Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
   9#include <linux/sched/mm.h>
  10#include <linux/spinlock.h>
  11#include <linux/blkdev.h>
  12#include <linux/swap.h>
  13#include <linux/writeback.h>
  14#include <linux/pagevec.h>
  15#include <linux/prefetch.h>
  16#include <linux/fsverity.h>
  17#include "misc.h"
  18#include "extent_io.h"
  19#include "extent-io-tree.h"
  20#include "extent_map.h"
 
  21#include "ctree.h"
  22#include "btrfs_inode.h"
  23#include "bio.h"
  24#include "locking.h"
  25#include "rcu-string.h"
  26#include "backref.h"
  27#include "disk-io.h"
  28#include "subpage.h"
  29#include "zoned.h"
  30#include "block-group.h"
  31#include "compression.h"
  32#include "fs.h"
  33#include "accessors.h"
  34#include "file-item.h"
  35#include "file.h"
  36#include "dev-replace.h"
  37#include "super.h"
  38#include "transaction.h"
  39
 
  40static struct kmem_cache *extent_buffer_cache;
  41
  42#ifdef CONFIG_BTRFS_DEBUG
  43static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
  44{
  45	struct btrfs_fs_info *fs_info = eb->fs_info;
  46	unsigned long flags;
  47
  48	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  49	list_add(&eb->leak_list, &fs_info->allocated_ebs);
  50	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  51}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  52
  53static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
  54{
  55	struct btrfs_fs_info *fs_info = eb->fs_info;
  56	unsigned long flags;
 
 
 
  57
  58	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  59	list_del(&eb->leak_list);
  60	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
 
 
 
 
 
 
 
  61}
  62
  63void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
  64{
 
  65	struct extent_buffer *eb;
  66	unsigned long flags;
  67
  68	/*
  69	 * If we didn't get into open_ctree our allocated_ebs will not be
  70	 * initialized, so just skip this.
  71	 */
  72	if (!fs_info->allocated_ebs.next)
  73		return;
 
 
 
 
 
  74
  75	WARN_ON(!list_empty(&fs_info->allocated_ebs));
  76	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  77	while (!list_empty(&fs_info->allocated_ebs)) {
  78		eb = list_first_entry(&fs_info->allocated_ebs,
  79				      struct extent_buffer, leak_list);
  80		pr_err(
  81	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
  82		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
  83		       btrfs_header_owner(eb));
  84		list_del(&eb->leak_list);
  85		kmem_cache_free(extent_buffer_cache, eb);
  86	}
  87	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
 
 
 
  88}
  89#else
  90#define btrfs_leak_debug_add_eb(eb)			do {} while (0)
  91#define btrfs_leak_debug_del_eb(eb)			do {} while (0)
  92#endif
  93
  94/*
  95 * Structure to record info about the bio being assembled, and other info like
  96 * how many bytes are there before stripe/ordered extent boundary.
  97 */
  98struct btrfs_bio_ctrl {
  99	struct btrfs_bio *bbio;
 100	enum btrfs_compression_type compress_type;
 101	u32 len_to_oe_boundary;
 102	blk_opf_t opf;
 103	btrfs_bio_end_io_t end_io_func;
 104	struct writeback_control *wbc;
 105};
 106
 107static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
 108{
 109	struct btrfs_bio *bbio = bio_ctrl->bbio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110
 111	if (!bbio)
 
 
 112		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 113
 114	/* Caller should ensure the bio has at least some range added */
 115	ASSERT(bbio->bio.bi_iter.bi_size);
 
 
 
 
 116
 117	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
 118	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
 119		btrfs_submit_compressed_read(bbio);
 120	else
 121		btrfs_submit_bio(bbio, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122
 123	/* The bbio is owned by the end_io handler now */
 124	bio_ctrl->bbio = NULL;
 
 
 
 
 125}
 126
 127/*
 128 * Submit or fail the current bio in the bio_ctrl structure.
 
 
 
 
 
 
 129 */
 130static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
 
 131{
 132	struct btrfs_bio *bbio = bio_ctrl->bbio;
 
 133
 134	if (!bbio)
 135		return;
 136
 137	if (ret) {
 138		ASSERT(ret < 0);
 139		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
 140		/* The bio is owned by the end_io handler now */
 141		bio_ctrl->bbio = NULL;
 142	} else {
 143		submit_one_bio(bio_ctrl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144	}
 145}
 146
 147int __init extent_buffer_init_cachep(void)
 
 148{
 149	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 150			sizeof(struct extent_buffer), 0,
 151			SLAB_MEM_SPREAD, NULL);
 152	if (!extent_buffer_cache)
 153		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155	return 0;
 156}
 157
 158void __cold extent_buffer_free_cachep(void)
 
 159{
 160	/*
 161	 * Make sure all delayed rcu free are flushed before we
 162	 * destroy caches.
 163	 */
 164	rcu_barrier();
 165	kmem_cache_destroy(extent_buffer_cache);
 166}
 167
 168void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 169{
 170	unsigned long index = start >> PAGE_SHIFT;
 171	unsigned long end_index = end >> PAGE_SHIFT;
 172	struct page *page;
 173
 174	while (index <= end_index) {
 175		page = find_get_page(inode->i_mapping, index);
 176		BUG_ON(!page); /* Pages should be in the extent_io_tree */
 177		clear_page_dirty_for_io(page);
 178		put_page(page);
 179		index++;
 
 
 
 
 
 180	}
 
 
 181}
 182
 183static void process_one_page(struct btrfs_fs_info *fs_info,
 184			     struct page *page, struct page *locked_page,
 185			     unsigned long page_ops, u64 start, u64 end)
 186{
 187	struct folio *folio = page_folio(page);
 188	u32 len;
 189
 190	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
 191	len = end + 1 - start;
 192
 193	if (page_ops & PAGE_SET_ORDERED)
 194		btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
 195	if (page_ops & PAGE_START_WRITEBACK) {
 196		btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
 197		btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
 198	}
 199	if (page_ops & PAGE_END_WRITEBACK)
 200		btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
 201
 202	if (page != locked_page && (page_ops & PAGE_UNLOCK))
 203		btrfs_folio_end_writer_lock(fs_info, folio, start, len);
 204}
 205
 206static void __process_pages_contig(struct address_space *mapping,
 207				   struct page *locked_page, u64 start, u64 end,
 208				   unsigned long page_ops)
 209{
 210	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
 211	pgoff_t start_index = start >> PAGE_SHIFT;
 212	pgoff_t end_index = end >> PAGE_SHIFT;
 213	pgoff_t index = start_index;
 214	struct folio_batch fbatch;
 215	int i;
 
 
 
 
 216
 217	folio_batch_init(&fbatch);
 218	while (index <= end_index) {
 219		int found_folios;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220
 221		found_folios = filemap_get_folios_contig(mapping, &index,
 222				end_index, &fbatch);
 223		for (i = 0; i < found_folios; i++) {
 224			struct folio *folio = fbatch.folios[i];
 
 
 
 
 
 
 
 
 
 
 
 225
 226			process_one_page(fs_info, &folio->page, locked_page,
 227					 page_ops, start, end);
 
 
 
 
 
 
 
 
 
 
 
 228		}
 229		folio_batch_release(&fbatch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 231	}
 
 
 
 232}
 233
 234static noinline void __unlock_for_delalloc(struct inode *inode,
 235					   struct page *locked_page,
 236					   u64 start, u64 end)
 237{
 238	unsigned long index = start >> PAGE_SHIFT;
 239	unsigned long end_index = end >> PAGE_SHIFT;
 240
 241	ASSERT(locked_page);
 242	if (index == locked_page->index && end_index == index)
 243		return;
 
 
 
 
 244
 245	__process_pages_contig(inode->i_mapping, locked_page, start, end,
 246			       PAGE_UNLOCK);
 
 
 
 
 
 
 
 247}
 248
 249static noinline int lock_delalloc_pages(struct inode *inode,
 250					struct page *locked_page,
 251					u64 start,
 252					u64 end)
 253{
 254	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 255	struct address_space *mapping = inode->i_mapping;
 256	pgoff_t start_index = start >> PAGE_SHIFT;
 257	pgoff_t end_index = end >> PAGE_SHIFT;
 258	pgoff_t index = start_index;
 259	u64 processed_end = start;
 260	struct folio_batch fbatch;
 261
 262	if (index == locked_page->index && index == end_index)
 263		return 0;
 
 
 
 
 
 
 
 
 264
 265	folio_batch_init(&fbatch);
 266	while (index <= end_index) {
 267		unsigned int found_folios, i;
 
 
 
 
 
 
 
 268
 269		found_folios = filemap_get_folios_contig(mapping, &index,
 270				end_index, &fbatch);
 271		if (found_folios == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 272			goto out;
 
 273
 274		for (i = 0; i < found_folios; i++) {
 275			struct folio *folio = fbatch.folios[i];
 276			struct page *page = folio_page(folio, 0);
 277			u32 len = end + 1 - start;
 278
 279			if (page == locked_page)
 280				continue;
 
 
 281
 282			if (btrfs_folio_start_writer_lock(fs_info, folio, start,
 283							  len))
 284				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285
 286			if (!PageDirty(page) || page->mapping != mapping) {
 287				btrfs_folio_end_writer_lock(fs_info, folio, start,
 288							    len);
 
 
 
 
 
 
 
 
 
 289				goto out;
 290			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291
 292			processed_end = page_offset(page) + PAGE_SIZE - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 293		}
 294		folio_batch_release(&fbatch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297
 
 
 
 
 
 
 
 298	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 299out:
 300	folio_batch_release(&fbatch);
 301	if (processed_end > start)
 302		__unlock_for_delalloc(inode, locked_page, start, processed_end);
 303	return -EAGAIN;
 304}
 305
 306/*
 307 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 308 * more than @max_bytes.
 
 309 *
 310 * @start:	The original start bytenr to search.
 311 *		Will store the extent range start bytenr.
 312 * @end:	The original end bytenr of the search range
 313 *		Will store the extent range end bytenr.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314 *
 315 * Return true if we find a delalloc range which starts inside the original
 316 * range, and @start/@end will store the delalloc range start/end.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317 *
 318 * Return false if we can't find any delalloc range which starts inside the
 319 * original range, and @start/@end will be the non-delalloc range start/end.
 320 */
 321EXPORT_FOR_TESTS
 322noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
 323				    struct page *locked_page, u64 *start,
 324				    u64 *end)
 325{
 326	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 327	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
 328	const u64 orig_start = *start;
 329	const u64 orig_end = *end;
 330	/* The sanity tests may not set a valid fs_info. */
 331	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
 332	u64 delalloc_start;
 333	u64 delalloc_end;
 334	bool found;
 335	struct extent_state *cached_state = NULL;
 336	int ret;
 337	int loops = 0;
 338
 339	/* Caller should pass a valid @end to indicate the search range end */
 340	ASSERT(orig_end > orig_start);
 341
 342	/* The range should at least cover part of the page */
 343	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
 344		 orig_end <= page_offset(locked_page)));
 345again:
 346	/* step one, find a bunch of delalloc bytes starting at start */
 347	delalloc_start = *start;
 348	delalloc_end = 0;
 349	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
 350					  max_bytes, &cached_state);
 351	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
 352		*start = delalloc_start;
 353
 354		/* @delalloc_end can be -1, never go beyond @orig_end */
 355		*end = min(delalloc_end, orig_end);
 356		free_extent_state(cached_state);
 357		return false;
 358	}
 359
 360	/*
 361	 * start comes from the offset of locked_page.  We have to lock
 362	 * pages in order, so we can't process delalloc bytes before
 363	 * locked_page
 364	 */
 365	if (delalloc_start < *start)
 366		delalloc_start = *start;
 367
 368	/*
 369	 * make sure to limit the number of pages we try to lock down
 
 370	 */
 371	if (delalloc_end + 1 - delalloc_start > max_bytes)
 372		delalloc_end = delalloc_start + max_bytes - 1;
 373
 374	/* step two, lock all the pages after the page that has start */
 375	ret = lock_delalloc_pages(inode, locked_page,
 376				  delalloc_start, delalloc_end);
 377	ASSERT(!ret || ret == -EAGAIN);
 378	if (ret == -EAGAIN) {
 379		/* some of the pages are gone, lets avoid looping by
 380		 * shortening the size of the delalloc range we're searching
 381		 */
 382		free_extent_state(cached_state);
 383		cached_state = NULL;
 384		if (!loops) {
 385			max_bytes = PAGE_SIZE;
 
 386			loops = 1;
 387			goto again;
 388		} else {
 389			found = false;
 390			goto out_failed;
 391		}
 392	}
 
 393
 394	/* step three, lock the state bits for the whole range */
 395	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
 
 396
 397	/* then test to make sure it is all still delalloc */
 398	ret = test_range_bit(tree, delalloc_start, delalloc_end,
 399			     EXTENT_DELALLOC, cached_state);
 400	if (!ret) {
 401		unlock_extent(tree, delalloc_start, delalloc_end,
 402			      &cached_state);
 403		__unlock_for_delalloc(inode, locked_page,
 404			      delalloc_start, delalloc_end);
 405		cond_resched();
 406		goto again;
 407	}
 408	free_extent_state(cached_state);
 409	*start = delalloc_start;
 410	*end = delalloc_end;
 411out_failed:
 412	return found;
 413}
 414
 415void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
 416				  struct page *locked_page,
 417				  u32 clear_bits, unsigned long page_ops)
 418{
 419	clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
 420
 421	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
 422			       start, end, page_ops);
 423}
 424
 425static bool btrfs_verify_page(struct page *page, u64 start)
 426{
 427	if (!fsverity_active(page->mapping->host) ||
 428	    PageUptodate(page) ||
 429	    start >= i_size_read(page->mapping->host))
 430		return true;
 431	return fsverity_verify_page(page);
 432}
 433
 434static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
 435{
 436	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
 437	struct folio *folio = page_folio(page);
 438
 439	ASSERT(page_offset(page) <= start &&
 440	       start + len <= page_offset(page) + PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441
 442	if (uptodate && btrfs_verify_page(page, start))
 443		btrfs_folio_set_uptodate(fs_info, folio, start, len);
 444	else
 445		btrfs_folio_clear_uptodate(fs_info, folio, start, len);
 446
 447	if (!btrfs_is_subpage(fs_info, page->mapping))
 448		unlock_page(page);
 449	else
 450		btrfs_subpage_end_reader(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451}
 452
 453/*
 454 * After a write IO is done, we need to:
 455 *
 456 * - clear the uptodate bits on error
 457 * - clear the writeback bits in the extent tree for the range
 458 * - filio_end_writeback()  if there is no more pending io for the folio
 459 *
 460 * Scheduling is not allowed, so the extent state tree is expected
 461 * to have one and only one object corresponding to this IO.
 462 */
 463static void end_bbio_data_write(struct btrfs_bio *bbio)
 
 
 464{
 465	struct bio *bio = &bbio->bio;
 466	int error = blk_status_to_errno(bio->bi_status);
 467	struct folio_iter fi;
 468
 469	ASSERT(!bio_flagged(bio, BIO_CLONED));
 470	bio_for_each_folio_all(fi, bio) {
 471		struct folio *folio = fi.folio;
 472		struct inode *inode = folio->mapping->host;
 473		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 474		const u32 sectorsize = fs_info->sectorsize;
 475		u64 start = folio_pos(folio) + fi.offset;
 476		u32 len = fi.length;
 477
 478		/* Only order 0 (single page) folios are allowed for data. */
 479		ASSERT(folio_order(folio) == 0);
 480
 481		/* Our read/write should always be sector aligned. */
 482		if (!IS_ALIGNED(fi.offset, sectorsize))
 483			btrfs_err(fs_info,
 484		"partial page write in btrfs with offset %zu and length %zu",
 485				  fi.offset, fi.length);
 486		else if (!IS_ALIGNED(fi.length, sectorsize))
 487			btrfs_info(fs_info,
 488		"incomplete page write with offset %zu and length %zu",
 489				   fi.offset, fi.length);
 490
 491		btrfs_finish_ordered_extent(bbio->ordered,
 492				folio_page(folio, 0), start, len, !error);
 493		if (error)
 494			mapping_set_error(folio->mapping, error);
 495		btrfs_folio_clear_writeback(fs_info, folio, start, len);
 496	}
 497
 498	bio_put(bio);
 499}
 
 
 
 
 
 
 
 
 
 
 500
 501/*
 502 * Record previously processed extent range
 503 *
 504 * For endio_readpage_release_extent() to handle a full extent range, reducing
 505 * the extent io operations.
 506 */
 507struct processed_extent {
 508	struct btrfs_inode *inode;
 509	/* Start of the range in @inode */
 510	u64 start;
 511	/* End of the range in @inode */
 512	u64 end;
 513	bool uptodate;
 514};
 
 
 
 
 
 
 
 
 
 
 
 
 
 515
 516/*
 517 * Try to release processed extent range
 518 *
 519 * May not release the extent range right now if the current range is
 520 * contiguous to processed extent.
 521 *
 522 * Will release processed extent when any of @inode, @uptodate, the range is
 523 * no longer contiguous to the processed range.
 524 *
 525 * Passing @inode == NULL will force processed extent to be released.
 526 */
 527static void endio_readpage_release_extent(struct processed_extent *processed,
 528			      struct btrfs_inode *inode, u64 start, u64 end,
 529			      bool uptodate)
 530{
 531	struct extent_state *cached = NULL;
 532	struct extent_io_tree *tree;
 533
 534	/* The first extent, initialize @processed */
 535	if (!processed->inode)
 536		goto update;
 537
 
 538	/*
 539	 * Contiguous to processed extent, just uptodate the end.
 540	 *
 541	 * Several things to notice:
 542	 *
 543	 * - bio can be merged as long as on-disk bytenr is contiguous
 544	 *   This means we can have page belonging to other inodes, thus need to
 545	 *   check if the inode still matches.
 546	 * - bvec can contain range beyond current page for multi-page bvec
 547	 *   Thus we need to do processed->end + 1 >= start check
 548	 */
 549	if (processed->inode == inode && processed->uptodate == uptodate &&
 550	    processed->end + 1 >= start && end >= processed->end) {
 551		processed->end = end;
 552		return;
 553	}
 554
 555	tree = &processed->inode->io_tree;
 556	/*
 557	 * Now we don't have range contiguous to the processed range, release
 558	 * the processed range now.
 559	 */
 560	unlock_extent(tree, processed->start, processed->end, &cached);
 561
 562update:
 563	/* Update processed to current range */
 564	processed->inode = inode;
 565	processed->start = start;
 566	processed->end = end;
 567	processed->uptodate = uptodate;
 568}
 569
 570static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
 571{
 572	struct folio *folio = page_folio(page);
 573
 574	ASSERT(folio_test_locked(folio));
 575	if (!btrfs_is_subpage(fs_info, folio->mapping))
 576		return;
 577
 578	ASSERT(folio_test_private(folio));
 579	btrfs_subpage_start_reader(fs_info, folio, page_offset(page), PAGE_SIZE);
 580}
 581
 582/*
 583 * After a data read IO is done, we need to:
 584 *
 585 * - clear the uptodate bits on error
 586 * - set the uptodate bits if things worked
 587 * - set the folio up to date if all extents in the tree are uptodate
 588 * - clear the lock bit in the extent tree
 589 * - unlock the folio if there are no other extents locked for it
 590 *
 591 * Scheduling is not allowed, so the extent state tree is expected
 592 * to have one and only one object corresponding to this IO.
 593 */
 594static void end_bbio_data_read(struct btrfs_bio *bbio)
 595{
 596	struct bio *bio = &bbio->bio;
 597	struct processed_extent processed = { 0 };
 598	struct folio_iter fi;
 599	/*
 600	 * The offset to the beginning of a bio, since one bio can never be
 601	 * larger than UINT_MAX, u32 here is enough.
 602	 */
 603	u32 bio_offset = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 604
 605	ASSERT(!bio_flagged(bio, BIO_CLONED));
 606	bio_for_each_folio_all(fi, &bbio->bio) {
 607		bool uptodate = !bio->bi_status;
 608		struct folio *folio = fi.folio;
 609		struct inode *inode = folio->mapping->host;
 610		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 611		const u32 sectorsize = fs_info->sectorsize;
 612		u64 start;
 613		u64 end;
 614		u32 len;
 615
 616		/* For now only order 0 folios are supported for data. */
 617		ASSERT(folio_order(folio) == 0);
 618		btrfs_debug(fs_info,
 619			"%s: bi_sector=%llu, err=%d, mirror=%u",
 620			__func__, bio->bi_iter.bi_sector, bio->bi_status,
 621			bbio->mirror_num);
 
 
 
 
 622
 623		/*
 624		 * We always issue full-sector reads, but if some block in a
 625		 * folio fails to read, blk_update_request() will advance
 626		 * bv_offset and adjust bv_len to compensate.  Print a warning
 627		 * for unaligned offsets, and an error if they don't add up to
 628		 * a full sector.
 629		 */
 630		if (!IS_ALIGNED(fi.offset, sectorsize))
 631			btrfs_err(fs_info,
 632		"partial page read in btrfs with offset %zu and length %zu",
 633				  fi.offset, fi.length);
 634		else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
 635			btrfs_info(fs_info,
 636		"incomplete page read with offset %zu and length %zu",
 637				   fi.offset, fi.length);
 638
 639		start = folio_pos(folio) + fi.offset;
 640		end = start + fi.length - 1;
 641		len = fi.length;
 642
 643		if (likely(uptodate)) {
 644			loff_t i_size = i_size_read(inode);
 645			pgoff_t end_index = i_size >> folio_shift(folio);
 646
 647			/*
 648			 * Zero out the remaining part if this range straddles
 649			 * i_size.
 650			 *
 651			 * Here we should only zero the range inside the folio,
 652			 * not touch anything else.
 653			 *
 654			 * NOTE: i_size is exclusive while end is inclusive.
 655			 */
 656			if (folio_index(folio) == end_index && i_size <= end) {
 657				u32 zero_start = max(offset_in_folio(folio, i_size),
 658						     offset_in_folio(folio, start));
 659				u32 zero_len = offset_in_folio(folio, end) + 1 -
 660					       zero_start;
 661
 662				folio_zero_range(folio, zero_start, zero_len);
 663			}
 
 
 
 
 
 664		}
 665
 666		/* Update page status and unlock. */
 667		end_page_read(folio_page(folio, 0), uptodate, start, len);
 668		endio_readpage_release_extent(&processed, BTRFS_I(inode),
 669					      start, end, uptodate);
 670
 671		ASSERT(bio_offset + len > bio_offset);
 672		bio_offset += len;
 673
 
 
 
 
 
 
 
 
 
 674	}
 675	/* Release the last extent */
 676	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
 677	bio_put(bio);
 678}
 679
 680/*
 681 * Populate every free slot in a provided array with pages.
 682 *
 683 * @nr_pages:   number of pages to allocate
 684 * @page_array: the array to fill with pages; any existing non-null entries in
 685 * 		the array will be skipped
 686 * @extra_gfp:	the extra GFP flags for the allocation.
 687 *
 688 * Return: 0        if all pages were able to be allocated;
 689 *         -ENOMEM  otherwise, the partially allocated pages would be freed and
 690 *                  the array slots zeroed
 691 */
 692int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
 693			   gfp_t extra_gfp)
 694{
 695	unsigned int allocated;
 696
 697	for (allocated = 0; allocated < nr_pages;) {
 698		unsigned int last = allocated;
 699
 700		allocated = alloc_pages_bulk_array(GFP_NOFS | extra_gfp,
 701						   nr_pages, page_array);
 702
 703		if (allocated == nr_pages)
 704			return 0;
 705
 706		/*
 707		 * During this iteration, no page could be allocated, even
 708		 * though alloc_pages_bulk_array() falls back to alloc_page()
 709		 * if  it could not bulk-allocate. So we must be out of memory.
 710		 */
 711		if (allocated == last) {
 712			for (int i = 0; i < allocated; i++) {
 713				__free_page(page_array[i]);
 714				page_array[i] = NULL;
 715			}
 716			return -ENOMEM;
 717		}
 
 718
 719		memalloc_retry_wait(GFP_NOFS);
 720	}
 
 
 
 
 
 
 721	return 0;
 722}
 723
 
 
 724/*
 725 * Populate needed folios for the extent buffer.
 
 
 
 726 *
 727 * For now, the folios populated are always in order 0 (aka, single page).
 
 728 */
 729static int alloc_eb_folio_array(struct extent_buffer *eb, gfp_t extra_gfp)
 730{
 731	struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
 732	int num_pages = num_extent_pages(eb);
 
 
 
 
 733	int ret;
 734
 735	ret = btrfs_alloc_page_array(num_pages, page_array, extra_gfp);
 736	if (ret < 0)
 737		return ret;
 738
 739	for (int i = 0; i < num_pages; i++)
 740		eb->folios[i] = page_folio(page_array[i]);
 741	return 0;
 742}
 743
 744static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
 745				struct page *page, u64 disk_bytenr,
 746				unsigned int pg_offset)
 747{
 748	struct bio *bio = &bio_ctrl->bbio->bio;
 749	struct bio_vec *bvec = bio_last_bvec_all(bio);
 750	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
 751
 752	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
 753		/*
 754		 * For compression, all IO should have its logical bytenr set
 755		 * to the starting bytenr of the compressed extent.
 756		 */
 757		return bio->bi_iter.bi_sector == sector;
 758	}
 
 759
 760	/*
 761	 * The contig check requires the following conditions to be met:
 762	 *
 763	 * 1) The pages are belonging to the same inode
 764	 *    This is implied by the call chain.
 765	 *
 766	 * 2) The range has adjacent logical bytenr
 767	 *
 768	 * 3) The range has adjacent file offset
 769	 *    This is required for the usage of btrfs_bio->file_offset.
 770	 */
 771	return bio_end_sector(bio) == sector &&
 772		page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
 773		page_offset(page) + pg_offset;
 774}
 775
 776static void alloc_new_bio(struct btrfs_inode *inode,
 777			  struct btrfs_bio_ctrl *bio_ctrl,
 778			  u64 disk_bytenr, u64 file_offset)
 779{
 780	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 781	struct btrfs_bio *bbio;
 782
 783	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
 784			       bio_ctrl->end_io_func, NULL);
 785	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
 786	bbio->inode = inode;
 787	bbio->file_offset = file_offset;
 788	bio_ctrl->bbio = bbio;
 789	bio_ctrl->len_to_oe_boundary = U32_MAX;
 790
 791	/* Limit data write bios to the ordered boundary. */
 792	if (bio_ctrl->wbc) {
 793		struct btrfs_ordered_extent *ordered;
 794
 795		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
 796		if (ordered) {
 797			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
 798					ordered->file_offset +
 799					ordered->disk_num_bytes - file_offset);
 800			bbio->ordered = ordered;
 801		}
 802
 803		/*
 804		 * Pick the last added device to support cgroup writeback.  For
 805		 * multi-device file systems this means blk-cgroup policies have
 806		 * to always be set on the last added/replaced device.
 807		 * This is a bit odd but has been like that for a long time.
 808		 */
 809		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
 810		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
 811	}
 
 
 
 
 812}
 813
 814/*
 815 * @disk_bytenr: logical bytenr where the write will be
 816 * @page:	page to add to the bio
 817 * @size:	portion of page that we want to write to
 818 * @pg_offset:	offset of the new bio or to check whether we are adding
 819 *              a contiguous page to the previous one
 
 820 *
 821 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
 822 * new one in @bio_ctrl->bbio.
 823 * The mirror number for this IO should already be initizlied in
 824 * @bio_ctrl->mirror_num.
 825 */
 826static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
 827			       u64 disk_bytenr, struct page *page,
 828			       size_t size, unsigned long pg_offset)
 829{
 830	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
 831
 832	ASSERT(pg_offset + size <= PAGE_SIZE);
 833	ASSERT(bio_ctrl->end_io_func);
 834
 835	if (bio_ctrl->bbio &&
 836	    !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
 837		submit_one_bio(bio_ctrl);
 
 838
 839	do {
 840		u32 len = size;
 
 
 
 
 
 
 
 
 841
 842		/* Allocate new bio if needed */
 843		if (!bio_ctrl->bbio) {
 844			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
 845				      page_offset(page) + pg_offset);
 846		}
 847
 848		/* Cap to the current ordered extent boundary if there is one. */
 849		if (len > bio_ctrl->len_to_oe_boundary) {
 850			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
 851			ASSERT(is_data_inode(&inode->vfs_inode));
 852			len = bio_ctrl->len_to_oe_boundary;
 853		}
 854
 855		if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
 856			/* bio full: move on to a new one */
 857			submit_one_bio(bio_ctrl);
 858			continue;
 
 
 
 
 859		}
 
 860
 861		if (bio_ctrl->wbc)
 862			wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
 863
 864		size -= len;
 865		pg_offset += len;
 866		disk_bytenr += len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 867
 868		/*
 869		 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
 870		 * sector aligned.  alloc_new_bio() then sets it to the end of
 871		 * our ordered extent for writes into zoned devices.
 872		 *
 873		 * When len_to_oe_boundary is tracking an ordered extent, we
 874		 * trust the ordered extent code to align things properly, and
 875		 * the check above to cap our write to the ordered extent
 876		 * boundary is correct.
 877		 *
 878		 * When len_to_oe_boundary is U32_MAX, the cap above would
 879		 * result in a 4095 byte IO for the last page right before
 880		 * we hit the bio limit of UINT_MAX.  bio_add_page() has all
 881		 * the checks required to make sure we don't overflow the bio,
 882		 * and we should just ignore len_to_oe_boundary completely
 883		 * unless we're using it to track an ordered extent.
 884		 *
 885		 * It's pretty hard to make a bio sized U32_MAX, but it can
 886		 * happen when the page cache is able to feed us contiguous
 887		 * pages for large extents.
 888		 */
 889		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
 890			bio_ctrl->len_to_oe_boundary -= len;
 
 891
 892		/* Ordered extent boundary: move on to a new bio. */
 893		if (bio_ctrl->len_to_oe_boundary == 0)
 894			submit_one_bio(bio_ctrl);
 895	} while (size);
 896}
 897
 898static int attach_extent_buffer_folio(struct extent_buffer *eb,
 899				      struct folio *folio,
 900				      struct btrfs_subpage *prealloc)
 901{
 902	struct btrfs_fs_info *fs_info = eb->fs_info;
 903	int ret = 0;
 904
 905	/*
 906	 * If the page is mapped to btree inode, we should hold the private
 907	 * lock to prevent race.
 908	 * For cloned or dummy extent buffers, their pages are not mapped and
 909	 * will not race with any other ebs.
 910	 */
 911	if (folio->mapping)
 912		lockdep_assert_held(&folio->mapping->i_private_lock);
 913
 914	if (fs_info->nodesize >= PAGE_SIZE) {
 915		if (!folio_test_private(folio))
 916			folio_attach_private(folio, eb);
 917		else
 918			WARN_ON(folio_get_private(folio) != eb);
 919		return 0;
 920	}
 921
 922	/* Already mapped, just free prealloc */
 923	if (folio_test_private(folio)) {
 924		btrfs_free_subpage(prealloc);
 925		return 0;
 926	}
 927
 928	if (prealloc)
 929		/* Has preallocated memory for subpage */
 930		folio_attach_private(folio, prealloc);
 931	else
 932		/* Do new allocation to attach subpage */
 933		ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
 934	return ret;
 935}
 936
 937int set_page_extent_mapped(struct page *page)
 
 938{
 939	struct folio *folio = page_folio(page);
 940	struct btrfs_fs_info *fs_info;
 941
 942	ASSERT(page->mapping);
 
 943
 944	if (folio_test_private(folio))
 945		return 0;
 946
 947	fs_info = btrfs_sb(page->mapping->host->i_sb);
 948
 949	if (btrfs_is_subpage(fs_info, page->mapping))
 950		return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
 951
 952	folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
 953	return 0;
 
 
 
 
 
 
 
 954}
 955
 956void clear_page_extent_mapped(struct page *page)
 
 
 
 
 
 
 
 
 
 957{
 958	struct folio *folio = page_folio(page);
 959	struct btrfs_fs_info *fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 960
 961	ASSERT(page->mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962
 963	if (!folio_test_private(folio))
 964		return;
 
 965
 966	fs_info = btrfs_sb(page->mapping->host->i_sb);
 967	if (btrfs_is_subpage(fs_info, page->mapping))
 968		return btrfs_detach_subpage(fs_info, folio);
 969
 970	folio_detach_private(folio);
 
 
 
 
 
 971}
 972
 973static struct extent_map *
 974__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
 975		 u64 start, u64 len, struct extent_map **em_cached)
 976{
 977	struct extent_map *em;
 978
 979	if (em_cached && *em_cached) {
 980		em = *em_cached;
 981		if (extent_map_in_tree(em) && start >= em->start &&
 982		    start < extent_map_end(em)) {
 983			refcount_inc(&em->refs);
 984			return em;
 985		}
 986
 987		free_extent_map(em);
 988		*em_cached = NULL;
 989	}
 
 990
 991	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
 992	if (em_cached && !IS_ERR(em)) {
 993		BUG_ON(*em_cached);
 994		refcount_inc(&em->refs);
 995		*em_cached = em;
 996	}
 997	return em;
 998}
 
 999/*
1000 * basic readpage implementation.  Locked extent state structs are inserted
1001 * into the tree that are removed when the IO is done (by the end_io
1002 * handlers)
1003 * XXX JDM: This needs looking at to ensure proper page locking
1004 * return 0 on success, otherwise return error
1005 */
1006static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
1007		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
 
 
 
1008{
1009	struct inode *inode = page->mapping->host;
1010	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1011	u64 start = page_offset(page);
1012	const u64 end = start + PAGE_SIZE - 1;
1013	u64 cur = start;
1014	u64 extent_offset;
1015	u64 last_byte = i_size_read(inode);
1016	u64 block_start;
 
 
1017	struct extent_map *em;
1018	int ret = 0;
 
 
 
1019	size_t pg_offset = 0;
1020	size_t iosize;
 
1021	size_t blocksize = inode->i_sb->s_blocksize;
1022	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1023
1024	ret = set_page_extent_mapped(page);
1025	if (ret < 0) {
1026		unlock_extent(tree, start, end, NULL);
1027		unlock_page(page);
1028		return ret;
 
 
1029	}
1030
1031	if (page->index == last_byte >> PAGE_SHIFT) {
1032		size_t zero_offset = offset_in_page(last_byte);
 
 
 
 
 
 
 
 
 
 
 
 
1033
1034		if (zero_offset) {
1035			iosize = PAGE_SIZE - zero_offset;
1036			memzero_page(page, zero_offset, iosize);
 
