Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
   9#include "messages.h"
  10#include "ctree.h"
  11#include "delayed-ref.h"
  12#include "transaction.h"
  13#include "qgroup.h"
  14#include "space-info.h"
  15#include "tree-mod-log.h"
  16#include "fs.h"
  17
  18struct kmem_cache *btrfs_delayed_ref_head_cachep;
  19struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  20struct kmem_cache *btrfs_delayed_data_ref_cachep;
  21struct kmem_cache *btrfs_delayed_extent_op_cachep;
  22/*
  23 * delayed back reference update tracking.  For subvolume trees
  24 * we queue up extent allocations and backref maintenance for
  25 * delayed processing.   This avoids deep call chains where we
  26 * add extents in the middle of btrfs_search_slot, and it allows
  27 * us to buffer up frequently modified backrefs in an rb tree instead
  28 * of hammering updates on the extent allocation tree.
  29 */
  30
  31bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  32{
  33	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  34	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  35	bool ret = false;
  36	u64 reserved;
  37
  38	spin_lock(&global_rsv->lock);
  39	reserved = global_rsv->reserved;
  40	spin_unlock(&global_rsv->lock);
  41
  42	/*
  43	 * Since the global reserve is just kind of magic we don't really want
  44	 * to rely on it to save our bacon, so if our size is more than the
  45	 * delayed_refs_rsv and the global rsv then it's time to think about
  46	 * bailing.
  47	 */
  48	spin_lock(&delayed_refs_rsv->lock);
  49	reserved += delayed_refs_rsv->reserved;
  50	if (delayed_refs_rsv->size >= reserved)
  51		ret = true;
  52	spin_unlock(&delayed_refs_rsv->lock);
  53	return ret;
  54}
  55
  56/*
  57 * Release a ref head's reservation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58 *
  59 * @fs_info:  the filesystem
  60 * @nr_refs:  number of delayed refs to drop
  61 * @nr_csums: number of csum items to drop
  62 *
  63 * Drops the delayed ref head's count from the delayed refs rsv and free any
  64 * excess reservation we had.
  65 */
  66void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
  67{
  68	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  69	u64 num_bytes;
  70	u64 released;
  71
  72	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
  73	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
  74
  75	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
  76	if (released)
  77		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
  78					      0, released, 0);
  79}
  80
  81/*
  82 * Adjust the size of the delayed refs rsv.
 
  83 *
  84 * This is to be called anytime we may have adjusted trans->delayed_ref_updates
  85 * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
  86 * add it to the delayed_refs_rsv.
  87 */
  88void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
  89{
  90	struct btrfs_fs_info *fs_info = trans->fs_info;
  91	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
  92	struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
  93	u64 num_bytes;
  94	u64 reserved_bytes;
  95
  96	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
  97	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
  98						       trans->delayed_ref_csum_deletions);
  99
 100	if (num_bytes == 0)
 101		return;
 102
 103	/*
 104	 * Try to take num_bytes from the transaction's local delayed reserve.
 105	 * If not possible, try to take as much as it's available. If the local
 106	 * reserve doesn't have enough reserved space, the delayed refs reserve
 107	 * will be refilled next time btrfs_delayed_refs_rsv_refill() is called
 108	 * by someone or if a transaction commit is triggered before that, the
 109	 * global block reserve will be used. We want to minimize using the
 110	 * global block reserve for cases we can account for in advance, to
 111	 * avoid exhausting it and reach -ENOSPC during a transaction commit.
 112	 */
 113	spin_lock(&local_rsv->lock);
 114	reserved_bytes = min(num_bytes, local_rsv->reserved);
 115	local_rsv->reserved -= reserved_bytes;
 116	local_rsv->full = (local_rsv->reserved >= local_rsv->size);
 117	spin_unlock(&local_rsv->lock);
 118
 119	spin_lock(&delayed_rsv->lock);
 120	delayed_rsv->size += num_bytes;
 121	delayed_rsv->reserved += reserved_bytes;
 122	delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
 123	spin_unlock(&delayed_rsv->lock);
 124	trans->delayed_ref_updates = 0;
 125	trans->delayed_ref_csum_deletions = 0;
 126}
 127
 128/*
 129 * Adjust the size of the delayed refs block reserve for 1 block group item
 130 * insertion, used after allocating a block group.
 131 */
 132void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
 133{
 134	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 135
 136	spin_lock(&delayed_rsv->lock);
 137	/*
 138	 * Inserting a block group item does not require changing the free space
 139	 * tree, only the extent tree or the block group tree, so this is all we
 140	 * need.
 141	 */
 142	delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
 143	delayed_rsv->full = false;
 144	spin_unlock(&delayed_rsv->lock);
 145}
 146
 147/*
 148 * Adjust the size of the delayed refs block reserve to release space for 1
 149 * block group item insertion.
 150 */
 151void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
 152{
 153	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 154	const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 155	u64 released;
 156
 157	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
 158	if (released > 0)
 159		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 160					      0, released, 0);
 161}
 162
 163/*
 164 * Adjust the size of the delayed refs block reserve for 1 block group item
 165 * update.
 166 */
 167void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
 168{
 169	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 170
 171	spin_lock(&delayed_rsv->lock);
 172	/*
 173	 * Updating a block group item does not result in new nodes/leaves and
 174	 * does not require changing the free space tree, only the extent tree
 175	 * or the block group tree, so this is all we need.
 176	 */
 177	delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
 178	delayed_rsv->full = false;
 179	spin_unlock(&delayed_rsv->lock);
 180}
 181
 182/*
 183 * Adjust the size of the delayed refs block reserve to release space for 1
 184 * block group item update.
 185 */
 186void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
 187{
 188	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 189	const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 190	u64 released;
 191
 192	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
 193	if (released > 0)
 194		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 195					      0, released, 0);
 196}
 197
 198/*
 199 * Transfer bytes to our delayed refs rsv.
 200 *
 201 * @fs_info:   the filesystem
 
 202 * @num_bytes: number of bytes to transfer
 203 *
 204 * This transfers up to the num_bytes amount, previously reserved, to the
 205 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 206 */
 207void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 
 208				       u64 num_bytes)
 209{
 210	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 211	u64 to_free = 0;
 212
 
 
 
 
 
 213	spin_lock(&delayed_refs_rsv->lock);
 214	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 215		u64 delta = delayed_refs_rsv->size -
 216			delayed_refs_rsv->reserved;
 217		if (num_bytes > delta) {
 218			to_free = num_bytes - delta;
 219			num_bytes = delta;
 220		}
 221	} else {
 222		to_free = num_bytes;
 223		num_bytes = 0;
 224	}
 225
 226	if (num_bytes)
 227		delayed_refs_rsv->reserved += num_bytes;
 228	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 229		delayed_refs_rsv->full = true;
 230	spin_unlock(&delayed_refs_rsv->lock);
 231
 232	if (num_bytes)
 233		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 234					      0, num_bytes, 1);
 235	if (to_free)
 236		btrfs_space_info_free_bytes_may_use(fs_info,
 237				delayed_refs_rsv->space_info, to_free);
 238}
 239
 240/*
 241 * Refill based on our delayed refs usage.
 242 *
 243 * @fs_info: the filesystem
 244 * @flush:   control how we can flush for this reservation.
 245 *
 246 * This will refill the delayed block_rsv up to 1 items size worth of space and
 247 * will return -ENOSPC if we can't make the reservation.
 248 */
 249int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 250				  enum btrfs_reserve_flush_enum flush)
 251{
 252	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 253	struct btrfs_space_info *space_info = block_rsv->space_info;
 254	u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
 255	u64 num_bytes = 0;
 256	u64 refilled_bytes;
 257	u64 to_free;
 258	int ret = -ENOSPC;
 259
 260	spin_lock(&block_rsv->lock);
 261	if (block_rsv->reserved < block_rsv->size) {
 262		num_bytes = block_rsv->size - block_rsv->reserved;
 263		num_bytes = min(num_bytes, limit);
 264	}
 265	spin_unlock(&block_rsv->lock);
 266
 267	if (!num_bytes)
 268		return 0;
 269
 270	ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
 
