Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/sort.h>
9#include "messages.h"
10#include "ctree.h"
11#include "delayed-ref.h"
12#include "transaction.h"
13#include "qgroup.h"
14#include "space-info.h"
15#include "tree-mod-log.h"
16#include "fs.h"
17
18struct kmem_cache *btrfs_delayed_ref_head_cachep;
19struct kmem_cache *btrfs_delayed_tree_ref_cachep;
20struct kmem_cache *btrfs_delayed_data_ref_cachep;
21struct kmem_cache *btrfs_delayed_extent_op_cachep;
22/*
23 * delayed back reference update tracking. For subvolume trees
24 * we queue up extent allocations and backref maintenance for
25 * delayed processing. This avoids deep call chains where we
26 * add extents in the middle of btrfs_search_slot, and it allows
27 * us to buffer up frequently modified backrefs in an rb tree instead
28 * of hammering updates on the extent allocation tree.
29 */
30
31bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
32{
33 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
34 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
35 bool ret = false;
36 u64 reserved;
37
38 spin_lock(&global_rsv->lock);
39 reserved = global_rsv->reserved;
40 spin_unlock(&global_rsv->lock);
41
42 /*
43 * Since the global reserve is just kind of magic we don't really want
44 * to rely on it to save our bacon, so if our size is more than the
45 * delayed_refs_rsv and the global rsv then it's time to think about
46 * bailing.
47 */
48 spin_lock(&delayed_refs_rsv->lock);
49 reserved += delayed_refs_rsv->reserved;
50 if (delayed_refs_rsv->size >= reserved)
51 ret = true;
52 spin_unlock(&delayed_refs_rsv->lock);
53 return ret;
54}
55
56/*
57 * Release a ref head's reservation.
58 *
59 * @fs_info: the filesystem
60 * @nr_refs: number of delayed refs to drop
61 * @nr_csums: number of csum items to drop
62 *
63 * Drops the delayed ref head's count from the delayed refs rsv and free any
64 * excess reservation we had.
65 */
66void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
67{
68 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
69 u64 num_bytes;
70 u64 released;
71
72 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
73 num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
74
75 released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
76 if (released)
77 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
78 0, released, 0);
79}
80
81/*
82 * Adjust the size of the delayed refs rsv.
83 *
84 * This is to be called anytime we may have adjusted trans->delayed_ref_updates
85 * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
86 * add it to the delayed_refs_rsv.
87 */
88void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
89{
90 struct btrfs_fs_info *fs_info = trans->fs_info;
91 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
92 struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
93 u64 num_bytes;
94 u64 reserved_bytes;
95
96 num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
97 num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
98 trans->delayed_ref_csum_deletions);
99
100 if (num_bytes == 0)
101 return;
102
103 /*
104 * Try to take num_bytes from the transaction's local delayed reserve.
105 * If not possible, try to take as much as it's available. If the local
106 * reserve doesn't have enough reserved space, the delayed refs reserve
107 * will be refilled next time btrfs_delayed_refs_rsv_refill() is called
108 * by someone or if a transaction commit is triggered before that, the
109 * global block reserve will be used. We want to minimize using the
110 * global block reserve for cases we can account for in advance, to
111 * avoid exhausting it and reach -ENOSPC during a transaction commit.
112 */
113 spin_lock(&local_rsv->lock);
114 reserved_bytes = min(num_bytes, local_rsv->reserved);
115 local_rsv->reserved -= reserved_bytes;
116 local_rsv->full = (local_rsv->reserved >= local_rsv->size);
117 spin_unlock(&local_rsv->lock);
118
119 spin_lock(&delayed_rsv->lock);
120 delayed_rsv->size += num_bytes;
121 delayed_rsv->reserved += reserved_bytes;
122 delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
123 spin_unlock(&delayed_rsv->lock);
124 trans->delayed_ref_updates = 0;
125 trans->delayed_ref_csum_deletions = 0;
126}
127
128/*
129 * Adjust the size of the delayed refs block reserve for 1 block group item
130 * insertion, used after allocating a block group.
131 */
132void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
133{
134 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
135
136 spin_lock(&delayed_rsv->lock);
137 /*
138 * Inserting a block group item does not require changing the free space
139 * tree, only the extent tree or the block group tree, so this is all we
140 * need.
141 */
142 delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
143 delayed_rsv->full = false;
144 spin_unlock(&delayed_rsv->lock);
145}
146
147/*
148 * Adjust the size of the delayed refs block reserve to release space for 1
149 * block group item insertion.
150 */
151void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
152{
153 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
154 const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
155 u64 released;
156
157 released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
158 if (released > 0)
159 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
160 0, released, 0);
161}
162
163/*
164 * Adjust the size of the delayed refs block reserve for 1 block group item
165 * update.
166 */
167void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
168{
169 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
170
171 spin_lock(&delayed_rsv->lock);
172 /*
173 * Updating a block group item does not result in new nodes/leaves and
174 * does not require changing the free space tree, only the extent tree
175 * or the block group tree, so this is all we need.
176 */
177 delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
178 delayed_rsv->full = false;
179 spin_unlock(&delayed_rsv->lock);
180}
181
182/*
183 * Adjust the size of the delayed refs block reserve to release space for 1
184 * block group item update.
185 */
186void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
187{
188 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
189 const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
190 u64 released;
191
192 released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
193 if (released > 0)
194 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
195 0, released, 0);
196}
197
198/*
199 * Transfer bytes to our delayed refs rsv.
200 *
201 * @fs_info: the filesystem
202 * @num_bytes: number of bytes to transfer
203 *
204 * This transfers up to the num_bytes amount, previously reserved, to the
205 * delayed_refs_rsv. Any extra bytes are returned to the space info.
206 */
207void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
208 u64 num_bytes)
209{
210 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
211 u64 to_free = 0;
212
213 spin_lock(&delayed_refs_rsv->lock);
214 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
215 u64 delta = delayed_refs_rsv->size -
216 delayed_refs_rsv->reserved;
217 if (num_bytes > delta) {
218 to_free = num_bytes - delta;
219 num_bytes = delta;
220 }
221 } else {
222 to_free = num_bytes;
223 num_bytes = 0;
224 }
225
226 if (num_bytes)
227 delayed_refs_rsv->reserved += num_bytes;
228 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
229 delayed_refs_rsv->full = true;
230 spin_unlock(&delayed_refs_rsv->lock);
231
232 if (num_bytes)
233 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
234 0, num_bytes, 1);
235 if (to_free)
236 btrfs_space_info_free_bytes_may_use(fs_info,
237 delayed_refs_rsv->space_info, to_free);
238}
239
240/*
241 * Refill based on our delayed refs usage.
242 *
243 * @fs_info: the filesystem
244 * @flush: control how we can flush for this reservation.
245 *
246 * This will refill the delayed block_rsv up to 1 items size worth of space and
247 * will return -ENOSPC if we can't make the reservation.
248 */
249int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
250 enum btrfs_reserve_flush_enum flush)
251{
252 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
253 struct btrfs_space_info *space_info = block_rsv->space_info;
254 u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
255 u64 num_bytes = 0;
256 u64 refilled_bytes;
257 u64 to_free;
258 int ret = -ENOSPC;
259
260 spin_lock(&block_rsv->lock);
261 if (block_rsv->reserved < block_rsv->size) {
262 num_bytes = block_rsv->size - block_rsv->reserved;
263 num_bytes = min(num_bytes, limit);
264 }
265 spin_unlock(&block_rsv->lock);
266
267 if (!num_bytes)
268 return 0;
269
270 ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
271 if (ret)
272 return ret;
273
274 /*
275 * We may have raced with someone else, so check again if we the block
276 * reserve is still not full and release any excess space.
