Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/sort.h>
   9#include "messages.h"
  10#include "ctree.h"
  11#include "delayed-ref.h"
  12#include "transaction.h"
  13#include "qgroup.h"
  14#include "space-info.h"
  15#include "tree-mod-log.h"
  16#include "fs.h"
  17
  18struct kmem_cache *btrfs_delayed_ref_head_cachep;
  19struct kmem_cache *btrfs_delayed_tree_ref_cachep;
  20struct kmem_cache *btrfs_delayed_data_ref_cachep;
  21struct kmem_cache *btrfs_delayed_extent_op_cachep;
  22/*
  23 * delayed back reference update tracking.  For subvolume trees
  24 * we queue up extent allocations and backref maintenance for
  25 * delayed processing.   This avoids deep call chains where we
  26 * add extents in the middle of btrfs_search_slot, and it allows
  27 * us to buffer up frequently modified backrefs in an rb tree instead
  28 * of hammering updates on the extent allocation tree.
  29 */
  30
  31bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
  32{
  33	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
  34	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  35	bool ret = false;
  36	u64 reserved;
  37
  38	spin_lock(&global_rsv->lock);
  39	reserved = global_rsv->reserved;
  40	spin_unlock(&global_rsv->lock);
  41
  42	/*
  43	 * Since the global reserve is just kind of magic we don't really want
  44	 * to rely on it to save our bacon, so if our size is more than the
  45	 * delayed_refs_rsv and the global rsv then it's time to think about
  46	 * bailing.
  47	 */
  48	spin_lock(&delayed_refs_rsv->lock);
  49	reserved += delayed_refs_rsv->reserved;
  50	if (delayed_refs_rsv->size >= reserved)
  51		ret = true;
  52	spin_unlock(&delayed_refs_rsv->lock);
  53	return ret;
  54}
  55
  56/*
  57 * Release a ref head's reservation.
  58 *
  59 * @fs_info:  the filesystem
  60 * @nr_refs:  number of delayed refs to drop
  61 * @nr_csums: number of csum items to drop
  62 *
  63 * Drops the delayed ref head's count from the delayed refs rsv and free any
  64 * excess reservation we had.
  65 */
  66void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums)
  67{
  68	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
  69	u64 num_bytes;
  70	u64 released;
  71
  72	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, nr_refs);
  73	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
  74
  75	released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
  76	if (released)
  77		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
  78					      0, released, 0);
  79}
  80
  81/*
  82 * Adjust the size of the delayed refs rsv.
  83 *
  84 * This is to be called anytime we may have adjusted trans->delayed_ref_updates
  85 * or trans->delayed_ref_csum_deletions, it'll calculate the additional size and
  86 * add it to the delayed_refs_rsv.
  87 */
  88void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
  89{
  90	struct btrfs_fs_info *fs_info = trans->fs_info;
  91	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
  92	struct btrfs_block_rsv *local_rsv = &trans->delayed_rsv;
  93	u64 num_bytes;
  94	u64 reserved_bytes;
  95
  96	num_bytes = btrfs_calc_delayed_ref_bytes(fs_info, trans->delayed_ref_updates);
  97	num_bytes += btrfs_calc_delayed_ref_csum_bytes(fs_info,
  98						       trans->delayed_ref_csum_deletions);
  99
 100	if (num_bytes == 0)
 101		return;
 102
 103	/*
 104	 * Try to take num_bytes from the transaction's local delayed reserve.
 105	 * If not possible, try to take as much as it's available. If the local
 106	 * reserve doesn't have enough reserved space, the delayed refs reserve
 107	 * will be refilled next time btrfs_delayed_refs_rsv_refill() is called
 108	 * by someone or if a transaction commit is triggered before that, the
 109	 * global block reserve will be used. We want to minimize using the
 110	 * global block reserve for cases we can account for in advance, to
 111	 * avoid exhausting it and reach -ENOSPC during a transaction commit.
 112	 */
 113	spin_lock(&local_rsv->lock);
 114	reserved_bytes = min(num_bytes, local_rsv->reserved);
 115	local_rsv->reserved -= reserved_bytes;
 116	local_rsv->full = (local_rsv->reserved >= local_rsv->size);
 117	spin_unlock(&local_rsv->lock);
 118
 119	spin_lock(&delayed_rsv->lock);
 120	delayed_rsv->size += num_bytes;
 121	delayed_rsv->reserved += reserved_bytes;
 122	delayed_rsv->full = (delayed_rsv->reserved >= delayed_rsv->size);
 123	spin_unlock(&delayed_rsv->lock);
 124	trans->delayed_ref_updates = 0;
 125	trans->delayed_ref_csum_deletions = 0;
 126}
 127
 128/*
 129 * Adjust the size of the delayed refs block reserve for 1 block group item
 130 * insertion, used after allocating a block group.
 131 */
 132void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
 133{
 134	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 135
 136	spin_lock(&delayed_rsv->lock);
 137	/*
 138	 * Inserting a block group item does not require changing the free space
 139	 * tree, only the extent tree or the block group tree, so this is all we
 140	 * need.
 141	 */
 142	delayed_rsv->size += btrfs_calc_insert_metadata_size(fs_info, 1);
 143	delayed_rsv->full = false;
 144	spin_unlock(&delayed_rsv->lock);
 145}
 146
 147/*
 148 * Adjust the size of the delayed refs block reserve to release space for 1
 149 * block group item insertion.
 150 */
 151void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info)
 152{
 153	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 154	const u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 155	u64 released;
 156
 157	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
 158	if (released > 0)
 159		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 160					      0, released, 0);
 161}
 162
 163/*
 164 * Adjust the size of the delayed refs block reserve for 1 block group item
 165 * update.
 166 */
 167void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
 168{
 169	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 170
 171	spin_lock(&delayed_rsv->lock);
 172	/*
 173	 * Updating a block group item does not result in new nodes/leaves and
 174	 * does not require changing the free space tree, only the extent tree
 175	 * or the block group tree, so this is all we need.
 176	 */
 177	delayed_rsv->size += btrfs_calc_metadata_size(fs_info, 1);
 178	delayed_rsv->full = false;
 179	spin_unlock(&delayed_rsv->lock);
 180}
 181
 182/*
 183 * Adjust the size of the delayed refs block reserve to release space for 1
 184 * block group item update.
 185 */
 186void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info)
 187{
 188	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
 189	const u64 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 190	u64 released;
 191
 192	released = btrfs_block_rsv_release(fs_info, delayed_rsv, num_bytes, NULL);
 193	if (released > 0)
 194		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 195					      0, released, 0);
 196}
 197
 198/*
 199 * Transfer bytes to our delayed refs rsv.
 200 *
 201 * @fs_info:   the filesystem
 202 * @num_bytes: number of bytes to transfer
 203 *
 204 * This transfers up to the num_bytes amount, previously reserved, to the
 205 * delayed_refs_rsv.  Any extra bytes are returned to the space info.
 206 */
 207void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
 208				       u64 num_bytes)
 209{
 210	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
 211	u64 to_free = 0;
 212
 213	spin_lock(&delayed_refs_rsv->lock);
 214	if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
 215		u64 delta = delayed_refs_rsv->size -
 216			delayed_refs_rsv->reserved;
 217		if (num_bytes > delta) {
 218			to_free = num_bytes - delta;
 219			num_bytes = delta;
 220		}
 221	} else {
 222		to_free = num_bytes;
 223		num_bytes = 0;
 224	}
 225
 226	if (num_bytes)
 227		delayed_refs_rsv->reserved += num_bytes;
 228	if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
 229		delayed_refs_rsv->full = true;
 230	spin_unlock(&delayed_refs_rsv->lock);
 231
 232	if (num_bytes)
 233		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
 234					      0, num_bytes, 1);
 235	if (to_free)
 236		btrfs_space_info_free_bytes_may_use(fs_info,
 237				delayed_refs_rsv->space_info, to_free);
 238}
 239
 240/*
 241 * Refill based on our delayed refs usage.
 242 *
 243 * @fs_info: the filesystem
 244 * @flush:   control how we can flush for this reservation.
 245 *
 246 * This will refill the delayed block_rsv up to 1 items size worth of space and
 247 * will return -ENOSPC if we can't make the reservation.
 248 */
 249int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
 250				  enum btrfs_reserve_flush_enum flush)
 251{
 252	struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
 253	struct btrfs_space_info *space_info = block_rsv->space_info;
 254	u64 limit = btrfs_calc_delayed_ref_bytes(fs_info, 1);
 255	u64 num_bytes = 0;
 256	u64 refilled_bytes;
 257	u64 to_free;
 258	int ret = -ENOSPC;
 259
 260	spin_lock(&block_rsv->lock);
 261	if (block_rsv->reserved < block_rsv->size) {
 262		num_bytes = block_rsv->size - block_rsv->reserved;
 263		num_bytes = min(num_bytes, limit);
 264	}
 265	spin_unlock(&block_rsv->lock);
 266
 267	if (!num_bytes)
 268		return 0;
 269
 270	ret = btrfs_reserve_metadata_bytes(fs_info, space_info, num_bytes, flush);
 271	if (ret)
 272		return ret;
 273
 274	/*
 275	 * We may have raced with someone else, so check again if we the block
 276	 * reserve is still not full and release any excess space.
 277	 */
 278	spin_lock(&block_rsv->lock);
 279	if (block_rsv->reserved < block_rsv->size) {
 280		u64 needed = block_rsv->size - block_rsv->reserved;
 281
 282		if (num_bytes >= needed) {
 283			block_rsv->reserved += needed;
 284			block_rsv->full = true;
 285			to_free = num_bytes - needed;
 286			refilled_bytes = needed;
 287		} else {
 288			block_rsv->reserved += num_bytes;
 289			to_free = 0;
 290			refilled_bytes = num_bytes;
 291		}
 292	} else {
 293		to_free = num_bytes;
 294		refilled_bytes = 0;
 295	}
 296	spin_unlock(&block_rsv->lock);
 297
 298	if (to_free > 0)
 299		btrfs_space_info_free_bytes_may_use(fs_info, space_info, to_free);
 300
 301	if (refilled_bytes > 0)
 302		trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv", 0,
 303					      refilled_bytes, 1);
 304	return 0;
 305}
 306
 307/*
 308 * compare two delayed tree backrefs with same bytenr and type
 309 */
 310static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 311			  struct btrfs_delayed_tree_ref *ref2)
 312{
 313	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 314		if (ref1->root < ref2->root)
 315			return -1;
 316		if (ref1->root > ref2->root)
 317			return 1;
 318	} else {
 319		if (ref1->parent < ref2->parent)
 320			return -1;
 321		if (ref1->parent > ref2->parent)
 322			return 1;
 323	}
 324	return 0;
 325}
 326
 327/*
 328 * compare two delayed data backrefs with same bytenr and type
 329 */
 330static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 331			  struct btrfs_delayed_data_ref *ref2)
 332{
 333	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 334		if (ref1->root < ref2->root)
 335			return -1;
 336		if (ref1->root > ref2->root)
 337			return 1;
 338		if (ref1->objectid < ref2->objectid)
 339			return -1;
 340		if (ref1->objectid > ref2->objectid)
 341			return 1;
 342		if (ref1->offset < ref2->offset)
 343			return -1;
 344		if (ref1->offset > ref2->offset)
 345			return 1;
 346	} else {
 347		if (ref1->parent < ref2->parent)
 348			return -1;
 349		if (ref1->parent > ref2->parent)
 350			return 1;
 351	}
 352	return 0;
 353}
 354
 355static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 356		     struct btrfs_delayed_ref_node *ref2,
 357		     bool check_seq)
 358{
 359	int ret = 0;
 360
 361	if (ref1->type < ref2->type)
 362		return -1;
 363	if (ref1->type > ref2->type)
 364		return 1;
 365	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 366	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 367		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 368				     btrfs_delayed_node_to_tree_ref(ref2));
 369	else
 370		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 371				     btrfs_delayed_node_to_data_ref(ref2));
 372	if (ret)
 373		return ret;
 374	if (check_seq) {
 375		if (ref1->seq < ref2->seq)
 376			return -1;
 377		if (ref1->seq > ref2->seq)
 378			return 1;
 379	}
 380	return 0;
 381}
 382
 383/* insert a new ref to head ref rbtree */
 384static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
 385						   struct rb_node *node)
 386{
 387	struct rb_node **p = &root->rb_root.rb_node;
 388	struct rb_node *parent_node = NULL;
 389	struct btrfs_delayed_ref_head *entry;
 390	struct btrfs_delayed_ref_head *ins;
 391	u64 bytenr;
 392	bool leftmost = true;
 393
 394	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
 395	bytenr = ins->bytenr;
 396	while (*p) {
 397		parent_node = *p;
 398		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
 399				 href_node);
 400
 401		if (bytenr < entry->bytenr) {
 402			p = &(*p)->rb_left;
 403		} else if (bytenr > entry->bytenr) {
 404			p = &(*p)->rb_right;
 405			leftmost = false;
 406		} else {
 407			return entry;
 408		}
 409	}
 410
 411	rb_link_node(node, parent_node, p);
 412	rb_insert_color_cached(node, root, leftmost);
 413	return NULL;
 414}
 415
 416static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
 417		struct btrfs_delayed_ref_node *ins)
 418{
 419	struct rb_node **p = &root->rb_root.rb_node;
 420	struct rb_node *node = &ins->ref_node;
 421	struct rb_node *parent_node = NULL;
 422	struct btrfs_delayed_ref_node *entry;
 423	bool leftmost = true;
 424
 425	while (*p) {
 426		int comp;
 427
 428		parent_node = *p;
 429		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
 430				 ref_node);
 431		comp = comp_refs(ins, entry, true);
 432		if (comp < 0) {
 433			p = &(*p)->rb_left;
 434		} else if (comp > 0) {
 435			p = &(*p)->rb_right;
 436			leftmost = false;
 437		} else {
 438			return entry;
 439		}
 440	}
 441
 442	rb_link_node(node, parent_node, p);
 443	rb_insert_color_cached(node, root, leftmost);
 444	return NULL;
 445}
 446
 447static struct btrfs_delayed_ref_head *find_first_ref_head(
 448		struct btrfs_delayed_ref_root *dr)
 449{
 450	struct rb_node *n;
 451	struct btrfs_delayed_ref_head *entry;
 452
 453	n = rb_first_cached(&dr->href_root);
 454	if (!n)
 455		return NULL;
 456
 457	entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 458
 459	return entry;
 460}
 461
 462/*
 463 * Find a head entry based on bytenr. This returns the delayed ref head if it
 464 * was able to find one, or NULL if nothing was in that spot.  If return_bigger
 465 * is given, the next bigger entry is returned if no exact match is found.
 466 */
 467static struct btrfs_delayed_ref_head *find_ref_head(
 468		struct btrfs_delayed_ref_root *dr, u64 bytenr,
 469		bool return_bigger)
 