 271	if (ret)
 272		return ret;
 273
 274	/*
 275	 * We may have raced with someone else, so check again if we the block
 276	 * reserve is still not full and release any excess space.
 277	 */
 278	spin_lock(&block_rsv->lock);
 279	if (block_rsv->reserved < block_rsv->size) {
 280		u64 needed = block_rsv->size - block_rsv->reserved;
 281
 282		if (num_bytes >= needed) {
 283			block_rsv->reserved += needed;
 284			block_rsv->full = true;
 285			to_free = num_bytes - needed;
 286			refilled_bytes = needed;
 287		} else {
 288			block_rsv->reserved += num_bytes;
 289			to_free = 0;
 290			refilled_bytes = num_bytes;
 291		}
 292	} else {
 293		to_free = num_bytes;
 294		refilled_bytes = 0;
 295	}
 296	spin_unlock(&block_rsv->lock);
 297
 298	if (to_free > 0)
 299		btrfs_space_info_free_bytes_may_use(fs_info, space_info, to_free);
 300
 301	if (refilled_bytes > 0)
 302		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
 303					      refilled_bytes, 1);
 304	return 0;
 305}
 306
 307/*
 308 * compare two delayed tree backrefs with same bytenr and type
 309 */
 310static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 311			  struct btrfs_delayed_tree_ref *ref2)
 312{
 313	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 314		if (ref1->root < ref2->root)
 315			return -1;
 316		if (ref1->root > ref2->root)
 317			return 1;
 318	} else {
 319		if (ref1->parent < ref2->parent)
 320			return -1;
 321		if (ref1->parent > ref2->parent)
 322			return 1;
 323	}
 324	return 0;
 325}
 326
 327/*
 328 * compare two delayed data backrefs with same bytenr and type
 329 */
 330static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 331			  struct btrfs_delayed_data_ref *ref2)
 332{
 333	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 334		if (ref1->root < ref2->root)
 335			return -1;
 336		if (ref1->root > ref2->root)
 337			return 1;
 338		if (ref1->objectid < ref2->objectid)
 339			return -1;
 340		if (ref1->objectid > ref2->objectid)
 341			return 1;
 342		if (ref1->offset < ref2->offset)
 343			return -1;
 344		if (ref1->offset > ref2->offset)
 345			return 1;
 346	} else {
 347		if (ref1->parent < ref2->parent)
 348			return -1;
 349		if (ref1->parent > ref2->parent)
 350			return 1;
 351	}
 352	return 0;
 353}
 354
 355static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 356		     struct btrfs_delayed_ref_node *ref2,
 357		     bool check_seq)
 358{
 359	int ret = 0;
 360
 361	if (ref1->type < ref2->type)
 362		return -1;
 363	if (ref1->type > ref2->type)
 364		return 1;
 365	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 366	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 367		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 368				     btrfs_delayed_node_to_tree_ref(ref2));
 369	else
 370		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 371				     btrfs_delayed_node_to_data_ref(ref2));
 372	if (ret)
 373		return ret;
 374	if (check_seq) {
 375		if (ref1->seq < ref2->seq)
 376			return -1;
 377		if (ref1->seq > ref2->seq)
 378			return 1;
 379	}
 380	return 0;
 381}
 382
 383/* insert a new ref to head ref rbtree */
 384static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 385						   struct rb_node *node)
 386{
 387	struct rb_node **p = &root->rb_root.rb_node;
 388	struct rb_node *parent_node = NULL;
 389	struct btrfs_delayed_ref_head *entry;
 390	struct btrfs_delayed_ref_head *ins;
 391	u64 bytenr;
 392	bool leftmost = true;
 393
 394	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 395	bytenr = ins->bytenr;
 396	while (*p) {
 397		parent_node = *p;
 398		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 399				 href_node);
 400
 401		if (bytenr < entry->bytenr) {
 402			p = &(*p)->rb_left;
 403		} else if (bytenr > entry->bytenr) {
 404			p = &(*p)->rb_right;
 405			leftmost = false;
 406		} else {
 407			return entry;
 408		}
 409	}
 410
 411	rb_link_node(node, parent_node, p);
 412	rb_insert_color_cached(node, root, leftmost);
 413	return NULL;
 414}
 415
 416static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 417		struct btrfs_delayed_ref_node *ins)
 418{
 419	struct rb_node **p = &root->rb_root.rb_node;
 420	struct rb_node *node = &ins->ref_node;
 421	struct rb_node *parent_node = NULL;
 422	struct btrfs_delayed_ref_node *entry;
 423	bool leftmost = true;
 424
 425	while (*p) {
 426		int comp;
 427
 428		parent_node = *p;
 429		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 430				 ref_node);
 431		comp = comp_refs(ins, entry, true);
 432		if (comp < 0) {
 433			p = &(*p)->rb_left;
 434		} else if (comp > 0) {
 435			p = &(*p)->rb_right;
 436			leftmost = false;
 437		} else {
 438			return entry;
 439		}
 440	}
 441
 442	rb_link_node(node, parent_node, p);
 443	rb_insert_color_cached(node, root, leftmost);
 444	return NULL;
 445}
 446
 447static struct btrfs_delayed_ref_head *find_first_ref_head(
 448		struct btrfs_delayed_ref_root *dr)
 449{
 450	struct rb_node *n;
 451	struct btrfs_delayed_ref_head *entry;
 452
 453	n = rb_first_cached(&dr->href_root);
 454	if (!n)
 455		return NULL;
 456
 457	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 458
 459	return entry;
 460}
 461
 462/*
 463 * Find a head entry based on bytenr. This returns the delayed ref head if it
 464 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 465 * is given, the next bigger entry is returned if no exact match is found.
 466 */
 467static struct btrfs_delayed_ref_head *find_ref_head(
 468		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 469		bool return_bigger)
 470{
 471	struct rb_root *root = &dr->href_root.rb_root;
 472	struct rb_node *n;
 473	struct btrfs_delayed_ref_head *entry;
 474
 475	n = root->rb_node;
 476	entry = NULL;
 477	while (n) {
 478		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 479
 480		if (bytenr < entry->bytenr)
 481			n = n->rb_left;
 482		else if (bytenr > entry->bytenr)
 483			n = n->rb_right;
 484		else
 485			return entry;
 486	}
 487	if (entry && return_bigger) {
 488		if (bytenr > entry->bytenr) {
 489			n = rb_next(&entry->href_node);
 490			if (!n)
 491				return NULL;
 492			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 493					 href_node);
 494		}
 495		return entry;
 496	}
 497	return NULL;
 498}
 499
 500int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 501			   struct btrfs_delayed_ref_head *head)
 502{
 503	lockdep_assert_held(&delayed_refs->lock);
 504	if (mutex_trylock(&head->mutex))
 505		return 0;
 506
 507	refcount_inc(&head->refs);
 508	spin_unlock(&delayed_refs->lock);
 509
 510	mutex_lock(&head->mutex);
 511	spin_lock(&delayed_refs->lock);
 512	if (RB_EMPTY_NODE(&head->href_node)) {
 513		mutex_unlock(&head->mutex);
 514		btrfs_put_delayed_ref_head(head);
 515		return -EAGAIN;
 516	}
 517	btrfs_put_delayed_ref_head(head);
 518	return 0;
 519}
 520
 521static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
 522				    struct btrfs_delayed_ref_root *delayed_refs,
 523				    struct btrfs_delayed_ref_head *head,
 524				    struct btrfs_delayed_ref_node *ref)
 525{
 526	lockdep_assert_held(&head->lock);
 527	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 528	RB_CLEAR_NODE(&ref->ref_node);
 529	if (!list_empty(&ref->add_list))
 530		list_del(&ref->add_list);
 
 531	btrfs_put_delayed_ref(ref);
 532	atomic_dec(&delayed_refs->num_entries);
 533	btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
 534}
 535
 536static bool merge_ref(struct btrfs_fs_info *fs_info,
 537		      struct btrfs_delayed_ref_root *delayed_refs,
 538		      struct btrfs_delayed_ref_head *head,
 539		      struct btrfs_delayed_ref_node *ref,
 540		      u64 seq)
 541{
 542	struct btrfs_delayed_ref_node *next;
 543	struct rb_node *node = rb_next(&ref->ref_node);
 544	bool done = false;
 545
 546	while (!done && node) {
 547		int mod;
 548
 549		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 550		node = rb_next(node);
 551		if (seq && next->seq >= seq)
 552			break;
 553		if (comp_refs(ref, next, false))
 554			break;
 555
 556		if (ref->action == next->action) {
 557			mod = next->ref_mod;
 558		} else {
 559			if (ref->ref_mod < next->ref_mod) {
 560				swap(ref, next);
 561				done = true;
 562			}
 563			mod = -next->ref_mod;
 564		}
 565
 566		drop_delayed_ref(fs_info, delayed_refs, head, next);
 567		ref->ref_mod += mod;
 568		if (ref->ref_mod == 0) {
 569			drop_delayed_ref(fs_info, delayed_refs, head, ref);
 570			done = true;
 571		} else {
 572			/*
 573			 * Can't have multiples of the same ref on a tree block.
 574			 */
 575			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 576				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 577		}
 578	}
 579
 580	return done;
 581}
 582
 583void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
 584			      struct btrfs_delayed_ref_root *delayed_refs,
 585			      struct btrfs_delayed_ref_head *head)
 586{
 
 587	struct btrfs_delayed_ref_node *ref;
 588	struct rb_node *node;
 589	u64 seq = 0;
 590
 591	lockdep_assert_held(&head->lock);
 592
 593	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 594		return;
 595
 596	/* We don't have too many refs to merge for data. */
 597	if (head->is_data)
 598		return;
 599
 600	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 601again:
 602	for (node = rb_first_cached(&head->ref_tree); node;
 603	     node = rb_next(node)) {
 604		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 605		if (seq && ref->seq >= seq)
 606			continue;
 607		if (merge_ref(fs_info, delayed_refs, head, ref, seq))
 608			goto again;
 609	}
 610}
 611
 612int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 613{
 614	int ret = 0;
 615	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 616
 617	if (min_seq != 0 && seq >= min_seq) {
 618		btrfs_debug(fs_info,
 619			    "holding back delayed_ref %llu, lowest is %llu",
 620			    seq, min_seq);
 621		ret = 1;
 622	}
 623
 624	return ret;
 625}
 626
 627struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 628		struct btrfs_delayed_ref_root *delayed_refs)
 629{
 630	struct btrfs_delayed_ref_head *head;
 631
 632	lockdep_assert_held(&delayed_refs->lock);
 633again:
 634	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 635			     true);
 636	if (!head && delayed_refs->run_delayed_start != 0) {
 637		delayed_refs->run_delayed_start = 0;
 638		head = find_first_ref_head(delayed_refs);
 639	}
 640	if (!head)
 641		return NULL;
 642
 643	while (head->processing) {
 644		struct rb_node *node;
 645
 646		node = rb_next(&head->href_node);
 647		if (!node) {
 648			if (delayed_refs->run_delayed_start == 0)
 649				return NULL;
 650			delayed_refs->run_delayed_start = 0;
 651			goto again;
 652		}
 653		head = rb_entry(node, struct btrfs_delayed_ref_head,
 654				href_node);
 655	}
 656
 657	head->processing = true;
 658	WARN_ON(delayed_refs->num_heads_ready == 0);
 659	delayed_refs->num_heads_ready--;
 660	delayed_refs->run_delayed_start = head->bytenr +
 661		head->num_bytes;
 662	return head;
 663}
 664
 665void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 666			   struct btrfs_delayed_ref_head *head)
 667{
 668	lockdep_assert_held(&delayed_refs->lock);
 669	lockdep_assert_held(&head->lock);
 670
 671	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 672	RB_CLEAR_NODE(&head->href_node);
 673	atomic_dec(&delayed_refs->num_entries);
 674	delayed_refs->num_heads--;
 675	if (!head->processing)
 676		delayed_refs->num_heads_ready--;
 677}
 678
 679/*
 680 * Helper to insert the ref_node to the tail or merge with tail.
 681 *
 682 * Return false if the ref was inserted.
 683 * Return true if the ref was merged into an existing one (and therefore can be
 684 * freed by the caller).
 685 */
 686static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
 687			       struct btrfs_delayed_ref_head *href,
 688			       struct btrfs_delayed_ref_node *ref)
 