277 */
278 spin_lock(&block_rsv->lock);
279 if (block_rsv->reserved < block_rsv->size) {
280 u64 needed = block_rsv->size - block_rsv->reserved;
281
282 if (num_bytes >= needed) {
283 block_rsv->reserved += needed;
284 block_rsv->full = true;
285 to_free = num_bytes - needed;
286 refilled_bytes = needed;
287 } else {
288 block_rsv->reserved += num_bytes;
289 to_free = 0;
290 refilled_bytes = num_bytes;
291 }
292 } else {
293 to_free = num_bytes;
294 refilled_bytes = 0;
295 }
296 spin_unlock(&block_rsv->lock);
297
298 if (to_free > 0)
299 btrfs_space_info_free_bytes_may_use(fs_info, space_info, to_free);
300
301 if (refilled_bytes > 0)
302 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
303 refilled_bytes, 1);
304 return 0;
305}
306
307/*
308 * compare two delayed tree backrefs with same bytenr and type
309 */
310static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
311 struct btrfs_delayed_tree_ref *ref2)
312{
313 if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
314 if (ref1->root < ref2->root)
315 return -1;
316 if (ref1->root > ref2->root)
317 return 1;
318 } else {
319 if (ref1->parent < ref2->parent)
320 return -1;
321 if (ref1->parent > ref2->parent)
322 return 1;
323 }
324 return 0;
325}
326
327/*
328 * compare two delayed data backrefs with same bytenr and type
329 */
330static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
331 struct btrfs_delayed_data_ref *ref2)
332{
333 if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
334 if (ref1->root < ref2->root)
335 return -1;
336 if (ref1->root > ref2->root)
337 return 1;
338 if (ref1->objectid < ref2->objectid)
339 return -1;
340 if (ref1->objectid > ref2->objectid)
341 return 1;
342 if (ref1->offset < ref2->offset)
343 return -1;
344 if (ref1->offset > ref2->offset)
345 return 1;
346 } else {
347 if (ref1->parent < ref2->parent)
348 return -1;
349 if (ref1->parent > ref2->parent)
350 return 1;
351 }
352 return 0;
353}
354
355static int comp_refs(struct btrfs_delayed_ref_node *ref1,
356 struct btrfs_delayed_ref_node *ref2,
357 bool check_seq)
358{
359 int ret = 0;
360
361 if (ref1->type < ref2->type)
362 return -1;
363 if (ref1->type > ref2->type)
364 return 1;
365 if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
366 ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
367 ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
368 btrfs_delayed_node_to_tree_ref(ref2));
369 else
370 ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
371 btrfs_delayed_node_to_data_ref(ref2));
372 if (ret)
373 return ret;
374 if (check_seq) {
375 if (ref1->seq < ref2->seq)
376 return -1;
377 if (ref1->seq > ref2->seq)
378 return 1;
379 }
380 return 0;
381}
382
383/* insert a new ref to head ref rbtree */
384static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
385 struct rb_node *node)
386{
387 struct rb_node **p = &root->rb_root.rb_node;
388 struct rb_node *parent_node = NULL;
389 struct btrfs_delayed_ref_head *entry;
390 struct btrfs_delayed_ref_head *ins;
391 u64 bytenr;
392 bool leftmost = true;
393
394 ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
395 bytenr = ins->bytenr;
396 while (*p) {
397 parent_node = *p;
398 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
399 href_node);
400
401 if (bytenr < entry->bytenr) {
402 p = &(*p)->rb_left;
403 } else if (bytenr > entry->bytenr) {
404 p = &(*p)->rb_right;
405 leftmost = false;
406 } else {
407 return entry;
408 }
409 }
410
411 rb_link_node(node, parent_node, p);
412 rb_insert_color_cached(node, root, leftmost);
413 return NULL;
414}
415
416static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
417 struct btrfs_delayed_ref_node *ins)
418{
419 struct rb_node **p = &root->rb_root.rb_node;
420 struct rb_node *node = &ins->ref_node;
421 struct rb_node *parent_node = NULL;
422 struct btrfs_delayed_ref_node *entry;
423 bool leftmost = true;
424
425 while (*p) {
426 int comp;
427
428 parent_node = *p;
429 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
430 ref_node);
431 comp = comp_refs(ins, entry, true);
432 if (comp < 0) {
433 p = &(*p)->rb_left;
434 } else if (comp > 0) {
435 p = &(*p)->rb_right;
436 leftmost = false;
437 } else {
438 return entry;
439 }
440 }
441
442 rb_link_node(node, parent_node, p);
443 rb_insert_color_cached(node, root, leftmost);
444 return NULL;
445}
446
447static struct btrfs_delayed_ref_head *find_first_ref_head(
448 struct btrfs_delayed_ref_root *dr)
449{
450 struct rb_node *n;
451 struct btrfs_delayed_ref_head *entry;
452
453 n = rb_first_cached(&dr->href_root);
454 if (!n)
455 return NULL;
456
457 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
458
459 return entry;
460}
461
462/*
463 * Find a head entry based on bytenr. This returns the delayed ref head if it
464 * was able to find one, or NULL if nothing was in that spot. If return_bigger
465 * is given, the next bigger entry is returned if no exact match is found.
466 */
467static struct btrfs_delayed_ref_head *find_ref_head(
468 struct btrfs_delayed_ref_root *dr, u64 bytenr,
469 bool return_bigger)
470{
471 struct rb_root *root = &dr->href_root.rb_root;
472 struct rb_node *n;
473 struct btrfs_delayed_ref_head *entry;
474
475 n = root->rb_node;
476 entry = NULL;
477 while (n) {
478 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
479
480 if (bytenr < entry->bytenr)
481 n = n->rb_left;
482 else if (bytenr > entry->bytenr)
483 n = n->rb_right;
484 else
485 return entry;
486 }
487 if (entry && return_bigger) {
488 if (bytenr > entry->bytenr) {
489 n = rb_next(&entry->href_node);
490 if (!n)
491 return NULL;
492 entry = rb_entry(n, struct btrfs_delayed_ref_head,
493 href_node);
494 }
495 return entry;
496 }
497 return NULL;
498}
499
500int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
501 struct btrfs_delayed_ref_head *head)
502{
503 lockdep_assert_held(&delayed_refs->lock);
504 if (mutex_trylock(&head->mutex))
505 return 0;
506
507 refcount_inc(&head->refs);
508 spin_unlock(&delayed_refs->lock);
509
510 mutex_lock(&head->mutex);
511 spin_lock(&delayed_refs->lock);
512 if (RB_EMPTY_NODE(&head->href_node)) {
513 mutex_unlock(&head->mutex);
514 btrfs_put_delayed_ref_head(head);
515 return -EAGAIN;
516 }
517 btrfs_put_delayed_ref_head(head);
518 return 0;
519}
520
521static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
522 struct btrfs_delayed_ref_root *delayed_refs,
523 struct btrfs_delayed_ref_head *head,
524 struct btrfs_delayed_ref_node *ref)
525{
526 lockdep_assert_held(&head->lock);
527 rb_erase_cached(&ref->ref_node, &head->ref_tree);
528 RB_CLEAR_NODE(&ref->ref_node);
529 if (!list_empty(&ref->add_list))
530 list_del(&ref->add_list);
531 btrfs_put_delayed_ref(ref);
532 atomic_dec(&delayed_refs->num_entries);
533 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
534}
535
536static bool merge_ref(struct btrfs_fs_info *fs_info,
537 struct btrfs_delayed_ref_root *delayed_refs,
538 struct btrfs_delayed_ref_head *head,
539 struct btrfs_delayed_ref_node *ref,
540 u64 seq)
541{
542 struct btrfs_delayed_ref_node *next;
543 struct rb_node *node = rb_next(&ref->ref_node);
544 bool done = false;
545
546 while (!done && node) {
547 int mod;
548
549 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
550 node = rb_next(node);
551 if (seq && next->seq >= seq)
552 break;
553 if (comp_refs(ref, next, false))
554 break;
555
556 if (ref->action == next->action) {
557 mod = next->ref_mod;
558 } else {
559 if (ref->ref_mod < next->ref_mod) {
560 swap(ref, next);
561 done = true;
562 }
563 mod = -next->ref_mod;
564 }
565
566 drop_delayed_ref(fs_info, delayed_refs, head, next);
567 ref->ref_mod += mod;
568 if (ref->ref_mod == 0) {
569 drop_delayed_ref(fs_info, delayed_refs, head, ref);
570 done = true;
571 } else {
572 /*
573 * Can't have multiples of the same ref on a tree block.
574 */
575 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
576 ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
577 }
578 }
579
580 return done;
581}
582
583void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
584 struct btrfs_delayed_ref_root *delayed_refs,
585 struct btrfs_delayed_ref_head *head)
586{
587 struct btrfs_delayed_ref_node *ref;
588 struct rb_node *node;
589 u64 seq = 0;
590
591 lockdep_assert_held(&head->lock);
592
593 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
594 return;
595
596 /* We don't have too many refs to merge for data. */
597 if (head->is_data)
598 return;
599
600 seq = btrfs_tree_mod_log_lowest_seq(fs_info);
601again:
602 for (node = rb_first_cached(&head->ref_tree); node;
603 node = rb_next(node)) {
604 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
605 if (seq && ref->seq >= seq)
606 continue;
607 if (merge_ref(fs_info, delayed_refs, head, ref, seq))
608 goto again;
609 }
610}
611
612int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
613{
614 int ret = 0;
615 u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
616
617 if (min_seq != 0 && seq >= min_seq) {
618 btrfs_debug(fs_info,
619 "holding back delayed_ref %llu, lowest is %llu",
620 seq, min_seq);
621 ret = 1;
622 }
623
624 return ret;
625}
626
627struct btrfs_delayed_ref_head *btrfs_select_ref_head(
628 struct btrfs_delayed_ref_root *delayed_refs)
629{
630 struct btrfs_delayed_ref_head *head;
631
632 lockdep_assert_held(&delayed_refs->lock);
633again:
634 head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
635 true);
636 if (!head && delayed_refs->run_delayed_start != 0) {
637 delayed_refs->run_delayed_start = 0;
638 head = find_first_ref_head(delayed_refs);
639 }
640 if (!head)
641 return NULL;
642
643 while (head->processing) {
644 struct rb_node *node;
645
646 node = rb_next(&head->href_node);
647 if (!node) {
648 if (delayed_refs->run_delayed_start == 0)
649 return NULL;
650 delayed_refs->run_delayed_start = 0;
651 goto again;
652 }
653 head = rb_entry(node, struct btrfs_delayed_ref_head,
654 href_node);
655 }
656
657 head->processing = true;
658 WARN_ON(delayed_refs->num_heads_ready == 0);
659 delayed_refs->num_heads_ready--;
660 delayed_refs->run_delayed_start = head->bytenr +
661 head->num_bytes;
662 return head;
663}
664
665void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
666 struct btrfs_delayed_ref_head *head)
667{
668 lockdep_assert_held(&delayed_refs->lock);
669 lockdep_assert_held(&head->lock);
670
671 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
672 RB_CLEAR_NODE(&head->href_node);
673 atomic_dec(&delayed_refs->num_entries);
674 delayed_refs->num_heads--;
675 if (!head->processing)
676 delayed_refs->num_heads_ready--;
677}
678
679/*
680 * Helper to insert the ref_node to the tail or merge with tail.
