csum = btrfs_bio->csum_inline;
2332		phy_offset >>= inode->i_sb->s_blocksize_bits;
2333		phy_offset *= csum_size;
2334		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2335		       csum_size);
2336	}
2337
2338	bio_add_page(bio, page, failrec->len, start - page_offset(page));
2339
2340	pr_debug("bio_readpage_error: submitting new read[%#x] to "
2341		 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2342		 failrec->this_mirror, num_copies, failrec->in_validation);
2343
2344	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2345					 failrec->this_mirror,
2346					 failrec->bio_flags, 0);
2347	return ret;
2348}
2349
2350/* lots and lots of room for performance fixes in the end_bio funcs */
2351
2352int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
 
 
 
2353{
2354	int uptodate = (err == 0);
2355	struct extent_io_tree *tree;
2356	int ret;
2357
2358	tree = &BTRFS_I(page->mapping->host)->io_tree;
2359
2360	if (tree->ops && tree->ops->writepage_end_io_hook) {
2361		ret = tree->ops->writepage_end_io_hook(page, start,
2362					       end, NULL, uptodate);
2363		if (ret)
2364			uptodate = 0;
2365	}
2366
2367	if (!uptodate) {
2368		ClearPageUptodate(page);
2369		SetPageError(page);
2370	}
2371	return 0;
2372}
2373
2374/*
2375 * after a writepage IO is done, we need to:
2376 * clear the uptodate bits on error
2377 * clear the writeback bits in the extent tree for this IO
2378 * end_page_writeback if the page has no more pending IO
2379 *
2380 * Scheduling is not allowed, so the extent state tree is expected
2381 * to have one and only one object corresponding to this IO.
2382 */
2383static void end_bio_extent_writepage(struct bio *bio, int err)
2384{
2385	struct bio_vec *bvec;
2386	u64 start;
2387	u64 end;
2388	int i;
2389
2390	bio_for_each_segment_all(bvec, bio, i) {
2391		struct page *page = bvec->bv_page;
 
 
 
 
 
2392
2393		/* We always issue full-page reads, but if some block
2394		 * in a page fails to read, blk_update_request() will
2395		 * advance bv_offset and adjust bv_len to compensate.
2396		 * Print a warning for nonzero offsets, and an error
2397		 * if they don't add up to a full page.  */
2398		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2399			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2400				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2401				   "partial page write in btrfs with offset %u and length %u",
2402					bvec->bv_offset, bvec->bv_len);
2403			else
2404				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2405				   "incomplete page write in btrfs with offset %u and "
2406				   "length %u",
2407					bvec->bv_offset, bvec->bv_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2408		}
2409
2410		start = page_offset(page);
2411		end = start + bvec->bv_offset + bvec->bv_len - 1;
2412
2413		if (end_extent_writepage(page, err, start, end))
2414			continue;
2415
2416		end_page_writeback(page);
 
2417	}
2418
2419	bio_put(bio);
2420}
2421
2422static void
2423endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2424			      int uptodate)
2425{
2426	struct extent_state *cached = NULL;
2427	u64 end = start + len - 1;
2428
2429	if (uptodate && tree->track_uptodate)
2430		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2431	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2432}
2433
2434/*
2435 * after a readpage IO is done, we need to:
2436 * clear the uptodate bits on error
2437 * set the uptodate bits if things worked
2438 * set the page up to date if all extents in the tree are uptodate
2439 * clear the lock bit in the extent tree
2440 * unlock the page if there are no other extents locked for it
2441 *
2442 * Scheduling is not allowed, so the extent state tree is expected
2443 * to have one and only one object corresponding to this IO.
 
 
2444 */
2445static void end_bio_extent_readpage(struct bio *bio, int err)
2446{
2447	struct bio_vec *bvec;
2448	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2449	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2450	struct extent_io_tree *tree;
2451	u64 offset = 0;
2452	u64 start;
2453	u64 end;
2454	u64 len;
2455	u64 extent_start = 0;
2456	u64 extent_len = 0;
2457	int mirror;
2458	int ret;
2459	int i;
2460
2461	if (err)
2462		uptodate = 0;
2463
2464	bio_for_each_segment_all(bvec, bio, i) {
2465		struct page *page = bvec->bv_page;
2466		struct inode *inode = page->mapping->host;
2467
2468		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2469			 "mirror=%lu\n", (u64)bio->bi_iter.bi_sector, err,
2470			 io_bio->mirror_num);
2471		tree = &BTRFS_I(inode)->io_tree;
2472
2473		/* We always issue full-page reads, but if some block
2474		 * in a page fails to read, blk_update_request() will
2475		 * advance bv_offset and adjust bv_len to compensate.
2476		 * Print a warning for nonzero offsets, and an error
2477		 * if they don't add up to a full page.  */
2478		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2479			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2480				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2481				   "partial page read in btrfs with offset %u and length %u",
2482					bvec->bv_offset, bvec->bv_len);
2483			else
2484				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2485				   "incomplete page read in btrfs with offset %u and "
2486				   "length %u",
2487					bvec->bv_offset, bvec->bv_len);
2488		}
2489
2490		start = page_offset(page);
2491		end = start + bvec->bv_offset + bvec->bv_len - 1;
2492		len = bvec->bv_len;
2493
2494		mirror = io_bio->mirror_num;
2495		if (likely(uptodate && tree->ops &&
2496			   tree->ops->readpage_end_io_hook)) {
2497			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2498							      page, start, end,
2499							      mirror);
2500			if (ret)
2501				uptodate = 0;
2502			else
2503				clean_io_failure(start, page);
2504		}
2505
2506		if (likely(uptodate))
2507			goto readpage_ok;
2508
2509		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2510			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2511			if (!ret && !err &&
2512			    test_bit(BIO_UPTODATE, &bio->bi_flags))
2513				uptodate = 1;
2514		} else {
2515			/*
2516			 * The generic bio_readpage_error handles errors the
2517			 * following way: If possible, new read requests are
2518			 * created and submitted and will end up in
2519			 * end_bio_extent_readpage as well (if we're lucky, not
2520			 * in the !uptodate case). In that case it returns 0 and
2521			 * we just go on with the next page in our bio. If it
2522			 * can't handle the error it will return -EIO and we
2523			 * remain responsible for that page.
2524			 */
2525			ret = bio_readpage_error(bio, offset, page, start, end,
2526						 mirror);
2527			if (ret == 0) {
2528				uptodate =
2529					test_bit(BIO_UPTODATE, &bio->bi_flags);
2530				if (err)
2531					uptodate = 0;
2532				continue;
2533			}
2534		}
2535readpage_ok:
2536		if (likely(uptodate)) {
2537			loff_t i_size = i_size_read(inode);
2538			pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2539			unsigned offset;
2540
2541			/* Zero out the end if this page straddles i_size */
2542			offset = i_size & (PAGE_CACHE_SIZE-1);
2543			if (page->index == end_index && offset)
2544				zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2545			SetPageUptodate(page);
2546		} else {
2547			ClearPageUptodate(page);
2548			SetPageError(page);
2549		}
2550		unlock_page(page);
2551		offset += len;
2552
2553		if (unlikely(!uptodate)) {
2554			if (extent_len) {
2555				endio_readpage_release_extent(tree,
2556							      extent_start,
2557							      extent_len, 1);
2558				extent_start = 0;
2559				extent_len = 0;
2560			}
2561			endio_readpage_release_extent(tree, start,
2562						      end - start + 1, 0);
2563		} else if (!extent_len) {
2564			extent_start = start;
2565			extent_len = end + 1 - start;
2566		} else if (extent_start + extent_len == start) {
2567			extent_len += end + 1 - start;
2568		} else {
2569			endio_readpage_release_extent(tree, extent_start,
2570						      extent_len, uptodate);
2571			extent_start = start;
2572			extent_len = end + 1 - start;
2573		}
2574	}
 
 
 
 
 
 
 
 
2575
2576	if (extent_len)
2577		endio_readpage_release_extent(tree, extent_start, extent_len,
2578					      uptodate);
2579	if (io_bio->end_io)
2580		io_bio->end_io(io_bio, err);
2581	bio_put(bio);
2582}
2583
2584/*
2585 * this allocates from the btrfs_bioset.  We're returning a bio right now
2586 * but you can call btrfs_io_bio for the appropriate container_of magic
2587 */
2588struct bio *
2589btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2590		gfp_t gfp_flags)
2591{
2592	struct btrfs_io_bio *btrfs_bio;
2593	struct bio *bio;
2594
2595	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
 
 
 
 
 
 
 
2596
2597	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2598		while (!bio && (nr_vecs /= 2)) {
2599			bio = bio_alloc_bioset(gfp_flags,
2600					       nr_vecs, btrfs_bioset);
2601		}
 
2602	}
2603
2604	if (bio) {
2605		bio->bi_bdev = bdev;
2606		bio->bi_iter.bi_sector = first_sector;
2607		btrfs_bio = btrfs_io_bio(bio);
2608		btrfs_bio->csum = NULL;
2609		btrfs_bio->csum_allocated = NULL;
2610		btrfs_bio->end_io = NULL;
2611	}
2612	return bio;
2613}
2614
2615struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2616{
2617	return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
 
 
 
 
2618}
2619
2620
2621/* this also allocates from the btrfs_bioset */
2622struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2623{
2624	struct btrfs_io_bio *btrfs_bio;
2625	struct bio *bio;
2626
2627	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2628	if (bio) {
2629		btrfs_bio = btrfs_io_bio(bio);
2630		btrfs_bio->csum = NULL;
2631		btrfs_bio->csum_allocated = NULL;
2632		btrfs_bio->end_io = NULL;
2633	}
2634	return bio;
2635}
2636
 
 
2637
2638static int __must_check submit_one_bio(int rw, struct bio *bio,
2639				       int mirror_num, unsigned long bio_flags)
2640{
2641	int ret = 0;
2642	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2643	struct page *page = bvec->bv_page;
2644	struct extent_io_tree *tree = bio->bi_private;
2645	u64 start;
2646
2647	start = page_offset(page) + bvec->bv_offset;
2648
2649	bio->bi_private = NULL;
2650
2651	bio_get(bio);
2652
2653	if (tree->ops && tree->ops->submit_bio_hook)
2654		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2655					   mirror_num, bio_flags, start);
2656	else
2657		btrfsic_submit_bio(rw, bio);
2658
2659	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2660		ret = -EOPNOTSUPP;
2661	bio_put(bio);
2662	return ret;
2663}
2664
2665static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2666		     unsigned long offset, size_t size, struct bio *bio,
2667		     unsigned long bio_flags)
2668{
2669	int ret = 0;
2670	if (tree->ops && tree->ops->merge_bio_hook)
2671		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2672						bio_flags);
2673	BUG_ON(ret < 0);
2674	return ret;
2675
 
