Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
   9#include "messages.h"
  10#include "ctree.h"
  11#include "delayed-ref.h"
  12#include "transaction.h"
  13#include "qgroup.h"
  14#include "space-info.h"
  15#include "tree-mod-log.h"
  16#include "fs.h"
  17
  18struct kmem_cache *btrfs_delayed_ref_head_cachep;
  19struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  20struct kmem_cache *btrfs_delayed_data_ref_cachep;
  21struct kmem_cache *btrfs_delayed_extent_op_cachep;
  22/*
  23 * delayed back reference update tracking.  For subvolume trees
  24 * we queue up extent allocations and backref maintenance for
  25 * delayed processing.   This avoids deep call chains where we
  26 * add extents in the middle of btrfs_search_slot, and it allows
  27 * us to buffer up frequently modified backrefs in an rb tree instead
  28 * of hammering updates on the extent allocation tree.
  29 */
  30
  31bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  32{
  33	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  34	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  35	bool ret = false;
  36	u64 reserved;
  37
  38	spin_lock(&global_rsv->lock);
  39	reserved = global_rsv->reserved;
  40	spin_unlock(&global_rsv->lock);
  41
  42	/*
  43	 * Since the global reserve is just kind of magic we don't really want
  44	 * to rely on it to save our bacon, so if our size is more than the
  45	 * delayed_refs_rsv and the global rsv then it's time to think about
  46	 * bailing.
  47	 */
  48	spin_lock(&delayed_refs_rsv->lock);
  49	reserved += delayed_refs_rsv->reserved;
  50	if (delayed_refs_rsv->size >= reserved)
  51		ret = true;
  52	spin_unlock(&delayed_refs_rsv->lock);
  53	return ret;
  54}
  55
  56/*
  57 * Release a ref head's reservation.
  58 *
  59 * @fs_info:  the filesystem
  60 * @nr_refs:  number of delayed refs to drop
  61 * @nr_csums: number of csum items to drop
  62 *
  63 * Drops the delayed ref head's count from the delayed refs rsv and free any
  64 * excess reservation we had.
  65 */
  66void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
  67{
  68	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  69	u64 num_bytes;
  70	u64 released;
  71
  72	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
  73	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
  74
  75	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
  76	if (released)
  77		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
  78					      0, released, 0);
  79}
  80
  81/*
  82 * Adjust the size of the delayed refs rsv.
  83 *
  84 * This is to be called anytime we may have adjusted trans->delayed_ref_updates
  85 * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
  86 * add it to the delayed_refs_rsv.
  87 */
  88void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
  89{
  90	struct btrfs_fs_info *fs_info = trans->fs_info;
  91	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
  92	struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
  93	u64 num_bytes;
  94	u64 reserved_bytes;
  95
  96	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
  97	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
  98						       trans->delayed_ref_csum_deletions);
  99
 100	if (num_bytes == 0)
 101		return;
 102
 103	/*
 104	 * Try to take num_bytes from the transaction's local delayed reserve.
 105	 * If not possible, try to take as much as it's available. If the local
 106	 * reserve doesn't have enough reserved space, the delayed refs reserve
 107	 * will be refilled next time btrfs_delayed_refs_rsv_refill() is called
 108	 * by someone or if a transaction commit is triggered before that, the
 109	 * global block reserve will be used. We want to minimize using the
 110	 * global block reserve for cases we can account for in advance, to
 111	 * avoid exhausting it and reach -ENOSPC during a transaction commit.
 112	 */
 113	spin_lock(&local_rsv->lock);
 114	reserved_bytes = min(num_bytes, local_rsv->reserved);
 115	local_rsv->reserved -= reserved_bytes;
 116	local_rsv->full = (local_rsv->reserved >= local_rsv->size);
 117	spin_unlock(&local_rsv->lock);
 118
 119	spin_lock(&delayed_rsv->lock);
 120	delayed_rsv->size += num_bytes;
 121	delayed_rsv->reserved += reserved_bytes;
 122	delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
 123	spin_unlock(&delayed_rsv->lock);
 124	trans->delayed_ref_updates = 0;
 125	trans->delayed_ref_csum_deletions = 0;
 126}
 127
 128/*
 129 * Adjust the size of the delayed refs block reserve for 1 block group item
 130 * insertion, used after allocating a block group.
 131 */
 132void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
 133{
 134	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 135
 136	spin_lock(&delayed_rsv->lock);
 137	/*
 138	 * Inserting a block group item does not require changing the free space
 139	 * tree, only the extent tree or the block group tree, so this is all we
 140	 * need.
 141	 */
 142	delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
 143	delayed_rsv->full = false;
 144	spin_unlock(&delayed_rsv->lock);
 145}
 146
 147/*
 148 * Adjust the size of the delayed refs block reserve to release space for 1
 149 * block group item insertion.
 150 */
 151void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
 152{
 153	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 154	const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 155	u64 released;
 156
 157	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
 158	if (released > 0)
 159		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 160					      0, released, 0);
 161}
 162
 163/*
 164 * Adjust the size of the delayed refs block reserve for 1 block group item
 165 * update.
 166 */
 167void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
 168{
 169	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 170
 171	spin_lock(&delayed_rsv->lock);
 172	/*
 173	 * Updating a block group item does not result in new nodes/leaves and
 174	 * does not require changing the free space tree, only the extent tree
 175	 * or the block group tree, so this is all we need.
 176	 */
 177	delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
 178	delayed_rsv->full = false;
 179	spin_unlock(&delayed_rsv->lock);
 180}
 181
 182/*
 183 * Adjust the size of the delayed refs block reserve to release space for 1
 184 * block group item update.
 185 */
 186void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
 187{
 188	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 189	const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 190	u64 released;
 191
 192	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
 193	if (released > 0)
 194		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 195					      0, released, 0);
 196}
 197
 198/*
 199 * Transfer bytes to our delayed refs rsv.
 200 *
 201 * @fs_info:   the filesystem
 202 * @num_bytes: number of bytes to transfer
 203 *
 204 * This transfers up to the num_bytes amount, previously reserved, to the
 205 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 206 */
 207void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 208				       u64 num_bytes)
 209{
 210	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 211	u64 to_free = 0;
 212
 213	spin_lock(&delayed_refs_rsv->lock);
 214	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 215		u64 delta = delayed_refs_rsv->size -
 216			delayed_refs_rsv->reserved;
 217		if (num_bytes > delta) {
 218			to_free = num_bytes - delta;
 219			num_bytes = delta;
 220		}
 221	} else {
 222		to_free = num_bytes;
 223		num_bytes = 0;
 224	}
 225
 226	if (num_bytes)
 227		delayed_refs_rsv->reserved += num_bytes;
 228	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 229		delayed_refs_rsv->full = true;
 230	spin_unlock(&delayed_refs_rsv->lock);
 231
 232	if (num_bytes)
 233		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 234					      0, num_bytes, 1);
 235	if (to_free)
 236		btrfs_space_info_free_bytes_may_use(fs_info,
 237				delayed_refs_rsv->space_info, to_free);
 238}
 239
 240/*
 241 * Refill based on our delayed refs usage.
 242 *
 243 * @fs_info: the filesystem
 244 * @flush:   control how we can flush for this reservation.
 245 *
 246 * This will refill the delayed block_rsv up to 1 items size worth of space and
 247 * will return -ENOSPC if we can't make the reservation.
 248 */
 249int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 250				  enum btrfs_reserve_flush_enum flush)
 251{
 252	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 253	struct btrfs_space_info *space_info = block_rsv->space_info;
 254	u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
 255	u64 num_bytes = 0;
 256	u64 refilled_bytes;
 257	u64 to_free;
 258	int ret = -ENOSPC;
 259
 260	spin_lock(&block_rsv->lock);
 261	if (block_rsv->reserved < block_rsv->size) {
 262		num_bytes = block_rsv->size - block_rsv->reserved;
 263		num_bytes = min(num_bytes, limit);
 264	}
 265	spin_unlock(&block_rsv->lock);
 266
 267	if (!num_bytes)
 268		return 0;
 269
 270	ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
 271	if (ret)
 272		return ret;
 273
 274	/*
 275	 * We may have raced with someone else, so check again if we the block
 276	 * reserve is still not full and release any excess space.
 277	 */
 278	spin_lock(&block_rsv->lock);
 279	if (block_rsv->reserved < block_rsv->size) {
 280		u64 needed = block_rsv->size - block_rsv->reserved;
 281
 282		if (num_bytes >= needed) {
 283			block_rsv->reserved += needed;
 284			block_rsv->full = true;
 285			to_free = num_bytes - needed;
 286			refilled_bytes = needed;
 287		} else {
 288			block_rsv->reserved += num_bytes;
 289			to_free = 0;
 290			refilled_bytes = num_bytes;
 291		}
 292	} else {
 293		to_free = num_bytes;
 294		refilled_bytes = 0;
 295	}
 296	spin_unlock(&block_rsv->lock);
 297
 298	if (to_free > 0)
 299		btrfs_space_info_free_bytes_may_use(fs_info, space_info, to_free);
 300
 301	if (refilled_bytes > 0)
 302		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
 303					      refilled_bytes, 1);
 304	return 0;
 305}
 306
 307/*
 308 * compare two delayed tree backrefs with same bytenr and type
 309 */
 310static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 311			  struct btrfs_delayed_tree_ref *ref2)
 312{
 313	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 314		if (ref1->root < ref2->root)
 315			return -1;
 316		if (ref1->root > ref2->root)
 317			return 1;
 318	} else {
 319		if (ref1->parent < ref2->parent)
 320			return -1;
 321		if (ref1->parent > ref2->parent)
 322			return 1;
 323	}
 324	return 0;
 325}
 326
 327/*
 328 * compare two delayed data backrefs with same bytenr and type
 329 */
 330static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 331			  struct btrfs_delayed_data_ref *ref2)
 332{
 333	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 334		if (ref1->root < ref2->root)
 335			return -1;
 336		if (ref1->root > ref2->root)
 337			return 1;
 338		if (ref1->objectid < ref2->objectid)
 339			return -1;
 340		if (ref1->objectid > ref2->objectid)
 341			return 1;
 342		if (ref1->offset < ref2->offset)
 343			return -1;
 344		if (ref1->offset > ref2->offset)
 345			return 1;
 346	} else {
 347		if (ref1->parent < ref2->parent)
 348			return -1;
 349		if (ref1->parent > ref2->parent)
 350			return 1;
 351	}
 352	return 0;
 353}
 354
 355static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 356		     struct btrfs_delayed_ref_node *ref2,
 357		     bool check_seq)
 358{
 359	int ret = 0;
 360
 361	if (ref1->type < ref2->type)
 362		return -1;
 363	if (ref1->type > ref2->type)
 364		return 1;
 365	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 366	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 367		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 368				     btrfs_delayed_node_to_tree_ref(ref2));
 369	else
 370		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 371				     btrfs_delayed_node_to_data_ref(ref2));
 372	if (ret)
 373		return ret;
 374	if (check_seq) {
 375		if (ref1->seq < ref2->seq)
 376			return -1;
 377		if (ref1->seq > ref2->seq)
 378			return 1;
 379	}
 380	return 0;
 381}
 382
 383/* insert a new ref to head ref rbtree */
 384static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 385						   struct rb_node *node)
 386{
 387	struct rb_node **p = &root->rb_root.rb_node;
 388	struct rb_node *parent_node = NULL;
 389	struct btrfs_delayed_ref_head *entry;
 390	struct btrfs_delayed_ref_head *ins;
 391	u64 bytenr;
 392	bool leftmost = true;
 393
 394	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 395	bytenr = ins->bytenr;
 396	while (*p) {
 397		parent_node = *p;
 398		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 399				 href_node);
 400
 401		if (bytenr < entry->bytenr) {
 402			p = &(*p)->rb_left;
 403		} else if (bytenr > entry->bytenr) {
 404			p = &(*p)->rb_right;
 405			leftmost = false;
 406		} else {
 407			return entry;
 408		}
 409	}
 410
 411	rb_link_node(node, parent_node, p);
 412	rb_insert_color_cached(node, root, leftmost);
 413	return NULL;
 414}
 415
 416static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 417		struct btrfs_delayed_ref_node *ins)
 418{
 419	struct rb_node **p = &root->rb_root.rb_node;
 420	struct rb_node *node = &ins->ref_node;
 421	struct rb_node *parent_node = NULL;
 422	struct btrfs_delayed_ref_node *entry;
 423	bool leftmost = true;
 424
 425	while (*p) {
 426		int comp;
 427
 428		parent_node = *p;
 429		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 430				 ref_node);
 431		comp = comp_refs(ins, entry, true);
 432		if (comp < 0) {
 433			p = &(*p)->rb_left;
 434		} else if (comp > 0) {
 435			p = &(*p)->rb_right;
 436			leftmost = false;
 437		} else {
 438			return entry;
 439		}
 440	}
 441
 442	rb_link_node(node, parent_node, p);
 443	rb_insert_color_cached(node, root, leftmost);
 444	return NULL;
 445}
 446
 447static struct btrfs_delayed_ref_head *find_first_ref_head(
 448		struct btrfs_delayed_ref_root *dr)
 449{
 450	struct rb_node *n;
 451	struct btrfs_delayed_ref_head *entry;
 452
 453	n = rb_first_cached(&dr->href_root);
 454	if (!n)
 455		return NULL;
 456
 457	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 458
 459	return entry;
 460}
 461
 462/*
 463 * Find a head entry based on bytenr. This returns the delayed ref head if it
 464 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 465 * is given, the next bigger entry is returned if no exact match is found.
 466 */
 467static struct btrfs_delayed_ref_head *find_ref_head(
 468		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 469		bool return_bigger)
 