 470{
 471	struct rb_root *root = &dr->href_root.rb_root;
 472	struct rb_node *n;
 473	struct btrfs_delayed_ref_head *entry;
 474
 475	n = root->rb_node;
 476	entry = NULL;
 477	while (n) {
 478		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
 479
 480		if (bytenr < entry->bytenr)
 481			n = n->rb_left;
 482		else if (bytenr > entry->bytenr)
 483			n = n->rb_right;
 484		else
 485			return entry;
 486	}
 487	if (entry && return_bigger) {
 488		if (bytenr > entry->bytenr) {
 489			n = rb_next(&entry->href_node);
 490			if (!n)
 491				return NULL;
 492			entry = rb_entry(n, struct btrfs_delayed_ref_head,
 493					 href_node);
 
 494		}
 495		return entry;
 496	}
 497	return NULL;
 498}
 499
 500int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
 501			   struct btrfs_delayed_ref_head *head)
 502{
 
 
 
 503	lockdep_assert_held(&delayed_refs->lock);
 504	if (mutex_trylock(&head->mutex))
 505		return 0;
 506
 507	refcount_inc(&head->refs);
 508	spin_unlock(&delayed_refs->lock);
 509
 510	mutex_lock(&head->mutex);
 511	spin_lock(&delayed_refs->lock);
 512	if (RB_EMPTY_NODE(&head->href_node)) {
 513		mutex_unlock(&head->mutex);
 514		btrfs_put_delayed_ref_head(head);
 515		return -EAGAIN;
 516	}
 517	btrfs_put_delayed_ref_head(head);
 518	return 0;
 519}
 520
 521static inline void drop_delayed_ref(struct btrfs_fs_info *fs_info,
 522				    struct btrfs_delayed_ref_root *delayed_refs,
 523				    struct btrfs_delayed_ref_head *head,
 524				    struct btrfs_delayed_ref_node *ref)
 525{
 526	lockdep_assert_held(&head->lock);
 527	rb_erase_cached(&ref->ref_node, &head->ref_tree);
 528	RB_CLEAR_NODE(&ref->ref_node);
 529	if (!list_empty(&ref->add_list))
 530		list_del(&ref->add_list);
 
 531	btrfs_put_delayed_ref(ref);
 532	atomic_dec(&delayed_refs->num_entries);
 533	btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
 
 534}
 535
 536static bool merge_ref(struct btrfs_fs_info *fs_info,
 537		      struct btrfs_delayed_ref_root *delayed_refs,
 538		      struct btrfs_delayed_ref_head *head,
 539		      struct btrfs_delayed_ref_node *ref,
 540		      u64 seq)
 541{
 542	struct btrfs_delayed_ref_node *next;
 543	struct rb_node *node = rb_next(&ref->ref_node);
 544	bool done = false;
 545
 546	while (!done && node) {
 547		int mod;
 548
 549		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 550		node = rb_next(node);
 551		if (seq && next->seq >= seq)
 552			break;
 553		if (comp_refs(ref, next, false))
 554			break;
 555
 556		if (ref->action == next->action) {
 557			mod = next->ref_mod;
 558		} else {
 559			if (ref->ref_mod < next->ref_mod) {
 560				swap(ref, next);
 561				done = true;
 562			}
 563			mod = -next->ref_mod;
 564		}
 565
 566		drop_delayed_ref(fs_info, delayed_refs, head, next);
 567		ref->ref_mod += mod;
 568		if (ref->ref_mod == 0) {
 569			drop_delayed_ref(fs_info, delayed_refs, head, ref);
 570			done = true;
 571		} else {
 572			/*
 573			 * Can't have multiples of the same ref on a tree block.
 574			 */
 575			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
 576				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
 577		}
 578	}
 579
 580	return done;
 581}
 582
 583void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info,
 
 584			      struct btrfs_delayed_ref_root *delayed_refs,
 585			      struct btrfs_delayed_ref_head *head)
 586{
 587	struct btrfs_delayed_ref_node *ref;
 588	struct rb_node *node;
 589	u64 seq = 0;
 590
 591	lockdep_assert_held(&head->lock);
 592
 593	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
 594		return;
 595
 596	/* We don't have too many refs to merge for data. */
 597	if (head->is_data)
 598		return;
 599
 600	seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 
 
 
 
 
 
 
 
