Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
 
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
  32#include <linux/kcov.h>
  33#include <linux/property.h>
  34#include <linux/suspend.h>
  35#include <linux/wait.h>
  36#include <asm/unaligned.h>
  37
  38#include <net/bluetooth/bluetooth.h>
  39#include <net/bluetooth/hci_core.h>
  40#include <net/bluetooth/l2cap.h>
  41#include <net/bluetooth/mgmt.h>
  42
  43#include "hci_request.h"
  44#include "hci_debugfs.h"
  45#include "smp.h"
  46#include "leds.h"
  47#include "msft.h"
  48#include "aosp.h"
  49#include "hci_codec.h"
  50
  51static void hci_rx_work(struct work_struct *work);
  52static void hci_cmd_work(struct work_struct *work);
  53static void hci_tx_work(struct work_struct *work);
  54
  55/* HCI device list */
  56LIST_HEAD(hci_dev_list);
  57DEFINE_RWLOCK(hci_dev_list_lock);
  58
  59/* HCI callback list */
  60LIST_HEAD(hci_cb_list);
  61DEFINE_MUTEX(hci_cb_list_lock);
  62
  63/* HCI ID Numbering */
  64static DEFINE_IDA(hci_index_ida);
  65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66static int hci_scan_req(struct hci_request *req, unsigned long opt)
  67{
  68	__u8 scan = opt;
  69
  70	BT_DBG("%s %x", req->hdev->name, scan);
  71
  72	/* Inquiry and Page scans */
  73	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
  74	return 0;
  75}
  76
  77static int hci_auth_req(struct hci_request *req, unsigned long opt)
  78{
  79	__u8 auth = opt;
  80
  81	BT_DBG("%s %x", req->hdev->name, auth);
  82
  83	/* Authentication */
  84	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
  85	return 0;
  86}
  87
  88static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
  89{
  90	__u8 encrypt = opt;
  91
  92	BT_DBG("%s %x", req->hdev->name, encrypt);
  93
  94	/* Encryption */
  95	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
  96	return 0;
  97}
  98
  99static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 100{
 101	__le16 policy = cpu_to_le16(opt);
 102
 103	BT_DBG("%s %x", req->hdev->name, policy);
 104
 105	/* Default link policy */
 106	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 107	return 0;
 108}
 109
 110/* Get HCI device by index.
 111 * Device is held on return. */
 112struct hci_dev *hci_dev_get(int index)
 113{
 114	struct hci_dev *hdev = NULL, *d;
 115
 116	BT_DBG("%d", index);
 117
 118	if (index < 0)
 119		return NULL;
 120
 121	read_lock(&hci_dev_list_lock);
 122	list_for_each_entry(d, &hci_dev_list, list) {
 123		if (d->id == index) {
 124			hdev = hci_dev_hold(d);
 125			break;
 126		}
 127	}
 128	read_unlock(&hci_dev_list_lock);
 129	return hdev;
 130}
 131
 132/* ---- Inquiry support ---- */
 133
 134bool hci_discovery_active(struct hci_dev *hdev)
 135{
 136	struct discovery_state *discov = &hdev->discovery;
 137
 138	switch (discov->state) {
 139	case DISCOVERY_FINDING:
 140	case DISCOVERY_RESOLVING:
 141		return true;
 142
 143	default:
 144		return false;
 145	}
 146}
 147
 148void hci_discovery_set_state(struct hci_dev *hdev, int state)
 149{
 150	int old_state = hdev->discovery.state;
 151
 152	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 153
 154	if (old_state == state)
 155		return;
 156
 157	hdev->discovery.state = state;
 158
 159	switch (state) {
 160	case DISCOVERY_STOPPED:
 161		hci_update_passive_scan(hdev);
 162
 163		if (old_state != DISCOVERY_STARTING)
 164			mgmt_discovering(hdev, 0);
 165		break;
 166	case DISCOVERY_STARTING:
 167		break;
 168	case DISCOVERY_FINDING:
 169		mgmt_discovering(hdev, 1);
 170		break;
 171	case DISCOVERY_RESOLVING:
 172		break;
 173	case DISCOVERY_STOPPING:
 174		break;
 175	}
 176}
 177
 178void hci_inquiry_cache_flush(struct hci_dev *hdev)
 179{
 180	struct discovery_state *cache = &hdev->discovery;
 181	struct inquiry_entry *p, *n;
 182
 183	list_for_each_entry_safe(p, n, &cache->all, all) {
 184		list_del(&p->all);
 185		kfree(p);
 186	}
 187
 188	INIT_LIST_HEAD(&cache->unknown);
 189	INIT_LIST_HEAD(&cache->resolve);
 190}
 191
 192struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 193					       bdaddr_t *bdaddr)
 194{
 195	struct discovery_state *cache = &hdev->discovery;
 196	struct inquiry_entry *e;
 197
 198	BT_DBG("cache %p, %pMR", cache, bdaddr);
 199
 200	list_for_each_entry(e, &cache->all, all) {
 201		if (!bacmp(&e->data.bdaddr, bdaddr))
 202			return e;
 203	}
 204
 205	return NULL;
 206}
 207
 208struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
 209						       bdaddr_t *bdaddr)
 210{
 211	struct discovery_state *cache = &hdev->discovery;
 212	struct inquiry_entry *e;
 213
 214	BT_DBG("cache %p, %pMR", cache, bdaddr);
 215
 216	list_for_each_entry(e, &cache->unknown, list) {
 217		if (!bacmp(&e->data.bdaddr, bdaddr))
 218			return e;
 219	}
 220
 221	return NULL;
 222}
 223
 224struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
 225						       bdaddr_t *bdaddr,
 226						       int state)
 227{
 228	struct discovery_state *cache = &hdev->discovery;
 229	struct inquiry_entry *e;
 230
 231	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
 232
 233	list_for_each_entry(e, &cache->resolve, list) {
 234		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
 235			return e;
 236		if (!bacmp(&e->data.bdaddr, bdaddr))
 237			return e;
 238	}
 239
 240	return NULL;
 241}
 242
 243void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
 244				      struct inquiry_entry *ie)
 245{
 246	struct discovery_state *cache = &hdev->discovery;
 247	struct list_head *pos = &cache->resolve;
 248	struct inquiry_entry *p;
 249
 250	list_del(&ie->list);
 251
 252	list_for_each_entry(p, &cache->resolve, list) {
 253		if (p->name_state != NAME_PENDING &&
 254		    abs(p->data.rssi) >= abs(ie->data.rssi))
 255			break;
 256		pos = &p->list;
 257	}
 258
 259	list_add(&ie->list, pos);
 260}
 261
 262u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
 263			     bool name_known)
 264{
 265	struct discovery_state *cache = &hdev->discovery;
 266	struct inquiry_entry *ie;
 267	u32 flags = 0;
 268
 269	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
 270
 271	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
 272
 273	if (!data->ssp_mode)
 274		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 275
 276	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 277	if (ie) {
 278		if (!ie->data.ssp_mode)
 279			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 280
 281		if (ie->name_state == NAME_NEEDED &&
 282		    data->rssi != ie->data.rssi) {
 283			ie->data.rssi = data->rssi;
 284			hci_inquiry_cache_update_resolve(hdev, ie);
 285		}
 286
 287		goto update;
 288	}
 289
 290	/* Entry not in the cache. Add new one. */
 291	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
 292	if (!ie) {
 293		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 294		goto done;
 295	}
 296
 297	list_add(&ie->all, &cache->all);
 298
 299	if (name_known) {
 300		ie->name_state = NAME_KNOWN;
 301	} else {
 302		ie->name_state = NAME_NOT_KNOWN;
 303		list_add(&ie->list, &cache->unknown);
 304	}
 305
 306update:
 307	if (name_known && ie->name_state != NAME_KNOWN &&
 308	    ie->name_state != NAME_PENDING) {
 309		ie->name_state = NAME_KNOWN;
 310		list_del(&ie->list);
 311	}
 312
 313	memcpy(&ie->data, data, sizeof(*data));
 314	ie->timestamp = jiffies;
 315	cache->timestamp = jiffies;
 316
 317	if (ie->name_state == NAME_NOT_KNOWN)
 318		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 319
 320done:
 321	return flags;
 322}
 323
 324static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 325{
 326	struct discovery_state *cache = &hdev->discovery;
 327	struct inquiry_info *info = (struct inquiry_info *) buf;
 328	struct inquiry_entry *e;
 329	int copied = 0;
 330
 331	list_for_each_entry(e, &cache->all, all) {
 332		struct inquiry_data *data = &e->data;
 333
 334		if (copied >= num)
 335			break;
 336
 337		bacpy(&info->bdaddr, &data->bdaddr);
 338		info->pscan_rep_mode	= data->pscan_rep_mode;
 339		info->pscan_period_mode	= data->pscan_period_mode;
 340		info->pscan_mode	= data->pscan_mode;
 341		memcpy(info->dev_class, data->dev_class, 3);
 342		info->clock_offset	= data->clock_offset;
 343
 344		info++;
 345		copied++;
 346	}
 347
 348	BT_DBG("cache %p, copied %d", cache, copied);
 349	return copied;
 350}
 351
 352static int hci_inq_req(struct hci_request *req, unsigned long opt)
 353{
 354	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
 355	struct hci_dev *hdev = req->hdev;
 356	struct hci_cp_inquiry cp;
 357
 358	BT_DBG("%s", hdev->name);
 359
 360	if (test_bit(HCI_INQUIRY, &hdev->flags))
 361		return 0;
 362
 363	/* Start Inquiry */
 364	memcpy(&cp.lap, &ir->lap, 3);
 365	cp.length  = ir->length;
 366	cp.num_rsp = ir->num_rsp;
 367	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
 368
 369	return 0;
 370}
 371
 372int hci_inquiry(void __user *arg)
 373{
 374	__u8 __user *ptr = arg;
 375	struct hci_inquiry_req ir;
 376	struct hci_dev *hdev;
 377	int err = 0, do_inquiry = 0, max_rsp;
 378	long timeo;
 379	__u8 *buf;
 380
 381	if (copy_from_user(&ir, ptr, sizeof(ir)))
 382		return -EFAULT;
 383
 384	hdev = hci_dev_get(ir.dev_id);
 385	if (!hdev)
 386		return -ENODEV;
 387
 388	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 389		err = -EBUSY;
 390		goto done;
 391	}
 392
 393	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 394		err = -EOPNOTSUPP;
 395		goto done;
 396	}
 397
 398	if (hdev->dev_type != HCI_PRIMARY) {
 399		err = -EOPNOTSUPP;
 400		goto done;
 401	}
 402
 403	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 404		err = -EOPNOTSUPP;
 405		goto done;
 406	}
 407
 408	/* Restrict maximum inquiry length to 60 seconds */
 409	if (ir.length > 60) {
 410		err = -EINVAL;
 411		goto done;
 412	}
 413
 414	hci_dev_lock(hdev);
 415	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 416	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
 417		hci_inquiry_cache_flush(hdev);
 418		do_inquiry = 1;
 419	}
 420	hci_dev_unlock(hdev);
 421
 422	timeo = ir.length * msecs_to_jiffies(2000);
 423
 424	if (do_inquiry) {
 425		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
 426				   timeo, NULL);
 427		if (err < 0)
 428			goto done;
 429
 430		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
 431		 * cleared). If it is interrupted by a signal, return -EINTR.
 432		 */
 433		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
 434				TASK_INTERRUPTIBLE)) {
 435			err = -EINTR;
 436			goto done;
 437		}
 438	}
 439
 440	/* for unlimited number of responses we will use buffer with
 441	 * 255 entries
 442	 */
 443	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 444
 445	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 446	 * copy it to the user space.
 447	 */
 448	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
 449	if (!buf) {
 450		err = -ENOMEM;
 451		goto done;
 452	}
 453
 454	hci_dev_lock(hdev);
 455	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 456	hci_dev_unlock(hdev);
 457
 458	BT_DBG("num_rsp %d", ir.num_rsp);
 459
 460	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 461		ptr += sizeof(ir);
 462		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 463				 ir.num_rsp))
 464			err = -EFAULT;
 465	} else
 466		err = -EFAULT;
 467
 468	kfree(buf);
 469
 470done:
 471	hci_dev_put(hdev);
 472	return err;
 473}
 474
 475static int hci_dev_do_open(struct hci_dev *hdev)
 476{
 477	int ret = 0;
 478
 479	BT_DBG("%s %p", hdev->name, hdev);
 480
 481	hci_req_sync_lock(hdev);
 482
 483	ret = hci_dev_open_sync(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485	hci_req_sync_unlock(hdev);
 486	return ret;
 487}
 488
 489/* ---- HCI ioctl helpers ---- */
 490
 491int hci_dev_open(__u16 dev)
 492{
 493	struct hci_dev *hdev;
 494	int err;
 495
 496	hdev = hci_dev_get(dev);
 497	if (!hdev)
 498		return -ENODEV;
 499
 500	/* Devices that are marked as unconfigured can only be powered
 501	 * up as user channel. Trying to bring them up as normal devices
 502	 * will result into a failure. Only user channel operation is
 503	 * possible.
 504	 *
 505	 * When this function is called for a user channel, the flag
 506	 * HCI_USER_CHANNEL will be set first before attempting to
 507	 * open the device.
 508	 */
 509	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
 510	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 511		err = -EOPNOTSUPP;
 512		goto done;
 513	}
 514
 515	/* We need to ensure that no other power on/off work is pending
 516	 * before proceeding to call hci_dev_do_open. This is
 517	 * particularly important if the setup procedure has not yet
 518	 * completed.
 519	 */
 520	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 521		cancel_delayed_work(&hdev->power_off);
 522
 523	/* After this call it is guaranteed that the setup procedure
 524	 * has finished. This means that error conditions like RFKILL
 525	 * or no valid public or static random address apply.
 526	 */
 527	flush_workqueue(hdev->req_workqueue);
 528
 529	/* For controllers not using the management interface and that
 530	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
 531	 * so that pairing works for them. Once the management interface
 532	 * is in use this bit will be cleared again and userspace has
 533	 * to explicitly enable it.
 534	 */
 535	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 536	    !hci_dev_test_flag(hdev, HCI_MGMT))
 537		hci_dev_set_flag(hdev, HCI_BONDABLE);
 538
 539	err = hci_dev_do_open(hdev);
 540
 541done:
 542	hci_dev_put(hdev);
 543	return err;
 544}
 545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546int hci_dev_do_close(struct hci_dev *hdev)
 547{
 548	int err;
 549
 550	BT_DBG("%s %p", hdev->name, hdev);
 551
 
 
 
 
 
 
 
 
 
 
 
 552	hci_req_sync_lock(hdev);
 553
 554	err = hci_dev_close_sync(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556	hci_req_sync_unlock(hdev);
 557
 558	return err;
 
 559}
 560
 561int hci_dev_close(__u16 dev)
 562{
 563	struct hci_dev *hdev;
 564	int err;
 565
 566	hdev = hci_dev_get(dev);
 567	if (!hdev)
 568		return -ENODEV;
 569
 570	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 571		err = -EBUSY;
 572		goto done;
 573	}
 574
 575	cancel_work_sync(&hdev->power_on);
 576	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 577		cancel_delayed_work(&hdev->power_off);
 578
 579	err = hci_dev_do_close(hdev);
 580
 581done:
 582	hci_dev_put(hdev);
 583	return err;
 584}
 585
 586static int hci_dev_do_reset(struct hci_dev *hdev)
 587{
 588	int ret;
 589
 590	BT_DBG("%s %p", hdev->name, hdev);
 591
 592	hci_req_sync_lock(hdev);
 593
 594	/* Drop queues */
 595	skb_queue_purge(&hdev->rx_q);
 596	skb_queue_purge(&hdev->cmd_q);
 597
 598	/* Cancel these to avoid queueing non-chained pending work */
 599	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 600	/* Wait for
 601	 *
 602	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
 603	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
 604	 *
 605	 * inside RCU section to see the flag or complete scheduling.
 606	 */
 607	synchronize_rcu();
 608	/* Explicitly cancel works in case scheduled after setting the flag. */
 609	cancel_delayed_work(&hdev->cmd_timer);
 610	cancel_delayed_work(&hdev->ncmd_timer);
 611
 612	/* Avoid potential lockdep warnings from the *_flush() calls by
 613	 * ensuring the workqueue is empty up front.
 614	 */
 615	drain_workqueue(hdev->workqueue);
 616
 617	hci_dev_lock(hdev);
 618	hci_inquiry_cache_flush(hdev);
 619	hci_conn_hash_flush(hdev);
 620	hci_dev_unlock(hdev);
 621
 622	if (hdev->flush)
 623		hdev->flush(hdev);
 624
 625	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 626
 627	atomic_set(&hdev->cmd_cnt, 1);
 628	hdev->acl_cnt = 0;
 629	hdev->sco_cnt = 0;
 630	hdev->le_cnt = 0;
 631	hdev->iso_cnt = 0;
 632
 633	ret = hci_reset_sync(hdev);
 634
 635	hci_req_sync_unlock(hdev);
 636	return ret;
 637}
 638
 639int hci_dev_reset(__u16 dev)
 640{
 641	struct hci_dev *hdev;
 642	int err;
 643
 644	hdev = hci_dev_get(dev);
 645	if (!hdev)
 646		return -ENODEV;
 647
 648	if (!test_bit(HCI_UP, &hdev->flags)) {
 649		err = -ENETDOWN;
 650		goto done;
 651	}
 652
 653	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 654		err = -EBUSY;
 655		goto done;
 656	}
 657
 658	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 659		err = -EOPNOTSUPP;
 660		goto done;
 661	}
 662
 663	err = hci_dev_do_reset(hdev);
 664
 665done:
 666	hci_dev_put(hdev);
 667	return err;
 668}
 669
 670int hci_dev_reset_stat(__u16 dev)
 671{
 672	struct hci_dev *hdev;
 673	int ret = 0;
 674
 675	hdev = hci_dev_get(dev);
 676	if (!hdev)
 677		return -ENODEV;
 678
 679	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 680		ret = -EBUSY;
 681		goto done;
 682	}
 683
 684	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 685		ret = -EOPNOTSUPP;
 686		goto done;
 687	}
 688
 689	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 690
 691done:
 692	hci_dev_put(hdev);
 693	return ret;
 694}
 695
 696static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
 697{
 698	bool conn_changed, discov_changed;
 699
 700	BT_DBG("%s scan 0x%02x", hdev->name, scan);
 701
 702	if ((scan & SCAN_PAGE))
 703		conn_changed = !hci_dev_test_and_set_flag(hdev,
 704							  HCI_CONNECTABLE);
 705	else
 706		conn_changed = hci_dev_test_and_clear_flag(hdev,
 707							   HCI_CONNECTABLE);
 708
 709	if ((scan & SCAN_INQUIRY)) {
 710		discov_changed = !hci_dev_test_and_set_flag(hdev,
 711							    HCI_DISCOVERABLE);
 712	} else {
 713		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
 714		discov_changed = hci_dev_test_and_clear_flag(hdev,
 715							     HCI_DISCOVERABLE);
 716	}
 717
 718	if (!hci_dev_test_flag(hdev, HCI_MGMT))
 719		return;
 720
 721	if (conn_changed || discov_changed) {
 722		/* In case this was disabled through mgmt */
 723		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 724
 725		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 726			hci_update_adv_data(hdev, hdev->cur_adv_instance);
 727
 728		mgmt_new_settings(hdev);
 729	}
 730}
 731
 732int hci_dev_cmd(unsigned int cmd, void __user *arg)
 733{
 734	struct hci_dev *hdev;
 735	struct hci_dev_req dr;
 736	int err = 0;
 737
 738	if (copy_from_user(&dr, arg, sizeof(dr)))
 739		return -EFAULT;
 740
 741	hdev = hci_dev_get(dr.dev_id);
 742	if (!hdev)
 743		return -ENODEV;
 744
 745	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 746		err = -EBUSY;
 747		goto done;
 748	}
 749
 750	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 751		err = -EOPNOTSUPP;
 752		goto done;
 753	}
 754
 755	if (hdev->dev_type != HCI_PRIMARY) {
 756		err = -EOPNOTSUPP;
 757		goto done;
 758	}
 759
 760	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 761		err = -EOPNOTSUPP;
 762		goto done;
 763	}
 764
 765	switch (cmd) {
 766	case HCISETAUTH:
 767		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 768				   HCI_INIT_TIMEOUT, NULL);
 769		break;
 770
 771	case HCISETENCRYPT:
 772		if (!lmp_encrypt_capable(hdev)) {
 773			err = -EOPNOTSUPP;
 774			break;
 775		}
 776
 777		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 778			/* Auth must be enabled first */
 779			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 780					   HCI_INIT_TIMEOUT, NULL);
 781			if (err)
 782				break;
 783		}
 784
 785		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
 786				   HCI_INIT_TIMEOUT, NULL);
 787		break;
 788
 789	case HCISETSCAN:
 790		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
 791				   HCI_INIT_TIMEOUT, NULL);
 792
 793		/* Ensure that the connectable and discoverable states
 794		 * get correctly modified as this was a non-mgmt change.
 795		 */
 796		if (!err)
 797			hci_update_passive_scan_state(hdev, dr.dev_opt);
 798		break;
 799
 800	case HCISETLINKPOL:
 801		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
 802				   HCI_INIT_TIMEOUT, NULL);
 803		break;
 804
 805	case HCISETLINKMODE:
 806		hdev->link_mode = ((__u16) dr.dev_opt) &
 807					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 808		break;
 809
 810	case HCISETPTYPE:
 811		if (hdev->pkt_type == (__u16) dr.dev_opt)
 812			break;
 813
 814		hdev->pkt_type = (__u16) dr.dev_opt;
 815		mgmt_phy_configuration_changed(hdev, NULL);
 816		break;
 817
 818	case HCISETACLMTU:
 819		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 820		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 821		break;
 822
 823	case HCISETSCOMTU:
 824		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 825		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 826		break;
 827
 828	default:
 829		err = -EINVAL;
 830		break;
 831	}
 832
 833done:
 834	hci_dev_put(hdev);
 835	return err;
 836}
 837
 838int hci_get_dev_list(void __user *arg)
 839{
 840	struct hci_dev *hdev;
 841	struct hci_dev_list_req *dl;
 842	struct hci_dev_req *dr;
 843	int n = 0, size, err;
 844	__u16 dev_num;
 845
 846	if (get_user(dev_num, (__u16 __user *) arg))
 847		return -EFAULT;
 848
 849	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
 850		return -EINVAL;
 851
 852	size = sizeof(*dl) + dev_num * sizeof(*dr);
 853
 854	dl = kzalloc(size, GFP_KERNEL);
 855	if (!dl)
 856		return -ENOMEM;
 857
 858	dr = dl->dev_req;
 859
 860	read_lock(&hci_dev_list_lock);
 861	list_for_each_entry(hdev, &hci_dev_list, list) {
 862		unsigned long flags = hdev->flags;
 863
 864		/* When the auto-off is configured it means the transport
 865		 * is running, but in that case still indicate that the
 866		 * device is actually down.
 867		 */
 868		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 869			flags &= ~BIT(HCI_UP);
 870
 871		(dr + n)->dev_id  = hdev->id;
 872		(dr + n)->dev_opt = flags;
 873
 874		if (++n >= dev_num)
 875			break;
 876	}
 877	read_unlock(&hci_dev_list_lock);
 878
 879	dl->dev_num = n;
 880	size = sizeof(*dl) + n * sizeof(*dr);
 881
 882	err = copy_to_user(arg, dl, size);
 883	kfree(dl);
 884
 885	return err ? -EFAULT : 0;
 886}
 887
 888int hci_get_dev_info(void __user *arg)
 889{
 890	struct hci_dev *hdev;
 891	struct hci_dev_info di;
 892	unsigned long flags;
 893	int err = 0;
 894
 895	if (copy_from_user(&di, arg, sizeof(di)))
 896		return -EFAULT;
 897
 898	hdev = hci_dev_get(di.dev_id);
 899	if (!hdev)
 900		return -ENODEV;
 901
 902	/* When the auto-off is configured it means the transport
 903	 * is running, but in that case still indicate that the
 904	 * device is actually down.
 905	 */
 906	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 907		flags = hdev->flags & ~BIT(HCI_UP);
 908	else
 909		flags = hdev->flags;
 910
 911	strcpy(di.name, hdev->name);
 912	di.bdaddr   = hdev->bdaddr;
 913	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
 914	di.flags    = flags;
 915	di.pkt_type = hdev->pkt_type;
 916	if (lmp_bredr_capable(hdev)) {
 917		di.acl_mtu  = hdev->acl_mtu;
 918		di.acl_pkts = hdev->acl_pkts;
 919		di.sco_mtu  = hdev->sco_mtu;
 920		di.sco_pkts = hdev->sco_pkts;
 921	} else {
 922		di.acl_mtu  = hdev->le_mtu;
 923		di.acl_pkts = hdev->le_pkts;
 924		di.sco_mtu  = 0;
 925		di.sco_pkts = 0;
 926	}
 927	di.link_policy = hdev->link_policy;
 928	di.link_mode   = hdev->link_mode;
 929
 930	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
 931	memcpy(&di.features, &hdev->features, sizeof(di.features));
 932
 933	if (copy_to_user(arg, &di, sizeof(di)))
 934		err = -EFAULT;
 935
 936	hci_dev_put(hdev);
 937
 938	return err;
 939}
 940
 941/* ---- Interface to HCI drivers ---- */
 942
 943static int hci_rfkill_set_block(void *data, bool blocked)
 944{
 945	struct hci_dev *hdev = data;
 946
 947	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
 948
 949	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
 950		return -EBUSY;
 951
 952	if (blocked) {
 953		hci_dev_set_flag(hdev, HCI_RFKILLED);
 954		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 955		    !hci_dev_test_flag(hdev, HCI_CONFIG))
 956			hci_dev_do_close(hdev);
 957	} else {
 958		hci_dev_clear_flag(hdev, HCI_RFKILLED);
 959	}
 960
 961	return 0;
 962}
 963
 964static const struct rfkill_ops hci_rfkill_ops = {
 965	.set_block = hci_rfkill_set_block,
 966};
 967
 968static void hci_power_on(struct work_struct *work)
 969{
 970	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 971	int err;
 972
 973	BT_DBG("%s", hdev->name);
 974
 975	if (test_bit(HCI_UP, &hdev->flags) &&
 976	    hci_dev_test_flag(hdev, HCI_MGMT) &&
 977	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
 978		cancel_delayed_work(&hdev->power_off);
 979		err = hci_powered_update_sync(hdev);
 
 
 980		mgmt_power_on(hdev, err);
 981		return;
 982	}
 983
 984	err = hci_dev_do_open(hdev);
 985	if (err < 0) {
 986		hci_dev_lock(hdev);
 987		mgmt_set_powered_failed(hdev, err);
 988		hci_dev_unlock(hdev);
 989		return;
 990	}
 991
 992	/* During the HCI setup phase, a few error conditions are
 993	 * ignored and they need to be checked now. If they are still
 994	 * valid, it is important to turn the device back off.
 995	 */
 996	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
 997	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
 998	    (hdev->dev_type == HCI_PRIMARY &&
 999	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1000	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1001		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1002		hci_dev_do_close(hdev);
1003	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1004		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1005				   HCI_AUTO_OFF_TIMEOUT);
1006	}
1007
1008	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1009		/* For unconfigured devices, set the HCI_RAW flag
1010		 * so that userspace can easily identify them.
1011		 */
1012		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1013			set_bit(HCI_RAW, &hdev->flags);
1014
1015		/* For fully configured devices, this will send
1016		 * the Index Added event. For unconfigured devices,
1017		 * it will send Unconfigued Index Added event.
1018		 *
1019		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1020		 * and no event will be send.
1021		 */
1022		mgmt_index_added(hdev);
1023	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1024		/* When the controller is now configured, then it
1025		 * is important to clear the HCI_RAW flag.
1026		 */
1027		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1028			clear_bit(HCI_RAW, &hdev->flags);
1029
1030		/* Powering on the controller with HCI_CONFIG set only
1031		 * happens with the transition from unconfigured to
1032		 * configured. This will send the Index Added event.
1033		 */
1034		mgmt_index_added(hdev);
1035	}
1036}
1037
1038static void hci_power_off(struct work_struct *work)
1039{
1040	struct hci_dev *hdev = container_of(work, struct hci_dev,
1041					    power_off.work);
1042
1043	BT_DBG("%s", hdev->name);
1044
1045	hci_dev_do_close(hdev);
1046}
1047
1048static void hci_error_reset(struct work_struct *work)
1049{
1050	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1051
1052	hci_dev_hold(hdev);
1053	BT_DBG("%s", hdev->name);
1054
1055	if (hdev->hw_error)
1056		hdev->hw_error(hdev, hdev->hw_error_code);
1057	else
1058		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
 
