Loading...
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24*/
25
26/* Bluetooth HCI core. */
27
28#include <linux/export.h>
29#include <linux/rfkill.h>
30#include <linux/debugfs.h>
31#include <linux/crypto.h>
32#include <linux/kcov.h>
33#include <linux/property.h>
34#include <linux/suspend.h>
35#include <linux/wait.h>
36#include <asm/unaligned.h>
37
38#include <net/bluetooth/bluetooth.h>
39#include <net/bluetooth/hci_core.h>
40#include <net/bluetooth/l2cap.h>
41#include <net/bluetooth/mgmt.h>
42
43#include "hci_request.h"
44#include "hci_debugfs.h"
45#include "smp.h"
46#include "leds.h"
47#include "msft.h"
48#include "aosp.h"
49#include "hci_codec.h"
50
51static void hci_rx_work(struct work_struct *work);
52static void hci_cmd_work(struct work_struct *work);
53static void hci_tx_work(struct work_struct *work);
54
55/* HCI device list */
56LIST_HEAD(hci_dev_list);
57DEFINE_RWLOCK(hci_dev_list_lock);
58
59/* HCI callback list */
60LIST_HEAD(hci_cb_list);
61DEFINE_MUTEX(hci_cb_list_lock);
62
63/* HCI ID Numbering */
64static DEFINE_IDA(hci_index_ida);
65
66static int hci_scan_req(struct hci_request *req, unsigned long opt)
67{
68 __u8 scan = opt;
69
70 BT_DBG("%s %x", req->hdev->name, scan);
71
72 /* Inquiry and Page scans */
73 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
74 return 0;
75}
76
77static int hci_auth_req(struct hci_request *req, unsigned long opt)
78{
79 __u8 auth = opt;
80
81 BT_DBG("%s %x", req->hdev->name, auth);
82
83 /* Authentication */
84 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
85 return 0;
86}
87
88static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
89{
90 __u8 encrypt = opt;
91
92 BT_DBG("%s %x", req->hdev->name, encrypt);
93
94 /* Encryption */
95 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
96 return 0;
97}
98
99static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
100{
101 __le16 policy = cpu_to_le16(opt);
102
103 BT_DBG("%s %x", req->hdev->name, policy);
104
105 /* Default link policy */
106 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
107 return 0;
108}
109
110/* Get HCI device by index.
111 * Device is held on return. */
112struct hci_dev *hci_dev_get(int index)
113{
114 struct hci_dev *hdev = NULL, *d;
115
116 BT_DBG("%d", index);
117
118 if (index < 0)
119 return NULL;
120
121 read_lock(&hci_dev_list_lock);
122 list_for_each_entry(d, &hci_dev_list, list) {
123 if (d->id == index) {
124 hdev = hci_dev_hold(d);
125 break;
126 }
127 }
128 read_unlock(&hci_dev_list_lock);
129 return hdev;
130}
131
132/* ---- Inquiry support ---- */
133
134bool hci_discovery_active(struct hci_dev *hdev)
135{
136 struct discovery_state *discov = &hdev->discovery;
137
138 switch (discov->state) {
139 case DISCOVERY_FINDING:
140 case DISCOVERY_RESOLVING:
141 return true;
142
143 default:
144 return false;
145 }
146}
147
148void hci_discovery_set_state(struct hci_dev *hdev, int state)
149{
150 int old_state = hdev->discovery.state;
151
152 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
153
154 if (old_state == state)
155 return;
156
157 hdev->discovery.state = state;
158
159 switch (state) {
160 case DISCOVERY_STOPPED:
161 hci_update_passive_scan(hdev);
162
163 if (old_state != DISCOVERY_STARTING)
164 mgmt_discovering(hdev, 0);
165 break;
166 case DISCOVERY_STARTING:
167 break;
168 case DISCOVERY_FINDING:
169 mgmt_discovering(hdev, 1);
170 break;
171 case DISCOVERY_RESOLVING:
172 break;
173 case DISCOVERY_STOPPING:
174 break;
175 }
176}
177
178void hci_inquiry_cache_flush(struct hci_dev *hdev)
179{
180 struct discovery_state *cache = &hdev->discovery;
181 struct inquiry_entry *p, *n;
182
183 list_for_each_entry_safe(p, n, &cache->all, all) {
184 list_del(&p->all);
185 kfree(p);
186 }
187
188 INIT_LIST_HEAD(&cache->unknown);
189 INIT_LIST_HEAD(&cache->resolve);
190}
191
192struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
193 bdaddr_t *bdaddr)
194{
195 struct discovery_state *cache = &hdev->discovery;
196 struct inquiry_entry *e;
197
198 BT_DBG("cache %p, %pMR", cache, bdaddr);
199
200 list_for_each_entry(e, &cache->all, all) {
201 if (!bacmp(&e->data.bdaddr, bdaddr))
202 return e;
203 }
204
205 return NULL;
206}
207
208struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
209 bdaddr_t *bdaddr)
210{
211 struct discovery_state *cache = &hdev->discovery;
212 struct inquiry_entry *e;
213
214 BT_DBG("cache %p, %pMR", cache, bdaddr);
215
216 list_for_each_entry(e, &cache->unknown, list) {
217 if (!bacmp(&e->data.bdaddr, bdaddr))
218 return e;
219 }
220
221 return NULL;
222}
223
224struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
225 bdaddr_t *bdaddr,
226 int state)
227{
228 struct discovery_state *cache = &hdev->discovery;
229 struct inquiry_entry *e;
230
231 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
232
233 list_for_each_entry(e, &cache->resolve, list) {
234 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
235 return e;
236 if (!bacmp(&e->data.bdaddr, bdaddr))
237 return e;
238 }
239
240 return NULL;
241}
242
243void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
244 struct inquiry_entry *ie)
245{
246 struct discovery_state *cache = &hdev->discovery;
247 struct list_head *pos = &cache->resolve;
248 struct inquiry_entry *p;
249
250 list_del(&ie->list);
251
252 list_for_each_entry(p, &cache->resolve, list) {
253 if (p->name_state != NAME_PENDING &&
254 abs(p->data.rssi) >= abs(ie->data.rssi))
255 break;
256 pos = &p->list;
257 }
258
259 list_add(&ie->list, pos);
260}
261
262u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
263 bool name_known)
264{
265 struct discovery_state *cache = &hdev->discovery;
266 struct inquiry_entry *ie;
267 u32 flags = 0;
268
269 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
270
271 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
272
273 if (!data->ssp_mode)
274 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
275
276 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
277 if (ie) {
278 if (!ie->data.ssp_mode)
279 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
280
281 if (ie->name_state == NAME_NEEDED &&
282 data->rssi != ie->data.rssi) {
283 ie->data.rssi = data->rssi;
284 hci_inquiry_cache_update_resolve(hdev, ie);
285 }
286
287 goto update;
288 }
289