 
 601again:
 602	for (node = rb_first_cached(&head->ref_tree); node;
 603	     node = rb_next(node)) {
 604		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
 605		if (seq && ref->seq >= seq)
 606			continue;
 607		if (merge_ref(fs_info, delayed_refs, head, ref, seq))
 608			goto again;
 609	}
 610}
 611
 612int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
 
 
 613{
 
 614	int ret = 0;
 615	u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
 616
 617	if (min_seq != 0 && seq >= min_seq) {
 618		btrfs_debug(fs_info,
 619			    "holding back delayed_ref %llu, lowest is %llu",
 620			    seq, min_seq);
 621		ret = 1;
 
 
 
 
 
 
 
 622	}
 623
 
 624	return ret;
 625}
 626
 627struct btrfs_delayed_ref_head *btrfs_select_ref_head(
 628		struct btrfs_delayed_ref_root *delayed_refs)
 629{
 
 630	struct btrfs_delayed_ref_head *head;
 
 
 
 
 631
 632	lockdep_assert_held(&delayed_refs->lock);
 633again:
 634	head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
 635			     true);
 636	if (!head && delayed_refs->run_delayed_start != 0) {
 637		delayed_refs->run_delayed_start = 0;
 638		head = find_first_ref_head(delayed_refs);
 639	}
 640	if (!head)
 
 
 
 641		return NULL;
 
 642
 643	while (head->processing) {
 644		struct rb_node *node;
 645
 646		node = rb_next(&head->href_node);
 647		if (!node) {
 648			if (delayed_refs->run_delayed_start == 0)
 649				return NULL;
 650			delayed_refs->run_delayed_start = 0;
 
 
 651			goto again;
 652		}
 653		head = rb_entry(node, struct btrfs_delayed_ref_head,
 654				href_node);
 655	}
 656
 657	head->processing = true;
 658	WARN_ON(delayed_refs->num_heads_ready == 0);
 659	delayed_refs->num_heads_ready--;
 660	delayed_refs->run_delayed_start = head->bytenr +
 661		head->num_bytes;
 662	return head;
 663}
 664
 665void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
 666			   struct btrfs_delayed_ref_head *head)
 667{
 668	lockdep_assert_held(&delayed_refs->lock);
 669	lockdep_assert_held(&head->lock);
 670
 671	rb_erase_cached(&head->href_node, &delayed_refs->href_root);
 672	RB_CLEAR_NODE(&head->href_node);
 673	atomic_dec(&delayed_refs->num_entries);
 674	delayed_refs->num_heads--;
 675	if (!head->processing)
 676		delayed_refs->num_heads_ready--;
 677}
 678
 679/*
 680 * Helper to insert the ref_node to the tail or merge with tail.
 681 *
 682 * Return false if the ref was inserted.
 683 * Return true if the ref was merged into an existing one (and therefore can be
 684 * freed by the caller).
 685 */
 686static bool insert_delayed_ref(struct btrfs_trans_handle *trans,
 687			       struct btrfs_delayed_ref_head *href,
 688			       struct btrfs_delayed_ref_node *ref)
 
 689{
 690	struct btrfs_delayed_ref_root *root = &trans->transaction->delayed_refs;
 691	struct btrfs_delayed_ref_node *exist;
 692	int mod;
 
 693
 694	spin_lock(&href->lock);
 695	exist = tree_insert(&href->ref_tree, ref);
 696	if (!exist) {
 697		if (ref->action == BTRFS_ADD_DELAYED_REF)
 698			list_add_tail(&ref->add_list, &href->ref_add_list);
 699		atomic_inc(&root->num_entries);
 700		spin_unlock(&href->lock);
 701		trans->delayed_ref_updates++;
 702		return false;
 703	}
 704
 705	/* Now we are sure we can merge */
 
 706	if (exist->action == ref->action) {
 707		mod = ref->ref_mod;
 708	} else {
 709		/* Need to change action */
 710		if (exist->ref_mod < ref->ref_mod) {
 711			exist->action = ref->action;
 712			mod = -exist->ref_mod;
 713			exist->ref_mod = ref->ref_mod;
 714			if (ref->action == BTRFS_ADD_DELAYED_REF)
 715				list_add_tail(&exist->add_list,
 716					      &href->ref_add_list);
 717			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
 718				ASSERT(!list_empty(&exist->add_list));
 719				list_del(&exist->add_list);
 720			} else {
 721				ASSERT(0);
 722			}
 723		} else
 724			mod = -ref->ref_mod;
 725	}
 726	exist->ref_mod += mod;
 727
 728	/* remove existing tail if its ref_mod is zero */
 729	if (exist->ref_mod == 0)
 730		drop_delayed_ref(trans->fs_info, root, href, exist);
 
 
 
 
 
 
 
 731	spin_unlock(&href->lock);
 732	return true;
 733}
 734
 735/*
 736 * helper function to update the accounting in the head ref
 737 * existing and update must have the same bytenr
 738 */
 739static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
 
 740			 struct btrfs_delayed_ref_head *existing,
 741			 struct btrfs_delayed_ref_head *update)
 
 742{
 743	struct btrfs_delayed_ref_root *delayed_refs =
 744		&trans->transaction->delayed_refs;
 745	struct btrfs_fs_info *fs_info = trans->fs_info;
 746	int old_ref_mod;
 747
 748	BUG_ON(existing->is_data != update->is_data);
 749
 750	spin_lock(&existing->lock);
 751
 752	/*
 753	 * When freeing an extent, we may not know the owning root when we
 754	 * first create the head_ref. However, some deref before the last deref
 755	 * will know it, so we just need to update the head_ref accordingly.
 756	 */
 757	if (!existing->owning_root)
 758		existing->owning_root = update->owning_root;
 759
 760	if (update->must_insert_reserved) {
 761		/* if the extent was freed and then
 762		 * reallocated before the delayed ref
 763		 * entries were processed, we can end up
 764		 * with an existing head ref without
 765		 * the must_insert_reserved flag set.
 766		 * Set it again here
 767		 */
 768		existing->must_insert_reserved = update->must_insert_reserved;
 769		existing->owning_root = update->owning_root;
 770
 771		/*
 772		 * update the num_bytes so we make sure the accounting
 773		 * is done correctly
 774		 */
 775		existing->num_bytes = update->num_bytes;
 776
 777	}
 778
 779	if (update->extent_op) {
 780		if (!existing->extent_op) {
 781			existing->extent_op = update->extent_op;
 782		} else {
 783			if (update->extent_op->update_key) {
 784				memcpy(&existing->extent_op->key,
 785				       &update->extent_op->key,
 786				       sizeof(update->extent_op->key));
 787				existing->extent_op->update_key = true;
 788			}
 789			if (update->extent_op->update_flags) {
 790				existing->extent_op->flags_to_set |=
 791					update->extent_op->flags_to_set;
 792				existing->extent_op->update_flags = true;
 793			}
 794			btrfs_free_delayed_extent_op(update->extent_op);
 795		}
 796	}
 797	/*
 798	 * update the reference mod on the head to reflect this new operation,
 799	 * only need the lock for this case cause we could be processing it
 800	 * currently, for refs we just added we know we're a-ok.
 801	 */
 802	old_ref_mod = existing->total_ref_mod;
 
 
 803	existing->ref_mod += update->ref_mod;
 804	existing->total_ref_mod += update->ref_mod;
 805
 806	/*
 807	 * If we are going to from a positive ref mod to a negative or vice
 808	 * versa we need to make sure to adjust pending_csums accordingly.
 809	 * We reserve bytes for csum deletion when adding or updating a ref head
 810	 * see add_delayed_ref_head() for more details.
 811	 */
 812	if (existing->is_data) {
 813		u64 csum_leaves =
 814			btrfs_csum_bytes_to_leaves(fs_info,
 815						   existing->num_bytes);
 816
 817		if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
 818			delayed_refs->pending_csums -= existing->num_bytes;
 819			btrfs_delayed_refs_rsv_release(fs_info, 0, csum_leaves);
 820		}
 821		if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
 822			delayed_refs->pending_csums += existing->num_bytes;
 823			trans->delayed_ref_csum_deletions += csum_leaves;
 824		}
 825	}
 826
 827	spin_unlock(&existing->lock);
 828}
 829
 830static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
 831				  struct btrfs_qgroup_extent_record *qrecord,
 832				  u64 bytenr, u64 num_bytes, u64 ref_root,
 833				  u64 reserved, int action, bool is_data,
 834				  bool is_system, u64 owning_root)
 
 
 
 
 
 
 
 
 
 
 835{
 
 
 836	int count_mod = 1;
 837	bool must_insert_reserved = false;
 
 838
 839	/* If reserved is provided, it must be a data extent. */
 840	BUG_ON(!is_data && reserved);
 841
 842	switch (action) {
 843	case BTRFS_UPDATE_DELAYED_HEAD:
 
 
 
 844		count_mod = 0;
 845		break;
 846	case BTRFS_DROP_DELAYED_REF:
 847		/*
 848		 * The head node stores the sum of all the mods, so dropping a ref
 849		 * should drop the sum in the head node by one.
 850		 */
 851		count_mod = -1;
 852		break;
 853	case BTRFS_ADD_DELAYED_EXTENT:
 854		/*
 855		 * BTRFS_ADD_DELAYED_EXTENT means that we need to update the
 856		 * reserved accounting when the extent is finally added, or if a
 857		 * later modification deletes the delayed ref without ever
 858		 * inserting the extent into the extent allocation tree.
 859		 * ref->must_insert_reserved is the flag used to record that
 860		 * accounting mods are required.
 861		 *
 862		 * Once we record must_insert_reserved, switch the action to
 863		 * BTRFS_ADD_DELAYED_REF because other special casing is not
 864		 * required.
 865		 */
 866		must_insert_reserved = true;
 867		break;
 868	}
 