 
2676}
2677
2678static int submit_extent_page(int rw, struct extent_io_tree *tree,
2679			      struct page *page, sector_t sector,
2680			      size_t size, unsigned long offset,
2681			      struct block_device *bdev,
2682			      struct bio **bio_ret,
2683			      unsigned long max_pages,
2684			      bio_end_io_t end_io_func,
2685			      int mirror_num,
2686			      unsigned long prev_bio_flags,
2687			      unsigned long bio_flags)
2688{
2689	int ret = 0;
2690	struct bio *bio;
2691	int nr;
2692	int contig = 0;
2693	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2694	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2695	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2696
2697	if (bio_ret && *bio_ret) {
2698		bio = *bio_ret;
2699		if (old_compressed)
2700			contig = bio->bi_iter.bi_sector == sector;
2701		else
2702			contig = bio_end_sector(bio) == sector;
2703
2704		if (prev_bio_flags != bio_flags || !contig ||
2705		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2706		    bio_add_page(bio, page, page_size, offset) < page_size) {
2707			ret = submit_one_bio(rw, bio, mirror_num,
2708					     prev_bio_flags);
2709			if (ret < 0)
2710				return ret;
2711			bio = NULL;
2712		} else {
2713			return 0;
2714		}
2715	}
2716	if (this_compressed)
2717		nr = BIO_MAX_PAGES;
2718	else
2719		nr = bio_get_nr_vecs(bdev);
2720
2721	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2722	if (!bio)
2723		return -ENOMEM;
2724
2725	bio_add_page(bio, page, page_size, offset);
2726	bio->bi_end_io = end_io_func;
2727	bio->bi_private = tree;
2728
2729	if (bio_ret)
2730		*bio_ret = bio;
2731	else
2732		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2733
2734	return ret;
2735}
2736
2737static void attach_extent_buffer_page(struct extent_buffer *eb,
2738				      struct page *page)
2739{
2740	if (!PagePrivate(page)) {
2741		SetPagePrivate(page);
2742		page_cache_get(page);
2743		set_page_private(page, (unsigned long)eb);
2744	} else {
2745		WARN_ON(page->private != (unsigned long)eb);
2746	}
2747}
2748
2749void set_page_extent_mapped(struct page *page)
2750{
2751	if (!PagePrivate(page)) {
2752		SetPagePrivate(page);
2753		page_cache_get(page);
2754		set_page_private(page, EXTENT_PAGE_PRIVATE);
2755	}
2756}
2757
2758static struct extent_map *
2759__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2760		 u64 start, u64 len, get_extent_t *get_extent,
2761		 struct extent_map **em_cached)
2762{
2763	struct extent_map *em;
2764
2765	if (em_cached && *em_cached) {
2766		em = *em_cached;
2767		if (extent_map_in_tree(em) && start >= em->start &&
2768		    start < extent_map_end(em)) {
2769			atomic_inc(&em->refs);
2770			return em;
2771		}
2772
2773		free_extent_map(em);
2774		*em_cached = NULL;
2775	}
2776
2777	em = get_extent(inode, page, pg_offset, start, len, 0);
2778	if (em_cached && !IS_ERR_OR_NULL(em)) {
2779		BUG_ON(*em_cached);
2780		atomic_inc(&em->refs);
2781		*em_cached = em;
2782	}
2783	return em;
2784}
2785/*
2786 * basic readpage implementation.  Locked extent state structs are inserted
2787 * into the tree that are removed when the IO is done (by the end_io
2788 * handlers)
2789 * XXX JDM: This needs looking at to ensure proper page locking
 
2790 */
2791static int __do_readpage(struct extent_io_tree *tree,
2792			 struct page *page,
2793			 get_extent_t *get_extent,
2794			 struct extent_map **em_cached,
2795			 struct bio **bio, int mirror_num,
2796			 unsigned long *bio_flags, int rw)
2797{
2798	struct inode *inode = page->mapping->host;
 
2799	u64 start = page_offset(page);
2800	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2801	u64 end;
2802	u64 cur = start;
2803	u64 extent_offset;
2804	u64 last_byte = i_size_read(inode);
2805	u64 block_start;
2806	u64 cur_end;
2807	sector_t sector;
2808	struct extent_map *em;
2809	struct block_device *bdev;
2810	int ret;
2811	int nr = 0;
2812	int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2813	size_t pg_offset = 0;
2814	size_t iosize;
2815	size_t disk_io_size;
2816	size_t blocksize = inode->i_sb->s_blocksize;
2817	unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2818
2819	set_page_extent_mapped(page);
2820
2821	end = page_end;
2822	if (!PageUptodate(page)) {
2823		if (cleancache_get_page(page) == 0) {
2824			BUG_ON(blocksize != PAGE_SIZE);
2825			unlock_extent(tree, start, end);
2826			goto out;
2827		}
2828	}
2829
2830	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2831		char *userpage;
2832		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2833
2834		if (zero_offset) {
2835			iosize = PAGE_CACHE_SIZE - zero_offset;
2836			userpage = kmap_atomic(page);
2837			memset(userpage + zero_offset, 0, iosize);
2838			flush_dcache_page(page);
2839			kunmap_atomic(userpage);
2840		}
2841	}
 
 
2842	while (cur <= end) {
2843		unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
 
 
2844
 
2845		if (cur >= last_byte) {
2846			char *userpage;
2847			struct extent_state *cached = NULL;
2848
2849			iosize = PAGE_CACHE_SIZE - pg_offset;
2850			userpage = kmap_atomic(page);
2851			memset(userpage + pg_offset, 0, iosize);
2852			flush_dcache_page(page);
2853			kunmap_atomic(userpage);
2854			set_extent_uptodate(tree, cur, cur + iosize - 1,
2855					    &cached, GFP_NOFS);
2856			if (!parent_locked)
2857				unlock_extent_cached(tree, cur,
2858						     cur + iosize - 1,
2859						     &cached, GFP_NOFS);
2860			break;
2861		}
2862		em = __get_extent_map(inode, page, pg_offset, cur,
2863				      end - cur + 1, get_extent, em_cached);
2864		if (IS_ERR_OR_NULL(em)) {
2865			SetPageError(page);
2866			if (!parent_locked)
2867				unlock_extent(tree, cur, end);
2868			break;
2869		}
2870		extent_offset = cur - em->start;
2871		BUG_ON(extent_map_end(em) <= cur);
2872		BUG_ON(end < cur);
2873
2874		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2875			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2876			extent_set_compress_type(&this_bio_flag,
2877						 em->compress_type);
2878		}
2879
2880		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2881		cur_end = min(extent_map_end(em) - 1, end);
2882		iosize = ALIGN(iosize, blocksize);
2883		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2884			disk_io_size = em->block_len;
2885			sector = em->block_start >> 9;
2886		} else {
2887			sector = (em->block_start + extent_offset) >> 9;
2888			disk_io_size = iosize;
2889		}
2890		bdev = em->bdev;
2891		block_start = em->block_start;
2892		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2893			block_start = EXTENT_MAP_HOLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2894		free_extent_map(em);
2895		em = NULL;
2896
2897		/* we've found a hole, just zero and go on */
2898		if (block_start == EXTENT_MAP_HOLE) {
2899			char *userpage;
2900			struct extent_state *cached = NULL;
2901
2902			userpage = kmap_atomic(page);
2903			memset(userpage + pg_offset, 0, iosize);
2904			flush_dcache_page(page);
2905			kunmap_atomic(userpage);
2906
2907			set_extent_uptodate(tree, cur, cur + iosize - 1,
2908					    &cached, GFP_NOFS);
2909			unlock_extent_cached(tree, cur, cur + iosize - 1,
2910			                     &cached, GFP_NOFS);
2911			cur = cur + iosize;
2912			pg_offset += iosize;
2913			continue;
2914		}
2915		/* the get_extent function already copied into the page */
2916		if (test_range_bit(tree, cur, cur_end,
2917				   EXTENT_UPTODATE, 1, NULL)) {
2918			check_page_uptodate(tree, page);
2919			if (!parent_locked)
2920				unlock_extent(tree, cur, cur + iosize - 1);
2921			cur = cur + iosize;
2922			pg_offset += iosize;
2923			continue;
2924		}
2925		/* we have an inline extent but it didn't get marked up
2926		 * to date.  Error out
2927		 */
2928		if (block_start == EXTENT_MAP_INLINE) {
2929			SetPageError(page);
2930			if (!parent_locked)
2931				unlock_extent(tree, cur, cur + iosize - 1);
2932			cur = cur + iosize;
2933			pg_offset += iosize;
2934			continue;
2935		}
2936
2937		pnr -= page->index;
2938		ret = submit_extent_page(rw, tree, page,
2939					 sector, disk_io_size, pg_offset,
2940					 bdev, bio, pnr,
2941					 end_bio_extent_readpage, mirror_num,
2942					 *bio_flags,
2943					 this_bio_flag);
2944		if (!ret) {
2945			nr++;
2946			*bio_flags = this_bio_flag;
2947		} else {
2948			SetPageError(page);
2949			if (!parent_locked)
2950				unlock_extent(tree, cur, cur + iosize - 1);
2951		}
 
 
 
 
 
2952		cur = cur + iosize;
2953		pg_offset += iosize;
2954	}
2955out:
2956	if (!nr) {
2957		if (!PageError(page))
2958			SetPageUptodate(page);
2959		unlock_page(page);
2960	}
2961	return 0;
2962}
2963
2964static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2965					     struct page *pages[], int nr_pages,
2966					     u64 start, u64 end,
2967					     get_extent_t *get_extent,
2968					     struct extent_map **em_cached,
2969					     struct bio **bio, int mirror_num,
2970					     unsigned long *bio_flags, int rw)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2971{
2972	struct inode *inode;
2973	struct btrfs_ordered_extent *ordered;
2974	int index;
2975
2976	inode = pages[0]->mapping->host;
2977	while (1) {
2978		lock_extent(tree, start, end);
2979		ordered = btrfs_lookup_ordered_range(inode, start,
2980						     end - start + 1);
2981		if (!ordered)
2982			break;
2983		unlock_extent(tree, start, end);
2984		btrfs_start_ordered_extent(inode, ordered, 1);
2985		btrfs_put_ordered_extent(ordered);
2986	}
2987
2988	for (index = 0; index < nr_pages; index++) {
2989		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
2990			      mirror_num, bio_flags, rw);
2991		page_cache_release(pages[index]);
2992	}
2993}
2994
2995static void __extent_readpages(struct extent_io_tree *tree,
2996			       struct page *pages[],
2997			       int nr_pages, get_extent_t *get_extent,
2998			       struct extent_map **em_cached,
2999			       struct bio **bio, int mirror_num,
3000			       unsigned long *bio_flags, int rw)
3001{
3002	u64 start = 0;
3003	u64 end = 0;
3004	u64 page_start;
3005	int index;
3006	int first_index = 0;
 
 
 
 
 
 
 
3007
3008	for (index = 0; index < nr_pages; index++) {
3009		page_start = page_offset(pages[index]);
3010		if (!end) {
3011			start = page_start;
3012			end = start + PAGE_CACHE_SIZE - 1;
3013			first_index = index;
3014		} else if (end + 1 == page_start) {
3015			end += PAGE_CACHE_SIZE;
3016		} else {
3017			__do_contiguous_readpages(tree, &pages[first_index],
3018						  index - first_index, start,
3019						  end, get_extent, em_cached,
3020						  bio, mirror_num, bio_flags,
3021						  rw);
3022			start = page_start;
3023			end = start + PAGE_CACHE_SIZE - 1;
3024			first_index = index;
3025		}
 
 
 
 
 
 
 