 470{
 471	struct rb_root *root = &dr->href_root.rb_root;
 472	struct rb_node *n;
 473	struct btrfs_delayed_ref_head *entry;
 474
 475	n = root->rb_node;
 476	entry = NULL;
 477	while (n) {
 478		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 479
 480		if (bytenr < entry->bytenr)
 481			n = n->rb_left;
 482		else if (bytenr > entry->bytenr)
 483			n = n->rb_right;
 484		else
 485			return entry;
 486	}
 487	if (entry && return_bigger) {
 488		if (bytenr > entry->bytenr) {
 489			n = rb_next(&entry->href_node);
 490			if (!n)
 491				return NULL;
 492			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 493					 href_node);
 
 494		}
 495		return entry;
 496	}
 497	return NULL;
 498}
 499
 500int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 501			   struct btrfs_delayed_ref_head *head)
 502{
 503	lockdep_assert_held(&delayed_refs->lock);
 
 
 
 504	if (mutex_trylock(&head->mutex))
 505		return 0;
 506
 507	refcount_inc(&head->refs);
 508	spin_unlock(&delayed_refs->lock);
 509
 510	mutex_lock(&head->mutex);
 511	spin_lock(&delayed_refs->lock);
 512	if (RB_EMPTY_NODE(&head->href_node)) {
 513		mutex_unlock(&head->mutex);
 514		btrfs_put_delayed_ref_head(head);
 515		return -EAGAIN;
 516	}
 517	btrfs_put_delayed_ref_head(head);
 518	return 0;
 519}
 520
 521static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
 522				    struct btrfs_delayed_ref_root *delayed_refs,
 523				    struct btrfs_delayed_ref_head *head,
 524				    struct btrfs_delayed_ref_node *ref)
 525{
 526	lockdep_assert_held(&head->lock);
 527	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 528	RB_CLEAR_NODE(&ref->ref_node);
 529	if (!list_empty(&ref->add_list))
 530		list_del(&ref->add_list);
 
 
 
 531	btrfs_put_delayed_ref(ref);
 532	atomic_dec(&delayed_refs->num_entries);
 533	btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
 
 534}
 535
 536static bool merge_ref(struct btrfs_fs_info *fs_info,
 537		      struct btrfs_delayed_ref_root *delayed_refs,
 538		      struct btrfs_delayed_ref_head *head,
 539		      struct btrfs_delayed_ref_node *ref,
 540		      u64 seq)
 541{
 542	struct btrfs_delayed_ref_node *next;
 543	struct rb_node *node = rb_next(&ref->ref_node);
 544	bool done = false;
 545
 546	while (!done && node) {
 
 
 547		int mod;
 
 
 
 
 
 
 548
 549		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 550		node = rb_next(node);
 551		if (seq && next->seq >= seq)
 552			break;
 553		if (comp_refs(ref, next, false))
 554			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556		if (ref->action == next->action) {
 557			mod = next->ref_mod;
 558		} else {
 559			if (ref->ref_mod < next->ref_mod) {
 560				swap(ref, next);
 561				done = true;
 562			}
 563			mod = -next->ref_mod;
 564		}
 565
 566		drop_delayed_ref(fs_info, delayed_refs, head, next);
 567		ref->ref_mod += mod;
 568		if (ref->ref_mod == 0) {
 569			drop_delayed_ref(fs_info, delayed_refs, head, ref);
 570			done = true;
 571		} else {
 572			/*
 573			 * Can't have multiples of the same ref on a tree block.
 574			 */
 575			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 576				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 577		}
 
 
 578	}
 579
 580	return done;
 581}
 582
 583void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
 
 584			      struct btrfs_delayed_ref_root *delayed_refs,
 585			      struct btrfs_delayed_ref_head *head)
 586{
 587	struct btrfs_delayed_ref_node *ref;
 588	struct rb_node *node;
 589	u64 seq = 0;
 590
 591	lockdep_assert_held(&head->lock);
 592
 593	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 594		return;
 595
 596	/* We don't have too many refs to merge for data. */
 597	if (head->is_data)
 598		return;
 599
 600	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 601again:
 602	for (node = rb_first_cached(&head->ref_tree); node;
 603	     node = rb_next(node)) {
 604		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 
 
 
 
 
 
 
 
 605		if (seq && ref->seq >= seq)
 
 
 
 
 
 
 
 
 606			continue;
 607		if (merge_ref(fs_info, delayed_refs, head, ref, seq))
 608			goto again;
 
 609	}
 610}
 611
 612int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 
 
 613{
 
 614	int ret = 0;
 615	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 616
 617	if (min_seq != 0 && seq >= min_seq) {
 618		btrfs_debug(fs_info,
 619			    "holding back delayed_ref %llu, lowest is %llu",
 620			    seq, min_seq);
 621		ret = 1;
 
 
 
 
 