1059
1060	if (!hci_dev_do_close(hdev))
1061		hci_dev_do_open(hdev);
1062
1063	hci_dev_put(hdev);
1064}
1065
1066void hci_uuids_clear(struct hci_dev *hdev)
1067{
1068	struct bt_uuid *uuid, *tmp;
1069
1070	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1071		list_del(&uuid->list);
1072		kfree(uuid);
1073	}
1074}
1075
1076void hci_link_keys_clear(struct hci_dev *hdev)
1077{
1078	struct link_key *key, *tmp;
1079
1080	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1081		list_del_rcu(&key->list);
1082		kfree_rcu(key, rcu);
1083	}
1084}
1085
1086void hci_smp_ltks_clear(struct hci_dev *hdev)
1087{
1088	struct smp_ltk *k, *tmp;
1089
1090	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1091		list_del_rcu(&k->list);
1092		kfree_rcu(k, rcu);
1093	}
1094}
1095
1096void hci_smp_irks_clear(struct hci_dev *hdev)
1097{
1098	struct smp_irk *k, *tmp;
1099
1100	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1101		list_del_rcu(&k->list);
1102		kfree_rcu(k, rcu);
1103	}
1104}
1105
1106void hci_blocked_keys_clear(struct hci_dev *hdev)
1107{
1108	struct blocked_key *b, *tmp;
1109
1110	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1111		list_del_rcu(&b->list);
1112		kfree_rcu(b, rcu);
1113	}
1114}
1115
1116bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1117{
1118	bool blocked = false;
1119	struct blocked_key *b;
1120
1121	rcu_read_lock();
1122	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1123		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1124			blocked = true;
1125			break;
1126		}
1127	}
1128
1129	rcu_read_unlock();
1130	return blocked;
1131}
1132
1133struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1134{
1135	struct link_key *k;
1136
1137	rcu_read_lock();
1138	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1139		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1140			rcu_read_unlock();
1141
1142			if (hci_is_blocked_key(hdev,
1143					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1144					       k->val)) {
1145				bt_dev_warn_ratelimited(hdev,
1146							"Link key blocked for %pMR",
1147							&k->bdaddr);
1148				return NULL;
1149			}
1150
1151			return k;
1152		}
1153	}
1154	rcu_read_unlock();
1155
1156	return NULL;
1157}
1158
1159static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1160			       u8 key_type, u8 old_key_type)
1161{
1162	/* Legacy key */
1163	if (key_type < 0x03)
1164		return true;
1165
1166	/* Debug keys are insecure so don't store them persistently */
1167	if (key_type == HCI_LK_DEBUG_COMBINATION)
1168		return false;
1169
1170	/* Changed combination key and there's no previous one */
1171	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1172		return false;
1173
1174	/* Security mode 3 case */
1175	if (!conn)
1176		return true;
1177
1178	/* BR/EDR key derived using SC from an LE link */
1179	if (conn->type == LE_LINK)
1180		return true;
1181
1182	/* Neither local nor remote side had no-bonding as requirement */
1183	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1184		return true;
1185
1186	/* Local side had dedicated bonding as requirement */
1187	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1188		return true;
1189
1190	/* Remote side had dedicated bonding as requirement */
1191	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1192		return true;
1193
1194	/* If none of the above criteria match, then don't store the key
1195	 * persistently */
1196	return false;
1197}
1198
1199static u8 ltk_role(u8 type)
1200{
1201	if (type == SMP_LTK)
1202		return HCI_ROLE_MASTER;
1203
1204	return HCI_ROLE_SLAVE;
1205}
1206
1207struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1208			     u8 addr_type, u8 role)
1209{
1210	struct smp_ltk *k;
1211
1212	rcu_read_lock();
1213	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1214		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1215			continue;
1216
1217		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1218			rcu_read_unlock();
1219
1220			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1221					       k->val)) {
1222				bt_dev_warn_ratelimited(hdev,
1223							"LTK blocked for %pMR",
1224							&k->bdaddr);
1225				return NULL;
1226			}
1227
1228			return k;
1229		}
1230	}
1231	rcu_read_unlock();
1232
1233	return NULL;
1234}
1235
1236struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1237{
1238	struct smp_irk *irk_to_return = NULL;
1239	struct smp_irk *irk;
1240
1241	rcu_read_lock();
1242	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1243		if (!bacmp(&irk->rpa, rpa)) {
1244			irk_to_return = irk;
1245			goto done;
1246		}
1247	}
1248
1249	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1250		if (smp_irk_matches(hdev, irk->val, rpa)) {
1251			bacpy(&irk->rpa, rpa);
1252			irk_to_return = irk;
1253			goto done;
1254		}
1255	}
1256
1257done:
1258	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1259						irk_to_return->val)) {
1260		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1261					&irk_to_return->bdaddr);
1262		irk_to_return = NULL;
1263	}
1264
1265	rcu_read_unlock();
1266
1267	return irk_to_return;
1268}
1269
1270struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1271				     u8 addr_type)
1272{
1273	struct smp_irk *irk_to_return = NULL;
1274	struct smp_irk *irk;
1275
1276	/* Identity Address must be public or static random */
1277	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1278		return NULL;
1279
1280	rcu_read_lock();
1281	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1282		if (addr_type == irk->addr_type &&
1283		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1284			irk_to_return = irk;
1285			goto done;
1286		}
1287	}
1288
1289done:
1290
1291	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1292						irk_to_return->val)) {
1293		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1294					&irk_to_return->bdaddr);
1295		irk_to_return = NULL;
1296	}
1297
1298	rcu_read_unlock();
1299
1300	return irk_to_return;
1301}
1302
1303struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1304				  bdaddr_t *bdaddr, u8 *val, u8 type,
1305				  u8 pin_len, bool *persistent)
1306{
1307	struct link_key *key, *old_key;
1308	u8 old_key_type;
1309
1310	old_key = hci_find_link_key(hdev, bdaddr);
1311	if (old_key) {
1312		old_key_type = old_key->type;
1313		key = old_key;
1314	} else {
1315		old_key_type = conn ? conn->key_type : 0xff;
1316		key = kzalloc(sizeof(*key), GFP_KERNEL);
1317		if (!key)
1318			return NULL;
1319		list_add_rcu(&key->list, &hdev->link_keys);
1320	}
1321
1322	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1323
1324	/* Some buggy controller combinations generate a changed
1325	 * combination key for legacy pairing even when there's no
1326	 * previous key */
1327	if (type == HCI_LK_CHANGED_COMBINATION &&
1328	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1329		type = HCI_LK_COMBINATION;
1330		if (conn)
1331			conn->key_type = type;
1332	}
1333
1334	bacpy(&key->bdaddr, bdaddr);
1335	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1336	key->pin_len = pin_len;
1337
1338	if (type == HCI_LK_CHANGED_COMBINATION)
1339		key->type = old_key_type;
1340	else
1341		key->type = type;
1342
1343	if (persistent)
1344		*persistent = hci_persistent_key(hdev, conn, type,
1345						 old_key_type);
1346
1347	return key;
1348}
1349
1350struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1351			    u8 addr_type, u8 type, u8 authenticated,
1352			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1353{
1354	struct smp_ltk *key, *old_key;
1355	u8 role = ltk_role(type);
1356
1357	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1358	if (old_key)
1359		key = old_key;
1360	else {
1361		key = kzalloc(sizeof(*key), GFP_KERNEL);
1362		if (!key)
1363			return NULL;
1364		list_add_rcu(&key->list, &hdev->long_term_keys);
1365	}
1366
1367	bacpy(&key->bdaddr, bdaddr);
1368	key->bdaddr_type = addr_type;
1369	memcpy(key->val, tk, sizeof(key->val));
1370	key->authenticated = authenticated;
1371	key->ediv = ediv;
1372	key->rand = rand;
1373	key->enc_size = enc_size;
1374	key->type = type;
1375
1376	return key;
1377}
1378
1379struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1380			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1381{
1382	struct smp_irk *irk;
1383
1384	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1385	if (!irk) {
1386		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1387		if (!irk)
1388			return NULL;
1389
1390		bacpy(&irk->bdaddr, bdaddr);
1391		irk->addr_type = addr_type;
1392
1393		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1394	}
1395
1396	memcpy(irk->val, val, 16);
1397	bacpy(&irk->rpa, rpa);
1398
1399	return irk;
1400}
1401
1402int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1403{
1404	struct link_key *key;
1405
1406	key = hci_find_link_key(hdev, bdaddr);
1407	if (!key)
1408		return -ENOENT;
1409
1410	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1411
1412	list_del_rcu(&key->list);
1413	kfree_rcu(key, rcu);
1414
1415	return 0;
1416}
1417
1418int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1419{
1420	struct smp_ltk *k, *tmp;
1421	int removed = 0;
1422
1423	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1424		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1425			continue;
1426
1427		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1428
1429		list_del_rcu(&k->list);
1430		kfree_rcu(k, rcu);
1431		removed++;
1432	}
1433
1434	return removed ? 0 : -ENOENT;
1435}
1436
1437void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1438{
1439	struct smp_irk *k, *tmp;
1440
1441	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1442		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1443			continue;
1444
1445		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1446
1447		list_del_rcu(&k->list);
1448		kfree_rcu(k, rcu);
1449	}
1450}
1451
1452bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1453{
1454	struct smp_ltk *k;
1455	struct smp_irk *irk;
1456	u8 addr_type;
1457
1458	if (type == BDADDR_BREDR) {
1459		if (hci_find_link_key(hdev, bdaddr))
1460			return true;
1461		return false;
1462	}
1463
1464	/* Convert to HCI addr type which struct smp_ltk uses */
1465	if (type == BDADDR_LE_PUBLIC)
1466		addr_type = ADDR_LE_DEV_PUBLIC;
1467	else
1468		addr_type = ADDR_LE_DEV_RANDOM;
1469
1470	irk = hci_get_irk(hdev, bdaddr, addr_type);
1471	if (irk) {
1472		bdaddr = &irk->bdaddr;
1473		addr_type = irk->addr_type;
1474	}
1475
1476	rcu_read_lock();
1477	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1478		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1479			rcu_read_unlock();
1480			return true;
1481		}
1482	}
1483	rcu_read_unlock();
1484
1485	return false;
1486}
1487
1488/* HCI command timer function */
1489static void hci_cmd_timeout(struct work_struct *work)
1490{
1491	struct hci_dev *hdev = container_of(work, struct hci_dev,
1492					    cmd_timer.work);
1493
1494	if (hdev->sent_cmd) {
1495		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1496		u16 opcode = __le16_to_cpu(sent->opcode);
1497
1498		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1499	} else {
1500		bt_dev_err(hdev, "command tx timeout");
1501	}
1502
1503	if (hdev->cmd_timeout)
1504		hdev->cmd_timeout(hdev);
1505
1506	atomic_set(&hdev->cmd_cnt, 1);
1507	queue_work(hdev->workqueue, &hdev->cmd_work);
1508}
1509
1510/* HCI ncmd timer function */
1511static void hci_ncmd_timeout(struct work_struct *work)
1512{
1513	struct hci_dev *hdev = container_of(work, struct hci_dev,
1514					    ncmd_timer.work);
1515
1516	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1517
1518	/* During HCI_INIT phase no events can be injected if the ncmd timer
1519	 * triggers since the procedure has its own timeout handling.
1520	 */
1521	if (test_bit(HCI_INIT, &hdev->flags))
1522		return;
1523
1524	/* This is an irrecoverable state, inject hardware error event */
1525	hci_reset_dev(hdev);
1526}
1527
1528struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1529					  bdaddr_t *bdaddr, u8 bdaddr_type)
1530{
1531	struct oob_data *data;
1532
1533	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1534		if (bacmp(bdaddr, &data->bdaddr) != 0)
1535			continue;
1536		if (data->bdaddr_type != bdaddr_type)
1537			continue;
1538		return data;
1539	}
1540
1541	return NULL;
1542}
1543
1544int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1545			       u8 bdaddr_type)
1546{
1547	struct oob_data *data;
1548
1549	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1550	if (!data)
1551		return -ENOENT;
1552
1553	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1554
1555	list_del(&data->list);
1556	kfree(data);
1557
1558	return 0;
1559}
1560
1561void hci_remote_oob_data_clear(struct hci_dev *hdev)
1562{
1563	struct oob_data *data, *n;
1564
1565	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1566		list_del(&data->list);
1567		kfree(data);
1568	}
1569}
1570
1571int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1572			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1573			    u8 *hash256, u8 *rand256)
1574{
1575	struct oob_data *data;
1576
1577	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1578	if (!data) {
1579		data = kmalloc(sizeof(*data), GFP_KERNEL);
1580		if (!data)
1581			return -ENOMEM;
1582
1583		bacpy(&data->bdaddr, bdaddr);
1584		data->bdaddr_type = bdaddr_type;
1585		list_add(&data->list, &hdev->remote_oob_data);
1586	}
1587
1588	if (hash192 && rand192) {
1589		memcpy(data->hash192, hash192, sizeof(data->hash192));
1590		memcpy(data->rand192, rand192, sizeof(data->rand192));
1591		if (hash256 && rand256)
1592			data->present = 0x03;
1593	} else {
1594		memset(data->hash192, 0, sizeof(data->hash192));
1595		memset(data->rand192, 0, sizeof(data->rand192));
1596		if (hash256 && rand256)
1597			data->present = 0x02;
1598		else
1599			data->present = 0x00;
1600	}
1601
1602	if (hash256 && rand256) {
1603		memcpy(data->hash256, hash256, sizeof(data->hash256));
1604		memcpy(data->rand256, rand256, sizeof(data->rand256));
1605	} else {
1606		memset(data->hash256, 0, sizeof(data->hash256));
1607		memset(data->rand256, 0, sizeof(data->rand256));
1608		if (hash192 && rand192)
1609			data->present = 0x01;
1610	}
1611
1612	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1613
1614	return 0;
1615}
1616
1617/* This function requires the caller holds hdev->lock */
1618struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1619{
1620	struct adv_info *adv_instance;
1621
1622	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1623		if (adv_instance->instance == instance)
1624			return adv_instance;
1625	}
1626
1627	return NULL;
1628}
1629
1630/* This function requires the caller holds hdev->lock */
1631struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1632{
1633	struct adv_info *cur_instance;
1634
1635	cur_instance = hci_find_adv_instance(hdev, instance);
1636	if (!cur_instance)
1637		return NULL;
1638
1639	if (cur_instance == list_last_entry(&hdev->adv_instances,
1640					    struct adv_info, list))
1641		return list_first_entry(&hdev->adv_instances,
1642						 struct adv_info, list);
1643	else
1644		return list_next_entry(cur_instance, list);
1645}
1646
1647/* This function requires the caller holds hdev->lock */
1648int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1649{
1650	struct adv_info *adv_instance;
1651
1652	adv_instance = hci_find_adv_instance(hdev, instance);
1653	if (!adv_instance)
1654		return -ENOENT;
1655
1656	BT_DBG("%s removing %dMR", hdev->name, instance);
1657
1658	if (hdev->cur_adv_instance == instance) {
1659		if (hdev->adv_instance_timeout) {
1660			cancel_delayed_work(&hdev->adv_instance_expire);
1661			hdev->adv_instance_timeout = 0;
1662		}
1663		hdev->cur_adv_instance = 0x00;
1664	}
1665
1666	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1667
1668	list_del(&adv_instance->list);
1669	kfree(adv_instance);
1670
1671	hdev->adv_instance_cnt--;
1672
1673	return 0;
1674}
1675
1676void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1677{
1678	struct adv_info *adv_instance, *n;
1679
1680	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1681		adv_instance->rpa_expired = rpa_expired;
1682}
1683
1684/* This function requires the caller holds hdev->lock */
1685void hci_adv_instances_clear(struct hci_dev *hdev)
1686{
1687	struct adv_info *adv_instance, *n;
1688
1689	if (hdev->adv_instance_timeout) {
1690		cancel_delayed_work(&hdev->adv_instance_expire);
1691		hdev->adv_instance_timeout = 0;
1692	}
1693
1694	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1695		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1696		list_del(&adv_instance->list);
1697		kfree(adv_instance);
1698	}
1699
1700	hdev->adv_instance_cnt = 0;
1701	hdev->cur_adv_instance = 0x00;
1702}
1703
1704static void adv_instance_rpa_expired(struct work_struct *work)
 
 
 
 
1705{
1706	struct adv_info *adv_instance = container_of(work, struct adv_info,
1707						     rpa_expired_cb.work);
1708
1709	BT_DBG("");
 
 
 
 
 
 
 
 
 
1710
1711	adv_instance->rpa_expired = true;
1712}
 
1713
1714/* This function requires the caller holds hdev->lock */
1715struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1716				      u32 flags, u16 adv_data_len, u8 *adv_data,
1717				      u16 scan_rsp_len, u8 *scan_rsp_data,
1718				      u16 timeout, u16 duration, s8 tx_power,
1719				      u32 min_interval, u32 max_interval,
1720				      u8 mesh_handle)
1721{
1722	struct adv_info *adv;
1723
1724	adv = hci_find_adv_instance(hdev, instance);
1725	if (adv) {
1726		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1727		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1728		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1729	} else {
1730		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1731		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1732			return ERR_PTR(-EOVERFLOW);
1733
1734		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1735		if (!adv)
1736			return ERR_PTR(-ENOMEM);
1737
1738		adv->pending = true;
1739		adv->instance = instance;
1740		list_add(&adv->list, &hdev->adv_instances);
1741		hdev->adv_instance_cnt++;
1742	}
1743
1744	adv->flags = flags;
1745	adv->min_interval = min_interval;
1746	adv->max_interval = max_interval;
1747	adv->tx_power = tx_power;
1748	/* Defining a mesh_handle changes the timing units to ms,
1749	 * rather than seconds, and ties the instance to the requested
1750	 * mesh_tx queue.
1751	 */
1752	adv->mesh = mesh_handle;
1753
1754	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1755				  scan_rsp_len, scan_rsp_data);
1756
1757	adv->timeout = timeout;
1758	adv->remaining_time = timeout;
1759
1760	if (duration == 0)
1761		adv->duration = hdev->def_multi_adv_rotation_duration;
1762	else
1763		adv->duration = duration;
1764
1765	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1766
1767	BT_DBG("%s for %dMR", hdev->name, instance);
1768
1769	return adv;
1770}
1771
1772/* This function requires the caller holds hdev->lock */
1773struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1774				      u32 flags, u8 data_len, u8 *data,
1775				      u32 min_interval, u32 max_interval)
1776{
1777	struct adv_info *adv;
1778
1779	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1780				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1781				   min_interval, max_interval, 0);
1782	if (IS_ERR(adv))
1783		return adv;
1784
1785	adv->periodic = true;
1786	adv->per_adv_data_len = data_len;
1787
1788	if (data)
1789		memcpy(adv->per_adv_data, data, data_len);
1790
1791	return adv;
1792}
1793
1794/* This function requires the caller holds hdev->lock */
1795int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1796			      u16 adv_data_len, u8 *adv_data,
1797			      u16 scan_rsp_len, u8 *scan_rsp_data)
1798{
1799	struct adv_info *adv;
1800
1801	adv = hci_find_adv_instance(hdev, instance);
1802
1803	/* If advertisement doesn't exist, we can't modify its data */
1804	if (!adv)
1805		return -ENOENT;
1806
1807	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1808		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1809		memcpy(adv->adv_data, adv_data, adv_data_len);
1810		adv->adv_data_len = adv_data_len;
1811		adv->adv_data_changed = true;
1812	}
1813
1814	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1815		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1816		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1817		adv->scan_rsp_len = scan_rsp_len;
1818		adv->scan_rsp_changed = true;
1819	}
1820
1821	/* Mark as changed if there are flags which would affect it */
1822	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1823	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1824		adv->scan_rsp_changed = true;
1825
1826	return 0;
1827}
1828
1829/* This function requires the caller holds hdev->lock */
1830u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1831{
1832	u32 flags;
1833	struct adv_info *adv;
1834
1835	if (instance == 0x00) {
1836		/* Instance 0 always manages the "Tx Power" and "Flags"
1837		 * fields
1838		 */
1839		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1840
1841		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1842		 * corresponds to the "connectable" instance flag.
1843		 */
1844		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1845			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1846
1847		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1848			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1849		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1850			flags |= MGMT_ADV_FLAG_DISCOV;
1851
1852		return flags;
1853	}
1854
1855	adv = hci_find_adv_instance(hdev, instance);
1856
1857	/* Return 0 when we got an invalid instance identifier. */
1858	if (!adv)
1859		return 0;
1860
1861	return adv->flags;
1862}
1863
1864bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1865{
1866	struct adv_info *adv;
1867
1868	/* Instance 0x00 always set local name */
1869	if (instance == 0x00)
1870		return true;
1871
1872	adv = hci_find_adv_instance(hdev, instance);
1873	if (!adv)
1874		return false;
1875
1876	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1877	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1878		return true;
1879
1880	return adv->scan_rsp_len ? true : false;
1881}
1882
1883/* This function requires the caller holds hdev->lock */
1884void hci_adv_monitors_clear(struct hci_dev *hdev)
1885{
1886	struct adv_monitor *monitor;
1887	int handle;
1888
1889	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1890		hci_free_adv_monitor(hdev, monitor);
1891
1892	idr_destroy(&hdev->adv_monitors_idr);
1893}
1894
1895/* Frees the monitor structure and do some bookkeepings.
1896 * This function requires the caller holds hdev->lock.
1897 */
1898void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1899{
1900	struct adv_pattern *pattern;
1901	struct adv_pattern *tmp;
1902
1903	if (!monitor)
1904		return;
1905
1906	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1907		list_del(&pattern->list);
1908		kfree(pattern);
1909	}
1910
1911	if (monitor->handle)
1912		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1913
1914	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1915		hdev->adv_monitors_cnt--;
1916		mgmt_adv_monitor_removed(hdev, monitor->handle);
1917	}
1918
1919	kfree(monitor);
1920}
1921
1922/* Assigns handle to a monitor, and if offloading is supported and power is on,
1923 * also attempts to forward the request to the controller.
1924 * This function requires the caller holds hci_req_sync_lock.
1925 */
1926int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1927{
1928	int min, max, handle;
1929	int status = 0;
1930
1931	if (!monitor)
1932		return -EINVAL;
1933
1934	hci_dev_lock(hdev);
1935
1936	min = HCI_MIN_ADV_MONITOR_HANDLE;
1937	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1938	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1939			   GFP_KERNEL);
1940
1941	hci_dev_unlock(hdev);
1942
1943	if (handle < 0)
1944		return handle;
1945
1946	monitor->handle = handle;
1947
1948	if (!hdev_is_powered(hdev))
1949		return status;
1950
1951	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1952	case HCI_ADV_MONITOR_EXT_NONE:
1953		bt_dev_dbg(hdev, "add monitor %d status %d",
1954			   monitor->handle, status);
1955		/* Message was not forwarded to controller - not an error */
1956		break;
1957
1958	case HCI_ADV_MONITOR_EXT_MSFT:
1959		status = msft_add_monitor_pattern(hdev, monitor);
1960		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1961			   handle, status);
1962		break;
1963	}
1964
1965	return status;
1966}
1967
1968/* Attempts to tell the controller and free the monitor. If somehow the
1969 * controller doesn't have a corresponding handle, remove anyway.
1970 * This function requires the caller holds hci_req_sync_lock.
1971 */
1972static int hci_remove_adv_monitor(struct hci_dev *hdev,
1973				  struct adv_monitor *monitor)
1974{
1975	int status = 0;
1976	int handle;
1977
1978	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1979	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1980		bt_dev_dbg(hdev, "remove monitor %d status %d",
1981			   monitor->handle, status);
1982		goto free_monitor;
1983
1984	case HCI_ADV_MONITOR_EXT_MSFT:
1985		handle = monitor->handle;
1986		status = msft_remove_monitor(hdev, monitor);
1987		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1988			   handle, status);
1989		break;
1990	}
1991
1992	/* In case no matching handle registered, just free the monitor */
1993	if (status == -ENOENT)
1994		goto free_monitor;
1995
1996	return status;
1997
1998free_monitor:
1999	if (status == -ENOENT)
2000		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
2001			    monitor->handle);
2002	hci_free_adv_monitor(hdev, monitor);
2003
2004	return status;
2005}
2006
2007/* This function requires the caller holds hci_req_sync_lock */
2008int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2009{
2010	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2011
2012	if (!monitor)
2013		return -EINVAL;
2014
2015	return hci_remove_adv_monitor(hdev, monitor);
2016}
2017
2018/* This function requires the caller holds hci_req_sync_lock */
2019int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2020{
2021	struct adv_monitor *monitor;
2022	int idr_next_id = 0;
2023	int status = 0;
2024
2025	while (1) {
2026		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2027		if (!monitor)
2028			break;
2029
2030		status = hci_remove_adv_monitor(hdev, monitor);
2031		if (status)
2032			return status;
2033
2034		idr_next_id++;
2035	}
2036
2037	return status;
2038}
2039
2040/* This function requires the caller holds hdev->lock */
2041bool hci_is_adv_monitoring(struct hci_dev *hdev)
2042{
2043	return !idr_is_empty(&hdev->adv_monitors_idr);
2044}
2045
2046int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2047{
2048	if (msft_monitor_supported(hdev))
2049		return HCI_ADV_MONITOR_EXT_MSFT;
2050
2051	return HCI_ADV_MONITOR_EXT_NONE;
2052}
2053
2054struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2055					 bdaddr_t *bdaddr, u8 type)
2056{
2057	struct bdaddr_list *b;
2058
2059	list_for_each_entry(b, bdaddr_list, list) {
2060		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2061			return b;
2062	}
2063
2064	return NULL;
2065}
2066
2067struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2068				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2069				u8 type)
2070{
2071	struct bdaddr_list_with_irk *b;
2072
2073	list_for_each_entry(b, bdaddr_list, list) {
2074		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2075			return b;
2076	}
2077
2078	return NULL;
2079}
2080
2081struct bdaddr_list_with_flags *
2082hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2083				  bdaddr_t *bdaddr, u8 type)
2084{
2085	struct bdaddr_list_with_flags *b;
2086
2087	list_for_each_entry(b, bdaddr_list, list) {
2088		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2089			return b;
2090	}
2091
2092	return NULL;
2093}
2094
2095void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2096{
2097	struct bdaddr_list *b, *n;
2098
2099	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2100		list_del(&b->list);
2101		kfree(b);
2102	}
2103}
2104
2105int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2106{
2107	struct bdaddr_list *entry;
2108
2109	if (!bacmp(bdaddr, BDADDR_ANY))
2110		return -EBADF;
2111
2112	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2113		return -EEXIST;
2114
2115	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2116	if (!entry)
2117		return -ENOMEM;
2118
2119	bacpy(&entry->bdaddr, bdaddr);
2120	entry->bdaddr_type = type;
2121
2122	list_add(&entry->list, list);
2123
2124	return 0;
2125}
2126
2127int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2128					u8 type, u8 *peer_irk, u8 *local_irk)
2129{
2130	struct bdaddr_list_with_irk *entry;
2131
2132	if (!bacmp(bdaddr, BDADDR_ANY))
2133		return -EBADF;
2134
2135	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2136		return -EEXIST;
2137
2138	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2139	if (!entry)
2140		return -ENOMEM;
2141
2142	bacpy(&entry->bdaddr, bdaddr);
2143	entry->bdaddr_type = type;
2144
2145	if (peer_irk)
2146		memcpy(entry->peer_irk, peer_irk, 16);
2147
2148	if (local_irk)
2149		memcpy(entry->local_irk, local_irk, 16);
2150
2151	list_add(&entry->list, list);
2152
2153	return 0;
2154}
2155
2156int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2157				   u8 type, u32 flags)
2158{
2159	struct bdaddr_list_with_flags *entry;
2160
2161	if (!bacmp(bdaddr, BDADDR_ANY))
2162		return -EBADF;
2163
2164	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2165		return -EEXIST;
2166
2167	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2168	if (!entry)
2169		return -ENOMEM;
2170
2171	bacpy(&entry->bdaddr, bdaddr);
2172	entry->bdaddr_type = type;
2173	entry->flags = flags;
2174
2175	list_add(&entry->list, list);
2176
2177	return 0;
2178}
2179
2180int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2181{
2182	struct bdaddr_list *entry;
2183
2184	if (!bacmp(bdaddr, BDADDR_ANY)) {
2185		hci_bdaddr_list_clear(list);
2186		return 0;
2187	}
2188
2189	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2190	if (!entry)
2191		return -ENOENT;
2192
2193	list_del(&entry->list);
2194	kfree(entry);
2195
2196	return 0;
2197}
2198
2199int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2200							u8 type)
2201{
2202	struct bdaddr_list_with_irk *entry;
2203
2204	if (!bacmp(bdaddr, BDADDR_ANY)) {
2205		hci_bdaddr_list_clear(list);
2206		return 0;
2207	}
2208
2209	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2210	if (!entry)
2211		return -ENOENT;
2212
2213	list_del(&entry->list);
2214	kfree(entry);
2215
2216	return 0;
2217}
2218
2219int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2220				   u8 type)
2221{
2222	struct bdaddr_list_with_flags *entry;
2223
2224	if (!bacmp(bdaddr, BDADDR_ANY)) {
2225		hci_bdaddr_list_clear(list);
2226		return 0;
2227	}
2228
2229	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2230	if (!entry)
2231		return -ENOENT;
2232
2233	list_del(&entry->list);
2234	kfree(entry);
2235
2236	return 0;
2237}
2238
2239/* This function requires the caller holds hdev->lock */
2240struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2241					       bdaddr_t *addr, u8 addr_type)
2242{
2243	struct hci_conn_params *params;
2244
2245	list_for_each_entry(params, &hdev->le_conn_params, list) {
2246		if (bacmp(&params->addr, addr) == 0 &&
2247		    params->addr_type == addr_type) {
2248			return params;
2249		}
2250	}
2251
2252	return NULL;
2253}
2254
2255/* This function requires the caller holds hdev->lock or rcu_read_lock */
2256struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2257						  bdaddr_t *addr, u8 addr_type)
2258{
2259	struct hci_conn_params *param;
2260
2261	rcu_read_lock();
2262
2263	list_for_each_entry_rcu(param, list, action) {
2264		if (bacmp(&param->addr, addr) == 0 &&
2265		    param->addr_type == addr_type) {
2266			rcu_read_unlock();
2267			return param;
2268		}
2269	}
2270
2271	rcu_read_unlock();
2272
2273	return NULL;
2274}
2275
2276/* This function requires the caller holds hdev->lock */
2277void hci_pend_le_list_del_init(struct hci_conn_params *param)
2278{
2279	if (list_empty(&param->action))
2280		return;
2281
2282	list_del_rcu(&param->action);
2283	synchronize_rcu();
2284	INIT_LIST_HEAD(&param->action);
2285}
2286
2287/* This function requires the caller holds hdev->lock */
2288void hci_pend_le_list_add(struct hci_conn_params *param,
2289			  struct list_head *list)
2290{
2291	list_add_rcu(&param->action, list);
2292}
2293
2294/* This function requires the caller holds hdev->lock */
2295struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2296					    bdaddr_t *addr, u8 addr_type)
2297{
2298	struct hci_conn_params *params;
2299
2300	params = hci_conn_params_lookup(hdev, addr, addr_type);
2301	if (params)
2302		return params;
2303
2304	params = kzalloc(sizeof(*params), GFP_KERNEL);
2305	if (!params) {
2306		bt_dev_err(hdev, "out of memory");
2307		return NULL;
2308	}
2309
2310	bacpy(&params->addr, addr);
2311	params->addr_type = addr_type;
2312
2313	list_add(&params->list, &hdev->le_conn_params);
2314	INIT_LIST_HEAD(&params->action);
2315
2316	params->conn_min_interval = hdev->le_conn_min_interval;
2317	params->conn_max_interval = hdev->le_conn_max_interval;
2318	params->conn_latency = hdev->le_conn_latency;
2319	params->supervision_timeout = hdev->le_supv_timeout;
2320	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2321
2322	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2323
2324	return params;
2325}
2326
2327void hci_conn_params_free(struct hci_conn_params *params)
2328{
2329	hci_pend_le_list_del_init(params);
2330
2331	if (params->conn) {
2332		hci_conn_drop(params->conn);
2333		hci_conn_put(params->conn);
2334	}
2335
 
