Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include "dm-core.h"
  10#include "dm-rq.h"
  11#include "dm-uevent.h"
  12#include "dm-ima.h"
  13
  14#include <linux/init.h>
  15#include <linux/module.h>
  16#include <linux/mutex.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/signal.h>
  19#include <linux/blkpg.h>
  20#include <linux/bio.h>
  21#include <linux/mempool.h>
  22#include <linux/dax.h>
  23#include <linux/slab.h>
  24#include <linux/idr.h>
  25#include <linux/uio.h>
  26#include <linux/hdreg.h>
  27#include <linux/delay.h>
  28#include <linux/wait.h>
  29#include <linux/pr.h>
  30#include <linux/refcount.h>
  31#include <linux/part_stat.h>
  32#include <linux/blk-crypto.h>
  33#include <linux/blk-crypto-profile.h>
  34
  35#define DM_MSG_PREFIX "core"
  36
  37/*
  38 * Cookies are numeric values sent with CHANGE and REMOVE
  39 * uevents while resuming, removing or renaming the device.
  40 */
  41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  42#define DM_COOKIE_LENGTH 24
  43
  44/*
  45 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
  46 * dm_io into one list, and reuse bio->bi_private as the list head. Before
  47 * ending this fs bio, we will recover its ->bi_private.
  48 */
  49#define REQ_DM_POLL_LIST	REQ_DRV
  50
  51static const char *_name = DM_NAME;
  52
  53static unsigned int major;
  54static unsigned int _major;
  55
  56static DEFINE_IDR(_minor_idr);
  57
  58static DEFINE_SPINLOCK(_minor_lock);
  59
  60static void do_deferred_remove(struct work_struct *w);
  61
  62static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  63
  64static struct workqueue_struct *deferred_remove_workqueue;
  65
  66atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  67DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  68
  69void dm_issue_global_event(void)
  70{
  71	atomic_inc(&dm_global_event_nr);
  72	wake_up(&dm_global_eventq);
  73}
  74
  75DEFINE_STATIC_KEY_FALSE(stats_enabled);
  76DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
  77DEFINE_STATIC_KEY_FALSE(zoned_enabled);
  78
  79/*
  80 * One of these is allocated (on-stack) per original bio.
  81 */
  82struct clone_info {
  83	struct dm_table *map;
  84	struct bio *bio;
  85	struct dm_io *io;
  86	sector_t sector;
  87	unsigned int sector_count;
  88	bool is_abnormal_io:1;
  89	bool submit_as_polled:1;
  90};
  91
  92static inline struct dm_target_io *clone_to_tio(struct bio *clone)
  93{
  94	return container_of(clone, struct dm_target_io, clone);
  95}
  96
  97void *dm_per_bio_data(struct bio *bio, size_t data_size)
  98{
  99	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
 
 100		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
 101	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
 102}
 103EXPORT_SYMBOL_GPL(dm_per_bio_data);
 104
 105struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 106{
 107	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 108
 109	if (io->magic == DM_IO_MAGIC)
 110		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
 111	BUG_ON(io->magic != DM_TIO_MAGIC);
 112	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
 113}
 114EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 115
 116unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
 117{
 118	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 119}
 120EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 121
 122#define MINOR_ALLOCED ((void *)-1)
 123
 124#define DM_NUMA_NODE NUMA_NO_NODE
 125static int dm_numa_node = DM_NUMA_NODE;
 126
 127#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 128static int swap_bios = DEFAULT_SWAP_BIOS;
 129static int get_swap_bios(void)
 130{
 131	int latch = READ_ONCE(swap_bios);
 132
 133	if (unlikely(latch <= 0))
 134		latch = DEFAULT_SWAP_BIOS;
 135	return latch;
 136}
 137
 
 
 
 
 
 
 
 
 138struct table_device {
 139	struct list_head list;
 140	refcount_t count;
 141	struct dm_dev dm_dev;
 142};
 143
 144/*
 145 * Bio-based DM's mempools' reserved IOs set by the user.
 146 */
 147#define RESERVED_BIO_BASED_IOS		16
 148static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 149
 150static int __dm_get_module_param_int(int *module_param, int min, int max)
 151{
 152	int param = READ_ONCE(*module_param);
 153	int modified_param = 0;
 154	bool modified = true;
 155
 156	if (param < min)
 157		modified_param = min;
 158	else if (param > max)
 159		modified_param = max;
 160	else
 161		modified = false;
 162
 163	if (modified) {
 164		(void)cmpxchg(module_param, param, modified_param);
 165		param = modified_param;
 166	}
 167
 168	return param;
 169}
 170
 171unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
 
 172{
 173	unsigned int param = READ_ONCE(*module_param);
 174	unsigned int modified_param = 0;
 175
 176	if (!param)
 177		modified_param = def;
 178	else if (param > max)
 179		modified_param = max;
 180
 181	if (modified_param) {
 182		(void)cmpxchg(module_param, param, modified_param);
 183		param = modified_param;
 184	}
 185
 186	return param;
 187}
 188
 189unsigned int dm_get_reserved_bio_based_ios(void)
 190{
 191	return __dm_get_module_param(&reserved_bio_based_ios,
 192				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 193}
 194EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 195
 196static unsigned int dm_get_numa_node(void)
 197{
 198	return __dm_get_module_param_int(&dm_numa_node,
 199					 DM_NUMA_NODE, num_online_nodes() - 1);
 200}
 201
 202static int __init local_init(void)
 203{
 204	int r;
 205
 206	r = dm_uevent_init();
 207	if (r)
 208		return r;
 209
 210	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
 211	if (!deferred_remove_workqueue) {
 212		r = -ENOMEM;
 213		goto out_uevent_exit;
 214	}
 215
 216	_major = major;
 217	r = register_blkdev(_major, _name);
 218	if (r < 0)
 219		goto out_free_workqueue;
 220
 221	if (!_major)
 222		_major = r;
 223
 224	return 0;
 225
 226out_free_workqueue:
 227	destroy_workqueue(deferred_remove_workqueue);
 228out_uevent_exit:
 229	dm_uevent_exit();
 230
 231	return r;
 232}
 233
 234static void local_exit(void)
 235{
 
 236	destroy_workqueue(deferred_remove_workqueue);
 237
 238	unregister_blkdev(_major, _name);
 239	dm_uevent_exit();
 240
 241	_major = 0;
 242
 243	DMINFO("cleaned up");
 244}
 245
 246static int (*_inits[])(void) __initdata = {
 247	local_init,
 248	dm_target_init,
 249	dm_linear_init,
 250	dm_stripe_init,
 251	dm_io_init,
 252	dm_kcopyd_init,
 253	dm_interface_init,
 254	dm_statistics_init,
 255};
 256
 257static void (*_exits[])(void) = {
 258	local_exit,
 259	dm_target_exit,
 260	dm_linear_exit,
 261	dm_stripe_exit,
 262	dm_io_exit,
 263	dm_kcopyd_exit,
 264	dm_interface_exit,
 265	dm_statistics_exit,
 266};
 267
 268static int __init dm_init(void)
 269{
 270	const int count = ARRAY_SIZE(_inits);
 271	int r, i;
 272
 273#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
 274	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
 275	       " Duplicate IMA measurements will not be recorded in the IMA log.");
 276#endif
 277
 278	for (i = 0; i < count; i++) {
 279		r = _inits[i]();
 280		if (r)
 281			goto bad;
 282	}
 283
 284	return 0;
 285bad:
 
 286	while (i--)
 287		_exits[i]();
 288
 289	return r;
 290}
 291
 292static void __exit dm_exit(void)
 293{
 294	int i = ARRAY_SIZE(_exits);
 295
 296	while (i--)
 297		_exits[i]();
 298
 299	/*
 300	 * Should be empty by this point.
 301	 */
 302	idr_destroy(&_minor_idr);
 303}
 304
 305/*
 306 * Block device functions
 307 */
 308int dm_deleting_md(struct mapped_device *md)
 309{
 310	return test_bit(DMF_DELETING, &md->flags);
 311}
 312
 313static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
 314{
 315	struct mapped_device *md;
 316
 317	spin_lock(&_minor_lock);
 318
 319	md = disk->private_data;
 320	if (!md)
 321		goto out;
 322
 323	if (test_bit(DMF_FREEING, &md->flags) ||
 324	    dm_deleting_md(md)) {
 325		md = NULL;
 326		goto out;
 327	}
 328
 329	dm_get(md);
 330	atomic_inc(&md->open_count);
 331out:
 332	spin_unlock(&_minor_lock);
 333
 334	return md ? 0 : -ENXIO;
 335}
 336
 337static void dm_blk_close(struct gendisk *disk)
 338{
 339	struct mapped_device *md;
 340
 341	spin_lock(&_minor_lock);
 342
 343	md = disk->private_data;
 344	if (WARN_ON(!md))
 345		goto out;
 346
 347	if (atomic_dec_and_test(&md->open_count) &&
 348	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 349		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 350
 351	dm_put(md);
 352out:
 353	spin_unlock(&_minor_lock);
 354}
 355
 356int dm_open_count(struct mapped_device *md)
 357{
 358	return atomic_read(&md->open_count);
 359}
 360
 361/*
 362 * Guarantees nothing is using the device before it's deleted.
 363 */
 364int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 365{
 366	int r = 0;
 367
 368	spin_lock(&_minor_lock);
 369
 370	if (dm_open_count(md)) {
 371		r = -EBUSY;
 372		if (mark_deferred)
 373			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 374	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 375		r = -EEXIST;
 376	else
 377		set_bit(DMF_DELETING, &md->flags);
 378
 379	spin_unlock(&_minor_lock);
 380
 381	return r;
 382}
 383
 384int dm_cancel_deferred_remove(struct mapped_device *md)
 385{
 386	int r = 0;
 387
 388	spin_lock(&_minor_lock);
 389
 390	if (test_bit(DMF_DELETING, &md->flags))
 391		r = -EBUSY;
 392	else
 393		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 394
 395	spin_unlock(&_minor_lock);
 396
 397	return r;
 398}
 399
 400static void do_deferred_remove(struct work_struct *w)
 401{
 402	dm_deferred_remove();
 403}
 404
 405static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 406{
 407	struct mapped_device *md = bdev->bd_disk->private_data;
 408
 409	return dm_get_geometry(md, geo);
 410}
 411
 412static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 413			    struct block_device **bdev)
 414{
 415	struct dm_target *ti;
 416	struct dm_table *map;
 417	int r;
 418
 419retry:
 420	r = -ENOTTY;
 421	map = dm_get_live_table(md, srcu_idx);
 422	if (!map || !dm_table_get_size(map))
 423		return r;
 424
 425	/* We only support devices that have a single target */
 426	if (map->num_targets != 1)
 427		return r;
 428
 429	ti = dm_table_get_target(map, 0);
 430	if (!ti->type->prepare_ioctl)
 431		return r;
 432
 433	if (dm_suspended_md(md))
 434		return -EAGAIN;
 435
 436	r = ti->type->prepare_ioctl(ti, bdev);
 437	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 438		dm_put_live_table(md, *srcu_idx);
 439		fsleep(10000);
 440		goto retry;
 441	}
 442
 443	return r;
 444}
 445
 446static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 447{
 448	dm_put_live_table(md, srcu_idx);
 449}
 450
 451static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
 452			unsigned int cmd, unsigned long arg)
 453{
 454	struct mapped_device *md = bdev->bd_disk->private_data;
 455	int r, srcu_idx;
 456
 457	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 458	if (r < 0)
 459		goto out;
 460
 461	if (r > 0) {
 462		/*
 463		 * Target determined this ioctl is being issued against a
 464		 * subset of the parent bdev; require extra privileges.
 465		 */
 466		if (!capable(CAP_SYS_RAWIO)) {
 467			DMDEBUG_LIMIT(
 468	"%s: sending ioctl %x to DM device without required privilege.",
 469				current->comm, cmd);
 470			r = -ENOIOCTLCMD;
 471			goto out;
 472		}
 473	}
 474
 475	if (!bdev->bd_disk->fops->ioctl)
 476		r = -ENOTTY;
 477	else
 478		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 479out:
 480	dm_unprepare_ioctl(md, srcu_idx);
 481	return r;
 482}
 483
 484u64 dm_start_time_ns_from_clone(struct bio *bio)
 485{
 486	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
 487}
 488EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 489
 490static inline bool bio_is_flush_with_data(struct bio *bio)
 491{
 492	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
 493}
 494
 495static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
 496{
 497	/*
 498	 * If REQ_PREFLUSH set, don't account payload, it will be
 499	 * submitted (and accounted) after this flush completes.
 500	 */
 501	if (bio_is_flush_with_data(bio))
 502		return 0;
 503	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 504		return io->sectors;
 505	return bio_sectors(bio);
 506}
 
 507
 508static void dm_io_acct(struct dm_io *io, bool end)
 509{
 
 510	struct bio *bio = io->orig_bio;
 511
 512	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
 513		if (!end)
 514			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
 515					   io->start_time);
 516		else
 517			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
 518					 dm_io_sectors(io, bio),
 519					 io->start_time);
 520	}
 521
 522	if (static_branch_unlikely(&stats_enabled) &&
 523	    unlikely(dm_stats_used(&io->md->stats))) {
 524		sector_t sector;
 525
 526		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 527			sector = bio_end_sector(bio) - io->sector_offset;
 528		else
 529			sector = bio->bi_iter.bi_sector;
 530
 531		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
 532				    sector, dm_io_sectors(io, bio),
 533				    end, io->start_time, &io->stats_aux);
 534	}
 535}
 536
 537static void __dm_start_io_acct(struct dm_io *io)
 
 538{
 539	dm_io_acct(io, false);
 540}
 541
 542static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
 543{
 544	/*
 545	 * Ensure IO accounting is only ever started once.
 546	 */
 547	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 548		return;
 549
 550	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
 551	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
 552		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 553	} else {
 554		unsigned long flags;
 555		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
 556		spin_lock_irqsave(&io->lock, flags);
 557		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
 558			spin_unlock_irqrestore(&io->lock, flags);
 559			return;
 560		}
 561		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 562		spin_unlock_irqrestore(&io->lock, flags);
 563	}
 564
 565	__dm_start_io_acct(io);
 566}
 567
 568static void dm_end_io_acct(struct dm_io *io)
 569{
 570	dm_io_acct(io, true);
 571}
 572
 573static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
 574{
 575	struct dm_io *io;
 576	struct dm_target_io *tio;
 577	struct bio *clone;
 578
 579	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
 580	if (unlikely(!clone))
 581		return NULL;
 582	tio = clone_to_tio(clone);
 583	tio->flags = 0;
 584	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
 585	tio->io = NULL;
 586
 587	io = container_of(tio, struct dm_io, tio);
 588	io->magic = DM_IO_MAGIC;
 589	io->status = BLK_STS_OK;
 590
 591	/* one ref is for submission, the other is for completion */
 592	atomic_set(&io->io_count, 2);
 593	this_cpu_inc(*md->pending_io);
 594	io->orig_bio = bio;
 595	io->md = md;
 596	spin_lock_init(&io->lock);
 597	io->start_time = jiffies;
 598	io->flags = 0;
 599	if (blk_queue_io_stat(md->queue))
 600		dm_io_set_flag(io, DM_IO_BLK_STAT);
 601
 602	if (static_branch_unlikely(&stats_enabled) &&
 603	    unlikely(dm_stats_used(&md->stats)))
 604		dm_stats_record_start(&md->stats, &io->stats_aux);
 605
 606	return io;
 607}
 608
 609static void free_io(struct dm_io *io)
 610{
 611	bio_put(&io->tio.clone);
 612}
 613
 614static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 615			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
 616{
 617	struct mapped_device *md = ci->io->md;
 618	struct dm_target_io *tio;
 619	struct bio *clone;
 620
 621	if (!ci->io->tio.io) {
 622		/* the dm_target_io embedded in ci->io is available */
 623		tio = &ci->io->tio;
 624		/* alloc_io() already initialized embedded clone */
 625		clone = &tio->clone;
 626	} else {
 627		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
 628					&md->mempools->bs);
 629		if (!clone)
 630			return NULL;
 631
 632		/* REQ_DM_POLL_LIST shouldn't be inherited */
 633		clone->bi_opf &= ~REQ_DM_POLL_LIST;
 634
 635		tio = clone_to_tio(clone);
 636		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
 637	}
 638
 639	tio->magic = DM_TIO_MAGIC;
 640	tio->io = ci->io;
 641	tio->ti = ti;
 642	tio->target_bio_nr = target_bio_nr;
 643	tio->len_ptr = len;
 644	tio->old_sector = 0;
 645
 646	/* Set default bdev, but target must bio_set_dev() before issuing IO */
 647	clone->bi_bdev = md->disk->part0;
 648	if (unlikely(ti->needs_bio_set_dev))
 649		bio_set_dev(clone, md->disk->part0);
 650
 651	if (len) {
 652		clone->bi_iter.bi_size = to_bytes(*len);
 653		if (bio_integrity(clone))
 654			bio_integrity_trim(clone);
 655	}
 656
 657	return clone;
 658}
 659
 660static void free_tio(struct bio *clone)
 661{
 662	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
 663		return;
 664	bio_put(clone);
 665}
 666
 667/*
 668 * Add the bio to the list of deferred io.
 669 */
 670static void queue_io(struct mapped_device *md, struct bio *bio)
 671{
 672	unsigned long flags;
 673
 674	spin_lock_irqsave(&md->deferred_lock, flags);
 675	bio_list_add(&md->deferred, bio);
 676	spin_unlock_irqrestore(&md->deferred_lock, flags);
 677	queue_work(md->wq, &md->work);
 678}
 679
 680/*
 681 * Everyone (including functions in this file), should use this
 682 * function to access the md->map field, and make sure they call
 683 * dm_put_live_table() when finished.
 684 */
 685struct dm_table *dm_get_live_table(struct mapped_device *md,
 686				   int *srcu_idx) __acquires(md->io_barrier)
 687{
 688	*srcu_idx = srcu_read_lock(&md->io_barrier);
 689
 690	return srcu_dereference(md->map, &md->io_barrier);
 691}
 692
 693void dm_put_live_table(struct mapped_device *md,
 694		       int srcu_idx) __releases(md->io_barrier)
 695{
 696	srcu_read_unlock(&md->io_barrier, srcu_idx);
 697}
 698
 699void dm_sync_table(struct mapped_device *md)
 700{
 701	synchronize_srcu(&md->io_barrier);
 702	synchronize_rcu_expedited();
 703}
 704
 705/*
 706 * A fast alternative to dm_get_live_table/dm_put_live_table.
 707 * The caller must not block between these two functions.
 708 */
 709static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 710{
 711	rcu_read_lock();
 712	return rcu_dereference(md->map);
 713}
 714
 715static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 716{
 717	rcu_read_unlock();
 718}
 719
 720static char *_dm_claim_ptr = "I belong to device-mapper";
 721
 722/*
 723 * Open a table device so we can use it as a map destination.
 724 */
 725static struct table_device *open_table_device(struct mapped_device *md,
 726		dev_t dev, blk_mode_t mode)
 727{
 728	struct table_device *td;
 729	struct bdev_handle *bdev_handle;
 730	u64 part_off;
 731	int r;
 732
 733	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 734	if (!td)
 735		return ERR_PTR(-ENOMEM);
 736	refcount_set(&td->count, 1);
 737
 738	bdev_handle = bdev_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
 739	if (IS_ERR(bdev_handle)) {
 740		r = PTR_ERR(bdev_handle);
 741		goto out_free_td;
 742	}
 743
 744	/*
 745	 * We can be called before the dm disk is added.  In that case we can't
 746	 * register the holder relation here.  It will be done once add_disk was
 747	 * called.
 748	 */
 749	if (md->disk->slave_dir) {
 750		r = bd_link_disk_holder(bdev_handle->bdev, md->disk);
 751		if (r)
 752			goto out_blkdev_put;
 753	}
 754
 755	td->dm_dev.mode = mode;
 756	td->dm_dev.bdev = bdev_handle->bdev;
 757	td->dm_dev.bdev_handle = bdev_handle;
 758	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev_handle->bdev, &part_off,
 759						NULL, NULL);
 760	format_dev_t(td->dm_dev.name, dev);
 761	list_add(&td->list, &md->table_devices);
 762	return td;
 763
 764out_blkdev_put:
 765	bdev_release(bdev_handle);
 766out_free_td:
 767	kfree(td);
 768	return ERR_PTR(r);
 769}
 770
 771/*
 772 * Close a table device that we've been using.
 773 */
 774static void close_table_device(struct table_device *td, struct mapped_device *md)
 775{
 776	if (md->disk->slave_dir)
 777		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
 778	bdev_release(td->dm_dev.bdev_handle);
 
 
 779	put_dax(td->dm_dev.dax_dev);
 780	list_del(&td->list);
 781	kfree(td);
 782}
 783
 784static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 785					      blk_mode_t mode)
 786{
 787	struct table_device *td;
 788
 789	list_for_each_entry(td, l, list)
 790		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 791			return td;
 792
 793	return NULL;
 794}
 795
 796int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
 797			struct dm_dev **result)
 798{
 
 799	struct table_device *td;
 800
 801	mutex_lock(&md->table_devices_lock);
 802	td = find_table_device(&md->table_devices, dev, mode);
 803	if (!td) {
 804		td = open_table_device(md, dev, mode);
 805		if (IS_ERR(td)) {
 
 
 
 
 
 
 
 
 806			mutex_unlock(&md->table_devices_lock);
 807			return PTR_ERR(td);
 
 808		}
 
 
 
 
 
 809	} else {
 810		refcount_inc(&td->count);
 811	}
 812	mutex_unlock(&md->table_devices_lock);
 813
 814	*result = &td->dm_dev;
 815	return 0;
 816}
 817
 818void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 819{
 820	struct table_device *td = container_of(d, struct table_device, dm_dev);
 821
 822	mutex_lock(&md->table_devices_lock);
 823	if (refcount_dec_and_test(&td->count))
 824		close_table_device(td, md);
 
 
 
 825	mutex_unlock(&md->table_devices_lock);
 826}
 827
 
 
 
 
 
 
 
 
 
 
 
 
 
 828/*
 829 * Get the geometry associated with a dm device
 830 */
 831int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 832{
 833	*geo = md->geometry;
 834
 835	return 0;
 836}
 837
 838/*
 839 * Set the geometry of a device.
 840 */
 841int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 842{
 843	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 844
 845	if (geo->start > sz) {
 846		DMERR("Start sector is beyond the geometry limits.");
 847		return -EINVAL;
 848	}
 849
 850	md->geometry = *geo;
 851
 852	return 0;
 853}
 854
 855static int __noflush_suspending(struct mapped_device *md)
 856{
 857	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 858}
 859
 860static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
 861{
 862	struct mapped_device *md = io->md;
 863
 864	if (first_stage) {
 865		struct dm_io *next = md->requeue_list;
 866
 867		md->requeue_list = io;
 868		io->next = next;
 869	} else {
 870		bio_list_add_head(&md->deferred, io->orig_bio);
 871	}
 872}
 873
 874static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
 875{
 876	if (first_stage)
 877		queue_work(md->wq, &md->requeue_work);
 878	else
 879		queue_work(md->wq, &md->work);
 880}
 881
 882/*
 883 * Return true if the dm_io's original bio is requeued.
 884 * io->status is updated with error if requeue disallowed.
 885 */
 886static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
 887{
 888	struct bio *bio = io->orig_bio;
 889	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
 890	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
 891				     (bio->bi_opf & REQ_POLLED));
 892	struct mapped_device *md = io->md;
 893	bool requeued = false;
 