 
 
1037		}
1038	}
1039	bio_ctrl->end_io_func = end_bbio_data_read;
1040	begin_page_read(fs_info, page);
1041	while (cur <= end) {
1042		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1043		bool force_bio_submit = false;
1044		u64 disk_bytenr;
1045
1046		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1047		if (cur >= last_byte) {
1048			iosize = PAGE_SIZE - pg_offset;
1049			memzero_page(page, pg_offset, iosize);
1050			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1051			end_page_read(page, true, cur, iosize);
 
 
 
 
 
 
 
 
1052			break;
1053		}
1054		em = __get_extent_map(inode, page, pg_offset, cur,
1055				      end - cur + 1, em_cached);
1056		if (IS_ERR(em)) {
1057			unlock_extent(tree, cur, end, NULL);
1058			end_page_read(page, false, cur, end + 1 - cur);
1059			return PTR_ERR(em);
1060		}
1061		extent_offset = cur - em->start;
1062		BUG_ON(extent_map_end(em) <= cur);
1063		BUG_ON(end < cur);
1064
1065		compress_type = extent_map_compression(em);
 
 
 
 
1066
1067		iosize = min(extent_map_end(em) - cur, end - cur + 1);
1068		iosize = ALIGN(iosize, blocksize);
1069		if (compress_type != BTRFS_COMPRESS_NONE)
1070			disk_bytenr = em->block_start;
1071		else
1072			disk_bytenr = em->block_start + extent_offset;
 
 
 
 
 
1073		block_start = em->block_start;
1074		if (em->flags & EXTENT_FLAG_PREALLOC)
1075			block_start = EXTENT_MAP_HOLE;
1076
1077		/*
1078		 * If we have a file range that points to a compressed extent
1079		 * and it's followed by a consecutive file range that points
1080		 * to the same compressed extent (possibly with a different
1081		 * offset and/or length, so it either points to the whole extent
1082		 * or only part of it), we must make sure we do not submit a
1083		 * single bio to populate the pages for the 2 ranges because
1084		 * this makes the compressed extent read zero out the pages
1085		 * belonging to the 2nd range. Imagine the following scenario:
1086		 *
1087		 *  File layout
1088		 *  [0 - 8K]                     [8K - 24K]
1089		 *    |                               |
1090		 *    |                               |
1091		 * points to extent X,         points to extent X,
1092		 * offset 4K, length of 8K     offset 0, length 16K
1093		 *
1094		 * [extent X, compressed length = 4K uncompressed length = 16K]
1095		 *
1096		 * If the bio to read the compressed extent covers both ranges,
1097		 * it will decompress extent X into the pages belonging to the
1098		 * first range and then it will stop, zeroing out the remaining
1099		 * pages that belong to the other range that points to extent X.
1100		 * So here we make sure we submit 2 bios, one for the first
1101		 * range and another one for the third range. Both will target
1102		 * the same physical extent from disk, but we can't currently
1103		 * make the compressed bio endio callback populate the pages
1104		 * for both ranges because each compressed bio is tightly
1105		 * coupled with a single extent map, and each range can have
1106		 * an extent map with a different offset value relative to the
1107		 * uncompressed data of our extent and different lengths. This
1108		 * is a corner case so we prioritize correctness over
1109		 * non-optimal behavior (submitting 2 bios for the same extent).
1110		 */
1111		if (compress_type != BTRFS_COMPRESS_NONE &&
1112		    prev_em_start && *prev_em_start != (u64)-1 &&
1113		    *prev_em_start != em->start)
1114			force_bio_submit = true;
1115
1116		if (prev_em_start)
1117			*prev_em_start = em->start;
1118
1119		free_extent_map(em);
1120		em = NULL;
1121
1122		/* we've found a hole, just zero and go on */
1123		if (block_start == EXTENT_MAP_HOLE) {
1124			memzero_page(page, pg_offset, iosize);
 
1125
1126			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1127			end_page_read(page, true, cur, iosize);
 
 
 
 
 
 
 
1128			cur = cur + iosize;
1129			pg_offset += iosize;
1130			continue;
1131		}
1132		/* the get_extent function already copied into the page */
 
 
 
 
 
 
 
 
 
 
 
1133		if (block_start == EXTENT_MAP_INLINE) {
1134			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1135			end_page_read(page, true, cur, iosize);
1136			cur = cur + iosize;
1137			pg_offset += iosize;
1138			continue;
1139		}
1140
1141		if (bio_ctrl->compress_type != compress_type) {
1142			submit_one_bio(bio_ctrl);
1143			bio_ctrl->compress_type = compress_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
1144		}
1145
1146		if (force_bio_submit)
1147			submit_one_bio(bio_ctrl);
1148		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1149				   pg_offset);
1150		cur = cur + iosize;
1151		pg_offset += iosize;
1152	}
1153
 
 
 
 
 
1154	return 0;
1155}
1156
1157int btrfs_read_folio(struct file *file, struct folio *folio)
 
1158{
1159	struct page *page = &folio->page;
1160	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1161	u64 start = page_offset(page);
1162	u64 end = start + PAGE_SIZE - 1;
1163	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1164	int ret;
1165
1166	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1167
1168	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
1169	/*
1170	 * If btrfs_do_readpage() failed we will want to submit the assembled
1171	 * bio to do the cleanup.
1172	 */
1173	submit_one_bio(&bio_ctrl);
1174	return ret;
1175}
1176
1177static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1178					u64 start, u64 end,
1179					struct extent_map **em_cached,
1180					struct btrfs_bio_ctrl *bio_ctrl,
1181					u64 *prev_em_start)
1182{
1183	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1184	int index;
1185
1186	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1187
1188	for (index = 0; index < nr_pages; index++) {
1189		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1190				  prev_em_start);
1191		put_page(pages[index]);
1192	}
1193}
1194
1195/*
1196 * helper for __extent_writepage, doing all of the delayed allocation setup.
1197 *
1198 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1199 * to write the page (copy into inline extent).  In this case the IO has
1200 * been started and the page is already unlocked.
1201 *
1202 * This returns 0 if all went well (page still locked)
1203 * This returns < 0 if there were errors (page still locked)
1204 */
1205static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1206		struct page *page, struct writeback_control *wbc)
1207{
1208	const u64 page_start = page_offset(page);
1209	const u64 page_end = page_start + PAGE_SIZE - 1;
1210	u64 delalloc_start = page_start;
1211	u64 delalloc_end = page_end;
1212	u64 delalloc_to_write = 0;
1213	int ret = 0;
1214
1215	while (delalloc_start < page_end) {
1216		delalloc_end = page_end;
1217		if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1218					      &delalloc_start, &delalloc_end)) {
1219			delalloc_start = delalloc_end + 1;
1220			continue;
1221		}
1222
1223		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1224					       delalloc_end, wbc);
1225		if (ret < 0)
1226			return ret;
1227
1228		delalloc_start = delalloc_end + 1;
1229	}
1230
1231	/*
1232	 * delalloc_end is already one less than the total length, so
1233	 * we don't subtract one from PAGE_SIZE
1234	 */
1235	delalloc_to_write +=
1236		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1237
1238	/*
1239	 * If btrfs_run_dealloc_range() already started I/O and unlocked
1240	 * the pages, we just need to account for them here.
1241	 */
1242	if (ret == 1) {
1243		wbc->nr_to_write -= delalloc_to_write;
1244		return 1;
1245	}
1246
1247	if (wbc->nr_to_write < delalloc_to_write) {
1248		int thresh = 8192;
1249
1250		if (delalloc_to_write < thresh * 2)
1251			thresh = delalloc_to_write;
1252		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1253					 thresh);
1254	}
1255
1256	return 0;
1257}
1258
1259/*
1260 * Find the first byte we need to write.
1261 *
1262 * For subpage, one page can contain several sectors, and
1263 * __extent_writepage_io() will just grab all extent maps in the page
1264 * range and try to submit all non-inline/non-compressed extents.
1265 *
1266 * This is a big problem for subpage, we shouldn't re-submit already written
1267 * data at all.
1268 * This function will lookup subpage dirty bit to find which range we really
1269 * need to submit.
1270 *
1271 * Return the next dirty range in [@start, @end).
1272 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1273 */
1274static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1275				 struct page *page, u64 *start, u64 *end)
1276{
1277	struct folio *folio = page_folio(page);
1278	struct btrfs_subpage *subpage = folio_get_private(folio);
1279	struct btrfs_subpage_info *spi = fs_info->subpage_info;
1280	u64 orig_start = *start;
1281	/* Declare as unsigned long so we can use bitmap ops */
1282	unsigned long flags;
1283	int range_start_bit;
1284	int range_end_bit;
1285
1286	/*
1287	 * For regular sector size == page size case, since one page only
1288	 * contains one sector, we return the page offset directly.
1289	 */
1290	if (!btrfs_is_subpage(fs_info, page->mapping)) {
1291		*start = page_offset(page);
1292		*end = page_offset(page) + PAGE_SIZE;
1293		return;
1294	}
1295
1296	range_start_bit = spi->dirty_offset +
1297			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1298
1299	/* We should have the page locked, but just in case */
1300	spin_lock_irqsave(&subpage->lock, flags);
1301	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1302			       spi->dirty_offset + spi->bitmap_nr_bits);
1303	spin_unlock_irqrestore(&subpage->lock, flags);
1304
1305	range_start_bit -= spi->dirty_offset;
1306	range_end_bit -= spi->dirty_offset;
1307
1308	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1309	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1310}
1311
1312/*
1313 * helper for __extent_writepage.  This calls the writepage start hooks,
1314 * and does the loop to map the page into extents and bios.
1315 *
1316 * We return 1 if the IO is started and the page is unlocked,
1317 * 0 if all went well (page still locked)
1318 * < 0 if there were errors (page still locked)
1319 */
1320static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1321				 struct page *page,
1322				 struct btrfs_bio_ctrl *bio_ctrl,
1323				 loff_t i_size,
1324				 int *nr_ret)
1325{
1326	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1327	u64 cur = page_offset(page);
1328	u64 end = cur + PAGE_SIZE - 1;
1329	u64 extent_offset;
1330	u64 block_start;
1331	struct extent_map *em;
1332	int ret = 0;
1333	int nr = 0;
1334
1335	ret = btrfs_writepage_cow_fixup(page);
1336	if (ret) {
1337		/* Fixup worker will requeue */
1338		redirty_page_for_writepage(bio_ctrl->wbc, page);
1339		unlock_page(page);
1340		return 1;
1341	}
1342
1343	bio_ctrl->end_io_func = end_bbio_data_write;
1344	while (cur <= end) {
1345		u32 len = end - cur + 1;
1346		u64 disk_bytenr;
1347		u64 em_end;
1348		u64 dirty_range_start = cur;
1349		u64 dirty_range_end;
1350		u32 iosize;
1351
1352		if (cur >= i_size) {
1353			btrfs_mark_ordered_io_finished(inode, page, cur, len,
1354						       true);
1355			/*
1356			 * This range is beyond i_size, thus we don't need to
1357			 * bother writing back.
1358			 * But we still need to clear the dirty subpage bit, or
1359			 * the next time the page gets dirtied, we will try to
1360			 * writeback the sectors with subpage dirty bits,
1361			 * causing writeback without ordered extent.
1362			 */
1363			btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, len);
1364			break;
1365		}
1366
1367		find_next_dirty_byte(fs_info, page, &dirty_range_start,
1368				     &dirty_range_end);
1369		if (cur < dirty_range_start) {
1370			cur = dirty_range_start;
1371			continue;
1372		}
1373
1374		em = btrfs_get_extent(inode, NULL, 0, cur, len);
1375		if (IS_ERR(em)) {
1376			ret = PTR_ERR_OR_ZERO(em);
1377			goto out_error;
1378		}
1379
1380		extent_offset = cur - em->start;
1381		em_end = extent_map_end(em);
1382		ASSERT(cur <= em_end);
1383		ASSERT(cur < end);
1384		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1385		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1386
1387		block_start = em->block_start;
1388		disk_bytenr = em->block_start + extent_offset;
1389
1390		ASSERT(!extent_map_is_compressed(em));
1391		ASSERT(block_start != EXTENT_MAP_HOLE);
1392		ASSERT(block_start != EXTENT_MAP_INLINE);
1393
1394		/*
1395		 * Note that em_end from extent_map_end() and dirty_range_end from
1396		 * find_next_dirty_byte() are all exclusive
1397		 */
1398		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1399		free_extent_map(em);
1400		em = NULL;
1401
1402		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1403		if (!PageWriteback(page)) {
1404			btrfs_err(inode->root->fs_info,
1405				   "page %lu not writeback, cur %llu end %llu",
1406			       page->index, cur, end);
1407		}
1408
1409		/*
1410		 * Although the PageDirty bit is cleared before entering this
1411		 * function, subpage dirty bit is not cleared.
1412		 * So clear subpage dirty bit here so next time we won't submit
1413		 * page for range already written to disk.
1414		 */
1415		btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, iosize);
1416
1417		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1418				   cur - page_offset(page));
1419		cur += iosize;
1420		nr++;
1421	}
1422
1423	btrfs_folio_assert_not_dirty(fs_info, page_folio(page));
1424	*nr_ret = nr;
1425	return 0;
1426
1427out_error:
1428	/*
1429	 * If we finish without problem, we should not only clear page dirty,
1430	 * but also empty subpage dirty bits
1431	 */
1432	*nr_ret = nr;
1433	return ret;
1434}
1435
1436/*
1437 * the writepage semantics are similar to regular writepage.  extent
1438 * records are inserted to lock ranges in the tree, and as dirty areas
1439 * are found, they are marked writeback.  Then the lock bits are removed
1440 * and the end_io handler clears the writeback ranges
1441 *
1442 * Return 0 if everything goes well.
1443 * Return <0 for error.
1444 */
1445static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
 
1446{
1447	struct folio *folio = page_folio(page);
1448	struct inode *inode = page->mapping->host;
1449	const u64 page_start = page_offset(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1450	int ret;
1451	int nr = 0;
1452	size_t pg_offset;
 
1453	loff_t i_size = i_size_read(inode);
1454	unsigned long end_index = i_size >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
1455
1456	trace___extent_writepage(page, inode, bio_ctrl->wbc);
1457
1458	WARN_ON(!PageLocked(page));
1459
1460	pg_offset = offset_in_page(i_size);
1461	if (page->index > end_index ||
1462	   (page->index == end_index && !pg_offset)) {
1463		folio_invalidate(folio, 0, folio_size(folio));
1464		folio_unlock(folio);
1465		return 0;
1466	}
1467
1468	if (page->index == end_index)
1469		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1470
1471	ret = set_page_extent_mapped(page);
1472	if (ret < 0)
1473		goto done;
1474
1475	ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1476	if (ret == 1)
1477		return 0;
1478	if (ret)
1479		goto done;
1480
1481	ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1482	if (ret == 1)
1483		return 0;
1484
1485	bio_ctrl->wbc->nr_to_write--;
1486
1487done:
1488	if (nr == 0) {
1489		/* make sure the mapping tag for page dirty gets cleared */
1490		set_page_writeback(page);
1491		end_page_writeback(page);
1492	}
1493	if (ret) {
1494		btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1495					       PAGE_SIZE, !ret);
1496		mapping_set_error(page->mapping, ret);
1497	}
1498	unlock_page(page);
1499	ASSERT(ret <= 0);
1500	return ret;
1501}
1502
1503void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1504{
1505	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1506		       TASK_UNINTERRUPTIBLE);
1507}
1508
1509/*
1510 * Lock extent buffer status and pages for writeback.
1511 *
1512 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1513 * extent buffer is not dirty)
1514 * Return %true is the extent buffer is submitted to bio.
1515 */
1516static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1517			  struct writeback_control *wbc)
1518{
1519	struct btrfs_fs_info *fs_info = eb->fs_info;
1520	bool ret = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1521
1522	btrfs_tree_lock(eb);
1523	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1524		btrfs_tree_unlock(eb);
1525		if (wbc->sync_mode != WB_SYNC_ALL)
1526			return false;
1527		wait_on_extent_buffer_writeback(eb);
1528		btrfs_tree_lock(eb);
1529	}
1530
1531	/*
1532	 * We need to do this to prevent races in people who check if the eb is
1533	 * under IO since we can end up having no IO bits set for a short period
1534	 * of time.
1535	 */
1536	spin_lock(&eb->refs_lock);
1537	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1538		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1539		spin_unlock(&eb->refs_lock);
1540		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1541		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1542					 -eb->len,
1543					 fs_info->dirty_metadata_batch);
1544		ret = true;
1545	} else {
1546		spin_unlock(&eb->refs_lock);
 
 
 
 
 
 
 
 
1547	}
1548	btrfs_tree_unlock(eb);
1549	return ret;
1550}
1551
1552static void set_btree_ioerr(struct extent_buffer *eb)
1553{
1554	struct btrfs_fs_info *fs_info = eb->fs_info;
1555
1556	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1557
1558	/*
1559	 * A read may stumble upon this buffer later, make sure that it gets an
1560	 * error and knows there was an error.
1561	 */
1562	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1563
1564	/*
1565	 * We need to set the mapping with the io error as well because a write
1566	 * error will flip the file system readonly, and then syncfs() will
1567	 * return a 0 because we are readonly if we don't modify the err seq for
1568	 * the superblock.
1569	 */
1570	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1571
1572	/*
1573	 * If writeback for a btree extent that doesn't belong to a log tree
1574	 * failed, increment the counter transaction->eb_write_errors.
1575	 * We do this because while the transaction is running and before it's
1576	 * committing (when we call filemap_fdata[write|wait]_range against
1577	 * the btree inode), we might have
1578	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1579	 * returns an error or an error happens during writeback, when we're
1580	 * committing the transaction we wouldn't know about it, since the pages
1581	 * can be no longer dirty nor marked anymore for writeback (if a
1582	 * subsequent modification to the extent buffer didn't happen before the
1583	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1584	 * able to find the pages tagged with SetPageError at transaction
1585	 * commit time. So if this happens we must abort the transaction,
1586	 * otherwise we commit a super block with btree roots that point to
1587	 * btree nodes/leafs whose content on disk is invalid - either garbage
1588	 * or the content of some node/leaf from a past generation that got
1589	 * cowed or deleted and is no longer valid.
1590	 *
1591	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1592	 * not be enough - we need to distinguish between log tree extents vs
1593	 * non-log tree extents, and the next filemap_fdatawait_range() call
1594	 * will catch and clear such errors in the mapping - and that call might
1595	 * be from a log sync and not from a transaction commit. Also, checking
1596	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1597	 * not done and would not be reliable - the eb might have been released
1598	 * from memory and reading it back again means that flag would not be
1599	 * set (since it's a runtime flag, not persisted on disk).
1600	 *
1601	 * Using the flags below in the btree inode also makes us achieve the
1602	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1603	 * writeback for all dirty pages and before filemap_fdatawait_range()
1604	 * is called, the writeback for all dirty pages had already finished
1605	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1606	 * filemap_fdatawait_range() would return success, as it could not know
1607	 * that writeback errors happened (the pages were no longer tagged for
1608	 * writeback).
1609	 */
1610	switch (eb->log_index) {
1611	case -1:
1612		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1613		break;
1614	case 0:
1615		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1616		break;
1617	case 1:
1618		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1619		break;
1620	default:
1621		BUG(); /* unexpected, logic error */
1622	}
1623}
1624
1625/*
1626 * The endio specific version which won't touch any unsafe spinlock in endio
1627 * context.
1628 */
1629static struct extent_buffer *find_extent_buffer_nolock(
1630		struct btrfs_fs_info *fs_info, u64 start)
1631{
1632	struct extent_buffer *eb;
1633
1634	rcu_read_lock();
1635	eb = radix_tree_lookup(&fs_info->buffer_radix,
1636			       start >> fs_info->sectorsize_bits);
1637	if (eb && atomic_inc_not_zero(&eb->refs)) {
1638		rcu_read_unlock();
1639		return eb;
1640	}
1641	rcu_read_unlock();
1642	return NULL;
1643}
1644
1645static void end_bbio_meta_write(struct btrfs_bio *bbio)
1646{
1647	struct extent_buffer *eb = bbio->private;
1648	struct btrfs_fs_info *fs_info = eb->fs_info;
1649	bool uptodate = !bbio->bio.bi_status;
1650	struct folio_iter fi;
1651	u32 bio_offset = 0;
1652
1653	if (!uptodate)
1654		set_btree_ioerr(eb);
1655
1656	bio_for_each_folio_all(fi, &bbio->bio) {
1657		u64 start = eb->start + bio_offset;
1658		struct folio *folio = fi.folio;
1659		u32 len = fi.length;
1660
1661		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1662		bio_offset += len;
1663	}
1664
1665	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1666	smp_mb__after_atomic();
1667	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1668
1669	bio_put(&bbio->bio);
1670}
1671
1672static void prepare_eb_write(struct extent_buffer *eb)
1673{
1674	u32 nritems;
1675	unsigned long start;
1676	unsigned long end;
1677
1678	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1679
1680	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1681	nritems = btrfs_header_nritems(eb);
1682	if (btrfs_header_level(eb) > 0) {
1683		end = btrfs_node_key_ptr_offset(eb, nritems);
1684		memzero_extent_buffer(eb, end, eb->len - end);
1685	} else {
1686		/*
1687		 * Leaf:
1688		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1689		 */
1690		start = btrfs_item_nr_offset(eb, nritems);
1691		end = btrfs_item_nr_offset(eb, 0);
1692		if (nritems == 0)
1693			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1694		else
1695			end += btrfs_item_offset(eb, nritems - 1);
1696		memzero_extent_buffer(eb, start, end - start);
1697	}
1698}
1699
1700static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1701					    struct writeback_control *wbc)
1702{
1703	struct btrfs_fs_info *fs_info = eb->fs_info;
1704	struct btrfs_bio *bbio;
1705
1706	prepare_eb_write(eb);
1707
1708	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1709			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1710			       eb->fs_info, end_bbio_meta_write, eb);
1711	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1712	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1713	wbc_init_bio(wbc, &bbio->bio);
1714	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1715	bbio->file_offset = eb->start;
1716	if (fs_info->nodesize < PAGE_SIZE) {
1717		struct folio *folio = eb->folios[0];
1718		bool ret;
1719
1720		folio_lock(folio);
1721		btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1722		if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1723						       eb->len)) {
1724			folio_clear_dirty_for_io(folio);
1725			wbc->nr_to_write--;
1726		}
1727		ret = bio_add_folio(&bbio->bio, folio, eb->len,
1728				    eb->start - folio_pos(folio));
1729		ASSERT(ret);
1730		wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len);
1731		folio_unlock(folio);
1732	} else {
1733		int num_folios = num_extent_folios(eb);
1734
1735		for (int i = 0; i < num_folios; i++) {
1736			struct folio *folio = eb->folios[i];
1737			bool ret;
1738
1739			folio_lock(folio);
1740			folio_clear_dirty_for_io(folio);
1741			folio_start_writeback(folio);
1742			ret = bio_add_folio(&bbio->bio, folio, folio_size(folio), 0);
1743			ASSERT(ret);
1744			wbc_account_cgroup_owner(wbc, folio_page(folio, 0),
1745						 folio_size(folio));
1746			wbc->nr_to_write -= folio_nr_pages(folio);
1747			folio_unlock(folio);
1748		}
1749	}
1750	btrfs_submit_bio(bbio, 0);
1751}
1752
1753/*
1754 * Submit one subpage btree page.
1755 *
1756 * The main difference to submit_eb_page() is:
1757 * - Page locking
1758 *   For subpage, we don't rely on page locking at all.
1759 *
1760 * - Flush write bio
1761 *   We only flush bio if we may be unable to fit current extent buffers into
1762 *   current bio.
1763 *
1764 * Return >=0 for the number of submitted extent buffers.
1765 * Return <0 for fatal error.
1766 */
1767static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1768{
1769	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1770	struct folio *folio = page_folio(page);
1771	int submitted = 0;
1772	u64 page_start = page_offset(page);
1773	int bit_start = 0;
1774	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1775
1776	/* Lock and write each dirty extent buffers in the range */
1777	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1778		struct btrfs_subpage *subpage = folio_get_private(folio);
1779		struct extent_buffer *eb;
1780		unsigned long flags;
1781		u64 start;
1782
1783		/*
1784		 * Take private lock to ensure the subpage won't be detached
1785		 * in the meantime.
1786		 */
1787		spin_lock(&page->mapping->i_private_lock);
1788		if (!folio_test_private(folio)) {
1789			spin_unlock(&page->mapping->i_private_lock);
1790			break;
1791		}
1792		spin_lock_irqsave(&subpage->lock, flags);
1793		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1794			      subpage->bitmaps)) {
1795			spin_unlock_irqrestore(&subpage->lock, flags);
1796			spin_unlock(&page->mapping->i_private_lock);
1797			bit_start++;
1798			continue;
1799		}
1800
1801		start = page_start + bit_start * fs_info->sectorsize;
1802		bit_start += sectors_per_node;
 
 
 
 
 
 
 
 
 
1803
1804		/*
1805		 * Here we just want to grab the eb without touching extra
1806		 * spin locks, so call find_extent_buffer_nolock().
1807		 */
1808		eb = find_extent_buffer_nolock(fs_info, start);
1809		spin_unlock_irqrestore(&subpage->lock, flags);
1810		spin_unlock(&page->mapping->i_private_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1811
1812		/*
1813		 * The eb has already reached 0 refs thus find_extent_buffer()
1814		 * doesn't return it. We don't need to write back such eb
1815		 * anyway.
1816		 */
1817		if (!eb)
 
 
 
1818			continue;
1819
1820		if (lock_extent_buffer_for_io(eb, wbc)) {
1821			write_one_eb(eb, wbc);
1822			submitted++;
1823		}
1824		free_extent_buffer(eb);
1825	}
1826	return submitted;
1827}
1828
1829/*
1830 * Submit all page(s) of one extent buffer.
1831 *
1832 * @page:	the page of one extent buffer
1833 * @eb_context:	to determine if we need to submit this page, if current page
1834 *		belongs to this eb, we don't need to submit
1835 *
1836 * The caller should pass each page in their bytenr order, and here we use
1837 * @eb_context to determine if we have submitted pages of one extent buffer.
1838 *
1839 * If we have, we just skip until we hit a new page that doesn't belong to
1840 * current @eb_context.
1841 *
1842 * If not, we submit all the page(s) of the extent buffer.
1843 *
1844 * Return >0 if we have submitted the extent buffer successfully.
1845 * Return 0 if we don't need to submit the page, as it's already submitted by
1846 * previous call.
1847 * Return <0 for fatal error.
1848 */
1849static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1850{
1851	struct writeback_control *wbc = ctx->wbc;
1852	struct address_space *mapping = page->mapping;
1853	struct folio *folio = page_folio(page);
1854	struct extent_buffer *eb;
1855	int ret;
1856
1857	if (!folio_test_private(folio))
1858		return 0;
1859
1860	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
1861		return submit_eb_subpage(page, wbc);
1862
1863	spin_lock(&mapping->i_private_lock);
1864	if (!folio_test_private(folio)) {
1865		spin_unlock(&mapping->i_private_lock);
1866		return 0;
1867	}
1868
1869	eb = folio_get_private(folio);
1870
1871	/*
1872	 * Shouldn't happen and normally this would be a BUG_ON but no point
1873	 * crashing the machine for something we can survive anyway.
1874	 */
1875	if (WARN_ON(!eb)) {
1876		spin_unlock(&mapping->i_private_lock);
1877		return 0;
1878	}
1879
1880	if (eb == ctx->eb) {
1881		spin_unlock(&mapping->i_private_lock);
1882		return 0;
1883	}
1884	ret = atomic_inc_not_zero(&eb->refs);
1885	spin_unlock(&mapping->i_private_lock);
1886	if (!ret)
1887		return 0;
1888
1889	ctx->eb = eb;
1890
1891	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1892	if (ret) {
1893		if (ret == -EBUSY)
 
1894			ret = 0;
1895		free_extent_buffer(eb);
1896		return ret;
1897	}
1898
1899	if (!lock_extent_buffer_for_io(eb, wbc)) {
1900		free_extent_buffer(eb);
1901		return 0;
1902	}
1903	/* Implies write in zoned mode. */
1904	if (ctx->zoned_bg) {
1905		/* Mark the last eb in the block group. */
1906		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1907		ctx->zoned_bg->meta_write_pointer += eb->len;
1908	}
1909	write_one_eb(eb, wbc);
1910	free_extent_buffer(eb);
1911	return 1;
1912}
1913
1914int btree_write_cache_pages(struct address_space *mapping,
1915				   struct writeback_control *wbc)
1916{
1917	struct btrfs_eb_write_context ctx = { .wbc = wbc };
1918	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
1919	int ret = 0;
1920	int done = 0;
1921	int nr_to_write_done = 0;
1922	struct folio_batch fbatch;
1923	unsigned int nr_folios;
1924	pgoff_t index;
1925	pgoff_t end;		/* Inclusive */
1926	int scanned = 0;
1927	xa_mark_t tag;
1928
1929	folio_batch_init(&fbatch);
1930	if (wbc->range_cyclic) {
1931		index = mapping->writeback_index; /* Start from prev offset */
1932		end = -1;
1933		/*
1934		 * Start from the beginning does not need to cycle over the
1935		 * range, mark it as scanned.
1936		 */
1937		scanned = (index == 0);
1938	} else {
1939		index = wbc->range_start >> PAGE_SHIFT;
1940		end = wbc->range_end >> PAGE_SHIFT;
1941		scanned = 1;
1942	}
1943	if (wbc->sync_mode == WB_SYNC_ALL)
1944		tag = PAGECACHE_TAG_TOWRITE;
1945	else
1946		tag = PAGECACHE_TAG_DIRTY;
1947	btrfs_zoned_meta_io_lock(fs_info);
1948retry:
1949	if (wbc->sync_mode == WB_SYNC_ALL)
1950		tag_pages_for_writeback(mapping, index, end);
1951	while (!done && !nr_to_write_done && (index <= end) &&
1952	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1953					    tag, &fbatch))) {
1954		unsigned i;
1955
1956		for (i = 0; i < nr_folios; i++) {
1957			struct folio *folio = fbatch.folios[i];
1958
1959			ret = submit_eb_page(&folio->page, &ctx);
1960			if (ret == 0)
1961				continue;
1962			if (ret < 0) {
1963				done = 1;
1964				break;
1965			}
1966
1967			/*
1968			 * the filesystem may choose to bump up nr_to_write.
1969			 * We have to make sure to honor the new nr_to_write
1970			 * at any time
1971			 */
1972			nr_to_write_done = wbc->nr_to_write <= 0;
 
1973		}
1974		folio_batch_release(&fbatch);
1975		cond_resched();
 
1976	}
1977	if (!scanned && !done) {
1978		/*
1979		 * We hit the last page and there is more work to be done: wrap
1980		 * back to the start of the file
1981		 */
1982		scanned = 1;
1983		index = 0;
1984		goto retry;
1985	}
1986	/*
1987	 * If something went wrong, don't allow any metadata write bio to be
1988	 * submitted.
1989	 *
1990	 * This would prevent use-after-free if we had dirty pages not
1991	 * cleaned up, which can still happen by fuzzed images.
1992	 *
1993	 * - Bad extent tree
1994	 *   Allowing existing tree block to be allocated for other trees.
1995	 *
1996	 * - Log tree operations
1997	 *   Exiting tree blocks get allocated to log tree, bumps its
1998	 *   generation, then get cleaned in tree re-balance.
1999	 *   Such tree block will not be written back, since it's clean,
2000	 *   thus no WRITTEN flag set.
2001	 *   And after log writes back, this tree block is not traced by
2002	 *   any dirty extent_io_tree.
2003	 *
2004	 * - Offending tree block gets re-dirtied from its original owner
2005	 *   Since it has bumped generation, no WRITTEN flag, it can be
2006	 *   reused without COWing. This tree block will not be traced
2007	 *   by btrfs_transaction::dirty_pages.
2008	 *
2009	 *   Now such dirty tree block will not be cleaned by any dirty
2010	 *   extent io tree. Thus we don't want to submit such wild eb
2011	 *   if the fs already has error.
2012	 *
2013	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2014	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2015	 */
2016	if (ret > 0)
2017		ret = 0;
2018	if (!ret && BTRFS_FS_ERROR(fs_info))
2019		ret = -EROFS;
2020
2021	if (ctx.zoned_bg)
2022		btrfs_put_block_group(ctx.zoned_bg);
2023	btrfs_zoned_meta_io_unlock(fs_info);
2024	return ret;
 
2025}
2026
2027/*
2028 * Walk the list of dirty pages of the given address space and write all of them.
2029 *
2030 * @mapping:   address space structure to write
2031 * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2032 * @bio_ctrl:  holds context for the write, namely the bio
2033 *
2034 * If a page is already under I/O, write_cache_pages() skips it, even
2035 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2036 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2037 * and msync() need to guarantee that all the data which was dirty at the time
2038 * the call was made get new I/O started against them.  If wbc->sync_mode is
2039 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2040 * existing IO to complete.
2041 */
2042static int extent_write_cache_pages(struct address_space *mapping,
2043			     struct btrfs_bio_ctrl *bio_ctrl)
 
 
 
2044{
2045	struct writeback_control *wbc = bio_ctrl->wbc;
2046	struct inode *inode = mapping->host;
2047	int ret = 0;
2048	int done = 0;
2049	int nr_to_write_done = 0;
2050	struct folio_batch fbatch;
2051	unsigned int nr_folios;
2052	pgoff_t index;
2053	pgoff_t end;		/* Inclusive */
2054	pgoff_t done_index;
2055	int range_whole = 0;
2056	int scanned = 0;
2057	xa_mark_t tag;
2058
2059	/*
2060	 * We have to hold onto the inode so that ordered extents can do their
2061	 * work when the IO finishes.  The alternative to this is failing to add
2062	 * an ordered extent if the igrab() fails there and that is a huge pain
2063	 * to deal with, so instead just hold onto the inode throughout the
2064	 * writepages operation.  If it fails here we are freeing up the inode
2065	 * anyway and we'd rather not waste our time writing out stuff that is
2066	 * going to be truncated anyway.
2067	 */
2068	if (!igrab(inode))
2069		return 0;
2070
2071	folio_batch_init(&fbatch);
2072	if (wbc->range_cyclic) {
2073		index = mapping->writeback_index; /* Start from prev offset */
2074		end = -1;
2075		/*
2076		 * Start from the beginning does not need to cycle over the
2077		 * range, mark it as scanned.
2078		 */
2079		scanned = (index == 0);
2080	} else {
2081		index = wbc->range_start >> PAGE_SHIFT;
2082		end = wbc->range_end >> PAGE_SHIFT;
2083		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2084			range_whole = 1;
2085		scanned = 1;
2086	}
2087
2088	/*
2089	 * We do the tagged writepage as long as the snapshot flush bit is set
2090	 * and we are the first one who do the filemap_flush() on this inode.
2091	 *
2092	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2093	 * not race in and drop the bit.
2094	 */
2095	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2096	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2097			       &BTRFS_I(inode)->runtime_flags))
2098		wbc->tagged_writepages = 1;
2099
2100	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2101		tag = PAGECACHE_TAG_TOWRITE;
2102	else
2103		tag = PAGECACHE_TAG_DIRTY;
2104retry:
2105	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2106		tag_pages_for_writeback(mapping, index, end);
2107	done_index = index;
2108	while (!done && !nr_to_write_done && (index <= end) &&
2109			(nr_folios = filemap_get_folios_tag(mapping, &index,
2110							end, tag, &fbatch))) {
2111		unsigned i;
2112
2113		for (i = 0; i < nr_folios; i++) {
2114			struct folio *folio = fbatch.folios[i];
 