2336	list_del(&params->list);
2337	kfree(params);
2338}
2339
2340/* This function requires the caller holds hdev->lock */
2341void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2342{
2343	struct hci_conn_params *params;
2344
2345	params = hci_conn_params_lookup(hdev, addr, addr_type);
2346	if (!params)
2347		return;
2348
2349	hci_conn_params_free(params);
2350
2351	hci_update_passive_scan(hdev);
2352
2353	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2354}
2355
2356/* This function requires the caller holds hdev->lock */
2357void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2358{
2359	struct hci_conn_params *params, *tmp;
2360
2361	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2362		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2363			continue;
2364
2365		/* If trying to establish one time connection to disabled
2366		 * device, leave the params, but mark them as just once.
2367		 */
2368		if (params->explicit_connect) {
2369			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2370			continue;
2371		}
2372
2373		hci_conn_params_free(params);
 
2374	}
2375
2376	BT_DBG("All LE disabled connection parameters were removed");
2377}
2378
2379/* This function requires the caller holds hdev->lock */
2380static void hci_conn_params_clear_all(struct hci_dev *hdev)
2381{
2382	struct hci_conn_params *params, *tmp;
2383
2384	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2385		hci_conn_params_free(params);
2386
2387	BT_DBG("All LE connection parameters were removed");
2388}
2389
2390/* Copy the Identity Address of the controller.
2391 *
2392 * If the controller has a public BD_ADDR, then by default use that one.
2393 * If this is a LE only controller without a public address, default to
2394 * the static random address.
2395 *
2396 * For debugging purposes it is possible to force controllers with a
2397 * public address to use the static random address instead.
2398 *
2399 * In case BR/EDR has been disabled on a dual-mode controller and
2400 * userspace has configured a static address, then that address
2401 * becomes the identity address instead of the public BR/EDR address.
2402 */
2403void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2404			       u8 *bdaddr_type)
2405{
2406	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2407	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2408	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2409	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2410		bacpy(bdaddr, &hdev->static_addr);
2411		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2412	} else {
2413		bacpy(bdaddr, &hdev->bdaddr);
2414		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2415	}
2416}
2417
2418static void hci_clear_wake_reason(struct hci_dev *hdev)
2419{
2420	hci_dev_lock(hdev);
2421
2422	hdev->wake_reason = 0;
2423	bacpy(&hdev->wake_addr, BDADDR_ANY);
2424	hdev->wake_addr_type = 0;
2425
2426	hci_dev_unlock(hdev);
2427}
2428
2429static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2430				void *data)
2431{
2432	struct hci_dev *hdev =
2433		container_of(nb, struct hci_dev, suspend_notifier);
2434	int ret = 0;
2435
2436	/* Userspace has full control of this device. Do nothing. */
2437	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2438		return NOTIFY_DONE;
2439
2440	/* To avoid a potential race with hci_unregister_dev. */
2441	hci_dev_hold(hdev);
2442
2443	if (action == PM_SUSPEND_PREPARE)
2444		ret = hci_suspend_dev(hdev);
2445	else if (action == PM_POST_SUSPEND)
2446		ret = hci_resume_dev(hdev);
2447
2448	if (ret)
2449		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2450			   action, ret);
2451
2452	hci_dev_put(hdev);
2453	return NOTIFY_DONE;
2454}
2455
2456/* Alloc HCI device */
2457struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2458{
2459	struct hci_dev *hdev;
2460	unsigned int alloc_size;
2461
2462	alloc_size = sizeof(*hdev);
2463	if (sizeof_priv) {
2464		/* Fixme: May need ALIGN-ment? */
2465		alloc_size += sizeof_priv;
2466	}
2467
2468	hdev = kzalloc(alloc_size, GFP_KERNEL);
2469	if (!hdev)
2470		return NULL;
2471
2472	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2473	hdev->esco_type = (ESCO_HV1);
2474	hdev->link_mode = (HCI_LM_ACCEPT);
2475	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2476	hdev->io_capability = 0x03;	/* No Input No Output */
2477	hdev->manufacturer = 0xffff;	/* Default to internal use */
2478	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2479	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2480	hdev->adv_instance_cnt = 0;
2481	hdev->cur_adv_instance = 0x00;
2482	hdev->adv_instance_timeout = 0;
2483
2484	hdev->advmon_allowlist_duration = 300;
2485	hdev->advmon_no_filter_duration = 500;
2486	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2487
2488	hdev->sniff_max_interval = 800;
2489	hdev->sniff_min_interval = 80;
2490
2491	hdev->le_adv_channel_map = 0x07;
2492	hdev->le_adv_min_interval = 0x0800;
2493	hdev->le_adv_max_interval = 0x0800;
2494	hdev->le_scan_interval = 0x0060;
2495	hdev->le_scan_window = 0x0030;
2496	hdev->le_scan_int_suspend = 0x0400;
2497	hdev->le_scan_window_suspend = 0x0012;
2498	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2499	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2500	hdev->le_scan_int_adv_monitor = 0x0060;
2501	hdev->le_scan_window_adv_monitor = 0x0030;
2502	hdev->le_scan_int_connect = 0x0060;
2503	hdev->le_scan_window_connect = 0x0060;
2504	hdev->le_conn_min_interval = 0x0018;
2505	hdev->le_conn_max_interval = 0x0028;
2506	hdev->le_conn_latency = 0x0000;
2507	hdev->le_supv_timeout = 0x002a;
2508	hdev->le_def_tx_len = 0x001b;
2509	hdev->le_def_tx_time = 0x0148;
2510	hdev->le_max_tx_len = 0x001b;
2511	hdev->le_max_tx_time = 0x0148;
2512	hdev->le_max_rx_len = 0x001b;
2513	hdev->le_max_rx_time = 0x0148;
2514	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2515	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2516	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2517	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2518	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2519	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2520	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2521	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2522	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2523
2524	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2525	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2526	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2527	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2528	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2529	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2530
2531	/* default 1.28 sec page scan */
2532	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2533	hdev->def_page_scan_int = 0x0800;
2534	hdev->def_page_scan_window = 0x0012;
2535
2536	mutex_init(&hdev->lock);
2537	mutex_init(&hdev->req_lock);
2538
2539	ida_init(&hdev->unset_handle_ida);
2540
2541	INIT_LIST_HEAD(&hdev->mesh_pending);
2542	INIT_LIST_HEAD(&hdev->mgmt_pending);
2543	INIT_LIST_HEAD(&hdev->reject_list);
2544	INIT_LIST_HEAD(&hdev->accept_list);
2545	INIT_LIST_HEAD(&hdev->uuids);
2546	INIT_LIST_HEAD(&hdev->link_keys);
2547	INIT_LIST_HEAD(&hdev->long_term_keys);
2548	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2549	INIT_LIST_HEAD(&hdev->remote_oob_data);
2550	INIT_LIST_HEAD(&hdev->le_accept_list);
2551	INIT_LIST_HEAD(&hdev->le_resolv_list);
2552	INIT_LIST_HEAD(&hdev->le_conn_params);
2553	INIT_LIST_HEAD(&hdev->pend_le_conns);
2554	INIT_LIST_HEAD(&hdev->pend_le_reports);
2555	INIT_LIST_HEAD(&hdev->conn_hash.list);
2556	INIT_LIST_HEAD(&hdev->adv_instances);
2557	INIT_LIST_HEAD(&hdev->blocked_keys);
2558	INIT_LIST_HEAD(&hdev->monitored_devices);
2559
2560	INIT_LIST_HEAD(&hdev->local_codecs);
2561	INIT_WORK(&hdev->rx_work, hci_rx_work);
2562	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2563	INIT_WORK(&hdev->tx_work, hci_tx_work);
2564	INIT_WORK(&hdev->power_on, hci_power_on);
2565	INIT_WORK(&hdev->error_reset, hci_error_reset);
2566
2567	hci_cmd_sync_init(hdev);
2568
2569	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2570
2571	skb_queue_head_init(&hdev->rx_q);
2572	skb_queue_head_init(&hdev->cmd_q);
2573	skb_queue_head_init(&hdev->raw_q);
2574
2575	init_waitqueue_head(&hdev->req_wait_q);
2576
2577	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2578	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2579
2580	hci_devcd_setup(hdev);
2581	hci_request_setup(hdev);
2582
2583	hci_init_sysfs(hdev);
2584	discovery_init(hdev);
2585
2586	return hdev;
2587}
2588EXPORT_SYMBOL(hci_alloc_dev_priv);
2589
2590/* Free HCI device */
2591void hci_free_dev(struct hci_dev *hdev)
2592{
2593	/* will free via device release */
2594	put_device(&hdev->dev);
2595}
2596EXPORT_SYMBOL(hci_free_dev);
2597
2598/* Register HCI device */
2599int hci_register_dev(struct hci_dev *hdev)
2600{
2601	int id, error;
2602
2603	if (!hdev->open || !hdev->close || !hdev->send)
2604		return -EINVAL;
2605
2606	/* Do not allow HCI_AMP devices to register at index 0,
2607	 * so the index can be used as the AMP controller ID.
2608	 */
2609	switch (hdev->dev_type) {
2610	case HCI_PRIMARY:
2611		id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
2612		break;
2613	case HCI_AMP:
2614		id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
2615		break;
2616	default:
2617		return -EINVAL;
2618	}
2619
2620	if (id < 0)
2621		return id;
2622
2623	error = dev_set_name(&hdev->dev, "hci%u", id);
2624	if (error)
2625		return error;
2626
2627	hdev->name = dev_name(&hdev->dev);
2628	hdev->id = id;
2629
2630	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2631
2632	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
 
2633	if (!hdev->workqueue) {
2634		error = -ENOMEM;
2635		goto err;
2636	}
2637
2638	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2639						      hdev->name);
2640	if (!hdev->req_workqueue) {
2641		destroy_workqueue(hdev->workqueue);
2642		error = -ENOMEM;
2643		goto err;
2644	}
2645
2646	if (!IS_ERR_OR_NULL(bt_debugfs))
2647		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2648
 
 
2649	error = device_add(&hdev->dev);
2650	if (error < 0)
2651		goto err_wqueue;
2652
2653	hci_leds_init(hdev);
2654
2655	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2656				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2657				    hdev);
2658	if (hdev->rfkill) {
2659		if (rfkill_register(hdev->rfkill) < 0) {
2660			rfkill_destroy(hdev->rfkill);
2661			hdev->rfkill = NULL;
2662		}
2663	}
2664
2665	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2666		hci_dev_set_flag(hdev, HCI_RFKILLED);
2667
2668	hci_dev_set_flag(hdev, HCI_SETUP);
2669	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2670
2671	if (hdev->dev_type == HCI_PRIMARY) {
2672		/* Assume BR/EDR support until proven otherwise (such as
2673		 * through reading supported features during init.
2674		 */
2675		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2676	}
2677
2678	write_lock(&hci_dev_list_lock);
2679	list_add(&hdev->list, &hci_dev_list);
2680	write_unlock(&hci_dev_list_lock);
2681
2682	/* Devices that are marked for raw-only usage are unconfigured
2683	 * and should not be included in normal operation.
2684	 */
2685	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2686		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2687
2688	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2689	 * callback.
2690	 */
2691	if (hdev->wakeup)
2692		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2693
2694	hci_sock_dev_event(hdev, HCI_DEV_REG);
2695	hci_dev_hold(hdev);
2696
2697	error = hci_register_suspend_notifier(hdev);
2698	if (error)
2699		BT_WARN("register suspend notifier failed error:%d\n", error);
2700
2701	queue_work(hdev->req_workqueue, &hdev->power_on);
2702
2703	idr_init(&hdev->adv_monitors_idr);
2704	msft_register(hdev);
2705
2706	return id;
2707
2708err_wqueue:
2709	debugfs_remove_recursive(hdev->debugfs);
2710	destroy_workqueue(hdev->workqueue);
2711	destroy_workqueue(hdev->req_workqueue);
2712err:
2713	ida_simple_remove(&hci_index_ida, hdev->id);
2714
2715	return error;
2716}
2717EXPORT_SYMBOL(hci_register_dev);
2718
2719/* Unregister HCI device */
2720void hci_unregister_dev(struct hci_dev *hdev)
2721{
 
 
2722	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2723
2724	mutex_lock(&hdev->unregister_lock);
2725	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2726	mutex_unlock(&hdev->unregister_lock);
 
2727
2728	write_lock(&hci_dev_list_lock);
2729	list_del(&hdev->list);
2730	write_unlock(&hci_dev_list_lock);
2731
2732	cancel_work_sync(&hdev->power_on);
2733
2734	hci_cmd_sync_clear(hdev);
2735
2736	hci_unregister_suspend_notifier(hdev);
2737
2738	msft_unregister(hdev);
2739
2740	hci_dev_do_close(hdev);
2741
 
 
2742	if (!test_bit(HCI_INIT, &hdev->flags) &&
2743	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2744	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2745		hci_dev_lock(hdev);
2746		mgmt_index_removed(hdev);
2747		hci_dev_unlock(hdev);
2748	}
2749
2750	/* mgmt_index_removed should take care of emptying the
2751	 * pending list */
2752	BUG_ON(!list_empty(&hdev->mgmt_pending));
2753
2754	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2755
2756	if (hdev->rfkill) {
2757		rfkill_unregister(hdev->rfkill);
2758		rfkill_destroy(hdev->rfkill);
2759	}
2760
2761	device_del(&hdev->dev);
2762	/* Actual cleanup is deferred until hci_release_dev(). */
2763	hci_dev_put(hdev);
2764}
2765EXPORT_SYMBOL(hci_unregister_dev);
2766
2767/* Release HCI device */
2768void hci_release_dev(struct hci_dev *hdev)
2769{
2770	debugfs_remove_recursive(hdev->debugfs);
2771	kfree_const(hdev->hw_info);
2772	kfree_const(hdev->fw_info);
2773
2774	destroy_workqueue(hdev->workqueue);
2775	destroy_workqueue(hdev->req_workqueue);
2776
2777	hci_dev_lock(hdev);
2778	hci_bdaddr_list_clear(&hdev->reject_list);
2779	hci_bdaddr_list_clear(&hdev->accept_list);
2780	hci_uuids_clear(hdev);
2781	hci_link_keys_clear(hdev);
2782	hci_smp_ltks_clear(hdev);
2783	hci_smp_irks_clear(hdev);
2784	hci_remote_oob_data_clear(hdev);
2785	hci_adv_instances_clear(hdev);
2786	hci_adv_monitors_clear(hdev);
2787	hci_bdaddr_list_clear(&hdev->le_accept_list);
2788	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2789	hci_conn_params_clear_all(hdev);
2790	hci_discovery_filter_clear(hdev);
2791	hci_blocked_keys_clear(hdev);
2792	hci_codec_list_clear(&hdev->local_codecs);
2793	hci_dev_unlock(hdev);
2794
2795	ida_destroy(&hdev->unset_handle_ida);
2796	ida_simple_remove(&hci_index_ida, hdev->id);
2797	kfree_skb(hdev->sent_cmd);
2798	kfree_skb(hdev->recv_event);
2799	kfree(hdev);
2800}
2801EXPORT_SYMBOL(hci_release_dev);
2802
2803int hci_register_suspend_notifier(struct hci_dev *hdev)
2804{
2805	int ret = 0;
2806
2807	if (!hdev->suspend_notifier.notifier_call &&
2808	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2809		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2810		ret = register_pm_notifier(&hdev->suspend_notifier);
2811	}
2812
2813	return ret;
2814}
2815
2816int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2817{
2818	int ret = 0;
2819
2820	if (hdev->suspend_notifier.notifier_call) {
2821		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2822		if (!ret)
2823			hdev->suspend_notifier.notifier_call = NULL;
2824	}
2825
2826	return ret;
2827}
 
2828
2829/* Suspend HCI device */
2830int hci_suspend_dev(struct hci_dev *hdev)
2831{
2832	int ret;
2833
2834	bt_dev_dbg(hdev, "");
2835
2836	/* Suspend should only act on when powered. */
2837	if (!hdev_is_powered(hdev) ||
2838	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2839		return 0;
2840
2841	/* If powering down don't attempt to suspend */
2842	if (mgmt_powering_down(hdev))
2843		return 0;
2844
2845	/* Cancel potentially blocking sync operation before suspend */
2846	__hci_cmd_sync_cancel(hdev, -EHOSTDOWN);
2847
2848	hci_req_sync_lock(hdev);
2849	ret = hci_suspend_sync(hdev);
2850	hci_req_sync_unlock(hdev);
2851
2852	hci_clear_wake_reason(hdev);
2853	mgmt_suspending(hdev, hdev->suspend_state);
2854
2855	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2856	return ret;
2857}
2858EXPORT_SYMBOL(hci_suspend_dev);
2859
2860/* Resume HCI device */
2861int hci_resume_dev(struct hci_dev *hdev)
2862{
2863	int ret;
2864
2865	bt_dev_dbg(hdev, "");
2866
2867	/* Resume should only act on when powered. */
2868	if (!hdev_is_powered(hdev) ||
2869	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2870		return 0;
2871
2872	/* If powering down don't attempt to resume */
2873	if (mgmt_powering_down(hdev))
2874		return 0;
2875
2876	hci_req_sync_lock(hdev);
2877	ret = hci_resume_sync(hdev);
2878	hci_req_sync_unlock(hdev);
2879
2880	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2881		      hdev->wake_addr_type);
2882
2883	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2884	return ret;
2885}
2886EXPORT_SYMBOL(hci_resume_dev);
2887
2888/* Reset HCI device */
2889int hci_reset_dev(struct hci_dev *hdev)
2890{
2891	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2892	struct sk_buff *skb;
2893
2894	skb = bt_skb_alloc(3, GFP_ATOMIC);
2895	if (!skb)
2896		return -ENOMEM;
2897
2898	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2899	skb_put_data(skb, hw_err, 3);
2900
2901	bt_dev_err(hdev, "Injecting HCI hardware error event");
2902
2903	/* Send Hardware Error to upper stack */
2904	return hci_recv_frame(hdev, skb);
2905}
2906EXPORT_SYMBOL(hci_reset_dev);
2907
2908/* Receive frame from HCI drivers */
2909int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2910{
2911	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2912		      && !test_bit(HCI_INIT, &hdev->flags))) {
2913		kfree_skb(skb);
2914		return -ENXIO;
2915	}
2916
2917	switch (hci_skb_pkt_type(skb)) {
2918	case HCI_EVENT_PKT:
2919		break;
2920	case HCI_ACLDATA_PKT:
2921		/* Detect if ISO packet has been sent as ACL */
2922		if (hci_conn_num(hdev, ISO_LINK)) {
2923			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2924			__u8 type;
2925
2926			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2927			if (type == ISO_LINK)
2928				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2929		}
2930		break;
2931	case HCI_SCODATA_PKT:
2932		break;
2933	case HCI_ISODATA_PKT:
2934		break;
2935	default:
2936		kfree_skb(skb);
2937		return -EINVAL;
2938	}
2939
2940	/* Incoming skb */
2941	bt_cb(skb)->incoming = 1;
2942
2943	/* Time stamp */
2944	__net_timestamp(skb);
2945
2946	skb_queue_tail(&hdev->rx_q, skb);
2947	queue_work(hdev->workqueue, &hdev->rx_work);
2948
2949	return 0;
2950}
2951EXPORT_SYMBOL(hci_recv_frame);
2952
2953/* Receive diagnostic message from HCI drivers */
2954int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2955{
2956	/* Mark as diagnostic packet */
2957	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2958
2959	/* Time stamp */
2960	__net_timestamp(skb);
2961
2962	skb_queue_tail(&hdev->rx_q, skb);
2963	queue_work(hdev->workqueue, &hdev->rx_work);
2964
2965	return 0;
2966}
2967EXPORT_SYMBOL(hci_recv_diag);
2968
2969void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2970{
2971	va_list vargs;
2972
2973	va_start(vargs, fmt);
2974	kfree_const(hdev->hw_info);
2975	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2976	va_end(vargs);
2977}
2978EXPORT_SYMBOL(hci_set_hw_info);
2979
2980void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2981{
2982	va_list vargs;
2983
2984	va_start(vargs, fmt);
2985	kfree_const(hdev->fw_info);
2986	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2987	va_end(vargs);
2988}
2989EXPORT_SYMBOL(hci_set_fw_info);
2990
2991/* ---- Interface to upper protocols ---- */
2992
2993int hci_register_cb(struct hci_cb *cb)
2994{
2995	BT_DBG("%p name %s", cb, cb->name);
2996
2997	mutex_lock(&hci_cb_list_lock);
2998	list_add_tail(&cb->list, &hci_cb_list);
2999	mutex_unlock(&hci_cb_list_lock);
3000
3001	return 0;
3002}
3003EXPORT_SYMBOL(hci_register_cb);
3004
3005int hci_unregister_cb(struct hci_cb *cb)
3006{
3007	BT_DBG("%p name %s", cb, cb->name);
3008
3009	mutex_lock(&hci_cb_list_lock);
3010	list_del(&cb->list);
3011	mutex_unlock(&hci_cb_list_lock);
3012
3013	return 0;
3014}
3015EXPORT_SYMBOL(hci_unregister_cb);
3016
3017static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3018{
3019	int err;
3020
3021	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3022	       skb->len);
3023
3024	/* Time stamp */
3025	__net_timestamp(skb);
3026
3027	/* Send copy to monitor */
3028	hci_send_to_monitor(hdev, skb);
3029
3030	if (atomic_read(&hdev->promisc)) {
3031		/* Send copy to the sockets */
3032		hci_send_to_sock(hdev, skb);
3033	}
3034
3035	/* Get rid of skb owner, prior to sending to the driver. */
3036	skb_orphan(skb);
3037
3038	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3039		kfree_skb(skb);
3040		return -EINVAL;
3041	}
3042
3043	err = hdev->send(hdev, skb);
3044	if (err < 0) {
3045		bt_dev_err(hdev, "sending frame failed (%d)", err);
3046		kfree_skb(skb);
3047		return err;
3048	}
3049
3050	return 0;
3051}
3052
3053/* Send HCI command */
3054int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3055		 const void *param)
3056{
3057	struct sk_buff *skb;
3058
3059	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3060
3061	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3062	if (!skb) {
3063		bt_dev_err(hdev, "no memory for command");
3064		return -ENOMEM;
3065	}
3066
3067	/* Stand-alone HCI commands must be flagged as
3068	 * single-command requests.
3069	 */
3070	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3071
3072	skb_queue_tail(&hdev->cmd_q, skb);
3073	queue_work(hdev->workqueue, &hdev->cmd_work);
3074
3075	return 0;
3076}
3077
3078int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3079		   const void *param)
3080{
3081	struct sk_buff *skb;
3082
3083	if (hci_opcode_ogf(opcode) != 0x3f) {
3084		/* A controller receiving a command shall respond with either
3085		 * a Command Status Event or a Command Complete Event.
3086		 * Therefore, all standard HCI commands must be sent via the
3087		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3088		 * Some vendors do not comply with this rule for vendor-specific
3089		 * commands and do not return any event. We want to support
3090		 * unresponded commands for such cases only.
3091		 */
3092		bt_dev_err(hdev, "unresponded command not supported");
3093		return -EINVAL;
3094	}
3095
3096	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3097	if (!skb) {
3098		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3099			   opcode);
3100		return -ENOMEM;
3101	}
3102
3103	hci_send_frame(hdev, skb);
3104
3105	return 0;
3106}
3107EXPORT_SYMBOL(__hci_cmd_send);
3108
3109/* Get data from the previously sent command */
3110void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3111{
3112	struct hci_command_hdr *hdr;
3113
3114	if (!hdev->sent_cmd)
3115		return NULL;
3116
3117	hdr = (void *) hdev->sent_cmd->data;
3118
3119	if (hdr->opcode != cpu_to_le16(opcode))
3120		return NULL;
3121
3122	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3123
3124	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3125}
3126
3127/* Get data from last received event */
3128void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
 
3129{
3130	struct hci_event_hdr *hdr;
3131	int offset;
3132
3133	if (!hdev->recv_event)
3134		return NULL;
3135
3136	hdr = (void *)hdev->recv_event->data;
3137	offset = sizeof(*hdr);
3138
3139	if (hdr->evt != event) {
3140		/* In case of LE metaevent check the subevent match */
3141		if (hdr->evt == HCI_EV_LE_META) {
3142			struct hci_ev_le_meta *ev;
3143
3144			ev = (void *)hdev->recv_event->data + offset;
3145			offset += sizeof(*ev);
3146			if (ev->subevent == event)
3147				goto found;
3148		}
3149		return NULL;
3150	}
3151
3152found:
3153	bt_dev_dbg(hdev, "event 0x%2.2x", event);
 