 894
 895	if (handle_requeue || handle_polled_eagain) {
 896		unsigned long flags;
 
 
 
 
 
 897
 898		if (bio->bi_opf & REQ_POLLED) {
 
 
 899			/*
 900			 * Upper layer won't help us poll split bio
 901			 * (io->orig_bio may only reflect a subset of the
 902			 * pre-split original) so clear REQ_POLLED.
 903			 */
 904			bio_clear_polled(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 905		}
 906
 907		/*
 908		 * Target requested pushing back the I/O or
 909		 * polled IO hit BLK_STS_AGAIN.
 910		 */
 911		spin_lock_irqsave(&md->deferred_lock, flags);
 912		if ((__noflush_suspending(md) &&
 913		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
 914		    handle_polled_eagain || first_stage) {
 915			dm_requeue_add_io(io, first_stage);
 916			requeued = true;
 917		} else {
 918			/*
 919			 * noflush suspend was interrupted or this is
 920			 * a write to a zoned target.
 921			 */
 922			io->status = BLK_STS_IOERR;
 
 
 
 
 
 
 923		}
 924		spin_unlock_irqrestore(&md->deferred_lock, flags);
 925	}
 926
 927	if (requeued)
 928		dm_kick_requeue(md, first_stage);
 929
 930	return requeued;
 931}
 932
 933static void __dm_io_complete(struct dm_io *io, bool first_stage)
 934{
 935	struct bio *bio = io->orig_bio;
 936	struct mapped_device *md = io->md;
 937	blk_status_t io_error;
 938	bool requeued;
 939
 940	requeued = dm_handle_requeue(io, first_stage);
 941	if (requeued && first_stage)
 942		return;
 943
 944	io_error = io->status;
 945	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 946		dm_end_io_acct(io);
 947	else if (!io_error) {
 948		/*
 949		 * Must handle target that DM_MAPIO_SUBMITTED only to
 950		 * then bio_endio() rather than dm_submit_bio_remap()
 951		 */
 952		__dm_start_io_acct(io);
 953		dm_end_io_acct(io);
 954	}
 955	free_io(io);
 956	smp_wmb();
 957	this_cpu_dec(*md->pending_io);
 958
 959	/* nudge anyone waiting on suspend queue */
 960	if (unlikely(wq_has_sleeper(&md->wait)))
 961		wake_up(&md->wait);
 962
 963	/* Return early if the original bio was requeued */
 964	if (requeued)
 965		return;
 966
 967	if (bio_is_flush_with_data(bio)) {
 968		/*
 969		 * Preflush done for flush with data, reissue
 970		 * without REQ_PREFLUSH.
 971		 */
 972		bio->bi_opf &= ~REQ_PREFLUSH;
 973		queue_io(md, bio);
 974	} else {
 975		/* done with normal IO or empty flush */
 976		if (io_error)
 977			bio->bi_status = io_error;
 978		bio_endio(bio);
 979	}
 980}
 981
 982static void dm_wq_requeue_work(struct work_struct *work)
 983{
 984	struct mapped_device *md = container_of(work, struct mapped_device,
 985						requeue_work);
 986	unsigned long flags;
 987	struct dm_io *io;
 988
 989	/* reuse deferred lock to simplify dm_handle_requeue */
 990	spin_lock_irqsave(&md->deferred_lock, flags);
 991	io = md->requeue_list;
 992	md->requeue_list = NULL;
 993	spin_unlock_irqrestore(&md->deferred_lock, flags);
 994
 995	while (io) {
 996		struct dm_io *next = io->next;
 997
 998		dm_io_rewind(io, &md->disk->bio_split);
 999
1000		io->next = NULL;
1001		__dm_io_complete(io, false);
1002		io = next;
1003		cond_resched();
1004	}
1005}
1006
1007/*
1008 * Two staged requeue:
1009 *
1010 * 1) io->orig_bio points to the real original bio, and the part mapped to
1011 *    this io must be requeued, instead of other parts of the original bio.
1012 *
1013 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1014 */
1015static void dm_io_complete(struct dm_io *io)
1016{
1017	bool first_requeue;
1018
1019	/*
1020	 * Only dm_io that has been split needs two stage requeue, otherwise
1021	 * we may run into long bio clone chain during suspend and OOM could
1022	 * be triggered.
1023	 *
1024	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1025	 * also aren't handled via the first stage requeue.
1026	 */
1027	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1028		first_requeue = true;
1029	else
1030		first_requeue = false;
1031
1032	__dm_io_complete(io, first_requeue);
1033}
1034
1035/*
1036 * Decrements the number of outstanding ios that a bio has been
1037 * cloned into, completing the original io if necc.
1038 */
1039static inline void __dm_io_dec_pending(struct dm_io *io)
1040{
1041	if (atomic_dec_and_test(&io->io_count))
1042		dm_io_complete(io);
1043}
1044
1045static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1046{
1047	unsigned long flags;
1048
1049	/* Push-back supersedes any I/O errors */
1050	spin_lock_irqsave(&io->lock, flags);
1051	if (!(io->status == BLK_STS_DM_REQUEUE &&
1052	      __noflush_suspending(io->md))) {
1053		io->status = error;
1054	}
1055	spin_unlock_irqrestore(&io->lock, flags);
1056}
1057
1058static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1059{
1060	if (unlikely(error))
1061		dm_io_set_error(io, error);
1062
1063	__dm_io_dec_pending(io);
1064}
1065
1066/*
1067 * The queue_limits are only valid as long as you have a reference
1068 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1069 */
1070static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1071{
1072	return &md->queue->limits;
1073}
1074
1075void disable_discard(struct mapped_device *md)
1076{
1077	struct queue_limits *limits = dm_get_queue_limits(md);
1078
1079	/* device doesn't really support DISCARD, disable it */
1080	limits->max_discard_sectors = 0;
1081}
1082
1083void disable_write_zeroes(struct mapped_device *md)
1084{
1085	struct queue_limits *limits = dm_get_queue_limits(md);
1086
1087	/* device doesn't really support WRITE ZEROES, disable it */
1088	limits->max_write_zeroes_sectors = 0;
1089}
1090
1091static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1092{
1093	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1094}
1095
1096static void clone_endio(struct bio *bio)
1097{
1098	blk_status_t error = bio->bi_status;
1099	struct dm_target_io *tio = clone_to_tio(bio);
1100	struct dm_target *ti = tio->ti;
1101	dm_endio_fn endio = ti->type->end_io;
1102	struct dm_io *io = tio->io;
1103	struct mapped_device *md = io->md;
 
 
1104
1105	if (unlikely(error == BLK_STS_TARGET)) {
1106		if (bio_op(bio) == REQ_OP_DISCARD &&
1107		    !bdev_max_discard_sectors(bio->bi_bdev))
1108			disable_discard(md);
 
 
 
1109		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1110			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1111			disable_write_zeroes(md);
1112	}
1113
1114	if (static_branch_unlikely(&zoned_enabled) &&
1115	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1116		dm_zone_endio(io, bio);
1117
1118	if (endio) {
1119		int r = endio(ti, bio, &error);
1120
1121		switch (r) {
1122		case DM_ENDIO_REQUEUE:
1123			if (static_branch_unlikely(&zoned_enabled)) {
1124				/*
1125				 * Requeuing writes to a sequential zone of a zoned
1126				 * target will break the sequential write pattern:
1127				 * fail such IO.
1128				 */
1129				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1130					error = BLK_STS_IOERR;
1131				else
1132					error = BLK_STS_DM_REQUEUE;
1133			} else
1134				error = BLK_STS_DM_REQUEUE;
1135			fallthrough;
1136		case DM_ENDIO_DONE:
1137			break;
1138		case DM_ENDIO_INCOMPLETE:
1139			/* The target will handle the io */
1140			return;
1141		default:
1142			DMCRIT("unimplemented target endio return value: %d", r);
1143			BUG();
1144		}
1145	}
1146
1147	if (static_branch_unlikely(&swap_bios_enabled) &&
1148	    unlikely(swap_bios_limit(ti, bio)))
1149		up(&md->swap_bios_semaphore);
 
1150
1151	free_tio(bio);
1152	dm_io_dec_pending(io, error);
1153}
1154
1155/*
1156 * Return maximum size of I/O possible at the supplied sector up to the current
1157 * target boundary.
1158 */
1159static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1160						  sector_t target_offset)
1161{
1162	return ti->len - target_offset;
1163}
1164
1165static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1166			     unsigned int max_granularity,
1167			     unsigned int max_sectors)
1168{
1169	sector_t target_offset = dm_target_offset(ti, sector);
1170	sector_t len = max_io_len_target_boundary(ti, target_offset);
 
1171
1172	/*
1173	 * Does the target need to split IO even further?
1174	 * - varied (per target) IO splitting is a tenet of DM; this
1175	 *   explains why stacked chunk_sectors based splitting via
1176	 *   bio_split_to_limits() isn't possible here.
 
1177	 */
1178	if (!max_granularity)
1179		return len;
1180	return min_t(sector_t, len,
1181		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1182		    blk_chunk_sectors_left(target_offset, max_granularity)));
1183}
1184
1185static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1186{
1187	return __max_io_len(ti, sector, ti->max_io_len, 0);
1188}
1189
1190int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1191{
1192	if (len > UINT_MAX) {
1193		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1194		      (unsigned long long)len, UINT_MAX);
1195		ti->error = "Maximum size of target IO is too large";
1196		return -EINVAL;
1197	}
1198
1199	ti->max_io_len = (uint32_t) len;
1200
1201	return 0;
1202}
1203EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1204
1205static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1206						sector_t sector, int *srcu_idx)
1207	__acquires(md->io_barrier)
1208{
1209	struct dm_table *map;
1210	struct dm_target *ti;
1211
1212	map = dm_get_live_table(md, srcu_idx);
1213	if (!map)
1214		return NULL;
1215
1216	ti = dm_table_find_target(map, sector);
1217	if (!ti)
1218		return NULL;
1219
1220	return ti;
1221}
1222
1223static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1224		long nr_pages, enum dax_access_mode mode, void **kaddr,
1225		pfn_t *pfn)
1226{
1227	struct mapped_device *md = dax_get_private(dax_dev);
1228	sector_t sector = pgoff * PAGE_SECTORS;
1229	struct dm_target *ti;
1230	long len, ret = -EIO;
1231	int srcu_idx;
1232
1233	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1234
1235	if (!ti)
1236		goto out;
1237	if (!ti->type->direct_access)
1238		goto out;
1239	len = max_io_len(ti, sector) / PAGE_SECTORS;
1240	if (len < 1)
1241		goto out;
1242	nr_pages = min(len, nr_pages);
1243	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1244
1245 out:
1246	dm_put_live_table(md, srcu_idx);
1247
1248	return ret;
1249}
1250
1251static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1252				  size_t nr_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253{
1254	struct mapped_device *md = dax_get_private(dax_dev);
1255	sector_t sector = pgoff * PAGE_SECTORS;
1256	struct dm_target *ti;
1257	int ret = -EIO;
1258	int srcu_idx;
1259
1260	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1261
1262	if (!ti)
1263		goto out;
1264	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1265		/*
1266		 * ->zero_page_range() is mandatory dax operation. If we are
1267		 *  here, something is wrong.
1268		 */
1269		goto out;
1270	}
1271	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1272 out:
1273	dm_put_live_table(md, srcu_idx);
1274
1275	return ret;
1276}
1277
1278static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1279		void *addr, size_t bytes, struct iov_iter *i)
1280{
1281	struct mapped_device *md = dax_get_private(dax_dev);
1282	sector_t sector = pgoff * PAGE_SECTORS;
1283	struct dm_target *ti;
1284	int srcu_idx;
1285	long ret = 0;
 
1286
1287	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1288	if (!ti || !ti->type->dax_recovery_write)
 
 
 
 
1289		goto out;
 
 
 
 
1290
1291	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1292out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1293	dm_put_live_table(md, srcu_idx);
 
1294	return ret;
1295}
1296
1297/*
1298 * A target may call dm_accept_partial_bio only from the map routine.  It is
1299 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1300 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1301 * __send_duplicate_bios().
1302 *
1303 * dm_accept_partial_bio informs the dm that the target only wants to process
1304 * additional n_sectors sectors of the bio and the rest of the data should be
1305 * sent in a next bio.
1306 *
1307 * A diagram that explains the arithmetics:
1308 * +--------------------+---------------+-------+
1309 * |         1          |       2       |   3   |
1310 * +--------------------+---------------+-------+
1311 *
1312 * <-------------- *tio->len_ptr --------------->
1313 *                      <----- bio_sectors ----->
1314 *                      <-- n_sectors -->
1315 *
1316 * Region 1 was already iterated over with bio_advance or similar function.
1317 *	(it may be empty if the target doesn't use bio_advance)
1318 * Region 2 is the remaining bio size that the target wants to process.
1319 *	(it may be empty if region 1 is non-empty, although there is no reason
1320 *	 to make it empty)
1321 * The target requires that region 3 is to be sent in the next bio.
1322 *
1323 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1324 * the partially processed part (the sum of regions 1+2) must be the same for all
1325 * copies of the bio.
1326 */
1327void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1328{
1329	struct dm_target_io *tio = clone_to_tio(bio);
1330	struct dm_io *io = tio->io;
1331	unsigned int bio_sectors = bio_sectors(bio);
1332
1333	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1334	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1335	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1336	BUG_ON(bio_sectors > *tio->len_ptr);
1337	BUG_ON(n_sectors > bio_sectors);
1338
1339	*tio->len_ptr -= bio_sectors - n_sectors;
1340	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1341
1342	/*
1343	 * __split_and_process_bio() may have already saved mapped part
1344	 * for accounting but it is being reduced so update accordingly.
1345	 */
1346	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1347	io->sectors = n_sectors;
1348	io->sector_offset = bio_sectors(io->orig_bio);
1349}
1350EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1351
1352/*
1353 * @clone: clone bio that DM core passed to target's .map function
1354 * @tgt_clone: clone of @clone bio that target needs submitted
1355 *
1356 * Targets should use this interface to submit bios they take
1357 * ownership of when returning DM_MAPIO_SUBMITTED.
1358 *
1359 * Target should also enable ti->accounts_remapped_io
1360 */
1361void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1362{
1363	struct dm_target_io *tio = clone_to_tio(clone);
1364	struct dm_io *io = tio->io;
1365
1366	/* establish bio that will get submitted */
1367	if (!tgt_clone)
1368		tgt_clone = clone;
1369
1370	/*
1371	 * Account io->origin_bio to DM dev on behalf of target
1372	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1373	 */
1374	dm_start_io_acct(io, clone);
1375
1376	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1377			      tio->old_sector);
1378	submit_bio_noacct(tgt_clone);
1379}
1380EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1381
1382static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1383{
1384	mutex_lock(&md->swap_bios_lock);
1385	while (latch < md->swap_bios) {
1386		cond_resched();
1387		down(&md->swap_bios_semaphore);
1388		md->swap_bios--;
1389	}
1390	while (latch > md->swap_bios) {
1391		cond_resched();
1392		up(&md->swap_bios_semaphore);
1393		md->swap_bios++;
1394	}
1395	mutex_unlock(&md->swap_bios_lock);
1396}
1397
1398static void __map_bio(struct bio *clone)
1399{
1400	struct dm_target_io *tio = clone_to_tio(clone);
1401	struct dm_target *ti = tio->ti;
1402	struct dm_io *io = tio->io;
1403	struct mapped_device *md = io->md;
1404	int r;
 
 
 
 
 
1405
1406	clone->bi_end_io = clone_endio;
1407
1408	/*
1409	 * Map the clone.
 
 
1410	 */
1411	tio->old_sector = clone->bi_iter.bi_sector;
 
1412
1413	if (static_branch_unlikely(&swap_bios_enabled) &&
1414	    unlikely(swap_bios_limit(ti, clone))) {
1415		int latch = get_swap_bios();
1416
1417		if (unlikely(latch != md->swap_bios))
1418			__set_swap_bios_limit(md, latch);
1419		down(&md->swap_bios_semaphore);
1420	}
1421
1422	if (static_branch_unlikely(&zoned_enabled)) {
1423		/*
1424		 * Check if the IO needs a special mapping due to zone append
1425		 * emulation on zoned target. In this case, dm_zone_map_bio()
1426		 * calls the target map operation.
1427		 */
1428		if (unlikely(dm_emulate_zone_append(md)))
1429			r = dm_zone_map_bio(tio);
1430		else
1431			goto do_map;
1432	} else {
1433do_map:
1434		if (likely(ti->type->map == linear_map))
1435			r = linear_map(ti, clone);
1436		else if (ti->type->map == stripe_map)
1437			r = stripe_map(ti, clone);
1438		else
1439			r = ti->type->map(ti, clone);
1440	}
1441
1442	switch (r) {
1443	case DM_MAPIO_SUBMITTED:
1444		/* target has assumed ownership of this io */
1445		if (!ti->accounts_remapped_io)
1446			dm_start_io_acct(io, clone);
1447		break;
1448	case DM_MAPIO_REMAPPED:
1449		dm_submit_bio_remap(clone, NULL);
 
 
1450		break;
1451	case DM_MAPIO_KILL:
 
 
 
 
 
 
 
1452	case DM_MAPIO_REQUEUE:
1453		if (static_branch_unlikely(&swap_bios_enabled) &&
1454		    unlikely(swap_bios_limit(ti, clone)))
1455			up(&md->swap_bios_semaphore);
1456		free_tio(clone);
1457		if (r == DM_MAPIO_KILL)
1458			dm_io_dec_pending(io, BLK_STS_IOERR);
1459		else
1460			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1461		break;
1462	default:
1463		DMCRIT("unimplemented target map return value: %d", r);
1464		BUG();
1465	}
 
 
1466}
1467
1468static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1469{
1470	struct dm_io *io = ci->io;
 
 
1471
1472	if (ci->sector_count > len) {
1473		/*
1474		 * Split needed, save the mapped part for accounting.
1475		 * NOTE: dm_accept_partial_bio() will update accordingly.
1476		 */
1477		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1478		io->sectors = len;
1479		io->sector_offset = bio_sectors(ci->bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1480	}
 
 
 
 
 
 
 
 
1481}
1482
1483static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1484				struct dm_target *ti, unsigned int num_bios,
1485				unsigned *len, gfp_t gfp_flag)
1486{
1487	struct bio *bio;
1488	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1489
1490	for (; try < 2; try++) {
 
 
 
 
 
 
 
 
 
1491		int bio_nr;
 
1492
1493		if (try && num_bios > 1)
1494			mutex_lock(&ci->io->md->table_devices_lock);
1495		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1496			bio = alloc_tio(ci, ti, bio_nr, len,
1497					try ? GFP_NOIO : GFP_NOWAIT);
1498			if (!bio)
1499				break;
1500
1501			bio_list_add(blist, bio);
1502		}
1503		if (try && num_bios > 1)
1504			mutex_unlock(&ci->io->md->table_devices_lock);
1505		if (bio_nr == num_bios)
1506			return;
1507
1508		while ((bio = bio_list_pop(blist)))
1509			free_tio(bio);
 
 
1510	}
1511}
1512
1513static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1514					  unsigned int num_bios, unsigned int *len,
1515					  gfp_t gfp_flag)
1516{
1517	struct bio_list blist = BIO_EMPTY_LIST;
1518	struct bio *clone;
1519	unsigned int ret = 0;
1520
1521	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1522		return 0;
1523
1524	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1525	if (len)
1526		setup_split_accounting(ci, *len);
1527
1528	/*
1529	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1530	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1531	 */
1532	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1533	while ((clone = bio_list_pop(&blist))) {
1534		if (num_bios > 1)
1535			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1536		__map_bio(clone);
1537		ret += 1;
1538	}
1539
1540	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1541}
1542
1543static void __send_empty_flush(struct clone_info *ci)
1544{
1545	struct dm_table *t = ci->map;
 
1546	struct bio flush_bio;
1547
1548	/*
1549	 * Use an on-stack bio for this, it's safe since we don't
1550	 * need to reference it after submit. It's just used as
1551	 * the basis for the clone(s).
1552	 */
1553	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1554		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
 
1555
1556	ci->bio = &flush_bio;
1557	ci->sector_count = 0;
1558	ci->io->tio.clone.bi_iter.bi_size = 0;
1559
1560	for (unsigned int i = 0; i < t->num_targets; i++) {
1561		unsigned int bios;
1562		struct dm_target *ti = dm_table_get_target(t, i);
1563
1564		if (unlikely(ti->num_flush_bios == 0))
1565			continue;
 
1566
1567		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1568		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1569					     NULL, GFP_NOWAIT);
1570		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1571	}
 
1572
1573	/*
1574	 * alloc_io() takes one extra reference for submission, so the
1575	 * reference won't reach 0 without the following subtraction
1576	 */
1577	atomic_sub(1, &ci->io->io_count);
 
 
 
1578
1579	bio_uninit(ci->bio);
1580}
1581
1582static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1583			       unsigned int num_bios, unsigned int max_granularity,
1584			       unsigned int max_sectors)
1585{
1586	unsigned int len, bios;
1587
1588	len = min_t(sector_t, ci->sector_count,
1589		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1590
1591	atomic_add(num_bios, &ci->io->io_count);
1592	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1593	/*
1594	 * alloc_io() takes one extra reference for submission, so the
1595	 * reference won't reach 0 without the following (+1) subtraction
 
 
1596	 */
1597	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
 
 
 
 
 
 
1598
1599	ci->sector += len;
1600	ci->sector_count -= len;
 
