Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
   9#include <linux/sched/mm.h>
  10#include <linux/spinlock.h>
  11#include <linux/blkdev.h>
  12#include <linux/swap.h>
  13#include <linux/writeback.h>
  14#include <linux/pagevec.h>
  15#include <linux/prefetch.h>
  16#include <linux/fsverity.h>
  17#include "misc.h"
  18#include "extent_io.h"
  19#include "extent-io-tree.h"
  20#include "extent_map.h"
  21#include "ctree.h"
  22#include "btrfs_inode.h"
  23#include "bio.h"
 
  24#include "locking.h"
  25#include "rcu-string.h"
  26#include "backref.h"
  27#include "disk-io.h"
  28#include "subpage.h"
  29#include "zoned.h"
  30#include "block-group.h"
  31#include "compression.h"
  32#include "fs.h"
  33#include "accessors.h"
  34#include "file-item.h"
  35#include "file.h"
  36#include "dev-replace.h"
  37#include "super.h"
  38#include "transaction.h"
  39
 
  40static struct kmem_cache *extent_buffer_cache;
 
 
 
 
 
 
  41
  42#ifdef CONFIG_BTRFS_DEBUG
  43static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
 
 
 
 
 
 
  44{
  45	struct btrfs_fs_info *fs_info = eb->fs_info;
  46	unsigned long flags;
  47
  48	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  49	list_add(&eb->leak_list, &fs_info->allocated_ebs);
  50	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  51}
  52
  53static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
 
  54{
  55	struct btrfs_fs_info *fs_info = eb->fs_info;
  56	unsigned long flags;
  57
  58	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  59	list_del(&eb->leak_list);
  60	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  61}
  62
  63void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
 
  64{
 
  65	struct extent_buffer *eb;
  66	unsigned long flags;
  67
  68	/*
  69	 * If we didn't get into open_ctree our allocated_ebs will not be
  70	 * initialized, so just skip this.
  71	 */
  72	if (!fs_info->allocated_ebs.next)
  73		return;
 
 
 
  74
  75	WARN_ON(!list_empty(&fs_info->allocated_ebs));
  76	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  77	while (!list_empty(&fs_info->allocated_ebs)) {
  78		eb = list_first_entry(&fs_info->allocated_ebs,
  79				      struct extent_buffer, leak_list);
  80		pr_err(
  81	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
  82		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
  83		       btrfs_header_owner(eb));
  84		list_del(&eb->leak_list);
  85		kmem_cache_free(extent_buffer_cache, eb);
  86	}
  87	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88}
  89#else
  90#define btrfs_leak_debug_add_eb(eb)			do {} while (0)
  91#define btrfs_leak_debug_del_eb(eb)			do {} while (0)
 
 
  92#endif
  93
  94/*
  95 * Structure to record info about the bio being assembled, and other info like
  96 * how many bytes are there before stripe/ordered extent boundary.
  97 */
  98struct btrfs_bio_ctrl {
  99	struct btrfs_bio *bbio;
 100	enum btrfs_compression_type compress_type;
 101	u32 len_to_oe_boundary;
 102	blk_opf_t opf;
 103	btrfs_bio_end_io_t end_io_func;
 104	struct writeback_control *wbc;
 105};
 106
 107static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108{
 109	struct btrfs_bio *bbio = bio_ctrl->bbio;
 110
 111	if (!bbio)
 112		return;
 
 
 
 
 
 
 
 
 
 
 113
 114	/* Caller should ensure the bio has at least some range added */
 115	ASSERT(bbio->bio.bi_iter.bi_size);
 
 
 
 
 
 
 116
 117	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
 118	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
 119		btrfs_submit_compressed_read(bbio);
 120	else
 121		btrfs_submit_bio(bbio, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122
 123	/* The bbio is owned by the end_io handler now */
 124	bio_ctrl->bbio = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125}
 126
 127/*
 128 * Submit or fail the current bio in the bio_ctrl structure.
 
 
 
 
 
 
 129 */
 130static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
 
 131{
 132	struct btrfs_bio *bbio = bio_ctrl->bbio;
 
 133
 134	if (!bbio)
 135		return;
 136
 137	if (ret) {
 138		ASSERT(ret < 0);
 139		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
 140		/* The bio is owned by the end_io handler now */
 141		bio_ctrl->bbio = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 142	} else {
 143		submit_one_bio(bio_ctrl);
 
 144	}
 
 145}
 146
 147int __init extent_buffer_init_cachep(void)
 
 148{
 149	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 150			sizeof(struct extent_buffer), 0,
 151			SLAB_MEM_SPREAD, NULL);
 152	if (!extent_buffer_cache)
 153		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154
 155	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156}
 157
 158void __cold extent_buffer_free_cachep(void)
 
 
 
 
 
 
 159{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160	/*
 161	 * Make sure all delayed rcu free are flushed before we
 162	 * destroy caches.
 163	 */
 164	rcu_barrier();
 165	kmem_cache_destroy(extent_buffer_cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166}
 167
 168void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
 169{
 170	unsigned long index = start >> PAGE_SHIFT;
 171	unsigned long end_index = end >> PAGE_SHIFT;
 172	struct page *page;
 173
 174	while (index <= end_index) {
 175		page = find_get_page(inode->i_mapping, index);
 176		BUG_ON(!page); /* Pages should be in the extent_io_tree */
 177		clear_page_dirty_for_io(page);
 178		put_page(page);
 179		index++;
 180	}
 181}
 182
 183static void process_one_page(struct btrfs_fs_info *fs_info,
 184			     struct page *page, struct page *locked_page,
 185			     unsigned long page_ops, u64 start, u64 end)
 186{
 187	struct folio *folio = page_folio(page);
 188	u32 len;
 189
 190	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
 191	len = end + 1 - start;
 192
 193	if (page_ops & PAGE_SET_ORDERED)
 194		btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
 195	if (page_ops & PAGE_START_WRITEBACK) {
 196		btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
 197		btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
 198	}
 199	if (page_ops & PAGE_END_WRITEBACK)
 200		btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
 201
 202	if (page != locked_page && (page_ops & PAGE_UNLOCK))
 203		btrfs_folio_end_writer_lock(fs_info, folio, start, len);
 204}
 205
 206static void __process_pages_contig(struct address_space *mapping,
 207				   struct page *locked_page, u64 start, u64 end,
 208				   unsigned long page_ops)
 209{
 210	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
 211	pgoff_t start_index = start >> PAGE_SHIFT;
 212	pgoff_t end_index = end >> PAGE_SHIFT;
 213	pgoff_t index = start_index;
 214	struct folio_batch fbatch;
 215	int i;
 216
 217	folio_batch_init(&fbatch);
 218	while (index <= end_index) {
 219		int found_folios;
 
 
 
 
 
 
 
 220
 221		found_folios = filemap_get_folios_contig(mapping, &index,
 222				end_index, &fbatch);
 223		for (i = 0; i < found_folios; i++) {
 224			struct folio *folio = fbatch.folios[i];
 
 
 
 
 225
 226			process_one_page(fs_info, &folio->page, locked_page,
 227					 page_ops, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228		}
 229		folio_batch_release(&fbatch);
 230		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 231	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232}
 233
 234static noinline void __unlock_for_delalloc(struct inode *inode,
 235					   struct page *locked_page,
 236					   u64 start, u64 end)
 237{
 
 
 238	unsigned long index = start >> PAGE_SHIFT;
 239	unsigned long end_index = end >> PAGE_SHIFT;
 
 
 240
 241	ASSERT(locked_page);
 242	if (index == locked_page->index && end_index == index)
 243		return;
 244
 245	__process_pages_contig(inode->i_mapping, locked_page, start, end,
 246			       PAGE_UNLOCK);
 
 
 
 
 
 
 
 
 
 
 
 247}
 248
 249static noinline int lock_delalloc_pages(struct inode *inode,
 250					struct page *locked_page,
 251					u64 start,
 252					u64 end)
 253{
 254	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 255	struct address_space *mapping = inode->i_mapping;
 256	pgoff_t start_index = start >> PAGE_SHIFT;
 257	pgoff_t end_index = end >> PAGE_SHIFT;
 258	pgoff_t index = start_index;
 259	u64 processed_end = start;
 260	struct folio_batch fbatch;
 
 261
 
 262	if (index == locked_page->index && index == end_index)
 263		return 0;
 264
 265	folio_batch_init(&fbatch);
 266	while (index <= end_index) {
 267		unsigned int found_folios, i;
 268
 269		found_folios = filemap_get_folios_contig(mapping, &index,
 270				end_index, &fbatch);
 271		if (found_folios == 0)
 272			goto out;
 273
 274		for (i = 0; i < found_folios; i++) {
 275			struct folio *folio = fbatch.folios[i];
 276			struct page *page = folio_page(folio, 0);
 277			u32 len = end + 1 - start;
 278
 279			if (page == locked_page)
 280				continue;
 281
 282			if (btrfs_folio_start_writer_lock(fs_info, folio, start,
 283							  len))
 284				goto out;
 285
 286			if (!PageDirty(page) || page->mapping != mapping) {
 287				btrfs_folio_end_writer_lock(fs_info, folio, start,
 288							    len);
 289				goto out;
 290			}
 291
 292			processed_end = page_offset(page) + PAGE_SIZE - 1;
 293		}
 294		folio_batch_release(&fbatch);
 
 295		cond_resched();
 296	}
 297
 298	return 0;
 299out:
 300	folio_batch_release(&fbatch);
 301	if (processed_end > start)
 302		__unlock_for_delalloc(inode, locked_page, start, processed_end);
 303	return -EAGAIN;
 
 
 304}
 305
 306/*
 307 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 308 * more than @max_bytes.
 309 *
 310 * @start:	The original start bytenr to search.
 311 *		Will store the extent range start bytenr.
 312 * @end:	The original end bytenr of the search range
 313 *		Will store the extent range end bytenr.
 314 *
 315 * Return true if we find a delalloc range which starts inside the original
 316 * range, and @start/@end will store the delalloc range start/end.
 317 *
 318 * Return false if we can't find any delalloc range which starts inside the
 319 * original range, and @start/@end will be the non-delalloc range start/end.
 320 */
 321EXPORT_FOR_TESTS
 322noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
 323				    struct page *locked_page, u64 *start,
 324				    u64 *end)
 325{
 326	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 327	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
 328	const u64 orig_start = *start;
 329	const u64 orig_end = *end;
 330	/* The sanity tests may not set a valid fs_info. */
 331	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
 332	u64 delalloc_start;
 333	u64 delalloc_end;
 334	bool found;
 335	struct extent_state *cached_state = NULL;
 336	int ret;
 337	int loops = 0;
 338
 339	/* Caller should pass a valid @end to indicate the search range end */
 340	ASSERT(orig_end > orig_start);
 341
 342	/* The range should at least cover part of the page */
 343	ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
 344		 orig_end <= page_offset(locked_page)));
 345again:
 346	/* step one, find a bunch of delalloc bytes starting at start */
 347	delalloc_start = *start;
 348	delalloc_end = 0;
 349	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
 350					  max_bytes, &cached_state);
 351	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
 352		*start = delalloc_start;
 353
 354		/* @delalloc_end can be -1, never go beyond @orig_end */
 355		*end = min(delalloc_end, orig_end);
 356		free_extent_state(cached_state);
 357		return false;
 358	}
 359
 360	/*
 361	 * start comes from the offset of locked_page.  We have to lock
 362	 * pages in order, so we can't process delalloc bytes before
 363	 * locked_page
 364	 */
 365	if (delalloc_start < *start)
 366		delalloc_start = *start;
 367
 368	/*
 369	 * make sure to limit the number of pages we try to lock down
 370	 */
 371	if (delalloc_end + 1 - delalloc_start > max_bytes)
 372		delalloc_end = delalloc_start + max_bytes - 1;
 373
 374	/* step two, lock all the pages after the page that has start */
 375	ret = lock_delalloc_pages(inode, locked_page,
 376				  delalloc_start, delalloc_end);
 377	ASSERT(!ret || ret == -EAGAIN);
 378	if (ret == -EAGAIN) {
 379		/* some of the pages are gone, lets avoid looping by
 380		 * shortening the size of the delalloc range we're searching
 381		 */
 382		free_extent_state(cached_state);
 383		cached_state = NULL;
 384		if (!loops) {
 385			max_bytes = PAGE_SIZE;
 386			loops = 1;
 387			goto again;
 388		} else {
 389			found = false;
 390			goto out_failed;
 391		}
 392	}
 
 393
 394	/* step three, lock the state bits for the whole range */
 395	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
 396
 397	/* then test to make sure it is all still delalloc */
 398	ret = test_range_bit(tree, delalloc_start, delalloc_end,
 399			     EXTENT_DELALLOC, cached_state);
 400	if (!ret) {
 401		unlock_extent(tree, delalloc_start, delalloc_end,
 402			      &cached_state);
 403		__unlock_for_delalloc(inode, locked_page,
 404			      delalloc_start, delalloc_end);
 405		cond_resched();
 406		goto again;
 407	}
 408	free_extent_state(cached_state);
 409	*start = delalloc_start;
 410	*end = delalloc_end;
 411out_failed:
 412	return found;
 413}
 414
 415void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
 416				  struct page *locked_page,
 417				  u32 clear_bits, unsigned long page_ops)
 
 418{
 419	clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 420
 421	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
 422			       start, end, page_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 423}
 424
 425static bool btrfs_verify_page(struct page *page, u64 start)
 426{
 427	if (!fsverity_active(page->mapping->host) ||
 428	    PageUptodate(page) ||
 429	    start >= i_size_read(page->mapping->host))
 430		return true;
 431	return fsverity_verify_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432}
 433
 434static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
 
 
 
 
 
 435{
 436	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
 437	struct folio *folio = page_folio(page);
 
 438
 439	ASSERT(page_offset(page) <= start &&
 440	       start + len <= page_offset(page) + PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441
 442	if (uptodate && btrfs_verify_page(page, start))
 443		btrfs_folio_set_uptodate(fs_info, folio, start, len);
 444	else
 445		btrfs_folio_clear_uptodate(fs_info, folio, start, len);
 
 
 446
 447	if (!btrfs_is_subpage(fs_info, page->mapping))
 448		unlock_page(page);
 449	else
 450		btrfs_subpage_end_reader(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451}
 452
 453/*
 454 * After a write IO is done, we need to:
 455 *
 456 * - clear the uptodate bits on error
 457 * - clear the writeback bits in the extent tree for the range
 458 * - filio_end_writeback()  if there is no more pending io for the folio
 459 *
 460 * Scheduling is not allowed, so the extent state tree is expected
 461 * to have one and only one object corresponding to this IO.
 462 */
 463static void end_bbio_data_write(struct btrfs_bio *bbio)
 
 464{
 465	struct bio *bio = &bbio->bio;
 466	int error = blk_status_to_errno(bio->bi_status);
 467	struct folio_iter fi;
 468
 469	ASSERT(!bio_flagged(bio, BIO_CLONED));
 470	bio_for_each_folio_all(fi, bio) {
 471		struct folio *folio = fi.folio;
 472		struct inode *inode = folio->mapping->host;
 473		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 474		const u32 sectorsize = fs_info->sectorsize;
 475		u64 start = folio_pos(folio) + fi.offset;
 476		u32 len = fi.length;
 477
 478		/* Only order 0 (single page) folios are allowed for data. */
 479		ASSERT(folio_order(folio) == 0);
 480
 481		/* Our read/write should always be sector aligned. */
 482		if (!IS_ALIGNED(fi.offset, sectorsize))
 483			btrfs_err(fs_info,
 484		"partial page write in btrfs with offset %zu and length %zu",
 485				  fi.offset, fi.length);
 486		else if (!IS_ALIGNED(fi.length, sectorsize))
 487			btrfs_info(fs_info,
 488		"incomplete page write with offset %zu and length %zu",
 489				   fi.offset, fi.length);
 490
 491		btrfs_finish_ordered_extent(bbio->ordered,
 492				folio_page(folio, 0), start, len, !error);
 493		if (error)
 494			mapping_set_error(folio->mapping, error);
 495		btrfs_folio_clear_writeback(fs_info, folio, start, len);
 496	}
 497
 498	bio_put(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499}
 500
 501/*
 502 * Record previously processed extent range
 503 *
 504 * For endio_readpage_release_extent() to handle a full extent range, reducing
 505 * the extent io operations.
 506 */
 507struct processed_extent {
 508	struct btrfs_inode *inode;
 509	/* Start of the range in @inode */
 510	u64 start;
 511	/* End of the range in @inode */
 512	u64 end;
 513	bool uptodate;
 514};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515
 516/*
 517 * Try to release processed extent range
 518 *
 519 * May not release the extent range right now if the current range is
 520 * contiguous to processed extent.
 521 *
 522 * Will release processed extent when any of @inode, @uptodate, the range is
 523 * no longer contiguous to the processed range.
 524 *
 525 * Passing @inode == NULL will force processed extent to be released.
 526 */
 527static void endio_readpage_release_extent(struct processed_extent *processed,
 528			      struct btrfs_inode *inode, u64 start, u64 end,
 529			      bool uptodate)
 530{
 531	struct extent_state *cached = NULL;
 532	struct extent_io_tree *tree;
 
 
 
 
 
 
 533
 534	/* The first extent, initialize @processed */
 535	if (!processed->inode)
 536		goto update;
 537
 538	/*
 539	 * Contiguous to processed extent, just uptodate the end.
 540	 *
 541	 * Several things to notice:
 542	 *
 543	 * - bio can be merged as long as on-disk bytenr is contiguous
 544	 *   This means we can have page belonging to other inodes, thus need to
 545	 *   check if the inode still matches.
 546	 * - bvec can contain range beyond current page for multi-page bvec
 547	 *   Thus we need to do processed->end + 1 >= start check
 548	 */
 549	if (processed->inode == inode && processed->uptodate == uptodate &&
 550	    processed->end + 1 >= start && end >= processed->end) {
 551		processed->end = end;
 552		return;
 553	}
 554
 555	tree = &processed->inode->io_tree;
 556	/*
 557	 * Now we don't have range contiguous to the processed range, release
 558	 * the processed range now.
 
 559	 */
 560	unlock_extent(tree, processed->start, processed->end, &cached);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 561
 562update:
 563	/* Update processed to current range */
 564	processed->inode = inode;
 565	processed->start = start;
 566	processed->end = end;
 567	processed->uptodate = uptodate;
 
 568}
 569
 570static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
 
 571{
 572	struct folio *folio = page_folio(page);
 
 
 573
 574	ASSERT(folio_test_locked(folio));
 575	if (!btrfs_is_subpage(fs_info, folio->mapping))
 576		return;
 
 
 577
 578	ASSERT(folio_test_private(folio));
 579	btrfs_subpage_start_reader(fs_info, folio, page_offset(page), PAGE_SIZE);
 
 
 
 
 
 
 
 580}
 581
 582/*
 583 * After a data read IO is done, we need to:
 584 *
 585 * - clear the uptodate bits on error
 586 * - set the uptodate bits if things worked
 587 * - set the folio up to date if all extents in the tree are uptodate
 588 * - clear the lock bit in the extent tree
 589 * - unlock the folio if there are no other extents locked for it
 590 *
 591 * Scheduling is not allowed, so the extent state tree is expected
 592 * to have one and only one object corresponding to this IO.
 593 */
 594static void end_bbio_data_read(struct btrfs_bio *bbio)
 
 595{
 596	struct bio *bio = &bbio->bio;
 597	struct processed_extent processed = { 0 };
 598	struct folio_iter fi;
 599	/*
 600	 * The offset to the beginning of a bio, since one bio can never be
 601	 * larger than UINT_MAX, u32 here is enough.
 602	 */
 603	u32 bio_offset = 0;
 604
 605	ASSERT(!bio_flagged(bio, BIO_CLONED));
 606	bio_for_each_folio_all(fi, &bbio->bio) {
 607		bool uptodate = !bio->bi_status;
 608		struct folio *folio = fi.folio;
 609		struct inode *inode = folio->mapping->host;
 610		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 611		const u32 sectorsize = fs_info->sectorsize;
 612		u64 start;
 613		u64 end;
 614		u32 len;
 615
 616		/* For now only order 0 folios are supported for data. */
 617		ASSERT(folio_order(folio) == 0);
 618		btrfs_debug(fs_info,
 619			"%s: bi_sector=%llu, err=%d, mirror=%u",
 620			__func__, bio->bi_iter.bi_sector, bio->bi_status,
 621			bbio->mirror_num);
 622
 623		/*
 624		 * We always issue full-sector reads, but if some block in a
 625		 * folio fails to read, blk_update_request() will advance
 626		 * bv_offset and adjust bv_len to compensate.  Print a warning
 627		 * for unaligned offsets, and an error if they don't add up to
 628		 * a full sector.
 629		 */
 630		if (!IS_ALIGNED(fi.offset, sectorsize))
 631			btrfs_err(fs_info,
 632		"partial page read in btrfs with offset %zu and length %zu",
 633				  fi.offset, fi.length);
 634		else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
 635			btrfs_info(fs_info,
 636		"incomplete page read with offset %zu and length %zu",
 637				   fi.offset, fi.length);
 638
 639		start = folio_pos(folio) + fi.offset;
 640		end = start + fi.length - 1;
 641		len = fi.length;
 642
 643		if (likely(uptodate)) {
 644			loff_t i_size = i_size_read(inode);
 645			pgoff_t end_index = i_size >> folio_shift(folio);
 646
 647			/*
 648			 * Zero out the remaining part if this range straddles
 649			 * i_size.
 650			 *
 651			 * Here we should only zero the range inside the folio,
 652			 * not touch anything else.
 653			 *
 654			 * NOTE: i_size is exclusive while end is inclusive.
 655			 */
 656			if (folio_index(folio) == end_index && i_size <= end) {
 657				u32 zero_start = max(offset_in_folio(folio, i_size),
 658						     offset_in_folio(folio, start));
 659				u32 zero_len = offset_in_folio(folio, end) + 1 -
 660					       zero_start;
 661
 662				folio_zero_range(folio, zero_start, zero_len);
 663			}
 
 
 
 
 
 
 
 
 
 
 
 
 664		}
 
 665
 666		/* Update page status and unlock. */
 667		end_page_read(folio_page(folio, 0), uptodate, start, len);
 668		endio_readpage_release_extent(&processed, BTRFS_I(inode),
 669					      start, end, uptodate);
 670
 671		ASSERT(bio_offset + len > bio_offset);
 672		bio_offset += len;
 673
 674	}
 675	/* Release the last extent */
 676	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
 677	bio_put(bio);
 678}
 679
 680/*
 681 * Populate every free slot in a provided array with pages.
 682 *
 683 * @nr_pages:   number of pages to allocate
 684 * @page_array: the array to fill with pages; any existing non-null entries in
 685 * 		the array will be skipped
 686 * @extra_gfp:	the extra GFP flags for the allocation.
 687 *
 688 * Return: 0        if all pages were able to be allocated;
 689 *         -ENOMEM  otherwise, the partially allocated pages would be freed and
 690 *                  the array slots zeroed
 691 */
 692int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
 693			   gfp_t extra_gfp)
 694{
 695	unsigned int allocated;
 
 
 696
 697	for (allocated = 0; allocated < nr_pages;) {
 698		unsigned int last = allocated;
 699
 700		allocated = alloc_pages_bulk_array(GFP_NOFS | extra_gfp,
 701						   nr_pages, page_array);
 
 
 
 702
 703		if (allocated == nr_pages)
 704			return 0;
 705
 706		/*
 707		 * During this iteration, no page could be allocated, even
 708		 * though alloc_pages_bulk_array() falls back to alloc_page()
 709		 * if  it could not bulk-allocate. So we must be out of memory.
 710		 */
 711		if (allocated == last) {
 712			for (int i = 0; i < allocated; i++) {
 713				__free_page(page_array[i]);
 714				page_array[i] = NULL;
 715			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 716			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718
 719		memalloc_retry_wait(GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 720	}
 
 
 
 721	return 0;
 722}
 723
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724/*
 725 * Populate needed folios for the extent buffer.
 726 *
 727 * For now, the folios populated are always in order 0 (aka, single page).
 
 
 728 */
 729static int alloc_eb_folio_array(struct extent_buffer *eb, gfp_t extra_gfp)
 
 
 
 730{
 731	struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
 732	int num_pages = num_extent_pages(eb);
 
 
 
 733	int ret;
 734
 735	ret = btrfs_alloc_page_array(num_pages, page_array, extra_gfp);
 736	if (ret < 0)
 
 
 737		return ret;
 738
 739	for (int i = 0; i < num_pages; i++)
 740		eb->folios[i] = page_folio(page_array[i]);
 741	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 742}
 743
 744static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
 745				struct page *page, u64 disk_bytenr,
 746				unsigned int pg_offset)
 747{
 748	struct bio *bio = &bio_ctrl->bbio->bio;
 749	struct bio_vec *bvec = bio_last_bvec_all(bio);
 750	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
 751
 752	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
 753		/*
 754		 * For compression, all IO should have its logical bytenr set
 755		 * to the starting bytenr of the compressed extent.
 756		 */
 757		return bio->bi_iter.bi_sector == sector;
 
 
 
 
 
 
 
 758	}
 759
 760	/*
 761	 * The contig check requires the following conditions to be met:
 762	 *
 763	 * 1) The pages are belonging to the same inode
 764	 *    This is implied by the call chain.
 765	 *
 766	 * 2) The range has adjacent logical bytenr
 767	 *
 768	 * 3) The range has adjacent file offset
 769	 *    This is required for the usage of btrfs_bio->file_offset.
 770	 */
 771	return bio_end_sector(bio) == sector &&
 772		page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
 773		page_offset(page) + pg_offset;
 774}
 775
 776static void alloc_new_bio(struct btrfs_inode *inode,
 777			  struct btrfs_bio_ctrl *bio_ctrl,
 778			  u64 disk_bytenr, u64 file_offset)
 779{
 780	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 781	struct btrfs_bio *bbio;
 782
 783	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
 784			       bio_ctrl->end_io_func, NULL);
 785	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
 786	bbio->inode = inode;
 787	bbio->file_offset = file_offset;
 788	bio_ctrl->bbio = bbio;
 789	bio_ctrl->len_to_oe_boundary = U32_MAX;
 790
 791	/* Limit data write bios to the ordered boundary. */
 792	if (bio_ctrl->wbc) {
 793		struct btrfs_ordered_extent *ordered;
 794
 795		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
 796		if (ordered) {
 797			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
 798					ordered->file_offset +
 799					ordered->disk_num_bytes - file_offset);
 800			bbio->ordered = ordered;
 
 
 801		}
 802
 803		/*
 804		 * Pick the last added device to support cgroup writeback.  For
 805		 * multi-device file systems this means blk-cgroup policies have
 806		 * to always be set on the last added/replaced device.
 807		 * This is a bit odd but has been like that for a long time.
 808		 */
 809		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
 810		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
 811	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 812}
 813
 814/*
 815 * @disk_bytenr: logical bytenr where the write will be
 816 * @page:	page to add to the bio
 817 * @size:	portion of page that we want to write to
 818 * @pg_offset:	offset of the new bio or to check whether we are adding
 819 *              a contiguous page to the previous one
 
 820 *
 821 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
 822 * new one in @bio_ctrl->bbio.
 823 * The mirror number for this IO should already be initizlied in
 824 * @bio_ctrl->mirror_num.
 825 */
 826static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
 827			       u64 disk_bytenr, struct page *page,
 828			       size_t size, unsigned long pg_offset)
 829{
 830	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
 831
 832	ASSERT(pg_offset + size <= PAGE_SIZE);
 833	ASSERT(bio_ctrl->end_io_func);
 834
 835	if (bio_ctrl->bbio &&
 836	    !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
 837		submit_one_bio(bio_ctrl);
 
 838
 839	do {
 840		u32 len = size;
 
 
 841
 842		/* Allocate new bio if needed */
 843		if (!bio_ctrl->bbio) {
 844			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
 845				      page_offset(page) + pg_offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846		}
 847
 848		/* Cap to the current ordered extent boundary if there is one. */
 849		if (len > bio_ctrl->len_to_oe_boundary) {
 850			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
 851			ASSERT(is_data_inode(&inode->vfs_inode));
 852			len = bio_ctrl->len_to_oe_boundary;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853		}
 
 
 
 
 
 854
 855		if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
 856			/* bio full: move on to a new one */
 857			submit_one_bio(bio_ctrl);
 858			continue;
 
 
 
 
 859		}
 
 
 860
 861		if (bio_ctrl->wbc)
 862			wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 863
 864		size -= len;
 865		pg_offset += len;
 866		disk_bytenr += len;
 
 
 
 
 867
 868		/*
 869		 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
 870		 * sector aligned.  alloc_new_bio() then sets it to the end of
 871		 * our ordered extent for writes into zoned devices.
 872		 *
 873		 * When len_to_oe_boundary is tracking an ordered extent, we
 874		 * trust the ordered extent code to align things properly, and
 875		 * the check above to cap our write to the ordered extent
 876		 * boundary is correct.
 877		 *
 878		 * When len_to_oe_boundary is U32_MAX, the cap above would
 879		 * result in a 4095 byte IO for the last page right before
 880		 * we hit the bio limit of UINT_MAX.  bio_add_page() has all
 881		 * the checks required to make sure we don't overflow the bio,
 882		 * and we should just ignore len_to_oe_boundary completely
 883		 * unless we're using it to track an ordered extent.
 884		 *
 885		 * It's pretty hard to make a bio sized U32_MAX, but it can
 886		 * happen when the page cache is able to feed us contiguous
 887		 * pages for large extents.
 888		 */
 889		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
 890			bio_ctrl->len_to_oe_boundary -= len;
 891
 892		/* Ordered extent boundary: move on to a new bio. */
 893		if (bio_ctrl->len_to_oe_boundary == 0)
 894			submit_one_bio(bio_ctrl);
 895	} while (size);
 
 
 
 
 
 
 
 
 
 
 
 
 896}
 897
 898static int attach_extent_buffer_folio(struct extent_buffer *eb,
 899				      struct folio *folio,
 900				      struct btrfs_subpage *prealloc)
 901{
 902	struct btrfs_fs_info *fs_info = eb->fs_info;
 903	int ret = 0;
 904
 905	/*
 906	 * If the page is mapped to btree inode, we should hold the private
 907	 * lock to prevent race.
 908	 * For cloned or dummy extent buffers, their pages are not mapped and
 909	 * will not race with any other ebs.
 910	 */
 911	if (folio->mapping)
 912		lockdep_assert_held(&folio->mapping->i_private_lock);
 913
 914	if (fs_info->nodesize >= PAGE_SIZE) {
 915		if (!folio_test_private(folio))
 916			folio_attach_private(folio, eb);
 917		else
 918			WARN_ON(folio_get_private(folio) != eb);
 919		return 0;
 920	}
 
 
 921
 922	/* Already mapped, just free prealloc */
 923	if (folio_test_private(folio)) {
 924		btrfs_free_subpage(prealloc);
 925		return 0;
 926	}
 927
 928	if (prealloc)
 929		/* Has preallocated memory for subpage */
 930		folio_attach_private(folio, prealloc);
 931	else
 932		/* Do new allocation to attach subpage */
 933		ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
 934	return ret;
 
 935}
 936
 937int set_page_extent_mapped(struct page *page)
 
 
 938{
 939	struct folio *folio = page_folio(page);
 940	struct btrfs_fs_info *fs_info;
 
 
 
 941
 942	ASSERT(page->mapping);
 943
 944	if (folio_test_private(folio))
 945		return 0;
 946
 947	fs_info = btrfs_sb(page->mapping->host->i_sb);
 
 
 
 
 948
 949	if (btrfs_is_subpage(fs_info, page->mapping))
 950		return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
 
 
 
 
 
 
 
 
 
 
 
 951
 952	folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
 953	return 0;
 954}
 955
 956void clear_page_extent_mapped(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 957{
 958	struct folio *folio = page_folio(page);
 959	struct btrfs_fs_info *fs_info;
 
 
 
 
 
 
 
 
 
 
 960
 961	ASSERT(page->mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962
 963	if (!folio_test_private(folio))
 964		return;
 
 
 965
 966	fs_info = btrfs_sb(page->mapping->host->i_sb);
 967	if (btrfs_is_subpage(fs_info, page->mapping))
 968		return btrfs_detach_subpage(fs_info, folio);
 
 
 
 
 
 969
 970	folio_detach_private(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971}
 972
 973static struct extent_map *
 974__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
 975		 u64 start, u64 len, struct extent_map **em_cached)
 
 976{
 977	struct extent_map *em;
 978
 979	if (em_cached && *em_cached) {
 980		em = *em_cached;
 981		if (extent_map_in_tree(em) && start >= em->start &&
 982		    start < extent_map_end(em)) {
 983			refcount_inc(&em->refs);
 984			return em;
 985		}
 986
 987		free_extent_map(em);
 988		*em_cached = NULL;
 989	}
 990
 991	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
 992	if (em_cached && !IS_ERR(em)) {
 993		BUG_ON(*em_cached);
 994		refcount_inc(&em->refs);
 995		*em_cached = em;
 996	}
 997	return em;
 998}
 999/*
1000 * basic readpage implementation.  Locked extent state structs are inserted
1001 * into the tree that are removed when the IO is done (by the end_io
1002 * handlers)
1003 * XXX JDM: This needs looking at to ensure proper page locking
1004 * return 0 on success, otherwise return error
1005 */
1006static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
1007		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
 
 
 
 
 
1008{
1009	struct inode *inode = page->mapping->host;
1010	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1011	u64 start = page_offset(page);
1012	const u64 end = start + PAGE_SIZE - 1;
 
1013	u64 cur = start;
1014	u64 extent_offset;
1015	u64 last_byte = i_size_read(inode);
1016	u64 block_start;
 
 
1017	struct extent_map *em;
 
1018	int ret = 0;
 
1019	size_t pg_offset = 0;
1020	size_t iosize;
 
1021	size_t blocksize = inode->i_sb->s_blocksize;
1022	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1023
1024	ret = set_page_extent_mapped(page);
1025	if (ret < 0) {
1026		unlock_extent(tree, start, end, NULL);
1027		unlock_page(page);
1028		return ret;
 
 
 
 
1029	}
1030
1031	if (page->index == last_byte >> PAGE_SHIFT) {
1032		size_t zero_offset = offset_in_page(last_byte);
 
1033
1034		if (zero_offset) {
1035			iosize = PAGE_SIZE - zero_offset;
1036			memzero_page(page, zero_offset, iosize);
 
 
 
1037		}
1038	}
1039	bio_ctrl->end_io_func = end_bbio_data_read;
1040	begin_page_read(fs_info, page);
1041	while (cur <= end) {
1042		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1043		bool force_bio_submit = false;
1044		u64 disk_bytenr;
1045
1046		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1047		if (cur >= last_byte) {
 
 
 
1048			iosize = PAGE_SIZE - pg_offset;
1049			memzero_page(page, pg_offset, iosize);
1050			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1051			end_page_read(page, true, cur, iosize);
 
 
 
 
 
 
1052			break;
1053		}
1054		em = __get_extent_map(inode, page, pg_offset, cur,
1055				      end - cur + 1, em_cached);
1056		if (IS_ERR(em)) {
1057			unlock_extent(tree, cur, end, NULL);
1058			end_page_read(page, false, cur, end + 1 - cur);
1059			return PTR_ERR(em);
1060		}
1061		extent_offset = cur - em->start;
1062		BUG_ON(extent_map_end(em) <= cur);
1063		BUG_ON(end < cur);
1064
1065		compress_type = extent_map_compression(em);
 
 
 
 
1066
1067		iosize = min(extent_map_end(em) - cur, end - cur + 1);
 
1068		iosize = ALIGN(iosize, blocksize);
1069		if (compress_type != BTRFS_COMPRESS_NONE)
1070			disk_bytenr = em->block_start;
1071		else
1072			disk_bytenr = em->block_start + extent_offset;
 
 
 
 
1073		block_start = em->block_start;
1074		if (em->flags & EXTENT_FLAG_PREALLOC)
1075			block_start = EXTENT_MAP_HOLE;
1076
1077		/*
1078		 * If we have a file range that points to a compressed extent
1079		 * and it's followed by a consecutive file range that points
1080		 * to the same compressed extent (possibly with a different
1081		 * offset and/or length, so it either points to the whole extent
1082		 * or only part of it), we must make sure we do not submit a
1083		 * single bio to populate the pages for the 2 ranges because
1084		 * this makes the compressed extent read zero out the pages
1085		 * belonging to the 2nd range. Imagine the following scenario:
1086		 *
1087		 *  File layout
1088		 *  [0 - 8K]                     [8K - 24K]
1089		 *    |                               |
1090		 *    |                               |
1091		 * points to extent X,         points to extent X,
1092		 * offset 4K, length of 8K     offset 0, length 16K
1093		 *
1094		 * [extent X, compressed length = 4K uncompressed length = 16K]
1095		 *
1096		 * If the bio to read the compressed extent covers both ranges,
1097		 * it will decompress extent X into the pages belonging to the
1098		 * first range and then it will stop, zeroing out the remaining
1099		 * pages that belong to the other range that points to extent X.
1100		 * So here we make sure we submit 2 bios, one for the first
1101		 * range and another one for the third range. Both will target
1102		 * the same physical extent from disk, but we can't currently
1103		 * make the compressed bio endio callback populate the pages
1104		 * for both ranges because each compressed bio is tightly
1105		 * coupled with a single extent map, and each range can have
1106		 * an extent map with a different offset value relative to the
1107		 * uncompressed data of our extent and different lengths. This
1108		 * is a corner case so we prioritize correctness over
1109		 * non-optimal behavior (submitting 2 bios for the same extent).
1110		 */
1111		if (compress_type != BTRFS_COMPRESS_NONE &&
1112		    prev_em_start && *prev_em_start != (u64)-1 &&
1113		    *prev_em_start != em->start)
1114			force_bio_submit = true;
1115
1116		if (prev_em_start)
1117			*prev_em_start = em->start;
1118
1119		free_extent_map(em);
1120		em = NULL;
1121
1122		/* we've found a hole, just zero and go on */
1123		if (block_start == EXTENT_MAP_HOLE) {
1124			memzero_page(page, pg_offset, iosize);
 
1125
1126			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1127			end_page_read(page, true, cur, iosize);
 
 
 
 
 
 
 
 
1128			cur = cur + iosize;
1129			pg_offset += iosize;
1130			continue;
1131		}
1132		/* the get_extent function already copied into the page */
 
 
 
 
 
 
 
 
 
 
 
1133		if (block_start == EXTENT_MAP_INLINE) {
1134			unlock_extent(tree, cur, cur + iosize - 1, NULL);
1135			end_page_read(page, true, cur, iosize);
1136			cur = cur + iosize;
1137			pg_offset += iosize;
1138			continue;
1139		}
1140
1141		if (bio_ctrl->compress_type != compress_type) {
1142			submit_one_bio(bio_ctrl);
1143			bio_ctrl->compress_type = compress_type;
 
 
 
 
 
 
 
 
 
 
 
 
1144		}
1145
1146		if (force_bio_submit)
1147			submit_one_bio(bio_ctrl);
1148		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1149				   pg_offset);
1150		cur = cur + iosize;
1151		pg_offset += iosize;
1152	}
 
 
 
 
 
 
 
 
1153
1154	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1155}
1156
1157int btrfs_read_folio(struct file *file, struct folio *folio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1158{
1159	struct page *page = &folio->page;
1160	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1161	u64 start = page_offset(page);
1162	u64 end = start + PAGE_SIZE - 1;
1163	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1164	int ret;
1165
1166	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
 
 
 
 
 
 
 
 
 
1167
1168	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
1169	/*
1170	 * If btrfs_do_readpage() failed we will want to submit the assembled
1171	 * bio to do the cleanup.
1172	 */
1173	submit_one_bio(&bio_ctrl);
1174	return ret;
1175}
1176
1177static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1178					u64 start, u64 end,
1179					struct extent_map **em_cached,
1180					struct btrfs_bio_ctrl *bio_ctrl,
1181					u64 *prev_em_start)
1182{
1183	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1184	int index;
 
1185
1186	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
 
 
 
 
 
1187
1188	for (index = 0; index < nr_pages; index++) {
1189		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1190				  prev_em_start);
1191		put_page(pages[index]);
1192	}
1193}
1194
1195/*
1196 * helper for __extent_writepage, doing all of the delayed allocation setup.
1197 *
1198 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1199 * to write the page (copy into inline extent).  In this case the IO has
1200 * been started and the page is already unlocked.
1201 *
1202 * This returns 0 if all went well (page still locked)
1203 * This returns < 0 if there were errors (page still locked)
1204 */
1205static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1206		struct page *page, struct writeback_control *wbc)
1207{
1208	const u64 page_start = page_offset(page);
1209	const u64 page_end = page_start + PAGE_SIZE - 1;
1210	u64 delalloc_start = page_start;
1211	u64 delalloc_end = page_end;
 
 
1212	u64 delalloc_to_write = 0;
1213	int ret = 0;
 
 
 
 
 
1214
1215	while (delalloc_start < page_end) {
1216		delalloc_end = page_end;
1217		if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1218					      &delalloc_start, &delalloc_end)) {
 
 
 
1219			delalloc_start = delalloc_end + 1;
1220			continue;
1221		}
1222
1223		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1224					       delalloc_end, wbc);
1225		if (ret < 0)
1226			return ret;
1227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1228		delalloc_start = delalloc_end + 1;
1229	}
1230
1231	/*
1232	 * delalloc_end is already one less than the total length, so
1233	 * we don't subtract one from PAGE_SIZE
1234	 */
1235	delalloc_to_write +=
1236		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1237
1238	/*
1239	 * If btrfs_run_dealloc_range() already started I/O and unlocked
1240	 * the pages, we just need to account for them here.
1241	 */
1242	if (ret == 1) {
1243		wbc->nr_to_write -= delalloc_to_write;
1244		return 1;
1245	}
1246
1247	if (wbc->nr_to_write < delalloc_to_write) {
1248		int thresh = 8192;
1249
1250		if (delalloc_to_write < thresh * 2)
1251			thresh = delalloc_to_write;
1252		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1253					 thresh);
1254	}
1255
1256	return 0;
1257}
1258
1259/*
1260 * Find the first byte we need to write.
1261 *
1262 * For subpage, one page can contain several sectors, and
1263 * __extent_writepage_io() will just grab all extent maps in the page
1264 * range and try to submit all non-inline/non-compressed extents.
1265 *
1266 * This is a big problem for subpage, we shouldn't re-submit already written
1267 * data at all.
1268 * This function will lookup subpage dirty bit to find which range we really
1269 * need to submit.
1270 *
1271 * Return the next dirty range in [@start, @end).
1272 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1273 */
1274static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1275				 struct page *page, u64 *start, u64 *end)
1276{
1277	struct folio *folio = page_folio(page);
1278	struct btrfs_subpage *subpage = folio_get_private(folio);
1279	struct btrfs_subpage_info *spi = fs_info->subpage_info;
1280	u64 orig_start = *start;
1281	/* Declare as unsigned long so we can use bitmap ops */
1282	unsigned long flags;
1283	int range_start_bit;
1284	int range_end_bit;
1285
1286	/*
1287	 * For regular sector size == page size case, since one page only
1288	 * contains one sector, we return the page offset directly.
1289	 */
1290	if (!btrfs_is_subpage(fs_info, page->mapping)) {
1291		*start = page_offset(page);
1292		*end = page_offset(page) + PAGE_SIZE;
1293		return;
 