290 /* Entry not in the cache. Add new one. */
291 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
292 if (!ie) {
293 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
294 goto done;
295 }
296
297 list_add(&ie->all, &cache->all);
298
299 if (name_known) {
300 ie->name_state = NAME_KNOWN;
301 } else {
302 ie->name_state = NAME_NOT_KNOWN;
303 list_add(&ie->list, &cache->unknown);
304 }
305
306update:
307 if (name_known && ie->name_state != NAME_KNOWN &&
308 ie->name_state != NAME_PENDING) {
309 ie->name_state = NAME_KNOWN;
310 list_del(&ie->list);
311 }
312
313 memcpy(&ie->data, data, sizeof(*data));
314 ie->timestamp = jiffies;
315 cache->timestamp = jiffies;
316
317 if (ie->name_state == NAME_NOT_KNOWN)
318 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
319
320done:
321 return flags;
322}
323
324static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
325{
326 struct discovery_state *cache = &hdev->discovery;
327 struct inquiry_info *info = (struct inquiry_info *) buf;
328 struct inquiry_entry *e;
329 int copied = 0;
330
331 list_for_each_entry(e, &cache->all, all) {
332 struct inquiry_data *data = &e->data;
333
334 if (copied >= num)
335 break;
336
337 bacpy(&info->bdaddr, &data->bdaddr);
338 info->pscan_rep_mode = data->pscan_rep_mode;
339 info->pscan_period_mode = data->pscan_period_mode;
340 info->pscan_mode = data->pscan_mode;
341 memcpy(info->dev_class, data->dev_class, 3);
342 info->clock_offset = data->clock_offset;
343
344 info++;
345 copied++;
346 }
347
348 BT_DBG("cache %p, copied %d", cache, copied);
349 return copied;
350}
351
352static int hci_inq_req(struct hci_request *req, unsigned long opt)
353{
354 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
355 struct hci_dev *hdev = req->hdev;
356 struct hci_cp_inquiry cp;
357
358 BT_DBG("%s", hdev->name);
359
360 if (test_bit(HCI_INQUIRY, &hdev->flags))
361 return 0;
362
363 /* Start Inquiry */
364 memcpy(&cp.lap, &ir->lap, 3);
365 cp.length = ir->length;
366 cp.num_rsp = ir->num_rsp;
367 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
368
369 return 0;
370}
371
372int hci_inquiry(void __user *arg)
373{
374 __u8 __user *ptr = arg;
375 struct hci_inquiry_req ir;
376 struct hci_dev *hdev;
377 int err = 0, do_inquiry = 0, max_rsp;
378 long timeo;
379 __u8 *buf;
380
381 if (copy_from_user(&ir, ptr, sizeof(ir)))
382 return -EFAULT;
383
384 hdev = hci_dev_get(ir.dev_id);
385 if (!hdev)
386 return -ENODEV;
387
388 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
389 err = -EBUSY;
390 goto done;
391 }
392
393 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
394 err = -EOPNOTSUPP;
395 goto done;
396 }
397
398 if (hdev->dev_type != HCI_PRIMARY) {
399 err = -EOPNOTSUPP;
400 goto done;
401 }
402
403 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
404 err = -EOPNOTSUPP;
405 goto done;
406 }
407
408 /* Restrict maximum inquiry length to 60 seconds */
409 if (ir.length > 60) {
410 err = -EINVAL;
411 goto done;
412 }
413
414 hci_dev_lock(hdev);
415 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
416 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
417 hci_inquiry_cache_flush(hdev);
418 do_inquiry = 1;
419 }
420 hci_dev_unlock(hdev);
421
422 timeo = ir.length * msecs_to_jiffies(2000);
423
424 if (do_inquiry) {
425 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
426 timeo, NULL);
427 if (err < 0)
428 goto done;
429
430 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
431 * cleared). If it is interrupted by a signal, return -EINTR.
432 */
433 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
434 TASK_INTERRUPTIBLE)) {
435 err = -EINTR;
436 goto done;
437 }
438 }
439
440 /* for unlimited number of responses we will use buffer with
441 * 255 entries
442 */
443 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
444
445 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
446 * copy it to the user space.
447 */
448 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
449 if (!buf) {
450 err = -ENOMEM;
451 goto done;
452 }
453
454 hci_dev_lock(hdev);
455 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
456 hci_dev_unlock(hdev);
457
458 BT_DBG("num_rsp %d", ir.num_rsp);
459
460 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
461 ptr += sizeof(ir);
462 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
463 ir.num_rsp))
464 err = -EFAULT;
465 } else
466 err = -EFAULT;
467
468 kfree(buf);
469
470done:
471 hci_dev_put(hdev);
472 return err;
473}
474
475static int hci_dev_do_open(struct hci_dev *hdev)
476{
477 int ret = 0;
478
479 BT_DBG("%s %p", hdev->name, hdev);
480
481 hci_req_sync_lock(hdev);
482
483 ret = hci_dev_open_sync(hdev);
484
485 hci_req_sync_unlock(hdev);
486 return ret;
487}
488
489/* ---- HCI ioctl helpers ---- */
490
491int hci_dev_open(__u16 dev)
492{
493 struct hci_dev *hdev;
494 int err;
495
496 hdev = hci_dev_get(dev);
497 if (!hdev)
498 return -ENODEV;
499
500 /* Devices that are marked as unconfigured can only be powered
501 * up as user channel. Trying to bring them up as normal devices
502 * will result into a failure. Only user channel operation is
503 * possible.
504 *
505 * When this function is called for a user channel, the flag
506 * HCI_USER_CHANNEL will be set first before attempting to
507 * open the device.
508 */
509 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
510 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
511 err = -EOPNOTSUPP;
512 goto done;
513 }
514
515 /* We need to ensure that no other power on/off work is pending
516 * before proceeding to call hci_dev_do_open. This is
517 * particularly important if the setup procedure has not yet
518 * completed.
519 */
520 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
521 cancel_delayed_work(&hdev->power_off);
522
523 /* After this call it is guaranteed that the setup procedure
524 * has finished. This means that error conditions like RFKILL
525 * or no valid public or static random address apply.
526 */
527 flush_workqueue(hdev->req_workqueue);
528
529 /* For controllers not using the management interface and that
530 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
531 * so that pairing works for them. Once the management interface
532 * is in use this bit will be cleared again and userspace has
533 * to explicitly enable it.