 
1601}
1602
1603static bool is_abnormal_io(struct bio *bio)
1604{
1605	enum req_op op = bio_op(bio);
1606
1607	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1608		switch (op) {
1609		case REQ_OP_DISCARD:
1610		case REQ_OP_SECURE_ERASE:
1611		case REQ_OP_WRITE_ZEROES:
1612			return true;
1613		default:
1614			break;
1615		}
1616	}
1617
1618	return false;
1619}
1620
1621static blk_status_t __process_abnormal_io(struct clone_info *ci,
1622					  struct dm_target *ti)
1623{
1624	unsigned int num_bios = 0;
1625	unsigned int max_granularity = 0;
1626	unsigned int max_sectors = 0;
1627	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1628
1629	switch (bio_op(ci->bio)) {
1630	case REQ_OP_DISCARD:
1631		num_bios = ti->num_discard_bios;
1632		max_sectors = limits->max_discard_sectors;
1633		if (ti->max_discard_granularity)
1634			max_granularity = max_sectors;
1635		break;
1636	case REQ_OP_SECURE_ERASE:
1637		num_bios = ti->num_secure_erase_bios;
1638		max_sectors = limits->max_secure_erase_sectors;
1639		if (ti->max_secure_erase_granularity)
1640			max_granularity = max_sectors;
1641		break;
1642	case REQ_OP_WRITE_ZEROES:
1643		num_bios = ti->num_write_zeroes_bios;
1644		max_sectors = limits->max_write_zeroes_sectors;
1645		if (ti->max_write_zeroes_granularity)
1646			max_granularity = max_sectors;
1647		break;
1648	default:
1649		break;
1650	}
1651
1652	/*
1653	 * Even though the device advertised support for this type of
1654	 * request, that does not mean every target supports it, and
1655	 * reconfiguration might also have changed that since the
1656	 * check was performed.
1657	 */
1658	if (unlikely(!num_bios))
1659		return BLK_STS_NOTSUPP;
1660
1661	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1662
1663	return BLK_STS_OK;
1664}
1665
1666/*
1667 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1668 * associated with this bio, and this bio's bi_private needs to be
1669 * stored in dm_io->data before the reuse.
1670 *
1671 * bio->bi_private is owned by fs or upper layer, so block layer won't
1672 * touch it after splitting. Meantime it won't be changed by anyone after
1673 * bio is submitted. So this reuse is safe.
1674 */
1675static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1676{
1677	return (struct dm_io **)&bio->bi_private;
1678}
1679
1680static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1681{
1682	struct dm_io **head = dm_poll_list_head(bio);
1683
1684	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1685		bio->bi_opf |= REQ_DM_POLL_LIST;
1686		/*
1687		 * Save .bi_private into dm_io, so that we can reuse
1688		 * .bi_private as dm_io list head for storing dm_io list
1689		 */
1690		io->data = bio->bi_private;
1691
1692		/* tell block layer to poll for completion */
1693		bio->bi_cookie = ~BLK_QC_T_NONE;
1694
1695		io->next = NULL;
1696	} else {
1697		/*
1698		 * bio recursed due to split, reuse original poll list,
1699		 * and save bio->bi_private too.
1700		 */
1701		io->data = (*head)->data;
1702		io->next = *head;
1703	}
1704
1705	*head = io;
1706}
1707
1708/*
1709 * Select the correct strategy for processing a non-flush bio.
1710 */
1711static blk_status_t __split_and_process_bio(struct clone_info *ci)
1712{
1713	struct bio *clone;
1714	struct dm_target *ti;
1715	unsigned int len;
 
1716
1717	ti = dm_table_find_target(ci->map, ci->sector);
1718	if (unlikely(!ti))
1719		return BLK_STS_IOERR;
1720
1721	if (unlikely(ci->is_abnormal_io))
1722		return __process_abnormal_io(ci, ti);
1723
1724	/*
1725	 * Only support bio polling for normal IO, and the target io is
1726	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1727	 */
1728	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1729
1730	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1731	setup_split_accounting(ci, len);
1732
1733	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1734		if (unlikely(!dm_target_supports_nowait(ti->type)))
1735			return BLK_STS_NOTSUPP;
1736
1737		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1738		if (unlikely(!clone))
1739			return BLK_STS_AGAIN;
1740	} else {
1741		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1742	}
1743	__map_bio(clone);
1744
1745	ci->sector += len;
1746	ci->sector_count -= len;
1747
1748	return BLK_STS_OK;
1749}
1750
1751static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1752			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1753{
1754	ci->map = map;
1755	ci->io = io;
1756	ci->bio = bio;
1757	ci->is_abnormal_io = is_abnormal;
1758	ci->submit_as_polled = false;
1759	ci->sector = bio->bi_iter.bi_sector;
1760	ci->sector_count = bio_sectors(bio);
1761
1762	/* Shouldn't happen but sector_count was being set to 0 so... */
1763	if (static_branch_unlikely(&zoned_enabled) &&
1764	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1765		ci->sector_count = 0;
1766}
1767
 
 
 
1768/*
1769 * Entry point to split a bio into clones and submit them to the targets.
1770 */
1771static void dm_split_and_process_bio(struct mapped_device *md,
1772				     struct dm_table *map, struct bio *bio)
1773{
1774	struct clone_info ci;
1775	struct dm_io *io;
1776	blk_status_t error = BLK_STS_OK;
1777	bool is_abnormal;
1778
1779	is_abnormal = is_abnormal_io(bio);
1780	if (unlikely(is_abnormal)) {
1781		/*
1782		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1783		 * otherwise associated queue_limits won't be imposed.
1784		 */
1785		bio = bio_split_to_limits(bio);
1786		if (!bio)
1787			return;
1788	}
1789
1790	/* Only support nowait for normal IO */
1791	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1792		io = alloc_io(md, bio, GFP_NOWAIT);
1793		if (unlikely(!io)) {
1794			/* Unable to do anything without dm_io. */
1795			bio_wouldblock_error(bio);
1796			return;
1797		}
1798	} else {
1799		io = alloc_io(md, bio, GFP_NOIO);
1800	}
1801	init_clone_info(&ci, io, map, bio, is_abnormal);
 
 
 
 
 
 
 
 
 
 
 
 
1802
1803	if (bio->bi_opf & REQ_PREFLUSH) {
1804		__send_empty_flush(&ci);
1805		/* dm_io_complete submits any data associated with flush */
1806		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
1807	}
1808
1809	error = __split_and_process_bio(&ci);
1810	if (error || !ci.sector_count)
1811		goto out;
1812	/*
1813	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1814	 * *after* bios already submitted have been completely processed.
1815	 */
1816	bio_trim(bio, io->sectors, ci.sector_count);
1817	trace_block_split(bio, bio->bi_iter.bi_sector);
1818	bio_inc_remaining(bio);
1819	submit_bio_noacct(bio);
1820out:
1821	/*
1822	 * Drop the extra reference count for non-POLLED bio, and hold one
1823	 * reference for POLLED bio, which will be released in dm_poll_bio
1824	 *
1825	 * Add every dm_io instance into the dm_io list head which is stored
1826	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1827	 */
1828	if (error || !ci.submit_as_polled) {
1829		/*
1830		 * In case of submission failure, the extra reference for
1831		 * submitting io isn't consumed yet
1832		 */
1833		if (error)
1834			atomic_dec(&io->io_count);
1835		dm_io_dec_pending(io, error);
1836	} else
1837		dm_queue_poll_io(bio, io);
1838}
1839
1840static void dm_submit_bio(struct bio *bio)
1841{
1842	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
 
1843	int srcu_idx;
1844	struct dm_table *map;
1845
1846	map = dm_get_live_table(md, &srcu_idx);
 
 
 
 
 
 
1847
1848	/* If suspended, or map not yet available, queue this IO for later */
1849	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1850	    unlikely(!map)) {
1851		if (bio->bi_opf & REQ_NOWAIT)
1852			bio_wouldblock_error(bio);
1853		else if (bio->bi_opf & REQ_RAHEAD)
1854			bio_io_error(bio);
1855		else
1856			queue_io(md, bio);
1857		goto out;
1858	}
1859
1860	dm_split_and_process_bio(md, map, bio);
1861out:
1862	dm_put_live_table(md, srcu_idx);
1863}
1864
1865static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1866			  unsigned int flags)
1867{
1868	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1869
1870	/* don't poll if the mapped io is done */
1871	if (atomic_read(&io->io_count) > 1)
1872		bio_poll(&io->tio.clone, iob, flags);
1873
1874	/* bio_poll holds the last reference */
1875	return atomic_read(&io->io_count) == 1;
1876}
1877
1878static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1879		       unsigned int flags)
1880{
1881	struct dm_io **head = dm_poll_list_head(bio);
1882	struct dm_io *list = *head;
1883	struct dm_io *tmp = NULL;
1884	struct dm_io *curr, *next;
1885
1886	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1887	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1888		return 0;
1889
1890	WARN_ON_ONCE(!list);
1891
1892	/*
1893	 * Restore .bi_private before possibly completing dm_io.
1894	 *
1895	 * bio_poll() is only possible once @bio has been completely
1896	 * submitted via submit_bio_noacct()'s depth-first submission.
1897	 * So there is no dm_queue_poll_io() race associated with
1898	 * clearing REQ_DM_POLL_LIST here.
1899	 */
1900	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1901	bio->bi_private = list->data;
1902
1903	for (curr = list, next = curr->next; curr; curr = next, next =
1904			curr ? curr->next : NULL) {
1905		if (dm_poll_dm_io(curr, iob, flags)) {
1906			/*
1907			 * clone_endio() has already occurred, so no
1908			 * error handling is needed here.
1909			 */
1910			__dm_io_dec_pending(curr);
1911		} else {
1912			curr->next = tmp;
1913			tmp = curr;
1914		}
1915	}
1916
1917	/* Not done? */
1918	if (tmp) {
1919		bio->bi_opf |= REQ_DM_POLL_LIST;
1920		/* Reset bio->bi_private to dm_io list head */
1921		*head = tmp;
1922		return 0;
1923	}
1924	return 1;
1925}
1926
1927/*
1928 *---------------------------------------------------------------
1929 * An IDR is used to keep track of allocated minor numbers.
1930 *---------------------------------------------------------------
1931 */
1932static void free_minor(int minor)
1933{
1934	spin_lock(&_minor_lock);
1935	idr_remove(&_minor_idr, minor);
1936	spin_unlock(&_minor_lock);
1937}
1938
1939/*
1940 * See if the device with a specific minor # is free.
1941 */
1942static int specific_minor(int minor)
1943{
1944	int r;
1945
1946	if (minor >= (1 << MINORBITS))
1947		return -EINVAL;
1948
1949	idr_preload(GFP_KERNEL);
1950	spin_lock(&_minor_lock);
1951
1952	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1953
1954	spin_unlock(&_minor_lock);
1955	idr_preload_end();
1956	if (r < 0)
1957		return r == -ENOSPC ? -EBUSY : r;
1958	return 0;
1959}
1960
1961static int next_free_minor(int *minor)
1962{
1963	int r;
1964
1965	idr_preload(GFP_KERNEL);
1966	spin_lock(&_minor_lock);
1967
1968	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1969
1970	spin_unlock(&_minor_lock);
1971	idr_preload_end();
1972	if (r < 0)
1973		return r;
1974	*minor = r;
1975	return 0;
1976}
1977
1978static const struct block_device_operations dm_blk_dops;
1979static const struct block_device_operations dm_rq_blk_dops;
1980static const struct dax_operations dm_dax_ops;
1981
1982static void dm_wq_work(struct work_struct *work);
1983
1984#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1985static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1986{
1987	dm_destroy_crypto_profile(q->crypto_profile);
1988}
1989
1990#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1991
1992static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1993{
1994}
1995#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1996
1997static void cleanup_mapped_device(struct mapped_device *md)
1998{
1999	if (md->wq)
2000		destroy_workqueue(md->wq);
2001	dm_free_md_mempools(md->mempools);
 
2002
2003	if (md->dax_dev) {
2004		dax_remove_host(md->disk);
2005		kill_dax(md->dax_dev);
2006		put_dax(md->dax_dev);
2007		md->dax_dev = NULL;
2008	}
2009
2010	dm_cleanup_zoned_dev(md);
2011	if (md->disk) {
2012		spin_lock(&_minor_lock);
2013		md->disk->private_data = NULL;
2014		spin_unlock(&_minor_lock);
2015		if (dm_get_md_type(md) != DM_TYPE_NONE) {
2016			struct table_device *td;
2017
2018			dm_sysfs_exit(md);
2019			list_for_each_entry(td, &md->table_devices, list) {
2020				bd_unlink_disk_holder(td->dm_dev.bdev,
2021						      md->disk);
2022			}
2023
2024			/*
2025			 * Hold lock to make sure del_gendisk() won't concurrent
2026			 * with open/close_table_device().
2027			 */
2028			mutex_lock(&md->table_devices_lock);
2029			del_gendisk(md->disk);
2030			mutex_unlock(&md->table_devices_lock);
2031		}
2032		dm_queue_destroy_crypto_profile(md->queue);
2033		put_disk(md->disk);
2034	}
2035
2036	if (md->pending_io) {
2037		free_percpu(md->pending_io);
2038		md->pending_io = NULL;
2039	}
 
2040
2041	cleanup_srcu_struct(&md->io_barrier);
2042
2043	mutex_destroy(&md->suspend_lock);
2044	mutex_destroy(&md->type_lock);
2045	mutex_destroy(&md->table_devices_lock);
2046	mutex_destroy(&md->swap_bios_lock);
2047
2048	dm_mq_cleanup_mapped_device(md);
 
2049}
2050
2051/*
2052 * Allocate and initialise a blank device with a given minor.
2053 */
2054static struct mapped_device *alloc_dev(int minor)
2055{
2056	int r, numa_node_id = dm_get_numa_node();
2057	struct mapped_device *md;
2058	void *old_md;
2059
2060	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2061	if (!md) {
2062		DMERR("unable to allocate device, out of memory.");
2063		return NULL;
2064	}
2065
2066	if (!try_module_get(THIS_MODULE))
2067		goto bad_module_get;
2068
2069	/* get a minor number for the dev */
2070	if (minor == DM_ANY_MINOR)
2071		r = next_free_minor(&minor);
2072	else
2073		r = specific_minor(minor);
2074	if (r < 0)
2075		goto bad_minor;
2076
2077	r = init_srcu_struct(&md->io_barrier);
2078	if (r < 0)
2079		goto bad_io_barrier;
2080
2081	md->numa_node_id = numa_node_id;
2082	md->init_tio_pdu = false;
2083	md->type = DM_TYPE_NONE;
2084	mutex_init(&md->suspend_lock);
2085	mutex_init(&md->type_lock);
2086	mutex_init(&md->table_devices_lock);
2087	spin_lock_init(&md->deferred_lock);
2088	atomic_set(&md->holders, 1);
2089	atomic_set(&md->open_count, 0);
2090	atomic_set(&md->event_nr, 0);
2091	atomic_set(&md->uevent_seq, 0);
2092	INIT_LIST_HEAD(&md->uevent_list);
2093	INIT_LIST_HEAD(&md->table_devices);
2094	spin_lock_init(&md->uevent_lock);
2095
2096	/*
2097	 * default to bio-based until DM table is loaded and md->type
2098	 * established. If request-based table is loaded: blk-mq will
2099	 * override accordingly.
2100	 */
2101	md->disk = blk_alloc_disk(md->numa_node_id);
2102	if (!md->disk)
2103		goto bad;
2104	md->queue = md->disk->queue;
2105
2106	init_waitqueue_head(&md->wait);
2107	INIT_WORK(&md->work, dm_wq_work);
2108	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2109	init_waitqueue_head(&md->eventq);
2110	init_completion(&md->kobj_holder.completion);
2111
2112	md->requeue_list = NULL;
2113	md->swap_bios = get_swap_bios();
2114	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2115	mutex_init(&md->swap_bios_lock);
2116
2117	md->disk->major = _major;
2118	md->disk->first_minor = minor;
2119	md->disk->minors = 1;
2120	md->disk->flags |= GENHD_FL_NO_PART;
2121	md->disk->fops = &dm_blk_dops;
 
2122	md->disk->private_data = md;
2123	sprintf(md->disk->disk_name, "dm-%d", minor);
2124
2125	if (IS_ENABLED(CONFIG_FS_DAX)) {
2126		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2127		if (IS_ERR(md->dax_dev)) {
2128			md->dax_dev = NULL;
2129			goto bad;
2130		}
2131		set_dax_nocache(md->dax_dev);
2132		set_dax_nomc(md->dax_dev);
2133		if (dax_add_host(md->dax_dev, md->disk))
2134			goto bad;
2135	}
2136
 
2137	format_dev_t(md->name, MKDEV(_major, minor));
2138
2139	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2140	if (!md->wq)
2141		goto bad;
2142
2143	md->pending_io = alloc_percpu(unsigned long);
2144	if (!md->pending_io)
2145		goto bad;
2146
2147	r = dm_stats_init(&md->stats);
2148	if (r < 0)
2149		goto bad;
2150
2151	/* Populate the mapping, nobody knows we exist yet */
2152	spin_lock(&_minor_lock);
2153	old_md = idr_replace(&_minor_idr, md, minor);
2154	spin_unlock(&_minor_lock);
2155
2156	BUG_ON(old_md != MINOR_ALLOCED);
2157
2158	return md;
2159
2160bad:
2161	cleanup_mapped_device(md);
2162bad_io_barrier:
2163	free_minor(minor);
2164bad_minor:
2165	module_put(THIS_MODULE);
2166bad_module_get:
2167	kvfree(md);
2168	return NULL;
2169}
2170
2171static void unlock_fs(struct mapped_device *md);
2172
2173static void free_dev(struct mapped_device *md)
2174{
2175	int minor = MINOR(disk_devt(md->disk));
2176
2177	unlock_fs(md);
2178
2179	cleanup_mapped_device(md);
2180
2181	WARN_ON_ONCE(!list_empty(&md->table_devices));
2182	dm_stats_cleanup(&md->stats);
2183	free_minor(minor);
2184
2185	module_put(THIS_MODULE);
2186	kvfree(md);
2187}
2188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2189/*
2190 * Bind a table to the device.
2191 */
2192static void event_callback(void *context)
2193{
2194	unsigned long flags;
2195	LIST_HEAD(uevents);
2196	struct mapped_device *md = context;
2197
2198	spin_lock_irqsave(&md->uevent_lock, flags);
2199	list_splice_init(&md->uevent_list, &uevents);
2200	spin_unlock_irqrestore(&md->uevent_lock, flags);
2201
2202	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2203
2204	atomic_inc(&md->event_nr);
2205	wake_up(&md->eventq);
2206	dm_issue_global_event();
2207}
2208
2209/*
2210 * Returns old map, which caller must destroy.
2211 */
2212static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2213			       struct queue_limits *limits)
2214{
2215	struct dm_table *old_map;
 
 
2216	sector_t size;
2217	int ret;
2218
2219	lockdep_assert_held(&md->suspend_lock);
2220
2221	size = dm_table_get_size(t);
2222
2223	/*
2224	 * Wipe any geometry if the size of the table changed.
2225	 */
2226	if (size != dm_get_size(md))
2227		memset(&md->geometry, 0, sizeof(md->geometry));
2228
2229	set_capacity(md->disk, size);
 
 
 
2230
2231	dm_table_event_callback(t, event_callback, md);
2232
2233	if (dm_table_request_based(t)) {
 
 
 
 
 
 
 
 
 
 
2234		/*
2235		 * Leverage the fact that request-based DM targets are
2236		 * immutable singletons - used to optimize dm_mq_queue_rq.
2237		 */
2238		md->immutable_target = dm_table_get_immutable_target(t);
 
2239
2240		/*
2241		 * There is no need to reload with request-based dm because the
2242		 * size of front_pad doesn't change.
2243		 *
2244		 * Note for future: If you are to reload bioset, prep-ed
2245		 * requests in the queue may refer to bio from the old bioset,
2246		 * so you must walk through the queue to unprep.
2247		 */
2248		if (!md->mempools) {
2249			md->mempools = t->mempools;
2250			t->mempools = NULL;
2251		}
2252	} else {
2253		/*
2254		 * The md may already have mempools that need changing.
2255		 * If so, reload bioset because front_pad may have changed
2256		 * because a different table was loaded.
2257		 */
2258		dm_free_md_mempools(md->mempools);
2259		md->mempools = t->mempools;
2260		t->mempools = NULL;
2261	}
2262
2263	ret = dm_table_set_restrictions(t, md->queue, limits);
2264	if (ret) {
2265		old_map = ERR_PTR(ret);
2266		goto out;
2267	}
2268
2269	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2270	rcu_assign_pointer(md->map, (void *)t);
2271	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2272
2273	if (old_map)
2274		dm_sync_table(md);
 
2275out:
2276	return old_map;
2277}
2278
2279/*
2280 * Returns unbound table for the caller to free.
2281 */
2282static struct dm_table *__unbind(struct mapped_device *md)
2283{
2284	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2285
2286	if (!map)
2287		return NULL;
2288
2289	dm_table_event_callback(map, NULL, NULL);
2290	RCU_INIT_POINTER(md->map, NULL);
2291	dm_sync_table(md);
2292
2293	return map;
2294}
2295
2296/*
2297 * Constructor for a new device.
2298 */
2299int dm_create(int minor, struct mapped_device **result)
2300{
 
2301	struct mapped_device *md;
2302
2303	md = alloc_dev(minor);
2304	if (!md)
2305		return -ENXIO;
2306
2307	dm_ima_reset_data(md);
 
 
 
 
2308
2309	*result = md;
2310	return 0;
2311}
2312
2313/*
2314 * Functions to manage md->type.
2315 * All are required to hold md->type_lock.
2316 */
2317void dm_lock_md_type(struct mapped_device *md)
2318{
2319	mutex_lock(&md->type_lock);
2320}
2321
2322void dm_unlock_md_type(struct mapped_device *md)
2323{
2324	mutex_unlock(&md->type_lock);
2325}
2326
2327void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2328{
2329	BUG_ON(!mutex_is_locked(&md->type_lock));
2330	md->type = type;
2331}
2332
2333enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2334{
2335	return md->type;
2336}
2337
2338struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2339{
2340	return md->immutable_target_type;
2341}
2342
2343/*
 
 
 
 
 
 
 
 
 
 
 
2344 * Setup the DM device's queue based on md's type
2345 */
2346int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2347{
2348	enum dm_queue_mode type = dm_table_get_type(t);
2349	struct queue_limits limits;
2350	struct table_device *td;
2351	int r;
 