681 *
682 * Return false if the ref was inserted.
683 * Return true if the ref was merged into an existing one (and therefore can be
684 * freed by the caller).
685 */
686static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
687 struct btrfs_delayed_ref_head *href,
688 struct btrfs_delayed_ref_node *ref)
689{
690 struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
691 struct btrfs_delayed_ref_node *exist;
692 int mod;
693
694 spin_lock(&href->lock);
695 exist = tree_insert(&href->ref_tree, ref);
696 if (!exist) {
697 if (ref->action == BTRFS_ADD_DELAYED_REF)
698 list_add_tail(&ref->add_list, &href->ref_add_list);
699 atomic_inc(&root->num_entries);
700 spin_unlock(&href->lock);
701 trans->delayed_ref_updates++;
702 return false;
703 }
704
705 /* Now we are sure we can merge */
706 if (exist->action == ref->action) {
707 mod = ref->ref_mod;
708 } else {
709 /* Need to change action */
710 if (exist->ref_mod < ref->ref_mod) {
711 exist->action = ref->action;
712 mod = -exist->ref_mod;
713 exist->ref_mod = ref->ref_mod;
714 if (ref->action == BTRFS_ADD_DELAYED_REF)
715 list_add_tail(&exist->add_list,
716 &href->ref_add_list);
717 else if (ref->action == BTRFS_DROP_DELAYED_REF) {
718 ASSERT(!list_empty(&exist->add_list));
719 list_del(&exist->add_list);
720 } else {
721 ASSERT(0);
722 }
723 } else
724 mod = -ref->ref_mod;
725 }
726 exist->ref_mod += mod;
727
728 /* remove existing tail if its ref_mod is zero */
729 if (exist->ref_mod == 0)
730 drop_delayed_ref(trans->fs_info, root, href, exist);
731 spin_unlock(&href->lock);
732 return true;
733}
734
735/*
736 * helper function to update the accounting in the head ref
737 * existing and update must have the same bytenr
738 */
739static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
740 struct btrfs_delayed_ref_head *existing,
741 struct btrfs_delayed_ref_head *update)
742{
743 struct btrfs_delayed_ref_root *delayed_refs =
744 &trans->transaction->delayed_refs;
745 struct btrfs_fs_info *fs_info = trans->fs_info;
746 int old_ref_mod;
747
748 BUG_ON(existing->is_data != update->is_data);
749
750 spin_lock(&existing->lock);
751
752 /*
753 * When freeing an extent, we may not know the owning root when we
754 * first create the head_ref. However, some deref before the last deref
755 * will know it, so we just need to update the head_ref accordingly.
756 */
757 if (!existing->owning_root)
758 existing->owning_root = update->owning_root;
759
760 if (update->must_insert_reserved) {
761 /* if the extent was freed and then
762 * reallocated before the delayed ref
763 * entries were processed, we can end up
764 * with an existing head ref without
765 * the must_insert_reserved flag set.
766 * Set it again here
767 */
768 existing->must_insert_reserved = update->must_insert_reserved;
769 existing->owning_root = update->owning_root;
770
771 /*
772 * update the num_bytes so we make sure the accounting
773 * is done correctly
774 */
775 existing->num_bytes = update->num_bytes;
776
777 }
778
779 if (update->extent_op) {
780 if (!existing->extent_op) {
781 existing->extent_op = update->extent_op;
782 } else {
783 if (update->extent_op->update_key) {
784 memcpy(&existing->extent_op->key,
785 &update->extent_op->key,
786 sizeof(update->extent_op->key));
787 existing->extent_op->update_key = true;
788 }
789 if (update->extent_op->update_flags) {
790 existing->extent_op->flags_to_set |=
791 update->extent_op->flags_to_set;
792 existing->extent_op->update_flags = true;
793 }
794 btrfs_free_delayed_extent_op(update->extent_op);
795 }
796 }
797 /*
798 * update the reference mod on the head to reflect this new operation,
799 * only need the lock for this case cause we could be processing it
800 * currently, for refs we just added we know we're a-ok.
801 */
802 old_ref_mod = existing->total_ref_mod;
803 existing->ref_mod += update->ref_mod;
804 existing->total_ref_mod += update->ref_mod;
805
806 /*
807 * If we are going to from a positive ref mod to a negative or vice
808 * versa we need to make sure to adjust pending_csums accordingly.
809 * We reserve bytes for csum deletion when adding or updating a ref head
810 * see add_delayed_ref_head() for more details.
811 */
812 if (existing->is_data) {
813 u64 csum_leaves =
814 btrfs_csum_bytes_to_leaves(fs_info,
815 existing->num_bytes);
816
817 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
818 delayed_refs->pending_csums -= existing->num_bytes;
819 btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
820 }
821 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
822 delayed_refs->pending_csums += existing->num_bytes;
823 trans->delayed_ref_csum_deletions += csum_leaves;
824 }
825 }
826
827 spin_unlock(&existing->lock);
828}
829
830static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
831 struct btrfs_qgroup_extent_record *qrecord,
832 u64 bytenr, u64 num_bytes, u64 ref_root,
833 u64 reserved, int action, bool is_data,
834 bool is_system, u64 owning_root)
835{
836 int count_mod = 1;
837 bool must_insert_reserved = false;
838
839 /* If reserved is provided, it must be a data extent. */
840 BUG_ON(!is_data && reserved);
841
842 switch (action) {
843 case BTRFS_UPDATE_DELAYED_HEAD:
844 count_mod = 0;
845 break;
846 case BTRFS_DROP_DELAYED_REF:
847 /*
848 * The head node stores the sum of all the mods, so dropping a ref
849 * should drop the sum in the head node by one.
850 */
851 count_mod = -1;
852 break;
853 case BTRFS_ADD_DELAYED_EXTENT:
854 /*
855 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
856 * reserved accounting when the extent is finally added, or if a
857 * later modification deletes the delayed ref without ever
858 * inserting the extent into the extent allocation tree.
859 * ref->must_insert_reserved is the flag used to record that
860 * accounting mods are required.
861 *
862 * Once we record must_insert_reserved, switch the action to
863 * BTRFS_ADD_DELAYED_REF because other special casing is not
864 * required.
865 */
866 must_insert_reserved = true;
867 break;
868 }
869
870 refcount_set(&head_ref->refs, 1);
871 head_ref->bytenr = bytenr;
872 head_ref->num_bytes = num_bytes;
873 head_ref->ref_mod = count_mod;
874 head_ref->reserved_bytes = reserved;
875 head_ref->must_insert_reserved = must_insert_reserved;
876 head_ref->owning_root = owning_root;
877 head_ref->is_data = is_data;
878 head_ref->is_system = is_system;
879 head_ref->ref_tree = RB_ROOT_CACHED;
880 INIT_LIST_HEAD(&head_ref->ref_add_list);
881 RB_CLEAR_NODE(&head_ref->href_node);
882 head_ref->processing = false;
883 head_ref->total_ref_mod = count_mod;
884 spin_lock_init(&head_ref->lock);
885 mutex_init(&head_ref->mutex);
886
887 if (qrecord) {
888 if (ref_root && reserved) {
889 qrecord->data_rsv = reserved;
890 qrecord->data_rsv_refroot = ref_root;
891 }
892 qrecord->bytenr = bytenr;
893 qrecord->num_bytes = num_bytes;
894 qrecord->old_roots = NULL;
895 }
896}
897
898/*
899 * helper function to actually insert a head node into the rbtree.
900 * this does all the dirty work in terms of maintaining the correct
901 * overall modification count.
902 */
903static noinline struct btrfs_delayed_ref_head *
904add_delayed_ref_head(struct btrfs_trans_handle *trans,
905 struct btrfs_delayed_ref_head *head_ref,
906 struct btrfs_qgroup_extent_record *qrecord,
907 int action, bool *qrecord_inserted_ret)
908{
909 struct btrfs_delayed_ref_head *existing;
910 struct btrfs_delayed_ref_root *delayed_refs;
911 bool qrecord_inserted = false;
912
913 delayed_refs = &trans->transaction->delayed_refs;
914
915 /* Record qgroup extent info if provided */
916 if (qrecord) {
917 if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
918 delayed_refs, qrecord))
919 kfree(qrecord);
920 else
921 qrecord_inserted = true;
922 }
923
924 trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
925
926 existing = htree_insert(&delayed_refs->href_root,
927 &head_ref->href_node);
928 if (existing) {
929 update_existing_head_ref(trans, existing, head_ref);
930 /*
931 * we've updated the existing ref, free the newly
932 * allocated ref
933 */
934 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
935 head_ref = existing;
936 } else {
937 /*
938 * We reserve the amount of bytes needed to delete csums when
939 * adding the ref head and not when adding individual drop refs
940 * since the csum items are deleted only after running the last
941 * delayed drop ref (the data extent's ref count drops to 0).
942 */
943 if (head_ref->is_data && head_ref->ref_mod < 0) {
944 delayed_refs->pending_csums += head_ref->num_bytes;
945 trans->delayed_ref_csum_deletions +=
946 btrfs_csum_bytes_to_leaves(trans->fs_info,
947 head_ref->num_bytes);
948 }
949 delayed_refs->num_heads++;
950 delayed_refs->num_heads_ready++;
951 atomic_inc(&delayed_refs->num_entries);
952 }
953 if (qrecord_inserted_ret)
954 *qrecord_inserted_ret = qrecord_inserted;
955
956 return head_ref;
957}
958
959/*
960 * Initialize the structure which represents a modification to a an extent.