 
 622	}
 623
 
 624	return ret;
 625}
 626
 627struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 628		struct btrfs_delayed_ref_root *delayed_refs)
 629{
 
 630	struct btrfs_delayed_ref_head *head;
 
 
 
 
 631
 632	lockdep_assert_held(&delayed_refs->lock);
 633again:
 634	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 635			     true);
 636	if (!head && delayed_refs->run_delayed_start != 0) {
 637		delayed_refs->run_delayed_start = 0;
 638		head = find_first_ref_head(delayed_refs);
 639	}
 640	if (!head)
 
 
 
 641		return NULL;
 
 642
 643	while (head->processing) {
 644		struct rb_node *node;
 645
 646		node = rb_next(&head->href_node);
 647		if (!node) {
 648			if (delayed_refs->run_delayed_start == 0)
 649				return NULL;
 650			delayed_refs->run_delayed_start = 0;
 
 
 651			goto again;
 652		}
 653		head = rb_entry(node, struct btrfs_delayed_ref_head,
 654				href_node);
 655	}
 656
 657	head->processing = true;
 658	WARN_ON(delayed_refs->num_heads_ready == 0);
 659	delayed_refs->num_heads_ready--;
 660	delayed_refs->run_delayed_start = head->bytenr +
 661		head->num_bytes;
 662	return head;
 663}
 664
 665void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 666			   struct btrfs_delayed_ref_head *head)
 667{
 668	lockdep_assert_held(&delayed_refs->lock);
 669	lockdep_assert_held(&head->lock);
 670
 671	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 672	RB_CLEAR_NODE(&head->href_node);
 673	atomic_dec(&delayed_refs->num_entries);
 674	delayed_refs->num_heads--;
 675	if (!head->processing)
 676		delayed_refs->num_heads_ready--;
 677}
 678
 679/*
 680 * Helper to insert the ref_node to the tail or merge with tail.
 681 *
 682 * Return false if the ref was inserted.
 683 * Return true if the ref was merged into an existing one (and therefore can be
 684 * freed by the caller).
 685 */
 686static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
 687			       struct btrfs_delayed_ref_head *href,
 688			       struct btrfs_delayed_ref_node *ref)
 
 
 689{
 690	struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
 691	struct btrfs_delayed_ref_node *exist;
 692	int mod;
 
 693
 694	spin_lock(&href->lock);
 695	exist = tree_insert(&href->ref_tree, ref);
 696	if (!exist) {
 697		if (ref->action == BTRFS_ADD_DELAYED_REF)
 698			list_add_tail(&ref->add_list, &href->ref_add_list);
 699		atomic_inc(&root->num_entries);
 700		spin_unlock(&href->lock);
 701		trans->delayed_ref_updates++;
 702		return false;
 703	}
 
 
 
 
 
 
 
 
 
 
 
 704
 705	/* Now we are sure we can merge */
 
 706	if (exist->action == ref->action) {
 707		mod = ref->ref_mod;
 708	} else {
 709		/* Need to change action */
 710		if (exist->ref_mod < ref->ref_mod) {
 711			exist->action = ref->action;
 712			mod = -exist->ref_mod;
 713			exist->ref_mod = ref->ref_mod;
 714			if (ref->action == BTRFS_ADD_DELAYED_REF)
 715				list_add_tail(&exist->add_list,
 716					      &href->ref_add_list);
 717			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 718				ASSERT(!list_empty(&exist->add_list));
 719				list_del(&exist->add_list);
 720			} else {
 721				ASSERT(0);
 722			}
 723		} else
 724			mod = -ref->ref_mod;
 725	}
 726	exist->ref_mod += mod;
 727
 728	/* remove existing tail if its ref_mod is zero */
 729	if (exist->ref_mod == 0)
 730		drop_delayed_ref(trans->fs_info, root, href, exist);
 731	spin_unlock(&href->lock);
 732	return true;
 
 
 
 
 
 
 
 733}
 734
 735/*
 736 * helper function to update the accounting in the head ref
 737 * existing and update must have the same bytenr
 738 */
 739static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 740			 struct btrfs_delayed_ref_head *existing,
 741			 struct btrfs_delayed_ref_head *update)
 742{
 743	struct btrfs_delayed_ref_root *delayed_refs =
 744		&trans->transaction->delayed_refs;
 745	struct btrfs_fs_info *fs_info = trans->fs_info;
 746	int old_ref_mod;
 747
 748	BUG_ON(existing->is_data != update->is_data);
 749
 750	spin_lock(&existing->lock);
 751
 752	/*
 753	 * When freeing an extent, we may not know the owning root when we
 754	 * first create the head_ref. However, some deref before the last deref
 755	 * will know it, so we just need to update the head_ref accordingly.
 756	 */
 757	if (!existing->owning_root)
 758		existing->owning_root = update->owning_root;
 759
 760	if (update->must_insert_reserved) {
 
 761		/* if the extent was freed and then
 762		 * reallocated before the delayed ref
 763		 * entries were processed, we can end up
 764		 * with an existing head ref without
 765		 * the must_insert_reserved flag set.
 766		 * Set it again here
 767		 */
 768		existing->must_insert_reserved = update->must_insert_reserved;
 769		existing->owning_root = update->owning_root;
 770
 771		/*
 772		 * update the num_bytes so we make sure the accounting
 773		 * is done correctly
 774		 */
 775		existing->num_bytes = update->num_bytes;
 776
 777	}
 778
 779	if (update->extent_op) {
 780		if (!existing->extent_op) {
 781			existing->extent_op = update->extent_op;
 782		} else {
 783			if (update->extent_op->update_key) {
 784				memcpy(&existing->extent_op->key,
 785				       &update->extent_op->key,
 786				       sizeof(update->extent_op->key));
 787				existing->extent_op->update_key = true;
 788			}
 789			if (update->extent_op->update_flags) {
 790				existing->extent_op->flags_to_set |=
 791					update->extent_op->flags_to_set;
 792				existing->extent_op->update_flags = true;
 793			}
 794			btrfs_free_delayed_extent_op(update->extent_op);
 795		}
 796	}
 797	/*
 798	 * update the reference mod on the head to reflect this new operation,
 799	 * only need the lock for this case cause we could be processing it
 800	 * currently, for refs we just added we know we're a-ok.
 801	 */
 802	old_ref_mod = existing->total_ref_mod;
 803	existing->ref_mod += update->ref_mod;
 804	existing->total_ref_mod += update->ref_mod;
 805
 806	/*
 807	 * If we are going to from a positive ref mod to a negative or vice
 808	 * versa we need to make sure to adjust pending_csums accordingly.
 809	 * We reserve bytes for csum deletion when adding or updating a ref head
 810	 * see add_delayed_ref_head() for more details.
 811	 */
 812	if (existing->is_data) {
 813		u64 csum_leaves =
 814			btrfs_csum_bytes_to_leaves(fs_info,
 815						   existing->num_bytes);
 816
 817		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 818			delayed_refs->pending_csums -= existing->num_bytes;
 819			btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
 820		}
 821		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 822			delayed_refs->pending_csums += existing->num_bytes;
 823			trans->delayed_ref_csum_deletions += csum_leaves;
 824		}
 825	}
 826
 827	spin_unlock(&existing->lock);
 828}
 829
 830static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 831				  struct btrfs_qgroup_extent_record *qrecord,
 832				  u64 bytenr, u64 num_bytes, u64 ref_root,
 833				  u64 reserved, int action, bool is_data,
 834				  bool is_system, u64 owning_root)
 
 
 
 
 
 
 
 835{
 
 
 
 
 836	int count_mod = 1;
 837	bool must_insert_reserved = false;
 838
 839	/* If reserved is provided, it must be a data extent. */
 840	BUG_ON(!is_data && reserved);
 841
 842	switch (action) {
 843	case BTRFS_UPDATE_DELAYED_HEAD:
 
 
 
 844		count_mod = 0;
 845		break;
 846	case BTRFS_DROP_DELAYED_REF:
 847		/*
 848		 * The head node stores the sum of all the mods, so dropping a ref
 849		 * should drop the sum in the head node by one.
 850		 */
 851		count_mod = -1;
 852		break;
 853	case BTRFS_ADD_DELAYED_EXTENT:
 854		/*
 855		 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
 856		 * reserved accounting when the extent is finally added, or if a
 857		 * later modification deletes the delayed ref without ever
 858		 * inserting the extent into the extent allocation tree.
 859		 * ref->must_insert_reserved is the flag used to record that
 860		 * accounting mods are required.
 861		 *
 862		 * Once we record must_insert_reserved, switch the action to
 863		 * BTRFS_ADD_DELAYED_REF because other special casing is not
 864		 * required.
 865		 */
 866		must_insert_reserved = true;
 867		break;
 868	}
 869
 870	refcount_set(&head_ref->refs, 1);
 871	head_ref->bytenr = bytenr;
 872	head_ref->num_bytes = num_bytes;
 873	head_ref->ref_mod = count_mod;
 874	head_ref->reserved_bytes = reserved;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875	head_ref->must_insert_reserved = must_insert_reserved;
 876	head_ref->owning_root = owning_root;
 877	head_ref->is_data = is_data;
 878	head_ref->is_system = is_system;
 879	head_ref->ref_tree = RB_ROOT_CACHED;
 880	INIT_LIST_HEAD(&head_ref->ref_add_list);
 881	RB_CLEAR_NODE(&head_ref->href_node);
 882	head_ref->processing = false;
 883	head_ref->total_ref_mod = count_mod;
 884	spin_lock_init(&head_ref->lock);
 885	mutex_init(&head_ref->mutex);
 886
 