 
2352
2353	switch (type) {
2354	case DM_TYPE_REQUEST_BASED:
2355		md->disk->fops = &dm_rq_blk_dops;
2356		r = dm_mq_init_request_queue(md, t);
2357		if (r) {
2358			DMERR("Cannot initialize queue for request-based dm mapped device");
2359			return r;
2360		}
2361		break;
2362	case DM_TYPE_BIO_BASED:
2363	case DM_TYPE_DAX_BIO_BASED:
2364		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, md->queue);
2365		break;
2366	case DM_TYPE_NONE:
2367		WARN_ON_ONCE(true);
2368		break;
2369	}
2370
2371	r = dm_calculate_queue_limits(t, &limits);
2372	if (r) {
2373		DMERR("Cannot calculate initial queue limits");
2374		return r;
2375	}
2376	r = dm_table_set_restrictions(t, md->queue, &limits);
2377	if (r)
2378		return r;
2379
2380	/*
2381	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2382	 * with open_table_device() and close_table_device().
2383	 */
2384	mutex_lock(&md->table_devices_lock);
2385	r = add_disk(md->disk);
2386	mutex_unlock(&md->table_devices_lock);
2387	if (r)
2388		return r;
2389
2390	/*
2391	 * Register the holder relationship for devices added before the disk
2392	 * was live.
2393	 */
2394	list_for_each_entry(td, &md->table_devices, list) {
2395		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2396		if (r)
2397			goto out_undo_holders;
2398	}
2399
2400	r = dm_sysfs_init(md);
2401	if (r)
2402		goto out_undo_holders;
2403
2404	md->type = type;
2405	return 0;
2406
2407out_undo_holders:
2408	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2409		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2410	mutex_lock(&md->table_devices_lock);
2411	del_gendisk(md->disk);
2412	mutex_unlock(&md->table_devices_lock);
2413	return r;
2414}
2415
2416struct mapped_device *dm_get_md(dev_t dev)
2417{
2418	struct mapped_device *md;
2419	unsigned int minor = MINOR(dev);
2420
2421	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2422		return NULL;
2423
2424	spin_lock(&_minor_lock);
2425
2426	md = idr_find(&_minor_idr, minor);
2427	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2428	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2429		md = NULL;
2430		goto out;
2431	}
2432	dm_get(md);
2433out:
2434	spin_unlock(&_minor_lock);
2435
2436	return md;
2437}
2438EXPORT_SYMBOL_GPL(dm_get_md);
2439
2440void *dm_get_mdptr(struct mapped_device *md)
2441{
2442	return md->interface_ptr;
2443}
2444
2445void dm_set_mdptr(struct mapped_device *md, void *ptr)
2446{
2447	md->interface_ptr = ptr;
2448}
2449
2450void dm_get(struct mapped_device *md)
2451{
2452	atomic_inc(&md->holders);
2453	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2454}
2455
2456int dm_hold(struct mapped_device *md)
2457{
2458	spin_lock(&_minor_lock);
2459	if (test_bit(DMF_FREEING, &md->flags)) {
2460		spin_unlock(&_minor_lock);
2461		return -EBUSY;
2462	}
2463	dm_get(md);
2464	spin_unlock(&_minor_lock);
2465	return 0;
2466}
2467EXPORT_SYMBOL_GPL(dm_hold);
2468
2469const char *dm_device_name(struct mapped_device *md)
2470{
2471	return md->name;
2472}
2473EXPORT_SYMBOL_GPL(dm_device_name);
2474
2475static void __dm_destroy(struct mapped_device *md, bool wait)
2476{
2477	struct dm_table *map;
2478	int srcu_idx;
2479
2480	might_sleep();
2481
2482	spin_lock(&_minor_lock);
2483	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2484	set_bit(DMF_FREEING, &md->flags);
2485	spin_unlock(&_minor_lock);
2486
2487	blk_mark_disk_dead(md->disk);
2488
2489	/*
2490	 * Take suspend_lock so that presuspend and postsuspend methods
2491	 * do not race with internal suspend.
2492	 */
2493	mutex_lock(&md->suspend_lock);
2494	map = dm_get_live_table(md, &srcu_idx);
2495	if (!dm_suspended_md(md)) {
2496		dm_table_presuspend_targets(map);
2497		set_bit(DMF_SUSPENDED, &md->flags);
2498		set_bit(DMF_POST_SUSPENDING, &md->flags);
2499		dm_table_postsuspend_targets(map);
2500	}
2501	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2502	dm_put_live_table(md, srcu_idx);
2503	mutex_unlock(&md->suspend_lock);
2504
2505	/*
2506	 * Rare, but there may be I/O requests still going to complete,
2507	 * for example.  Wait for all references to disappear.
2508	 * No one should increment the reference count of the mapped_device,
2509	 * after the mapped_device state becomes DMF_FREEING.
2510	 */
2511	if (wait)
2512		while (atomic_read(&md->holders))
2513			fsleep(1000);
2514	else if (atomic_read(&md->holders))
2515		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2516		       dm_device_name(md), atomic_read(&md->holders));
2517
 
2518	dm_table_destroy(__unbind(md));
2519	free_dev(md);
2520}
2521
2522void dm_destroy(struct mapped_device *md)
2523{
2524	__dm_destroy(md, true);
2525}
2526
2527void dm_destroy_immediate(struct mapped_device *md)
2528{
2529	__dm_destroy(md, false);
2530}
2531
2532void dm_put(struct mapped_device *md)
2533{
2534	atomic_dec(&md->holders);
2535}
2536EXPORT_SYMBOL_GPL(dm_put);
2537
2538static bool dm_in_flight_bios(struct mapped_device *md)
2539{
2540	int cpu;
2541	unsigned long sum = 0;
 
2542
2543	for_each_possible_cpu(cpu)
2544		sum += *per_cpu_ptr(md->pending_io, cpu);
 
 
2545
2546	return sum != 0;
2547}
2548
2549static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2550{
2551	int r = 0;
2552	DEFINE_WAIT(wait);
2553
2554	while (true) {
2555		prepare_to_wait(&md->wait, &wait, task_state);
2556
2557		if (!dm_in_flight_bios(md))
2558			break;
2559
2560		if (signal_pending_state(task_state, current)) {
2561			r = -EINTR;
2562			break;
2563		}
2564
2565		io_schedule();
2566	}
2567	finish_wait(&md->wait, &wait);
2568
2569	smp_rmb();
2570
2571	return r;
2572}
2573
2574static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2575{
2576	int r = 0;
2577
2578	if (!queue_is_mq(md->queue))
2579		return dm_wait_for_bios_completion(md, task_state);
2580
2581	while (true) {
2582		if (!blk_mq_queue_inflight(md->queue))
2583			break;
2584
2585		if (signal_pending_state(task_state, current)) {
2586			r = -EINTR;
2587			break;
2588		}
2589
2590		fsleep(5000);
2591	}
2592
2593	return r;
2594}
2595
2596/*
2597 * Process the deferred bios
2598 */
2599static void dm_wq_work(struct work_struct *work)
2600{
2601	struct mapped_device *md = container_of(work, struct mapped_device, work);
2602	struct bio *bio;
2603
2604	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2605		spin_lock_irq(&md->deferred_lock);
2606		bio = bio_list_pop(&md->deferred);
2607		spin_unlock_irq(&md->deferred_lock);
2608
2609		if (!bio)
2610			break;
2611
2612		submit_bio_noacct(bio);
2613		cond_resched();
2614	}
2615}
2616
2617static void dm_queue_flush(struct mapped_device *md)
2618{
2619	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2620	smp_mb__after_atomic();
2621	queue_work(md->wq, &md->work);
2622}
2623
2624/*
2625 * Swap in a new table, returning the old one for the caller to destroy.
2626 */
2627struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2628{
2629	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2630	struct queue_limits limits;
2631	int r;
2632
2633	mutex_lock(&md->suspend_lock);
2634
2635	/* device must be suspended */
2636	if (!dm_suspended_md(md))
2637		goto out;
2638
2639	/*
2640	 * If the new table has no data devices, retain the existing limits.
2641	 * This helps multipath with queue_if_no_path if all paths disappear,
2642	 * then new I/O is queued based on these limits, and then some paths
2643	 * reappear.
2644	 */
2645	if (dm_table_has_no_data_devices(table)) {
2646		live_map = dm_get_live_table_fast(md);
2647		if (live_map)
2648			limits = md->queue->limits;
2649		dm_put_live_table_fast(md);
2650	}
2651
2652	if (!live_map) {
2653		r = dm_calculate_queue_limits(table, &limits);
2654		if (r) {
2655			map = ERR_PTR(r);
2656			goto out;
2657		}
2658	}
2659
2660	map = __bind(md, table, &limits);
2661	dm_issue_global_event();
2662
2663out:
2664	mutex_unlock(&md->suspend_lock);
2665	return map;
2666}
2667
2668/*
2669 * Functions to lock and unlock any filesystem running on the
2670 * device.
2671 */
2672static int lock_fs(struct mapped_device *md)
2673{
2674	int r;
2675
2676	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2677
2678	r = bdev_freeze(md->disk->part0);
2679	if (!r)
2680		set_bit(DMF_FROZEN, &md->flags);
2681	return r;
2682}
2683
2684static void unlock_fs(struct mapped_device *md)
2685{
2686	if (!test_bit(DMF_FROZEN, &md->flags))
2687		return;
2688	bdev_thaw(md->disk->part0);
2689	clear_bit(DMF_FROZEN, &md->flags);
2690}
2691
2692/*
2693 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2694 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2695 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2696 *
2697 * If __dm_suspend returns 0, the device is completely quiescent
2698 * now. There is no request-processing activity. All new requests
2699 * are being added to md->deferred list.
2700 */
2701static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2702			unsigned int suspend_flags, unsigned int task_state,
2703			int dmf_suspended_flag)
2704{
2705	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2706	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2707	int r;
2708
2709	lockdep_assert_held(&md->suspend_lock);
2710
2711	/*
2712	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2713	 * This flag is cleared before dm_suspend returns.
2714	 */
2715	if (noflush)
2716		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2717	else
2718		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2719
2720	/*
2721	 * This gets reverted if there's an error later and the targets
2722	 * provide the .presuspend_undo hook.
2723	 */
2724	dm_table_presuspend_targets(map);
2725
2726	/*
2727	 * Flush I/O to the device.
2728	 * Any I/O submitted after lock_fs() may not be flushed.
2729	 * noflush takes precedence over do_lockfs.
2730	 * (lock_fs() flushes I/Os and waits for them to complete.)
2731	 */
2732	if (!noflush && do_lockfs) {
2733		r = lock_fs(md);
2734		if (r) {
2735			dm_table_presuspend_undo_targets(map);
2736			return r;
2737		}
2738	}
2739
2740	/*
2741	 * Here we must make sure that no processes are submitting requests
2742	 * to target drivers i.e. no one may be executing
2743	 * dm_split_and_process_bio from dm_submit_bio.
2744	 *
2745	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2746	 * we take the write lock. To prevent any process from reentering
2747	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2748	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2749	 * flush_workqueue(md->wq).
2750	 */
2751	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2752	if (map)
2753		synchronize_srcu(&md->io_barrier);
2754
2755	/*
2756	 * Stop md->queue before flushing md->wq in case request-based
2757	 * dm defers requests to md->wq from md->queue.
2758	 */
2759	if (dm_request_based(md))
2760		dm_stop_queue(md->queue);
2761
2762	flush_workqueue(md->wq);
2763
2764	/*
2765	 * At this point no more requests are entering target request routines.
2766	 * We call dm_wait_for_completion to wait for all existing requests
2767	 * to finish.
2768	 */
2769	r = dm_wait_for_completion(md, task_state);
2770	if (!r)
2771		set_bit(dmf_suspended_flag, &md->flags);
2772
2773	if (noflush)
2774		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2775	if (map)
2776		synchronize_srcu(&md->io_barrier);
2777
2778	/* were we interrupted ? */
2779	if (r < 0) {
2780		dm_queue_flush(md);
2781
2782		if (dm_request_based(md))
2783			dm_start_queue(md->queue);
2784
2785		unlock_fs(md);
2786		dm_table_presuspend_undo_targets(map);
2787		/* pushback list is already flushed, so skip flush */
2788	}
2789
2790	return r;
2791}
2792
2793/*
2794 * We need to be able to change a mapping table under a mounted
2795 * filesystem.  For example we might want to move some data in
2796 * the background.  Before the table can be swapped with
2797 * dm_bind_table, dm_suspend must be called to flush any in
2798 * flight bios and ensure that any further io gets deferred.
2799 */
2800/*
2801 * Suspend mechanism in request-based dm.
2802 *
2803 * 1. Flush all I/Os by lock_fs() if needed.
2804 * 2. Stop dispatching any I/O by stopping the request_queue.
2805 * 3. Wait for all in-flight I/Os to be completed or requeued.
2806 *
2807 * To abort suspend, start the request_queue.
2808 */
2809int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2810{
2811	struct dm_table *map = NULL;
2812	int r = 0;
2813
2814retry:
2815	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2816
2817	if (dm_suspended_md(md)) {
2818		r = -EINVAL;
2819		goto out_unlock;
2820	}
2821
2822	if (dm_suspended_internally_md(md)) {
2823		/* already internally suspended, wait for internal resume */
2824		mutex_unlock(&md->suspend_lock);
2825		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2826		if (r)
2827			return r;
2828		goto retry;
2829	}
2830
2831	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2832	if (!map) {
2833		/* avoid deadlock with fs/namespace.c:do_mount() */
2834		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2835	}
2836
2837	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2838	if (r)
2839		goto out_unlock;
2840
2841	set_bit(DMF_POST_SUSPENDING, &md->flags);
2842	dm_table_postsuspend_targets(map);
2843	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2844
2845out_unlock:
2846	mutex_unlock(&md->suspend_lock);
2847	return r;
2848}
2849
2850static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2851{
2852	if (map) {
2853		int r = dm_table_resume_targets(map);
2854
2855		if (r)
2856			return r;
2857	}
2858
2859	dm_queue_flush(md);
2860
2861	/*
2862	 * Flushing deferred I/Os must be done after targets are resumed
2863	 * so that mapping of targets can work correctly.
2864	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2865	 */
2866	if (dm_request_based(md))
2867		dm_start_queue(md->queue);
2868
2869	unlock_fs(md);
2870
2871	return 0;
2872}
2873
2874int dm_resume(struct mapped_device *md)
2875{
2876	int r;
2877	struct dm_table *map = NULL;
2878
2879retry:
2880	r = -EINVAL;
2881	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2882
2883	if (!dm_suspended_md(md))
2884		goto out;
2885
2886	if (dm_suspended_internally_md(md)) {
2887		/* already internally suspended, wait for internal resume */
2888		mutex_unlock(&md->suspend_lock);
2889		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2890		if (r)
2891			return r;
2892		goto retry;
2893	}
2894
2895	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2896	if (!map || !dm_table_get_size(map))
2897		goto out;
2898
2899	r = __dm_resume(md, map);
2900	if (r)
2901		goto out;
2902
2903	clear_bit(DMF_SUSPENDED, &md->flags);
2904out:
2905	mutex_unlock(&md->suspend_lock);
2906
2907	return r;
2908}
2909
2910/*
2911 * Internal suspend/resume works like userspace-driven suspend. It waits
2912 * until all bios finish and prevents issuing new bios to the target drivers.
2913 * It may be used only from the kernel.
2914 */
2915
2916static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2917{
2918	struct dm_table *map = NULL;
2919
2920	lockdep_assert_held(&md->suspend_lock);
2921
2922	if (md->internal_suspend_count++)
2923		return; /* nested internal suspend */
2924
2925	if (dm_suspended_md(md)) {
2926		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2927		return; /* nest suspend */
2928	}
2929
2930	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2931
2932	/*
2933	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2934	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2935	 * would require changing .presuspend to return an error -- avoid this
2936	 * until there is a need for more elaborate variants of internal suspend.
2937	 */
2938	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2939			    DMF_SUSPENDED_INTERNALLY);
2940
2941	set_bit(DMF_POST_SUSPENDING, &md->flags);
2942	dm_table_postsuspend_targets(map);
2943	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2944}
2945
2946static void __dm_internal_resume(struct mapped_device *md)
2947{
2948	BUG_ON(!md->internal_suspend_count);
2949
2950	if (--md->internal_suspend_count)
2951		return; /* resume from nested internal suspend */
2952
2953	if (dm_suspended_md(md))
2954		goto done; /* resume from nested suspend */
2955
2956	/*
2957	 * NOTE: existing callers don't need to call dm_table_resume_targets
2958	 * (which may fail -- so best to avoid it for now by passing NULL map)
2959	 */
2960	(void) __dm_resume(md, NULL);
2961
2962done:
2963	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2964	smp_mb__after_atomic();
2965	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2966}
2967
2968void dm_internal_suspend_noflush(struct mapped_device *md)
2969{
2970	mutex_lock(&md->suspend_lock);
2971	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2972	mutex_unlock(&md->suspend_lock);
2973}
2974EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2975
2976void dm_internal_resume(struct mapped_device *md)
2977{
2978	mutex_lock(&md->suspend_lock);
2979	__dm_internal_resume(md);
2980	mutex_unlock(&md->suspend_lock);
2981}
2982EXPORT_SYMBOL_GPL(dm_internal_resume);
2983
2984/*
2985 * Fast variants of internal suspend/resume hold md->suspend_lock,
2986 * which prevents interaction with userspace-driven suspend.
2987 */
2988
2989void dm_internal_suspend_fast(struct mapped_device *md)
2990{
2991	mutex_lock(&md->suspend_lock);
2992	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2993		return;
2994
2995	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2996	synchronize_srcu(&md->io_barrier);
2997	flush_workqueue(md->wq);
2998	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2999}
3000EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3001
3002void dm_internal_resume_fast(struct mapped_device *md)
3003{
3004	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3005		goto done;
3006
3007	dm_queue_flush(md);
3008
3009done:
3010	mutex_unlock(&md->suspend_lock);
3011}
3012EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3013
3014/*
3015 *---------------------------------------------------------------
3016 * Event notification.
3017 *---------------------------------------------------------------
3018 */
3019int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3020		      unsigned int cookie, bool need_resize_uevent)
3021{
3022	int r;
3023	unsigned int noio_flag;
3024	char udev_cookie[DM_COOKIE_LENGTH];
3025	char *envp[3] = { NULL, NULL, NULL };
3026	char **envpp = envp;
3027	if (cookie) {
3028		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3029			 DM_COOKIE_ENV_VAR_NAME, cookie);
3030		*envpp++ = udev_cookie;
3031	}
3032	if (need_resize_uevent) {
3033		*envpp++ = "RESIZE=1";
3034	}
3035
3036	noio_flag = memalloc_noio_save();
3037
3038	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
 
 
 
 
 
 
 
3039
3040	memalloc_noio_restore(noio_flag);
3041
3042	return r;
3043}
3044
3045uint32_t dm_next_uevent_seq(struct mapped_device *md)
3046{
3047	return atomic_add_return(1, &md->uevent_seq);
3048}
3049
3050uint32_t dm_get_event_nr(struct mapped_device *md)
3051{
3052	return atomic_read(&md->event_nr);
3053}
3054
3055int dm_wait_event(struct mapped_device *md, int event_nr)
3056{
3057	return wait_event_interruptible(md->eventq,
3058			(event_nr != atomic_read(&md->event_nr)));
3059}
3060
3061void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3062{
3063	unsigned long flags;
3064
3065	spin_lock_irqsave(&md->uevent_lock, flags);
3066	list_add(elist, &md->uevent_list);
3067	spin_unlock_irqrestore(&md->uevent_lock, flags);
3068}
3069
3070/*
3071 * The gendisk is only valid as long as you have a reference
3072 * count on 'md'.
3073 */
3074struct gendisk *dm_disk(struct mapped_device *md)
3075{
3076	return md->disk;
3077}
3078EXPORT_SYMBOL_GPL(dm_disk);
3079
3080struct kobject *dm_kobject(struct mapped_device *md)
3081{
3082	return &md->kobj_holder.kobj;
3083}
3084
3085struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3086{
3087	struct mapped_device *md;
3088
3089	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3090
3091	spin_lock(&_minor_lock);
3092	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3093		md = NULL;
3094		goto out;
3095	}
3096	dm_get(md);
3097out:
3098	spin_unlock(&_minor_lock);
3099
3100	return md;
3101}
3102
3103int dm_suspended_md(struct mapped_device *md)
3104{
3105	return test_bit(DMF_SUSPENDED, &md->flags);
3106}
3107
3108static int dm_post_suspending_md(struct mapped_device *md)
3109{
3110	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3111}
3112
3113int dm_suspended_internally_md(struct mapped_device *md)
3114{
3115	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3116}
3117
3118int dm_test_deferred_remove_flag(struct mapped_device *md)
3119{
3120	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3121}
3122
3123int dm_suspended(struct dm_target *ti)
3124{
3125	return dm_suspended_md(ti->table->md);
3126}
3127EXPORT_SYMBOL_GPL(dm_suspended);
3128
3129int dm_post_suspending(struct dm_target *ti)
3130{
3131	return dm_post_suspending_md(ti->table->md);
3132}
3133EXPORT_SYMBOL_GPL(dm_post_suspending);
3134
3135int dm_noflush_suspending(struct dm_target *ti)
3136{
3137	return __noflush_suspending(ti->table->md);
3138}
3139EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3141void dm_free_md_mempools(struct dm_md_mempools *pools)
3142{
3143	if (!pools)
3144		return;
3145
3146	bioset_exit(&pools->bs);
3147	bioset_exit(&pools->io_bs);
3148
3149	kfree(pools);
3150}
3151
3152struct dm_pr {
3153	u64	old_key;
3154	u64	new_key;
3155	u32	flags;
3156	bool	abort;
3157	bool	fail_early;
3158	int	ret;
3159	enum pr_type type;
3160	struct pr_keys *read_keys;
3161	struct pr_held_reservation *rsv;
3162};
3163
3164static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3165		      struct dm_pr *pr)
3166{
3167	struct mapped_device *md = bdev->bd_disk->private_data;
3168	struct dm_table *table;
3169	struct dm_target *ti;
3170	int ret = -ENOTTY, srcu_idx;
3171
3172	table = dm_get_live_table(md, &srcu_idx);
3173	if (!table || !dm_table_get_size(table))
3174		goto out;
3175
3176	/* We only support devices that have a single target */
3177	if (table->num_targets != 1)
3178		goto out;
3179	ti = dm_table_get_target(table, 0);
3180
3181	if (dm_suspended_md(md)) {
3182		ret = -EAGAIN;
3183		goto out;
3184	}
3185
3186	ret = -EINVAL;
3187	if (!ti->type->iterate_devices)
3188		goto out;
3189
3190	ti->type->iterate_devices(ti, fn, pr);
3191	ret = 0;
3192out:
3193	dm_put_live_table(md, srcu_idx);
3194	return ret;
3195}
3196
3197/*
3198 * For register / unregister we need to manually call out to every path.
3199 */
3200static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3201			    sector_t start, sector_t len, void *data)
3202{
3203	struct dm_pr *pr = data;
3204	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3205	int ret;
3206
3207	if (!ops || !ops->pr_register) {
3208		pr->ret = -EOPNOTSUPP;
3209		return -1;
3210	}
3211
3212	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3213	if (!ret)
3214		return 0;
3215
3216	if (!pr->ret)
3217		pr->ret = ret;
3218
3219	if (pr->fail_early)
3220		return -1;
3221
3222	return 0;
3223}
3224
3225static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3226			  u32 flags)
3227{
3228	struct dm_pr pr = {
3229		.old_key	= old_key,
3230		.new_key	= new_key,
3231		.flags		= flags,
3232		.fail_early	= true,
3233		.ret		= 0,
3234	};
3235	int ret;
3236
3237	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3238	if (ret) {
3239		/* Didn't even get to register a path */
3240		return ret;
 
 
 