 689{
 690	struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
 691	struct btrfs_delayed_ref_node *exist;
 692	int mod;
 
 693
 694	spin_lock(&href->lock);
 695	exist = tree_insert(&href->ref_tree, ref);
 696	if (!exist) {
 697		if (ref->action == BTRFS_ADD_DELAYED_REF)
 698			list_add_tail(&ref->add_list, &href->ref_add_list);
 699		atomic_inc(&root->num_entries);
 700		spin_unlock(&href->lock);
 701		trans->delayed_ref_updates++;
 702		return false;
 703	}
 704
 705	/* Now we are sure we can merge */
 
 706	if (exist->action == ref->action) {
 707		mod = ref->ref_mod;
 708	} else {
 709		/* Need to change action */
 710		if (exist->ref_mod < ref->ref_mod) {
 711			exist->action = ref->action;
 712			mod = -exist->ref_mod;
 713			exist->ref_mod = ref->ref_mod;
 714			if (ref->action == BTRFS_ADD_DELAYED_REF)
 715				list_add_tail(&exist->add_list,
 716					      &href->ref_add_list);
 717			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 718				ASSERT(!list_empty(&exist->add_list));
 719				list_del(&exist->add_list);
 720			} else {
 721				ASSERT(0);
 722			}
 723		} else
 724			mod = -ref->ref_mod;
 725	}
 726	exist->ref_mod += mod;
 727
 728	/* remove existing tail if its ref_mod is zero */
 729	if (exist->ref_mod == 0)
 730		drop_delayed_ref(trans->fs_info, root, href, exist);
 
 
 
 
 
 
 731	spin_unlock(&href->lock);
 732	return true;
 733}
 734
 735/*
 736 * helper function to update the accounting in the head ref
 737 * existing and update must have the same bytenr
 738 */
 739static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 740			 struct btrfs_delayed_ref_head *existing,
 741			 struct btrfs_delayed_ref_head *update)
 742{
 743	struct btrfs_delayed_ref_root *delayed_refs =
 744		&trans->transaction->delayed_refs;
 745	struct btrfs_fs_info *fs_info = trans->fs_info;
 746	int old_ref_mod;
 747
 748	BUG_ON(existing->is_data != update->is_data);
 749
 750	spin_lock(&existing->lock);
 751
 752	/*
 753	 * When freeing an extent, we may not know the owning root when we
 754	 * first create the head_ref. However, some deref before the last deref
 755	 * will know it, so we just need to update the head_ref accordingly.
 756	 */
 757	if (!existing->owning_root)
 758		existing->owning_root = update->owning_root;
 759
 760	if (update->must_insert_reserved) {
 761		/* if the extent was freed and then
 762		 * reallocated before the delayed ref
 763		 * entries were processed, we can end up
 764		 * with an existing head ref without
 765		 * the must_insert_reserved flag set.
 766		 * Set it again here
 767		 */
 768		existing->must_insert_reserved = update->must_insert_reserved;
 769		existing->owning_root = update->owning_root;
 770
 771		/*
 772		 * update the num_bytes so we make sure the accounting
 773		 * is done correctly
 774		 */
 775		existing->num_bytes = update->num_bytes;
 776
 777	}
 778
 779	if (update->extent_op) {
 780		if (!existing->extent_op) {
 781			existing->extent_op = update->extent_op;
 782		} else {
 783			if (update->extent_op->update_key) {
 784				memcpy(&existing->extent_op->key,
 785				       &update->extent_op->key,
 786				       sizeof(update->extent_op->key));
 787				existing->extent_op->update_key = true;
 788			}
 789			if (update->extent_op->update_flags) {
 790				existing->extent_op->flags_to_set |=
 791					update->extent_op->flags_to_set;
 792				existing->extent_op->update_flags = true;
 793			}
 794			btrfs_free_delayed_extent_op(update->extent_op);
 795		}
 796	}
 797	/*
 798	 * update the reference mod on the head to reflect this new operation,
 799	 * only need the lock for this case cause we could be processing it
 800	 * currently, for refs we just added we know we're a-ok.
 801	 */
 802	old_ref_mod = existing->total_ref_mod;
 803	existing->ref_mod += update->ref_mod;
 804	existing->total_ref_mod += update->ref_mod;
 805
 806	/*
 807	 * If we are going to from a positive ref mod to a negative or vice
 808	 * versa we need to make sure to adjust pending_csums accordingly.
 809	 * We reserve bytes for csum deletion when adding or updating a ref head
 810	 * see add_delayed_ref_head() for more details.
 811	 */
 812	if (existing->is_data) {
 813		u64 csum_leaves =
 814			btrfs_csum_bytes_to_leaves(fs_info,
 815						   existing->num_bytes);
 816
 817		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 818			delayed_refs->pending_csums -= existing->num_bytes;
 819			btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
 820		}
 821		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 822			delayed_refs->pending_csums += existing->num_bytes;
 823			trans->delayed_ref_csum_deletions += csum_leaves;
 824		}
 825	}
 826
 827	spin_unlock(&existing->lock);
 828}
 829
 830static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 831				  struct btrfs_qgroup_extent_record *qrecord,
 832				  u64 bytenr, u64 num_bytes, u64 ref_root,
 833				  u64 reserved, int action, bool is_data,
 834				  bool is_system, u64 owning_root)
 835{
 836	int count_mod = 1;
 837	bool must_insert_reserved = false;
 838
 839	/* If reserved is provided, it must be a data extent. */
 840	BUG_ON(!is_data && reserved);
 841
 842	switch (action) {
 843	case BTRFS_UPDATE_DELAYED_HEAD:
 
 
 
 844		count_mod = 0;
 845		break;
 846	case BTRFS_DROP_DELAYED_REF:
 847		/*
 848		 * The head node stores the sum of all the mods, so dropping a ref
 849		 * should drop the sum in the head node by one.
 850		 */
 851		count_mod = -1;
 852		break;
 853	case BTRFS_ADD_DELAYED_EXTENT:
 854		/*
 855		 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
 856		 * reserved accounting when the extent is finally added, or if a
 857		 * later modification deletes the delayed ref without ever
 858		 * inserting the extent into the extent allocation tree.
 859		 * ref->must_insert_reserved is the flag used to record that
 860		 * accounting mods are required.
 861		 *
 862		 * Once we record must_insert_reserved, switch the action to
 863		 * BTRFS_ADD_DELAYED_REF because other special casing is not
 864		 * required.
 865		 */
 866		must_insert_reserved = true;
 867		break;
 868	}
 869
 870	refcount_set(&head_ref->refs, 1);
 871	head_ref->bytenr = bytenr;
 872	head_ref->num_bytes = num_bytes;
 873	head_ref->ref_mod = count_mod;
 874	head_ref->reserved_bytes = reserved;
 875	head_ref->must_insert_reserved = must_insert_reserved;
 876	head_ref->owning_root = owning_root;
 877	head_ref->is_data = is_data;
 878	head_ref->is_system = is_system;
 879	head_ref->ref_tree = RB_ROOT_CACHED;
 880	INIT_LIST_HEAD(&head_ref->ref_add_list);
 881	RB_CLEAR_NODE(&head_ref->href_node);
 882	head_ref->processing = false;
 883	head_ref->total_ref_mod = count_mod;
 884	spin_lock_init(&head_ref->lock);
 885	mutex_init(&head_ref->mutex);
 886
 887	if (qrecord) {
 888		if (ref_root && reserved) {
 889			qrecord->data_rsv = reserved;
 890			qrecord->data_rsv_refroot = ref_root;
 891		}
 892		qrecord->bytenr = bytenr;
 893		qrecord->num_bytes = num_bytes;
 894		qrecord->old_roots = NULL;
 895	}
 896}
 897
 898/*
 899 * helper function to actually insert a head node into the rbtree.
 900 * this does all the dirty work in terms of maintaining the correct
 901 * overall modification count.
 902 */
 903static noinline struct btrfs_delayed_ref_head *
 904add_delayed_ref_head(struct btrfs_trans_handle *trans,
 905		     struct btrfs_delayed_ref_head *head_ref,
 906		     struct btrfs_qgroup_extent_record *qrecord,
 907		     int action, bool *qrecord_inserted_ret)
 908{
 909	struct btrfs_delayed_ref_head *existing;
 910	struct btrfs_delayed_ref_root *delayed_refs;
 911	bool qrecord_inserted = false;
 912
 913	delayed_refs = &trans->transaction->delayed_refs;
 914
 915	/* Record qgroup extent info if provided */
 916	if (qrecord) {
 917		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 918					delayed_refs, qrecord))
 919			kfree(qrecord);
 920		else
 921			qrecord_inserted = true;
 922	}
 923
 924	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 925
 926	existing = htree_insert(&delayed_refs->href_root,
 927				&head_ref->href_node);
 928	if (existing) {
 929		update_existing_head_ref(trans, existing, head_ref);
 930		/*
 931		 * we've updated the existing ref, free the newly
 932		 * allocated ref
 933		 */
 934		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 935		head_ref = existing;
 936	} else {
 937		/*
 938		 * We reserve the amount of bytes needed to delete csums when
 939		 * adding the ref head and not when adding individual drop refs
 940		 * since the csum items are deleted only after running the last
 941		 * delayed drop ref (the data extent's ref count drops to 0).
 942		 */
 943		if (head_ref->is_data && head_ref->ref_mod < 0) {
 944			delayed_refs->pending_csums += head_ref->num_bytes;
 945			trans->delayed_ref_csum_deletions +=
 946				btrfs_csum_bytes_to_leaves(trans->fs_info,
 947							   head_ref->num_bytes);
 948		}
 949		delayed_refs->num_heads++;
 950		delayed_refs->num_heads_ready++;
 951		atomic_inc(&delayed_refs->num_entries);
 
 952	}
 953	if (qrecord_inserted_ret)
 954		*qrecord_inserted_ret = qrecord_inserted;
 955
 956	return head_ref;
 957}
 958
 959/*
 960 * Initialize the structure which represents a modification to a an extent.
 