 887	if (qrecord) {
 888		if (ref_root && reserved) {
 889			qrecord->data_rsv = reserved;
 890			qrecord->data_rsv_refroot = ref_root;
 891		}
 
 892		qrecord->bytenr = bytenr;
 893		qrecord->num_bytes = num_bytes;
 894		qrecord->old_roots = NULL;
 895	}
 896}
 897
 898/*
 899 * helper function to actually insert a head node into the rbtree.
 900 * this does all the dirty work in terms of maintaining the correct
 901 * overall modification count.
 902 */
 903static noinline struct btrfs_delayed_ref_head *
 904add_delayed_ref_head(struct btrfs_trans_handle *trans,
 905		     struct btrfs_delayed_ref_head *head_ref,
 906		     struct btrfs_qgroup_extent_record *qrecord,
 907		     int action, bool *qrecord_inserted_ret)
 908{
 909	struct btrfs_delayed_ref_head *existing;
 910	struct btrfs_delayed_ref_root *delayed_refs;
 911	bool qrecord_inserted = false;
 912
 913	delayed_refs = &trans->transaction->delayed_refs;
 914
 915	/* Record qgroup extent info if provided */
 916	if (qrecord) {
 917		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 918					delayed_refs, qrecord))
 919			kfree(qrecord);
 920		else
 921			qrecord_inserted = true;
 922	}
 923
 924	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 
 
 
 925
 926	existing = htree_insert(&delayed_refs->href_root,
 927				&head_ref->href_node);
 928	if (existing) {
 929		update_existing_head_ref(trans, existing, head_ref);
 
 
 930		/*
 931		 * we've updated the existing ref, free the newly
 932		 * allocated ref
 933		 */
 934		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 935		head_ref = existing;
 936	} else {
 937		/*
 938		 * We reserve the amount of bytes needed to delete csums when
 939		 * adding the ref head and not when adding individual drop refs
 940		 * since the csum items are deleted only after running the last
 941		 * delayed drop ref (the data extent's ref count drops to 0).
 942		 */
 943		if (head_ref->is_data && head_ref->ref_mod < 0) {
 944			delayed_refs->pending_csums += head_ref->num_bytes;
 945			trans->delayed_ref_csum_deletions +=
 946				btrfs_csum_bytes_to_leaves(trans->fs_info,
 947							   head_ref->num_bytes);
 948		}
 949		delayed_refs->num_heads++;
 950		delayed_refs->num_heads_ready++;
 951		atomic_inc(&delayed_refs->num_entries);
 
 952	}
 953	if (qrecord_inserted_ret)
 954		*qrecord_inserted_ret = qrecord_inserted;
 955
 956	return head_ref;
 957}
 958
 959/*
 960 * Initialize the structure which represents a modification to a an extent.
 961 *
 962 * @fs_info:    Internal to the mounted filesystem mount structure.
 963 *
 964 * @ref:	The structure which is going to be initialized.
 965 *
 966 * @bytenr:	The logical address of the extent for which a modification is
 967 *		going to be recorded.
 968 *
 969 * @num_bytes:  Size of the extent whose modification is being recorded.
 970 *
 971 * @ref_root:	The id of the root where this modification has originated, this
 972 *		can be either one of the well-known metadata trees or the
 973 *		subvolume id which references this extent.
 974 *
 975 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 976 *		BTRFS_ADD_DELAYED_EXTENT
 977 *
 978 * @ref_type:	Holds the type of the extent which is being recorded, can be
 979 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 980 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 981 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982 */
 983static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 984				    struct btrfs_delayed_ref_node *ref,
 985				    u64 bytenr, u64 num_bytes, u64 ref_root,
 986				    int action, u8 ref_type)
 
 
 
 987{
 
 
 988	u64 seq = 0;
 
 989
 990	if (action == BTRFS_ADD_DELAYED_EXTENT)
 991		action = BTRFS_ADD_DELAYED_REF;
 992
 
 
 993	if (is_fstree(ref_root))
 994		seq = atomic64_read(&fs_info->tree_mod_seq);
 995
 996	refcount_set(&ref->refs, 1);
 
 997	ref->bytenr = bytenr;
 998	ref->num_bytes = num_bytes;
 999	ref->ref_mod = 1;
1000	ref->action = action;
 
 
1001	ref->seq = seq;
1002	ref->type = ref_type;
1003	RB_CLEAR_NODE(&ref->ref_node);
1004	INIT_LIST_HEAD(&ref->add_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005}
1006
1007/*
1008 * add a delayed tree ref.  This does all of the accounting required
1009 * to make sure the delayed ref is eventually processed before this
1010 * transaction commits.
1011 */
1012int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1013			       struct btrfs_ref *generic_ref,
 
 
1014			       struct btrfs_delayed_extent_op *extent_op)
1015{
1016	struct btrfs_fs_info *fs_info = trans->fs_info;
1017	struct btrfs_delayed_tree_ref *ref;
1018	struct btrfs_delayed_ref_head *head_ref;
1019	struct btrfs_delayed_ref_root *delayed_refs;
1020	struct btrfs_qgroup_extent_record *record = NULL;
1021	bool qrecord_inserted;
1022	bool is_system;
1023	bool merged;
1024	int action = generic_ref->action;
1025	int level = generic_ref->tree_ref.level;
1026	u64 bytenr = generic_ref->bytenr;
1027	u64 num_bytes = generic_ref->len;
1028	u64 parent = generic_ref->parent;
1029	u8 ref_type;
1030
1031	is_system = (generic_ref->tree_ref.ref_root == BTRFS_CHUNK_TREE_OBJECTID);
1032
1033	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
1034	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
1035	if (!ref)
1036		return -ENOMEM;
1037
1038	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1039	if (!head_ref) {
1040		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1041		return -ENOMEM;
1042	}
1043
1044	if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1045		record = kzalloc(sizeof(*record), GFP_NOFS);
1046		if (!record) {
1047			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1048			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1049			return -ENOMEM;
1050		}
1051	}
1052
1053	if (parent)
1054		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
1055	else
1056		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
1057
1058	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1059				generic_ref->tree_ref.ref_root, action,
1060				ref_type);
1061	ref->root = generic_ref->tree_ref.ref_root;
1062	ref->parent = parent;
1063	ref->level = level;
1064
1065	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
1066			      generic_ref->tree_ref.ref_root, 0, action,
1067			      false, is_system, generic_ref->owning_root);
1068	head_ref->extent_op = extent_op;
1069
1070	delayed_refs = &trans->transaction->delayed_refs;
1071	spin_lock(&delayed_refs->lock);
1072
1073	/*
1074	 * insert both the head node and the new ref without dropping
1075	 * the spin lock
1076	 */
1077	head_ref = add_delayed_ref_head(trans, head_ref, record,
1078					action, &qrecord_inserted);
1079
1080	merged = insert_delayed_ref(trans, head_ref, &ref->node);
 
1081	spin_unlock(&delayed_refs->lock);
1082
1083	/*
1084	 * Need to update the delayed_refs_rsv with any changes we may have
1085	 * made.
1086	 */
1087	btrfs_update_delayed_refs_rsv(trans);
1088
1089	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
1090				   action == BTRFS_ADD_DELAYED_EXTENT ?
1091				   BTRFS_ADD_DELAYED_REF : action);
1092	if (merged)
1093		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1094
1095	if (qrecord_inserted)
1096		btrfs_qgroup_trace_extent_post(trans, record);
 
 
1097
1098	return 0;
1099}
1100
1101/*
1102 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1103 */
1104int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1105			       struct btrfs_ref *generic_ref,
1106			       u64 reserved)
 
 
 
1107{
1108	struct btrfs_fs_info *fs_info = trans->fs_info;
1109	struct btrfs_delayed_data_ref *ref;
1110	struct btrfs_delayed_ref_head *head_ref;
1111	struct btrfs_delayed_ref_root *delayed_refs;
1112	struct btrfs_qgroup_extent_record *record = NULL;
1113	bool qrecord_inserted;
1114	int action = generic_ref->action;
1115	bool merged;
1116	u64 bytenr = generic_ref->bytenr;
1117	u64 num_bytes = generic_ref->len;
1118	u64 parent = generic_ref->parent;
1119	u64 ref_root = generic_ref->data_ref.ref_root;
1120	u64 owner = generic_ref->data_ref.ino;
1121	u64 offset = generic_ref->data_ref.offset;
1122	u8 ref_type;
1123
1124	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1125	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1126	if (!ref)
1127		return -ENOMEM;
1128
1129	if (parent)
1130	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1131	else
1132	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1133	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1134				ref_root, action, ref_type);
1135	ref->root = ref_root;
1136	ref->parent = parent;
1137	ref->objectid = owner;
1138	ref->offset = offset;
1139
1140
1141	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1142	if (!head_ref) {
1143		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1144		return -ENOMEM;
1145	}
1146
1147	if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1148		record = kzalloc(sizeof(*record), GFP_NOFS);
1149		if (!record) {
1150			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1151			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1152					head_ref);
1153			return -ENOMEM;
1154		}
1155	}
1156
1157	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1158			      reserved, action, true, false, generic_ref->owning_root);
1159	head_ref->extent_op = NULL;
1160
1161	delayed_refs = &trans->transaction->delayed_refs;
1162	spin_lock(&delayed_refs->lock);
1163
1164	/*
1165	 * insert both the head node and the new ref without dropping
1166	 * the spin lock
1167	 */
1168	head_ref = add_delayed_ref_head(trans, head_ref, record,
1169					action, &qrecord_inserted);
1170
1171	merged = insert_delayed_ref(trans, head_ref, &ref->node);
 