 
3241	}
3242
3243	if (!pr.ret)
3244		return 0;
3245	ret = pr.ret;
3246
3247	if (!new_key)
3248		return ret;
3249
3250	/* unregister all paths if we failed to register any path */
3251	pr.old_key = new_key;
3252	pr.new_key = 0;
3253	pr.flags = 0;
3254	pr.fail_early = false;
3255	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3256	return ret;
3257}
3258
3259
3260static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3261			   sector_t start, sector_t len, void *data)
3262{
3263	struct dm_pr *pr = data;
3264	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3265
3266	if (!ops || !ops->pr_reserve) {
3267		pr->ret = -EOPNOTSUPP;
3268		return -1;
3269	}
3270
3271	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3272	if (!pr->ret)
3273		return -1;
3274
3275	return 0;
3276}
3277
3278static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3279			 u32 flags)
3280{
3281	struct dm_pr pr = {
3282		.old_key	= key,
3283		.flags		= flags,
3284		.type		= type,
3285		.fail_early	= false,
3286		.ret		= 0,
3287	};
3288	int ret;
3289
3290	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3291	if (ret)
3292		return ret;
3293
3294	return pr.ret;
3295}
3296
3297/*
3298 * If there is a non-All Registrants type of reservation, the release must be
3299 * sent down the holding path. For the cases where there is no reservation or
3300 * the path is not the holder the device will also return success, so we must
3301 * try each path to make sure we got the correct path.
3302 */
3303static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3304			   sector_t start, sector_t len, void *data)
3305{
3306	struct dm_pr *pr = data;
3307	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3308
3309	if (!ops || !ops->pr_release) {
3310		pr->ret = -EOPNOTSUPP;
3311		return -1;
3312	}
3313
3314	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3315	if (pr->ret)
3316		return -1;
3317
3318	return 0;
 
 
 
 
 
 
 
3319}
3320
3321static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3322{
3323	struct dm_pr pr = {
3324		.old_key	= key,
3325		.type		= type,
3326		.fail_early	= false,
3327	};
3328	int ret;
3329
3330	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3331	if (ret)
3332		return ret;
3333
3334	return pr.ret;
3335}
3336
3337static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3338			   sector_t start, sector_t len, void *data)
3339{
3340	struct dm_pr *pr = data;
3341	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3342
3343	if (!ops || !ops->pr_preempt) {
3344		pr->ret = -EOPNOTSUPP;
3345		return -1;
3346	}
3347
3348	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3349				  pr->abort);
3350	if (!pr->ret)
3351		return -1;
3352
3353	return 0;
 
 
 
 
 
 
 
3354}
3355
3356static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3357			 enum pr_type type, bool abort)
3358{
3359	struct dm_pr pr = {
3360		.new_key	= new_key,
3361		.old_key	= old_key,
3362		.type		= type,
3363		.fail_early	= false,
3364	};
3365	int ret;
3366
3367	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3368	if (ret)
3369		return ret;
3370
3371	return pr.ret;
 
 
 
 
 
 
 
3372}
3373
3374static int dm_pr_clear(struct block_device *bdev, u64 key)
3375{
3376	struct mapped_device *md = bdev->bd_disk->private_data;
3377	const struct pr_ops *ops;
3378	int r, srcu_idx;
3379
3380	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3381	if (r < 0)
3382		goto out;
3383
3384	ops = bdev->bd_disk->fops->pr_ops;
3385	if (ops && ops->pr_clear)
3386		r = ops->pr_clear(bdev, key);
3387	else
3388		r = -EOPNOTSUPP;
3389out:
3390	dm_unprepare_ioctl(md, srcu_idx);
3391	return r;
3392}
3393
3394static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3395			     sector_t start, sector_t len, void *data)
3396{
3397	struct dm_pr *pr = data;
3398	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3399
3400	if (!ops || !ops->pr_read_keys) {
3401		pr->ret = -EOPNOTSUPP;
3402		return -1;
3403	}
3404
3405	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3406	if (!pr->ret)
3407		return -1;
3408
3409	return 0;
3410}
3411
3412static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3413{
3414	struct dm_pr pr = {
3415		.read_keys = keys,
3416	};
3417	int ret;
3418
3419	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3420	if (ret)
3421		return ret;
3422
3423	return pr.ret;
3424}
3425
3426static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3427				    sector_t start, sector_t len, void *data)
3428{
3429	struct dm_pr *pr = data;
3430	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3431
3432	if (!ops || !ops->pr_read_reservation) {
3433		pr->ret = -EOPNOTSUPP;
3434		return -1;
3435	}
3436
3437	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3438	if (!pr->ret)
3439		return -1;
3440
3441	return 0;
3442}
3443
3444static int dm_pr_read_reservation(struct block_device *bdev,
3445				  struct pr_held_reservation *rsv)
3446{
3447	struct dm_pr pr = {
3448		.rsv = rsv,
3449	};
3450	int ret;
3451
3452	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3453	if (ret)
3454		return ret;
3455
3456	return pr.ret;
3457}
3458
3459static const struct pr_ops dm_pr_ops = {
3460	.pr_register	= dm_pr_register,
3461	.pr_reserve	= dm_pr_reserve,
3462	.pr_release	= dm_pr_release,
3463	.pr_preempt	= dm_pr_preempt,
3464	.pr_clear	= dm_pr_clear,
3465	.pr_read_keys	= dm_pr_read_keys,
3466	.pr_read_reservation = dm_pr_read_reservation,
3467};
3468
3469static const struct block_device_operations dm_blk_dops = {
3470	.submit_bio = dm_submit_bio,
3471	.poll_bio = dm_poll_bio,
3472	.open = dm_blk_open,
3473	.release = dm_blk_close,
3474	.ioctl = dm_blk_ioctl,
3475	.getgeo = dm_blk_getgeo,
3476	.report_zones = dm_blk_report_zones,
3477	.pr_ops = &dm_pr_ops,
3478	.owner = THIS_MODULE
3479};
3480
3481static const struct block_device_operations dm_rq_blk_dops = {
3482	.open = dm_blk_open,
3483	.release = dm_blk_close,
3484	.ioctl = dm_blk_ioctl,
3485	.getgeo = dm_blk_getgeo,
3486	.pr_ops = &dm_pr_ops,
3487	.owner = THIS_MODULE
3488};
3489
3490static const struct dax_operations dm_dax_ops = {
3491	.direct_access = dm_dax_direct_access,
 
 
 
3492	.zero_page_range = dm_dax_zero_page_range,
3493	.recovery_write = dm_dax_recovery_write,
3494};
3495
3496/*
3497 * module hooks
3498 */
3499module_init(dm_init);
3500module_exit(dm_exit);
3501
3502module_param(major, uint, 0);
3503MODULE_PARM_DESC(major, "The major number of the device mapper");
3504
3505module_param(reserved_bio_based_ios, uint, 0644);
3506MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3507
3508module_param(dm_numa_node, int, 0644);
3509MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3510
3511module_param(swap_bios, int, 0644);
3512MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3513
3514MODULE_DESCRIPTION(DM_NAME " driver");
3515MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3516MODULE_LICENSE("GPL");
v5.14.15
 
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
 
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/mm.h>
  16#include <linux/sched/signal.h>
  17#include <linux/blkpg.h>
  18#include <linux/bio.h>
  19#include <linux/mempool.h>
  20#include <linux/dax.h>
  21#include <linux/slab.h>
  22#include <linux/idr.h>
  23#include <linux/uio.h>
  24#include <linux/hdreg.h>
  25#include <linux/delay.h>
  26#include <linux/wait.h>
  27#include <linux/pr.h>
  28#include <linux/refcount.h>
  29#include <linux/part_stat.h>
  30#include <linux/blk-crypto.h>
  31#include <linux/keyslot-manager.h>
  32
  33#define DM_MSG_PREFIX "core"
  34
  35/*
  36 * Cookies are numeric values sent with CHANGE and REMOVE
  37 * uevents while resuming, removing or renaming the device.
  38 */
  39#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  40#define DM_COOKIE_LENGTH 24
  41
 
 
 
 
 
 
 
  42static const char *_name = DM_NAME;
  43
  44static unsigned int major = 0;
  45static unsigned int _major = 0;
  46
  47static DEFINE_IDR(_minor_idr);
  48
  49static DEFINE_SPINLOCK(_minor_lock);
  50
  51static void do_deferred_remove(struct work_struct *w);
  52
  53static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  54
  55static struct workqueue_struct *deferred_remove_workqueue;
  56
  57atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  58DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  59
  60void dm_issue_global_event(void)
  61{
  62	atomic_inc(&dm_global_event_nr);
  63	wake_up(&dm_global_eventq);
  64}
  65
 
 
 
 
  66/*
  67 * One of these is allocated (on-stack) per original bio.
  68 */
  69struct clone_info {
  70	struct dm_table *map;
  71	struct bio *bio;
  72	struct dm_io *io;
  73	sector_t sector;
  74	unsigned sector_count;
 
 
  75};
  76
  77#define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
  78#define DM_IO_BIO_OFFSET \
  79	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
 
  80
  81void *dm_per_bio_data(struct bio *bio, size_t data_size)
  82{
  83	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
  84	if (!tio->inside_dm_io)
  85		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
  86	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
  87}
  88EXPORT_SYMBOL_GPL(dm_per_bio_data);
  89
  90struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
  91{
  92	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 
  93	if (io->magic == DM_IO_MAGIC)
  94		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
  95	BUG_ON(io->magic != DM_TIO_MAGIC);
  96	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
  97}
  98EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
  99
 100unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 101{
 102	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 103}
 104EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 105
 106#define MINOR_ALLOCED ((void *)-1)
 107
 108#define DM_NUMA_NODE NUMA_NO_NODE
 109static int dm_numa_node = DM_NUMA_NODE;
 110
 111#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 112static int swap_bios = DEFAULT_SWAP_BIOS;
 113static int get_swap_bios(void)
 114{
 115	int latch = READ_ONCE(swap_bios);
 
 116	if (unlikely(latch <= 0))
 117		latch = DEFAULT_SWAP_BIOS;
 118	return latch;
 119}
 120
 121/*
 122 * For mempools pre-allocation at the table loading time.
 123 */
 124struct dm_md_mempools {
 125	struct bio_set bs;
 126	struct bio_set io_bs;
 127};
 128
 129struct table_device {
 130	struct list_head list;
 131	refcount_t count;
 132	struct dm_dev dm_dev;
 133};
 134
 135/*
 136 * Bio-based DM's mempools' reserved IOs set by the user.
 137 */
 138#define RESERVED_BIO_BASED_IOS		16
 139static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 140
 141static int __dm_get_module_param_int(int *module_param, int min, int max)
 142{
 143	int param = READ_ONCE(*module_param);
 144	int modified_param = 0;
 145	bool modified = true;
 146
 147	if (param < min)
 148		modified_param = min;
 149	else if (param > max)
 150		modified_param = max;
 151	else
 152		modified = false;
 153
 154	if (modified) {
 155		(void)cmpxchg(module_param, param, modified_param);
 156		param = modified_param;
 157	}
 158
 159	return param;
 160}
 161
 162unsigned __dm_get_module_param(unsigned *module_param,
 163			       unsigned def, unsigned max)
 164{
 165	unsigned param = READ_ONCE(*module_param);
 166	unsigned modified_param = 0;
 167
 168	if (!param)
 169		modified_param = def;
 170	else if (param > max)
 171		modified_param = max;
 172
 173	if (modified_param) {
 174		(void)cmpxchg(module_param, param, modified_param);
 175		param = modified_param;
 176	}
 177
 178	return param;
 179}
 180
 181unsigned dm_get_reserved_bio_based_ios(void)
 182{
 183	return __dm_get_module_param(&reserved_bio_based_ios,
 184				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 185}
 186EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 187
 188static unsigned dm_get_numa_node(void)
 189{
 190	return __dm_get_module_param_int(&dm_numa_node,
 191					 DM_NUMA_NODE, num_online_nodes() - 1);
 192}
 193
 194static int __init local_init(void)
 195{
 196	int r;
 197
 198	r = dm_uevent_init();
 199	if (r)
 200		return r;
 201
 202	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 203	if (!deferred_remove_workqueue) {
 204		r = -ENOMEM;
 205		goto out_uevent_exit;
 206	}
 207
 208	_major = major;
 209	r = register_blkdev(_major, _name);
 210	if (r < 0)
 211		goto out_free_workqueue;
 212
 213	if (!_major)
 214		_major = r;
 215
 216	return 0;
 217
 218out_free_workqueue:
 219	destroy_workqueue(deferred_remove_workqueue);
 220out_uevent_exit:
 221	dm_uevent_exit();
 222
 223	return r;
 224}
 225
 226static void local_exit(void)
 227{
 228	flush_scheduled_work();
 229	destroy_workqueue(deferred_remove_workqueue);
 230
 231	unregister_blkdev(_major, _name);
 232	dm_uevent_exit();
 233
 234	_major = 0;
 235
 236	DMINFO("cleaned up");
 237}
 238
 239static int (*_inits[])(void) __initdata = {
 240	local_init,
 241	dm_target_init,
 242	dm_linear_init,
 243	dm_stripe_init,
 244	dm_io_init,
 245	dm_kcopyd_init,
 246	dm_interface_init,
 247	dm_statistics_init,
 248};
 249
 250static void (*_exits[])(void) = {
 251	local_exit,
 252	dm_target_exit,
 253	dm_linear_exit,
 254	dm_stripe_exit,
 255	dm_io_exit,
 256	dm_kcopyd_exit,
 257	dm_interface_exit,
 258	dm_statistics_exit,
 259};
 260
 261static int __init dm_init(void)
 262{
 263	const int count = ARRAY_SIZE(_inits);
 
 264
 265	int r, i;
 
 
 
 266
 267	for (i = 0; i < count; i++) {
 268		r = _inits[i]();
 269		if (r)
 270			goto bad;
 271	}
 272
 273	return 0;
 274
 275      bad:
 276	while (i--)
 277		_exits[i]();
 278
 279	return r;
 280}
 281
 282static void __exit dm_exit(void)
 283{
 284	int i = ARRAY_SIZE(_exits);
 285
 286	while (i--)
 287		_exits[i]();
 288
 289	/*
 290	 * Should be empty by this point.
 291	 */
 292	idr_destroy(&_minor_idr);
 293}
 294
 295/*
 296 * Block device functions
 297 */
 298int dm_deleting_md(struct mapped_device *md)
 299{
 300	return test_bit(DMF_DELETING, &md->flags);
 301}
 302
 303static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 304{
 305	struct mapped_device *md;
 306
 307	spin_lock(&_minor_lock);
 308
 309	md = bdev->bd_disk->private_data;
 310	if (!md)
 311		goto out;
 312
 313	if (test_bit(DMF_FREEING, &md->flags) ||
 314	    dm_deleting_md(md)) {
 315		md = NULL;
 316		goto out;
 317	}
 318
 319	dm_get(md);
 320	atomic_inc(&md->open_count);
 321out:
 322	spin_unlock(&_minor_lock);
 323
 324	return md ? 0 : -ENXIO;
 325}
 326
 327static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 328{
 329	struct mapped_device *md;
 330
 331	spin_lock(&_minor_lock);
 332
 333	md = disk->private_data;
 334	if (WARN_ON(!md))
 335		goto out;
 336
 337	if (atomic_dec_and_test(&md->open_count) &&
 338	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 339		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 340
 341	dm_put(md);
 342out:
 343	spin_unlock(&_minor_lock);
 344}
 345
 346int dm_open_count(struct mapped_device *md)
 347{
 348	return atomic_read(&md->open_count);
 349}
 350
 351/*
 352 * Guarantees nothing is using the device before it's deleted.
 353 */
 354int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 355{
 356	int r = 0;
 357
 358	spin_lock(&_minor_lock);
 359
 360	if (dm_open_count(md)) {
 361		r = -EBUSY;
 362		if (mark_deferred)
 363			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 364	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 365		r = -EEXIST;
 366	else
 367		set_bit(DMF_DELETING, &md->flags);
 368
 369	spin_unlock(&_minor_lock);
 370
 371	return r;
 372}
 373
 374int dm_cancel_deferred_remove(struct mapped_device *md)
 375{
 376	int r = 0;
 377
 378	spin_lock(&_minor_lock);
 379
 380	if (test_bit(DMF_DELETING, &md->flags))
 381		r = -EBUSY;
 382	else
 383		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 384
 385	spin_unlock(&_minor_lock);
 386
 387	return r;
 388}
 389
 390static void do_deferred_remove(struct work_struct *w)
 391{
 392	dm_deferred_remove();
 393}
 394
 395static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 396{
 397	struct mapped_device *md = bdev->bd_disk->private_data;
 398
 399	return dm_get_geometry(md, geo);
 400}
 401
 402static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 403			    struct block_device **bdev)
 404{
 405	struct dm_target *tgt;
 406	struct dm_table *map;
 407	int r;
 408
 409retry:
 410	r = -ENOTTY;
 411	map = dm_get_live_table(md, srcu_idx);
 412	if (!map || !dm_table_get_size(map))
 413		return r;
 414
 415	/* We only support devices that have a single target */
 416	if (dm_table_get_num_targets(map) != 1)
 417		return r;
 418
 419	tgt = dm_table_get_target(map, 0);
 420	if (!tgt->type->prepare_ioctl)
 421		return r;
 422
 423	if (dm_suspended_md(md))
 424		return -EAGAIN;
 425
 426	r = tgt->type->prepare_ioctl(tgt, bdev);
 427	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 428		dm_put_live_table(md, *srcu_idx);
 429		msleep(10);
 430		goto retry;
 431	}
 432
 433	return r;
 434}
 435
 436static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 437{
 438	dm_put_live_table(md, srcu_idx);
 439}
 440
 441static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 442			unsigned int cmd, unsigned long arg)
 443{
 444	struct mapped_device *md = bdev->bd_disk->private_data;
 445	int r, srcu_idx;
 446
 447	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 448	if (r < 0)
 449		goto out;
 450
 451	if (r > 0) {
 452		/*
 453		 * Target determined this ioctl is being issued against a
 454		 * subset of the parent bdev; require extra privileges.
 455		 */
 456		if (!capable(CAP_SYS_RAWIO)) {
 457			DMDEBUG_LIMIT(
 458	"%s: sending ioctl %x to DM device without required privilege.",
 459				current->comm, cmd);
 460			r = -ENOIOCTLCMD;
 461			goto out;
 462		}
 463	}
 464
 465	if (!bdev->bd_disk->fops->ioctl)
 466		r = -ENOTTY;
 467	else
 468		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 469out:
 470	dm_unprepare_ioctl(md, srcu_idx);
 471	return r;
 472}
 473
 474u64 dm_start_time_ns_from_clone(struct bio *bio)
 475{
 476	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 477	struct dm_io *io = tio->io;
 
 478
 479	return jiffies_to_nsecs(io->start_time);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 480}
 481EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 482
 483static void start_io_acct(struct dm_io *io)
 484{
 485	struct mapped_device *md = io->md;
 486	struct bio *bio = io->orig_bio;
 487
 488	io->start_time = bio_start_io_acct(bio);
 489	if (unlikely(dm_stats_used(&md->stats)))
 490		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 491				    bio->bi_iter.bi_sector, bio_sectors(bio),
 492				    false, 0, &io->stats_aux);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 493}
 494
 495static void end_io_acct(struct mapped_device *md, struct bio *bio,
 496			unsigned long start_time, struct dm_stats_aux *stats_aux)
 497{
 498	unsigned long duration = jiffies - start_time;
 
 499
 500	bio_end_io_acct(bio, start_time);
 
 
 
 
 
 
 501
 502	if (unlikely(dm_stats_used(&md->stats)))
 503		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 504				    bio->bi_iter.bi_sector, bio_sectors(bio),
 505				    true, duration, stats_aux);
 
 
 
 
 
 
 
 
 
 
 
 
 
 506
 507	/* nudge anyone waiting on suspend queue */
 508	if (unlikely(wq_has_sleeper(&md->wait)))
 509		wake_up(&md->wait);
 510}
 511
 512static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 513{
 514	struct dm_io *io;
 515	struct dm_target_io *tio;
 516	struct bio *clone;
 517
 518	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 519	if (!clone)
 520		return NULL;
 521
 522	tio = container_of(clone, struct dm_target_io, clone);
 523	tio->inside_dm_io = true;
 524	tio->io = NULL;
 525
 526	io = container_of(tio, struct dm_io, tio);
 527	io->magic = DM_IO_MAGIC;
 528	io->status = 0;
 529	atomic_set(&io->io_count, 1);
 
 
 
 530	io->orig_bio = bio;
 531	io->md = md;
 532	spin_lock_init(&io->endio_lock);
 533
 534	start_io_acct(io);
 
 
 
 
 
 
 535
 536	return io;
 537}
 538
 539static void free_io(struct mapped_device *md, struct dm_io *io)
 540{
 541	bio_put(&io->tio.clone);
 542}
 543
 544static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 545				      unsigned target_bio_nr, gfp_t gfp_mask)
 546{
 
 547	struct dm_target_io *tio;
 
 548
 549	if (!ci->io->tio.io) {
 550		/* the dm_target_io embedded in ci->io is available */
 551		tio = &ci->io->tio;
 
 
 552	} else {
 553		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 
 554		if (!clone)
 555			return NULL;
 556
 557		tio = container_of(clone, struct dm_target_io, clone);
 558		tio->inside_dm_io = false;
 
 
 
 559	}
 560
 561	tio->magic = DM_TIO_MAGIC;
 562	tio->io = ci->io;
 563	tio->ti = ti;
 564	tio->target_bio_nr = target_bio_nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 565
 566	return tio;
 567}
 568
 569static void free_tio(struct dm_target_io *tio)
 570{
 571	if (tio->inside_dm_io)
 572		return;
 573	bio_put(&tio->clone);
 574}
 575
 576/*
 577 * Add the bio to the list of deferred io.
 578 */
 579static void queue_io(struct mapped_device *md, struct bio *bio)
 580{
 581	unsigned long flags;
 582
 583	spin_lock_irqsave(&md->deferred_lock, flags);
 584	bio_list_add(&md->deferred, bio);
 585	spin_unlock_irqrestore(&md->deferred_lock, flags);
 586	queue_work(md->wq, &md->work);
 587}
 588
 589/*
 590 * Everyone (including functions in this file), should use this
 591 * function to access the md->map field, and make sure they call
 592 * dm_put_live_table() when finished.
 593 */
 594struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 
 595{
 596	*srcu_idx = srcu_read_lock(&md->io_barrier);
 597
 598	return srcu_dereference(md->map, &md->io_barrier);
 599}
 600
 601void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 
 602{
 603	srcu_read_unlock(&md->io_barrier, srcu_idx);
 604}
 605
 606void dm_sync_table(struct mapped_device *md)
 607{
 608	synchronize_srcu(&md->io_barrier);
 609	synchronize_rcu_expedited();
 610}
 611
 612/*
 613 * A fast alternative to dm_get_live_table/dm_put_live_table.
 614 * The caller must not block between these two functions.
 615 */
 616static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 617{
 618	rcu_read_lock();
 619	return rcu_dereference(md->map);
 620}
 621
 622static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 623{
 624	rcu_read_unlock();
 625}
 626
 627static char *_dm_claim_ptr = "I belong to device-mapper";
 628
 629/*
 630 * Open a table device so we can use it as a map destination.
 631 */
 632static int open_table_device(struct table_device *td, dev_t dev,
 633			     struct mapped_device *md)
 634{
 635	struct block_device *bdev;
 636
 
 637	int r;
 638
 639	BUG_ON(td->dm_dev.bdev);
 
 
 
 640
 641	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 642	if (IS_ERR(bdev))
 643		return PTR_ERR(bdev);
 