 961 *
 962 * @fs_info:    Internal to the mounted filesystem mount structure.
 963 *
 964 * @ref:	The structure which is going to be initialized.
 965 *
 966 * @bytenr:	The logical address of the extent for which a modification is
 967 *		going to be recorded.
 968 *
 969 * @num_bytes:  Size of the extent whose modification is being recorded.
 970 *
 971 * @ref_root:	The id of the root where this modification has originated, this
 972 *		can be either one of the well-known metadata trees or the
 973 *		subvolume id which references this extent.
 974 *
 975 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 976 *		BTRFS_ADD_DELAYED_EXTENT
 977 *
 978 * @ref_type:	Holds the type of the extent which is being recorded, can be
 979 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 980 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 981 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 982 */
 983static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 984				    struct btrfs_delayed_ref_node *ref,
 985				    u64 bytenr, u64 num_bytes, u64 ref_root,
 986				    int action, u8 ref_type)
 987{
 988	u64 seq = 0;
 989
 990	if (action == BTRFS_ADD_DELAYED_EXTENT)
 991		action = BTRFS_ADD_DELAYED_REF;
 992
 993	if (is_fstree(ref_root))
 994		seq = atomic64_read(&fs_info->tree_mod_seq);
 995
 996	refcount_set(&ref->refs, 1);
 997	ref->bytenr = bytenr;
 998	ref->num_bytes = num_bytes;
 999	ref->ref_mod = 1;
1000	ref->action = action;
 
 
1001	ref->seq = seq;
1002	ref->type = ref_type;
1003	RB_CLEAR_NODE(&ref->ref_node);
1004	INIT_LIST_HEAD(&ref->add_list);
1005}
1006
1007/*
1008 * add a delayed tree ref.  This does all of the accounting required
1009 * to make sure the delayed ref is eventually processed before this
1010 * transaction commits.
1011 */
1012int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1013			       struct btrfs_ref *generic_ref,
1014			       struct btrfs_delayed_extent_op *extent_op)
1015{
1016	struct btrfs_fs_info *fs_info = trans->fs_info;
1017	struct btrfs_delayed_tree_ref *ref;
1018	struct btrfs_delayed_ref_head *head_ref;
1019	struct btrfs_delayed_ref_root *delayed_refs;
1020	struct btrfs_qgroup_extent_record *record = NULL;
1021	bool qrecord_inserted;
1022	bool is_system;
1023	bool merged;
1024	int action = generic_ref->action;
1025	int level = generic_ref->tree_ref.level;
 
1026	u64 bytenr = generic_ref->bytenr;
1027	u64 num_bytes = generic_ref->len;
1028	u64 parent = generic_ref->parent;
1029	u8 ref_type;
1030
1031	is_system = (generic_ref->tree_ref.ref_root == BTRFS_CHUNK_TREE_OBJECTID);
1032
1033	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
 
1034	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
1035	if (!ref)
1036		return -ENOMEM;
1037
1038	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1039	if (!head_ref) {
1040		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1041		return -ENOMEM;
1042	}
1043
1044	if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
 
 
 
1045		record = kzalloc(sizeof(*record), GFP_NOFS);
1046		if (!record) {
1047			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1048			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1049			return -ENOMEM;
1050		}
1051	}
1052
1053	if (parent)
1054		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
1055	else
1056		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
1057
1058	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1059				generic_ref->tree_ref.ref_root, action,
1060				ref_type);
1061	ref->root = generic_ref->tree_ref.ref_root;
1062	ref->parent = parent;
1063	ref->level = level;
1064
1065	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
1066			      generic_ref->tree_ref.ref_root, 0, action,
1067			      false, is_system, generic_ref->owning_root);
1068	head_ref->extent_op = extent_op;
1069
1070	delayed_refs = &trans->transaction->delayed_refs;
1071	spin_lock(&delayed_refs->lock);
1072
1073	/*
1074	 * insert both the head node and the new ref without dropping
1075	 * the spin lock
1076	 */
1077	head_ref = add_delayed_ref_head(trans, head_ref, record,
1078					action, &qrecord_inserted);
1079
1080	merged = insert_delayed_ref(trans, head_ref, &ref->node);
1081	spin_unlock(&delayed_refs->lock);
1082
1083	/*
1084	 * Need to update the delayed_refs_rsv with any changes we may have
1085	 * made.
1086	 */
1087	btrfs_update_delayed_refs_rsv(trans);
1088
1089	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
1090				   action == BTRFS_ADD_DELAYED_EXTENT ?
1091				   BTRFS_ADD_DELAYED_REF : action);
1092	if (merged)
1093		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1094
1095	if (qrecord_inserted)
1096		btrfs_qgroup_trace_extent_post(trans, record);
1097
1098	return 0;
1099}
1100
1101/*
1102 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1103 */
1104int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1105			       struct btrfs_ref *generic_ref,
1106			       u64 reserved)
1107{
1108	struct btrfs_fs_info *fs_info = trans->fs_info;
1109	struct btrfs_delayed_data_ref *ref;
1110	struct btrfs_delayed_ref_head *head_ref;
1111	struct btrfs_delayed_ref_root *delayed_refs;
1112	struct btrfs_qgroup_extent_record *record = NULL;
1113	bool qrecord_inserted;
1114	int action = generic_ref->action;
1115	bool merged;
1116	u64 bytenr = generic_ref->bytenr;
1117	u64 num_bytes = generic_ref->len;
1118	u64 parent = generic_ref->parent;
1119	u64 ref_root = generic_ref->data_ref.ref_root;
1120	u64 owner = generic_ref->data_ref.ino;
1121	u64 offset = generic_ref->data_ref.offset;
1122	u8 ref_type;
1123
1124	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1125	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1126	if (!ref)
1127		return -ENOMEM;
1128
1129	if (parent)
1130	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1131	else
1132	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1133	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1134				ref_root, action, ref_type);
1135	ref->root = ref_root;
1136	ref->parent = parent;
1137	ref->objectid = owner;
1138	ref->offset = offset;
1139
1140
1141	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1142	if (!head_ref) {
1143		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1144		return -ENOMEM;
1145	}
1146
1147	if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
 
 
 
1148		record = kzalloc(sizeof(*record), GFP_NOFS);
1149		if (!record) {
1150			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1151			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1152					head_ref);
1153			return -ENOMEM;
1154		}
1155	}
1156
1157	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1158			      reserved, action, true, false, generic_ref->owning_root);
1159	head_ref->extent_op = NULL;
1160
1161	delayed_refs = &trans->transaction->delayed_refs;
1162	spin_lock(&delayed_refs->lock);
1163
1164	/*
1165	 * insert both the head node and the new ref without dropping
1166	 * the spin lock
1167	 */
1168	head_ref = add_delayed_ref_head(trans, head_ref, record,
1169					action, &qrecord_inserted);
1170
1171	merged = insert_delayed_ref(trans, head_ref, &ref->node);
1172	spin_unlock(&delayed_refs->lock);
1173
1174	/*
1175	 * Need to update the delayed_refs_rsv with any changes we may have
1176	 * made.
1177	 */
1178	btrfs_update_delayed_refs_rsv(trans);
1179
1180	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1181				   action == BTRFS_ADD_DELAYED_EXTENT ?
1182				   BTRFS_ADD_DELAYED_REF : action);
1183	if (merged)
1184		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1185
1186
1187	if (qrecord_inserted)
1188		return btrfs_qgroup_trace_extent_post(trans, record);
1189	return 0;
1190}
1191
1192int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1193				u64 bytenr, u64 num_bytes,
1194				struct btrfs_delayed_extent_op *extent_op)
1195{
1196	struct btrfs_delayed_ref_head *head_ref;
1197	struct btrfs_delayed_ref_root *delayed_refs;
1198
1199	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1200	if (!head_ref)
1201		return -ENOMEM;
1202
1203	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1204			      BTRFS_UPDATE_DELAYED_HEAD, false, false, 0);
 