534 */
535 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
536 !hci_dev_test_flag(hdev, HCI_MGMT))
537 hci_dev_set_flag(hdev, HCI_BONDABLE);
538
539 err = hci_dev_do_open(hdev);
540
541done:
542 hci_dev_put(hdev);
543 return err;
544}
545
546int hci_dev_do_close(struct hci_dev *hdev)
547{
548 int err;
549
550 BT_DBG("%s %p", hdev->name, hdev);
551
552 hci_req_sync_lock(hdev);
553
554 err = hci_dev_close_sync(hdev);
555
556 hci_req_sync_unlock(hdev);
557
558 return err;
559}
560
561int hci_dev_close(__u16 dev)
562{
563 struct hci_dev *hdev;
564 int err;
565
566 hdev = hci_dev_get(dev);
567 if (!hdev)
568 return -ENODEV;
569
570 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
571 err = -EBUSY;
572 goto done;
573 }
574
575 cancel_work_sync(&hdev->power_on);
576 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
577 cancel_delayed_work(&hdev->power_off);
578
579 err = hci_dev_do_close(hdev);
580
581done:
582 hci_dev_put(hdev);
583 return err;
584}
585
586static int hci_dev_do_reset(struct hci_dev *hdev)
587{
588 int ret;
589
590 BT_DBG("%s %p", hdev->name, hdev);
591
592 hci_req_sync_lock(hdev);
593
594 /* Drop queues */
595 skb_queue_purge(&hdev->rx_q);
596 skb_queue_purge(&hdev->cmd_q);
597
598 /* Cancel these to avoid queueing non-chained pending work */
599 hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
600 /* Wait for
601 *
602 * if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
603 * queue_delayed_work(&hdev->{cmd,ncmd}_timer)
604 *
605 * inside RCU section to see the flag or complete scheduling.
606 */
607 synchronize_rcu();
608 /* Explicitly cancel works in case scheduled after setting the flag. */
609 cancel_delayed_work(&hdev->cmd_timer);
610 cancel_delayed_work(&hdev->ncmd_timer);
611
612 /* Avoid potential lockdep warnings from the *_flush() calls by
613 * ensuring the workqueue is empty up front.
614 */
615 drain_workqueue(hdev->workqueue);
616
617 hci_dev_lock(hdev);
618 hci_inquiry_cache_flush(hdev);
619 hci_conn_hash_flush(hdev);
620 hci_dev_unlock(hdev);
621
622 if (hdev->flush)
623 hdev->flush(hdev);
624
625 hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
626
627 atomic_set(&hdev->cmd_cnt, 1);
628 hdev->acl_cnt = 0;
629 hdev->sco_cnt = 0;
630 hdev->le_cnt = 0;
631 hdev->iso_cnt = 0;
632
633 ret = hci_reset_sync(hdev);
634
635 hci_req_sync_unlock(hdev);
636 return ret;
637}
638
639int hci_dev_reset(__u16 dev)
640{
641 struct hci_dev *hdev;
642 int err;
643
644 hdev = hci_dev_get(dev);
645 if (!hdev)
646 return -ENODEV;
647
648 if (!test_bit(HCI_UP, &hdev->flags)) {
649 err = -ENETDOWN;
650 goto done;
651 }
652
653 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
654 err = -EBUSY;
655 goto done;
656 }
657
658 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
659 err = -EOPNOTSUPP;
660 goto done;
661 }
662
663 err = hci_dev_do_reset(hdev);
664
665done:
666 hci_dev_put(hdev);
667 return err;
668}
669
670int hci_dev_reset_stat(__u16 dev)
671{
672 struct hci_dev *hdev;
673 int ret = 0;
674
675 hdev = hci_dev_get(dev);
676 if (!hdev)
677 return -ENODEV;
678
679 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
680 ret = -EBUSY;
681 goto done;
682 }
683
684 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
685 ret = -EOPNOTSUPP;
686 goto done;
687 }
688
689 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
690
691done:
692 hci_dev_put(hdev);
693 return ret;
694}
695
696static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
697{
698 bool conn_changed, discov_changed;
699
700 BT_DBG("%s scan 0x%02x", hdev->name, scan);
701
702 if ((scan & SCAN_PAGE))
703 conn_changed = !hci_dev_test_and_set_flag(hdev,
704 HCI_CONNECTABLE);
705 else
706 conn_changed = hci_dev_test_and_clear_flag(hdev,
707 HCI_CONNECTABLE);
708
709 if ((scan & SCAN_INQUIRY)) {
710 discov_changed = !hci_dev_test_and_set_flag(hdev,
711 HCI_DISCOVERABLE);
712 } else {
713 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
714 discov_changed = hci_dev_test_and_clear_flag(hdev,
715 HCI_DISCOVERABLE);
716 }
717
718 if (!hci_dev_test_flag(hdev, HCI_MGMT))
719 return;
720
721 if (conn_changed || discov_changed) {
722 /* In case this was disabled through mgmt */
723 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
724
725 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
726 hci_update_adv_data(hdev, hdev->cur_adv_instance);
727
728 mgmt_new_settings(hdev);
729 }
730}
731
732int hci_dev_cmd(unsigned int cmd, void __user *arg)
733{
734 struct hci_dev *hdev;
735 struct hci_dev_req dr;
736 int err = 0;
737
738 if (copy_from_user(&dr, arg, sizeof(dr)))
739 return -EFAULT;
740
741 hdev = hci_dev_get(dr.dev_id);
742 if (!hdev)
743 return -ENODEV;
744
745 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
746 err = -EBUSY;
747 goto done;
748 }
749
750 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
751 err = -EOPNOTSUPP;
752 goto done;
753 }
754
755 if (hdev->dev_type != HCI_PRIMARY) {
756 err = -EOPNOTSUPP;
757 goto done;
758 }
759
760 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
761 err = -EOPNOTSUPP;
762 goto done;
763 }
764
765 switch (cmd) {
766 case HCISETAUTH:
767 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
768 HCI_INIT_TIMEOUT, NULL);
769 break;
770
771 case HCISETENCRYPT:
772 if (!lmp_encrypt_capable(hdev)) {
773 err = -EOPNOTSUPP;
774 break;
775 }
776
777 if (!test_bit(HCI_AUTH, &hdev->flags)) {
778 /* Auth must be enabled first */
779 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
780 HCI_INIT_TIMEOUT, NULL);
781 if (err)
782 break;
783 }
784
785 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
786 HCI_INIT_TIMEOUT, NULL);
787 break;
788
789 case HCISETSCAN:
790 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
791 HCI_INIT_TIMEOUT, NULL);
792
793 /* Ensure that the connectable and discoverable states
794 * get correctly modified as this was a non-mgmt change.
795 */
796 if (!err)
797 hci_update_passive_scan_state(hdev, dr.dev_opt);
798 break;
799
800 case HCISETLINKPOL:
801 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
802 HCI_INIT_TIMEOUT, NULL);
803 break;
804
805 case HCISETLINKMODE:
806 hdev->link_mode = ((__u16) dr.dev_opt) &
807 (HCI_LM_MASTER | HCI_LM_ACCEPT);
808 break;
809
810 case HCISETPTYPE:
811 if (hdev->pkt_type == (__u16) dr.dev_opt)
812 break;
813
814 hdev->pkt_type = (__u16) dr.dev_opt;
815 mgmt_phy_configuration_changed(hdev, NULL);
816 break;
817
818 case HCISETACLMTU:
819 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
820 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
821 break;
822
823 case HCISETSCOMTU:
824 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
825 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
826 break;
827
828 default:
829 err = -EINVAL;
830 break;
831 }
832
833done:
834 hci_dev_put(hdev);
835 return err;
836}
837
838int hci_get_dev_list(void __user *arg)
839{
840 struct hci_dev *hdev;
841 struct hci_dev_list_req *dl;
842 struct hci_dev_req *dr;
843 int n = 0, size, err;
844 __u16 dev_num;
845
846 if (get_user(dev_num, (__u16 __user *) arg))
847 return -EFAULT;
848
849 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
850 return -EINVAL;
851
852 size = sizeof(*dl) + dev_num * sizeof(*dr);
853
854 dl = kzalloc(size, GFP_KERNEL);
855 if (!dl)
856 return -ENOMEM;
857
858 dr = dl->dev_req;
859
860 read_lock(&hci_dev_list_lock);
861 list_for_each_entry(hdev, &hci_dev_list, list) {
862 unsigned long flags = hdev->flags;
863
864 /* When the auto-off is configured it means the transport
865 * is running, but in that case still indicate that the
866 * device is actually down.