 
 
 
1294	}
1295
1296	range_start_bit = spi->dirty_offset +
1297			  (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1298
1299	/* We should have the page locked, but just in case */
1300	spin_lock_irqsave(&subpage->lock, flags);
1301	bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1302			       spi->dirty_offset + spi->bitmap_nr_bits);
1303	spin_unlock_irqrestore(&subpage->lock, flags);
1304
1305	range_start_bit -= spi->dirty_offset;
1306	range_end_bit -= spi->dirty_offset;
1307
1308	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1309	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1310}
1311
1312/*
1313 * helper for __extent_writepage.  This calls the writepage start hooks,
1314 * and does the loop to map the page into extents and bios.
1315 *
1316 * We return 1 if the IO is started and the page is unlocked,
1317 * 0 if all went well (page still locked)
1318 * < 0 if there were errors (page still locked)
1319 */
1320static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1321				 struct page *page,
1322				 struct btrfs_bio_ctrl *bio_ctrl,
 
1323				 loff_t i_size,
1324				 int *nr_ret)
 
1325{
1326	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1327	u64 cur = page_offset(page);
1328	u64 end = cur + PAGE_SIZE - 1;
 
 
1329	u64 extent_offset;
1330	u64 block_start;
 
 
 
1331	struct extent_map *em;
 
 
 
1332	int ret = 0;
1333	int nr = 0;
 
1334
1335	ret = btrfs_writepage_cow_fixup(page);
1336	if (ret) {
1337		/* Fixup worker will requeue */
1338		redirty_page_for_writepage(bio_ctrl->wbc, page);
1339		unlock_page(page);
1340		return 1;
 
 
 
 
 
 
 
 
 
1341	}
1342
1343	bio_ctrl->end_io_func = end_bbio_data_write;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1344	while (cur <= end) {
1345		u32 len = end - cur + 1;
1346		u64 disk_bytenr;
1347		u64 em_end;
1348		u64 dirty_range_start = cur;
1349		u64 dirty_range_end;
1350		u32 iosize;
1351
1352		if (cur >= i_size) {
1353			btrfs_mark_ordered_io_finished(inode, page, cur, len,
1354						       true);
1355			/*
1356			 * This range is beyond i_size, thus we don't need to
1357			 * bother writing back.
1358			 * But we still need to clear the dirty subpage bit, or
1359			 * the next time the page gets dirtied, we will try to
1360			 * writeback the sectors with subpage dirty bits,
1361			 * causing writeback without ordered extent.
1362			 */
1363			btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, len);
1364			break;
1365		}
1366
1367		find_next_dirty_byte(fs_info, page, &dirty_range_start,
1368				     &dirty_range_end);
1369		if (cur < dirty_range_start) {
1370			cur = dirty_range_start;
1371			continue;
1372		}
1373
1374		em = btrfs_get_extent(inode, NULL, 0, cur, len);
1375		if (IS_ERR(em)) {
1376			ret = PTR_ERR_OR_ZERO(em);
1377			goto out_error;
1378		}
1379
1380		extent_offset = cur - em->start;
1381		em_end = extent_map_end(em);
1382		ASSERT(cur <= em_end);
1383		ASSERT(cur < end);
1384		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1385		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1386
 
1387		block_start = em->block_start;
1388		disk_bytenr = em->block_start + extent_offset;
1389
1390		ASSERT(!extent_map_is_compressed(em));
1391		ASSERT(block_start != EXTENT_MAP_HOLE);
1392		ASSERT(block_start != EXTENT_MAP_INLINE);
1393
1394		/*
1395		 * Note that em_end from extent_map_end() and dirty_range_end from
1396		 * find_next_dirty_byte() are all exclusive
1397		 */
1398		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1399		free_extent_map(em);
1400		em = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1401
1402		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1403		if (!PageWriteback(page)) {
1404			btrfs_err(inode->root->fs_info,
1405				   "page %lu not writeback, cur %llu end %llu",
1406			       page->index, cur, end);
1407		}
1408
1409		/*
1410		 * Although the PageDirty bit is cleared before entering this
1411		 * function, subpage dirty bit is not cleared.
1412		 * So clear subpage dirty bit here so next time we won't submit
1413		 * page for range already written to disk.
1414		 */
1415		btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, iosize);
1416
1417		submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1418				   cur - page_offset(page));
1419		cur += iosize;
1420		nr++;
1421	}
1422
1423	btrfs_folio_assert_not_dirty(fs_info, page_folio(page));
1424	*nr_ret = nr;
1425	return 0;
1426
1427out_error:
1428	/*
1429	 * If we finish without problem, we should not only clear page dirty,
1430	 * but also empty subpage dirty bits
1431	 */
1432	*nr_ret = nr;
1433	return ret;
1434}
1435
1436/*
1437 * the writepage semantics are similar to regular writepage.  extent
1438 * records are inserted to lock ranges in the tree, and as dirty areas
1439 * are found, they are marked writeback.  Then the lock bits are removed
1440 * and the end_io handler clears the writeback ranges
1441 *
1442 * Return 0 if everything goes well.
1443 * Return <0 for error.
1444 */
1445static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
 
1446{
1447	struct folio *folio = page_folio(page);
1448	struct inode *inode = page->mapping->host;
1449	const u64 page_start = page_offset(page);
 
 
1450	int ret;
1451	int nr = 0;
1452	size_t pg_offset;
1453	loff_t i_size = i_size_read(inode);
1454	unsigned long end_index = i_size >> PAGE_SHIFT;
 
 
 
 
 
1455
1456	trace___extent_writepage(page, inode, bio_ctrl->wbc);
1457
1458	WARN_ON(!PageLocked(page));
1459
1460	pg_offset = offset_in_page(i_size);
 
 
1461	if (page->index > end_index ||
1462	   (page->index == end_index && !pg_offset)) {
1463		folio_invalidate(folio, 0, folio_size(folio));
1464		folio_unlock(folio);
1465		return 0;
1466	}
1467
1468	if (page->index == end_index)
1469		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1470
1471	ret = set_page_extent_mapped(page);
1472	if (ret < 0)
1473		goto done;
 
 
 
 
 
 
 
1474
1475	ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1476	if (ret == 1)
1477		return 0;
1478	if (ret)
1479		goto done;
1480
1481	ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
 
1482	if (ret == 1)
1483		return 0;
1484
1485	bio_ctrl->wbc->nr_to_write--;
1486
1487done:
1488	if (nr == 0) {
1489		/* make sure the mapping tag for page dirty gets cleared */
1490		set_page_writeback(page);
1491		end_page_writeback(page);
1492	}
1493	if (ret) {
1494		btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1495					       PAGE_SIZE, !ret);
1496		mapping_set_error(page->mapping, ret);
1497	}
1498	unlock_page(page);
1499	ASSERT(ret <= 0);
1500	return ret;
 
 
 
1501}
1502
1503void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1504{
1505	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1506		       TASK_UNINTERRUPTIBLE);
1507}
1508
1509/*
1510 * Lock extent buffer status and pages for writeback.
1511 *
1512 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1513 * extent buffer is not dirty)
1514 * Return %true is the extent buffer is submitted to bio.
1515 */
1516static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1517			  struct writeback_control *wbc)
1518{
1519	struct btrfs_fs_info *fs_info = eb->fs_info;
1520	bool ret = false;
 
1521
1522	btrfs_tree_lock(eb);
1523	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1524		btrfs_tree_unlock(eb);
1525		if (wbc->sync_mode != WB_SYNC_ALL)
1526			return false;
1527		wait_on_extent_buffer_writeback(eb);
1528		btrfs_tree_lock(eb);
1529	}
1530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531	/*
1532	 * We need to do this to prevent races in people who check if the eb is
1533	 * under IO since we can end up having no IO bits set for a short period
1534	 * of time.
1535	 */
1536	spin_lock(&eb->refs_lock);
1537	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1538		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1539		spin_unlock(&eb->refs_lock);
1540		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1541		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1542					 -eb->len,
1543					 fs_info->dirty_metadata_batch);
1544		ret = true;
1545	} else {
1546		spin_unlock(&eb->refs_lock);
1547	}
 
1548	btrfs_tree_unlock(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1549	return ret;
1550}
1551
1552static void set_btree_ioerr(struct extent_buffer *eb)
1553{
1554	struct btrfs_fs_info *fs_info = eb->fs_info;
1555
1556	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
 
1557
1558	/*
1559	 * A read may stumble upon this buffer later, make sure that it gets an
1560	 * error and knows there was an error.
1561	 */
1562	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1563
1564	/*
1565	 * We need to set the mapping with the io error as well because a write
1566	 * error will flip the file system readonly, and then syncfs() will
1567	 * return a 0 because we are readonly if we don't modify the err seq for
1568	 * the superblock.
1569	 */
1570	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1571
1572	/*
1573	 * If writeback for a btree extent that doesn't belong to a log tree
1574	 * failed, increment the counter transaction->eb_write_errors.
1575	 * We do this because while the transaction is running and before it's
1576	 * committing (when we call filemap_fdata[write|wait]_range against
1577	 * the btree inode), we might have
1578	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1579	 * returns an error or an error happens during writeback, when we're
1580	 * committing the transaction we wouldn't know about it, since the pages
1581	 * can be no longer dirty nor marked anymore for writeback (if a
1582	 * subsequent modification to the extent buffer didn't happen before the
1583	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1584	 * able to find the pages tagged with SetPageError at transaction
1585	 * commit time. So if this happens we must abort the transaction,
1586	 * otherwise we commit a super block with btree roots that point to
1587	 * btree nodes/leafs whose content on disk is invalid - either garbage
1588	 * or the content of some node/leaf from a past generation that got
1589	 * cowed or deleted and is no longer valid.
1590	 *
1591	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1592	 * not be enough - we need to distinguish between log tree extents vs
1593	 * non-log tree extents, and the next filemap_fdatawait_range() call
1594	 * will catch and clear such errors in the mapping - and that call might
1595	 * be from a log sync and not from a transaction commit. Also, checking
1596	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1597	 * not done and would not be reliable - the eb might have been released
1598	 * from memory and reading it back again means that flag would not be
1599	 * set (since it's a runtime flag, not persisted on disk).
1600	 *
1601	 * Using the flags below in the btree inode also makes us achieve the
1602	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1603	 * writeback for all dirty pages and before filemap_fdatawait_range()
1604	 * is called, the writeback for all dirty pages had already finished
1605	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1606	 * filemap_fdatawait_range() would return success, as it could not know
1607	 * that writeback errors happened (the pages were no longer tagged for
1608	 * writeback).
1609	 */
1610	switch (eb->log_index) {
1611	case -1:
1612		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1613		break;
1614	case 0:
1615		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1616		break;
1617	case 1:
1618		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1619		break;
1620	default:
1621		BUG(); /* unexpected, logic error */
1622	}
1623}
1624
1625/*
1626 * The endio specific version which won't touch any unsafe spinlock in endio
1627 * context.
1628 */
1629static struct extent_buffer *find_extent_buffer_nolock(
1630		struct btrfs_fs_info *fs_info, u64 start)
1631{
 
1632	struct extent_buffer *eb;
 
1633
1634	rcu_read_lock();
1635	eb = radix_tree_lookup(&fs_info->buffer_radix,
1636			       start >> fs_info->sectorsize_bits);
1637	if (eb && atomic_inc_not_zero(&eb->refs)) {
1638		rcu_read_unlock();
1639		return eb;
1640	}
1641	rcu_read_unlock();
1642	return NULL;
1643}
1644
1645static void end_bbio_meta_write(struct btrfs_bio *bbio)
1646{
1647	struct extent_buffer *eb = bbio->private;
1648	struct btrfs_fs_info *fs_info = eb->fs_info;
1649	bool uptodate = !bbio->bio.bi_status;
1650	struct folio_iter fi;
1651	u32 bio_offset = 0;
1652
1653	if (!uptodate)
1654		set_btree_ioerr(eb);
1655
1656	bio_for_each_folio_all(fi, &bbio->bio) {
1657		u64 start = eb->start + bio_offset;
1658		struct folio *folio = fi.folio;
1659		u32 len = fi.length;
1660
1661		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1662		bio_offset += len;
1663	}
1664
1665	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1666	smp_mb__after_atomic();
1667	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
 
 
1668
1669	bio_put(&bbio->bio);
1670}
1671
1672static void prepare_eb_write(struct extent_buffer *eb)
1673{
 
 
 
 
 
 
1674	u32 nritems;
1675	unsigned long start;
1676	unsigned long end;
 
 
 
1677
1678	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
 
 
 
 
1679
1680	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1681	nritems = btrfs_header_nritems(eb);
1682	if (btrfs_header_level(eb) > 0) {
1683		end = btrfs_node_key_ptr_offset(eb, nritems);
 
1684		memzero_extent_buffer(eb, end, eb->len - end);
1685	} else {
1686		/*
1687		 * Leaf:
1688		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1689		 */
1690		start = btrfs_item_nr_offset(eb, nritems);
1691		end = btrfs_item_nr_offset(eb, 0);
1692		if (nritems == 0)
1693			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1694		else
1695			end += btrfs_item_offset(eb, nritems - 1);
1696		memzero_extent_buffer(eb, start, end - start);
1697	}
1698}
1699
1700static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1701					    struct writeback_control *wbc)
1702{
1703	struct btrfs_fs_info *fs_info = eb->fs_info;
1704	struct btrfs_bio *bbio;
1705
1706	prepare_eb_write(eb);
 
1707
1708	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1709			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1710			       eb->fs_info, end_bbio_meta_write, eb);
1711	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1712	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1713	wbc_init_bio(wbc, &bbio->bio);
1714	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1715	bbio->file_offset = eb->start;
1716	if (fs_info->nodesize < PAGE_SIZE) {
1717		struct folio *folio = eb->folios[0];
1718		bool ret;
1719
1720		folio_lock(folio);
1721		btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1722		if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1723						       eb->len)) {
1724			folio_clear_dirty_for_io(folio);
1725			wbc->nr_to_write--;
1726		}
1727		ret = bio_add_folio(&bbio->bio, folio, eb->len,
1728				    eb->start - folio_pos(folio));
1729		ASSERT(ret);
1730		wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len);
1731		folio_unlock(folio);
1732	} else {
1733		int num_folios = num_extent_folios(eb);
1734
1735		for (int i = 0; i < num_folios; i++) {
1736			struct folio *folio = eb->folios[i];
1737			bool ret;
1738
1739			folio_lock(folio);
1740			folio_clear_dirty_for_io(folio);
1741			folio_start_writeback(folio);
1742			ret = bio_add_folio(&bbio->bio, folio, folio_size(folio), 0);
1743			ASSERT(ret);
1744			wbc_account_cgroup_owner(wbc, folio_page(folio, 0),
1745						 folio_size(folio));
1746			wbc->nr_to_write -= folio_nr_pages(folio);
1747			folio_unlock(folio);
1748		}
1749	}
1750	btrfs_submit_bio(bbio, 0);
1751}
1752
1753/*
1754 * Submit one subpage btree page.
1755 *
1756 * The main difference to submit_eb_page() is:
1757 * - Page locking
1758 *   For subpage, we don't rely on page locking at all.
1759 *
1760 * - Flush write bio
1761 *   We only flush bio if we may be unable to fit current extent buffers into
1762 *   current bio.
1763 *
1764 * Return >=0 for the number of submitted extent buffers.
1765 * Return <0 for fatal error.
1766 */
1767static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1768{
1769	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1770	struct folio *folio = page_folio(page);
1771	int submitted = 0;
1772	u64 page_start = page_offset(page);
1773	int bit_start = 0;
1774	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1775
1776	/* Lock and write each dirty extent buffers in the range */
1777	while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1778		struct btrfs_subpage *subpage = folio_get_private(folio);
1779		struct extent_buffer *eb;
1780		unsigned long flags;
1781		u64 start;
1782
1783		/*
1784		 * Take private lock to ensure the subpage won't be detached
1785		 * in the meantime.
1786		 */
1787		spin_lock(&page->mapping->i_private_lock);
1788		if (!folio_test_private(folio)) {
1789			spin_unlock(&page->mapping->i_private_lock);
1790			break;
1791		}
1792		spin_lock_irqsave(&subpage->lock, flags);
1793		if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1794			      subpage->bitmaps)) {
1795			spin_unlock_irqrestore(&subpage->lock, flags);
1796			spin_unlock(&page->mapping->i_private_lock);
1797			bit_start++;
1798			continue;
1799		}
1800
1801		start = page_start + bit_start * fs_info->sectorsize;
1802		bit_start += sectors_per_node;
1803
1804		/*
1805		 * Here we just want to grab the eb without touching extra
1806		 * spin locks, so call find_extent_buffer_nolock().
1807		 */
1808		eb = find_extent_buffer_nolock(fs_info, start);
1809		spin_unlock_irqrestore(&subpage->lock, flags);
1810		spin_unlock(&page->mapping->i_private_lock);
1811
1812		/*
1813		 * The eb has already reached 0 refs thus find_extent_buffer()
1814		 * doesn't return it. We don't need to write back such eb
1815		 * anyway.
1816		 */
1817		if (!eb)
1818			continue;
1819
1820		if (lock_extent_buffer_for_io(eb, wbc)) {
1821			write_one_eb(eb, wbc);
1822			submitted++;
1823		}
1824		free_extent_buffer(eb);
1825	}
1826	return submitted;
1827}
1828
1829/*
1830 * Submit all page(s) of one extent buffer.
1831 *
1832 * @page:	the page of one extent buffer
1833 * @eb_context:	to determine if we need to submit this page, if current page
1834 *		belongs to this eb, we don't need to submit
1835 *
1836 * The caller should pass each page in their bytenr order, and here we use
1837 * @eb_context to determine if we have submitted pages of one extent buffer.
1838 *
1839 * If we have, we just skip until we hit a new page that doesn't belong to
1840 * current @eb_context.
1841 *
1842 * If not, we submit all the page(s) of the extent buffer.
1843 *
1844 * Return >0 if we have submitted the extent buffer successfully.
1845 * Return 0 if we don't need to submit the page, as it's already submitted by
1846 * previous call.
1847 * Return <0 for fatal error.
1848 */
1849static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1850{
1851	struct writeback_control *wbc = ctx->wbc;
1852	struct address_space *mapping = page->mapping;
1853	struct folio *folio = page_folio(page);
1854	struct extent_buffer *eb;
1855	int ret;
1856
1857	if (!folio_test_private(folio))
1858		return 0;
1859
1860	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
1861		return submit_eb_subpage(page, wbc);
1862
1863	spin_lock(&mapping->i_private_lock);
1864	if (!folio_test_private(folio)) {
1865		spin_unlock(&mapping->i_private_lock);
1866		return 0;
1867	}
1868
1869	eb = folio_get_private(folio);
1870
1871	/*
1872	 * Shouldn't happen and normally this would be a BUG_ON but no point
1873	 * crashing the machine for something we can survive anyway.
1874	 */
1875	if (WARN_ON(!eb)) {
1876		spin_unlock(&mapping->i_private_lock);
1877		return 0;
1878	}
1879
1880	if (eb == ctx->eb) {
1881		spin_unlock(&mapping->i_private_lock);
1882		return 0;
1883	}
1884	ret = atomic_inc_not_zero(&eb->refs);
1885	spin_unlock(&mapping->i_private_lock);
1886	if (!ret)
1887		return 0;
1888
1889	ctx->eb = eb;
1890
1891	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1892	if (ret) {
1893		if (ret == -EBUSY)
1894			ret = 0;
1895		free_extent_buffer(eb);
1896		return ret;
1897	}
1898
1899	if (!lock_extent_buffer_for_io(eb, wbc)) {
1900		free_extent_buffer(eb);
1901		return 0;
1902	}
1903	/* Implies write in zoned mode. */
1904	if (ctx->zoned_bg) {
1905		/* Mark the last eb in the block group. */
1906		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1907		ctx->zoned_bg->meta_write_pointer += eb->len;
1908	}
1909	write_one_eb(eb, wbc);
1910	free_extent_buffer(eb);
1911	return 1;
1912}
1913
1914int btree_write_cache_pages(struct address_space *mapping,
1915				   struct writeback_control *wbc)
1916{
1917	struct btrfs_eb_write_context ctx = { .wbc = wbc };
1918	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
 
 
 
 
 
 
 
 
1919	int ret = 0;
1920	int done = 0;
1921	int nr_to_write_done = 0;
1922	struct folio_batch fbatch;
1923	unsigned int nr_folios;
1924	pgoff_t index;
1925	pgoff_t end;		/* Inclusive */
1926	int scanned = 0;
1927	xa_mark_t tag;
1928
1929	folio_batch_init(&fbatch);
1930	if (wbc->range_cyclic) {
1931		index = mapping->writeback_index; /* Start from prev offset */
1932		end = -1;
1933		/*
1934		 * Start from the beginning does not need to cycle over the
1935		 * range, mark it as scanned.
1936		 */
1937		scanned = (index == 0);
1938	} else {
1939		index = wbc->range_start >> PAGE_SHIFT;
1940		end = wbc->range_end >> PAGE_SHIFT;
1941		scanned = 1;
1942	}
1943	if (wbc->sync_mode == WB_SYNC_ALL)
1944		tag = PAGECACHE_TAG_TOWRITE;
1945	else
1946		tag = PAGECACHE_TAG_DIRTY;
1947	btrfs_zoned_meta_io_lock(fs_info);
1948retry:
1949	if (wbc->sync_mode == WB_SYNC_ALL)
1950		tag_pages_for_writeback(mapping, index, end);
1951	while (!done && !nr_to_write_done && (index <= end) &&
1952	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1953					    tag, &fbatch))) {
1954		unsigned i;
1955
1956		for (i = 0; i < nr_folios; i++) {
1957			struct folio *folio = fbatch.folios[i];
 
1958
1959			ret = submit_eb_page(&folio->page, &ctx);
1960			if (ret == 0)
1961				continue;
1962			if (ret < 0) {
 
1963				done = 1;
1964				break;
1965			}
1966
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1967			/*
1968			 * the filesystem may choose to bump up nr_to_write.
1969			 * We have to make sure to honor the new nr_to_write
1970			 * at any time
1971			 */
1972			nr_to_write_done = wbc->nr_to_write <= 0;
1973		}
1974		folio_batch_release(&fbatch);
1975		cond_resched();
1976	}
1977	if (!scanned && !done) {
1978		/*
1979		 * We hit the last page and there is more work to be done: wrap
1980		 * back to the start of the file
1981		 */
1982		scanned = 1;
1983		index = 0;
1984		goto retry;
1985	}
1986	/*
1987	 * If something went wrong, don't allow any metadata write bio to be
1988	 * submitted.
1989	 *
1990	 * This would prevent use-after-free if we had dirty pages not
1991	 * cleaned up, which can still happen by fuzzed images.
1992	 *
1993	 * - Bad extent tree
1994	 *   Allowing existing tree block to be allocated for other trees.
1995	 *
1996	 * - Log tree operations
1997	 *   Exiting tree blocks get allocated to log tree, bumps its
1998	 *   generation, then get cleaned in tree re-balance.
1999	 *   Such tree block will not be written back, since it's clean,
2000	 *   thus no WRITTEN flag set.
2001	 *   And after log writes back, this tree block is not traced by
2002	 *   any dirty extent_io_tree.
2003	 *
2004	 * - Offending tree block gets re-dirtied from its original owner
2005	 *   Since it has bumped generation, no WRITTEN flag, it can be
2006	 *   reused without COWing. This tree block will not be traced
2007	 *   by btrfs_transaction::dirty_pages.
2008	 *
2009	 *   Now such dirty tree block will not be cleaned by any dirty
2010	 *   extent io tree. Thus we don't want to submit such wild eb
2011	 *   if the fs already has error.
2012	 *
2013	 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2014	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2015	 */
2016	if (ret > 0)
2017		ret = 0;
2018	if (!ret && BTRFS_FS_ERROR(fs_info))
2019		ret = -EROFS;
2020
2021	if (ctx.zoned_bg)
2022		btrfs_put_block_group(ctx.zoned_bg);
2023	btrfs_zoned_meta_io_unlock(fs_info);
2024	return ret;
2025}
2026
2027/*
2028 * Walk the list of dirty pages of the given address space and write all of them.
2029 *
2030 * @mapping:   address space structure to write
2031 * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2032 * @bio_ctrl:  holds context for the write, namely the bio
2033 *
2034 * If a page is already under I/O, write_cache_pages() skips it, even
2035 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2036 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2037 * and msync() need to guarantee that all the data which was dirty at the time
2038 * the call was made get new I/O started against them.  If wbc->sync_mode is
2039 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2040 * existing IO to complete.
2041 */
2042static int extent_write_cache_pages(struct address_space *mapping,
2043			     struct btrfs_bio_ctrl *bio_ctrl)
 
 
 
2044{
2045	struct writeback_control *wbc = bio_ctrl->wbc;
2046	struct inode *inode = mapping->host;
2047	int ret = 0;
2048	int done = 0;
2049	int nr_to_write_done = 0;
2050	struct folio_batch fbatch;
2051	unsigned int nr_folios;
2052	pgoff_t index;
2053	pgoff_t end;		/* Inclusive */
2054	pgoff_t done_index;
2055	int range_whole = 0;
2056	int scanned = 0;
2057	xa_mark_t tag;
2058
2059	/*
2060	 * We have to hold onto the inode so that ordered extents can do their
2061	 * work when the IO finishes.  The alternative to this is failing to add
2062	 * an ordered extent if the igrab() fails there and that is a huge pain
2063	 * to deal with, so instead just hold onto the inode throughout the
2064	 * writepages operation.  If it fails here we are freeing up the inode
2065	 * anyway and we'd rather not waste our time writing out stuff that is
2066	 * going to be truncated anyway.
2067	 */
2068	if (!igrab(inode))
2069		return 0;
2070
2071	folio_batch_init(&fbatch);
2072	if (wbc->range_cyclic) {
2073		index = mapping->writeback_index; /* Start from prev offset */
2074		end = -1;
2075		/*
2076		 * Start from the beginning does not need to cycle over the
2077		 * range, mark it as scanned.
2078		 */
2079		scanned = (index == 0);
2080	} else {
2081		index = wbc->range_start >> PAGE_SHIFT;
2082		end = wbc->range_end >> PAGE_SHIFT;
2083		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2084			range_whole = 1;
2085		scanned = 1;
2086	}
2087
2088	/*
2089	 * We do the tagged writepage as long as the snapshot flush bit is set
2090	 * and we are the first one who do the filemap_flush() on this inode.
2091	 *
2092	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2093	 * not race in and drop the bit.
2094	 */
2095	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2096	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2097			       &BTRFS_I(inode)->runtime_flags))
2098		wbc->tagged_writepages = 1;
2099
2100	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2101		tag = PAGECACHE_TAG_TOWRITE;
2102	else
2103		tag = PAGECACHE_TAG_DIRTY;
2104retry:
2105	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2106		tag_pages_for_writeback(mapping, index, end);
2107	done_index = index;
2108	while (!done && !nr_to_write_done && (index <= end) &&
2109			(nr_folios = filemap_get_folios_tag(mapping, &index,
2110							end, tag, &fbatch))) {
2111		unsigned i;
2112
2113		for (i = 0; i < nr_folios; i++) {
2114			struct folio *folio = fbatch.folios[i];
 
2115
2116			done_index = folio_next_index(folio);
2117			/*
2118			 * At this point we hold neither the i_pages lock nor
2119			 * the page lock: the page may be truncated or
2120			 * invalidated (changing page->mapping to NULL),
2121			 * or even swizzled back from swapper_space to
2122			 * tmpfs file mapping
2123			 */
2124			if (!folio_trylock(folio)) {
2125				submit_write_bio(bio_ctrl, 0);
2126				folio_lock(folio);
2127			}
2128
2129			if (unlikely(folio->mapping != mapping)) {
2130				folio_unlock(folio);
2131				continue;
2132			}
2133
2134			if (!folio_test_dirty(folio)) {
2135				/* Someone wrote it for us. */
2136				folio_unlock(folio);
2137				continue;
2138			}
2139
2140			if (wbc->sync_mode != WB_SYNC_NONE) {
2141				if (folio_test_writeback(folio))
2142					submit_write_bio(bio_ctrl, 0);
2143				folio_wait_writeback(folio);
2144			}
2145
2146			if (folio_test_writeback(folio) ||
2147			    !folio_clear_dirty_for_io(folio)) {
2148				folio_unlock(folio);
2149				continue;
2150			}
2151
2152			ret = __extent_writepage(&folio->page, bio_ctrl);
 
 
 
 
 
2153			if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
2154				done = 1;
2155				break;
2156			}
2157
2158			/*
2159			 * The filesystem may choose to bump up nr_to_write.
2160			 * We have to make sure to honor the new nr_to_write
2161			 * at any time.
2162			 */
2163			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2164					    wbc->nr_to_write <= 0);
2165		}
2166		folio_batch_release(&fbatch);
2167		cond_resched();
2168	}
2169	if (!scanned && !done) {
2170		/*
2171		 * We hit the last page and there is more work to be done: wrap
2172		 * back to the start of the file
2173		 */
2174		scanned = 1;
2175		index = 0;
2176
2177		/*
2178		 * If we're looping we could run into a page that is locked by a
2179		 * writer and that writer could be waiting on writeback for a
2180		 * page in our current bio, and thus deadlock, so flush the
2181		 * write bio here.
2182		 */
2183		submit_write_bio(bio_ctrl, 0);
2184		goto retry;
2185	}
2186
2187	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2188		mapping->writeback_index = done_index;
2189
2190	btrfs_add_delayed_iput(BTRFS_I(inode));
2191	return ret;
2192}
2193
2194/*
2195 * Submit the pages in the range to bio for call sites which delalloc range has
2196 * already been ran (aka, ordered extent inserted) and all pages are still
2197 * locked.
2198 */
2199void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2200			       u64 start, u64 end, struct writeback_control *wbc,
2201			       bool pages_dirty)
2202{
2203	bool found_error = false;
2204	int ret = 0;
2205	struct address_space *mapping = inode->i_mapping;
2206	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2207	const u32 sectorsize = fs_info->sectorsize;
2208	loff_t i_size = i_size_read(inode);
2209	u64 cur = start;
2210	struct btrfs_bio_ctrl bio_ctrl = {
2211		.wbc = wbc,
2212		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2213	};
2214
2215	if (wbc->no_cgroup_owner)
2216		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2217
2218	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
 
 
2219
2220	while (cur <= end) {
2221		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2222		u32 cur_len = cur_end + 1 - cur;
2223		struct page *page;
2224		int nr = 0;
2225
2226		page = find_get_page(mapping, cur >> PAGE_SHIFT);
2227		ASSERT(PageLocked(page));
2228		if (pages_dirty && page != locked_page) {
2229			ASSERT(PageDirty(page));
2230			clear_page_dirty_for_io(page);
2231		}
2232
2233		ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2234					    i_size, &nr);
2235		if (ret == 1)
2236			goto next_page;
 
 
 
 
 
 
 
 
 
 
2237
2238		/* Make sure the mapping tag for page dirty gets cleared. */
2239		if (nr == 0) {
2240			set_page_writeback(page);
2241			end_page_writeback(page);
 
 
 
 
 
 
2242		}
2243		if (ret) {
2244			btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2245						       cur, cur_len, !ret);
2246			mapping_set_error(page->mapping, ret);
2247		}
2248		btrfs_folio_unlock_writer(fs_info, page_folio(page), cur, cur_len);
2249		if (ret < 0)
2250			found_error = true;
2251next_page:
2252		put_page(page);
2253		cur = cur_end + 1;
2254	}
2255
2256	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
 
2257}
2258
2259int extent_writepages(struct address_space *mapping,
 
 
2260		      struct writeback_control *wbc)
2261{
2262	struct inode *inode = mapping->host;
2263	int ret = 0;
2264	struct btrfs_bio_ctrl bio_ctrl = {
2265		.wbc = wbc,
2266		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
 
 
 
 
2267	};
2268
2269	/*
2270	 * Allow only a single thread to do the reloc work in zoned mode to
2271	 * protect the write pointer updates.
2272	 */
2273	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2274	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2275	submit_write_bio(&bio_ctrl, ret);
2276	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2277	return ret;
2278}
2279
2280void extent_readahead(struct readahead_control *rac)
2281{
2282	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
 
 
 
 
 
2283	struct page *pagepool[16];
 
2284	struct extent_map *em_cached = NULL;
 
2285	u64 prev_em_start = (u64)-1;
2286	int nr;
2287
2288	while ((nr = readahead_page_batch(rac, pagepool))) {
2289		u64 contig_start = readahead_pos(rac);
2290		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2291
2292		contiguous_readpages(pagepool, nr, contig_start, contig_end,
2293				&em_cached, &bio_ctrl, &prev_em_start);
2294	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2295
2296	if (em_cached)
2297		free_extent_map(em_cached);
2298	submit_one_bio(&bio_ctrl);
 
 
 
 
2299}
2300
2301/*
2302 * basic invalidate_folio code, this waits on any locked or writeback
2303 * ranges corresponding to the folio, and then deletes any extent state
2304 * records from the tree
2305 */
2306int extent_invalidate_folio(struct extent_io_tree *tree,
2307			  struct folio *folio, size_t offset)
2308{
2309	struct extent_state *cached_state = NULL;
2310	u64 start = folio_pos(folio);
2311	u64 end = start + folio_size(folio) - 1;
2312	size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
2313
2314	/* This function is only called for the btree inode */
2315	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2316
2317	start += ALIGN(offset, blocksize);
2318	if (start > end)
2319		return 0;
2320
2321	lock_extent(tree, start, end, &cached_state);
2322	folio_wait_writeback(folio);
2323
2324	/*
2325	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2326	 * so here we only need to unlock the extent range to free any
2327	 * existing extent state.
2328	 */
2329	unlock_extent(tree, start, end, &cached_state);
2330	return 0;
2331}
2332
2333/*
2334 * a helper for release_folio, this tests for areas of the page that
2335 * are locked or under IO and drops the related state bits if it is safe
2336 * to drop the page.
2337 */
2338static int try_release_extent_state(struct extent_io_tree *tree,
 
2339				    struct page *page, gfp_t mask)
2340{
2341	u64 start = page_offset(page);
2342	u64 end = start + PAGE_SIZE - 1;
2343	int ret = 1;
2344
2345	if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
 
2346		ret = 0;
2347	} else {
2348		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2349				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2350				   EXTENT_QGROUP_RESERVED);
2351
2352		/*
2353		 * At this point we can safely clear everything except the
2354		 * locked bit, the nodatasum bit and the delalloc new bit.
2355		 * The delalloc new bit will be cleared by ordered extent
2356		 * completion.
2357		 */
2358		ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
 
 
2359
2360		/* if clear_extent_bit failed for enomem reasons,
2361		 * we can't allow the release to continue.
2362		 */
2363		if (ret < 0)
2364			ret = 0;
2365		else
2366			ret = 1;
2367	}
2368	return ret;
2369}
2370
2371/*
2372 * a helper for release_folio.  As long as there are no locked extents
2373 * in the range corresponding to the page, both state records and extent
2374 * map records are removed
2375 */
2376int try_release_extent_mapping(struct page *page, gfp_t mask)
 
 
2377{
2378	struct extent_map *em;
2379	u64 start = page_offset(page);
2380	u64 end = start + PAGE_SIZE - 1;
2381	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2382	struct extent_io_tree *tree = &btrfs_inode->io_tree;
2383	struct extent_map_tree *map = &btrfs_inode->extent_tree;
2384
2385	if (gfpflags_allow_blocking(mask) &&
2386	    page->mapping->host->i_size > SZ_16M) {
2387		u64 len;
2388		while (start <= end) {
2389			struct btrfs_fs_info *fs_info;
2390			u64 cur_gen;
2391
2392			len = end - start + 1;
2393			write_lock(&map->lock);
2394			em = lookup_extent_mapping(map, start, len);
2395			if (!em) {
2396				write_unlock(&map->lock);
2397				break;
2398			}
2399			if ((em->flags & EXTENT_FLAG_PINNED) ||
2400			    em->start != start) {
2401				write_unlock(&map->lock);
2402				free_extent_map(em);
2403				break;
2404			}
2405			if (test_range_bit_exists(tree, em->start,
2406						  extent_map_end(em) - 1,
2407						  EXTENT_LOCKED))
2408				goto next;
2409			/*
2410			 * If it's not in the list of modified extents, used
2411			 * by a fast fsync, we can remove it. If it's being
2412			 * logged we can safely remove it since fsync took an
2413			 * extra reference on the em.
2414			 */
2415			if (list_empty(&em->list) ||
2416			    (em->flags & EXTENT_FLAG_LOGGING))
2417				goto remove_em;
2418			/*
2419			 * If it's in the list of modified extents, remove it
2420			 * only if its generation is older then the current one,
2421			 * in which case we don't need it for a fast fsync.
2422			 * Otherwise don't remove it, we could be racing with an
2423			 * ongoing fast fsync that could miss the new extent.
2424			 */
2425			fs_info = btrfs_inode->root->fs_info;
2426			spin_lock(&fs_info->trans_lock);
2427			cur_gen = fs_info->generation;
2428			spin_unlock(&fs_info->trans_lock);
2429			if (em->generation >= cur_gen)
2430				goto next;
2431remove_em:
2432			/*
2433			 * We only remove extent maps that are not in the list of
2434			 * modified extents or that are in the list but with a
2435			 * generation lower then the current generation, so there
2436			 * is no need to set the full fsync flag on the inode (it
2437			 * hurts the fsync performance for workloads with a data
2438			 * size that exceeds or is close to the system's memory).
2439			 */
2440			remove_extent_mapping(map, em);
2441			/* once for the rb tree */
2442			free_extent_map(em);
2443next:
2444			start = extent_map_end(em);
2445			write_unlock(&map->lock);
2446
2447			/* once for us */
2448			free_extent_map(em);
2449
2450			cond_resched(); /* Allow large-extent preemption. */
2451		}
2452	}
2453	return try_release_extent_state(tree, page, mask);
2454}
2455
2456/*
2457 * To cache previous fiemap extent
2458 *
2459 * Will be used for merging fiemap extent
2460 */
2461struct fiemap_cache {
2462	u64 offset;
2463	u64 phys;
2464	u64 len;
2465	u32 flags;
2466	bool cached;
2467};
2468
2469/*
2470 * Helper to submit fiemap extent.
2471 *
2472 * Will try to merge current fiemap extent specified by @offset, @phys,
2473 * @len and @flags with cached one.
2474 * And only when we fails to merge, cached one will be submitted as
2475 * fiemap extent.
2476 *
2477 * Return value is the same as fiemap_fill_next_extent().
2478 */
2479static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2480				struct fiemap_cache *cache,
2481				u64 offset, u64 phys, u64 len, u32 flags)
 
2482{
2483	u64 cache_end;
2484	int ret = 0;
2485
2486	/* Set at the end of extent_fiemap(). */
2487	ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2488
2489	if (!cache->cached)
2490		goto assign;
2491
2492	/*
2493	 * When iterating the extents of the inode, at extent_fiemap(), we may
2494	 * find an extent that starts at an offset behind the end offset of the
2495	 * previous extent we processed. This happens if fiemap is called
2496	 * without FIEMAP_FLAG_SYNC and there are ordered extents completing
2497	 * while we call btrfs_next_leaf() (through fiemap_next_leaf_item()).
2498	 *
2499	 * For example we are in leaf X processing its last item, which is the
2500	 * file extent item for file range [512K, 1M[, and after
2501	 * btrfs_next_leaf() releases the path, there's an ordered extent that
2502	 * completes for the file range [768K, 2M[, and that results in trimming
2503	 * the file extent item so that it now corresponds to the file range
2504	 * [512K, 768K[ and a new file extent item is inserted for the file
2505	 * range [768K, 2M[, which may end up as the last item of leaf X or as
2506	 * the first item of the next leaf - in either case btrfs_next_leaf()
2507	 * will leave us with a path pointing to the new extent item, for the
2508	 * file range [768K, 2M[, since that's the first key that follows the
2509	 * last one we processed. So in order not to report overlapping extents
2510	 * to user space, we trim the length of the previously cached extent and
2511	 * emit it.
2512	 *
2513	 * Upon calling btrfs_next_leaf() we may also find an extent with an
2514	 * offset smaller than or equals to cache->offset, and this happens
2515	 * when we had a hole or prealloc extent with several delalloc ranges in
2516	 * it, but after btrfs_next_leaf() released the path, delalloc was
2517	 * flushed and the resulting ordered extents were completed, so we can
2518	 * now have found a file extent item for an offset that is smaller than
2519	 * or equals to what we have in cache->offset. We deal with this as
2520	 * described below.
2521	 */
2522	cache_end = cache->offset + cache->len;
2523	if (cache_end > offset) {
2524		if (offset == cache->offset) {
2525			/*
2526			 * We cached a dealloc range (found in the io tree) for
2527			 * a hole or prealloc extent and we have now found a
2528			 * file extent item for the same offset. What we have
2529			 * now is more recent and up to date, so discard what
2530			 * we had in the cache and use what we have just found.
2531			 */
2532			goto assign;
2533		} else if (offset > cache->offset) {
2534			/*
2535			 * The extent range we previously found ends after the
2536			 * offset of the file extent item we found and that
2537			 * offset falls somewhere in the middle of that previous
2538			 * extent range. So adjust the range we previously found
2539			 * to end at the offset of the file extent item we have
2540			 * just found, since this extent is more up to date.
2541			 * Emit that adjusted range and cache the file extent
2542			 * item we have just found. This corresponds to the case
2543			 * where a previously found file extent item was split
2544			 * due to an ordered extent completing.
2545			 */
2546			cache->len = offset - cache->offset;
2547			goto emit;
2548		} else {
2549			const u64 range_end = offset + len;
2550
2551			/*
2552			 * The offset of the file extent item we have just found
2553			 * is behind the cached offset. This means we were
2554			 * processing a hole or prealloc extent for which we
2555			 * have found delalloc ranges (in the io tree), so what
2556			 * we have in the cache is the last delalloc range we
2557			 * found while the file extent item we found can be
2558			 * either for a whole delalloc range we previously
2559			 * emmitted or only a part of that range.
2560			 *
2561			 * We have two cases here:
2562			 *
2563			 * 1) The file extent item's range ends at or behind the
2564			 *    cached extent's end. In this case just ignore the
2565			 *    current file extent item because we don't want to
2566			 *    overlap with previous ranges that may have been
2567			 *    emmitted already;
2568			 *
2569			 * 2) The file extent item starts behind the currently
2570			 *    cached extent but its end offset goes beyond the
2571			 *    end offset of the cached extent. We don't want to
2572			 *    overlap with a previous range that may have been
2573			 *    emmitted already, so we emit the currently cached
2574			 *    extent and then partially store the current file
2575			 *    extent item's range in the cache, for the subrange
2576			 *    going the cached extent's end to the end of the
2577			 *    file extent item.
2578			 */
2579			if (range_end <= cache_end)
2580				return 0;
2581
2582			if (!(flags & (FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_DELALLOC)))
2583				phys += cache_end - offset;
 