1205	head_ref->extent_op = extent_op;
1206
1207	delayed_refs = &trans->transaction->delayed_refs;
1208	spin_lock(&delayed_refs->lock);
1209
1210	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1211			     NULL);
1212
1213	spin_unlock(&delayed_refs->lock);
1214
1215	/*
1216	 * Need to update the delayed_refs_rsv with any changes we may have
1217	 * made.
1218	 */
1219	btrfs_update_delayed_refs_rsv(trans);
1220	return 0;
1221}
1222
1223/*
1224 * This does a simple search for the head node for a given extent.  Returns the
1225 * head node if found, or NULL if not.
1226 */
1227struct btrfs_delayed_ref_head *
1228btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1229{
1230	lockdep_assert_held(&delayed_refs->lock);
1231
1232	return find_ref_head(delayed_refs, bytenr, false);
1233}
1234
1235void __cold btrfs_delayed_ref_exit(void)
1236{
1237	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1238	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1239	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1240	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1241}
1242
1243int __init btrfs_delayed_ref_init(void)
1244{
1245	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1246				"btrfs_delayed_ref_head",
1247				sizeof(struct btrfs_delayed_ref_head), 0,
1248				SLAB_MEM_SPREAD, NULL);
1249	if (!btrfs_delayed_ref_head_cachep)
1250		goto fail;
1251
1252	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1253				"btrfs_delayed_tree_ref",
1254				sizeof(struct btrfs_delayed_tree_ref), 0,
1255				SLAB_MEM_SPREAD, NULL);
1256	if (!btrfs_delayed_tree_ref_cachep)
1257		goto fail;
1258
1259	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1260				"btrfs_delayed_data_ref",
1261				sizeof(struct btrfs_delayed_data_ref), 0,
1262				SLAB_MEM_SPREAD, NULL);
1263	if (!btrfs_delayed_data_ref_cachep)
1264		goto fail;
1265
1266	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1267				"btrfs_delayed_extent_op",
1268				sizeof(struct btrfs_delayed_extent_op), 0,
1269				SLAB_MEM_SPREAD, NULL);
1270	if (!btrfs_delayed_extent_op_cachep)
1271		goto fail;
1272
1273	return 0;
1274fail:
1275	btrfs_delayed_ref_exit();
1276	return -ENOMEM;
1277}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
 
   9#include "ctree.h"
  10#include "delayed-ref.h"
  11#include "transaction.h"
  12#include "qgroup.h"
  13#include "space-info.h"
  14#include "tree-mod-log.h"
 
  15
  16struct kmem_cache *btrfs_delayed_ref_head_cachep;
  17struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  18struct kmem_cache *btrfs_delayed_data_ref_cachep;
  19struct kmem_cache *btrfs_delayed_extent_op_cachep;
  20/*
  21 * delayed back reference update tracking.  For subvolume trees
  22 * we queue up extent allocations and backref maintenance for
  23 * delayed processing.   This avoids deep call chains where we
  24 * add extents in the middle of btrfs_search_slot, and it allows
  25 * us to buffer up frequently modified backrefs in an rb tree instead
  26 * of hammering updates on the extent allocation tree.
  27 */
  28
  29bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  30{
  31	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  32	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  33	bool ret = false;
  34	u64 reserved;
  35
  36	spin_lock(&global_rsv->lock);
  37	reserved = global_rsv->reserved;
  38	spin_unlock(&global_rsv->lock);
  39
  40	/*
  41	 * Since the global reserve is just kind of magic we don't really want
  42	 * to rely on it to save our bacon, so if our size is more than the
  43	 * delayed_refs_rsv and the global rsv then it's time to think about
  44	 * bailing.
  45	 */
  46	spin_lock(&delayed_refs_rsv->lock);
  47	reserved += delayed_refs_rsv->reserved;
  48	if (delayed_refs_rsv->size >= reserved)
  49		ret = true;
  50	spin_unlock(&delayed_refs_rsv->lock);
  51	return ret;
  52}
  53
  54int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
  55{
  56	u64 num_entries =
  57		atomic_read(&trans->transaction->delayed_refs.num_entries);
  58	u64 avg_runtime;
  59	u64 val;
  60
  61	smp_mb();
  62	avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
  63	val = num_entries * avg_runtime;
  64	if (val >= NSEC_PER_SEC)
  65		return 1;
  66	if (val >= NSEC_PER_SEC / 2)
  67		return 2;
  68
  69	return btrfs_check_space_for_delayed_refs(trans->fs_info);
  70}
  71
  72/**
  73 * Release a ref head's reservation
  74 *
  75 * @fs_info:  the filesystem
  76 * @nr:       number of items to drop
 
  77 *
  78 * This drops the delayed ref head's count from the delayed refs rsv and frees
  79 * any excess reservation we had.
  80 */
  81void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
  82{
  83	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  84	u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
  85	u64 released = 0;
 
 
 
  86
  87	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
  88	if (released)
  89		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
  90					      0, released, 0);
  91}
  92
  93/*
  94 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
  95 * @trans - the trans that may have generated delayed refs
  96 *
  97 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
  98 * it'll calculate the additional size and add it to the delayed_refs_rsv.
 
  99 */
 100void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
 101{
 102	struct btrfs_fs_info *fs_info = trans->fs_info;
 103	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 
 104	u64 num_bytes;
 
 
 
 
 
 105
 106	if (!trans->delayed_ref_updates)
 107		return;
 108
 109	num_bytes = btrfs_calc_insert_metadata_size(fs_info,
 110						    trans->delayed_ref_updates);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111	spin_lock(&delayed_rsv->lock);
 112	delayed_rsv->size += num_bytes;
 113	delayed_rsv->full = 0;
 
 114	spin_unlock(&delayed_rsv->lock);
 115	trans->delayed_ref_updates = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 116}
 117
 118/**
 119 * Transfer bytes to our delayed refs rsv
 120 *
 121 * @fs_info:   the filesystem
 122 * @src:       source block rsv to transfer from
 123 * @num_bytes: number of bytes to transfer
 124 *
 125 * This transfers up to the num_bytes amount from the src rsv to the
 126 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 127 */
 128void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 129				       struct btrfs_block_rsv *src,
 130				       u64 num_bytes)
 131{
 132	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 133	u64 to_free = 0;
 134
 135	spin_lock(&src->lock);
 136	src->reserved -= num_bytes;
 137	src->size -= num_bytes;
 138	spin_unlock(&src->lock);
 139
 140	spin_lock(&delayed_refs_rsv->lock);
 141	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 142		u64 delta = delayed_refs_rsv->size -
 143			delayed_refs_rsv->reserved;
 144		if (num_bytes > delta) {
 145			to_free = num_bytes - delta;
 146			num_bytes = delta;
 147		}
 148	} else {
 149		to_free = num_bytes;
 150		num_bytes = 0;
 151	}
 152
 153	if (num_bytes)
 154		delayed_refs_rsv->reserved += num_bytes;
 155	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 156		delayed_refs_rsv->full = 1;
 157	spin_unlock(&delayed_refs_rsv->lock);
 158
 159	if (num_bytes)
 160		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 161					      0, num_bytes, 1);
 162	if (to_free)
 163		btrfs_space_info_free_bytes_may_use(fs_info,
 164				delayed_refs_rsv->space_info, to_free);
 165}
 166
 167/**
 168 * Refill based on our delayed refs usage
 169 *
 170 * @fs_info: the filesystem
 171 * @flush:   control how we can flush for this reservation.
 172 *
 173 * This will refill the delayed block_rsv up to 1 items size worth of space and
 174 * will return -ENOSPC if we can't make the reservation.
 175 */
 176int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 177				  enum btrfs_reserve_flush_enum flush)
 178{
 179	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 180	u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
 
 181	u64 num_bytes = 0;
 