961 *
962 * @fs_info: Internal to the mounted filesystem mount structure.
963 *
964 * @ref: The structure which is going to be initialized.
965 *
966 * @bytenr: The logical address of the extent for which a modification is
967 * going to be recorded.
968 *
969 * @num_bytes: Size of the extent whose modification is being recorded.
970 *
971 * @ref_root: The id of the root where this modification has originated, this
972 * can be either one of the well-known metadata trees or the
973 * subvolume id which references this extent.
974 *
975 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
976 * BTRFS_ADD_DELAYED_EXTENT
977 *
978 * @ref_type: Holds the type of the extent which is being recorded, can be
979 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
980 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
981 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent
982 */
983static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
984 struct btrfs_delayed_ref_node *ref,
985 u64 bytenr, u64 num_bytes, u64 ref_root,
986 int action, u8 ref_type)
987{
988 u64 seq = 0;
989
990 if (action == BTRFS_ADD_DELAYED_EXTENT)
991 action = BTRFS_ADD_DELAYED_REF;
992
993 if (is_fstree(ref_root))
994 seq = atomic64_read(&fs_info->tree_mod_seq);
995
996 refcount_set(&ref->refs, 1);
997 ref->bytenr = bytenr;
998 ref->num_bytes = num_bytes;
999 ref->ref_mod = 1;
1000 ref->action = action;
1001 ref->seq = seq;
1002 ref->type = ref_type;
1003 RB_CLEAR_NODE(&ref->ref_node);
1004 INIT_LIST_HEAD(&ref->add_list);
1005}
1006
1007/*
1008 * add a delayed tree ref. This does all of the accounting required
1009 * to make sure the delayed ref is eventually processed before this
1010 * transaction commits.
1011 */
1012int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1013 struct btrfs_ref *generic_ref,
1014 struct btrfs_delayed_extent_op *extent_op)
1015{
1016 struct btrfs_fs_info *fs_info = trans->fs_info;
1017 struct btrfs_delayed_tree_ref *ref;
1018 struct btrfs_delayed_ref_head *head_ref;
1019 struct btrfs_delayed_ref_root *delayed_refs;
1020 struct btrfs_qgroup_extent_record *record = NULL;
1021 bool qrecord_inserted;
1022 bool is_system;
1023 bool merged;
1024 int action = generic_ref->action;
1025 int level = generic_ref->tree_ref.level;
1026 u64 bytenr = generic_ref->bytenr;
1027 u64 num_bytes = generic_ref->len;
1028 u64 parent = generic_ref->parent;
1029 u8 ref_type;
1030
1031 is_system = (generic_ref->tree_ref.ref_root == BTRFS_CHUNK_TREE_OBJECTID);
1032
1033 ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
1034 ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
1035 if (!ref)
1036 return -ENOMEM;
1037
1038 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1039 if (!head_ref) {
1040 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1041 return -ENOMEM;
1042 }
1043
1044 if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1045 record = kzalloc(sizeof(*record), GFP_NOFS);
1046 if (!record) {
1047 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1048 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1049 return -ENOMEM;
1050 }
1051 }
1052
1053 if (parent)
1054 ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
1055 else
1056 ref_type = BTRFS_TREE_BLOCK_REF_KEY;
1057
1058 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1059 generic_ref->tree_ref.ref_root, action,
1060 ref_type);
1061 ref->root = generic_ref->tree_ref.ref_root;
1062 ref->parent = parent;
1063 ref->level = level;
1064
1065 init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
1066 generic_ref->tree_ref.ref_root, 0, action,
1067 false, is_system, generic_ref->owning_root);
1068 head_ref->extent_op = extent_op;
1069
1070 delayed_refs = &trans->transaction->delayed_refs;
1071 spin_lock(&delayed_refs->lock);
1072
1073 /*
1074 * insert both the head node and the new ref without dropping
1075 * the spin lock
1076 */
1077 head_ref = add_delayed_ref_head(trans, head_ref, record,
1078 action, &qrecord_inserted);
1079
1080 merged = insert_delayed_ref(trans, head_ref, &ref->node);
1081 spin_unlock(&delayed_refs->lock);
1082
1083 /*
1084 * Need to update the delayed_refs_rsv with any changes we may have
1085 * made.
1086 */
1087 btrfs_update_delayed_refs_rsv(trans);
1088
1089 trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
1090 action == BTRFS_ADD_DELAYED_EXTENT ?
1091 BTRFS_ADD_DELAYED_REF : action);
1092 if (merged)
1093 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1094
1095 if (qrecord_inserted)
1096 btrfs_qgroup_trace_extent_post(trans, record);
1097
1098 return 0;
1099}
1100
1101/*
1102 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1103 */
1104int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1105 struct btrfs_ref *generic_ref,
1106 u64 reserved)
1107{
1108 struct btrfs_fs_info *fs_info = trans->fs_info;
1109 struct btrfs_delayed_data_ref *ref;
1110 struct btrfs_delayed_ref_head *head_ref;
1111 struct btrfs_delayed_ref_root *delayed_refs;
1112 struct btrfs_qgroup_extent_record *record = NULL;
1113 bool qrecord_inserted;
1114 int action = generic_ref->action;
1115 bool merged;
1116 u64 bytenr = generic_ref->bytenr;
1117 u64 num_bytes = generic_ref->len;
1118 u64 parent = generic_ref->parent;
1119 u64 ref_root = generic_ref->data_ref.ref_root;
1120 u64 owner = generic_ref->data_ref.ino;
1121 u64 offset = generic_ref->data_ref.offset;
1122 u8 ref_type;
1123
1124 ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1125 ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1126 if (!ref)
1127 return -ENOMEM;
1128
1129 if (parent)
1130 ref_type = BTRFS_SHARED_DATA_REF_KEY;
1131 else
1132 ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1133 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1134 ref_root, action, ref_type);
1135 ref->root = ref_root;
1136 ref->parent = parent;
1137 ref->objectid = owner;
1138 ref->offset = offset;
1139
1140
1141 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1142 if (!head_ref) {
1143 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1144 return -ENOMEM;
1145 }
1146
1147 if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1148 record = kzalloc(sizeof(*record), GFP_NOFS);
1149 if (!record) {
1150 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1151 kmem_cache_free(btrfs_delayed_ref_head_cachep,
1152 head_ref);
1153 return -ENOMEM;
1154 }
1155 }
1156
1157 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1158 reserved, action, true, false, generic_ref->owning_root);
1159 head_ref->extent_op = NULL;
1160
1161 delayed_refs = &trans->transaction->delayed_refs;
1162 spin_lock(&delayed_refs->lock);
1163
1164 /*
1165 * insert both the head node and the new ref without dropping
1166 * the spin lock
1167 */
1168 head_ref = add_delayed_ref_head(trans, head_ref, record,
1169 action, &qrecord_inserted);
1170
1171 merged = insert_delayed_ref(trans, head_ref, &ref->node);
1172 spin_unlock(&delayed_refs->lock);
1173
1174 /*
1175 * Need to update the delayed_refs_rsv with any changes we may have
1176 * made.
1177 */
1178 btrfs_update_delayed_refs_rsv(trans);
1179
1180 trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1181 action == BTRFS_ADD_DELAYED_EXTENT ?
1182 BTRFS_ADD_DELAYED_REF : action);
1183 if (merged)
1184 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1185
1186
1187 if (qrecord_inserted)
1188 return btrfs_qgroup_trace_extent_post(trans, record);
1189 return 0;
1190}
1191
1192int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1193 u64 bytenr, u64 num_bytes,
1194 struct btrfs_delayed_extent_op *extent_op)
1195{
1196 struct btrfs_delayed_ref_head *head_ref;
1197 struct btrfs_delayed_ref_root *delayed_refs;
1198
1199 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1200 if (!head_ref)
1201 return -ENOMEM;
1202
1203 init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1204 BTRFS_UPDATE_DELAYED_HEAD, false, false, 0);
1205 head_ref->extent_op = extent_op;
1206
1207 delayed_refs = &trans->transaction->delayed_refs;
1208 spin_lock(&delayed_refs->lock);
1209
1210 add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1211 NULL);
1212
1213 spin_unlock(&delayed_refs->lock);
1214
1215 /*
1216 * Need to update the delayed_refs_rsv with any changes we may have
1217 * made.
1218 */
1219 btrfs_update_delayed_refs_rsv(trans);
1220 return 0;
1221}
1222
1223/*
1224 * This does a simple search for the head node for a given extent. Returns the
1225 * head node if found, or NULL if not.