 
 
 
 
 
2584
2585			offset = cache_end;
2586			len = range_end - cache_end;
2587			goto emit;
 
2588		}
2589	}
2590
2591	/*
2592	 * Only merges fiemap extents if
2593	 * 1) Their logical addresses are continuous
2594	 *
2595	 * 2) Their physical addresses are continuous
2596	 *    So truly compressed (physical size smaller than logical size)
2597	 *    extents won't get merged with each other
2598	 *
2599	 * 3) Share same flags
2600	 */
2601	if (cache->offset + cache->len  == offset &&
2602	    cache->phys + cache->len == phys  &&
2603	    cache->flags == flags) {
2604		cache->len += len;
2605		return 0;
2606	}
2607
2608emit:
2609	/* Not mergeable, need to submit cached one */
2610	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2611				      cache->len, cache->flags);
2612	cache->cached = false;
2613	if (ret)
2614		return ret;
2615assign:
2616	cache->cached = true;
2617	cache->offset = offset;
2618	cache->phys = phys;
2619	cache->len = len;
2620	cache->flags = flags;
2621
2622	return 0;
2623}
2624
2625/*
2626 * Emit last fiemap cache
2627 *
2628 * The last fiemap cache may still be cached in the following case:
2629 * 0		      4k		    8k
2630 * |<- Fiemap range ->|
2631 * |<------------  First extent ----------->|
2632 *
2633 * In this case, the first extent range will be cached but not emitted.
2634 * So we must emit it before ending extent_fiemap().
2635 */
2636static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2637				  struct fiemap_cache *cache)
2638{
2639	int ret;
2640
2641	if (!cache->cached)
2642		return 0;
2643
2644	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2645				      cache->len, cache->flags);
2646	cache->cached = false;
2647	if (ret > 0)
2648		ret = 0;
2649	return ret;
2650}
 
 
 
 
 
 
2651
2652static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2653{
2654	struct extent_buffer *clone;
2655	struct btrfs_key key;
2656	int slot;
2657	int ret;
2658
2659	path->slots[0]++;
2660	if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2661		return 0;
 
2662
2663	ret = btrfs_next_leaf(inode->root, path);
2664	if (ret != 0)
2665		return ret;
2666
2667	/*
2668	 * Don't bother with cloning if there are no more file extent items for
2669	 * our inode.
2670	 */
2671	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2672	if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2673		return 1;
2674
2675	/* See the comment at fiemap_search_slot() about why we clone. */
2676	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2677	if (!clone)
2678		return -ENOMEM;
2679
2680	slot = path->slots[0];
2681	btrfs_release_path(path);
2682	path->nodes[0] = clone;
2683	path->slots[0] = slot;
2684
2685	return 0;
2686}
2687
2688/*
2689 * Search for the first file extent item that starts at a given file offset or
2690 * the one that starts immediately before that offset.
2691 * Returns: 0 on success, < 0 on error, 1 if not found.
2692 */
2693static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2694			      u64 file_offset)
2695{
2696	const u64 ino = btrfs_ino(inode);
2697	struct btrfs_root *root = inode->root;
2698	struct extent_buffer *clone;
2699	struct btrfs_key key;
2700	int slot;
2701	int ret;
2702
2703	key.objectid = ino;
2704	key.type = BTRFS_EXTENT_DATA_KEY;
2705	key.offset = file_offset;
2706
2707	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2708	if (ret < 0)
2709		return ret;
2710
2711	if (ret > 0 && path->slots[0] > 0) {
2712		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2713		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2714			path->slots[0]--;
2715	}
2716
2717	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2718		ret = btrfs_next_leaf(root, path);
2719		if (ret != 0)
2720			return ret;
2721
2722		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2723		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2724			return 1;
2725	}
2726
2727	/*
2728	 * We clone the leaf and use it during fiemap. This is because while
2729	 * using the leaf we do expensive things like checking if an extent is
2730	 * shared, which can take a long time. In order to prevent blocking
2731	 * other tasks for too long, we use a clone of the leaf. We have locked
2732	 * the file range in the inode's io tree, so we know none of our file
2733	 * extent items can change. This way we avoid blocking other tasks that
2734	 * want to insert items for other inodes in the same leaf or b+tree
2735	 * rebalance operations (triggered for example when someone is trying
2736	 * to push items into this leaf when trying to insert an item in a
2737	 * neighbour leaf).
2738	 * We also need the private clone because holding a read lock on an
2739	 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2740	 * when we call fiemap_fill_next_extent(), because that may cause a page
2741	 * fault when filling the user space buffer with fiemap data.
2742	 */
2743	clone = btrfs_clone_extent_buffer(path->nodes[0]);
2744	if (!clone)
2745		return -ENOMEM;
2746
2747	slot = path->slots[0];
2748	btrfs_release_path(path);
2749	path->nodes[0] = clone;
2750	path->slots[0] = slot;
2751
2752	return 0;
2753}
2754
2755/*
2756 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2757 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2758 * extent. The end offset (@end) is inclusive.
2759 */
2760static int fiemap_process_hole(struct btrfs_inode *inode,
2761			       struct fiemap_extent_info *fieinfo,
2762			       struct fiemap_cache *cache,
2763			       struct extent_state **delalloc_cached_state,
2764			       struct btrfs_backref_share_check_ctx *backref_ctx,
2765			       u64 disk_bytenr, u64 extent_offset,
2766			       u64 extent_gen,
2767			       u64 start, u64 end)
2768{
2769	const u64 i_size = i_size_read(&inode->vfs_inode);
2770	u64 cur_offset = start;
2771	u64 last_delalloc_end = 0;
2772	u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2773	bool checked_extent_shared = false;
2774	int ret;
2775
2776	/*
2777	 * There can be no delalloc past i_size, so don't waste time looking for
2778	 * it beyond i_size.
2779	 */
2780	while (cur_offset < end && cur_offset < i_size) {
2781		struct extent_state *cached_state = NULL;
2782		u64 delalloc_start;
2783		u64 delalloc_end;
2784		u64 prealloc_start;
2785		u64 lockstart;
2786		u64 lockend;
2787		u64 prealloc_len = 0;
2788		bool delalloc;
2789
2790		lockstart = round_down(cur_offset, inode->root->fs_info->sectorsize);
2791		lockend = round_up(end, inode->root->fs_info->sectorsize);
2792
2793		/*
2794		 * We are only locking for the delalloc range because that's the
2795		 * only thing that can change here.  With fiemap we have a lock
2796		 * on the inode, so no buffered or direct writes can happen.
2797		 *
2798		 * However mmaps and normal page writeback will cause this to
2799		 * change arbitrarily.  We have to lock the extent lock here to
2800		 * make sure that nobody messes with the tree while we're doing
2801		 * btrfs_find_delalloc_in_range.
2802		 */
2803		lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2804		delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2805							delalloc_cached_state,
2806							&delalloc_start,
2807							&delalloc_end);
2808		unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2809		if (!delalloc)
2810			break;
2811
 
 
 
 
 
 
 
2812		/*
2813		 * If this is a prealloc extent we have to report every section
2814		 * of it that has no delalloc.
 
2815		 */
2816		if (disk_bytenr != 0) {
2817			if (last_delalloc_end == 0) {
2818				prealloc_start = start;
2819				prealloc_len = delalloc_start - start;
2820			} else {
2821				prealloc_start = last_delalloc_end + 1;
2822				prealloc_len = delalloc_start - prealloc_start;
2823			}
2824		}
2825
2826		if (prealloc_len > 0) {
2827			if (!checked_extent_shared && fieinfo->fi_extents_max) {
2828				ret = btrfs_is_data_extent_shared(inode,
2829								  disk_bytenr,
2830								  extent_gen,
2831								  backref_ctx);
2832				if (ret < 0)
2833					return ret;
2834				else if (ret > 0)
2835					prealloc_flags |= FIEMAP_EXTENT_SHARED;
2836
2837				checked_extent_shared = true;
2838			}
2839			ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2840						 disk_bytenr + extent_offset,
2841						 prealloc_len, prealloc_flags);
2842			if (ret)
2843				return ret;
2844			extent_offset += prealloc_len;
2845		}
2846
2847		ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2848					 delalloc_end + 1 - delalloc_start,
2849					 FIEMAP_EXTENT_DELALLOC |
2850					 FIEMAP_EXTENT_UNKNOWN);
2851		if (ret)
2852			return ret;
2853
2854		last_delalloc_end = delalloc_end;
2855		cur_offset = delalloc_end + 1;
2856		extent_offset += cur_offset - delalloc_start;
2857		cond_resched();
2858	}
 
2859
2860	/*
2861	 * Either we found no delalloc for the whole prealloc extent or we have
2862	 * a prealloc extent that spans i_size or starts at or after i_size.
2863	 */
2864	if (disk_bytenr != 0 && last_delalloc_end < end) {
2865		u64 prealloc_start;
2866		u64 prealloc_len;
2867
2868		if (last_delalloc_end == 0) {
2869			prealloc_start = start;
2870			prealloc_len = end + 1 - start;
2871		} else {
2872			prealloc_start = last_delalloc_end + 1;
2873			prealloc_len = end + 1 - prealloc_start;
2874		}
2875
2876		if (!checked_extent_shared && fieinfo->fi_extents_max) {
2877			ret = btrfs_is_data_extent_shared(inode,
2878							  disk_bytenr,
2879							  extent_gen,
2880							  backref_ctx);
2881			if (ret < 0)
2882				return ret;
2883			else if (ret > 0)
2884				prealloc_flags |= FIEMAP_EXTENT_SHARED;
2885		}
2886		ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2887					 disk_bytenr + extent_offset,
2888					 prealloc_len, prealloc_flags);
2889		if (ret)
2890			return ret;
2891	}
2892
2893	return 0;
2894}
2895
2896static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2897					  struct btrfs_path *path,
2898					  u64 *last_extent_end_ret)
2899{
2900	const u64 ino = btrfs_ino(inode);
2901	struct btrfs_root *root = inode->root;
2902	struct extent_buffer *leaf;
2903	struct btrfs_file_extent_item *ei;
2904	struct btrfs_key key;
2905	u64 disk_bytenr;
2906	int ret;
2907
2908	/*
2909	 * Lookup the last file extent. We're not using i_size here because
2910	 * there might be preallocation past i_size.
2911	 */
2912	ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2913	/* There can't be a file extent item at offset (u64)-1 */
2914	ASSERT(ret != 0);
2915	if (ret < 0)
2916		return ret;
2917
2918	/*
2919	 * For a non-existing key, btrfs_search_slot() always leaves us at a
2920	 * slot > 0, except if the btree is empty, which is impossible because
2921	 * at least it has the inode item for this inode and all the items for
2922	 * the root inode 256.
2923	 */
2924	ASSERT(path->slots[0] > 0);
2925	path->slots[0]--;
2926	leaf = path->nodes[0];
2927	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2928	if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2929		/* No file extent items in the subvolume tree. */
2930		*last_extent_end_ret = 0;
2931		return 0;
2932	}
2933
2934	/*
2935	 * For an inline extent, the disk_bytenr is where inline data starts at,
2936	 * so first check if we have an inline extent item before checking if we
2937	 * have an implicit hole (disk_bytenr == 0).
2938	 */
2939	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2940	if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2941		*last_extent_end_ret = btrfs_file_extent_end(path);
2942		return 0;
2943	}
2944
2945	/*
2946	 * Find the last file extent item that is not a hole (when NO_HOLES is
2947	 * not enabled). This should take at most 2 iterations in the worst
2948	 * case: we have one hole file extent item at slot 0 of a leaf and
2949	 * another hole file extent item as the last item in the previous leaf.
2950	 * This is because we merge file extent items that represent holes.
2951	 */
2952	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2953	while (disk_bytenr == 0) {
2954		ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2955		if (ret < 0) {
2956			return ret;
2957		} else if (ret > 0) {
2958			/* No file extent items that are not holes. */
2959			*last_extent_end_ret = 0;
2960			return 0;
2961		}
2962		leaf = path->nodes[0];
2963		ei = btrfs_item_ptr(leaf, path->slots[0],
2964				    struct btrfs_file_extent_item);
2965		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2966	}
2967
2968	*last_extent_end_ret = btrfs_file_extent_end(path);
2969	return 0;
2970}
2971
2972int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
2973		  u64 start, u64 len)
2974{
2975	const u64 ino = btrfs_ino(inode);
2976	struct extent_state *delalloc_cached_state = NULL;
2977	struct btrfs_path *path;
2978	struct fiemap_cache cache = { 0 };
2979	struct btrfs_backref_share_check_ctx *backref_ctx;
2980	u64 last_extent_end;
2981	u64 prev_extent_end;
2982	u64 range_start;
2983	u64 range_end;
2984	const u64 sectorsize = inode->root->fs_info->sectorsize;
2985	bool stopped = false;
2986	int ret;
2987
2988	backref_ctx = btrfs_alloc_backref_share_check_ctx();
2989	path = btrfs_alloc_path();
2990	if (!backref_ctx || !path) {
2991		ret = -ENOMEM;
2992		goto out;
2993	}
2994
2995	range_start = round_down(start, sectorsize);
2996	range_end = round_up(start + len, sectorsize);
2997	prev_extent_end = range_start;
2998
2999	ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3000	if (ret < 0)
3001		goto out;
3002	btrfs_release_path(path);
3003
3004	path->reada = READA_FORWARD;
3005	ret = fiemap_search_slot(inode, path, range_start);
3006	if (ret < 0) {
3007		goto out;
3008	} else if (ret > 0) {
3009		/*
3010		 * No file extent item found, but we may have delalloc between
3011		 * the current offset and i_size. So check for that.
 
 
3012		 */
3013		ret = 0;
3014		goto check_eof_delalloc;
3015	}
3016
3017	while (prev_extent_end < range_end) {
3018		struct extent_buffer *leaf = path->nodes[0];
3019		struct btrfs_file_extent_item *ei;
3020		struct btrfs_key key;
3021		u64 extent_end;
3022		u64 extent_len;
3023		u64 extent_offset = 0;
3024		u64 extent_gen;
3025		u64 disk_bytenr = 0;
3026		u64 flags = 0;
3027		int extent_type;
3028		u8 compression;
3029
3030		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3031		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3032			break;
3033
3034		extent_end = btrfs_file_extent_end(path);
3035
3036		/*
3037		 * The first iteration can leave us at an extent item that ends
3038		 * before our range's start. Move to the next item.
3039		 */
3040		if (extent_end <= range_start)
3041			goto next_item;
 
 
 
 
 
 
 
 
 
 
 
 
 
3042
3043		backref_ctx->curr_leaf_bytenr = leaf->start;
 
3044
3045		/* We have in implicit hole (NO_HOLES feature enabled). */
3046		if (prev_extent_end < key.offset) {
3047			const u64 hole_end = min(key.offset, range_end) - 1;
3048
3049			ret = fiemap_process_hole(inode, fieinfo, &cache,
3050						  &delalloc_cached_state,
3051						  backref_ctx, 0, 0, 0,
3052						  prev_extent_end, hole_end);
3053			if (ret < 0) {
3054				goto out;
3055			} else if (ret > 0) {
3056				/* fiemap_fill_next_extent() told us to stop. */
3057				stopped = true;
3058				break;
3059			}
3060
3061			/* We've reached the end of the fiemap range, stop. */
3062			if (key.offset >= range_end) {
3063				stopped = true;
3064				break;
3065			}
3066		}
 
 
 
 
3067
3068		extent_len = extent_end - key.offset;
3069		ei = btrfs_item_ptr(leaf, path->slots[0],
3070				    struct btrfs_file_extent_item);
3071		compression = btrfs_file_extent_compression(leaf, ei);
3072		extent_type = btrfs_file_extent_type(leaf, ei);
3073		extent_gen = btrfs_file_extent_generation(leaf, ei);
3074
3075		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3076			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3077			if (compression == BTRFS_COMPRESS_NONE)
3078				extent_offset = btrfs_file_extent_offset(leaf, ei);
 
 
 
 
 
 
3079		}
3080
3081		if (compression != BTRFS_COMPRESS_NONE)
3082			flags |= FIEMAP_EXTENT_ENCODED;
 
 
3083
3084		if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3085			flags |= FIEMAP_EXTENT_DATA_INLINE;
3086			flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3087			ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3088						 extent_len, flags);
3089		} else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3090			ret = fiemap_process_hole(inode, fieinfo, &cache,
3091						  &delalloc_cached_state,
3092						  backref_ctx,
3093						  disk_bytenr, extent_offset,
3094						  extent_gen, key.offset,
3095						  extent_end - 1);
3096		} else if (disk_bytenr == 0) {
3097			/* We have an explicit hole. */
3098			ret = fiemap_process_hole(inode, fieinfo, &cache,
3099						  &delalloc_cached_state,
3100						  backref_ctx, 0, 0, 0,
3101						  key.offset, extent_end - 1);
3102		} else {
3103			/* We have a regular extent. */
3104			if (fieinfo->fi_extents_max) {
3105				ret = btrfs_is_data_extent_shared(inode,
3106								  disk_bytenr,
3107								  extent_gen,
3108								  backref_ctx);
3109				if (ret < 0)
3110					goto out;
3111				else if (ret > 0)
3112					flags |= FIEMAP_EXTENT_SHARED;
3113			}
3114
3115			ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3116						 disk_bytenr + extent_offset,
3117						 extent_len, flags);
3118		}
3119
3120		if (ret < 0) {
3121			goto out;
3122		} else if (ret > 0) {
3123			/* fiemap_fill_next_extent() told us to stop. */
3124			stopped = true;
3125			break;
3126		}
3127
3128		prev_extent_end = extent_end;
3129next_item:
3130		if (fatal_signal_pending(current)) {
3131			ret = -EINTR;
 
3132			goto out;
3133		}
3134
3135		ret = fiemap_next_leaf_item(inode, path);
3136		if (ret < 0) {
3137			goto out;
3138		} else if (ret > 0) {
3139			/* No more file extent items for this inode. */
3140			break;
3141		}
3142		cond_resched();
3143	}
3144
3145check_eof_delalloc:
3146	/*
3147	 * Release (and free) the path before emitting any final entries to
3148	 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3149	 * once we find no more file extent items exist, we may have a
3150	 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3151	 * faults when copying data to the user space buffer.
3152	 */
3153	btrfs_free_path(path);
3154	path = NULL;
3155
3156	if (!stopped && prev_extent_end < range_end) {
3157		ret = fiemap_process_hole(inode, fieinfo, &cache,
3158					  &delalloc_cached_state, backref_ctx,
3159					  0, 0, 0, prev_extent_end, range_end - 1);
3160		if (ret < 0)
3161			goto out;
3162		prev_extent_end = range_end;
3163	}
3164
3165	if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3166		const u64 i_size = i_size_read(&inode->vfs_inode);
3167
3168		if (prev_extent_end < i_size) {
3169			struct extent_state *cached_state = NULL;
3170			u64 delalloc_start;
3171			u64 delalloc_end;
3172			u64 lockstart;
3173			u64 lockend;
3174			bool delalloc;
3175
3176			lockstart = round_down(prev_extent_end, sectorsize);
3177			lockend = round_up(i_size, sectorsize);
3178
3179			/*
3180			 * See the comment in fiemap_process_hole as to why
3181			 * we're doing the locking here.
3182			 */
3183			lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3184			delalloc = btrfs_find_delalloc_in_range(inode,
3185								prev_extent_end,
3186								i_size - 1,
3187								&delalloc_cached_state,
3188								&delalloc_start,
3189								&delalloc_end);
3190			unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3191			if (!delalloc)
3192				cache.flags |= FIEMAP_EXTENT_LAST;
3193		} else {
3194			cache.flags |= FIEMAP_EXTENT_LAST;
3195		}
3196	}
3197
3198	ret = emit_last_fiemap_cache(fieinfo, &cache);
3199out:
3200	free_extent_state(delalloc_cached_state);
3201	btrfs_free_backref_share_ctx(backref_ctx);
3202	btrfs_free_path(path);
 
 
3203	return ret;
3204}
3205
3206static void __free_extent_buffer(struct extent_buffer *eb)
3207{
 
3208	kmem_cache_free(extent_buffer_cache, eb);
3209}
3210
3211static int extent_buffer_under_io(const struct extent_buffer *eb)
3212{
3213	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
 
3214		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3215}
3216
3217static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio)
3218{
3219	struct btrfs_subpage *subpage;
3220
3221	lockdep_assert_held(&folio->mapping->i_private_lock);
3222
3223	if (folio_test_private(folio)) {
3224		subpage = folio_get_private(folio);
3225		if (atomic_read(&subpage->eb_refs))
3226			return true;
3227		/*
3228		 * Even there is no eb refs here, we may still have
3229		 * end_page_read() call relying on page::private.
3230		 */
3231		if (atomic_read(&subpage->readers))
3232			return true;
3233	}
3234	return false;
3235}
3236
3237static void detach_extent_buffer_folio(struct extent_buffer *eb, struct folio *folio)
3238{
3239	struct btrfs_fs_info *fs_info = eb->fs_info;
3240	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
 
3241
3242	/*
3243	 * For mapped eb, we're going to change the folio private, which should
3244	 * be done under the i_private_lock.
3245	 */
3246	if (mapped)
3247		spin_lock(&folio->mapping->i_private_lock);
3248
3249	if (!folio_test_private(folio)) {
3250		if (mapped)
3251			spin_unlock(&folio->mapping->i_private_lock);
3252		return;
3253	}
3254
3255	if (fs_info->nodesize >= PAGE_SIZE) {
 
 
 
 
 
 
3256		/*
3257		 * We do this since we'll remove the pages after we've
3258		 * removed the eb from the radix tree, so we could race
3259		 * and have this page now attached to the new eb.  So
3260		 * only clear folio if it's still connected to
3261		 * this eb.
3262		 */
3263		if (folio_test_private(folio) && folio_get_private(folio) == eb) {
 
3264			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3265			BUG_ON(folio_test_dirty(folio));
3266			BUG_ON(folio_test_writeback(folio));
3267			/* We need to make sure we haven't be attached to a new eb. */
3268			folio_detach_private(folio);
 
 
 
 
 
 
3269		}
3270		if (mapped)
3271			spin_unlock(&folio->mapping->i_private_lock);
3272		return;
3273	}
3274
3275	/*
3276	 * For subpage, we can have dummy eb with folio private attached.  In
3277	 * this case, we can directly detach the private as such folio is only
3278	 * attached to one dummy eb, no sharing.
3279	 */
3280	if (!mapped) {
3281		btrfs_detach_subpage(fs_info, folio);
3282		return;
3283	}
3284
3285	btrfs_folio_dec_eb_refs(fs_info, folio);
3286
3287	/*
3288	 * We can only detach the folio private if there are no other ebs in the
3289	 * page range and no unfinished IO.
3290	 */
3291	if (!folio_range_has_eb(fs_info, folio))
3292		btrfs_detach_subpage(fs_info, folio);
3293
3294	spin_unlock(&folio->mapping->i_private_lock);
3295}
3296
3297/* Release all pages attached to the extent buffer */
3298static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3299{
3300	ASSERT(!extent_buffer_under_io(eb));
3301
3302	for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
3303		struct folio *folio = eb->folios[i];
3304
3305		if (!folio)
3306			continue;
3307
3308		detach_extent_buffer_folio(eb, folio);
3309
3310		/* One for when we allocated the folio. */
3311		folio_put(folio);
3312	}
3313}
3314
3315/*
3316 * Helper for releasing the extent buffer.
3317 */
3318static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3319{
3320	btrfs_release_extent_buffer_pages(eb);
3321	btrfs_leak_debug_del_eb(eb);
3322	__free_extent_buffer(eb);
3323}
3324
3325static struct extent_buffer *
3326__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3327		      unsigned long len)
3328{
3329	struct extent_buffer *eb = NULL;
3330
3331	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3332	eb->start = start;
3333	eb->len = len;
3334	eb->fs_info = fs_info;
3335	init_rwsem(&eb->lock);
 
 
 
 
 
 
 
 
 
 
3336
3337	btrfs_leak_debug_add_eb(eb);
3338
3339	spin_lock_init(&eb->refs_lock);
3340	atomic_set(&eb->refs, 1);
 
3341
3342	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
 
 
 
 
 
3343
3344	return eb;
3345}
3346
3347struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3348{
 
 
3349	struct extent_buffer *new;
3350	int num_folios = num_extent_folios(src);
3351	int ret;
3352
3353	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3354	if (new == NULL)
3355		return NULL;
3356
3357	/*
3358	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3359	 * btrfs_release_extent_buffer() have different behavior for
3360	 * UNMAPPED subpage extent buffer.
3361	 */
3362	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3363
3364	ret = alloc_eb_folio_array(new, 0);
3365	if (ret) {
3366		btrfs_release_extent_buffer(new);
3367		return NULL;
3368	}
3369
3370	for (int i = 0; i < num_folios; i++) {
3371		struct folio *folio = new->folios[i];
3372		int ret;
3373
3374		ret = attach_extent_buffer_folio(new, folio, NULL);
3375		if (ret < 0) {
3376			btrfs_release_extent_buffer(new);
3377			return NULL;
3378		}
3379		WARN_ON(folio_test_dirty(folio));
 
 
 
 
3380	}
3381	copy_extent_buffer_full(new, src);
3382	set_extent_buffer_uptodate(new);
 
3383
3384	return new;
3385}
3386
3387struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3388						  u64 start, unsigned long len)
3389{
3390	struct extent_buffer *eb;
3391	int num_folios = 0;
3392	int ret;
 
 
3393
3394	eb = __alloc_extent_buffer(fs_info, start, len);
3395	if (!eb)
3396		return NULL;
3397
3398	ret = alloc_eb_folio_array(eb, 0);
3399	if (ret)
3400		goto err;
3401
3402	num_folios = num_extent_folios(eb);
3403	for (int i = 0; i < num_folios; i++) {
3404		ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
3405		if (ret < 0)
3406			goto err;
3407	}
3408
3409	set_extent_buffer_uptodate(eb);
3410	btrfs_set_header_nritems(eb, 0);
3411	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3412
3413	return eb;
3414err:
3415	for (int i = 0; i < num_folios; i++) {
3416		if (eb->folios[i]) {
3417			detach_extent_buffer_folio(eb, eb->folios[i]);
3418			__folio_put(eb->folios[i]);
3419		}
3420	}
3421	__free_extent_buffer(eb);
3422	return NULL;
3423}
3424
3425struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3426						u64 start)
3427{
3428	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3429}
3430
3431static void check_buffer_tree_ref(struct extent_buffer *eb)
3432{
3433	int refs;
3434	/*
3435	 * The TREE_REF bit is first set when the extent_buffer is added
3436	 * to the radix tree. It is also reset, if unset, when a new reference
3437	 * is created by find_extent_buffer.
3438	 *
3439	 * It is only cleared in two cases: freeing the last non-tree
3440	 * reference to the extent_buffer when its STALE bit is set or
3441	 * calling release_folio when the tree reference is the only reference.
 
3442	 *
3443	 * In both cases, care is taken to ensure that the extent_buffer's
3444	 * pages are not under io. However, release_folio can be concurrently
3445	 * called with creating new references, which is prone to race
3446	 * conditions between the calls to check_buffer_tree_ref in those
3447	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
 
3448	 *
3449	 * The actual lifetime of the extent_buffer in the radix tree is
3450	 * adequately protected by the refcount, but the TREE_REF bit and
3451	 * its corresponding reference are not. To protect against this
3452	 * class of races, we call check_buffer_tree_ref from the codepaths
3453	 * which trigger io. Note that once io is initiated, TREE_REF can no
3454	 * longer be cleared, so that is the moment at which any such race is
3455	 * best fixed.
3456	 */
3457	refs = atomic_read(&eb->refs);
3458	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3459		return;
3460
3461	spin_lock(&eb->refs_lock);
3462	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3463		atomic_inc(&eb->refs);
3464	spin_unlock(&eb->refs_lock);
3465}
3466
3467static void mark_extent_buffer_accessed(struct extent_buffer *eb)
 
3468{
3469	int num_folios= num_extent_folios(eb);
3470
3471	check_buffer_tree_ref(eb);
3472
3473	for (int i = 0; i < num_folios; i++)
3474		folio_mark_accessed(eb->folios[i]);
 
 
 
 
 
3475}
3476
3477struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3478					 u64 start)
3479{
3480	struct extent_buffer *eb;
3481
3482	eb = find_extent_buffer_nolock(fs_info, start);
3483	if (!eb)
3484		return NULL;
3485	/*
3486	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3487	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3488	 * another task running free_extent_buffer() might have seen that flag
3489	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3490	 * writeback flags not set) and it's still in the tree (flag
3491	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3492	 * decrementing the extent buffer's reference count twice.  So here we
3493	 * could race and increment the eb's reference count, clear its stale
3494	 * flag, mark it as dirty and drop our reference before the other task
3495	 * finishes executing free_extent_buffer, which would later result in
3496	 * an attempt to free an extent buffer that is dirty.
3497	 */
3498	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3499		spin_lock(&eb->refs_lock);
3500		spin_unlock(&eb->refs_lock);
 
 
 
 
 
 
 
3501	}
3502	mark_extent_buffer_accessed(eb);
3503	return eb;
 
3504}
3505
3506#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3507struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3508					u64 start)
3509{
3510	struct extent_buffer *eb, *exists = NULL;
3511	int ret;
3512
3513	eb = find_extent_buffer(fs_info, start);
3514	if (eb)
3515		return eb;
3516	eb = alloc_dummy_extent_buffer(fs_info, start);
3517	if (!eb)
3518		return ERR_PTR(-ENOMEM);
3519	eb->fs_info = fs_info;
3520again:
3521	ret = radix_tree_preload(GFP_NOFS);
3522	if (ret) {
3523		exists = ERR_PTR(ret);
3524		goto free_eb;
3525	}
3526	spin_lock(&fs_info->buffer_lock);
3527	ret = radix_tree_insert(&fs_info->buffer_radix,
3528				start >> fs_info->sectorsize_bits, eb);
3529	spin_unlock(&fs_info->buffer_lock);
3530	radix_tree_preload_end();
3531	if (ret == -EEXIST) {
3532		exists = find_extent_buffer(fs_info, start);
3533		if (exists)
3534			goto free_eb;
3535		else
3536			goto again;
3537	}
3538	check_buffer_tree_ref(eb);
3539	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3540
 
 
 
 
 
 
 
3541	return eb;
3542free_eb:
3543	btrfs_release_extent_buffer(eb);
3544	return exists;
3545}
3546#endif
3547
3548static struct extent_buffer *grab_extent_buffer(
3549		struct btrfs_fs_info *fs_info, struct page *page)
3550{
3551	struct folio *folio = page_folio(page);
3552	struct extent_buffer *exists;
3553
3554	/*
3555	 * For subpage case, we completely rely on radix tree to ensure we
3556	 * don't try to insert two ebs for the same bytenr.  So here we always
3557	 * return NULL and just continue.
3558	 */
3559	if (fs_info->nodesize < PAGE_SIZE)
3560		return NULL;
3561
3562	/* Page not yet attached to an extent buffer */
3563	if (!folio_test_private(folio))
3564		return NULL;
3565
3566	/*
3567	 * We could have already allocated an eb for this page and attached one
3568	 * so lets see if we can get a ref on the existing eb, and if we can we
3569	 * know it's good and we can just return that one, else we know we can
3570	 * just overwrite folio private.
3571	 */
3572	exists = folio_get_private(folio);
3573	if (atomic_inc_not_zero(&exists->refs))
3574		return exists;
3575
3576	WARN_ON(PageDirty(page));
3577	folio_detach_private(folio);
3578	return NULL;
3579}
3580
3581static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3582{
3583	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3584		btrfs_err(fs_info, "bad tree block start %llu", start);
3585		return -EINVAL;
3586	}
3587
3588	if (fs_info->nodesize < PAGE_SIZE &&
3589	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3590		btrfs_err(fs_info,
3591		"tree block crosses page boundary, start %llu nodesize %u",
3592			  start, fs_info->nodesize);
3593		return -EINVAL;
3594	}
3595	if (fs_info->nodesize >= PAGE_SIZE &&
3596	    !PAGE_ALIGNED(start)) {
3597		btrfs_err(fs_info,
3598		"tree block is not page aligned, start %llu nodesize %u",
3599			  start, fs_info->nodesize);
3600		return -EINVAL;
3601	}
3602	if (!IS_ALIGNED(start, fs_info->nodesize) &&
3603	    !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3604		btrfs_warn(fs_info,
3605"tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3606			      start, fs_info->nodesize);
3607	}
3608	return 0;
3609}
3610
3611
3612/*
3613 * Return 0 if eb->folios[i] is attached to btree inode successfully.
3614 * Return >0 if there is already another extent buffer for the range,
3615 * and @found_eb_ret would be updated.
3616 * Return -EAGAIN if the filemap has an existing folio but with different size
3617 * than @eb.
3618 * The caller needs to free the existing folios and retry using the same order.
3619 */
3620static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3621				      struct extent_buffer **found_eb_ret)
3622{
3623
3624	struct btrfs_fs_info *fs_info = eb->fs_info;
3625	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3626	const unsigned long index = eb->start >> PAGE_SHIFT;
3627	struct folio *existing_folio;
3628	int ret;
3629
3630	ASSERT(found_eb_ret);
3631
3632	/* Caller should ensure the folio exists. */
3633	ASSERT(eb->folios[i]);
3634
3635retry:
3636	ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3637				GFP_NOFS | __GFP_NOFAIL);
3638	if (!ret)
3639		return 0;
3640
3641	existing_folio = filemap_lock_folio(mapping, index + i);
3642	/* The page cache only exists for a very short time, just retry. */
3643	if (IS_ERR(existing_folio))
3644		goto retry;
3645
3646	/* For now, we should only have single-page folios for btree inode. */
3647	ASSERT(folio_nr_pages(existing_folio) == 1);
3648
3649	if (folio_size(existing_folio) != folio_size(eb->folios[0])) {
3650		folio_unlock(existing_folio);
3651		folio_put(existing_folio);
3652		return -EAGAIN;
3653	}
3654
3655	if (fs_info->nodesize < PAGE_SIZE) {
3656		/*
3657		 * We're going to reuse the existing page, can drop our page
3658		 * and subpage structure now.
3659		 */
3660		__free_page(folio_page(eb->folios[i], 0));
3661		eb->folios[i] = existing_folio;
3662	} else {
3663		struct extent_buffer *existing_eb;
3664
3665		existing_eb = grab_extent_buffer(fs_info,
3666						 folio_page(existing_folio, 0));
3667		if (existing_eb) {
3668			/* The extent buffer still exists, we can use it directly. */
3669			*found_eb_ret = existing_eb;
3670			folio_unlock(existing_folio);
3671			folio_put(existing_folio);
3672			return 1;
3673		}
3674		/* The extent buffer no longer exists, we can reuse the folio. */
3675		__free_page(folio_page(eb->folios[i], 0));
3676		eb->folios[i] = existing_folio;
3677	}
3678	return 0;
3679}
3680
3681struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3682					  u64 start, u64 owner_root, int level)
3683{
3684	unsigned long len = fs_info->nodesize;
3685	int num_folios;
3686	int attached = 0;
 
3687	struct extent_buffer *eb;
3688	struct extent_buffer *existing_eb = NULL;
 
3689	struct address_space *mapping = fs_info->btree_inode->i_mapping;
3690	struct btrfs_subpage *prealloc = NULL;
3691	u64 lockdep_owner = owner_root;
3692	bool page_contig = true;
3693	int uptodate = 1;
3694	int ret;
3695
3696	if (check_eb_alignment(fs_info, start))
 
3697		return ERR_PTR(-EINVAL);
3698
3699#if BITS_PER_LONG == 32
3700	if (start >= MAX_LFS_FILESIZE) {
3701		btrfs_err_rl(fs_info,
3702		"extent buffer %llu is beyond 32bit page cache limit", start);
3703		btrfs_err_32bit_limit(fs_info);
3704		return ERR_PTR(-EOVERFLOW);
3705	}
3706	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3707		btrfs_warn_32bit_limit(fs_info);
3708#endif
3709
3710	eb = find_extent_buffer(fs_info, start);
3711	if (eb)
3712		return eb;
3713
3714	eb = __alloc_extent_buffer(fs_info, start, len);
3715	if (!eb)
3716		return ERR_PTR(-ENOMEM);
3717
3718	/*
3719	 * The reloc trees are just snapshots, so we need them to appear to be
3720	 * just like any other fs tree WRT lockdep.
3721	 */
3722	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3723		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3724
3725	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3726
3727	/*
3728	 * Preallocate folio private for subpage case, so that we won't
3729	 * allocate memory with i_private_lock nor page lock hold.
3730	 *
3731	 * The memory will be freed by attach_extent_buffer_page() or freed
3732	 * manually if we exit earlier.
3733	 */
3734	if (fs_info->nodesize < PAGE_SIZE) {
3735		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3736		if (IS_ERR(prealloc)) {
3737			ret = PTR_ERR(prealloc);
3738			goto out;
3739		}
3740	}
3741
3742reallocate:
3743	/* Allocate all pages first. */
3744	ret = alloc_eb_folio_array(eb, __GFP_NOFAIL);
3745	if (ret < 0) {
3746		btrfs_free_subpage(prealloc);
3747		goto out;
3748	}
3749
3750	num_folios = num_extent_folios(eb);
3751	/* Attach all pages to the filemap. */
3752	for (int i = 0; i < num_folios; i++) {
3753		struct folio *folio;
3754
3755		ret = attach_eb_folio_to_filemap(eb, i, &existing_eb);
3756		if (ret > 0) {
3757			ASSERT(existing_eb);
3758			goto out;
3759		}
3760
3761		/*
3762		 * TODO: Special handling for a corner case where the order of
3763		 * folios mismatch between the new eb and filemap.
3764		 *
3765		 * This happens when:
3766		 *
3767		 * - the new eb is using higher order folio
3768		 *
3769		 * - the filemap is still using 0-order folios for the range
3770		 *   This can happen at the previous eb allocation, and we don't
3771		 *   have higher order folio for the call.
3772		 *
3773		 * - the existing eb has already been freed
3774		 *
3775		 * In this case, we have to free the existing folios first, and
3776		 * re-allocate using the same order.
3777		 * Thankfully this is not going to happen yet, as we're still
3778		 * using 0-order folios.
3779		 */
3780		if (unlikely(ret == -EAGAIN)) {
3781			ASSERT(0);
3782			goto reallocate;
3783		}
3784		attached++;
3785
3786		/*
3787		 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3788		 * reliable, as we may choose to reuse the existing page cache
3789		 * and free the allocated page.
3790		 */
3791		folio = eb->folios[i];
3792		spin_lock(&mapping->i_private_lock);
3793		/* Should not fail, as we have preallocated the memory */
3794		ret = attach_extent_buffer_folio(eb, folio, prealloc);
3795		ASSERT(!ret);
3796		/*
3797		 * To inform we have extra eb under allocation, so that
3798		 * detach_extent_buffer_page() won't release the folio private
3799		 * when the eb hasn't yet been inserted into radix tree.
3800		 *
3801		 * The ref will be decreased when the eb released the page, in
3802		 * detach_extent_buffer_page().
3803		 * Thus needs no special handling in error path.
3804		 */
3805		btrfs_folio_inc_eb_refs(fs_info, folio);
3806		spin_unlock(&mapping->i_private_lock);
3807
3808		WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3809
3810		/*
3811		 * Check if the current page is physically contiguous with previous eb
3812		 * page.
3813		 * At this stage, either we allocated a large folio, thus @i
3814		 * would only be 0, or we fall back to per-page allocation.
3815		 */
3816		if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3817			page_contig = false;
3818
3819		if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
 
 
 
 
 
 
 
 
 
 
 
 
3820			uptodate = 0;
3821
3822		/*
3823		 * We can't unlock the pages just yet since the extent buffer
3824		 * hasn't been properly inserted in the radix tree, this
3825		 * opens a race with btree_release_folio which can free a page
3826		 * while we are still filling in all pages for the buffer and
3827		 * we could crash.
3828		 */
3829	}
3830	if (uptodate)
3831		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3832	/* All pages are physically contiguous, can skip cross page handling. */
3833	if (page_contig)
3834		eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3835again:
3836	ret = radix_tree_preload(GFP_NOFS);
3837	if (ret)
3838		goto out;
 
 
3839
3840	spin_lock(&fs_info->buffer_lock);
3841	ret = radix_tree_insert(&fs_info->buffer_radix,
3842				start >> fs_info->sectorsize_bits, eb);
3843	spin_unlock(&fs_info->buffer_lock);
3844	radix_tree_preload_end();
3845	if (ret == -EEXIST) {
3846		ret = 0;
3847		existing_eb = find_extent_buffer(fs_info, start);
3848		if (existing_eb)
3849			goto out;
3850		else
3851			goto again;
3852	}
3853	/* add one reference for the tree */
3854	check_buffer_tree_ref(eb);
3855	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3856
3857	/*
3858	 * Now it's safe to unlock the pages because any calls to
3859	 * btree_release_folio will correctly detect that a page belongs to a
3860	 * live buffer and won't free them prematurely.
3861	 */
3862	for (int i = 0; i < num_folios; i++)
3863		unlock_page(folio_page(eb->folios[i], 0));
 
 
 
 
 
 
 
 
 
3864	return eb;
3865
3866out:
3867	WARN_ON(!atomic_dec_and_test(&eb->refs));
3868
3869	/*
3870	 * Any attached folios need to be detached before we unlock them.  This
3871	 * is because when we're inserting our new folios into the mapping, and
3872	 * then attaching our eb to that folio.  If we fail to insert our folio
3873	 * we'll lookup the folio for that index, and grab that EB.  We do not
3874	 * want that to grab this eb, as we're getting ready to free it.  So we
3875	 * have to detach it first and then unlock it.
3876	 *
3877	 * We have to drop our reference and NULL it out here because in the
3878	 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3879	 * Below when we call btrfs_release_extent_buffer() we will call
3880	 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3881	 * case.  If we left eb->folios[i] populated in the subpage case we'd
3882	 * double put our reference and be super sad.
3883	 */
3884	for (int i = 0; i < attached; i++) {
3885		ASSERT(eb->folios[i]);
3886		detach_extent_buffer_folio(eb, eb->folios[i]);
3887		unlock_page(folio_page(eb->folios[i], 0));
3888		folio_put(eb->folios[i]);
3889		eb->folios[i] = NULL;
3890	}
3891	/*
3892	 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
3893	 * so it can be cleaned up without utlizing page->mapping.
3894	 */
3895	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3896
3897	btrfs_release_extent_buffer(eb);
3898	if (ret < 0)
3899		return ERR_PTR(ret);
3900	ASSERT(existing_eb);
3901	return existing_eb;
3902}
3903
3904static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3905{
3906	struct extent_buffer *eb =
3907			container_of(head, struct extent_buffer, rcu_head);
3908
3909	__free_extent_buffer(eb);
3910}
3911
 