2115
2116			done_index = folio_next_index(folio);
2117			/*
2118			 * At this point we hold neither the i_pages lock nor
2119			 * the page lock: the page may be truncated or
2120			 * invalidated (changing page->mapping to NULL),
2121			 * or even swizzled back from swapper_space to
2122			 * tmpfs file mapping
2123			 */
2124			if (!folio_trylock(folio)) {
2125				submit_write_bio(bio_ctrl, 0);
2126				folio_lock(folio);
2127			}
2128
2129			if (unlikely(folio->mapping != mapping)) {
2130				folio_unlock(folio);
2131				continue;
2132			}
2133
2134			if (!folio_test_dirty(folio)) {
2135				/* Someone wrote it for us. */
2136				folio_unlock(folio);
2137				continue;
2138			}
2139
2140			if (wbc->sync_mode != WB_SYNC_NONE) {
2141				if (folio_test_writeback(folio))
2142					submit_write_bio(bio_ctrl, 0);
2143				folio_wait_writeback(folio);
2144			}
2145
2146			if (folio_test_writeback(folio) ||
2147			    !folio_clear_dirty_for_io(folio)) {
2148				folio_unlock(folio);
2149				continue;
2150			}
2151
2152			ret = __extent_writepage(&folio->page, bio_ctrl);
2153			if (ret < 0) {
2154				done = 1;
2155				break;
 
2156			}
 
 
2157
2158			/*
2159			 * The filesystem may choose to bump up nr_to_write.
2160			 * We have to make sure to honor the new nr_to_write
2161			 * at any time.
2162			 */
2163			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2164					    wbc->nr_to_write <= 0);
2165		}
2166		folio_batch_release(&fbatch);
2167		cond_resched();
2168	}
2169	if (!scanned && !done) {
2170		/*
2171		 * We hit the last page and there is more work to be done: wrap
2172		 * back to the start of the file
2173		 */
2174		scanned = 1;
2175		index = 0;
2176
2177		/*
2178		 * If we're looping we could run into a page that is locked by a
2179		 * writer and that writer could be waiting on writeback for a
2180		 * page in our current bio, and thus deadlock, so flush the
2181		 * write bio here.
2182		 */
2183		submit_write_bio(bio_ctrl, 0);
2184		goto retry;
2185	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186
2187	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2188		mapping->writeback_index = done_index;
2189
2190	btrfs_add_delayed_iput(BTRFS_I(inode));
2191	return ret;
2192}
2193
2194/*
2195 * Submit the pages in the range to bio for call sites which delalloc range has
2196 * already been ran (aka, ordered extent inserted) and all pages are still
2197 * locked.
2198 */
2199void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2200			       u64 start, u64 end, struct writeback_control *wbc,
2201			       bool pages_dirty)
2202{
2203	bool found_error = false;
2204	int ret = 0;
2205	struct address_space *mapping = inode->i_mapping;
2206	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2207	const u32 sectorsize = fs_info->sectorsize;
2208	loff_t i_size = i_size_read(inode);
2209	u64 cur = start;
2210	struct btrfs_bio_ctrl bio_ctrl = {
2211		.wbc = wbc,
2212		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2213	};
2214
2215	if (wbc->no_cgroup_owner)
2216		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2217
2218	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
 
 
 
 
 
 
 
 
 
 
 
 
2219
2220	while (cur <= end) {
2221		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2222		u32 cur_len = cur_end + 1 - cur;
2223		struct page *page;
2224		int nr = 0;
2225
2226		page = find_get_page(mapping, cur >> PAGE_SHIFT);
2227		ASSERT(PageLocked(page));
2228		if (pages_dirty && page != locked_page) {
2229			ASSERT(PageDirty(page));
2230			clear_page_dirty_for_io(page);
2231		}
2232
2233		ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2234					    i_size, &nr);
2235		if (ret == 1)
2236			goto next_page;
2237
2238		/* Make sure the mapping tag for page dirty gets cleared. */
2239		if (nr == 0) {
2240			set_page_writeback(page);
2241			end_page_writeback(page);
2242		}
2243		if (ret) {
2244			btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2245						       cur, cur_len, !ret);
2246			mapping_set_error(page->mapping, ret);
2247		}
2248		btrfs_folio_unlock_writer(fs_info, page_folio(page), cur, cur_len);
2249		if (ret < 0)
2250			found_error = true;
2251next_page:
2252		put_page(page);
2253		cur = cur_end + 1;
2254	}
2255
2256	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
 
2257}
2258
2259int extent_writepages(struct address_space *mapping,
 
 
2260		      struct writeback_control *wbc)
2261{
2262	struct inode *inode = mapping->host;
2263	int ret = 0;
2264	struct btrfs_bio_ctrl bio_ctrl = {
2265		.wbc = wbc,
2266		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
 
 
 
2267	};
2268
2269	/*
2270	 * Allow only a single thread to do the reloc work in zoned mode to
2271	 * protect the write pointer updates.
2272	 */
2273	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2274	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2275	submit_write_bio(&bio_ctrl, ret);
2276	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2277	return ret;
2278}
2279
2280void extent_readahead(struct readahead_control *rac)
2281{
2282	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2283	struct page *pagepool[16];
2284	struct extent_map *em_cached = NULL;
2285	u64 prev_em_start = (u64)-1;
2286	int nr;
2287
2288	while ((nr = readahead_page_batch(rac, pagepool))) {
2289		u64 contig_start = readahead_pos(rac);
2290		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2291
2292		contiguous_readpages(pagepool, nr, contig_start, contig_end,
2293				&em_cached, &bio_ctrl, &prev_em_start);
2294	}
2295
2296	if (em_cached)
2297		free_extent_map(em_cached);
2298	submit_one_bio(&bio_ctrl);
 
 
 
 
 
 
2299}
2300
2301/*
2302 * basic invalidate_folio code, this waits on any locked or writeback
2303 * ranges corresponding to the folio, and then deletes any extent state
2304 * records from the tree
2305 */
2306int extent_invalidate_folio(struct extent_io_tree *tree,
2307			  struct folio *folio, size_t offset)
2308{
2309	struct extent_state *cached_state = NULL;
2310	u64 start = folio_pos(folio);
2311	u64 end = start + folio_size(folio) - 1;
2312	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
2313
2314	/* This function is only called for the btree inode */
2315	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2316
2317	start += ALIGN(offset, blocksize);
2318	if (start > end)
2319		return 0;
2320
2321	lock_extent(tree, start, end, &cached_state);
2322	folio_wait_writeback(folio);
2323
2324	/*
2325	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2326	 * so here we only need to unlock the extent range to free any
2327	 * existing extent state.
2328	 */
2329	unlock_extent(tree, start, end, &cached_state);
2330	return 0;
2331}
2332
2333/*
2334 * a helper for release_folio, this tests for areas of the page that
2335 * are locked or under IO and drops the related state bits if it is safe
2336 * to drop the page.
2337 */
2338static int try_release_extent_state(struct extent_io_tree *tree,
2339				    struct page *page, gfp_t mask)
 
2340{
2341	u64 start = page_offset(page);
2342	u64 end = start + PAGE_SIZE - 1;
2343	int ret = 1;
2344
2345	if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
 
2346		ret = 0;
2347	} else {
2348		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2349				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2350				   EXTENT_QGROUP_RESERVED);
2351
2352		/*
2353		 * At this point we can safely clear everything except the
2354		 * locked bit, the nodatasum bit and the delalloc new bit.
2355		 * The delalloc new bit will be cleared by ordered extent
2356		 * completion.
2357		 */
2358		ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2359
2360		/* if clear_extent_bit failed for enomem reasons,
2361		 * we can't allow the release to continue.
2362		 */
2363		if (ret < 0)
2364			ret = 0;
2365		else
2366			ret = 1;
2367	}
2368	return ret;
2369}
2370
2371/*
2372 * a helper for release_folio.  As long as there are no locked extents
2373 * in the range corresponding to the page, both state records and extent
2374 * map records are removed
2375 */
2376int try_release_extent_mapping(struct page *page, gfp_t mask)
 
 
2377{
2378	struct extent_map *em;
2379	u64 start = page_offset(page);
2380	u64 end = start + PAGE_SIZE - 1;
2381	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2382	struct extent_io_tree *tree = &btrfs_inode->io_tree;
2383	struct extent_map_tree *map = &btrfs_inode->extent_tree;
2384
2385	if (gfpflags_allow_blocking(mask) &&
2386	    page->mapping->host->i_size > SZ_16M) {
2387		u64 len;
2388		while (start <= end) {
2389			struct btrfs_fs_info *fs_info;
2390			u64 cur_gen;
2391
2392			len = end - start + 1;
2393			write_lock(&map->lock);
2394			em = lookup_extent_mapping(map, start, len);
2395			if (!em) {
2396				write_unlock(&map->lock);
2397				break;
2398			}
2399			if ((em->flags & EXTENT_FLAG_PINNED) ||
2400			    em->start != start) {
2401				write_unlock(&map->lock);
2402				free_extent_map(em);
2403				break;
2404			}
2405			if (test_range_bit_exists(tree, em->start,
2406						  extent_map_end(em) - 1,
2407						  EXTENT_LOCKED))
2408				goto next;
2409			/*
2410			 * If it's not in the list of modified extents, used
2411			 * by a fast fsync, we can remove it. If it's being
2412			 * logged we can safely remove it since fsync took an
2413			 * extra reference on the em.
2414			 */
2415			if (list_empty(&em->list) ||
2416			    (em->flags & EXTENT_FLAG_LOGGING))
2417				goto remove_em;
2418			/*
2419			 * If it's in the list of modified extents, remove it
2420			 * only if its generation is older then the current one,
2421			 * in which case we don't need it for a fast fsync.
2422			 * Otherwise don't remove it, we could be racing with an
2423			 * ongoing fast fsync that could miss the new extent.
2424			 */
2425			fs_info = btrfs_inode->root->fs_info;
2426			spin_lock(&fs_info->trans_lock);
2427			cur_gen = fs_info->generation;
2428			spin_unlock(&fs_info->trans_lock);
2429			if (em->generation >= cur_gen)
2430				goto next;
2431remove_em:
2432			/*
2433			 * We only remove extent maps that are not in the list of
2434			 * modified extents or that are in the list but with a
2435			 * generation lower then the current generation, so there
2436			 * is no need to set the full fsync flag on the inode (it
2437			 * hurts the fsync performance for workloads with a data
2438			 * size that exceeds or is close to the system's memory).
2439			 */
2440			remove_extent_mapping(map, em);
2441			/* once for the rb tree */
2442			free_extent_map(em);
2443next:
2444			start = extent_map_end(em);
2445			write_unlock(&map->lock);
2446
2447			/* once for us */
2448			free_extent_map(em);
2449
2450			cond_resched(); /* Allow large-extent preemption. */
2451		}
2452	}
2453	return try_release_extent_state(tree, page, mask);
2454}
2455
2456/*
2457 * To cache previous fiemap extent
2458 *
2459 * Will be used for merging fiemap extent
2460 */
2461struct fiemap_cache {
2462	u64 offset;
2463	u64 phys;
2464	u64 len;
2465	u32 flags;
2466	bool cached;
2467};
2468
2469/*
2470 * Helper to submit fiemap extent.
2471 *
2472 * Will try to merge current fiemap extent specified by @offset, @phys,
2473 * @len and @flags with cached one.
2474 * And only when we fails to merge, cached one will be submitted as
2475 * fiemap extent.
2476 *
2477 * Return value is the same as fiemap_fill_next_extent().
2478 */
2479static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2480				struct fiemap_cache *cache,
2481				u64 offset, u64 phys, u64 len, u32 flags)
2482{
2483	u64 cache_end;
2484	int ret = 0;
2485
2486	/* Set at the end of extent_fiemap(). */
2487	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2488
2489	if (!cache->cached)
2490		goto assign;
2491
2492	/*
2493	 * When iterating the extents of the inode, at extent_fiemap(), we may
2494	 * find an extent that starts at an offset behind the end offset of the
2495	 * previous extent we processed. This happens if fiemap is called
2496	 * without FIEMAP_FLAG_SYNC and there are ordered extents completing
2497	 * while we call btrfs_next_leaf() (through fiemap_next_leaf_item()).
2498	 *
2499	 * For example we are in leaf X processing its last item, which is the
2500	 * file extent item for file range [512K, 1M[, and after
2501	 * btrfs_next_leaf() releases the path, there's an ordered extent that
2502	 * completes for the file range [768K, 2M[, and that results in trimming
2503	 * the file extent item so that it now corresponds to the file range
2504	 * [512K, 768K[ and a new file extent item is inserted for the file
2505	 * range [768K, 2M[, which may end up as the last item of leaf X or as
2506	 * the first item of the next leaf - in either case btrfs_next_leaf()
2507	 * will leave us with a path pointing to the new extent item, for the
2508	 * file range [768K, 2M[, since that's the first key that follows the
2509	 * last one we processed. So in order not to report overlapping extents
2510	 * to user space, we trim the length of the previously cached extent and
2511	 * emit it.
2512	 *
2513	 * Upon calling btrfs_next_leaf() we may also find an extent with an
2514	 * offset smaller than or equals to cache->offset, and this happens
2515	 * when we had a hole or prealloc extent with several delalloc ranges in
2516	 * it, but after btrfs_next_leaf() released the path, delalloc was
2517	 * flushed and the resulting ordered extents were completed, so we can
2518	 * now have found a file extent item for an offset that is smaller than
2519	 * or equals to what we have in cache->offset. We deal with this as
2520	 * described below.
2521	 */
2522	cache_end = cache->offset + cache->len;
2523	if (cache_end > offset) {
2524		if (offset == cache->offset) {
2525			/*
2526			 * We cached a dealloc range (found in the io tree) for
2527			 * a hole or prealloc extent and we have now found a
2528			 * file extent item for the same offset. What we have
2529			 * now is more recent and up to date, so discard what
2530			 * we had in the cache and use what we have just found.
2531			 */
2532			goto assign;
2533		} else if (offset > cache->offset) {
2534			/*
2535			 * The extent range we previously found ends after the
2536			 * offset of the file extent item we found and that
2537			 * offset falls somewhere in the middle of that previous
2538			 * extent range. So adjust the range we previously found
2539			 * to end at the offset of the file extent item we have
2540			 * just found, since this extent is more up to date.
2541			 * Emit that adjusted range and cache the file extent
2542			 * item we have just found. This corresponds to the case
2543			 * where a previously found file extent item was split
2544			 * due to an ordered extent completing.
2545			 */
2546			cache->len = offset - cache->offset;
2547			goto emit;
2548		} else {
2549			const u64 range_end = offset + len;
2550
2551			/*
2552			 * The offset of the file extent item we have just found
2553			 * is behind the cached offset. This means we were
2554			 * processing a hole or prealloc extent for which we
2555			 * have found delalloc ranges (in the io tree), so what
2556			 * we have in the cache is the last delalloc range we
2557			 * found while the file extent item we found can be
2558			 * either for a whole delalloc range we previously
2559			 * emmitted or only a part of that range.
2560			 *
2561			 * We have two cases here:
2562			 *
2563			 * 1) The file extent item's range ends at or behind the
2564			 *    cached extent's end. In this case just ignore the
2565			 *    current file extent item because we don't want to
2566			 *    overlap with previous ranges that may have been
2567			 *    emmitted already;
2568			 *
2569			 * 2) The file extent item starts behind the currently
2570			 *    cached extent but its end offset goes beyond the
2571			 *    end offset of the cached extent. We don't want to
2572			 *    overlap with a previous range that may have been
2573			 *    emmitted already, so we emit the currently cached
2574			 *    extent and then partially store the current file
2575			 *    extent item's range in the cache, for the subrange
2576			 *    going the cached extent's end to the end of the
2577			 *    file extent item.
2578			 */
2579			if (range_end <= cache_end)
2580				return 0;
2581
2582			if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC)))
2583				phys += cache_end - offset;
 
 
 
 
 
 
2584
2585			offset = cache_end;
2586			len = range_end - cache_end;
2587			goto emit;
 
2588		}
2589	}
2590
2591	/*
2592	 * Only merges fiemap extents if
2593	 * 1) Their logical addresses are continuous
2594	 *
2595	 * 2) Their physical addresses are continuous
2596	 *    So truly compressed (physical size smaller than logical size)
2597	 *    extents won't get merged with each other
2598	 *
2599	 * 3) Share same flags
2600	 */
2601	if (cache->offset + cache->len  == offset &&
2602	    cache->phys + cache->len == phys  &&
2603	    cache->flags == flags) {
2604		cache->len += len;
2605		return 0;
2606	}
2607
2608emit:
2609	/* Not mergeable, need to submit cached one */
2610	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2611				      cache->len, cache->flags);
2612	cache->cached = false;
2613	if (ret)
2614		return ret;
2615assign:
2616	cache->cached = true;
2617	cache->offset = offset;
2618	cache->phys = phys;
2619	cache->len = len;
2620	cache->flags = flags;
2621
2622	return 0;
2623}
2624
2625/*
2626 * Emit last fiemap cache
2627 *
2628 * The last fiemap cache may still be cached in the following case:
2629 * 0		      4k		    8k
2630 * |<- Fiemap range ->|
2631 * |<------------  First extent ----------->|
2632 *
2633 * In this case, the first extent range will be cached but not emitted.
2634 * So we must emit it before ending extent_fiemap().
2635 */
2636static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2637				  struct fiemap_cache *cache)
2638{
2639	int ret;
2640
2641	if (!cache->cached)
2642		return 0;
2643
2644	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2645				      cache->len, cache->flags);
2646	cache->cached = false;
2647	if (ret > 0)
2648		ret = 0;
2649	return ret;
2650}
2651
2652static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
 
2653{
2654	struct extent_buffer *clone;
2655	struct btrfs_key key;
2656	int slot;
2657	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2658
2659	path->slots[0]++;
2660	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2661		return 0;
2662
2663	ret = btrfs_next_leaf(inode->root, path);
2664	if (ret != 0)
2665		return ret;
 
2666
2667	/*
2668	 * Don't bother with cloning if there are no more file extent items for
2669	 * our inode.
2670	 */
2671	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2672	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2673		return 1;
2674
2675	/* See the comment at fiemap_search_slot() about why we clone. */
2676	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2677	if (!clone)
2678		return -ENOMEM;
2679
2680	slot = path->slots[0];
2681	btrfs_release_path(path);
2682	path->nodes[0] = clone;
2683	path->slots[0] = slot;
2684
2685	return 0;
2686}
2687
2688/*
2689 * Search for the first file extent item that starts at a given file offset or
2690 * the one that starts immediately before that offset.
2691 * Returns: 0 on success, < 0 on error, 1 if not found.
2692 */
2693static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2694			      u64 file_offset)
2695{
2696	const u64 ino = btrfs_ino(inode);
2697	struct btrfs_root *root = inode->root;
2698	struct extent_buffer *clone;
2699	struct btrfs_key key;
2700	int slot;
2701	int ret;
2702
2703	key.objectid = ino;
2704	key.type = BTRFS_EXTENT_DATA_KEY;
2705	key.offset = file_offset;
2706
2707	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2708	if (ret < 0)
2709		return ret;
2710
2711	if (ret > 0 && path->slots[0] > 0) {
2712		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2713		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2714			path->slots[0]--;
2715	}
2716
2717	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2718		ret = btrfs_next_leaf(root, path);
2719		if (ret != 0)
2720			return ret;
2721
2722		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2723		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2724			return 1;
2725	}
2726
2727	/*
2728	 * We clone the leaf and use it during fiemap. This is because while
2729	 * using the leaf we do expensive things like checking if an extent is
2730	 * shared, which can take a long time. In order to prevent blocking
2731	 * other tasks for too long, we use a clone of the leaf. We have locked
2732	 * the file range in the inode's io tree, so we know none of our file
2733	 * extent items can change. This way we avoid blocking other tasks that
2734	 * want to insert items for other inodes in the same leaf or b+tree
2735	 * rebalance operations (triggered for example when someone is trying
2736	 * to push items into this leaf when trying to insert an item in a
2737	 * neighbour leaf).
2738	 * We also need the private clone because holding a read lock on an
2739	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2740	 * when we call fiemap_fill_next_extent(), because that may cause a page
2741	 * fault when filling the user space buffer with fiemap data.
2742	 */
2743	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2744	if (!clone)
2745		return -ENOMEM;
2746
2747	slot = path->slots[0];
2748	btrfs_release_path(path);
2749	path->nodes[0] = clone;
2750	path->slots[0] = slot;
2751
2752	return 0;
2753}
2754
2755/*
2756 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2757 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2758 * extent. The end offset (@end) is inclusive.
2759 */
2760static int fiemap_process_hole(struct btrfs_inode *inode,
2761			       struct fiemap_extent_info *fieinfo,
2762			       struct fiemap_cache *cache,
2763			       struct extent_state **delalloc_cached_state,
2764			       struct btrfs_backref_share_check_ctx *backref_ctx,
2765			       u64 disk_bytenr, u64 extent_offset,
2766			       u64 extent_gen,
2767			       u64 start, u64 end)
2768{
2769	const u64 i_size = i_size_read(&inode->vfs_inode);
2770	u64 cur_offset = start;
2771	u64 last_delalloc_end = 0;
2772	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2773	bool checked_extent_shared = false;
2774	int ret;
2775
2776	/*
2777	 * There can be no delalloc past i_size, so don't waste time looking for
2778	 * it beyond i_size.
2779	 */
2780	while (cur_offset < end && cur_offset < i_size) {
2781		struct extent_state *cached_state = NULL;
2782		u64 delalloc_start;
2783		u64 delalloc_end;
2784		u64 prealloc_start;
2785		u64 lockstart;
2786		u64 lockend;
2787		u64 prealloc_len = 0;
2788		bool delalloc;
2789
2790		lockstart = round_down(cur_offset, inode->root->fs_info->sectorsize);
2791		lockend = round_up(end, inode->root->fs_info->sectorsize);
2792
2793		/*
2794		 * We are only locking for the delalloc range because that's the
2795		 * only thing that can change here.  With fiemap we have a lock
2796		 * on the inode, so no buffered or direct writes can happen.
2797		 *
2798		 * However mmaps and normal page writeback will cause this to
2799		 * change arbitrarily.  We have to lock the extent lock here to
2800		 * make sure that nobody messes with the tree while we're doing
2801		 * btrfs_find_delalloc_in_range.
2802		 */
2803		lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2804		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2805							delalloc_cached_state,
2806							&delalloc_start,
2807							&delalloc_end);
2808		unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2809		if (!delalloc)
2810			break;
2811
2812		/*
2813		 * If this is a prealloc extent we have to report every section
2814		 * of it that has no delalloc.
 
2815		 */
2816		if (disk_bytenr != 0) {
2817			if (last_delalloc_end == 0) {
2818				prealloc_start = start;
2819				prealloc_len = delalloc_start - start;
2820			} else {
2821				prealloc_start = last_delalloc_end + 1;
2822				prealloc_len = delalloc_start - prealloc_start;
2823			}
2824		}
2825
2826		if (prealloc_len > 0) {
2827			if (!checked_extent_shared && fieinfo->fi_extents_max) {
2828				ret = btrfs_is_data_extent_shared(inode,
2829								  disk_bytenr,
2830								  extent_gen,
2831								  backref_ctx);
2832				if (ret < 0)
2833					return ret;
2834				else if (ret > 0)
2835					prealloc_flags |= FIEMAP_EXTENT_SHARED;
2836
2837				checked_extent_shared = true;
2838			}
2839			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2840						 disk_bytenr + extent_offset,
2841						 prealloc_len, prealloc_flags);
2842			if (ret)
2843				return ret;
2844			extent_offset += prealloc_len;
2845		}
2846
2847		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2848					 delalloc_end + 1 - delalloc_start,
2849					 FIEMAP_EXTENT_DELALLOC |
2850					 FIEMAP_EXTENT_UNKNOWN);
2851		if (ret)
2852			return ret;
2853
2854		last_delalloc_end = delalloc_end;
2855		cur_offset = delalloc_end + 1;
2856		extent_offset += cur_offset - delalloc_start;
2857		cond_resched();
2858	}
2859
2860	/*
2861	 * Either we found no delalloc for the whole prealloc extent or we have
2862	 * a prealloc extent that spans i_size or starts at or after i_size.
2863	 */
2864	if (disk_bytenr != 0 && last_delalloc_end < end) {
2865		u64 prealloc_start;
2866		u64 prealloc_len;
2867
2868		if (last_delalloc_end == 0) {
2869			prealloc_start = start;
2870			prealloc_len = end + 1 - start;
2871		} else {
2872			prealloc_start = last_delalloc_end + 1;
2873			prealloc_len = end + 1 - prealloc_start;
2874		}
2875
2876		if (!checked_extent_shared && fieinfo->fi_extents_max) {
2877			ret = btrfs_is_data_extent_shared(inode,
2878							  disk_bytenr,
2879							  extent_gen,
2880							  backref_ctx);
2881			if (ret < 0)
2882				return ret;
2883			else if (ret > 0)
2884				prealloc_flags |= FIEMAP_EXTENT_SHARED;
2885		}
2886		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2887					 disk_bytenr + extent_offset,
2888					 prealloc_len, prealloc_flags);
2889		if (ret)
2890			return ret;
2891	}
2892
2893	return 0;
2894}
2895
2896static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2897					  struct btrfs_path *path,
2898					  u64 *last_extent_end_ret)
2899{
2900	const u64 ino = btrfs_ino(inode);
2901	struct btrfs_root *root = inode->root;
2902	struct extent_buffer *leaf;
2903	struct btrfs_file_extent_item *ei;
2904	struct btrfs_key key;
2905	u64 disk_bytenr;
2906	int ret;
2907
2908	/*
2909	 * Lookup the last file extent. We're not using i_size here because
2910	 * there might be preallocation past i_size.
2911	 */
2912	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2913	/* There can't be a file extent item at offset (u64)-1 */
2914	ASSERT(ret != 0);
2915	if (ret < 0)
2916		return ret;
2917
2918	/*
2919	 * For a non-existing key, btrfs_search_slot() always leaves us at a
2920	 * slot > 0, except if the btree is empty, which is impossible because
2921	 * at least it has the inode item for this inode and all the items for
2922	 * the root inode 256.
2923	 */
2924	ASSERT(path->slots[0] > 0);
2925	path->slots[0]--;
2926	leaf = path->nodes[0];
2927	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2928	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2929		/* No file extent items in the subvolume tree. */
2930		*last_extent_end_ret = 0;
2931		return 0;
2932	}
2933
2934	/*
2935	 * For an inline extent, the disk_bytenr is where inline data starts at,
2936	 * so first check if we have an inline extent item before checking if we
2937	 * have an implicit hole (disk_bytenr == 0).
2938	 */
2939	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2940	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2941		*last_extent_end_ret = btrfs_file_extent_end(path);
2942		return 0;
2943	}
 
2944
2945	/*
2946	 * Find the last file extent item that is not a hole (when NO_HOLES is
2947	 * not enabled). This should take at most 2 iterations in the worst
2948	 * case: we have one hole file extent item at slot 0 of a leaf and
2949	 * another hole file extent item as the last item in the previous leaf.
2950	 * This is because we merge file extent items that represent holes.
2951	 */
2952	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2953	while (disk_bytenr == 0) {
2954		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2955		if (ret < 0) {
2956			return ret;
2957		} else if (ret > 0) {
2958			/* No file extent items that are not holes. */
2959			*last_extent_end_ret = 0;
2960			return 0;
2961		}
2962		leaf = path->nodes[0];
2963		ei = btrfs_item_ptr(leaf, path->slots[0],
2964				    struct btrfs_file_extent_item);
2965		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2966	}
2967
2968	*last_extent_end_ret = btrfs_file_extent_end(path);
2969	return 0;
2970}
2971
2972int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
2973		  u64 start, u64 len)
2974{
2975	const u64 ino = btrfs_ino(inode);
2976	struct extent_state *delalloc_cached_state = NULL;
2977	struct btrfs_path *path;
2978	struct fiemap_cache cache = { 0 };
2979	struct btrfs_backref_share_check_ctx *backref_ctx;
2980	u64 last_extent_end;
2981	u64 prev_extent_end;
2982	u64 range_start;
2983	u64 range_end;
2984	const u64 sectorsize = inode->root->fs_info->sectorsize;
2985	bool stopped = false;
2986	int ret;
2987
2988	backref_ctx = btrfs_alloc_backref_share_check_ctx();
2989	path = btrfs_alloc_path();
2990	if (!backref_ctx || !path) {
2991		ret = -ENOMEM;
2992		goto out;
2993	}
2994
2995	range_start = round_down(start, sectorsize);
2996	range_end = round_up(start + len, sectorsize);
2997	prev_extent_end = range_start;
2998
2999	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3000	if (ret < 0)
3001		goto out;
3002	btrfs_release_path(path);
3003
3004	path->reada = READA_FORWARD;
3005	ret = fiemap_search_slot(inode, path, range_start);
3006	if (ret < 0) {
3007		goto out;
3008	} else if (ret > 0) {
3009		/*
3010		 * No file extent item found, but we may have delalloc between
3011		 * the current offset and i_size. So check for that.
3012		 */
3013		ret = 0;
3014		goto check_eof_delalloc;
3015	}
3016
3017	while (prev_extent_end < range_end) {
3018		struct extent_buffer *leaf = path->nodes[0];
3019		struct btrfs_file_extent_item *ei;
3020		struct btrfs_key key;
3021		u64 extent_end;
3022		u64 extent_len;
3023		u64 extent_offset = 0;
3024		u64 extent_gen;
3025		u64 disk_bytenr = 0;
3026		u64 flags = 0;
3027		int extent_type;
3028		u8 compression;
3029
3030		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3031		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3032			break;
3033
3034		extent_end = btrfs_file_extent_end(path);
3035
3036		/*
3037		 * The first iteration can leave us at an extent item that ends
3038		 * before our range's start. Move to the next item.
 