867 */
868 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
869 flags &= ~BIT(HCI_UP);
870
871 (dr + n)->dev_id = hdev->id;
872 (dr + n)->dev_opt = flags;
873
874 if (++n >= dev_num)
875 break;
876 }
877 read_unlock(&hci_dev_list_lock);
878
879 dl->dev_num = n;
880 size = sizeof(*dl) + n * sizeof(*dr);
881
882 err = copy_to_user(arg, dl, size);
883 kfree(dl);
884
885 return err ? -EFAULT : 0;
886}
887
888int hci_get_dev_info(void __user *arg)
889{
890 struct hci_dev *hdev;
891 struct hci_dev_info di;
892 unsigned long flags;
893 int err = 0;
894
895 if (copy_from_user(&di, arg, sizeof(di)))
896 return -EFAULT;
897
898 hdev = hci_dev_get(di.dev_id);
899 if (!hdev)
900 return -ENODEV;
901
902 /* When the auto-off is configured it means the transport
903 * is running, but in that case still indicate that the
904 * device is actually down.
905 */
906 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
907 flags = hdev->flags & ~BIT(HCI_UP);
908 else
909 flags = hdev->flags;
910
911 strcpy(di.name, hdev->name);
912 di.bdaddr = hdev->bdaddr;
913 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
914 di.flags = flags;
915 di.pkt_type = hdev->pkt_type;
916 if (lmp_bredr_capable(hdev)) {
917 di.acl_mtu = hdev->acl_mtu;
918 di.acl_pkts = hdev->acl_pkts;
919 di.sco_mtu = hdev->sco_mtu;
920 di.sco_pkts = hdev->sco_pkts;
921 } else {
922 di.acl_mtu = hdev->le_mtu;
923 di.acl_pkts = hdev->le_pkts;
924 di.sco_mtu = 0;
925 di.sco_pkts = 0;
926 }
927 di.link_policy = hdev->link_policy;
928 di.link_mode = hdev->link_mode;
929
930 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
931 memcpy(&di.features, &hdev->features, sizeof(di.features));
932
933 if (copy_to_user(arg, &di, sizeof(di)))
934 err = -EFAULT;
935
936 hci_dev_put(hdev);
937
938 return err;
939}
940
941/* ---- Interface to HCI drivers ---- */
942
943static int hci_rfkill_set_block(void *data, bool blocked)
944{
945 struct hci_dev *hdev = data;
946
947 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
948
949 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
950 return -EBUSY;
951
952 if (blocked) {
953 hci_dev_set_flag(hdev, HCI_RFKILLED);
954 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
955 !hci_dev_test_flag(hdev, HCI_CONFIG))
956 hci_dev_do_close(hdev);
957 } else {
958 hci_dev_clear_flag(hdev, HCI_RFKILLED);
959 }
960
961 return 0;
962}
963
964static const struct rfkill_ops hci_rfkill_ops = {
965 .set_block = hci_rfkill_set_block,
966};
967
968static void hci_power_on(struct work_struct *work)
969{
970 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
971 int err;
972
973 BT_DBG("%s", hdev->name);
974
975 if (test_bit(HCI_UP, &hdev->flags) &&
976 hci_dev_test_flag(hdev, HCI_MGMT) &&
977 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
978 cancel_delayed_work(&hdev->power_off);
979 err = hci_powered_update_sync(hdev);
980 mgmt_power_on(hdev, err);
981 return;
982 }
983
984 err = hci_dev_do_open(hdev);
985 if (err < 0) {
986 hci_dev_lock(hdev);
987 mgmt_set_powered_failed(hdev, err);
988 hci_dev_unlock(hdev);
989 return;
990 }
991
992 /* During the HCI setup phase, a few error conditions are
993 * ignored and they need to be checked now. If they are still
994 * valid, it is important to turn the device back off.
995 */
996 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
997 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
998 (hdev->dev_type == HCI_PRIMARY &&
999 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1000 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1001 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1002 hci_dev_do_close(hdev);
1003 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1004 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1005 HCI_AUTO_OFF_TIMEOUT);
1006 }
1007
1008 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1009 /* For unconfigured devices, set the HCI_RAW flag
1010 * so that userspace can easily identify them.
1011 */
1012 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1013 set_bit(HCI_RAW, &hdev->flags);
1014
1015 /* For fully configured devices, this will send
1016 * the Index Added event. For unconfigured devices,
1017 * it will send Unconfigued Index Added event.
1018 *
1019 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1020 * and no event will be send.
1021 */
1022 mgmt_index_added(hdev);
1023 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1024 /* When the controller is now configured, then it
1025 * is important to clear the HCI_RAW flag.
1026 */
1027 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1028 clear_bit(HCI_RAW, &hdev->flags);
1029
1030 /* Powering on the controller with HCI_CONFIG set only
1031 * happens with the transition from unconfigured to
1032 * configured. This will send the Index Added event.