 
 182	int ret = -ENOSPC;
 183
 184	spin_lock(&block_rsv->lock);
 185	if (block_rsv->reserved < block_rsv->size) {
 186		num_bytes = block_rsv->size - block_rsv->reserved;
 187		num_bytes = min(num_bytes, limit);
 188	}
 189	spin_unlock(&block_rsv->lock);
 190
 191	if (!num_bytes)
 192		return 0;
 193
 194	ret = btrfs_reserve_metadata_bytes(fs_info->extent_root, block_rsv,
 195					   num_bytes, flush);
 196	if (ret)
 197		return ret;
 198	btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
 199	trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 200				      0, num_bytes, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 201	return 0;
 202}
 203
 204/*
 205 * compare two delayed tree backrefs with same bytenr and type
 206 */
 207static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 208			  struct btrfs_delayed_tree_ref *ref2)
 209{
 210	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 211		if (ref1->root < ref2->root)
 212			return -1;
 213		if (ref1->root > ref2->root)
 214			return 1;
 215	} else {
 216		if (ref1->parent < ref2->parent)
 217			return -1;
 218		if (ref1->parent > ref2->parent)
 219			return 1;
 220	}
 221	return 0;
 222}
 223
 224/*
 225 * compare two delayed data backrefs with same bytenr and type
 226 */
 227static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 228			  struct btrfs_delayed_data_ref *ref2)
 229{
 230	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 231		if (ref1->root < ref2->root)
 232			return -1;
 233		if (ref1->root > ref2->root)
 234			return 1;
 235		if (ref1->objectid < ref2->objectid)
 236			return -1;
 237		if (ref1->objectid > ref2->objectid)
 238			return 1;
 239		if (ref1->offset < ref2->offset)
 240			return -1;
 241		if (ref1->offset > ref2->offset)
 242			return 1;
 243	} else {
 244		if (ref1->parent < ref2->parent)
 245			return -1;
 246		if (ref1->parent > ref2->parent)
 247			return 1;
 248	}
 249	return 0;
 250}
 251
 252static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 253		     struct btrfs_delayed_ref_node *ref2,
 254		     bool check_seq)
 255{
 256	int ret = 0;
 257
 258	if (ref1->type < ref2->type)
 259		return -1;
 260	if (ref1->type > ref2->type)
 261		return 1;
 262	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 263	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 264		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 265				     btrfs_delayed_node_to_tree_ref(ref2));
 266	else
 267		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 268				     btrfs_delayed_node_to_data_ref(ref2));
 269	if (ret)
 270		return ret;
 271	if (check_seq) {
 272		if (ref1->seq < ref2->seq)
 273			return -1;
 274		if (ref1->seq > ref2->seq)
 275			return 1;
 276	}
 277	return 0;
 278}
 279
 280/* insert a new ref to head ref rbtree */
 281static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 282						   struct rb_node *node)
 283{
 284	struct rb_node **p = &root->rb_root.rb_node;
 285	struct rb_node *parent_node = NULL;
 286	struct btrfs_delayed_ref_head *entry;
 287	struct btrfs_delayed_ref_head *ins;
 288	u64 bytenr;
 289	bool leftmost = true;
 290
 291	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 292	bytenr = ins->bytenr;
 293	while (*p) {
 294		parent_node = *p;
 295		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 296				 href_node);
 297
 298		if (bytenr < entry->bytenr) {
 299			p = &(*p)->rb_left;
 300		} else if (bytenr > entry->bytenr) {
 301			p = &(*p)->rb_right;
 302			leftmost = false;
 303		} else {
 304			return entry;
 305		}
 306	}
 307
 308	rb_link_node(node, parent_node, p);
 309	rb_insert_color_cached(node, root, leftmost);
 310	return NULL;
 311}
 312
 313static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 314		struct btrfs_delayed_ref_node *ins)
 315{
 316	struct rb_node **p = &root->rb_root.rb_node;
 317	struct rb_node *node = &ins->ref_node;
 318	struct rb_node *parent_node = NULL;
 319	struct btrfs_delayed_ref_node *entry;
 320	bool leftmost = true;
 321
 322	while (*p) {
 323		int comp;
 324
 325		parent_node = *p;
 326		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 327				 ref_node);
 328		comp = comp_refs(ins, entry, true);
 329		if (comp < 0) {
 330			p = &(*p)->rb_left;
 331		} else if (comp > 0) {
 332			p = &(*p)->rb_right;
 333			leftmost = false;
 334		} else {
 335			return entry;
 336		}
 337	}
 338
 339	rb_link_node(node, parent_node, p);
 340	rb_insert_color_cached(node, root, leftmost);
 341	return NULL;
 342}
 343
 344static struct btrfs_delayed_ref_head *find_first_ref_head(
 345		struct btrfs_delayed_ref_root *dr)
 346{
 347	struct rb_node *n;
 348	struct btrfs_delayed_ref_head *entry;
 349
 350	n = rb_first_cached(&dr->href_root);
 351	if (!n)
 352		return NULL;
 353
 354	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 355
 356	return entry;
 357}
 358
 359/*
 360 * Find a head entry based on bytenr. This returns the delayed ref head if it
 361 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 362 * is given, the next bigger entry is returned if no exact match is found.
 363 */
 364static struct btrfs_delayed_ref_head *find_ref_head(
 365		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 366		bool return_bigger)
 367{
 368	struct rb_root *root = &dr->href_root.rb_root;
 369	struct rb_node *n;
 370	struct btrfs_delayed_ref_head *entry;
 371
 372	n = root->rb_node;
 373	entry = NULL;
 374	while (n) {
 375		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 376
 377		if (bytenr < entry->bytenr)
 378			n = n->rb_left;
 379		else if (bytenr > entry->bytenr)
 380			n = n->rb_right;
 381		else
 382			return entry;
 383	}
 384	if (entry && return_bigger) {
 385		if (bytenr > entry->bytenr) {
 386			n = rb_next(&entry->href_node);
 387			if (!n)
 388				return NULL;
 389			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 390					 href_node);
 391		}
 392		return entry;
 393	}
 394	return NULL;
 395}
 396
 397int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 398			   struct btrfs_delayed_ref_head *head)
 399{
 400	lockdep_assert_held(&delayed_refs->lock);
 401	if (mutex_trylock(&head->mutex))
 402		return 0;
 403
 404	refcount_inc(&head->refs);
 405	spin_unlock(&delayed_refs->lock);
 406
 407	mutex_lock(&head->mutex);
 408	spin_lock(&delayed_refs->lock);
 409	if (RB_EMPTY_NODE(&head->href_node)) {
 410		mutex_unlock(&head->mutex);
 411		btrfs_put_delayed_ref_head(head);
 412		return -EAGAIN;
 413	}
 414	btrfs_put_delayed_ref_head(head);
 415	return 0;
 416}
 417
 418static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
 419				    struct btrfs_delayed_ref_root *delayed_refs,
 420				    struct btrfs_delayed_ref_head *head,
 421				    struct btrfs_delayed_ref_node *ref)
 422{
 423	lockdep_assert_held(&head->lock);
 424	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 425	RB_CLEAR_NODE(&ref->ref_node);
 426	if (!list_empty(&ref->add_list))
 427		list_del(&ref->add_list);
 428	ref->in_tree = 0;
 429	btrfs_put_delayed_ref(ref);
 430	atomic_dec(&delayed_refs->num_entries);
 
 431}
 432
 433static bool merge_ref(struct btrfs_trans_handle *trans,
 434		      struct btrfs_delayed_ref_root *delayed_refs,
 435		      struct btrfs_delayed_ref_head *head,
 436		      struct btrfs_delayed_ref_node *ref,
 437		      u64 seq)
 438{
 439	struct btrfs_delayed_ref_node *next;
 440	struct rb_node *node = rb_next(&ref->ref_node);
 441	bool done = false;
 442
 443	while (!done && node) {
 444		int mod;
 445
 446		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 447		node = rb_next(node);
 448		if (seq && next->seq >= seq)
 449			break;
 450		if (comp_refs(ref, next, false))
 451			break;
 452
 453		if (ref->action == next->action) {
 454			mod = next->ref_mod;
 455		} else {
 456			if (ref->ref_mod < next->ref_mod) {
 457				swap(ref, next);
 458				done = true;
 459			}
 460			mod = -next->ref_mod;
 461		}
 462
 463		drop_delayed_ref(trans, delayed_refs, head, next);
 464		ref->ref_mod += mod;
 465		if (ref->ref_mod == 0) {
 466			drop_delayed_ref(trans, delayed_refs, head, ref);
 467			done = true;
 468		} else {
 469			/*
 470			 * Can't have multiples of the same ref on a tree block.
 471			 */
 472			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 473				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 474		}
 475	}
 476
 477	return done;
 478}
 479
 480void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
 481			      struct btrfs_delayed_ref_root *delayed_refs,
 482			      struct btrfs_delayed_ref_head *head)
 483{
 484	struct btrfs_fs_info *fs_info = trans->fs_info;
 485	struct btrfs_delayed_ref_node *ref;
 486	struct rb_node *node;
 487	u64 seq = 0;
 488
 489	lockdep_assert_held(&head->lock);
 490
 491	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 492		return;
 493
 494	/* We don't have too many refs to merge for data. */
 495	if (head->is_data)
 496		return;
 497
 498	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 499again:
 500	for (node = rb_first_cached(&head->ref_tree); node;
 501	     node = rb_next(node)) {
 502		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 503		if (seq && ref->seq >= seq)
 504			continue;
 505		if (merge_ref(trans, delayed_refs, head, ref, seq))
 506			goto again;
 507	}
 508}
 509
 510int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 511{
 512	int ret = 0;
 513	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 514
 515	if (min_seq != 0 && seq >= min_seq) {
 516		btrfs_debug(fs_info,
 517			    "holding back delayed_ref %llu, lowest is %llu",
 518			    seq, min_seq);
 519		ret = 1;
 520	}
 521
 522	return ret;
 523}
 524
 525struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 526		struct btrfs_delayed_ref_root *delayed_refs)
 527{
 528	struct btrfs_delayed_ref_head *head;
 529
 
 530again:
 531	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 532			     true);
 533	if (!head && delayed_refs->run_delayed_start != 0) {
 534		delayed_refs->run_delayed_start = 0;
 535		head = find_first_ref_head(delayed_refs);
 536	}
 537	if (!head)
 538		return NULL;
 539
 540	while (head->processing) {
 541		struct rb_node *node;
 542
 543		node = rb_next(&head->href_node);
 544		if (!node) {
 545			if (delayed_refs->run_delayed_start == 0)
 546				return NULL;
 547			delayed_refs->run_delayed_start = 0;
 548			goto again;
 549		}
 550		head = rb_entry(node, struct btrfs_delayed_ref_head,
 551				href_node);
 552	}
 553
 554	head->processing = 1;
 555	WARN_ON(delayed_refs->num_heads_ready == 0);
 556	delayed_refs->num_heads_ready--;
 557	delayed_refs->run_delayed_start = head->bytenr +
 558		head->num_bytes;
 559	return head;
 560}
 561
 562void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 563			   struct btrfs_delayed_ref_head *head)
 564{
 565	lockdep_assert_held(&delayed_refs->lock);
 566	lockdep_assert_held(&head->lock);
 567
 568	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 569	RB_CLEAR_NODE(&head->href_node);
 570	atomic_dec(&delayed_refs->num_entries);
 571	delayed_refs->num_heads--;
 572	if (head->processing == 0)
 573		delayed_refs->num_heads_ready--;
 574}
 575
 576/*
 577 * Helper to insert the ref_node to the tail or merge with tail.
 578 *
 579 * Return 0 for insert.
 580 * Return >0 for merge.
 