3912static int release_extent_buffer(struct extent_buffer *eb)
3913	__releases(&eb->refs_lock)
3914{
3915	lockdep_assert_held(&eb->refs_lock);
3916
3917	WARN_ON(atomic_read(&eb->refs) == 0);
3918	if (atomic_dec_and_test(&eb->refs)) {
3919		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3920			struct btrfs_fs_info *fs_info = eb->fs_info;
3921
3922			spin_unlock(&eb->refs_lock);
3923
3924			spin_lock(&fs_info->buffer_lock);
3925			radix_tree_delete(&fs_info->buffer_radix,
3926					  eb->start >> fs_info->sectorsize_bits);
3927			spin_unlock(&fs_info->buffer_lock);
3928		} else {
3929			spin_unlock(&eb->refs_lock);
3930		}
3931
3932		btrfs_leak_debug_del_eb(eb);
3933		/* Should be safe to release our pages at this point */
3934		btrfs_release_extent_buffer_pages(eb);
3935#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3936		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3937			__free_extent_buffer(eb);
3938			return 1;
3939		}
3940#endif
3941		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3942		return 1;
3943	}
3944	spin_unlock(&eb->refs_lock);
3945
3946	return 0;
3947}
3948
3949void free_extent_buffer(struct extent_buffer *eb)
3950{
3951	int refs;
 
3952	if (!eb)
3953		return;
3954
3955	refs = atomic_read(&eb->refs);
3956	while (1) {
3957		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3958		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3959			refs == 1))
3960			break;
3961		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
 
3962			return;
3963	}
3964
3965	spin_lock(&eb->refs_lock);
3966	if (atomic_read(&eb->refs) == 2 &&
 
 
 
 
3967	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3968	    !extent_buffer_under_io(eb) &&
3969	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3970		atomic_dec(&eb->refs);
3971
3972	/*
3973	 * I know this is terrible, but it's temporary until we stop tracking
3974	 * the uptodate bits and such for the extent buffers.
3975	 */
3976	release_extent_buffer(eb);
3977}
3978
3979void free_extent_buffer_stale(struct extent_buffer *eb)
3980{
3981	if (!eb)
3982		return;
3983
3984	spin_lock(&eb->refs_lock);
3985	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3986
3987	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3988	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3989		atomic_dec(&eb->refs);
3990	release_extent_buffer(eb);
3991}
3992
3993static void btree_clear_folio_dirty(struct folio *folio)
3994{
3995	ASSERT(folio_test_dirty(folio));
3996	ASSERT(folio_test_locked(folio));
3997	folio_clear_dirty_for_io(folio);
3998	xa_lock_irq(&folio->mapping->i_pages);
3999	if (!folio_test_dirty(folio))
4000		__xa_clear_mark(&folio->mapping->i_pages,
4001				folio_index(folio), PAGECACHE_TAG_DIRTY);
4002	xa_unlock_irq(&folio->mapping->i_pages);
4003}
4004
4005static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4006{
4007	struct btrfs_fs_info *fs_info = eb->fs_info;
4008	struct folio *folio = eb->folios[0];
4009	bool last;
4010
4011	/* btree_clear_folio_dirty() needs page locked. */
4012	folio_lock(folio);
4013	last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
4014	if (last)
4015		btree_clear_folio_dirty(folio);
4016	folio_unlock(folio);
4017	WARN_ON(atomic_read(&eb->refs) == 0);
4018}
4019
4020void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
4021			      struct extent_buffer *eb)
4022{
4023	struct btrfs_fs_info *fs_info = eb->fs_info;
4024	int num_folios;
4025
4026	btrfs_assert_tree_write_locked(eb);
4027
4028	if (trans && btrfs_header_generation(eb) != trans->transid)
4029		return;
4030
4031	/*
4032	 * Instead of clearing the dirty flag off of the buffer, mark it as
4033	 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
4034	 * write-ordering in zoned mode, without the need to later re-dirty
4035	 * the extent_buffer.
4036	 *
4037	 * The actual zeroout of the buffer will happen later in
4038	 * btree_csum_one_bio.
4039	 */
4040	if (btrfs_is_zoned(fs_info)) {
4041		set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
4042		return;
4043	}
4044
4045	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
4046		return;
4047
4048	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
4049				 fs_info->dirty_metadata_batch);
4050
4051	if (eb->fs_info->nodesize < PAGE_SIZE)
4052		return clear_subpage_extent_buffer_dirty(eb);
 
 
4053
4054	num_folios = num_extent_folios(eb);
4055	for (int i = 0; i < num_folios; i++) {
4056		struct folio *folio = eb->folios[i];
4057
4058		if (!folio_test_dirty(folio))
4059			continue;
4060		folio_lock(folio);
4061		btree_clear_folio_dirty(folio);
4062		folio_unlock(folio);
 
 
 
 
 
4063	}
4064	WARN_ON(atomic_read(&eb->refs) == 0);
4065}
4066
4067void set_extent_buffer_dirty(struct extent_buffer *eb)
4068{
4069	int num_folios;
4070	bool was_dirty;
 
4071
4072	check_buffer_tree_ref(eb);
4073
4074	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4075
4076	num_folios = num_extent_folios(eb);
4077	WARN_ON(atomic_read(&eb->refs) == 0);
4078	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4079
4080	if (!was_dirty) {
4081		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
4082
4083		/*
4084		 * For subpage case, we can have other extent buffers in the
4085		 * same page, and in clear_subpage_extent_buffer_dirty() we
4086		 * have to clear page dirty without subpage lock held.
4087		 * This can cause race where our page gets dirty cleared after
4088		 * we just set it.
4089		 *
4090		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4091		 * its page for other reasons, we can use page lock to prevent
4092		 * the above race.
4093		 */
4094		if (subpage)
4095			lock_page(folio_page(eb->folios[0], 0));
4096		for (int i = 0; i < num_folios; i++)
4097			btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
4098					      eb->start, eb->len);
4099		if (subpage)
4100			unlock_page(folio_page(eb->folios[0], 0));
4101		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
4102					 eb->len,
4103					 eb->fs_info->dirty_metadata_batch);
4104	}
4105#ifdef CONFIG_BTRFS_DEBUG
4106	for (int i = 0; i < num_folios; i++)
4107		ASSERT(folio_test_dirty(eb->folios[i]));
4108#endif
4109}
4110
4111void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4112{
4113	struct btrfs_fs_info *fs_info = eb->fs_info;
4114	int num_folios = num_extent_folios(eb);
 
4115
4116	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4117	for (int i = 0; i < num_folios; i++) {
4118		struct folio *folio = eb->folios[i];
4119
4120		if (!folio)
4121			continue;
4122
4123		/*
4124		 * This is special handling for metadata subpage, as regular
4125		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4126		 */
4127		if (fs_info->nodesize >= PAGE_SIZE)
4128			folio_clear_uptodate(folio);
4129		else
4130			btrfs_subpage_clear_uptodate(fs_info, folio,
4131						     eb->start, eb->len);
4132	}
4133}
4134
4135void set_extent_buffer_uptodate(struct extent_buffer *eb)
4136{
4137	struct btrfs_fs_info *fs_info = eb->fs_info;
4138	int num_folios = num_extent_folios(eb);
 
4139
4140	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4141	for (int i = 0; i < num_folios; i++) {
4142		struct folio *folio = eb->folios[i];
4143
4144		/*
4145		 * This is special handling for metadata subpage, as regular
4146		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4147		 */
4148		if (fs_info->nodesize >= PAGE_SIZE)
4149			folio_mark_uptodate(folio);
4150		else
4151			btrfs_subpage_set_uptodate(fs_info, folio,
4152						   eb->start, eb->len);
4153	}
4154}
4155
4156static void end_bbio_meta_read(struct btrfs_bio *bbio)
4157{
4158	struct extent_buffer *eb = bbio->private;
4159	struct btrfs_fs_info *fs_info = eb->fs_info;
4160	bool uptodate = !bbio->bio.bi_status;
4161	struct folio_iter fi;
4162	u32 bio_offset = 0;
4163
4164	eb->read_mirror = bbio->mirror_num;
4165
4166	if (uptodate &&
4167	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
4168		uptodate = false;
4169
4170	if (uptodate) {
4171		set_extent_buffer_uptodate(eb);
4172	} else {
4173		clear_extent_buffer_uptodate(eb);
4174		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4175	}
4176
4177	bio_for_each_folio_all(fi, &bbio->bio) {
4178		struct folio *folio = fi.folio;
4179		u64 start = eb->start + bio_offset;
4180		u32 len = fi.length;
4181
4182		if (uptodate)
4183			btrfs_folio_set_uptodate(fs_info, folio, start, len);
4184		else
4185			btrfs_folio_clear_uptodate(fs_info, folio, start, len);
4186
4187		bio_offset += len;
4188	}
4189
4190	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4191	smp_mb__after_atomic();
4192	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4193	free_extent_buffer(eb);
4194
4195	bio_put(&bbio->bio);
4196}
4197
4198int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4199			     struct btrfs_tree_parent_check *check)
 
4200{
4201	struct btrfs_bio *bbio;
4202	bool ret;
 
 
 
 
 
 
 
 
4203
4204	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4205		return 0;
4206
 
 
 
 
 
 
 
 
 
 
 
4207	/*
4208	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4209	 * operation, which could potentially still be in flight.  In this case
4210	 * we simply want to return an error.
4211	 */
4212	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4213		return -EIO;
 
 
 
 
 
4214
4215	/* Someone else is already reading the buffer, just wait for it. */
4216	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
4217		goto done;
 
4218
4219	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4220	eb->read_mirror = 0;
4221	check_buffer_tree_ref(eb);
4222	atomic_inc(&eb->refs);
4223
4224	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
4225			       REQ_OP_READ | REQ_META, eb->fs_info,
4226			       end_bbio_meta_read, eb);
4227	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
4228	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
4229	bbio->file_offset = eb->start;
4230	memcpy(&bbio->parent_check, check, sizeof(*check));
4231	if (eb->fs_info->nodesize < PAGE_SIZE) {
4232		ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
4233				    eb->start - folio_pos(eb->folios[0]));
4234		ASSERT(ret);
4235	} else {
4236		int num_folios = num_extent_folios(eb);
4237
4238		for (int i = 0; i < num_folios; i++) {
4239			struct folio *folio = eb->folios[i];
4240
4241			ret = bio_add_folio(&bbio->bio, folio, folio_size(folio), 0);
4242			ASSERT(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4243		}
4244	}
4245	btrfs_submit_bio(bbio, mirror_num);
4246
4247done:
4248	if (wait == WAIT_COMPLETE) {
4249		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
4250		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4251			return -EIO;
4252	}
4253
4254	return 0;
4255}
4256
4257static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4258			    unsigned long len)
4259{
4260	btrfs_warn(eb->fs_info,
4261		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
4262		eb->start, eb->len, start, len);
4263	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4264
4265	return true;
4266}
4267
4268/*
4269 * Check if the [start, start + len) range is valid before reading/writing
4270 * the eb.
4271 * NOTE: @start and @len are offset inside the eb, not logical address.
4272 *
4273 * Caller should not touch the dst/src memory if this function returns error.
4274 */
4275static inline int check_eb_range(const struct extent_buffer *eb,
4276				 unsigned long start, unsigned long len)
4277{
4278	unsigned long offset;
4279
4280	/* start, start + len should not go beyond eb->len nor overflow */
4281	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4282		return report_eb_range(eb, start, len);
4283
4284	return false;
 
 
 
 
 
 
4285}
4286
4287void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4288			unsigned long start, unsigned long len)
 
4289{
4290	const int unit_size = folio_size(eb->folios[0]);
4291	size_t cur;
4292	size_t offset;
 
 
4293	char *dst = (char *)dstv;
4294	unsigned long i = get_eb_folio_index(eb, start);
 
4295
4296	if (check_eb_range(eb, start, len)) {
4297		/*
4298		 * Invalid range hit, reset the memory, so callers won't get
4299		 * some random garbage for their uninitialized memory.
4300		 */
4301		memset(dstv, 0, len);
4302		return;
4303	}
4304
4305	if (eb->addr) {
4306		memcpy(dstv, eb->addr + start, len);
4307		return;
4308	}
4309
4310	offset = get_eb_offset_in_folio(eb, start);
4311
4312	while (len > 0) {
4313		char *kaddr;
4314
4315		cur = min(len, unit_size - offset);
4316		kaddr = folio_address(eb->folios[i]);
4317		memcpy(dst, kaddr + offset, cur);
4318
4319		dst += cur;
4320		len -= cur;
4321		offset = 0;
4322		i++;
4323	}
4324}
4325
4326int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4327				       void __user *dstv,
4328				       unsigned long start, unsigned long len)
4329{
4330	const int unit_size = folio_size(eb->folios[0]);
4331	size_t cur;
4332	size_t offset;
 
 
4333	char __user *dst = (char __user *)dstv;
4334	unsigned long i = get_eb_folio_index(eb, start);
 
4335	int ret = 0;
4336
4337	WARN_ON(start > eb->len);
4338	WARN_ON(start + len > eb->start + eb->len);
4339
4340	if (eb->addr) {
4341		if (copy_to_user_nofault(dstv, eb->addr + start, len))
4342			ret = -EFAULT;
4343		return ret;
4344	}
4345
4346	offset = get_eb_offset_in_folio(eb, start);
4347
4348	while (len > 0) {
4349		char *kaddr;
4350
4351		cur = min(len, unit_size - offset);
4352		kaddr = folio_address(eb->folios[i]);
4353		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4354			ret = -EFAULT;
4355			break;
4356		}
4357
4358		dst += cur;
4359		len -= cur;
4360		offset = 0;
4361		i++;
4362	}
4363
4364	return ret;
4365}
4366
4367int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4368			 unsigned long start, unsigned long len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4369{
4370	const int unit_size = folio_size(eb->folios[0]);
4371	size_t cur;
4372	size_t offset;
 
4373	char *kaddr;
4374	char *ptr = (char *)ptrv;
4375	unsigned long i = get_eb_folio_index(eb, start);
 
4376	int ret = 0;
4377
4378	if (check_eb_range(eb, start, len))
4379		return -EINVAL;
4380
4381	if (eb->addr)
4382		return memcmp(ptrv, eb->addr + start, len);
4383
4384	offset = get_eb_offset_in_folio(eb, start);
4385
4386	while (len > 0) {
4387		cur = min(len, unit_size - offset);
4388		kaddr = folio_address(eb->folios[i]);
 
 
 
4389		ret = memcmp(ptr, kaddr + offset, cur);
4390		if (ret)
4391			break;
4392
4393		ptr += cur;
4394		len -= cur;
4395		offset = 0;
4396		i++;
4397	}
4398	return ret;
4399}
4400
4401/*
4402 * Check that the extent buffer is uptodate.
4403 *
4404 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4405 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4406 */
4407static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
4408{
4409	struct btrfs_fs_info *fs_info = eb->fs_info;
4410	struct folio *folio = eb->folios[i];
4411
4412	ASSERT(folio);
4413
4414	/*
4415	 * If we are using the commit root we could potentially clear a page
4416	 * Uptodate while we're using the extent buffer that we've previously
4417	 * looked up.  We don't want to complain in this case, as the page was
4418	 * valid before, we just didn't write it out.  Instead we want to catch
4419	 * the case where we didn't actually read the block properly, which
4420	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4421	 */
4422	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4423		return;
4424
4425	if (fs_info->nodesize < PAGE_SIZE) {
4426		struct folio *folio = eb->folios[0];
 
4427
4428		ASSERT(i == 0);
4429		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
4430							 eb->start, eb->len)))
4431			btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
4432	} else {
4433		WARN_ON(!folio_test_uptodate(folio));
4434	}
4435}
4436
4437static void __write_extent_buffer(const struct extent_buffer *eb,
4438				  const void *srcv, unsigned long start,
4439				  unsigned long len, bool use_memmove)
4440{
4441	const int unit_size = folio_size(eb->folios[0]);
4442	size_t cur;
4443	size_t offset;
 
4444	char *kaddr;
4445	char *src = (char *)srcv;
4446	unsigned long i = get_eb_folio_index(eb, start);
4447	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
4448	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4449
4450	if (check_eb_range(eb, start, len))
4451		return;
4452
4453	if (eb->addr) {
4454		if (use_memmove)
4455			memmove(eb->addr + start, srcv, len);
4456		else
4457			memcpy(eb->addr + start, srcv, len);
4458		return;
4459	}
4460
4461	offset = get_eb_offset_in_folio(eb, start);
4462
4463	while (len > 0) {
4464		if (check_uptodate)
4465			assert_eb_folio_uptodate(eb, i);
4466
4467		cur = min(len, unit_size - offset);
4468		kaddr = folio_address(eb->folios[i]);
4469		if (use_memmove)
4470			memmove(kaddr + offset, src, cur);
4471		else
4472			memcpy(kaddr + offset, src, cur);
4473
4474		src += cur;
4475		len -= cur;
4476		offset = 0;
4477		i++;
4478	}
4479}
4480
4481void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4482			 unsigned long start, unsigned long len)
4483{
4484	return __write_extent_buffer(eb, srcv, start, len, false);
4485}
 
 
 
 
4486
4487static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4488				 unsigned long start, unsigned long len)
4489{
4490	const int unit_size = folio_size(eb->folios[0]);
4491	unsigned long cur = start;
4492
4493	if (eb->addr) {
4494		memset(eb->addr + start, c, len);
4495		return;
4496	}
4497
4498	while (cur < start + len) {
4499		unsigned long index = get_eb_folio_index(eb, cur);
4500		unsigned int offset = get_eb_offset_in_folio(eb, cur);
4501		unsigned int cur_len = min(start + len - cur, unit_size - offset);
4502
4503		assert_eb_folio_uptodate(eb, index);
4504		memset(folio_address(eb->folios[index]) + offset, c, cur_len);
 
4505
4506		cur += cur_len;
 
 
4507	}
4508}
4509
4510void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4511			   unsigned long len)
4512{
4513	if (check_eb_range(eb, start, len))
4514		return;
4515	return memset_extent_buffer(eb, 0, start, len);
4516}
4517
4518void copy_extent_buffer_full(const struct extent_buffer *dst,
4519			     const struct extent_buffer *src)
4520{
4521	const int unit_size = folio_size(src->folios[0]);
4522	unsigned long cur = 0;
4523
4524	ASSERT(dst->len == src->len);
4525
4526	while (cur < src->len) {
4527		unsigned long index = get_eb_folio_index(src, cur);
4528		unsigned long offset = get_eb_offset_in_folio(src, cur);
4529		unsigned long cur_len = min(src->len, unit_size - offset);
4530		void *addr = folio_address(src->folios[index]) + offset;
4531
4532		write_extent_buffer(dst, addr, cur, cur_len);
4533
4534		cur += cur_len;
4535	}
4536}
4537
4538void copy_extent_buffer(const struct extent_buffer *dst,
4539			const struct extent_buffer *src,
4540			unsigned long dst_offset, unsigned long src_offset,
4541			unsigned long len)
4542{
4543	const int unit_size = folio_size(dst->folios[0]);
4544	u64 dst_len = dst->len;
4545	size_t cur;
4546	size_t offset;
 
4547	char *kaddr;
4548	unsigned long i = get_eb_folio_index(dst, dst_offset);
4549
4550	if (check_eb_range(dst, dst_offset, len) ||
4551	    check_eb_range(src, src_offset, len))
4552		return;
4553
4554	WARN_ON(src->len != dst_len);
4555
4556	offset = get_eb_offset_in_folio(dst, dst_offset);
 
4557
4558	while (len > 0) {
4559		assert_eb_folio_uptodate(dst, i);
 
4560
4561		cur = min(len, (unsigned long)(unit_size - offset));
4562
4563		kaddr = folio_address(dst->folios[i]);
4564		read_extent_buffer(src, kaddr + offset, src_offset, cur);
4565
4566		src_offset += cur;
4567		len -= cur;
4568		offset = 0;
4569		i++;
4570	}
4571}
4572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4573/*
4574 * Calculate the folio and offset of the byte containing the given bit number.
4575 *
4576 * @eb:           the extent buffer
4577 * @start:        offset of the bitmap item in the extent buffer
4578 * @nr:           bit number
4579 * @folio_index:  return index of the folio in the extent buffer that contains
4580 *                the given bit number
4581 * @folio_offset: return offset into the folio given by folio_index
4582 *
4583 * This helper hides the ugliness of finding the byte in an extent buffer which
4584 * contains a given bit.
4585 */
4586static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4587				    unsigned long start, unsigned long nr,
4588				    unsigned long *folio_index,
4589				    size_t *folio_offset)
4590{
 
4591	size_t byte_offset = BIT_BYTE(nr);
4592	size_t offset;
4593
4594	/*
4595	 * The byte we want is the offset of the extent buffer + the offset of
4596	 * the bitmap item in the extent buffer + the offset of the byte in the
4597	 * bitmap item.
4598	 */
4599	offset = start + offset_in_folio(eb->folios[0], eb->start) + byte_offset;
4600
4601	*folio_index = offset >> folio_shift(eb->folios[0]);
4602	*folio_offset = offset_in_folio(eb->folios[0], offset);
4603}
4604
4605/*
4606 * Determine whether a bit in a bitmap item is set.
4607 *
4608 * @eb:     the extent buffer
4609 * @start:  offset of the bitmap item in the extent buffer
4610 * @nr:     bit number to test
4611 */
4612int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4613			   unsigned long nr)
4614{
 
 
4615	unsigned long i;
4616	size_t offset;
4617	u8 *kaddr;
4618
4619	eb_bitmap_offset(eb, start, nr, &i, &offset);
4620	assert_eb_folio_uptodate(eb, i);
4621	kaddr = folio_address(eb->folios[i]);
 
4622	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4623}
4624
4625static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4626{
4627	unsigned long index = get_eb_folio_index(eb, bytenr);
4628
4629	if (check_eb_range(eb, bytenr, 1))
4630		return NULL;
4631	return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4632}
4633
4634/*
4635 * Set an area of a bitmap to 1.
4636 *
4637 * @eb:     the extent buffer
4638 * @start:  offset of the bitmap item in the extent buffer
4639 * @pos:    bit number of the first bit
4640 * @len:    number of bits to set
4641 */
4642void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4643			      unsigned long pos, unsigned long len)
4644{
4645	unsigned int first_byte = start + BIT_BYTE(pos);
4646	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4647	const bool same_byte = (first_byte == last_byte);
4648	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4649	u8 *kaddr;
4650
4651	if (same_byte)
4652		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4653
4654	/* Handle the first byte. */
4655	kaddr = extent_buffer_get_byte(eb, first_byte);
4656	*kaddr |= mask;
4657	if (same_byte)
4658		return;
4659
4660	/* Handle the byte aligned part. */
4661	ASSERT(first_byte + 1 <= last_byte);
4662	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4663
4664	/* Handle the last byte. */
4665	kaddr = extent_buffer_get_byte(eb, last_byte);
4666	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
 
 
 
 
 
 
 
 
 
 
 
4667}
4668
4669
4670/*
4671 * Clear an area of a bitmap.
4672 *
4673 * @eb:     the extent buffer
4674 * @start:  offset of the bitmap item in the extent buffer
4675 * @pos:    bit number of the first bit
4676 * @len:    number of bits to clear
4677 */
4678void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4679				unsigned long start, unsigned long pos,
4680				unsigned long len)
4681{
4682	unsigned int first_byte = start + BIT_BYTE(pos);
4683	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4684	const bool same_byte = (first_byte == last_byte);
4685	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4686	u8 *kaddr;
4687
4688	if (same_byte)
4689		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4690
4691	/* Handle the first byte. */
4692	kaddr = extent_buffer_get_byte(eb, first_byte);
4693	*kaddr &= ~mask;
4694	if (same_byte)
4695		return;
4696
4697	/* Handle the byte aligned part. */
4698	ASSERT(first_byte + 1 <= last_byte);
4699	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4700
4701	/* Handle the last byte. */
4702	kaddr = extent_buffer_get_byte(eb, last_byte);
4703	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
 
 
 
 
 
 
 
 
 
 
 
4704}
4705
4706static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4707{
4708	unsigned long distance = (src > dst) ? src - dst : dst - src;
4709	return distance < len;
4710}
4711
4712void memcpy_extent_buffer(const struct extent_buffer *dst,
4713			  unsigned long dst_offset, unsigned long src_offset,
4714			  unsigned long len)
4715{
4716	const int unit_size = folio_size(dst->folios[0]);
4717	unsigned long cur_off = 0;
 
4718
4719	if (check_eb_range(dst, dst_offset, len) ||
4720	    check_eb_range(dst, src_offset, len))
4721		return;
 
 
 
 
4722
4723	if (dst->addr) {
4724		const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
 
 
 
4725
4726		if (use_memmove)
4727			memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4728		else
4729			memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4730		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4731	}
4732
4733	while (cur_off < len) {
4734		unsigned long cur_src = cur_off + src_offset;
4735		unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4736		unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4737		unsigned long cur_len = min(src_offset + len - cur_src,
4738					    unit_size - folio_off);
4739		void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4740		const bool use_memmove = areas_overlap(src_offset + cur_off,
4741						       dst_offset + cur_off, cur_len);
4742
4743		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4744				      use_memmove);
4745		cur_off += cur_len;
 
 
 
 
 
 
 
4746	}
4747}
4748
4749void memmove_extent_buffer(const struct extent_buffer *dst,
4750			   unsigned long dst_offset, unsigned long src_offset,
4751			   unsigned long len)
4752{
 
 
 
 
4753	unsigned long dst_end = dst_offset + len - 1;
4754	unsigned long src_end = src_offset + len - 1;
 
 
 
4755
4756	if (check_eb_range(dst, dst_offset, len) ||
4757	    check_eb_range(dst, src_offset, len))
4758		return;
4759
 
 
 
 
 
 
 
 
4760	if (dst_offset < src_offset) {
4761		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4762		return;
4763	}
4764
4765	if (dst->addr) {
4766		memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4767		return;
4768	}
4769
4770	while (len > 0) {
4771		unsigned long src_i;
4772		size_t cur;
4773		size_t dst_off_in_folio;
4774		size_t src_off_in_folio;
4775		void *src_addr;
4776		bool use_memmove;
4777
4778		src_i = get_eb_folio_index(dst, src_end);
4779
4780		dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4781		src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4782
4783		cur = min_t(unsigned long, len, src_off_in_folio + 1);
4784		cur = min(cur, dst_off_in_folio + 1);
4785
4786		src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4787					 cur + 1;
4788		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4789					    cur);
4790
4791		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4792				      use_memmove);
 
 
 
 
 
 
 
 
4793
4794		dst_end -= cur;
4795		src_end -= cur;
4796		len -= cur;
4797	}
4798}
4799
4800#define GANG_LOOKUP_SIZE	16
4801static struct extent_buffer *get_next_extent_buffer(
4802		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4803{
4804	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4805	struct extent_buffer *found = NULL;
4806	u64 page_start = page_offset(page);
4807	u64 cur = page_start;
4808
4809	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4810	lockdep_assert_held(&fs_info->buffer_lock);
4811
4812	while (cur < page_start + PAGE_SIZE) {
4813		int ret;
4814		int i;
4815
4816		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4817				(void **)gang, cur >> fs_info->sectorsize_bits,
4818				min_t(unsigned int, GANG_LOOKUP_SIZE,
4819				      PAGE_SIZE / fs_info->nodesize));
4820		if (ret == 0)
4821			goto out;
4822		for (i = 0; i < ret; i++) {
4823			/* Already beyond page end */
4824			if (gang[i]->start >= page_start + PAGE_SIZE)
4825				goto out;
4826			/* Found one */
4827			if (gang[i]->start >= bytenr) {
4828				found = gang[i];
4829				goto out;
4830			}
4831		}
4832		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4833	}
4834out:
4835	return found;
4836}
4837
4838static int try_release_subpage_extent_buffer(struct page *page)
4839{
4840	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4841	u64 cur = page_offset(page);
4842	const u64 end = page_offset(page) + PAGE_SIZE;
4843	int ret;
4844
4845	while (cur < end) {
4846		struct extent_buffer *eb = NULL;
4847
4848		/*
4849		 * Unlike try_release_extent_buffer() which uses folio private
4850		 * to grab buffer, for subpage case we rely on radix tree, thus
4851		 * we need to ensure radix tree consistency.
4852		 *
4853		 * We also want an atomic snapshot of the radix tree, thus go
4854		 * with spinlock rather than RCU.
4855		 */
4856		spin_lock(&fs_info->buffer_lock);
4857		eb = get_next_extent_buffer(fs_info, page, cur);
4858		if (!eb) {
4859			/* No more eb in the page range after or at cur */
4860			spin_unlock(&fs_info->buffer_lock);
4861			break;
4862		}
4863		cur = eb->start + eb->len;
4864
4865		/*
4866		 * The same as try_release_extent_buffer(), to ensure the eb
4867		 * won't disappear out from under us.
4868		 */
4869		spin_lock(&eb->refs_lock);
4870		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4871			spin_unlock(&eb->refs_lock);
4872			spin_unlock(&fs_info->buffer_lock);
4873			break;
4874		}
4875		spin_unlock(&fs_info->buffer_lock);
4876
4877		/*
4878		 * If tree ref isn't set then we know the ref on this eb is a
4879		 * real ref, so just return, this eb will likely be freed soon
4880		 * anyway.
4881		 */
4882		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4883			spin_unlock(&eb->refs_lock);
4884			break;
4885		}
4886
4887		/*
4888		 * Here we don't care about the return value, we will always
4889		 * check the folio private at the end.  And
4890		 * release_extent_buffer() will release the refs_lock.
4891		 */
4892		release_extent_buffer(eb);
4893	}
4894	/*
4895	 * Finally to check if we have cleared folio private, as if we have
4896	 * released all ebs in the page, the folio private should be cleared now.
4897	 */
4898	spin_lock(&page->mapping->i_private_lock);
4899	if (!folio_test_private(page_folio(page)))
4900		ret = 1;
4901	else
4902		ret = 0;
4903	spin_unlock(&page->mapping->i_private_lock);
4904	return ret;
4905
4906}
4907
4908int try_release_extent_buffer(struct page *page)
4909{
4910	struct folio *folio = page_folio(page);
4911	struct extent_buffer *eb;
4912
4913	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4914		return try_release_subpage_extent_buffer(page);
4915
4916	/*
4917	 * We need to make sure nobody is changing folio private, as we rely on
4918	 * folio private as the pointer to extent buffer.
4919	 */
4920	spin_lock(&page->mapping->i_private_lock);
4921	if (!folio_test_private(folio)) {
4922		spin_unlock(&page->mapping->i_private_lock);
4923		return 1;
4924	}
4925
4926	eb = folio_get_private(folio);
4927	BUG_ON(!eb);
4928
4929	/*
4930	 * This is a little awful but should be ok, we need to make sure that
4931	 * the eb doesn't disappear out from under us while we're looking at
4932	 * this page.
4933	 */
4934	spin_lock(&eb->refs_lock);
4935	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4936		spin_unlock(&eb->refs_lock);
4937		spin_unlock(&page->mapping->i_private_lock);
4938		return 0;
4939	}
4940	spin_unlock(&page->mapping->i_private_lock);
4941
4942	/*
4943	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4944	 * so just return, this page will likely be freed soon anyway.
4945	 */
4946	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4947		spin_unlock(&eb->refs_lock);
4948		return 0;
4949	}
4950
4951	return release_extent_buffer(eb);
4952}
4953
4954/*
4955 * Attempt to readahead a child block.
4956 *
4957 * @fs_info:	the fs_info
4958 * @bytenr:	bytenr to read
4959 * @owner_root: objectid of the root that owns this eb
4960 * @gen:	generation for the uptodate check, can be 0
4961 * @level:	level for the eb
4962 *
4963 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
4964 * normal uptodate check of the eb, without checking the generation.  If we have
4965 * to read the block we will not block on anything.
4966 */
4967void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4968				u64 bytenr, u64 owner_root, u64 gen, int level)
4969{
4970	struct btrfs_tree_parent_check check = {
4971		.has_first_key = 0,
4972		.level = level,
4973		.transid = gen
4974	};
4975	struct extent_buffer *eb;
4976	int ret;
4977
4978	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4979	if (IS_ERR(eb))
4980		return;
4981
4982	if (btrfs_buffer_uptodate(eb, gen, 1)) {
4983		free_extent_buffer(eb);
4984		return;
4985	}
4986
4987	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4988	if (ret < 0)
4989		free_extent_buffer_stale(eb);
4990	else
4991		free_extent_buffer(eb);
4992}
4993
4994/*
4995 * Readahead a node's child block.
4996 *
4997 * @node:	parent node we're reading from
4998 * @slot:	slot in the parent node for the child we want to read
4999 *
5000 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5001 * the slot in the node provided.
5002 */
5003void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5004{
5005	btrfs_readahead_tree_block(node->fs_info,
5006				   btrfs_node_blockptr(node, slot),
5007				   btrfs_header_owner(node),
5008				   btrfs_node_ptr_generation(node, slot),
5009				   btrfs_header_level(node) - 1);
5010}
v4.10.11
 
 
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
 
   7#include <linux/spinlock.h>
   8#include <linux/blkdev.h>
   9#include <linux/swap.h>
  10#include <linux/writeback.h>
  11#include <linux/pagevec.h>
  12#include <linux/prefetch.h>
  13#include <linux/cleancache.h>
 
  14#include "extent_io.h"
 
  15#include "extent_map.h"
  16#include "ctree.h"
  17#include "btrfs_inode.h"
  18#include "volumes.h"
  19#include "check-integrity.h"
  20#include "locking.h"
  21#include "rcu-string.h"
  22#include "backref.h"
 
 
 
 
 
 
 
 
 
 
 
  23#include "transaction.h"
  24
  25static struct kmem_cache *extent_state_cache;
  26static struct kmem_cache *extent_buffer_cache;
  27static struct bio_set *btrfs_bioset;
  28
  29static inline bool extent_state_in_tree(const struct extent_state *state)
  30{
  31	return !RB_EMPTY_NODE(&state->rb_node);
  32}
  33
  34#ifdef CONFIG_BTRFS_DEBUG
  35static LIST_HEAD(buffers);
  36static LIST_HEAD(states);
  37
  38static DEFINE_SPINLOCK(leak_lock);
  39
  40static inline
  41void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
  42{
 
  43	unsigned long flags;
  44
  45	spin_lock_irqsave(&leak_lock, flags);
  46	list_add(new, head);
  47	spin_unlock_irqrestore(&leak_lock, flags);
  48}
  49
  50static inline
  51void btrfs_leak_debug_del(struct list_head *entry)
  52{
 
  53	unsigned long flags;
  54
  55	spin_lock_irqsave(&leak_lock, flags);
  56	list_del(entry);
  57	spin_unlock_irqrestore(&leak_lock, flags);
  58}
  59
  60static inline
  61void btrfs_leak_debug_check(void)
  62{
  63	struct extent_state *state;
  64	struct extent_buffer *eb;
 
  65
  66	while (!list_empty(&states)) {
  67		state = list_entry(states.next, struct extent_state, leak_list);
  68		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  69		       state->start, state->end, state->state,
  70		       extent_state_in_tree(state),
  71		       atomic_read(&state->refs));
  72		list_del(&state->leak_list);
  73		kmem_cache_free(extent_state_cache, state);
  74	}
  75
  76	while (!list_empty(&buffers)) {
  77		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  78		pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
  79		       eb->start, eb->len, atomic_read(&eb->refs));
 
 
 
 
 
  80		list_del(&eb->leak_list);
  81		kmem_cache_free(extent_buffer_cache, eb);
  82	}
  83}
  84
  85#define btrfs_debug_check_extent_io_range(tree, start, end)		\
  86	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
  87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
  88		struct extent_io_tree *tree, u64 start, u64 end)
  89{
  90	struct inode *inode;
  91	u64 isize;
  92
  93	if (!tree->mapping)
  94		return;
  95
  96	inode = tree->mapping->host;
  97	isize = i_size_read(inode);
  98	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
  99		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
 100		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
 101				caller, btrfs_ino(inode), isize, start, end);
 102	}
 103}
 104#else
 105#define btrfs_leak_debug_add(new, head)	do {} while (0)
 106#define btrfs_leak_debug_del(entry)	do {} while (0)
 107#define btrfs_leak_debug_check()	do {} while (0)
 108#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
 109#endif
 110
 111#define BUFFER_LRU_MAX 64
 112
 113struct tree_entry {
 114	u64 start;
 115	u64 end;
 116	struct rb_node rb_node;
 
 
 
 
 