 869
 870	refcount_set(&head_ref->refs, 1);
 871	head_ref->bytenr = bytenr;
 872	head_ref->num_bytes = num_bytes;
 873	head_ref->ref_mod = count_mod;
 874	head_ref->reserved_bytes = reserved;
 875	head_ref->must_insert_reserved = must_insert_reserved;
 876	head_ref->owning_root = owning_root;
 877	head_ref->is_data = is_data;
 878	head_ref->is_system = is_system;
 879	head_ref->ref_tree = RB_ROOT_CACHED;
 880	INIT_LIST_HEAD(&head_ref->ref_add_list);
 881	RB_CLEAR_NODE(&head_ref->href_node);
 882	head_ref->processing = false;
 883	head_ref->total_ref_mod = count_mod;
 
 
 884	spin_lock_init(&head_ref->lock);
 885	mutex_init(&head_ref->mutex);
 886
 
 887	if (qrecord) {
 888		if (ref_root && reserved) {
 889			qrecord->data_rsv = reserved;
 890			qrecord->data_rsv_refroot = ref_root;
 891		}
 
 892		qrecord->bytenr = bytenr;
 893		qrecord->num_bytes = num_bytes;
 894		qrecord->old_roots = NULL;
 895	}
 896}
 897
 898/*
 899 * helper function to actually insert a head node into the rbtree.
 900 * this does all the dirty work in terms of maintaining the correct
 901 * overall modification count.
 902 */
 903static noinline struct btrfs_delayed_ref_head *
 904add_delayed_ref_head(struct btrfs_trans_handle *trans,
 905		     struct btrfs_delayed_ref_head *head_ref,
 906		     struct btrfs_qgroup_extent_record *qrecord,
 907		     int action, bool *qrecord_inserted_ret)
 908{
 909	struct btrfs_delayed_ref_head *existing;
 910	struct btrfs_delayed_ref_root *delayed_refs;
 911	bool qrecord_inserted = false;
 912
 913	delayed_refs = &trans->transaction->delayed_refs;
 914
 915	/* Record qgroup extent info if provided */
 916	if (qrecord) {
 917		if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
 918					delayed_refs, qrecord))
 919			kfree(qrecord);
 920		else
 921			qrecord_inserted = true;
 922	}
 923
 924	trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
 925
 926	existing = htree_insert(&delayed_refs->href_root,
 927				&head_ref->href_node);
 928	if (existing) {
 929		update_existing_head_ref(trans, existing, head_ref);
 
 
 
 930		/*
 931		 * we've updated the existing ref, free the newly
 932		 * allocated ref
 933		 */
 934		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
 935		head_ref = existing;
 936	} else {
 937		/*
 938		 * We reserve the amount of bytes needed to delete csums when
 939		 * adding the ref head and not when adding individual drop refs
 940		 * since the csum items are deleted only after running the last
 941		 * delayed drop ref (the data extent's ref count drops to 0).
 942		 */
 943		if (head_ref->is_data && head_ref->ref_mod < 0) {
 944			delayed_refs->pending_csums += head_ref->num_bytes;
 945			trans->delayed_ref_csum_deletions +=
 946				btrfs_csum_bytes_to_leaves(trans->fs_info,
 947							   head_ref->num_bytes);
 948		}
 949		delayed_refs->num_heads++;
 950		delayed_refs->num_heads_ready++;
 951		atomic_inc(&delayed_refs->num_entries);
 
 952	}
 953	if (qrecord_inserted_ret)
 954		*qrecord_inserted_ret = qrecord_inserted;
 955
 
 956	return head_ref;
 957}
 958
 959/*
 960 * Initialize the structure which represents a modification to a an extent.
 961 *
 962 * @fs_info:    Internal to the mounted filesystem mount structure.
 963 *
 964 * @ref:	The structure which is going to be initialized.
 965 *
 966 * @bytenr:	The logical address of the extent for which a modification is
 967 *		going to be recorded.
 968 *
 969 * @num_bytes:  Size of the extent whose modification is being recorded.
 970 *
 971 * @ref_root:	The id of the root where this modification has originated, this
 972 *		can be either one of the well-known metadata trees or the
 973 *		subvolume id which references this extent.
 974 *
 975 * @action:	Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
 976 *		BTRFS_ADD_DELAYED_EXTENT
 977 *
 978 * @ref_type:	Holds the type of the extent which is being recorded, can be
 979 *		one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
 980 *		when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
 981 *		BTRFS_EXTENT_DATA_REF_KEY when recording data extent
 982 */
 983static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
 984				    struct btrfs_delayed_ref_node *ref,
 985				    u64 bytenr, u64 num_bytes, u64 ref_root,
 986				    int action, u8 ref_type)
 
 
 
 987{
 
 
 988	u64 seq = 0;
 
 989
 990	if (action == BTRFS_ADD_DELAYED_EXTENT)
 991		action = BTRFS_ADD_DELAYED_REF;
 992
 993	if (is_fstree(ref_root))
 994		seq = atomic64_read(&fs_info->tree_mod_seq);
 
 995
 
 996	refcount_set(&ref->refs, 1);
 997	ref->bytenr = bytenr;
 998	ref->num_bytes = num_bytes;
 999	ref->ref_mod = 1;
1000	ref->action = action;
 
 
1001	ref->seq = seq;
1002	ref->type = ref_type;
1003	RB_CLEAR_NODE(&ref->ref_node);
1004	INIT_LIST_HEAD(&ref->add_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005}
1006
1007/*
1008 * add a delayed tree ref.  This does all of the accounting required
1009 * to make sure the delayed ref is eventually processed before this
1010 * transaction commits.
1011 */
1012int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
1013			       struct btrfs_ref *generic_ref,
1014			       struct btrfs_delayed_extent_op *extent_op)
 
 
 
1015{
1016	struct btrfs_fs_info *fs_info = trans->fs_info;
1017	struct btrfs_delayed_tree_ref *ref;
1018	struct btrfs_delayed_ref_head *head_ref;
1019	struct btrfs_delayed_ref_root *delayed_refs;
1020	struct btrfs_qgroup_extent_record *record = NULL;
1021	bool qrecord_inserted;
1022	bool is_system;
1023	bool merged;
1024	int action = generic_ref->action;
1025	int level = generic_ref->tree_ref.level;
1026	u64 bytenr = generic_ref->bytenr;
1027	u64 num_bytes = generic_ref->len;
1028	u64 parent = generic_ref->parent;
1029	u8 ref_type;
1030
1031	is_system = (generic_ref->tree_ref.ref_root == BTRFS_CHUNK_TREE_OBJECTID);
1032
1033	ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
1034	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
1035	if (!ref)
1036		return -ENOMEM;
1037
1038	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1039	if (!head_ref) {
1040		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1041		return -ENOMEM;
1042	}
1043
1044	if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1045		record = kzalloc(sizeof(*record), GFP_NOFS);
1046		if (!record) {
1047			kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1048			kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
1049			return -ENOMEM;
1050		}
1051	}
1052
1053	if (parent)
1054		ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
1055	else
1056		ref_type = BTRFS_TREE_BLOCK_REF_KEY;
1057
1058	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1059				generic_ref->tree_ref.ref_root, action,
1060				ref_type);
1061	ref->root = generic_ref->tree_ref.ref_root;
1062	ref->parent = parent;
1063	ref->level = level;
1064
1065	init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
1066			      generic_ref->tree_ref.ref_root, 0, action,
1067			      false, is_system, generic_ref->owning_root);
1068	head_ref->extent_op = extent_op;
1069
1070	delayed_refs = &trans->transaction->delayed_refs;
1071	spin_lock(&delayed_refs->lock);
1072
1073	/*
1074	 * insert both the head node and the new ref without dropping
1075	 * the spin lock
1076	 */
1077	head_ref = add_delayed_ref_head(trans, head_ref, record,
1078					action, &qrecord_inserted);
 
 
1079
1080	merged = insert_delayed_ref(trans, head_ref, &ref->node);
 
1081	spin_unlock(&delayed_refs->lock);
1082
1083	/*
1084	 * Need to update the delayed_refs_rsv with any changes we may have
1085	 * made.
1086	 */
1087	btrfs_update_delayed_refs_rsv(trans);
1088
1089	trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
1090				   action == BTRFS_ADD_DELAYED_EXTENT ?
1091				   BTRFS_ADD_DELAYED_REF : action);
1092	if (merged)
1093		kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1094
1095	if (qrecord_inserted)
1096		btrfs_qgroup_trace_extent_post(trans, record);
1097
1098	return 0;
 
 
 
 
 
 
 
1099}
1100
1101/*
1102 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1103 */
1104int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1105			       struct btrfs_ref *generic_ref,
1106			       u64 reserved)
 
 
 
1107{
1108	struct btrfs_fs_info *fs_info = trans->fs_info;
1109	struct btrfs_delayed_data_ref *ref;
1110	struct btrfs_delayed_ref_head *head_ref;
1111	struct btrfs_delayed_ref_root *delayed_refs;
1112	struct btrfs_qgroup_extent_record *record = NULL;
1113	bool qrecord_inserted;
1114	int action = generic_ref->action;
1115	bool merged;
1116	u64 bytenr = generic_ref->bytenr;
1117	u64 num_bytes = generic_ref->len;
1118	u64 parent = generic_ref->parent;
1119	u64 ref_root = generic_ref->data_ref.ref_root;
1120	u64 owner = generic_ref->data_ref.ino;
1121	u64 offset = generic_ref->data_ref.offset;
1122	u8 ref_type;
1123
1124	ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1125	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1126	if (!ref)
1127		return -ENOMEM;
1128
1129	if (parent)
1130	        ref_type = BTRFS_SHARED_DATA_REF_KEY;
1131	else
1132	        ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1133	init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1134				ref_root, action, ref_type);
1135	ref->root = ref_root;
1136	ref->parent = parent;
1137	ref->objectid = owner;
1138	ref->offset = offset;
1139
1140
1141	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1142	if (!head_ref) {
1143		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1144		return -ENOMEM;
1145	}
1146
1147	if (btrfs_qgroup_full_accounting(fs_info) && !generic_ref->skip_qgroup) {
1148		record = kzalloc(sizeof(*record), GFP_NOFS);
 