3154
3155	return hdev->recv_event->data + offset;
3156}
 
3157
3158/* Send ACL data */
3159static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3160{
3161	struct hci_acl_hdr *hdr;
3162	int len = skb->len;
3163
3164	skb_push(skb, HCI_ACL_HDR_SIZE);
3165	skb_reset_transport_header(skb);
3166	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3167	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3168	hdr->dlen   = cpu_to_le16(len);
3169}
3170
3171static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3172			  struct sk_buff *skb, __u16 flags)
3173{
3174	struct hci_conn *conn = chan->conn;
3175	struct hci_dev *hdev = conn->hdev;
3176	struct sk_buff *list;
3177
3178	skb->len = skb_headlen(skb);
3179	skb->data_len = 0;
3180
3181	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3182
3183	switch (hdev->dev_type) {
3184	case HCI_PRIMARY:
3185		hci_add_acl_hdr(skb, conn->handle, flags);
3186		break;
3187	case HCI_AMP:
3188		hci_add_acl_hdr(skb, chan->handle, flags);
3189		break;
3190	default:
3191		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3192		return;
3193	}
3194
3195	list = skb_shinfo(skb)->frag_list;
3196	if (!list) {
3197		/* Non fragmented */
3198		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3199
3200		skb_queue_tail(queue, skb);
3201	} else {
3202		/* Fragmented */
3203		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3204
3205		skb_shinfo(skb)->frag_list = NULL;
3206
3207		/* Queue all fragments atomically. We need to use spin_lock_bh
3208		 * here because of 6LoWPAN links, as there this function is
3209		 * called from softirq and using normal spin lock could cause
3210		 * deadlocks.
3211		 */
3212		spin_lock_bh(&queue->lock);
3213
3214		__skb_queue_tail(queue, skb);
3215
3216		flags &= ~ACL_START;
3217		flags |= ACL_CONT;
3218		do {
3219			skb = list; list = list->next;
3220
3221			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3222			hci_add_acl_hdr(skb, conn->handle, flags);
3223
3224			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3225
3226			__skb_queue_tail(queue, skb);
3227		} while (list);
3228
3229		spin_unlock_bh(&queue->lock);
3230	}
3231}
3232
3233void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3234{
3235	struct hci_dev *hdev = chan->conn->hdev;
3236
3237	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3238
3239	hci_queue_acl(chan, &chan->data_q, skb, flags);
3240
3241	queue_work(hdev->workqueue, &hdev->tx_work);
3242}
3243
3244/* Send SCO data */
3245void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3246{
3247	struct hci_dev *hdev = conn->hdev;
3248	struct hci_sco_hdr hdr;
3249
3250	BT_DBG("%s len %d", hdev->name, skb->len);
3251
3252	hdr.handle = cpu_to_le16(conn->handle);
3253	hdr.dlen   = skb->len;
3254
3255	skb_push(skb, HCI_SCO_HDR_SIZE);
3256	skb_reset_transport_header(skb);
3257	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3258
3259	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3260
3261	skb_queue_tail(&conn->data_q, skb);
3262	queue_work(hdev->workqueue, &hdev->tx_work);
3263}
3264
3265/* Send ISO data */
3266static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3267{
3268	struct hci_iso_hdr *hdr;
3269	int len = skb->len;
3270
3271	skb_push(skb, HCI_ISO_HDR_SIZE);
3272	skb_reset_transport_header(skb);
3273	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3274	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3275	hdr->dlen   = cpu_to_le16(len);
3276}
3277
3278static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3279			  struct sk_buff *skb)
3280{
3281	struct hci_dev *hdev = conn->hdev;
3282	struct sk_buff *list;
3283	__u16 flags;
3284
3285	skb->len = skb_headlen(skb);
3286	skb->data_len = 0;
3287
3288	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3289
3290	list = skb_shinfo(skb)->frag_list;
3291
3292	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3293	hci_add_iso_hdr(skb, conn->handle, flags);
3294
3295	if (!list) {
3296		/* Non fragmented */
3297		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3298
3299		skb_queue_tail(queue, skb);
3300	} else {
3301		/* Fragmented */
3302		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3303
3304		skb_shinfo(skb)->frag_list = NULL;
3305
3306		__skb_queue_tail(queue, skb);
3307
3308		do {
3309			skb = list; list = list->next;
3310
3311			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3312			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3313						   0x00);
3314			hci_add_iso_hdr(skb, conn->handle, flags);
3315
3316			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3317
3318			__skb_queue_tail(queue, skb);
3319		} while (list);
3320	}
3321}
3322
3323void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3324{
3325	struct hci_dev *hdev = conn->hdev;
3326
3327	BT_DBG("%s len %d", hdev->name, skb->len);
3328
3329	hci_queue_iso(conn, &conn->data_q, skb);
3330
3331	queue_work(hdev->workqueue, &hdev->tx_work);
3332}
3333
3334/* ---- HCI TX task (outgoing data) ---- */
3335
3336/* HCI Connection scheduler */
3337static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3338{
3339	struct hci_dev *hdev;
3340	int cnt, q;
3341
3342	if (!conn) {
3343		*quote = 0;
3344		return;
3345	}
3346
3347	hdev = conn->hdev;
3348
3349	switch (conn->type) {
3350	case ACL_LINK:
3351		cnt = hdev->acl_cnt;
3352		break;
3353	case AMP_LINK:
3354		cnt = hdev->block_cnt;
3355		break;
3356	case SCO_LINK:
3357	case ESCO_LINK:
3358		cnt = hdev->sco_cnt;
3359		break;
3360	case LE_LINK:
3361		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3362		break;
3363	case ISO_LINK:
3364		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3365			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3366		break;
3367	default:
3368		cnt = 0;
3369		bt_dev_err(hdev, "unknown link type %d", conn->type);
3370	}
3371
3372	q = cnt / num;
3373	*quote = q ? q : 1;
3374}
3375
3376static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3377				     int *quote)
3378{
3379	struct hci_conn_hash *h = &hdev->conn_hash;
3380	struct hci_conn *conn = NULL, *c;
3381	unsigned int num = 0, min = ~0;
3382
3383	/* We don't have to lock device here. Connections are always
3384	 * added and removed with TX task disabled. */
3385
3386	rcu_read_lock();
3387
3388	list_for_each_entry_rcu(c, &h->list, list) {
3389		if (c->type != type || skb_queue_empty(&c->data_q))
3390			continue;
3391
3392		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3393			continue;
3394
3395		num++;
3396
3397		if (c->sent < min) {
3398			min  = c->sent;
3399			conn = c;
3400		}
3401
3402		if (hci_conn_num(hdev, type) == num)
3403			break;
3404	}
3405
3406	rcu_read_unlock();
3407
3408	hci_quote_sent(conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3409
3410	BT_DBG("conn %p quote %d", conn, *quote);
3411	return conn;
3412}
3413
3414static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3415{
3416	struct hci_conn_hash *h = &hdev->conn_hash;
3417	struct hci_conn *c;
3418
3419	bt_dev_err(hdev, "link tx timeout");
3420
3421	rcu_read_lock();
3422
3423	/* Kill stalled connections */
3424	list_for_each_entry_rcu(c, &h->list, list) {
3425		if (c->type == type && c->sent) {
3426			bt_dev_err(hdev, "killing stalled connection %pMR",
3427				   &c->dst);
3428			/* hci_disconnect might sleep, so, we have to release
3429			 * the RCU read lock before calling it.
3430			 */
3431			rcu_read_unlock();
3432			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3433			rcu_read_lock();
3434		}
3435	}
3436
3437	rcu_read_unlock();
3438}
3439
3440static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3441				      int *quote)
3442{
3443	struct hci_conn_hash *h = &hdev->conn_hash;
3444	struct hci_chan *chan = NULL;
3445	unsigned int num = 0, min = ~0, cur_prio = 0;
3446	struct hci_conn *conn;
3447	int conn_num = 0;
3448
3449	BT_DBG("%s", hdev->name);
3450
3451	rcu_read_lock();
3452
3453	list_for_each_entry_rcu(conn, &h->list, list) {
3454		struct hci_chan *tmp;
3455
3456		if (conn->type != type)
3457			continue;
3458
3459		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3460			continue;
3461
3462		conn_num++;
3463
3464		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3465			struct sk_buff *skb;
3466
3467			if (skb_queue_empty(&tmp->data_q))
3468				continue;
3469
3470			skb = skb_peek(&tmp->data_q);
3471			if (skb->priority < cur_prio)
3472				continue;
3473
3474			if (skb->priority > cur_prio) {
3475				num = 0;
3476				min = ~0;
3477				cur_prio = skb->priority;
3478			}
3479
3480			num++;
3481
3482			if (conn->sent < min) {
3483				min  = conn->sent;
3484				chan = tmp;
3485			}
3486		}
3487
3488		if (hci_conn_num(hdev, type) == conn_num)
3489			break;
3490	}
3491
3492	rcu_read_unlock();
3493
3494	if (!chan)
3495		return NULL;
3496
3497	hci_quote_sent(chan->conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3498
 
 
3499	BT_DBG("chan %p quote %d", chan, *quote);
3500	return chan;
3501}
3502
3503static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3504{
3505	struct hci_conn_hash *h = &hdev->conn_hash;
3506	struct hci_conn *conn;
3507	int num = 0;
3508
3509	BT_DBG("%s", hdev->name);
3510
3511	rcu_read_lock();
3512
3513	list_for_each_entry_rcu(conn, &h->list, list) {
3514		struct hci_chan *chan;
3515
3516		if (conn->type != type)
3517			continue;
3518
3519		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3520			continue;
3521
3522		num++;
3523
3524		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3525			struct sk_buff *skb;
3526
3527			if (chan->sent) {
3528				chan->sent = 0;
3529				continue;
3530			}
3531
3532			if (skb_queue_empty(&chan->data_q))
3533				continue;
3534
3535			skb = skb_peek(&chan->data_q);
3536			if (skb->priority >= HCI_PRIO_MAX - 1)
3537				continue;
3538
3539			skb->priority = HCI_PRIO_MAX - 1;
3540
3541			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3542			       skb->priority);
3543		}
3544
3545		if (hci_conn_num(hdev, type) == num)
3546			break;
3547	}
3548
3549	rcu_read_unlock();
3550
3551}
3552
3553static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3554{
3555	/* Calculate count of blocks used by this packet */
3556	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3557}
3558
3559static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3560{
3561	unsigned long last_tx;
3562
3563	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3564		return;
3565
3566	switch (type) {
3567	case LE_LINK:
3568		last_tx = hdev->le_last_tx;
3569		break;
3570	default:
3571		last_tx = hdev->acl_last_tx;
3572		break;
3573	}
3574
3575	/* tx timeout must be longer than maximum link supervision timeout
3576	 * (40.9 seconds)
3577	 */
3578	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3579		hci_link_tx_to(hdev, type);
3580}
3581
3582/* Schedule SCO */
3583static void hci_sched_sco(struct hci_dev *hdev)
3584{
3585	struct hci_conn *conn;
3586	struct sk_buff *skb;
3587	int quote;
3588
3589	BT_DBG("%s", hdev->name);
3590
3591	if (!hci_conn_num(hdev, SCO_LINK))
3592		return;
3593
3594	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3595		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3596			BT_DBG("skb %p len %d", skb, skb->len);
3597			hci_send_frame(hdev, skb);
3598
3599			conn->sent++;
3600			if (conn->sent == ~0)
3601				conn->sent = 0;
3602		}
3603	}
3604}
3605
3606static void hci_sched_esco(struct hci_dev *hdev)
3607{
3608	struct hci_conn *conn;
3609	struct sk_buff *skb;
3610	int quote;
3611
3612	BT_DBG("%s", hdev->name);
3613
3614	if (!hci_conn_num(hdev, ESCO_LINK))
3615		return;
3616
3617	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3618						     &quote))) {
3619		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3620			BT_DBG("skb %p len %d", skb, skb->len);
3621			hci_send_frame(hdev, skb);
3622
3623			conn->sent++;
3624			if (conn->sent == ~0)
3625				conn->sent = 0;
3626		}
3627	}
3628}
3629
3630static void hci_sched_acl_pkt(struct hci_dev *hdev)
3631{
3632	unsigned int cnt = hdev->acl_cnt;
3633	struct hci_chan *chan;
3634	struct sk_buff *skb;
3635	int quote;
3636
3637	__check_timeout(hdev, cnt, ACL_LINK);
3638
3639	while (hdev->acl_cnt &&
3640	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3641		u32 priority = (skb_peek(&chan->data_q))->priority;
3642		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3643			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3644			       skb->len, skb->priority);
3645
3646			/* Stop if priority has changed */
3647			if (skb->priority < priority)
3648				break;
3649
3650			skb = skb_dequeue(&chan->data_q);
3651
3652			hci_conn_enter_active_mode(chan->conn,
3653						   bt_cb(skb)->force_active);
3654
3655			hci_send_frame(hdev, skb);
3656			hdev->acl_last_tx = jiffies;
3657
3658			hdev->acl_cnt--;
3659			chan->sent++;
3660			chan->conn->sent++;
3661
3662			/* Send pending SCO packets right away */
3663			hci_sched_sco(hdev);
3664			hci_sched_esco(hdev);
3665		}
3666	}
3667
3668	if (cnt != hdev->acl_cnt)
3669		hci_prio_recalculate(hdev, ACL_LINK);
3670}
3671
3672static void hci_sched_acl_blk(struct hci_dev *hdev)
3673{
3674	unsigned int cnt = hdev->block_cnt;
3675	struct hci_chan *chan;
3676	struct sk_buff *skb;
3677	int quote;
3678	u8 type;
3679
 
 
3680	BT_DBG("%s", hdev->name);
3681
3682	if (hdev->dev_type == HCI_AMP)
3683		type = AMP_LINK;
3684	else
3685		type = ACL_LINK;
3686
3687	__check_timeout(hdev, cnt, type);
3688
3689	while (hdev->block_cnt > 0 &&
3690	       (chan = hci_chan_sent(hdev, type, &quote))) {
3691		u32 priority = (skb_peek(&chan->data_q))->priority;
3692		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3693			int blocks;
3694
3695			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3696			       skb->len, skb->priority);
3697
3698			/* Stop if priority has changed */
3699			if (skb->priority < priority)
3700				break;
3701
3702			skb = skb_dequeue(&chan->data_q);
3703
3704			blocks = __get_blocks(hdev, skb);
3705			if (blocks > hdev->block_cnt)
3706				return;
3707
3708			hci_conn_enter_active_mode(chan->conn,
3709						   bt_cb(skb)->force_active);
3710
3711			hci_send_frame(hdev, skb);
3712			hdev->acl_last_tx = jiffies;
3713
3714			hdev->block_cnt -= blocks;
3715			quote -= blocks;
3716
3717			chan->sent += blocks;
3718			chan->conn->sent += blocks;
3719		}
3720	}
3721
3722	if (cnt != hdev->block_cnt)
3723		hci_prio_recalculate(hdev, type);
3724}
3725
3726static void hci_sched_acl(struct hci_dev *hdev)
3727{
3728	BT_DBG("%s", hdev->name);
3729
3730	/* No ACL link over BR/EDR controller */
3731	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3732		return;
3733
3734	/* No AMP link over AMP controller */
3735	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3736		return;
3737
3738	switch (hdev->flow_ctl_mode) {
3739	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3740		hci_sched_acl_pkt(hdev);
3741		break;
3742
3743	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3744		hci_sched_acl_blk(hdev);
3745		break;
3746	}
3747}
3748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3749static void hci_sched_le(struct hci_dev *hdev)
3750{
3751	struct hci_chan *chan;
3752	struct sk_buff *skb;
3753	int quote, cnt, tmp;
3754
3755	BT_DBG("%s", hdev->name);
3756
3757	if (!hci_conn_num(hdev, LE_LINK))
3758		return;
3759
3760	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3761
3762	__check_timeout(hdev, cnt, LE_LINK);
 
 
 
 
3763
 
3764	tmp = cnt;
3765	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3766		u32 priority = (skb_peek(&chan->data_q))->priority;
3767		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3768			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3769			       skb->len, skb->priority);
3770
3771			/* Stop if priority has changed */
3772			if (skb->priority < priority)
3773				break;
3774
3775			skb = skb_dequeue(&chan->data_q);
3776
3777			hci_send_frame(hdev, skb);
3778			hdev->le_last_tx = jiffies;
3779
3780			cnt--;
3781			chan->sent++;
3782			chan->conn->sent++;
3783
3784			/* Send pending SCO packets right away */
3785			hci_sched_sco(hdev);
3786			hci_sched_esco(hdev);
3787		}
3788	}
3789
3790	if (hdev->le_pkts)
3791		hdev->le_cnt = cnt;
3792	else
3793		hdev->acl_cnt = cnt;
3794
3795	if (cnt != tmp)
3796		hci_prio_recalculate(hdev, LE_LINK);
3797}
3798
3799/* Schedule CIS */
3800static void hci_sched_iso(struct hci_dev *hdev)
3801{
3802	struct hci_conn *conn;
3803	struct sk_buff *skb;
3804	int quote, *cnt;
3805
3806	BT_DBG("%s", hdev->name);
3807
3808	if (!hci_conn_num(hdev, ISO_LINK))
3809		return;
3810
3811	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3812		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3813	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3814		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3815			BT_DBG("skb %p len %d", skb, skb->len);
3816			hci_send_frame(hdev, skb);
3817
3818			conn->sent++;
3819			if (conn->sent == ~0)
3820				conn->sent = 0;
3821			(*cnt)--;
3822		}
3823	}
3824}
3825
3826static void hci_tx_work(struct work_struct *work)
3827{
3828	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3829	struct sk_buff *skb;
3830
3831	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3832	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3833
3834	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3835		/* Schedule queues and send stuff to HCI driver */
 
3836		hci_sched_sco(hdev);
3837		hci_sched_esco(hdev);
3838		hci_sched_iso(hdev);
3839		hci_sched_acl(hdev);
3840		hci_sched_le(hdev);
3841	}
3842
3843	/* Send next queued raw (unknown type) packet */
3844	while ((skb = skb_dequeue(&hdev->raw_q)))
3845		hci_send_frame(hdev, skb);
3846}
3847
3848/* ----- HCI RX task (incoming data processing) ----- */
3849
3850/* ACL data packet */
3851static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3852{
3853	struct hci_acl_hdr *hdr = (void *) skb->data;
3854	struct hci_conn *conn;
3855	__u16 handle, flags;
3856
3857	skb_pull(skb, HCI_ACL_HDR_SIZE);
3858
3859	handle = __le16_to_cpu(hdr->handle);
3860	flags  = hci_flags(handle);
3861	handle = hci_handle(handle);
3862
3863	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3864	       handle, flags);
3865
3866	hdev->stat.acl_rx++;
3867
3868	hci_dev_lock(hdev);
3869	conn = hci_conn_hash_lookup_handle(hdev, handle);
3870	hci_dev_unlock(hdev);
3871
3872	if (conn) {
3873		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3874
3875		/* Send to upper protocol */
3876		l2cap_recv_acldata(conn, skb, flags);
3877		return;
3878	} else {
3879		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3880			   handle);
3881	}
3882
3883	kfree_skb(skb);
3884}
3885
3886/* SCO data packet */
3887static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3888{
3889	struct hci_sco_hdr *hdr = (void *) skb->data;
3890	struct hci_conn *conn;
3891	__u16 handle, flags;
3892
3893	skb_pull(skb, HCI_SCO_HDR_SIZE);
3894
3895	handle = __le16_to_cpu(hdr->handle);
3896	flags  = hci_flags(handle);
3897	handle = hci_handle(handle);
3898
3899	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3900	       handle, flags);
3901
3902	hdev->stat.sco_rx++;
3903
3904	hci_dev_lock(hdev);
3905	conn = hci_conn_hash_lookup_handle(hdev, handle);
3906	hci_dev_unlock(hdev);
3907
3908	if (conn) {
3909		/* Send to upper protocol */
3910		hci_skb_pkt_status(skb) = flags & 0x03;
3911		sco_recv_scodata(conn, skb);
3912		return;
3913	} else {
3914		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3915				       handle);
3916	}
3917
3918	kfree_skb(skb);
3919}
3920
3921static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3922{
3923	struct hci_iso_hdr *hdr;
3924	struct hci_conn *conn;
3925	__u16 handle, flags;
3926
3927	hdr = skb_pull_data(skb, sizeof(*hdr));
3928	if (!hdr) {
3929		bt_dev_err(hdev, "ISO packet too small");
3930		goto drop;
3931	}
3932
3933	handle = __le16_to_cpu(hdr->handle);
3934	flags  = hci_flags(handle);
3935	handle = hci_handle(handle);
3936
3937	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3938		   handle, flags);
3939
3940	hci_dev_lock(hdev);
3941	conn = hci_conn_hash_lookup_handle(hdev, handle);
3942	hci_dev_unlock(hdev);
3943
3944	if (!conn) {
3945		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3946			   handle);
3947		goto drop;
3948	}
3949
3950	/* Send to upper protocol */
3951	iso_recv(conn, skb, flags);
3952	return;
3953
3954drop:
3955	kfree_skb(skb);
3956}
3957
3958static bool hci_req_is_complete(struct hci_dev *hdev)
3959{
3960	struct sk_buff *skb;
3961
3962	skb = skb_peek(&hdev->cmd_q);
3963	if (!skb)
3964		return true;
3965
3966	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3967}
3968
3969static void hci_resend_last(struct hci_dev *hdev)
3970{
3971	struct hci_command_hdr *sent;
3972	struct sk_buff *skb;
3973	u16 opcode;
3974
3975	if (!hdev->sent_cmd)
3976		return;
3977
3978	sent = (void *) hdev->sent_cmd->data;
3979	opcode = __le16_to_cpu(sent->opcode);
3980	if (opcode == HCI_OP_RESET)
3981		return;
3982
3983	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3984	if (!skb)
3985		return;
3986
3987	skb_queue_head(&hdev->cmd_q, skb);
3988	queue_work(hdev->workqueue, &hdev->cmd_work);
3989}
3990
3991void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3992			  hci_req_complete_t *req_complete,
3993			  hci_req_complete_skb_t *req_complete_skb)
3994{
3995	struct sk_buff *skb;
3996	unsigned long flags;
3997
3998	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3999
4000	/* If the completed command doesn't match the last one that was
4001	 * sent we need to do special handling of it.
4002	 */
4003	if (!hci_sent_cmd_data(hdev, opcode)) {
4004		/* Some CSR based controllers generate a spontaneous
4005		 * reset complete event during init and any pending
4006		 * command will never be completed. In such a case we
4007		 * need to resend whatever was the last sent
4008		 * command.
4009		 */
4010		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4011			hci_resend_last(hdev);
4012
4013		return;
4014	}
4015
4016	/* If we reach this point this event matches the last command sent */
4017	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4018
4019	/* If the command succeeded and there's still more commands in
4020	 * this request the request is not yet complete.
4021	 */
4022	if (!status && !hci_req_is_complete(hdev))
4023		return;
4024
4025	/* If this was the last command in a request the complete
4026	 * callback would be found in hdev->sent_cmd instead of the
4027	 * command queue (hdev->cmd_q).
4028	 */
4029	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4030		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4031		return;
4032	}
4033
4034	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4035		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4036		return;
4037	}
4038
4039	/* Remove all pending commands belonging to this request */
4040	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4041	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4042		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4043			__skb_queue_head(&hdev->cmd_q, skb);
4044			break;
4045		}
4046
4047		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4048			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4049		else
4050			*req_complete = bt_cb(skb)->hci.req_complete;
4051		dev_kfree_skb_irq(skb);
4052	}
4053	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4054}
4055
4056static void hci_rx_work(struct work_struct *work)
4057{
4058	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4059	struct sk_buff *skb;
4060
4061	BT_DBG("%s", hdev->name);
4062
4063	/* The kcov_remote functions used for collecting packet parsing
4064	 * coverage information from this background thread and associate
4065	 * the coverage with the syscall's thread which originally injected
4066	 * the packet. This helps fuzzing the kernel.
4067	 */
4068	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4069		kcov_remote_start_common(skb_get_kcov_handle(skb));
4070
4071		/* Send copy to monitor */
4072		hci_send_to_monitor(hdev, skb);
4073
4074		if (atomic_read(&hdev->promisc)) {
4075			/* Send copy to the sockets */
4076			hci_send_to_sock(hdev, skb);
4077		}
4078
4079		/* If the device has been opened in HCI_USER_CHANNEL,
4080		 * the userspace has exclusive access to device.
4081		 * When device is HCI_INIT, we still need to process
4082		 * the data packets to the driver in order
4083		 * to complete its setup().
4084		 */
4085		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4086		    !test_bit(HCI_INIT, &hdev->flags)) {
4087			kfree_skb(skb);
4088			continue;
4089		}
4090
4091		if (test_bit(HCI_INIT, &hdev->flags)) {
4092			/* Don't process data packets in this states. */
4093			switch (hci_skb_pkt_type(skb)) {
4094			case HCI_ACLDATA_PKT:
4095			case HCI_SCODATA_PKT:
4096			case HCI_ISODATA_PKT:
4097				kfree_skb(skb);
4098				continue;
4099			}
4100		}
4101
4102		/* Process frame */
4103		switch (hci_skb_pkt_type(skb)) {
4104		case HCI_EVENT_PKT:
4105			BT_DBG("%s Event packet", hdev->name);
4106			hci_event_packet(hdev, skb);
4107			break;
4108
4109		case HCI_ACLDATA_PKT:
4110			BT_DBG("%s ACL data packet", hdev->name);
4111			hci_acldata_packet(hdev, skb);
4112			break;
4113
4114		case HCI_SCODATA_PKT:
4115			BT_DBG("%s SCO data packet", hdev->name);
4116			hci_scodata_packet(hdev, skb);
4117			break;
4118
4119		case HCI_ISODATA_PKT:
4120			BT_DBG("%s ISO data packet", hdev->name);
4121			hci_isodata_packet(hdev, skb);
4122			break;
4123
4124		default:
4125			kfree_skb(skb);
4126			break;
4127		}
4128	}
4129}
4130
4131static void hci_cmd_work(struct work_struct *work)
4132{
4133	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4134	struct sk_buff *skb;
4135
4136	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4137	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4138
4139	/* Send queued commands */
4140	if (atomic_read(&hdev->cmd_cnt)) {
4141		skb = skb_dequeue(&hdev->cmd_q);
4142		if (!skb)
4143			return;
4144
4145		kfree_skb(hdev->sent_cmd);
4146
4147		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4148		if (hdev->sent_cmd) {
4149			int res;
4150			if (hci_req_status_pend(hdev))
4151				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4152			atomic_dec(&hdev->cmd_cnt);
4153
4154			res = hci_send_frame(hdev, skb);
4155			if (res < 0)
4156				__hci_cmd_sync_cancel(hdev, -res);
4157
4158			rcu_read_lock();
4159			if (test_bit(HCI_RESET, &hdev->flags) ||
4160			    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4161				cancel_delayed_work(&hdev->cmd_timer);
4162			else
4163				queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4164						   HCI_CMD_TIMEOUT);
4165			rcu_read_unlock();
4166		} else {
4167			skb_queue_head(&hdev->cmd_q, skb);
4168			queue_work(hdev->workqueue, &hdev->cmd_work);
4169		}
4170	}
4171}
v4.6
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
 
 
 
 
  33#include <asm/unaligned.h>
  34
  35#include <net/bluetooth/bluetooth.h>
  36#include <net/bluetooth/hci_core.h>
  37#include <net/bluetooth/l2cap.h>
  38#include <net/bluetooth/mgmt.h>
  39
  40#include "hci_request.h"
  41#include "hci_debugfs.h"
  42#include "smp.h"
  43#include "leds.h"
 
 
 