 
 
1172	spin_unlock(&delayed_refs->lock);
1173
1174	/*
1175	 * Need to update the delayed_refs_rsv with any changes we may have
1176	 * made.
1177	 */
1178	btrfs_update_delayed_refs_rsv(trans);
1179
1180	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1181				   action == BTRFS_ADD_DELAYED_EXTENT ?
1182				   BTRFS_ADD_DELAYED_REF : action);
1183	if (merged)
1184		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
 
 
1185
 
 
1186
1187	if (qrecord_inserted)
1188		return btrfs_qgroup_trace_extent_post(trans, record);
1189	return 0;
 
 
 
 
 
 
 
 
 
 
 
1190}
1191
1192int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
 
1193				u64 bytenr, u64 num_bytes,
1194				struct btrfs_delayed_extent_op *extent_op)
1195{
1196	struct btrfs_delayed_ref_head *head_ref;
1197	struct btrfs_delayed_ref_root *delayed_refs;
1198
1199	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1200	if (!head_ref)
1201		return -ENOMEM;
1202
1203	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1204			      BTRFS_UPDATE_DELAYED_HEAD, false, false, 0);
1205	head_ref->extent_op = extent_op;
1206
1207	delayed_refs = &trans->transaction->delayed_refs;
1208	spin_lock(&delayed_refs->lock);
1209
1210	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1211			     NULL);
 
1212
1213	spin_unlock(&delayed_refs->lock);
1214
1215	/*
1216	 * Need to update the delayed_refs_rsv with any changes we may have
1217	 * made.
1218	 */
1219	btrfs_update_delayed_refs_rsv(trans);
1220	return 0;
1221}
1222
1223/*
1224 * This does a simple search for the head node for a given extent.  Returns the
1225 * head node if found, or NULL if not.
 
1226 */
1227struct btrfs_delayed_ref_head *
1228btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1229{
1230	lockdep_assert_held(&delayed_refs->lock);
1231
1232	return find_ref_head(delayed_refs, bytenr, false);
 
1233}
1234
1235void __cold btrfs_delayed_ref_exit(void)
1236{
1237	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1238	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1239	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1240	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1241}
1242
1243int __init btrfs_delayed_ref_init(void)
1244{
1245	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1246				"btrfs_delayed_ref_head",
1247				sizeof(struct btrfs_delayed_ref_head), 0,
1248				SLAB_MEM_SPREAD, NULL);
1249	if (!btrfs_delayed_ref_head_cachep)
1250		goto fail;
1251
1252	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1253				"btrfs_delayed_tree_ref",
1254				sizeof(struct btrfs_delayed_tree_ref), 0,
1255				SLAB_MEM_SPREAD, NULL);
1256	if (!btrfs_delayed_tree_ref_cachep)
1257		goto fail;
1258
1259	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1260				"btrfs_delayed_data_ref",
1261				sizeof(struct btrfs_delayed_data_ref), 0,
1262				SLAB_MEM_SPREAD, NULL);
1263	if (!btrfs_delayed_data_ref_cachep)
1264		goto fail;
1265
1266	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1267				"btrfs_delayed_extent_op",
1268				sizeof(struct btrfs_delayed_extent_op), 0,
1269				SLAB_MEM_SPREAD, NULL);
1270	if (!btrfs_delayed_extent_op_cachep)
1271		goto fail;
1272
1273	return 0;
1274fail:
1275	btrfs_delayed_ref_exit();
1276	return -ENOMEM;
1277}
v4.6
 
  1/*
  2 * Copyright (C) 2009 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/sched.h>
 20#include <linux/slab.h>
 21#include <linux/sort.h>
 
 22#include "ctree.h"
 23#include "delayed-ref.h"
 24#include "transaction.h"
 25#include "qgroup.h"
 
 
 
 26
 27struct kmem_cache *btrfs_delayed_ref_head_cachep;
 28struct kmem_cache *btrfs_delayed_tree_ref_cachep;
 29struct kmem_cache *btrfs_delayed_data_ref_cachep;
 30struct kmem_cache *btrfs_delayed_extent_op_cachep;
 31/*
 32 * delayed back reference update tracking.  For subvolume trees
 33 * we queue up extent allocations and backref maintenance for
 34 * delayed processing.   This avoids deep call chains where we
 35 * add extents in the middle of btrfs_search_slot, and it allows
 36 * us to buffer up frequently modified backrefs in an rb tree instead
 37 * of hammering updates on the extent allocation tree.
 38 */
 39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40/*
 41 * compare two delayed tree backrefs with same bytenr and type
 42 */
 43static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref2,
 44			  struct btrfs_delayed_tree_ref *ref1, int type)
 45{
 46	if (type == BTRFS_TREE_BLOCK_REF_KEY) {
 47		if (ref1->root < ref2->root)
 48			return -1;
 49		if (ref1->root > ref2->root)
 50			return 1;
 51	} else {
 52		if (ref1->parent < ref2->parent)
 53			return -1;
 54		if (ref1->parent > ref2->parent)
 55			return 1;
 56	}
 57	return 0;
 58}
 59
 60/*
 61 * compare two delayed data backrefs with same bytenr and type
 62 */
 63static int comp_data_refs(struct btrfs_delayed_data_ref *ref2,
 64			  struct btrfs_delayed_data_ref *ref1)
 65{
 66	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 67		if (ref1->root < ref2->root)
 68			return -1;
 69		if (ref1->root > ref2->root)
 70			return 1;
 71		if (ref1->objectid < ref2->objectid)
 72			return -1;
 73		if (ref1->objectid > ref2->objectid)
 74			return 1;
 75		if (ref1->offset < ref2->offset)
 76			return -1;
 77		if (ref1->offset > ref2->offset)
 78			return 1;
 79	} else {
 80		if (ref1->parent < ref2->parent)
 81			return -1;
 82		if (ref1->parent > ref2->parent)
 83			return 1;
 84	}
 85	return 0;
 86}
 87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88/* insert a new ref to head ref rbtree */
 89static struct btrfs_delayed_ref_head *htree_insert(struct rb_root *root,
 90						   struct rb_node *node)
 91{
 92	struct rb_node **p = &root->rb_node;
 93	struct rb_node *parent_node = NULL;
 94	struct btrfs_delayed_ref_head *entry;
 95	struct btrfs_delayed_ref_head *ins;
 96	u64 bytenr;
 
 97
 98	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 99	bytenr = ins->node.bytenr;
100	while (*p) {
101		parent_node = *p;
102		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
103				 href_node);
104
105		if (bytenr < entry->node.bytenr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106			p = &(*p)->rb_left;
107		else if (bytenr > entry->node.bytenr)
108			p = &(*p)->rb_right;
109		else
 
110			return entry;
 
111	}
112
113	rb_link_node(node, parent_node, p);
114	rb_insert_color(node, root);
115	return NULL;
116}
117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118/*
119 * find an head entry based on bytenr. This returns the delayed ref
120 * head if it was able to find one, or NULL if nothing was in that spot.
121 * If return_bigger is given, the next bigger entry is returned if no exact
122 * match is found.
123 */
124static struct btrfs_delayed_ref_head *
125find_ref_head(struct rb_root *root, u64 bytenr,
126	      int return_bigger)
127{
 
128	struct rb_node *n;
129	struct btrfs_delayed_ref_head *entry;
130
131	n = root->rb_node;
132	entry = NULL;
133	while (n) {
134		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
135
136		if (bytenr < entry->node.bytenr)
137			n = n->rb_left;
138		else if (bytenr > entry->node.bytenr)
139			n = n->rb_right;
140		else
141			return entry;
142	}
143	if (entry && return_bigger) {
144		if (bytenr > entry->node.bytenr) {
145			n = rb_next(&entry->href_node);
146			if (!n)
147				n = rb_first(root);
148			entry = rb_entry(n, struct btrfs_delayed_ref_head,
149					 href_node);
150			return entry;
151		}
152		return entry;
153	}
154	return NULL;
155}
156
157int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
158			   struct btrfs_delayed_ref_head *head)
159{
160	struct btrfs_delayed_ref_root *delayed_refs;
161
162	delayed_refs = &trans->transaction->delayed_refs;
163	assert_spin_locked(&delayed_refs->lock);
164	if (mutex_trylock(&head->mutex))
165		return 0;
166
167	atomic_inc(&head->node.refs);
168	spin_unlock(&delayed_refs->lock);
169
170	mutex_lock(&head->mutex);
171	spin_lock(&delayed_refs->lock);
172	if (!head->node.in_tree) {
173		mutex_unlock(&head->mutex);
174		btrfs_put_delayed_ref(&head->node);
175		return -EAGAIN;
176	}
177	btrfs_put_delayed_ref(&head->node);
178	return 0;
179}
180
181static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
182				    struct btrfs_delayed_ref_root *delayed_refs,
183				    struct btrfs_delayed_ref_head *head,
184				    struct btrfs_delayed_ref_node *ref)
185{
186	if (btrfs_delayed_ref_is_head(ref)) {
187		head = btrfs_delayed_node_to_head(ref);
188		rb_erase(&head->href_node, &delayed_refs->href_root);
189	} else {
190		assert_spin_locked(&head->lock);
191		list_del(&ref->list);
192	}
193	ref->in_tree = 0;
194	btrfs_put_delayed_ref(ref);
195	atomic_dec(&delayed_refs->num_entries);
196	if (trans->delayed_ref_updates)
197		trans->delayed_ref_updates--;
198}
199
200static bool merge_ref(struct btrfs_trans_handle *trans,
201		      struct btrfs_delayed_ref_root *delayed_refs,
202		      struct btrfs_delayed_ref_head *head,
203		      struct btrfs_delayed_ref_node *ref,
204		      u64 seq)
205{
206	struct btrfs_delayed_ref_node *next;
 