1149		if (!record) {
1150			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1151			kmem_cache_free(btrfs_delayed_ref_head_cachep,
1152					head_ref);
1153			return -ENOMEM;
1154		}
1155	}
1156
1157	init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1158			      reserved, action, true, false, generic_ref->owning_root);
1159	head_ref->extent_op = NULL;
1160
1161	delayed_refs = &trans->transaction->delayed_refs;
1162	spin_lock(&delayed_refs->lock);
1163
1164	/*
1165	 * insert both the head node and the new ref without dropping
1166	 * the spin lock
1167	 */
1168	head_ref = add_delayed_ref_head(trans, head_ref, record,
1169					action, &qrecord_inserted);
1170
1171	merged = insert_delayed_ref(trans, head_ref, &ref->node);
 
 
 
 
1172	spin_unlock(&delayed_refs->lock);
1173
1174	/*
1175	 * Need to update the delayed_refs_rsv with any changes we may have
1176	 * made.
1177	 */
1178	btrfs_update_delayed_refs_rsv(trans);
1179
1180	trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1181				   action == BTRFS_ADD_DELAYED_EXTENT ?
1182				   BTRFS_ADD_DELAYED_REF : action);
1183	if (merged)
1184		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1185
1186
1187	if (qrecord_inserted)
1188		return btrfs_qgroup_trace_extent_post(trans, record);
1189	return 0;
1190}
1191
1192int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
 
1193				u64 bytenr, u64 num_bytes,
1194				struct btrfs_delayed_extent_op *extent_op)
1195{
1196	struct btrfs_delayed_ref_head *head_ref;
1197	struct btrfs_delayed_ref_root *delayed_refs;
1198
1199	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1200	if (!head_ref)
1201		return -ENOMEM;
1202
1203	init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1204			      BTRFS_UPDATE_DELAYED_HEAD, false, false, 0);
1205	head_ref->extent_op = extent_op;
1206
1207	delayed_refs = &trans->transaction->delayed_refs;
1208	spin_lock(&delayed_refs->lock);
1209
1210	add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1211			     NULL);
 
 
 
 
 
 
1212
1213	spin_unlock(&delayed_refs->lock);
1214
1215	/*
1216	 * Need to update the delayed_refs_rsv with any changes we may have
1217	 * made.
1218	 */
1219	btrfs_update_delayed_refs_rsv(trans);
1220	return 0;
1221}
1222
1223/*
1224 * This does a simple search for the head node for a given extent.  Returns the
1225 * head node if found, or NULL if not.
 
1226 */
1227struct btrfs_delayed_ref_head *
1228btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1229{
1230	lockdep_assert_held(&delayed_refs->lock);
1231
1232	return find_ref_head(delayed_refs, bytenr, false);
1233}
1234
1235void __cold btrfs_delayed_ref_exit(void)
1236{
1237	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1238	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1239	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1240	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1241}
1242
1243int __init btrfs_delayed_ref_init(void)
1244{
1245	btrfs_delayed_ref_head_cachep = kmem_cache_create(
1246				"btrfs_delayed_ref_head",
1247				sizeof(struct btrfs_delayed_ref_head), 0,
1248				SLAB_MEM_SPREAD, NULL);
1249	if (!btrfs_delayed_ref_head_cachep)
1250		goto fail;
1251
1252	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1253				"btrfs_delayed_tree_ref",
1254				sizeof(struct btrfs_delayed_tree_ref), 0,
1255				SLAB_MEM_SPREAD, NULL);
1256	if (!btrfs_delayed_tree_ref_cachep)
1257		goto fail;
1258
1259	btrfs_delayed_data_ref_cachep = kmem_cache_create(
1260				"btrfs_delayed_data_ref",
1261				sizeof(struct btrfs_delayed_data_ref), 0,
1262				SLAB_MEM_SPREAD, NULL);
1263	if (!btrfs_delayed_data_ref_cachep)
1264		goto fail;
1265
1266	btrfs_delayed_extent_op_cachep = kmem_cache_create(
1267				"btrfs_delayed_extent_op",
1268				sizeof(struct btrfs_delayed_extent_op), 0,
1269				SLAB_MEM_SPREAD, NULL);
1270	if (!btrfs_delayed_extent_op_cachep)
1271		goto fail;
1272
1273	return 0;
1274fail:
1275	btrfs_delayed_ref_exit();
1276	return -ENOMEM;
1277}
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2009 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/sched.h>
  7#include <linux/slab.h>
  8#include <linux/sort.h>
 
  9#include "ctree.h"
 10#include "delayed-ref.h"
 11#include "transaction.h"
 12#include "qgroup.h"
 
 
 
 13
 14struct kmem_cache *btrfs_delayed_ref_head_cachep;
 15struct kmem_cache *btrfs_delayed_tree_ref_cachep;
 16struct kmem_cache *btrfs_delayed_data_ref_cachep;
 17struct kmem_cache *btrfs_delayed_extent_op_cachep;
 18/*
 19 * delayed back reference update tracking.  For subvolume trees
 20 * we queue up extent allocations and backref maintenance for
 21 * delayed processing.   This avoids deep call chains where we
 22 * add extents in the middle of btrfs_search_slot, and it allows
 23 * us to buffer up frequently modified backrefs in an rb tree instead
 24 * of hammering updates on the extent allocation tree.
 25 */
 26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27/*
 28 * compare two delayed tree backrefs with same bytenr and type
 29 */
 30static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
 31			  struct btrfs_delayed_tree_ref *ref2)
 32{
 33	if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
 34		if (ref1->root < ref2->root)
 35			return -1;
 36		if (ref1->root > ref2->root)
 37			return 1;
 38	} else {
 39		if (ref1->parent < ref2->parent)
 40			return -1;
 41		if (ref1->parent > ref2->parent)
 42			return 1;
 43	}
 44	return 0;
 45}
 46
 47/*
 48 * compare two delayed data backrefs with same bytenr and type
 49 */
 50static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
 51			  struct btrfs_delayed_data_ref *ref2)
 52{
 53	if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
 54		if (ref1->root < ref2->root)
 55			return -1;
 56		if (ref1->root > ref2->root)
 57			return 1;
 58		if (ref1->objectid < ref2->objectid)
 59			return -1;
 60		if (ref1->objectid > ref2->objectid)
 61			return 1;
 62		if (ref1->offset < ref2->offset)
 63			return -1;
 64		if (ref1->offset > ref2->offset)
 65			return 1;
 66	} else {
 67		if (ref1->parent < ref2->parent)
 68			return -1;
 69		if (ref1->parent > ref2->parent)
 70			return 1;
 71	}
 72	return 0;
 73}
 74
 75static int comp_refs(struct btrfs_delayed_ref_node *ref1,
 76		     struct btrfs_delayed_ref_node *ref2,
 77		     bool check_seq)
 78{
 79	int ret = 0;
 80
 81	if (ref1->type < ref2->type)
 82		return -1;
 83	if (ref1->type > ref2->type)
 84		return 1;
 85	if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
 86	    ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
 87		ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
 88				     btrfs_delayed_node_to_tree_ref(ref2));
 89	else
 90		ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
 91				     btrfs_delayed_node_to_data_ref(ref2));
 92	if (ret)
 93		return ret;
 94	if (check_seq) {
 95		if (ref1->seq < ref2->seq)
 96			return -1;
 97		if (ref1->seq > ref2->seq)
 98			return 1;
 99	}
100	return 0;
101}
102
103/* insert a new ref to head ref rbtree */
104static struct btrfs_delayed_ref_head *htree_insert(struct rb_root *root,
105						   struct rb_node *node)
106{
107	struct rb_node **p = &root->rb_node;
108	struct rb_node *parent_node = NULL;
109	struct btrfs_delayed_ref_head *entry;
110	struct btrfs_delayed_ref_head *ins;
111	u64 bytenr;
 
112
113	ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
114	bytenr = ins->bytenr;
115	while (*p) {
116		parent_node = *p;
117		entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
118				 href_node);
119
120		if (bytenr < entry->bytenr)
121			p = &(*p)->rb_left;
122		else if (bytenr > entry->bytenr)
123			p = &(*p)->rb_right;
124		else
 
125			return entry;
 
126	}
127
128	rb_link_node(node, parent_node, p);
129	rb_insert_color(node, root);
130	return NULL;
131}
132
133static struct btrfs_delayed_ref_node* tree_insert(struct rb_root *root,
134		struct btrfs_delayed_ref_node *ins)
135{
136	struct rb_node **p = &root->rb_node;
137	struct rb_node *node = &ins->ref_node;
138	struct rb_node *parent_node = NULL;
139	struct btrfs_delayed_ref_node *entry;
 
140
141	while (*p) {
142		int comp;
143
144		parent_node = *p;
145		entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
146				 ref_node);
147		comp = comp_refs(ins, entry, true);
148		if (comp < 0)
149			p = &(*p)->rb_left;
150		else if (comp > 0)
151			p = &(*p)->rb_right;
152		else
 
153			return entry;
 