 
3039		 */
3040		if (extent_end <= range_start)
3041			goto next_item;
3042
3043		backref_ctx->curr_leaf_bytenr = leaf->start;
3044
3045		/* We have in implicit hole (NO_HOLES feature enabled). */
3046		if (prev_extent_end < key.offset) {
3047			const u64 hole_end = min(key.offset, range_end) - 1;
3048
3049			ret = fiemap_process_hole(inode, fieinfo, &cache,
3050						  &delalloc_cached_state,
3051						  backref_ctx, 0, 0, 0,
3052						  prev_extent_end, hole_end);
3053			if (ret < 0) {
3054				goto out;
3055			} else if (ret > 0) {
3056				/* fiemap_fill_next_extent() told us to stop. */
3057				stopped = true;
3058				break;
3059			}
3060
3061			/* We've reached the end of the fiemap range, stop. */
3062			if (key.offset >= range_end) {
3063				stopped = true;
3064				break;
3065			}
3066		}
3067
3068		extent_len = extent_end - key.offset;
3069		ei = btrfs_item_ptr(leaf, path->slots[0],
3070				    struct btrfs_file_extent_item);
3071		compression = btrfs_file_extent_compression(leaf, ei);
3072		extent_type = btrfs_file_extent_type(leaf, ei);
3073		extent_gen = btrfs_file_extent_generation(leaf, ei);
3074
3075		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3076			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3077			if (compression == BTRFS_COMPRESS_NONE)
3078				extent_offset = btrfs_file_extent_offset(leaf, ei);
3079		}
3080
3081		if (compression != BTRFS_COMPRESS_NONE)
3082			flags |= FIEMAP_EXTENT_ENCODED;
3083
3084		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3085			flags |= FIEMAP_EXTENT_DATA_INLINE;
3086			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3087			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3088						 extent_len, flags);
3089		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3090			ret = fiemap_process_hole(inode, fieinfo, &cache,
3091						  &delalloc_cached_state,
3092						  backref_ctx,
3093						  disk_bytenr, extent_offset,
3094						  extent_gen, key.offset,
3095						  extent_end - 1);
3096		} else if (disk_bytenr == 0) {
3097			/* We have an explicit hole. */
3098			ret = fiemap_process_hole(inode, fieinfo, &cache,
3099						  &delalloc_cached_state,
3100						  backref_ctx, 0, 0, 0,
3101						  key.offset, extent_end - 1);
3102		} else {
3103			/* We have a regular extent. */
3104			if (fieinfo->fi_extents_max) {
3105				ret = btrfs_is_data_extent_shared(inode,
3106								  disk_bytenr,
3107								  extent_gen,
3108								  backref_ctx);
3109				if (ret < 0)
3110					goto out;
3111				else if (ret > 0)
3112					flags |= FIEMAP_EXTENT_SHARED;
3113			}
3114
3115			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3116						 disk_bytenr + extent_offset,
3117						 extent_len, flags);
3118		}
3119
3120		if (ret < 0) {
3121			goto out;
3122		} else if (ret > 0) {
3123			/* fiemap_fill_next_extent() told us to stop. */
3124			stopped = true;
3125			break;
3126		}
 
 
3127
3128		prev_extent_end = extent_end;
3129next_item:
3130		if (fatal_signal_pending(current)) {
3131			ret = -EINTR;
3132			goto out;
 
3133		}
3134
3135		ret = fiemap_next_leaf_item(inode, path);
3136		if (ret < 0) {
 
 
 
3137			goto out;
3138		} else if (ret > 0) {
3139			/* No more file extent items for this inode. */
3140			break;
3141		}
3142		cond_resched();
3143	}
3144
3145check_eof_delalloc:
3146	/*
3147	 * Release (and free) the path before emitting any final entries to
3148	 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3149	 * once we find no more file extent items exist, we may have a
3150	 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3151	 * faults when copying data to the user space buffer.
3152	 */
3153	btrfs_free_path(path);
3154	path = NULL;
3155
3156	if (!stopped && prev_extent_end < range_end) {
3157		ret = fiemap_process_hole(inode, fieinfo, &cache,
3158					  &delalloc_cached_state, backref_ctx,
3159					  0, 0, 0, prev_extent_end, range_end - 1);
3160		if (ret < 0)
3161			goto out;
3162		prev_extent_end = range_end;
3163	}
3164
3165	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3166		const u64 i_size = i_size_read(&inode->vfs_inode);
3167
3168		if (prev_extent_end < i_size) {
3169			struct extent_state *cached_state = NULL;
3170			u64 delalloc_start;
3171			u64 delalloc_end;
3172			u64 lockstart;
3173			u64 lockend;
3174			bool delalloc;
3175
3176			lockstart = round_down(prev_extent_end, sectorsize);
3177			lockend = round_up(i_size, sectorsize);
3178
3179			/*
3180			 * See the comment in fiemap_process_hole as to why
3181			 * we're doing the locking here.
3182			 */
3183			lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3184			delalloc = btrfs_find_delalloc_in_range(inode,
3185								prev_extent_end,
3186								i_size - 1,
3187								&delalloc_cached_state,
3188								&delalloc_start,
3189								&delalloc_end);
3190			unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3191			if (!delalloc)
3192				cache.flags |= FIEMAP_EXTENT_LAST;
3193		} else {
3194			cache.flags |= FIEMAP_EXTENT_LAST;
3195		}
 
 
 
 
3196	}
3197
3198	ret = emit_last_fiemap_cache(fieinfo, &cache);
3199out:
3200	free_extent_state(delalloc_cached_state);
3201	btrfs_free_backref_share_ctx(backref_ctx);
3202	btrfs_free_path(path);
3203	return ret;
3204}
3205
3206static void __free_extent_buffer(struct extent_buffer *eb)
3207{
3208	kmem_cache_free(extent_buffer_cache, eb);
3209}
3210
3211static int extent_buffer_under_io(const struct extent_buffer *eb)
3212{
3213	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3214		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3215}
3216
3217static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio)
3218{
3219	struct btrfs_subpage *subpage;
3220
3221	lockdep_assert_held(&folio->mapping->i_private_lock);
3222
3223	if (folio_test_private(folio)) {
3224		subpage = folio_get_private(folio);
3225		if (atomic_read(&subpage->eb_refs))
3226			return true;
3227		/*
3228		 * Even there is no eb refs here, we may still have
3229		 * end_page_read() call relying on page::private.
3230		 */
3231		if (atomic_read(&subpage->readers))
3232			return true;
3233	}
3234	return false;
3235}
3236
3237static void detach_extent_buffer_folio(struct extent_buffer *eb, struct folio *folio)
3238{
3239	struct btrfs_fs_info *fs_info = eb->fs_info;
3240	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3241
3242	/*
3243	 * For mapped eb, we're going to change the folio private, which should
3244	 * be done under the i_private_lock.
3245	 */
3246	if (mapped)
3247		spin_lock(&folio->mapping->i_private_lock);
3248
3249	if (!folio_test_private(folio)) {
3250		if (mapped)
3251			spin_unlock(&folio->mapping->i_private_lock);
3252		return;
3253	}
3254
3255	if (fs_info->nodesize >= PAGE_SIZE) {
3256		/*
3257		 * We do this since we'll remove the pages after we've
3258		 * removed the eb from the radix tree, so we could race
3259		 * and have this page now attached to the new eb.  So
3260		 * only clear folio if it's still connected to
3261		 * this eb.
3262		 */
3263		if (folio_test_private(folio) && folio_get_private(folio) == eb) {
3264			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3265			BUG_ON(folio_test_dirty(folio));
3266			BUG_ON(folio_test_writeback(folio));
3267			/* We need to make sure we haven't be attached to a new eb. */
3268			folio_detach_private(folio);
3269		}
3270		if (mapped)
3271			spin_unlock(&folio->mapping->i_private_lock);
3272		return;
3273	}
3274
3275	/*
3276	 * For subpage, we can have dummy eb with folio private attached.  In
3277	 * this case, we can directly detach the private as such folio is only
3278	 * attached to one dummy eb, no sharing.
3279	 */
3280	if (!mapped) {
3281		btrfs_detach_subpage(fs_info, folio);
3282		return;
3283	}
3284
3285	btrfs_folio_dec_eb_refs(fs_info, folio);
3286
3287	/*
3288	 * We can only detach the folio private if there are no other ebs in the
3289	 * page range and no unfinished IO.
 
3290	 */
3291	if (!folio_range_has_eb(fs_info, folio))
3292		btrfs_detach_subpage(fs_info, folio);
3293
3294	spin_unlock(&folio->mapping->i_private_lock);
3295}
3296
3297/* Release all pages attached to the extent buffer */
3298static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3299{
3300	ASSERT(!extent_buffer_under_io(eb));
3301
3302	for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
3303		struct folio *folio = eb->folios[i];
3304
3305		if (!folio)
3306			continue;
3307
3308		detach_extent_buffer_folio(eb, folio);
3309
3310		/* One for when we allocated the folio. */
3311		folio_put(folio);
3312	}
3313}
3314
3315/*
3316 * Helper for releasing the extent buffer.
3317 */
3318static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3319{
3320	btrfs_release_extent_buffer_pages(eb);
3321	btrfs_leak_debug_del_eb(eb);
3322	__free_extent_buffer(eb);
3323}
3324
3325static struct extent_buffer *
3326__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3327		      unsigned long len)
 
3328{
3329	struct extent_buffer *eb = NULL;
 
 
 
3330
3331	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
 
 
3332	eb->start = start;
3333	eb->len = len;
3334	eb->fs_info = fs_info;
3335	init_rwsem(&eb->lock);
3336
3337	btrfs_leak_debug_add_eb(eb);
3338
3339	spin_lock_init(&eb->refs_lock);
 
 
 
 
 
 
 
 
 
3340	atomic_set(&eb->refs, 1);
3341
3342	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3343
3344	return eb;
3345}
3346
3347struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3348{
3349	struct extent_buffer *new;
3350	int num_folios = num_extent_folios(src);
3351	int ret;
3352
3353	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3354	if (new == NULL)
3355		return NULL;
3356
3357	/*
3358	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3359	 * btrfs_release_extent_buffer() have different behavior for
3360	 * UNMAPPED subpage extent buffer.
3361	 */
3362	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3363
3364	ret = alloc_eb_folio_array(new, 0);
3365	if (ret) {
3366		btrfs_release_extent_buffer(new);
3367		return NULL;
3368	}
3369
3370	for (int i = 0; i < num_folios; i++) {
3371		struct folio *folio = new->folios[i];
3372		int ret;
3373
3374		ret = attach_extent_buffer_folio(new, folio, NULL);
3375		if (ret < 0) {
3376			btrfs_release_extent_buffer(new);
3377			return NULL;
3378		}
3379		WARN_ON(folio_test_dirty(folio));
3380	}
3381	copy_extent_buffer_full(new, src);
3382	set_extent_buffer_uptodate(new);
3383
3384	return new;
3385}
3386
3387struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3388						  u64 start, unsigned long len)
3389{
3390	struct extent_buffer *eb;
3391	int num_folios = 0;
3392	int ret;
3393
3394	eb = __alloc_extent_buffer(fs_info, start, len);
3395	if (!eb)
3396		return NULL;
3397
3398	ret = alloc_eb_folio_array(eb, 0);
3399	if (ret)
3400		goto err;
3401
3402	num_folios = num_extent_folios(eb);
3403	for (int i = 0; i < num_folios; i++) {
3404		ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
3405		if (ret < 0)
3406			goto err;
3407	}
3408
3409	set_extent_buffer_uptodate(eb);
3410	btrfs_set_header_nritems(eb, 0);
3411	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3412
3413	return eb;
3414err:
3415	for (int i = 0; i < num_folios; i++) {
3416		if (eb->folios[i]) {
3417			detach_extent_buffer_folio(eb, eb->folios[i]);
3418			__folio_put(eb->folios[i]);
3419		}
3420	}
3421	__free_extent_buffer(eb);
3422	return NULL;
3423}
3424
3425struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3426						u64 start)
 
 
 
3427{
3428	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3429}
3430
3431static void check_buffer_tree_ref(struct extent_buffer *eb)
3432{
3433	int refs;
3434	/*
3435	 * The TREE_REF bit is first set when the extent_buffer is added
3436	 * to the radix tree. It is also reset, if unset, when a new reference
3437	 * is created by find_extent_buffer.
3438	 *
3439	 * It is only cleared in two cases: freeing the last non-tree
3440	 * reference to the extent_buffer when its STALE bit is set or
3441	 * calling release_folio when the tree reference is the only reference.
3442	 *
3443	 * In both cases, care is taken to ensure that the extent_buffer's
3444	 * pages are not under io. However, release_folio can be concurrently
3445	 * called with creating new references, which is prone to race
3446	 * conditions between the calls to check_buffer_tree_ref in those
3447	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3448	 *
3449	 * The actual lifetime of the extent_buffer in the radix tree is
3450	 * adequately protected by the refcount, but the TREE_REF bit and
3451	 * its corresponding reference are not. To protect against this
3452	 * class of races, we call check_buffer_tree_ref from the codepaths
3453	 * which trigger io. Note that once io is initiated, TREE_REF can no
3454	 * longer be cleared, so that is the moment at which any such race is
3455	 * best fixed.
3456	 */
3457	refs = atomic_read(&eb->refs);
3458	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3459		return;
3460
3461	spin_lock(&eb->refs_lock);
3462	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3463		atomic_inc(&eb->refs);
3464	spin_unlock(&eb->refs_lock);
3465}
3466
3467static void mark_extent_buffer_accessed(struct extent_buffer *eb)
3468{
3469	int num_folios= num_extent_folios(eb);
3470
3471	check_buffer_tree_ref(eb);
3472
3473	for (int i = 0; i < num_folios; i++)
3474		folio_mark_accessed(eb->folios[i]);
3475}
3476
3477struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3478					 u64 start)
3479{
3480	struct extent_buffer *eb;
3481
3482	eb = find_extent_buffer_nolock(fs_info, start);
3483	if (!eb)
3484		return NULL;
3485	/*
3486	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3487	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3488	 * another task running free_extent_buffer() might have seen that flag
3489	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3490	 * writeback flags not set) and it's still in the tree (flag
3491	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3492	 * decrementing the extent buffer's reference count twice.  So here we
3493	 * could race and increment the eb's reference count, clear its stale
3494	 * flag, mark it as dirty and drop our reference before the other task
3495	 * finishes executing free_extent_buffer, which would later result in
3496	 * an attempt to free an extent buffer that is dirty.
3497	 */
3498	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3499		spin_lock(&eb->refs_lock);
3500		spin_unlock(&eb->refs_lock);
3501	}
3502	mark_extent_buffer_accessed(eb);
3503	return eb;
3504}
3505
3506#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3507struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3508					u64 start)
3509{
3510	struct extent_buffer *eb, *exists = NULL;
3511	int ret;
3512
3513	eb = find_extent_buffer(fs_info, start);
3514	if (eb)
3515		return eb;
3516	eb = alloc_dummy_extent_buffer(fs_info, start);
3517	if (!eb)
3518		return ERR_PTR(-ENOMEM);
3519	eb->fs_info = fs_info;
3520again:
3521	ret = radix_tree_preload(GFP_NOFS);
3522	if (ret) {
3523		exists = ERR_PTR(ret);
3524		goto free_eb;
3525	}
3526	spin_lock(&fs_info->buffer_lock);
3527	ret = radix_tree_insert(&fs_info->buffer_radix,
3528				start >> fs_info->sectorsize_bits, eb);
3529	spin_unlock(&fs_info->buffer_lock);
3530	radix_tree_preload_end();
3531	if (ret == -EEXIST) {
3532		exists = find_extent_buffer(fs_info, start);
3533		if (exists)
3534			goto free_eb;
3535		else
3536			goto again;
3537	}
3538	check_buffer_tree_ref(eb);
3539	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3540
3541	return eb;
3542free_eb:
3543	btrfs_release_extent_buffer(eb);
3544	return exists;
3545}
3546#endif
3547
3548static struct extent_buffer *grab_extent_buffer(
3549		struct btrfs_fs_info *fs_info, struct page *page)
3550{
3551	struct folio *folio = page_folio(page);
3552	struct extent_buffer *exists;
3553
3554	/*
3555	 * For subpage case, we completely rely on radix tree to ensure we
3556	 * don't try to insert two ebs for the same bytenr.  So here we always
3557	 * return NULL and just continue.
3558	 */
3559	if (fs_info->nodesize < PAGE_SIZE)
3560		return NULL;
3561
3562	/* Page not yet attached to an extent buffer */
3563	if (!folio_test_private(folio))
3564		return NULL;
3565
3566	/*
3567	 * We could have already allocated an eb for this page and attached one
3568	 * so lets see if we can get a ref on the existing eb, and if we can we
3569	 * know it's good and we can just return that one, else we know we can
3570	 * just overwrite folio private.
3571	 */
3572	exists = folio_get_private(folio);
3573	if (atomic_inc_not_zero(&exists->refs))
3574		return exists;
3575
3576	WARN_ON(PageDirty(page));
3577	folio_detach_private(folio);
3578	return NULL;
3579}
3580
3581static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3582{
3583	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3584		btrfs_err(fs_info, "bad tree block start %llu", start);
3585		return -EINVAL;
3586	}
3587
3588	if (fs_info->nodesize < PAGE_SIZE &&
3589	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3590		btrfs_err(fs_info,
3591		"tree block crosses page boundary, start %llu nodesize %u",
3592			  start, fs_info->nodesize);
3593		return -EINVAL;
3594	}
3595	if (fs_info->nodesize >= PAGE_SIZE &&
3596	    !PAGE_ALIGNED(start)) {
3597		btrfs_err(fs_info,
3598		"tree block is not page aligned, start %llu nodesize %u",
3599			  start, fs_info->nodesize);
3600		return -EINVAL;
3601	}
3602	if (!IS_ALIGNED(start, fs_info->nodesize) &&
3603	    !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3604		btrfs_warn(fs_info,
3605"tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3606			      start, fs_info->nodesize);
3607	}
3608	return 0;
3609}
3610
3611
3612/*
3613 * Return 0 if eb->folios[i] is attached to btree inode successfully.
3614 * Return >0 if there is already another extent buffer for the range,
3615 * and @found_eb_ret would be updated.
3616 * Return -EAGAIN if the filemap has an existing folio but with different size
3617 * than @eb.
3618 * The caller needs to free the existing folios and retry using the same order.
3619 */
3620static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3621				      struct extent_buffer **found_eb_ret)
3622{
3623
3624	struct btrfs_fs_info *fs_info = eb->fs_info;
3625	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3626	const unsigned long index = eb->start >> PAGE_SHIFT;
3627	struct folio *existing_folio;
3628	int ret;
3629
3630	ASSERT(found_eb_ret);
3631
3632	/* Caller should ensure the folio exists. */
3633	ASSERT(eb->folios[i]);
3634
3635retry:
3636	ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3637				GFP_NOFS | __GFP_NOFAIL);
3638	if (!ret)
3639		return 0;
3640
3641	existing_folio = filemap_lock_folio(mapping, index + i);
3642	/* The page cache only exists for a very short time, just retry. */
3643	if (IS_ERR(existing_folio))
3644		goto retry;
3645
3646	/* For now, we should only have single-page folios for btree inode. */
3647	ASSERT(folio_nr_pages(existing_folio) == 1);
3648
3649	if (folio_size(existing_folio) != folio_size(eb->folios[0])) {
3650		folio_unlock(existing_folio);
3651		folio_put(existing_folio);
3652		return -EAGAIN;
3653	}
3654
3655	if (fs_info->nodesize < PAGE_SIZE) {
3656		/*
3657		 * We're going to reuse the existing page, can drop our page
3658		 * and subpage structure now.
3659		 */
3660		__free_page(folio_page(eb->folios[i], 0));
3661		eb->folios[i] = existing_folio;
3662	} else {
3663		struct extent_buffer *existing_eb;
3664
3665		existing_eb = grab_extent_buffer(fs_info,
3666						 folio_page(existing_folio, 0));
3667		if (existing_eb) {
3668			/* The extent buffer still exists, we can use it directly. */
3669			*found_eb_ret = existing_eb;
3670			folio_unlock(existing_folio);
3671			folio_put(existing_folio);
3672			return 1;
3673		}
3674		/* The extent buffer no longer exists, we can reuse the folio. */
3675		__free_page(folio_page(eb->folios[i], 0));
3676		eb->folios[i] = existing_folio;
3677	}
3678	return 0;
3679}
3680
3681struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3682					  u64 start, u64 owner_root, int level)
 
3683{
3684	unsigned long len = fs_info->nodesize;
3685	int num_folios;
3686	int attached = 0;
3687	struct extent_buffer *eb;
3688	struct extent_buffer *existing_eb = NULL;
3689	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3690	struct btrfs_subpage *prealloc = NULL;
3691	u64 lockdep_owner = owner_root;
3692	bool page_contig = true;
3693	int uptodate = 1;
3694	int ret;
3695
3696	if (check_eb_alignment(fs_info, start))
3697		return ERR_PTR(-EINVAL);
3698
3699#if BITS_PER_LONG == 32
3700	if (start >= MAX_LFS_FILESIZE) {
3701		btrfs_err_rl(fs_info,
3702		"extent buffer %llu is beyond 32bit page cache limit", start);
3703		btrfs_err_32bit_limit(fs_info);
3704		return ERR_PTR(-EOVERFLOW);
3705	}
3706	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3707		btrfs_warn_32bit_limit(fs_info);
3708#endif
3709
3710	eb = find_extent_buffer(fs_info, start);
3711	if (eb)
3712		return eb;
 
 
3713
3714	eb = __alloc_extent_buffer(fs_info, start, len);
3715	if (!eb)
3716		return ERR_PTR(-ENOMEM);
3717
3718	/*
3719	 * The reloc trees are just snapshots, so we need them to appear to be
3720	 * just like any other fs tree WRT lockdep.
3721	 */
3722	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3723		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3724
3725	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3726
3727	/*
3728	 * Preallocate folio private for subpage case, so that we won't
3729	 * allocate memory with i_private_lock nor page lock hold.
3730	 *
3731	 * The memory will be freed by attach_extent_buffer_page() or freed
3732	 * manually if we exit earlier.
3733	 */
3734	if (fs_info->nodesize < PAGE_SIZE) {
3735		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3736		if (IS_ERR(prealloc)) {
3737			ret = PTR_ERR(prealloc);
3738			goto out;
3739		}
3740	}
3741
3742reallocate:
3743	/* Allocate all pages first. */
3744	ret = alloc_eb_folio_array(eb, __GFP_NOFAIL);
3745	if (ret < 0) {
3746		btrfs_free_subpage(prealloc);
3747		goto out;
 
 
 
 
 
3748	}
3749
3750	num_folios = num_extent_folios(eb);
3751	/* Attach all pages to the filemap. */
3752	for (int i = 0; i < num_folios; i++) {
3753		struct folio *folio;
3754
3755		ret = attach_eb_folio_to_filemap(eb, i, &existing_eb);
3756		if (ret > 0) {
3757			ASSERT(existing_eb);
3758			goto out;
3759		}
3760
3761		/*
3762		 * TODO: Special handling for a corner case where the order of
3763		 * folios mismatch between the new eb and filemap.
3764		 *
3765		 * This happens when:
3766		 *
3767		 * - the new eb is using higher order folio
3768		 *
3769		 * - the filemap is still using 0-order folios for the range
3770		 *   This can happen at the previous eb allocation, and we don't
3771		 *   have higher order folio for the call.
3772		 *
3773		 * - the existing eb has already been freed
3774		 *
3775		 * In this case, we have to free the existing folios first, and
3776		 * re-allocate using the same order.
3777		 * Thankfully this is not going to happen yet, as we're still
3778		 * using 0-order folios.
3779		 */
3780		if (unlikely(ret == -EAGAIN)) {
3781			ASSERT(0);
3782			goto reallocate;
3783		}
3784		attached++;
3785
3786		/*
3787		 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3788		 * reliable, as we may choose to reuse the existing page cache
3789		 * and free the allocated page.
3790		 */
3791		folio = eb->folios[i];
3792		spin_lock(&mapping->i_private_lock);
3793		/* Should not fail, as we have preallocated the memory */
3794		ret = attach_extent_buffer_folio(eb, folio, prealloc);
3795		ASSERT(!ret);
3796		/*
3797		 * To inform we have extra eb under allocation, so that
3798		 * detach_extent_buffer_page() won't release the folio private
3799		 * when the eb hasn't yet been inserted into radix tree.
3800		 *
3801		 * The ref will be decreased when the eb released the page, in
3802		 * detach_extent_buffer_page().
3803		 * Thus needs no special handling in error path.
3804		 */
3805		btrfs_folio_inc_eb_refs(fs_info, folio);
3806		spin_unlock(&mapping->i_private_lock);
3807
3808		WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3809
3810		/*
3811		 * Check if the current page is physically contiguous with previous eb
3812		 * page.
3813		 * At this stage, either we allocated a large folio, thus @i
3814		 * would only be 0, or we fall back to per-page allocation.
3815		 */
3816		if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3817			page_contig = false;
3818
3819		if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
3820			uptodate = 0;
3821
3822		/*
3823		 * We can't unlock the pages just yet since the extent buffer
3824		 * hasn't been properly inserted in the radix tree, this
3825		 * opens a race with btree_release_folio which can free a page
3826		 * while we are still filling in all pages for the buffer and
3827		 * we could crash.
3828		 */
 
 
3829	}
3830	if (uptodate)
3831		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3832	/* All pages are physically contiguous, can skip cross page handling. */
3833	if (page_contig)
3834		eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3835again:
3836	ret = radix_tree_preload(GFP_NOFS);
3837	if (ret)
3838		goto out;
3839
3840	spin_lock(&fs_info->buffer_lock);
3841	ret = radix_tree_insert(&fs_info->buffer_radix,
3842				start >> fs_info->sectorsize_bits, eb);
3843	spin_unlock(&fs_info->buffer_lock);
3844	radix_tree_preload_end();
3845	if (ret == -EEXIST) {
3846		ret = 0;
3847		existing_eb = find_extent_buffer(fs_info, start);
3848		if (existing_eb)
3849			goto out;
3850		else
3851			goto again;
 
3852	}
3853	/* add one reference for the tree */
3854	check_buffer_tree_ref(eb);
3855	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
 
3856
3857	/*
3858	 * Now it's safe to unlock the pages because any calls to
3859	 * btree_release_folio will correctly detect that a page belongs to a
3860	 * live buffer and won't free them prematurely.
3861	 */
3862	for (int i = 0; i < num_folios; i++)
3863		unlock_page(folio_page(eb->folios[i], 0));
 
 
 
 
 
 
3864	return eb;
3865
3866out:
3867	WARN_ON(!atomic_dec_and_test(&eb->refs));
3868
3869	/*
3870	 * Any attached folios need to be detached before we unlock them.  This
3871	 * is because when we're inserting our new folios into the mapping, and
3872	 * then attaching our eb to that folio.  If we fail to insert our folio
3873	 * we'll lookup the folio for that index, and grab that EB.  We do not
3874	 * want that to grab this eb, as we're getting ready to free it.  So we
3875	 * have to detach it first and then unlock it.
3876	 *
3877	 * We have to drop our reference and NULL it out here because in the
3878	 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3879	 * Below when we call btrfs_release_extent_buffer() we will call
3880	 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3881	 * case.  If we left eb->folios[i] populated in the subpage case we'd
3882	 * double put our reference and be super sad.
3883	 */
3884	for (int i = 0; i < attached; i++) {
3885		ASSERT(eb->folios[i]);
3886		detach_extent_buffer_folio(eb, eb->folios[i]);
3887		unlock_page(folio_page(eb->folios[i], 0));
3888		folio_put(eb->folios[i]);
3889		eb->folios[i] = NULL;
3890	}
3891	/*
3892	 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
3893	 * so it can be cleaned up without utlizing page->mapping.
3894	 */
3895	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3896
 
 
3897	btrfs_release_extent_buffer(eb);
3898	if (ret < 0)
3899		return ERR_PTR(ret);
3900	ASSERT(existing_eb);
3901	return existing_eb;
3902}
3903
3904static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3905{
3906	struct extent_buffer *eb =
3907			container_of(head, struct extent_buffer, rcu_head);
3908
3909	__free_extent_buffer(eb);
3910}
3911
3912static int release_extent_buffer(struct extent_buffer *eb)
3913	__releases(&eb->refs_lock)
3914{
3915	lockdep_assert_held(&eb->refs_lock);
3916
3917	WARN_ON(atomic_read(&eb->refs) == 0);
3918	if (atomic_dec_and_test(&eb->refs)) {
3919		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3920			struct btrfs_fs_info *fs_info = eb->fs_info;
3921
3922			spin_unlock(&eb->refs_lock);
3923
3924			spin_lock(&fs_info->buffer_lock);
3925			radix_tree_delete(&fs_info->buffer_radix,
3926					  eb->start >> fs_info->sectorsize_bits);
3927			spin_unlock(&fs_info->buffer_lock);
3928		} else {
3929			spin_unlock(&eb->refs_lock);
3930		}
3931
3932		btrfs_leak_debug_del_eb(eb);
3933		/* Should be safe to release our pages at this point */
3934		btrfs_release_extent_buffer_pages(eb);
3935#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3936		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3937			__free_extent_buffer(eb);
3938			return 1;
3939		}
3940#endif
3941		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3942		return 1;
3943	}
3944	spin_unlock(&eb->refs_lock);
3945
3946	return 0;
3947}
3948
3949void free_extent_buffer(struct extent_buffer *eb)
3950{
3951	int refs;
3952	if (!eb)
3953		return;
3954
3955	refs = atomic_read(&eb->refs);
3956	while (1) {
3957		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3958		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3959			refs == 1))
3960			break;
3961		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3962			return;
3963	}
3964
3965	spin_lock(&eb->refs_lock);
3966	if (atomic_read(&eb->refs) == 2 &&
3967	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3968	    !extent_buffer_under_io(eb) &&
3969	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3970		atomic_dec(&eb->refs);
3971
3972	/*
3973	 * I know this is terrible, but it's temporary until we stop tracking
3974	 * the uptodate bits and such for the extent buffers.
3975	 */
3976	release_extent_buffer(eb);
3977}
3978
3979void free_extent_buffer_stale(struct extent_buffer *eb)
3980{
3981	if (!eb)
3982		return;
3983
3984	spin_lock(&eb->refs_lock);
3985	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3986
3987	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3988	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3989		atomic_dec(&eb->refs);
3990	release_extent_buffer(eb);
3991}
3992
3993static void btree_clear_folio_dirty(struct folio *folio)
3994{
3995	ASSERT(folio_test_dirty(folio));
3996	ASSERT(folio_test_locked(folio));
3997	folio_clear_dirty_for_io(folio);
3998	xa_lock_irq(&folio->mapping->i_pages);
3999	if (!folio_test_dirty(folio))
4000		__xa_clear_mark(&folio->mapping->i_pages,
4001				folio_index(folio), PAGECACHE_TAG_DIRTY);
4002	xa_unlock_irq(&folio->mapping->i_pages);
4003}
4004
4005static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4006{
4007	struct btrfs_fs_info *fs_info = eb->fs_info;
4008	struct folio *folio = eb->folios[0];
4009	bool last;
4010
4011	/* btree_clear_folio_dirty() needs page locked. */
4012	folio_lock(folio);
4013	last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
4014	if (last)
4015		btree_clear_folio_dirty(folio);
4016	folio_unlock(folio);
4017	WARN_ON(atomic_read(&eb->refs) == 0);
4018}
4019
4020void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
4021			      struct extent_buffer *eb)
4022{
4023	struct btrfs_fs_info *fs_info = eb->fs_info;
4024	int num_folios;
4025
4026	btrfs_assert_tree_write_locked(eb);
4027
4028	if (trans && btrfs_header_generation(eb) != trans->transid)
4029		return;
4030
4031	/*
4032	 * Instead of clearing the dirty flag off of the buffer, mark it as
4033	 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
4034	 * write-ordering in zoned mode, without the need to later re-dirty
4035	 * the extent_buffer.
4036	 *
4037	 * The actual zeroout of the buffer will happen later in
4038	 * btree_csum_one_bio.
4039	 */
4040	if (btrfs_is_zoned(fs_info)) {
4041		set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
4042		return;
4043	}
4044
4045	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
4046		return;
4047
4048	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
4049				 fs_info->dirty_metadata_batch);
 
 
4050
4051	if (eb->fs_info->nodesize < PAGE_SIZE)
4052		return clear_subpage_extent_buffer_dirty(eb);
4053
4054	num_folios = num_extent_folios(eb);
4055	for (int i = 0; i < num_folios; i++) {
4056		struct folio *folio = eb->folios[i];
4057
4058		if (!folio_test_dirty(folio))
4059			continue;
4060		folio_lock(folio);
4061		btree_clear_folio_dirty(folio);
4062		folio_unlock(folio);
 
 
 
 
4063	}
4064	WARN_ON(atomic_read(&eb->refs) == 0);
4065}
4066
4067void set_extent_buffer_dirty(struct extent_buffer *eb)
 
4068{
4069	int num_folios;
4070	bool was_dirty;
4071
4072	check_buffer_tree_ref(eb);
4073
4074	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
 
 
 
 
 
4075
4076	num_folios = num_extent_folios(eb);
4077	WARN_ON(atomic_read(&eb->refs) == 0);
4078	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4079
4080	if (!was_dirty) {
4081		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
 
 
 
 
4082
4083		/*
4084		 * For subpage case, we can have other extent buffers in the
4085		 * same page, and in clear_subpage_extent_buffer_dirty() we
4086		 * have to clear page dirty without subpage lock held.
4087		 * This can cause race where our page gets dirty cleared after
4088		 * we just set it.
4089		 *
4090		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4091		 * its page for other reasons, we can use page lock to prevent
4092		 * the above race.
4093		 */
4094		if (subpage)
4095			lock_page(folio_page(eb->folios[0], 0));
4096		for (int i = 0; i < num_folios; i++)
4097			btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
4098					      eb->start, eb->len);
4099		if (subpage)
4100			unlock_page(folio_page(eb->folios[0], 0));
4101		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
4102					 eb->len,
4103					 eb->fs_info->dirty_metadata_batch);
4104	}
4105#ifdef CONFIG_BTRFS_DEBUG
4106	for (int i = 0; i < num_folios; i++)
4107		ASSERT(folio_test_dirty(eb->folios[i]));
4108#endif
4109}
4110
4111void clear_extent_buffer_uptodate(struct extent_buffer *eb)
 
 
4112{
4113	struct btrfs_fs_info *fs_info = eb->fs_info;
4114	int num_folios = num_extent_folios(eb);
 
4115
 
4116	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4117	for (int i = 0; i < num_folios; i++) {
4118		struct folio *folio = eb->folios[i];
4119
4120		if (!folio)
4121			continue;
4122
4123		/*
4124		 * This is special handling for metadata subpage, as regular
4125		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4126		 */
4127		if (fs_info->nodesize >= PAGE_SIZE)
4128			folio_clear_uptodate(folio);
4129		else
4130			btrfs_subpage_clear_uptodate(fs_info, folio,
4131						     eb->start, eb->len);
4132	}
 
4133}
4134
4135void set_extent_buffer_uptodate(struct extent_buffer *eb)
 
4136{
4137	struct btrfs_fs_info *fs_info = eb->fs_info;
4138	int num_folios = num_extent_folios(eb);
 
4139
4140	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4141	for (int i = 0; i < num_folios; i++) {
4142		struct folio *folio = eb->folios[i];
4143
4144		/*
4145		 * This is special handling for metadata subpage, as regular
4146		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4147		 */
4148		if (fs_info->nodesize >= PAGE_SIZE)
4149			folio_mark_uptodate(folio);
4150		else
4151			btrfs_subpage_set_uptodate(fs_info, folio,
4152						   eb->start, eb->len);
 
 
 
 
4153	}
 
4154}
4155
4156static void end_bbio_meta_read(struct btrfs_bio *bbio)
 
4157{
4158	struct extent_buffer *eb = bbio->private;
4159	struct btrfs_fs_info *fs_info = eb->fs_info;
4160	bool uptodate = !bbio->bio.bi_status;
4161	struct folio_iter fi;
4162	u32 bio_offset = 0;
4163
4164	eb->read_mirror = bbio->mirror_num;
4165
4166	if (uptodate &&
4167	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
4168		uptodate = false;
4169
4170	if (uptodate) {
4171		set_extent_buffer_uptodate(eb);
4172	} else {
4173		clear_extent_buffer_uptodate(eb);
4174		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 
 
 
 
 
4175	}
 
 
4176
4177	bio_for_each_folio_all(fi, &bbio->bio) {
4178		struct folio *folio = fi.folio;
4179		u64 start = eb->start + bio_offset;
4180		u32 len = fi.length;
 
 
 
 
 
4181
4182		if (uptodate)
4183			btrfs_folio_set_uptodate(fs_info, folio, start, len);
4184		else
4185			btrfs_folio_clear_uptodate(fs_info, folio, start, len);
4186
4187		bio_offset += len;
 
 
 
 
4188	}
4189
4190	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4191	smp_mb__after_atomic();
4192	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4193	free_extent_buffer(eb);
4194
4195	bio_put(&bbio->bio);
 
 
 
4196}
4197
4198int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4199			     struct btrfs_tree_parent_check *check)
 
 
4200{
4201	struct btrfs_bio *bbio;
4202	bool ret;
 
 
 
 
 
 
 
 
 
4203
4204	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4205		return 0;
4206
4207	/*
4208	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4209	 * operation, which could potentially still be in flight.  In this case
4210	 * we simply want to return an error.
4211	 */
4212	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4213		return -EIO;
4214
4215	/* Someone else is already reading the buffer, just wait for it. */
4216	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
4217		goto done;
4218
4219	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4220	eb->read_mirror = 0;
4221	check_buffer_tree_ref(eb);
4222	atomic_inc(&eb->refs);
4223
4224	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
4225			       REQ_OP_READ | REQ_META, eb->fs_info,
4226			       end_bbio_meta_read, eb);
4227	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
4228	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
4229	bbio->file_offset = eb->start;
4230	memcpy(&bbio->parent_check, check, sizeof(*check));
4231	if (eb->fs_info->nodesize < PAGE_SIZE) {
4232		ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
4233				    eb->start - folio_pos(eb->folios[0]));
4234		ASSERT(ret);
4235	} else {
4236		int num_folios = num_extent_folios(eb);
4237
4238		for (int i = 0; i < num_folios; i++) {
4239			struct folio *folio = eb->folios[i];
4240
4241			ret = bio_add_folio(&bbio->bio, folio, folio_size(folio), 0);
4242			ASSERT(ret);
4243		}
4244	}
4245	btrfs_submit_bio(bbio, mirror_num);
4246
4247done:
4248	if (wait == WAIT_COMPLETE) {
4249		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
4250		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4251			return -EIO;
 