 117};
 118
 119struct extent_page_data {
 120	struct bio *bio;
 121	struct extent_io_tree *tree;
 122	get_extent_t *get_extent;
 123	unsigned long bio_flags;
 124
 125	/* tells writepage not to lock the state bits for this range
 126	 * it still does the unlocking
 127	 */
 128	unsigned int extent_locked:1;
 129
 130	/* tells the submit_bio code to use REQ_SYNC */
 131	unsigned int sync_io:1;
 132};
 133
 134static void add_extent_changeset(struct extent_state *state, unsigned bits,
 135				 struct extent_changeset *changeset,
 136				 int set)
 137{
 138	int ret;
 139
 140	if (!changeset)
 141		return;
 142	if (set && (state->state & bits) == bits)
 143		return;
 144	if (!set && (state->state & bits) == 0)
 145		return;
 146	changeset->bytes_changed += state->end - state->start + 1;
 147	ret = ulist_add(changeset->range_changed, state->start, state->end,
 148			GFP_ATOMIC);
 149	/* ENOMEM */
 150	BUG_ON(ret < 0);
 151}
 152
 153static noinline void flush_write_bio(void *data);
 154static inline struct btrfs_fs_info *
 155tree_fs_info(struct extent_io_tree *tree)
 156{
 157	if (!tree->mapping)
 158		return NULL;
 159	return btrfs_sb(tree->mapping->host->i_sb);
 160}
 161
 162int __init extent_io_init(void)
 163{
 164	extent_state_cache = kmem_cache_create("btrfs_extent_state",
 165			sizeof(struct extent_state), 0,
 166			SLAB_MEM_SPREAD, NULL);
 167	if (!extent_state_cache)
 168		return -ENOMEM;
 169
 170	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 171			sizeof(struct extent_buffer), 0,
 172			SLAB_MEM_SPREAD, NULL);
 173	if (!extent_buffer_cache)
 174		goto free_state_cache;
 175
 176	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
 177				     offsetof(struct btrfs_io_bio, bio));
 178	if (!btrfs_bioset)
 179		goto free_buffer_cache;
 180
 181	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
 182		goto free_bioset;
 183
 184	return 0;
 185
 186free_bioset:
 187	bioset_free(btrfs_bioset);
 188	btrfs_bioset = NULL;
 189
 190free_buffer_cache:
 191	kmem_cache_destroy(extent_buffer_cache);
 192	extent_buffer_cache = NULL;
 193
 194free_state_cache:
 195	kmem_cache_destroy(extent_state_cache);
 196	extent_state_cache = NULL;
 197	return -ENOMEM;
 198}
 199
 200void extent_io_exit(void)
 201{
 202	btrfs_leak_debug_check();
 203
 204	/*
 205	 * Make sure all delayed rcu free are flushed before we
 206	 * destroy caches.
 207	 */
 208	rcu_barrier();
 209	kmem_cache_destroy(extent_state_cache);
 210	kmem_cache_destroy(extent_buffer_cache);
 211	if (btrfs_bioset)
 212		bioset_free(btrfs_bioset);
 213}
 214
 215void extent_io_tree_init(struct extent_io_tree *tree,
 216			 struct address_space *mapping)
 217{
 218	tree->state = RB_ROOT;
 219	tree->ops = NULL;
 220	tree->dirty_bytes = 0;
 221	spin_lock_init(&tree->lock);
 222	tree->mapping = mapping;
 223}
 224
 225static struct extent_state *alloc_extent_state(gfp_t mask)
 226{
 227	struct extent_state *state;
 228
 229	state = kmem_cache_alloc(extent_state_cache, mask);
 230	if (!state)
 231		return state;
 232	state->state = 0;
 233	state->failrec = NULL;
 234	RB_CLEAR_NODE(&state->rb_node);
 235	btrfs_leak_debug_add(&state->leak_list, &states);
 236	atomic_set(&state->refs, 1);
 237	init_waitqueue_head(&state->wq);
 238	trace_alloc_extent_state(state, mask, _RET_IP_);
 239	return state;
 240}
 241
 242void free_extent_state(struct extent_state *state)
 243{
 244	if (!state)
 245		return;
 246	if (atomic_dec_and_test(&state->refs)) {
 247		WARN_ON(extent_state_in_tree(state));
 248		btrfs_leak_debug_del(&state->leak_list);
 249		trace_free_extent_state(state, _RET_IP_);
 250		kmem_cache_free(extent_state_cache, state);
 251	}
 252}
 253
 254static struct rb_node *tree_insert(struct rb_root *root,
 255				   struct rb_node *search_start,
 256				   u64 offset,
 257				   struct rb_node *node,
 258				   struct rb_node ***p_in,
 259				   struct rb_node **parent_in)
 260{
 261	struct rb_node **p;
 262	struct rb_node *parent = NULL;
 263	struct tree_entry *entry;
 264
 265	if (p_in && parent_in) {
 266		p = *p_in;
 267		parent = *parent_in;
 268		goto do_insert;
 269	}
 270
 271	p = search_start ? &search_start : &root->rb_node;
 272	while (*p) {
 273		parent = *p;
 274		entry = rb_entry(parent, struct tree_entry, rb_node);
 275
 276		if (offset < entry->start)
 277			p = &(*p)->rb_left;
 278		else if (offset > entry->end)
 279			p = &(*p)->rb_right;
 280		else
 281			return parent;
 282	}
 283
 284do_insert:
 285	rb_link_node(node, parent, p);
 286	rb_insert_color(node, root);
 287	return NULL;
 288}
 289
 290static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 291				      struct rb_node **prev_ret,
 292				      struct rb_node **next_ret,
 293				      struct rb_node ***p_ret,
 294				      struct rb_node **parent_ret)
 295{
 296	struct rb_root *root = &tree->state;
 297	struct rb_node **n = &root->rb_node;
 298	struct rb_node *prev = NULL;
 299	struct rb_node *orig_prev = NULL;
 300	struct tree_entry *entry;
 301	struct tree_entry *prev_entry = NULL;
 302
 303	while (*n) {
 304		prev = *n;
 305		entry = rb_entry(prev, struct tree_entry, rb_node);
 306		prev_entry = entry;
 307
 308		if (offset < entry->start)
 309			n = &(*n)->rb_left;
 310		else if (offset > entry->end)
 311			n = &(*n)->rb_right;
 312		else
 313			return *n;
 314	}
 315
 316	if (p_ret)
 317		*p_ret = n;
 318	if (parent_ret)
 319		*parent_ret = prev;
 320
 321	if (prev_ret) {
 322		orig_prev = prev;
 323		while (prev && offset > prev_entry->end) {
 324			prev = rb_next(prev);
 325			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 326		}
 327		*prev_ret = prev;
 328		prev = orig_prev;
 329	}
 330
 331	if (next_ret) {
 332		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 333		while (prev && offset < prev_entry->start) {
 334			prev = rb_prev(prev);
 335			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 336		}
 337		*next_ret = prev;
 338	}
 339	return NULL;
 340}
 341
 342static inline struct rb_node *
 343tree_search_for_insert(struct extent_io_tree *tree,
 344		       u64 offset,
 345		       struct rb_node ***p_ret,
 346		       struct rb_node **parent_ret)
 347{
 348	struct rb_node *prev = NULL;
 349	struct rb_node *ret;
 350
 351	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
 352	if (!ret)
 353		return prev;
 354	return ret;
 355}
 356
 357static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 358					  u64 offset)
 359{
 360	return tree_search_for_insert(tree, offset, NULL, NULL);
 361}
 362
 363static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 364		     struct extent_state *other)
 365{
 366	if (tree->ops && tree->ops->merge_extent_hook)
 367		tree->ops->merge_extent_hook(tree->mapping->host, new,
 368					     other);
 369}
 370
 371/*
 372 * utility function to look for merge candidates inside a given range.
 373 * Any extents with matching state are merged together into a single
 374 * extent in the tree.  Extents with EXTENT_IO in their state field
 375 * are not merged because the end_io handlers need to be able to do
 376 * operations on them without sleeping (or doing allocations/splits).
 377 *
 378 * This should be called with the tree lock held.
 379 */
 380static void merge_state(struct extent_io_tree *tree,
 381		        struct extent_state *state)
 382{
 383	struct extent_state *other;
 384	struct rb_node *other_node;
 385
 386	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 387		return;
 388
 389	other_node = rb_prev(&state->rb_node);
 390	if (other_node) {
 391		other = rb_entry(other_node, struct extent_state, rb_node);
 392		if (other->end == state->start - 1 &&
 393		    other->state == state->state) {
 394			merge_cb(tree, state, other);
 395			state->start = other->start;
 396			rb_erase(&other->rb_node, &tree->state);
 397			RB_CLEAR_NODE(&other->rb_node);
 398			free_extent_state(other);
 399		}
 400	}
 401	other_node = rb_next(&state->rb_node);
 402	if (other_node) {
 403		other = rb_entry(other_node, struct extent_state, rb_node);
 404		if (other->start == state->end + 1 &&
 405		    other->state == state->state) {
 406			merge_cb(tree, state, other);
 407			state->end = other->end;
 408			rb_erase(&other->rb_node, &tree->state);
 409			RB_CLEAR_NODE(&other->rb_node);
 410			free_extent_state(other);
 411		}
 412	}
 413}
 414
 415static void set_state_cb(struct extent_io_tree *tree,
 416			 struct extent_state *state, unsigned *bits)
 417{
 418	if (tree->ops && tree->ops->set_bit_hook)
 419		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 420}
 421
 422static void clear_state_cb(struct extent_io_tree *tree,
 423			   struct extent_state *state, unsigned *bits)
 424{
 425	if (tree->ops && tree->ops->clear_bit_hook)
 426		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 427}
 428
 429static void set_state_bits(struct extent_io_tree *tree,
 430			   struct extent_state *state, unsigned *bits,
 431			   struct extent_changeset *changeset);
 432
 433/*
 434 * insert an extent_state struct into the tree.  'bits' are set on the
 435 * struct before it is inserted.
 436 *
 437 * This may return -EEXIST if the extent is already there, in which case the
 438 * state struct is freed.
 439 *
 440 * The tree lock is not taken internally.  This is a utility function and
 441 * probably isn't what you want to call (see set/clear_extent_bit).
 442 */
 443static int insert_state(struct extent_io_tree *tree,
 444			struct extent_state *state, u64 start, u64 end,
 445			struct rb_node ***p,
 446			struct rb_node **parent,
 447			unsigned *bits, struct extent_changeset *changeset)
 448{
 449	struct rb_node *node;
 450
 451	if (end < start)
 452		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
 453		       end, start);
 454	state->start = start;
 455	state->end = end;
 456
 457	set_state_bits(tree, state, bits, changeset);
 458
 459	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 460	if (node) {
 461		struct extent_state *found;
 462		found = rb_entry(node, struct extent_state, rb_node);
 463		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
 464		       found->start, found->end, start, end);
 465		return -EEXIST;
 466	}
 467	merge_state(tree, state);
 468	return 0;
 469}
 470
 471static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 472		     u64 split)
 473{
 474	if (tree->ops && tree->ops->split_extent_hook)
 475		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 476}
 477
 478/*
 479 * split a given extent state struct in two, inserting the preallocated
 480 * struct 'prealloc' as the newly created second half.  'split' indicates an
 481 * offset inside 'orig' where it should be split.
 482 *
 483 * Before calling,
 484 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 485 * are two extent state structs in the tree:
 486 * prealloc: [orig->start, split - 1]
 487 * orig: [ split, orig->end ]
 488 *
 489 * The tree locks are not taken by this function. They need to be held
 490 * by the caller.
 491 */
 492static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 493		       struct extent_state *prealloc, u64 split)
 494{
 495	struct rb_node *node;
 496
 497	split_cb(tree, orig, split);
 498
 499	prealloc->start = orig->start;
 500	prealloc->end = split - 1;
 501	prealloc->state = orig->state;
 502	orig->start = split;
 503
 504	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 505			   &prealloc->rb_node, NULL, NULL);
 506	if (node) {
 507		free_extent_state(prealloc);
 508		return -EEXIST;
 509	}
 510	return 0;
 511}
 512
 513static struct extent_state *next_state(struct extent_state *state)
 514{
 515	struct rb_node *next = rb_next(&state->rb_node);
 516	if (next)
 517		return rb_entry(next, struct extent_state, rb_node);
 518	else
 519		return NULL;
 520}
 521
 522/*
 523 * utility function to clear some bits in an extent state struct.
 524 * it will optionally wake up any one waiting on this state (wake == 1).
 525 *
 526 * If no bits are set on the state struct after clearing things, the
 527 * struct is freed and removed from the tree
 528 */
 529static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 530					    struct extent_state *state,
 531					    unsigned *bits, int wake,
 532					    struct extent_changeset *changeset)
 533{
 534	struct extent_state *next;
 535	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
 536
 537	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 538		u64 range = state->end - state->start + 1;
 539		WARN_ON(range > tree->dirty_bytes);
 540		tree->dirty_bytes -= range;
 541	}
 542	clear_state_cb(tree, state, bits);
 543	add_extent_changeset(state, bits_to_clear, changeset, 0);
 544	state->state &= ~bits_to_clear;
 545	if (wake)
 546		wake_up(&state->wq);
 547	if (state->state == 0) {
 548		next = next_state(state);
 549		if (extent_state_in_tree(state)) {
 550			rb_erase(&state->rb_node, &tree->state);
 551			RB_CLEAR_NODE(&state->rb_node);
 552			free_extent_state(state);
 553		} else {
 554			WARN_ON(1);
 555		}
 556	} else {
 557		merge_state(tree, state);
 558		next = next_state(state);
 559	}
 560	return next;
 561}
 562
 563static struct extent_state *
 564alloc_extent_state_atomic(struct extent_state *prealloc)
 565{
 566	if (!prealloc)
 567		prealloc = alloc_extent_state(GFP_ATOMIC);
 568
 569	return prealloc;
 570}
 571
 572static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 573{
 574	btrfs_panic(tree_fs_info(tree), err,
 575		    "Locking error: Extent tree was modified by another thread while locked.");
 576}
 577
 578/*
 579 * clear some bits on a range in the tree.  This may require splitting
 580 * or inserting elements in the tree, so the gfp mask is used to
 581 * indicate which allocations or sleeping are allowed.
 582 *
 583 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 584 * the given range from the tree regardless of state (ie for truncate).
 585 *
 586 * the range [start, end] is inclusive.
 587 *
 588 * This takes the tree lock, and returns 0 on success and < 0 on error.
 589 */
 590static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 591			      unsigned bits, int wake, int delete,
 592			      struct extent_state **cached_state,
 593			      gfp_t mask, struct extent_changeset *changeset)
 594{
 595	struct extent_state *state;
 596	struct extent_state *cached;
 597	struct extent_state *prealloc = NULL;
 598	struct rb_node *node;
 599	u64 last_end;
 600	int err;
 601	int clear = 0;
 602
 603	btrfs_debug_check_extent_io_range(tree, start, end);
 604
 605	if (bits & EXTENT_DELALLOC)
 606		bits |= EXTENT_NORESERVE;
 607
 608	if (delete)
 609		bits |= ~EXTENT_CTLBITS;
 610	bits |= EXTENT_FIRST_DELALLOC;
 611
 612	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 613		clear = 1;
 614again:
 615	if (!prealloc && gfpflags_allow_blocking(mask)) {
 616		/*
 617		 * Don't care for allocation failure here because we might end
 618		 * up not needing the pre-allocated extent state at all, which
 619		 * is the case if we only have in the tree extent states that
 620		 * cover our input range and don't cover too any other range.
 621		 * If we end up needing a new extent state we allocate it later.
 622		 */
 623		prealloc = alloc_extent_state(mask);
 624	}
 625
 626	spin_lock(&tree->lock);
 627	if (cached_state) {
 628		cached = *cached_state;
 629
 630		if (clear) {
 631			*cached_state = NULL;
 632			cached_state = NULL;
 633		}
 634
 635		if (cached && extent_state_in_tree(cached) &&
 636		    cached->start <= start && cached->end > start) {
 637			if (clear)
 638				atomic_dec(&cached->refs);
 639			state = cached;
 640			goto hit_next;
 641		}
 642		if (clear)
 643			free_extent_state(cached);
 644	}
 645	/*
 646	 * this search will find the extents that end after
 647	 * our range starts
 648	 */
 649	node = tree_search(tree, start);
 650	if (!node)
 651		goto out;
 652	state = rb_entry(node, struct extent_state, rb_node);
 653hit_next:
 654	if (state->start > end)
 655		goto out;
 656	WARN_ON(state->end < start);
 657	last_end = state->end;
 658
 659	/* the state doesn't have the wanted bits, go ahead */
 660	if (!(state->state & bits)) {
 661		state = next_state(state);
 662		goto next;
 663	}
 664
 665	/*
 666	 *     | ---- desired range ---- |
 667	 *  | state | or
 668	 *  | ------------- state -------------- |
 669	 *
 670	 * We need to split the extent we found, and may flip
 671	 * bits on second half.
 672	 *
 673	 * If the extent we found extends past our range, we
 674	 * just split and search again.  It'll get split again
 675	 * the next time though.
 676	 *
 677	 * If the extent we found is inside our range, we clear
 678	 * the desired bit on it.
 679	 */
 680
 681	if (state->start < start) {
 682		prealloc = alloc_extent_state_atomic(prealloc);
 683		BUG_ON(!prealloc);
 684		err = split_state(tree, state, prealloc, start);
 685		if (err)
 686			extent_io_tree_panic(tree, err);
 687
 688		prealloc = NULL;
 689		if (err)
 690			goto out;
 691		if (state->end <= end) {
 692			state = clear_state_bit(tree, state, &bits, wake,
 693						changeset);
 694			goto next;
 695		}
 696		goto search_again;
 697	}
 698	/*
 699	 * | ---- desired range ---- |
 700	 *                        | state |
 701	 * We need to split the extent, and clear the bit
 702	 * on the first half
 703	 */
 704	if (state->start <= end && state->end > end) {
 705		prealloc = alloc_extent_state_atomic(prealloc);
 706		BUG_ON(!prealloc);
 707		err = split_state(tree, state, prealloc, end + 1);
 708		if (err)
 709			extent_io_tree_panic(tree, err);
 710
 711		if (wake)
 712			wake_up(&state->wq);
 713
 714		clear_state_bit(tree, prealloc, &bits, wake, changeset);
 715
 716		prealloc = NULL;
 717		goto out;
 718	}
 719
 720	state = clear_state_bit(tree, state, &bits, wake, changeset);
 721next:
 722	if (last_end == (u64)-1)
 723		goto out;
 724	start = last_end + 1;
 725	if (start <= end && state && !need_resched())
 726		goto hit_next;
 727
 728search_again:
 729	if (start > end)
 730		goto out;
 731	spin_unlock(&tree->lock);
 732	if (gfpflags_allow_blocking(mask))
 733		cond_resched();
 734	goto again;
 735
 736out:
 737	spin_unlock(&tree->lock);
 738	if (prealloc)
 739		free_extent_state(prealloc);
 740
 741	return 0;
 742
 743}
 744
 745static void wait_on_state(struct extent_io_tree *tree,
 746			  struct extent_state *state)
 747		__releases(tree->lock)
 748		__acquires(tree->lock)
 749{
 750	DEFINE_WAIT(wait);
 751	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 752	spin_unlock(&tree->lock);
 753	schedule();
 754	spin_lock(&tree->lock);
 755	finish_wait(&state->wq, &wait);
 756}
 757
 758/*
 759 * waits for one or more bits to clear on a range in the state tree.
 760 * The range [start, end] is inclusive.
 761 * The tree lock is taken by this function
 762 */
 763static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 764			    unsigned long bits)
 765{
 766	struct extent_state *state;
 767	struct rb_node *node;
 768
 769	btrfs_debug_check_extent_io_range(tree, start, end);
 770
 771	spin_lock(&tree->lock);
 772again:
 773	while (1) {
 774		/*
 775		 * this search will find all the extents that end after
 776		 * our range starts
 777		 */
 778		node = tree_search(tree, start);
 779process_node:
 780		if (!node)
 781			break;
 782
 783		state = rb_entry(node, struct extent_state, rb_node);
 784
 785		if (state->start > end)
 786			goto out;
 787
 788		if (state->state & bits) {
 789			start = state->start;
 790			atomic_inc(&state->refs);
 791			wait_on_state(tree, state);
 792			free_extent_state(state);
 793			goto again;
 794		}
 795		start = state->end + 1;
 796
 797		if (start > end)
 798			break;
 799
 800		if (!cond_resched_lock(&tree->lock)) {
 801			node = rb_next(node);
 802			goto process_node;
 803		}
 804	}
 805out:
 806	spin_unlock(&tree->lock);
 807}
 808
 809static void set_state_bits(struct extent_io_tree *tree,
 810			   struct extent_state *state,
 811			   unsigned *bits, struct extent_changeset *changeset)
 812{
 813	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
 814
 815	set_state_cb(tree, state, bits);
 816	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 817		u64 range = state->end - state->start + 1;
 818		tree->dirty_bytes += range;
 819	}
 820	add_extent_changeset(state, bits_to_set, changeset, 1);
 821	state->state |= bits_to_set;
 822}
 823
 824static void cache_state_if_flags(struct extent_state *state,
 825				 struct extent_state **cached_ptr,
 826				 unsigned flags)
 827{
 828	if (cached_ptr && !(*cached_ptr)) {
 829		if (!flags || (state->state & flags)) {
 830			*cached_ptr = state;
 831			atomic_inc(&state->refs);
 832		}
 833	}
 834}
 835
 836static void cache_state(struct extent_state *state,
 837			struct extent_state **cached_ptr)
 838{
 839	return cache_state_if_flags(state, cached_ptr,
 840				    EXTENT_IOBITS | EXTENT_BOUNDARY);
 841}
 842
 843/*
 844 * set some bits on a range in the tree.  This may require allocations or
 845 * sleeping, so the gfp mask is used to indicate what is allowed.
 846 *
 847 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 848 * part of the range already has the desired bits set.  The start of the
 849 * existing range is returned in failed_start in this case.
 850 *
 851 * [start, end] is inclusive This takes the tree lock.
 852 */
 853
 854static int __must_check
 855__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 856		 unsigned bits, unsigned exclusive_bits,
 857		 u64 *failed_start, struct extent_state **cached_state,
 858		 gfp_t mask, struct extent_changeset *changeset)
 859{
 860	struct extent_state *state;
 861	struct extent_state *prealloc = NULL;
 862	struct rb_node *node;
 863	struct rb_node **p;
 864	struct rb_node *parent;
 865	int err = 0;
 866	u64 last_start;
 867	u64 last_end;
 868
 869	btrfs_debug_check_extent_io_range(tree, start, end);
 870
 871	bits |= EXTENT_FIRST_DELALLOC;
 872again:
 873	if (!prealloc && gfpflags_allow_blocking(mask)) {
 874		/*
 875		 * Don't care for allocation failure here because we might end
 876		 * up not needing the pre-allocated extent state at all, which
 877		 * is the case if we only have in the tree extent states that
 878		 * cover our input range and don't cover too any other range.
 879		 * If we end up needing a new extent state we allocate it later.
 880		 */
 881		prealloc = alloc_extent_state(mask);
 882	}
 883
 884	spin_lock(&tree->lock);
 885	if (cached_state && *cached_state) {
 886		state = *cached_state;
 887		if (state->start <= start && state->end > start &&
 888		    extent_state_in_tree(state)) {
 889			node = &state->rb_node;
 890			goto hit_next;
 891		}
 892	}
 893	/*
 894	 * this search will find all the extents that end after
 895	 * our range starts.
 896	 */
 897	node = tree_search_for_insert(tree, start, &p, &parent);
 898	if (!node) {
 899		prealloc = alloc_extent_state_atomic(prealloc);
 900		BUG_ON(!prealloc);
 901		err = insert_state(tree, prealloc, start, end,
 902				   &p, &parent, &bits, changeset);
 903		if (err)
 904			extent_io_tree_panic(tree, err);
 905
 906		cache_state(prealloc, cached_state);
 907		prealloc = NULL;
 908		goto out;
 909	}
 910	state = rb_entry(node, struct extent_state, rb_node);
 911hit_next:
 912	last_start = state->start;
 913	last_end = state->end;
 914
 915	/*
 916	 * | ---- desired range ---- |
 917	 * | state |
 918	 *
 919	 * Just lock what we found and keep going
 920	 */
 921	if (state->start == start && state->end <= end) {
 922		if (state->state & exclusive_bits) {
 923			*failed_start = state->start;
 924			err = -EEXIST;
 925			goto out;
 926		}
 927
 928		set_state_bits(tree, state, &bits, changeset);
 929		cache_state(state, cached_state);
 930		merge_state(tree, state);
 931		if (last_end == (u64)-1)
 932			goto out;
 933		start = last_end + 1;
 934		state = next_state(state);
 935		if (start < end && state && state->start == start &&
 936		    !need_resched())
 937			goto hit_next;
 938		goto search_again;
 939	}
 940
 941	/*
 942	 *     | ---- desired range ---- |
 943	 * | state |
 944	 *   or
 945	 * | ------------- state -------------- |
 946	 *
 947	 * We need to split the extent we found, and may flip bits on
 948	 * second half.
 949	 *
 950	 * If the extent we found extends past our
 951	 * range, we just split and search again.  It'll get split
 952	 * again the next time though.
 953	 *
 954	 * If the extent we found is inside our range, we set the
 955	 * desired bit on it.
 956	 */
 957	if (state->start < start) {
 958		if (state->state & exclusive_bits) {
 959			*failed_start = start;
 960			err = -EEXIST;
 961			goto out;
 962		}
 963
 964		prealloc = alloc_extent_state_atomic(prealloc);
 965		BUG_ON(!prealloc);
 966		err = split_state(tree, state, prealloc, start);
 967		if (err)
 968			extent_io_tree_panic(tree, err);
 969
 970		prealloc = NULL;
 971		if (err)
 972			goto out;
 973		if (state->end <= end) {
 974			set_state_bits(tree, state, &bits, changeset);
 975			cache_state(state, cached_state);
 976			merge_state(tree, state);
 977			if (last_end == (u64)-1)
 978				goto out;
 979			start = last_end + 1;
 980			state = next_state(state);
 981			if (start < end && state && state->start == start &&
 982			    !need_resched())
 983				goto hit_next;
 984		}
 985		goto search_again;
 986	}
 987	/*
 988	 * | ---- desired range ---- |
 989	 *     | state | or               | state |
 990	 *
 991	 * There's a hole, we need to insert something in it and
 992	 * ignore the extent we found.
 993	 */
 994	if (state->start > start) {
 995		u64 this_end;
 996		if (end < last_start)
 997			this_end = end;
 998		else
 999			this_end = last_start - 1;
1000
1001		prealloc = alloc_extent_state_atomic(prealloc);
1002		BUG_ON(!prealloc);
1003
1004		/*
1005		 * Avoid to free 'prealloc' if it can be merged with
1006		 * the later extent.
1007		 */
1008		err = insert_state(tree, prealloc, start, this_end,
1009				   NULL, NULL, &bits, changeset);
1010		if (err)
1011			extent_io_tree_panic(tree, err);
1012
1013		cache_state(prealloc, cached_state);
1014		prealloc = NULL;
1015		start = this_end + 1;
1016		goto search_again;
1017	}
1018	/*
1019	 * | ---- desired range ---- |
1020	 *                        | state |
1021	 * We need to split the extent, and set the bit
1022	 * on the first half
1023	 */
1024	if (state->start <= end && state->end > end) {
1025		if (state->state & exclusive_bits) {
1026			*failed_start = start;
1027			err = -EEXIST;
1028			goto out;
1029		}
1030
1031		prealloc = alloc_extent_state_atomic(prealloc);
1032		BUG_ON(!prealloc);
1033		err = split_state(tree, state, prealloc, end + 1);
1034		if (err)
1035			extent_io_tree_panic(tree, err);
1036
1037		set_state_bits(tree, prealloc, &bits, changeset);
1038		cache_state(prealloc, cached_state);
1039		merge_state(tree, prealloc);
1040		prealloc = NULL;
1041		goto out;
1042	}
1043
1044search_again:
1045	if (start > end)
1046		goto out;
1047	spin_unlock(&tree->lock);
1048	if (gfpflags_allow_blocking(mask))
1049		cond_resched();
1050	goto again;
1051
1052out:
1053	spin_unlock(&tree->lock);
1054	if (prealloc)
1055		free_extent_state(prealloc);
1056
1057	return err;
1058
1059}
1060
1061int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1062		   unsigned bits, u64 * failed_start,
1063		   struct extent_state **cached_state, gfp_t mask)
1064{
1065	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1066				cached_state, mask, NULL);
1067}
1068
1069
1070/**
1071 * convert_extent_bit - convert all bits in a given range from one bit to
1072 * 			another
1073 * @tree:	the io tree to search
1074 * @start:	the start offset in bytes
1075 * @end:	the end offset in bytes (inclusive)
1076 * @bits:	the bits to set in this range
1077 * @clear_bits:	the bits to clear in this range
1078 * @cached_state:	state that we're going to cache
1079 *
1080 * This will go through and set bits for the given range.  If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1084 * boundary bits like LOCK.
1085 *
1086 * All allocations are done with GFP_NOFS.
1087 */
1088int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1089		       unsigned bits, unsigned clear_bits,
1090		       struct extent_state **cached_state)
1091{
1092	struct extent_state *state;
1093	struct extent_state *prealloc = NULL;
1094	struct rb_node *node;
1095	struct rb_node **p;
1096	struct rb_node *parent;
1097	int err = 0;
1098	u64 last_start;
1099	u64 last_end;
1100	bool first_iteration = true;
1101
1102	btrfs_debug_check_extent_io_range(tree, start, end);
1103
1104again:
1105	if (!prealloc) {
1106		/*
1107		 * Best effort, don't worry if extent state allocation fails
1108		 * here for the first iteration. We might have a cached state
1109		 * that matches exactly the target range, in which case no
1110		 * extent state allocations are needed. We'll only know this
1111		 * after locking the tree.
1112		 */
1113		prealloc = alloc_extent_state(GFP_NOFS);
1114		if (!prealloc && !first_iteration)
1115			return -ENOMEM;
1116	}
1117
1118	spin_lock(&tree->lock);
1119	if (cached_state && *cached_state) {
1120		state = *cached_state;
1121		if (state->start <= start && state->end > start &&
1122		    extent_state_in_tree(state)) {
1123			node = &state->rb_node;
1124			goto hit_next;
1125		}
1126	}
1127
1128	/*
1129	 * this search will find all the extents that end after
1130	 * our range starts.
1131	 */
1132	node = tree_search_for_insert(tree, start, &p, &parent);
1133	if (!node) {
1134		prealloc = alloc_extent_state_atomic(prealloc);
1135		if (!prealloc) {
1136			err = -ENOMEM;
1137			goto out;
1138		}
1139		err = insert_state(tree, prealloc, start, end,
1140				   &p, &parent, &bits, NULL);
1141		if (err)
1142			extent_io_tree_panic(tree, err);
1143		cache_state(prealloc, cached_state);
1144		prealloc = NULL;
1145		goto out;
1146	}
1147	state = rb_entry(node, struct extent_state, rb_node);
1148hit_next:
1149	last_start = state->start;
1150	last_end = state->end;
1151
1152	/*
1153	 * | ---- desired range ---- |
1154	 * | state |
1155	 *
1156	 * Just lock what we found and keep going
1157	 */
1158	if (state->start == start && state->end <= end) {
1159		set_state_bits(tree, state, &bits, NULL);
1160		cache_state(state, cached_state);
1161		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1162		if (last_end == (u64)-1)
1163			goto out;
1164		start = last_end + 1;
1165		if (start < end && state && state->start == start &&
1166		    !need_resched())
1167			goto hit_next;
1168		goto search_again;
1169	}
1170
1171	/*
1172	 *     | ---- desired range ---- |
1173	 * | state |
1174	 *   or
1175	 * | ------------- state -------------- |
1176	 *
1177	 * We need to split the extent we found, and may flip bits on
1178	 * second half.
1179	 *
1180	 * If the extent we found extends past our
1181	 * range, we just split and search again.  It'll get split
1182	 * again the next time though.
1183	 *
1184	 * If the extent we found is inside our range, we set the
1185	 * desired bit on it.
1186	 */
1187	if (state->start < start) {
1188		prealloc = alloc_extent_state_atomic(prealloc);
1189		if (!prealloc) {
1190			err = -ENOMEM;
1191			goto out;
1192		}
1193		err = split_state(tree, state, prealloc, start);
1194		if (err)
1195			extent_io_tree_panic(tree, err);
1196		prealloc = NULL;
1197		if (err)
1198			goto out;
1199		if (state->end <= end) {
1200			set_state_bits(tree, state, &bits, NULL);
1201			cache_state(state, cached_state);
1202			state = clear_state_bit(tree, state, &clear_bits, 0,
1203						NULL);
1204			if (last_end == (u64)-1)
1205				goto out;
1206			start = last_end + 1;
1207			if (start < end && state && state->start == start &&
1208			    !need_resched())
1209				goto hit_next;
1210		}
1211		goto search_again;
1212	}
1213	/*
1214	 * | ---- desired range ---- |
1215	 *     | state | or               | state |
1216	 *
1217	 * There's a hole, we need to insert something in it and
1218	 * ignore the extent we found.
1219	 */
1220	if (state->start > start) {
1221		u64 this_end;
1222		if (end < last_start)
1223			this_end = end;
1224		else
1225			this_end = last_start - 1;
1226
1227		prealloc = alloc_extent_state_atomic(prealloc);
1228		if (!prealloc) {
1229			err = -ENOMEM;
1230			goto out;
1231		}
1232
1233		/*
1234		 * Avoid to free 'prealloc' if it can be merged with
1235		 * the later extent.
1236		 */
1237		err = insert_state(tree, prealloc, start, this_end,
1238				   NULL, NULL, &bits, NULL);
1239		if (err)
1240			extent_io_tree_panic(tree, err);
1241		cache_state(prealloc, cached_state);
1242		prealloc = NULL;
1243		start = this_end + 1;
1244		goto search_again;
1245	}
1246	/*
1247	 * | ---- desired range ---- |
1248	 *                        | state |
1249	 * We need to split the extent, and set the bit
1250	 * on the first half
1251	 */
1252	if (state->start <= end && state->end > end) {
1253		prealloc = alloc_extent_state_atomic(prealloc);
1254		if (!prealloc) {
1255			err = -ENOMEM;
1256			goto out;
1257		}
1258
1259		err = split_state(tree, state, prealloc, end + 1);
1260		if (err)
1261			extent_io_tree_panic(tree, err);
1262
1263		set_state_bits(tree, prealloc, &bits, NULL);
1264		cache_state(prealloc, cached_state);
1265		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1266		prealloc = NULL;
1267		goto out;
1268	}
1269
1270search_again:
1271	if (start > end)
1272		goto out;
1273	spin_unlock(&tree->lock);
1274	cond_resched();
1275	first_iteration = false;
1276	goto again;
1277
1278out:
1279	spin_unlock(&tree->lock);
1280	if (prealloc)
1281		free_extent_state(prealloc);
1282
1283	return err;
1284}
1285
1286/* wrappers around set/clear extent bit */
1287int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1288			   unsigned bits, struct extent_changeset *changeset)
1289{
1290	/*
1291	 * We don't support EXTENT_LOCKED yet, as current changeset will
1292	 * record any bits changed, so for EXTENT_LOCKED case, it will
1293	 * either fail with -EEXIST or changeset will record the whole
1294	 * range.
1295	 */
1296	BUG_ON(bits & EXTENT_LOCKED);
1297
1298	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1299				changeset);
1300}
1301
1302int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1303		     unsigned bits, int wake, int delete,
1304		     struct extent_state **cached, gfp_t mask)
1305{
1306	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1307				  cached, mask, NULL);
1308}
1309
1310int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311		unsigned bits, struct extent_changeset *changeset)
1312{
1313	/*
1314	 * Don't support EXTENT_LOCKED case, same reason as
1315	 * set_record_extent_bits().
1316	 */
1317	BUG_ON(bits & EXTENT_LOCKED);
1318
1319	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1320				  changeset);
1321}
1322
1323/*
1324 * either insert or lock state struct between start and end use mask to tell
1325 * us if waiting is desired.
1326 */
1327int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1328		     struct extent_state **cached_state)
1329{
1330	int err;
1331	u64 failed_start;
1332
1333	while (1) {
1334		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1335				       EXTENT_LOCKED, &failed_start,
1336				       cached_state, GFP_NOFS, NULL);
1337		if (err == -EEXIST) {
1338			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1339			start = failed_start;
1340		} else
1341			break;
1342		WARN_ON(start > end);
1343	}
1344	return err;
1345}
1346
1347int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1348{
1349	int err;
1350	u64 failed_start;
1351
1352	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1353			       &failed_start, NULL, GFP_NOFS, NULL);
1354	if (err == -EEXIST) {
1355		if (failed_start > start)
1356			clear_extent_bit(tree, start, failed_start - 1,
1357					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1358		return 0;
1359	}
1360	return 1;
1361}
1362
1363void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1364{
1365	unsigned long index = start >> PAGE_SHIFT;
1366	unsigned long end_index = end >> PAGE_SHIFT;
1367	struct page *page;
1368
1369	while (index <= end_index) {
1370		page = find_get_page(inode->i_mapping, index);
1371		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1372		clear_page_dirty_for_io(page);
1373		put_page(page);
1374		index++;
1375	}
1376}
1377
1378void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1379{
1380	unsigned long index = start >> PAGE_SHIFT;
1381	unsigned long end_index = end >> PAGE_SHIFT;
1382	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1383
 
1384	while (index <= end_index) {
1385		page = find_get_page(inode->i_mapping, index);
1386		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1387		__set_page_dirty_nobuffers(page);
1388		account_page_redirty(page);
1389		put_page(page);
1390		index++;
1391	}
1392}
1393
1394/*
1395 * helper function to set both pages and extents in the tree writeback
1396 */
1397static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1398{
1399	unsigned long index = start >> PAGE_SHIFT;
1400	unsigned long end_index = end >> PAGE_SHIFT;
1401	struct page *page;
1402
1403	while (index <= end_index) {
1404		page = find_get_page(tree->mapping, index);
1405		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1406		set_page_writeback(page);
1407		put_page(page);
1408		index++;
1409	}
1410}
1411
1412/* find the first state struct with 'bits' set after 'start', and
1413 * return it.  tree->lock must be held.  NULL will returned if
1414 * nothing was found after 'start'
1415 */
1416static struct extent_state *
1417find_first_extent_bit_state(struct extent_io_tree *tree,
1418			    u64 start, unsigned bits)
1419{
1420	struct rb_node *node;
1421	struct extent_state *state;
1422
1423	/*
1424	 * this search will find all the extents that end after
1425	 * our range starts.
1426	 */
1427	node = tree_search(tree, start);
1428	if (!node)
1429		goto out;
1430
1431	while (1) {
1432		state = rb_entry(node, struct extent_state, rb_node);
1433		if (state->end >= start && (state->state & bits))
1434			return state;
1435
1436		node = rb_next(node);
1437		if (!node)
1438			break;
1439	}
1440out:
1441	return NULL;
1442}
1443
1444/*
1445 * find the first offset in the io tree with 'bits' set. zero is
1446 * returned if we find something, and *start_ret and *end_ret are
1447 * set to reflect the state struct that was found.
1448 *
1449 * If nothing was found, 1 is returned. If found something, return 0.
1450 */
1451int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1452			  u64 *start_ret, u64 *end_ret, unsigned bits,
1453			  struct extent_state **cached_state)
1454{
1455	struct extent_state *state;
1456	struct rb_node *n;
1457	int ret = 1;
1458
1459	spin_lock(&tree->lock);
1460	if (cached_state && *cached_state) {
1461		state = *cached_state;
1462		if (state->end == start - 1 && extent_state_in_tree(state)) {
1463			n = rb_next(&state->rb_node);
1464			while (n) {
1465				state = rb_entry(n, struct extent_state,
1466						 rb_node);
1467				if (state->state & bits)
1468					goto got_it;
1469				n = rb_next(n);
1470			}
1471			free_extent_state(*cached_state);
1472			*cached_state = NULL;
1473			goto out;
1474		}
1475		free_extent_state(*cached_state);
1476		*cached_state = NULL;
1477	}
1478
1479	state = find_first_extent_bit_state(tree, start, bits);
1480got_it:
1481	if (state) {
1482		cache_state_if_flags(state, cached_state, 0);
1483		*start_ret = state->start;
1484		*end_ret = state->end;
1485		ret = 0;
1486	}
1487out:
1488	spin_unlock(&tree->lock);
1489	return ret;
1490}
1491
1492/*
1493 * find a contiguous range of bytes in the file marked as delalloc, not
1494 * more than 'max_bytes'.  start and end are used to return the range,
1495 *
1496 * 1 is returned if we find something, 0 if nothing was in the tree
1497 */
1498static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1499					u64 *start, u64 *end, u64 max_bytes,
1500					struct extent_state **cached_state)
1501{
1502	struct rb_node *node;
1503	struct extent_state *state;
1504	u64 cur_start = *start;
1505	u64 found = 0;
1506	u64 total_bytes = 0;
1507
1508	spin_lock(&tree->lock);
1509
1510	/*
1511	 * this search will find all the extents that end after
1512	 * our range starts.
1513	 */
1514	node = tree_search(tree, cur_start);
1515	if (!node) {
1516		if (!found)
1517			*end = (u64)-1;
1518		goto out;
1519	}
1520
1521	while (1) {
1522		state = rb_entry(node, struct extent_state, rb_node);
1523		if (found && (state->start != cur_start ||
1524			      (state->state & EXTENT_BOUNDARY))) {
1525			goto out;
1526		}
1527		if (!(state->state & EXTENT_DELALLOC)) {
1528			if (!found)
1529				*end = state->end;
1530			goto out;
1531		}
1532		if (!found) {
1533			*start = state->start;
1534			*cached_state = state;
1535			atomic_inc(&state->refs);
1536		}
1537		found++;
1538		*end = state->end;
1539		cur_start = state->end + 1;
1540		node = rb_next(node);
1541		total_bytes += state->end - state->start + 1;
1542		if (total_bytes >= max_bytes)
1543			break;
1544		if (!node)
1545			break;
1546	}
1547out:
1548	spin_unlock(&tree->lock);
1549	return found;
1550}
1551
1552static noinline void __unlock_for_delalloc(struct inode *inode,
1553					   struct page *locked_page,
1554					   u64 start, u64 end)
1555{
1556	int ret;
1557	struct page *pages[16];
1558	unsigned long index = start >> PAGE_SHIFT;
1559	unsigned long end_index = end >> PAGE_SHIFT;
1560	unsigned long nr_pages = end_index - index + 1;
1561	int i;
1562
 
1563	if (index == locked_page->index && end_index == index)
1564		return;
1565
1566	while (nr_pages > 0) {
1567		ret = find_get_pages_contig(inode->i_mapping, index,
1568				     min_t(unsigned long, nr_pages,
1569				     ARRAY_SIZE(pages)), pages);
1570		for (i = 0; i < ret; i++) {
1571			if (pages[i] != locked_page)
1572				unlock_page(pages[i]);
1573			put_page(pages[i]);
1574		}
1575		nr_pages -= ret;
1576		index += ret;
1577		cond_resched();
1578	}
1579}
1580
1581static noinline int lock_delalloc_pages(struct inode *inode,
1582					struct page *locked_page,
1583					u64 delalloc_start,
1584					u64 delalloc_end)
1585{
1586	unsigned long index = delalloc_start >> PAGE_SHIFT;
1587	unsigned long start_index = index;
1588	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1589	unsigned long pages_locked = 0;
1590	struct page *pages[16];
1591	unsigned long nrpages;
1592	int ret;
1593	int i;
1594
1595	/* the caller is responsible for locking the start index */
1596	if (index == locked_page->index && index == end_index)
1597		return 0;
1598
1599	/* skip the page at the start index */
1600	nrpages = end_index - index + 1;
1601	while (nrpages > 0) {
1602		ret = find_get_pages_contig(inode->i_mapping, index,
1603				     min_t(unsigned long,
1604				     nrpages, ARRAY_SIZE(pages)), pages);
1605		if (ret == 0) {
1606			ret = -EAGAIN;
1607			goto done;
1608		}
1609		/* now we have an array of pages, lock them all */
1610		for (i = 0; i < ret; i++) {
1611			/*
1612			 * the caller is taking responsibility for
1613			 * locked_page
1614			 */
1615			if (pages[i] != locked_page) {
1616				lock_page(pages[i]);
1617				if (!PageDirty(pages[i]) ||
1618				    pages[i]->mapping != inode->i_mapping) {
1619					ret = -EAGAIN;
1620					unlock_page(pages[i]);
1621					put_page(pages[i]);
1622					goto done;
1623				}
1624			}
1625			put_page(pages[i]);
1626			pages_locked++;
1627		}
1628		nrpages -= ret;
1629		index += ret;
1630		cond_resched();
1631	}
1632	ret = 0;
1633done:
1634	if (ret && pages_locked) {
1635		__unlock_for_delalloc(inode, locked_page,
1636			      delalloc_start,
1637			      ((u64)(start_index + pages_locked - 1)) <<
1638			      PAGE_SHIFT);
1639	}
1640	return ret;
1641}
1642
1643/*
1644 * find a contiguous range of bytes in the file marked as delalloc, not
1645 * more than 'max_bytes'.  start and end are used to return the range,
 
 
 
 
 
1646 *
1647 * 1 is returned if we find something, 0 if nothing was in the tree
 
 
 
 
1648 */
1649STATIC u64 find_lock_delalloc_range(struct inode *inode,
1650				    struct extent_io_tree *tree,
1651				    struct page *locked_page, u64 *start,
1652				    u64 *end, u64 max_bytes)
1653{
 
 
 
 
 
 
1654	u64 delalloc_start;
1655	u64 delalloc_end;
1656	u64 found;
1657	struct extent_state *cached_state = NULL;
1658	int ret;
1659	int loops = 0;
1660
 
 
 
 
 
 
1661again:
1662	/* step one, find a bunch of delalloc bytes starting at start */
1663	delalloc_start = *start;
1664	delalloc_end = 0;
1665	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1666				    max_bytes, &cached_state);
1667	if (!found || delalloc_end <= *start) {
1668		*start = delalloc_start;
1669		*end = delalloc_end;
 
 
1670		free_extent_state(cached_state);
1671		return 0;
1672	}
1673
1674	/*
1675	 * start comes from the offset of locked_page.  We have to lock
1676	 * pages in order, so we can't process delalloc bytes before
1677	 * locked_page
1678	 */
1679	if (delalloc_start < *start)
1680		delalloc_start = *start;
1681
1682	/*
1683	 * make sure to limit the number of pages we try to lock down
1684	 */
1685	if (delalloc_end + 1 - delalloc_start > max_bytes)
1686		delalloc_end = delalloc_start + max_bytes - 1;
1687
1688	/* step two, lock all the pages after the page that has start */
1689	ret = lock_delalloc_pages(inode, locked_page,
1690				  delalloc_start, delalloc_end);
 
1691	if (ret == -EAGAIN) {
1692		/* some of the pages are gone, lets avoid looping by
1693		 * shortening the size of the delalloc range we're searching
1694		 */
1695		free_extent_state(cached_state);
1696		cached_state = NULL;
1697		if (!loops) {
1698			max_bytes = PAGE_SIZE;
1699			loops = 1;
1700			goto again;
1701		} else {
1702			found = 0;
1703			goto out_failed;
1704		}
1705	}
1706	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1707
1708	/* step three, lock the state bits for the whole range */
1709	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1710
1711	/* then test to make sure it is all still delalloc */
1712	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1713			     EXTENT_DELALLOC, 1, cached_state);
1714	if (!ret) {
1715		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1716				     &cached_state, GFP_NOFS);
1717		__unlock_for_delalloc(inode, locked_page,
1718			      delalloc_start, delalloc_end);
1719		cond_resched();
1720		goto again;
1721	}
1722	free_extent_state(cached_state);
1723	*start = delalloc_start;
1724	*end = delalloc_end;
1725out_failed:
1726	return found;
1727}
1728
1729void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1730				 u64 delalloc_end, struct page *locked_page,
1731				 unsigned clear_bits,
1732				 unsigned long page_ops)
1733{
1734	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1735	int ret;
1736	struct page *pages[16];
1737	unsigned long index = start >> PAGE_SHIFT;
1738	unsigned long end_index = end >> PAGE_SHIFT;
1739	unsigned long nr_pages = end_index - index + 1;
1740	int i;
1741
1742	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1743	if (page_ops == 0)
1744		return;
1745
1746	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1747		mapping_set_error(inode->i_mapping, -EIO);
1748
1749	while (nr_pages > 0) {
1750		ret = find_get_pages_contig(inode->i_mapping, index,
1751				     min_t(unsigned long,
1752				     nr_pages, ARRAY_SIZE(pages)), pages);
1753		for (i = 0; i < ret; i++) {
1754
1755			if (page_ops & PAGE_SET_PRIVATE2)
1756				SetPagePrivate2(pages[i]);
1757
1758			if (pages[i] == locked_page) {
1759				put_page(pages[i]);
1760				continue;
1761			}
1762			if (page_ops & PAGE_CLEAR_DIRTY)
1763				clear_page_dirty_for_io(pages[i]);
1764			if (page_ops & PAGE_SET_WRITEBACK)
1765				set_page_writeback(pages[i]);
1766			if (page_ops & PAGE_SET_ERROR)
1767				SetPageError(pages[i]);
1768			if (page_ops & PAGE_END_WRITEBACK)
1769				end_page_writeback(pages[i]);
1770			if (page_ops & PAGE_UNLOCK)
1771				unlock_page(pages[i]);
1772			put_page(pages[i]);
1773		}
1774		nr_pages -= ret;
1775		index += ret;
1776		cond_resched();
1777	}
1778}
1779
1780/*
1781 * count the number of bytes in the tree that have a given bit(s)
1782 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1783 * cached.  The total number found is returned.
1784 */
1785u64 count_range_bits(struct extent_io_tree *tree,
1786		     u64 *start, u64 search_end, u64 max_bytes,
1787		     unsigned bits, int contig)
1788{
1789	struct rb_node *node;
1790	struct extent_state *state;
1791	u64 cur_start = *start;
1792	u64 total_bytes = 0;
1793	u64 last = 0;
1794	int found = 0;
1795
1796	if (WARN_ON(search_end <= cur_start))
1797		return 0;
1798
1799	spin_lock(&tree->lock);
1800	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1801		total_bytes = tree->dirty_bytes;
1802		goto out;
1803	}
1804	/*
1805	 * this search will find all the extents that end after
1806	 * our range starts.
1807	 */
1808	node = tree_search(tree, cur_start);
1809	if (!node)
1810		goto out;
1811
1812	while (1) {
1813		state = rb_entry(node, struct extent_state, rb_node);
1814		if (state->start > search_end)
1815			break;
1816		if (contig && found && state->start > last + 1)
1817			break;
1818		if (state->end >= cur_start && (state->state & bits) == bits) {
1819			total_bytes += min(search_end, state->end) + 1 -
1820				       max(cur_start, state->start);
1821			if (total_bytes >= max_bytes)
1822				break;
1823			if (!found) {
1824				*start = max(cur_start, state->start);
1825				found = 1;
1826			}
1827			last = state->end;
1828		} else if (contig && found) {
1829			break;
1830		}
1831		node = rb_next(node);
1832		if (!node)
1833			break;
1834	}
1835out:
1836	spin_unlock(&tree->lock);
1837	return total_bytes;
1838}
1839
1840/*
1841 * set the private field for a given byte offset in the tree.  If there isn't
1842 * an extent_state there already, this does nothing.
1843 */
1844static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1845		struct io_failure_record *failrec)
1846{
1847	struct rb_node *node;
1848	struct extent_state *state;
1849	int ret = 0;
1850
1851	spin_lock(&tree->lock);
1852	/*
1853	 * this search will find all the extents that end after
1854	 * our range starts.
1855	 */
1856	node = tree_search(tree, start);
1857	if (!node) {
1858		ret = -ENOENT;
1859		goto out;
1860	}
1861	state = rb_entry(node, struct extent_state, rb_node);
1862	if (state->start != start) {
1863		ret = -ENOENT;
1864		goto out;
1865	}
1866	state->failrec = failrec;
1867out:
1868	spin_unlock(&tree->lock);
1869	return ret;
1870}
1871
1872static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1873		struct io_failure_record **failrec)
1874{
1875	struct rb_node *node;
1876	struct extent_state *state;
1877	int ret = 0;
1878
1879	spin_lock(&tree->lock);
1880	/*
1881	 * this search will find all the extents that end after
1882	 * our range starts.
1883	 */
1884	node = tree_search(tree, start);
1885	if (!node) {
1886		ret = -ENOENT;
1887		goto out;
1888	}
1889	state = rb_entry(node, struct extent_state, rb_node);
1890	if (state->start != start) {
1891		ret = -ENOENT;
1892		goto out;
1893	}
1894	*failrec = state->failrec;
1895out:
1896	spin_unlock(&tree->lock);
1897	return ret;
1898}
1899
1900/*
1901 * searches a range in the state tree for a given mask.
1902 * If 'filled' == 1, this returns 1 only if every extent in the tree
1903 * has the bits set.  Otherwise, 1 is returned if any bit in the
1904 * range is found set.
 