1226 */
1227struct btrfs_delayed_ref_head *
1228btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1229{
1230 lockdep_assert_held(&delayed_refs->lock);
1231
1232 return find_ref_head(delayed_refs, bytenr, false);
1233}
1234
1235void __cold btrfs_delayed_ref_exit(void)
1236{
1237 kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1238 kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1239 kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1240 kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1241}
1242
1243int __init btrfs_delayed_ref_init(void)
1244{
1245 btrfs_delayed_ref_head_cachep = kmem_cache_create(
1246 "btrfs_delayed_ref_head",
1247 sizeof(struct btrfs_delayed_ref_head), 0,
1248 SLAB_MEM_SPREAD, NULL);
1249 if (!btrfs_delayed_ref_head_cachep)
1250 goto fail;
1251
1252 btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1253 "btrfs_delayed_tree_ref",
1254 sizeof(struct btrfs_delayed_tree_ref), 0,
1255 SLAB_MEM_SPREAD, NULL);
1256 if (!btrfs_delayed_tree_ref_cachep)
1257 goto fail;
1258
1259 btrfs_delayed_data_ref_cachep = kmem_cache_create(
1260 "btrfs_delayed_data_ref",
1261 sizeof(struct btrfs_delayed_data_ref), 0,
1262 SLAB_MEM_SPREAD, NULL);
1263 if (!btrfs_delayed_data_ref_cachep)
1264 goto fail;
1265
1266 btrfs_delayed_extent_op_cachep = kmem_cache_create(
1267 "btrfs_delayed_extent_op",
1268 sizeof(struct btrfs_delayed_extent_op), 0,
1269 SLAB_MEM_SPREAD, NULL);
1270 if (!btrfs_delayed_extent_op_cachep)
1271 goto fail;
1272
1273 return 0;
1274fail:
1275 btrfs_delayed_ref_exit();
1276 return -ENOMEM;
1277}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/sort.h>
9#include "ctree.h"
10#include "delayed-ref.h"
11#include "transaction.h"
12#include "qgroup.h"
13#include "space-info.h"
14
15struct kmem_cache *btrfs_delayed_ref_head_cachep;
16struct kmem_cache *btrfs_delayed_tree_ref_cachep;
17struct kmem_cache *btrfs_delayed_data_ref_cachep;
18struct kmem_cache *btrfs_delayed_extent_op_cachep;
19/*
20 * delayed back reference update tracking. For subvolume trees
21 * we queue up extent allocations and backref maintenance for
22 * delayed processing. This avoids deep call chains where we
23 * add extents in the middle of btrfs_search_slot, and it allows
24 * us to buffer up frequently modified backrefs in an rb tree instead
25 * of hammering updates on the extent allocation tree.
26 */
27
28bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
29{
30 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
31 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
32 bool ret = false;
33 u64 reserved;
34
35 spin_lock(&global_rsv->lock);
36 reserved = global_rsv->reserved;
37 spin_unlock(&global_rsv->lock);
38
39 /*
40 * Since the global reserve is just kind of magic we don't really want
41 * to rely on it to save our bacon, so if our size is more than the
42 * delayed_refs_rsv and the global rsv then it's time to think about
43 * bailing.
44 */
45 spin_lock(&delayed_refs_rsv->lock);
46 reserved += delayed_refs_rsv->reserved;
47 if (delayed_refs_rsv->size >= reserved)
48 ret = true;
49 spin_unlock(&delayed_refs_rsv->lock);
50 return ret;
51}
52
53int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
54{
55 u64 num_entries =
56 atomic_read(&trans->transaction->delayed_refs.num_entries);
57 u64 avg_runtime;
58 u64 val;
59
60 smp_mb();
61 avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
62 val = num_entries * avg_runtime;
63 if (val >= NSEC_PER_SEC)
64 return 1;
65 if (val >= NSEC_PER_SEC / 2)
66 return 2;
67
68 return btrfs_check_space_for_delayed_refs(trans->fs_info);
69}
70
71/**
72 * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
73 * @fs_info - the fs_info for our fs.
74 * @nr - the number of items to drop.
75 *
76 * This drops the delayed ref head's count from the delayed refs rsv and frees
77 * any excess reservation we had.
78 */
79void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
80{
81 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
82 u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
83 u64 released = 0;
84
85 released = __btrfs_block_rsv_release(fs_info, block_rsv, num_bytes,
86 NULL);
87 if (released)
88 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
89 0, released, 0);
90}
91
92/*
93 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
94 * @trans - the trans that may have generated delayed refs
95 *
96 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
97 * it'll calculate the additional size and add it to the delayed_refs_rsv.
98 */
99void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
100{
101 struct btrfs_fs_info *fs_info = trans->fs_info;
102 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
103 u64 num_bytes;
104
105 if (!trans->delayed_ref_updates)
106 return;
107
108 num_bytes = btrfs_calc_insert_metadata_size(fs_info,
109 trans->delayed_ref_updates);
110 spin_lock(&delayed_rsv->lock);
111 delayed_rsv->size += num_bytes;
112 delayed_rsv->full = 0;
113 spin_unlock(&delayed_rsv->lock);
114 trans->delayed_ref_updates = 0;
115}
116
117/**
118 * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
119 * @fs_info - the fs info for our fs.
120 * @src - the source block rsv to transfer from.
121 * @num_bytes - the number of bytes to transfer.
122 *
123 * This transfers up to the num_bytes amount from the src rsv to the
124 * delayed_refs_rsv. Any extra bytes are returned to the space info.
125 */
126void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
127 struct btrfs_block_rsv *src,
128 u64 num_bytes)
129{
130 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
131 u64 to_free = 0;
132
133 spin_lock(&src->lock);
134 src->reserved -= num_bytes;
135 src->size -= num_bytes;
136 spin_unlock(&src->lock);
137
138 spin_lock(&delayed_refs_rsv->lock);
139 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
140 u64 delta = delayed_refs_rsv->size -
141 delayed_refs_rsv->reserved;
142 if (num_bytes > delta) {
143 to_free = num_bytes - delta;
144 num_bytes = delta;
145 }
146 } else {
147 to_free = num_bytes;
148 num_bytes = 0;
149 }
150
151 if (num_bytes)
152 delayed_refs_rsv->reserved += num_bytes;
153 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
154 delayed_refs_rsv->full = 1;
155 spin_unlock(&delayed_refs_rsv->lock);
156
157 if (num_bytes)
158 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
159 0, num_bytes, 1);
160 if (to_free)
161 btrfs_space_info_free_bytes_may_use(fs_info,
162 delayed_refs_rsv->space_info, to_free);
163}
164
165/**
166 * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
167 * @fs_info - the fs_info for our fs.
168 * @flush - control how we can flush for this reservation.
169 *
170 * This will refill the delayed block_rsv up to 1 items size worth of space and
171 * will return -ENOSPC if we can't make the reservation.
172 */
173int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
174 enum btrfs_reserve_flush_enum flush)
175{
176 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
177 u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
178 u64 num_bytes = 0;
179 int ret = -ENOSPC;
180
181 spin_lock(&block_rsv->lock);
182 if (block_rsv->reserved < block_rsv->size) {
183 num_bytes = block_rsv->size - block_rsv->reserved;
184 num_bytes = min(num_bytes, limit);
185 }
186 spin_unlock(&block_rsv->lock);
187
188 if (!num_bytes)
189 return 0;
190
191 ret = btrfs_reserve_metadata_bytes(fs_info->extent_root, block_rsv,
192 num_bytes, flush);
193 if (ret)
194 return ret;
195 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
196 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
197 0, num_bytes, 1);
198 return 0;
199}
200
201/*
202 * compare two delayed tree backrefs with same bytenr and type
203 */
204static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
205 struct btrfs_delayed_tree_ref *ref2)
206{
207 if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
208 if (ref1->root < ref2->root)
209 return -1;
210 if (ref1->root > ref2->root)
211 return 1;
212 } else {
213 if (ref1->parent < ref2->parent)
214 return -1;
215 if (ref1->parent > ref2->parent)
216 return 1;
217 }
218 return 0;
219}
220
221/*
222 * compare two delayed data backrefs with same bytenr and type
223 */
224static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
225 struct btrfs_delayed_data_ref *ref2)
226{
227 if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
228 if (ref1->root < ref2->root)
229 return -1;
230 if (ref1->root > ref2->root)
231 return 1;
232 if (ref1->objectid < ref2->objectid)
233 return -1;
234 if (ref1->objectid > ref2->objectid)
235 return 1;
236 if (ref1->offset < ref2->offset)
237 return -1;
238 if (ref1->offset > ref2->offset)
239 return 1;
240 } else {
241 if (ref1->parent < ref2->parent)
242 return -1;
243 if (ref1->parent > ref2->parent)
244 return 1;
245 }
246 return 0;
247}
248
249static int comp_refs(struct btrfs_delayed_ref_node *ref1,
250 struct btrfs_delayed_ref_node *ref2,
251 bool check_seq)
252{
253 int ret = 0;
254
255 if (ref1->type < ref2->type)
256 return -1;
257 if (ref1->type > ref2->type)
258 return 1;
259 if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
260 ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
261 ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
262 btrfs_delayed_node_to_tree_ref(ref2));
263 else
264 ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
265 btrfs_delayed_node_to_data_ref(ref2));
266 if (ret)
267 return ret;
268 if (check_seq) {
269 if (ref1->seq < ref2->seq)
270 return -1;
271 if (ref1->seq > ref2->seq)
272 return 1;
273 }
274 return 0;
275}
276
277/* insert a new ref to head ref rbtree */
278static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
279 struct rb_node *node)
280{
281 struct rb_node **p = &root->rb_root.rb_node;
282 struct rb_node *parent_node = NULL;
283 struct btrfs_delayed_ref_head *entry;
284 struct btrfs_delayed_ref_head *ins;
285 u64 bytenr;
286 bool leftmost = true;
287
288 ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
289 bytenr = ins->bytenr;
290 while (*p) {
291 parent_node = *p;
292 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
293 href_node);
294
295 if (bytenr < entry->bytenr) {
296 p = &(*p)->rb_left;
297 } else if (bytenr > entry->bytenr) {
298 p = &(*p)->rb_right;
299 leftmost = false;
300 } else {
301 return entry;
302 }
303 }
304
305 rb_link_node(node, parent_node, p);
306 rb_insert_color_cached(node, root, leftmost);
307 return NULL;
308}
309
310static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
311 struct btrfs_delayed_ref_node *ins)
312{
313 struct rb_node **p = &root->rb_root.rb_node;
314 struct rb_node *node = &ins->ref_node;
315 struct rb_node *parent_node = NULL;
316 struct btrfs_delayed_ref_node *entry;
317 bool leftmost = true;
318
319 while (*p) {
320 int comp;
321
322 parent_node = *p;
323 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
324 ref_node);
325 comp = comp_refs(ins, entry, true);
326 if (comp < 0) {
327 p = &(*p)->rb_left;
328 } else if (comp > 0) {
329 p = &(*p)->rb_right;
330 leftmost = false;
331 } else {
332 return entry;
333 }
334 }
335
336 rb_link_node(node, parent_node, p);
337 rb_insert_color_cached(node, root, leftmost);
338 return NULL;
339}
340
341static struct btrfs_delayed_ref_head *find_first_ref_head(
342 struct btrfs_delayed_ref_root *dr)
343{
344 struct rb_node *n;
345 struct btrfs_delayed_ref_head *entry;
346
347 n = rb_first_cached(&dr->href_root);
348 if (!n)
349 return NULL;
350
351 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
352
353 return entry;
354}
355
356/*
357 * Find a head entry based on bytenr. This returns the delayed ref head if it
358 * was able to find one, or NULL if nothing was in that spot. If return_bigger
359 * is given, the next bigger entry is returned if no exact match is found.