  44
  45static void hci_rx_work(struct work_struct *work);
  46static void hci_cmd_work(struct work_struct *work);
  47static void hci_tx_work(struct work_struct *work);
  48
  49/* HCI device list */
  50LIST_HEAD(hci_dev_list);
  51DEFINE_RWLOCK(hci_dev_list_lock);
  52
  53/* HCI callback list */
  54LIST_HEAD(hci_cb_list);
  55DEFINE_MUTEX(hci_cb_list_lock);
  56
  57/* HCI ID Numbering */
  58static DEFINE_IDA(hci_index_ida);
  59
  60/* ---- HCI debugfs entries ---- */
  61
  62static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  63			     size_t count, loff_t *ppos)
  64{
  65	struct hci_dev *hdev = file->private_data;
  66	char buf[3];
  67
  68	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  69	buf[1] = '\n';
  70	buf[2] = '\0';
  71	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  72}
  73
  74static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  75			      size_t count, loff_t *ppos)
  76{
  77	struct hci_dev *hdev = file->private_data;
  78	struct sk_buff *skb;
  79	char buf[32];
  80	size_t buf_size = min(count, (sizeof(buf)-1));
  81	bool enable;
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
  85
  86	if (copy_from_user(buf, user_buf, buf_size))
  87		return -EFAULT;
  88
  89	buf[buf_size] = '\0';
  90	if (strtobool(buf, &enable))
  91		return -EINVAL;
  92
  93	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  94		return -EALREADY;
  95
  96	hci_req_sync_lock(hdev);
  97	if (enable)
  98		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	else
 101		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	hci_req_sync_unlock(hdev);
 104
 105	if (IS_ERR(skb))
 106		return PTR_ERR(skb);
 107
 108	kfree_skb(skb);
 109
 110	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 111
 112	return count;
 113}
 114
 115static const struct file_operations dut_mode_fops = {
 116	.open		= simple_open,
 117	.read		= dut_mode_read,
 118	.write		= dut_mode_write,
 119	.llseek		= default_llseek,
 120};
 121
 122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 123				size_t count, loff_t *ppos)
 124{
 125	struct hci_dev *hdev = file->private_data;
 126	char buf[3];
 127
 128	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 129	buf[1] = '\n';
 130	buf[2] = '\0';
 131	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 132}
 133
 134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 135				 size_t count, loff_t *ppos)
 136{
 137	struct hci_dev *hdev = file->private_data;
 138	char buf[32];
 139	size_t buf_size = min(count, (sizeof(buf)-1));
 140	bool enable;
 141	int err;
 142
 143	if (copy_from_user(buf, user_buf, buf_size))
 144		return -EFAULT;
 145
 146	buf[buf_size] = '\0';
 147	if (strtobool(buf, &enable))
 148		return -EINVAL;
 149
 150	/* When the diagnostic flags are not persistent and the transport
 151	 * is not active, then there is no need for the vendor callback.
 152	 *
 153	 * Instead just store the desired value. If needed the setting
 154	 * will be programmed when the controller gets powered on.
 155	 */
 156	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 157	    !test_bit(HCI_RUNNING, &hdev->flags))
 158		goto done;
 159
 160	hci_req_sync_lock(hdev);
 161	err = hdev->set_diag(hdev, enable);
 162	hci_req_sync_unlock(hdev);
 163
 164	if (err < 0)
 165		return err;
 166
 167done:
 168	if (enable)
 169		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 170	else
 171		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 172
 173	return count;
 174}
 175
 176static const struct file_operations vendor_diag_fops = {
 177	.open		= simple_open,
 178	.read		= vendor_diag_read,
 179	.write		= vendor_diag_write,
 180	.llseek		= default_llseek,
 181};
 182
 183static void hci_debugfs_create_basic(struct hci_dev *hdev)
 184{
 185	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 186			    &dut_mode_fops);
 187
 188	if (hdev->set_diag)
 189		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 190				    &vendor_diag_fops);
 191}
 192
 193static int hci_reset_req(struct hci_request *req, unsigned long opt)
 194{
 195	BT_DBG("%s %ld", req->hdev->name, opt);
 196
 197	/* Reset device */
 198	set_bit(HCI_RESET, &req->hdev->flags);
 199	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 200	return 0;
 201}
 202
 203static void bredr_init(struct hci_request *req)
 204{
 205	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 206
 207	/* Read Local Supported Features */
 208	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 209
 210	/* Read Local Version */
 211	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 212
 213	/* Read BD Address */
 214	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 215}
 216
 217static void amp_init1(struct hci_request *req)
 218{
 219	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 220
 221	/* Read Local Version */
 222	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 223
 224	/* Read Local Supported Commands */
 225	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 226
 227	/* Read Local AMP Info */
 228	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 229
 230	/* Read Data Blk size */
 231	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 232
 233	/* Read Flow Control Mode */
 234	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 235
 236	/* Read Location Data */
 237	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 238}
 239
 240static int amp_init2(struct hci_request *req)
 241{
 242	/* Read Local Supported Features. Not all AMP controllers
 243	 * support this so it's placed conditionally in the second
 244	 * stage init.
 245	 */
 246	if (req->hdev->commands[14] & 0x20)
 247		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 248
 249	return 0;
 250}
 251
 252static int hci_init1_req(struct hci_request *req, unsigned long opt)
 253{
 254	struct hci_dev *hdev = req->hdev;
 255
 256	BT_DBG("%s %ld", hdev->name, opt);
 257
 258	/* Reset */
 259	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 260		hci_reset_req(req, 0);
 261
 262	switch (hdev->dev_type) {
 263	case HCI_BREDR:
 264		bredr_init(req);
 265		break;
 266
 267	case HCI_AMP:
 268		amp_init1(req);
 269		break;
 270
 271	default:
 272		BT_ERR("Unknown device type %d", hdev->dev_type);
 273		break;
 274	}
 275
 276	return 0;
 277}
 278
 279static void bredr_setup(struct hci_request *req)
 280{
 281	__le16 param;
 282	__u8 flt_type;
 283
 284	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 285	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 286
 287	/* Read Class of Device */
 288	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 289
 290	/* Read Local Name */
 291	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 292
 293	/* Read Voice Setting */
 294	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 295
 296	/* Read Number of Supported IAC */
 297	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 298
 299	/* Read Current IAC LAP */
 300	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 301
 302	/* Clear Event Filters */
 303	flt_type = HCI_FLT_CLEAR_ALL;
 304	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 305
 306	/* Connection accept timeout ~20 secs */
 307	param = cpu_to_le16(0x7d00);
 308	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 309}
 310
 311static void le_setup(struct hci_request *req)
 312{
 313	struct hci_dev *hdev = req->hdev;
 314
 315	/* Read LE Buffer Size */
 316	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 317
 318	/* Read LE Local Supported Features */
 319	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 320
 321	/* Read LE Supported States */
 322	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 323
 324	/* LE-only controllers have LE implicitly enabled */
 325	if (!lmp_bredr_capable(hdev))
 326		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 327}
 328
 329static void hci_setup_event_mask(struct hci_request *req)
 330{
 331	struct hci_dev *hdev = req->hdev;
 332
 333	/* The second byte is 0xff instead of 0x9f (two reserved bits
 334	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 335	 * command otherwise.
 336	 */
 337	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 338
 339	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 340	 * any event mask for pre 1.2 devices.
 341	 */
 342	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 343		return;
 344
 345	if (lmp_bredr_capable(hdev)) {
 346		events[4] |= 0x01; /* Flow Specification Complete */
 347	} else {
 348		/* Use a different default for LE-only devices */
 349		memset(events, 0, sizeof(events));
 350		events[1] |= 0x20; /* Command Complete */
 351		events[1] |= 0x40; /* Command Status */
 352		events[1] |= 0x80; /* Hardware Error */
 353
 354		/* If the controller supports the Disconnect command, enable
 355		 * the corresponding event. In addition enable packet flow
 356		 * control related events.
 357		 */
 358		if (hdev->commands[0] & 0x20) {
 359			events[0] |= 0x10; /* Disconnection Complete */
 360			events[2] |= 0x04; /* Number of Completed Packets */
 361			events[3] |= 0x02; /* Data Buffer Overflow */
 362		}
 363
 364		/* If the controller supports the Read Remote Version
 365		 * Information command, enable the corresponding event.
 366		 */
 367		if (hdev->commands[2] & 0x80)
 368			events[1] |= 0x08; /* Read Remote Version Information
 369					    * Complete
 370					    */
 371
 372		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 373			events[0] |= 0x80; /* Encryption Change */
 374			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 375		}
 376	}
 377
 378	if (lmp_inq_rssi_capable(hdev) ||
 379	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 380		events[4] |= 0x02; /* Inquiry Result with RSSI */
 381
 382	if (lmp_ext_feat_capable(hdev))
 383		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 384
 385	if (lmp_esco_capable(hdev)) {
 386		events[5] |= 0x08; /* Synchronous Connection Complete */
 387		events[5] |= 0x10; /* Synchronous Connection Changed */
 388	}
 389
 390	if (lmp_sniffsubr_capable(hdev))
 391		events[5] |= 0x20; /* Sniff Subrating */
 392
 393	if (lmp_pause_enc_capable(hdev))
 394		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 395
 396	if (lmp_ext_inq_capable(hdev))
 397		events[5] |= 0x40; /* Extended Inquiry Result */
 398
 399	if (lmp_no_flush_capable(hdev))
 400		events[7] |= 0x01; /* Enhanced Flush Complete */
 401
 402	if (lmp_lsto_capable(hdev))
 403		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 404
 405	if (lmp_ssp_capable(hdev)) {
 406		events[6] |= 0x01;	/* IO Capability Request */
 407		events[6] |= 0x02;	/* IO Capability Response */
 408		events[6] |= 0x04;	/* User Confirmation Request */
 409		events[6] |= 0x08;	/* User Passkey Request */
 410		events[6] |= 0x10;	/* Remote OOB Data Request */
 411		events[6] |= 0x20;	/* Simple Pairing Complete */
 412		events[7] |= 0x04;	/* User Passkey Notification */
 413		events[7] |= 0x08;	/* Keypress Notification */
 414		events[7] |= 0x10;	/* Remote Host Supported
 415					 * Features Notification
 416					 */
 417	}
 418
 419	if (lmp_le_capable(hdev))
 420		events[7] |= 0x20;	/* LE Meta-Event */
 421
 422	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 423}
 424
 425static int hci_init2_req(struct hci_request *req, unsigned long opt)
 426{
 427	struct hci_dev *hdev = req->hdev;
 428
 429	if (hdev->dev_type == HCI_AMP)
 430		return amp_init2(req);
 431
 432	if (lmp_bredr_capable(hdev))
 433		bredr_setup(req);
 434	else
 435		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 436
 437	if (lmp_le_capable(hdev))
 438		le_setup(req);
 439
 440	/* All Bluetooth 1.2 and later controllers should support the
 441	 * HCI command for reading the local supported commands.
 442	 *
 443	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 444	 * but do not have support for this command. If that is the case,
 445	 * the driver can quirk the behavior and skip reading the local
 446	 * supported commands.
 447	 */
 448	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 449	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 450		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 451
 452	if (lmp_ssp_capable(hdev)) {
 453		/* When SSP is available, then the host features page
 454		 * should also be available as well. However some
 455		 * controllers list the max_page as 0 as long as SSP
 456		 * has not been enabled. To achieve proper debugging
 457		 * output, force the minimum max_page to 1 at least.
 458		 */
 459		hdev->max_page = 0x01;
 460
 461		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 462			u8 mode = 0x01;
 463
 464			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 465				    sizeof(mode), &mode);
 466		} else {
 467			struct hci_cp_write_eir cp;
 468
 469			memset(hdev->eir, 0, sizeof(hdev->eir));
 470			memset(&cp, 0, sizeof(cp));
 471
 472			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 473		}
 474	}
 475
 476	if (lmp_inq_rssi_capable(hdev) ||
 477	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 478		u8 mode;
 479
 480		/* If Extended Inquiry Result events are supported, then
 481		 * they are clearly preferred over Inquiry Result with RSSI
 482		 * events.
 483		 */
 484		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 485
 486		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 487	}
 488
 489	if (lmp_inq_tx_pwr_capable(hdev))
 490		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 491
 492	if (lmp_ext_feat_capable(hdev)) {
 493		struct hci_cp_read_local_ext_features cp;
 494
 495		cp.page = 0x01;
 496		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 497			    sizeof(cp), &cp);
 498	}
 499
 500	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 501		u8 enable = 1;
 502		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 503			    &enable);
 504	}
 505
 506	return 0;
 507}
 508
 509static void hci_setup_link_policy(struct hci_request *req)
 510{
 511	struct hci_dev *hdev = req->hdev;
 512	struct hci_cp_write_def_link_policy cp;
 513	u16 link_policy = 0;
 514
 515	if (lmp_rswitch_capable(hdev))
 516		link_policy |= HCI_LP_RSWITCH;
 517	if (lmp_hold_capable(hdev))
 518		link_policy |= HCI_LP_HOLD;
 519	if (lmp_sniff_capable(hdev))
 520		link_policy |= HCI_LP_SNIFF;
 521	if (lmp_park_capable(hdev))
 522		link_policy |= HCI_LP_PARK;
 523
 524	cp.policy = cpu_to_le16(link_policy);
 525	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 526}
 527
 528static void hci_set_le_support(struct hci_request *req)
 529{
 530	struct hci_dev *hdev = req->hdev;
 531	struct hci_cp_write_le_host_supported cp;
 532
 533	/* LE-only devices do not support explicit enablement */
 534	if (!lmp_bredr_capable(hdev))
 535		return;
 536
 537	memset(&cp, 0, sizeof(cp));
 538
 539	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 540		cp.le = 0x01;
 541		cp.simul = 0x00;
 542	}
 543
 544	if (cp.le != lmp_host_le_capable(hdev))
 545		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 546			    &cp);
 547}
 548
 549static void hci_set_event_mask_page_2(struct hci_request *req)
 550{
 551	struct hci_dev *hdev = req->hdev;
 552	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 553
 554	/* If Connectionless Slave Broadcast master role is supported
 555	 * enable all necessary events for it.
 556	 */
 557	if (lmp_csb_master_capable(hdev)) {
 558		events[1] |= 0x40;	/* Triggered Clock Capture */
 559		events[1] |= 0x80;	/* Synchronization Train Complete */
 560		events[2] |= 0x10;	/* Slave Page Response Timeout */
 561		events[2] |= 0x20;	/* CSB Channel Map Change */
 562	}
 563
 564	/* If Connectionless Slave Broadcast slave role is supported
 565	 * enable all necessary events for it.
 566	 */
 567	if (lmp_csb_slave_capable(hdev)) {
 568		events[2] |= 0x01;	/* Synchronization Train Received */
 569		events[2] |= 0x02;	/* CSB Receive */
 570		events[2] |= 0x04;	/* CSB Timeout */
 571		events[2] |= 0x08;	/* Truncated Page Complete */
 572	}
 573
 574	/* Enable Authenticated Payload Timeout Expired event if supported */
 575	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
 576		events[2] |= 0x80;
 577
 578	hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
 579}
 580
 581static int hci_init3_req(struct hci_request *req, unsigned long opt)
 582{
 583	struct hci_dev *hdev = req->hdev;
 584	u8 p;
 585
 586	hci_setup_event_mask(req);
 587
 588	if (hdev->commands[6] & 0x20 &&
 589	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 590		struct hci_cp_read_stored_link_key cp;
 591
 592		bacpy(&cp.bdaddr, BDADDR_ANY);
 593		cp.read_all = 0x01;
 594		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 595	}
 596
 597	if (hdev->commands[5] & 0x10)
 598		hci_setup_link_policy(req);
 599
 600	if (hdev->commands[8] & 0x01)
 601		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 602
 603	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 604	 * support the Read Page Scan Type command. Check support for
 605	 * this command in the bit mask of supported commands.
 606	 */
 607	if (hdev->commands[13] & 0x01)
 608		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 609
 610	if (lmp_le_capable(hdev)) {
 611		u8 events[8];
 612
 613		memset(events, 0, sizeof(events));
 614
 615		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 616			events[0] |= 0x10;	/* LE Long Term Key Request */
 617
 618		/* If controller supports the Connection Parameters Request
 619		 * Link Layer Procedure, enable the corresponding event.
 620		 */
 621		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 622			events[0] |= 0x20;	/* LE Remote Connection
 623						 * Parameter Request
 624						 */
 625
 626		/* If the controller supports the Data Length Extension
 627		 * feature, enable the corresponding event.
 628		 */
 629		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 630			events[0] |= 0x40;	/* LE Data Length Change */
 631
 632		/* If the controller supports Extended Scanner Filter
 633		 * Policies, enable the correspondig event.
 634		 */
 635		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 636			events[1] |= 0x04;	/* LE Direct Advertising
 637						 * Report
 638						 */
 639
 640		/* If the controller supports the LE Set Scan Enable command,
 641		 * enable the corresponding advertising report event.
 642		 */
 643		if (hdev->commands[26] & 0x08)
 644			events[0] |= 0x02;	/* LE Advertising Report */
 645
 646		/* If the controller supports the LE Create Connection
 647		 * command, enable the corresponding event.
 648		 */
 649		if (hdev->commands[26] & 0x10)
 650			events[0] |= 0x01;	/* LE Connection Complete */
 651
 652		/* If the controller supports the LE Connection Update
 653		 * command, enable the corresponding event.
 654		 */
 655		if (hdev->commands[27] & 0x04)
 656			events[0] |= 0x04;	/* LE Connection Update
 657						 * Complete
 658						 */
 659
 660		/* If the controller supports the LE Read Remote Used Features
 661		 * command, enable the corresponding event.
 662		 */
 663		if (hdev->commands[27] & 0x20)
 664			events[0] |= 0x08;	/* LE Read Remote Used
 665						 * Features Complete
 666						 */
 667
 668		/* If the controller supports the LE Read Local P-256
 669		 * Public Key command, enable the corresponding event.
 670		 */
 671		if (hdev->commands[34] & 0x02)
 672			events[0] |= 0x80;	/* LE Read Local P-256
 673						 * Public Key Complete
 674						 */
 675
 676		/* If the controller supports the LE Generate DHKey
 677		 * command, enable the corresponding event.
 678		 */
 679		if (hdev->commands[34] & 0x04)
 680			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 681
 682		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 683			    events);
 684
 685		if (hdev->commands[25] & 0x40) {
 686			/* Read LE Advertising Channel TX Power */
 687			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 688		}
 689
 690		if (hdev->commands[26] & 0x40) {
 691			/* Read LE White List Size */
 692			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 693				    0, NULL);
 694		}
 695
 696		if (hdev->commands[26] & 0x80) {
 697			/* Clear LE White List */
 698			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 699		}
 700
 701		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 702			/* Read LE Maximum Data Length */
 703			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 704
 705			/* Read LE Suggested Default Data Length */
 706			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 707		}
 708
 709		hci_set_le_support(req);
 710	}
 711
 712	/* Read features beyond page 1 if available */
 713	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 714		struct hci_cp_read_local_ext_features cp;
 715
 716		cp.page = p;
 717		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 718			    sizeof(cp), &cp);
 719	}
 720
 721	return 0;
 722}
 723
 724static int hci_init4_req(struct hci_request *req, unsigned long opt)
 725{
 726	struct hci_dev *hdev = req->hdev;
 727
 728	/* Some Broadcom based Bluetooth controllers do not support the
 729	 * Delete Stored Link Key command. They are clearly indicating its
 730	 * absence in the bit mask of supported commands.
 731	 *
 732	 * Check the supported commands and only if the the command is marked
 733	 * as supported send it. If not supported assume that the controller
 734	 * does not have actual support for stored link keys which makes this
 735	 * command redundant anyway.
 736	 *
 737	 * Some controllers indicate that they support handling deleting
 738	 * stored link keys, but they don't. The quirk lets a driver
 739	 * just disable this command.
 740	 */
 741	if (hdev->commands[6] & 0x80 &&
 742	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 743		struct hci_cp_delete_stored_link_key cp;
 744
 745		bacpy(&cp.bdaddr, BDADDR_ANY);
 746		cp.delete_all = 0x01;
 747		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 748			    sizeof(cp), &cp);
 749	}
 750
 751	/* Set event mask page 2 if the HCI command for it is supported */
 752	if (hdev->commands[22] & 0x04)
 753		hci_set_event_mask_page_2(req);
 754
 755	/* Read local codec list if the HCI command is supported */
 756	if (hdev->commands[29] & 0x20)
 757		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 758
 759	/* Get MWS transport configuration if the HCI command is supported */
 760	if (hdev->commands[30] & 0x08)
 761		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 762
 763	/* Check for Synchronization Train support */
 764	if (lmp_sync_train_capable(hdev))
 765		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 766
 767	/* Enable Secure Connections if supported and configured */
 768	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 769	    bredr_sc_enabled(hdev)) {
 770		u8 support = 0x01;
 771
 772		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 773			    sizeof(support), &support);
 774	}
 775
 776	return 0;
 777}
 778
 779static int __hci_init(struct hci_dev *hdev)
 780{
 781	int err;
 782
 783	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 784	if (err < 0)
 785		return err;
 786
 787	if (hci_dev_test_flag(hdev, HCI_SETUP))
 788		hci_debugfs_create_basic(hdev);
 789
 790	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 791	if (err < 0)
 792		return err;
 793
 794	/* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
 795	 * BR/EDR/LE type controllers. AMP controllers only need the
 796	 * first two stages of init.
 797	 */
 798	if (hdev->dev_type != HCI_BREDR)
 799		return 0;
 800
 801	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 802	if (err < 0)
 803		return err;
 804
 805	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 806	if (err < 0)
 807		return err;
 808
 809	/* This function is only called when the controller is actually in
 810	 * configured state. When the controller is marked as unconfigured,
 811	 * this initialization procedure is not run.
 812	 *
 813	 * It means that it is possible that a controller runs through its
 814	 * setup phase and then discovers missing settings. If that is the
 815	 * case, then this function will not be called. It then will only
 816	 * be called during the config phase.
 817	 *
 818	 * So only when in setup phase or config phase, create the debugfs
 819	 * entries and register the SMP channels.
 820	 */
 821	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 822	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 823		return 0;
 824
 825	hci_debugfs_create_common(hdev);
 826
 827	if (lmp_bredr_capable(hdev))
 828		hci_debugfs_create_bredr(hdev);
 829
 830	if (lmp_le_capable(hdev))
 831		hci_debugfs_create_le(hdev);
 832
 833	return 0;
 834}
 835
 836static int hci_init0_req(struct hci_request *req, unsigned long opt)
 837{
 838	struct hci_dev *hdev = req->hdev;
 839
 840	BT_DBG("%s %ld", hdev->name, opt);
 841
 842	/* Reset */
 843	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 844		hci_reset_req(req, 0);
 845
 846	/* Read Local Version */
 847	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 848
 849	/* Read BD Address */
 850	if (hdev->set_bdaddr)
 851		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 852
 853	return 0;
 854}
 855
 856static int __hci_unconf_init(struct hci_dev *hdev)
 857{
 858	int err;
 859
 860	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 861		return 0;
 862
 863	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 864	if (err < 0)
 865		return err;
 866
 867	if (hci_dev_test_flag(hdev, HCI_SETUP))
 868		hci_debugfs_create_basic(hdev);
 869
 870	return 0;
 871}
 872
 873static int hci_scan_req(struct hci_request *req, unsigned long opt)
 874{
 875	__u8 scan = opt;
 876
 877	BT_DBG("%s %x", req->hdev->name, scan);
 878
 879	/* Inquiry and Page scans */
 880	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 881	return 0;
 882}
 883
 884static int hci_auth_req(struct hci_request *req, unsigned long opt)
 885{
 886	__u8 auth = opt;
 887
 888	BT_DBG("%s %x", req->hdev->name, auth);
 889
 890	/* Authentication */
 891	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 892	return 0;
 893}
 894
 895static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 896{
 897	__u8 encrypt = opt;
 898
 899	BT_DBG("%s %x", req->hdev->name, encrypt);
 900
 901	/* Encryption */
 902	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 903	return 0;
 904}
 905
 906static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 907{
 908	__le16 policy = cpu_to_le16(opt);
 909
 910	BT_DBG("%s %x", req->hdev->name, policy);
 911
 912	/* Default link policy */
 913	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 914	return 0;
 915}
 916
 917/* Get HCI device by index.
 918 * Device is held on return. */
 919struct hci_dev *hci_dev_get(int index)
 920{
 921	struct hci_dev *hdev = NULL, *d;
 922
 923	BT_DBG("%d", index);
 924
 925	if (index < 0)
 926		return NULL;
 927
 928	read_lock(&hci_dev_list_lock);
 929	list_for_each_entry(d, &hci_dev_list, list) {
 930		if (d->id == index) {
 931			hdev = hci_dev_hold(d);
 932			break;
 933		}
 934	}
 935	read_unlock(&hci_dev_list_lock);
 936	return hdev;
 937}
 938
 939/* ---- Inquiry support ---- */
 940
 941bool hci_discovery_active(struct hci_dev *hdev)
 942{
 943	struct discovery_state *discov = &hdev->discovery;
 944
 945	switch (discov->state) {
 946	case DISCOVERY_FINDING:
 947	case DISCOVERY_RESOLVING:
 948		return true;
 949
 950	default:
 951		return false;
 952	}
 953}
 954
 955void hci_discovery_set_state(struct hci_dev *hdev, int state)
 956{
 957	int old_state = hdev->discovery.state;
 958
 959	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 960
 961	if (old_state == state)
 962		return;
 963
 964	hdev->discovery.state = state;
 965
 966	switch (state) {
 967	case DISCOVERY_STOPPED:
 968		hci_update_background_scan(hdev);
 969
 970		if (old_state != DISCOVERY_STARTING)
 971			mgmt_discovering(hdev, 0);
 972		break;
 973	case DISCOVERY_STARTING:
 974		break;
 975	case DISCOVERY_FINDING:
 976		mgmt_discovering(hdev, 1);
 977		break;
 978	case DISCOVERY_RESOLVING:
 979		break;
 980	case DISCOVERY_STOPPING:
 981		break;
 982	}
 983}
 984
 985void hci_inquiry_cache_flush(struct hci_dev *hdev)
 986{
 987	struct discovery_state *cache = &hdev->discovery;
 988	struct inquiry_entry *p, *n;
 989
 990	list_for_each_entry_safe(p, n, &cache->all, all) {
 991		list_del(&p->all);
 992		kfree(p);
 993	}
 994
 995	INIT_LIST_HEAD(&cache->unknown);
 996	INIT_LIST_HEAD(&cache->resolve);
 997}
 998
 999struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1000					       bdaddr_t *bdaddr)
1001{
1002	struct discovery_state *cache = &hdev->discovery;
1003	struct inquiry_entry *e;
1004
1005	BT_DBG("cache %p, %pMR", cache, bdaddr);
1006
1007	list_for_each_entry(e, &cache->all, all) {
1008		if (!bacmp(&e->data.bdaddr, bdaddr))
1009			return e;
1010	}
1011
1012	return NULL;
1013}
1014
1015struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1016						       bdaddr_t *bdaddr)
1017{
1018	struct discovery_state *cache = &hdev->discovery;
1019	struct inquiry_entry *e;
1020
1021	BT_DBG("cache %p, %pMR", cache, bdaddr);
1022
1023	list_for_each_entry(e, &cache->unknown, list) {
1024		if (!bacmp(&e->data.bdaddr, bdaddr))
1025			return e;
1026	}
1027
1028	return NULL;
1029}
1030
1031struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1032						       bdaddr_t *bdaddr,
1033						       int state)
1034{
1035	struct discovery_state *cache = &hdev->discovery;
1036	struct inquiry_entry *e;
1037
1038	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1039
1040	list_for_each_entry(e, &cache->resolve, list) {
1041		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1042			return e;
1043		if (!bacmp(&e->data.bdaddr, bdaddr))
1044			return e;
1045	}
1046
1047	return NULL;
1048}
1049
1050void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1051				      struct inquiry_entry *ie)
1052{
1053	struct discovery_state *cache = &hdev->discovery;
1054	struct list_head *pos = &cache->resolve;
1055	struct inquiry_entry *p;
1056
1057	list_del(&ie->list);
1058
1059	list_for_each_entry(p, &cache->resolve, list) {
1060		if (p->name_state != NAME_PENDING &&
1061		    abs(p->data.rssi) >= abs(ie->data.rssi))
1062			break;
1063		pos = &p->list;
1064	}
1065
1066	list_add(&ie->list, pos);
1067}
1068
1069u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1070			     bool name_known)
1071{
1072	struct discovery_state *cache = &hdev->discovery;
1073	struct inquiry_entry *ie;
1074	u32 flags = 0;
1075
1076	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1077
1078	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1079
1080	if (!data->ssp_mode)
1081		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1082
1083	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1084	if (ie) {
1085		if (!ie->data.ssp_mode)
1086			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1087
1088		if (ie->name_state == NAME_NEEDED &&
1089		    data->rssi != ie->data.rssi) {
1090			ie->data.rssi = data->rssi;
1091			hci_inquiry_cache_update_resolve(hdev, ie);
1092		}
1093
1094		goto update;
1095	}
1096
1097	/* Entry not in the cache. Add new one. */
1098	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1099	if (!ie) {
1100		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1101		goto done;
1102	}
1103
1104	list_add(&ie->all, &cache->all);
1105
1106	if (name_known) {
1107		ie->name_state = NAME_KNOWN;
1108	} else {
1109		ie->name_state = NAME_NOT_KNOWN;
1110		list_add(&ie->list, &cache->unknown);
1111	}
1112
1113update:
1114	if (name_known && ie->name_state != NAME_KNOWN &&
1115	    ie->name_state != NAME_PENDING) {
1116		ie->name_state = NAME_KNOWN;
1117		list_del(&ie->list);
1118	}
1119
1120	memcpy(&ie->data, data, sizeof(*data));
1121	ie->timestamp = jiffies;
1122	cache->timestamp = jiffies;
1123
1124	if (ie->name_state == NAME_NOT_KNOWN)
1125		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1126
1127done:
1128	return flags;
1129}
1130
1131static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1132{
1133	struct discovery_state *cache = &hdev->discovery;
1134	struct inquiry_info *info = (struct inquiry_info *) buf;
1135	struct inquiry_entry *e;
1136	int copied = 0;
1137
1138	list_for_each_entry(e, &cache->all, all) {
1139		struct inquiry_data *data = &e->data;
1140
1141		if (copied >= num)
1142			break;
1143
1144		bacpy(&info->bdaddr, &data->bdaddr);
1145		info->pscan_rep_mode	= data->pscan_rep_mode;
1146		info->pscan_period_mode	= data->pscan_period_mode;
1147		info->pscan_mode	= data->pscan_mode;
1148		memcpy(info->dev_class, data->dev_class, 3);
1149		info->clock_offset	= data->clock_offset;
1150
1151		info++;
1152		copied++;
1153	}
1154
1155	BT_DBG("cache %p, copied %d", cache, copied);
1156	return copied;
1157}
1158
1159static int hci_inq_req(struct hci_request *req, unsigned long opt)
1160{
1161	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1162	struct hci_dev *hdev = req->hdev;
1163	struct hci_cp_inquiry cp;
1164
1165	BT_DBG("%s", hdev->name);
1166
1167	if (test_bit(HCI_INQUIRY, &hdev->flags))
1168		return 0;
1169
1170	/* Start Inquiry */
1171	memcpy(&cp.lap, &ir->lap, 3);
1172	cp.length  = ir->length;
1173	cp.num_rsp = ir->num_rsp;
1174	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1175
1176	return 0;
1177}
1178
1179int hci_inquiry(void __user *arg)
1180{
1181	__u8 __user *ptr = arg;
1182	struct hci_inquiry_req ir;
1183	struct hci_dev *hdev;
1184	int err = 0, do_inquiry = 0, max_rsp;
1185	long timeo;
1186	__u8 *buf;
1187
1188	if (copy_from_user(&ir, ptr, sizeof(ir)))
1189		return -EFAULT;
1190
1191	hdev = hci_dev_get(ir.dev_id);
1192	if (!hdev)
1193		return -ENODEV;
1194
1195	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1196		err = -EBUSY;
1197		goto done;
1198	}
1199
1200	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1201		err = -EOPNOTSUPP;
1202		goto done;
1203	}
1204
1205	if (hdev->dev_type != HCI_BREDR) {
1206		err = -EOPNOTSUPP;
1207		goto done;
1208	}
1209
1210	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1211		err = -EOPNOTSUPP;
1212		goto done;
1213	}
1214
 