3026	}
3027
3028	if (end)
3029		__do_contiguous_readpages(tree, &pages[first_index],
3030					  index - first_index, start,
3031					  end, get_extent, em_cached, bio,
3032					  mirror_num, bio_flags, rw);
3033}
3034
3035static int __extent_read_full_page(struct extent_io_tree *tree,
3036				   struct page *page,
3037				   get_extent_t *get_extent,
3038				   struct bio **bio, int mirror_num,
3039				   unsigned long *bio_flags, int rw)
3040{
3041	struct inode *inode = page->mapping->host;
3042	struct btrfs_ordered_extent *ordered;
3043	u64 start = page_offset(page);
3044	u64 end = start + PAGE_CACHE_SIZE - 1;
3045	int ret;
3046
3047	while (1) {
3048		lock_extent(tree, start, end);
3049		ordered = btrfs_lookup_ordered_extent(inode, start);
3050		if (!ordered)
3051			break;
3052		unlock_extent(tree, start, end);
3053		btrfs_start_ordered_extent(inode, ordered, 1);
3054		btrfs_put_ordered_extent(ordered);
3055	}
3056
3057	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3058			    bio_flags, rw);
3059	return ret;
3060}
3061
3062int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3063			    get_extent_t *get_extent, int mirror_num)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3064{
3065	struct bio *bio = NULL;
3066	unsigned long bio_flags = 0;
3067	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3068
3069	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3070				      &bio_flags, READ);
3071	if (bio)
3072		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3073	return ret;
3074}
3075
3076int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3077				 get_extent_t *get_extent, int mirror_num)
3078{
3079	struct bio *bio = NULL;
3080	unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3081	int ret;
3082
3083	ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3084				      &bio_flags, READ);
3085	if (bio)
3086		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3087	return ret;
3088}
3089
3090static noinline void update_nr_written(struct page *page,
3091				      struct writeback_control *wbc,
3092				      unsigned long nr_written)
3093{
3094	wbc->nr_to_write -= nr_written;
3095	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3096	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3097		page->mapping->writeback_index = page->index + nr_written;
3098}
3099
3100/*
3101 * the writepage semantics are similar to regular writepage.  extent
3102 * records are inserted to lock ranges in the tree, and as dirty areas
3103 * are found, they are marked writeback.  Then the lock bits are removed
3104 * and the end_io handler clears the writeback ranges
 
 
3105 */
3106static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3107			      void *data)
3108{
3109	struct inode *inode = page->mapping->host;
3110	struct extent_page_data *epd = data;
3111	struct extent_io_tree *tree = epd->tree;
3112	u64 start = page_offset(page);
3113	u64 delalloc_start;
3114	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3115	u64 end;
3116	u64 cur = start;
3117	u64 extent_offset;
3118	u64 last_byte = i_size_read(inode);
3119	u64 block_start;
3120	u64 iosize;
3121	sector_t sector;
3122	struct extent_state *cached_state = NULL;
3123	struct extent_map *em;
3124	struct block_device *bdev;
3125	int ret;
3126	int nr = 0;
3127	size_t pg_offset = 0;
3128	size_t blocksize;
3129	loff_t i_size = i_size_read(inode);
3130	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3131	u64 nr_delalloc;
3132	u64 delalloc_end;
3133	int page_started;
3134	int compressed;
3135	int write_flags;
3136	unsigned long nr_written = 0;
3137	bool fill_delalloc = true;
3138
3139	if (wbc->sync_mode == WB_SYNC_ALL)
3140		write_flags = WRITE_SYNC;
3141	else
3142		write_flags = WRITE;
 
 
 
3143
3144	trace___extent_writepage(page, inode, wbc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3145
3146	WARN_ON(!PageLocked(page));
 
 
 
 
 
3147
3148	ClearPageError(page);
 
 
 
 
3149
3150	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3151	if (page->index > end_index ||
3152	   (page->index == end_index && !pg_offset)) {
3153		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3154		unlock_page(page);
3155		return 0;
3156	}
3157
3158	if (page->index == end_index) {
3159		char *userpage;
3160
3161		userpage = kmap_atomic(page);
3162		memset(userpage + pg_offset, 0,
3163		       PAGE_CACHE_SIZE - pg_offset);
3164		kunmap_atomic(userpage);
3165		flush_dcache_page(page);
3166	}
3167	pg_offset = 0;
3168
3169	set_page_extent_mapped(page);
 
 
3170
3171	if (!tree->ops || !tree->ops->fill_delalloc)
3172		fill_delalloc = false;
3173
3174	delalloc_start = start;
3175	delalloc_end = 0;
3176	page_started = 0;
3177	if (!epd->extent_locked && fill_delalloc) {
3178		u64 delalloc_to_write = 0;
3179		/*
3180		 * make sure the wbc mapping index is at least updated
3181		 * to this page.
3182		 */
3183		update_nr_written(page, wbc, 0);
 
 
3184
3185		while (delalloc_end < page_end) {
3186			nr_delalloc = find_lock_delalloc_range(inode, tree,
3187						       page,
3188						       &delalloc_start,
3189						       &delalloc_end,
3190						       128 * 1024 * 1024);
3191			if (nr_delalloc == 0) {
3192				delalloc_start = delalloc_end + 1;
3193				continue;
3194			}
3195			ret = tree->ops->fill_delalloc(inode, page,
3196						       delalloc_start,
3197						       delalloc_end,
3198						       &page_started,
3199						       &nr_written);
3200			/* File system has been set read-only */
3201			if (ret) {
3202				SetPageError(page);
3203				goto done;
3204			}
3205			/*
3206			 * delalloc_end is already one less than the total
3207			 * length, so we don't subtract one from
3208			 * PAGE_CACHE_SIZE
3209			 */
3210			delalloc_to_write += (delalloc_end - delalloc_start +
3211					      PAGE_CACHE_SIZE) >>
3212					      PAGE_CACHE_SHIFT;
3213			delalloc_start = delalloc_end + 1;
3214		}
3215		if (wbc->nr_to_write < delalloc_to_write) {
3216			int thresh = 8192;
3217
3218			if (delalloc_to_write < thresh * 2)
3219				thresh = delalloc_to_write;
3220			wbc->nr_to_write = min_t(u64, delalloc_to_write,
3221						 thresh);
3222		}
 
 
3223
3224		/* did the fill delalloc function already unlock and start
3225		 * the IO?
3226		 */
3227		if (page_started) {
3228			ret = 0;
3229			/*
3230			 * we've unlocked the page, so we can't update
3231			 * the mapping's writeback index, just update
3232			 * nr_to_write.
3233			 */
3234			wbc->nr_to_write -= nr_written;
3235			goto done_unlocked;
3236		}
3237	}
3238	if (tree->ops && tree->ops->writepage_start_hook) {
3239		ret = tree->ops->writepage_start_hook(page, start,
3240						      page_end);
3241		if (ret) {
3242			/* Fixup worker will requeue */
3243			if (ret == -EBUSY)
3244				wbc->pages_skipped++;
3245			else
3246				redirty_page_for_writepage(wbc, page);
3247			update_nr_written(page, wbc, nr_written);
3248			unlock_page(page);
3249			ret = 0;
3250			goto done_unlocked;
3251		}
3252	}
3253
 
 
 
 
 
3254	/*
3255	 * we don't want to touch the inode after unlocking the page,
3256	 * so we update the mapping writeback index now
3257	 */
3258	update_nr_written(page, wbc, nr_written + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3259
3260	end = page_end;
3261	if (last_byte <= start) {
3262		if (tree->ops && tree->ops->writepage_end_io_hook)
3263			tree->ops->writepage_end_io_hook(page, start,
3264							 page_end, NULL, 1);
3265		goto done;
3266	}
3267
3268	blocksize = inode->i_sb->s_blocksize;
3269
3270	while (cur <= end) {
3271		if (cur >= last_byte) {
3272			if (tree->ops && tree->ops->writepage_end_io_hook)
3273				tree->ops->writepage_end_io_hook(page, cur,
3274							 page_end, NULL, 1);
3275			break;
3276		}
3277		em = epd->get_extent(inode, page, pg_offset, cur,
3278				     end - cur + 1, 1);
3279		if (IS_ERR_OR_NULL(em)) {
3280			SetPageError(page);
3281			break;
3282		}
3283
3284		extent_offset = cur - em->start;
3285		BUG_ON(extent_map_end(em) <= cur);
3286		BUG_ON(end < cur);
3287		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3288		iosize = ALIGN(iosize, blocksize);
3289		sector = (em->block_start + extent_offset) >> 9;
3290		bdev = em->bdev;
3291		block_start = em->block_start;
3292		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3293		free_extent_map(em);
3294		em = NULL;
3295
3296		/*
3297		 * compressed and inline extents are written through other
3298		 * paths in the FS
3299		 */
3300		if (compressed || block_start == EXTENT_MAP_HOLE ||
3301		    block_start == EXTENT_MAP_INLINE) {
3302			/*
3303			 * end_io notification does not happen here for
3304			 * compressed extents
3305			 */
3306			if (!compressed && tree->ops &&
3307			    tree->ops->writepage_end_io_hook)
3308				tree->ops->writepage_end_io_hook(page, cur,
3309							 cur + iosize - 1,
3310							 NULL, 1);
3311			else if (compressed) {
3312				/* we don't want to end_page_writeback on
3313				 * a compressed extent.  this happens
3314				 * elsewhere
3315				 */
3316				nr++;
3317			}
3318
3319			cur += iosize;
3320			pg_offset += iosize;
3321			continue;
3322		}
3323		/* leave this out until we have a page_mkwrite call */
3324		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3325				   EXTENT_DIRTY, 0, NULL)) {
3326			cur = cur + iosize;
3327			pg_offset += iosize;
3328			continue;
3329		}
3330
3331		if (tree->ops && tree->ops->writepage_io_hook) {
3332			ret = tree->ops->writepage_io_hook(page, cur,
3333						cur + iosize - 1);
3334		} else {
3335			ret = 0;
3336		}
3337		if (ret) {
3338			SetPageError(page);
3339		} else {
3340			unsigned long max_nr = end_index + 1;
3341
3342			set_range_writeback(tree, cur, cur + iosize - 1);
3343			if (!PageWriteback(page)) {
3344				btrfs_err(BTRFS_I(inode)->root->fs_info,
3345					   "page %lu not writeback, cur %llu end %llu",
3346				       page->index, cur, end);
3347			}
3348
3349			ret = submit_extent_page(write_flags, tree, page,
3350						 sector, iosize, pg_offset,
3351						 bdev, &epd->bio, max_nr,
3352						 end_bio_extent_writepage,
3353						 0, 0, 0);
3354			if (ret)
3355				SetPageError(page);
3356		}
3357		cur = cur + iosize;
3358		pg_offset += iosize;
3359		nr++;
3360	}
3361done:
3362	if (nr == 0) {
3363		/* make sure the mapping tag for page dirty gets cleared */
3364		set_page_writeback(page);
3365		end_page_writeback(page);
3366	}
 
 
 
 
 
3367	unlock_page(page);
3368
3369done_unlocked:
3370
3371	/* drop our reference on any cached states */
3372	free_extent_state(cached_state);
3373	return 0;
3374}
3375
3376static int eb_wait(void *word)
3377{
3378	io_schedule();
3379	return 0;
3380}
3381
3382void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3383{
3384	wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3385		    TASK_UNINTERRUPTIBLE);
3386}
3387
3388static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3389				     struct btrfs_fs_info *fs_info,
3390				     struct extent_page_data *epd)
 
 
 
 
 
 
3391{
3392	unsigned long i, num_pages;
3393	int flush = 0;
3394	int ret = 0;
3395
3396	if (!btrfs_try_tree_write_lock(eb)) {
3397		flush = 1;
3398		flush_write_bio(epd);
 
 
 