 
 644
 645	r = bd_link_disk_holder(bdev, dm_disk(md));
 646	if (r) {
 647		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 648		return r;
 
 
 
 
 
 649	}
 650
 651	td->dm_dev.bdev = bdev;
 652	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 653	return 0;
 
 
 
 
 
 
 
 
 
 
 
 654}
 655
 656/*
 657 * Close a table device that we've been using.
 658 */
 659static void close_table_device(struct table_device *td, struct mapped_device *md)
 660{
 661	if (!td->dm_dev.bdev)
 662		return;
 663
 664	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 665	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 666	put_dax(td->dm_dev.dax_dev);
 667	td->dm_dev.bdev = NULL;
 668	td->dm_dev.dax_dev = NULL;
 669}
 670
 671static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 672					      fmode_t mode)
 673{
 674	struct table_device *td;
 675
 676	list_for_each_entry(td, l, list)
 677		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 678			return td;
 679
 680	return NULL;
 681}
 682
 683int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 684			struct dm_dev **result)
 685{
 686	int r;
 687	struct table_device *td;
 688
 689	mutex_lock(&md->table_devices_lock);
 690	td = find_table_device(&md->table_devices, dev, mode);
 691	if (!td) {
 692		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 693		if (!td) {
 694			mutex_unlock(&md->table_devices_lock);
 695			return -ENOMEM;
 696		}
 697
 698		td->dm_dev.mode = mode;
 699		td->dm_dev.bdev = NULL;
 700
 701		if ((r = open_table_device(td, dev, md))) {
 702			mutex_unlock(&md->table_devices_lock);
 703			kfree(td);
 704			return r;
 705		}
 706
 707		format_dev_t(td->dm_dev.name, dev);
 708
 709		refcount_set(&td->count, 1);
 710		list_add(&td->list, &md->table_devices);
 711	} else {
 712		refcount_inc(&td->count);
 713	}
 714	mutex_unlock(&md->table_devices_lock);
 715
 716	*result = &td->dm_dev;
 717	return 0;
 718}
 719
 720void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 721{
 722	struct table_device *td = container_of(d, struct table_device, dm_dev);
 723
 724	mutex_lock(&md->table_devices_lock);
 725	if (refcount_dec_and_test(&td->count)) {
 726		close_table_device(td, md);
 727		list_del(&td->list);
 728		kfree(td);
 729	}
 730	mutex_unlock(&md->table_devices_lock);
 731}
 732
 733static void free_table_devices(struct list_head *devices)
 734{
 735	struct list_head *tmp, *next;
 736
 737	list_for_each_safe(tmp, next, devices) {
 738		struct table_device *td = list_entry(tmp, struct table_device, list);
 739
 740		DMWARN("dm_destroy: %s still exists with %d references",
 741		       td->dm_dev.name, refcount_read(&td->count));
 742		kfree(td);
 743	}
 744}
 745
 746/*
 747 * Get the geometry associated with a dm device
 748 */
 749int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 750{
 751	*geo = md->geometry;
 752
 753	return 0;
 754}
 755
 756/*
 757 * Set the geometry of a device.
 758 */
 759int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 760{
 761	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 762
 763	if (geo->start > sz) {
 764		DMWARN("Start sector is beyond the geometry limits.");
 765		return -EINVAL;
 766	}
 767
 768	md->geometry = *geo;
 769
 770	return 0;
 771}
 772
 773static int __noflush_suspending(struct mapped_device *md)
 774{
 775	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 776}
 777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778/*
 779 * Decrements the number of outstanding ios that a bio has been
 780 * cloned into, completing the original io if necc.
 781 */
 782void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
 783{
 784	unsigned long flags;
 785	blk_status_t io_error;
 786	struct bio *bio;
 
 787	struct mapped_device *md = io->md;
 788	unsigned long start_time = 0;
 789	struct dm_stats_aux stats_aux;
 790
 791	/* Push-back supersedes any I/O errors */
 792	if (unlikely(error)) {
 793		spin_lock_irqsave(&io->endio_lock, flags);
 794		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 795			io->status = error;
 796		spin_unlock_irqrestore(&io->endio_lock, flags);
 797	}
 798
 799	if (atomic_dec_and_test(&io->io_count)) {
 800		bio = io->orig_bio;
 801		if (io->status == BLK_STS_DM_REQUEUE) {
 802			/*
 803			 * Target requested pushing back the I/O.
 
 
 804			 */
 805			spin_lock_irqsave(&md->deferred_lock, flags);
 806			if (__noflush_suspending(md) &&
 807			    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
 808				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
 809				bio_list_add_head(&md->deferred, bio);
 810			} else {
 811				/*
 812				 * noflush suspend was interrupted or this is
 813				 * a write to a zoned target.
 814				 */
 815				io->status = BLK_STS_IOERR;
 816			}
 817			spin_unlock_irqrestore(&md->deferred_lock, flags);
 818		}
 819
 820		io_error = io->status;
 821		start_time = io->start_time;
 822		stats_aux = io->stats_aux;
 823		free_io(md, io);
 824		end_io_acct(md, bio, start_time, &stats_aux);
 825
 826		if (io_error == BLK_STS_DM_REQUEUE)
 827			return;
 828
 829		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 
 830			/*
 831			 * Preflush done for flush with data, reissue
 832			 * without REQ_PREFLUSH.
 833			 */
 834			bio->bi_opf &= ~REQ_PREFLUSH;
 835			queue_io(md, bio);
 836		} else {
 837			/* done with normal IO or empty flush */
 838			if (io_error)
 839				bio->bi_status = io_error;
 840			bio_endio(bio);
 841		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842	}
 843}
 844
 845void disable_discard(struct mapped_device *md)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846{
 847	struct queue_limits *limits = dm_get_queue_limits(md);
 
 
 
 
 848
 849	/* device doesn't really support DISCARD, disable it */
 850	limits->max_discard_sectors = 0;
 851	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
 
 
 
 
 852}
 853
 854void disable_write_same(struct mapped_device *md)
 855{
 856	struct queue_limits *limits = dm_get_queue_limits(md);
 857
 858	/* device doesn't really support WRITE SAME, disable it */
 859	limits->max_write_same_sectors = 0;
 860}
 861
 862void disable_write_zeroes(struct mapped_device *md)
 863{
 864	struct queue_limits *limits = dm_get_queue_limits(md);
 865
 866	/* device doesn't really support WRITE ZEROES, disable it */
 867	limits->max_write_zeroes_sectors = 0;
 868}
 869
 870static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
 871{
 872	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
 873}
 874
 875static void clone_endio(struct bio *bio)
 876{
 877	blk_status_t error = bio->bi_status;
 878	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 
 
 879	struct dm_io *io = tio->io;
 880	struct mapped_device *md = tio->io->md;
 881	dm_endio_fn endio = tio->ti->type->end_io;
 882	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
 883
 884	if (unlikely(error == BLK_STS_TARGET)) {
 885		if (bio_op(bio) == REQ_OP_DISCARD &&
 886		    !q->limits.max_discard_sectors)
 887			disable_discard(md);
 888		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 889			 !q->limits.max_write_same_sectors)
 890			disable_write_same(md);
 891		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 892			 !q->limits.max_write_zeroes_sectors)
 893			disable_write_zeroes(md);
 894	}
 895
 896	if (blk_queue_is_zoned(q))
 
 897		dm_zone_endio(io, bio);
 898
 899	if (endio) {
 900		int r = endio(tio->ti, bio, &error);
 
 901		switch (r) {
 902		case DM_ENDIO_REQUEUE:
 903			/*
 904			 * Requeuing writes to a sequential zone of a zoned
 905			 * target will break the sequential write pattern:
 906			 * fail such IO.
 907			 */
 908			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
 909				error = BLK_STS_IOERR;
 910			else
 
 
 
 911				error = BLK_STS_DM_REQUEUE;
 912			fallthrough;
 913		case DM_ENDIO_DONE:
 914			break;
 915		case DM_ENDIO_INCOMPLETE:
 916			/* The target will handle the io */
 917			return;
 918		default:
 919			DMWARN("unimplemented target endio return value: %d", r);
 920			BUG();
 921		}
 922	}
 923
 924	if (unlikely(swap_bios_limit(tio->ti, bio))) {
 925		struct mapped_device *md = io->md;
 926		up(&md->swap_bios_semaphore);
 927	}
 928
 929	free_tio(tio);
 930	dm_io_dec_pending(io, error);
 931}
 932
 933/*
 934 * Return maximum size of I/O possible at the supplied sector up to the current
 935 * target boundary.
 936 */
 937static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
 938						  sector_t target_offset)
 939{
 940	return ti->len - target_offset;
 941}
 942
 943static sector_t max_io_len(struct dm_target *ti, sector_t sector)
 
 
 944{
 945	sector_t target_offset = dm_target_offset(ti, sector);
 946	sector_t len = max_io_len_target_boundary(ti, target_offset);
 947	sector_t max_len;
 948
 949	/*
 950	 * Does the target need to split IO even further?
 951	 * - varied (per target) IO splitting is a tenet of DM; this
 952	 *   explains why stacked chunk_sectors based splitting via
 953	 *   blk_max_size_offset() isn't possible here. So pass in
 954	 *   ti->max_io_len to override stacked chunk_sectors.
 955	 */
 956	if (ti->max_io_len) {
 957		max_len = blk_max_size_offset(ti->table->md->queue,
 958					      target_offset, ti->max_io_len);
 959		if (len > max_len)
 960			len = max_len;
 961	}
 962
 963	return len;
 
 
 964}
 965
 966int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 967{
 968	if (len > UINT_MAX) {
 969		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
 970		      (unsigned long long)len, UINT_MAX);
 971		ti->error = "Maximum size of target IO is too large";
 972		return -EINVAL;
 973	}
 974
 975	ti->max_io_len = (uint32_t) len;
 976
 977	return 0;
 978}
 979EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
 980
 981static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
 982						sector_t sector, int *srcu_idx)
 983	__acquires(md->io_barrier)
 984{
 985	struct dm_table *map;
 986	struct dm_target *ti;
 987
 988	map = dm_get_live_table(md, srcu_idx);
 989	if (!map)
 990		return NULL;
 991
 992	ti = dm_table_find_target(map, sector);
 993	if (!ti)
 994		return NULL;
 995
 996	return ti;
 997}
 998
 999static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1000				 long nr_pages, void **kaddr, pfn_t *pfn)
 
1001{
1002	struct mapped_device *md = dax_get_private(dax_dev);
1003	sector_t sector = pgoff * PAGE_SECTORS;
1004	struct dm_target *ti;
1005	long len, ret = -EIO;
1006	int srcu_idx;
1007
1008	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1009
1010	if (!ti)
1011		goto out;
1012	if (!ti->type->direct_access)
1013		goto out;
1014	len = max_io_len(ti, sector) / PAGE_SECTORS;
1015	if (len < 1)
1016		goto out;
1017	nr_pages = min(len, nr_pages);
1018	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1019
1020 out:
1021	dm_put_live_table(md, srcu_idx);
1022
1023	return ret;
1024}
1025
1026static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1027		int blocksize, sector_t start, sector_t len)
1028{
1029	struct mapped_device *md = dax_get_private(dax_dev);
1030	struct dm_table *map;
1031	bool ret = false;
1032	int srcu_idx;
1033
1034	map = dm_get_live_table(md, &srcu_idx);
1035	if (!map)
1036		goto out;
1037
1038	ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1039
1040out:
1041	dm_put_live_table(md, srcu_idx);
1042
1043	return ret;
1044}
1045
1046static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1047				    void *addr, size_t bytes, struct iov_iter *i)
1048{
1049	struct mapped_device *md = dax_get_private(dax_dev);
1050	sector_t sector = pgoff * PAGE_SECTORS;
1051	struct dm_target *ti;
1052	long ret = 0;
1053	int srcu_idx;
1054
1055	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1056
1057	if (!ti)
1058		goto out;
1059	if (!ti->type->dax_copy_from_iter) {
1060		ret = copy_from_iter(addr, bytes, i);
 
 
 
1061		goto out;
1062	}
1063	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1064 out:
1065	dm_put_live_table(md, srcu_idx);
1066
1067	return ret;
1068}
1069
1070static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1071		void *addr, size_t bytes, struct iov_iter *i)
1072{
1073	struct mapped_device *md = dax_get_private(dax_dev);
1074	sector_t sector = pgoff * PAGE_SECTORS;
1075	struct dm_target *ti;
 
1076	long ret = 0;
1077	int srcu_idx;
1078
1079	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1080
1081	if (!ti)
1082		goto out;
1083	if (!ti->type->dax_copy_to_iter) {
1084		ret = copy_to_iter(addr, bytes, i);
1085		goto out;
1086	}
1087	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1088 out:
1089	dm_put_live_table(md, srcu_idx);
1090
1091	return ret;
1092}
1093
1094static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1095				  size_t nr_pages)
1096{
1097	struct mapped_device *md = dax_get_private(dax_dev);
1098	sector_t sector = pgoff * PAGE_SECTORS;
1099	struct dm_target *ti;
1100	int ret = -EIO;
1101	int srcu_idx;
1102
1103	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1104
1105	if (!ti)
1106		goto out;
1107	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1108		/*
1109		 * ->zero_page_range() is mandatory dax operation. If we are
1110		 *  here, something is wrong.
1111		 */
1112		goto out;
1113	}
1114	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1115 out:
1116	dm_put_live_table(md, srcu_idx);
1117
1118	return ret;
1119}
1120
1121/*
1122 * A target may call dm_accept_partial_bio only from the map routine.  It is
1123 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1124 * operations and REQ_OP_ZONE_APPEND (zone append writes).
 
1125 *
1126 * dm_accept_partial_bio informs the dm that the target only wants to process
1127 * additional n_sectors sectors of the bio and the rest of the data should be
1128 * sent in a next bio.
1129 *
1130 * A diagram that explains the arithmetics:
1131 * +--------------------+---------------+-------+
1132 * |         1          |       2       |   3   |
1133 * +--------------------+---------------+-------+
1134 *
1135 * <-------------- *tio->len_ptr --------------->
1136 *                      <------- bi_size ------->
1137 *                      <-- n_sectors -->
1138 *
1139 * Region 1 was already iterated over with bio_advance or similar function.
1140 *	(it may be empty if the target doesn't use bio_advance)
1141 * Region 2 is the remaining bio size that the target wants to process.
1142 *	(it may be empty if region 1 is non-empty, although there is no reason
1143 *	 to make it empty)
1144 * The target requires that region 3 is to be sent in the next bio.
1145 *
1146 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1147 * the partially processed part (the sum of regions 1+2) must be the same for all
1148 * copies of the bio.
1149 */
1150void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1151{
1152	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1153	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
 
1154
1155	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1156	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1157	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1158	BUG_ON(bi_size > *tio->len_ptr);
1159	BUG_ON(n_sectors > bi_size);
1160
1161	*tio->len_ptr -= bi_size - n_sectors;
1162	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
 
 
 
 
 
 
 
 
1163}
1164EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1166static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1167{
1168	mutex_lock(&md->swap_bios_lock);
1169	while (latch < md->swap_bios) {
1170		cond_resched();
1171		down(&md->swap_bios_semaphore);
1172		md->swap_bios--;
1173	}
1174	while (latch > md->swap_bios) {
1175		cond_resched();
1176		up(&md->swap_bios_semaphore);
1177		md->swap_bios++;
1178	}
1179	mutex_unlock(&md->swap_bios_lock);
1180}
1181
1182static blk_qc_t __map_bio(struct dm_target_io *tio)
1183{
 
 
 
 
1184	int r;
1185	sector_t sector;
1186	struct bio *clone = &tio->clone;
1187	struct dm_io *io = tio->io;
1188	struct dm_target *ti = tio->ti;
1189	blk_qc_t ret = BLK_QC_T_NONE;
1190
1191	clone->bi_end_io = clone_endio;
1192
1193	/*
1194	 * Map the clone.  If r == 0 we don't need to do
1195	 * anything, the target has assumed ownership of
1196	 * this io.
1197	 */
1198	dm_io_inc_pending(io);
1199	sector = clone->bi_iter.bi_sector;
1200
1201	if (unlikely(swap_bios_limit(ti, clone))) {
1202		struct mapped_device *md = io->md;
1203		int latch = get_swap_bios();
 
1204		if (unlikely(latch != md->swap_bios))
1205			__set_swap_bios_limit(md, latch);
1206		down(&md->swap_bios_semaphore);
1207	}
1208
1209	/*
1210	 * Check if the IO needs a special mapping due to zone append emulation
1211	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1212	 * map operation.
1213	 */
1214	if (dm_emulate_zone_append(io->md))
1215		r = dm_zone_map_bio(tio);
1216	else
1217		r = ti->type->map(ti, clone);
 
 
 
 
 
 
 
 
 
 
1218
1219	switch (r) {
1220	case DM_MAPIO_SUBMITTED:
 
 
 
1221		break;
1222	case DM_MAPIO_REMAPPED:
1223		/* the bio has been remapped so dispatch it */
1224		trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1225		ret = submit_bio_noacct(clone);
1226		break;
1227	case DM_MAPIO_KILL:
1228		if (unlikely(swap_bios_limit(ti, clone))) {
1229			struct mapped_device *md = io->md;
1230			up(&md->swap_bios_semaphore);
1231		}
1232		free_tio(tio);
1233		dm_io_dec_pending(io, BLK_STS_IOERR);
1234		break;
1235	case DM_MAPIO_REQUEUE:
1236		if (unlikely(swap_bios_limit(ti, clone))) {
1237			struct mapped_device *md = io->md;
1238			up(&md->swap_bios_semaphore);
1239		}
1240		free_tio(tio);
1241		dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
 
 
1242		break;
1243	default:
1244		DMWARN("unimplemented target map return value: %d", r);
1245		BUG();
1246	}
1247
1248	return ret;
1249}
1250
1251static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1252{
1253	bio->bi_iter.bi_sector = sector;
1254	bio->bi_iter.bi_size = to_bytes(len);
1255}
1256
1257/*
1258 * Creates a bio that consists of range of complete bvecs.
1259 */
1260static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1261		     sector_t sector, unsigned len)
1262{
1263	struct bio *clone = &tio->clone;
1264	int r;
1265
1266	__bio_clone_fast(clone, bio);
1267
1268	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1269	if (r < 0)
1270		return r;
1271
1272	if (bio_integrity(bio)) {
1273		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1274			     !dm_target_passes_integrity(tio->ti->type))) {
1275			DMWARN("%s: the target %s doesn't support integrity data.",
1276				dm_device_name(tio->io->md),
1277				tio->ti->type->name);
1278			return -EIO;
1279		}
1280
1281		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1282		if (r < 0)
1283			return r;
1284	}
1285
1286	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1287	clone->bi_iter.bi_size = to_bytes(len);
1288
1289	if (bio_integrity(bio))
1290		bio_integrity_trim(clone);
1291
1292	return 0;
1293}
1294
1295static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1296				struct dm_target *ti, unsigned num_bios)
 
1297{
1298	struct dm_target_io *tio;
1299	int try;
1300
1301	if (!num_bios)
1302		return;
1303
1304	if (num_bios == 1) {
1305		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1306		bio_list_add(blist, &tio->clone);
1307		return;
1308	}
1309
1310	for (try = 0; try < 2; try++) {
1311		int bio_nr;
1312		struct bio *bio;
1313
1314		if (try)
1315			mutex_lock(&ci->io->md->table_devices_lock);
1316		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1317			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1318			if (!tio)
 
1319				break;
1320
1321			bio_list_add(blist, &tio->clone);
1322		}
1323		if (try)
1324			mutex_unlock(&ci->io->md->table_devices_lock);
1325		if (bio_nr == num_bios)
1326			return;
1327
1328		while ((bio = bio_list_pop(blist))) {
1329			tio = container_of(bio, struct dm_target_io, clone);
1330			free_tio(tio);
1331		}
1332	}
1333}
1334
1335static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1336					   struct dm_target_io *tio, unsigned *len)
 
1337{
1338	struct bio *clone = &tio->clone;
 
 
1339
1340	tio->len_ptr = len;
 
1341
1342	__bio_clone_fast(clone, ci->bio);
1343	if (len)
1344		bio_setup_sector(clone, ci->sector, *len);
1345
1346	return __map_bio(tio);
1347}
 
 
 
 
 
 
 
 
 
1348
1349static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1350				  unsigned num_bios, unsigned *len)
1351{
1352	struct bio_list blist = BIO_EMPTY_LIST;
1353	struct bio *bio;
1354	struct dm_target_io *tio;
1355
1356	alloc_multiple_bios(&blist, ci, ti, num_bios);
1357
1358	while ((bio = bio_list_pop(&blist))) {
1359		tio = container_of(bio, struct dm_target_io, clone);
1360		(void) __clone_and_map_simple_bio(ci, tio, len);
1361	}
1362}
1363
1364static int __send_empty_flush(struct clone_info *ci)
1365{
1366	unsigned target_nr = 0;
1367	struct dm_target *ti;
1368	struct bio flush_bio;
1369
1370	/*
1371	 * Use an on-stack bio for this, it's safe since we don't
1372	 * need to reference it after submit. It's just used as
1373	 * the basis for the clone(s).
1374	 */
1375	bio_init(&flush_bio, NULL, 0);
1376	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1377	bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1378
1379	ci->bio = &flush_bio;
1380	ci->sector_count = 0;
 
1381
1382	BUG_ON(bio_has_data(ci->bio));
1383	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1384		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1385
1386	bio_uninit(ci->bio);
1387	return 0;
1388}
1389
1390static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1391				    sector_t sector, unsigned *len)
1392{
1393	struct bio *bio = ci->bio;
1394	struct dm_target_io *tio;
1395	int r;
1396
1397	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1398	tio->len_ptr = len;
1399	r = clone_bio(tio, bio, sector, *len);
1400	if (r < 0) {
1401		free_tio(tio);
1402		return r;
1403	}
1404	(void) __map_bio(tio);
1405
1406	return 0;
1407}
1408
1409static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1410				       unsigned num_bios)
 
1411{
1412	unsigned len;
 
 
 
1413
 
 
1414	/*
1415	 * Even though the device advertised support for this type of
1416	 * request, that does not mean every target supports it, and
1417	 * reconfiguration might also have changed that since the
1418	 * check was performed.
1419	 */
1420	if (!num_bios)
1421		return -EOPNOTSUPP;
1422
1423	len = min_t(sector_t, ci->sector_count,
1424		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1425
1426	__send_duplicate_bios(ci, ti, num_bios, &len);
1427
1428	ci->sector += len;
1429	ci->sector_count -= len;
1430
1431	return 0;
1432}
1433
1434static bool is_abnormal_io(struct bio *bio)
1435{
1436	bool r = false;
1437
1438	switch (bio_op(bio)) {
1439	case REQ_OP_DISCARD:
1440	case REQ_OP_SECURE_ERASE:
1441	case REQ_OP_WRITE_SAME:
1442	case REQ_OP_WRITE_ZEROES:
1443		r = true;
1444		break;
 