 
 
 
 
 
1215	hci_dev_lock(hdev);
1216	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1217	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1218		hci_inquiry_cache_flush(hdev);
1219		do_inquiry = 1;
1220	}
1221	hci_dev_unlock(hdev);
1222
1223	timeo = ir.length * msecs_to_jiffies(2000);
1224
1225	if (do_inquiry) {
1226		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1227				   timeo, NULL);
1228		if (err < 0)
1229			goto done;
1230
1231		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1232		 * cleared). If it is interrupted by a signal, return -EINTR.
1233		 */
1234		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1235				TASK_INTERRUPTIBLE))
1236			return -EINTR;
 
 
1237	}
1238
1239	/* for unlimited number of responses we will use buffer with
1240	 * 255 entries
1241	 */
1242	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1243
1244	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1245	 * copy it to the user space.
1246	 */
1247	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1248	if (!buf) {
1249		err = -ENOMEM;
1250		goto done;
1251	}
1252
1253	hci_dev_lock(hdev);
1254	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1255	hci_dev_unlock(hdev);
1256
1257	BT_DBG("num_rsp %d", ir.num_rsp);
1258
1259	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1260		ptr += sizeof(ir);
1261		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1262				 ir.num_rsp))
1263			err = -EFAULT;
1264	} else
1265		err = -EFAULT;
1266
1267	kfree(buf);
1268
1269done:
1270	hci_dev_put(hdev);
1271	return err;
1272}
1273
1274static int hci_dev_do_open(struct hci_dev *hdev)
1275{
1276	int ret = 0;
1277
1278	BT_DBG("%s %p", hdev->name, hdev);
1279
1280	hci_req_sync_lock(hdev);
1281
1282	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1283		ret = -ENODEV;
1284		goto done;
1285	}
1286
1287	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1288	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1289		/* Check for rfkill but allow the HCI setup stage to
1290		 * proceed (which in itself doesn't cause any RF activity).
1291		 */
1292		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1293			ret = -ERFKILL;
1294			goto done;
1295		}
1296
1297		/* Check for valid public address or a configured static
1298		 * random adddress, but let the HCI setup proceed to
1299		 * be able to determine if there is a public address
1300		 * or not.
1301		 *
1302		 * In case of user channel usage, it is not important
1303		 * if a public address or static random address is
1304		 * available.
1305		 *
1306		 * This check is only valid for BR/EDR controllers
1307		 * since AMP controllers do not have an address.
1308		 */
1309		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1310		    hdev->dev_type == HCI_BREDR &&
1311		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1312		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1313			ret = -EADDRNOTAVAIL;
1314			goto done;
1315		}
1316	}
1317
1318	if (test_bit(HCI_UP, &hdev->flags)) {
1319		ret = -EALREADY;
1320		goto done;
1321	}
1322
1323	if (hdev->open(hdev)) {
1324		ret = -EIO;
1325		goto done;
1326	}
1327
1328	set_bit(HCI_RUNNING, &hdev->flags);
1329	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1330
1331	atomic_set(&hdev->cmd_cnt, 1);
1332	set_bit(HCI_INIT, &hdev->flags);
1333
1334	if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1335		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1336
1337		if (hdev->setup)
1338			ret = hdev->setup(hdev);
1339
1340		/* The transport driver can set these quirks before
1341		 * creating the HCI device or in its setup callback.
1342		 *
1343		 * In case any of them is set, the controller has to
1344		 * start up as unconfigured.
1345		 */
1346		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1347		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1348			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1349
1350		/* For an unconfigured controller it is required to
1351		 * read at least the version information provided by
1352		 * the Read Local Version Information command.
1353		 *
1354		 * If the set_bdaddr driver callback is provided, then
1355		 * also the original Bluetooth public device address
1356		 * will be read using the Read BD Address command.
1357		 */
1358		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1359			ret = __hci_unconf_init(hdev);
1360	}
1361
1362	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1363		/* If public address change is configured, ensure that
1364		 * the address gets programmed. If the driver does not
1365		 * support changing the public address, fail the power
1366		 * on procedure.
1367		 */
1368		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1369		    hdev->set_bdaddr)
1370			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1371		else
1372			ret = -EADDRNOTAVAIL;
1373	}
1374
1375	if (!ret) {
1376		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1377		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1378			ret = __hci_init(hdev);
1379			if (!ret && hdev->post_init)
1380				ret = hdev->post_init(hdev);
1381		}
1382	}
1383
1384	/* If the HCI Reset command is clearing all diagnostic settings,
1385	 * then they need to be reprogrammed after the init procedure
1386	 * completed.
1387	 */
1388	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1389	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1390		ret = hdev->set_diag(hdev, true);
1391
1392	clear_bit(HCI_INIT, &hdev->flags);
1393
1394	if (!ret) {
1395		hci_dev_hold(hdev);
1396		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1397		set_bit(HCI_UP, &hdev->flags);
1398		hci_sock_dev_event(hdev, HCI_DEV_UP);
1399		hci_leds_update_powered(hdev, true);
1400		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1401		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1402		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1403		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1404		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1405		    hdev->dev_type == HCI_BREDR) {
1406			ret = __hci_req_hci_power_on(hdev);
1407			mgmt_power_on(hdev, ret);
1408		}
1409	} else {
1410		/* Init failed, cleanup */
1411		flush_work(&hdev->tx_work);
1412		flush_work(&hdev->cmd_work);
1413		flush_work(&hdev->rx_work);
1414
1415		skb_queue_purge(&hdev->cmd_q);
1416		skb_queue_purge(&hdev->rx_q);
1417
1418		if (hdev->flush)
1419			hdev->flush(hdev);
1420
1421		if (hdev->sent_cmd) {
1422			kfree_skb(hdev->sent_cmd);
1423			hdev->sent_cmd = NULL;
1424		}
1425
1426		clear_bit(HCI_RUNNING, &hdev->flags);
1427		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1428
1429		hdev->close(hdev);
1430		hdev->flags &= BIT(HCI_RAW);
1431	}
1432
1433done:
1434	hci_req_sync_unlock(hdev);
1435	return ret;
1436}
1437
1438/* ---- HCI ioctl helpers ---- */
1439
1440int hci_dev_open(__u16 dev)
1441{
1442	struct hci_dev *hdev;
1443	int err;
1444
1445	hdev = hci_dev_get(dev);
1446	if (!hdev)
1447		return -ENODEV;
1448
1449	/* Devices that are marked as unconfigured can only be powered
1450	 * up as user channel. Trying to bring them up as normal devices
1451	 * will result into a failure. Only user channel operation is
1452	 * possible.
1453	 *
1454	 * When this function is called for a user channel, the flag
1455	 * HCI_USER_CHANNEL will be set first before attempting to
1456	 * open the device.
1457	 */
1458	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1459	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1460		err = -EOPNOTSUPP;
1461		goto done;
1462	}
1463
1464	/* We need to ensure that no other power on/off work is pending
1465	 * before proceeding to call hci_dev_do_open. This is
1466	 * particularly important if the setup procedure has not yet
1467	 * completed.
1468	 */
1469	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1470		cancel_delayed_work(&hdev->power_off);
1471
1472	/* After this call it is guaranteed that the setup procedure
1473	 * has finished. This means that error conditions like RFKILL
1474	 * or no valid public or static random address apply.
1475	 */
1476	flush_workqueue(hdev->req_workqueue);
1477
1478	/* For controllers not using the management interface and that
1479	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1480	 * so that pairing works for them. Once the management interface
1481	 * is in use this bit will be cleared again and userspace has
1482	 * to explicitly enable it.
1483	 */
1484	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1485	    !hci_dev_test_flag(hdev, HCI_MGMT))
1486		hci_dev_set_flag(hdev, HCI_BONDABLE);
1487
1488	err = hci_dev_do_open(hdev);
1489
1490done:
1491	hci_dev_put(hdev);
1492	return err;
1493}
1494
1495/* This function requires the caller holds hdev->lock */
1496static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1497{
1498	struct hci_conn_params *p;
1499
1500	list_for_each_entry(p, &hdev->le_conn_params, list) {
1501		if (p->conn) {
1502			hci_conn_drop(p->conn);
1503			hci_conn_put(p->conn);
1504			p->conn = NULL;
1505		}
1506		list_del_init(&p->action);
1507	}
1508
1509	BT_DBG("All LE pending actions cleared");
1510}
1511
1512int hci_dev_do_close(struct hci_dev *hdev)
1513{
1514	bool auto_off;
1515
1516	BT_DBG("%s %p", hdev->name, hdev);
1517
1518	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1519	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1520	    test_bit(HCI_UP, &hdev->flags)) {
1521		/* Execute vendor specific shutdown routine */
1522		if (hdev->shutdown)
1523			hdev->shutdown(hdev);
1524	}
1525
1526	cancel_delayed_work(&hdev->power_off);
1527
1528	hci_request_cancel_all(hdev);
1529	hci_req_sync_lock(hdev);
1530
1531	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1532		cancel_delayed_work_sync(&hdev->cmd_timer);
1533		hci_req_sync_unlock(hdev);
1534		return 0;
1535	}
1536
1537	hci_leds_update_powered(hdev, false);
1538
1539	/* Flush RX and TX works */
1540	flush_work(&hdev->tx_work);
1541	flush_work(&hdev->rx_work);
1542
1543	if (hdev->discov_timeout > 0) {
1544		hdev->discov_timeout = 0;
1545		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1546		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1547	}
1548
1549	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1550		cancel_delayed_work(&hdev->service_cache);
1551
1552	if (hci_dev_test_flag(hdev, HCI_MGMT))
1553		cancel_delayed_work_sync(&hdev->rpa_expired);
1554
1555	/* Avoid potential lockdep warnings from the *_flush() calls by
1556	 * ensuring the workqueue is empty up front.
1557	 */
1558	drain_workqueue(hdev->workqueue);
1559
1560	hci_dev_lock(hdev);
1561
1562	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1563
1564	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1565
1566	if (!auto_off && hdev->dev_type == HCI_BREDR &&
1567	    hci_dev_test_flag(hdev, HCI_MGMT))
1568		__mgmt_power_off(hdev);
1569
1570	hci_inquiry_cache_flush(hdev);
1571	hci_pend_le_actions_clear(hdev);
1572	hci_conn_hash_flush(hdev);
1573	hci_dev_unlock(hdev);
1574
1575	smp_unregister(hdev);
1576
1577	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1578
1579	if (hdev->flush)
1580		hdev->flush(hdev);
1581
1582	/* Reset device */
1583	skb_queue_purge(&hdev->cmd_q);
1584	atomic_set(&hdev->cmd_cnt, 1);
1585	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1586	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1587		set_bit(HCI_INIT, &hdev->flags);
1588		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1589		clear_bit(HCI_INIT, &hdev->flags);
1590	}
1591
1592	/* flush cmd  work */
1593	flush_work(&hdev->cmd_work);
1594
1595	/* Drop queues */
1596	skb_queue_purge(&hdev->rx_q);
1597	skb_queue_purge(&hdev->cmd_q);
1598	skb_queue_purge(&hdev->raw_q);
1599
1600	/* Drop last sent command */
1601	if (hdev->sent_cmd) {
1602		cancel_delayed_work_sync(&hdev->cmd_timer);
1603		kfree_skb(hdev->sent_cmd);
1604		hdev->sent_cmd = NULL;
1605	}
1606
1607	clear_bit(HCI_RUNNING, &hdev->flags);
1608	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1609
1610	/* After this point our queues are empty
1611	 * and no tasks are scheduled. */
1612	hdev->close(hdev);
1613
1614	/* Clear flags */
1615	hdev->flags &= BIT(HCI_RAW);
1616	hci_dev_clear_volatile_flags(hdev);
1617
1618	/* Controller radio is available but is currently powered down */
1619	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1620
1621	memset(hdev->eir, 0, sizeof(hdev->eir));
1622	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1623	bacpy(&hdev->random_addr, BDADDR_ANY);
1624
1625	hci_req_sync_unlock(hdev);
1626
1627	hci_dev_put(hdev);
1628	return 0;
1629}
1630
1631int hci_dev_close(__u16 dev)
1632{
1633	struct hci_dev *hdev;
1634	int err;
1635
1636	hdev = hci_dev_get(dev);
1637	if (!hdev)
1638		return -ENODEV;
1639
1640	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1641		err = -EBUSY;
1642		goto done;
1643	}
1644
 
1645	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1646		cancel_delayed_work(&hdev->power_off);
1647
1648	err = hci_dev_do_close(hdev);
1649
1650done:
1651	hci_dev_put(hdev);
1652	return err;
1653}
1654
1655static int hci_dev_do_reset(struct hci_dev *hdev)
1656{
1657	int ret;
1658
1659	BT_DBG("%s %p", hdev->name, hdev);
1660
1661	hci_req_sync_lock(hdev);
1662
1663	/* Drop queues */
1664	skb_queue_purge(&hdev->rx_q);
1665	skb_queue_purge(&hdev->cmd_q);
1666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1667	/* Avoid potential lockdep warnings from the *_flush() calls by
1668	 * ensuring the workqueue is empty up front.
1669	 */
1670	drain_workqueue(hdev->workqueue);
1671
1672	hci_dev_lock(hdev);
1673	hci_inquiry_cache_flush(hdev);
1674	hci_conn_hash_flush(hdev);
1675	hci_dev_unlock(hdev);
1676
1677	if (hdev->flush)
1678		hdev->flush(hdev);
1679
 
 
1680	atomic_set(&hdev->cmd_cnt, 1);
1681	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
 
 
 
1682
1683	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1684
1685	hci_req_sync_unlock(hdev);
1686	return ret;
1687}
1688
1689int hci_dev_reset(__u16 dev)
1690{
1691	struct hci_dev *hdev;
1692	int err;
1693
1694	hdev = hci_dev_get(dev);
1695	if (!hdev)
1696		return -ENODEV;
1697
1698	if (!test_bit(HCI_UP, &hdev->flags)) {
1699		err = -ENETDOWN;
1700		goto done;
1701	}
1702
1703	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1704		err = -EBUSY;
1705		goto done;
1706	}
1707
1708	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1709		err = -EOPNOTSUPP;
1710		goto done;
1711	}
1712
1713	err = hci_dev_do_reset(hdev);
1714
1715done:
1716	hci_dev_put(hdev);
1717	return err;
1718}
1719
1720int hci_dev_reset_stat(__u16 dev)
1721{
1722	struct hci_dev *hdev;
1723	int ret = 0;
1724
1725	hdev = hci_dev_get(dev);
1726	if (!hdev)
1727		return -ENODEV;
1728
1729	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1730		ret = -EBUSY;
1731		goto done;
1732	}
1733
1734	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1735		ret = -EOPNOTSUPP;
1736		goto done;
1737	}
1738
1739	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1740
1741done:
1742	hci_dev_put(hdev);
1743	return ret;
1744}
1745
1746static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1747{
1748	bool conn_changed, discov_changed;
1749
1750	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1751
1752	if ((scan & SCAN_PAGE))
1753		conn_changed = !hci_dev_test_and_set_flag(hdev,
1754							  HCI_CONNECTABLE);
1755	else
1756		conn_changed = hci_dev_test_and_clear_flag(hdev,
1757							   HCI_CONNECTABLE);
1758
1759	if ((scan & SCAN_INQUIRY)) {
1760		discov_changed = !hci_dev_test_and_set_flag(hdev,
1761							    HCI_DISCOVERABLE);
1762	} else {
1763		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1764		discov_changed = hci_dev_test_and_clear_flag(hdev,
1765							     HCI_DISCOVERABLE);
1766	}
1767
1768	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1769		return;
1770
1771	if (conn_changed || discov_changed) {
1772		/* In case this was disabled through mgmt */
1773		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1774
1775		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1776			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1777
1778		mgmt_new_settings(hdev);
1779	}
1780}
1781
1782int hci_dev_cmd(unsigned int cmd, void __user *arg)
1783{
1784	struct hci_dev *hdev;
1785	struct hci_dev_req dr;
1786	int err = 0;
1787
1788	if (copy_from_user(&dr, arg, sizeof(dr)))
1789		return -EFAULT;
1790
1791	hdev = hci_dev_get(dr.dev_id);
1792	if (!hdev)
1793		return -ENODEV;
1794
1795	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1796		err = -EBUSY;
1797		goto done;
1798	}
1799
1800	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1801		err = -EOPNOTSUPP;
1802		goto done;
1803	}
1804
1805	if (hdev->dev_type != HCI_BREDR) {
1806		err = -EOPNOTSUPP;
1807		goto done;
1808	}
1809
1810	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1811		err = -EOPNOTSUPP;
1812		goto done;
1813	}
1814
1815	switch (cmd) {
1816	case HCISETAUTH:
1817		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1818				   HCI_INIT_TIMEOUT, NULL);
1819		break;
1820
1821	case HCISETENCRYPT:
1822		if (!lmp_encrypt_capable(hdev)) {
1823			err = -EOPNOTSUPP;
1824			break;
1825		}
1826
1827		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1828			/* Auth must be enabled first */
1829			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1830					   HCI_INIT_TIMEOUT, NULL);
1831			if (err)
1832				break;
1833		}
1834
1835		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1836				   HCI_INIT_TIMEOUT, NULL);
1837		break;
1838
1839	case HCISETSCAN:
1840		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1841				   HCI_INIT_TIMEOUT, NULL);
1842
1843		/* Ensure that the connectable and discoverable states
1844		 * get correctly modified as this was a non-mgmt change.
1845		 */
1846		if (!err)
1847			hci_update_scan_state(hdev, dr.dev_opt);
1848		break;
1849
1850	case HCISETLINKPOL:
1851		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1852				   HCI_INIT_TIMEOUT, NULL);
1853		break;
1854
1855	case HCISETLINKMODE:
1856		hdev->link_mode = ((__u16) dr.dev_opt) &
1857					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1858		break;
1859
1860	case HCISETPTYPE:
 
 
 
1861		hdev->pkt_type = (__u16) dr.dev_opt;
 
1862		break;
1863
1864	case HCISETACLMTU:
1865		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1866		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1867		break;
1868
1869	case HCISETSCOMTU:
1870		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1871		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1872		break;
1873
1874	default:
1875		err = -EINVAL;
1876		break;
1877	}
1878
1879done:
1880	hci_dev_put(hdev);
1881	return err;
1882}
1883
1884int hci_get_dev_list(void __user *arg)
1885{
1886	struct hci_dev *hdev;
1887	struct hci_dev_list_req *dl;
1888	struct hci_dev_req *dr;
1889	int n = 0, size, err;
1890	__u16 dev_num;
1891
1892	if (get_user(dev_num, (__u16 __user *) arg))
1893		return -EFAULT;
1894
1895	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1896		return -EINVAL;
1897
1898	size = sizeof(*dl) + dev_num * sizeof(*dr);
1899
1900	dl = kzalloc(size, GFP_KERNEL);
1901	if (!dl)
1902		return -ENOMEM;
1903
1904	dr = dl->dev_req;
1905
1906	read_lock(&hci_dev_list_lock);
1907	list_for_each_entry(hdev, &hci_dev_list, list) {
1908		unsigned long flags = hdev->flags;
1909
1910		/* When the auto-off is configured it means the transport
1911		 * is running, but in that case still indicate that the
1912		 * device is actually down.
1913		 */
1914		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1915			flags &= ~BIT(HCI_UP);
1916
1917		(dr + n)->dev_id  = hdev->id;
1918		(dr + n)->dev_opt = flags;
1919
1920		if (++n >= dev_num)
1921			break;
1922	}
1923	read_unlock(&hci_dev_list_lock);
1924
1925	dl->dev_num = n;
1926	size = sizeof(*dl) + n * sizeof(*dr);
1927
1928	err = copy_to_user(arg, dl, size);
1929	kfree(dl);
1930
1931	return err ? -EFAULT : 0;
1932}
1933
1934int hci_get_dev_info(void __user *arg)
1935{
1936	struct hci_dev *hdev;
1937	struct hci_dev_info di;
1938	unsigned long flags;
1939	int err = 0;
1940
1941	if (copy_from_user(&di, arg, sizeof(di)))
1942		return -EFAULT;
1943
1944	hdev = hci_dev_get(di.dev_id);
1945	if (!hdev)
1946		return -ENODEV;
1947
1948	/* When the auto-off is configured it means the transport
1949	 * is running, but in that case still indicate that the
1950	 * device is actually down.
1951	 */
1952	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1953		flags = hdev->flags & ~BIT(HCI_UP);
1954	else
1955		flags = hdev->flags;
1956
1957	strcpy(di.name, hdev->name);
1958	di.bdaddr   = hdev->bdaddr;
1959	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1960	di.flags    = flags;
1961	di.pkt_type = hdev->pkt_type;
1962	if (lmp_bredr_capable(hdev)) {
1963		di.acl_mtu  = hdev->acl_mtu;
1964		di.acl_pkts = hdev->acl_pkts;
1965		di.sco_mtu  = hdev->sco_mtu;
1966		di.sco_pkts = hdev->sco_pkts;
1967	} else {
1968		di.acl_mtu  = hdev->le_mtu;
1969		di.acl_pkts = hdev->le_pkts;
1970		di.sco_mtu  = 0;
1971		di.sco_pkts = 0;
1972	}
1973	di.link_policy = hdev->link_policy;
1974	di.link_mode   = hdev->link_mode;
1975
1976	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1977	memcpy(&di.features, &hdev->features, sizeof(di.features));
1978
1979	if (copy_to_user(arg, &di, sizeof(di)))
1980		err = -EFAULT;
1981
1982	hci_dev_put(hdev);
1983
1984	return err;
1985}
1986
1987/* ---- Interface to HCI drivers ---- */
1988
1989static int hci_rfkill_set_block(void *data, bool blocked)
1990{
1991	struct hci_dev *hdev = data;
1992
1993	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1994
1995	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1996		return -EBUSY;
1997
1998	if (blocked) {
1999		hci_dev_set_flag(hdev, HCI_RFKILLED);
2000		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2001		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2002			hci_dev_do_close(hdev);
2003	} else {
2004		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2005	}
2006
2007	return 0;
2008}
2009
2010static const struct rfkill_ops hci_rfkill_ops = {
2011	.set_block = hci_rfkill_set_block,
2012};
2013
2014static void hci_power_on(struct work_struct *work)
2015{
2016	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2017	int err;
2018
2019	BT_DBG("%s", hdev->name);
2020
2021	if (test_bit(HCI_UP, &hdev->flags) &&
2022	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2023	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2024		cancel_delayed_work(&hdev->power_off);
2025		hci_req_sync_lock(hdev);
2026		err = __hci_req_hci_power_on(hdev);
2027		hci_req_sync_unlock(hdev);
2028		mgmt_power_on(hdev, err);
2029		return;
2030	}
2031
2032	err = hci_dev_do_open(hdev);
2033	if (err < 0) {
2034		hci_dev_lock(hdev);
2035		mgmt_set_powered_failed(hdev, err);
2036		hci_dev_unlock(hdev);
2037		return;
2038	}
2039
2040	/* During the HCI setup phase, a few error conditions are
2041	 * ignored and they need to be checked now. If they are still
2042	 * valid, it is important to turn the device back off.
2043	 */
2044	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2045	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2046	    (hdev->dev_type == HCI_BREDR &&
2047	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2048	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2049		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2050		hci_dev_do_close(hdev);
2051	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2052		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2053				   HCI_AUTO_OFF_TIMEOUT);
2054	}
2055
2056	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2057		/* For unconfigured devices, set the HCI_RAW flag
2058		 * so that userspace can easily identify them.
2059		 */
2060		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2061			set_bit(HCI_RAW, &hdev->flags);
2062
2063		/* For fully configured devices, this will send
2064		 * the Index Added event. For unconfigured devices,
2065		 * it will send Unconfigued Index Added event.
2066		 *
2067		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2068		 * and no event will be send.
2069		 */
2070		mgmt_index_added(hdev);
2071	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2072		/* When the controller is now configured, then it
2073		 * is important to clear the HCI_RAW flag.
2074		 */
2075		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2076			clear_bit(HCI_RAW, &hdev->flags);
2077
2078		/* Powering on the controller with HCI_CONFIG set only
2079		 * happens with the transition from unconfigured to
2080		 * configured. This will send the Index Added event.
2081		 */
2082		mgmt_index_added(hdev);
2083	}
2084}
2085
2086static void hci_power_off(struct work_struct *work)
2087{
2088	struct hci_dev *hdev = container_of(work, struct hci_dev,
2089					    power_off.work);
2090
2091	BT_DBG("%s", hdev->name);
2092
2093	hci_dev_do_close(hdev);
2094}
2095
2096static void hci_error_reset(struct work_struct *work)
2097{
2098	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2099
 