 
 
 
1905 */
1906int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1907		   unsigned bits, int filled, struct extent_state *cached)
1908{
1909	struct extent_state *state = NULL;
1910	struct rb_node *node;
1911	int bitset = 0;
1912
1913	spin_lock(&tree->lock);
1914	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1915	    cached->end > start)
1916		node = &cached->rb_node;
1917	else
1918		node = tree_search(tree, start);
1919	while (node && start <= end) {
1920		state = rb_entry(node, struct extent_state, rb_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1921
1922		if (filled && state->start > start) {
1923			bitset = 0;
1924			break;
1925		}
1926
1927		if (state->start > end)
1928			break;
1929
1930		if (state->state & bits) {
1931			bitset = 1;
1932			if (!filled)
1933				break;
1934		} else if (filled) {
1935			bitset = 0;
1936			break;
1937		}
1938
1939		if (state->end == (u64)-1)
1940			break;
1941
1942		start = state->end + 1;
1943		if (start > end)
1944			break;
1945		node = rb_next(node);
1946		if (!node) {
1947			if (filled)
1948				bitset = 0;
1949			break;
1950		}
1951	}
1952	spin_unlock(&tree->lock);
1953	return bitset;
1954}
1955
1956/*
1957 * helper function to set a given page up to date if all the
1958 * extents in the tree for that page are up to date
 
 
1959 */
1960static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1961{
1962	u64 start = page_offset(page);
1963	u64 end = start + PAGE_SIZE - 1;
1964	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1965		SetPageUptodate(page);
1966}
1967
1968int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1969{
1970	int ret;
1971	int err = 0;
1972	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1973
1974	set_state_failrec(failure_tree, rec->start, NULL);
1975	ret = clear_extent_bits(failure_tree, rec->start,
1976				rec->start + rec->len - 1,
1977				EXTENT_LOCKED | EXTENT_DIRTY);
1978	if (ret)
1979		err = ret;
1980
1981	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1982				rec->start + rec->len - 1,
1983				EXTENT_DAMAGED);
1984	if (ret && !err)
1985		err = ret;
1986
1987	kfree(rec);
1988	return err;
1989}
1990
1991/*
1992 * this bypasses the standard btrfs submit functions deliberately, as
1993 * the standard behavior is to write all copies in a raid setup. here we only
1994 * want to write the one bad copy. so we do the mapping for ourselves and issue
1995 * submit_bio directly.
1996 * to avoid any synchronization issues, wait for the data after writing, which
1997 * actually prevents the read that triggered the error from finishing.
1998 * currently, there can be no more than two copies of every data bit. thus,
1999 * exactly one rewrite is required.
 
2000 */
2001int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2002		      struct page *page, unsigned int pg_offset, int mirror_num)
 
2003{
2004	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2005	struct bio *bio;
2006	struct btrfs_device *dev;
2007	u64 map_length = 0;
2008	u64 sector;
2009	struct btrfs_bio *bbio = NULL;
2010	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2011	int ret;
2012
2013	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2014	BUG_ON(!mirror_num);
 
2015
2016	/* we can't repair anything in raid56 yet */
2017	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2018		return 0;
2019
2020	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2021	if (!bio)
2022		return -EIO;
2023	bio->bi_iter.bi_size = 0;
2024	map_length = length;
 
 
 
 
 
 
 
2025
 
2026	/*
2027	 * Avoid races with device replace and make sure our bbio has devices
2028	 * associated to its stripes that don't go away while we are doing the
2029	 * read repair operation.
2030	 */
2031	btrfs_bio_counter_inc_blocked(fs_info);
2032	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2033			      &map_length, &bbio, mirror_num);
2034	if (ret) {
2035		btrfs_bio_counter_dec(fs_info);
2036		bio_put(bio);
2037		return -EIO;
2038	}
2039	BUG_ON(mirror_num != bbio->mirror_num);
2040	sector = bbio->stripes[mirror_num-1].physical >> 9;
2041	bio->bi_iter.bi_sector = sector;
2042	dev = bbio->stripes[mirror_num-1].dev;
2043	btrfs_put_bbio(bbio);
2044	if (!dev || !dev->bdev || !dev->writeable) {
2045		btrfs_bio_counter_dec(fs_info);
2046		bio_put(bio);
2047		return -EIO;
2048	}
2049	bio->bi_bdev = dev->bdev;
2050	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2051	bio_add_page(bio, page, length, pg_offset);
2052
2053	if (btrfsic_submit_bio_wait(bio)) {
2054		/* try to remap that extent elsewhere? */
2055		btrfs_bio_counter_dec(fs_info);
2056		bio_put(bio);
2057		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2058		return -EIO;
2059	}
2060
2061	btrfs_info_rl_in_rcu(fs_info,
2062		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2063				  btrfs_ino(inode), start,
2064				  rcu_str_deref(dev->name), sector);
2065	btrfs_bio_counter_dec(fs_info);
2066	bio_put(bio);
2067	return 0;
2068}
2069
2070int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2071			 struct extent_buffer *eb, int mirror_num)
2072{
2073	u64 start = eb->start;
2074	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2075	int ret = 0;
2076
2077	if (fs_info->sb->s_flags & MS_RDONLY)
2078		return -EROFS;
2079
2080	for (i = 0; i < num_pages; i++) {
2081		struct page *p = eb->pages[i];
2082
2083		ret = repair_io_failure(fs_info->btree_inode, start,
2084					PAGE_SIZE, start, p,
2085					start - page_offset(p), mirror_num);
2086		if (ret)
2087			break;
2088		start += PAGE_SIZE;
2089	}
2090
2091	return ret;
2092}
2093
2094/*
2095 * each time an IO finishes, we do a fast check in the IO failure tree
2096 * to see if we need to process or clean up an io_failure_record
 
 
 
 
 
 
 
 
2097 */
2098int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2099		     unsigned int pg_offset)
2100{
2101	u64 private;
2102	struct io_failure_record *failrec;
2103	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2104	struct extent_state *state;
2105	int num_copies;
2106	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
2107
2108	private = 0;
2109	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2110				(u64)-1, 1, EXTENT_DIRTY, 0);
2111	if (!ret)
2112		return 0;
 
2113
2114	ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2115			&failrec);
2116	if (ret)
2117		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2118
2119	BUG_ON(!failrec->this_mirror);
 
 
2120
2121	if (failrec->in_validation) {
2122		/* there was no real error, just free the record */
2123		btrfs_debug(fs_info,
2124			"clean_io_failure: freeing dummy error at %llu",
2125			failrec->start);
2126		goto out;
2127	}
2128	if (fs_info->sb->s_flags & MS_RDONLY)
2129		goto out;
 
 
 
 
 
2130
2131	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2132	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2133					    failrec->start,
2134					    EXTENT_LOCKED);
2135	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2136
2137	if (state && state->start <= failrec->start &&
2138	    state->end >= failrec->start + failrec->len - 1) {
2139		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2140					      failrec->len);
2141		if (num_copies > 1)  {
2142			repair_io_failure(inode, start, failrec->len,
2143					  failrec->logical, page,
2144					  pg_offset, failrec->failed_mirror);
2145		}
2146	}
2147
2148out:
2149	free_io_failure(inode, failrec);
 
 
 
 
 
2150
2151	return 0;
 
 
 
2152}
2153
2154/*
2155 * Can be called when
2156 * - hold extent lock
2157 * - under ordered extent
2158 * - the inode is freeing
 
 
 
 
 
 
2159 */
2160void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
 
2161{
2162	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2163	struct io_failure_record *failrec;
2164	struct extent_state *state, *next;
2165
2166	if (RB_EMPTY_ROOT(&failure_tree->state))
2167		return;
2168
2169	spin_lock(&failure_tree->lock);
2170	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2171	while (state) {
2172		if (state->start > end)
2173			break;
2174
2175		ASSERT(state->end <= end);
 
2176
2177		next = next_state(state);
2178
2179		failrec = state->failrec;
2180		free_extent_state(state);
2181		kfree(failrec);
2182
2183		state = next;
2184	}
2185	spin_unlock(&failure_tree->lock);
2186}
2187
2188int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2189		struct io_failure_record **failrec_ret)
2190{
2191	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2192	struct io_failure_record *failrec;
2193	struct extent_map *em;
2194	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2197	int ret;
2198	u64 logical;
2199
2200	ret = get_state_failrec(failure_tree, start, &failrec);
2201	if (ret) {
2202		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203		if (!failrec)
2204			return -ENOMEM;
2205
2206		failrec->start = start;
2207		failrec->len = end - start + 1;
2208		failrec->this_mirror = 0;
2209		failrec->bio_flags = 0;
2210		failrec->in_validation = 0;
2211
2212		read_lock(&em_tree->lock);
2213		em = lookup_extent_mapping(em_tree, start, failrec->len);
2214		if (!em) {
2215			read_unlock(&em_tree->lock);
2216			kfree(failrec);
2217			return -EIO;
2218		}
2219
2220		if (em->start > start || em->start + em->len <= start) {
2221			free_extent_map(em);
2222			em = NULL;
2223		}
2224		read_unlock(&em_tree->lock);
2225		if (!em) {
2226			kfree(failrec);
2227			return -EIO;
2228		}
2229
2230		logical = start - em->start;
2231		logical = em->block_start + logical;
2232		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233			logical = em->block_start;
2234			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235			extent_set_compress_type(&failrec->bio_flags,
2236						 em->compress_type);
2237		}
2238
2239		btrfs_debug(fs_info,
2240			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2241			logical, start, failrec->len);
2242
2243		failrec->logical = logical;
2244		free_extent_map(em);
2245
2246		/* set the bits in the private failure tree */
2247		ret = set_extent_bits(failure_tree, start, end,
2248					EXTENT_LOCKED | EXTENT_DIRTY);
2249		if (ret >= 0)
2250			ret = set_state_failrec(failure_tree, start, failrec);
2251		/* set the bits in the inode's tree */
2252		if (ret >= 0)
2253			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2254		if (ret < 0) {
2255			kfree(failrec);
2256			return ret;
2257		}
2258	} else {
2259		btrfs_debug(fs_info,
2260			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2261			failrec->logical, failrec->start, failrec->len,
2262			failrec->in_validation);
2263		/*
2264		 * when data can be on disk more than twice, add to failrec here
2265		 * (e.g. with a list for failed_mirror) to make
2266		 * clean_io_failure() clean all those errors at once.
2267		 */
2268	}
2269
2270	*failrec_ret = failrec;
2271
2272	return 0;
2273}
2274
2275int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2276			   struct io_failure_record *failrec, int failed_mirror)
2277{
2278	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2279	int num_copies;
2280
2281	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2282	if (num_copies == 1) {
2283		/*
2284		 * we only have a single copy of the data, so don't bother with
2285		 * all the retry and error correction code that follows. no
2286		 * matter what the error is, it is very likely to persist.
2287		 */
2288		btrfs_debug(fs_info,
2289			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2290			num_copies, failrec->this_mirror, failed_mirror);
2291		return 0;
2292	}
2293
2294	/*
2295	 * there are two premises:
2296	 *	a) deliver good data to the caller
2297	 *	b) correct the bad sectors on disk
2298	 */
2299	if (failed_bio->bi_vcnt > 1) {
2300		/*
2301		 * to fulfill b), we need to know the exact failing sectors, as
2302		 * we don't want to rewrite any more than the failed ones. thus,
2303		 * we need separate read requests for the failed bio
2304		 *
2305		 * if the following BUG_ON triggers, our validation request got
2306		 * merged. we need separate requests for our algorithm to work.
2307		 */
2308		BUG_ON(failrec->in_validation);
2309		failrec->in_validation = 1;
2310		failrec->this_mirror = failed_mirror;
2311	} else {
2312		/*
2313		 * we're ready to fulfill a) and b) alongside. get a good copy
2314		 * of the failed sector and if we succeed, we have setup
2315		 * everything for repair_io_failure to do the rest for us.
2316		 */
2317		if (failrec->in_validation) {
2318			BUG_ON(failrec->this_mirror != failed_mirror);
2319			failrec->in_validation = 0;
2320			failrec->this_mirror = 0;
2321		}
2322		failrec->failed_mirror = failed_mirror;
2323		failrec->this_mirror++;
2324		if (failrec->this_mirror == failed_mirror)
2325			failrec->this_mirror++;
2326	}
2327
2328	if (failrec->this_mirror > num_copies) {
2329		btrfs_debug(fs_info,
2330			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2331			num_copies, failrec->this_mirror, failed_mirror);
2332		return 0;
2333	}
2334
2335	return 1;
2336}
2337
2338
2339struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2340				    struct io_failure_record *failrec,
2341				    struct page *page, int pg_offset, int icsum,
2342				    bio_end_io_t *endio_func, void *data)
2343{
2344	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2345	struct bio *bio;
2346	struct btrfs_io_bio *btrfs_failed_bio;
2347	struct btrfs_io_bio *btrfs_bio;
2348
2349	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2350	if (!bio)
2351		return NULL;
2352
2353	bio->bi_end_io = endio_func;
2354	bio->bi_iter.bi_sector = failrec->logical >> 9;
2355	bio->bi_bdev = fs_info->fs_devices->latest_bdev;
2356	bio->bi_iter.bi_size = 0;
2357	bio->bi_private = data;
2358
2359	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2360	if (btrfs_failed_bio->csum) {
2361		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2362
2363		btrfs_bio = btrfs_io_bio(bio);
2364		btrfs_bio->csum = btrfs_bio->csum_inline;
2365		icsum *= csum_size;
2366		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2367		       csum_size);
2368	}
2369
2370	bio_add_page(bio, page, failrec->len, pg_offset);
2371
2372	return bio;
2373}
2374
2375/*
2376 * this is a generic handler for readpage errors (default
2377 * readpage_io_failed_hook). if other copies exist, read those and write back
2378 * good data to the failed position. does not investigate in remapping the
2379 * failed extent elsewhere, hoping the device will be smart enough to do this as
2380 * needed
2381 */
2382
2383static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2384			      struct page *page, u64 start, u64 end,
2385			      int failed_mirror)
2386{
2387	struct io_failure_record *failrec;
2388	struct inode *inode = page->mapping->host;
2389	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2390	struct bio *bio;
2391	int read_mode = 0;
2392	int ret;
2393
2394	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2395
2396	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2397	if (ret)
2398		return ret;
2399
2400	ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2401	if (!ret) {
2402		free_io_failure(inode, failrec);
2403		return -EIO;
2404	}
2405
2406	if (failed_bio->bi_vcnt > 1)
2407		read_mode |= REQ_FAILFAST_DEV;
2408
2409	phy_offset >>= inode->i_sb->s_blocksize_bits;
2410	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2411				      start - page_offset(page),
2412				      (int)phy_offset, failed_bio->bi_end_io,
2413				      NULL);
2414	if (!bio) {
2415		free_io_failure(inode, failrec);
2416		return -EIO;
2417	}
2418	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2419
2420	btrfs_debug(btrfs_sb(inode->i_sb),
2421		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2422		read_mode, failrec->this_mirror, failrec->in_validation);
2423
2424	ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2425					 failrec->bio_flags, 0);
2426	if (ret) {
2427		free_io_failure(inode, failrec);
2428		bio_put(bio);
2429	}
2430
2431	return ret;
2432}
2433
2434/* lots and lots of room for performance fixes in the end_bio funcs */
 
 
 
 
 
 
2435
2436void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2437{
2438	int uptodate = (err == 0);
2439	struct extent_io_tree *tree;
2440	int ret = 0;
2441
2442	tree = &BTRFS_I(page->mapping->host)->io_tree;
2443
2444	if (tree->ops && tree->ops->writepage_end_io_hook) {
2445		ret = tree->ops->writepage_end_io_hook(page, start,
2446					       end, NULL, uptodate);
2447		if (ret)
2448			uptodate = 0;
2449	}
2450
2451	if (!uptodate) {
2452		ClearPageUptodate(page);
2453		SetPageError(page);
2454		ret = ret < 0 ? ret : -EIO;
2455		mapping_set_error(page->mapping, ret);
2456	}
2457}
2458
2459/*
2460 * after a writepage IO is done, we need to:
2461 * clear the uptodate bits on error
2462 * clear the writeback bits in the extent tree for this IO
2463 * end_page_writeback if the page has no more pending IO
2464 *
2465 * Scheduling is not allowed, so the extent state tree is expected
2466 * to have one and only one object corresponding to this IO.
2467 */
2468static void end_bio_extent_writepage(struct bio *bio)
2469{
2470	struct bio_vec *bvec;
2471	u64 start;
2472	u64 end;
2473	int i;
2474
2475	bio_for_each_segment_all(bvec, bio, i) {
2476		struct page *page = bvec->bv_page;
2477		struct inode *inode = page->mapping->host;
2478		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2479
2480		/* We always issue full-page reads, but if some block
2481		 * in a page fails to read, blk_update_request() will
2482		 * advance bv_offset and adjust bv_len to compensate.
2483		 * Print a warning for nonzero offsets, and an error
2484		 * if they don't add up to a full page.  */
2485		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2486			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2487				btrfs_err(fs_info,
2488				   "partial page write in btrfs with offset %u and length %u",
2489					bvec->bv_offset, bvec->bv_len);
2490			else
2491				btrfs_info(fs_info,
2492				   "incomplete page write in btrfs with offset %u and length %u",
2493					bvec->bv_offset, bvec->bv_len);
2494		}
2495
2496		start = page_offset(page);
2497		end = start + bvec->bv_offset + bvec->bv_len - 1;
2498
2499		end_extent_writepage(page, bio->bi_error, start, end);
2500		end_page_writeback(page);
 
 
 
2501	}
2502
2503	bio_put(bio);
2504}
2505
2506static void
2507endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2508			      int uptodate)
2509{
2510	struct extent_state *cached = NULL;
2511	u64 end = start + len - 1;
2512
2513	if (uptodate && tree->track_uptodate)
2514		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2515	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2516}
2517
2518/*
2519 * after a readpage IO is done, we need to:
2520 * clear the uptodate bits on error
2521 * set the uptodate bits if things worked
2522 * set the page up to date if all extents in the tree are uptodate
2523 * clear the lock bit in the extent tree
2524 * unlock the page if there are no other extents locked for it
2525 *
2526 * Scheduling is not allowed, so the extent state tree is expected
2527 * to have one and only one object corresponding to this IO.
2528 */
2529static void end_bio_extent_readpage(struct bio *bio)
2530{
2531	struct bio_vec *bvec;
2532	int uptodate = !bio->bi_error;
2533	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2534	struct extent_io_tree *tree;
2535	u64 offset = 0;
2536	u64 start;
2537	u64 end;
2538	u64 len;
2539	u64 extent_start = 0;
2540	u64 extent_len = 0;
2541	int mirror;
2542	int ret;
2543	int i;
2544
2545	bio_for_each_segment_all(bvec, bio, i) {
2546		struct page *page = bvec->bv_page;
2547		struct inode *inode = page->mapping->host;
2548		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2549
2550		btrfs_debug(fs_info,
2551			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2552			(u64)bio->bi_iter.bi_sector, bio->bi_error,
2553			io_bio->mirror_num);
2554		tree = &BTRFS_I(inode)->io_tree;
2555
2556		/* We always issue full-page reads, but if some block
2557		 * in a page fails to read, blk_update_request() will
2558		 * advance bv_offset and adjust bv_len to compensate.
2559		 * Print a warning for nonzero offsets, and an error
2560		 * if they don't add up to a full page.  */
2561		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2562			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2563				btrfs_err(fs_info,
2564					"partial page read in btrfs with offset %u and length %u",
2565					bvec->bv_offset, bvec->bv_len);
2566			else
2567				btrfs_info(fs_info,
2568					"incomplete page read in btrfs with offset %u and length %u",
2569					bvec->bv_offset, bvec->bv_len);
2570		}
2571
2572		start = page_offset(page);
2573		end = start + bvec->bv_offset + bvec->bv_len - 1;
2574		len = bvec->bv_len;
2575
2576		mirror = io_bio->mirror_num;
2577		if (likely(uptodate && tree->ops &&
2578			   tree->ops->readpage_end_io_hook)) {
2579			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2580							      page, start, end,
2581							      mirror);
2582			if (ret)
2583				uptodate = 0;
2584			else
2585				clean_io_failure(inode, start, page, 0);
2586		}
2587
2588		if (likely(uptodate))
2589			goto readpage_ok;
2590
2591		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2592			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2593			if (!ret && !bio->bi_error)
2594				uptodate = 1;
2595		} else {
2596			/*
2597			 * The generic bio_readpage_error handles errors the
2598			 * following way: If possible, new read requests are
2599			 * created and submitted and will end up in
2600			 * end_bio_extent_readpage as well (if we're lucky, not
2601			 * in the !uptodate case). In that case it returns 0 and
2602			 * we just go on with the next page in our bio. If it
2603			 * can't handle the error it will return -EIO and we
2604			 * remain responsible for that page.
2605			 */
2606			ret = bio_readpage_error(bio, offset, page, start, end,
2607						 mirror);
2608			if (ret == 0) {
2609				uptodate = !bio->bi_error;
2610				offset += len;
2611				continue;
2612			}
2613		}
2614readpage_ok:
2615		if (likely(uptodate)) {
2616			loff_t i_size = i_size_read(inode);
2617			pgoff_t end_index = i_size >> PAGE_SHIFT;
2618			unsigned off;
2619
2620			/* Zero out the end if this page straddles i_size */
2621			off = i_size & (PAGE_SIZE-1);
2622			if (page->index == end_index && off)
2623				zero_user_segment(page, off, PAGE_SIZE);
2624			SetPageUptodate(page);
2625		} else {
2626			ClearPageUptodate(page);
2627			SetPageError(page);
2628		}
2629		unlock_page(page);
2630		offset += len;
2631
2632		if (unlikely(!uptodate)) {
2633			if (extent_len) {
2634				endio_readpage_release_extent(tree,
2635							      extent_start,
2636							      extent_len, 1);
2637				extent_start = 0;
2638				extent_len = 0;
2639			}
2640			endio_readpage_release_extent(tree, start,
2641						      end - start + 1, 0);
2642		} else if (!extent_len) {
2643			extent_start = start;
2644			extent_len = end + 1 - start;
2645		} else if (extent_start + extent_len == start) {
2646			extent_len += end + 1 - start;
2647		} else {
2648			endio_readpage_release_extent(tree, extent_start,
2649						      extent_len, uptodate);
2650			extent_start = start;
2651			extent_len = end + 1 - start;
2652		}
2653	}
2654
2655	if (extent_len)
2656		endio_readpage_release_extent(tree, extent_start, extent_len,
2657					      uptodate);
2658	if (io_bio->end_io)
2659		io_bio->end_io(io_bio, bio->bi_error);
2660	bio_put(bio);
2661}
2662
2663/*
2664 * this allocates from the btrfs_bioset.  We're returning a bio right now
2665 * but you can call btrfs_io_bio for the appropriate container_of magic
2666 */
2667struct bio *
2668btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2669		gfp_t gfp_flags)
2670{
2671	struct btrfs_io_bio *btrfs_bio;
2672	struct bio *bio;
2673
2674	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
 
 
 
 
 
 
 
 
 
 
 
2675
2676	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2677		while (!bio && (nr_vecs /= 2)) {
2678			bio = bio_alloc_bioset(gfp_flags,
2679					       nr_vecs, btrfs_bioset);
2680		}
2681	}
2682
2683	if (bio) {
2684		bio->bi_bdev = bdev;
2685		bio->bi_iter.bi_sector = first_sector;
2686		btrfs_bio = btrfs_io_bio(bio);
2687		btrfs_bio->csum = NULL;
2688		btrfs_bio->csum_allocated = NULL;
2689		btrfs_bio->end_io = NULL;
2690	}
2691	return bio;
2692}
2693
2694struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
 
 
2695{
2696	struct btrfs_io_bio *btrfs_bio;
2697	struct bio *new;
2698
2699	new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2700	if (new) {
2701		btrfs_bio = btrfs_io_bio(new);
2702		btrfs_bio->csum = NULL;
2703		btrfs_bio->csum_allocated = NULL;
2704		btrfs_bio->end_io = NULL;
 
 
 
 
 
 
 
 
 
2705	}
2706	return new;
2707}
2708
2709/* this also allocates from the btrfs_bioset */
2710struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2711{
2712	struct btrfs_io_bio *btrfs_bio;
2713	struct bio *bio;
2714
2715	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2716	if (bio) {
2717		btrfs_bio = btrfs_io_bio(bio);
2718		btrfs_bio->csum = NULL;
2719		btrfs_bio->csum_allocated = NULL;
2720		btrfs_bio->end_io = NULL;
2721	}
2722	return bio;
2723}
2724
2725
2726static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2727				       unsigned long bio_flags)
2728{
2729	int ret = 0;
2730	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2731	struct page *page = bvec->bv_page;
2732	struct extent_io_tree *tree = bio->bi_private;
2733	u64 start;
2734
2735	start = page_offset(page) + bvec->bv_offset;
2736
2737	bio->bi_private = NULL;
2738	bio_get(bio);
2739
2740	if (tree->ops && tree->ops->submit_bio_hook)
2741		ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2742					   mirror_num, bio_flags, start);
2743	else
2744		btrfsic_submit_bio(bio);
2745
2746	bio_put(bio);
2747	return ret;
2748}
2749
2750static int merge_bio(struct extent_io_tree *tree, struct page *page,
2751		     unsigned long offset, size_t size, struct bio *bio,
2752		     unsigned long bio_flags)
2753{
2754	int ret = 0;
2755	if (tree->ops && tree->ops->merge_bio_hook)
2756		ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2757						bio_flags);
2758	return ret;
2759
 
 
2760}
2761
2762static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2763			      struct writeback_control *wbc,
2764			      struct page *page, sector_t sector,
2765			      size_t size, unsigned long offset,
2766			      struct block_device *bdev,
2767			      struct bio **bio_ret,
2768			      unsigned long max_pages,
2769			      bio_end_io_t end_io_func,
2770			      int mirror_num,
2771			      unsigned long prev_bio_flags,
2772			      unsigned long bio_flags,
2773			      bool force_bio_submit)
2774{
2775	int ret = 0;
2776	struct bio *bio;
2777	int contig = 0;
2778	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2779	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2780
2781	if (bio_ret && *bio_ret) {
2782		bio = *bio_ret;
2783		if (old_compressed)
2784			contig = bio->bi_iter.bi_sector == sector;
2785		else
2786			contig = bio_end_sector(bio) == sector;
2787
2788		if (prev_bio_flags != bio_flags || !contig ||
2789		    force_bio_submit ||
2790		    merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2791		    bio_add_page(bio, page, page_size, offset) < page_size) {
2792			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2793			if (ret < 0) {
2794				*bio_ret = NULL;
2795				return ret;
2796			}
2797			bio = NULL;
2798		} else {
2799			if (wbc)
2800				wbc_account_io(wbc, page, page_size);
2801			return 0;
2802		}
2803	}
2804
2805	bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2806			GFP_NOFS | __GFP_HIGH);
2807	if (!bio)
2808		return -ENOMEM;
2809
2810	bio_add_page(bio, page, page_size, offset);
2811	bio->bi_end_io = end_io_func;
2812	bio->bi_private = tree;
2813	bio_set_op_attrs(bio, op, op_flags);
2814	if (wbc) {
2815		wbc_init_bio(wbc, bio);
2816		wbc_account_io(wbc, page, page_size);
2817	}
2818
2819	if (bio_ret)
2820		*bio_ret = bio;
2821	else
2822		ret = submit_one_bio(bio, mirror_num, bio_flags);
2823
2824	return ret;
2825}
2826
2827static void attach_extent_buffer_page(struct extent_buffer *eb,
2828				      struct page *page)
2829{
2830	if (!PagePrivate(page)) {
2831		SetPagePrivate(page);
2832		get_page(page);
2833		set_page_private(page, (unsigned long)eb);
2834	} else {
2835		WARN_ON(page->private != (unsigned long)eb);
2836	}
2837}
2838
2839void set_page_extent_mapped(struct page *page)
2840{
2841	if (!PagePrivate(page)) {
2842		SetPagePrivate(page);
2843		get_page(page);
2844		set_page_private(page, EXTENT_PAGE_PRIVATE);
2845	}
2846}
2847
2848static struct extent_map *
2849__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2850		 u64 start, u64 len, get_extent_t *get_extent,
2851		 struct extent_map **em_cached)
2852{
2853	struct extent_map *em;
2854
2855	if (em_cached && *em_cached) {
2856		em = *em_cached;
2857		if (extent_map_in_tree(em) && start >= em->start &&
2858		    start < extent_map_end(em)) {
2859			atomic_inc(&em->refs);
2860			return em;
2861		}
2862
2863		free_extent_map(em);
2864		*em_cached = NULL;
2865	}
2866
2867	em = get_extent(inode, page, pg_offset, start, len, 0);
2868	if (em_cached && !IS_ERR_OR_NULL(em)) {
2869		BUG_ON(*em_cached);
2870		atomic_inc(&em->refs);
2871		*em_cached = em;
2872	}
2873	return em;
2874}
2875/*
2876 * basic readpage implementation.  Locked extent state structs are inserted
2877 * into the tree that are removed when the IO is done (by the end_io
2878 * handlers)
2879 * XXX JDM: This needs looking at to ensure proper page locking
2880 * return 0 on success, otherwise return error
2881 */
2882static int __do_readpage(struct extent_io_tree *tree,
2883			 struct page *page,
2884			 get_extent_t *get_extent,
2885			 struct extent_map **em_cached,
2886			 struct bio **bio, int mirror_num,
2887			 unsigned long *bio_flags, int read_flags,
2888			 u64 *prev_em_start)
2889{
2890	struct inode *inode = page->mapping->host;
 
2891	u64 start = page_offset(page);
2892	u64 page_end = start + PAGE_SIZE - 1;
2893	u64 end;
2894	u64 cur = start;
2895	u64 extent_offset;
2896	u64 last_byte = i_size_read(inode);
2897	u64 block_start;
2898	u64 cur_end;
2899	sector_t sector;
2900	struct extent_map *em;
2901	struct block_device *bdev;
2902	int ret = 0;
2903	int nr = 0;
2904	size_t pg_offset = 0;
2905	size_t iosize;
2906	size_t disk_io_size;
2907	size_t blocksize = inode->i_sb->s_blocksize;
2908	unsigned long this_bio_flag = 0;
2909
2910	set_page_extent_mapped(page);
2911
2912	end = page_end;
2913	if (!PageUptodate(page)) {
2914		if (cleancache_get_page(page) == 0) {
2915			BUG_ON(blocksize != PAGE_SIZE);
2916			unlock_extent(tree, start, end);
2917			goto out;
2918		}
2919	}
2920
2921	if (page->index == last_byte >> PAGE_SHIFT) {
2922		char *userpage;
2923		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2924
2925		if (zero_offset) {
2926			iosize = PAGE_SIZE - zero_offset;
2927			userpage = kmap_atomic(page);
2928			memset(userpage + zero_offset, 0, iosize);
2929			flush_dcache_page(page);
2930			kunmap_atomic(userpage);
2931		}
2932	}
 
 
2933	while (cur <= end) {
2934		unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2935		bool force_bio_submit = false;
 
2936
 
2937		if (cur >= last_byte) {
2938			char *userpage;
2939			struct extent_state *cached = NULL;
2940
2941			iosize = PAGE_SIZE - pg_offset;
2942			userpage = kmap_atomic(page);
2943			memset(userpage + pg_offset, 0, iosize);
2944			flush_dcache_page(page);
2945			kunmap_atomic(userpage);
2946			set_extent_uptodate(tree, cur, cur + iosize - 1,
2947					    &cached, GFP_NOFS);
2948			unlock_extent_cached(tree, cur,
2949					     cur + iosize - 1,
2950					     &cached, GFP_NOFS);
2951			break;
2952		}
2953		em = __get_extent_map(inode, page, pg_offset, cur,
2954				      end - cur + 1, get_extent, em_cached);
2955		if (IS_ERR_OR_NULL(em)) {
2956			SetPageError(page);
2957			unlock_extent(tree, cur, end);
2958			break;
2959		}
2960		extent_offset = cur - em->start;
2961		BUG_ON(extent_map_end(em) <= cur);
2962		BUG_ON(end < cur);
2963
2964		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2965			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2966			extent_set_compress_type(&this_bio_flag,
2967						 em->compress_type);
2968		}
2969
2970		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2971		cur_end = min(extent_map_end(em) - 1, end);
2972		iosize = ALIGN(iosize, blocksize);
2973		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2974			disk_io_size = em->block_len;
2975			sector = em->block_start >> 9;
2976		} else {
2977			sector = (em->block_start + extent_offset) >> 9;
2978			disk_io_size = iosize;
2979		}
2980		bdev = em->bdev;
2981		block_start = em->block_start;
2982		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2983			block_start = EXTENT_MAP_HOLE;
2984
2985		/*
2986		 * If we have a file range that points to a compressed extent
2987		 * and it's followed by a consecutive file range that points to
2988		 * to the same compressed extent (possibly with a different
2989		 * offset and/or length, so it either points to the whole extent
2990		 * or only part of it), we must make sure we do not submit a
2991		 * single bio to populate the pages for the 2 ranges because
2992		 * this makes the compressed extent read zero out the pages
2993		 * belonging to the 2nd range. Imagine the following scenario:
2994		 *
2995		 *  File layout
2996		 *  [0 - 8K]                     [8K - 24K]
2997		 *    |                               |
2998		 *    |                               |
2999		 * points to extent X,         points to extent X,
3000		 * offset 4K, length of 8K     offset 0, length 16K
3001		 *
3002		 * [extent X, compressed length = 4K uncompressed length = 16K]
3003		 *
3004		 * If the bio to read the compressed extent covers both ranges,
3005		 * it will decompress extent X into the pages belonging to the
3006		 * first range and then it will stop, zeroing out the remaining
3007		 * pages that belong to the other range that points to extent X.
3008		 * So here we make sure we submit 2 bios, one for the first
3009		 * range and another one for the third range. Both will target
3010		 * the same physical extent from disk, but we can't currently
3011		 * make the compressed bio endio callback populate the pages
3012		 * for both ranges because each compressed bio is tightly
3013		 * coupled with a single extent map, and each range can have
3014		 * an extent map with a different offset value relative to the
3015		 * uncompressed data of our extent and different lengths. This
3016		 * is a corner case so we prioritize correctness over
3017		 * non-optimal behavior (submitting 2 bios for the same extent).
3018		 */
3019		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3020		    prev_em_start && *prev_em_start != (u64)-1 &&
3021		    *prev_em_start != em->orig_start)
3022			force_bio_submit = true;
3023
3024		if (prev_em_start)
3025			*prev_em_start = em->orig_start;
3026
3027		free_extent_map(em);
3028		em = NULL;
3029
3030		/* we've found a hole, just zero and go on */
3031		if (block_start == EXTENT_MAP_HOLE) {
3032			char *userpage;
3033			struct extent_state *cached = NULL;
3034
3035			userpage = kmap_atomic(page);
3036			memset(userpage + pg_offset, 0, iosize);
3037			flush_dcache_page(page);
3038			kunmap_atomic(userpage);
3039
3040			set_extent_uptodate(tree, cur, cur + iosize - 1,
3041					    &cached, GFP_NOFS);
3042			unlock_extent_cached(tree, cur,
3043					     cur + iosize - 1,
3044					     &cached, GFP_NOFS);
3045			cur = cur + iosize;
3046			pg_offset += iosize;
3047			continue;
3048		}
3049		/* the get_extent function already copied into the page */
3050		if (test_range_bit(tree, cur, cur_end,
3051				   EXTENT_UPTODATE, 1, NULL)) {
3052			check_page_uptodate(tree, page);
3053			unlock_extent(tree, cur, cur + iosize - 1);
3054			cur = cur + iosize;
3055			pg_offset += iosize;
3056			continue;
3057		}
3058		/* we have an inline extent but it didn't get marked up
3059		 * to date.  Error out
3060		 */
3061		if (block_start == EXTENT_MAP_INLINE) {
3062			SetPageError(page);
3063			unlock_extent(tree, cur, cur + iosize - 1);
3064			cur = cur + iosize;
3065			pg_offset += iosize;
3066			continue;
3067		}
3068
3069		pnr -= page->index;
3070		ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3071					 page, sector, disk_io_size, pg_offset,
3072					 bdev, bio, pnr,
3073					 end_bio_extent_readpage, mirror_num,
3074					 *bio_flags,
3075					 this_bio_flag,
3076					 force_bio_submit);
3077		if (!ret) {
3078			nr++;
3079			*bio_flags = this_bio_flag;
3080		} else {
3081			SetPageError(page);
3082			unlock_extent(tree, cur, cur + iosize - 1);
3083			goto out;
3084		}
 
 
 
 
 