3399		btrfs_tree_lock(eb);
3400	}
3401
3402	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3403		btrfs_tree_unlock(eb);
3404		if (!epd->sync_io)
3405			return 0;
3406		if (!flush) {
3407			flush_write_bio(epd);
3408			flush = 1;
3409		}
3410		while (1) {
3411			wait_on_extent_buffer_writeback(eb);
3412			btrfs_tree_lock(eb);
3413			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3414				break;
3415			btrfs_tree_unlock(eb);
3416		}
3417	}
3418
3419	/*
3420	 * We need to do this to prevent races in people who check if the eb is
3421	 * under IO since we can end up having no IO bits set for a short period
3422	 * of time.
3423	 */
3424	spin_lock(&eb->refs_lock);
3425	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3426		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3427		spin_unlock(&eb->refs_lock);
3428		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3429		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3430				     -eb->len,
3431				     fs_info->dirty_metadata_batch);
3432		ret = 1;
3433	} else {
3434		spin_unlock(&eb->refs_lock);
3435	}
 
 
 
3436
3437	btrfs_tree_unlock(eb);
 
 
 
 
 
 
 
 
 
 
3438
3439	if (!ret)
3440		return ret;
 
 
 
 
 
3441
3442	num_pages = num_extent_pages(eb->start, eb->len);
3443	for (i = 0; i < num_pages; i++) {
3444		struct page *p = extent_buffer_page(eb, i);
3445
3446		if (!trylock_page(p)) {
3447			if (!flush) {
3448				flush_write_bio(epd);
3449				flush = 1;
3450			}
3451			lock_page(p);
3452		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3453	}
 
3454
3455	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3456}
3457
3458static void end_extent_buffer_writeback(struct extent_buffer *eb)
3459{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3460	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3461	smp_mb__after_clear_bit();
3462	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
 
 
3463}
3464
3465static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3466{
3467	struct bio_vec *bvec;
3468	struct extent_buffer *eb;
3469	int i, done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3470
3471	bio_for_each_segment_all(bvec, bio, i) {
3472		struct page *page = bvec->bv_page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3473
3474		eb = (struct extent_buffer *)page->private;
3475		BUG_ON(!eb);
3476		done = atomic_dec_and_test(&eb->io_pages);
3477
3478		if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3479			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3480			ClearPageUptodate(page);
3481			SetPageError(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3482		}
3483
3484		end_page_writeback(page);
 
 
 
 
 
 
 
 
 
3485
3486		if (!done)
 
 
 
 
 
3487			continue;
3488
3489		end_extent_buffer_writeback(eb);
 
 
 
 
3490	}
 
 
3491
3492	bio_put(bio);
3493}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3494
3495static int write_one_eb(struct extent_buffer *eb,
3496			struct btrfs_fs_info *fs_info,
3497			struct writeback_control *wbc,
3498			struct extent_page_data *epd)
3499{
3500	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3501	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3502	u64 offset = eb->start;
3503	unsigned long i, num_pages;
3504	unsigned long bio_flags = 0;
3505	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3506	int ret = 0;
3507
3508	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3509	num_pages = num_extent_pages(eb->start, eb->len);
3510	atomic_set(&eb->io_pages, num_pages);
3511	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3512		bio_flags = EXTENT_BIO_TREE_LOG;
3513
3514	for (i = 0; i < num_pages; i++) {
3515		struct page *p = extent_buffer_page(eb, i);
3516
3517		clear_page_dirty_for_io(p);
3518		set_page_writeback(p);
3519		ret = submit_extent_page(rw, tree, p, offset >> 9,
3520					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3521					 -1, end_bio_extent_buffer_writepage,
3522					 0, epd->bio_flags, bio_flags);
3523		epd->bio_flags = bio_flags;
3524		if (ret) {
3525			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3526			SetPageError(p);
3527			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3528				end_extent_buffer_writeback(eb);
3529			ret = -EIO;
3530			break;
3531		}
3532		offset += PAGE_CACHE_SIZE;
3533		update_nr_written(p, wbc, 1);
3534		unlock_page(p);
3535	}
 
 
 
 
 
 
3536
3537	if (unlikely(ret)) {
3538		for (; i < num_pages; i++) {
3539			struct page *p = extent_buffer_page(eb, i);
3540			unlock_page(p);
3541		}
 
3542	}
3543
3544	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
3545}
3546
3547int btree_write_cache_pages(struct address_space *mapping,
3548				   struct writeback_control *wbc)
3549{
3550	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3551	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3552	struct extent_buffer *eb, *prev_eb = NULL;
3553	struct extent_page_data epd = {
3554		.bio = NULL,
3555		.tree = tree,
3556		.extent_locked = 0,
3557		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3558		.bio_flags = 0,
3559	};
3560	int ret = 0;
3561	int done = 0;
3562	int nr_to_write_done = 0;
3563	struct pagevec pvec;
3564	int nr_pages;
3565	pgoff_t index;
3566	pgoff_t end;		/* Inclusive */
3567	int scanned = 0;
3568	int tag;
3569
3570	pagevec_init(&pvec, 0);
3571	if (wbc->range_cyclic) {
3572		index = mapping->writeback_index; /* Start from prev offset */
3573		end = -1;
 
 
 
 
 
3574	} else {
3575		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3576		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3577		scanned = 1;
3578	}
3579	if (wbc->sync_mode == WB_SYNC_ALL)
3580		tag = PAGECACHE_TAG_TOWRITE;
3581	else
3582		tag = PAGECACHE_TAG_DIRTY;
 
3583retry:
3584	if (wbc->sync_mode == WB_SYNC_ALL)
3585		tag_pages_for_writeback(mapping, index, end);
3586	while (!done && !nr_to_write_done && (index <= end) &&
3587	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3588			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3589		unsigned i;
3590
3591		scanned = 1;
3592		for (i = 0; i < nr_pages; i++) {
3593			struct page *page = pvec.pages[i];
3594
3595			if (!PagePrivate(page))
 
3596				continue;
3597
3598			if (!wbc->range_cyclic && page->index > end) {
3599				done = 1;
3600				break;
3601			}
3602
3603			spin_lock(&mapping->private_lock);
3604			if (!PagePrivate(page)) {
3605				spin_unlock(&mapping->private_lock);
3606				continue;
3607			}
3608
3609			eb = (struct extent_buffer *)page->private;
3610
3611			/*
3612			 * Shouldn't happen and normally this would be a BUG_ON
3613			 * but no sense in crashing the users box for something
3614			 * we can survive anyway.
3615			 */
3616			if (WARN_ON(!eb)) {
3617				spin_unlock(&mapping->private_lock);
3618				continue;
3619			}
3620
3621			if (eb == prev_eb) {
3622				spin_unlock(&mapping->private_lock);
3623				continue;
3624			}
3625
3626			ret = atomic_inc_not_zero(&eb->refs);
3627			spin_unlock(&mapping->private_lock);
3628			if (!ret)
3629				continue;
3630
3631			prev_eb = eb;
3632			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3633			if (!ret) {
3634				free_extent_buffer(eb);
3635				continue;
3636			}
3637
3638			ret = write_one_eb(eb, fs_info, wbc, &epd);
3639			if (ret) {
3640				done = 1;
3641				free_extent_buffer(eb);
3642				break;
3643			}
3644			free_extent_buffer(eb);
3645
3646			/*
3647			 * the filesystem may choose to bump up nr_to_write.
3648			 * We have to make sure to honor the new nr_to_write
3649			 * at any time
3650			 */
3651			nr_to_write_done = wbc->nr_to_write <= 0;
3652		}
3653		pagevec_release(&pvec);
3654		cond_resched();
3655	}
3656	if (!scanned && !done) {
3657		/*
3658		 * We hit the last page and there is more work to be done: wrap
3659		 * back to the start of the file
3660		 */
3661		scanned = 1;
3662		index = 0;
3663		goto retry;
3664	}
3665	flush_write_bio(&epd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3666	return ret;
3667}
3668
3669/**
3670 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3671 * @mapping: address space structure to write
3672 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3673 * @writepage: function called for each page
3674 * @data: data passed to writepage function
3675 *
3676 * If a page is already under I/O, write_cache_pages() skips it, even
3677 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3678 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3679 * and msync() need to guarantee that all the data which was dirty at the time
3680 * the call was made get new I/O started against them.  If wbc->sync_mode is
3681 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3682 * existing IO to complete.
3683 */
3684static int extent_write_cache_pages(struct extent_io_tree *tree,
3685			     struct address_space *mapping,
3686			     struct writeback_control *wbc,
3687			     writepage_t writepage, void *data,
3688			     void (*flush_fn)(void *))
3689{
 
3690	struct inode *inode = mapping->host;
3691	int ret = 0;
3692	int done = 0;
3693	int nr_to_write_done = 0;
3694	struct pagevec pvec;
3695	int nr_pages;
3696	pgoff_t index;
3697	pgoff_t end;		/* Inclusive */
 
 
3698	int scanned = 0;
3699	int tag;
3700
3701	/*
3702	 * We have to hold onto the inode so that ordered extents can do their
3703	 * work when the IO finishes.  The alternative to this is failing to add
3704	 * an ordered extent if the igrab() fails there and that is a huge pain
3705	 * to deal with, so instead just hold onto the inode throughout the
3706	 * writepages operation.  If it fails here we are freeing up the inode
3707	 * anyway and we'd rather not waste our time writing out stuff that is
3708	 * going to be truncated anyway.
3709	 */
3710	if (!igrab(inode))
3711		return 0;
3712
3713	pagevec_init(&pvec, 0);
3714	if (wbc->range_cyclic) {
3715		index = mapping->writeback_index; /* Start from prev offset */
3716		end = -1;
 
 
 
 
 
3717	} else {
3718		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3719		end = wbc->range_end >> PAGE_CACHE_SHIFT;
 
 
3720		scanned = 1;
3721	}
3722	if (wbc->sync_mode == WB_SYNC_ALL)
 
 
 
 
 
 
 
 
 
 
 
 
 
3723		tag = PAGECACHE_TAG_TOWRITE;
3724	else
3725		tag = PAGECACHE_TAG_DIRTY;
3726retry:
3727	if (wbc->sync_mode == WB_SYNC_ALL)
3728		tag_pages_for_writeback(mapping, index, end);
 
3729	while (!done && !nr_to_write_done && (index <= end) &&
3730	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3731			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3732		unsigned i;
3733
3734		scanned = 1;
3735		for (i = 0; i < nr_pages; i++) {
3736			struct page *page = pvec.pages[i];
3737
 
3738			/*
3739			 * At this point we hold neither mapping->tree_lock nor
3740			 * lock on the page itself: the page may be truncated or
3741			 * invalidated (changing page->mapping to NULL), or even
3742			 * swizzled back from swapper_space to tmpfs file
3743			 * mapping
3744			 */
3745			if (!trylock_page(page)) {
3746				flush_fn(data);
3747				lock_page(page);
3748			}
3749
3750			if (unlikely(page->mapping != mapping)) {
3751				unlock_page(page);
3752				continue;
3753			}
3754
3755			if (!wbc->range_cyclic && page->index > end) {
3756				done = 1;
3757				unlock_page(page);
3758				continue;
3759			}
3760
3761			if (wbc->sync_mode != WB_SYNC_NONE) {
3762				if (PageWriteback(page))
3763					flush_fn(data);
3764				wait_on_page_writeback(page);
3765			}
3766
3767			if (PageWriteback(page) ||
3768			    !clear_page_dirty_for_io(page)) {
3769				unlock_page(page);
3770				continue;
3771			}
3772
3773			ret = (*writepage)(page, wbc, data);
3774
3775			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3776				unlock_page(page);
3777				ret = 0;
3778			}
3779			if (ret)
3780				done = 1;
3781
3782			/*
3783			 * the filesystem may choose to bump up nr_to_write.
3784			 * We have to make sure to honor the new nr_to_write
3785			 * at any time
3786			 */
3787			nr_to_write_done = wbc->nr_to_write <= 0;
 