 
1445	}
1446
1447	return r;
1448}
1449
1450static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1451				  int *result)
1452{
1453	struct bio *bio = ci->bio;
1454	unsigned num_bios = 0;
 
 
1455
1456	switch (bio_op(bio)) {
1457	case REQ_OP_DISCARD:
1458		num_bios = ti->num_discard_bios;
 
 
 
1459		break;
1460	case REQ_OP_SECURE_ERASE:
1461		num_bios = ti->num_secure_erase_bios;
1462		break;
1463	case REQ_OP_WRITE_SAME:
1464		num_bios = ti->num_write_same_bios;
1465		break;
1466	case REQ_OP_WRITE_ZEROES:
1467		num_bios = ti->num_write_zeroes_bios;
 
 
 
1468		break;
1469	default:
1470		return false;
1471	}
1472
1473	*result = __send_changing_extent_only(ci, ti, num_bios);
1474	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1475}
1476
1477/*
1478 * Select the correct strategy for processing a non-flush bio.
1479 */
1480static int __split_and_process_non_flush(struct clone_info *ci)
1481{
 
1482	struct dm_target *ti;
1483	unsigned len;
1484	int r;
1485
1486	ti = dm_table_find_target(ci->map, ci->sector);
1487	if (!ti)
1488		return -EIO;
 
 
 
1489
1490	if (__process_abnormal_io(ci, ti, &r))
1491		return r;
 
 
 
1492
1493	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
 
1494
1495	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1496	if (r < 0)
1497		return r;
 
 
 
 
 
 
 
 
1498
1499	ci->sector += len;
1500	ci->sector_count -= len;
1501
1502	return 0;
1503}
1504
1505static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1506			    struct dm_table *map, struct bio *bio)
1507{
1508	ci->map = map;
1509	ci->io = alloc_io(md, bio);
 
 
 
1510	ci->sector = bio->bi_iter.bi_sector;
 
 
 
 
 
 
1511}
1512
1513#define __dm_part_stat_sub(part, field, subnd)	\
1514	(part_stat_get(part, field) -= (subnd))
1515
1516/*
1517 * Entry point to split a bio into clones and submit them to the targets.
1518 */
1519static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1520					struct dm_table *map, struct bio *bio)
1521{
1522	struct clone_info ci;
1523	blk_qc_t ret = BLK_QC_T_NONE;
1524	int error = 0;
 
1525
1526	init_clone_info(&ci, md, map, bio);
 
 
 
 
 
 
 
 
 
1527
1528	if (bio->bi_opf & REQ_PREFLUSH) {
1529		error = __send_empty_flush(&ci);
1530		/* dm_io_dec_pending submits any data associated with flush */
1531	} else if (op_is_zone_mgmt(bio_op(bio))) {
1532		ci.bio = bio;
1533		ci.sector_count = 0;
1534		error = __split_and_process_non_flush(&ci);
 
1535	} else {
1536		ci.bio = bio;
1537		ci.sector_count = bio_sectors(bio);
1538		error = __split_and_process_non_flush(&ci);
1539		if (ci.sector_count && !error) {
1540			/*
1541			 * Remainder must be passed to submit_bio_noacct()
1542			 * so that it gets handled *after* bios already submitted
1543			 * have been completely processed.
1544			 * We take a clone of the original to store in
1545			 * ci.io->orig_bio to be used by end_io_acct() and
1546			 * for dec_pending to use for completion handling.
1547			 */
1548			struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1549						  GFP_NOIO, &md->queue->bio_split);
1550			ci.io->orig_bio = b;
1551
1552			/*
1553			 * Adjust IO stats for each split, otherwise upon queue
1554			 * reentry there will be redundant IO accounting.
1555			 * NOTE: this is a stop-gap fix, a proper fix involves
1556			 * significant refactoring of DM core's bio splitting
1557			 * (by eliminating DM's splitting and just using bio_split)
1558			 */
1559			part_stat_lock();
1560			__dm_part_stat_sub(dm_disk(md)->part0,
1561					   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1562			part_stat_unlock();
1563
1564			bio_chain(b, bio);
1565			trace_block_split(b, bio->bi_iter.bi_sector);
1566			ret = submit_bio_noacct(bio);
1567		}
1568	}
1569
1570	/* drop the extra reference count */
1571	dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1572	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573}
1574
1575static blk_qc_t dm_submit_bio(struct bio *bio)
1576{
1577	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1578	blk_qc_t ret = BLK_QC_T_NONE;
1579	int srcu_idx;
1580	struct dm_table *map;
1581
1582	map = dm_get_live_table(md, &srcu_idx);
1583	if (unlikely(!map)) {
1584		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1585			    dm_device_name(md));
1586		bio_io_error(bio);
1587		goto out;
1588	}
1589
1590	/* If suspended, queue this IO for later */
1591	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
 
1592		if (bio->bi_opf & REQ_NOWAIT)
1593			bio_wouldblock_error(bio);
1594		else if (bio->bi_opf & REQ_RAHEAD)
1595			bio_io_error(bio);
1596		else
1597			queue_io(md, bio);
1598		goto out;
1599	}
1600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1601	/*
1602	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1603	 * otherwise associated queue_limits won't be imposed.
1604	 */
1605	if (is_abnormal_io(bio))
1606		blk_queue_split(&bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1607
1608	ret = __split_and_process_bio(md, map, bio);
1609out:
1610	dm_put_live_table(md, srcu_idx);
1611	return ret;
 
 
 
 
1612}
1613
1614/*-----------------------------------------------------------------
 
1615 * An IDR is used to keep track of allocated minor numbers.
1616 *---------------------------------------------------------------*/
 
1617static void free_minor(int minor)
1618{
1619	spin_lock(&_minor_lock);
1620	idr_remove(&_minor_idr, minor);
1621	spin_unlock(&_minor_lock);
1622}
1623
1624/*
1625 * See if the device with a specific minor # is free.
1626 */
1627static int specific_minor(int minor)
1628{
1629	int r;
1630
1631	if (minor >= (1 << MINORBITS))
1632		return -EINVAL;
1633
1634	idr_preload(GFP_KERNEL);
1635	spin_lock(&_minor_lock);
1636
1637	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1638
1639	spin_unlock(&_minor_lock);
1640	idr_preload_end();
1641	if (r < 0)
1642		return r == -ENOSPC ? -EBUSY : r;
1643	return 0;
1644}
1645
1646static int next_free_minor(int *minor)
1647{
1648	int r;
1649
1650	idr_preload(GFP_KERNEL);
1651	spin_lock(&_minor_lock);
1652
1653	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1654
1655	spin_unlock(&_minor_lock);
1656	idr_preload_end();
1657	if (r < 0)
1658		return r;
1659	*minor = r;
1660	return 0;
1661}
1662
1663static const struct block_device_operations dm_blk_dops;
1664static const struct block_device_operations dm_rq_blk_dops;
1665static const struct dax_operations dm_dax_ops;
1666
1667static void dm_wq_work(struct work_struct *work);
1668
1669#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1670static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1671{
1672	dm_destroy_keyslot_manager(q->ksm);
1673}
1674
1675#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1676
1677static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1678{
1679}
1680#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1681
1682static void cleanup_mapped_device(struct mapped_device *md)
1683{
1684	if (md->wq)
1685		destroy_workqueue(md->wq);
1686	bioset_exit(&md->bs);
1687	bioset_exit(&md->io_bs);
1688
1689	if (md->dax_dev) {
 
1690		kill_dax(md->dax_dev);
1691		put_dax(md->dax_dev);
1692		md->dax_dev = NULL;
1693	}
1694
 
1695	if (md->disk) {
1696		spin_lock(&_minor_lock);
1697		md->disk->private_data = NULL;
1698		spin_unlock(&_minor_lock);
1699		del_gendisk(md->disk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1700	}
1701
1702	if (md->queue)
1703		dm_queue_destroy_keyslot_manager(md->queue);
1704
1705	if (md->disk)
1706		blk_cleanup_disk(md->disk);
1707
1708	cleanup_srcu_struct(&md->io_barrier);
1709
1710	mutex_destroy(&md->suspend_lock);
1711	mutex_destroy(&md->type_lock);
1712	mutex_destroy(&md->table_devices_lock);
1713	mutex_destroy(&md->swap_bios_lock);
1714
1715	dm_mq_cleanup_mapped_device(md);
1716	dm_cleanup_zoned_dev(md);
1717}
1718
1719/*
1720 * Allocate and initialise a blank device with a given minor.
1721 */
1722static struct mapped_device *alloc_dev(int minor)
1723{
1724	int r, numa_node_id = dm_get_numa_node();
1725	struct mapped_device *md;
1726	void *old_md;
1727
1728	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1729	if (!md) {
1730		DMWARN("unable to allocate device, out of memory.");
1731		return NULL;
1732	}
1733
1734	if (!try_module_get(THIS_MODULE))
1735		goto bad_module_get;
1736
1737	/* get a minor number for the dev */
1738	if (minor == DM_ANY_MINOR)
1739		r = next_free_minor(&minor);
1740	else
1741		r = specific_minor(minor);
1742	if (r < 0)
1743		goto bad_minor;
1744
1745	r = init_srcu_struct(&md->io_barrier);
1746	if (r < 0)
1747		goto bad_io_barrier;
1748
1749	md->numa_node_id = numa_node_id;
1750	md->init_tio_pdu = false;
1751	md->type = DM_TYPE_NONE;
1752	mutex_init(&md->suspend_lock);
1753	mutex_init(&md->type_lock);
1754	mutex_init(&md->table_devices_lock);
1755	spin_lock_init(&md->deferred_lock);
1756	atomic_set(&md->holders, 1);
1757	atomic_set(&md->open_count, 0);
1758	atomic_set(&md->event_nr, 0);
1759	atomic_set(&md->uevent_seq, 0);
1760	INIT_LIST_HEAD(&md->uevent_list);
1761	INIT_LIST_HEAD(&md->table_devices);
1762	spin_lock_init(&md->uevent_lock);
1763
1764	/*
1765	 * default to bio-based until DM table is loaded and md->type
1766	 * established. If request-based table is loaded: blk-mq will
1767	 * override accordingly.
1768	 */
1769	md->disk = blk_alloc_disk(md->numa_node_id);
1770	if (!md->disk)
1771		goto bad;
1772	md->queue = md->disk->queue;
1773
1774	init_waitqueue_head(&md->wait);
1775	INIT_WORK(&md->work, dm_wq_work);
 
1776	init_waitqueue_head(&md->eventq);
1777	init_completion(&md->kobj_holder.completion);
1778
 
1779	md->swap_bios = get_swap_bios();
1780	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1781	mutex_init(&md->swap_bios_lock);
1782
1783	md->disk->major = _major;
1784	md->disk->first_minor = minor;
1785	md->disk->minors = 1;
 
1786	md->disk->fops = &dm_blk_dops;
1787	md->disk->queue = md->queue;
1788	md->disk->private_data = md;
1789	sprintf(md->disk->disk_name, "dm-%d", minor);
1790
1791	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1792		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1793					&dm_dax_ops, 0);
1794		if (IS_ERR(md->dax_dev))
 
 
 
 
 
1795			goto bad;
1796	}
1797
1798	add_disk_no_queue_reg(md->disk);
1799	format_dev_t(md->name, MKDEV(_major, minor));
1800
1801	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1802	if (!md->wq)
1803		goto bad;
1804
1805	dm_stats_init(&md->stats);
 
 
 
 
 
 
1806
1807	/* Populate the mapping, nobody knows we exist yet */
1808	spin_lock(&_minor_lock);
1809	old_md = idr_replace(&_minor_idr, md, minor);
1810	spin_unlock(&_minor_lock);
1811
1812	BUG_ON(old_md != MINOR_ALLOCED);
1813
1814	return md;
1815
1816bad:
1817	cleanup_mapped_device(md);
1818bad_io_barrier:
1819	free_minor(minor);
1820bad_minor:
1821	module_put(THIS_MODULE);
1822bad_module_get:
1823	kvfree(md);
1824	return NULL;
1825}
1826
1827static void unlock_fs(struct mapped_device *md);
1828
1829static void free_dev(struct mapped_device *md)
1830{
1831	int minor = MINOR(disk_devt(md->disk));
1832
1833	unlock_fs(md);
1834
1835	cleanup_mapped_device(md);
1836
1837	free_table_devices(&md->table_devices);
1838	dm_stats_cleanup(&md->stats);
1839	free_minor(minor);
1840
1841	module_put(THIS_MODULE);
1842	kvfree(md);
1843}
1844
1845static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1846{
1847	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1848	int ret = 0;
1849
1850	if (dm_table_bio_based(t)) {
1851		/*
1852		 * The md may already have mempools that need changing.
1853		 * If so, reload bioset because front_pad may have changed
1854		 * because a different table was loaded.
1855		 */
1856		bioset_exit(&md->bs);
1857		bioset_exit(&md->io_bs);
1858
1859	} else if (bioset_initialized(&md->bs)) {
1860		/*
1861		 * There's no need to reload with request-based dm
1862		 * because the size of front_pad doesn't change.
1863		 * Note for future: If you are to reload bioset,
1864		 * prep-ed requests in the queue may refer
1865		 * to bio from the old bioset, so you must walk
1866		 * through the queue to unprep.
1867		 */
1868		goto out;
1869	}
1870
1871	BUG_ON(!p ||
1872	       bioset_initialized(&md->bs) ||
1873	       bioset_initialized(&md->io_bs));
1874
1875	ret = bioset_init_from_src(&md->bs, &p->bs);
1876	if (ret)
1877		goto out;
1878	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1879	if (ret)
1880		bioset_exit(&md->bs);
1881out:
1882	/* mempool bind completed, no longer need any mempools in the table */
1883	dm_table_free_md_mempools(t);
1884	return ret;
1885}
1886
1887/*
1888 * Bind a table to the device.
1889 */
1890static void event_callback(void *context)
1891{
1892	unsigned long flags;
1893	LIST_HEAD(uevents);
1894	struct mapped_device *md = (struct mapped_device *) context;
1895
1896	spin_lock_irqsave(&md->uevent_lock, flags);
1897	list_splice_init(&md->uevent_list, &uevents);
1898	spin_unlock_irqrestore(&md->uevent_lock, flags);
1899
1900	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1901
1902	atomic_inc(&md->event_nr);
1903	wake_up(&md->eventq);
1904	dm_issue_global_event();
1905}
1906
1907/*
1908 * Returns old map, which caller must destroy.
1909 */
1910static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1911			       struct queue_limits *limits)
1912{
1913	struct dm_table *old_map;
1914	struct request_queue *q = md->queue;
1915	bool request_based = dm_table_request_based(t);
1916	sector_t size;
1917	int ret;
1918
1919	lockdep_assert_held(&md->suspend_lock);
1920
1921	size = dm_table_get_size(t);
1922
1923	/*
1924	 * Wipe any geometry if the size of the table changed.
1925	 */
1926	if (size != dm_get_size(md))
1927		memset(&md->geometry, 0, sizeof(md->geometry));
1928
1929	if (!get_capacity(md->disk))
1930		set_capacity(md->disk, size);
1931	else
1932		set_capacity_and_notify(md->disk, size);
1933
1934	dm_table_event_callback(t, event_callback, md);
1935
1936	/*
1937	 * The queue hasn't been stopped yet, if the old table type wasn't
1938	 * for request-based during suspension.  So stop it to prevent
1939	 * I/O mapping before resume.
1940	 * This must be done before setting the queue restrictions,
1941	 * because request-based dm may be run just after the setting.
1942	 */
1943	if (request_based)
1944		dm_stop_queue(q);
1945
1946	if (request_based) {
1947		/*
1948		 * Leverage the fact that request-based DM targets are
1949		 * immutable singletons - used to optimize dm_mq_queue_rq.
1950		 */
1951		md->immutable_target = dm_table_get_immutable_target(t);
1952	}
1953
1954	ret = __bind_mempools(md, t);
1955	if (ret) {
1956		old_map = ERR_PTR(ret);
1957		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1958	}
1959
1960	ret = dm_table_set_restrictions(t, q, limits);
1961	if (ret) {
1962		old_map = ERR_PTR(ret);
1963		goto out;
1964	}
1965
1966	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1967	rcu_assign_pointer(md->map, (void *)t);
1968	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1969
1970	if (old_map)
1971		dm_sync_table(md);
1972
1973out:
1974	return old_map;
1975}
1976
1977/*
1978 * Returns unbound table for the caller to free.
1979 */
1980static struct dm_table *__unbind(struct mapped_device *md)
1981{
1982	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1983
1984	if (!map)
1985		return NULL;
1986
1987	dm_table_event_callback(map, NULL, NULL);
1988	RCU_INIT_POINTER(md->map, NULL);
1989	dm_sync_table(md);
1990
1991	return map;
1992}
1993
1994/*
1995 * Constructor for a new device.
1996 */
1997int dm_create(int minor, struct mapped_device **result)
1998{
1999	int r;
2000	struct mapped_device *md;
2001
2002	md = alloc_dev(minor);
2003	if (!md)
2004		return -ENXIO;
2005
2006	r = dm_sysfs_init(md);
2007	if (r) {
2008		free_dev(md);
2009		return r;
2010	}
2011
2012	*result = md;
2013	return 0;
2014}
2015
2016/*
2017 * Functions to manage md->type.
2018 * All are required to hold md->type_lock.
2019 */
2020void dm_lock_md_type(struct mapped_device *md)
2021{
2022	mutex_lock(&md->type_lock);
2023}
2024
2025void dm_unlock_md_type(struct mapped_device *md)
2026{
2027	mutex_unlock(&md->type_lock);
2028}
2029
2030void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2031{
2032	BUG_ON(!mutex_is_locked(&md->type_lock));
2033	md->type = type;
2034}
2035
2036enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2037{
2038	return md->type;
2039}
2040
2041struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2042{
2043	return md->immutable_target_type;
2044}
2045
2046/*
2047 * The queue_limits are only valid as long as you have a reference
2048 * count on 'md'.
2049 */
2050struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2051{
2052	BUG_ON(!atomic_read(&md->holders));
2053	return &md->queue->limits;
2054}
2055EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2056
2057/*
2058 * Setup the DM device's queue based on md's type
2059 */
2060int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2061{
 
 
 
2062	int r;
2063	struct queue_limits limits;
2064	enum dm_queue_mode type = dm_get_md_type(md);
2065
2066	switch (type) {
2067	case DM_TYPE_REQUEST_BASED:
2068		md->disk->fops = &dm_rq_blk_dops;
2069		r = dm_mq_init_request_queue(md, t);
2070		if (r) {
2071			DMERR("Cannot initialize queue for request-based dm mapped device");
2072			return r;
2073		}
2074		break;
2075	case DM_TYPE_BIO_BASED:
2076	case DM_TYPE_DAX_BIO_BASED:
 
2077		break;
2078	case DM_TYPE_NONE:
2079		WARN_ON_ONCE(true);
2080		break;
2081	}
2082
2083	r = dm_calculate_queue_limits(t, &limits);
2084	if (r) {
2085		DMERR("Cannot calculate initial queue limits");
2086		return r;
2087	}
2088	r = dm_table_set_restrictions(t, md->queue, &limits);
2089	if (r)
2090		return r;
2091
2092	blk_register_queue(md->disk);
 
 
 
 
 
 
 
 
2093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2094	return 0;
 
 
 
 
 
 
 
 
2095}
2096
2097struct mapped_device *dm_get_md(dev_t dev)
2098{
2099	struct mapped_device *md;
2100	unsigned minor = MINOR(dev);
2101
2102	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2103		return NULL;
2104
2105	spin_lock(&_minor_lock);
2106
2107	md = idr_find(&_minor_idr, minor);
2108	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2109	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2110		md = NULL;
2111		goto out;
2112	}
2113	dm_get(md);
2114out:
2115	spin_unlock(&_minor_lock);
2116
2117	return md;
2118}
2119EXPORT_SYMBOL_GPL(dm_get_md);
2120
2121void *dm_get_mdptr(struct mapped_device *md)
2122{
2123	return md->interface_ptr;
2124}
2125
2126void dm_set_mdptr(struct mapped_device *md, void *ptr)
2127{
2128	md->interface_ptr = ptr;
2129}
2130
2131void dm_get(struct mapped_device *md)
2132{
2133	atomic_inc(&md->holders);
2134	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2135}
2136
2137int dm_hold(struct mapped_device *md)
2138{
2139	spin_lock(&_minor_lock);
2140	if (test_bit(DMF_FREEING, &md->flags)) {
2141		spin_unlock(&_minor_lock);
2142		return -EBUSY;
2143	}
2144	dm_get(md);
2145	spin_unlock(&_minor_lock);
2146	return 0;
2147}
2148EXPORT_SYMBOL_GPL(dm_hold);
2149
2150const char *dm_device_name(struct mapped_device *md)
2151{
2152	return md->name;
2153}
2154EXPORT_SYMBOL_GPL(dm_device_name);
2155
2156static void __dm_destroy(struct mapped_device *md, bool wait)
2157{
2158	struct dm_table *map;
2159	int srcu_idx;
2160
2161	might_sleep();
2162
2163	spin_lock(&_minor_lock);
2164	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2165	set_bit(DMF_FREEING, &md->flags);
2166	spin_unlock(&_minor_lock);
2167
2168	blk_set_queue_dying(md->queue);
2169
2170	/*
2171	 * Take suspend_lock so that presuspend and postsuspend methods
2172	 * do not race with internal suspend.
2173	 */
2174	mutex_lock(&md->suspend_lock);
2175	map = dm_get_live_table(md, &srcu_idx);
2176	if (!dm_suspended_md(md)) {
2177		dm_table_presuspend_targets(map);
2178		set_bit(DMF_SUSPENDED, &md->flags);
2179		set_bit(DMF_POST_SUSPENDING, &md->flags);
2180		dm_table_postsuspend_targets(map);
2181	}
2182	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2183	dm_put_live_table(md, srcu_idx);
2184	mutex_unlock(&md->suspend_lock);
2185
2186	/*
2187	 * Rare, but there may be I/O requests still going to complete,
2188	 * for example.  Wait for all references to disappear.
2189	 * No one should increment the reference count of the mapped_device,
2190	 * after the mapped_device state becomes DMF_FREEING.
2191	 */
2192	if (wait)
2193		while (atomic_read(&md->holders))
2194			msleep(1);
2195	else if (atomic_read(&md->holders))
2196		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2197		       dm_device_name(md), atomic_read(&md->holders));
2198
2199	dm_sysfs_exit(md);
2200	dm_table_destroy(__unbind(md));
2201	free_dev(md);
2202}
2203
2204void dm_destroy(struct mapped_device *md)
2205{
2206	__dm_destroy(md, true);
2207}
2208
2209void dm_destroy_immediate(struct mapped_device *md)
2210{
2211	__dm_destroy(md, false);
2212}
2213
2214void dm_put(struct mapped_device *md)
2215{
2216	atomic_dec(&md->holders);
2217}
2218EXPORT_SYMBOL_GPL(dm_put);
2219
2220static bool md_in_flight_bios(struct mapped_device *md)
2221{
2222	int cpu;
2223	struct block_device *part = dm_disk(md)->part0;
2224	long sum = 0;
2225
2226	for_each_possible_cpu(cpu) {
2227		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2228		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2229	}
2230
2231	return sum != 0;
2232}
2233
2234static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2235{
2236	int r = 0;
2237	DEFINE_WAIT(wait);
2238
2239	while (true) {
2240		prepare_to_wait(&md->wait, &wait, task_state);
2241
2242		if (!md_in_flight_bios(md))
2243			break;
2244
2245		if (signal_pending_state(task_state, current)) {
2246			r = -EINTR;
2247			break;
2248		}
2249
2250		io_schedule();
2251	}
2252	finish_wait(&md->wait, &wait);
2253
 