4252	}
4253
4254	return 0;
4255}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4256
4257static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4258			    unsigned long len)
4259{
4260	btrfs_warn(eb->fs_info,
4261		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
4262		eb->start, eb->len, start, len);
4263	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4264
4265	return true;
4266}
4267
4268/*
4269 * Check if the [start, start + len) range is valid before reading/writing
4270 * the eb.
4271 * NOTE: @start and @len are offset inside the eb, not logical address.
4272 *
4273 * Caller should not touch the dst/src memory if this function returns error.
4274 */
4275static inline int check_eb_range(const struct extent_buffer *eb,
4276				 unsigned long start, unsigned long len)
4277{
4278	unsigned long offset;
4279
4280	/* start, start + len should not go beyond eb->len nor overflow */
4281	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4282		return report_eb_range(eb, start, len);
4283
4284	return false;
 
 
 
 
 
 
 
 
4285}
4286
4287void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4288			unsigned long start, unsigned long len)
 
4289{
4290	const int unit_size = folio_size(eb->folios[0]);
4291	size_t cur;
4292	size_t offset;
 
 
4293	char *dst = (char *)dstv;
4294	unsigned long i = get_eb_folio_index(eb, start);
4295
4296	if (check_eb_range(eb, start, len)) {
4297		/*
4298		 * Invalid range hit, reset the memory, so callers won't get
4299		 * some random garbage for their uninitialized memory.
4300		 */
4301		memset(dstv, 0, len);
4302		return;
4303	}
4304
4305	if (eb->addr) {
4306		memcpy(dstv, eb->addr + start, len);
4307		return;
4308	}
4309
4310	offset = get_eb_offset_in_folio(eb, start);
4311
4312	while (len > 0) {
4313		char *kaddr;
4314
4315		cur = min(len, unit_size - offset);
4316		kaddr = folio_address(eb->folios[i]);
4317		memcpy(dst, kaddr + offset, cur);
4318
4319		dst += cur;
4320		len -= cur;
4321		offset = 0;
4322		i++;
4323	}
4324}
4325
4326int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4327				       void __user *dstv,
4328				       unsigned long start, unsigned long len)
 
4329{
4330	const int unit_size = folio_size(eb->folios[0]);
4331	size_t cur;
4332	size_t offset;
4333	char __user *dst = (char __user *)dstv;
4334	unsigned long i = get_eb_folio_index(eb, start);
4335	int ret = 0;
 
4336
4337	WARN_ON(start > eb->len);
4338	WARN_ON(start + len > eb->start + eb->len);
4339
4340	if (eb->addr) {
4341		if (copy_to_user_nofault(dstv, eb->addr + start, len))
4342			ret = -EFAULT;
4343		return ret;
 
 
4344	}
4345
4346	offset = get_eb_offset_in_folio(eb, start);
4347
4348	while (len > 0) {
4349		char *kaddr;
4350
4351		cur = min(len, unit_size - offset);
4352		kaddr = folio_address(eb->folios[i]);
4353		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4354			ret = -EFAULT;
4355			break;
4356		}
4357
4358		dst += cur;
4359		len -= cur;
4360		offset = 0;
4361		i++;
4362	}
4363
4364	return ret;
 
 
 
 
4365}
4366
4367int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4368			 unsigned long start, unsigned long len)
 
4369{
4370	const int unit_size = folio_size(eb->folios[0]);
4371	size_t cur;
4372	size_t offset;
 
4373	char *kaddr;
4374	char *ptr = (char *)ptrv;
4375	unsigned long i = get_eb_folio_index(eb, start);
 
4376	int ret = 0;
4377
4378	if (check_eb_range(eb, start, len))
4379		return -EINVAL;
4380
4381	if (eb->addr)
4382		return memcmp(ptrv, eb->addr + start, len);
4383
4384	offset = get_eb_offset_in_folio(eb, start);
4385
4386	while (len > 0) {
4387		cur = min(len, unit_size - offset);
4388		kaddr = folio_address(eb->folios[i]);
 
 
 
4389		ret = memcmp(ptr, kaddr + offset, cur);
4390		if (ret)
4391			break;
4392
4393		ptr += cur;
4394		len -= cur;
4395		offset = 0;
4396		i++;
4397	}
4398	return ret;
4399}
4400
4401/*
4402 * Check that the extent buffer is uptodate.
4403 *
4404 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4405 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4406 */
4407static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
4408{
4409	struct btrfs_fs_info *fs_info = eb->fs_info;
4410	struct folio *folio = eb->folios[i];
4411
4412	ASSERT(folio);
4413
4414	/*
4415	 * If we are using the commit root we could potentially clear a page
4416	 * Uptodate while we're using the extent buffer that we've previously
4417	 * looked up.  We don't want to complain in this case, as the page was
4418	 * valid before, we just didn't write it out.  Instead we want to catch
4419	 * the case where we didn't actually read the block properly, which
4420	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4421	 */
4422	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4423		return;
4424
4425	if (fs_info->nodesize < PAGE_SIZE) {
4426		struct folio *folio = eb->folios[0];
4427
4428		ASSERT(i == 0);
4429		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
4430							 eb->start, eb->len)))
4431			btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
4432	} else {
4433		WARN_ON(!folio_test_uptodate(folio));
4434	}
4435}
4436
4437static void __write_extent_buffer(const struct extent_buffer *eb,
4438				  const void *srcv, unsigned long start,
4439				  unsigned long len, bool use_memmove)
4440{
4441	const int unit_size = folio_size(eb->folios[0]);
4442	size_t cur;
4443	size_t offset;
 
4444	char *kaddr;
4445	char *src = (char *)srcv;
4446	unsigned long i = get_eb_folio_index(eb, start);
4447	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
4448	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4449
4450	if (check_eb_range(eb, start, len))
4451		return;
4452
4453	if (eb->addr) {
4454		if (use_memmove)
4455			memmove(eb->addr + start, srcv, len);
4456		else
4457			memcpy(eb->addr + start, srcv, len);
4458		return;
4459	}
4460
4461	offset = get_eb_offset_in_folio(eb, start);
4462
4463	while (len > 0) {
4464		if (check_uptodate)
4465			assert_eb_folio_uptodate(eb, i);
4466
4467		cur = min(len, unit_size - offset);
4468		kaddr = folio_address(eb->folios[i]);
4469		if (use_memmove)
4470			memmove(kaddr + offset, src, cur);
4471		else
4472			memcpy(kaddr + offset, src, cur);
4473
4474		src += cur;
4475		len -= cur;
4476		offset = 0;
4477		i++;
4478	}
4479}
4480
4481void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4482			 unsigned long start, unsigned long len)
4483{
4484	return __write_extent_buffer(eb, srcv, start, len, false);
4485}
4486
4487static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4488				 unsigned long start, unsigned long len)
4489{
4490	const int unit_size = folio_size(eb->folios[0]);
4491	unsigned long cur = start;
4492
4493	if (eb->addr) {
4494		memset(eb->addr + start, c, len);
4495		return;
4496	}
4497
4498	while (cur < start + len) {
4499		unsigned long index = get_eb_folio_index(eb, cur);
4500		unsigned int offset = get_eb_offset_in_folio(eb, cur);
4501		unsigned int cur_len = min(start + len - cur, unit_size - offset);
4502
4503		assert_eb_folio_uptodate(eb, index);
4504		memset(folio_address(eb->folios[index]) + offset, c, cur_len);
4505
4506		cur += cur_len;
4507	}
4508}
4509
4510void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4511			   unsigned long len)
4512{
4513	if (check_eb_range(eb, start, len))
4514		return;
4515	return memset_extent_buffer(eb, 0, start, len);
4516}
 
 
4517
4518void copy_extent_buffer_full(const struct extent_buffer *dst,
4519			     const struct extent_buffer *src)
4520{
4521	const int unit_size = folio_size(src->folios[0]);
4522	unsigned long cur = 0;
4523
4524	ASSERT(dst->len == src->len);
4525
4526	while (cur < src->len) {
4527		unsigned long index = get_eb_folio_index(src, cur);
4528		unsigned long offset = get_eb_offset_in_folio(src, cur);
4529		unsigned long cur_len = min(src->len, unit_size - offset);
4530		void *addr = folio_address(src->folios[index]) + offset;
4531
4532		write_extent_buffer(dst, addr, cur, cur_len);
 
 
4533
4534		cur += cur_len;
 
 
4535	}
4536}
4537
4538void copy_extent_buffer(const struct extent_buffer *dst,
4539			const struct extent_buffer *src,
4540			unsigned long dst_offset, unsigned long src_offset,
4541			unsigned long len)
4542{
4543	const int unit_size = folio_size(dst->folios[0]);
4544	u64 dst_len = dst->len;
4545	size_t cur;
4546	size_t offset;
 
4547	char *kaddr;
4548	unsigned long i = get_eb_folio_index(dst, dst_offset);
4549
4550	if (check_eb_range(dst, dst_offset, len) ||
4551	    check_eb_range(src, src_offset, len))
4552		return;
4553
4554	WARN_ON(src->len != dst_len);
4555
4556	offset = get_eb_offset_in_folio(dst, dst_offset);
 
4557
4558	while (len > 0) {
4559		assert_eb_folio_uptodate(dst, i);
 
4560
4561		cur = min(len, (unsigned long)(unit_size - offset));
4562
4563		kaddr = folio_address(dst->folios[i]);
4564		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4565
4566		src_offset += cur;
4567		len -= cur;
4568		offset = 0;
4569		i++;
4570	}
4571}
4572
4573/*
4574 * Calculate the folio and offset of the byte containing the given bit number.
4575 *
4576 * @eb:           the extent buffer
4577 * @start:        offset of the bitmap item in the extent buffer
4578 * @nr:           bit number
4579 * @folio_index:  return index of the folio in the extent buffer that contains
4580 *                the given bit number
4581 * @folio_offset: return offset into the folio given by folio_index
4582 *
4583 * This helper hides the ugliness of finding the byte in an extent buffer which
4584 * contains a given bit.
4585 */
4586static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4587				    unsigned long start, unsigned long nr,
4588				    unsigned long *folio_index,
4589				    size_t *folio_offset)
4590{
4591	size_t byte_offset = BIT_BYTE(nr);
4592	size_t offset;
4593
4594	/*
4595	 * The byte we want is the offset of the extent buffer + the offset of
4596	 * the bitmap item in the extent buffer + the offset of the byte in the
4597	 * bitmap item.
4598	 */
4599	offset = start + offset_in_folio(eb->folios[0], eb->start) + byte_offset;
4600
4601	*folio_index = offset >> folio_shift(eb->folios[0]);
4602	*folio_offset = offset_in_folio(eb->folios[0], offset);
4603}
4604
4605/*
4606 * Determine whether a bit in a bitmap item is set.
4607 *
4608 * @eb:     the extent buffer
4609 * @start:  offset of the bitmap item in the extent buffer
4610 * @nr:     bit number to test
4611 */
4612int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4613			   unsigned long nr)
4614{
4615	unsigned long i;
4616	size_t offset;
4617	u8 *kaddr;
4618
4619	eb_bitmap_offset(eb, start, nr, &i, &offset);
4620	assert_eb_folio_uptodate(eb, i);
4621	kaddr = folio_address(eb->folios[i]);
4622	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4623}
4624
4625static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4626{
4627	unsigned long index = get_eb_folio_index(eb, bytenr);
4628
4629	if (check_eb_range(eb, bytenr, 1))
4630		return NULL;
4631	return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4632}
4633
4634/*
4635 * Set an area of a bitmap to 1.
4636 *
4637 * @eb:     the extent buffer
4638 * @start:  offset of the bitmap item in the extent buffer
4639 * @pos:    bit number of the first bit
4640 * @len:    number of bits to set
4641 */
4642void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4643			      unsigned long pos, unsigned long len)
4644{
4645	unsigned int first_byte = start + BIT_BYTE(pos);
4646	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4647	const bool same_byte = (first_byte == last_byte);
4648	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4649	u8 *kaddr;
4650
4651	if (same_byte)
4652		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4653
4654	/* Handle the first byte. */
4655	kaddr = extent_buffer_get_byte(eb, first_byte);
4656	*kaddr |= mask;
4657	if (same_byte)
4658		return;
4659
4660	/* Handle the byte aligned part. */
4661	ASSERT(first_byte + 1 <= last_byte);
4662	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4663
4664	/* Handle the last byte. */
4665	kaddr = extent_buffer_get_byte(eb, last_byte);
4666	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4667}
4668
4669
4670/*
4671 * Clear an area of a bitmap.
4672 *
4673 * @eb:     the extent buffer
4674 * @start:  offset of the bitmap item in the extent buffer
4675 * @pos:    bit number of the first bit
4676 * @len:    number of bits to clear
4677 */
4678void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4679				unsigned long start, unsigned long pos,
4680				unsigned long len)
4681{
4682	unsigned int first_byte = start + BIT_BYTE(pos);
4683	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4684	const bool same_byte = (first_byte == last_byte);
4685	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4686	u8 *kaddr;
4687
4688	if (same_byte)
4689		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4690
4691	/* Handle the first byte. */
4692	kaddr = extent_buffer_get_byte(eb, first_byte);
4693	*kaddr &= ~mask;
4694	if (same_byte)
4695		return;
4696
4697	/* Handle the byte aligned part. */
4698	ASSERT(first_byte + 1 <= last_byte);
4699	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4700
4701	/* Handle the last byte. */
4702	kaddr = extent_buffer_get_byte(eb, last_byte);
4703	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4704}
4705
4706static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4707{
4708	unsigned long distance = (src > dst) ? src - dst : dst - src;
4709	return distance < len;
4710}
4711
4712void memcpy_extent_buffer(const struct extent_buffer *dst,
4713			  unsigned long dst_offset, unsigned long src_offset,
4714			  unsigned long len)
4715{
4716	const int unit_size = folio_size(dst->folios[0]);
4717	unsigned long cur_off = 0;
4718
4719	if (check_eb_range(dst, dst_offset, len) ||
4720	    check_eb_range(dst, src_offset, len))
4721		return;
 
 
 
4722
4723	if (dst->addr) {
4724		const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4725
4726		if (use_memmove)
4727			memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4728		else
4729			memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4730		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4731	}
4732
4733	while (cur_off < len) {
4734		unsigned long cur_src = cur_off + src_offset;
4735		unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4736		unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4737		unsigned long cur_len = min(src_offset + len - cur_src,
4738					    unit_size - folio_off);
4739		void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4740		const bool use_memmove = areas_overlap(src_offset + cur_off,
4741						       dst_offset + cur_off, cur_len);
4742
4743		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4744				      use_memmove);
4745		cur_off += cur_len;
 
 
 
 
 
 
 
 
4746	}
4747}
4748
4749void memmove_extent_buffer(const struct extent_buffer *dst,
4750			   unsigned long dst_offset, unsigned long src_offset,
4751			   unsigned long len)
4752{
 
 
 
4753	unsigned long dst_end = dst_offset + len - 1;
4754	unsigned long src_end = src_offset + len - 1;
4755
4756	if (check_eb_range(dst, dst_offset, len) ||
4757	    check_eb_range(dst, src_offset, len))
4758		return;
4759
4760	if (dst_offset < src_offset) {
4761		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4762		return;
 
 
 
 
 
4763	}
4764
4765	if (dst->addr) {
4766		memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4767		return;
4768	}
4769
4770	while (len > 0) {
4771		unsigned long src_i;
4772		size_t cur;
4773		size_t dst_off_in_folio;
4774		size_t src_off_in_folio;
4775		void *src_addr;
4776		bool use_memmove;
4777
4778		src_i = get_eb_folio_index(dst, src_end);
4779
4780		dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4781		src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4782
4783		cur = min_t(unsigned long, len, src_off_in_folio + 1);
4784		cur = min(cur, dst_off_in_folio + 1);
4785
4786		src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4787					 cur + 1;
4788		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4789					    cur);
4790
4791		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4792				      use_memmove);
 
 
 
 
 
 
 
 
 
4793
4794		dst_end -= cur;
4795		src_end -= cur;
4796		len -= cur;
4797	}
4798}
4799
4800#define GANG_LOOKUP_SIZE	16
4801static struct extent_buffer *get_next_extent_buffer(
4802		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4803{
4804	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4805	struct extent_buffer *found = NULL;
4806	u64 page_start = page_offset(page);
4807	u64 cur = page_start;
4808
4809	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4810	lockdep_assert_held(&fs_info->buffer_lock);
4811
4812	while (cur < page_start + PAGE_SIZE) {
4813		int ret;
4814		int i;
4815
4816		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4817				(void **)gang, cur >> fs_info->sectorsize_bits,
4818				min_t(unsigned int, GANG_LOOKUP_SIZE,
4819				      PAGE_SIZE / fs_info->nodesize));
4820		if (ret == 0)
4821			goto out;
4822		for (i = 0; i < ret; i++) {
4823			/* Already beyond page end */
4824			if (gang[i]->start >= page_start + PAGE_SIZE)
4825				goto out;
4826			/* Found one */
4827			if (gang[i]->start >= bytenr) {
4828				found = gang[i];
4829				goto out;
4830			}
4831		}
4832		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4833	}
4834out:
4835	return found;
4836}
4837
4838static int try_release_subpage_extent_buffer(struct page *page)
4839{
4840	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4841	u64 cur = page_offset(page);
4842	const u64 end = page_offset(page) + PAGE_SIZE;
4843	int ret;
4844
4845	while (cur < end) {
4846		struct extent_buffer *eb = NULL;
4847
4848		/*
4849		 * Unlike try_release_extent_buffer() which uses folio private
4850		 * to grab buffer, for subpage case we rely on radix tree, thus
4851		 * we need to ensure radix tree consistency.
4852		 *
4853		 * We also want an atomic snapshot of the radix tree, thus go
4854		 * with spinlock rather than RCU.
4855		 */
4856		spin_lock(&fs_info->buffer_lock);
4857		eb = get_next_extent_buffer(fs_info, page, cur);
4858		if (!eb) {
4859			/* No more eb in the page range after or at cur */
4860			spin_unlock(&fs_info->buffer_lock);
4861			break;
4862		}
4863		cur = eb->start + eb->len;
4864
4865		/*
4866		 * The same as try_release_extent_buffer(), to ensure the eb
4867		 * won't disappear out from under us.
4868		 */
4869		spin_lock(&eb->refs_lock);
4870		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4871			spin_unlock(&eb->refs_lock);
4872			spin_unlock(&fs_info->buffer_lock);
4873			break;
4874		}
4875		spin_unlock(&fs_info->buffer_lock);
4876
4877		/*
4878		 * If tree ref isn't set then we know the ref on this eb is a
4879		 * real ref, so just return, this eb will likely be freed soon
4880		 * anyway.
4881		 */
4882		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4883			spin_unlock(&eb->refs_lock);
4884			break;
4885		}
4886
4887		/*
4888		 * Here we don't care about the return value, we will always
4889		 * check the folio private at the end.  And
4890		 * release_extent_buffer() will release the refs_lock.
4891		 */
4892		release_extent_buffer(eb);
4893	}
4894	/*
4895	 * Finally to check if we have cleared folio private, as if we have
4896	 * released all ebs in the page, the folio private should be cleared now.
4897	 */
4898	spin_lock(&page->mapping->i_private_lock);
4899	if (!folio_test_private(page_folio(page)))
4900		ret = 1;
4901	else
4902		ret = 0;
4903	spin_unlock(&page->mapping->i_private_lock);
4904	return ret;
4905
 
4906}
4907
4908int try_release_extent_buffer(struct page *page)
4909{
4910	struct folio *folio = page_folio(page);
4911	struct extent_buffer *eb;
 
4912
4913	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4914		return try_release_subpage_extent_buffer(page);
4915
4916	/*
4917	 * We need to make sure nobody is changing folio private, as we rely on
4918	 * folio private as the pointer to extent buffer.
4919	 */
4920	spin_lock(&page->mapping->i_private_lock);
4921	if (!folio_test_private(folio)) {
4922		spin_unlock(&page->mapping->i_private_lock);
4923		return 1;
4924	}
4925
4926	eb = folio_get_private(folio);
4927	BUG_ON(!eb);
4928
4929	/*
4930	 * This is a little awful but should be ok, we need to make sure that
4931	 * the eb doesn't disappear out from under us while we're looking at
4932	 * this page.
4933	 */
4934	spin_lock(&eb->refs_lock);
4935	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4936		spin_unlock(&eb->refs_lock);
4937		spin_unlock(&page->mapping->i_private_lock);
4938		return 0;
4939	}
4940	spin_unlock(&page->mapping->i_private_lock);
4941
4942	/*
4943	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4944	 * so just return, this page will likely be freed soon anyway.
4945	 */
4946	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4947		spin_unlock(&eb->refs_lock);
4948		return 0;
4949	}
4950
4951	return release_extent_buffer(eb);
4952}
4953
4954/*
4955 * Attempt to readahead a child block.
4956 *
4957 * @fs_info:	the fs_info
4958 * @bytenr:	bytenr to read
4959 * @owner_root: objectid of the root that owns this eb
4960 * @gen:	generation for the uptodate check, can be 0
4961 * @level:	level for the eb
4962 *
4963 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
4964 * normal uptodate check of the eb, without checking the generation.  If we have
4965 * to read the block we will not block on anything.
4966 */
4967void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4968				u64 bytenr, u64 owner_root, u64 gen, int level)
4969{
4970	struct btrfs_tree_parent_check check = {
4971		.has_first_key = 0,
4972		.level = level,
4973		.transid = gen
4974	};
4975	struct extent_buffer *eb;
4976	int ret;
4977
4978	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4979	if (IS_ERR(eb))
4980		return;
4981
4982	if (btrfs_buffer_uptodate(eb, gen, 1)) {
4983		free_extent_buffer(eb);
4984		return;
4985	}
4986
4987	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4988	if (ret < 0)
4989		free_extent_buffer_stale(eb);
4990	else
4991		free_extent_buffer(eb);
4992}
4993
4994/*
4995 * Readahead a node's child block.
4996 *
4997 * @node:	parent node we're reading from
4998 * @slot:	slot in the parent node for the child we want to read
4999 *
5000 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5001 * the slot in the node provided.
5002 */
5003void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5004{
5005	btrfs_readahead_tree_block(node->fs_info,
5006				   btrfs_node_blockptr(node, slot),
5007				   btrfs_header_owner(node),
5008				   btrfs_node_ptr_generation(node, slot),
5009				   btrfs_header_level(node) - 1);
5010}
v3.1
 
 
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
   7#include <linux/module.h>
   8#include <linux/spinlock.h>
   9#include <linux/blkdev.h>
  10#include <linux/swap.h>
  11#include <linux/writeback.h>
  12#include <linux/pagevec.h>
  13#include <linux/prefetch.h>
  14#include <linux/cleancache.h>
 
  15#include "extent_io.h"
 
  16#include "extent_map.h"
  17#include "compat.h"
  18#include "ctree.h"
  19#include "btrfs_inode.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  20
  21static struct kmem_cache *extent_state_cache;
  22static struct kmem_cache *extent_buffer_cache;
  23
  24static LIST_HEAD(buffers);
  25static LIST_HEAD(states);
 
 
 
  26
  27#define LEAK_DEBUG 0
  28#if LEAK_DEBUG
  29static DEFINE_SPINLOCK(leak_lock);
  30#endif
  31
  32#define BUFFER_LRU_MAX 64
  33
  34struct tree_entry {
  35	u64 start;
  36	u64 end;
  37	struct rb_node rb_node;
  38};
  39
  40struct extent_page_data {
  41	struct bio *bio;
  42	struct extent_io_tree *tree;
  43	get_extent_t *get_extent;
  44
  45	/* tells writepage not to lock the state bits for this range
  46	 * it still does the unlocking
  47	 */
  48	unsigned int extent_locked:1;
  49
  50	/* tells the submit_bio code to use a WRITE_SYNC */
  51	unsigned int sync_io:1;
  52};
  53
  54int __init extent_io_init(void)
  55{
  56	extent_state_cache = kmem_cache_create("extent_state",
  57			sizeof(struct extent_state), 0,
  58			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  59	if (!extent_state_cache)
  60		return -ENOMEM;
  61
  62	extent_buffer_cache = kmem_cache_create("extent_buffers",
  63			sizeof(struct extent_buffer), 0,
  64			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  65	if (!extent_buffer_cache)
  66		goto free_state_cache;
  67	return 0;
  68
  69free_state_cache:
  70	kmem_cache_destroy(extent_state_cache);
  71	return -ENOMEM;
  72}
  73
  74void extent_io_exit(void)
  75{
  76	struct extent_state *state;
  77	struct extent_buffer *eb;
 
  78
  79	while (!list_empty(&states)) {
  80		state = list_entry(states.next, struct extent_state, leak_list);
  81		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
  82		       "state %lu in tree %p refs %d\n",
  83		       (unsigned long long)state->start,
  84		       (unsigned long long)state->end,
  85		       state->state, state->tree, atomic_read(&state->refs));
  86		list_del(&state->leak_list);
  87		kmem_cache_free(extent_state_cache, state);
  88
  89	}
  90
  91	while (!list_empty(&buffers)) {
  92		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  93		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
  94		       "refs %d\n", (unsigned long long)eb->start,
  95		       eb->len, atomic_read(&eb->refs));
 
 
 
 
  96		list_del(&eb->leak_list);
  97		kmem_cache_free(extent_buffer_cache, eb);
  98	}
  99	if (extent_state_cache)
 100		kmem_cache_destroy(extent_state_cache);
 101	if (extent_buffer_cache)
 102		kmem_cache_destroy(extent_buffer_cache);
 103}
 
 
 
 
 104
 105void extent_io_tree_init(struct extent_io_tree *tree,
 106			 struct address_space *mapping)
 107{
 108	tree->state = RB_ROOT;
 109	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
 110	tree->ops = NULL;
 111	tree->dirty_bytes = 0;
 112	spin_lock_init(&tree->lock);
 113	spin_lock_init(&tree->buffer_lock);
 114	tree->mapping = mapping;
 115}
 
 116
 117static struct extent_state *alloc_extent_state(gfp_t mask)
 118{
 119	struct extent_state *state;
 120#if LEAK_DEBUG
 121	unsigned long flags;
 122#endif
 123
 124	state = kmem_cache_alloc(extent_state_cache, mask);
 125	if (!state)
 126		return state;
 127	state->state = 0;
 128	state->private = 0;
 129	state->tree = NULL;
 130#if LEAK_DEBUG
 131	spin_lock_irqsave(&leak_lock, flags);
 132	list_add(&state->leak_list, &states);
 133	spin_unlock_irqrestore(&leak_lock, flags);
 134#endif
 135	atomic_set(&state->refs, 1);
 136	init_waitqueue_head(&state->wq);
 137	return state;
 138}
 139
 140void free_extent_state(struct extent_state *state)
 141{
 142	if (!state)
 143		return;
 144	if (atomic_dec_and_test(&state->refs)) {
 145#if LEAK_DEBUG
 146		unsigned long flags;
 147#endif
 148		WARN_ON(state->tree);
 149#if LEAK_DEBUG
 150		spin_lock_irqsave(&leak_lock, flags);
 151		list_del(&state->leak_list);
 152		spin_unlock_irqrestore(&leak_lock, flags);
 153#endif
 154		kmem_cache_free(extent_state_cache, state);
 155	}
 156}
 157
 158static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
 159				   struct rb_node *node)
 160{
 161	struct rb_node **p = &root->rb_node;
 162	struct rb_node *parent = NULL;
 163	struct tree_entry *entry;
 164
 165	while (*p) {
 166		parent = *p;
 167		entry = rb_entry(parent, struct tree_entry, rb_node);
 168
 169		if (offset < entry->start)
 170			p = &(*p)->rb_left;
 171		else if (offset > entry->end)
 172			p = &(*p)->rb_right;
 173		else
 174			return parent;
 175	}
 176
 177	entry = rb_entry(node, struct tree_entry, rb_node);
 178	rb_link_node(node, parent, p);
 179	rb_insert_color(node, root);
 180	return NULL;
 181}
 182
 183static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 184				     struct rb_node **prev_ret,
 185				     struct rb_node **next_ret)
 186{
 187	struct rb_root *root = &tree->state;
 188	struct rb_node *n = root->rb_node;
 189	struct rb_node *prev = NULL;
 190	struct rb_node *orig_prev = NULL;
 191	struct tree_entry *entry;
 192	struct tree_entry *prev_entry = NULL;
 193
 194	while (n) {
 195		entry = rb_entry(n, struct tree_entry, rb_node);
 196		prev = n;
 197		prev_entry = entry;
 198
 199		if (offset < entry->start)
 200			n = n->rb_left;
 201		else if (offset > entry->end)
 202			n = n->rb_right;
 203		else
 204			return n;
 205	}
 206
 207	if (prev_ret) {
 208		orig_prev = prev;
 209		while (prev && offset > prev_entry->end) {
 210			prev = rb_next(prev);
 211			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 212		}
 213		*prev_ret = prev;
 214		prev = orig_prev;
 215	}
 216
 217	if (next_ret) {
 218		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 219		while (prev && offset < prev_entry->start) {
 220			prev = rb_prev(prev);
 221			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 222		}
 223		*next_ret = prev;
 224	}
 225	return NULL;
 226}
 227
 228static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 229					  u64 offset)
 230{
 231	struct rb_node *prev = NULL;
 232	struct rb_node *ret;
 233
 234	ret = __etree_search(tree, offset, &prev, NULL);
 235	if (!ret)
 236		return prev;
 237	return ret;
 238}
 239
 240static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 241		     struct extent_state *other)
 242{
 243	if (tree->ops && tree->ops->merge_extent_hook)
 244		tree->ops->merge_extent_hook(tree->mapping->host, new,
 245					     other);
 246}
 247
 248/*
 249 * utility function to look for merge candidates inside a given range.
 250 * Any extents with matching state are merged together into a single
 251 * extent in the tree.  Extents with EXTENT_IO in their state field
 252 * are not merged because the end_io handlers need to be able to do
 253 * operations on them without sleeping (or doing allocations/splits).
 254 *
 255 * This should be called with the tree lock held.
 256 */
 257static void merge_state(struct extent_io_tree *tree,
 258		        struct extent_state *state)
 259{
 260	struct extent_state *other;
 261	struct rb_node *other_node;
 262
 263	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 264		return;
 265
 266	other_node = rb_prev(&state->rb_node);
 267	if (other_node) {
 268		other = rb_entry(other_node, struct extent_state, rb_node);
 269		if (other->end == state->start - 1 &&
 270		    other->state == state->state) {
 271			merge_cb(tree, state, other);
 272			state->start = other->start;
 273			other->tree = NULL;
 274			rb_erase(&other->rb_node, &tree->state);
 275			free_extent_state(other);
 276		}
 277	}
 278	other_node = rb_next(&state->rb_node);
 279	if (other_node) {
 280		other = rb_entry(other_node, struct extent_state, rb_node);
 281		if (other->start == state->end + 1 &&
 282		    other->state == state->state) {
 283			merge_cb(tree, state, other);
 284			state->end = other->end;
 285			other->tree = NULL;
 286			rb_erase(&other->rb_node, &tree->state);
 287			free_extent_state(other);
 288		}
 289	}
 290}
 291
 292static void set_state_cb(struct extent_io_tree *tree,
 293			 struct extent_state *state, int *bits)
 294{
 295	if (tree->ops && tree->ops->set_bit_hook)
 296		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 297}
 298
 299static void clear_state_cb(struct extent_io_tree *tree,
 300			   struct extent_state *state, int *bits)
 301{
 302	if (tree->ops && tree->ops->clear_bit_hook)
 303		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 304}
 305
 306static void set_state_bits(struct extent_io_tree *tree,
 307			   struct extent_state *state, int *bits);
 308
 309/*
 310 * insert an extent_state struct into the tree.  'bits' are set on the
 311 * struct before it is inserted.
 312 *
 313 * This may return -EEXIST if the extent is already there, in which case the
 314 * state struct is freed.
 315 *
 316 * The tree lock is not taken internally.  This is a utility function and
 317 * probably isn't what you want to call (see set/clear_extent_bit).
 318 */
 319static int insert_state(struct extent_io_tree *tree,
 320			struct extent_state *state, u64 start, u64 end,
 321			int *bits)
 322{
 323	struct rb_node *node;
 324
 325	if (end < start) {
 326		printk(KERN_ERR "btrfs end < start %llu %llu\n",
 327		       (unsigned long long)end,
 328		       (unsigned long long)start);
 329		WARN_ON(1);
 330	}
 331	state->start = start;
 332	state->end = end;
 333
 334	set_state_bits(tree, state, bits);
 335
 336	node = tree_insert(&tree->state, end, &state->rb_node);
 337	if (node) {
 338		struct extent_state *found;
 339		found = rb_entry(node, struct extent_state, rb_node);
 340		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
 341		       "%llu %llu\n", (unsigned long long)found->start,
 342		       (unsigned long long)found->end,
 343		       (unsigned long long)start, (unsigned long long)end);
 344		return -EEXIST;
 345	}
 346	state->tree = tree;
 347	merge_state(tree, state);
 348	return 0;
 349}
 350
 351static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 352		     u64 split)
 353{
 354	if (tree->ops && tree->ops->split_extent_hook)
 355		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 
 
 
 
 356}
 357
 358/*
 359 * split a given extent state struct in two, inserting the preallocated
 360 * struct 'prealloc' as the newly created second half.  'split' indicates an
 361 * offset inside 'orig' where it should be split.
 362 *
 363 * Before calling,
 364 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 365 * are two extent state structs in the tree:
 366 * prealloc: [orig->start, split - 1]
 367 * orig: [ split, orig->end ]
 368 *
 369 * The tree locks are not taken by this function. They need to be held
 370 * by the caller.
 371 */
 372static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 373		       struct extent_state *prealloc, u64 split)
 374{
 375	struct rb_node *node;
 