1033 */
1034 mgmt_index_added(hdev);
1035 }
1036}
1037
1038static void hci_power_off(struct work_struct *work)
1039{
1040 struct hci_dev *hdev = container_of(work, struct hci_dev,
1041 power_off.work);
1042
1043 BT_DBG("%s", hdev->name);
1044
1045 hci_dev_do_close(hdev);
1046}
1047
1048static void hci_error_reset(struct work_struct *work)
1049{
1050 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1051
1052 hci_dev_hold(hdev);
1053 BT_DBG("%s", hdev->name);
1054
1055 if (hdev->hw_error)
1056 hdev->hw_error(hdev, hdev->hw_error_code);
1057 else
1058 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1059
1060 if (!hci_dev_do_close(hdev))
1061 hci_dev_do_open(hdev);
1062
1063 hci_dev_put(hdev);
1064}
1065
1066void hci_uuids_clear(struct hci_dev *hdev)
1067{
1068 struct bt_uuid *uuid, *tmp;
1069
1070 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1071 list_del(&uuid->list);
1072 kfree(uuid);
1073 }
1074}
1075
1076void hci_link_keys_clear(struct hci_dev *hdev)
1077{
1078 struct link_key *key, *tmp;
1079
1080 list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1081 list_del_rcu(&key->list);
1082 kfree_rcu(key, rcu);
1083 }
1084}
1085
1086void hci_smp_ltks_clear(struct hci_dev *hdev)
1087{
1088 struct smp_ltk *k, *tmp;
1089
1090 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1091 list_del_rcu(&k->list);
1092 kfree_rcu(k, rcu);
1093 }
1094}
1095
1096void hci_smp_irks_clear(struct hci_dev *hdev)
1097{
1098 struct smp_irk *k, *tmp;
1099
1100 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1101 list_del_rcu(&k->list);
1102 kfree_rcu(k, rcu);
1103 }
1104}
1105
1106void hci_blocked_keys_clear(struct hci_dev *hdev)
1107{
1108 struct blocked_key *b, *tmp;
1109
1110 list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1111 list_del_rcu(&b->list);
1112 kfree_rcu(b, rcu);
1113 }
1114}
1115
1116bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1117{
1118 bool blocked = false;
1119 struct blocked_key *b;
1120
1121 rcu_read_lock();
1122 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1123 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1124 blocked = true;
1125 break;
1126 }
1127 }
1128
1129 rcu_read_unlock();
1130 return blocked;
1131}
1132
1133struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1134{
1135 struct link_key *k;
1136
1137 rcu_read_lock();
1138 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1139 if (bacmp(bdaddr, &k->bdaddr) == 0) {
1140 rcu_read_unlock();
1141
1142 if (hci_is_blocked_key(hdev,
1143 HCI_BLOCKED_KEY_TYPE_LINKKEY,
1144 k->val)) {
1145 bt_dev_warn_ratelimited(hdev,
1146 "Link key blocked for %pMR",
1147 &k->bdaddr);
1148 return NULL;
1149 }
1150
1151 return k;
1152 }
1153 }
1154 rcu_read_unlock();
1155
1156 return NULL;
1157}
1158
1159static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1160 u8 key_type, u8 old_key_type)
1161{
1162 /* Legacy key */
1163 if (key_type < 0x03)
1164 return true;
1165
1166 /* Debug keys are insecure so don't store them persistently */
1167 if (key_type == HCI_LK_DEBUG_COMBINATION)
1168 return false;
1169
1170 /* Changed combination key and there's no previous one */
1171 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1172 return false;
1173
1174 /* Security mode 3 case */
1175 if (!conn)
1176 return true;
1177
1178 /* BR/EDR key derived using SC from an LE link */
1179 if (conn->type == LE_LINK)
1180 return true;
1181
1182 /* Neither local nor remote side had no-bonding as requirement */
1183 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1184 return true;
1185
1186 /* Local side had dedicated bonding as requirement */
1187 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1188 return true;
1189
1190 /* Remote side had dedicated bonding as requirement */
1191 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1192 return true;
1193
1194 /* If none of the above criteria match, then don't store the key
1195 * persistently */
1196 return false;
1197}
1198
1199static u8 ltk_role(u8 type)
1200{
1201 if (type == SMP_LTK)
1202 return HCI_ROLE_MASTER;
1203
1204 return HCI_ROLE_SLAVE;
1205}
1206
1207struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1208 u8 addr_type, u8 role)
1209{
1210 struct smp_ltk *k;
1211
1212 rcu_read_lock();
1213 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1214 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1215 continue;
1216
1217 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1218 rcu_read_unlock();
1219
1220 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1221 k->val)) {
1222 bt_dev_warn_ratelimited(hdev,
1223 "LTK blocked for %pMR",
1224 &k->bdaddr);
1225 return NULL;
1226 }
1227
1228 return k;
1229 }
1230 }
1231 rcu_read_unlock();
1232
1233 return NULL;
1234}
1235
1236struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1237{
1238 struct smp_irk *irk_to_return = NULL;
1239 struct smp_irk *irk;
1240
1241 rcu_read_lock();
1242 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1243 if (!bacmp(&irk->rpa, rpa)) {
1244 irk_to_return = irk;
1245 goto done;
1246 }
1247 }
1248
1249 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1250 if (smp_irk_matches(hdev, irk->val, rpa)) {
1251 bacpy(&irk->rpa, rpa);
1252 irk_to_return = irk;
1253 goto done;
1254 }
1255 }
1256
1257done:
1258 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1259 irk_to_return->val)) {
1260 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1261 &irk_to_return->bdaddr);
1262 irk_to_return = NULL;
1263 }
1264
1265 rcu_read_unlock();
1266
1267 return irk_to_return;
1268}
1269
1270struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1271 u8 addr_type)
1272{
1273 struct smp_irk *irk_to_return = NULL;
1274 struct smp_irk *irk;
1275
1276 /* Identity Address must be public or static random */
1277 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1278 return NULL;
1279
1280 rcu_read_lock();
1281 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1282 if (addr_type == irk->addr_type &&
1283 bacmp(bdaddr, &irk->bdaddr) == 0) {
1284 irk_to_return = irk;
1285 goto done;
1286 }
1287 }
1288
1289done:
1290
1291 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1292 irk_to_return->val)) {
1293 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1294 &irk_to_return->bdaddr);
1295 irk_to_return = NULL;
1296 }
1297
1298 rcu_read_unlock();
1299
1300 return irk_to_return;
1301}
1302
1303struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1304 bdaddr_t *bdaddr, u8 *val, u8 type,
1305 u8 pin_len, bool *persistent)
1306{
1307 struct link_key *key, *old_key;
1308 u8 old_key_type;
1309
1310 old_key = hci_find_link_key(hdev, bdaddr);
1311 if (old_key) {
1312 old_key_type = old_key->type;
1313 key = old_key;
1314 } else {
1315 old_key_type = conn ? conn->key_type : 0xff;
1316 key = kzalloc(sizeof(*key), GFP_KERNEL);
1317 if (!key)
1318 return NULL;
1319 list_add_rcu(&key->list, &hdev->link_keys);
1320 }
1321
1322 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1323
1324 /* Some buggy controller combinations generate a changed
1325 * combination key for legacy pairing even when there's no