 581 */
 582static int insert_delayed_ref(struct btrfs_trans_handle *trans,
 583			      struct btrfs_delayed_ref_root *root,
 584			      struct btrfs_delayed_ref_head *href,
 585			      struct btrfs_delayed_ref_node *ref)
 586{
 
 587	struct btrfs_delayed_ref_node *exist;
 588	int mod;
 589	int ret = 0;
 590
 591	spin_lock(&href->lock);
 592	exist = tree_insert(&href->ref_tree, ref);
 593	if (!exist)
 594		goto inserted;
 
 
 
 
 
 
 595
 596	/* Now we are sure we can merge */
 597	ret = 1;
 598	if (exist->action == ref->action) {
 599		mod = ref->ref_mod;
 600	} else {
 601		/* Need to change action */
 602		if (exist->ref_mod < ref->ref_mod) {
 603			exist->action = ref->action;
 604			mod = -exist->ref_mod;
 605			exist->ref_mod = ref->ref_mod;
 606			if (ref->action == BTRFS_ADD_DELAYED_REF)
 607				list_add_tail(&exist->add_list,
 608					      &href->ref_add_list);
 609			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 610				ASSERT(!list_empty(&exist->add_list));
 611				list_del(&exist->add_list);
 612			} else {
 613				ASSERT(0);
 614			}
 615		} else
 616			mod = -ref->ref_mod;
 617	}
 618	exist->ref_mod += mod;
 619
 620	/* remove existing tail if its ref_mod is zero */
 621	if (exist->ref_mod == 0)
 622		drop_delayed_ref(trans, root, href, exist);
 623	spin_unlock(&href->lock);
 624	return ret;
 625inserted:
 626	if (ref->action == BTRFS_ADD_DELAYED_REF)
 627		list_add_tail(&ref->add_list, &href->ref_add_list);
 628	atomic_inc(&root->num_entries);
 629	spin_unlock(&href->lock);
 630	return ret;
 631}
 632
 633/*
 634 * helper function to update the accounting in the head ref
 635 * existing and update must have the same bytenr
 636 */
 637static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 638			 struct btrfs_delayed_ref_head *existing,
 639			 struct btrfs_delayed_ref_head *update)
 640{
 641	struct btrfs_delayed_ref_root *delayed_refs =
 642		&trans->transaction->delayed_refs;
 643	struct btrfs_fs_info *fs_info = trans->fs_info;
 644	int old_ref_mod;
 645
 646	BUG_ON(existing->is_data != update->is_data);
 647
 648	spin_lock(&existing->lock);
 
 
 
 
 
 
 
 
 
 649	if (update->must_insert_reserved) {
 650		/* if the extent was freed and then
 651		 * reallocated before the delayed ref
 652		 * entries were processed, we can end up
 653		 * with an existing head ref without
 654		 * the must_insert_reserved flag set.
 655		 * Set it again here
 656		 */
 657		existing->must_insert_reserved = update->must_insert_reserved;
 
 658
 659		/*
 660		 * update the num_bytes so we make sure the accounting
 661		 * is done correctly
 662		 */
 663		existing->num_bytes = update->num_bytes;
 664
 665	}
 666
 667	if (update->extent_op) {
 668		if (!existing->extent_op) {
 669			existing->extent_op = update->extent_op;
 670		} else {
 671			if (update->extent_op->update_key) {
 672				memcpy(&existing->extent_op->key,
 673				       &update->extent_op->key,
 674				       sizeof(update->extent_op->key));
 675				existing->extent_op->update_key = true;
 676			}
 677			if (update->extent_op->update_flags) {
 678				existing->extent_op->flags_to_set |=
 679					update->extent_op->flags_to_set;
 680				existing->extent_op->update_flags = true;
 681			}
 682			btrfs_free_delayed_extent_op(update->extent_op);
 683		}
 684	}
 685	/*
 686	 * update the reference mod on the head to reflect this new operation,
 687	 * only need the lock for this case cause we could be processing it
 688	 * currently, for refs we just added we know we're a-ok.
 689	 */
 690	old_ref_mod = existing->total_ref_mod;
 691	existing->ref_mod += update->ref_mod;
 692	existing->total_ref_mod += update->ref_mod;
 693
 694	/*
 695	 * If we are going to from a positive ref mod to a negative or vice
 696	 * versa we need to make sure to adjust pending_csums accordingly.
 
 
 697	 */
 698	if (existing->is_data) {
 699		u64 csum_leaves =
 700			btrfs_csum_bytes_to_leaves(fs_info,
 701						   existing->num_bytes);
 702
 703		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 704			delayed_refs->pending_csums -= existing->num_bytes;
 705			btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
 706		}
 707		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 708			delayed_refs->pending_csums += existing->num_bytes;
 709			trans->delayed_ref_updates += csum_leaves;
 710		}
 711	}
 712
 713	spin_unlock(&existing->lock);
 714}
 715
 716static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 717				  struct btrfs_qgroup_extent_record *qrecord,
 718				  u64 bytenr, u64 num_bytes, u64 ref_root,
 719				  u64 reserved, int action, bool is_data,
 720				  bool is_system)
 721{
 722	int count_mod = 1;
 723	int must_insert_reserved = 0;
 724
 725	/* If reserved is provided, it must be a data extent. */
 726	BUG_ON(!is_data && reserved);
 727
 728	/*
 729	 * The head node stores the sum of all the mods, so dropping a ref
 730	 * should drop the sum in the head node by one.
 731	 */
 732	if (action == BTRFS_UPDATE_DELAYED_HEAD)
 733		count_mod = 0;
 734	else if (action == BTRFS_DROP_DELAYED_REF)
 
 
 
 
 
 735		count_mod = -1;
 736
 737	/*
 738	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
 739	 * accounting when the extent is finally added, or if a later
 740	 * modification deletes the delayed ref without ever inserting the
 741	 * extent into the extent allocation tree.  ref->must_insert_reserved
 742	 * is the flag used to record that accounting mods are required.
 743	 *
 744	 * Once we record must_insert_reserved, switch the action to
 745	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
 746	 */
 747	if (action == BTRFS_ADD_DELAYED_EXTENT)
 748		must_insert_reserved = 1;
 749	else
 750		must_insert_reserved = 0;
 
 
 751
 752	refcount_set(&head_ref->refs, 1);
 753	head_ref->bytenr = bytenr;
 754	head_ref->num_bytes = num_bytes;
 755	head_ref->ref_mod = count_mod;
 
 756	head_ref->must_insert_reserved = must_insert_reserved;
 
 757	head_ref->is_data = is_data;
 758	head_ref->is_system = is_system;
 759	head_ref->ref_tree = RB_ROOT_CACHED;
 760	INIT_LIST_HEAD(&head_ref->ref_add_list);
 761	RB_CLEAR_NODE(&head_ref->href_node);
 762	head_ref->processing = 0;
 763	head_ref->total_ref_mod = count_mod;
 764	spin_lock_init(&head_ref->lock);
 765	mutex_init(&head_ref->mutex);
 766
 767	if (qrecord) {
 768		if (ref_root && reserved) {
 769			qrecord->data_rsv = reserved;
 770			qrecord->data_rsv_refroot = ref_root;
 771		}
 772		qrecord->bytenr = bytenr;
 773		qrecord->num_bytes = num_bytes;
 774		qrecord->old_roots = NULL;
 775	}
 776}
 777
 778/*
 779 * helper function to actually insert a head node into the rbtree.
 780 * this does all the dirty work in terms of maintaining the correct
 781 * overall modification count.
 782 */
 783static noinline struct btrfs_delayed_ref_head *
 784add_delayed_ref_head(struct btrfs_trans_handle *trans,
 785		     struct btrfs_delayed_ref_head *head_ref,
 786		     struct btrfs_qgroup_extent_record *qrecord,
 787		     int action, int *qrecord_inserted_ret)
 788{
 789	struct btrfs_delayed_ref_head *existing;
 790	struct btrfs_delayed_ref_root *delayed_refs;
 791	int qrecord_inserted = 0;
 792
 793	delayed_refs = &trans->transaction->delayed_refs;
 794
 795	/* Record qgroup extent info if provided */
 796	if (qrecord) {
 797		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 798					delayed_refs, qrecord))
 799			kfree(qrecord);
 800		else
 801			qrecord_inserted = 1;
 802	}
 803
 804	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 805
 806	existing = htree_insert(&delayed_refs->href_root,
 807				&head_ref->href_node);
 808	if (existing) {
 809		update_existing_head_ref(trans, existing, head_ref);
 810		/*
 811		 * we've updated the existing ref, free the newly
 812		 * allocated ref
 813		 */
 814		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 815		head_ref = existing;
 816	} else {
 
 
 
 
 