3788		}
3789		pagevec_release(&pvec);
3790		cond_resched();
3791	}
3792	if (!scanned && !done) {
3793		/*
3794		 * We hit the last page and there is more work to be done: wrap
3795		 * back to the start of the file
3796		 */
3797		scanned = 1;
3798		index = 0;
 
 
 
 
 
 
 
 
3799		goto retry;
3800	}
3801	btrfs_add_delayed_iput(inode);
3802	return ret;
3803}
3804
3805static void flush_epd_write_bio(struct extent_page_data *epd)
3806{
3807	if (epd->bio) {
3808		int rw = WRITE;
3809		int ret;
3810
3811		if (epd->sync_io)
3812			rw = WRITE_SYNC;
3813
3814		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3815		BUG_ON(ret < 0); /* -ENOMEM */
3816		epd->bio = NULL;
3817	}
3818}
3819
3820static noinline void flush_write_bio(void *data)
3821{
3822	struct extent_page_data *epd = data;
3823	flush_epd_write_bio(epd);
3824}
3825
3826int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3827			  get_extent_t *get_extent,
3828			  struct writeback_control *wbc)
3829{
3830	int ret;
3831	struct extent_page_data epd = {
3832		.bio = NULL,
3833		.tree = tree,
3834		.get_extent = get_extent,
3835		.extent_locked = 0,
3836		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3837		.bio_flags = 0,
3838	};
3839
3840	ret = __extent_writepage(page, wbc, &epd);
3841
3842	flush_epd_write_bio(&epd);
3843	return ret;
3844}
3845
3846int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3847			      u64 start, u64 end, get_extent_t *get_extent,
3848			      int mode)
 
 
 
 
 
3849{
 
3850	int ret = 0;
3851	struct address_space *mapping = inode->i_mapping;
3852	struct page *page;
3853	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3854		PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
3855
3856	struct extent_page_data epd = {
3857		.bio = NULL,
3858		.tree = tree,
3859		.get_extent = get_extent,
3860		.extent_locked = 1,
3861		.sync_io = mode == WB_SYNC_ALL,
3862		.bio_flags = 0,
3863	};
3864	struct writeback_control wbc_writepages = {
3865		.sync_mode	= mode,
3866		.nr_to_write	= nr_pages * 2,
3867		.range_start	= start,
3868		.range_end	= end + 1,
3869	};
3870
3871	while (start <= end) {
3872		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3873		if (clear_page_dirty_for_io(page))
3874			ret = __extent_writepage(page, &wbc_writepages, &epd);
3875		else {
3876			if (tree->ops && tree->ops->writepage_end_io_hook)
3877				tree->ops->writepage_end_io_hook(page, start,
3878						 start + PAGE_CACHE_SIZE - 1,
3879						 NULL, 1);
3880			unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
3881		}
3882		page_cache_release(page);
3883		start += PAGE_CACHE_SIZE;
 
 
 
 
 
 
 
 
 
3884	}
3885
3886	flush_epd_write_bio(&epd);
3887	return ret;
3888}
3889
3890int extent_writepages(struct extent_io_tree *tree,
3891		      struct address_space *mapping,
3892		      get_extent_t *get_extent,
3893		      struct writeback_control *wbc)
3894{
 
3895	int ret = 0;
3896	struct extent_page_data epd = {
3897		.bio = NULL,
3898		.tree = tree,
3899		.get_extent = get_extent,
3900		.extent_locked = 0,
3901		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3902		.bio_flags = 0,
3903	};
3904
3905	ret = extent_write_cache_pages(tree, mapping, wbc,
3906				       __extent_writepage, &epd,
3907				       flush_write_bio);
3908	flush_epd_write_bio(&epd);
 
 
 
 
3909	return ret;
3910}
3911
3912int extent_readpages(struct extent_io_tree *tree,
3913		     struct address_space *mapping,
3914		     struct list_head *pages, unsigned nr_pages,
3915		     get_extent_t get_extent)
3916{
3917	struct bio *bio = NULL;
3918	unsigned page_idx;
3919	unsigned long bio_flags = 0;
3920	struct page *pagepool[16];
3921	struct page *page;
3922	struct extent_map *em_cached = NULL;
3923	int nr = 0;
 
3924
3925	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3926		page = list_entry(pages->prev, struct page, lru);
 
3927
3928		prefetchw(&page->flags);
3929		list_del(&page->lru);
3930		if (add_to_page_cache_lru(page, mapping,
3931					page->index, GFP_NOFS)) {
3932			page_cache_release(page);
3933			continue;
3934		}
3935
3936		pagepool[nr++] = page;
3937		if (nr < ARRAY_SIZE(pagepool))
3938			continue;
3939		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3940				   &bio, 0, &bio_flags, READ);
3941		nr = 0;
3942	}
3943	if (nr)
3944		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3945				   &bio, 0, &bio_flags, READ);
3946
3947	if (em_cached)
3948		free_extent_map(em_cached);
3949
3950	BUG_ON(!list_empty(pages));
3951	if (bio)
3952		return submit_one_bio(READ, bio, 0, bio_flags);
3953	return 0;
3954}
3955
3956/*
3957 * basic invalidatepage code, this waits on any locked or writeback
3958 * ranges corresponding to the page, and then deletes any extent state
3959 * records from the tree
3960 */
3961int extent_invalidatepage(struct extent_io_tree *tree,
3962			  struct page *page, unsigned long offset)
3963{
3964	struct extent_state *cached_state = NULL;
3965	u64 start = page_offset(page);
3966	u64 end = start + PAGE_CACHE_SIZE - 1;
3967	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
 
 
 
3968
3969	start += ALIGN(offset, blocksize);
3970	if (start > end)
3971		return 0;
3972
3973	lock_extent_bits(tree, start, end, 0, &cached_state);
3974	wait_on_page_writeback(page);
3975	clear_extent_bit(tree, start, end,
3976			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3977			 EXTENT_DO_ACCOUNTING,
3978			 1, 1, &cached_state, GFP_NOFS);
 
 
 
3979	return 0;
3980}
3981
3982/*
3983 * a helper for releasepage, this tests for areas of the page that
3984 * are locked or under IO and drops the related state bits if it is safe
3985 * to drop the page.
3986 */
3987static int try_release_extent_state(struct extent_map_tree *map,
3988				    struct extent_io_tree *tree,
3989				    struct page *page, gfp_t mask)
3990{
3991	u64 start = page_offset(page);
3992	u64 end = start + PAGE_CACHE_SIZE - 1;
3993	int ret = 1;
3994
3995	if (test_range_bit(tree, start, end,
3996			   EXTENT_IOBITS, 0, NULL))
3997		ret = 0;
3998	else {
3999		if ((mask & GFP_NOFS) == GFP_NOFS)
4000			mask = GFP_NOFS;
 
 
4001		/*
4002		 * at this point we can safely clear everything except the
4003		 * locked bit and the nodatasum bit
 
 
4004		 */
4005		ret = clear_extent_bit(tree, start, end,
4006				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4007				 0, 0, NULL, mask);
4008
4009		/* if clear_extent_bit failed for enomem reasons,
4010		 * we can't allow the release to continue.
4011		 */
4012		if (ret < 0)
4013			ret = 0;
4014		else
4015			ret = 1;
4016	}
4017	return ret;
4018}
4019
4020/*
4021 * a helper for releasepage.  As long as there are no locked extents
4022 * in the range corresponding to the page, both state records and extent
4023 * map records are removed
4024 */
4025int try_release_extent_mapping(struct extent_map_tree *map,
4026			       struct extent_io_tree *tree, struct page *page,
4027			       gfp_t mask)
4028{
4029	struct extent_map *em;
4030	u64 start = page_offset(page);
4031	u64 end = start + PAGE_CACHE_SIZE - 1;
 
 
 
4032
4033	if ((mask & __GFP_WAIT) &&
4034	    page->mapping->host->i_size > 16 * 1024 * 1024) {
4035		u64 len;
4036		while (start <= end) {
 
 
 
4037			len = end - start + 1;
4038			write_lock(&map->lock);
4039			em = lookup_extent_mapping(map, start, len);
4040			if (!em) {
4041				write_unlock(&map->lock);
4042				break;
4043			}
4044			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4045			    em->start != start) {
4046				write_unlock(&map->lock);
4047				free_extent_map(em);
4048				break;
4049			}
4050			if (!test_range_bit(tree, em->start,
4051					    extent_map_end(em) - 1,
4052					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4053					    0, NULL)) {
4054				remove_extent_mapping(map, em);
4055				/* once for the rb tree */
4056				free_extent_map(em);
4057			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4058			start = extent_map_end(em);
4059			write_unlock(&map->lock);
4060
4061			/* once for us */
4062			free_extent_map(em);
 
 
4063		}
4064	}
4065	return try_release_extent_state(map, tree, page, mask);
4066}
4067
4068/*
4069 * helper function for fiemap, which doesn't want to see any holes.
4070 * This maps until we find something past 'last'
 
4071 */
4072static struct extent_map *get_extent_skip_holes(struct inode *inode,
4073						u64 offset,
4074						u64 last,
4075						get_extent_t *get_extent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4076{
4077	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4078	struct extent_map *em;
4079	u64 len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4080
4081	if (offset >= last)
4082		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4083
4084	while (1) {
4085		len = last - offset;
4086		if (len == 0)
4087			break;
4088		len = ALIGN(len, sectorsize);
4089		em = get_extent(inode, NULL, 0, offset, len, 0);
4090		if (IS_ERR_OR_NULL(em))
4091			return em;
4092
4093		/* if this isn't a hole return it */
4094		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4095		    em->block_start != EXTENT_MAP_HOLE) {
4096			return em;
4097		}
 
4098
4099		/* this is a hole, advance to the next extent */
4100		offset = extent_map_end(em);
4101		free_extent_map(em);
4102		if (offset >= last)
4103			break;
 
 
 
 
 
 
 
 
 
 
4104	}
4105	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4106}
4107
4108static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4109{
4110	unsigned long cnt = *((unsigned long *)ctx);
 
 
 
 
 
 
 
4111
4112	cnt++;
4113	*((unsigned long *)ctx) = cnt;
 
4114
4115	/* Now we're sure that the extent is shared. */
4116	if (cnt > 1)
 
 
 
 
4117		return 1;
 
 
 
 
 
 
 
 
 
 
 
4118	return 0;
4119}
4120
4121int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4122		__u64 start, __u64 len, get_extent_t *get_extent)
 
 
 
 
 
4123{
4124	int ret = 0;
4125	u64 off = start;
4126	u64 max = start + len;
4127	u32 flags = 0;
4128	u32 found_type;
4129	u64 last;
4130	u64 last_for_get_extent = 0;
4131	u64 disko = 0;
4132	u64 isize = i_size_read(inode);
4133	struct btrfs_key found_key;
4134	struct extent_map *em = NULL;
4135	struct extent_state *cached_state = NULL;
4136	struct btrfs_path *path;
4137	int end = 0;
4138	u64 em_start = 0;
4139	u64 em_len = 0;
4140	u64 em_end = 0;
 
 
 
 
 
 
 
 
4141
4142	if (len == 0)
4143		return -EINVAL;
 