1326 * previous key */
1327 if (type == HCI_LK_CHANGED_COMBINATION &&
1328 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1329 type = HCI_LK_COMBINATION;
1330 if (conn)
1331 conn->key_type = type;
1332 }
1333
1334 bacpy(&key->bdaddr, bdaddr);
1335 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1336 key->pin_len = pin_len;
1337
1338 if (type == HCI_LK_CHANGED_COMBINATION)
1339 key->type = old_key_type;
1340 else
1341 key->type = type;
1342
1343 if (persistent)
1344 *persistent = hci_persistent_key(hdev, conn, type,
1345 old_key_type);
1346
1347 return key;
1348}
1349
1350struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1351 u8 addr_type, u8 type, u8 authenticated,
1352 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1353{
1354 struct smp_ltk *key, *old_key;
1355 u8 role = ltk_role(type);
1356
1357 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1358 if (old_key)
1359 key = old_key;
1360 else {
1361 key = kzalloc(sizeof(*key), GFP_KERNEL);
1362 if (!key)
1363 return NULL;
1364 list_add_rcu(&key->list, &hdev->long_term_keys);
1365 }
1366
1367 bacpy(&key->bdaddr, bdaddr);
1368 key->bdaddr_type = addr_type;
1369 memcpy(key->val, tk, sizeof(key->val));
1370 key->authenticated = authenticated;
1371 key->ediv = ediv;
1372 key->rand = rand;
1373 key->enc_size = enc_size;
1374 key->type = type;
1375
1376 return key;
1377}
1378
1379struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1380 u8 addr_type, u8 val[16], bdaddr_t *rpa)
1381{
1382 struct smp_irk *irk;
1383
1384 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1385 if (!irk) {
1386 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1387 if (!irk)
1388 return NULL;
1389
1390 bacpy(&irk->bdaddr, bdaddr);
1391 irk->addr_type = addr_type;
1392
1393 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1394 }
1395
1396 memcpy(irk->val, val, 16);
1397 bacpy(&irk->rpa, rpa);
1398
1399 return irk;
1400}
1401
1402int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1403{
1404 struct link_key *key;
1405
1406 key = hci_find_link_key(hdev, bdaddr);
1407 if (!key)
1408 return -ENOENT;
1409
1410 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1411
1412 list_del_rcu(&key->list);
1413 kfree_rcu(key, rcu);
1414
1415 return 0;
1416}
1417
1418int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1419{
1420 struct smp_ltk *k, *tmp;
1421 int removed = 0;
1422
1423 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1424 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1425 continue;
1426
1427 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1428
1429 list_del_rcu(&k->list);
1430 kfree_rcu(k, rcu);
1431 removed++;
1432 }
1433
1434 return removed ? 0 : -ENOENT;
1435}
1436
1437void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1438{
1439 struct smp_irk *k, *tmp;
1440
1441 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1442 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1443 continue;
1444
1445 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1446
1447 list_del_rcu(&k->list);
1448 kfree_rcu(k, rcu);
1449 }
1450}
1451
1452bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1453{
1454 struct smp_ltk *k;
1455 struct smp_irk *irk;
1456 u8 addr_type;
1457
1458 if (type == BDADDR_BREDR) {
1459 if (hci_find_link_key(hdev, bdaddr))
1460 return true;
1461 return false;
1462 }
1463
1464 /* Convert to HCI addr type which struct smp_ltk uses */
1465 if (type == BDADDR_LE_PUBLIC)
1466 addr_type = ADDR_LE_DEV_PUBLIC;
1467 else
1468 addr_type = ADDR_LE_DEV_RANDOM;
1469
1470 irk = hci_get_irk(hdev, bdaddr, addr_type);
1471 if (irk) {
1472 bdaddr = &irk->bdaddr;
1473 addr_type = irk->addr_type;
1474 }
1475
1476 rcu_read_lock();
1477 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1478 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1479 rcu_read_unlock();
1480 return true;
1481 }
1482 }
1483 rcu_read_unlock();
1484
1485 return false;
1486}
1487
1488/* HCI command timer function */
1489static void hci_cmd_timeout(struct work_struct *work)
1490{
1491 struct hci_dev *hdev = container_of(work, struct hci_dev,
1492 cmd_timer.work);
1493
1494 if (hdev->sent_cmd) {
1495 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1496 u16 opcode = __le16_to_cpu(sent->opcode);
1497
1498 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1499 } else {
1500 bt_dev_err(hdev, "command tx timeout");
1501 }
1502
1503 if (hdev->cmd_timeout)
1504 hdev->cmd_timeout(hdev);
1505
1506 atomic_set(&hdev->cmd_cnt, 1);
1507 queue_work(hdev->workqueue, &hdev->cmd_work);
1508}
1509
1510/* HCI ncmd timer function */
1511static void hci_ncmd_timeout(struct work_struct *work)
1512{
1513 struct hci_dev *hdev = container_of(work, struct hci_dev,
1514 ncmd_timer.work);
1515
1516 bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1517
1518 /* During HCI_INIT phase no events can be injected if the ncmd timer
1519 * triggers since the procedure has its own timeout handling.
1520 */
1521 if (test_bit(HCI_INIT, &hdev->flags))
1522 return;
1523
1524 /* This is an irrecoverable state, inject hardware error event */
1525 hci_reset_dev(hdev);
1526}
1527
1528struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1529 bdaddr_t *bdaddr, u8 bdaddr_type)
1530{
1531 struct oob_data *data;
1532
1533 list_for_each_entry(data, &hdev->remote_oob_data, list) {
1534 if (bacmp(bdaddr, &data->bdaddr) != 0)
1535 continue;
1536 if (data->bdaddr_type != bdaddr_type)
1537 continue;
1538 return data;
1539 }
1540
1541 return NULL;
1542}
1543
1544int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1545 u8 bdaddr_type)
1546{
1547 struct oob_data *data;
1548
1549 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1550 if (!data)
1551 return -ENOENT;
1552
1553 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1554
1555 list_del(&data->list);
1556 kfree(data);
1557
1558 return 0;
1559}
1560
1561void hci_remote_oob_data_clear(struct hci_dev *hdev)
1562{
1563 struct oob_data *data, *n;
1564
1565 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1566 list_del(&data->list);
1567 kfree(data);
1568 }
1569}
1570
1571int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1572 u8 bdaddr_type, u8 *hash192, u8 *rand192,
1573 u8 *hash256, u8 *rand256)
1574{
1575 struct oob_data *data;
1576
1577 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1578 if (!data) {
1579 data = kmalloc(sizeof(*data), GFP_KERNEL);
1580 if (!data)
1581 return -ENOMEM;
1582
1583 bacpy(&data->bdaddr, bdaddr);
1584 data->bdaddr_type = bdaddr_type;
1585 list_add(&data->list, &hdev->remote_oob_data);
1586 }
1587
1588 if (hash192 && rand192) {
1589 memcpy(data->hash192, hash192, sizeof(data->hash192));
1590 memcpy(data->rand192, rand192, sizeof(data->rand192));
1591 if (hash256 && rand256)
1592 data->present = 0x03;
1593 } else {
1594 memset(data->hash192, 0, sizeof(data->hash192));
1595 memset(data->rand192, 0, sizeof(data->rand192));
1596 if (hash256 && rand256)
1597 data->present = 0x02;
1598 else
1599 data->present = 0x00;
1600 }
1601
1602 if (hash256 && rand256) {
1603 memcpy(data->hash256, hash256, sizeof(data->hash256));