2100	BT_DBG("%s", hdev->name);
2101
2102	if (hdev->hw_error)
2103		hdev->hw_error(hdev, hdev->hw_error_code);
2104	else
2105		BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2106		       hdev->hw_error_code);
2107
2108	if (hci_dev_do_close(hdev))
2109		return;
2110
2111	hci_dev_do_open(hdev);
2112}
2113
2114void hci_uuids_clear(struct hci_dev *hdev)
2115{
2116	struct bt_uuid *uuid, *tmp;
2117
2118	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2119		list_del(&uuid->list);
2120		kfree(uuid);
2121	}
2122}
2123
2124void hci_link_keys_clear(struct hci_dev *hdev)
2125{
2126	struct link_key *key;
2127
2128	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2129		list_del_rcu(&key->list);
2130		kfree_rcu(key, rcu);
2131	}
2132}
2133
2134void hci_smp_ltks_clear(struct hci_dev *hdev)
2135{
2136	struct smp_ltk *k;
2137
2138	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2139		list_del_rcu(&k->list);
2140		kfree_rcu(k, rcu);
2141	}
2142}
2143
2144void hci_smp_irks_clear(struct hci_dev *hdev)
2145{
2146	struct smp_irk *k;
2147
2148	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2149		list_del_rcu(&k->list);
2150		kfree_rcu(k, rcu);
2151	}
2152}
2153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2154struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2155{
2156	struct link_key *k;
2157
2158	rcu_read_lock();
2159	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2160		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2161			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
2162			return k;
2163		}
2164	}
2165	rcu_read_unlock();
2166
2167	return NULL;
2168}
2169
2170static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2171			       u8 key_type, u8 old_key_type)
2172{
2173	/* Legacy key */
2174	if (key_type < 0x03)
2175		return true;
2176
2177	/* Debug keys are insecure so don't store them persistently */
2178	if (key_type == HCI_LK_DEBUG_COMBINATION)
2179		return false;
2180
2181	/* Changed combination key and there's no previous one */
2182	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2183		return false;
2184
2185	/* Security mode 3 case */
2186	if (!conn)
2187		return true;
2188
2189	/* BR/EDR key derived using SC from an LE link */
2190	if (conn->type == LE_LINK)
2191		return true;
2192
2193	/* Neither local nor remote side had no-bonding as requirement */
2194	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2195		return true;
2196
2197	/* Local side had dedicated bonding as requirement */
2198	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2199		return true;
2200
2201	/* Remote side had dedicated bonding as requirement */
2202	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2203		return true;
2204
2205	/* If none of the above criteria match, then don't store the key
2206	 * persistently */
2207	return false;
2208}
2209
2210static u8 ltk_role(u8 type)
2211{
2212	if (type == SMP_LTK)
2213		return HCI_ROLE_MASTER;
2214
2215	return HCI_ROLE_SLAVE;
2216}
2217
2218struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2219			     u8 addr_type, u8 role)
2220{
2221	struct smp_ltk *k;
2222
2223	rcu_read_lock();
2224	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2225		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2226			continue;
2227
2228		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2229			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
2230			return k;
2231		}
2232	}
2233	rcu_read_unlock();
2234
2235	return NULL;
2236}
2237
2238struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2239{
 
2240	struct smp_irk *irk;
2241
2242	rcu_read_lock();
2243	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2244		if (!bacmp(&irk->rpa, rpa)) {
2245			rcu_read_unlock();
2246			return irk;
2247		}
2248	}
2249
2250	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2251		if (smp_irk_matches(hdev, irk->val, rpa)) {
2252			bacpy(&irk->rpa, rpa);
2253			rcu_read_unlock();
2254			return irk;
2255		}
2256	}
 
 
 
 
 
 
 
 
 
2257	rcu_read_unlock();
2258
2259	return NULL;
2260}
2261
2262struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2263				     u8 addr_type)
2264{
 
2265	struct smp_irk *irk;
2266
2267	/* Identity Address must be public or static random */
2268	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2269		return NULL;
2270
2271	rcu_read_lock();
2272	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2273		if (addr_type == irk->addr_type &&
2274		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2275			rcu_read_unlock();
2276			return irk;
2277		}
2278	}
 
 
 
 
 
 
 
 
 
 
2279	rcu_read_unlock();
2280
2281	return NULL;
2282}
2283
2284struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2285				  bdaddr_t *bdaddr, u8 *val, u8 type,
2286				  u8 pin_len, bool *persistent)
2287{
2288	struct link_key *key, *old_key;
2289	u8 old_key_type;
2290
2291	old_key = hci_find_link_key(hdev, bdaddr);
2292	if (old_key) {
2293		old_key_type = old_key->type;
2294		key = old_key;
2295	} else {
2296		old_key_type = conn ? conn->key_type : 0xff;
2297		key = kzalloc(sizeof(*key), GFP_KERNEL);
2298		if (!key)
2299			return NULL;
2300		list_add_rcu(&key->list, &hdev->link_keys);
2301	}
2302
2303	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2304
2305	/* Some buggy controller combinations generate a changed
2306	 * combination key for legacy pairing even when there's no
2307	 * previous key */
2308	if (type == HCI_LK_CHANGED_COMBINATION &&
2309	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2310		type = HCI_LK_COMBINATION;
2311		if (conn)
2312			conn->key_type = type;
2313	}
2314
2315	bacpy(&key->bdaddr, bdaddr);
2316	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2317	key->pin_len = pin_len;
2318
2319	if (type == HCI_LK_CHANGED_COMBINATION)
2320		key->type = old_key_type;
2321	else
2322		key->type = type;
2323
2324	if (persistent)
2325		*persistent = hci_persistent_key(hdev, conn, type,
2326						 old_key_type);
2327
2328	return key;
2329}
2330
2331struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2332			    u8 addr_type, u8 type, u8 authenticated,
2333			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2334{
2335	struct smp_ltk *key, *old_key;
2336	u8 role = ltk_role(type);
2337
2338	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2339	if (old_key)
2340		key = old_key;
2341	else {
2342		key = kzalloc(sizeof(*key), GFP_KERNEL);
2343		if (!key)
2344			return NULL;
2345		list_add_rcu(&key->list, &hdev->long_term_keys);
2346	}
2347
2348	bacpy(&key->bdaddr, bdaddr);
2349	key->bdaddr_type = addr_type;
2350	memcpy(key->val, tk, sizeof(key->val));
2351	key->authenticated = authenticated;
2352	key->ediv = ediv;
2353	key->rand = rand;
2354	key->enc_size = enc_size;
2355	key->type = type;
2356
2357	return key;
2358}
2359
2360struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2361			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2362{
2363	struct smp_irk *irk;
2364
2365	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2366	if (!irk) {
2367		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2368		if (!irk)
2369			return NULL;
2370
2371		bacpy(&irk->bdaddr, bdaddr);
2372		irk->addr_type = addr_type;
2373
2374		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2375	}
2376
2377	memcpy(irk->val, val, 16);
2378	bacpy(&irk->rpa, rpa);
2379
2380	return irk;
2381}
2382
2383int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2384{
2385	struct link_key *key;
2386
2387	key = hci_find_link_key(hdev, bdaddr);
2388	if (!key)
2389		return -ENOENT;
2390
2391	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2392
2393	list_del_rcu(&key->list);
2394	kfree_rcu(key, rcu);
2395
2396	return 0;
2397}
2398
2399int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2400{
2401	struct smp_ltk *k;
2402	int removed = 0;
2403
2404	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2405		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2406			continue;
2407
2408		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2409
2410		list_del_rcu(&k->list);
2411		kfree_rcu(k, rcu);
2412		removed++;
2413	}
2414
2415	return removed ? 0 : -ENOENT;
2416}
2417
2418void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2419{
2420	struct smp_irk *k;
2421
2422	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2423		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2424			continue;
2425
2426		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2427
2428		list_del_rcu(&k->list);
2429		kfree_rcu(k, rcu);
2430	}
2431}
2432
2433bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2434{
2435	struct smp_ltk *k;
2436	struct smp_irk *irk;
2437	u8 addr_type;
2438
2439	if (type == BDADDR_BREDR) {
2440		if (hci_find_link_key(hdev, bdaddr))
2441			return true;
2442		return false;
2443	}
2444
2445	/* Convert to HCI addr type which struct smp_ltk uses */
2446	if (type == BDADDR_LE_PUBLIC)
2447		addr_type = ADDR_LE_DEV_PUBLIC;
2448	else
2449		addr_type = ADDR_LE_DEV_RANDOM;
2450
2451	irk = hci_get_irk(hdev, bdaddr, addr_type);
2452	if (irk) {
2453		bdaddr = &irk->bdaddr;
2454		addr_type = irk->addr_type;
2455	}
2456
2457	rcu_read_lock();
2458	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2459		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2460			rcu_read_unlock();
2461			return true;
2462		}
2463	}
2464	rcu_read_unlock();
2465
2466	return false;
2467}
2468
2469/* HCI command timer function */
2470static void hci_cmd_timeout(struct work_struct *work)
2471{
2472	struct hci_dev *hdev = container_of(work, struct hci_dev,
2473					    cmd_timer.work);
2474
2475	if (hdev->sent_cmd) {
2476		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2477		u16 opcode = __le16_to_cpu(sent->opcode);
2478
2479		BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2480	} else {
2481		BT_ERR("%s command tx timeout", hdev->name);
2482	}
2483
 
 
 
2484	atomic_set(&hdev->cmd_cnt, 1);
2485	queue_work(hdev->workqueue, &hdev->cmd_work);
2486}
2487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2488struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2489					  bdaddr_t *bdaddr, u8 bdaddr_type)
2490{
2491	struct oob_data *data;
2492
2493	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2494		if (bacmp(bdaddr, &data->bdaddr) != 0)
2495			continue;
2496		if (data->bdaddr_type != bdaddr_type)
2497			continue;
2498		return data;
2499	}
2500
2501	return NULL;
2502}
2503
2504int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2505			       u8 bdaddr_type)
2506{
2507	struct oob_data *data;
2508
2509	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2510	if (!data)
2511		return -ENOENT;
2512
2513	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2514
2515	list_del(&data->list);
2516	kfree(data);
2517
2518	return 0;
2519}
2520
2521void hci_remote_oob_data_clear(struct hci_dev *hdev)
2522{
2523	struct oob_data *data, *n;
2524
2525	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2526		list_del(&data->list);
2527		kfree(data);
2528	}
2529}
2530
2531int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2532			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2533			    u8 *hash256, u8 *rand256)
2534{
2535	struct oob_data *data;
2536
2537	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2538	if (!data) {
2539		data = kmalloc(sizeof(*data), GFP_KERNEL);
2540		if (!data)
2541			return -ENOMEM;
2542
2543		bacpy(&data->bdaddr, bdaddr);
2544		data->bdaddr_type = bdaddr_type;
2545		list_add(&data->list, &hdev->remote_oob_data);
2546	}
2547
2548	if (hash192 && rand192) {
2549		memcpy(data->hash192, hash192, sizeof(data->hash192));
2550		memcpy(data->rand192, rand192, sizeof(data->rand192));
2551		if (hash256 && rand256)
2552			data->present = 0x03;
2553	} else {
2554		memset(data->hash192, 0, sizeof(data->hash192));
2555		memset(data->rand192, 0, sizeof(data->rand192));
2556		if (hash256 && rand256)
2557			data->present = 0x02;
2558		else
2559			data->present = 0x00;
2560	}
2561
2562	if (hash256 && rand256) {
2563		memcpy(data->hash256, hash256, sizeof(data->hash256));
2564		memcpy(data->rand256, rand256, sizeof(data->rand256));
2565	} else {
2566		memset(data->hash256, 0, sizeof(data->hash256));
2567		memset(data->rand256, 0, sizeof(data->rand256));
2568		if (hash192 && rand192)
2569			data->present = 0x01;
2570	}
2571
2572	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2573
2574	return 0;
2575}
2576
2577/* This function requires the caller holds hdev->lock */
2578struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2579{
2580	struct adv_info *adv_instance;
2581
2582	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2583		if (adv_instance->instance == instance)
2584			return adv_instance;
2585	}
2586
2587	return NULL;
2588}
2589
2590/* This function requires the caller holds hdev->lock */
2591struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2592{
2593	struct adv_info *cur_instance;
2594
2595	cur_instance = hci_find_adv_instance(hdev, instance);
2596	if (!cur_instance)
2597		return NULL;
2598
2599	if (cur_instance == list_last_entry(&hdev->adv_instances,
2600					    struct adv_info, list))
2601		return list_first_entry(&hdev->adv_instances,
2602						 struct adv_info, list);
2603	else
2604		return list_next_entry(cur_instance, list);
2605}
2606
2607/* This function requires the caller holds hdev->lock */
2608int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2609{
2610	struct adv_info *adv_instance;
2611
2612	adv_instance = hci_find_adv_instance(hdev, instance);
2613	if (!adv_instance)
2614		return -ENOENT;
2615
2616	BT_DBG("%s removing %dMR", hdev->name, instance);
2617
2618	if (hdev->cur_adv_instance == instance) {
2619		if (hdev->adv_instance_timeout) {
2620			cancel_delayed_work(&hdev->adv_instance_expire);
2621			hdev->adv_instance_timeout = 0;
2622		}
2623		hdev->cur_adv_instance = 0x00;
2624	}
2625
 
 
2626	list_del(&adv_instance->list);
2627	kfree(adv_instance);
2628
2629	hdev->adv_instance_cnt--;
2630
2631	return 0;
2632}
2633
 
 
 
 
 
 
 
 
2634/* This function requires the caller holds hdev->lock */
2635void hci_adv_instances_clear(struct hci_dev *hdev)
2636{
2637	struct adv_info *adv_instance, *n;
2638
2639	if (hdev->adv_instance_timeout) {
2640		cancel_delayed_work(&hdev->adv_instance_expire);
2641		hdev->adv_instance_timeout = 0;
2642	}
2643
2644	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
 
2645		list_del(&adv_instance->list);
2646		kfree(adv_instance);
2647	}
2648
2649	hdev->adv_instance_cnt = 0;
2650	hdev->cur_adv_instance = 0x00;
2651}
2652
2653/* This function requires the caller holds hdev->lock */
2654int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2655			 u16 adv_data_len, u8 *adv_data,
2656			 u16 scan_rsp_len, u8 *scan_rsp_data,
2657			 u16 timeout, u16 duration)
2658{
2659	struct adv_info *adv_instance;
 
2660
2661	adv_instance = hci_find_adv_instance(hdev, instance);
2662	if (adv_instance) {
2663		memset(adv_instance->adv_data, 0,
2664		       sizeof(adv_instance->adv_data));
2665		memset(adv_instance->scan_rsp_data, 0,
2666		       sizeof(adv_instance->scan_rsp_data));
2667	} else {
2668		if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2669		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2670			return -EOVERFLOW;
2671
2672		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2673		if (!adv_instance)
2674			return -ENOMEM;
2675
2676		adv_instance->pending = true;
2677		adv_instance->instance = instance;
2678		list_add(&adv_instance->list, &hdev->adv_instances);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2679		hdev->adv_instance_cnt++;
2680	}
2681
2682	adv_instance->flags = flags;
2683	adv_instance->adv_data_len = adv_data_len;
2684	adv_instance->scan_rsp_len = scan_rsp_len;
2685
2686	if (adv_data_len)
2687		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2688
2689	if (scan_rsp_len)
2690		memcpy(adv_instance->scan_rsp_data,
2691		       scan_rsp_data, scan_rsp_len);
 
 
2692
2693	adv_instance->timeout = timeout;
2694	adv_instance->remaining_time = timeout;
2695
2696	if (duration == 0)
2697		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2698	else
2699		adv_instance->duration = duration;
 
 
2700
2701	BT_DBG("%s for %dMR", hdev->name, instance);
2702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2703	return 0;
2704}
2705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2706struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2707					 bdaddr_t *bdaddr, u8 type)
2708{
2709	struct bdaddr_list *b;
2710
2711	list_for_each_entry(b, bdaddr_list, list) {
2712		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2713			return b;
2714	}
2715
2716	return NULL;
2717}
2718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2719void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2720{
2721	struct bdaddr_list *b, *n;
2722
2723	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2724		list_del(&b->list);
2725		kfree(b);
2726	}
2727}
2728
2729int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2730{
2731	struct bdaddr_list *entry;
2732
2733	if (!bacmp(bdaddr, BDADDR_ANY))
2734		return -EBADF;
2735
2736	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2737		return -EEXIST;
2738
2739	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2740	if (!entry)
2741		return -ENOMEM;
2742
2743	bacpy(&entry->bdaddr, bdaddr);
2744	entry->bdaddr_type = type;
2745
2746	list_add(&entry->list, list);
2747
2748	return 0;
2749}
2750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2751int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2752{
2753	struct bdaddr_list *entry;
2754
2755	if (!bacmp(bdaddr, BDADDR_ANY)) {
2756		hci_bdaddr_list_clear(list);
2757		return 0;
2758	}
2759
2760	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2761	if (!entry)
2762		return -ENOENT;
2763
2764	list_del(&entry->list);
2765	kfree(entry);
2766
2767	return 0;
2768}
2769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2770/* This function requires the caller holds hdev->lock */
2771struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2772					       bdaddr_t *addr, u8 addr_type)
2773{
2774	struct hci_conn_params *params;
2775
2776	list_for_each_entry(params, &hdev->le_conn_params, list) {
2777		if (bacmp(&params->addr, addr) == 0 &&
2778		    params->addr_type == addr_type) {
2779			return params;
2780		}
2781	}
2782
2783	return NULL;
2784}
2785
2786/* This function requires the caller holds hdev->lock */
2787struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2788						  bdaddr_t *addr, u8 addr_type)
2789{
2790	struct hci_conn_params *param;
2791
2792	list_for_each_entry(param, list, action) {
 
 
2793		if (bacmp(&param->addr, addr) == 0 &&
2794		    param->addr_type == addr_type)
 
2795			return param;
 
2796	}
2797
 
 
2798	return NULL;
2799}
2800
2801/* This function requires the caller holds hdev->lock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2802struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2803					    bdaddr_t *addr, u8 addr_type)
2804{
2805	struct hci_conn_params *params;
2806
2807	params = hci_conn_params_lookup(hdev, addr, addr_type);
2808	if (params)
2809		return params;
2810
2811	params = kzalloc(sizeof(*params), GFP_KERNEL);
2812	if (!params) {
2813		BT_ERR("Out of memory");
2814		return NULL;
2815	}
2816
2817	bacpy(&params->addr, addr);
2818	params->addr_type = addr_type;
2819
2820	list_add(&params->list, &hdev->le_conn_params);
2821	INIT_LIST_HEAD(&params->action);
2822
2823	params->conn_min_interval = hdev->le_conn_min_interval;
2824	params->conn_max_interval = hdev->le_conn_max_interval;
2825	params->conn_latency = hdev->le_conn_latency;
2826	params->supervision_timeout = hdev->le_supv_timeout;
2827	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2828
2829	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2830
2831	return params;
2832}
2833
2834static void hci_conn_params_free(struct hci_conn_params *params)
2835{
 
 
2836	if (params->conn) {
2837		hci_conn_drop(params->conn);
2838		hci_conn_put(params->conn);
2839	}
2840
2841	list_del(&params->action);
2842	list_del(&params->list);
2843	kfree(params);
2844}
2845
2846/* This function requires the caller holds hdev->lock */
2847void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2848{
2849	struct hci_conn_params *params;
2850
2851	params = hci_conn_params_lookup(hdev, addr, addr_type);
2852	if (!params)
2853		return;
2854
2855	hci_conn_params_free(params);
2856
2857	hci_update_background_scan(hdev);
2858
2859	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2860}
2861
2862/* This function requires the caller holds hdev->lock */
2863void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2864{
2865	struct hci_conn_params *params, *tmp;
2866
2867	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2868		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2869			continue;
2870
2871		/* If trying to estabilish one time connection to disabled
2872		 * device, leave the params, but mark them as just once.
2873		 */
2874		if (params->explicit_connect) {
2875			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2876			continue;
2877		}
2878
2879		list_del(&params->list);
2880		kfree(params);
2881	}
2882
2883	BT_DBG("All LE disabled connection parameters were removed");
2884}
2885
2886/* This function requires the caller holds hdev->lock */
2887static void hci_conn_params_clear_all(struct hci_dev *hdev)
2888{
2889	struct hci_conn_params *params, *tmp;
2890
2891	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2892		hci_conn_params_free(params);
2893
2894	BT_DBG("All LE connection parameters were removed");
2895}
2896
2897/* Copy the Identity Address of the controller.
2898 *
2899 * If the controller has a public BD_ADDR, then by default use that one.
2900 * If this is a LE only controller without a public address, default to
2901 * the static random address.
2902 *
2903 * For debugging purposes it is possible to force controllers with a
2904 * public address to use the static random address instead.
2905 *
2906 * In case BR/EDR has been disabled on a dual-mode controller and
2907 * userspace has configured a static address, then that address
2908 * becomes the identity address instead of the public BR/EDR address.
2909 */
2910void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2911			       u8 *bdaddr_type)
2912{
2913	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2914	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2915	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2916	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2917		bacpy(bdaddr, &hdev->static_addr);
2918		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2919	} else {
2920		bacpy(bdaddr, &hdev->bdaddr);
2921		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2922	}
2923}
2924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2925/* Alloc HCI device */
2926struct hci_dev *hci_alloc_dev(void)
2927{
2928	struct hci_dev *hdev;
 
2929
2930	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
 
 
 
 
 
 
2931	if (!hdev)
2932		return NULL;
2933
2934	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2935	hdev->esco_type = (ESCO_HV1);
2936	hdev->link_mode = (HCI_LM_ACCEPT);
2937	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2938	hdev->io_capability = 0x03;	/* No Input No Output */
2939	hdev->manufacturer = 0xffff;	/* Default to internal use */
2940	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2941	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2942	hdev->adv_instance_cnt = 0;
2943	hdev->cur_adv_instance = 0x00;
2944	hdev->adv_instance_timeout = 0;
2945
 
 
 
 
2946	hdev->sniff_max_interval = 800;
2947	hdev->sniff_min_interval = 80;
2948
2949	hdev->le_adv_channel_map = 0x07;
2950	hdev->le_adv_min_interval = 0x0800;
2951	hdev->le_adv_max_interval = 0x0800;
2952	hdev->le_scan_interval = 0x0060;
2953	hdev->le_scan_window = 0x0030;
2954	hdev->le_conn_min_interval = 0x0028;
2955	hdev->le_conn_max_interval = 0x0038;
 
 
 
 
 
 
 
 
2956	hdev->le_conn_latency = 0x0000;
2957	hdev->le_supv_timeout = 0x002a;
2958	hdev->le_def_tx_len = 0x001b;
2959	hdev->le_def_tx_time = 0x0148;
2960	hdev->le_max_tx_len = 0x001b;
2961	hdev->le_max_tx_time = 0x0148;
2962	hdev->le_max_rx_len = 0x001b;
2963	hdev->le_max_rx_time = 0x0148;
 
 
 
 
 
 
 
 
 
2964
2965	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2966	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2967	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2968	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
 
 
 
 
 
 
 
2969
2970	mutex_init(&hdev->lock);
2971	mutex_init(&hdev->req_lock);
2972
 
 
 
2973	INIT_LIST_HEAD(&hdev->mgmt_pending);
2974	INIT_LIST_HEAD(&hdev->blacklist);
2975	INIT_LIST_HEAD(&hdev->whitelist);
2976	INIT_LIST_HEAD(&hdev->uuids);
2977	INIT_LIST_HEAD(&hdev->link_keys);
2978	INIT_LIST_HEAD(&hdev->long_term_keys);
2979	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2980	INIT_LIST_HEAD(&hdev->remote_oob_data);
2981	INIT_LIST_HEAD(&hdev->le_white_list);
 
2982	INIT_LIST_HEAD(&hdev->le_conn_params);
2983	INIT_LIST_HEAD(&hdev->pend_le_conns);
2984	INIT_LIST_HEAD(&hdev->pend_le_reports);
2985	INIT_LIST_HEAD(&hdev->conn_hash.list);
2986	INIT_LIST_HEAD(&hdev->adv_instances);
 
 
2987
 
2988	INIT_WORK(&hdev->rx_work, hci_rx_work);
2989	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2990	INIT_WORK(&hdev->tx_work, hci_tx_work);
2991	INIT_WORK(&hdev->power_on, hci_power_on);
2992	INIT_WORK(&hdev->error_reset, hci_error_reset);
2993
 
 
2994	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2995
2996	skb_queue_head_init(&hdev->rx_q);
2997	skb_queue_head_init(&hdev->cmd_q);
2998	skb_queue_head_init(&hdev->raw_q);
2999
3000	init_waitqueue_head(&hdev->req_wait_q);
3001
3002	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
 
3003
 
3004	hci_request_setup(hdev);
3005
3006	hci_init_sysfs(hdev);
3007	discovery_init(hdev);
3008
3009	return hdev;
3010}
3011EXPORT_SYMBOL(hci_alloc_dev);
3012
3013/* Free HCI device */
3014void hci_free_dev(struct hci_dev *hdev)
3015{
3016	/* will free via device release */
3017	put_device(&hdev->dev);
3018}
3019EXPORT_SYMBOL(hci_free_dev);
3020
3021/* Register HCI device */
3022int hci_register_dev(struct hci_dev *hdev)
3023{
3024	int id, error;
3025
3026	if (!hdev->open || !hdev->close || !hdev->send)
3027		return -EINVAL;
3028
3029	/* Do not allow HCI_AMP devices to register at index 0,
3030	 * so the index can be used as the AMP controller ID.
3031	 */
3032	switch (hdev->dev_type) {
3033	case HCI_BREDR:
3034		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3035		break;
3036	case HCI_AMP:
3037		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3038		break;
3039	default:
3040		return -EINVAL;
3041	}
3042
3043	if (id < 0)
3044		return id;
3045
3046	sprintf(hdev->name, "hci%d", id);
 
 
 
 
3047	hdev->id = id;
3048
3049	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3050
3051	hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3052					  WQ_MEM_RECLAIM, 1, hdev->name);
3053	if (!hdev->workqueue) {
3054		error = -ENOMEM;
3055		goto err;
3056	}
3057
3058	hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3059					      WQ_MEM_RECLAIM, 1, hdev->name);
3060	if (!hdev->req_workqueue) {
3061		destroy_workqueue(hdev->workqueue);
3062		error = -ENOMEM;
3063		goto err;
3064	}
3065
3066	if (!IS_ERR_OR_NULL(bt_debugfs))
3067		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3068
3069	dev_set_name(&hdev->dev, "%s", hdev->name);
3070
3071	error = device_add(&hdev->dev);
3072	if (error < 0)
3073		goto err_wqueue;
3074
3075	hci_leds_init(hdev);
3076
3077	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3078				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3079				    hdev);
3080	if (hdev->rfkill) {
3081		if (rfkill_register(hdev->rfkill) < 0) {
3082			rfkill_destroy(hdev->rfkill);
3083			hdev->rfkill = NULL;
3084		}
3085	}
3086
3087	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3088		hci_dev_set_flag(hdev, HCI_RFKILLED);
3089
3090	hci_dev_set_flag(hdev, HCI_SETUP);
3091	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3092
3093	if (hdev->dev_type == HCI_BREDR) {
3094		/* Assume BR/EDR support until proven otherwise (such as
3095		 * through reading supported features during init.
3096		 */
3097		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3098	}
3099
3100	write_lock(&hci_dev_list_lock);
3101	list_add(&hdev->list, &hci_dev_list);
3102	write_unlock(&hci_dev_list_lock);
3103
3104	/* Devices that are marked for raw-only usage are unconfigured
3105	 * and should not be included in normal operation.
3106	 */
3107	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3108		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3109
 
 
 
 
 
 
3110	hci_sock_dev_event(hdev, HCI_DEV_REG);
3111	hci_dev_hold(hdev);
3112
 
 
 
 
3113	queue_work(hdev->req_workqueue, &hdev->power_on);
3114
 
 
 
3115	return id;
3116
3117err_wqueue:
 
3118	destroy_workqueue(hdev->workqueue);
3119	destroy_workqueue(hdev->req_workqueue);
3120err:
3121	ida_simple_remove(&hci_index_ida, hdev->id);
3122
3123	return error;
3124}
3125EXPORT_SYMBOL(hci_register_dev);
3126
3127/* Unregister HCI device */
3128void hci_unregister_dev(struct hci_dev *hdev)
3129{
3130	int id;
3131
3132	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3133
 
3134	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3135
3136	id = hdev->id;
3137
3138	write_lock(&hci_dev_list_lock);
3139	list_del(&hdev->list);
3140	write_unlock(&hci_dev_list_lock);
3141
 
 
 
 
 
 
 
 
3142	hci_dev_do_close(hdev);
3143
3144	cancel_work_sync(&hdev->power_on);
3145
3146	if (!test_bit(HCI_INIT, &hdev->flags) &&
3147	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3148	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3149		hci_dev_lock(hdev);
3150		mgmt_index_removed(hdev);
3151		hci_dev_unlock(hdev);
3152	}
3153
3154	/* mgmt_index_removed should take care of emptying the
3155	 * pending list */
3156	BUG_ON(!list_empty(&hdev->mgmt_pending));
3157
3158	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3159
3160	if (hdev->rfkill) {
3161		rfkill_unregister(hdev->rfkill);
3162		rfkill_destroy(hdev->rfkill);
3163	}
3164
3165	device_del(&hdev->dev);
 
 
 
 
3166
 
 
 
3167	debugfs_remove_recursive(hdev->debugfs);
 
 
3168
3169	destroy_workqueue(hdev->workqueue);
3170	destroy_workqueue(hdev->req_workqueue);
3171
3172	hci_dev_lock(hdev);
3173	hci_bdaddr_list_clear(&hdev->blacklist);
3174	hci_bdaddr_list_clear(&hdev->whitelist);
3175	hci_uuids_clear(hdev);
3176	hci_link_keys_clear(hdev);
3177	hci_smp_ltks_clear(hdev);
3178	hci_smp_irks_clear(hdev);
3179	hci_remote_oob_data_clear(hdev);
3180	hci_adv_instances_clear(hdev);
3181	hci_bdaddr_list_clear(&hdev->le_white_list);
 