207	bool done = false;
208
209	next = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
210				list);
211	while (!done && &next->list != &head->ref_list) {
212		int mod;
213		struct btrfs_delayed_ref_node *next2;
214
215		next2 = list_next_entry(next, list);
216
217		if (next == ref)
218			goto next;
219
 
 
220		if (seq && next->seq >= seq)
221			goto next;
222
223		if (next->type != ref->type)
224			goto next;
225
226		if ((ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
227		     ref->type == BTRFS_SHARED_BLOCK_REF_KEY) &&
228		    comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref),
229				   btrfs_delayed_node_to_tree_ref(next),
230				   ref->type))
231			goto next;
232		if ((ref->type == BTRFS_EXTENT_DATA_REF_KEY ||
233		     ref->type == BTRFS_SHARED_DATA_REF_KEY) &&
234		    comp_data_refs(btrfs_delayed_node_to_data_ref(ref),
235				   btrfs_delayed_node_to_data_ref(next)))
236			goto next;
237
238		if (ref->action == next->action) {
239			mod = next->ref_mod;
240		} else {
241			if (ref->ref_mod < next->ref_mod) {
242				swap(ref, next);
243				done = true;
244			}
245			mod = -next->ref_mod;
246		}
247
248		drop_delayed_ref(trans, delayed_refs, head, next);
249		ref->ref_mod += mod;
250		if (ref->ref_mod == 0) {
251			drop_delayed_ref(trans, delayed_refs, head, ref);
252			done = true;
253		} else {
254			/*
255			 * Can't have multiples of the same ref on a tree block.
256			 */
257			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
258				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
259		}
260next:
261		next = next2;
262	}
263
264	return done;
265}
266
267void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
268			      struct btrfs_fs_info *fs_info,
269			      struct btrfs_delayed_ref_root *delayed_refs,
270			      struct btrfs_delayed_ref_head *head)
271{
272	struct btrfs_delayed_ref_node *ref;
 
273	u64 seq = 0;
274
275	assert_spin_locked(&head->lock);
276
277	if (list_empty(&head->ref_list))
278		return;
279
280	/* We don't have too many refs to merge for data. */
281	if (head->is_data)
282		return;
283
284	spin_lock(&fs_info->tree_mod_seq_lock);
285	if (!list_empty(&fs_info->tree_mod_seq_list)) {
286		struct seq_list *elem;
287
288		elem = list_first_entry(&fs_info->tree_mod_seq_list,
289					struct seq_list, list);
290		seq = elem->seq;
291	}
292	spin_unlock(&fs_info->tree_mod_seq_lock);
293
294	ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
295			       list);
296	while (&ref->list != &head->ref_list) {
297		if (seq && ref->seq >= seq)
298			goto next;
299
300		if (merge_ref(trans, delayed_refs, head, ref, seq)) {
301			if (list_empty(&head->ref_list))
302				break;
303			ref = list_first_entry(&head->ref_list,
304					       struct btrfs_delayed_ref_node,
305					       list);
306			continue;
307		}
308next:
309		ref = list_next_entry(ref, list);
310	}
311}
312
313int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info,
314			    struct btrfs_delayed_ref_root *delayed_refs,
315			    u64 seq)
316{
317	struct seq_list *elem;
318	int ret = 0;
 
319
320	spin_lock(&fs_info->tree_mod_seq_lock);
321	if (!list_empty(&fs_info->tree_mod_seq_list)) {
322		elem = list_first_entry(&fs_info->tree_mod_seq_list,
323					struct seq_list, list);
324		if (seq >= elem->seq) {
325			pr_debug("holding back delayed_ref %#x.%x, lowest is %#x.%x (%p)\n",
326				 (u32)(seq >> 32), (u32)seq,
327				 (u32)(elem->seq >> 32), (u32)elem->seq,
328				 delayed_refs);
329			ret = 1;
330		}
331	}
332
333	spin_unlock(&fs_info->tree_mod_seq_lock);
334	return ret;
335}
336
337struct btrfs_delayed_ref_head *
338btrfs_select_ref_head(struct btrfs_trans_handle *trans)
339{
340	struct btrfs_delayed_ref_root *delayed_refs;
341	struct btrfs_delayed_ref_head *head;
342	u64 start;
343	bool loop = false;
344
345	delayed_refs = &trans->transaction->delayed_refs;
346
 
347again:
348	start = delayed_refs->run_delayed_start;
349	head = find_ref_head(&delayed_refs->href_root, start, 1);
350	if (!head && !loop) {
351		delayed_refs->run_delayed_start = 0;
352		start = 0;
353		loop = true;
354		head = find_ref_head(&delayed_refs->href_root, start, 1);
355		if (!head)
356			return NULL;
357	} else if (!head && loop) {
358		return NULL;
359	}
360
361	while (head->processing) {
362		struct rb_node *node;
363
364		node = rb_next(&head->href_node);
365		if (!node) {
366			if (loop)
367				return NULL;
368			delayed_refs->run_delayed_start = 0;
369			start = 0;
370			loop = true;
371			goto again;
372		}
373		head = rb_entry(node, struct btrfs_delayed_ref_head,
374				href_node);
375	}
376
377	head->processing = 1;
378	WARN_ON(delayed_refs->num_heads_ready == 0);
379	delayed_refs->num_heads_ready--;
380	delayed_refs->run_delayed_start = head->node.bytenr +
381		head->node.num_bytes;
382	return head;
383}
384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385/*
386 * Helper to insert the ref_node to the tail or merge with tail.
387 *
388 * Return 0 for insert.
389 * Return >0 for merge.
 
390 */
391static int
392add_delayed_ref_tail_merge(struct btrfs_trans_handle *trans,
393			   struct btrfs_delayed_ref_root *root,
394			   struct btrfs_delayed_ref_head *href,
395			   struct btrfs_delayed_ref_node *ref)
396{
 
397	struct btrfs_delayed_ref_node *exist;
398	int mod;
399	int ret = 0;
400
401	spin_lock(&href->lock);
402	/* Check whether we can merge the tail node with ref */
403	if (list_empty(&href->ref_list))
404		goto add_tail;
405	exist = list_entry(href->ref_list.prev, struct btrfs_delayed_ref_node,
406			   list);
407	/* No need to compare bytenr nor is_head */
408	if (exist->type != ref->type || exist->seq != ref->seq)
409		goto add_tail;
410
411	if ((exist->type == BTRFS_TREE_BLOCK_REF_KEY ||
412	     exist->type == BTRFS_SHARED_BLOCK_REF_KEY) &&
413	    comp_tree_refs(btrfs_delayed_node_to_tree_ref(exist),
414			   btrfs_delayed_node_to_tree_ref(ref),
415			   ref->type))
416		goto add_tail;
417	if ((exist->type == BTRFS_EXTENT_DATA_REF_KEY ||
418	     exist->type == BTRFS_SHARED_DATA_REF_KEY) &&
419	    comp_data_refs(btrfs_delayed_node_to_data_ref(exist),
420			   btrfs_delayed_node_to_data_ref(ref)))
421		goto add_tail;
422
423	/* Now we are sure we can merge */
424	ret = 1;
425	if (exist->action == ref->action) {
426		mod = ref->ref_mod;
427	} else {
428		/* Need to change action */
429		if (exist->ref_mod < ref->ref_mod) {
430			exist->action = ref->action;
431			mod = -exist->ref_mod;
432			exist->ref_mod = ref->ref_mod;
 
 
 
 
 
 
 
 
 
433		} else
434			mod = -ref->ref_mod;
435	}
436	exist->ref_mod += mod;
437
438	/* remove existing tail if its ref_mod is zero */
439	if (exist->ref_mod == 0)
440		drop_delayed_ref(trans, root, href, exist);
441	spin_unlock(&href->lock);
442	return ret;
443
444add_tail:
445	list_add_tail(&ref->list, &href->ref_list);
446	atomic_inc(&root->num_entries);
447	trans->delayed_ref_updates++;
448	spin_unlock(&href->lock);
449	return ret;
450}
451
452/*
453 * helper function to update the accounting in the head ref
454 * existing and update must have the same bytenr
455 */
456static noinline void
457update_existing_head_ref(struct btrfs_delayed_ref_root *delayed_refs,
458			 struct btrfs_delayed_ref_node *existing,
459			 struct btrfs_delayed_ref_node *update)
460{
461	struct btrfs_delayed_ref_head *existing_ref;
462	struct btrfs_delayed_ref_head *ref;
463	int old_ref_mod;
464
465	existing_ref = btrfs_delayed_node_to_head(existing);
466	ref = btrfs_delayed_node_to_head(update);
467	BUG_ON(existing_ref->is_data != ref->is_data);
 