 
 376
 377	split_cb(tree, orig, split);
 378
 379	prealloc->start = orig->start;
 380	prealloc->end = split - 1;
 381	prealloc->state = orig->state;
 382	orig->start = split;
 383
 384	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
 385	if (node) {
 386		free_extent_state(prealloc);
 387		return -EEXIST;
 388	}
 389	prealloc->tree = tree;
 390	return 0;
 391}
 392
 393/*
 394 * utility function to clear some bits in an extent state struct.
 395 * it will optionally wake up any one waiting on this state (wake == 1), or
 396 * forcibly remove the state from the tree (delete == 1).
 397 *
 398 * If no bits are set on the state struct after clearing things, the
 399 * struct is freed and removed from the tree
 400 */
 401static int clear_state_bit(struct extent_io_tree *tree,
 402			    struct extent_state *state,
 403			    int *bits, int wake)
 404{
 405	int bits_to_clear = *bits & ~EXTENT_CTLBITS;
 406	int ret = state->state & bits_to_clear;
 407
 408	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 409		u64 range = state->end - state->start + 1;
 410		WARN_ON(range > tree->dirty_bytes);
 411		tree->dirty_bytes -= range;
 412	}
 413	clear_state_cb(tree, state, bits);
 414	state->state &= ~bits_to_clear;
 415	if (wake)
 416		wake_up(&state->wq);
 417	if (state->state == 0) {
 418		if (state->tree) {
 419			rb_erase(&state->rb_node, &tree->state);
 420			state->tree = NULL;
 421			free_extent_state(state);
 422		} else {
 423			WARN_ON(1);
 424		}
 425	} else {
 426		merge_state(tree, state);
 427	}
 428	return ret;
 429}
 430
 431static struct extent_state *
 432alloc_extent_state_atomic(struct extent_state *prealloc)
 433{
 434	if (!prealloc)
 435		prealloc = alloc_extent_state(GFP_ATOMIC);
 436
 437	return prealloc;
 438}
 439
 440/*
 441 * clear some bits on a range in the tree.  This may require splitting
 442 * or inserting elements in the tree, so the gfp mask is used to
 443 * indicate which allocations or sleeping are allowed.
 444 *
 445 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 446 * the given range from the tree regardless of state (ie for truncate).
 447 *
 448 * the range [start, end] is inclusive.
 449 *
 450 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
 451 * bits were already set, or zero if none of the bits were already set.
 452 */
 453int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 454		     int bits, int wake, int delete,
 455		     struct extent_state **cached_state,
 456		     gfp_t mask)
 457{
 458	struct extent_state *state;
 459	struct extent_state *cached;
 460	struct extent_state *prealloc = NULL;
 461	struct rb_node *next_node;
 462	struct rb_node *node;
 463	u64 last_end;
 464	int err;
 465	int set = 0;
 466	int clear = 0;
 467
 468	if (delete)
 469		bits |= ~EXTENT_CTLBITS;
 470	bits |= EXTENT_FIRST_DELALLOC;
 471
 472	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 473		clear = 1;
 474again:
 475	if (!prealloc && (mask & __GFP_WAIT)) {
 476		prealloc = alloc_extent_state(mask);
 477		if (!prealloc)
 478			return -ENOMEM;
 479	}
 480
 481	spin_lock(&tree->lock);
 482	if (cached_state) {
 483		cached = *cached_state;
 484
 485		if (clear) {
 486			*cached_state = NULL;
 487			cached_state = NULL;
 488		}
 489
 490		if (cached && cached->tree && cached->start <= start &&
 491		    cached->end > start) {
 492			if (clear)
 493				atomic_dec(&cached->refs);
 494			state = cached;
 495			goto hit_next;
 496		}
 497		if (clear)
 498			free_extent_state(cached);
 499	}
 500	/*
 501	 * this search will find the extents that end after
 502	 * our range starts
 503	 */
 504	node = tree_search(tree, start);
 505	if (!node)
 506		goto out;
 507	state = rb_entry(node, struct extent_state, rb_node);
 508hit_next:
 509	if (state->start > end)
 510		goto out;
 511	WARN_ON(state->end < start);
 512	last_end = state->end;
 513
 514	/*
 515	 *     | ---- desired range ---- |
 516	 *  | state | or
 517	 *  | ------------- state -------------- |
 518	 *
 519	 * We need to split the extent we found, and may flip
 520	 * bits on second half.
 521	 *
 522	 * If the extent we found extends past our range, we
 523	 * just split and search again.  It'll get split again
 524	 * the next time though.
 525	 *
 526	 * If the extent we found is inside our range, we clear
 527	 * the desired bit on it.
 528	 */
 529
 530	if (state->start < start) {
 531		prealloc = alloc_extent_state_atomic(prealloc);
 532		BUG_ON(!prealloc);
 533		err = split_state(tree, state, prealloc, start);
 534		BUG_ON(err == -EEXIST);
 535		prealloc = NULL;
 536		if (err)
 537			goto out;
 538		if (state->end <= end) {
 539			set |= clear_state_bit(tree, state, &bits, wake);
 540			if (last_end == (u64)-1)
 541				goto out;
 542			start = last_end + 1;
 543		}
 544		goto search_again;
 545	}
 546	/*
 547	 * | ---- desired range ---- |
 548	 *                        | state |
 549	 * We need to split the extent, and clear the bit
 550	 * on the first half
 551	 */
 552	if (state->start <= end && state->end > end) {
 553		prealloc = alloc_extent_state_atomic(prealloc);
 554		BUG_ON(!prealloc);
 555		err = split_state(tree, state, prealloc, end + 1);
 556		BUG_ON(err == -EEXIST);
 557		if (wake)
 558			wake_up(&state->wq);
 559
 560		set |= clear_state_bit(tree, prealloc, &bits, wake);
 561
 562		prealloc = NULL;
 563		goto out;
 564	}
 565
 566	if (state->end < end && prealloc && !need_resched())
 567		next_node = rb_next(&state->rb_node);
 568	else
 569		next_node = NULL;
 570
 571	set |= clear_state_bit(tree, state, &bits, wake);
 572	if (last_end == (u64)-1)
 573		goto out;
 574	start = last_end + 1;
 575	if (start <= end && next_node) {
 576		state = rb_entry(next_node, struct extent_state,
 577				 rb_node);
 578		if (state->start == start)
 579			goto hit_next;
 580	}
 581	goto search_again;
 582
 583out:
 584	spin_unlock(&tree->lock);
 585	if (prealloc)
 586		free_extent_state(prealloc);
 587
 588	return set;
 589
 590search_again:
 591	if (start > end)
 592		goto out;
 593	spin_unlock(&tree->lock);
 594	if (mask & __GFP_WAIT)
 595		cond_resched();
 596	goto again;
 597}
 598
 599static int wait_on_state(struct extent_io_tree *tree,
 600			 struct extent_state *state)
 601		__releases(tree->lock)
 602		__acquires(tree->lock)
 603{
 604	DEFINE_WAIT(wait);
 605	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 606	spin_unlock(&tree->lock);
 607	schedule();
 608	spin_lock(&tree->lock);
 609	finish_wait(&state->wq, &wait);
 610	return 0;
 611}
 612
 613/*
 614 * waits for one or more bits to clear on a range in the state tree.
 615 * The range [start, end] is inclusive.
 616 * The tree lock is taken by this function
 617 */
 618int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
 619{
 620	struct extent_state *state;
 621	struct rb_node *node;
 622
 623	spin_lock(&tree->lock);
 624again:
 625	while (1) {
 626		/*
 627		 * this search will find all the extents that end after
 628		 * our range starts
 629		 */
 630		node = tree_search(tree, start);
 631		if (!node)
 632			break;
 633
 634		state = rb_entry(node, struct extent_state, rb_node);
 635
 636		if (state->start > end)
 637			goto out;
 638
 639		if (state->state & bits) {
 640			start = state->start;
 641			atomic_inc(&state->refs);
 642			wait_on_state(tree, state);
 643			free_extent_state(state);
 644			goto again;
 645		}
 646		start = state->end + 1;
 647
 648		if (start > end)
 649			break;
 650
 651		cond_resched_lock(&tree->lock);
 652	}
 653out:
 654	spin_unlock(&tree->lock);
 655	return 0;
 656}
 657
 658static void set_state_bits(struct extent_io_tree *tree,
 659			   struct extent_state *state,
 660			   int *bits)
 661{
 662	int bits_to_set = *bits & ~EXTENT_CTLBITS;
 
 663
 664	set_state_cb(tree, state, bits);
 665	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 666		u64 range = state->end - state->start + 1;
 667		tree->dirty_bytes += range;
 668	}
 669	state->state |= bits_to_set;
 670}
 671
 672static void cache_state(struct extent_state *state,
 673			struct extent_state **cached_ptr)
 674{
 675	if (cached_ptr && !(*cached_ptr)) {
 676		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
 677			*cached_ptr = state;
 678			atomic_inc(&state->refs);
 679		}
 680	}
 681}
 682
 683static void uncache_state(struct extent_state **cached_ptr)
 
 
 
 684{
 685	if (cached_ptr && (*cached_ptr)) {
 686		struct extent_state *state = *cached_ptr;
 687		*cached_ptr = NULL;
 688		free_extent_state(state);
 689	}
 690}
 
 691
 692/*
 693 * set some bits on a range in the tree.  This may require allocations or
 694 * sleeping, so the gfp mask is used to indicate what is allowed.
 695 *
 696 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 697 * part of the range already has the desired bits set.  The start of the
 698 * existing range is returned in failed_start in this case.
 699 *
 700 * [start, end] is inclusive This takes the tree lock.
 701 */
 702
 703int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 704		   int bits, int exclusive_bits, u64 *failed_start,
 705		   struct extent_state **cached_state, gfp_t mask)
 706{
 707	struct extent_state *state;
 708	struct extent_state *prealloc = NULL;
 709	struct rb_node *node;
 710	int err = 0;
 711	u64 last_start;
 712	u64 last_end;
 713
 714	bits |= EXTENT_FIRST_DELALLOC;
 715again:
 716	if (!prealloc && (mask & __GFP_WAIT)) {
 717		prealloc = alloc_extent_state(mask);
 718		BUG_ON(!prealloc);
 719	}
 720
 721	spin_lock(&tree->lock);
 722	if (cached_state && *cached_state) {
 723		state = *cached_state;
 724		if (state->start <= start && state->end > start &&
 725		    state->tree) {
 726			node = &state->rb_node;
 727			goto hit_next;
 728		}
 729	}
 730	/*
 731	 * this search will find all the extents that end after
 732	 * our range starts.
 733	 */
 734	node = tree_search(tree, start);
 735	if (!node) {
 736		prealloc = alloc_extent_state_atomic(prealloc);
 737		BUG_ON(!prealloc);
 738		err = insert_state(tree, prealloc, start, end, &bits);
 739		prealloc = NULL;
 740		BUG_ON(err == -EEXIST);
 741		goto out;
 742	}
 743	state = rb_entry(node, struct extent_state, rb_node);
 744hit_next:
 745	last_start = state->start;
 746	last_end = state->end;
 747
 748	/*
 749	 * | ---- desired range ---- |
 750	 * | state |
 751	 *
 752	 * Just lock what we found and keep going
 753	 */
 754	if (state->start == start && state->end <= end) {
 755		struct rb_node *next_node;
 756		if (state->state & exclusive_bits) {
 757			*failed_start = state->start;
 758			err = -EEXIST;
 759			goto out;
 760		}
 761
 762		set_state_bits(tree, state, &bits);
 
 
 
 763
 764		cache_state(state, cached_state);
 765		merge_state(tree, state);
 766		if (last_end == (u64)-1)
 767			goto out;
 768
 769		start = last_end + 1;
 770		next_node = rb_next(&state->rb_node);
 771		if (next_node && start < end && prealloc && !need_resched()) {
 772			state = rb_entry(next_node, struct extent_state,
 773					 rb_node);
 774			if (state->start == start)
 775				goto hit_next;
 776		}
 777		goto search_again;
 778	}
 779
 780	/*
 781	 *     | ---- desired range ---- |
 782	 * | state |
 783	 *   or
 784	 * | ------------- state -------------- |
 785	 *
 786	 * We need to split the extent we found, and may flip bits on
 787	 * second half.
 788	 *
 789	 * If the extent we found extends past our
 790	 * range, we just split and search again.  It'll get split
 791	 * again the next time though.
 792	 *
 793	 * If the extent we found is inside our range, we set the
 794	 * desired bit on it.
 795	 */
 796	if (state->start < start) {
 797		if (state->state & exclusive_bits) {
 798			*failed_start = start;
 799			err = -EEXIST;
 800			goto out;
 801		}
 802
 803		prealloc = alloc_extent_state_atomic(prealloc);
 804		BUG_ON(!prealloc);
 805		err = split_state(tree, state, prealloc, start);
 806		BUG_ON(err == -EEXIST);
 807		prealloc = NULL;
 808		if (err)
 809			goto out;
 810		if (state->end <= end) {
 811			set_state_bits(tree, state, &bits);
 812			cache_state(state, cached_state);
 813			merge_state(tree, state);
 814			if (last_end == (u64)-1)
 815				goto out;
 816			start = last_end + 1;
 817		}
 818		goto search_again;
 819	}
 820	/*
 821	 * | ---- desired range ---- |
 822	 *     | state | or               | state |
 823	 *
 824	 * There's a hole, we need to insert something in it and
 825	 * ignore the extent we found.
 826	 */
 827	if (state->start > start) {
 828		u64 this_end;
 829		if (end < last_start)
 830			this_end = end;
 831		else
 832			this_end = last_start - 1;
 833
 834		prealloc = alloc_extent_state_atomic(prealloc);
 835		BUG_ON(!prealloc);
 836
 837		/*
 838		 * Avoid to free 'prealloc' if it can be merged with
 839		 * the later extent.
 840		 */
 841		err = insert_state(tree, prealloc, start, this_end,
 842				   &bits);
 843		BUG_ON(err == -EEXIST);
 844		if (err) {
 845			free_extent_state(prealloc);
 846			prealloc = NULL;
 847			goto out;
 848		}
 849		cache_state(prealloc, cached_state);
 850		prealloc = NULL;
 851		start = this_end + 1;
 852		goto search_again;
 853	}
 854	/*
 855	 * | ---- desired range ---- |
 856	 *                        | state |
 857	 * We need to split the extent, and set the bit
 858	 * on the first half
 859	 */
 860	if (state->start <= end && state->end > end) {
 861		if (state->state & exclusive_bits) {
 862			*failed_start = start;
 863			err = -EEXIST;
 864			goto out;
 865		}
 866
 867		prealloc = alloc_extent_state_atomic(prealloc);
 868		BUG_ON(!prealloc);
 869		err = split_state(tree, state, prealloc, end + 1);
 870		BUG_ON(err == -EEXIST);
 871
 872		set_state_bits(tree, prealloc, &bits);
 873		cache_state(prealloc, cached_state);
 874		merge_state(tree, prealloc);
 875		prealloc = NULL;
 876		goto out;
 877	}
 878
 879	goto search_again;
 880
 881out:
 882	spin_unlock(&tree->lock);
 883	if (prealloc)
 884		free_extent_state(prealloc);
 885
 886	return err;
 887
 888search_again:
 889	if (start > end)
 890		goto out;
 891	spin_unlock(&tree->lock);
 892	if (mask & __GFP_WAIT)
 893		cond_resched();
 894	goto again;
 895}
 896
 897/* wrappers around set/clear extent bit */
 898int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
 899		     gfp_t mask)
 900{
 901	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
 902			      NULL, mask);
 903}
 904
 905int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 906		    int bits, gfp_t mask)
 907{
 908	return set_extent_bit(tree, start, end, bits, 0, NULL,
 909			      NULL, mask);
 910}
 911
 912int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 913		      int bits, gfp_t mask)
 914{
 915	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
 916}
 917
 918int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
 919			struct extent_state **cached_state, gfp_t mask)
 920{
 921	return set_extent_bit(tree, start, end,
 922			      EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
 923			      0, NULL, cached_state, mask);
 924}
 925
 926int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
 927		       gfp_t mask)
 928{
 929	return clear_extent_bit(tree, start, end,
 930				EXTENT_DIRTY | EXTENT_DELALLOC |
 931				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
 932}
 933
 934int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
 935		     gfp_t mask)
 936{
 937	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
 938			      NULL, mask);
 939}
 940
 941int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
 942			struct extent_state **cached_state, gfp_t mask)
 943{
 944	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
 945			      NULL, cached_state, mask);
 946}
 947
 948static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
 949				 u64 end, struct extent_state **cached_state,
 950				 gfp_t mask)
 951{
 952	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
 953				cached_state, mask);
 954}
 955
 956/*
 957 * either insert or lock state struct between start and end use mask to tell
 958 * us if waiting is desired.
 959 */
 960int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 961		     int bits, struct extent_state **cached_state, gfp_t mask)
 962{
 963	int err;
 964	u64 failed_start;
 965	while (1) {
 966		err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
 967				     EXTENT_LOCKED, &failed_start,
 968				     cached_state, mask);
 969		if (err == -EEXIST && (mask & __GFP_WAIT)) {
 970			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
 971			start = failed_start;
 972		} else {
 973			break;
 974		}
 975		WARN_ON(start > end);
 976	}
 977	return err;
 978}
 979
 980int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
 981{
 982	return lock_extent_bits(tree, start, end, 0, NULL, mask);
 983}
 984
 985int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
 986		    gfp_t mask)
 987{
 988	int err;
 989	u64 failed_start;
 990
 991	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
 992			     &failed_start, NULL, mask);
 993	if (err == -EEXIST) {
 994		if (failed_start > start)
 995			clear_extent_bit(tree, start, failed_start - 1,
 996					 EXTENT_LOCKED, 1, 0, NULL, mask);
 997		return 0;
 998	}
 999	return 1;
1000}
1001
1002int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1003			 struct extent_state **cached, gfp_t mask)
1004{
1005	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1006				mask);
1007}
1008
1009int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1010{
1011	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1012				mask);
1013}
1014
1015/*
1016 * helper function to set both pages and extents in the tree writeback
1017 */
1018static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1019{
1020	unsigned long index = start >> PAGE_CACHE_SHIFT;
1021	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1022	struct page *page;
1023
1024	while (index <= end_index) {
1025		page = find_get_page(tree->mapping, index);
1026		BUG_ON(!page);
1027		set_page_writeback(page);
1028		page_cache_release(page);
1029		index++;
1030	}
1031	return 0;
1032}
1033
1034/* find the first state struct with 'bits' set after 'start', and
1035 * return it.  tree->lock must be held.  NULL will returned if
1036 * nothing was found after 'start'
1037 */
1038struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1039						 u64 start, int bits)
1040{
1041	struct rb_node *node;
1042	struct extent_state *state;
1043
1044	/*
1045	 * this search will find all the extents that end after
1046	 * our range starts.
1047	 */
1048	node = tree_search(tree, start);
1049	if (!node)
1050		goto out;
1051
1052	while (1) {
1053		state = rb_entry(node, struct extent_state, rb_node);
1054		if (state->end >= start && (state->state & bits))
1055			return state;
1056
1057		node = rb_next(node);
1058		if (!node)
1059			break;
1060	}
1061out:
1062	return NULL;
 
 
 
1063}
1064
1065/*
1066 * find the first offset in the io tree with 'bits' set. zero is
1067 * returned if we find something, and *start_ret and *end_ret are
1068 * set to reflect the state struct that was found.
1069 *
1070 * If nothing was found, 1 is returned, < 0 on error
1071 */
1072int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1073			  u64 *start_ret, u64 *end_ret, int bits)
1074{
1075	struct extent_state *state;
1076	int ret = 1;
1077
1078	spin_lock(&tree->lock);
1079	state = find_first_extent_bit_state(tree, start, bits);
1080	if (state) {
1081		*start_ret = state->start;
1082		*end_ret = state->end;
1083		ret = 0;
1084	}
1085	spin_unlock(&tree->lock);
1086	return ret;
1087}
1088
1089/*
1090 * find a contiguous range of bytes in the file marked as delalloc, not
1091 * more than 'max_bytes'.  start and end are used to return the range,
1092 *
1093 * 1 is returned if we find something, 0 if nothing was in the tree
1094 */
1095static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1096					u64 *start, u64 *end, u64 max_bytes,
1097					struct extent_state **cached_state)
1098{
1099	struct rb_node *node;
1100	struct extent_state *state;
1101	u64 cur_start = *start;
1102	u64 found = 0;
1103	u64 total_bytes = 0;
1104
1105	spin_lock(&tree->lock);
1106
1107	/*
1108	 * this search will find all the extents that end after
1109	 * our range starts.
1110	 */
1111	node = tree_search(tree, cur_start);
1112	if (!node) {
1113		if (!found)
1114			*end = (u64)-1;
1115		goto out;
1116	}
1117
1118	while (1) {
1119		state = rb_entry(node, struct extent_state, rb_node);
1120		if (found && (state->start != cur_start ||
1121			      (state->state & EXTENT_BOUNDARY))) {
1122			goto out;
1123		}
1124		if (!(state->state & EXTENT_DELALLOC)) {
1125			if (!found)
1126				*end = state->end;
1127			goto out;
1128		}
1129		if (!found) {
1130			*start = state->start;
1131			*cached_state = state;
1132			atomic_inc(&state->refs);
1133		}
1134		found++;
1135		*end = state->end;
1136		cur_start = state->end + 1;
1137		node = rb_next(node);
1138		if (!node)
1139			break;
1140		total_bytes += state->end - state->start + 1;
1141		if (total_bytes >= max_bytes)
1142			break;
1143	}
1144out:
1145	spin_unlock(&tree->lock);
1146	return found;
1147}
1148
1149static noinline int __unlock_for_delalloc(struct inode *inode,
1150					  struct page *locked_page,
1151					  u64 start, u64 end)
1152{
1153	int ret;
1154	struct page *pages[16];
1155	unsigned long index = start >> PAGE_CACHE_SHIFT;
1156	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1157	unsigned long nr_pages = end_index - index + 1;
1158	int i;
1159
1160	if (index == locked_page->index && end_index == index)
1161		return 0;
1162
1163	while (nr_pages > 0) {
1164		ret = find_get_pages_contig(inode->i_mapping, index,
1165				     min_t(unsigned long, nr_pages,
1166				     ARRAY_SIZE(pages)), pages);
1167		for (i = 0; i < ret; i++) {
1168			if (pages[i] != locked_page)
1169				unlock_page(pages[i]);
1170			page_cache_release(pages[i]);
1171		}
1172		nr_pages -= ret;
1173		index += ret;
1174		cond_resched();
1175	}
1176	return 0;
1177}
1178
1179static noinline int lock_delalloc_pages(struct inode *inode,
1180					struct page *locked_page,
1181					u64 delalloc_start,
1182					u64 delalloc_end)
1183{
1184	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1185	unsigned long start_index = index;
1186	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1187	unsigned long pages_locked = 0;
1188	struct page *pages[16];
1189	unsigned long nrpages;
1190	int ret;
1191	int i;
1192
1193	/* the caller is responsible for locking the start index */
1194	if (index == locked_page->index && index == end_index)
1195		return 0;
1196
1197	/* skip the page at the start index */
1198	nrpages = end_index - index + 1;
1199	while (nrpages > 0) {
1200		ret = find_get_pages_contig(inode->i_mapping, index,
1201				     min_t(unsigned long,
1202				     nrpages, ARRAY_SIZE(pages)), pages);
1203		if (ret == 0) {
1204			ret = -EAGAIN;
1205			goto done;
1206		}
1207		/* now we have an array of pages, lock them all */
1208		for (i = 0; i < ret; i++) {
1209			/*
1210			 * the caller is taking responsibility for
1211			 * locked_page
1212			 */
1213			if (pages[i] != locked_page) {
1214				lock_page(pages[i]);
1215				if (!PageDirty(pages[i]) ||
1216				    pages[i]->mapping != inode->i_mapping) {
1217					ret = -EAGAIN;
1218					unlock_page(pages[i]);
1219					page_cache_release(pages[i]);
1220					goto done;
1221				}
1222			}
1223			page_cache_release(pages[i]);
1224			pages_locked++;
1225		}
1226		nrpages -= ret;
1227		index += ret;
1228		cond_resched();
1229	}
1230	ret = 0;
1231done:
1232	if (ret && pages_locked) {
1233		__unlock_for_delalloc(inode, locked_page,
1234			      delalloc_start,
1235			      ((u64)(start_index + pages_locked - 1)) <<
1236			      PAGE_CACHE_SHIFT);
1237	}
1238	return ret;
1239}
1240
1241/*
1242 * find a contiguous range of bytes in the file marked as delalloc, not
1243 * more than 'max_bytes'.  start and end are used to return the range,
1244 *
1245 * 1 is returned if we find something, 0 if nothing was in the tree
 
1246 */
1247static noinline u64 find_lock_delalloc_range(struct inode *inode,
1248					     struct extent_io_tree *tree,
1249					     struct page *locked_page,
1250					     u64 *start, u64 *end,
1251					     u64 max_bytes)
1252{
 
 
 
 
 
1253	u64 delalloc_start;
1254	u64 delalloc_end;
1255	u64 found;
1256	struct extent_state *cached_state = NULL;
1257	int ret;
1258	int loops = 0;
1259
 
 
 
 
 
 
1260again:
1261	/* step one, find a bunch of delalloc bytes starting at start */
1262	delalloc_start = *start;
1263	delalloc_end = 0;
1264	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1265				    max_bytes, &cached_state);
1266	if (!found || delalloc_end <= *start) {
1267		*start = delalloc_start;
1268		*end = delalloc_end;
 
 
1269		free_extent_state(cached_state);
1270		return found;
1271	}
1272
1273	/*
1274	 * start comes from the offset of locked_page.  We have to lock
1275	 * pages in order, so we can't process delalloc bytes before
1276	 * locked_page
1277	 */
1278	if (delalloc_start < *start)
1279		delalloc_start = *start;
1280
1281	/*
1282	 * make sure to limit the number of pages we try to lock down
1283	 * if we're looping.
1284	 */
1285	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1286		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1287
1288	/* step two, lock all the pages after the page that has start */
1289	ret = lock_delalloc_pages(inode, locked_page,
1290				  delalloc_start, delalloc_end);
 
1291	if (ret == -EAGAIN) {
1292		/* some of the pages are gone, lets avoid looping by
1293		 * shortening the size of the delalloc range we're searching
1294		 */
1295		free_extent_state(cached_state);
 
1296		if (!loops) {
1297			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1298			max_bytes = PAGE_CACHE_SIZE - offset;
1299			loops = 1;
1300			goto again;
1301		} else {
1302			found = 0;
1303			goto out_failed;
1304		}
1305	}
1306	BUG_ON(ret);
1307
1308	/* step three, lock the state bits for the whole range */
1309	lock_extent_bits(tree, delalloc_start, delalloc_end,
1310			 0, &cached_state, GFP_NOFS);
1311
1312	/* then test to make sure it is all still delalloc */
1313	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1314			     EXTENT_DELALLOC, 1, cached_state);
1315	if (!ret) {
1316		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1317				     &cached_state, GFP_NOFS);
1318		__unlock_for_delalloc(inode, locked_page,
1319			      delalloc_start, delalloc_end);
1320		cond_resched();
1321		goto again;
1322	}
1323	free_extent_state(cached_state);
1324	*start = delalloc_start;
1325	*end = delalloc_end;
1326out_failed:
1327	return found;
1328}
1329
1330int extent_clear_unlock_delalloc(struct inode *inode,
1331				struct extent_io_tree *tree,
1332				u64 start, u64 end, struct page *locked_page,
1333				unsigned long op)
 
 
 
 
 
 
 
1334{
1335	int ret;
1336	struct page *pages[16];
1337	unsigned long index = start >> PAGE_CACHE_SHIFT;
1338	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1339	unsigned long nr_pages = end_index - index + 1;
1340	int i;
1341	int clear_bits = 0;
 
 
 
 
1342
1343	if (op & EXTENT_CLEAR_UNLOCK)
1344		clear_bits |= EXTENT_LOCKED;
1345	if (op & EXTENT_CLEAR_DIRTY)
1346		clear_bits |= EXTENT_DIRTY;
1347
1348	if (op & EXTENT_CLEAR_DELALLOC)
1349		clear_bits |= EXTENT_DELALLOC;
1350
1351	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1352	if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1353		    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1354		    EXTENT_SET_PRIVATE2)))
1355		return 0;
1356
1357	while (nr_pages > 0) {
1358		ret = find_get_pages_contig(inode->i_mapping, index,
1359				     min_t(unsigned long,
1360				     nr_pages, ARRAY_SIZE(pages)), pages);
1361		for (i = 0; i < ret; i++) {
1362
1363			if (op & EXTENT_SET_PRIVATE2)
1364				SetPagePrivate2(pages[i]);
 
 
1365
1366			if (pages[i] == locked_page) {
1367				page_cache_release(pages[i]);
1368				continue;
1369			}
1370			if (op & EXTENT_CLEAR_DIRTY)
1371				clear_page_dirty_for_io(pages[i]);
1372			if (op & EXTENT_SET_WRITEBACK)
1373				set_page_writeback(pages[i]);
1374			if (op & EXTENT_END_WRITEBACK)
1375				end_page_writeback(pages[i]);
1376			if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1377				unlock_page(pages[i]);
1378			page_cache_release(pages[i]);
1379		}
1380		nr_pages -= ret;
1381		index += ret;
1382		cond_resched();
1383	}
1384	return 0;
1385}
1386
1387/*
1388 * count the number of bytes in the tree that have a given bit(s)
1389 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1390 * cached.  The total number found is returned.
 
 
 
 
 
1391 */
1392u64 count_range_bits(struct extent_io_tree *tree,
1393		     u64 *start, u64 search_end, u64 max_bytes,
1394		     unsigned long bits, int contig)
1395{
1396	struct rb_node *node;
1397	struct extent_state *state;
1398	u64 cur_start = *start;
1399	u64 total_bytes = 0;
1400	u64 last = 0;
1401	int found = 0;
1402
1403	if (search_end <= cur_start) {
1404		WARN_ON(1);
1405		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1406	}
1407
1408	spin_lock(&tree->lock);
1409	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1410		total_bytes = tree->dirty_bytes;
1411		goto out;
1412	}
1413	/*
1414	 * this search will find all the extents that end after
1415	 * our range starts.
1416	 */
1417	node = tree_search(tree, cur_start);
1418	if (!node)
1419		goto out;
1420
1421	while (1) {
1422		state = rb_entry(node, struct extent_state, rb_node);
1423		if (state->start > search_end)
1424			break;
1425		if (contig && found && state->start > last + 1)
1426			break;
1427		if (state->end >= cur_start && (state->state & bits) == bits) {
1428			total_bytes += min(search_end, state->end) + 1 -
1429				       max(cur_start, state->start);
1430			if (total_bytes >= max_bytes)
1431				break;
1432			if (!found) {
1433				*start = max(cur_start, state->start);
1434				found = 1;
1435			}
1436			last = state->end;
1437		} else if (contig && found) {
1438			break;
1439		}
1440		node = rb_next(node);
1441		if (!node)
1442			break;
1443	}
1444out:
1445	spin_unlock(&tree->lock);
1446	return total_bytes;
1447}
1448
1449/*
1450 * set the private field for a given byte offset in the tree.  If there isn't
1451 * an extent_state there already, this does nothing.
 
 
 
 
 
 
 
1452 */
1453int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
 
 
1454{
1455	struct rb_node *node;
1456	struct extent_state *state;
1457	int ret = 0;
 
 
 
1458
1459	spin_lock(&tree->lock);
1460	/*
1461	 * this search will find all the extents that end after
1462	 * our range starts.
 