 
2254	return r;
2255}
2256
2257static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2258{
2259	int r = 0;
2260
2261	if (!queue_is_mq(md->queue))
2262		return dm_wait_for_bios_completion(md, task_state);
2263
2264	while (true) {
2265		if (!blk_mq_queue_inflight(md->queue))
2266			break;
2267
2268		if (signal_pending_state(task_state, current)) {
2269			r = -EINTR;
2270			break;
2271		}
2272
2273		msleep(5);
2274	}
2275
2276	return r;
2277}
2278
2279/*
2280 * Process the deferred bios
2281 */
2282static void dm_wq_work(struct work_struct *work)
2283{
2284	struct mapped_device *md = container_of(work, struct mapped_device, work);
2285	struct bio *bio;
2286
2287	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2288		spin_lock_irq(&md->deferred_lock);
2289		bio = bio_list_pop(&md->deferred);
2290		spin_unlock_irq(&md->deferred_lock);
2291
2292		if (!bio)
2293			break;
2294
2295		submit_bio_noacct(bio);
 
2296	}
2297}
2298
2299static void dm_queue_flush(struct mapped_device *md)
2300{
2301	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2302	smp_mb__after_atomic();
2303	queue_work(md->wq, &md->work);
2304}
2305
2306/*
2307 * Swap in a new table, returning the old one for the caller to destroy.
2308 */
2309struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2310{
2311	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2312	struct queue_limits limits;
2313	int r;
2314
2315	mutex_lock(&md->suspend_lock);
2316
2317	/* device must be suspended */
2318	if (!dm_suspended_md(md))
2319		goto out;
2320
2321	/*
2322	 * If the new table has no data devices, retain the existing limits.
2323	 * This helps multipath with queue_if_no_path if all paths disappear,
2324	 * then new I/O is queued based on these limits, and then some paths
2325	 * reappear.
2326	 */
2327	if (dm_table_has_no_data_devices(table)) {
2328		live_map = dm_get_live_table_fast(md);
2329		if (live_map)
2330			limits = md->queue->limits;
2331		dm_put_live_table_fast(md);
2332	}
2333
2334	if (!live_map) {
2335		r = dm_calculate_queue_limits(table, &limits);
2336		if (r) {
2337			map = ERR_PTR(r);
2338			goto out;
2339		}
2340	}
2341
2342	map = __bind(md, table, &limits);
2343	dm_issue_global_event();
2344
2345out:
2346	mutex_unlock(&md->suspend_lock);
2347	return map;
2348}
2349
2350/*
2351 * Functions to lock and unlock any filesystem running on the
2352 * device.
2353 */
2354static int lock_fs(struct mapped_device *md)
2355{
2356	int r;
2357
2358	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2359
2360	r = freeze_bdev(md->disk->part0);
2361	if (!r)
2362		set_bit(DMF_FROZEN, &md->flags);
2363	return r;
2364}
2365
2366static void unlock_fs(struct mapped_device *md)
2367{
2368	if (!test_bit(DMF_FROZEN, &md->flags))
2369		return;
2370	thaw_bdev(md->disk->part0);
2371	clear_bit(DMF_FROZEN, &md->flags);
2372}
2373
2374/*
2375 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2376 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2377 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2378 *
2379 * If __dm_suspend returns 0, the device is completely quiescent
2380 * now. There is no request-processing activity. All new requests
2381 * are being added to md->deferred list.
2382 */
2383static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2384			unsigned suspend_flags, unsigned int task_state,
2385			int dmf_suspended_flag)
2386{
2387	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2388	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2389	int r;
2390
2391	lockdep_assert_held(&md->suspend_lock);
2392
2393	/*
2394	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2395	 * This flag is cleared before dm_suspend returns.
2396	 */
2397	if (noflush)
2398		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2399	else
2400		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2401
2402	/*
2403	 * This gets reverted if there's an error later and the targets
2404	 * provide the .presuspend_undo hook.
2405	 */
2406	dm_table_presuspend_targets(map);
2407
2408	/*
2409	 * Flush I/O to the device.
2410	 * Any I/O submitted after lock_fs() may not be flushed.
2411	 * noflush takes precedence over do_lockfs.
2412	 * (lock_fs() flushes I/Os and waits for them to complete.)
2413	 */
2414	if (!noflush && do_lockfs) {
2415		r = lock_fs(md);
2416		if (r) {
2417			dm_table_presuspend_undo_targets(map);
2418			return r;
2419		}
2420	}
2421
2422	/*
2423	 * Here we must make sure that no processes are submitting requests
2424	 * to target drivers i.e. no one may be executing
2425	 * __split_and_process_bio from dm_submit_bio.
2426	 *
2427	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2428	 * we take the write lock. To prevent any process from reentering
2429	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2430	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2431	 * flush_workqueue(md->wq).
2432	 */
2433	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2434	if (map)
2435		synchronize_srcu(&md->io_barrier);
2436
2437	/*
2438	 * Stop md->queue before flushing md->wq in case request-based
2439	 * dm defers requests to md->wq from md->queue.
2440	 */
2441	if (dm_request_based(md))
2442		dm_stop_queue(md->queue);
2443
2444	flush_workqueue(md->wq);
2445
2446	/*
2447	 * At this point no more requests are entering target request routines.
2448	 * We call dm_wait_for_completion to wait for all existing requests
2449	 * to finish.
2450	 */
2451	r = dm_wait_for_completion(md, task_state);
2452	if (!r)
2453		set_bit(dmf_suspended_flag, &md->flags);
2454
2455	if (noflush)
2456		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2457	if (map)
2458		synchronize_srcu(&md->io_barrier);
2459
2460	/* were we interrupted ? */
2461	if (r < 0) {
2462		dm_queue_flush(md);
2463
2464		if (dm_request_based(md))
2465			dm_start_queue(md->queue);
2466
2467		unlock_fs(md);
2468		dm_table_presuspend_undo_targets(map);
2469		/* pushback list is already flushed, so skip flush */
2470	}
2471
2472	return r;
2473}
2474
2475/*
2476 * We need to be able to change a mapping table under a mounted
2477 * filesystem.  For example we might want to move some data in
2478 * the background.  Before the table can be swapped with
2479 * dm_bind_table, dm_suspend must be called to flush any in
2480 * flight bios and ensure that any further io gets deferred.
2481 */
2482/*
2483 * Suspend mechanism in request-based dm.
2484 *
2485 * 1. Flush all I/Os by lock_fs() if needed.
2486 * 2. Stop dispatching any I/O by stopping the request_queue.
2487 * 3. Wait for all in-flight I/Os to be completed or requeued.
2488 *
2489 * To abort suspend, start the request_queue.
2490 */
2491int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2492{
2493	struct dm_table *map = NULL;
2494	int r = 0;
2495
2496retry:
2497	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2498
2499	if (dm_suspended_md(md)) {
2500		r = -EINVAL;
2501		goto out_unlock;
2502	}
2503
2504	if (dm_suspended_internally_md(md)) {
2505		/* already internally suspended, wait for internal resume */
2506		mutex_unlock(&md->suspend_lock);
2507		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2508		if (r)
2509			return r;
2510		goto retry;
2511	}
2512
2513	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
 
 
 
 
2514
2515	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2516	if (r)
2517		goto out_unlock;
2518
2519	set_bit(DMF_POST_SUSPENDING, &md->flags);
2520	dm_table_postsuspend_targets(map);
2521	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2522
2523out_unlock:
2524	mutex_unlock(&md->suspend_lock);
2525	return r;
2526}
2527
2528static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2529{
2530	if (map) {
2531		int r = dm_table_resume_targets(map);
 
2532		if (r)
2533			return r;
2534	}
2535
2536	dm_queue_flush(md);
2537
2538	/*
2539	 * Flushing deferred I/Os must be done after targets are resumed
2540	 * so that mapping of targets can work correctly.
2541	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2542	 */
2543	if (dm_request_based(md))
2544		dm_start_queue(md->queue);
2545
2546	unlock_fs(md);
2547
2548	return 0;
2549}
2550
2551int dm_resume(struct mapped_device *md)
2552{
2553	int r;
2554	struct dm_table *map = NULL;
2555
2556retry:
2557	r = -EINVAL;
2558	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2559
2560	if (!dm_suspended_md(md))
2561		goto out;
2562
2563	if (dm_suspended_internally_md(md)) {
2564		/* already internally suspended, wait for internal resume */
2565		mutex_unlock(&md->suspend_lock);
2566		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2567		if (r)
2568			return r;
2569		goto retry;
2570	}
2571
2572	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2573	if (!map || !dm_table_get_size(map))
2574		goto out;
2575
2576	r = __dm_resume(md, map);
2577	if (r)
2578		goto out;
2579
2580	clear_bit(DMF_SUSPENDED, &md->flags);
2581out:
2582	mutex_unlock(&md->suspend_lock);
2583
2584	return r;
2585}
2586
2587/*
2588 * Internal suspend/resume works like userspace-driven suspend. It waits
2589 * until all bios finish and prevents issuing new bios to the target drivers.
2590 * It may be used only from the kernel.
2591 */
2592
2593static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2594{
2595	struct dm_table *map = NULL;
2596
2597	lockdep_assert_held(&md->suspend_lock);
2598
2599	if (md->internal_suspend_count++)
2600		return; /* nested internal suspend */
2601
2602	if (dm_suspended_md(md)) {
2603		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2604		return; /* nest suspend */
2605	}
2606
2607	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2608
2609	/*
2610	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2611	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2612	 * would require changing .presuspend to return an error -- avoid this
2613	 * until there is a need for more elaborate variants of internal suspend.
2614	 */
2615	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2616			    DMF_SUSPENDED_INTERNALLY);
2617
2618	set_bit(DMF_POST_SUSPENDING, &md->flags);
2619	dm_table_postsuspend_targets(map);
2620	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2621}
2622
2623static void __dm_internal_resume(struct mapped_device *md)
2624{
2625	BUG_ON(!md->internal_suspend_count);
2626
2627	if (--md->internal_suspend_count)
2628		return; /* resume from nested internal suspend */
2629
2630	if (dm_suspended_md(md))
2631		goto done; /* resume from nested suspend */
2632
2633	/*
2634	 * NOTE: existing callers don't need to call dm_table_resume_targets
2635	 * (which may fail -- so best to avoid it for now by passing NULL map)
2636	 */
2637	(void) __dm_resume(md, NULL);
2638
2639done:
2640	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2641	smp_mb__after_atomic();
2642	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2643}
2644
2645void dm_internal_suspend_noflush(struct mapped_device *md)
2646{
2647	mutex_lock(&md->suspend_lock);
2648	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2649	mutex_unlock(&md->suspend_lock);
2650}
2651EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2652
2653void dm_internal_resume(struct mapped_device *md)
2654{
2655	mutex_lock(&md->suspend_lock);
2656	__dm_internal_resume(md);
2657	mutex_unlock(&md->suspend_lock);
2658}
2659EXPORT_SYMBOL_GPL(dm_internal_resume);
2660
2661/*
2662 * Fast variants of internal suspend/resume hold md->suspend_lock,
2663 * which prevents interaction with userspace-driven suspend.
2664 */
2665
2666void dm_internal_suspend_fast(struct mapped_device *md)
2667{
2668	mutex_lock(&md->suspend_lock);
2669	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2670		return;
2671
2672	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2673	synchronize_srcu(&md->io_barrier);
2674	flush_workqueue(md->wq);
2675	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2676}
2677EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2678
2679void dm_internal_resume_fast(struct mapped_device *md)
2680{
2681	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2682		goto done;
2683
2684	dm_queue_flush(md);
2685
2686done:
2687	mutex_unlock(&md->suspend_lock);
2688}
2689EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2690
2691/*-----------------------------------------------------------------
 
2692 * Event notification.
2693 *---------------------------------------------------------------*/
 
2694int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2695		       unsigned cookie)
2696{
2697	int r;
2698	unsigned noio_flag;
2699	char udev_cookie[DM_COOKIE_LENGTH];
2700	char *envp[] = { udev_cookie, NULL };
 
 
 
 
 
 
 
 
 
2701
2702	noio_flag = memalloc_noio_save();
2703
2704	if (!cookie)
2705		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2706	else {
2707		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2708			 DM_COOKIE_ENV_VAR_NAME, cookie);
2709		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2710				       action, envp);
2711	}
2712
2713	memalloc_noio_restore(noio_flag);
2714
2715	return r;
2716}
2717
2718uint32_t dm_next_uevent_seq(struct mapped_device *md)
2719{
2720	return atomic_add_return(1, &md->uevent_seq);
2721}
2722
2723uint32_t dm_get_event_nr(struct mapped_device *md)
2724{
2725	return atomic_read(&md->event_nr);
2726}
2727
2728int dm_wait_event(struct mapped_device *md, int event_nr)
2729{
2730	return wait_event_interruptible(md->eventq,
2731			(event_nr != atomic_read(&md->event_nr)));
2732}
2733
2734void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2735{
2736	unsigned long flags;
2737
2738	spin_lock_irqsave(&md->uevent_lock, flags);
2739	list_add(elist, &md->uevent_list);
2740	spin_unlock_irqrestore(&md->uevent_lock, flags);
2741}
2742
2743/*
2744 * The gendisk is only valid as long as you have a reference
2745 * count on 'md'.
2746 */
2747struct gendisk *dm_disk(struct mapped_device *md)
2748{
2749	return md->disk;
2750}
2751EXPORT_SYMBOL_GPL(dm_disk);
2752
2753struct kobject *dm_kobject(struct mapped_device *md)
2754{
2755	return &md->kobj_holder.kobj;
2756}
2757
2758struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2759{
2760	struct mapped_device *md;
2761
2762	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2763
2764	spin_lock(&_minor_lock);
2765	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2766		md = NULL;
2767		goto out;
2768	}
2769	dm_get(md);
2770out:
2771	spin_unlock(&_minor_lock);
2772
2773	return md;
2774}
2775
2776int dm_suspended_md(struct mapped_device *md)
2777{
2778	return test_bit(DMF_SUSPENDED, &md->flags);
2779}
2780
2781static int dm_post_suspending_md(struct mapped_device *md)
2782{
2783	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2784}
2785
2786int dm_suspended_internally_md(struct mapped_device *md)
2787{
2788	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2789}
2790
2791int dm_test_deferred_remove_flag(struct mapped_device *md)
2792{
2793	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2794}
2795
2796int dm_suspended(struct dm_target *ti)
2797{
2798	return dm_suspended_md(ti->table->md);
2799}
2800EXPORT_SYMBOL_GPL(dm_suspended);
2801
2802int dm_post_suspending(struct dm_target *ti)
2803{
2804	return dm_post_suspending_md(ti->table->md);
2805}
2806EXPORT_SYMBOL_GPL(dm_post_suspending);
2807
2808int dm_noflush_suspending(struct dm_target *ti)
2809{
2810	return __noflush_suspending(ti->table->md);
2811}
2812EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2813
2814struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2815					    unsigned integrity, unsigned per_io_data_size,
2816					    unsigned min_pool_size)
2817{
2818	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2819	unsigned int pool_size = 0;
2820	unsigned int front_pad, io_front_pad;
2821	int ret;
2822
2823	if (!pools)
2824		return NULL;
2825
2826	switch (type) {
2827	case DM_TYPE_BIO_BASED:
2828	case DM_TYPE_DAX_BIO_BASED:
2829		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2830		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2831		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2832		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2833		if (ret)
2834			goto out;
2835		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2836			goto out;
2837		break;
2838	case DM_TYPE_REQUEST_BASED:
2839		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2840		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2841		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2842		break;
2843	default:
2844		BUG();
2845	}
2846
2847	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2848	if (ret)
2849		goto out;
2850
2851	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2852		goto out;
2853
2854	return pools;
2855
2856out:
2857	dm_free_md_mempools(pools);
2858
2859	return NULL;
2860}
2861
2862void dm_free_md_mempools(struct dm_md_mempools *pools)
2863{
2864	if (!pools)
2865		return;
2866
2867	bioset_exit(&pools->bs);
2868	bioset_exit(&pools->io_bs);
2869
2870	kfree(pools);
2871}
2872
2873struct dm_pr {
2874	u64	old_key;
2875	u64	new_key;
2876	u32	flags;
 
2877	bool	fail_early;
 
 
 
 
2878};
2879
2880static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2881		      void *data)
2882{
2883	struct mapped_device *md = bdev->bd_disk->private_data;
2884	struct dm_table *table;
2885	struct dm_target *ti;
2886	int ret = -ENOTTY, srcu_idx;
2887
2888	table = dm_get_live_table(md, &srcu_idx);
2889	if (!table || !dm_table_get_size(table))
2890		goto out;
2891
2892	/* We only support devices that have a single target */
2893	if (dm_table_get_num_targets(table) != 1)
2894		goto out;
2895	ti = dm_table_get_target(table, 0);
2896
 
 
 
 
 
2897	ret = -EINVAL;
2898	if (!ti->type->iterate_devices)
2899		goto out;
2900
2901	ret = ti->type->iterate_devices(ti, fn, data);
 
2902out:
2903	dm_put_live_table(md, srcu_idx);
2904	return ret;
2905}
2906
2907/*
2908 * For register / unregister we need to manually call out to every path.
2909 */
2910static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2911			    sector_t start, sector_t len, void *data)
2912{
2913	struct dm_pr *pr = data;
2914	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
2915
2916	if (!ops || !ops->pr_register)
2917		return -EOPNOTSUPP;
2918	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
 
2919}
2920
2921static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2922			  u32 flags)
2923{
2924	struct dm_pr pr = {
2925		.old_key	= old_key,
2926		.new_key	= new_key,
2927		.flags		= flags,
2928		.fail_early	= true,
 
2929	};
2930	int ret;
2931
2932	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2933	if (ret && new_key) {
2934		/* unregister all paths if we failed to register any path */
2935		pr.old_key = new_key;
2936		pr.new_key = 0;
2937		pr.flags = 0;
2938		pr.fail_early = false;
2939		dm_call_pr(bdev, __dm_pr_register, &pr);
2940	}
2941
 
 
 
 
 
 
 
 
 
 
 
 
 
2942	return ret;
2943}
2944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2945static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2946			 u32 flags)
2947{
2948	struct mapped_device *md = bdev->bd_disk->private_data;
2949	const struct pr_ops *ops;
2950	int r, srcu_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2951
2952	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2953	if (r < 0)
2954		goto out;
2955
2956	ops = bdev->bd_disk->fops->pr_ops;
2957	if (ops && ops->pr_reserve)
2958		r = ops->pr_reserve(bdev, key, type, flags);
2959	else
2960		r = -EOPNOTSUPP;
2961out:
2962	dm_unprepare_ioctl(md, srcu_idx);
2963	return r;
2964}
2965
2966static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2967{
2968	struct mapped_device *md = bdev->bd_disk->private_data;
2969	const struct pr_ops *ops;
2970	int r, srcu_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2971
2972	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2973	if (r < 0)
2974		goto out;
 
2975
2976	ops = bdev->bd_disk->fops->pr_ops;
2977	if (ops && ops->pr_release)
2978		r = ops->pr_release(bdev, key, type);
2979	else
2980		r = -EOPNOTSUPP;
2981out:
2982	dm_unprepare_ioctl(md, srcu_idx);
2983	return r;
2984}
2985
2986static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2987			 enum pr_type type, bool abort)
2988{
2989	struct mapped_device *md = bdev->bd_disk->private_data;
2990	const struct pr_ops *ops;
2991	int r, srcu_idx;
 
 
 
 
2992
2993	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2994	if (r < 0)
2995		goto out;
2996
2997	ops = bdev->bd_disk->fops->pr_ops;
2998	if (ops && ops->pr_preempt)
2999		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3000	else
3001		r = -EOPNOTSUPP;
3002out:
3003	dm_unprepare_ioctl(md, srcu_idx);
3004	return r;
3005}
3006
3007static int dm_pr_clear(struct block_device *bdev, u64 key)
3008{
3009	struct mapped_device *md = bdev->bd_disk->private_data;
3010	const struct pr_ops *ops;
3011	int r, srcu_idx;
3012
3013	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3014	if (r < 0)
3015		goto out;
3016
3017	ops = bdev->bd_disk->fops->pr_ops;
3018	if (ops && ops->pr_clear)
3019		r = ops->pr_clear(bdev, key);
3020	else
3021		r = -EOPNOTSUPP;
3022out:
3023	dm_unprepare_ioctl(md, srcu_idx);
3024	return r;
3025}
3026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3027static const struct pr_ops dm_pr_ops = {
3028	.pr_register	= dm_pr_register,
3029	.pr_reserve	= dm_pr_reserve,
3030	.pr_release	= dm_pr_release,
3031	.pr_preempt	= dm_pr_preempt,
3032	.pr_clear	= dm_pr_clear,
 
 
3033};
3034
3035static const struct block_device_operations dm_blk_dops = {
3036	.submit_bio = dm_submit_bio,
 
3037	.open = dm_blk_open,
3038	.release = dm_blk_close,
3039	.ioctl = dm_blk_ioctl,
3040	.getgeo = dm_blk_getgeo,
3041	.report_zones = dm_blk_report_zones,
3042	.pr_ops = &dm_pr_ops,
3043	.owner = THIS_MODULE
3044};
3045
3046static const struct block_device_operations dm_rq_blk_dops = {
3047	.open = dm_blk_open,
3048	.release = dm_blk_close,
3049	.ioctl = dm_blk_ioctl,
3050	.getgeo = dm_blk_getgeo,
3051	.pr_ops = &dm_pr_ops,
3052	.owner = THIS_MODULE
3053};
3054
3055static const struct dax_operations dm_dax_ops = {
3056	.direct_access = dm_dax_direct_access,
3057	.dax_supported = dm_dax_supported,
3058	.copy_from_iter = dm_dax_copy_from_iter,
3059	.copy_to_iter = dm_dax_copy_to_iter,
3060	.zero_page_range = dm_dax_zero_page_range,
 
3061};
3062
3063/*
3064 * module hooks
3065 */
3066module_init(dm_init);
3067module_exit(dm_exit);
3068
3069module_param(major, uint, 0);
3070MODULE_PARM_DESC(major, "The major number of the device mapper");
3071
3072module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3073MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3074
3075module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3076MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3077
3078module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3079MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3080
3081MODULE_DESCRIPTION(DM_NAME " driver");
3082MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3083MODULE_LICENSE("GPL");