360 */
361static struct btrfs_delayed_ref_head *find_ref_head(
362 struct btrfs_delayed_ref_root *dr, u64 bytenr,
363 bool return_bigger)
364{
365 struct rb_root *root = &dr->href_root.rb_root;
366 struct rb_node *n;
367 struct btrfs_delayed_ref_head *entry;
368
369 n = root->rb_node;
370 entry = NULL;
371 while (n) {
372 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
373
374 if (bytenr < entry->bytenr)
375 n = n->rb_left;
376 else if (bytenr > entry->bytenr)
377 n = n->rb_right;
378 else
379 return entry;
380 }
381 if (entry && return_bigger) {
382 if (bytenr > entry->bytenr) {
383 n = rb_next(&entry->href_node);
384 if (!n)
385 return NULL;
386 entry = rb_entry(n, struct btrfs_delayed_ref_head,
387 href_node);
388 }
389 return entry;
390 }
391 return NULL;
392}
393
394int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
395 struct btrfs_delayed_ref_head *head)
396{
397 lockdep_assert_held(&delayed_refs->lock);
398 if (mutex_trylock(&head->mutex))
399 return 0;
400
401 refcount_inc(&head->refs);
402 spin_unlock(&delayed_refs->lock);
403
404 mutex_lock(&head->mutex);
405 spin_lock(&delayed_refs->lock);
406 if (RB_EMPTY_NODE(&head->href_node)) {
407 mutex_unlock(&head->mutex);
408 btrfs_put_delayed_ref_head(head);
409 return -EAGAIN;
410 }
411 btrfs_put_delayed_ref_head(head);
412 return 0;
413}
414
415static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
416 struct btrfs_delayed_ref_root *delayed_refs,
417 struct btrfs_delayed_ref_head *head,
418 struct btrfs_delayed_ref_node *ref)
419{
420 lockdep_assert_held(&head->lock);
421 rb_erase_cached(&ref->ref_node, &head->ref_tree);
422 RB_CLEAR_NODE(&ref->ref_node);
423 if (!list_empty(&ref->add_list))
424 list_del(&ref->add_list);
425 ref->in_tree = 0;
426 btrfs_put_delayed_ref(ref);
427 atomic_dec(&delayed_refs->num_entries);
428}
429
430static bool merge_ref(struct btrfs_trans_handle *trans,
431 struct btrfs_delayed_ref_root *delayed_refs,
432 struct btrfs_delayed_ref_head *head,
433 struct btrfs_delayed_ref_node *ref,
434 u64 seq)
435{
436 struct btrfs_delayed_ref_node *next;
437 struct rb_node *node = rb_next(&ref->ref_node);
438 bool done = false;
439
440 while (!done && node) {
441 int mod;
442
443 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
444 node = rb_next(node);
445 if (seq && next->seq >= seq)
446 break;
447 if (comp_refs(ref, next, false))
448 break;
449
450 if (ref->action == next->action) {
451 mod = next->ref_mod;
452 } else {
453 if (ref->ref_mod < next->ref_mod) {
454 swap(ref, next);
455 done = true;
456 }
457 mod = -next->ref_mod;
458 }
459
460 drop_delayed_ref(trans, delayed_refs, head, next);
461 ref->ref_mod += mod;
462 if (ref->ref_mod == 0) {
463 drop_delayed_ref(trans, delayed_refs, head, ref);
464 done = true;
465 } else {
466 /*
467 * Can't have multiples of the same ref on a tree block.
468 */
469 WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
470 ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
471 }
472 }
473
474 return done;
475}
476
477void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
478 struct btrfs_delayed_ref_root *delayed_refs,
479 struct btrfs_delayed_ref_head *head)
480{
481 struct btrfs_fs_info *fs_info = trans->fs_info;
482 struct btrfs_delayed_ref_node *ref;
483 struct rb_node *node;
484 u64 seq = 0;
485
486 lockdep_assert_held(&head->lock);
487
488 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
489 return;
490
491 /* We don't have too many refs to merge for data. */
492 if (head->is_data)
493 return;
494
495 spin_lock(&fs_info->tree_mod_seq_lock);
496 if (!list_empty(&fs_info->tree_mod_seq_list)) {
497 struct seq_list *elem;
498
499 elem = list_first_entry(&fs_info->tree_mod_seq_list,
500 struct seq_list, list);
501 seq = elem->seq;
502 }
503 spin_unlock(&fs_info->tree_mod_seq_lock);
504
505again:
506 for (node = rb_first_cached(&head->ref_tree); node;
507 node = rb_next(node)) {
508 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
509 if (seq && ref->seq >= seq)
510 continue;
511 if (merge_ref(trans, delayed_refs, head, ref, seq))
512 goto again;
513 }
514}
515
516int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
517{
518 struct seq_list *elem;
519 int ret = 0;
520
521 spin_lock(&fs_info->tree_mod_seq_lock);
522 if (!list_empty(&fs_info->tree_mod_seq_list)) {
523 elem = list_first_entry(&fs_info->tree_mod_seq_list,
524 struct seq_list, list);
525 if (seq >= elem->seq) {
526 btrfs_debug(fs_info,
527 "holding back delayed_ref %#x.%x, lowest is %#x.%x",
528 (u32)(seq >> 32), (u32)seq,
529 (u32)(elem->seq >> 32), (u32)elem->seq);
530 ret = 1;
531 }
532 }
533
534 spin_unlock(&fs_info->tree_mod_seq_lock);
535 return ret;
536}
537
538struct btrfs_delayed_ref_head *btrfs_select_ref_head(
539 struct btrfs_delayed_ref_root *delayed_refs)
540{
541 struct btrfs_delayed_ref_head *head;
542
543again:
544 head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
545 true);
546 if (!head && delayed_refs->run_delayed_start != 0) {
547 delayed_refs->run_delayed_start = 0;
548 head = find_first_ref_head(delayed_refs);
549 }
550 if (!head)
551 return NULL;
552
553 while (head->processing) {
554 struct rb_node *node;
555
556 node = rb_next(&head->href_node);
557 if (!node) {
558 if (delayed_refs->run_delayed_start == 0)
559 return NULL;
560 delayed_refs->run_delayed_start = 0;
561 goto again;
562 }
563 head = rb_entry(node, struct btrfs_delayed_ref_head,
564 href_node);
565 }
566
567 head->processing = 1;
568 WARN_ON(delayed_refs->num_heads_ready == 0);
569 delayed_refs->num_heads_ready--;
570 delayed_refs->run_delayed_start = head->bytenr +
571 head->num_bytes;
572 return head;
573}
574
575void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
576 struct btrfs_delayed_ref_head *head)
577{
578 lockdep_assert_held(&delayed_refs->lock);
579 lockdep_assert_held(&head->lock);
580
581 rb_erase_cached(&head->href_node, &delayed_refs->href_root);
582 RB_CLEAR_NODE(&head->href_node);
583 atomic_dec(&delayed_refs->num_entries);
584 delayed_refs->num_heads--;
585 if (head->processing == 0)
586 delayed_refs->num_heads_ready--;
587}
588
589/*
590 * Helper to insert the ref_node to the tail or merge with tail.
591 *
592 * Return 0 for insert.
593 * Return >0 for merge.