 
4144
4145	path = btrfs_alloc_path();
4146	if (!path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4147		return -ENOMEM;
4148	path->leave_spinning = 1;
4149
4150	start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4151	len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4152
4153	/*
4154	 * lookup the last file extent.  We're not using i_size here
4155	 * because there might be preallocation past i_size
4156	 */
4157	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4158				       path, btrfs_ino(inode), -1, 0);
4159	if (ret < 0) {
4160		btrfs_free_path(path);
4161		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4162	}
4163	WARN_ON(!ret);
4164	path->slots[0]--;
4165	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4166	found_type = btrfs_key_type(&found_key);
4167
4168	/* No extents, but there might be delalloc bits */
4169	if (found_key.objectid != btrfs_ino(inode) ||
4170	    found_type != BTRFS_EXTENT_DATA_KEY) {
4171		/* have to trust i_size as the end */
4172		last = (u64)-1;
4173		last_for_get_extent = isize;
4174	} else {
4175		/*
4176		 * remember the start of the last extent.  There are a
4177		 * bunch of different factors that go into the length of the
4178		 * extent, so its much less complex to remember where it started
4179		 */
4180		last = found_key.offset;
4181		last_for_get_extent = last + 1;
4182	}
4183	btrfs_release_path(path);
4184
4185	/*
4186	 * we might have some extents allocated but more delalloc past those
4187	 * extents.  so, we trust isize unless the start of the last extent is
4188	 * beyond isize
 
 
4189	 */
4190	if (last < isize) {
4191		last = (u64)-1;
4192		last_for_get_extent = isize;
 
 
 
 
 
 
 
 
 
 
 
4193	}
4194
4195	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4196			 &cached_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4197
4198	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4199				   get_extent);
4200	if (!em)
 
4201		goto out;
4202	if (IS_ERR(em)) {
4203		ret = PTR_ERR(em);
 
 
 
 
 
 
 
 
 
 
 
 
4204		goto out;
 
 
 
 
 
 
 
4205	}
4206
4207	while (!end) {
4208		u64 offset_in_extent = 0;
 
 
 
 
 
 
 
 
 
 
4209
4210		/* break if the extent we found is outside the range */
4211		if (em->start >= max || extent_map_end(em) < off)
4212			break;
4213
4214		/*
4215		 * get_extent may return an extent that starts before our
4216		 * requested range.  We have to make sure the ranges
4217		 * we return to fiemap always move forward and don't
4218		 * overlap, so adjust the offsets here
4219		 */
4220		em_start = max(em->start, off);
4221
4222		/*
4223		 * record the offset from the start of the extent
4224		 * for adjusting the disk offset below.  Only do this if the
4225		 * extent isn't compressed since our in ram offset may be past
4226		 * what we have actually allocated on disk.
4227		 */
4228		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4229			offset_in_extent = em_start - em->start;
4230		em_end = extent_map_end(em);
4231		em_len = em_end - em_start;
4232		disko = 0;
4233		flags = 0;
4234
4235		/*
4236		 * bump off for our next call to get_extent
4237		 */
4238		off = extent_map_end(em);
4239		if (off >= max)
4240			end = 1;
4241
4242		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4243			end = 1;
4244			flags |= FIEMAP_EXTENT_LAST;
4245		} else if (em->block_start == EXTENT_MAP_INLINE) {
4246			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4247				  FIEMAP_EXTENT_NOT_ALIGNED);
4248		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4249			flags |= (FIEMAP_EXTENT_DELALLOC |
4250				  FIEMAP_EXTENT_UNKNOWN);
4251		} else {
4252			unsigned long ref_cnt = 0;
4253
4254			disko = em->block_start + offset_in_extent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4255
4256			/*
4257			 * As btrfs supports shared space, this information
4258			 * can be exported to userspace tools via
4259			 * flag FIEMAP_EXTENT_SHARED.
4260			 */
4261			ret = iterate_inodes_from_logical(
4262					em->block_start,
4263					BTRFS_I(inode)->root->fs_info,
4264					path, count_ext_ref, &ref_cnt);
4265			if (ret < 0 && ret != -ENOENT)
4266				goto out_free;
4267
4268			if (ref_cnt > 1)
4269				flags |= FIEMAP_EXTENT_SHARED;
 
 
 
 
 
 
 
 
 
4270		}
4271		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
 
4272			flags |= FIEMAP_EXTENT_ENCODED;
4273
4274		free_extent_map(em);
4275		em = NULL;
4276		if ((em_start >= last) || em_len == (u64)-1 ||
4277		   (last == (u64)-1 && isize <= em_end)) {
4278			flags |= FIEMAP_EXTENT_LAST;
4279			end = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4280		}
4281
4282		/* now scan forward to see if this is really the last extent. */
4283		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4284					   get_extent);
4285		if (IS_ERR(em)) {
4286			ret = PTR_ERR(em);
4287			goto out;
 
 
 
4288		}
4289		if (!em) {
4290			flags |= FIEMAP_EXTENT_LAST;
4291			end = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4292		}
4293		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4294					      em_len, flags);
4295		if (ret)
4296			goto out_free;
4297	}
4298out_free:
4299	free_extent_map(em);
4300out:
 
 
4301	btrfs_free_path(path);
4302	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4303			     &cached_state, GFP_NOFS);
4304	return ret;
4305}
4306
4307static void __free_extent_buffer(struct extent_buffer *eb)
4308{
4309	btrfs_leak_debug_del(&eb->leak_list);
4310	kmem_cache_free(extent_buffer_cache, eb);
4311}
4312
4313int extent_buffer_under_io(struct extent_buffer *eb)
4314{
4315	return (atomic_read(&eb->io_pages) ||
4316		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4317		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4318}
4319
4320/*
4321 * Helper for releasing extent buffer page.
4322 */
4323static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4324						unsigned long start_idx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4325{
4326	unsigned long index;
4327	unsigned long num_pages;
4328	struct page *page;
4329	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4330
4331	BUG_ON(extent_buffer_under_io(eb));
 
 
 
 
 
4332
4333	num_pages = num_extent_pages(eb->start, eb->len);
4334	index = start_idx + num_pages;
4335	if (start_idx >= index)
4336		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4337
4338	do {
4339		index--;
4340		page = extent_buffer_page(eb, index);
4341		if (page && mapped) {
4342			spin_lock(&page->mapping->private_lock);
4343			/*
4344			 * We do this since we'll remove the pages after we've
4345			 * removed the eb from the radix tree, so we could race
4346			 * and have this page now attached to the new eb.  So
4347			 * only clear page_private if it's still connected to
4348			 * this eb.
4349			 */
4350			if (PagePrivate(page) &&
4351			    page->private == (unsigned long)eb) {
4352				BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4353				BUG_ON(PageDirty(page));
4354				BUG_ON(PageWriteback(page));
4355				/*
4356				 * We need to make sure we haven't be attached
4357				 * to a new eb.
4358				 */
4359				ClearPagePrivate(page);
4360				set_page_private(page, 0);
4361				/* One for the page private */
4362				page_cache_release(page);
4363			}
4364			spin_unlock(&page->mapping->private_lock);
4365
4366		}
4367		if (page) {
4368			/* One for when we alloced the page */
4369			page_cache_release(page);
4370		}
4371	} while (index != start_idx);
4372}
4373
4374/*
4375 * Helper for releasing the extent buffer.
4376 */
4377static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4378{
4379	btrfs_release_extent_buffer_page(eb, 0);
 
4380	__free_extent_buffer(eb);
4381}
4382
4383static struct extent_buffer *
4384__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4385		      unsigned long len, gfp_t mask)
4386{
4387	struct extent_buffer *eb = NULL;
4388
4389	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4390	if (eb == NULL)
4391		return NULL;
4392	eb->start = start;
4393	eb->len = len;
4394	eb->fs_info = fs_info;
4395	eb->bflags = 0;
4396	rwlock_init(&eb->lock);
4397	atomic_set(&eb->write_locks, 0);
4398	atomic_set(&eb->read_locks, 0);
4399	atomic_set(&eb->blocking_readers, 0);
4400	atomic_set(&eb->blocking_writers, 0);
4401	atomic_set(&eb->spinning_readers, 0);
4402	atomic_set(&eb->spinning_writers, 0);
4403	eb->lock_nested = 0;
4404	init_waitqueue_head(&eb->write_lock_wq);
4405	init_waitqueue_head(&eb->read_lock_wq);
4406
4407	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4408
4409	spin_lock_init(&eb->refs_lock);
4410	atomic_set(&eb->refs, 1);
4411	atomic_set(&eb->io_pages, 0);
4412
4413	/*
4414	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4415	 */
4416	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4417		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4418	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4419
4420	return eb;
4421}
4422
4423struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4424{
4425	unsigned long i;
4426	struct page *p;
4427	struct extent_buffer *new;
4428	unsigned long num_pages = num_extent_pages(src->start, src->len);
 
4429
4430	new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4431	if (new == NULL)
4432		return NULL;
4433
4434	for (i = 0; i < num_pages; i++) {
4435		p = alloc_page(GFP_NOFS);
4436		if (!p) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4437			btrfs_release_extent_buffer(new);
4438			return NULL;
4439		}
4440		attach_extent_buffer_page(new, p);
4441		WARN_ON(PageDirty(p));
4442		SetPageUptodate(p);
4443		new->pages[i] = p;
4444	}
4445
4446	copy_extent_buffer(new, src, 0, 0, src->len);
4447	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4448	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4449
4450	return new;
4451}
4452
4453struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
 
4454{
4455	struct extent_buffer *eb;
4456	unsigned long num_pages = num_extent_pages(0, len);
4457	unsigned long i;
4458
4459	eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4460	if (!eb)
4461		return NULL;
4462
4463	for (i = 0; i < num_pages; i++) {
4464		eb->pages[i] = alloc_page(GFP_NOFS);
4465		if (!eb->pages[i])
 
 
 
 
 
4466			goto err;
4467	}
 
4468	set_extent_buffer_uptodate(eb);
4469	btrfs_set_header_nritems(eb, 0);
4470	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4471
4472	return eb;
4473err:
4474	for (; i > 0; i--)
4475		__free_page(eb->pages[i - 1]);
 
 
 
 
4476	__free_extent_buffer(eb);
4477	return NULL;
4478}
4479
 
 
 
 
 
 
4480static void check_buffer_tree_ref(struct extent_buffer *eb)
4481{
4482	int refs;
4483	/* the ref bit is tricky.  We have to make sure it is set
4484	 * if we have the buffer dirty.   Otherwise the
4485	 * code to free a buffer can end up dropping a dirty
4486	 * page
4487	 *
4488	 * Once the ref bit is set, it won't go away while the
4489	 * buffer is dirty or in writeback, and it also won't
4490	 * go away while we have the reference count on the
4491	 * eb bumped.
4492	 *
4493	 * We can't just set the ref bit without bumping the
4494	 * ref on the eb because free_extent_buffer might
4495	 * see the ref bit and try to clear it.  If this happens
4496	 * free_extent_buffer might end up dropping our original
4497	 * ref by mistake and freeing the page before we are able
4498	 * to add one more ref.
4499	 *
4500	 * So bump the ref count first, then set the bit.  If someone
4501	 * beat us to it, drop the ref we added.
 