1604 memcpy(data->rand256, rand256, sizeof(data->rand256));
1605 } else {
1606 memset(data->hash256, 0, sizeof(data->hash256));
1607 memset(data->rand256, 0, sizeof(data->rand256));
1608 if (hash192 && rand192)
1609 data->present = 0x01;
1610 }
1611
1612 BT_DBG("%s for %pMR", hdev->name, bdaddr);
1613
1614 return 0;
1615}
1616
1617/* This function requires the caller holds hdev->lock */
1618struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1619{
1620 struct adv_info *adv_instance;
1621
1622 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1623 if (adv_instance->instance == instance)
1624 return adv_instance;
1625 }
1626
1627 return NULL;
1628}
1629
1630/* This function requires the caller holds hdev->lock */
1631struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1632{
1633 struct adv_info *cur_instance;
1634
1635 cur_instance = hci_find_adv_instance(hdev, instance);
1636 if (!cur_instance)
1637 return NULL;
1638
1639 if (cur_instance == list_last_entry(&hdev->adv_instances,
1640 struct adv_info, list))
1641 return list_first_entry(&hdev->adv_instances,
1642 struct adv_info, list);
1643 else
1644 return list_next_entry(cur_instance, list);
1645}
1646
1647/* This function requires the caller holds hdev->lock */
1648int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1649{
1650 struct adv_info *adv_instance;
1651
1652 adv_instance = hci_find_adv_instance(hdev, instance);
1653 if (!adv_instance)
1654 return -ENOENT;
1655
1656 BT_DBG("%s removing %dMR", hdev->name, instance);
1657
1658 if (hdev->cur_adv_instance == instance) {
1659 if (hdev->adv_instance_timeout) {
1660 cancel_delayed_work(&hdev->adv_instance_expire);
1661 hdev->adv_instance_timeout = 0;
1662 }
1663 hdev->cur_adv_instance = 0x00;
1664 }
1665
1666 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1667
1668 list_del(&adv_instance->list);
1669 kfree(adv_instance);
1670
1671 hdev->adv_instance_cnt--;
1672
1673 return 0;
1674}
1675
1676void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1677{
1678 struct adv_info *adv_instance, *n;
1679
1680 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1681 adv_instance->rpa_expired = rpa_expired;
1682}
1683
1684/* This function requires the caller holds hdev->lock */
1685void hci_adv_instances_clear(struct hci_dev *hdev)
1686{
1687 struct adv_info *adv_instance, *n;
1688
1689 if (hdev->adv_instance_timeout) {
1690 cancel_delayed_work(&hdev->adv_instance_expire);
1691 hdev->adv_instance_timeout = 0;
1692 }
1693
1694 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1695 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1696 list_del(&adv_instance->list);
1697 kfree(adv_instance);
1698 }
1699
1700 hdev->adv_instance_cnt = 0;
1701 hdev->cur_adv_instance = 0x00;
1702}
1703
1704static void adv_instance_rpa_expired(struct work_struct *work)
1705{
1706 struct adv_info *adv_instance = container_of(work, struct adv_info,
1707 rpa_expired_cb.work);
1708
1709 BT_DBG("");
1710
1711 adv_instance->rpa_expired = true;
1712}
1713
1714/* This function requires the caller holds hdev->lock */
1715struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1716 u32 flags, u16 adv_data_len, u8 *adv_data,
1717 u16 scan_rsp_len, u8 *scan_rsp_data,
1718 u16 timeout, u16 duration, s8 tx_power,
1719 u32 min_interval, u32 max_interval,
1720 u8 mesh_handle)
1721{
1722 struct adv_info *adv;
1723
1724 adv = hci_find_adv_instance(hdev, instance);
1725 if (adv) {
1726 memset(adv->adv_data, 0, sizeof(adv->adv_data));
1727 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1728 memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1729 } else {
1730 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1731 instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1732 return ERR_PTR(-EOVERFLOW);
1733
1734 adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1735 if (!adv)
1736 return ERR_PTR(-ENOMEM);
1737
1738 adv->pending = true;
1739 adv->instance = instance;
1740 list_add(&adv->list, &hdev->adv_instances);
1741 hdev->adv_instance_cnt++;
1742 }
1743
1744 adv->flags = flags;
1745 adv->min_interval = min_interval;
1746 adv->max_interval = max_interval;
1747 adv->tx_power = tx_power;
1748 /* Defining a mesh_handle changes the timing units to ms,
1749 * rather than seconds, and ties the instance to the requested
1750 * mesh_tx queue.
1751 */
1752 adv->mesh = mesh_handle;
1753
1754 hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1755 scan_rsp_len, scan_rsp_data);
1756
1757 adv->timeout = timeout;
1758 adv->remaining_time = timeout;
1759
1760 if (duration == 0)
1761 adv->duration = hdev->def_multi_adv_rotation_duration;
1762 else
1763 adv->duration = duration;
1764
1765 INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1766
1767 BT_DBG("%s for %dMR", hdev->name, instance);
1768
1769 return adv;
1770}
1771
1772/* This function requires the caller holds hdev->lock */
1773struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1774 u32 flags, u8 data_len, u8 *data,
1775 u32 min_interval, u32 max_interval)
1776{
1777 struct adv_info *adv;
1778
1779 adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1780 0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1781 min_interval, max_interval, 0);
1782 if (IS_ERR(adv))
1783 return adv;
1784
1785 adv->periodic = true;
1786 adv->per_adv_data_len = data_len;
1787
1788 if (data)
1789 memcpy(adv->per_adv_data, data, data_len);
1790
1791 return adv;
1792}
1793
1794/* This function requires the caller holds hdev->lock */
1795int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1796 u16 adv_data_len, u8 *adv_data,
1797 u16 scan_rsp_len, u8 *scan_rsp_data)
1798{
1799 struct adv_info *adv;
1800
1801 adv = hci_find_adv_instance(hdev, instance);
1802
1803 /* If advertisement doesn't exist, we can't modify its data */
1804 if (!adv)
1805 return -ENOENT;
1806
1807 if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1808 memset(adv->adv_data, 0, sizeof(adv->adv_data));
1809 memcpy(adv->adv_data, adv_data, adv_data_len);
1810 adv->adv_data_len = adv_data_len;
1811 adv->adv_data_changed = true;
1812 }
1813
1814 if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1815 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1816 memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1817 adv->scan_rsp_len = scan_rsp_len;
1818 adv->scan_rsp_changed = true;
1819 }
1820
1821 /* Mark as changed if there are flags which would affect it */
1822 if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1823 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1824 adv->scan_rsp_changed = true;
1825
1826 return 0;
1827}
1828
1829/* This function requires the caller holds hdev->lock */
1830u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1831{
1832 u32 flags;
1833 struct adv_info *adv;
1834
1835 if (instance == 0x00) {
1836 /* Instance 0 always manages the "Tx Power" and "Flags"
1837 * fields
1838 */
1839 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1840
1841 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1842 * corresponds to the "connectable" instance flag.