594 */
595static int insert_delayed_ref(struct btrfs_trans_handle *trans,
596 struct btrfs_delayed_ref_root *root,
597 struct btrfs_delayed_ref_head *href,
598 struct btrfs_delayed_ref_node *ref)
599{
600 struct btrfs_delayed_ref_node *exist;
601 int mod;
602 int ret = 0;
603
604 spin_lock(&href->lock);
605 exist = tree_insert(&href->ref_tree, ref);
606 if (!exist)
607 goto inserted;
608
609 /* Now we are sure we can merge */
610 ret = 1;
611 if (exist->action == ref->action) {
612 mod = ref->ref_mod;
613 } else {
614 /* Need to change action */
615 if (exist->ref_mod < ref->ref_mod) {
616 exist->action = ref->action;
617 mod = -exist->ref_mod;
618 exist->ref_mod = ref->ref_mod;
619 if (ref->action == BTRFS_ADD_DELAYED_REF)
620 list_add_tail(&exist->add_list,
621 &href->ref_add_list);
622 else if (ref->action == BTRFS_DROP_DELAYED_REF) {
623 ASSERT(!list_empty(&exist->add_list));
624 list_del(&exist->add_list);
625 } else {
626 ASSERT(0);
627 }
628 } else
629 mod = -ref->ref_mod;
630 }
631 exist->ref_mod += mod;
632
633 /* remove existing tail if its ref_mod is zero */
634 if (exist->ref_mod == 0)
635 drop_delayed_ref(trans, root, href, exist);
636 spin_unlock(&href->lock);
637 return ret;
638inserted:
639 if (ref->action == BTRFS_ADD_DELAYED_REF)
640 list_add_tail(&ref->add_list, &href->ref_add_list);
641 atomic_inc(&root->num_entries);
642 spin_unlock(&href->lock);
643 return ret;
644}
645
646/*
647 * helper function to update the accounting in the head ref
648 * existing and update must have the same bytenr
649 */
650static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
651 struct btrfs_delayed_ref_head *existing,
652 struct btrfs_delayed_ref_head *update,
653 int *old_ref_mod_ret)
654{
655 struct btrfs_delayed_ref_root *delayed_refs =
656 &trans->transaction->delayed_refs;
657 struct btrfs_fs_info *fs_info = trans->fs_info;
658 int old_ref_mod;
659
660 BUG_ON(existing->is_data != update->is_data);
661
662 spin_lock(&existing->lock);
663 if (update->must_insert_reserved) {
664 /* if the extent was freed and then
665 * reallocated before the delayed ref
666 * entries were processed, we can end up
667 * with an existing head ref without
668 * the must_insert_reserved flag set.
669 * Set it again here
670 */
671 existing->must_insert_reserved = update->must_insert_reserved;
672
673 /*
674 * update the num_bytes so we make sure the accounting
675 * is done correctly
676 */
677 existing->num_bytes = update->num_bytes;
678
679 }
680
681 if (update->extent_op) {
682 if (!existing->extent_op) {
683 existing->extent_op = update->extent_op;
684 } else {
685 if (update->extent_op->update_key) {
686 memcpy(&existing->extent_op->key,
687 &update->extent_op->key,
688 sizeof(update->extent_op->key));
689 existing->extent_op->update_key = true;
690 }
691 if (update->extent_op->update_flags) {
692 existing->extent_op->flags_to_set |=
693 update->extent_op->flags_to_set;
694 existing->extent_op->update_flags = true;
695 }
696 btrfs_free_delayed_extent_op(update->extent_op);
697 }
698 }
699 /*
700 * update the reference mod on the head to reflect this new operation,
701 * only need the lock for this case cause we could be processing it
702 * currently, for refs we just added we know we're a-ok.
703 */
704 old_ref_mod = existing->total_ref_mod;
705 if (old_ref_mod_ret)
706 *old_ref_mod_ret = old_ref_mod;
707 existing->ref_mod += update->ref_mod;
708 existing->total_ref_mod += update->ref_mod;
709
710 /*
711 * If we are going to from a positive ref mod to a negative or vice
712 * versa we need to make sure to adjust pending_csums accordingly.
713 */
714 if (existing->is_data) {
715 u64 csum_leaves =
716 btrfs_csum_bytes_to_leaves(fs_info,
717 existing->num_bytes);
718
719 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
720 delayed_refs->pending_csums -= existing->num_bytes;
721 btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
722 }
723 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
724 delayed_refs->pending_csums += existing->num_bytes;
725 trans->delayed_ref_updates += csum_leaves;
726 }
727 }
728 spin_unlock(&existing->lock);
729}
730
731static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
732 struct btrfs_qgroup_extent_record *qrecord,
733 u64 bytenr, u64 num_bytes, u64 ref_root,
734 u64 reserved, int action, bool is_data,
735 bool is_system)
736{
737 int count_mod = 1;
738 int must_insert_reserved = 0;
739
740 /* If reserved is provided, it must be a data extent. */
741 BUG_ON(!is_data && reserved);
742
743 /*
744 * The head node stores the sum of all the mods, so dropping a ref
745 * should drop the sum in the head node by one.
746 */
747 if (action == BTRFS_UPDATE_DELAYED_HEAD)
748 count_mod = 0;
749 else if (action == BTRFS_DROP_DELAYED_REF)
750 count_mod = -1;
751
752 /*
753 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
754 * accounting when the extent is finally added, or if a later
755 * modification deletes the delayed ref without ever inserting the
756 * extent into the extent allocation tree. ref->must_insert_reserved
757 * is the flag used to record that accounting mods are required.
758 *
759 * Once we record must_insert_reserved, switch the action to
760 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
761 */
762 if (action == BTRFS_ADD_DELAYED_EXTENT)
763 must_insert_reserved = 1;
764 else
765 must_insert_reserved = 0;
766
767 refcount_set(&head_ref->refs, 1);
768 head_ref->bytenr = bytenr;
769 head_ref->num_bytes = num_bytes;
770 head_ref->ref_mod = count_mod;
771 head_ref->must_insert_reserved = must_insert_reserved;
772 head_ref->is_data = is_data;
773 head_ref->is_system = is_system;
774 head_ref->ref_tree = RB_ROOT_CACHED;
775 INIT_LIST_HEAD(&head_ref->ref_add_list);
776 RB_CLEAR_NODE(&head_ref->href_node);
777 head_ref->processing = 0;
778 head_ref->total_ref_mod = count_mod;
779 spin_lock_init(&head_ref->lock);
780 mutex_init(&head_ref->mutex);
781
782 if (qrecord) {
783 if (ref_root && reserved) {
784 qrecord->data_rsv = reserved;
785 qrecord->data_rsv_refroot = ref_root;
786 }
787 qrecord->bytenr = bytenr;
788 qrecord->num_bytes = num_bytes;
789 qrecord->old_roots = NULL;
790 }
791}
792
793/*
794 * helper function to actually insert a head node into the rbtree.
795 * this does all the dirty work in terms of maintaining the correct
796 * overall modification count.
797 */
798static noinline struct btrfs_delayed_ref_head *
799add_delayed_ref_head(struct btrfs_trans_handle *trans,
800 struct btrfs_delayed_ref_head *head_ref,
801 struct btrfs_qgroup_extent_record *qrecord,
802 int action, int *qrecord_inserted_ret,
803 int *old_ref_mod, int *new_ref_mod)
804{
805 struct btrfs_delayed_ref_head *existing;
806 struct btrfs_delayed_ref_root *delayed_refs;
807 int qrecord_inserted = 0;
808
809 delayed_refs = &trans->transaction->delayed_refs;
810
811 /* Record qgroup extent info if provided */
812 if (qrecord) {
813 if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
814 delayed_refs, qrecord))
815 kfree(qrecord);
816 else
817 qrecord_inserted = 1;
818 }
819
820 trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
821
822 existing = htree_insert(&delayed_refs->href_root,
823 &head_ref->href_node);
824 if (existing) {
825 update_existing_head_ref(trans, existing, head_ref,
826 old_ref_mod);
827 /*
828 * we've updated the existing ref, free the newly
829 * allocated ref
830 */
831 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
832 head_ref = existing;
833 } else {
834 if (old_ref_mod)
835 *old_ref_mod = 0;
836 if (head_ref->is_data && head_ref->ref_mod < 0) {
837 delayed_refs->pending_csums += head_ref->num_bytes;
838 trans->delayed_ref_updates +=
839 btrfs_csum_bytes_to_leaves(trans->fs_info,
840 head_ref->num_bytes);
841 }
842 delayed_refs->num_heads++;
843 delayed_refs->num_heads_ready++;
844 atomic_inc(&delayed_refs->num_entries);
845 trans->delayed_ref_updates++;
846 }
847 if (qrecord_inserted_ret)
848 *qrecord_inserted_ret = qrecord_inserted;
849 if (new_ref_mod)
850 *new_ref_mod = head_ref->total_ref_mod;
851
852 return head_ref;
853}
854
855/*
856 * init_delayed_ref_common - Initialize the structure which represents a
857 * modification to a an extent.
858 *
859 * @fs_info: Internal to the mounted filesystem mount structure.
860 *
861 * @ref: The structure which is going to be initialized.
862 *
863 * @bytenr: The logical address of the extent for which a modification is
864 * going to be recorded.
865 *
866 * @num_bytes: Size of the extent whose modification is being recorded.
867 *
868 * @ref_root: The id of the root where this modification has originated, this
869 * can be either one of the well-known metadata trees or the
870 * subvolume id which references this extent.
871 *
872 * @action: Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
873 * BTRFS_ADD_DELAYED_EXTENT
874 *
875 * @ref_type: Holds the type of the extent which is being recorded, can be
876 * one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
877 * when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
878 * BTRFS_EXTENT_DATA_REF_KEY when recording data extent
879 */
880static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
881 struct btrfs_delayed_ref_node *ref,
882 u64 bytenr, u64 num_bytes, u64 ref_root,
883 int action, u8 ref_type)
884{
885 u64 seq = 0;
886
887 if (action == BTRFS_ADD_DELAYED_EXTENT)
888 action = BTRFS_ADD_DELAYED_REF;
889
890 if (is_fstree(ref_root))
891 seq = atomic64_read(&fs_info->tree_mod_seq);
892
893 refcount_set(&ref->refs, 1);
894 ref->bytenr = bytenr;
895 ref->num_bytes = num_bytes;
896 ref->ref_mod = 1;
897 ref->action = action;
898 ref->is_head = 0;
899 ref->in_tree = 1;
900 ref->seq = seq;
901 ref->type = ref_type;
902 RB_CLEAR_NODE(&ref->ref_node);
903 INIT_LIST_HEAD(&ref->add_list);
904}
905
906/*
907 * add a delayed tree ref. This does all of the accounting required
908 * to make sure the delayed ref is eventually processed before this
909 * transaction commits.