 
 
 
 
4502	 */
4503	refs = atomic_read(&eb->refs);
4504	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4505		return;
4506
4507	spin_lock(&eb->refs_lock);
4508	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4509		atomic_inc(&eb->refs);
4510	spin_unlock(&eb->refs_lock);
4511}
4512
4513static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4514{
4515	unsigned long num_pages, i;
4516
4517	check_buffer_tree_ref(eb);
4518
4519	num_pages = num_extent_pages(eb->start, eb->len);
4520	for (i = 0; i < num_pages; i++) {
4521		struct page *p = extent_buffer_page(eb, i);
4522		mark_page_accessed(p);
4523	}
4524}
4525
4526struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4527					 u64 start)
4528{
4529	struct extent_buffer *eb;
4530
4531	rcu_read_lock();
4532	eb = radix_tree_lookup(&fs_info->buffer_radix,
4533			       start >> PAGE_CACHE_SHIFT);
4534	if (eb && atomic_inc_not_zero(&eb->refs)) {
4535		rcu_read_unlock();
4536		mark_extent_buffer_accessed(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4537		return eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4538	}
4539	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4540
 
 
4541	return NULL;
4542}
4543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4544struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4545					  u64 start, unsigned long len)
4546{
4547	unsigned long num_pages = num_extent_pages(start, len);
4548	unsigned long i;
4549	unsigned long index = start >> PAGE_CACHE_SHIFT;
4550	struct extent_buffer *eb;
4551	struct extent_buffer *exists = NULL;
4552	struct page *p;
4553	struct address_space *mapping = fs_info->btree_inode->i_mapping;
 
 
 
4554	int uptodate = 1;
4555	int ret;
4556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4557	eb = find_extent_buffer(fs_info, start);
4558	if (eb)
4559		return eb;
4560
4561	eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
4562	if (!eb)
4563		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4564
4565	for (i = 0; i < num_pages; i++, index++) {
4566		p = find_or_create_page(mapping, index, GFP_NOFS);
4567		if (!p)
4568			goto free_eb;
4569
4570		spin_lock(&mapping->private_lock);
4571		if (PagePrivate(p)) {
4572			/*
4573			 * We could have already allocated an eb for this page
4574			 * and attached one so lets see if we can get a ref on
4575			 * the existing eb, and if we can we know it's good and
4576			 * we can just return that one, else we know we can just
4577			 * overwrite page->private.
4578			 */
4579			exists = (struct extent_buffer *)p->private;
4580			if (atomic_inc_not_zero(&exists->refs)) {
4581				spin_unlock(&mapping->private_lock);
4582				unlock_page(p);
4583				page_cache_release(p);
4584				mark_extent_buffer_accessed(exists);
4585				goto free_eb;
4586			}
4587
4588			/*
4589			 * Do this so attach doesn't complain and we need to
4590			 * drop the ref the old guy had.
4591			 */
4592			ClearPagePrivate(p);
4593			WARN_ON(PageDirty(p));
4594			page_cache_release(p);
4595		}
4596		attach_extent_buffer_page(eb, p);
4597		spin_unlock(&mapping->private_lock);
4598		WARN_ON(PageDirty(p));
4599		mark_page_accessed(p);
4600		eb->pages[i] = p;
4601		if (!PageUptodate(p))
4602			uptodate = 0;
4603
4604		/*
4605		 * see below about how we avoid a nasty race with release page
4606		 * and why we unlock later
 
 
 
4607		 */
4608	}
4609	if (uptodate)
4610		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 
 
 
4611again:
4612	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4613	if (ret)
4614		goto free_eb;
4615
4616	spin_lock(&fs_info->buffer_lock);
4617	ret = radix_tree_insert(&fs_info->buffer_radix,
4618				start >> PAGE_CACHE_SHIFT, eb);
4619	spin_unlock(&fs_info->buffer_lock);
4620	radix_tree_preload_end();
4621	if (ret == -EEXIST) {
4622		exists = find_extent_buffer(fs_info, start);
4623		if (exists)
4624			goto free_eb;
 
4625		else
4626			goto again;
4627	}
4628	/* add one reference for the tree */
4629	check_buffer_tree_ref(eb);
4630	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4631
4632	/*
4633	 * there is a race where release page may have
4634	 * tried to find this extent buffer in the radix
4635	 * but failed.  It will tell the VM it is safe to
4636	 * reclaim the, and it will clear the page private bit.
4637	 * We must make sure to set the page private bit properly
4638	 * after the extent buffer is in the radix tree so
4639	 * it doesn't get lost
4640	 */
4641	SetPageChecked(eb->pages[0]);
4642	for (i = 1; i < num_pages; i++) {
4643		p = extent_buffer_page(eb, i);
4644		ClearPageChecked(p);
4645		unlock_page(p);
4646	}
4647	unlock_page(eb->pages[0]);
4648	return eb;
4649
4650free_eb:
4651	for (i = 0; i < num_pages; i++) {
4652		if (eb->pages[i])
4653			unlock_page(eb->pages[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4654	}
 
 
 
 
 
4655
4656	WARN_ON(!atomic_dec_and_test(&eb->refs));
4657	btrfs_release_extent_buffer(eb);
4658	return exists;
 
 
 
4659}
4660
4661static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4662{
4663	struct extent_buffer *eb =
4664			container_of(head, struct extent_buffer, rcu_head);
4665
4666	__free_extent_buffer(eb);
4667}
4668
4669/* Expects to have eb->eb_lock already held */
4670static int release_extent_buffer(struct extent_buffer *eb)
 
4671{
 
 
4672	WARN_ON(atomic_read(&eb->refs) == 0);
4673	if (atomic_dec_and_test(&eb->refs)) {
4674		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4675			struct btrfs_fs_info *fs_info = eb->fs_info;
4676
4677			spin_unlock(&eb->refs_lock);
4678
4679			spin_lock(&fs_info->buffer_lock);
4680			radix_tree_delete(&fs_info->buffer_radix,
4681					  eb->start >> PAGE_CACHE_SHIFT);
4682			spin_unlock(&fs_info->buffer_lock);
4683		} else {
4684			spin_unlock(&eb->refs_lock);
4685		}
4686
 
4687		/* Should be safe to release our pages at this point */
4688		btrfs_release_extent_buffer_page(eb, 0);
 
 
 
 
 
 
4689		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4690		return 1;
4691	}
4692	spin_unlock(&eb->refs_lock);
4693
4694	return 0;
4695}
4696
4697void free_extent_buffer(struct extent_buffer *eb)
4698{
4699	int refs;
4700	int old;
4701	if (!eb)
4702		return;
4703
 
4704	while (1) {
4705		refs = atomic_read(&eb->refs);
4706		if (refs <= 3)
 
4707			break;
4708		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4709		if (old == refs)
4710			return;
4711	}
4712
4713	spin_lock(&eb->refs_lock);
4714	if (atomic_read(&eb->refs) == 2 &&
4715	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4716		atomic_dec(&eb->refs);
4717
4718	if (atomic_read(&eb->refs) == 2 &&
4719	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4720	    !extent_buffer_under_io(eb) &&
4721	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4722		atomic_dec(&eb->refs);
4723
4724	/*
4725	 * I know this is terrible, but it's temporary until we stop tracking
4726	 * the uptodate bits and such for the extent buffers.
4727	 */
4728	release_extent_buffer(eb);
4729}
4730
4731void free_extent_buffer_stale(struct extent_buffer *eb)
4732{
4733	if (!eb)
4734		return;
4735
4736	spin_lock(&eb->refs_lock);
4737	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4738
4739	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4740	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4741		atomic_dec(&eb->refs);
4742	release_extent_buffer(eb);
4743}
4744
4745void clear_extent_buffer_dirty(struct extent_buffer *eb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4746{
4747	unsigned long i;
4748	unsigned long num_pages;
4749	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4750
4751	num_pages = num_extent_pages(eb->start, eb->len);
 
4752
4753	for (i = 0; i < num_pages; i++) {
4754		page = extent_buffer_page(eb, i);
4755		if (!PageDirty(page))
4756			continue;
4757
4758		lock_page(page);
4759		WARN_ON(!PagePrivate(page));
 
4760
4761		clear_page_dirty_for_io(page);
4762		spin_lock_irq(&page->mapping->tree_lock);
4763		if (!PageDirty(page)) {
4764			radix_tree_tag_clear(&page->mapping->page_tree,
4765						page_index(page),
4766						PAGECACHE_TAG_DIRTY);
4767		}
4768		spin_unlock_irq(&page->mapping->tree_lock);
4769		ClearPageError(page);
4770		unlock_page(page);
4771	}
4772	WARN_ON(atomic_read(&eb->refs) == 0);
4773}
4774
4775int set_extent_buffer_dirty(struct extent_buffer *eb)
4776{
4777	unsigned long i;
4778	unsigned long num_pages;
4779	int was_dirty = 0;
4780
4781	check_buffer_tree_ref(eb);
4782
4783	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4784
4785	num_pages = num_extent_pages(eb->start, eb->len);
4786	WARN_ON(atomic_read(&eb->refs) == 0);
4787	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4788
4789	for (i = 0; i < num_pages; i++)
4790		set_page_dirty(extent_buffer_page(eb, i));
4791	return was_dirty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4792}
4793
4794int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4795{
4796	unsigned long i;
4797	struct page *page;
4798	unsigned long num_pages;
4799
4800	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4801	num_pages = num_extent_pages(eb->start, eb->len);
4802	for (i = 0; i < num_pages; i++) {
4803		page = extent_buffer_page(eb, i);
4804		if (page)
4805			ClearPageUptodate(page);
 
 
 
 
 
 
 
 
 
 
4806	}
4807	return 0;
4808}
4809
4810int set_extent_buffer_uptodate(struct extent_buffer *eb)
4811{
4812	unsigned long i;
4813	struct page *page;
4814	unsigned long num_pages;
4815
4816	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4817	num_pages = num_extent_pages(eb->start, eb->len);
4818	for (i = 0; i < num_pages; i++) {
4819		page = extent_buffer_page(eb, i);
4820		SetPageUptodate(page);
 
 
 
 
 
 
 
 
4821	}
4822	return 0;
4823}
4824
4825int extent_buffer_uptodate(struct extent_buffer *eb)
4826{
4827	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4828}
4829
4830int read_extent_buffer_pages(struct extent_io_tree *tree,
4831			     struct extent_buffer *eb, u64 start, int wait,
4832			     get_extent_t *get_extent, int mirror_num)
4833{
4834	unsigned long i;
4835	unsigned long start_i;
4836	struct page *page;
4837	int err;
4838	int ret = 0;
4839	int locked_pages = 0;
4840	int all_uptodate = 1;
4841	unsigned long num_pages;
4842	unsigned long num_reads = 0;
4843	struct bio *bio = NULL;
4844	unsigned long bio_flags = 0;
4845
4846	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4847		return 0;
4848
4849	if (start) {
4850		WARN_ON(start < eb->start);
4851		start_i = (start >> PAGE_CACHE_SHIFT) -
4852			(eb->start >> PAGE_CACHE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4853	} else {
4854		start_i = 0;
4855	}
 
 
4856
4857	num_pages = num_extent_pages(eb->start, eb->len);
4858	for (i = start_i; i < num_pages; i++) {
4859		page = extent_buffer_page(eb, i);
4860		if (wait == WAIT_NONE) {
4861			if (!trylock_page(page))
4862				goto unlock_exit;
4863		} else {
4864			lock_page(page);
4865		}
4866		locked_pages++;
4867		if (!PageUptodate(page)) {
4868			num_reads++;
4869			all_uptodate = 0;
4870		}
4871	}
4872	if (all_uptodate) {
4873		if (start_i == 0)
4874			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4875		goto unlock_exit;
 
 
 