3085		cur = cur + iosize;
3086		pg_offset += iosize;
3087	}
3088out:
3089	if (!nr) {
3090		if (!PageError(page))
3091			SetPageUptodate(page);
3092		unlock_page(page);
3093	}
3094	return ret;
3095}
3096
3097static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3098					     struct page *pages[], int nr_pages,
3099					     u64 start, u64 end,
3100					     get_extent_t *get_extent,
3101					     struct extent_map **em_cached,
3102					     struct bio **bio, int mirror_num,
3103					     unsigned long *bio_flags,
3104					     u64 *prev_em_start)
3105{
3106	struct inode *inode;
3107	struct btrfs_ordered_extent *ordered;
3108	int index;
3109
3110	inode = pages[0]->mapping->host;
3111	while (1) {
3112		lock_extent(tree, start, end);
3113		ordered = btrfs_lookup_ordered_range(inode, start,
3114						     end - start + 1);
3115		if (!ordered)
3116			break;
3117		unlock_extent(tree, start, end);
3118		btrfs_start_ordered_extent(inode, ordered, 1);
3119		btrfs_put_ordered_extent(ordered);
3120	}
3121
3122	for (index = 0; index < nr_pages; index++) {
3123		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
3124			      mirror_num, bio_flags, 0, prev_em_start);
3125		put_page(pages[index]);
3126	}
3127}
3128
3129static void __extent_readpages(struct extent_io_tree *tree,
3130			       struct page *pages[],
3131			       int nr_pages, get_extent_t *get_extent,
3132			       struct extent_map **em_cached,
3133			       struct bio **bio, int mirror_num,
3134			       unsigned long *bio_flags,
3135			       u64 *prev_em_start)
3136{
3137	u64 start = 0;
3138	u64 end = 0;
3139	u64 page_start;
3140	int index;
3141	int first_index = 0;
3142
3143	for (index = 0; index < nr_pages; index++) {
3144		page_start = page_offset(pages[index]);
3145		if (!end) {
3146			start = page_start;
3147			end = start + PAGE_SIZE - 1;
3148			first_index = index;
3149		} else if (end + 1 == page_start) {
3150			end += PAGE_SIZE;
3151		} else {
3152			__do_contiguous_readpages(tree, &pages[first_index],
3153						  index - first_index, start,
3154						  end, get_extent, em_cached,
3155						  bio, mirror_num, bio_flags,
3156						  prev_em_start);
3157			start = page_start;
3158			end = start + PAGE_SIZE - 1;
3159			first_index = index;
3160		}
3161	}
3162
3163	if (end)
3164		__do_contiguous_readpages(tree, &pages[first_index],
3165					  index - first_index, start,
3166					  end, get_extent, em_cached, bio,
3167					  mirror_num, bio_flags,
3168					  prev_em_start);
3169}
3170
3171static int __extent_read_full_page(struct extent_io_tree *tree,
3172				   struct page *page,
3173				   get_extent_t *get_extent,
3174				   struct bio **bio, int mirror_num,
3175				   unsigned long *bio_flags, int read_flags)
3176{
3177	struct inode *inode = page->mapping->host;
3178	struct btrfs_ordered_extent *ordered;
3179	u64 start = page_offset(page);
3180	u64 end = start + PAGE_SIZE - 1;
 
3181	int ret;
3182
3183	while (1) {
3184		lock_extent(tree, start, end);
3185		ordered = btrfs_lookup_ordered_range(inode, start,
3186						PAGE_SIZE);
3187		if (!ordered)
3188			break;
3189		unlock_extent(tree, start, end);
3190		btrfs_start_ordered_extent(inode, ordered, 1);
3191		btrfs_put_ordered_extent(ordered);
3192	}
3193
3194	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3195			    bio_flags, read_flags, NULL);
 
 
 
 
3196	return ret;
3197}
3198
3199int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3200			    get_extent_t *get_extent, int mirror_num)
 
 
 
3201{
3202	struct bio *bio = NULL;
3203	unsigned long bio_flags = 0;
3204	int ret;
3205
3206	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3207				      &bio_flags, 0);
3208	if (bio)
3209		ret = submit_one_bio(bio, mirror_num, bio_flags);
3210	return ret;
3211}
3212
3213static void update_nr_written(struct page *page, struct writeback_control *wbc,
3214			      unsigned long nr_written)
3215{
3216	wbc->nr_to_write -= nr_written;
 
3217}
3218
3219/*
3220 * helper for __extent_writepage, doing all of the delayed allocation setup.
3221 *
3222 * This returns 1 if our fill_delalloc function did all the work required
3223 * to write the page (copy into inline extent).  In this case the IO has
3224 * been started and the page is already unlocked.
3225 *
3226 * This returns 0 if all went well (page still locked)
3227 * This returns < 0 if there were errors (page still locked)
3228 */
3229static noinline_for_stack int writepage_delalloc(struct inode *inode,
3230			      struct page *page, struct writeback_control *wbc,
3231			      struct extent_page_data *epd,
3232			      u64 delalloc_start,
3233			      unsigned long *nr_written)
3234{
3235	struct extent_io_tree *tree = epd->tree;
3236	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3237	u64 nr_delalloc;
3238	u64 delalloc_to_write = 0;
3239	u64 delalloc_end = 0;
3240	int ret;
3241	int page_started = 0;
3242
3243	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3244		return 0;
3245
3246	while (delalloc_end < page_end) {
3247		nr_delalloc = find_lock_delalloc_range(inode, tree,
3248					       page,
3249					       &delalloc_start,
3250					       &delalloc_end,
3251					       BTRFS_MAX_EXTENT_SIZE);
3252		if (nr_delalloc == 0) {
3253			delalloc_start = delalloc_end + 1;
3254			continue;
3255		}
3256		ret = tree->ops->fill_delalloc(inode, page,
3257					       delalloc_start,
3258					       delalloc_end,
3259					       &page_started,
3260					       nr_written);
3261		/* File system has been set read-only */
3262		if (ret) {
3263			SetPageError(page);
3264			/* fill_delalloc should be return < 0 for error
3265			 * but just in case, we use > 0 here meaning the
3266			 * IO is started, so we don't want to return > 0
3267			 * unless things are going well.
3268			 */
3269			ret = ret < 0 ? ret : -EIO;
3270			goto done;
3271		}
3272		/*
3273		 * delalloc_end is already one less than the total length, so
3274		 * we don't subtract one from PAGE_SIZE
3275		 */
3276		delalloc_to_write += (delalloc_end - delalloc_start +
3277				      PAGE_SIZE) >> PAGE_SHIFT;
3278		delalloc_start = delalloc_end + 1;
3279	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3280	if (wbc->nr_to_write < delalloc_to_write) {
3281		int thresh = 8192;
3282
3283		if (delalloc_to_write < thresh * 2)
3284			thresh = delalloc_to_write;
3285		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3286					 thresh);
3287	}
3288
3289	/* did the fill delalloc function already unlock and start
3290	 * the IO?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3291	 */
3292	if (page_started) {
3293		/*
3294		 * we've unlocked the page, so we can't update
3295		 * the mapping's writeback index, just update
3296		 * nr_to_write.
3297		 */
3298		wbc->nr_to_write -= *nr_written;
3299		return 1;
3300	}
3301
3302	ret = 0;
 
3303
3304done:
3305	return ret;
 
 
 
 
 
 
 
 
 
3306}
3307
3308/*
3309 * helper for __extent_writepage.  This calls the writepage start hooks,
3310 * and does the loop to map the page into extents and bios.
3311 *
3312 * We return 1 if the IO is started and the page is unlocked,
3313 * 0 if all went well (page still locked)
3314 * < 0 if there were errors (page still locked)
3315 */
3316static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3317				 struct page *page,
3318				 struct writeback_control *wbc,
3319				 struct extent_page_data *epd,
3320				 loff_t i_size,
3321				 unsigned long nr_written,
3322				 int write_flags, int *nr_ret)
3323{
3324	struct extent_io_tree *tree = epd->tree;
3325	u64 start = page_offset(page);
3326	u64 page_end = start + PAGE_SIZE - 1;
3327	u64 end;
3328	u64 cur = start;
3329	u64 extent_offset;
3330	u64 block_start;
3331	u64 iosize;
3332	sector_t sector;
3333	struct extent_state *cached_state = NULL;
3334	struct extent_map *em;
3335	struct block_device *bdev;
3336	size_t pg_offset = 0;
3337	size_t blocksize;
3338	int ret = 0;
3339	int nr = 0;
3340	bool compressed;
3341
3342	if (tree->ops && tree->ops->writepage_start_hook) {
3343		ret = tree->ops->writepage_start_hook(page, start,
3344						      page_end);
3345		if (ret) {
3346			/* Fixup worker will requeue */
3347			if (ret == -EBUSY)
3348				wbc->pages_skipped++;
3349			else
3350				redirty_page_for_writepage(wbc, page);
3351
3352			update_nr_written(page, wbc, nr_written);
3353			unlock_page(page);
3354			ret = 1;
3355			goto done_unlocked;
3356		}
3357	}
3358
3359	/*
3360	 * we don't want to touch the inode after unlocking the page,
3361	 * so we update the mapping writeback index now
3362	 */
3363	update_nr_written(page, wbc, nr_written + 1);
3364
3365	end = page_end;
3366	if (i_size <= start) {
3367		if (tree->ops && tree->ops->writepage_end_io_hook)
3368			tree->ops->writepage_end_io_hook(page, start,
3369							 page_end, NULL, 1);
3370		goto done;
3371	}
3372
3373	blocksize = inode->i_sb->s_blocksize;
3374
3375	while (cur <= end) {
 
 
3376		u64 em_end;
3377		unsigned long max_nr;
 
 
3378
3379		if (cur >= i_size) {
3380			if (tree->ops && tree->ops->writepage_end_io_hook)
3381				tree->ops->writepage_end_io_hook(page, cur,
3382							 page_end, NULL, 1);
 
 
 
 
 
 
 
 
3383			break;
3384		}
3385		em = epd->get_extent(inode, page, pg_offset, cur,
3386				     end - cur + 1, 1);
3387		if (IS_ERR_OR_NULL(em)) {
3388			SetPageError(page);
 
 
 
 
 
 
3389			ret = PTR_ERR_OR_ZERO(em);
3390			break;
3391		}
3392
3393		extent_offset = cur - em->start;
3394		em_end = extent_map_end(em);
3395		BUG_ON(em_end <= cur);
3396		BUG_ON(end < cur);
3397		iosize = min(em_end - cur, end - cur + 1);
3398		iosize = ALIGN(iosize, blocksize);
3399		sector = (em->block_start + extent_offset) >> 9;
3400		bdev = em->bdev;
3401		block_start = em->block_start;
3402		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3403		free_extent_map(em);
3404		em = NULL;
 
 
3405
3406		/*
3407		 * compressed and inline extents are written through other
3408		 * paths in the FS
3409		 */
3410		if (compressed || block_start == EXTENT_MAP_HOLE ||
3411		    block_start == EXTENT_MAP_INLINE) {
3412			/*
3413			 * end_io notification does not happen here for
3414			 * compressed extents
3415			 */
3416			if (!compressed && tree->ops &&
3417			    tree->ops->writepage_end_io_hook)
3418				tree->ops->writepage_end_io_hook(page, cur,
3419							 cur + iosize - 1,
3420							 NULL, 1);
3421			else if (compressed) {
3422				/* we don't want to end_page_writeback on
3423				 * a compressed extent.  this happens
3424				 * elsewhere
3425				 */
3426				nr++;
3427			}
3428
3429			cur += iosize;
3430			pg_offset += iosize;
3431			continue;
3432		}
3433
3434		max_nr = (i_size >> PAGE_SHIFT) + 1;
3435
3436		set_range_writeback(tree, cur, cur + iosize - 1);
3437		if (!PageWriteback(page)) {
3438			btrfs_err(BTRFS_I(inode)->root->fs_info,
3439				   "page %lu not writeback, cur %llu end %llu",
3440			       page->index, cur, end);
3441		}
3442
3443		ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3444					 page, sector, iosize, pg_offset,
3445					 bdev, &epd->bio, max_nr,
3446					 end_bio_extent_writepage,
3447					 0, 0, 0, false);
3448		if (ret)
3449			SetPageError(page);
3450
3451		cur = cur + iosize;
3452		pg_offset += iosize;
 
3453		nr++;
3454	}
3455done:
 
3456	*nr_ret = nr;
 
3457
3458done_unlocked:
3459
3460	/* drop our reference on any cached states */
3461	free_extent_state(cached_state);
 
 
3462	return ret;
3463}
3464
3465/*
3466 * the writepage semantics are similar to regular writepage.  extent
3467 * records are inserted to lock ranges in the tree, and as dirty areas
3468 * are found, they are marked writeback.  Then the lock bits are removed
3469 * and the end_io handler clears the writeback ranges
 
 
 
3470 */
3471static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3472			      void *data)
3473{
 
3474	struct inode *inode = page->mapping->host;
3475	struct extent_page_data *epd = data;
3476	u64 start = page_offset(page);
3477	u64 page_end = start + PAGE_SIZE - 1;
3478	int ret;
3479	int nr = 0;
3480	size_t pg_offset = 0;
3481	loff_t i_size = i_size_read(inode);
3482	unsigned long end_index = i_size >> PAGE_SHIFT;
3483	int write_flags = 0;
3484	unsigned long nr_written = 0;
3485
3486	if (wbc->sync_mode == WB_SYNC_ALL)
3487		write_flags = REQ_SYNC;
3488
3489	trace___extent_writepage(page, inode, wbc);
3490
3491	WARN_ON(!PageLocked(page));
3492
3493	ClearPageError(page);
3494
3495	pg_offset = i_size & (PAGE_SIZE - 1);
3496	if (page->index > end_index ||
3497	   (page->index == end_index && !pg_offset)) {
3498		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3499		unlock_page(page);
3500		return 0;
3501	}
3502
3503	if (page->index == end_index) {
3504		char *userpage;
3505
3506		userpage = kmap_atomic(page);
3507		memset(userpage + pg_offset, 0,
3508		       PAGE_SIZE - pg_offset);
3509		kunmap_atomic(userpage);
3510		flush_dcache_page(page);
3511	}
3512
3513	pg_offset = 0;
3514
3515	set_page_extent_mapped(page);
3516
3517	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3518	if (ret == 1)
3519		goto done_unlocked;
3520	if (ret)
3521		goto done;
3522
3523	ret = __extent_writepage_io(inode, page, wbc, epd,
3524				    i_size, nr_written, write_flags, &nr);
3525	if (ret == 1)
3526		goto done_unlocked;
 
 
3527
3528done:
3529	if (nr == 0) {
3530		/* make sure the mapping tag for page dirty gets cleared */
3531		set_page_writeback(page);
3532		end_page_writeback(page);
3533	}
3534	if (PageError(page)) {
3535		ret = ret < 0 ? ret : -EIO;
3536		end_extent_writepage(page, ret, start, page_end);
 
3537	}
3538	unlock_page(page);
 
3539	return ret;
3540
3541done_unlocked:
3542	return 0;
3543}
3544
3545void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3546{
3547	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3548		       TASK_UNINTERRUPTIBLE);
3549}
3550
3551static noinline_for_stack int
3552lock_extent_buffer_for_io(struct extent_buffer *eb,
3553			  struct btrfs_fs_info *fs_info,
3554			  struct extent_page_data *epd)
 
 
 
 
 
3555{
3556	unsigned long i, num_pages;
3557	int flush = 0;
3558	int ret = 0;
3559
3560	if (!btrfs_try_tree_write_lock(eb)) {
3561		flush = 1;
3562		flush_write_bio(epd);
 
 
 
3563		btrfs_tree_lock(eb);
3564	}
3565
3566	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3567		btrfs_tree_unlock(eb);
3568		if (!epd->sync_io)
3569			return 0;
3570		if (!flush) {
3571			flush_write_bio(epd);
3572			flush = 1;
3573		}
3574		while (1) {
3575			wait_on_extent_buffer_writeback(eb);
3576			btrfs_tree_lock(eb);
3577			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3578				break;
3579			btrfs_tree_unlock(eb);
3580		}
3581	}
3582
3583	/*
3584	 * We need to do this to prevent races in people who check if the eb is
3585	 * under IO since we can end up having no IO bits set for a short period
3586	 * of time.
3587	 */
3588	spin_lock(&eb->refs_lock);
3589	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3590		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3591		spin_unlock(&eb->refs_lock);
3592		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3593		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3594				     -eb->len,
3595				     fs_info->dirty_metadata_batch);
3596		ret = 1;
3597	} else {
3598		spin_unlock(&eb->refs_lock);
3599	}
3600
3601	btrfs_tree_unlock(eb);
3602
3603	if (!ret)
3604		return ret;
3605
3606	num_pages = num_extent_pages(eb->start, eb->len);
3607	for (i = 0; i < num_pages; i++) {
3608		struct page *p = eb->pages[i];
3609
3610		if (!trylock_page(p)) {
3611			if (!flush) {
3612				flush_write_bio(epd);
3613				flush = 1;
3614			}
3615			lock_page(p);
3616		}
3617	}
3618
3619	return ret;
3620}
3621
3622static void end_extent_buffer_writeback(struct extent_buffer *eb)
3623{
3624	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3625	smp_mb__after_atomic();
3626	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3627}
3628
3629static void set_btree_ioerr(struct page *page)
3630{
3631	struct extent_buffer *eb = (struct extent_buffer *)page->private;
 
 
3632
3633	SetPageError(page);
3634	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3635		return;
 
 
 
 
3636
3637	/*
3638	 * If writeback for a btree extent that doesn't belong to a log tree
3639	 * failed, increment the counter transaction->eb_write_errors.
3640	 * We do this because while the transaction is running and before it's
3641	 * committing (when we call filemap_fdata[write|wait]_range against
3642	 * the btree inode), we might have
3643	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3644	 * returns an error or an error happens during writeback, when we're
3645	 * committing the transaction we wouldn't know about it, since the pages
3646	 * can be no longer dirty nor marked anymore for writeback (if a
3647	 * subsequent modification to the extent buffer didn't happen before the
3648	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3649	 * able to find the pages tagged with SetPageError at transaction
3650	 * commit time. So if this happens we must abort the transaction,
3651	 * otherwise we commit a super block with btree roots that point to
3652	 * btree nodes/leafs whose content on disk is invalid - either garbage
3653	 * or the content of some node/leaf from a past generation that got
3654	 * cowed or deleted and is no longer valid.
3655	 *
3656	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3657	 * not be enough - we need to distinguish between log tree extents vs
3658	 * non-log tree extents, and the next filemap_fdatawait_range() call
3659	 * will catch and clear such errors in the mapping - and that call might
3660	 * be from a log sync and not from a transaction commit. Also, checking
3661	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3662	 * not done and would not be reliable - the eb might have been released
3663	 * from memory and reading it back again means that flag would not be
3664	 * set (since it's a runtime flag, not persisted on disk).
3665	 *
3666	 * Using the flags below in the btree inode also makes us achieve the
3667	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3668	 * writeback for all dirty pages and before filemap_fdatawait_range()
3669	 * is called, the writeback for all dirty pages had already finished
3670	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3671	 * filemap_fdatawait_range() would return success, as it could not know
3672	 * that writeback errors happened (the pages were no longer tagged for
3673	 * writeback).
3674	 */
3675	switch (eb->log_index) {
3676	case -1:
3677		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3678		break;
3679	case 0:
3680		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3681		break;
3682	case 1:
3683		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3684		break;
3685	default:
3686		BUG(); /* unexpected, logic error */
3687	}
3688}
3689
3690static void end_bio_extent_buffer_writepage(struct bio *bio)
 
 
 
 
 
3691{
3692	struct bio_vec *bvec;
3693	struct extent_buffer *eb;
3694	int i, done;
3695
3696	bio_for_each_segment_all(bvec, bio, i) {
3697		struct page *page = bvec->bv_page;
 
 
 
 
 
 
 
 
3698
3699		eb = (struct extent_buffer *)page->private;
3700		BUG_ON(!eb);
3701		done = atomic_dec_and_test(&eb->io_pages);
3702
3703		if (bio->bi_error ||
3704		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3705			ClearPageUptodate(page);
3706			set_btree_ioerr(page);
3707		}
 
 
 
 
 
 
3708
3709		end_page_writeback(page);
 
 
3710
3711		if (!done)
3712			continue;
3713
3714		end_extent_buffer_writeback(eb);
3715	}
3716
3717	bio_put(bio);
3718}
3719
3720static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3721			struct btrfs_fs_info *fs_info,
3722			struct writeback_control *wbc,
3723			struct extent_page_data *epd)
3724{
3725	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3726	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3727	u64 offset = eb->start;
3728	u32 nritems;
3729	unsigned long i, num_pages;
3730	unsigned long bio_flags = 0;
3731	unsigned long start, end;
3732	int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3733	int ret = 0;
3734
3735	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3736	num_pages = num_extent_pages(eb->start, eb->len);
3737	atomic_set(&eb->io_pages, num_pages);
3738	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3739		bio_flags = EXTENT_BIO_TREE_LOG;
3740
3741	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3742	nritems = btrfs_header_nritems(eb);
3743	if (btrfs_header_level(eb) > 0) {
3744		end = btrfs_node_key_ptr_offset(nritems);
3745
3746		memzero_extent_buffer(eb, end, eb->len - end);
3747	} else {
3748		/*
3749		 * leaf:
3750		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3751		 */
3752		start = btrfs_item_nr_offset(nritems);
3753		end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
 
 
 
 
3754		memzero_extent_buffer(eb, start, end - start);
3755	}
 
 
 
 
 
 
 
3756
3757	for (i = 0; i < num_pages; i++) {
3758		struct page *p = eb->pages[i];
3759
3760		clear_page_dirty_for_io(p);
3761		set_page_writeback(p);
3762		ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3763					 p, offset >> 9, PAGE_SIZE, 0, bdev,
3764					 &epd->bio, -1,
3765					 end_bio_extent_buffer_writepage,
3766					 0, epd->bio_flags, bio_flags, false);
3767		epd->bio_flags = bio_flags;
3768		if (ret) {
3769			set_btree_ioerr(p);
3770			end_page_writeback(p);
3771			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3772				end_extent_buffer_writeback(eb);
3773			ret = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3774			break;
3775		}
3776		offset += PAGE_SIZE;
3777		update_nr_written(p, wbc, 1);
3778		unlock_page(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3779	}
3780
3781	if (unlikely(ret)) {
3782		for (; i < num_pages; i++) {
3783			struct page *p = eb->pages[i];
3784			clear_page_dirty_for_io(p);
3785			unlock_page(p);
3786		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3787	}
3788
3789	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
3790}
3791
3792int btree_write_cache_pages(struct address_space *mapping,
3793				   struct writeback_control *wbc)
3794{
3795	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3796	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3797	struct extent_buffer *eb, *prev_eb = NULL;
3798	struct extent_page_data epd = {
3799		.bio = NULL,
3800		.tree = tree,
3801		.extent_locked = 0,
3802		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3803		.bio_flags = 0,
3804	};
3805	int ret = 0;
3806	int done = 0;
3807	int nr_to_write_done = 0;
3808	struct pagevec pvec;
3809	int nr_pages;
3810	pgoff_t index;
3811	pgoff_t end;		/* Inclusive */
3812	int scanned = 0;
3813	int tag;
3814
3815	pagevec_init(&pvec, 0);
3816	if (wbc->range_cyclic) {
3817		index = mapping->writeback_index; /* Start from prev offset */
3818		end = -1;
 
 
 
 
 
3819	} else {
3820		index = wbc->range_start >> PAGE_SHIFT;
3821		end = wbc->range_end >> PAGE_SHIFT;
3822		scanned = 1;
3823	}
3824	if (wbc->sync_mode == WB_SYNC_ALL)
3825		tag = PAGECACHE_TAG_TOWRITE;
3826	else
3827		tag = PAGECACHE_TAG_DIRTY;
 
3828retry:
3829	if (wbc->sync_mode == WB_SYNC_ALL)
3830		tag_pages_for_writeback(mapping, index, end);
3831	while (!done && !nr_to_write_done && (index <= end) &&
3832	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3833			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3834		unsigned i;
3835
3836		scanned = 1;
3837		for (i = 0; i < nr_pages; i++) {
3838			struct page *page = pvec.pages[i];
3839
3840			if (!PagePrivate(page))
 
3841				continue;
3842
3843			if (!wbc->range_cyclic && page->index > end) {
3844				done = 1;
3845				break;
3846			}
3847
3848			spin_lock(&mapping->private_lock);
3849			if (!PagePrivate(page)) {
3850				spin_unlock(&mapping->private_lock);
3851				continue;
3852			}
3853
3854			eb = (struct extent_buffer *)page->private;
3855
3856			/*
3857			 * Shouldn't happen and normally this would be a BUG_ON
3858			 * but no sense in crashing the users box for something
3859			 * we can survive anyway.
3860			 */
3861			if (WARN_ON(!eb)) {
3862				spin_unlock(&mapping->private_lock);
3863				continue;
3864			}
3865
3866			if (eb == prev_eb) {
3867				spin_unlock(&mapping->private_lock);
3868				continue;
3869			}
3870
3871			ret = atomic_inc_not_zero(&eb->refs);
3872			spin_unlock(&mapping->private_lock);
3873			if (!ret)
3874				continue;
3875
3876			prev_eb = eb;
3877			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3878			if (!ret) {
3879				free_extent_buffer(eb);
3880				continue;
3881			}
3882
3883			ret = write_one_eb(eb, fs_info, wbc, &epd);
3884			if (ret) {
3885				done = 1;
3886				free_extent_buffer(eb);
3887				break;
3888			}
3889			free_extent_buffer(eb);
3890
3891			/*
3892			 * the filesystem may choose to bump up nr_to_write.
3893			 * We have to make sure to honor the new nr_to_write
3894			 * at any time
3895			 */
3896			nr_to_write_done = wbc->nr_to_write <= 0;
3897		}
3898		pagevec_release(&pvec);
3899		cond_resched();
3900	}
3901	if (!scanned && !done) {
3902		/*
3903		 * We hit the last page and there is more work to be done: wrap
3904		 * back to the start of the file
3905		 */
3906		scanned = 1;
3907		index = 0;
3908		goto retry;
3909	}
3910	flush_write_bio(&epd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3911	return ret;
3912}
3913
3914/**
3915 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3916 * @mapping: address space structure to write
3917 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3918 * @writepage: function called for each page
3919 * @data: data passed to writepage function
3920 *
3921 * If a page is already under I/O, write_cache_pages() skips it, even
3922 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3923 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3924 * and msync() need to guarantee that all the data which was dirty at the time
3925 * the call was made get new I/O started against them.  If wbc->sync_mode is
3926 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3927 * existing IO to complete.
3928 */
3929static int extent_write_cache_pages(struct extent_io_tree *tree,
3930			     struct address_space *mapping,
3931			     struct writeback_control *wbc,
3932			     writepage_t writepage, void *data,
3933			     void (*flush_fn)(void *))
3934{
 
3935	struct inode *inode = mapping->host;
3936	int ret = 0;
3937	int done = 0;
3938	int nr_to_write_done = 0;
3939	struct pagevec pvec;
3940	int nr_pages;
3941	pgoff_t index;
3942	pgoff_t end;		/* Inclusive */
3943	pgoff_t done_index;
3944	int range_whole = 0;
3945	int scanned = 0;
3946	int tag;
3947
3948	/*
3949	 * We have to hold onto the inode so that ordered extents can do their
3950	 * work when the IO finishes.  The alternative to this is failing to add
3951	 * an ordered extent if the igrab() fails there and that is a huge pain
3952	 * to deal with, so instead just hold onto the inode throughout the
3953	 * writepages operation.  If it fails here we are freeing up the inode
3954	 * anyway and we'd rather not waste our time writing out stuff that is
3955	 * going to be truncated anyway.
3956	 */
3957	if (!igrab(inode))
3958		return 0;
3959
3960	pagevec_init(&pvec, 0);
3961	if (wbc->range_cyclic) {
3962		index = mapping->writeback_index; /* Start from prev offset */
3963		end = -1;
 
 
 
 
 
3964	} else {
3965		index = wbc->range_start >> PAGE_SHIFT;
3966		end = wbc->range_end >> PAGE_SHIFT;
3967		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3968			range_whole = 1;
3969		scanned = 1;
3970	}
3971	if (wbc->sync_mode == WB_SYNC_ALL)
 
 
 
 
 
 
 
 
 
 
 
 
 
3972		tag = PAGECACHE_TAG_TOWRITE;
3973	else
3974		tag = PAGECACHE_TAG_DIRTY;
3975retry:
3976	if (wbc->sync_mode == WB_SYNC_ALL)
3977		tag_pages_for_writeback(mapping, index, end);
3978	done_index = index;
3979	while (!done && !nr_to_write_done && (index <= end) &&
3980	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3981			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3982		unsigned i;
3983
3984		scanned = 1;
3985		for (i = 0; i < nr_pages; i++) {
3986			struct page *page = pvec.pages[i];
3987
3988			done_index = page->index;
3989			/*
3990			 * At this point we hold neither mapping->tree_lock nor
3991			 * lock on the page itself: the page may be truncated or
3992			 * invalidated (changing page->mapping to NULL), or even
3993			 * swizzled back from swapper_space to tmpfs file
3994			 * mapping
3995			 */
3996			if (!trylock_page(page)) {
3997				flush_fn(data);
3998				lock_page(page);
3999			}
4000
4001			if (unlikely(page->mapping != mapping)) {
4002				unlock_page(page);
4003				continue;
4004			}
4005
4006			if (!wbc->range_cyclic && page->index > end) {
4007				done = 1;
4008				unlock_page(page);
4009				continue;
4010			}
4011
4012			if (wbc->sync_mode != WB_SYNC_NONE) {
4013				if (PageWriteback(page))
4014					flush_fn(data);
4015				wait_on_page_writeback(page);
4016			}
4017
4018			if (PageWriteback(page) ||
4019			    !clear_page_dirty_for_io(page)) {
4020				unlock_page(page);
4021				continue;
4022			}
4023
4024			ret = (*writepage)(page, wbc, data);
4025
4026			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4027				unlock_page(page);
4028				ret = 0;
4029			}
4030			if (ret < 0) {
4031				/*
4032				 * done_index is set past this page,
4033				 * so media errors will not choke
4034				 * background writeout for the entire
4035				 * file. This has consequences for
4036				 * range_cyclic semantics (ie. it may
4037				 * not be suitable for data integrity
4038				 * writeout).
4039				 */
4040				done_index = page->index + 1;
4041				done = 1;
4042				break;
4043			}
4044
4045			/*
4046			 * the filesystem may choose to bump up nr_to_write.
4047			 * We have to make sure to honor the new nr_to_write
4048			 * at any time
4049			 */
4050			nr_to_write_done = wbc->nr_to_write <= 0;
 
4051		}
4052		pagevec_release(&pvec);
4053		cond_resched();
4054	}
4055	if (!scanned && !done) {
4056		/*
4057		 * We hit the last page and there is more work to be done: wrap
4058		 * back to the start of the file
4059		 */
4060		scanned = 1;
4061		index = 0;
 
 
 
 
 
 
 
 
4062		goto retry;
4063	}
4064
4065	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4066		mapping->writeback_index = done_index;
4067
4068	btrfs_add_delayed_iput(inode);
4069	return ret;
4070}
4071
4072static void flush_epd_write_bio(struct extent_page_data *epd)
 
 
 
 
 
 
 
4073{
4074	if (epd->bio) {
4075		int ret;
4076
4077		bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4078				 epd->sync_io ? REQ_SYNC : 0);
4079
4080		ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4081		BUG_ON(ret < 0); /* -ENOMEM */
4082		epd->bio = NULL;
4083	}
4084}
4085
4086static noinline void flush_write_bio(void *data)
4087{
4088	struct extent_page_data *epd = data;
4089	flush_epd_write_bio(epd);
4090}
4091
4092int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4093			  get_extent_t *get_extent,
4094			  struct writeback_control *wbc)
4095{
4096	int ret;
4097	struct extent_page_data epd = {
4098		.bio = NULL,
4099		.tree = tree,
4100		.get_extent = get_extent,
4101		.extent_locked = 0,
4102		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4103		.bio_flags = 0,
4104	};
4105
4106	ret = __extent_writepage(page, wbc, &epd);
 
4107
4108	flush_epd_write_bio(&epd);
4109	return ret;
4110}
4111
4112int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4113			      u64 start, u64 end, get_extent_t *get_extent,
4114			      int mode)
4115{
4116	int ret = 0;
4117	struct address_space *mapping = inode->i_mapping;
4118	struct page *page;
4119	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4120		PAGE_SHIFT;
 
 
 
4121
4122	struct extent_page_data epd = {
4123		.bio = NULL,
4124		.tree = tree,
4125		.get_extent = get_extent,
4126		.extent_locked = 1,
4127		.sync_io = mode == WB_SYNC_ALL,
4128		.bio_flags = 0,
4129	};
4130	struct writeback_control wbc_writepages = {
4131		.sync_mode	= mode,
4132		.nr_to_write	= nr_pages * 2,
4133		.range_start	= start,
4134		.range_end	= end + 1,
4135	};
4136
4137	while (start <= end) {
4138		page = find_get_page(mapping, start >> PAGE_SHIFT);
4139		if (clear_page_dirty_for_io(page))
4140			ret = __extent_writepage(page, &wbc_writepages, &epd);
4141		else {
4142			if (tree->ops && tree->ops->writepage_end_io_hook)
4143				tree->ops->writepage_end_io_hook(page, start,
4144						 start + PAGE_SIZE - 1,
4145						 NULL, 1);
4146			unlock_page(page);
4147		}
 
 
 
 
 
 
 
 
 
4148		put_page(page);
4149		start += PAGE_SIZE;
4150	}
4151
4152	flush_epd_write_bio(&epd);
4153	return ret;
4154}
4155
4156int extent_writepages(struct extent_io_tree *tree,
4157		      struct address_space *mapping,
4158		      get_extent_t *get_extent,
4159		      struct writeback_control *wbc)
4160{
 
4161	int ret = 0;
4162	struct extent_page_data epd = {
4163		.bio = NULL,
4164		.tree = tree,
4165		.get_extent = get_extent,
4166		.extent_locked = 0,
4167		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4168		.bio_flags = 0,
4169	};
4170
4171	ret = extent_write_cache_pages(tree, mapping, wbc,
4172				       __extent_writepage, &epd,
4173				       flush_write_bio);
4174	flush_epd_write_bio(&epd);
 
 
 
 
4175	return ret;
4176}
4177
4178int extent_readpages(struct extent_io_tree *tree,
4179		     struct address_space *mapping,
4180		     struct list_head *pages, unsigned nr_pages,
4181		     get_extent_t get_extent)
4182{
4183	struct bio *bio = NULL;
4184	unsigned page_idx;
4185	unsigned long bio_flags = 0;
4186	struct page *pagepool[16];
4187	struct page *page;
4188	struct extent_map *em_cached = NULL;
4189	int nr = 0;
4190	u64 prev_em_start = (u64)-1;
 
4191
4192	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4193		page = list_entry(pages->prev, struct page, lru);
 
4194
4195		prefetchw(&page->flags);
4196		list_del(&page->lru);
4197		if (add_to_page_cache_lru(page, mapping,
4198					page->index,
4199					readahead_gfp_mask(mapping))) {
4200			put_page(page);
4201			continue;
4202		}
4203
4204		pagepool[nr++] = page;
4205		if (nr < ARRAY_SIZE(pagepool))
4206			continue;
4207		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4208				   &bio, 0, &bio_flags, &prev_em_start);
4209		nr = 0;
4210	}
4211	if (nr)
4212		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4213				   &bio, 0, &bio_flags, &prev_em_start);
4214
4215	if (em_cached)
4216		free_extent_map(em_cached);
4217
4218	BUG_ON(!list_empty(pages));
4219	if (bio)
4220		return submit_one_bio(bio, 0, bio_flags);
4221	return 0;
4222}
4223
4224/*
4225 * basic invalidatepage code, this waits on any locked or writeback
4226 * ranges corresponding to the page, and then deletes any extent state
4227 * records from the tree
4228 */
4229int extent_invalidatepage(struct extent_io_tree *tree,
4230			  struct page *page, unsigned long offset)
4231{
4232	struct extent_state *cached_state = NULL;
4233	u64 start = page_offset(page);
4234	u64 end = start + PAGE_SIZE - 1;
4235	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
 
 
 
4236
4237	start += ALIGN(offset, blocksize);
4238	if (start > end)
4239		return 0;
4240
4241	lock_extent_bits(tree, start, end, &cached_state);
4242	wait_on_page_writeback(page);
4243	clear_extent_bit(tree, start, end,
4244			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4245			 EXTENT_DO_ACCOUNTING,
4246			 1, 1, &cached_state, GFP_NOFS);
 
 
 
4247	return 0;
4248}
4249
4250/*
4251 * a helper for releasepage, this tests for areas of the page that
4252 * are locked or under IO and drops the related state bits if it is safe
4253 * to drop the page.
4254 */
4255static int try_release_extent_state(struct extent_map_tree *map,
4256				    struct extent_io_tree *tree,
4257				    struct page *page, gfp_t mask)
4258{
4259	u64 start = page_offset(page);
4260	u64 end = start + PAGE_SIZE - 1;
4261	int ret = 1;
4262
4263	if (test_range_bit(tree, start, end,
4264			   EXTENT_IOBITS, 0, NULL))
4265		ret = 0;
4266	else {
4267		if ((mask & GFP_NOFS) == GFP_NOFS)
4268			mask = GFP_NOFS;
 
 
4269		/*
4270		 * at this point we can safely clear everything except the
4271		 * locked bit and the nodatasum bit
 
 
4272		 */
4273		ret = clear_extent_bit(tree, start, end,
4274				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4275				 0, 0, NULL, mask);
4276
4277		/* if clear_extent_bit failed for enomem reasons,
4278		 * we can't allow the release to continue.
4279		 */
4280		if (ret < 0)
4281			ret = 0;
4282		else
4283			ret = 1;
4284	}
4285	return ret;
4286}
4287
4288/*
4289 * a helper for releasepage.  As long as there are no locked extents
4290 * in the range corresponding to the page, both state records and extent
4291 * map records are removed
4292 */
4293int try_release_extent_mapping(struct extent_map_tree *map,
4294			       struct extent_io_tree *tree, struct page *page,
4295			       gfp_t mask)
4296{
4297	struct extent_map *em;
4298	u64 start = page_offset(page);
4299	u64 end = start + PAGE_SIZE - 1;
 
 
 
4300
4301	if (gfpflags_allow_blocking(mask) &&
4302	    page->mapping->host->i_size > SZ_16M) {
4303		u64 len;
4304		while (start <= end) {
 
 
 
4305			len = end - start + 1;
4306			write_lock(&map->lock);
4307			em = lookup_extent_mapping(map, start, len);
4308			if (!em) {
4309				write_unlock(&map->lock);
4310				break;
4311			}
4312			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4313			    em->start != start) {
4314				write_unlock(&map->lock);
4315				free_extent_map(em);
4316				break;
4317			}
4318			if (!test_range_bit(tree, em->start,
4319					    extent_map_end(em) - 1,
4320					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4321					    0, NULL)) {
4322				remove_extent_mapping(map, em);
4323				/* once for the rb tree */
4324				free_extent_map(em);
4325			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4326			start = extent_map_end(em);
4327			write_unlock(&map->lock);
4328
4329			/* once for us */
4330			free_extent_map(em);
 
 
4331		}
4332	}
4333	return try_release_extent_state(map, tree, page, mask);
4334}
4335
4336/*
4337 * helper function for fiemap, which doesn't want to see any holes.
4338 * This maps until we find something past 'last'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4339 */
4340static struct extent_map *get_extent_skip_holes(struct inode *inode,
4341						u64 offset,
4342						u64 last,
4343						get_extent_t *get_extent)
4344{
4345	u64 sectorsize = btrfs_inode_sectorsize(inode);
4346	struct extent_map *em;
4347	u64 len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4348
4349	if (offset >= last)
4350		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4351
4352	while (1) {
4353		len = last - offset;
4354		if (len == 0)
4355			break;
4356		len = ALIGN(len, sectorsize);
4357		em = get_extent(inode, NULL, 0, offset, len, 0);
4358		if (IS_ERR_OR_NULL(em))
4359			return em;
4360
4361		/* if this isn't a hole return it */
4362		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4363		    em->block_start != EXTENT_MAP_HOLE) {
4364			return em;
4365		}
 
4366
4367		/* this is a hole, advance to the next extent */
4368		offset = extent_map_end(em);
4369		free_extent_map(em);
4370		if (offset >= last)
4371			break;
 
 
 
 
 
 
 
 
 
 
4372	}
4373	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4374}
4375
4376int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4377		__u64 start, __u64 len, get_extent_t *get_extent)
 
 
 
 
 
 
 
 
 
 
 
4378{
4379	int ret = 0;
4380	u64 off = start;
4381	u64 max = start + len;
4382	u32 flags = 0;
4383	u32 found_type;
4384	u64 last;
4385	u64 last_for_get_extent = 0;
4386	u64 disko = 0;
4387	u64 isize = i_size_read(inode);
4388	struct btrfs_key found_key;
4389	struct extent_map *em = NULL;
4390	struct extent_state *cached_state = NULL;
4391	struct btrfs_path *path;
4392	struct btrfs_root *root = BTRFS_I(inode)->root;
4393	int end = 0;
4394	u64 em_start = 0;
4395	u64 em_len = 0;
4396	u64 em_end = 0;
4397
4398	if (len == 0)
4399		return -EINVAL;
 
 
 
 
4400
4401	path = btrfs_alloc_path();
4402	if (!path)
4403		return -ENOMEM;
4404	path->leave_spinning = 1;
4405
4406	start = round_down(start, btrfs_inode_sectorsize(inode));
4407	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
 
4408
4409	/*
4410	 * lookup the last file extent.  We're not using i_size here
4411	 * because there might be preallocation past i_size
4412	 */
4413	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4414				       0);
4415	if (ret < 0) {
4416		btrfs_free_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4417		return ret;
4418	} else {
4419		WARN_ON(!ret);
4420		if (ret == 1)
4421			ret = 0;
 
 
 
 
 
 
 
 
 
 
 
4422	}
4423
4424	path->slots[0]--;
4425	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4426	found_type = found_key.type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4427
4428	/* No extents, but there might be delalloc bits */
4429	if (found_key.objectid != btrfs_ino(inode) ||
4430	    found_type != BTRFS_EXTENT_DATA_KEY) {
4431		/* have to trust i_size as the end */
4432		last = (u64)-1;
4433		last_for_get_extent = isize;
4434	} else {
4435		/*
4436		 * remember the start of the last extent.  There are a
4437		 * bunch of different factors that go into the length of the
4438		 * extent, so its much less complex to remember where it started
4439		 */
4440		last = found_key.offset;
4441		last_for_get_extent = last + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4442	}
4443	btrfs_release_path(path);
4444
4445	/*
4446	 * we might have some extents allocated but more delalloc past those
4447	 * extents.  so, we trust isize unless the start of the last extent is
4448	 * beyond isize
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4449	 */
4450	if (last < isize) {
4451		last = (u64)-1;
4452		last_for_get_extent = isize;
 
 
 
 
 
4453	}
4454
4455	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4456			 &cached_state);
 
 
 
 
 
 
 
 
4457
4458	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4459				   get_extent);
4460	if (!em)
4461		goto out;
4462	if (IS_ERR(em)) {
4463		ret = PTR_ERR(em);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4464		goto out;
4465	}
4466
4467	while (!end) {
4468		u64 offset_in_extent = 0;
 
4469
4470		/* break if the extent we found is outside the range */
4471		if (em->start >= max || extent_map_end(em) < off)
4472			break;
 
4473
 
 
 
 
 
4474		/*
4475		 * get_extent may return an extent that starts before our
4476		 * requested range.  We have to make sure the ranges
4477		 * we return to fiemap always move forward and don't
4478		 * overlap, so adjust the offsets here
4479		 */
4480		em_start = max(em->start, off);
 