 
 817		if (head_ref->is_data && head_ref->ref_mod < 0) {
 818			delayed_refs->pending_csums += head_ref->num_bytes;
 819			trans->delayed_ref_updates +=
 820				btrfs_csum_bytes_to_leaves(trans->fs_info,
 821							   head_ref->num_bytes);
 822		}
 823		delayed_refs->num_heads++;
 824		delayed_refs->num_heads_ready++;
 825		atomic_inc(&delayed_refs->num_entries);
 826		trans->delayed_ref_updates++;
 827	}
 828	if (qrecord_inserted_ret)
 829		*qrecord_inserted_ret = qrecord_inserted;
 830
 831	return head_ref;
 832}
 833
 834/*
 835 * init_delayed_ref_common - Initialize the structure which represents a
 836 *			     modification to a an extent.
 837 *
 838 * @fs_info:    Internal to the mounted filesystem mount structure.
 839 *
 840 * @ref:	The structure which is going to be initialized.
 841 *
 842 * @bytenr:	The logical address of the extent for which a modification is
 843 *		going to be recorded.
 844 *
 845 * @num_bytes:  Size of the extent whose modification is being recorded.
 846 *
 847 * @ref_root:	The id of the root where this modification has originated, this
 848 *		can be either one of the well-known metadata trees or the
 849 *		subvolume id which references this extent.
 850 *
 851 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 852 *		BTRFS_ADD_DELAYED_EXTENT
 853 *
 854 * @ref_type:	Holds the type of the extent which is being recorded, can be
 855 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 856 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 857 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 858 */
 859static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 860				    struct btrfs_delayed_ref_node *ref,
 861				    u64 bytenr, u64 num_bytes, u64 ref_root,
 862				    int action, u8 ref_type)
 863{
 864	u64 seq = 0;
 865
 866	if (action == BTRFS_ADD_DELAYED_EXTENT)
 867		action = BTRFS_ADD_DELAYED_REF;
 868
 869	if (is_fstree(ref_root))
 870		seq = atomic64_read(&fs_info->tree_mod_seq);
 871
 872	refcount_set(&ref->refs, 1);
 873	ref->bytenr = bytenr;
 874	ref->num_bytes = num_bytes;
 875	ref->ref_mod = 1;
 876	ref->action = action;
 877	ref->is_head = 0;
 878	ref->in_tree = 1;
 879	ref->seq = seq;
 880	ref->type = ref_type;
 881	RB_CLEAR_NODE(&ref->ref_node);
 882	INIT_LIST_HEAD(&ref->add_list);
 883}
 884
 885/*
 886 * add a delayed tree ref.  This does all of the accounting required
 887 * to make sure the delayed ref is eventually processed before this
 888 * transaction commits.
 889 */
 890int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
 891			       struct btrfs_ref *generic_ref,
 892			       struct btrfs_delayed_extent_op *extent_op)
 893{
 894	struct btrfs_fs_info *fs_info = trans->fs_info;
 895	struct btrfs_delayed_tree_ref *ref;
 896	struct btrfs_delayed_ref_head *head_ref;
 897	struct btrfs_delayed_ref_root *delayed_refs;
 898	struct btrfs_qgroup_extent_record *record = NULL;
 899	int qrecord_inserted;
 900	bool is_system;
 
 901	int action = generic_ref->action;
 902	int level = generic_ref->tree_ref.level;
 903	int ret;
 904	u64 bytenr = generic_ref->bytenr;
 905	u64 num_bytes = generic_ref->len;
 906	u64 parent = generic_ref->parent;
 907	u8 ref_type;
 908
 909	is_system = (generic_ref->real_root == BTRFS_CHUNK_TREE_OBJECTID);
 910
 911	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
 912	BUG_ON(extent_op && extent_op->is_data);
 913	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
 914	if (!ref)
 915		return -ENOMEM;
 916
 917	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
 918	if (!head_ref) {
 919		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 920		return -ENOMEM;
 921	}
 922
 923	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
 924	    is_fstree(generic_ref->real_root) &&
 925	    is_fstree(generic_ref->tree_ref.root) &&
 926	    !generic_ref->skip_qgroup) {
 927		record = kzalloc(sizeof(*record), GFP_NOFS);
 928		if (!record) {
 929			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 930			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 931			return -ENOMEM;
 932		}
 933	}
 934
 935	if (parent)
 936		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
 937	else
 938		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
 939
 940	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
 941				generic_ref->tree_ref.root, action, ref_type);
 942	ref->root = generic_ref->tree_ref.root;
 
 943	ref->parent = parent;
 944	ref->level = level;
 945
 946	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
 947			      generic_ref->tree_ref.root, 0, action, false,
 948			      is_system);
 949	head_ref->extent_op = extent_op;
 950
 951	delayed_refs = &trans->transaction->delayed_refs;
 952	spin_lock(&delayed_refs->lock);
 953
 954	/*
 955	 * insert both the head node and the new ref without dropping
 956	 * the spin lock
 957	 */
 958	head_ref = add_delayed_ref_head(trans, head_ref, record,
 959					action, &qrecord_inserted);
 960
 961	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
 962	spin_unlock(&delayed_refs->lock);
 963
 964	/*
 965	 * Need to update the delayed_refs_rsv with any changes we may have
 966	 * made.
 967	 */
 968	btrfs_update_delayed_refs_rsv(trans);
 969
 970	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
 971				   action == BTRFS_ADD_DELAYED_EXTENT ?
 972				   BTRFS_ADD_DELAYED_REF : action);
 973	if (ret > 0)
 974		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
 975
 976	if (qrecord_inserted)
 977		btrfs_qgroup_trace_extent_post(trans, record);
 978
 979	return 0;
 980}
 981
 982/*
 983 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
 984 */
 985int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
 986			       struct btrfs_ref *generic_ref,
 987			       u64 reserved)
 988{
 989	struct btrfs_fs_info *fs_info = trans->fs_info;
 990	struct btrfs_delayed_data_ref *ref;
 991	struct btrfs_delayed_ref_head *head_ref;
 992	struct btrfs_delayed_ref_root *delayed_refs;
 993	struct btrfs_qgroup_extent_record *record = NULL;
 994	int qrecord_inserted;
 995	int action = generic_ref->action;
 996	int ret;
 997	u64 bytenr = generic_ref->bytenr;
 998	u64 num_bytes = generic_ref->len;
 999	u64 parent = generic_ref->parent;
1000	u64 ref_root = generic_ref->data_ref.ref_root;
1001	u64 owner = generic_ref->data_ref.ino;
1002	u64 offset = generic_ref->data_ref.offset;
1003	u8 ref_type;
1004
1005	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1006	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1007	if (!ref)
1008		return -ENOMEM;
1009
1010	if (parent)
1011	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1012	else
1013	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1014	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1015				ref_root, action, ref_type);
1016	ref->root = ref_root;
1017	ref->parent = parent;
1018	ref->objectid = owner;
1019	ref->offset = offset;
1020
1021
1022	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1023	if (!head_ref) {
1024		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1025		return -ENOMEM;
1026	}
1027
1028	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1029	    is_fstree(ref_root) &&
1030	    is_fstree(generic_ref->real_root) &&
1031	    !generic_ref->skip_qgroup) {
1032		record = kzalloc(sizeof(*record), GFP_NOFS);
1033		if (!record) {
1034			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1035			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1036					head_ref);
1037			return -ENOMEM;
1038		}
1039	}
1040
1041	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1042			      reserved, action, true, false);
1043	head_ref->extent_op = NULL;
1044
1045	delayed_refs = &trans->transaction->delayed_refs;
1046	spin_lock(&delayed_refs->lock);
1047
1048	/*
1049	 * insert both the head node and the new ref without dropping
1050	 * the spin lock
1051	 */
1052	head_ref = add_delayed_ref_head(trans, head_ref, record,
1053					action, &qrecord_inserted);
1054
1055	ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
1056	spin_unlock(&delayed_refs->lock);
1057
1058	/*
1059	 * Need to update the delayed_refs_rsv with any changes we may have
1060	 * made.
1061	 */
1062	btrfs_update_delayed_refs_rsv(trans);
1063
1064	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1065				   action == BTRFS_ADD_DELAYED_EXTENT ?
1066				   BTRFS_ADD_DELAYED_REF : action);
1067	if (ret > 0)
1068		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1069
1070
1071	if (qrecord_inserted)
1072		return btrfs_qgroup_trace_extent_post(trans, record);
1073	return 0;
1074}
1075
1076int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1077				u64 bytenr, u64 num_bytes,
1078				struct btrfs_delayed_extent_op *extent_op)
1079{
1080	struct btrfs_delayed_ref_head *head_ref;
1081	struct btrfs_delayed_ref_root *delayed_refs;
1082
1083	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1084	if (!head_ref)
1085		return -ENOMEM;
1086
1087	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1088			      BTRFS_UPDATE_DELAYED_HEAD, extent_op->is_data,
1089			      false);
1090	head_ref->extent_op = extent_op;
1091
1092	delayed_refs = &trans->transaction->delayed_refs;
1093	spin_lock(&delayed_refs->lock);
1094
1095	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1096			     NULL);
1097
1098	spin_unlock(&delayed_refs->lock);
1099
1100	/*
1101	 * Need to update the delayed_refs_rsv with any changes we may have
1102	 * made.
1103	 */
1104	btrfs_update_delayed_refs_rsv(trans);
1105	return 0;
1106}
1107
1108/*
1109 * This does a simple search for the head node for a given extent.  Returns the
1110 * head node if found, or NULL if not.
1111 */
1112struct btrfs_delayed_ref_head *
1113btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1114{
1115	lockdep_assert_held(&delayed_refs->lock);
1116
1117	return find_ref_head(delayed_refs, bytenr, false);
1118}
1119
1120void __cold btrfs_delayed_ref_exit(void)
1121{
1122	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1123	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1124	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1125	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1126}
1127
1128int __init btrfs_delayed_ref_init(void)
1129{
1130	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1131				"btrfs_delayed_ref_head",
1132				sizeof(struct btrfs_delayed_ref_head), 0,
1133				SLAB_MEM_SPREAD, NULL);
1134	if (!btrfs_delayed_ref_head_cachep)
1135		goto fail;
1136
1137	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1138				"btrfs_delayed_tree_ref",
1139				sizeof(struct btrfs_delayed_tree_ref), 0,
1140				SLAB_MEM_SPREAD, NULL);
1141	if (!btrfs_delayed_tree_ref_cachep)
1142		goto fail;
1143
1144	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1145				"btrfs_delayed_data_ref",
1146				sizeof(struct btrfs_delayed_data_ref), 0,
1147				SLAB_MEM_SPREAD, NULL);
1148	if (!btrfs_delayed_data_ref_cachep)
1149		goto fail;
1150
1151	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1152				"btrfs_delayed_extent_op",
1153				sizeof(struct btrfs_delayed_extent_op), 0,
1154				SLAB_MEM_SPREAD, NULL);
1155	if (!btrfs_delayed_extent_op_cachep)
1156		goto fail;
1157
1158	return 0;
1159fail:
1160	btrfs_delayed_ref_exit();
1161	return -ENOMEM;
1162}