910 */
911int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
912 struct btrfs_ref *generic_ref,
913 struct btrfs_delayed_extent_op *extent_op,
914 int *old_ref_mod, int *new_ref_mod)
915{
916 struct btrfs_fs_info *fs_info = trans->fs_info;
917 struct btrfs_delayed_tree_ref *ref;
918 struct btrfs_delayed_ref_head *head_ref;
919 struct btrfs_delayed_ref_root *delayed_refs;
920 struct btrfs_qgroup_extent_record *record = NULL;
921 int qrecord_inserted;
922 bool is_system;
923 int action = generic_ref->action;
924 int level = generic_ref->tree_ref.level;
925 int ret;
926 u64 bytenr = generic_ref->bytenr;
927 u64 num_bytes = generic_ref->len;
928 u64 parent = generic_ref->parent;
929 u8 ref_type;
930
931 is_system = (generic_ref->real_root == BTRFS_CHUNK_TREE_OBJECTID);
932
933 ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
934 BUG_ON(extent_op && extent_op->is_data);
935 ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
936 if (!ref)
937 return -ENOMEM;
938
939 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
940 if (!head_ref) {
941 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
942 return -ENOMEM;
943 }
944
945 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
946 is_fstree(generic_ref->real_root) &&
947 is_fstree(generic_ref->tree_ref.root) &&
948 !generic_ref->skip_qgroup) {
949 record = kzalloc(sizeof(*record), GFP_NOFS);
950 if (!record) {
951 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
952 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
953 return -ENOMEM;
954 }
955 }
956
957 if (parent)
958 ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
959 else
960 ref_type = BTRFS_TREE_BLOCK_REF_KEY;
961
962 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
963 generic_ref->tree_ref.root, action, ref_type);
964 ref->root = generic_ref->tree_ref.root;
965 ref->parent = parent;
966 ref->level = level;
967
968 init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
969 generic_ref->tree_ref.root, 0, action, false,
970 is_system);
971 head_ref->extent_op = extent_op;
972
973 delayed_refs = &trans->transaction->delayed_refs;
974 spin_lock(&delayed_refs->lock);
975
976 /*
977 * insert both the head node and the new ref without dropping
978 * the spin lock
979 */
980 head_ref = add_delayed_ref_head(trans, head_ref, record,
981 action, &qrecord_inserted,
982 old_ref_mod, new_ref_mod);
983
984 ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
985 spin_unlock(&delayed_refs->lock);
986
987 /*
988 * Need to update the delayed_refs_rsv with any changes we may have
989 * made.
990 */
991 btrfs_update_delayed_refs_rsv(trans);
992
993 trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
994 action == BTRFS_ADD_DELAYED_EXTENT ?
995 BTRFS_ADD_DELAYED_REF : action);
996 if (ret > 0)
997 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
998
999 if (qrecord_inserted)
1000 btrfs_qgroup_trace_extent_post(fs_info, record);
1001
1002 return 0;
1003}
1004
1005/*
1006 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1007 */
1008int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1009 struct btrfs_ref *generic_ref,
1010 u64 reserved, int *old_ref_mod,
1011 int *new_ref_mod)
1012{
1013 struct btrfs_fs_info *fs_info = trans->fs_info;
1014 struct btrfs_delayed_data_ref *ref;
1015 struct btrfs_delayed_ref_head *head_ref;
1016 struct btrfs_delayed_ref_root *delayed_refs;
1017 struct btrfs_qgroup_extent_record *record = NULL;
1018 int qrecord_inserted;
1019 int action = generic_ref->action;
1020 int ret;
1021 u64 bytenr = generic_ref->bytenr;
1022 u64 num_bytes = generic_ref->len;
1023 u64 parent = generic_ref->parent;
1024 u64 ref_root = generic_ref->data_ref.ref_root;
1025 u64 owner = generic_ref->data_ref.ino;
1026 u64 offset = generic_ref->data_ref.offset;
1027 u8 ref_type;
1028
1029 ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1030 ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1031 if (!ref)
1032 return -ENOMEM;
1033
1034 if (parent)
1035 ref_type = BTRFS_SHARED_DATA_REF_KEY;
1036 else
1037 ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1038 init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1039 ref_root, action, ref_type);
1040 ref->root = ref_root;
1041 ref->parent = parent;
1042 ref->objectid = owner;
1043 ref->offset = offset;
1044
1045
1046 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1047 if (!head_ref) {
1048 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1049 return -ENOMEM;
1050 }
1051
1052 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1053 is_fstree(ref_root) &&
1054 is_fstree(generic_ref->real_root) &&
1055 !generic_ref->skip_qgroup) {
1056 record = kzalloc(sizeof(*record), GFP_NOFS);
1057 if (!record) {
1058 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1059 kmem_cache_free(btrfs_delayed_ref_head_cachep,
1060 head_ref);
1061 return -ENOMEM;
1062 }
1063 }
1064
1065 init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1066 reserved, action, true, false);
1067 head_ref->extent_op = NULL;
1068
1069 delayed_refs = &trans->transaction->delayed_refs;
1070 spin_lock(&delayed_refs->lock);
1071
1072 /*
1073 * insert both the head node and the new ref without dropping
1074 * the spin lock
1075 */
1076 head_ref = add_delayed_ref_head(trans, head_ref, record,
1077 action, &qrecord_inserted,
1078 old_ref_mod, new_ref_mod);
1079
1080 ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
1081 spin_unlock(&delayed_refs->lock);
1082
1083 /*
1084 * Need to update the delayed_refs_rsv with any changes we may have
1085 * made.
1086 */
1087 btrfs_update_delayed_refs_rsv(trans);
1088
1089 trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1090 action == BTRFS_ADD_DELAYED_EXTENT ?
1091 BTRFS_ADD_DELAYED_REF : action);
1092 if (ret > 0)
1093 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1094
1095
1096 if (qrecord_inserted)
1097 return btrfs_qgroup_trace_extent_post(fs_info, record);
1098 return 0;
1099}
1100
1101int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1102 u64 bytenr, u64 num_bytes,
1103 struct btrfs_delayed_extent_op *extent_op)
1104{
1105 struct btrfs_delayed_ref_head *head_ref;
1106 struct btrfs_delayed_ref_root *delayed_refs;
1107
1108 head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1109 if (!head_ref)
1110 return -ENOMEM;
1111
1112 init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1113 BTRFS_UPDATE_DELAYED_HEAD, extent_op->is_data,
1114 false);
1115 head_ref->extent_op = extent_op;
1116
1117 delayed_refs = &trans->transaction->delayed_refs;
1118 spin_lock(&delayed_refs->lock);
1119
1120 add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1121 NULL, NULL, NULL);
1122
1123 spin_unlock(&delayed_refs->lock);
1124
1125 /*
1126 * Need to update the delayed_refs_rsv with any changes we may have
1127 * made.
1128 */
1129 btrfs_update_delayed_refs_rsv(trans);
1130 return 0;
1131}
1132
1133/*
1134 * This does a simple search for the head node for a given extent. Returns the
1135 * head node if found, or NULL if not.
1136 */
1137struct btrfs_delayed_ref_head *
1138btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1139{
1140 lockdep_assert_held(&delayed_refs->lock);
1141
1142 return find_ref_head(delayed_refs, bytenr, false);
1143}
1144
1145void __cold btrfs_delayed_ref_exit(void)
1146{
1147 kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1148 kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1149 kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1150 kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1151}
1152
1153int __init btrfs_delayed_ref_init(void)
1154{
1155 btrfs_delayed_ref_head_cachep = kmem_cache_create(
1156 "btrfs_delayed_ref_head",
1157 sizeof(struct btrfs_delayed_ref_head), 0,
1158 SLAB_MEM_SPREAD, NULL);
1159 if (!btrfs_delayed_ref_head_cachep)
1160 goto fail;
1161
1162 btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1163 "btrfs_delayed_tree_ref",
1164 sizeof(struct btrfs_delayed_tree_ref), 0,
1165 SLAB_MEM_SPREAD, NULL);
1166 if (!btrfs_delayed_tree_ref_cachep)
1167 goto fail;
1168
1169 btrfs_delayed_data_ref_cachep = kmem_cache_create(
1170 "btrfs_delayed_data_ref",
1171 sizeof(struct btrfs_delayed_data_ref), 0,
1172 SLAB_MEM_SPREAD, NULL);
1173 if (!btrfs_delayed_data_ref_cachep)
1174 goto fail;
1175
1176 btrfs_delayed_extent_op_cachep = kmem_cache_create(
1177 "btrfs_delayed_extent_op",
1178 sizeof(struct btrfs_delayed_extent_op), 0,
1179 SLAB_MEM_SPREAD, NULL);
1180 if (!btrfs_delayed_extent_op_cachep)
1181 goto fail;
1182
1183 return 0;
1184fail:
1185 btrfs_delayed_ref_exit();
1186 return -ENOMEM;
1187}