 
 
 
 
 
 
 
468
469	spin_lock(&existing_ref->lock);
470	if (ref->must_insert_reserved) {
471		/* if the extent was freed and then
472		 * reallocated before the delayed ref
473		 * entries were processed, we can end up
474		 * with an existing head ref without
475		 * the must_insert_reserved flag set.
476		 * Set it again here
477		 */
478		existing_ref->must_insert_reserved = ref->must_insert_reserved;
 
479
480		/*
481		 * update the num_bytes so we make sure the accounting
482		 * is done correctly
483		 */
484		existing->num_bytes = update->num_bytes;
485
486	}
487
488	if (ref->extent_op) {
489		if (!existing_ref->extent_op) {
490			existing_ref->extent_op = ref->extent_op;
491		} else {
492			if (ref->extent_op->update_key) {
493				memcpy(&existing_ref->extent_op->key,
494				       &ref->extent_op->key,
495				       sizeof(ref->extent_op->key));
496				existing_ref->extent_op->update_key = true;
497			}
498			if (ref->extent_op->update_flags) {
499				existing_ref->extent_op->flags_to_set |=
500					ref->extent_op->flags_to_set;
501				existing_ref->extent_op->update_flags = true;
502			}
503			btrfs_free_delayed_extent_op(ref->extent_op);
504		}
505	}
506	/*
507	 * update the reference mod on the head to reflect this new operation,
508	 * only need the lock for this case cause we could be processing it
509	 * currently, for refs we just added we know we're a-ok.
510	 */
511	old_ref_mod = existing_ref->total_ref_mod;
512	existing->ref_mod += update->ref_mod;
513	existing_ref->total_ref_mod += update->ref_mod;
514
515	/*
516	 * If we are going to from a positive ref mod to a negative or vice
517	 * versa we need to make sure to adjust pending_csums accordingly.
 
 
518	 */
519	if (existing_ref->is_data) {
520		if (existing_ref->total_ref_mod >= 0 && old_ref_mod < 0)
 
 
 
 
521			delayed_refs->pending_csums -= existing->num_bytes;
522		if (existing_ref->total_ref_mod < 0 && old_ref_mod >= 0)
 
 
523			delayed_refs->pending_csums += existing->num_bytes;
 
 
524	}
525	spin_unlock(&existing_ref->lock);
 
526}
527
528/*
529 * helper function to actually insert a head node into the rbtree.
530 * this does all the dirty work in terms of maintaining the correct
531 * overall modification count.
532 */
533static noinline struct btrfs_delayed_ref_head *
534add_delayed_ref_head(struct btrfs_fs_info *fs_info,
535		     struct btrfs_trans_handle *trans,
536		     struct btrfs_delayed_ref_node *ref,
537		     struct btrfs_qgroup_extent_record *qrecord,
538		     u64 bytenr, u64 num_bytes, u64 ref_root, u64 reserved,
539		     int action, int is_data)
540{
541	struct btrfs_delayed_ref_head *existing;
542	struct btrfs_delayed_ref_head *head_ref = NULL;
543	struct btrfs_delayed_ref_root *delayed_refs;
544	struct btrfs_qgroup_extent_record *qexisting;
545	int count_mod = 1;
546	int must_insert_reserved = 0;
547
548	/* If reserved is provided, it must be a data extent. */
549	BUG_ON(!is_data && reserved);
550
551	/*
552	 * the head node stores the sum of all the mods, so dropping a ref
553	 * should drop the sum in the head node by one.
554	 */
555	if (action == BTRFS_UPDATE_DELAYED_HEAD)
556		count_mod = 0;
557	else if (action == BTRFS_DROP_DELAYED_REF)
 
 
 
 
 
558		count_mod = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
559
560	/*
561	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update
562	 * the reserved accounting when the extent is finally added, or
563	 * if a later modification deletes the delayed ref without ever
564	 * inserting the extent into the extent allocation tree.
565	 * ref->must_insert_reserved is the flag used to record
566	 * that accounting mods are required.
567	 *
568	 * Once we record must_insert_reserved, switch the action to
569	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
570	 */
571	if (action == BTRFS_ADD_DELAYED_EXTENT)
572		must_insert_reserved = 1;
573	else
574		must_insert_reserved = 0;
575
576	delayed_refs = &trans->transaction->delayed_refs;
577
578	/* first set the basic ref node struct up */
579	atomic_set(&ref->refs, 1);
580	ref->bytenr = bytenr;
581	ref->num_bytes = num_bytes;
582	ref->ref_mod = count_mod;
583	ref->type  = 0;
584	ref->action  = 0;
585	ref->is_head = 1;
586	ref->in_tree = 1;
587	ref->seq = 0;
588
589	head_ref = btrfs_delayed_node_to_head(ref);
590	head_ref->must_insert_reserved = must_insert_reserved;
 
591	head_ref->is_data = is_data;
592	INIT_LIST_HEAD(&head_ref->ref_list);
593	head_ref->processing = 0;
 
 
 
594	head_ref->total_ref_mod = count_mod;
595	head_ref->qgroup_reserved = 0;
596	head_ref->qgroup_ref_root = 0;
597
598	/* Record qgroup extent info if provided */
599	if (qrecord) {
600		if (ref_root && reserved) {
601			head_ref->qgroup_ref_root = ref_root;
602			head_ref->qgroup_reserved = reserved;
603		}
604
605		qrecord->bytenr = bytenr;
606		qrecord->num_bytes = num_bytes;
607		qrecord->old_roots = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608
609		qexisting = btrfs_qgroup_insert_dirty_extent(delayed_refs,
610							     qrecord);
611		if (qexisting)
 
 
 
612			kfree(qrecord);
 
 
613	}
614
615	spin_lock_init(&head_ref->lock);
616	mutex_init(&head_ref->mutex);
617
618	trace_add_delayed_ref_head(ref, head_ref, action);
619
620	existing = htree_insert(&delayed_refs->href_root,
621				&head_ref->href_node);
622	if (existing) {
623		WARN_ON(ref_root && reserved && existing->qgroup_ref_root
624			&& existing->qgroup_reserved);
625		update_existing_head_ref(delayed_refs, &existing->node, ref);
626		/*
627		 * we've updated the existing ref, free the newly
628		 * allocated ref
629		 */
630		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
631		head_ref = existing;
632	} else {
633		if (is_data && count_mod < 0)
634			delayed_refs->pending_csums += num_bytes;
 
 
 
 
 
 
 
 
 
 
635		delayed_refs->num_heads++;
636		delayed_refs->num_heads_ready++;
637		atomic_inc(&delayed_refs->num_entries);
638		trans->delayed_ref_updates++;
639	}
 
 
 
640	return head_ref;
641}
642
643/*
644 * helper to insert a delayed tree ref into the rbtree.
645 */
646static noinline void
647add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
648		     struct btrfs_trans_handle *trans,
649		     struct btrfs_delayed_ref_head *head_ref,
650		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
651		     u64 num_bytes, u64 parent, u64 ref_root, int level,
652		     int action)
653{
654	struct btrfs_delayed_tree_ref *full_ref;
655	struct btrfs_delayed_ref_root *delayed_refs;
656	u64 seq = 0;
657	int ret;
658
659	if (action == BTRFS_ADD_DELAYED_EXTENT)
660		action = BTRFS_ADD_DELAYED_REF;
661
662	if (is_fstree(ref_root))
663		seq = atomic64_read(&fs_info->tree_mod_seq);
664	delayed_refs = &trans->transaction->delayed_refs;
665
666	/* first set the basic ref node struct up */
667	atomic_set(&ref->refs, 1);
668	ref->bytenr = bytenr;
669	ref->num_bytes = num_bytes;
670	ref->ref_mod = 1;
671	ref->action = action;
672	ref->is_head = 0;
673	ref->in_tree = 1;
674	ref->seq = seq;
675
676	full_ref = btrfs_delayed_node_to_tree_ref(ref);
677	full_ref->parent = parent;
678	full_ref->root = ref_root;
679	if (parent)
680		ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
681	else
682		ref->type = BTRFS_TREE_BLOCK_REF_KEY;
683	full_ref->level = level;
684
685	trace_add_delayed_tree_ref(ref, full_ref, action);
686
687	ret = add_delayed_ref_tail_merge(trans, delayed_refs, head_ref, ref);
688
689	/*
690	 * XXX: memory should be freed at the same level allocated.
691	 * But bad practice is anywhere... Follow it now. Need cleanup.
692	 */
693	if (ret > 0)
694		kmem_cache_free(btrfs_delayed_tree_ref_cachep, full_ref);
695}
696
697/*
698 * helper to insert a delayed data ref into the rbtree.
699 */
700static noinline void
701add_delayed_data_ref(struct btrfs_fs_info *fs_info,
702		     struct btrfs_trans_handle *trans,
703		     struct btrfs_delayed_ref_head *head_ref,
704		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
705		     u64 num_bytes, u64 parent, u64 ref_root, u64 owner,
706		     u64 offset, int action)
707{
708	struct btrfs_delayed_data_ref *full_ref;
709	struct btrfs_delayed_ref_root *delayed_refs;
710	u64 seq = 0;
711	int ret;
712
713	if (action == BTRFS_ADD_DELAYED_EXTENT)
714		action = BTRFS_ADD_DELAYED_REF;
715
716	delayed_refs = &trans->transaction->delayed_refs;
717
718	if (is_fstree(ref_root))
719		seq = atomic64_read(&fs_info->tree_mod_seq);
720
721	/* first set the basic ref node struct up */
722	atomic_set(&ref->refs, 1);
723	ref->bytenr = bytenr;
724	ref->num_bytes = num_bytes;
725	ref->ref_mod = 1;
726	ref->action = action;
727	ref->is_head = 0;
728	ref->in_tree = 1;
729	ref->seq = seq;
730
731	full_ref = btrfs_delayed_node_to_data_ref(ref);
732	full_ref->parent = parent;
733	full_ref->root = ref_root;
734	if (parent)
735		ref->type = BTRFS_SHARED_DATA_REF_KEY;
736	else
737		ref->type = BTRFS_EXTENT_DATA_REF_KEY;
738
739	full_ref->objectid = owner;
740	full_ref->offset = offset;
741
742	trace_add_delayed_data_ref(ref, full_ref, action);
743
744	ret = add_delayed_ref_tail_merge(trans, delayed_refs, head_ref, ref);
745
746	if (ret > 0)
747		kmem_cache_free(btrfs_delayed_data_ref_cachep, full_ref);
748}
749
750/*
751 * add a delayed tree ref.  This does all of the accounting required
752 * to make sure the delayed ref is eventually processed before this
753 * transaction commits.
754 */
755int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
756			       struct btrfs_trans_handle *trans,
757			       u64 bytenr, u64 num_bytes, u64 parent,
758			       u64 ref_root,  int level, int action,
759			       struct btrfs_delayed_extent_op *extent_op)
760{
 