154	}
155
156	rb_link_node(node, parent_node, p);
157	rb_insert_color(node, root);
158	return NULL;
159}
160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161/*
162 * find an head entry based on bytenr. This returns the delayed ref
163 * head if it was able to find one, or NULL if nothing was in that spot.
164 * If return_bigger is given, the next bigger entry is returned if no exact
165 * match is found.
166 */
167static struct btrfs_delayed_ref_head *
168find_ref_head(struct rb_root *root, u64 bytenr,
169	      int return_bigger)
170{
 
171	struct rb_node *n;
172	struct btrfs_delayed_ref_head *entry;
173
174	n = root->rb_node;
175	entry = NULL;
176	while (n) {
177		entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
178
179		if (bytenr < entry->bytenr)
180			n = n->rb_left;
181		else if (bytenr > entry->bytenr)
182			n = n->rb_right;
183		else
184			return entry;
185	}
186	if (entry && return_bigger) {
187		if (bytenr > entry->bytenr) {
188			n = rb_next(&entry->href_node);
189			if (!n)
190				n = rb_first(root);
191			entry = rb_entry(n, struct btrfs_delayed_ref_head,
192					 href_node);
193			return entry;
194		}
195		return entry;
196	}
197	return NULL;
198}
199
200int btrfs_delayed_ref_lock(struct btrfs_trans_handle *trans,
201			   struct btrfs_delayed_ref_head *head)
202{
203	struct btrfs_delayed_ref_root *delayed_refs;
204
205	delayed_refs = &trans->transaction->delayed_refs;
206	lockdep_assert_held(&delayed_refs->lock);
207	if (mutex_trylock(&head->mutex))
208		return 0;
209
210	refcount_inc(&head->refs);
211	spin_unlock(&delayed_refs->lock);
212
213	mutex_lock(&head->mutex);
214	spin_lock(&delayed_refs->lock);
215	if (RB_EMPTY_NODE(&head->href_node)) {
216		mutex_unlock(&head->mutex);
217		btrfs_put_delayed_ref_head(head);
218		return -EAGAIN;
219	}
220	btrfs_put_delayed_ref_head(head);
221	return 0;
222}
223
224static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
225				    struct btrfs_delayed_ref_root *delayed_refs,
226				    struct btrfs_delayed_ref_head *head,
227				    struct btrfs_delayed_ref_node *ref)
228{
229	lockdep_assert_held(&head->lock);
230	rb_erase(&ref->ref_node, &head->ref_tree);
231	RB_CLEAR_NODE(&ref->ref_node);
232	if (!list_empty(&ref->add_list))
233		list_del(&ref->add_list);
234	ref->in_tree = 0;
235	btrfs_put_delayed_ref(ref);
236	atomic_dec(&delayed_refs->num_entries);
237	if (trans->delayed_ref_updates)
238		trans->delayed_ref_updates--;
239}
240
241static bool merge_ref(struct btrfs_trans_handle *trans,
242		      struct btrfs_delayed_ref_root *delayed_refs,
243		      struct btrfs_delayed_ref_head *head,
244		      struct btrfs_delayed_ref_node *ref,
245		      u64 seq)
246{
247	struct btrfs_delayed_ref_node *next;
248	struct rb_node *node = rb_next(&ref->ref_node);
249	bool done = false;
250
251	while (!done && node) {
252		int mod;
253
254		next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
255		node = rb_next(node);
256		if (seq && next->seq >= seq)
257			break;
258		if (comp_refs(ref, next, false))
259			break;
260
261		if (ref->action == next->action) {
262			mod = next->ref_mod;
263		} else {
264			if (ref->ref_mod < next->ref_mod) {
265				swap(ref, next);
266				done = true;
267			}
268			mod = -next->ref_mod;
269		}
270
271		drop_delayed_ref(trans, delayed_refs, head, next);
272		ref->ref_mod += mod;
273		if (ref->ref_mod == 0) {
274			drop_delayed_ref(trans, delayed_refs, head, ref);
275			done = true;
276		} else {
277			/*
278			 * Can't have multiples of the same ref on a tree block.
279			 */
280			WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
281				ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
282		}
283	}
284
285	return done;
286}
287
288void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
289			      struct btrfs_fs_info *fs_info,
290			      struct btrfs_delayed_ref_root *delayed_refs,
291			      struct btrfs_delayed_ref_head *head)
292{
293	struct btrfs_delayed_ref_node *ref;
294	struct rb_node *node;
295	u64 seq = 0;
296
297	lockdep_assert_held(&head->lock);
298
299	if (RB_EMPTY_ROOT(&head->ref_tree))
300		return;
301
302	/* We don't have too many refs to merge for data. */
303	if (head->is_data)
304		return;
305
306	spin_lock(&fs_info->tree_mod_seq_lock);
307	if (!list_empty(&fs_info->tree_mod_seq_list)) {
308		struct seq_list *elem;
309
310		elem = list_first_entry(&fs_info->tree_mod_seq_list,
311					struct seq_list, list);
312		seq = elem->seq;
313	}
314	spin_unlock(&fs_info->tree_mod_seq_lock);
315
316again:
317	for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
 
318		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
319		if (seq && ref->seq >= seq)
320			continue;
321		if (merge_ref(trans, delayed_refs, head, ref, seq))
322			goto again;
323	}
324}
325
326int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info,
327			    struct btrfs_delayed_ref_root *delayed_refs,
328			    u64 seq)
329{
330	struct seq_list *elem;
331	int ret = 0;
 
332
333	spin_lock(&fs_info->tree_mod_seq_lock);
334	if (!list_empty(&fs_info->tree_mod_seq_list)) {
335		elem = list_first_entry(&fs_info->tree_mod_seq_list,
336					struct seq_list, list);
337		if (seq >= elem->seq) {
338			btrfs_debug(fs_info,
339				"holding back delayed_ref %#x.%x, lowest is %#x.%x (%p)",
340				(u32)(seq >> 32), (u32)seq,
341				(u32)(elem->seq >> 32), (u32)elem->seq,
342				delayed_refs);
343			ret = 1;
344		}
345	}
346
347	spin_unlock(&fs_info->tree_mod_seq_lock);
348	return ret;
349}
350
351struct btrfs_delayed_ref_head *
352btrfs_select_ref_head(struct btrfs_trans_handle *trans)
353{
354	struct btrfs_delayed_ref_root *delayed_refs;
355	struct btrfs_delayed_ref_head *head;
356	u64 start;
357	bool loop = false;
358
359	delayed_refs = &trans->transaction->delayed_refs;
360
 
361again:
362	start = delayed_refs->run_delayed_start;
363	head = find_ref_head(&delayed_refs->href_root, start, 1);
364	if (!head && !loop) {
365		delayed_refs->run_delayed_start = 0;
366		start = 0;
367		loop = true;
368		head = find_ref_head(&delayed_refs->href_root, start, 1);
369		if (!head)
370			return NULL;
371	} else if (!head && loop) {
372		return NULL;
373	}
374
375	while (head->processing) {
376		struct rb_node *node;
377
378		node = rb_next(&head->href_node);
379		if (!node) {
380			if (loop)
381				return NULL;
382			delayed_refs->run_delayed_start = 0;
383			start = 0;
384			loop = true;
385			goto again;
386		}
387		head = rb_entry(node, struct btrfs_delayed_ref_head,
388				href_node);
389	}
390
391	head->processing = 1;
392	WARN_ON(delayed_refs->num_heads_ready == 0);
393	delayed_refs->num_heads_ready--;
394	delayed_refs->run_delayed_start = head->bytenr +
395		head->num_bytes;
396	return head;
397}
398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399/*
400 * Helper to insert the ref_node to the tail or merge with tail.
401 *
402 * Return 0 for insert.
403 * Return >0 for merge.
 
404 */
405static int insert_delayed_ref(struct btrfs_trans_handle *trans,
406			      struct btrfs_delayed_ref_root *root,
407			      struct btrfs_delayed_ref_head *href,
408			      struct btrfs_delayed_ref_node *ref)
409{
 
410	struct btrfs_delayed_ref_node *exist;
411	int mod;
412	int ret = 0;
413
414	spin_lock(&href->lock);
415	exist = tree_insert(&href->ref_tree, ref);
416	if (!exist)
417		goto inserted;
 
 
 
 
 
 
418
419	/* Now we are sure we can merge */
420	ret = 1;
421	if (exist->action == ref->action) {
422		mod = ref->ref_mod;
423	} else {
424		/* Need to change action */
425		if (exist->ref_mod < ref->ref_mod) {
426			exist->action = ref->action;
427			mod = -exist->ref_mod;
428			exist->ref_mod = ref->ref_mod;
429			if (ref->action == BTRFS_ADD_DELAYED_REF)
430				list_add_tail(&exist->add_list,
431					      &href->ref_add_list);
432			else if (ref->action == BTRFS_DROP_DELAYED_REF) {
433				ASSERT(!list_empty(&exist->add_list));
434				list_del(&exist->add_list);
435			} else {
436				ASSERT(0);
437			}
438		} else
439			mod = -ref->ref_mod;
440	}
441	exist->ref_mod += mod;
442
443	/* remove existing tail if its ref_mod is zero */
444	if (exist->ref_mod == 0)
445		drop_delayed_ref(trans, root, href, exist);
446	spin_unlock(&href->lock);
447	return ret;
448inserted:
449	if (ref->action == BTRFS_ADD_DELAYED_REF)
450		list_add_tail(&ref->add_list, &href->ref_add_list);
451	atomic_inc(&root->num_entries);
452	trans->delayed_ref_updates++;
453	spin_unlock(&href->lock);
454	return ret;
455}
456
457/*
458 * helper function to update the accounting in the head ref
459 * existing and update must have the same bytenr
460 */
461static noinline void
462update_existing_head_ref(struct btrfs_delayed_ref_root *delayed_refs,
463			 struct btrfs_delayed_ref_head *existing,
464			 struct btrfs_delayed_ref_head *update,
465			 int *old_ref_mod_ret)
466{
 