 
3182	hci_conn_params_clear_all(hdev);
3183	hci_discovery_filter_clear(hdev);
 
 
3184	hci_dev_unlock(hdev);
3185
3186	hci_dev_put(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3187
3188	ida_simple_remove(&hci_index_ida, id);
3189}
3190EXPORT_SYMBOL(hci_unregister_dev);
3191
3192/* Suspend HCI device */
3193int hci_suspend_dev(struct hci_dev *hdev)
3194{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3195	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3196	return 0;
3197}
3198EXPORT_SYMBOL(hci_suspend_dev);
3199
3200/* Resume HCI device */
3201int hci_resume_dev(struct hci_dev *hdev)
3202{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3203	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3204	return 0;
3205}
3206EXPORT_SYMBOL(hci_resume_dev);
3207
3208/* Reset HCI device */
3209int hci_reset_dev(struct hci_dev *hdev)
3210{
3211	const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3212	struct sk_buff *skb;
3213
3214	skb = bt_skb_alloc(3, GFP_ATOMIC);
3215	if (!skb)
3216		return -ENOMEM;
3217
3218	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3219	memcpy(skb_put(skb, 3), hw_err, 3);
 
 
3220
3221	/* Send Hardware Error to upper stack */
3222	return hci_recv_frame(hdev, skb);
3223}
3224EXPORT_SYMBOL(hci_reset_dev);
3225
3226/* Receive frame from HCI drivers */
3227int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3228{
3229	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3230		      && !test_bit(HCI_INIT, &hdev->flags))) {
3231		kfree_skb(skb);
3232		return -ENXIO;
3233	}
3234
3235	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3236	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3237	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3238		kfree_skb(skb);
3239		return -EINVAL;
3240	}
3241
3242	/* Incoming skb */
3243	bt_cb(skb)->incoming = 1;
3244
3245	/* Time stamp */
3246	__net_timestamp(skb);
3247
3248	skb_queue_tail(&hdev->rx_q, skb);
3249	queue_work(hdev->workqueue, &hdev->rx_work);
3250
3251	return 0;
3252}
3253EXPORT_SYMBOL(hci_recv_frame);
3254
3255/* Receive diagnostic message from HCI drivers */
3256int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3257{
3258	/* Mark as diagnostic packet */
3259	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3260
3261	/* Time stamp */
3262	__net_timestamp(skb);
3263
3264	skb_queue_tail(&hdev->rx_q, skb);
3265	queue_work(hdev->workqueue, &hdev->rx_work);
3266
3267	return 0;
3268}
3269EXPORT_SYMBOL(hci_recv_diag);
3270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3271/* ---- Interface to upper protocols ---- */
3272
3273int hci_register_cb(struct hci_cb *cb)
3274{
3275	BT_DBG("%p name %s", cb, cb->name);
3276
3277	mutex_lock(&hci_cb_list_lock);
3278	list_add_tail(&cb->list, &hci_cb_list);
3279	mutex_unlock(&hci_cb_list_lock);
3280
3281	return 0;
3282}
3283EXPORT_SYMBOL(hci_register_cb);
3284
3285int hci_unregister_cb(struct hci_cb *cb)
3286{
3287	BT_DBG("%p name %s", cb, cb->name);
3288
3289	mutex_lock(&hci_cb_list_lock);
3290	list_del(&cb->list);
3291	mutex_unlock(&hci_cb_list_lock);
3292
3293	return 0;
3294}
3295EXPORT_SYMBOL(hci_unregister_cb);
3296
3297static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3298{
3299	int err;
3300
3301	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3302	       skb->len);
3303
3304	/* Time stamp */
3305	__net_timestamp(skb);
3306
3307	/* Send copy to monitor */
3308	hci_send_to_monitor(hdev, skb);
3309
3310	if (atomic_read(&hdev->promisc)) {
3311		/* Send copy to the sockets */
3312		hci_send_to_sock(hdev, skb);
3313	}
3314
3315	/* Get rid of skb owner, prior to sending to the driver. */
3316	skb_orphan(skb);
3317
3318	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3319		kfree_skb(skb);
3320		return;
3321	}
3322
3323	err = hdev->send(hdev, skb);
3324	if (err < 0) {
3325		BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3326		kfree_skb(skb);
 
3327	}
 
 
3328}
3329
3330/* Send HCI command */
3331int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3332		 const void *param)
3333{
3334	struct sk_buff *skb;
3335
3336	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3337
3338	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3339	if (!skb) {
3340		BT_ERR("%s no memory for command", hdev->name);
3341		return -ENOMEM;
3342	}
3343
3344	/* Stand-alone HCI commands must be flagged as
3345	 * single-command requests.
3346	 */
3347	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3348
3349	skb_queue_tail(&hdev->cmd_q, skb);
3350	queue_work(hdev->workqueue, &hdev->cmd_work);
3351
3352	return 0;
3353}
3354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3355/* Get data from the previously sent command */
3356void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3357{
3358	struct hci_command_hdr *hdr;
3359
3360	if (!hdev->sent_cmd)
3361		return NULL;
3362
3363	hdr = (void *) hdev->sent_cmd->data;
3364
3365	if (hdr->opcode != cpu_to_le16(opcode))
3366		return NULL;
3367
3368	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3369
3370	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3371}
3372
3373/* Send HCI command and wait for command commplete event */
3374struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3375			     const void *param, u32 timeout)
3376{
3377	struct sk_buff *skb;
 
 
 
 
3378
3379	if (!test_bit(HCI_UP, &hdev->flags))
3380		return ERR_PTR(-ENETDOWN);
3381
3382	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
 
 
 
 
 
 
 
 
 
 
 
3383
3384	hci_req_sync_lock(hdev);
3385	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3386	hci_req_sync_unlock(hdev);
3387
3388	return skb;
3389}
3390EXPORT_SYMBOL(hci_cmd_sync);
3391
3392/* Send ACL data */
3393static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3394{
3395	struct hci_acl_hdr *hdr;
3396	int len = skb->len;
3397
3398	skb_push(skb, HCI_ACL_HDR_SIZE);
3399	skb_reset_transport_header(skb);
3400	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3401	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3402	hdr->dlen   = cpu_to_le16(len);
3403}
3404
3405static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3406			  struct sk_buff *skb, __u16 flags)
3407{
3408	struct hci_conn *conn = chan->conn;
3409	struct hci_dev *hdev = conn->hdev;
3410	struct sk_buff *list;
3411
3412	skb->len = skb_headlen(skb);
3413	skb->data_len = 0;
3414
3415	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3416
3417	switch (hdev->dev_type) {
3418	case HCI_BREDR:
3419		hci_add_acl_hdr(skb, conn->handle, flags);
3420		break;
3421	case HCI_AMP:
3422		hci_add_acl_hdr(skb, chan->handle, flags);
3423		break;
3424	default:
3425		BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3426		return;
3427	}
3428
3429	list = skb_shinfo(skb)->frag_list;
3430	if (!list) {
3431		/* Non fragmented */
3432		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3433
3434		skb_queue_tail(queue, skb);
3435	} else {
3436		/* Fragmented */
3437		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3438
3439		skb_shinfo(skb)->frag_list = NULL;
3440
3441		/* Queue all fragments atomically. We need to use spin_lock_bh
3442		 * here because of 6LoWPAN links, as there this function is
3443		 * called from softirq and using normal spin lock could cause
3444		 * deadlocks.
3445		 */
3446		spin_lock_bh(&queue->lock);
3447
3448		__skb_queue_tail(queue, skb);
3449
3450		flags &= ~ACL_START;
3451		flags |= ACL_CONT;
3452		do {
3453			skb = list; list = list->next;
3454
3455			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3456			hci_add_acl_hdr(skb, conn->handle, flags);
3457
3458			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3459
3460			__skb_queue_tail(queue, skb);
3461		} while (list);
3462
3463		spin_unlock_bh(&queue->lock);
3464	}
3465}
3466
3467void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3468{
3469	struct hci_dev *hdev = chan->conn->hdev;
3470
3471	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3472
3473	hci_queue_acl(chan, &chan->data_q, skb, flags);
3474
3475	queue_work(hdev->workqueue, &hdev->tx_work);
3476}
3477
3478/* Send SCO data */
3479void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3480{
3481	struct hci_dev *hdev = conn->hdev;
3482	struct hci_sco_hdr hdr;
3483
3484	BT_DBG("%s len %d", hdev->name, skb->len);
3485
3486	hdr.handle = cpu_to_le16(conn->handle);
3487	hdr.dlen   = skb->len;
3488
3489	skb_push(skb, HCI_SCO_HDR_SIZE);
3490	skb_reset_transport_header(skb);
3491	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3492
3493	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3494
3495	skb_queue_tail(&conn->data_q, skb);
3496	queue_work(hdev->workqueue, &hdev->tx_work);
3497}
3498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3499/* ---- HCI TX task (outgoing data) ---- */
3500
3501/* HCI Connection scheduler */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3502static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3503				     int *quote)
3504{
3505	struct hci_conn_hash *h = &hdev->conn_hash;
3506	struct hci_conn *conn = NULL, *c;
3507	unsigned int num = 0, min = ~0;
3508
3509	/* We don't have to lock device here. Connections are always
3510	 * added and removed with TX task disabled. */
3511
3512	rcu_read_lock();
3513
3514	list_for_each_entry_rcu(c, &h->list, list) {
3515		if (c->type != type || skb_queue_empty(&c->data_q))
3516			continue;
3517
3518		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3519			continue;
3520
3521		num++;
3522
3523		if (c->sent < min) {
3524			min  = c->sent;
3525			conn = c;
3526		}
3527
3528		if (hci_conn_num(hdev, type) == num)
3529			break;
3530	}
3531
3532	rcu_read_unlock();
3533
3534	if (conn) {
3535		int cnt, q;
3536
3537		switch (conn->type) {
3538		case ACL_LINK:
3539			cnt = hdev->acl_cnt;
3540			break;
3541		case SCO_LINK:
3542		case ESCO_LINK:
3543			cnt = hdev->sco_cnt;
3544			break;
3545		case LE_LINK:
3546			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3547			break;
3548		default:
3549			cnt = 0;
3550			BT_ERR("Unknown link type");
3551		}
3552
3553		q = cnt / num;
3554		*quote = q ? q : 1;
3555	} else
3556		*quote = 0;
3557
3558	BT_DBG("conn %p quote %d", conn, *quote);
3559	return conn;
3560}
3561
3562static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3563{
3564	struct hci_conn_hash *h = &hdev->conn_hash;
3565	struct hci_conn *c;
3566
3567	BT_ERR("%s link tx timeout", hdev->name);
3568
3569	rcu_read_lock();
3570
3571	/* Kill stalled connections */
3572	list_for_each_entry_rcu(c, &h->list, list) {
3573		if (c->type == type && c->sent) {
3574			BT_ERR("%s killing stalled connection %pMR",
3575			       hdev->name, &c->dst);
 
 
 
 
3576			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
 
3577		}
3578	}
3579
3580	rcu_read_unlock();
3581}
3582
3583static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3584				      int *quote)
3585{
3586	struct hci_conn_hash *h = &hdev->conn_hash;
3587	struct hci_chan *chan = NULL;
3588	unsigned int num = 0, min = ~0, cur_prio = 0;
3589	struct hci_conn *conn;
3590	int cnt, q, conn_num = 0;
3591
3592	BT_DBG("%s", hdev->name);
3593
3594	rcu_read_lock();
3595
3596	list_for_each_entry_rcu(conn, &h->list, list) {
3597		struct hci_chan *tmp;
3598
3599		if (conn->type != type)
3600			continue;
3601
3602		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3603			continue;
3604
3605		conn_num++;
3606
3607		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3608			struct sk_buff *skb;
3609
3610			if (skb_queue_empty(&tmp->data_q))
3611				continue;
3612
3613			skb = skb_peek(&tmp->data_q);
3614			if (skb->priority < cur_prio)
3615				continue;
3616
3617			if (skb->priority > cur_prio) {
3618				num = 0;
3619				min = ~0;
3620				cur_prio = skb->priority;
3621			}
3622
3623			num++;
3624
3625			if (conn->sent < min) {
3626				min  = conn->sent;
3627				chan = tmp;
3628			}
3629		}
3630
3631		if (hci_conn_num(hdev, type) == conn_num)
3632			break;
3633	}
3634
3635	rcu_read_unlock();
3636
3637	if (!chan)
3638		return NULL;
3639
3640	switch (chan->conn->type) {
3641	case ACL_LINK:
3642		cnt = hdev->acl_cnt;
3643		break;
3644	case AMP_LINK:
3645		cnt = hdev->block_cnt;
3646		break;
3647	case SCO_LINK:
3648	case ESCO_LINK:
3649		cnt = hdev->sco_cnt;
3650		break;
3651	case LE_LINK:
3652		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3653		break;
3654	default:
3655		cnt = 0;
3656		BT_ERR("Unknown link type");
3657	}
3658
3659	q = cnt / num;
3660	*quote = q ? q : 1;
3661	BT_DBG("chan %p quote %d", chan, *quote);
3662	return chan;
3663}
3664
3665static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3666{
3667	struct hci_conn_hash *h = &hdev->conn_hash;
3668	struct hci_conn *conn;
3669	int num = 0;
3670
3671	BT_DBG("%s", hdev->name);
3672
3673	rcu_read_lock();
3674
3675	list_for_each_entry_rcu(conn, &h->list, list) {
3676		struct hci_chan *chan;
3677
3678		if (conn->type != type)
3679			continue;
3680
3681		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3682			continue;
3683
3684		num++;
3685
3686		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3687			struct sk_buff *skb;
3688
3689			if (chan->sent) {
3690				chan->sent = 0;
3691				continue;
3692			}
3693
3694			if (skb_queue_empty(&chan->data_q))
3695				continue;
3696
3697			skb = skb_peek(&chan->data_q);
3698			if (skb->priority >= HCI_PRIO_MAX - 1)
3699				continue;
3700
3701			skb->priority = HCI_PRIO_MAX - 1;
3702
3703			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3704			       skb->priority);
3705		}
3706
3707		if (hci_conn_num(hdev, type) == num)
3708			break;
3709	}
3710
3711	rcu_read_unlock();
3712
3713}
3714
3715static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3716{
3717	/* Calculate count of blocks used by this packet */
3718	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3719}
3720
3721static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3722{
3723	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3724		/* ACL tx timeout must be longer than maximum
3725		 * link supervision timeout (40.9 seconds) */
3726		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3727				       HCI_ACL_TX_TIMEOUT))
3728			hci_link_tx_to(hdev, ACL_LINK);
 
 
 
 
 
 
 
 
 
 
 
 
 
3729	}
3730}
3731
3732static void hci_sched_acl_pkt(struct hci_dev *hdev)
3733{
3734	unsigned int cnt = hdev->acl_cnt;
3735	struct hci_chan *chan;
3736	struct sk_buff *skb;
3737	int quote;
3738
3739	__check_timeout(hdev, cnt);
3740
3741	while (hdev->acl_cnt &&
3742	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3743		u32 priority = (skb_peek(&chan->data_q))->priority;
3744		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3745			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3746			       skb->len, skb->priority);
3747
3748			/* Stop if priority has changed */
3749			if (skb->priority < priority)
3750				break;
3751
3752			skb = skb_dequeue(&chan->data_q);
3753
3754			hci_conn_enter_active_mode(chan->conn,
3755						   bt_cb(skb)->force_active);
3756
3757			hci_send_frame(hdev, skb);
3758			hdev->acl_last_tx = jiffies;
3759
3760			hdev->acl_cnt--;
3761			chan->sent++;
3762			chan->conn->sent++;
 
 
 
 
3763		}
3764	}
3765
3766	if (cnt != hdev->acl_cnt)
3767		hci_prio_recalculate(hdev, ACL_LINK);
3768}
3769
3770static void hci_sched_acl_blk(struct hci_dev *hdev)
3771{
3772	unsigned int cnt = hdev->block_cnt;
3773	struct hci_chan *chan;
3774	struct sk_buff *skb;
3775	int quote;
3776	u8 type;
3777
3778	__check_timeout(hdev, cnt);
3779
3780	BT_DBG("%s", hdev->name);
3781
3782	if (hdev->dev_type == HCI_AMP)
3783		type = AMP_LINK;
3784	else
3785		type = ACL_LINK;
3786
 
 
3787	while (hdev->block_cnt > 0 &&
3788	       (chan = hci_chan_sent(hdev, type, &quote))) {
3789		u32 priority = (skb_peek(&chan->data_q))->priority;
3790		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3791			int blocks;
3792
3793			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3794			       skb->len, skb->priority);
3795
3796			/* Stop if priority has changed */
3797			if (skb->priority < priority)
3798				break;
3799
3800			skb = skb_dequeue(&chan->data_q);
3801
3802			blocks = __get_blocks(hdev, skb);
3803			if (blocks > hdev->block_cnt)
3804				return;
3805
3806			hci_conn_enter_active_mode(chan->conn,
3807						   bt_cb(skb)->force_active);
3808
3809			hci_send_frame(hdev, skb);
3810			hdev->acl_last_tx = jiffies;
3811
3812			hdev->block_cnt -= blocks;
3813			quote -= blocks;
3814
3815			chan->sent += blocks;
3816			chan->conn->sent += blocks;
3817		}
3818	}
3819
3820	if (cnt != hdev->block_cnt)
3821		hci_prio_recalculate(hdev, type);
3822}
3823
3824static void hci_sched_acl(struct hci_dev *hdev)
3825{
3826	BT_DBG("%s", hdev->name);
3827
3828	/* No ACL link over BR/EDR controller */
3829	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
3830		return;
3831
3832	/* No AMP link over AMP controller */
3833	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3834		return;
3835
3836	switch (hdev->flow_ctl_mode) {
3837	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3838		hci_sched_acl_pkt(hdev);
3839		break;
3840
3841	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3842		hci_sched_acl_blk(hdev);
3843		break;
3844	}
3845}
3846
3847/* Schedule SCO */
3848static void hci_sched_sco(struct hci_dev *hdev)
3849{
3850	struct hci_conn *conn;
3851	struct sk_buff *skb;
3852	int quote;
3853
3854	BT_DBG("%s", hdev->name);
3855
3856	if (!hci_conn_num(hdev, SCO_LINK))
3857		return;
3858
3859	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3860		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3861			BT_DBG("skb %p len %d", skb, skb->len);
3862			hci_send_frame(hdev, skb);
3863
3864			conn->sent++;
3865			if (conn->sent == ~0)
3866				conn->sent = 0;
3867		}
3868	}
3869}
3870
3871static void hci_sched_esco(struct hci_dev *hdev)
3872{
3873	struct hci_conn *conn;
3874	struct sk_buff *skb;
3875	int quote;
3876
3877	BT_DBG("%s", hdev->name);
3878
3879	if (!hci_conn_num(hdev, ESCO_LINK))
3880		return;
3881
3882	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3883						     &quote))) {
3884		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3885			BT_DBG("skb %p len %d", skb, skb->len);
3886			hci_send_frame(hdev, skb);
3887
3888			conn->sent++;
3889			if (conn->sent == ~0)
3890				conn->sent = 0;
3891		}
3892	}
3893}
3894
3895static void hci_sched_le(struct hci_dev *hdev)
3896{
3897	struct hci_chan *chan;
3898	struct sk_buff *skb;
3899	int quote, cnt, tmp;
3900
3901	BT_DBG("%s", hdev->name);
3902
3903	if (!hci_conn_num(hdev, LE_LINK))
3904		return;
3905
3906	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3907		/* LE tx timeout must be longer than maximum
3908		 * link supervision timeout (40.9 seconds) */
3909		if (!hdev->le_cnt && hdev->le_pkts &&
3910		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
3911			hci_link_tx_to(hdev, LE_LINK);
3912	}
3913
3914	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3915	tmp = cnt;
3916	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3917		u32 priority = (skb_peek(&chan->data_q))->priority;
3918		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3919			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3920			       skb->len, skb->priority);
3921
3922			/* Stop if priority has changed */
3923			if (skb->priority < priority)
3924				break;
3925
3926			skb = skb_dequeue(&chan->data_q);
3927
3928			hci_send_frame(hdev, skb);
3929			hdev->le_last_tx = jiffies;
3930
3931			cnt--;
3932			chan->sent++;
3933			chan->conn->sent++;
 
 
 
 
3934		}
3935	}
3936
3937	if (hdev->le_pkts)
3938		hdev->le_cnt = cnt;
3939	else
3940		hdev->acl_cnt = cnt;
3941
3942	if (cnt != tmp)
3943		hci_prio_recalculate(hdev, LE_LINK);
3944}
3945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3946static void hci_tx_work(struct work_struct *work)
3947{
3948	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3949	struct sk_buff *skb;
3950
3951	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3952	       hdev->sco_cnt, hdev->le_cnt);
3953
3954	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3955		/* Schedule queues and send stuff to HCI driver */
3956		hci_sched_acl(hdev);
3957		hci_sched_sco(hdev);
3958		hci_sched_esco(hdev);
 
 
3959		hci_sched_le(hdev);
3960	}
3961
3962	/* Send next queued raw (unknown type) packet */
3963	while ((skb = skb_dequeue(&hdev->raw_q)))
3964		hci_send_frame(hdev, skb);
3965}
3966
3967/* ----- HCI RX task (incoming data processing) ----- */
3968
3969/* ACL data packet */
3970static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3971{
3972	struct hci_acl_hdr *hdr = (void *) skb->data;
3973	struct hci_conn *conn;
3974	__u16 handle, flags;
3975
3976	skb_pull(skb, HCI_ACL_HDR_SIZE);
3977
3978	handle = __le16_to_cpu(hdr->handle);
3979	flags  = hci_flags(handle);
3980	handle = hci_handle(handle);
3981
3982	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3983	       handle, flags);
3984
3985	hdev->stat.acl_rx++;
3986
3987	hci_dev_lock(hdev);
3988	conn = hci_conn_hash_lookup_handle(hdev, handle);
3989	hci_dev_unlock(hdev);
3990
3991	if (conn) {
3992		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3993
3994		/* Send to upper protocol */
3995		l2cap_recv_acldata(conn, skb, flags);
3996		return;
3997	} else {
3998		BT_ERR("%s ACL packet for unknown connection handle %d",
3999		       hdev->name, handle);
4000	}
4001
4002	kfree_skb(skb);
4003}
4004
4005/* SCO data packet */
4006static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4007{
4008	struct hci_sco_hdr *hdr = (void *) skb->data;
4009	struct hci_conn *conn;
4010	__u16 handle;
4011
4012	skb_pull(skb, HCI_SCO_HDR_SIZE);
4013
4014	handle = __le16_to_cpu(hdr->handle);
 
 
4015
4016	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
 
4017
4018	hdev->stat.sco_rx++;
4019
4020	hci_dev_lock(hdev);
4021	conn = hci_conn_hash_lookup_handle(hdev, handle);
4022	hci_dev_unlock(hdev);
4023
4024	if (conn) {
4025		/* Send to upper protocol */
 
4026		sco_recv_scodata(conn, skb);
4027		return;
4028	} else {
4029		BT_ERR("%s SCO packet for unknown connection handle %d",
4030		       hdev->name, handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4031	}
4032
 
 
 
 
 
4033	kfree_skb(skb);
4034}
4035
4036static bool hci_req_is_complete(struct hci_dev *hdev)
4037{
4038	struct sk_buff *skb;
4039
4040	skb = skb_peek(&hdev->cmd_q);
4041	if (!skb)
4042		return true;
4043
4044	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4045}
4046
4047static void hci_resend_last(struct hci_dev *hdev)
4048{
4049	struct hci_command_hdr *sent;
4050	struct sk_buff *skb;
4051	u16 opcode;
4052
4053	if (!hdev->sent_cmd)
4054		return;
4055
4056	sent = (void *) hdev->sent_cmd->data;
4057	opcode = __le16_to_cpu(sent->opcode);
4058	if (opcode == HCI_OP_RESET)
4059		return;
4060
4061	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4062	if (!skb)
4063		return;
4064
4065	skb_queue_head(&hdev->cmd_q, skb);
4066	queue_work(hdev->workqueue, &hdev->cmd_work);
4067}
4068
4069void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4070			  hci_req_complete_t *req_complete,
4071			  hci_req_complete_skb_t *req_complete_skb)
4072{
4073	struct sk_buff *skb;
4074	unsigned long flags;
4075
4076	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4077
4078	/* If the completed command doesn't match the last one that was
4079	 * sent we need to do special handling of it.
4080	 */
4081	if (!hci_sent_cmd_data(hdev, opcode)) {
4082		/* Some CSR based controllers generate a spontaneous
4083		 * reset complete event during init and any pending
4084		 * command will never be completed. In such a case we
4085		 * need to resend whatever was the last sent
4086		 * command.
4087		 */
4088		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4089			hci_resend_last(hdev);
4090
4091		return;
4092	}
4093
 
 
 
4094	/* If the command succeeded and there's still more commands in
4095	 * this request the request is not yet complete.
4096	 */
4097	if (!status && !hci_req_is_complete(hdev))
4098		return;
4099
4100	/* If this was the last command in a request the complete
4101	 * callback would be found in hdev->sent_cmd instead of the
4102	 * command queue (hdev->cmd_q).
4103	 */
4104	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4105		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4106		return;
4107	}
4108
4109	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4110		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4111		return;
4112	}
4113
4114	/* Remove all pending commands belonging to this request */
4115	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4116	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4117		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4118			__skb_queue_head(&hdev->cmd_q, skb);
4119			break;
4120		}
4121
4122		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4123			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4124		else
4125			*req_complete = bt_cb(skb)->hci.req_complete;
4126		kfree_skb(skb);
4127	}
4128	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4129}
4130
4131static void hci_rx_work(struct work_struct *work)
4132{
4133	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4134	struct sk_buff *skb;
4135
4136	BT_DBG("%s", hdev->name);
4137
4138	while ((skb = skb_dequeue(&hdev->rx_q))) {
 
 
 
 
 
 
 
4139		/* Send copy to monitor */
4140		hci_send_to_monitor(hdev, skb);
4141
4142		if (atomic_read(&hdev->promisc)) {
4143			/* Send copy to the sockets */
4144			hci_send_to_sock(hdev, skb);
4145		}
4146
4147		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 
 
 
 
 
 
 
4148			kfree_skb(skb);
4149			continue;
4150		}
4151
4152		if (test_bit(HCI_INIT, &hdev->flags)) {
4153			/* Don't process data packets in this states. */
4154			switch (hci_skb_pkt_type(skb)) {
4155			case HCI_ACLDATA_PKT:
4156			case HCI_SCODATA_PKT:
 
4157				kfree_skb(skb);
4158				continue;
4159			}
4160		}
4161
4162		/* Process frame */
4163		switch (hci_skb_pkt_type(skb)) {
4164		case HCI_EVENT_PKT:
4165			BT_DBG("%s Event packet", hdev->name);
4166			hci_event_packet(hdev, skb);
4167			break;
4168
4169		case HCI_ACLDATA_PKT:
4170			BT_DBG("%s ACL data packet", hdev->name);
4171			hci_acldata_packet(hdev, skb);
4172			break;
4173
4174		case HCI_SCODATA_PKT:
4175			BT_DBG("%s SCO data packet", hdev->name);
4176			hci_scodata_packet(hdev, skb);
4177			break;
4178
 
 
 
 
 
4179		default:
4180			kfree_skb(skb);
4181			break;
4182		}
4183	}
4184}
4185
4186static void hci_cmd_work(struct work_struct *work)
4187{
4188	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4189	struct sk_buff *skb;
4190
4191	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4192	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4193
4194	/* Send queued commands */
4195	if (atomic_read(&hdev->cmd_cnt)) {
4196		skb = skb_dequeue(&hdev->cmd_q);
4197		if (!skb)
4198			return;
4199
4200		kfree_skb(hdev->sent_cmd);
4201
4202		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4203		if (hdev->sent_cmd) {
 
 
 
4204			atomic_dec(&hdev->cmd_cnt);
4205			hci_send_frame(hdev, skb);
4206			if (test_bit(HCI_RESET, &hdev->flags))
 
 
 
 
 
 
4207				cancel_delayed_work(&hdev->cmd_timer);
4208			else
4209				schedule_delayed_work(&hdev->cmd_timer,
4210						      HCI_CMD_TIMEOUT);
 
4211		} else {
4212			skb_queue_head(&hdev->cmd_q, skb);
4213			queue_work(hdev->workqueue, &hdev->cmd_work);
4214		}
4215	}
4216}