761	struct btrfs_delayed_tree_ref *ref;
762	struct btrfs_delayed_ref_head *head_ref;
763	struct btrfs_delayed_ref_root *delayed_refs;
764	struct btrfs_qgroup_extent_record *record = NULL;
 
 
 
 
 
 
 
 
 
 
 
765
766	BUG_ON(extent_op && extent_op->is_data);
767	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
768	if (!ref)
769		return -ENOMEM;
770
771	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
772	if (!head_ref)
773		goto free_ref;
 
 
774
775	if (fs_info->quota_enabled && is_fstree(ref_root)) {
776		record = kmalloc(sizeof(*record), GFP_NOFS);
777		if (!record)
778			goto free_head_ref;
 
 
 
779	}
780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
781	head_ref->extent_op = extent_op;
782
783	delayed_refs = &trans->transaction->delayed_refs;
784	spin_lock(&delayed_refs->lock);
785
786	/*
787	 * insert both the head node and the new ref without dropping
788	 * the spin lock
789	 */
790	head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node, record,
791					bytenr, num_bytes, 0, 0, action, 0);
792
793	add_delayed_tree_ref(fs_info, trans, head_ref, &ref->node, bytenr,
794			     num_bytes, parent, ref_root, level, action);
795	spin_unlock(&delayed_refs->lock);
796
797	return 0;
 
 
 
 
 
 
 
 
 
 
798
799free_head_ref:
800	kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
801free_ref:
802	kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
803
804	return -ENOMEM;
805}
806
807/*
808 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
809 */
810int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
811			       struct btrfs_trans_handle *trans,
812			       u64 bytenr, u64 num_bytes,
813			       u64 parent, u64 ref_root,
814			       u64 owner, u64 offset, u64 reserved, int action,
815			       struct btrfs_delayed_extent_op *extent_op)
816{
 
817	struct btrfs_delayed_data_ref *ref;
818	struct btrfs_delayed_ref_head *head_ref;
819	struct btrfs_delayed_ref_root *delayed_refs;
820	struct btrfs_qgroup_extent_record *record = NULL;
 
 
 
 
 
 
 
 
 
 
821
822	BUG_ON(extent_op && !extent_op->is_data);
823	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
824	if (!ref)
825		return -ENOMEM;
826
 
 
 
 
 
 
 
 
 
 
 
 
827	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
828	if (!head_ref) {
829		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
830		return -ENOMEM;
831	}
832
833	if (fs_info->quota_enabled && is_fstree(ref_root)) {
834		record = kmalloc(sizeof(*record), GFP_NOFS);
835		if (!record) {
836			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
837			kmem_cache_free(btrfs_delayed_ref_head_cachep,
838					head_ref);
839			return -ENOMEM;
840		}
841	}
842
843	head_ref->extent_op = extent_op;
 
 
844
845	delayed_refs = &trans->transaction->delayed_refs;
846	spin_lock(&delayed_refs->lock);
847
848	/*
849	 * insert both the head node and the new ref without dropping
850	 * the spin lock
851	 */
852	head_ref = add_delayed_ref_head(fs_info, trans, &head_ref->node, record,
853					bytenr, num_bytes, ref_root, reserved,
854					action, 1);
855
856	add_delayed_data_ref(fs_info, trans, head_ref, &ref->node, bytenr,
857				   num_bytes, parent, ref_root, owner, offset,
858				   action);
859	spin_unlock(&delayed_refs->lock);
860
861	return 0;
862}
 
 
 
863
864int btrfs_add_delayed_qgroup_reserve(struct btrfs_fs_info *fs_info,
865				     struct btrfs_trans_handle *trans,
866				     u64 ref_root, u64 bytenr, u64 num_bytes)
867{
868	struct btrfs_delayed_ref_root *delayed_refs;
869	struct btrfs_delayed_ref_head *ref_head;
870	int ret = 0;
871
872	if (!fs_info->quota_enabled || !is_fstree(ref_root))
873		return 0;
874
875	delayed_refs = &trans->transaction->delayed_refs;
876
877	spin_lock(&delayed_refs->lock);
878	ref_head = find_ref_head(&delayed_refs->href_root, bytenr, 0);
879	if (!ref_head) {
880		ret = -ENOENT;
881		goto out;
882	}
883	WARN_ON(ref_head->qgroup_reserved || ref_head->qgroup_ref_root);
884	ref_head->qgroup_ref_root = ref_root;
885	ref_head->qgroup_reserved = num_bytes;
886out:
887	spin_unlock(&delayed_refs->lock);
888	return ret;
889}
890
891int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
892				struct btrfs_trans_handle *trans,
893				u64 bytenr, u64 num_bytes,
894				struct btrfs_delayed_extent_op *extent_op)
895{
896	struct btrfs_delayed_ref_head *head_ref;
897	struct btrfs_delayed_ref_root *delayed_refs;
898
899	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
900	if (!head_ref)
901		return -ENOMEM;
902
 
 
903	head_ref->extent_op = extent_op;
904
905	delayed_refs = &trans->transaction->delayed_refs;
906	spin_lock(&delayed_refs->lock);
907
908	add_delayed_ref_head(fs_info, trans, &head_ref->node, NULL, bytenr,
909			     num_bytes, 0, 0, BTRFS_UPDATE_DELAYED_HEAD,
910			     extent_op->is_data);
911
912	spin_unlock(&delayed_refs->lock);
 
 
 
 
 
 
913	return 0;
914}
915
916/*
917 * this does a simple search for the head node for a given extent.
918 * It must be called with the delayed ref spinlock held, and it returns
919 * the head node if any where found, or NULL if not.
920 */
921struct btrfs_delayed_ref_head *
922btrfs_find_delayed_ref_head(struct btrfs_trans_handle *trans, u64 bytenr)
923{
924	struct btrfs_delayed_ref_root *delayed_refs;
925
926	delayed_refs = &trans->transaction->delayed_refs;
927	return find_ref_head(&delayed_refs->href_root, bytenr, 0);
928}
929
930void btrfs_delayed_ref_exit(void)
931{
932	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
933	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
934	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
935	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
936}
937
938int btrfs_delayed_ref_init(void)
939{
940	btrfs_delayed_ref_head_cachep = kmem_cache_create(
941				"btrfs_delayed_ref_head",
942				sizeof(struct btrfs_delayed_ref_head), 0,
943				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
944	if (!btrfs_delayed_ref_head_cachep)
945		goto fail;
946
947	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
948				"btrfs_delayed_tree_ref",
949				sizeof(struct btrfs_delayed_tree_ref), 0,
950				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
951	if (!btrfs_delayed_tree_ref_cachep)
952		goto fail;
953
954	btrfs_delayed_data_ref_cachep = kmem_cache_create(
955				"btrfs_delayed_data_ref",
956				sizeof(struct btrfs_delayed_data_ref), 0,
957				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
958	if (!btrfs_delayed_data_ref_cachep)
959		goto fail;
960
961	btrfs_delayed_extent_op_cachep = kmem_cache_create(
962				"btrfs_delayed_extent_op",
963				sizeof(struct btrfs_delayed_extent_op), 0,
964				SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
965	if (!btrfs_delayed_extent_op_cachep)
966		goto fail;
967
968	return 0;
969fail:
970	btrfs_delayed_ref_exit();
971	return -ENOMEM;
972}