 
 
467	int old_ref_mod;
468
469	BUG_ON(existing->is_data != update->is_data);
470
471	spin_lock(&existing->lock);
 
 
 
 
 
 
 
 
 
472	if (update->must_insert_reserved) {
473		/* if the extent was freed and then
474		 * reallocated before the delayed ref
475		 * entries were processed, we can end up
476		 * with an existing head ref without
477		 * the must_insert_reserved flag set.
478		 * Set it again here
479		 */
480		existing->must_insert_reserved = update->must_insert_reserved;
 
481
482		/*
483		 * update the num_bytes so we make sure the accounting
484		 * is done correctly
485		 */
486		existing->num_bytes = update->num_bytes;
487
488	}
489
490	if (update->extent_op) {
491		if (!existing->extent_op) {
492			existing->extent_op = update->extent_op;
493		} else {
494			if (update->extent_op->update_key) {
495				memcpy(&existing->extent_op->key,
496				       &update->extent_op->key,
497				       sizeof(update->extent_op->key));
498				existing->extent_op->update_key = true;
499			}
500			if (update->extent_op->update_flags) {
501				existing->extent_op->flags_to_set |=
502					update->extent_op->flags_to_set;
503				existing->extent_op->update_flags = true;
504			}
505			btrfs_free_delayed_extent_op(update->extent_op);
506		}
507	}
508	/*
509	 * update the reference mod on the head to reflect this new operation,
510	 * only need the lock for this case cause we could be processing it
511	 * currently, for refs we just added we know we're a-ok.
512	 */
513	old_ref_mod = existing->total_ref_mod;
514	if (old_ref_mod_ret)
515		*old_ref_mod_ret = old_ref_mod;
516	existing->ref_mod += update->ref_mod;
517	existing->total_ref_mod += update->ref_mod;
518
519	/*
520	 * If we are going to from a positive ref mod to a negative or vice
521	 * versa we need to make sure to adjust pending_csums accordingly.
 
 
522	 */
523	if (existing->is_data) {
524		if (existing->total_ref_mod >= 0 && old_ref_mod < 0)
 
 
 
 
525			delayed_refs->pending_csums -= existing->num_bytes;
526		if (existing->total_ref_mod < 0 && old_ref_mod >= 0)
 
 
527			delayed_refs->pending_csums += existing->num_bytes;
 
 
528	}
 
529	spin_unlock(&existing->lock);
530}
531
532/*
533 * helper function to actually insert a head node into the rbtree.
534 * this does all the dirty work in terms of maintaining the correct
535 * overall modification count.
536 */
537static noinline struct btrfs_delayed_ref_head *
538add_delayed_ref_head(struct btrfs_fs_info *fs_info,
539		     struct btrfs_trans_handle *trans,
540		     struct btrfs_delayed_ref_head *head_ref,
541		     struct btrfs_qgroup_extent_record *qrecord,
542		     u64 bytenr, u64 num_bytes, u64 ref_root, u64 reserved,
543		     int action, int is_data, int is_system,
544		     int *qrecord_inserted_ret,
545		     int *old_ref_mod, int *new_ref_mod)
546
547{
548	struct btrfs_delayed_ref_head *existing;
549	struct btrfs_delayed_ref_root *delayed_refs;
550	int count_mod = 1;
551	int must_insert_reserved = 0;
552	int qrecord_inserted = 0;
553
554	/* If reserved is provided, it must be a data extent. */
555	BUG_ON(!is_data && reserved);
556
557	/*
558	 * the head node stores the sum of all the mods, so dropping a ref
559	 * should drop the sum in the head node by one.
560	 */
561	if (action == BTRFS_UPDATE_DELAYED_HEAD)
562		count_mod = 0;
563	else if (action == BTRFS_DROP_DELAYED_REF)
 
 
 
 
 
564		count_mod = -1;
565
566	/*
567	 * BTRFS_ADD_DELAYED_EXTENT means that we need to update
568	 * the reserved accounting when the extent is finally added, or
569	 * if a later modification deletes the delayed ref without ever
570	 * inserting the extent into the extent allocation tree.
571	 * ref->must_insert_reserved is the flag used to record
572	 * that accounting mods are required.
573	 *
574	 * Once we record must_insert_reserved, switch the action to
575	 * BTRFS_ADD_DELAYED_REF because other special casing is not required.
576	 */
577	if (action == BTRFS_ADD_DELAYED_EXTENT)
578		must_insert_reserved = 1;
579	else
580		must_insert_reserved = 0;
581
582	delayed_refs = &trans->transaction->delayed_refs;
583
584	refcount_set(&head_ref->refs, 1);
585	head_ref->bytenr = bytenr;
586	head_ref->num_bytes = num_bytes;
587	head_ref->ref_mod = count_mod;
 
588	head_ref->must_insert_reserved = must_insert_reserved;
 
589	head_ref->is_data = is_data;
590	head_ref->is_system = is_system;
591	head_ref->ref_tree = RB_ROOT;
592	INIT_LIST_HEAD(&head_ref->ref_add_list);
593	RB_CLEAR_NODE(&head_ref->href_node);
594	head_ref->processing = 0;
595	head_ref->total_ref_mod = count_mod;
596	head_ref->qgroup_reserved = 0;
597	head_ref->qgroup_ref_root = 0;
598	spin_lock_init(&head_ref->lock);
599	mutex_init(&head_ref->mutex);
600
601	/* Record qgroup extent info if provided */
602	if (qrecord) {
603		if (ref_root && reserved) {
604			head_ref->qgroup_ref_root = ref_root;
605			head_ref->qgroup_reserved = reserved;
606		}
607
608		qrecord->bytenr = bytenr;
609		qrecord->num_bytes = num_bytes;
610		qrecord->old_roots = NULL;
 
 
611
612		if(btrfs_qgroup_trace_extent_nolock(fs_info,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613					delayed_refs, qrecord))
614			kfree(qrecord);
615		else
616			qrecord_inserted = 1;
617	}
618
619	trace_add_delayed_ref_head(fs_info, head_ref, action);
620
621	existing = htree_insert(&delayed_refs->href_root,
622				&head_ref->href_node);
623	if (existing) {
624		WARN_ON(ref_root && reserved && existing->qgroup_ref_root
625			&& existing->qgroup_reserved);
626		update_existing_head_ref(delayed_refs, existing, head_ref,
627					 old_ref_mod);
628		/*
629		 * we've updated the existing ref, free the newly
630		 * allocated ref
631		 */
632		kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
633		head_ref = existing;
634	} else {
635		if (old_ref_mod)
636			*old_ref_mod = 0;
637		if (is_data && count_mod < 0)
638			delayed_refs->pending_csums += num_bytes;
 
 
 
 
 
 
 
 
639		delayed_refs->num_heads++;
640		delayed_refs->num_heads_ready++;
641		atomic_inc(&delayed_refs->num_entries);
642		trans->delayed_ref_updates++;
643	}
644	if (qrecord_inserted_ret)
645		*qrecord_inserted_ret = qrecord_inserted;
646	if (new_ref_mod)
647		*new_ref_mod = head_ref->total_ref_mod;
648	return head_ref;
649}
650
651/*
652 * helper to insert a delayed tree ref into the rbtree.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
653 */
654static noinline void
655add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
656		     struct btrfs_trans_handle *trans,
657		     struct btrfs_delayed_ref_head *head_ref,
658		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
659		     u64 num_bytes, u64 parent, u64 ref_root, int level,
660		     int action)
661{
662	struct btrfs_delayed_tree_ref *full_ref;
663	struct btrfs_delayed_ref_root *delayed_refs;
664	u64 seq = 0;
665	int ret;
666
667	if (action == BTRFS_ADD_DELAYED_EXTENT)
668		action = BTRFS_ADD_DELAYED_REF;
669
670	if (is_fstree(ref_root))
671		seq = atomic64_read(&fs_info->tree_mod_seq);
672	delayed_refs = &trans->transaction->delayed_refs;
673
674	/* first set the basic ref node struct up */
675	refcount_set(&ref->refs, 1);
676	ref->bytenr = bytenr;
677	ref->num_bytes = num_bytes;
678	ref->ref_mod = 1;
679	ref->action = action;
680	ref->is_head = 0;
681	ref->in_tree = 1;
682	ref->seq = seq;
 