4876	}
4877
4878	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4879	eb->read_mirror = 0;
4880	atomic_set(&eb->io_pages, num_reads);
4881	for (i = start_i; i < num_pages; i++) {
4882		page = extent_buffer_page(eb, i);
4883		if (!PageUptodate(page)) {
4884			ClearPageError(page);
4885			err = __extent_read_full_page(tree, page,
4886						      get_extent, &bio,
4887						      mirror_num, &bio_flags,
4888						      READ | REQ_META);
4889			if (err)
4890				ret = err;
4891		} else {
4892			unlock_page(page);
4893		}
4894	}
4895
4896	if (bio) {
4897		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4898				     bio_flags);
4899		if (err)
4900			return err;
4901	}
 
4902
4903	if (ret || wait != WAIT_COMPLETE)
4904		return ret;
4905
4906	for (i = start_i; i < num_pages; i++) {
4907		page = extent_buffer_page(eb, i);
4908		wait_on_page_locked(page);
4909		if (!PageUptodate(page))
4910			ret = -EIO;
4911	}
 
 
 
 
 
4912
4913	return ret;
 
 
4914
4915unlock_exit:
4916	i = start_i;
4917	while (locked_pages > 0) {
4918		page = extent_buffer_page(eb, i);
4919		i++;
4920		unlock_page(page);
4921		locked_pages--;
4922	}
4923	return ret;
4924}
4925
4926void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4927			unsigned long start,
4928			unsigned long len)
4929{
 
4930	size_t cur;
4931	size_t offset;
4932	struct page *page;
4933	char *kaddr;
4934	char *dst = (char *)dstv;
4935	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4936	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4937
4938	WARN_ON(start > eb->len);
4939	WARN_ON(start + len > eb->start + eb->len);
 
 
 
 
 
 
 
 
 
 
 
4940
4941	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4942
4943	while (len > 0) {
4944		page = extent_buffer_page(eb, i);
4945
4946		cur = min(len, (PAGE_CACHE_SIZE - offset));
4947		kaddr = page_address(page);
4948		memcpy(dst, kaddr + offset, cur);
4949
4950		dst += cur;
4951		len -= cur;
4952		offset = 0;
4953		i++;
4954	}
4955}
4956
4957int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4958			       unsigned long min_len, char **map,
4959			       unsigned long *map_start,
4960			       unsigned long *map_len)
4961{
4962	size_t offset = start & (PAGE_CACHE_SIZE - 1);
4963	char *kaddr;
4964	struct page *p;
4965	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4966	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4967	unsigned long end_i = (start_offset + start + min_len - 1) >>
4968		PAGE_CACHE_SHIFT;
4969
4970	if (i != end_i)
4971		return -EINVAL;
4972
4973	if (i == 0) {
4974		offset = start_offset;
4975		*map_start = 0;
4976	} else {
4977		offset = 0;
4978		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4979	}
4980
4981	if (start + min_len > eb->len) {
4982		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4983		       "wanted %lu %lu\n",
4984		       eb->start, eb->len, start, min_len);
4985		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
4986	}
4987
4988	p = extent_buffer_page(eb, i);
4989	kaddr = page_address(p);
4990	*map = kaddr + offset;
4991	*map_len = PAGE_CACHE_SIZE - offset;
4992	return 0;
4993}
4994
4995int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4996			  unsigned long start,
4997			  unsigned long len)
4998{
 
4999	size_t cur;
5000	size_t offset;
5001	struct page *page;
5002	char *kaddr;
5003	char *ptr = (char *)ptrv;
5004	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5005	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5006	int ret = 0;
5007
5008	WARN_ON(start > eb->len);
5009	WARN_ON(start + len > eb->start + eb->len);
 
 
 
5010
5011	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5012
5013	while (len > 0) {
5014		page = extent_buffer_page(eb, i);
5015
5016		cur = min(len, (PAGE_CACHE_SIZE - offset));
5017
5018		kaddr = page_address(page);
5019		ret = memcmp(ptr, kaddr + offset, cur);
5020		if (ret)
5021			break;
5022
5023		ptr += cur;
5024		len -= cur;
5025		offset = 0;
5026		i++;
5027	}
5028	return ret;
5029}
5030
5031void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5032			 unsigned long start, unsigned long len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5033{
 
5034	size_t cur;
5035	size_t offset;
5036	struct page *page;
5037	char *kaddr;
5038	char *src = (char *)srcv;
5039	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5040	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 
5041
5042	WARN_ON(start > eb->len);
5043	WARN_ON(start + len > eb->start + eb->len);
 
 
 
 
 
 
 
 
5044
5045	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5046
5047	while (len > 0) {
5048		page = extent_buffer_page(eb, i);
5049		WARN_ON(!PageUptodate(page));
5050
5051		cur = min(len, PAGE_CACHE_SIZE - offset);
5052		kaddr = page_address(page);
5053		memcpy(kaddr + offset, src, cur);
 
 
 
5054
5055		src += cur;
5056		len -= cur;
5057		offset = 0;
5058		i++;
5059	}
5060}
5061
5062void memset_extent_buffer(struct extent_buffer *eb, char c,
5063			  unsigned long start, unsigned long len)
 
 
 
 
 
 
5064{
5065	size_t cur;
5066	size_t offset;
5067	struct page *page;
5068	char *kaddr;
5069	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5070	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5071
5072	WARN_ON(start > eb->len);
5073	WARN_ON(start + len > eb->start + eb->len);
 
 
 
5074
5075	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5076
5077	while (len > 0) {
5078		page = extent_buffer_page(eb, i);
5079		WARN_ON(!PageUptodate(page));
 
 
5080
5081		cur = min(len, PAGE_CACHE_SIZE - offset);
5082		kaddr = page_address(page);
5083		memset(kaddr + offset, c, cur);
5084
5085		len -= cur;
5086		offset = 0;
5087		i++;
5088	}
5089}
5090
5091void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
 
5092			unsigned long dst_offset, unsigned long src_offset,
5093			unsigned long len)
5094{
 
5095	u64 dst_len = dst->len;
5096	size_t cur;
5097	size_t offset;
5098	struct page *page;
5099	char *kaddr;
5100	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5101	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
 
 
 
5102
5103	WARN_ON(src->len != dst_len);
5104
5105	offset = (start_offset + dst_offset) &
5106		(PAGE_CACHE_SIZE - 1);
5107
5108	while (len > 0) {
5109		page = extent_buffer_page(dst, i);
5110		WARN_ON(!PageUptodate(page));
5111
5112		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5113
5114		kaddr = page_address(page);
5115		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5116
5117		src_offset += cur;
5118		len -= cur;
5119		offset = 0;
5120		i++;
5121	}
5122}
5123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5124static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5125{
5126	unsigned long distance = (src > dst) ? src - dst : dst - src;
5127	return distance < len;
5128}
5129
5130static void copy_pages(struct page *dst_page, struct page *src_page,
5131		       unsigned long dst_off, unsigned long src_off,
5132		       unsigned long len)
5133{
5134	char *dst_kaddr = page_address(dst_page);
5135	char *src_kaddr;
5136	int must_memmove = 0;
5137
5138	if (dst_page != src_page) {
5139		src_kaddr = page_address(src_page);
5140	} else {
5141		src_kaddr = dst_kaddr;
5142		if (areas_overlap(src_off, dst_off, len))
5143			must_memmove = 1;
5144	}
5145
5146	if (must_memmove)
5147		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5148	else
5149		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5150}
5151
5152void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5153			   unsigned long src_offset, unsigned long len)
5154{
5155	size_t cur;
5156	size_t dst_off_in_page;
5157	size_t src_off_in_page;
5158	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5159	unsigned long dst_i;
5160	unsigned long src_i;
5161
5162	if (src_offset + len > dst->len) {
5163		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5164		       "len %lu dst len %lu\n", src_offset, len, dst->len);
5165		BUG_ON(1);
5166	}
5167	if (dst_offset + len > dst->len) {
5168		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5169		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5170		BUG_ON(1);
5171	}
5172
5173	while (len > 0) {
5174		dst_off_in_page = (start_offset + dst_offset) &
5175			(PAGE_CACHE_SIZE - 1);
5176		src_off_in_page = (start_offset + src_offset) &
5177			(PAGE_CACHE_SIZE - 1);
5178
5179		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5180		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5181
5182		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5183					       src_off_in_page));
5184		cur = min_t(unsigned long, cur,
5185			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5186
5187		copy_pages(extent_buffer_page(dst, dst_i),
5188			   extent_buffer_page(dst, src_i),
5189			   dst_off_in_page, src_off_in_page, cur);
5190
5191		src_offset += cur;
5192		dst_offset += cur;
5193		len -= cur;
5194	}
5195}
5196
5197void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5198			   unsigned long src_offset, unsigned long len)
 
5199{
5200	size_t cur;
5201	size_t dst_off_in_page;
5202	size_t src_off_in_page;
5203	unsigned long dst_end = dst_offset + len - 1;
5204	unsigned long src_end = src_offset + len - 1;
5205	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5206	unsigned long dst_i;
5207	unsigned long src_i;
5208
5209	if (src_offset + len > dst->len) {
5210		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5211		       "len %lu len %lu\n", src_offset, len, dst->len);
5212		BUG_ON(1);
5213	}
5214	if (dst_offset + len > dst->len) {
5215		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5216		       "len %lu len %lu\n", dst_offset, len, dst->len);
5217		BUG_ON(1);
5218	}
5219	if (dst_offset < src_offset) {
5220		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5221		return;
5222	}
 
 
 
 
 
 
5223	while (len > 0) {
5224		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5225		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5226
5227		dst_off_in_page = (start_offset + dst_end) &
5228			(PAGE_CACHE_SIZE - 1);
5229		src_off_in_page = (start_offset + src_end) &
5230			(PAGE_CACHE_SIZE - 1);
5231
5232		cur = min_t(unsigned long, len, src_off_in_page + 1);
5233		cur = min(cur, dst_off_in_page + 1);
5234		copy_pages(extent_buffer_page(dst, dst_i),
5235			   extent_buffer_page(dst, src_i),
5236			   dst_off_in_page - cur + 1,
5237			   src_off_in_page - cur + 1, cur);
5238
5239		dst_end -= cur;
5240		src_end -= cur;
5241		len -= cur;
5242	}
5243}
5244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5245int try_release_extent_buffer(struct page *page)
5246{
 
5247	struct extent_buffer *eb;
5248
 
 
 
5249	/*
5250	 * We need to make sure noboody is attaching this page to an eb right
5251	 * now.
5252	 */
5253	spin_lock(&page->mapping->private_lock);
5254	if (!PagePrivate(page)) {
5255		spin_unlock(&page->mapping->private_lock);
5256		return 1;
5257	}
5258
5259	eb = (struct extent_buffer *)page->private;
5260	BUG_ON(!eb);
5261
5262	/*
5263	 * This is a little awful but should be ok, we need to make sure that
5264	 * the eb doesn't disappear out from under us while we're looking at
5265	 * this page.
5266	 */
5267	spin_lock(&eb->refs_lock);
5268	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5269		spin_unlock(&eb->refs_lock);
5270		spin_unlock(&page->mapping->private_lock);
5271		return 0;
5272	}
5273	spin_unlock(&page->mapping->private_lock);
5274
5275	/*
5276	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5277	 * so just return, this page will likely be freed soon anyway.
5278	 */
5279	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5280		spin_unlock(&eb->refs_lock);
5281		return 0;
5282	}
5283
5284	return release_extent_buffer(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5285}