 
 
 
 
 
 
1463	 */
1464	node = tree_search(tree, start);
1465	if (!node) {
1466		ret = -ENOENT;
1467		goto out;
1468	}
1469	state = rb_entry(node, struct extent_state, rb_node);
1470	if (state->start != start) {
1471		ret = -ENOENT;
1472		goto out;
1473	}
1474	state->private = private;
1475out:
1476	spin_unlock(&tree->lock);
1477	return ret;
 
 
 
 
 
1478}
1479
1480int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1481{
1482	struct rb_node *node;
1483	struct extent_state *state;
1484	int ret = 0;
 
 
 
 
 
 
1485
1486	spin_lock(&tree->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1487	/*
1488	 * this search will find all the extents that end after
1489	 * our range starts.
1490	 */
1491	node = tree_search(tree, start);
1492	if (!node) {
1493		ret = -ENOENT;
1494		goto out;
1495	}
1496	state = rb_entry(node, struct extent_state, rb_node);
1497	if (state->start != start) {
1498		ret = -ENOENT;
1499		goto out;
1500	}
1501	*private = state->private;
1502out:
1503	spin_unlock(&tree->lock);
1504	return ret;
1505}
1506
1507/*
1508 * searches a range in the state tree for a given mask.
1509 * If 'filled' == 1, this returns 1 only if every extent in the tree
1510 * has the bits set.  Otherwise, 1 is returned if any bit in the
1511 * range is found set.
1512 */
1513int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1514		   int bits, int filled, struct extent_state *cached)
1515{
1516	struct extent_state *state = NULL;
1517	struct rb_node *node;
1518	int bitset = 0;
1519
1520	spin_lock(&tree->lock);
1521	if (cached && cached->tree && cached->start <= start &&
1522	    cached->end > start)
1523		node = &cached->rb_node;
1524	else
1525		node = tree_search(tree, start);
1526	while (node && start <= end) {
1527		state = rb_entry(node, struct extent_state, rb_node);
1528
1529		if (filled && state->start > start) {
1530			bitset = 0;
1531			break;
1532		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1533
1534		if (state->start > end)
1535			break;
 
 
 
 
 
 
 
 
 
 
 
 
1536
1537		if (state->state & bits) {
1538			bitset = 1;
1539			if (!filled)
1540				break;
1541		} else if (filled) {
1542			bitset = 0;
1543			break;
1544		}
1545
1546		if (state->end == (u64)-1)
1547			break;
 
 
 
 
 
1548
1549		start = state->end + 1;
1550		if (start > end)
1551			break;
1552		node = rb_next(node);
1553		if (!node) {
1554			if (filled)
1555				bitset = 0;
1556			break;
1557		}
1558	}
1559	spin_unlock(&tree->lock);
1560	return bitset;
 
1561}
1562
1563/*
1564 * helper function to set a given page up to date if all the
1565 * extents in the tree for that page are up to date
 
 
 
 
 
 
 
 
1566 */
1567static int check_page_uptodate(struct extent_io_tree *tree,
1568			       struct page *page)
1569{
1570	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1571	u64 end = start + PAGE_CACHE_SIZE - 1;
1572	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1573		SetPageUptodate(page);
1574	return 0;
1575}
 
 
 
 
1576
1577/*
1578 * helper function to unlock a page if all the extents in the tree
1579 * for that page are unlocked
1580 */
1581static int check_page_locked(struct extent_io_tree *tree,
1582			     struct page *page)
1583{
1584	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1585	u64 end = start + PAGE_CACHE_SIZE - 1;
1586	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1587		unlock_page(page);
1588	return 0;
1589}
1590
1591/*
1592 * helper function to end page writeback if all the extents
1593 * in the tree for that page are done with writeback
1594 */
1595static int check_page_writeback(struct extent_io_tree *tree,
1596			     struct page *page)
1597{
1598	end_page_writeback(page);
1599	return 0;
1600}
1601
1602/* lots and lots of room for performance fixes in the end_bio funcs */
1603
1604/*
1605 * after a writepage IO is done, we need to:
1606 * clear the uptodate bits on error
1607 * clear the writeback bits in the extent tree for this IO
1608 * end_page_writeback if the page has no more pending IO
1609 *
1610 * Scheduling is not allowed, so the extent state tree is expected
1611 * to have one and only one object corresponding to this IO.
1612 */
1613static void end_bio_extent_writepage(struct bio *bio, int err)
1614{
1615	int uptodate = err == 0;
1616	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1617	struct extent_io_tree *tree;
1618	u64 start;
1619	u64 end;
1620	int whole_page;
1621	int ret;
1622
1623	do {
1624		struct page *page = bvec->bv_page;
1625		tree = &BTRFS_I(page->mapping->host)->io_tree;
1626
1627		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1628			 bvec->bv_offset;
1629		end = start + bvec->bv_len - 1;
 
1630
1631		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1632			whole_page = 1;
1633		else
1634			whole_page = 0;
 
 
 
1635
1636		if (--bvec >= bio->bi_io_vec)
1637			prefetchw(&bvec->bv_page->flags);
1638		if (tree->ops && tree->ops->writepage_end_io_hook) {
1639			ret = tree->ops->writepage_end_io_hook(page, start,
1640						       end, NULL, uptodate);
1641			if (ret)
1642				uptodate = 0;
1643		}
1644
1645		if (!uptodate && tree->ops &&
1646		    tree->ops->writepage_io_failed_hook) {
1647			ret = tree->ops->writepage_io_failed_hook(bio, page,
1648							 start, end, NULL);
1649			if (ret == 0) {
1650				uptodate = (err == 0);
1651				continue;
1652			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1653		}
1654
1655		if (!uptodate) {
1656			clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
1657			ClearPageUptodate(page);
1658			SetPageError(page);
1659		}
1660
1661		if (whole_page)
1662			end_page_writeback(page);
1663		else
1664			check_page_writeback(tree, page);
1665	} while (bvec >= bio->bi_io_vec);
1666
1667	bio_put(bio);
1668}
1669
1670/*
1671 * after a readpage IO is done, we need to:
1672 * clear the uptodate bits on error
1673 * set the uptodate bits if things worked
1674 * set the page up to date if all extents in the tree are uptodate
1675 * clear the lock bit in the extent tree
1676 * unlock the page if there are no other extents locked for it
1677 *
1678 * Scheduling is not allowed, so the extent state tree is expected
1679 * to have one and only one object corresponding to this IO.
 
 
1680 */
1681static void end_bio_extent_readpage(struct bio *bio, int err)
1682{
1683	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1684	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
1685	struct bio_vec *bvec = bio->bi_io_vec;
1686	struct extent_io_tree *tree;
1687	u64 start;
1688	u64 end;
1689	int whole_page;
1690	int ret;
1691
1692	if (err)
1693		uptodate = 0;
1694
1695	do {
1696		struct page *page = bvec->bv_page;
1697		struct extent_state *cached = NULL;
1698		struct extent_state *state;
1699
1700		tree = &BTRFS_I(page->mapping->host)->io_tree;
1701
1702		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1703			bvec->bv_offset;
1704		end = start + bvec->bv_len - 1;
1705
1706		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1707			whole_page = 1;
1708		else
1709			whole_page = 0;
 
1710
1711		if (++bvec <= bvec_end)
1712			prefetchw(&bvec->bv_page->flags);
 
 
 
 
1713
1714		spin_lock(&tree->lock);
1715		state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
1716		if (state && state->start == start) {
1717			/*
1718			 * take a reference on the state, unlock will drop
1719			 * the ref
1720			 */
1721			cache_state(state, &cached);
1722		}
1723		spin_unlock(&tree->lock);
1724
1725		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1726			ret = tree->ops->readpage_end_io_hook(page, start, end,
1727							      state);
1728			if (ret)
1729				uptodate = 0;
1730		}
1731		if (!uptodate && tree->ops &&
1732		    tree->ops->readpage_io_failed_hook) {
1733			ret = tree->ops->readpage_io_failed_hook(bio, page,
1734							 start, end, NULL);
1735			if (ret == 0) {
1736				uptodate =
1737					test_bit(BIO_UPTODATE, &bio->bi_flags);
1738				if (err)
1739					uptodate = 0;
1740				uncache_state(&cached);
1741				continue;
1742			}
1743		}
1744
1745		if (uptodate) {
1746			set_extent_uptodate(tree, start, end, &cached,
1747					    GFP_ATOMIC);
1748		}
1749		unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
1750
1751		if (whole_page) {
1752			if (uptodate) {
1753				SetPageUptodate(page);
1754			} else {
1755				ClearPageUptodate(page);
1756				SetPageError(page);
1757			}
1758			unlock_page(page);
1759		} else {
1760			if (uptodate) {
1761				check_page_uptodate(tree, page);
1762			} else {
1763				ClearPageUptodate(page);
1764				SetPageError(page);
1765			}
1766			check_page_locked(tree, page);
1767		}
1768	} while (bvec <= bvec_end);
1769
1770	bio_put(bio);
 
 
 
1771}
1772
1773struct bio *
1774btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1775		gfp_t gfp_flags)
1776{
1777	struct bio *bio;
 
1778
1779	bio = bio_alloc(gfp_flags, nr_vecs);
 
 
 
 
 
 
 
1780
1781	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1782		while (!bio && (nr_vecs /= 2))
1783			bio = bio_alloc(gfp_flags, nr_vecs);
 
 
 
1784	}
1785
1786	if (bio) {
1787		bio->bi_size = 0;
1788		bio->bi_bdev = bdev;
1789		bio->bi_sector = first_sector;
1790	}
1791	return bio;
 
 
 
 
 
 
 
1792}
1793
1794static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1795			  unsigned long bio_flags)
1796{
1797	int ret = 0;
1798	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1799	struct page *page = bvec->bv_page;
1800	struct extent_io_tree *tree = bio->bi_private;
1801	u64 start;
1802
1803	start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
 
1804
1805	bio->bi_private = NULL;
1806
1807	bio_get(bio);
 
1808
1809	if (tree->ops && tree->ops->submit_bio_hook)
1810		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1811					   mirror_num, bio_flags, start);
1812	else
1813		submit_bio(rw, bio);
1814	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1815		ret = -EOPNOTSUPP;
1816	bio_put(bio);
1817	return ret;
1818}
1819
1820static int submit_extent_page(int rw, struct extent_io_tree *tree,
1821			      struct page *page, sector_t sector,
1822			      size_t size, unsigned long offset,
1823			      struct block_device *bdev,
1824			      struct bio **bio_ret,
1825			      unsigned long max_pages,
1826			      bio_end_io_t end_io_func,
1827			      int mirror_num,
1828			      unsigned long prev_bio_flags,
1829			      unsigned long bio_flags)
1830{
1831	int ret = 0;
1832	struct bio *bio;
1833	int nr;
1834	int contig = 0;
1835	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1836	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1837	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1838
1839	if (bio_ret && *bio_ret) {
1840		bio = *bio_ret;
1841		if (old_compressed)
1842			contig = bio->bi_sector == sector;
1843		else
1844			contig = bio->bi_sector + (bio->bi_size >> 9) ==
1845				sector;
1846
1847		if (prev_bio_flags != bio_flags || !contig ||
1848		    (tree->ops && tree->ops->merge_bio_hook &&
1849		     tree->ops->merge_bio_hook(page, offset, page_size, bio,
1850					       bio_flags)) ||
1851		    bio_add_page(bio, page, page_size, offset) < page_size) {
1852			ret = submit_one_bio(rw, bio, mirror_num,
1853					     prev_bio_flags);
1854			bio = NULL;
1855		} else {
1856			return 0;
1857		}
1858	}
1859	if (this_compressed)
1860		nr = BIO_MAX_PAGES;
1861	else
1862		nr = bio_get_nr_vecs(bdev);
1863
1864	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1865	if (!bio)
1866		return -ENOMEM;
1867
1868	bio_add_page(bio, page, page_size, offset);
1869	bio->bi_end_io = end_io_func;
1870	bio->bi_private = tree;
1871
1872	if (bio_ret)
1873		*bio_ret = bio;
1874	else
1875		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1876
1877	return ret;
1878}
1879
1880void set_page_extent_mapped(struct page *page)
 
 
1881{
1882	if (!PagePrivate(page)) {
1883		SetPagePrivate(page);
1884		page_cache_get(page);
1885		set_page_private(page, EXTENT_PAGE_PRIVATE);
 
 
 
 
 
 
 
 
1886	}
1887}
1888
1889static void set_page_extent_head(struct page *page, unsigned long len)
1890{
1891	WARN_ON(!PagePrivate(page));
1892	set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
 
 
 
1893}
1894
1895/*
1896 * basic readpage implementation.  Locked extent state structs are inserted
1897 * into the tree that are removed when the IO is done (by the end_io
1898 * handlers)
 
 
1899 */
1900static int __extent_read_full_page(struct extent_io_tree *tree,
1901				   struct page *page,
1902				   get_extent_t *get_extent,
1903				   struct bio **bio, int mirror_num,
1904				   unsigned long *bio_flags)
1905{
1906	struct inode *inode = page->mapping->host;
1907	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1908	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1909	u64 end;
1910	u64 cur = start;
1911	u64 extent_offset;
1912	u64 last_byte = i_size_read(inode);
1913	u64 block_start;
1914	u64 cur_end;
1915	sector_t sector;
1916	struct extent_map *em;
1917	struct block_device *bdev;
1918	struct btrfs_ordered_extent *ordered;
1919	int ret;
1920	int nr = 0;
1921	size_t pg_offset = 0;
1922	size_t iosize;
1923	size_t disk_io_size;
1924	size_t blocksize = inode->i_sb->s_blocksize;
1925	unsigned long this_bio_flag = 0;
1926
1927	set_page_extent_mapped(page);
1928
1929	if (!PageUptodate(page)) {
1930		if (cleancache_get_page(page) == 0) {
1931			BUG_ON(blocksize != PAGE_SIZE);
1932			goto out;
1933		}
1934	}
1935
1936	end = page_end;
1937	while (1) {
1938		lock_extent(tree, start, end, GFP_NOFS);
1939		ordered = btrfs_lookup_ordered_extent(inode, start);
1940		if (!ordered)
1941			break;
1942		unlock_extent(tree, start, end, GFP_NOFS);
1943		btrfs_start_ordered_extent(inode, ordered, 1);
1944		btrfs_put_ordered_extent(ordered);
1945	}
1946
1947	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1948		char *userpage;
1949		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
1950
1951		if (zero_offset) {
1952			iosize = PAGE_CACHE_SIZE - zero_offset;
1953			userpage = kmap_atomic(page, KM_USER0);
1954			memset(userpage + zero_offset, 0, iosize);
1955			flush_dcache_page(page);
1956			kunmap_atomic(userpage, KM_USER0);
1957		}
1958	}
 
 
1959	while (cur <= end) {
 
 
 
 
 
1960		if (cur >= last_byte) {
1961			char *userpage;
1962			struct extent_state *cached = NULL;
1963
1964			iosize = PAGE_CACHE_SIZE - pg_offset;
1965			userpage = kmap_atomic(page, KM_USER0);
1966			memset(userpage + pg_offset, 0, iosize);
1967			flush_dcache_page(page);
1968			kunmap_atomic(userpage, KM_USER0);
1969			set_extent_uptodate(tree, cur, cur + iosize - 1,
1970					    &cached, GFP_NOFS);
1971			unlock_extent_cached(tree, cur, cur + iosize - 1,
1972					     &cached, GFP_NOFS);
1973			break;
1974		}
1975		em = get_extent(inode, page, pg_offset, cur,
1976				end - cur + 1, 0);
1977		if (IS_ERR_OR_NULL(em)) {
1978			SetPageError(page);
1979			unlock_extent(tree, cur, end, GFP_NOFS);
1980			break;
1981		}
1982		extent_offset = cur - em->start;
1983		BUG_ON(extent_map_end(em) <= cur);
1984		BUG_ON(end < cur);
1985
1986		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1987			this_bio_flag = EXTENT_BIO_COMPRESSED;
1988			extent_set_compress_type(&this_bio_flag,
1989						 em->compress_type);
1990		}
1991
1992		iosize = min(extent_map_end(em) - cur, end - cur + 1);
1993		cur_end = min(extent_map_end(em) - 1, end);
1994		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1995		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
1996			disk_io_size = em->block_len;
1997			sector = em->block_start >> 9;
1998		} else {
1999			sector = (em->block_start + extent_offset) >> 9;
2000			disk_io_size = iosize;
2001		}
2002		bdev = em->bdev;
2003		block_start = em->block_start;
2004		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2005			block_start = EXTENT_MAP_HOLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2006		free_extent_map(em);
2007		em = NULL;
2008
2009		/* we've found a hole, just zero and go on */
2010		if (block_start == EXTENT_MAP_HOLE) {
2011			char *userpage;
2012			struct extent_state *cached = NULL;
2013
2014			userpage = kmap_atomic(page, KM_USER0);
2015			memset(userpage + pg_offset, 0, iosize);
2016			flush_dcache_page(page);
2017			kunmap_atomic(userpage, KM_USER0);
2018
2019			set_extent_uptodate(tree, cur, cur + iosize - 1,
2020					    &cached, GFP_NOFS);
2021			unlock_extent_cached(tree, cur, cur + iosize - 1,
2022			                     &cached, GFP_NOFS);
2023			cur = cur + iosize;
2024			pg_offset += iosize;
2025			continue;
2026		}
2027		/* the get_extent function already copied into the page */
2028		if (test_range_bit(tree, cur, cur_end,
2029				   EXTENT_UPTODATE, 1, NULL)) {
2030			check_page_uptodate(tree, page);
2031			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2032			cur = cur + iosize;
2033			pg_offset += iosize;
2034			continue;
2035		}
2036		/* we have an inline extent but it didn't get marked up
2037		 * to date.  Error out
2038		 */
2039		if (block_start == EXTENT_MAP_INLINE) {
2040			SetPageError(page);
2041			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2042			cur = cur + iosize;
2043			pg_offset += iosize;
2044			continue;
2045		}
2046
2047		ret = 0;
2048		if (tree->ops && tree->ops->readpage_io_hook) {
2049			ret = tree->ops->readpage_io_hook(page, cur,
2050							  cur + iosize - 1);
2051		}
2052		if (!ret) {
2053			unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2054			pnr -= page->index;
2055			ret = submit_extent_page(READ, tree, page,
2056					 sector, disk_io_size, pg_offset,
2057					 bdev, bio, pnr,
2058					 end_bio_extent_readpage, mirror_num,
2059					 *bio_flags,
2060					 this_bio_flag);
2061			nr++;
2062			*bio_flags = this_bio_flag;
2063		}
2064		if (ret)
2065			SetPageError(page);
 
 
 
2066		cur = cur + iosize;
2067		pg_offset += iosize;
2068	}
2069out:
2070	if (!nr) {
2071		if (!PageError(page))
2072			SetPageUptodate(page);
2073		unlock_page(page);
2074	}
2075	return 0;
2076}
2077
2078int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2079			    get_extent_t *get_extent)
2080{
2081	struct bio *bio = NULL;
2082	unsigned long bio_flags = 0;
 
 
 
2083	int ret;
2084
2085	ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2086				      &bio_flags);
2087	if (bio)
2088		ret = submit_one_bio(READ, bio, 0, bio_flags);
 
 
 
 
2089	return ret;
2090}
2091
2092static noinline void update_nr_written(struct page *page,
2093				      struct writeback_control *wbc,
2094				      unsigned long nr_written)
2095{
2096	wbc->nr_to_write -= nr_written;
2097	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2098	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2099		page->mapping->writeback_index = page->index + nr_written;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2100}
2101
2102/*
2103 * the writepage semantics are similar to regular writepage.  extent
2104 * records are inserted to lock ranges in the tree, and as dirty areas
2105 * are found, they are marked writeback.  Then the lock bits are removed
2106 * and the end_io handler clears the writeback ranges
 
 
 
2107 */
2108static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2109			      void *data)
2110{
 
2111	struct inode *inode = page->mapping->host;
2112	struct extent_page_data *epd = data;
2113	struct extent_io_tree *tree = epd->tree;
2114	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2115	u64 delalloc_start;
2116	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2117	u64 end;
2118	u64 cur = start;
2119	u64 extent_offset;
2120	u64 last_byte = i_size_read(inode);
2121	u64 block_start;
2122	u64 iosize;
2123	sector_t sector;
2124	struct extent_state *cached_state = NULL;
2125	struct extent_map *em;
2126	struct block_device *bdev;
2127	int ret;
2128	int nr = 0;
2129	size_t pg_offset = 0;
2130	size_t blocksize;
2131	loff_t i_size = i_size_read(inode);
2132	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2133	u64 nr_delalloc;
2134	u64 delalloc_end;
2135	int page_started;
2136	int compressed;
2137	int write_flags;
2138	unsigned long nr_written = 0;
2139
2140	if (wbc->sync_mode == WB_SYNC_ALL)
2141		write_flags = WRITE_SYNC;
2142	else
2143		write_flags = WRITE;
2144
2145	trace___extent_writepage(page, inode, wbc);
2146
2147	WARN_ON(!PageLocked(page));
2148	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
 
2149	if (page->index > end_index ||
2150	   (page->index == end_index && !pg_offset)) {
2151		page->mapping->a_ops->invalidatepage(page, 0);
2152		unlock_page(page);
2153		return 0;
2154	}
2155
2156	if (page->index == end_index) {
2157		char *userpage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2158
2159		userpage = kmap_atomic(page, KM_USER0);
2160		memset(userpage + pg_offset, 0,
2161		       PAGE_CACHE_SIZE - pg_offset);
2162		kunmap_atomic(userpage, KM_USER0);
2163		flush_dcache_page(page);
 
 
2164	}
2165	pg_offset = 0;
 
 
 
 
 
 
 
 
2166
2167	set_page_extent_mapped(page);
 
 
 
 
2168
2169	delalloc_start = start;
2170	delalloc_end = 0;
2171	page_started = 0;
2172	if (!epd->extent_locked) {
2173		u64 delalloc_to_write = 0;
2174		/*
2175		 * make sure the wbc mapping index is at least updated
2176		 * to this page.
2177		 */
2178		update_nr_written(page, wbc, 0);
2179
2180		while (delalloc_end < page_end) {
2181			nr_delalloc = find_lock_delalloc_range(inode, tree,
2182						       page,
2183						       &delalloc_start,
2184						       &delalloc_end,
2185						       128 * 1024 * 1024);
2186			if (nr_delalloc == 0) {
2187				delalloc_start = delalloc_end + 1;
2188				continue;
2189			}
2190			tree->ops->fill_delalloc(inode, page, delalloc_start,
2191						 delalloc_end, &page_started,
2192						 &nr_written);
2193			/*
2194			 * delalloc_end is already one less than the total
2195			 * length, so we don't subtract one from
2196			 * PAGE_CACHE_SIZE
2197			 */
2198			delalloc_to_write += (delalloc_end - delalloc_start +
2199					      PAGE_CACHE_SIZE) >>
2200					      PAGE_CACHE_SHIFT;
2201			delalloc_start = delalloc_end + 1;
2202		}
2203		if (wbc->nr_to_write < delalloc_to_write) {
2204			int thresh = 8192;
2205
2206			if (delalloc_to_write < thresh * 2)
2207				thresh = delalloc_to_write;
2208			wbc->nr_to_write = min_t(u64, delalloc_to_write,
2209						 thresh);
2210		}
 
 
 
2211
2212		/* did the fill delalloc function already unlock and start
2213		 * the IO?
2214		 */
2215		if (page_started) {
2216			ret = 0;
2217			/*
2218			 * we've unlocked the page, so we can't update
2219			 * the mapping's writeback index, just update
2220			 * nr_to_write.
2221			 */
2222			wbc->nr_to_write -= nr_written;
2223			goto done_unlocked;
2224		}
2225	}
2226	if (tree->ops && tree->ops->writepage_start_hook) {
2227		ret = tree->ops->writepage_start_hook(page, start,
2228						      page_end);
2229		if (ret == -EAGAIN) {
2230			redirty_page_for_writepage(wbc, page);
2231			update_nr_written(page, wbc, nr_written);
2232			unlock_page(page);
2233			ret = 0;
2234			goto done_unlocked;
2235		}
2236	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2237
2238	/*
2239	 * we don't want to touch the inode after unlocking the page,
2240	 * so we update the mapping writeback index now
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2241	 */
2242	update_nr_written(page, wbc, nr_written + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2243
2244	end = page_end;
2245	if (last_byte <= start) {
2246		if (tree->ops && tree->ops->writepage_end_io_hook)
2247			tree->ops->writepage_end_io_hook(page, start,
2248							 page_end, NULL, 1);
2249		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2250	}
 
 
2251
2252	blocksize = inode->i_sb->s_blocksize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2253
2254	while (cur <= end) {
2255		if (cur >= last_byte) {
2256			if (tree->ops && tree->ops->writepage_end_io_hook)
2257				tree->ops->writepage_end_io_hook(page, cur,
2258							 page_end, NULL, 1);
 
 
2259			break;
2260		}
2261		em = epd->get_extent(inode, page, pg_offset, cur,
2262				     end - cur + 1, 1);
2263		if (IS_ERR_OR_NULL(em)) {
2264			SetPageError(page);
2265			break;
 
 
2266		}
2267
2268		extent_offset = cur - em->start;
2269		BUG_ON(extent_map_end(em) <= cur);
2270		BUG_ON(end < cur);
2271		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2272		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2273		sector = (em->block_start + extent_offset) >> 9;
2274		bdev = em->bdev;
2275		block_start = em->block_start;
2276		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2277		free_extent_map(em);
2278		em = NULL;
2279
2280		/*
2281		 * compressed and inline extents are written through other
2282		 * paths in the FS
2283		 */
2284		if (compressed || block_start == EXTENT_MAP_HOLE ||
2285		    block_start == EXTENT_MAP_INLINE) {
2286			/*
2287			 * end_io notification does not happen here for
2288			 * compressed extents
2289			 */
2290			if (!compressed && tree->ops &&
2291			    tree->ops->writepage_end_io_hook)
2292				tree->ops->writepage_end_io_hook(page, cur,
2293							 cur + iosize - 1,
2294							 NULL, 1);
2295			else if (compressed) {
2296				/* we don't want to end_page_writeback on
2297				 * a compressed extent.  this happens
2298				 * elsewhere
2299				 */
2300				nr++;
2301			}
2302
2303			cur += iosize;
2304			pg_offset += iosize;
2305			continue;
2306		}
2307		/* leave this out until we have a page_mkwrite call */
2308		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2309				   EXTENT_DIRTY, 0, NULL)) {
2310			cur = cur + iosize;
2311			pg_offset += iosize;
2312			continue;
 
 
 
 
2313		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2314
2315		if (tree->ops && tree->ops->writepage_io_hook) {
2316			ret = tree->ops->writepage_io_hook(page, cur,
2317						cur + iosize - 1);
2318		} else {
2319			ret = 0;
2320		}
2321		if (ret) {
2322			SetPageError(page);
2323		} else {
2324			unsigned long max_nr = end_index + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2325
2326			set_range_writeback(tree, cur, cur + iosize - 1);
2327			if (!PageWriteback(page)) {
2328				printk(KERN_ERR "btrfs warning page %lu not "
2329				       "writeback, cur %llu end %llu\n",
2330				       page->index, (unsigned long long)cur,
2331				       (unsigned long long)end);
2332			}
2333
2334			ret = submit_extent_page(write_flags, tree, page,
2335						 sector, iosize, pg_offset,
2336						 bdev, &epd->bio, max_nr,
2337						 end_bio_extent_writepage,
2338						 0, 0, 0);
2339			if (ret)
2340				SetPageError(page);
2341		}
2342		cur = cur + iosize;
2343		pg_offset += iosize;
2344		nr++;
2345	}
2346done:
2347	if (nr == 0) {
2348		/* make sure the mapping tag for page dirty gets cleared */
2349		set_page_writeback(page);
2350		end_page_writeback(page);
 
 
 
2351	}
2352	unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2353
2354done_unlocked:
2355
2356	/* drop our reference on any cached states */
2357	free_extent_state(cached_state);
2358	return 0;
2359}
2360
2361/**
2362 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2363 * @mapping: address space structure to write
2364 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2365 * @writepage: function called for each page
2366 * @data: data passed to writepage function
2367 *
2368 * If a page is already under I/O, write_cache_pages() skips it, even
2369 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2370 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2371 * and msync() need to guarantee that all the data which was dirty at the time
2372 * the call was made get new I/O started against them.  If wbc->sync_mode is
2373 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2374 * existing IO to complete.
2375 */
2376static int extent_write_cache_pages(struct extent_io_tree *tree,
2377			     struct address_space *mapping,
2378			     struct writeback_control *wbc,
2379			     writepage_t writepage, void *data,
2380			     void (*flush_fn)(void *))
2381{
 
 
2382	int ret = 0;
2383	int done = 0;
2384	int nr_to_write_done = 0;
2385	struct pagevec pvec;
2386	int nr_pages;
2387	pgoff_t index;
2388	pgoff_t end;		/* Inclusive */
 
 
2389	int scanned = 0;
2390	int tag;
 
 
 
 
 
 
 
 
 
 
 
 
2391
2392	pagevec_init(&pvec, 0);
2393	if (wbc->range_cyclic) {
2394		index = mapping->writeback_index; /* Start from prev offset */
2395		end = -1;
 
 
 
 
 
2396	} else {
2397		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2398		end = wbc->range_end >> PAGE_CACHE_SHIFT;
 
 
2399		scanned = 1;
2400	}
2401	if (wbc->sync_mode == WB_SYNC_ALL)
 
 
 
 
 
 
 
 
 
 
 
 
 
2402		tag = PAGECACHE_TAG_TOWRITE;
2403	else
2404		tag = PAGECACHE_TAG_DIRTY;
2405retry:
2406	if (wbc->sync_mode == WB_SYNC_ALL)
2407		tag_pages_for_writeback(mapping, index, end);
 
2408	while (!done && !nr_to_write_done && (index <= end) &&
2409	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2410			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2411		unsigned i;
2412
2413		scanned = 1;
2414		for (i = 0; i < nr_pages; i++) {
2415			struct page *page = pvec.pages[i];
2416
 
2417			/*
2418			 * At this point we hold neither mapping->tree_lock nor
2419			 * lock on the page itself: the page may be truncated or
2420			 * invalidated (changing page->mapping to NULL), or even
2421			 * swizzled back from swapper_space to tmpfs file
2422			 * mapping
2423			 */
2424			if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2425				tree->ops->write_cache_pages_lock_hook(page);
2426			else
2427				lock_page(page);
2428
2429			if (unlikely(page->mapping != mapping)) {
2430				unlock_page(page);
2431				continue;
2432			}
2433
2434			if (!wbc->range_cyclic && page->index > end) {
2435				done = 1;
2436				unlock_page(page);
2437				continue;
2438			}
2439
2440			if (wbc->sync_mode != WB_SYNC_NONE) {
2441				if (PageWriteback(page))
2442					flush_fn(data);
2443				wait_on_page_writeback(page);
2444			}
2445
2446			if (PageWriteback(page) ||
2447			    !clear_page_dirty_for_io(page)) {
2448				unlock_page(page);
2449				continue;
2450			}
2451
2452			ret = (*writepage)(page, wbc, data);
2453
2454			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2455				unlock_page(page);
2456				ret = 0;
2457			}
2458			if (ret)
2459				done = 1;
2460
2461			/*
2462			 * the filesystem may choose to bump up nr_to_write.
2463			 * We have to make sure to honor the new nr_to_write
2464			 * at any time
2465			 */
2466			nr_to_write_done = wbc->nr_to_write <= 0;
 
2467		}
2468		pagevec_release(&pvec);
2469		cond_resched();
2470	}
2471	if (!scanned && !done) {
2472		/*
2473		 * We hit the last page and there is more work to be done: wrap
2474		 * back to the start of the file
2475		 */
2476		scanned = 1;
2477		index = 0;
 
 
 
 
 
 
 
 
2478		goto retry;
2479	}
2480	return ret;
2481}
2482
2483static void flush_epd_write_bio(struct extent_page_data *epd)
2484{
2485	if (epd->bio) {
2486		if (epd->sync_io)
2487			submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2488		else
2489			submit_one_bio(WRITE, epd->bio, 0, 0);
2490		epd->bio = NULL;
2491	}
2492}
2493
2494static noinline void flush_write_bio(void *data)
2495{
2496	struct extent_page_data *epd = data;
2497	flush_epd_write_bio(epd);
2498}
2499
2500int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2501			  get_extent_t *get_extent,
2502			  struct writeback_control *wbc)
2503{
2504	int ret;
2505	struct extent_page_data epd = {
2506		.bio = NULL,
2507		.tree = tree,
2508		.get_extent = get_extent,
2509		.extent_locked = 0,
2510		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
2511	};
2512
2513	ret = __extent_writepage(page, wbc, &epd);
 
2514
2515	flush_epd_write_bio(&epd);
2516	return ret;
2517}
2518
2519int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2520			      u64 start, u64 end, get_extent_t *get_extent,
2521			      int mode)
 
 
 
 
 
2522{
 
2523	int ret = 0;
2524	struct address_space *mapping = inode->i_mapping;
2525	struct page *page;
2526	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2527		PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
2528
2529	struct extent_page_data epd = {
2530		.bio = NULL,
2531		.tree = tree,
2532		.get_extent = get_extent,
2533		.extent_locked = 1,
2534		.sync_io = mode == WB_SYNC_ALL,
2535	};
2536	struct writeback_control wbc_writepages = {
2537		.sync_mode	= mode,
2538		.nr_to_write	= nr_pages * 2,
2539		.range_start	= start,
2540		.range_end	= end + 1,
2541	};
2542
2543	while (start <= end) {
2544		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2545		if (clear_page_dirty_for_io(page))
2546			ret = __extent_writepage(page, &wbc_writepages, &epd);
2547		else {
2548			if (tree->ops && tree->ops->writepage_end_io_hook)
2549				tree->ops->writepage_end_io_hook(page, start,
2550						 start + PAGE_CACHE_SIZE - 1,
2551						 NULL, 1);
2552			unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2553		}
2554		page_cache_release(page);
2555		start += PAGE_CACHE_SIZE;
 
 
 
 
2556	}
2557
2558	flush_epd_write_bio(&epd);
2559	return ret;
2560}
2561
2562int extent_writepages(struct extent_io_tree *tree,
2563		      struct address_space *mapping,
2564		      get_extent_t *get_extent,
2565		      struct writeback_control *wbc)
2566{
 
2567	int ret = 0;
2568	struct extent_page_data epd = {
2569		.bio = NULL,
2570		.tree = tree,
2571		.get_extent = get_extent,
2572		.extent_locked = 0,
2573		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
2574	};
2575
2576	ret = extent_write_cache_pages(tree, mapping, wbc,
2577				       __extent_writepage, &epd,
2578				       flush_write_bio);
2579	flush_epd_write_bio(&epd);
 
 
 
 
2580	return ret;
2581}
2582
2583int extent_readpages(struct extent_io_tree *tree,
2584		     struct address_space *mapping,
2585		     struct list_head *pages, unsigned nr_pages,
2586		     get_extent_t get_extent)
2587{
2588	struct bio *bio = NULL;
2589	unsigned page_idx;
2590	unsigned long bio_flags = 0;
2591
2592	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2593		struct page *page = list_entry(pages->prev, struct page, lru);
2594
2595		prefetchw(&page->flags);
2596		list_del(&page->lru);
2597		if (!add_to_page_cache_lru(page, mapping,
2598					page->index, GFP_NOFS)) {
2599			__extent_read_full_page(tree, page, get_extent,
2600						&bio, 0, &bio_flags);
2601		}
2602		page_cache_release(page);
2603	}
2604	BUG_ON(!list_empty(pages));
2605	if (bio)
2606		submit_one_bio(READ, bio, 0, bio_flags);
2607	return 0;
2608}
2609
2610/*
2611 * basic invalidatepage code, this waits on any locked or writeback
2612 * ranges corresponding to the page, and then deletes any extent state
2613 * records from the tree
2614 */
2615int extent_invalidatepage(struct extent_io_tree *tree,
2616			  struct page *page, unsigned long offset)
2617{
2618	struct extent_state *cached_state = NULL;
2619	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2620	u64 end = start + PAGE_CACHE_SIZE - 1;
2621	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2622
2623	start += (offset + blocksize - 1) & ~(blocksize - 1);
 
 
 
2624	if (start > end)
2625		return 0;
2626
2627	lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
2628	wait_on_page_writeback(page);
2629	clear_extent_bit(tree, start, end,
2630			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2631			 EXTENT_DO_ACCOUNTING,
2632			 1, 1, &cached_state, GFP_NOFS);
 
 
 
2633	return 0;
2634}
2635
2636/*
2637 * a helper for releasepage, this tests for areas of the page that
2638 * are locked or under IO and drops the related state bits if it is safe
2639 * to drop the page.
2640 */
2641int try_release_extent_state(struct extent_map_tree *map,
2642			     struct extent_io_tree *tree, struct page *page,
2643			     gfp_t mask)
2644{
2645	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2646	u64 end = start + PAGE_CACHE_SIZE - 1;
2647	int ret = 1;
2648
2649	if (test_range_bit(tree, start, end,
2650			   EXTENT_IOBITS, 0, NULL))
2651		ret = 0;
2652	else {
2653		if ((mask & GFP_NOFS) == GFP_NOFS)
2654			mask = GFP_NOFS;
2655		/*
2656		 * at this point we can safely clear everything except the
2657		 * locked bit and the nodatasum bit
2658		 */
2659		ret = clear_extent_bit(tree, start, end,
2660				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2661				 0, 0, NULL, mask);
 