683	RB_CLEAR_NODE(&ref->ref_node);
684	INIT_LIST_HEAD(&ref->add_list);
685
686	full_ref = btrfs_delayed_node_to_tree_ref(ref);
687	full_ref->parent = parent;
688	full_ref->root = ref_root;
689	if (parent)
690		ref->type = BTRFS_SHARED_BLOCK_REF_KEY;
691	else
692		ref->type = BTRFS_TREE_BLOCK_REF_KEY;
693	full_ref->level = level;
694
695	trace_add_delayed_tree_ref(fs_info, ref, full_ref, action);
696
697	ret = insert_delayed_ref(trans, delayed_refs, head_ref, ref);
698
699	/*
700	 * XXX: memory should be freed at the same level allocated.
701	 * But bad practice is anywhere... Follow it now. Need cleanup.
702	 */
703	if (ret > 0)
704		kmem_cache_free(btrfs_delayed_tree_ref_cachep, full_ref);
705}
706
707/*
708 * helper to insert a delayed data ref into the rbtree.
709 */
710static noinline void
711add_delayed_data_ref(struct btrfs_fs_info *fs_info,
712		     struct btrfs_trans_handle *trans,
713		     struct btrfs_delayed_ref_head *head_ref,
714		     struct btrfs_delayed_ref_node *ref, u64 bytenr,
715		     u64 num_bytes, u64 parent, u64 ref_root, u64 owner,
716		     u64 offset, int action)
717{
718	struct btrfs_delayed_data_ref *full_ref;
719	struct btrfs_delayed_ref_root *delayed_refs;
720	u64 seq = 0;
721	int ret;
722
723	if (action == BTRFS_ADD_DELAYED_EXTENT)
724		action = BTRFS_ADD_DELAYED_REF;
725
726	delayed_refs = &trans->transaction->delayed_refs;
727
728	if (is_fstree(ref_root))
729		seq = atomic64_read(&fs_info->tree_mod_seq);
730
731	/* first set the basic ref node struct up */
732	refcount_set(&ref->refs, 1);
733	ref->bytenr = bytenr;
734	ref->num_bytes = num_bytes;
735	ref->ref_mod = 1;
736	ref->action = action;
737	ref->is_head = 0;
738	ref->in_tree = 1;
739	ref->seq = seq;
740	RB_CLEAR_NODE(&ref->ref_node);
741	INIT_LIST_HEAD(&ref->add_list);
742
743	full_ref = btrfs_delayed_node_to_data_ref(ref);
744	full_ref->parent = parent;
745	full_ref->root = ref_root;
746	if (parent)
747		ref->type = BTRFS_SHARED_DATA_REF_KEY;
748	else
749		ref->type = BTRFS_EXTENT_DATA_REF_KEY;
750
751	full_ref->objectid = owner;
752	full_ref->offset = offset;
753
754	trace_add_delayed_data_ref(fs_info, ref, full_ref, action);
755
756	ret = insert_delayed_ref(trans, delayed_refs, head_ref, ref);
757	if (ret > 0)
758		kmem_cache_free(btrfs_delayed_data_ref_cachep, full_ref);
759}
760
761/*
762 * add a delayed tree ref.  This does all of the accounting required
763 * to make sure the delayed ref is eventually processed before this
764 * transaction commits.
765 */
766int btrfs_add_delayed_tree_ref(struct btrfs_fs_info *fs_info,
767			       struct btrfs_trans_handle *trans,
768			       u64 bytenr, u64 num_bytes, u64 parent,
769			       u64 ref_root,  int level, int action,
770			       struct btrfs_delayed_extent_op *extent_op,
771			       int *old_ref_mod, int *new_ref_mod)
772{
 
773	struct btrfs_delayed_tree_ref *ref;
774	struct btrfs_delayed_ref_head *head_ref;
775	struct btrfs_delayed_ref_root *delayed_refs;
776	struct btrfs_qgroup_extent_record *record = NULL;
777	int qrecord_inserted;
778	int is_system = (ref_root == BTRFS_CHUNK_TREE_OBJECTID);
 
 
 
 
 
 
 
779
780	BUG_ON(extent_op && extent_op->is_data);
 
 
781	ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
782	if (!ref)
783		return -ENOMEM;
784
785	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
786	if (!head_ref)
787		goto free_ref;
 
 
788
789	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
790	    is_fstree(ref_root)) {
791		record = kmalloc(sizeof(*record), GFP_NOFS);
792		if (!record)
793			goto free_head_ref;
 
 
794	}
795
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
796	head_ref->extent_op = extent_op;
797
798	delayed_refs = &trans->transaction->delayed_refs;
799	spin_lock(&delayed_refs->lock);
800
801	/*
802	 * insert both the head node and the new ref without dropping
803	 * the spin lock
804	 */
805	head_ref = add_delayed_ref_head(fs_info, trans, head_ref, record,
806					bytenr, num_bytes, 0, 0, action, 0,
807					is_system, &qrecord_inserted,
808					old_ref_mod, new_ref_mod);
809
810	add_delayed_tree_ref(fs_info, trans, head_ref, &ref->node, bytenr,
811			     num_bytes, parent, ref_root, level, action);
812	spin_unlock(&delayed_refs->lock);
813
 
 
 
 
 
 
 
 
 
 
 
 
814	if (qrecord_inserted)
815		btrfs_qgroup_trace_extent_post(fs_info, record);
816
817	return 0;
818
819free_head_ref:
820	kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
821free_ref:
822	kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
823
824	return -ENOMEM;
825}
826
827/*
828 * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
829 */
830int btrfs_add_delayed_data_ref(struct btrfs_fs_info *fs_info,
831			       struct btrfs_trans_handle *trans,
832			       u64 bytenr, u64 num_bytes,
833			       u64 parent, u64 ref_root,
834			       u64 owner, u64 offset, u64 reserved, int action,
835			       int *old_ref_mod, int *new_ref_mod)
836{
 
837	struct btrfs_delayed_data_ref *ref;
838	struct btrfs_delayed_ref_head *head_ref;
839	struct btrfs_delayed_ref_root *delayed_refs;
840	struct btrfs_qgroup_extent_record *record = NULL;
841	int qrecord_inserted;
 
 
 
 
 
 
 
 
 
842
 
843	ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
844	if (!ref)
845		return -ENOMEM;
846
 
 
 
 
 
 
 
 
 
 
 
 
847	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
848	if (!head_ref) {
849		kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
850		return -ENOMEM;
851	}
852
853	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
854	    is_fstree(ref_root)) {
855		record = kmalloc(sizeof(*record), GFP_NOFS);
856		if (!record) {
857			kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
858			kmem_cache_free(btrfs_delayed_ref_head_cachep,
859					head_ref);
860			return -ENOMEM;
861		}
862	}
863
 
 
864	head_ref->extent_op = NULL;
865
866	delayed_refs = &trans->transaction->delayed_refs;
867	spin_lock(&delayed_refs->lock);
868
869	/*
870	 * insert both the head node and the new ref without dropping
871	 * the spin lock
872	 */
873	head_ref = add_delayed_ref_head(fs_info, trans, head_ref, record,
874					bytenr, num_bytes, ref_root, reserved,
875					action, 1, 0, &qrecord_inserted,
876					old_ref_mod, new_ref_mod);
877
878	add_delayed_data_ref(fs_info, trans, head_ref, &ref->node, bytenr,
879				   num_bytes, parent, ref_root, owner, offset,
880				   action);
881	spin_unlock(&delayed_refs->lock);
882
 
 
 
 
 
 
 
 
 
 
 
 
 
883	if (qrecord_inserted)
884		return btrfs_qgroup_trace_extent_post(fs_info, record);
885	return 0;
886}
887
888int btrfs_add_delayed_extent_op(struct btrfs_fs_info *fs_info,
889				struct btrfs_trans_handle *trans,
890				u64 bytenr, u64 num_bytes,
891				struct btrfs_delayed_extent_op *extent_op)
892{
893	struct btrfs_delayed_ref_head *head_ref;
894	struct btrfs_delayed_ref_root *delayed_refs;
895
896	head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
897	if (!head_ref)
898		return -ENOMEM;
899
 
 
900	head_ref->extent_op = extent_op;
901
902	delayed_refs = &trans->transaction->delayed_refs;
903	spin_lock(&delayed_refs->lock);
904
905	/*
906	 * extent_ops just modify the flags of an extent and they don't result
907	 * in ref count changes, hence it's safe to pass false/0 for is_system
908	 * argument
909	 */
910	add_delayed_ref_head(fs_info, trans, head_ref, NULL, bytenr,
911			     num_bytes, 0, 0, BTRFS_UPDATE_DELAYED_HEAD,
912			     extent_op->is_data, 0, NULL, NULL, NULL);
913
914	spin_unlock(&delayed_refs->lock);
 
 
 
 
 
 
915	return 0;
916}
917
918/*
919 * this does a simple search for the head node for a given extent.
920 * It must be called with the delayed ref spinlock held, and it returns
921 * the head node if any where found, or NULL if not.
922 */
923struct btrfs_delayed_ref_head *
924btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
925{
926	return find_ref_head(&delayed_refs->href_root, bytenr, 0);
 
 
927}
928
929void __cold btrfs_delayed_ref_exit(void)
930{
931	kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
932	kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
933	kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
934	kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
935}
936
937int __init btrfs_delayed_ref_init(void)
938{
939	btrfs_delayed_ref_head_cachep = kmem_cache_create(
940				"btrfs_delayed_ref_head",
941				sizeof(struct btrfs_delayed_ref_head), 0,
942				SLAB_MEM_SPREAD, NULL);
943	if (!btrfs_delayed_ref_head_cachep)
944		goto fail;
945
946	btrfs_delayed_tree_ref_cachep = kmem_cache_create(
947				"btrfs_delayed_tree_ref",
948				sizeof(struct btrfs_delayed_tree_ref), 0,
949				SLAB_MEM_SPREAD, NULL);
950	if (!btrfs_delayed_tree_ref_cachep)
951		goto fail;
952
953	btrfs_delayed_data_ref_cachep = kmem_cache_create(
954				"btrfs_delayed_data_ref",
955				sizeof(struct btrfs_delayed_data_ref), 0,
956				SLAB_MEM_SPREAD, NULL);
957	if (!btrfs_delayed_data_ref_cachep)
958		goto fail;
959
960	btrfs_delayed_extent_op_cachep = kmem_cache_create(
961				"btrfs_delayed_extent_op",
962				sizeof(struct btrfs_delayed_extent_op), 0,
963				SLAB_MEM_SPREAD, NULL);
964	if (!btrfs_delayed_extent_op_cachep)
965		goto fail;
966
967	return 0;
968fail:
969	btrfs_delayed_ref_exit();
970	return -ENOMEM;
971}