 
4481
4482		/*
4483		 * record the offset from the start of the extent
4484		 * for adjusting the disk offset below.  Only do this if the
4485		 * extent isn't compressed since our in ram offset may be past
4486		 * what we have actually allocated on disk.
4487		 */
4488		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4489			offset_in_extent = em_start - em->start;
4490		em_end = extent_map_end(em);
4491		em_len = em_end - em_start;
4492		disko = 0;
4493		flags = 0;
 
 
 
 
 
 
4494
4495		/*
4496		 * bump off for our next call to get_extent
 
4497		 */
4498		off = extent_map_end(em);
4499		if (off >= max)
4500			end = 1;
4501
4502		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4503			end = 1;
4504			flags |= FIEMAP_EXTENT_LAST;
4505		} else if (em->block_start == EXTENT_MAP_INLINE) {
4506			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4507				  FIEMAP_EXTENT_NOT_ALIGNED);
4508		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4509			flags |= (FIEMAP_EXTENT_DELALLOC |
4510				  FIEMAP_EXTENT_UNKNOWN);
4511		} else if (fieinfo->fi_extents_max) {
4512			struct btrfs_trans_handle *trans;
4513
4514			u64 bytenr = em->block_start -
4515				(em->start - em->orig_start);
4516
4517			disko = em->block_start + offset_in_extent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4518
4519			/*
4520			 * We need a trans handle to get delayed refs
4521			 */
4522			trans = btrfs_join_transaction(root);
4523			/*
4524			 * It's OK if we can't start a trans we can still check
4525			 * from commit_root
4526			 */
4527			if (IS_ERR(trans))
4528				trans = NULL;
4529
4530			/*
4531			 * As btrfs supports shared space, this information
4532			 * can be exported to userspace tools via
4533			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4534			 * then we're just getting a count and we can skip the
4535			 * lookup stuff.
4536			 */
4537			ret = btrfs_check_shared(trans, root->fs_info,
4538						 root->objectid,
4539						 btrfs_ino(inode), bytenr);
4540			if (trans)
4541				btrfs_end_transaction(trans);
4542			if (ret < 0)
4543				goto out_free;
4544			if (ret)
4545				flags |= FIEMAP_EXTENT_SHARED;
4546			ret = 0;
4547		}
4548		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
 
4549			flags |= FIEMAP_EXTENT_ENCODED;
4550		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4551			flags |= FIEMAP_EXTENT_UNWRITTEN;
4552
4553		free_extent_map(em);
4554		em = NULL;
4555		if ((em_start >= last) || em_len == (u64)-1 ||
4556		   (last == (u64)-1 && isize <= em_end)) {
4557			flags |= FIEMAP_EXTENT_LAST;
4558			end = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4559		}
4560
4561		/* now scan forward to see if this is really the last extent. */
4562		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4563					   get_extent);
4564		if (IS_ERR(em)) {
4565			ret = PTR_ERR(em);
4566			goto out;
4567		}
4568		if (!em) {
4569			flags |= FIEMAP_EXTENT_LAST;
4570			end = 1;
 
 
 
 
4571		}
4572		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4573					      em_len, flags);
4574		if (ret) {
4575			if (ret == 1)
4576				ret = 0;
4577			goto out_free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4578		}
4579	}
4580out_free:
4581	free_extent_map(em);
4582out:
 
 
4583	btrfs_free_path(path);
4584	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4585			     &cached_state, GFP_NOFS);
4586	return ret;
4587}
4588
4589static void __free_extent_buffer(struct extent_buffer *eb)
4590{
4591	btrfs_leak_debug_del(&eb->leak_list);
4592	kmem_cache_free(extent_buffer_cache, eb);
4593}
4594
4595int extent_buffer_under_io(struct extent_buffer *eb)
4596{
4597	return (atomic_read(&eb->io_pages) ||
4598		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4599		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4600}
4601
4602/*
4603 * Helper for releasing extent buffer page.
4604 */
4605static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4606{
4607	unsigned long index;
4608	struct page *page;
4609	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4610
4611	BUG_ON(extent_buffer_under_io(eb));
 
 
 
 
 
4612
4613	index = num_extent_pages(eb->start, eb->len);
4614	if (index == 0)
 
4615		return;
 
4616
4617	do {
4618		index--;
4619		page = eb->pages[index];
4620		if (!page)
4621			continue;
4622		if (mapped)
4623			spin_lock(&page->mapping->private_lock);
4624		/*
4625		 * We do this since we'll remove the pages after we've
4626		 * removed the eb from the radix tree, so we could race
4627		 * and have this page now attached to the new eb.  So
4628		 * only clear page_private if it's still connected to
4629		 * this eb.
4630		 */
4631		if (PagePrivate(page) &&
4632		    page->private == (unsigned long)eb) {
4633			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4634			BUG_ON(PageDirty(page));
4635			BUG_ON(PageWriteback(page));
4636			/*
4637			 * We need to make sure we haven't be attached
4638			 * to a new eb.
4639			 */
4640			ClearPagePrivate(page);
4641			set_page_private(page, 0);
4642			/* One for the page private */
4643			put_page(page);
4644		}
 
 
 
 
4645
4646		if (mapped)
4647			spin_unlock(&page->mapping->private_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4648
4649		/* One for when we allocated the page */
4650		put_page(page);
4651	} while (index != 0);
4652}
4653
4654/*
4655 * Helper for releasing the extent buffer.
4656 */
4657static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4658{
4659	btrfs_release_extent_buffer_page(eb);
 
4660	__free_extent_buffer(eb);
4661}
4662
4663static struct extent_buffer *
4664__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4665		      unsigned long len)
4666{
4667	struct extent_buffer *eb = NULL;
4668
4669	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4670	eb->start = start;
4671	eb->len = len;
4672	eb->fs_info = fs_info;
4673	eb->bflags = 0;
4674	rwlock_init(&eb->lock);
4675	atomic_set(&eb->write_locks, 0);
4676	atomic_set(&eb->read_locks, 0);
4677	atomic_set(&eb->blocking_readers, 0);
4678	atomic_set(&eb->blocking_writers, 0);
4679	atomic_set(&eb->spinning_readers, 0);
4680	atomic_set(&eb->spinning_writers, 0);
4681	eb->lock_nested = 0;
4682	init_waitqueue_head(&eb->write_lock_wq);
4683	init_waitqueue_head(&eb->read_lock_wq);
4684
4685	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4686
4687	spin_lock_init(&eb->refs_lock);
4688	atomic_set(&eb->refs, 1);
4689	atomic_set(&eb->io_pages, 0);
4690
4691	/*
4692	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4693	 */
4694	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4695		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4696	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4697
4698	return eb;
4699}
4700
4701struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4702{
4703	unsigned long i;
4704	struct page *p;
4705	struct extent_buffer *new;
4706	unsigned long num_pages = num_extent_pages(src->start, src->len);
 
4707
4708	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4709	if (new == NULL)
4710		return NULL;
4711
4712	for (i = 0; i < num_pages; i++) {
4713		p = alloc_page(GFP_NOFS);
4714		if (!p) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4715			btrfs_release_extent_buffer(new);
4716			return NULL;
4717		}
4718		attach_extent_buffer_page(new, p);
4719		WARN_ON(PageDirty(p));
4720		SetPageUptodate(p);
4721		new->pages[i] = p;
4722		copy_page(page_address(p), page_address(src->pages[i]));
4723	}
4724
4725	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4726	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4727
4728	return new;
4729}
4730
4731struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4732						  u64 start, unsigned long len)
4733{
4734	struct extent_buffer *eb;
4735	unsigned long num_pages;
4736	unsigned long i;
4737
4738	num_pages = num_extent_pages(start, len);
4739
4740	eb = __alloc_extent_buffer(fs_info, start, len);
4741	if (!eb)
4742		return NULL;
4743
4744	for (i = 0; i < num_pages; i++) {
4745		eb->pages[i] = alloc_page(GFP_NOFS);
4746		if (!eb->pages[i])
 
 
 
 
 
4747			goto err;
4748	}
 
4749	set_extent_buffer_uptodate(eb);
4750	btrfs_set_header_nritems(eb, 0);
4751	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4752
4753	return eb;
4754err:
4755	for (; i > 0; i--)
4756		__free_page(eb->pages[i - 1]);
 
 
 
 
4757	__free_extent_buffer(eb);
4758	return NULL;
4759}
4760
4761struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4762						u64 start)
4763{
4764	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4765}
4766
4767static void check_buffer_tree_ref(struct extent_buffer *eb)
4768{
4769	int refs;
4770	/* the ref bit is tricky.  We have to make sure it is set
4771	 * if we have the buffer dirty.   Otherwise the
4772	 * code to free a buffer can end up dropping a dirty
4773	 * page
4774	 *
4775	 * Once the ref bit is set, it won't go away while the
4776	 * buffer is dirty or in writeback, and it also won't
4777	 * go away while we have the reference count on the
4778	 * eb bumped.
4779	 *
4780	 * We can't just set the ref bit without bumping the
4781	 * ref on the eb because free_extent_buffer might
4782	 * see the ref bit and try to clear it.  If this happens
4783	 * free_extent_buffer might end up dropping our original
4784	 * ref by mistake and freeing the page before we are able
4785	 * to add one more ref.
4786	 *
4787	 * So bump the ref count first, then set the bit.  If someone
4788	 * beat us to it, drop the ref we added.
 
 
 
 
 
4789	 */
4790	refs = atomic_read(&eb->refs);
4791	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4792		return;
4793
4794	spin_lock(&eb->refs_lock);
4795	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4796		atomic_inc(&eb->refs);
4797	spin_unlock(&eb->refs_lock);
4798}
4799
4800static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4801		struct page *accessed)
4802{
4803	unsigned long num_pages, i;
4804
4805	check_buffer_tree_ref(eb);
4806
4807	num_pages = num_extent_pages(eb->start, eb->len);
4808	for (i = 0; i < num_pages; i++) {
4809		struct page *p = eb->pages[i];
4810
4811		if (p != accessed)
4812			mark_page_accessed(p);
4813	}
4814}
4815
4816struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4817					 u64 start)
4818{
4819	struct extent_buffer *eb;
4820
4821	rcu_read_lock();
4822	eb = radix_tree_lookup(&fs_info->buffer_radix,
4823			       start >> PAGE_SHIFT);
4824	if (eb && atomic_inc_not_zero(&eb->refs)) {
4825		rcu_read_unlock();
4826		/*
4827		 * Lock our eb's refs_lock to avoid races with
4828		 * free_extent_buffer. When we get our eb it might be flagged
4829		 * with EXTENT_BUFFER_STALE and another task running
4830		 * free_extent_buffer might have seen that flag set,
4831		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4832		 * writeback flags not set) and it's still in the tree (flag
4833		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4834		 * of decrementing the extent buffer's reference count twice.
4835		 * So here we could race and increment the eb's reference count,
4836		 * clear its stale flag, mark it as dirty and drop our reference
4837		 * before the other task finishes executing free_extent_buffer,
4838		 * which would later result in an attempt to free an extent
4839		 * buffer that is dirty.
4840		 */
4841		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4842			spin_lock(&eb->refs_lock);
4843			spin_unlock(&eb->refs_lock);
4844		}
4845		mark_extent_buffer_accessed(eb, NULL);
4846		return eb;
4847	}
4848	rcu_read_unlock();
4849
4850	return NULL;
4851}
4852
4853#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4854struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4855					u64 start)
4856{
4857	struct extent_buffer *eb, *exists = NULL;
4858	int ret;
4859
4860	eb = find_extent_buffer(fs_info, start);
4861	if (eb)
4862		return eb;
4863	eb = alloc_dummy_extent_buffer(fs_info, start);
4864	if (!eb)
4865		return NULL;
4866	eb->fs_info = fs_info;
4867again:
4868	ret = radix_tree_preload(GFP_NOFS);
4869	if (ret)
 
4870		goto free_eb;
 
4871	spin_lock(&fs_info->buffer_lock);
4872	ret = radix_tree_insert(&fs_info->buffer_radix,
4873				start >> PAGE_SHIFT, eb);
4874	spin_unlock(&fs_info->buffer_lock);
4875	radix_tree_preload_end();
4876	if (ret == -EEXIST) {
4877		exists = find_extent_buffer(fs_info, start);
4878		if (exists)
4879			goto free_eb;
4880		else
4881			goto again;
4882	}
4883	check_buffer_tree_ref(eb);
4884	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4885
4886	/*
4887	 * We will free dummy extent buffer's if they come into
4888	 * free_extent_buffer with a ref count of 2, but if we are using this we
4889	 * want the buffers to stay in memory until we're done with them, so
4890	 * bump the ref count again.
4891	 */
4892	atomic_inc(&eb->refs);
4893	return eb;
4894free_eb:
4895	btrfs_release_extent_buffer(eb);
4896	return exists;
4897}
4898#endif
4899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4900struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4901					  u64 start)
4902{
4903	unsigned long len = fs_info->nodesize;
4904	unsigned long num_pages = num_extent_pages(start, len);
4905	unsigned long i;
4906	unsigned long index = start >> PAGE_SHIFT;
4907	struct extent_buffer *eb;
4908	struct extent_buffer *exists = NULL;
4909	struct page *p;
4910	struct address_space *mapping = fs_info->btree_inode->i_mapping;
 
 
 
4911	int uptodate = 1;
4912	int ret;
4913
4914	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4915		btrfs_err(fs_info, "bad tree block start %llu", start);
4916		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
4917	}
 
 
 
4918
4919	eb = find_extent_buffer(fs_info, start);
4920	if (eb)
4921		return eb;
4922
4923	eb = __alloc_extent_buffer(fs_info, start, len);
4924	if (!eb)
4925		return ERR_PTR(-ENOMEM);
4926
4927	for (i = 0; i < num_pages; i++, index++) {
4928		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4929		if (!p) {
4930			exists = ERR_PTR(-ENOMEM);
4931			goto free_eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4932		}
 
4933
4934		spin_lock(&mapping->private_lock);
4935		if (PagePrivate(p)) {
4936			/*
4937			 * We could have already allocated an eb for this page
4938			 * and attached one so lets see if we can get a ref on
4939			 * the existing eb, and if we can we know it's good and
4940			 * we can just return that one, else we know we can just
4941			 * overwrite page->private.
4942			 */
4943			exists = (struct extent_buffer *)p->private;
4944			if (atomic_inc_not_zero(&exists->refs)) {
4945				spin_unlock(&mapping->private_lock);
4946				unlock_page(p);
4947				put_page(p);
4948				mark_extent_buffer_accessed(exists, p);
4949				goto free_eb;
4950			}
4951			exists = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4952
4953			/*
4954			 * Do this so attach doesn't complain and we need to
4955			 * drop the ref the old guy had.
4956			 */
4957			ClearPagePrivate(p);
4958			WARN_ON(PageDirty(p));
4959			put_page(p);
4960		}
4961		attach_extent_buffer_page(eb, p);
4962		spin_unlock(&mapping->private_lock);
4963		WARN_ON(PageDirty(p));
4964		eb->pages[i] = p;
4965		if (!PageUptodate(p))
4966			uptodate = 0;
4967
4968		/*
4969		 * see below about how we avoid a nasty race with release page
4970		 * and why we unlock later
 
 
 
4971		 */
4972	}
4973	if (uptodate)
4974		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 
 
 
4975again:
4976	ret = radix_tree_preload(GFP_NOFS);
4977	if (ret) {
4978		exists = ERR_PTR(ret);
4979		goto free_eb;
4980	}
4981
4982	spin_lock(&fs_info->buffer_lock);
4983	ret = radix_tree_insert(&fs_info->buffer_radix,
4984				start >> PAGE_SHIFT, eb);
4985	spin_unlock(&fs_info->buffer_lock);
4986	radix_tree_preload_end();
4987	if (ret == -EEXIST) {
4988		exists = find_extent_buffer(fs_info, start);
4989		if (exists)
4990			goto free_eb;
 
4991		else
4992			goto again;
4993	}
4994	/* add one reference for the tree */
4995	check_buffer_tree_ref(eb);
4996	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4997
4998	/*
4999	 * there is a race where release page may have
5000	 * tried to find this extent buffer in the radix
5001	 * but failed.  It will tell the VM it is safe to
5002	 * reclaim the, and it will clear the page private bit.
5003	 * We must make sure to set the page private bit properly
5004	 * after the extent buffer is in the radix tree so
5005	 * it doesn't get lost
5006	 */
5007	SetPageChecked(eb->pages[0]);
5008	for (i = 1; i < num_pages; i++) {
5009		p = eb->pages[i];
5010		ClearPageChecked(p);
5011		unlock_page(p);
5012	}
5013	unlock_page(eb->pages[0]);
5014	return eb;
5015
5016free_eb:
5017	WARN_ON(!atomic_dec_and_test(&eb->refs));
5018	for (i = 0; i < num_pages; i++) {
5019		if (eb->pages[i])
5020			unlock_page(eb->pages[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5021	}
 
 
 
 
 
5022
5023	btrfs_release_extent_buffer(eb);
5024	return exists;
 
 
 
5025}
5026
5027static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5028{
5029	struct extent_buffer *eb =
5030			container_of(head, struct extent_buffer, rcu_head);
5031
5032	__free_extent_buffer(eb);
5033}
5034
5035/* Expects to have eb->eb_lock already held */
5036static int release_extent_buffer(struct extent_buffer *eb)
 
5037{
 
 
5038	WARN_ON(atomic_read(&eb->refs) == 0);
5039	if (atomic_dec_and_test(&eb->refs)) {
5040		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5041			struct btrfs_fs_info *fs_info = eb->fs_info;
5042
5043			spin_unlock(&eb->refs_lock);
5044
5045			spin_lock(&fs_info->buffer_lock);
5046			radix_tree_delete(&fs_info->buffer_radix,
5047					  eb->start >> PAGE_SHIFT);
5048			spin_unlock(&fs_info->buffer_lock);
5049		} else {
5050			spin_unlock(&eb->refs_lock);
5051		}
5052
 
5053		/* Should be safe to release our pages at this point */
5054		btrfs_release_extent_buffer_page(eb);
5055#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5056		if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5057			__free_extent_buffer(eb);
5058			return 1;
5059		}
5060#endif
5061		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5062		return 1;
5063	}
5064	spin_unlock(&eb->refs_lock);
5065
5066	return 0;
5067}
5068
5069void free_extent_buffer(struct extent_buffer *eb)
5070{
5071	int refs;
5072	int old;
5073	if (!eb)
5074		return;
5075
 
5076	while (1) {
5077		refs = atomic_read(&eb->refs);
5078		if (refs <= 3)
 
5079			break;
5080		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5081		if (old == refs)
5082			return;
5083	}
5084
5085	spin_lock(&eb->refs_lock);
5086	if (atomic_read(&eb->refs) == 2 &&
5087	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5088		atomic_dec(&eb->refs);
5089
5090	if (atomic_read(&eb->refs) == 2 &&
5091	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5092	    !extent_buffer_under_io(eb) &&
5093	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5094		atomic_dec(&eb->refs);
5095
5096	/*
5097	 * I know this is terrible, but it's temporary until we stop tracking
5098	 * the uptodate bits and such for the extent buffers.
5099	 */
5100	release_extent_buffer(eb);
5101}
5102
5103void free_extent_buffer_stale(struct extent_buffer *eb)
5104{
5105	if (!eb)
5106		return;
5107
5108	spin_lock(&eb->refs_lock);
5109	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5110
5111	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5112	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5113		atomic_dec(&eb->refs);
5114	release_extent_buffer(eb);
5115}
5116
5117void clear_extent_buffer_dirty(struct extent_buffer *eb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5118{
5119	unsigned long i;
5120	unsigned long num_pages;
5121	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5122
5123	num_pages = num_extent_pages(eb->start, eb->len);
 
5124
5125	for (i = 0; i < num_pages; i++) {
5126		page = eb->pages[i];
5127		if (!PageDirty(page))
5128			continue;
5129
5130		lock_page(page);
5131		WARN_ON(!PagePrivate(page));
 
5132
5133		clear_page_dirty_for_io(page);
5134		spin_lock_irq(&page->mapping->tree_lock);
5135		if (!PageDirty(page)) {
5136			radix_tree_tag_clear(&page->mapping->page_tree,
5137						page_index(page),
5138						PAGECACHE_TAG_DIRTY);
5139		}
5140		spin_unlock_irq(&page->mapping->tree_lock);
5141		ClearPageError(page);
5142		unlock_page(page);
5143	}
5144	WARN_ON(atomic_read(&eb->refs) == 0);
5145}
5146
5147int set_extent_buffer_dirty(struct extent_buffer *eb)
5148{
5149	unsigned long i;
5150	unsigned long num_pages;
5151	int was_dirty = 0;
5152
5153	check_buffer_tree_ref(eb);
5154
5155	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5156
5157	num_pages = num_extent_pages(eb->start, eb->len);
5158	WARN_ON(atomic_read(&eb->refs) == 0);
5159	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5160
5161	for (i = 0; i < num_pages; i++)
5162		set_page_dirty(eb->pages[i]);
5163	return was_dirty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5164}
5165
5166void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5167{
5168	unsigned long i;
5169	struct page *page;
5170	unsigned long num_pages;
5171
5172	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5173	num_pages = num_extent_pages(eb->start, eb->len);
5174	for (i = 0; i < num_pages; i++) {
5175		page = eb->pages[i];
5176		if (page)
5177			ClearPageUptodate(page);
 
 
 
 
 
 
 
 
 
 
5178	}
5179}
5180
5181void set_extent_buffer_uptodate(struct extent_buffer *eb)
5182{
5183	unsigned long i;
5184	struct page *page;
5185	unsigned long num_pages;
5186
5187	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5188	num_pages = num_extent_pages(eb->start, eb->len);
5189	for (i = 0; i < num_pages; i++) {
5190		page = eb->pages[i];
5191		SetPageUptodate(page);
 
 
 
 
 
 
 
 
5192	}
5193}
5194
5195int extent_buffer_uptodate(struct extent_buffer *eb)
5196{
5197	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5198}
5199
5200int read_extent_buffer_pages(struct extent_io_tree *tree,
5201			     struct extent_buffer *eb, int wait,
5202			     get_extent_t *get_extent, int mirror_num)
5203{
5204	unsigned long i;
5205	struct page *page;
5206	int err;
5207	int ret = 0;
5208	int locked_pages = 0;
5209	int all_uptodate = 1;
5210	unsigned long num_pages;
5211	unsigned long num_reads = 0;
5212	struct bio *bio = NULL;
5213	unsigned long bio_flags = 0;
5214
5215	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5216		return 0;
5217
5218	num_pages = num_extent_pages(eb->start, eb->len);
5219	for (i = 0; i < num_pages; i++) {
5220		page = eb->pages[i];
5221		if (wait == WAIT_NONE) {
5222			if (!trylock_page(page))
5223				goto unlock_exit;
5224		} else {
5225			lock_page(page);
5226		}
5227		locked_pages++;
5228	}
5229	/*
5230	 * We need to firstly lock all pages to make sure that
5231	 * the uptodate bit of our pages won't be affected by
5232	 * clear_extent_buffer_uptodate().
5233	 */
5234	for (i = 0; i < num_pages; i++) {
5235		page = eb->pages[i];
5236		if (!PageUptodate(page)) {
5237			num_reads++;
5238			all_uptodate = 0;
5239		}
5240	}
5241
5242	if (all_uptodate) {
5243		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5244		goto unlock_exit;
5245	}
5246
5247	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5248	eb->read_mirror = 0;
5249	atomic_set(&eb->io_pages, num_reads);
5250	for (i = 0; i < num_pages; i++) {
5251		page = eb->pages[i];
5252
5253		if (!PageUptodate(page)) {
5254			if (ret) {
5255				atomic_dec(&eb->io_pages);
5256				unlock_page(page);
5257				continue;
5258			}
 
 
 
 
 
 
 
 
 
5259
5260			ClearPageError(page);
5261			err = __extent_read_full_page(tree, page,
5262						      get_extent, &bio,
5263						      mirror_num, &bio_flags,
5264						      REQ_META);
5265			if (err) {
5266				ret = err;
5267				/*
5268				 * We use &bio in above __extent_read_full_page,
5269				 * so we ensure that if it returns error, the
5270				 * current page fails to add itself to bio and
5271				 * it's been unlocked.
5272				 *
5273				 * We must dec io_pages by ourselves.
5274				 */
5275				atomic_dec(&eb->io_pages);
5276			}
5277		} else {
5278			unlock_page(page);
5279		}
5280	}
 
5281
5282	if (bio) {
5283		err = submit_one_bio(bio, mirror_num, bio_flags);
5284		if (err)
5285			return err;
 
5286	}
5287
5288	if (ret || wait != WAIT_COMPLETE)
5289		return ret;
 
 
 
 
 
 
 
 
 
 
 
5290
5291	for (i = 0; i < num_pages; i++) {
5292		page = eb->pages[i];
5293		wait_on_page_locked(page);
5294		if (!PageUptodate(page))
5295			ret = -EIO;
5296	}
 
 
 
 
 
5297
5298	return ret;
 
 
5299
5300unlock_exit:
5301	while (locked_pages > 0) {
5302		locked_pages--;
5303		page = eb->pages[locked_pages];
5304		unlock_page(page);
5305	}
5306	return ret;
5307}
5308
5309void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5310			unsigned long start,
5311			unsigned long len)
5312{
 
5313	size_t cur;
5314	size_t offset;
5315	struct page *page;
5316	char *kaddr;
5317	char *dst = (char *)dstv;
5318	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5319	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5320
5321	WARN_ON(start > eb->len);
5322	WARN_ON(start + len > eb->start + eb->len);
 
 
 
 
 
 
 
 
 
 
 
5323
5324	offset = (start_offset + start) & (PAGE_SIZE - 1);
5325
5326	while (len > 0) {
5327		page = eb->pages[i];
5328
5329		cur = min(len, (PAGE_SIZE - offset));
5330		kaddr = page_address(page);
5331		memcpy(dst, kaddr + offset, cur);
5332
5333		dst += cur;
5334		len -= cur;
5335		offset = 0;
5336		i++;
5337	}
5338}
5339
5340int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5341			unsigned long start,
5342			unsigned long len)
5343{
 
5344	size_t cur;
5345	size_t offset;
5346	struct page *page;
5347	char *kaddr;
5348	char __user *dst = (char __user *)dstv;
5349	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5350	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5351	int ret = 0;
5352
5353	WARN_ON(start > eb->len);
5354	WARN_ON(start + len > eb->start + eb->len);
5355
5356	offset = (start_offset + start) & (PAGE_SIZE - 1);
 
 
 
 
 
 
5357
5358	while (len > 0) {
5359		page = eb->pages[i];
5360
5361		cur = min(len, (PAGE_SIZE - offset));
5362		kaddr = page_address(page);
5363		if (copy_to_user(dst, kaddr + offset, cur)) {
5364			ret = -EFAULT;
5365			break;
5366		}
5367
5368		dst += cur;
5369		len -= cur;
5370		offset = 0;
5371		i++;
5372	}
5373
5374	return ret;
5375}
5376
5377/*
5378 * return 0 if the item is found within a page.
5379 * return 1 if the item spans two pages.
5380 * return -EINVAL otherwise.
5381 */
5382int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5383			       unsigned long min_len, char **map,
5384			       unsigned long *map_start,
5385			       unsigned long *map_len)
5386{
5387	size_t offset = start & (PAGE_SIZE - 1);
5388	char *kaddr;
5389	struct page *p;
5390	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5391	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5392	unsigned long end_i = (start_offset + start + min_len - 1) >>
5393		PAGE_SHIFT;
5394
5395	if (i != end_i)
5396		return 1;
5397
5398	if (i == 0) {
5399		offset = start_offset;
5400		*map_start = 0;
5401	} else {
5402		offset = 0;
5403		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5404	}
5405
5406	if (start + min_len > eb->len) {
5407		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5408		       eb->start, eb->len, start, min_len);
5409		return -EINVAL;
5410	}
5411
5412	p = eb->pages[i];
5413	kaddr = page_address(p);
5414	*map = kaddr + offset;
5415	*map_len = PAGE_SIZE - offset;
5416	return 0;
5417}
5418
5419int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5420			  unsigned long start,
5421			  unsigned long len)
5422{
 
5423	size_t cur;
5424	size_t offset;
5425	struct page *page;
5426	char *kaddr;
5427	char *ptr = (char *)ptrv;
5428	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5429	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5430	int ret = 0;
5431
5432	WARN_ON(start > eb->len);
5433	WARN_ON(start + len > eb->start + eb->len);
 
 
 
5434
5435	offset = (start_offset + start) & (PAGE_SIZE - 1);
5436
5437	while (len > 0) {
5438		page = eb->pages[i];
5439
5440		cur = min(len, (PAGE_SIZE - offset));
5441
5442		kaddr = page_address(page);
5443		ret = memcmp(ptr, kaddr + offset, cur);
5444		if (ret)
5445			break;
5446
5447		ptr += cur;
5448		len -= cur;
5449		offset = 0;
5450		i++;
5451	}
5452	return ret;
5453}
5454
5455void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5456		const void *srcv)
 
 
 
 
 
5457{
5458	char *kaddr;
 
 
 
5459
5460	WARN_ON(!PageUptodate(eb->pages[0]));
5461	kaddr = page_address(eb->pages[0]);
5462	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5463			BTRFS_FSID_SIZE);
5464}
 
 
 
 
 
5465
5466void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5467{
5468	char *kaddr;
5469
5470	WARN_ON(!PageUptodate(eb->pages[0]));
5471	kaddr = page_address(eb->pages[0]);
5472	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5473			BTRFS_FSID_SIZE);
 
 
 
5474}
5475
5476void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5477			 unsigned long start, unsigned long len)
 
5478{
 
5479	size_t cur;
5480	size_t offset;
5481	struct page *page;
5482	char *kaddr;
5483	char *src = (char *)srcv;
5484	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5485	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
 
5486
5487	WARN_ON(start > eb->len);
5488	WARN_ON(start + len > eb->start + eb->len);
 
 
 
 
 
 
 
 
5489
5490	offset = (start_offset + start) & (PAGE_SIZE - 1);
5491
5492	while (len > 0) {
5493		page = eb->pages[i];
5494		WARN_ON(!PageUptodate(page));
5495
5496		cur = min(len, PAGE_SIZE - offset);
5497		kaddr = page_address(page);
5498		memcpy(kaddr + offset, src, cur);
 
 
 
5499
5500		src += cur;
5501		len -= cur;
5502		offset = 0;
5503		i++;
5504	}
5505}
5506
5507void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5508		unsigned long len)
5509{
5510	size_t cur;
5511	size_t offset;
5512	struct page *page;
5513	char *kaddr;
5514	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5515	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5516
5517	WARN_ON(start > eb->len);
5518	WARN_ON(start + len > eb->start + eb->len);
 
 
 
5519
5520	offset = (start_offset + start) & (PAGE_SIZE - 1);
 
 
 
5521
5522	while (len > 0) {
5523		page = eb->pages[i];
5524		WARN_ON(!PageUptodate(page));
 
5525
5526		cur = min(len, PAGE_SIZE - offset);
5527		kaddr = page_address(page);
5528		memset(kaddr + offset, 0, cur);
5529
5530		len -= cur;
5531		offset = 0;
5532		i++;
5533	}
5534}
5535
5536void copy_extent_buffer_full(struct extent_buffer *dst,
5537			     struct extent_buffer *src)
 
 
 
 
 
 
 
 
5538{
5539	int i;
5540	unsigned num_pages;
5541
5542	ASSERT(dst->len == src->len);
5543
5544	num_pages = num_extent_pages(dst->start, dst->len);
5545	for (i = 0; i < num_pages; i++)
5546		copy_page(page_address(dst->pages[i]),
5547				page_address(src->pages[i]));
 
 
 
 
 
 
5548}
5549
5550void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
 
5551			unsigned long dst_offset, unsigned long src_offset,
5552			unsigned long len)
5553{
 
5554	u64 dst_len = dst->len;
5555	size_t cur;
5556	size_t offset;
5557	struct page *page;
5558	char *kaddr;
5559	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5560	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
 
 
 
5561
5562	WARN_ON(src->len != dst_len);
5563
5564	offset = (start_offset + dst_offset) &
5565		(PAGE_SIZE - 1);
5566
5567	while (len > 0) {
5568		page = dst->pages[i];
5569		WARN_ON(!PageUptodate(page));
5570
5571		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5572
5573		kaddr = page_address(page);
5574		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5575
5576		src_offset += cur;
5577		len -= cur;
5578		offset = 0;
5579		i++;
5580	}
5581}
5582
5583void le_bitmap_set(u8 *map, unsigned int start, int len)
5584{
5585	u8 *p = map + BIT_BYTE(start);
5586	const unsigned int size = start + len;
5587	int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5588	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5589
5590	while (len - bits_to_set >= 0) {
5591		*p |= mask_to_set;
5592		len -= bits_to_set;
5593		bits_to_set = BITS_PER_BYTE;
5594		mask_to_set = ~0;
5595		p++;
5596	}
5597	if (len) {
5598		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5599		*p |= mask_to_set;
5600	}
5601}
5602
5603void le_bitmap_clear(u8 *map, unsigned int start, int len)
5604{
5605	u8 *p = map + BIT_BYTE(start);
5606	const unsigned int size = start + len;
5607	int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5608	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5609
5610	while (len - bits_to_clear >= 0) {
5611		*p &= ~mask_to_clear;
5612		len -= bits_to_clear;
5613		bits_to_clear = BITS_PER_BYTE;
5614		mask_to_clear = ~0;
5615		p++;
5616	}
5617	if (len) {
5618		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5619		*p &= ~mask_to_clear;
5620	}
5621}
5622
5623/*
5624 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5625 * given bit number
5626 * @eb: the extent buffer
5627 * @start: offset of the bitmap item in the extent buffer
5628 * @nr: bit number
5629 * @page_index: return index of the page in the extent buffer that contains the
5630 * given bit number
5631 * @page_offset: return offset into the page given by page_index
5632 *
5633 * This helper hides the ugliness of finding the byte in an extent buffer which
5634 * contains a given bit.
5635 */
5636static inline void eb_bitmap_offset(struct extent_buffer *eb,
5637				    unsigned long start, unsigned long nr,
5638				    unsigned long *page_index,
5639				    size_t *page_offset)
5640{
5641	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5642	size_t byte_offset = BIT_BYTE(nr);
5643	size_t offset;
5644
5645	/*
5646	 * The byte we want is the offset of the extent buffer + the offset of
5647	 * the bitmap item in the extent buffer + the offset of the byte in the
5648	 * bitmap item.
5649	 */
5650	offset = start_offset + start + byte_offset;
5651
5652	*page_index = offset >> PAGE_SHIFT;
5653	*page_offset = offset & (PAGE_SIZE - 1);
5654}
5655
5656/**
5657 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5658 * @eb: the extent buffer
5659 * @start: offset of the bitmap item in the extent buffer
5660 * @nr: bit number to test
 
5661 */
5662int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5663			   unsigned long nr)
5664{
5665	u8 *kaddr;
5666	struct page *page;
5667	unsigned long i;
5668	size_t offset;
 
5669
5670	eb_bitmap_offset(eb, start, nr, &i, &offset);
5671	page = eb->pages[i];
5672	WARN_ON(!PageUptodate(page));
5673	kaddr = page_address(page);
5674	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5675}
5676
5677/**
5678 * extent_buffer_bitmap_set - set an area of a bitmap
5679 * @eb: the extent buffer
5680 * @start: offset of the bitmap item in the extent buffer
5681 * @pos: bit number of the first bit
5682 * @len: number of bits to set
 
 
 
 
 
 
 
 
 
 
5683 */
5684void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5685			      unsigned long pos, unsigned long len)
5686{
 
 
 
 
5687	u8 *kaddr;
5688	struct page *page;
5689	unsigned long i;
5690	size_t offset;
5691	const unsigned int size = pos + len;
5692	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5693	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5694
5695	eb_bitmap_offset(eb, start, pos, &i, &offset);
5696	page = eb->pages[i];
5697	WARN_ON(!PageUptodate(page));
5698	kaddr = page_address(page);
5699
5700	while (len >= bits_to_set) {
5701		kaddr[offset] |= mask_to_set;
5702		len -= bits_to_set;
5703		bits_to_set = BITS_PER_BYTE;
5704		mask_to_set = ~0;
5705		if (++offset >= PAGE_SIZE && len > 0) {
5706			offset = 0;
5707			page = eb->pages[++i];
5708			WARN_ON(!PageUptodate(page));
5709			kaddr = page_address(page);
5710		}
5711	}
5712	if (len) {
5713		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5714		kaddr[offset] |= mask_to_set;
5715	}
5716}
5717
5718
5719/**
5720 * extent_buffer_bitmap_clear - clear an area of a bitmap
5721 * @eb: the extent buffer
5722 * @start: offset of the bitmap item in the extent buffer
5723 * @pos: bit number of the first bit
5724 * @len: number of bits to clear
5725 */
5726void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5727				unsigned long pos, unsigned long len)
5728{
 
 
 
 
 
 
5729	u8 *kaddr;
5730	struct page *page;
5731	unsigned long i;
5732	size_t offset;
5733	const unsigned int size = pos + len;
5734	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5735	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5736
5737	eb_bitmap_offset(eb, start, pos, &i, &offset);
5738	page = eb->pages[i];
5739	WARN_ON(!PageUptodate(page));
5740	kaddr = page_address(page);
5741
5742	while (len >= bits_to_clear) {
5743		kaddr[offset] &= ~mask_to_clear;
5744		len -= bits_to_clear;
5745		bits_to_clear = BITS_PER_BYTE;
5746		mask_to_clear = ~0;
5747		if (++offset >= PAGE_SIZE && len > 0) {
5748			offset = 0;
5749			page = eb->pages[++i];
5750			WARN_ON(!PageUptodate(page));
5751			kaddr = page_address(page);
5752		}
5753	}
5754	if (len) {
5755		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5756		kaddr[offset] &= ~mask_to_clear;
5757	}
5758}
5759
5760static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5761{
5762	unsigned long distance = (src > dst) ? src - dst : dst - src;
5763	return distance < len;
5764}
5765
5766static void copy_pages(struct page *dst_page, struct page *src_page,
5767		       unsigned long dst_off, unsigned long src_off,
5768		       unsigned long len)
5769{
5770	char *dst_kaddr = page_address(dst_page);
5771	char *src_kaddr;
5772	int must_memmove = 0;
5773
5774	if (dst_page != src_page) {
5775		src_kaddr = page_address(src_page);
5776	} else {
5777		src_kaddr = dst_kaddr;
5778		if (areas_overlap(src_off, dst_off, len))
5779			must_memmove = 1;
5780	}
5781
5782	if (must_memmove)
5783		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5784	else
5785		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5786}
5787
5788void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5789			   unsigned long src_offset, unsigned long len)
5790{
5791	struct btrfs_fs_info *fs_info = dst->fs_info;
5792	size_t cur;
5793	size_t dst_off_in_page;
5794	size_t src_off_in_page;
5795	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5796	unsigned long dst_i;
5797	unsigned long src_i;
5798
5799	if (src_offset + len > dst->len) {
5800		btrfs_err(fs_info,
5801			"memmove bogus src_offset %lu move len %lu dst len %lu",
5802			 src_offset, len, dst->len);
5803		BUG_ON(1);
5804	}
5805	if (dst_offset + len > dst->len) {
5806		btrfs_err(fs_info,
5807			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5808			 dst_offset, len, dst->len);
5809		BUG_ON(1);
5810	}
5811
5812	while (len > 0) {
5813		dst_off_in_page = (start_offset + dst_offset) &
5814			(PAGE_SIZE - 1);
5815		src_off_in_page = (start_offset + src_offset) &
5816			(PAGE_SIZE - 1);
5817
5818		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5819		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5820
5821		cur = min(len, (unsigned long)(PAGE_SIZE -
5822					       src_off_in_page));
5823		cur = min_t(unsigned long, cur,
5824			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5825
5826		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5827			   dst_off_in_page, src_off_in_page, cur);
5828
5829		src_offset += cur;
5830		dst_offset += cur;
5831		len -= cur;
5832	}
5833}
5834
5835void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5836			   unsigned long src_offset, unsigned long len)
 
5837{
5838	struct btrfs_fs_info *fs_info = dst->fs_info;
5839	size_t cur;
5840	size_t dst_off_in_page;
5841	size_t src_off_in_page;
5842	unsigned long dst_end = dst_offset + len - 1;
5843	unsigned long src_end = src_offset + len - 1;
5844	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5845	unsigned long dst_i;
5846	unsigned long src_i;
5847
5848	if (src_offset + len > dst->len) {
5849		btrfs_err(fs_info,
5850			  "memmove bogus src_offset %lu move len %lu len %lu",
5851			  src_offset, len, dst->len);
5852		BUG_ON(1);
5853	}
5854	if (dst_offset + len > dst->len) {
5855		btrfs_err(fs_info,
5856			  "memmove bogus dst_offset %lu move len %lu len %lu",
5857			  dst_offset, len, dst->len);
5858		BUG_ON(1);
5859	}
5860	if (dst_offset < src_offset) {
5861		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5862		return;
5863	}
 
 
 
 
 
 
5864	while (len > 0) {
5865		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5866		src_i = (start_offset + src_end) >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5867
5868		dst_off_in_page = (start_offset + dst_end) &
5869			(PAGE_SIZE - 1);
5870		src_off_in_page = (start_offset + src_end) &
5871			(PAGE_SIZE - 1);
5872
5873		cur = min_t(unsigned long, len, src_off_in_page + 1);
5874		cur = min(cur, dst_off_in_page + 1);
5875		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5876			   dst_off_in_page - cur + 1,
5877			   src_off_in_page - cur + 1, cur);
5878
5879		dst_end -= cur;
5880		src_end -= cur;
5881		len -= cur;
5882	}
5883}
5884
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5885int try_release_extent_buffer(struct page *page)
5886{
 
5887	struct extent_buffer *eb;
5888
 
 
 
5889	/*
5890	 * We need to make sure nobody is attaching this page to an eb right
5891	 * now.
5892	 */
5893	spin_lock(&page->mapping->private_lock);
5894	if (!PagePrivate(page)) {
5895		spin_unlock(&page->mapping->private_lock);
5896		return 1;
5897	}
5898
5899	eb = (struct extent_buffer *)page->private;
5900	BUG_ON(!eb);
5901
5902	/*
5903	 * This is a little awful but should be ok, we need to make sure that
5904	 * the eb doesn't disappear out from under us while we're looking at
5905	 * this page.
5906	 */
5907	spin_lock(&eb->refs_lock);
5908	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5909		spin_unlock(&eb->refs_lock);
5910		spin_unlock(&page->mapping->private_lock);
5911		return 0;
5912	}
5913	spin_unlock(&page->mapping->private_lock);
5914
5915	/*
5916	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5917	 * so just return, this page will likely be freed soon anyway.
5918	 */
5919	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5920		spin_unlock(&eb->refs_lock);
5921		return 0;
5922	}
5923
5924	return release_extent_buffer(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5925}