 
2662
2663		/* if clear_extent_bit failed for enomem reasons,
2664		 * we can't allow the release to continue.
2665		 */
2666		if (ret < 0)
2667			ret = 0;
2668		else
2669			ret = 1;
2670	}
2671	return ret;
2672}
2673
2674/*
2675 * a helper for releasepage.  As long as there are no locked extents
2676 * in the range corresponding to the page, both state records and extent
2677 * map records are removed
2678 */
2679int try_release_extent_mapping(struct extent_map_tree *map,
2680			       struct extent_io_tree *tree, struct page *page,
2681			       gfp_t mask)
2682{
2683	struct extent_map *em;
2684	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2685	u64 end = start + PAGE_CACHE_SIZE - 1;
 
 
 
2686
2687	if ((mask & __GFP_WAIT) &&
2688	    page->mapping->host->i_size > 16 * 1024 * 1024) {
2689		u64 len;
2690		while (start <= end) {
 
 
 
2691			len = end - start + 1;
2692			write_lock(&map->lock);
2693			em = lookup_extent_mapping(map, start, len);
2694			if (IS_ERR_OR_NULL(em)) {
2695				write_unlock(&map->lock);
2696				break;
2697			}
2698			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2699			    em->start != start) {
2700				write_unlock(&map->lock);
2701				free_extent_map(em);
2702				break;
2703			}
2704			if (!test_range_bit(tree, em->start,
2705					    extent_map_end(em) - 1,
2706					    EXTENT_LOCKED | EXTENT_WRITEBACK,
2707					    0, NULL)) {
2708				remove_extent_mapping(map, em);
2709				/* once for the rb tree */
2710				free_extent_map(em);
2711			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2712			start = extent_map_end(em);
2713			write_unlock(&map->lock);
2714
2715			/* once for us */
2716			free_extent_map(em);
 
 
2717		}
2718	}
2719	return try_release_extent_state(map, tree, page, mask);
2720}
2721
2722/*
2723 * helper function for fiemap, which doesn't want to see any holes.
2724 * This maps until we find something past 'last'
 
2725 */
2726static struct extent_map *get_extent_skip_holes(struct inode *inode,
2727						u64 offset,
2728						u64 last,
2729						get_extent_t *get_extent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2730{
2731	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
2732	struct extent_map *em;
2733	u64 len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2734
2735	if (offset >= last)
2736		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2737
2738	while(1) {
2739		len = last - offset;
2740		if (len == 0)
2741			break;
2742		len = (len + sectorsize - 1) & ~(sectorsize - 1);
2743		em = get_extent(inode, NULL, 0, offset, len, 0);
2744		if (IS_ERR_OR_NULL(em))
2745			return em;
2746
2747		/* if this isn't a hole return it */
2748		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
2749		    em->block_start != EXTENT_MAP_HOLE) {
2750			return em;
2751		}
 
2752
2753		/* this is a hole, advance to the next extent */
2754		offset = extent_map_end(em);
2755		free_extent_map(em);
2756		if (offset >= last)
2757			break;
 
 
 
 
 
 
 
 
 
 
2758	}
2759	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2760}
2761
2762int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2763		__u64 start, __u64 len, get_extent_t *get_extent)
2764{
2765	int ret = 0;
2766	u64 off = start;
2767	u64 max = start + len;
2768	u32 flags = 0;
2769	u32 found_type;
2770	u64 last;
2771	u64 last_for_get_extent = 0;
2772	u64 disko = 0;
2773	u64 isize = i_size_read(inode);
2774	struct btrfs_key found_key;
2775	struct extent_map *em = NULL;
2776	struct extent_state *cached_state = NULL;
2777	struct btrfs_path *path;
2778	struct btrfs_file_extent_item *item;
2779	int end = 0;
2780	u64 em_start = 0;
2781	u64 em_len = 0;
2782	u64 em_end = 0;
2783	unsigned long emflags;
2784
2785	if (len == 0)
2786		return -EINVAL;
 
2787
2788	path = btrfs_alloc_path();
2789	if (!path)
2790		return -ENOMEM;
2791	path->leave_spinning = 1;
2792
2793	/*
2794	 * lookup the last file extent.  We're not using i_size here
2795	 * because there might be preallocation past i_size
2796	 */
2797	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
2798				       path, btrfs_ino(inode), -1, 0);
2799	if (ret < 0) {
2800		btrfs_free_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2801		return ret;
 
 
 
 
 
2802	}
2803	WARN_ON(!ret);
2804	path->slots[0]--;
2805	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2806			      struct btrfs_file_extent_item);
2807	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
2808	found_type = btrfs_key_type(&found_key);
2809
2810	/* No extents, but there might be delalloc bits */
2811	if (found_key.objectid != btrfs_ino(inode) ||
2812	    found_type != BTRFS_EXTENT_DATA_KEY) {
2813		/* have to trust i_size as the end */
2814		last = (u64)-1;
2815		last_for_get_extent = isize;
2816	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2817		/*
2818		 * remember the start of the last extent.  There are a
2819		 * bunch of different factors that go into the length of the
2820		 * extent, so its much less complex to remember where it started
2821		 */
2822		last = found_key.offset;
2823		last_for_get_extent = last + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2824	}
2825	btrfs_free_path(path);
2826
2827	/*
2828	 * we might have some extents allocated but more delalloc past those
2829	 * extents.  so, we trust isize unless the start of the last extent is
2830	 * beyond isize
 
 
2831	 */
2832	if (last < isize) {
2833		last = (u64)-1;
2834		last_for_get_extent = isize;
 
 
 
 
 
 
 
 
 
 
 
2835	}
2836
2837	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
2838			 &cached_state, GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2839
2840	em = get_extent_skip_holes(inode, off, last_for_get_extent,
2841				   get_extent);
2842	if (!em)
 
2843		goto out;
2844	if (IS_ERR(em)) {
2845		ret = PTR_ERR(em);
 
 
 
 
 
 
 
 
 
 
 
 
2846		goto out;
 
 
 
 
 
 
 
2847	}
2848
2849	while (!end) {
2850		u64 offset_in_extent;
 
 
 
 
 
 
 
 
 
 
2851
2852		/* break if the extent we found is outside the range */
2853		if (em->start >= max || extent_map_end(em) < off)
2854			break;
2855
 
 
2856		/*
2857		 * get_extent may return an extent that starts before our
2858		 * requested range.  We have to make sure the ranges
2859		 * we return to fiemap always move forward and don't
2860		 * overlap, so adjust the offsets here
2861		 */
2862		em_start = max(em->start, off);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863
2864		/*
2865		 * record the offset from the start of the extent
2866		 * for adjusting the disk offset below
2867		 */
2868		offset_in_extent = em_start - em->start;
2869		em_end = extent_map_end(em);
2870		em_len = em_end - em_start;
2871		emflags = em->flags;
2872		disko = 0;
2873		flags = 0;
2874
2875		/*
2876		 * bump off for our next call to get_extent
2877		 */
2878		off = extent_map_end(em);
2879		if (off >= max)
2880			end = 1;
2881
2882		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2883			end = 1;
2884			flags |= FIEMAP_EXTENT_LAST;
2885		} else if (em->block_start == EXTENT_MAP_INLINE) {
2886			flags |= (FIEMAP_EXTENT_DATA_INLINE |
2887				  FIEMAP_EXTENT_NOT_ALIGNED);
2888		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
2889			flags |= (FIEMAP_EXTENT_DELALLOC |
2890				  FIEMAP_EXTENT_UNKNOWN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2891		} else {
2892			disko = em->block_start + offset_in_extent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2893		}
2894		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2895			flags |= FIEMAP_EXTENT_ENCODED;
2896
2897		free_extent_map(em);
2898		em = NULL;
2899		if ((em_start >= last) || em_len == (u64)-1 ||
2900		   (last == (u64)-1 && isize <= em_end)) {
2901			flags |= FIEMAP_EXTENT_LAST;
2902			end = 1;
2903		}
2904
2905		/* now scan forward to see if this is really the last extent. */
2906		em = get_extent_skip_holes(inode, off, last_for_get_extent,
2907					   get_extent);
2908		if (IS_ERR(em)) {
2909			ret = PTR_ERR(em);
2910			goto out;
 
 
 
2911		}
2912		if (!em) {
2913			flags |= FIEMAP_EXTENT_LAST;
2914			end = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2915		}
2916		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
2917					      em_len, flags);
2918		if (ret)
2919			goto out_free;
2920	}
2921out_free:
2922	free_extent_map(em);
2923out:
2924	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
2925			     &cached_state, GFP_NOFS);
 
2926	return ret;
2927}
2928
2929static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2930					      unsigned long i)
 
 
 
 
2931{
2932	struct page *p;
2933	struct address_space *mapping;
 
2934
2935	if (i == 0)
2936		return eb->first_page;
2937	i += eb->start >> PAGE_CACHE_SHIFT;
2938	mapping = eb->first_page->mapping;
2939	if (!mapping)
2940		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2941
2942	/*
2943	 * extent_buffer_page is only called after pinning the page
2944	 * by increasing the reference count.  So we know the page must
2945	 * be in the radix tree.
2946	 */
2947	rcu_read_lock();
2948	p = radix_tree_lookup(&mapping->page_tree, i);
2949	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2950
2951	return p;
 
 
2952}
2953
2954static inline unsigned long num_extent_pages(u64 start, u64 len)
 
 
 
2955{
2956	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2957		(start >> PAGE_CACHE_SHIFT);
 
2958}
2959
2960static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2961						   u64 start,
2962						   unsigned long len,
2963						   gfp_t mask)
2964{
2965	struct extent_buffer *eb = NULL;
2966#if LEAK_DEBUG
2967	unsigned long flags;
2968#endif
2969
2970	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2971	if (eb == NULL)
2972		return NULL;
2973	eb->start = start;
2974	eb->len = len;
2975	rwlock_init(&eb->lock);
2976	atomic_set(&eb->write_locks, 0);
2977	atomic_set(&eb->read_locks, 0);
2978	atomic_set(&eb->blocking_readers, 0);
2979	atomic_set(&eb->blocking_writers, 0);
2980	atomic_set(&eb->spinning_readers, 0);
2981	atomic_set(&eb->spinning_writers, 0);
2982	init_waitqueue_head(&eb->write_lock_wq);
2983	init_waitqueue_head(&eb->read_lock_wq);
2984
2985#if LEAK_DEBUG
2986	spin_lock_irqsave(&leak_lock, flags);
2987	list_add(&eb->leak_list, &buffers);
2988	spin_unlock_irqrestore(&leak_lock, flags);
2989#endif
2990	atomic_set(&eb->refs, 1);
2991
 
 
2992	return eb;
2993}
2994
2995static void __free_extent_buffer(struct extent_buffer *eb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2996{
2997#if LEAK_DEBUG
2998	unsigned long flags;
2999	spin_lock_irqsave(&leak_lock, flags);
3000	list_del(&eb->leak_list);
3001	spin_unlock_irqrestore(&leak_lock, flags);
3002#endif
3003	kmem_cache_free(extent_buffer_cache, eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3004}
3005
3006/*
3007 * Helper for releasing extent buffer page.
3008 */
3009static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3010						unsigned long start_idx)
3011{
3012	unsigned long index;
3013	struct page *page;
3014
3015	if (!eb->first_page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3016		return;
3017
3018	index = num_extent_pages(eb->start, eb->len);
3019	if (start_idx >= index)
3020		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3021
3022	do {
3023		index--;
3024		page = extent_buffer_page(eb, index);
3025		if (page)
3026			page_cache_release(page);
3027	} while (index != start_idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3028}
3029
 
3030/*
3031 * Helper for releasing the extent buffer.
 
 
 
 
 
3032 */
3033static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
 
3034{
3035	btrfs_release_extent_buffer_page(eb, 0);
3036	__free_extent_buffer(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3037}
3038
3039struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3040					  u64 start, unsigned long len,
3041					  struct page *page0)
3042{
3043	unsigned long num_pages = num_extent_pages(start, len);
3044	unsigned long i;
3045	unsigned long index = start >> PAGE_CACHE_SHIFT;
3046	struct extent_buffer *eb;
3047	struct extent_buffer *exists = NULL;
3048	struct page *p;
3049	struct address_space *mapping = tree->mapping;
 
 
3050	int uptodate = 1;
3051	int ret;
3052
3053	rcu_read_lock();
3054	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3055	if (eb && atomic_inc_not_zero(&eb->refs)) {
3056		rcu_read_unlock();
3057		mark_page_accessed(eb->first_page);
 
 
 
 
 
 
 
 
 
 
 
3058		return eb;
3059	}
3060	rcu_read_unlock();
3061
3062	eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
3063	if (!eb)
3064		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3065
3066	if (page0) {
3067		eb->first_page = page0;
3068		i = 1;
3069		index++;
3070		page_cache_get(page0);
3071		mark_page_accessed(page0);
3072		set_page_extent_mapped(page0);
3073		set_page_extent_head(page0, len);
3074		uptodate = PageUptodate(page0);
3075	} else {
3076		i = 0;
3077	}
3078	for (; i < num_pages; i++, index++) {
3079		p = find_or_create_page(mapping, index, GFP_NOFS);
3080		if (!p) {
3081			WARN_ON(1);
3082			goto free_eb;
 
 
 
 
 
3083		}
3084		set_page_extent_mapped(p);
3085		mark_page_accessed(p);
3086		if (i == 0) {
3087			eb->first_page = p;
3088			set_page_extent_head(p, len);
3089		} else {
3090			set_page_private(p, EXTENT_PAGE_PRIVATE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091		}
3092		if (!PageUptodate(p))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3093			uptodate = 0;
3094
3095		/*
3096		 * see below about how we avoid a nasty race with release page
3097		 * and why we unlock later
 
 
 
3098		 */
3099		if (i != 0)
3100			unlock_page(p);
3101	}
3102	if (uptodate)
3103		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3104
3105	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
 
 
 
3106	if (ret)
3107		goto free_eb;
3108
3109	spin_lock(&tree->buffer_lock);
3110	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
 
 
 
3111	if (ret == -EEXIST) {
3112		exists = radix_tree_lookup(&tree->buffer,
3113						start >> PAGE_CACHE_SHIFT);
3114		/* add one reference for the caller */
3115		atomic_inc(&exists->refs);
3116		spin_unlock(&tree->buffer_lock);
3117		radix_tree_preload_end();
3118		goto free_eb;
3119	}
3120	/* add one reference for the tree */
3121	atomic_inc(&eb->refs);
3122	spin_unlock(&tree->buffer_lock);
3123	radix_tree_preload_end();
3124
3125	/*
3126	 * there is a race where release page may have
3127	 * tried to find this extent buffer in the radix
3128	 * but failed.  It will tell the VM it is safe to
3129	 * reclaim the, and it will clear the page private bit.
3130	 * We must make sure to set the page private bit properly
3131	 * after the extent buffer is in the radix tree so
3132	 * it doesn't get lost
3133	 */
3134	set_page_extent_mapped(eb->first_page);
3135	set_page_extent_head(eb->first_page, eb->len);
3136	if (!page0)
3137		unlock_page(eb->first_page);
3138	return eb;
3139
3140free_eb:
3141	if (eb->first_page && !page0)
3142		unlock_page(eb->first_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3143
3144	if (!atomic_dec_and_test(&eb->refs))
3145		return exists;
3146	btrfs_release_extent_buffer(eb);
3147	return exists;
 
 
 
 
 
 
 
 
 
 
 
3148}
3149
3150struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3151					 u64 start, unsigned long len)
3152{
3153	struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3154
3155	rcu_read_lock();
3156	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3157	if (eb && atomic_inc_not_zero(&eb->refs)) {
3158		rcu_read_unlock();
3159		mark_page_accessed(eb->first_page);
3160		return eb;
 
 
 
 
 
3161	}
3162	rcu_read_unlock();
3163
3164	return NULL;
3165}
3166
3167void free_extent_buffer(struct extent_buffer *eb)
3168{
 
3169	if (!eb)
3170		return;
3171
3172	if (!atomic_dec_and_test(&eb->refs))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3173		return;
3174
3175	WARN_ON(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3176}
3177
3178int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3179			      struct extent_buffer *eb)
3180{
3181	unsigned long i;
3182	unsigned long num_pages;
3183	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3184
3185	num_pages = num_extent_pages(eb->start, eb->len);
 
3186
3187	for (i = 0; i < num_pages; i++) {
3188		page = extent_buffer_page(eb, i);
3189		if (!PageDirty(page))
3190			continue;
3191
3192		lock_page(page);
3193		WARN_ON(!PagePrivate(page));
3194
3195		set_page_extent_mapped(page);
3196		if (i == 0)
3197			set_page_extent_head(page, eb->len);
3198
3199		clear_page_dirty_for_io(page);
3200		spin_lock_irq(&page->mapping->tree_lock);
3201		if (!PageDirty(page)) {
3202			radix_tree_tag_clear(&page->mapping->page_tree,
3203						page_index(page),
3204						PAGECACHE_TAG_DIRTY);
3205		}
3206		spin_unlock_irq(&page->mapping->tree_lock);
3207		unlock_page(page);
3208	}
3209	return 0;
3210}
3211
3212int set_extent_buffer_dirty(struct extent_io_tree *tree,
3213			     struct extent_buffer *eb)
3214{
3215	unsigned long i;
3216	unsigned long num_pages;
3217	int was_dirty = 0;
 
3218
3219	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3220	num_pages = num_extent_pages(eb->start, eb->len);
3221	for (i = 0; i < num_pages; i++)
3222		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3223	return was_dirty;
3224}
3225
3226static int __eb_straddles_pages(u64 start, u64 len)
3227{
3228	if (len < PAGE_CACHE_SIZE)
3229		return 1;
3230	if (start & (PAGE_CACHE_SIZE - 1))
3231		return 1;
3232	if ((start + len) & (PAGE_CACHE_SIZE - 1))
3233		return 1;
3234	return 0;
3235}
3236
3237static int eb_straddles_pages(struct extent_buffer *eb)
3238{
3239	return __eb_straddles_pages(eb->start, eb->len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3240}
3241
3242int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3243				struct extent_buffer *eb,
3244				struct extent_state **cached_state)
3245{
3246	unsigned long i;
3247	struct page *page;
3248	unsigned long num_pages;
3249
3250	num_pages = num_extent_pages(eb->start, eb->len);
3251	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 
 
 
 
 
3252
3253	if (eb_straddles_pages(eb)) {
3254		clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3255				      cached_state, GFP_NOFS);
3256	}
3257	for (i = 0; i < num_pages; i++) {
3258		page = extent_buffer_page(eb, i);
3259		if (page)
3260			ClearPageUptodate(page);
 
3261	}
3262	return 0;
3263}
3264
3265int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3266				struct extent_buffer *eb)
3267{
3268	unsigned long i;
3269	struct page *page;
3270	unsigned long num_pages;
3271
3272	num_pages = num_extent_pages(eb->start, eb->len);
 
 
3273
3274	if (eb_straddles_pages(eb)) {
3275		set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3276				    NULL, GFP_NOFS);
3277	}
3278	for (i = 0; i < num_pages; i++) {
3279		page = extent_buffer_page(eb, i);
3280		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3281		    ((i == num_pages - 1) &&
3282		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3283			check_page_uptodate(tree, page);
3284			continue;
3285		}
3286		SetPageUptodate(page);
3287	}
3288	return 0;
3289}
3290
3291int extent_range_uptodate(struct extent_io_tree *tree,
3292			  u64 start, u64 end)
3293{
3294	struct page *page;
3295	int ret;
3296	int pg_uptodate = 1;
3297	int uptodate;
3298	unsigned long index;
3299
3300	if (__eb_straddles_pages(start, end - start + 1)) {
3301		ret = test_range_bit(tree, start, end,
3302				     EXTENT_UPTODATE, 1, NULL);
3303		if (ret)
3304			return 1;
3305	}
3306	while (start <= end) {
3307		index = start >> PAGE_CACHE_SHIFT;
3308		page = find_get_page(tree->mapping, index);
3309		uptodate = PageUptodate(page);
3310		page_cache_release(page);
3311		if (!uptodate) {
3312			pg_uptodate = 0;
3313			break;
3314		}
3315		start += PAGE_CACHE_SIZE;
3316	}
3317	return pg_uptodate;
3318}
3319
3320int extent_buffer_uptodate(struct extent_io_tree *tree,
3321			   struct extent_buffer *eb,
3322			   struct extent_state *cached_state)
3323{
3324	int ret = 0;
3325	unsigned long num_pages;
3326	unsigned long i;
3327	struct page *page;
3328	int pg_uptodate = 1;
3329
3330	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3331		return 1;
 
 
3332
3333	if (eb_straddles_pages(eb)) {
3334		ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3335				   EXTENT_UPTODATE, 1, cached_state);
3336		if (ret)
3337			return ret;
3338	}
3339
3340	num_pages = num_extent_pages(eb->start, eb->len);
3341	for (i = 0; i < num_pages; i++) {
3342		page = extent_buffer_page(eb, i);
3343		if (!PageUptodate(page)) {
3344			pg_uptodate = 0;
3345			break;
3346		}
3347	}
3348	return pg_uptodate;
3349}
3350
3351int read_extent_buffer_pages(struct extent_io_tree *tree,
3352			     struct extent_buffer *eb,
3353			     u64 start, int wait,
3354			     get_extent_t *get_extent, int mirror_num)
3355{
3356	unsigned long i;
3357	unsigned long start_i;
3358	struct page *page;
3359	int err;
3360	int ret = 0;
3361	int locked_pages = 0;
3362	int all_uptodate = 1;
3363	int inc_all_pages = 0;
3364	unsigned long num_pages;
3365	struct bio *bio = NULL;
3366	unsigned long bio_flags = 0;
3367
3368	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3369		return 0;
3370
3371	if (eb_straddles_pages(eb)) {
3372		if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3373				   EXTENT_UPTODATE, 1, NULL)) {
3374			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3375		}
3376	}
 
3377
3378	if (start) {
3379		WARN_ON(start < eb->start);
3380		start_i = (start >> PAGE_CACHE_SHIFT) -
3381			(eb->start >> PAGE_CACHE_SHIFT);
3382	} else {
3383		start_i = 0;
3384	}
3385
3386	num_pages = num_extent_pages(eb->start, eb->len);
3387	for (i = start_i; i < num_pages; i++) {
3388		page = extent_buffer_page(eb, i);
3389		if (!wait) {
3390			if (!trylock_page(page))
3391				goto unlock_exit;
3392		} else {
3393			lock_page(page);
3394		}
3395		locked_pages++;
3396		if (!PageUptodate(page))
3397			all_uptodate = 0;
3398	}
3399	if (all_uptodate) {
3400		if (start_i == 0)
3401			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3402		goto unlock_exit;
3403	}
3404
3405	for (i = start_i; i < num_pages; i++) {
3406		page = extent_buffer_page(eb, i);
3407
3408		WARN_ON(!PagePrivate(page));
3409
3410		set_page_extent_mapped(page);
3411		if (i == 0)
3412			set_page_extent_head(page, eb->len);
3413
3414		if (inc_all_pages)
3415			page_cache_get(page);
3416		if (!PageUptodate(page)) {
3417			if (start_i == 0)
3418				inc_all_pages = 1;
3419			ClearPageError(page);
3420			err = __extent_read_full_page(tree, page,
3421						      get_extent, &bio,
3422						      mirror_num, &bio_flags);
3423			if (err)
3424				ret = err;
3425		} else {
3426			unlock_page(page);
3427		}
3428	}
3429
3430	if (bio)
3431		submit_one_bio(READ, bio, mirror_num, bio_flags);
 
 
 
 
 
3432
3433	if (ret || !wait)
3434		return ret;
3435
3436	for (i = start_i; i < num_pages; i++) {
3437		page = extent_buffer_page(eb, i);
3438		wait_on_page_locked(page);
3439		if (!PageUptodate(page))
3440			ret = -EIO;
3441	}
 
 
 
 
 
3442
3443	if (!ret)
3444		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3445	return ret;
3446
3447unlock_exit:
3448	i = start_i;
3449	while (locked_pages > 0) {
3450		page = extent_buffer_page(eb, i);
3451		i++;
3452		unlock_page(page);
3453		locked_pages--;
3454	}
3455	return ret;
3456}
3457
3458void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3459			unsigned long start,
3460			unsigned long len)
3461{
 
3462	size_t cur;
3463	size_t offset;
3464	struct page *page;
3465	char *kaddr;
3466	char *dst = (char *)dstv;
3467	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3468	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
3469
3470	WARN_ON(start > eb->len);
3471	WARN_ON(start + len > eb->start + eb->len);
 
 
3472
3473	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3474
3475	while (len > 0) {
3476		page = extent_buffer_page(eb, i);
3477
3478		cur = min(len, (PAGE_CACHE_SIZE - offset));
3479		kaddr = page_address(page);
3480		memcpy(dst, kaddr + offset, cur);
3481
3482		dst += cur;
3483		len -= cur;
3484		offset = 0;
3485		i++;
3486	}
3487}
3488
3489int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3490			       unsigned long min_len, char **map,
3491			       unsigned long *map_start,
3492			       unsigned long *map_len)
3493{
3494	size_t offset = start & (PAGE_CACHE_SIZE - 1);
3495	char *kaddr;
3496	struct page *p;
3497	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3498	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3499	unsigned long end_i = (start_offset + start + min_len - 1) >>
3500		PAGE_CACHE_SHIFT;
3501
3502	if (i != end_i)
3503		return -EINVAL;
3504
3505	if (i == 0) {
3506		offset = start_offset;
3507		*map_start = 0;
3508	} else {
3509		offset = 0;
3510		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3511	}
3512
3513	if (start + min_len > eb->len) {
3514		printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3515		       "wanted %lu %lu\n", (unsigned long long)eb->start,
3516		       eb->len, start, min_len);
3517		WARN_ON(1);
3518		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
3519	}
3520
3521	p = extent_buffer_page(eb, i);
3522	kaddr = page_address(p);
3523	*map = kaddr + offset;
3524	*map_len = PAGE_CACHE_SIZE - offset;
3525	return 0;
3526}
3527
3528int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3529			  unsigned long start,
3530			  unsigned long len)
3531{
 
3532	size_t cur;
3533	size_t offset;
3534	struct page *page;
3535	char *kaddr;
3536	char *ptr = (char *)ptrv;
3537	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3538	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3539	int ret = 0;
3540
3541	WARN_ON(start > eb->len);
3542	WARN_ON(start + len > eb->start + eb->len);
 
 
 
3543
3544	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3545
3546	while (len > 0) {
3547		page = extent_buffer_page(eb, i);
3548
3549		cur = min(len, (PAGE_CACHE_SIZE - offset));
3550
3551		kaddr = page_address(page);
3552		ret = memcmp(ptr, kaddr + offset, cur);
3553		if (ret)
3554			break;
3555
3556		ptr += cur;
3557		len -= cur;
3558		offset = 0;
3559		i++;
3560	}
3561	return ret;
3562}
3563
3564void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3565			 unsigned long start, unsigned long len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3566{
 
3567	size_t cur;
3568	size_t offset;
3569	struct page *page;
3570	char *kaddr;
3571	char *src = (char *)srcv;
3572	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3573	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 
3574
3575	WARN_ON(start > eb->len);
3576	WARN_ON(start + len > eb->start + eb->len);
 
 
 
 
 
 
 
 
3577
3578	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3579
3580	while (len > 0) {
3581		page = extent_buffer_page(eb, i);
3582		WARN_ON(!PageUptodate(page));
3583
3584		cur = min(len, PAGE_CACHE_SIZE - offset);
3585		kaddr = page_address(page);
3586		memcpy(kaddr + offset, src, cur);
 
 
 
3587
3588		src += cur;
3589		len -= cur;
3590		offset = 0;
3591		i++;
3592	}
3593}
3594
3595void memset_extent_buffer(struct extent_buffer *eb, char c,
3596			  unsigned long start, unsigned long len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3597{
3598	size_t cur;
3599	size_t offset;
3600	struct page *page;
3601	char *kaddr;
3602	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3603	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3604
3605	WARN_ON(start > eb->len);
3606	WARN_ON(start + len > eb->start + eb->len);
 
 
 
3607
3608	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3609
3610	while (len > 0) {
3611		page = extent_buffer_page(eb, i);
3612		WARN_ON(!PageUptodate(page));
 
 
3613
3614		cur = min(len, PAGE_CACHE_SIZE - offset);
3615		kaddr = page_address(page);
3616		memset(kaddr + offset, c, cur);
3617
3618		len -= cur;
3619		offset = 0;
3620		i++;
3621	}
3622}
3623
3624void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
 
3625			unsigned long dst_offset, unsigned long src_offset,
3626			unsigned long len)
3627{
 
3628	u64 dst_len = dst->len;
3629	size_t cur;
3630	size_t offset;
3631	struct page *page;
3632	char *kaddr;
3633	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3634	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
 
 
 
3635
3636	WARN_ON(src->len != dst_len);
3637
3638	offset = (start_offset + dst_offset) &
3639		((unsigned long)PAGE_CACHE_SIZE - 1);
3640
3641	while (len > 0) {
3642		page = extent_buffer_page(dst, i);
3643		WARN_ON(!PageUptodate(page));
3644
3645		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3646
3647		kaddr = page_address(page);
3648		read_extent_buffer(src, kaddr + offset, src_offset, cur);
3649
3650		src_offset += cur;
3651		len -= cur;
3652		offset = 0;
3653		i++;
3654	}
3655}
3656
3657static void move_pages(struct page *dst_page, struct page *src_page,
3658		       unsigned long dst_off, unsigned long src_off,
3659		       unsigned long len)
3660{
3661	char *dst_kaddr = page_address(dst_page);
3662	if (dst_page == src_page) {
3663		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3664	} else {
3665		char *src_kaddr = page_address(src_page);
3666		char *p = dst_kaddr + dst_off + len;
3667		char *s = src_kaddr + src_off + len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3668
3669		while (len--)
3670			*--p = *--s;
3671	}
 
 
 
 
3672}
3673
3674static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
3675{
3676	unsigned long distance = (src > dst) ? src - dst : dst - src;
3677	return distance < len;
3678}
3679
3680static void copy_pages(struct page *dst_page, struct page *src_page,
3681		       unsigned long dst_off, unsigned long src_off,
3682		       unsigned long len)
3683{
3684	char *dst_kaddr = page_address(dst_page);
3685	char *src_kaddr;
3686
3687	if (dst_page != src_page) {
3688		src_kaddr = page_address(src_page);
3689	} else {
3690		src_kaddr = dst_kaddr;
3691		BUG_ON(areas_overlap(src_off, dst_off, len));
3692	}
3693
3694	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3695}
3696
3697void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3698			   unsigned long src_offset, unsigned long len)
3699{
3700	size_t cur;
3701	size_t dst_off_in_page;
3702	size_t src_off_in_page;
3703	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3704	unsigned long dst_i;
3705	unsigned long src_i;
3706
3707	if (src_offset + len > dst->len) {
3708		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3709		       "len %lu dst len %lu\n", src_offset, len, dst->len);
3710		BUG_ON(1);
3711	}
3712	if (dst_offset + len > dst->len) {
3713		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3714		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
3715		BUG_ON(1);
3716	}
3717
3718	while (len > 0) {
3719		dst_off_in_page = (start_offset + dst_offset) &
3720			((unsigned long)PAGE_CACHE_SIZE - 1);
3721		src_off_in_page = (start_offset + src_offset) &
3722			((unsigned long)PAGE_CACHE_SIZE - 1);
3723
3724		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3725		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3726
3727		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3728					       src_off_in_page));
3729		cur = min_t(unsigned long, cur,
3730			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3731
3732		copy_pages(extent_buffer_page(dst, dst_i),
3733			   extent_buffer_page(dst, src_i),
3734			   dst_off_in_page, src_off_in_page, cur);
3735
3736		src_offset += cur;
3737		dst_offset += cur;
3738		len -= cur;
3739	}
3740}
3741
3742void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3743			   unsigned long src_offset, unsigned long len)
 
3744{
3745	size_t cur;
3746	size_t dst_off_in_page;
3747	size_t src_off_in_page;
3748	unsigned long dst_end = dst_offset + len - 1;
3749	unsigned long src_end = src_offset + len - 1;
3750	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3751	unsigned long dst_i;
3752	unsigned long src_i;
3753
3754	if (src_offset + len > dst->len) {
3755		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3756		       "len %lu len %lu\n", src_offset, len, dst->len);
3757		BUG_ON(1);
3758	}
3759	if (dst_offset + len > dst->len) {
3760		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3761		       "len %lu len %lu\n", dst_offset, len, dst->len);
3762		BUG_ON(1);
3763	}
3764	if (!areas_overlap(src_offset, dst_offset, len)) {
3765		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
 
3766		return;
3767	}
 
3768	while (len > 0) {
3769		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3770		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3771
3772		dst_off_in_page = (start_offset + dst_end) &
3773			((unsigned long)PAGE_CACHE_SIZE - 1);
3774		src_off_in_page = (start_offset + src_end) &
3775			((unsigned long)PAGE_CACHE_SIZE - 1);
3776
3777		cur = min_t(unsigned long, len, src_off_in_page + 1);
3778		cur = min(cur, dst_off_in_page + 1);
3779		move_pages(extent_buffer_page(dst, dst_i),
3780			   extent_buffer_page(dst, src_i),
3781			   dst_off_in_page - cur + 1,
3782			   src_off_in_page - cur + 1, cur);
3783
3784		dst_end -= cur;
3785		src_end -= cur;
3786		len -= cur;
3787	}
3788}
3789
3790static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3791{
3792	struct extent_buffer *eb =
3793			container_of(head, struct extent_buffer, rcu_head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3794
3795	btrfs_release_extent_buffer(eb);
3796}
3797
3798int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3799{
3800	u64 start = page_offset(page);
3801	struct extent_buffer *eb;
3802	int ret = 1;
3803
3804	spin_lock(&tree->buffer_lock);
3805	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3806	if (!eb) {
3807		spin_unlock(&tree->buffer_lock);
3808		return ret;
 
 
 
 
 
 
3809	}
3810
3811	if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3812		ret = 0;
3813		goto out;
 
 
 
 
 
 
 
 
 
 
3814	}
 
3815
3816	/*
3817	 * set @eb->refs to 0 if it is already 1, and then release the @eb.
3818	 * Or go back.
3819	 */
3820	if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
3821		ret = 0;
3822		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3823	}
3824
3825	radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3826out:
3827	spin_unlock(&tree->buffer_lock);
 
 
 
3828
3829	/* at this point we can safely release the extent buffer */
3830	if (atomic_read(&eb->refs) == 0)
3831		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3832	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
3833}