1843 */
1844 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1845 flags |= MGMT_ADV_FLAG_CONNECTABLE;
1846
1847 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1848 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1849 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1850 flags |= MGMT_ADV_FLAG_DISCOV;
1851
1852 return flags;
1853 }
1854
1855 adv = hci_find_adv_instance(hdev, instance);
1856
1857 /* Return 0 when we got an invalid instance identifier. */
1858 if (!adv)
1859 return 0;
1860
1861 return adv->flags;
1862}
1863
1864bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1865{
1866 struct adv_info *adv;
1867
1868 /* Instance 0x00 always set local name */
1869 if (instance == 0x00)
1870 return true;
1871
1872 adv = hci_find_adv_instance(hdev, instance);
1873 if (!adv)
1874 return false;
1875
1876 if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1877 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1878 return true;
1879
1880 return adv->scan_rsp_len ? true : false;
1881}
1882
1883/* This function requires the caller holds hdev->lock */
1884void hci_adv_monitors_clear(struct hci_dev *hdev)
1885{
1886 struct adv_monitor *monitor;
1887 int handle;
1888
1889 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1890 hci_free_adv_monitor(hdev, monitor);
1891
1892 idr_destroy(&hdev->adv_monitors_idr);
1893}
1894
1895/* Frees the monitor structure and do some bookkeepings.
1896 * This function requires the caller holds hdev->lock.
1897 */
1898void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1899{
1900 struct adv_pattern *pattern;
1901 struct adv_pattern *tmp;
1902
1903 if (!monitor)
1904 return;
1905
1906 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1907 list_del(&pattern->list);
1908 kfree(pattern);
1909 }
1910
1911 if (monitor->handle)
1912 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1913
1914 if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1915 hdev->adv_monitors_cnt--;
1916 mgmt_adv_monitor_removed(hdev, monitor->handle);
1917 }
1918
1919 kfree(monitor);
1920}
1921
1922/* Assigns handle to a monitor, and if offloading is supported and power is on,
1923 * also attempts to forward the request to the controller.
1924 * This function requires the caller holds hci_req_sync_lock.
1925 */
1926int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1927{
1928 int min, max, handle;
1929 int status = 0;
1930
1931 if (!monitor)
1932 return -EINVAL;
1933
1934 hci_dev_lock(hdev);
1935
1936 min = HCI_MIN_ADV_MONITOR_HANDLE;
1937 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1938 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1939 GFP_KERNEL);
1940
1941 hci_dev_unlock(hdev);
1942
1943 if (handle < 0)
1944 return handle;
1945
1946 monitor->handle = handle;
1947
1948 if (!hdev_is_powered(hdev))
1949 return status;
1950
1951 switch (hci_get_adv_monitor_offload_ext(hdev)) {
1952 case HCI_ADV_MONITOR_EXT_NONE:
1953 bt_dev_dbg(hdev, "add monitor %d status %d",
1954 monitor->handle, status);
1955 /* Message was not forwarded to controller - not an error */
1956 break;
1957
1958 case HCI_ADV_MONITOR_EXT_MSFT:
1959 status = msft_add_monitor_pattern(hdev, monitor);
1960 bt_dev_dbg(hdev, "add monitor %d msft status %d",
1961 handle, status);
1962 break;
1963 }
1964
1965 return status;
1966}
1967
1968/* Attempts to tell the controller and free the monitor. If somehow the
1969 * controller doesn't have a corresponding handle, remove anyway.
1970 * This function requires the caller holds hci_req_sync_lock.
1971 */
1972static int hci_remove_adv_monitor(struct hci_dev *hdev,
1973 struct adv_monitor *monitor)
1974{
1975 int status = 0;
1976 int handle;
1977
1978 switch (hci_get_adv_monitor_offload_ext(hdev)) {
1979 case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1980 bt_dev_dbg(hdev, "remove monitor %d status %d",
1981 monitor->handle, status);
1982 goto free_monitor;
1983
1984 case HCI_ADV_MONITOR_EXT_MSFT:
1985 handle = monitor->handle;
1986 status = msft_remove_monitor(hdev, monitor);
1987 bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1988 handle, status);
1989 break;
1990 }
1991
1992 /* In case no matching handle registered, just free the monitor */
1993 if (status == -ENOENT)
1994 goto free_monitor;
1995
1996 return status;
1997
1998free_monitor:
1999 if (status == -ENOENT)
2000 bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
2001 monitor->handle);
2002 hci_free_adv_monitor(hdev, monitor);
2003
2004 return status;
2005}
2006
2007/* This function requires the caller holds hci_req_sync_lock */
2008int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2009{
2010 struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2011
2012 if (!monitor)
2013 return -EINVAL;
2014
2015 return hci_remove_adv_monitor(hdev, monitor);
2016}
2017
2018/* This function requires the caller holds hci_req_sync_lock */
2019int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2020{
2021 struct adv_monitor *monitor;
2022 int idr_next_id = 0;
2023 int status = 0;
2024
2025 while (1) {
2026 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2027 if (!monitor)
2028 break;
2029
2030 status = hci_remove_adv_monitor(hdev, monitor);
2031 if (status)
2032 return status;
2033
2034 idr_next_id++;
2035 }
2036
2037 return status;
2038}
2039
2040/* This function requires the caller holds hdev->lock */
2041bool hci_is_adv_monitoring(struct hci_dev *hdev)
2042{
2043 return !idr_is_empty(&hdev->adv_monitors_idr);
2044}
2045
2046int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2047{
2048 if (msft_monitor_supported(hdev))
2049 return HCI_ADV_MONITOR_EXT_MSFT;
2050
2051 return HCI_ADV_MONITOR_EXT_NONE;
2052}
2053
2054struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2055 bdaddr_t *bdaddr, u8 type)
2056{
2057 struct bdaddr_list *b;
2058
2059 list_for_each_entry(b, bdaddr_list, list) {
2060 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2061 return b;
2062 }
2063
2064 return NULL;
2065}
2066
2067struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2068 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2069 u8 type)
2070{
2071 struct bdaddr_list_with_irk *b;
2072
2073 list_for_each_entry(b, bdaddr_list, list) {
2074 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2075 return b;
2076 }
2077
2078 return NULL;
2079}
2080
2081struct bdaddr_list_with_flags *
2082hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2083 bdaddr_t *bdaddr, u8 type)
2084{
2085 struct bdaddr_list_with_flags *b;
2086
2087 list_for_each_entry(b, bdaddr_list, list) {
2088 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2089 return b;
2090 }
2091
2092 return NULL;
2093}
2094
2095void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2096{
2097 struct bdaddr_list *b, *n;
2098
2099 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2100 list_del(&b->list);
2101 kfree(b);
2102 }
2103}
2104
2105int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2106{
2107 struct bdaddr_list *entry;
2108
2109 if (!bacmp(bdaddr, BDADDR_ANY))
2110 return -EBADF;
2111
2112 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2113 return -EEXIST;
2114
2115 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2116 if (!entry)
2117 return -ENOMEM;
2118
2119 bacpy(&entry->bdaddr, bdaddr);
2120 entry->bdaddr_type = type;
2121
2122 list_add(&entry->list, list);
2123
2124 return 0;
2125}
2126
2127int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2128 u8 type, u8 *peer_irk, u8 *local_irk)
2129{
2130 struct bdaddr_list_with_irk *entry;
2131
2132 if (!bacmp(bdaddr, BDADDR_ANY))
2133 return -EBADF;
2134
2135 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2136 return -EEXIST;
2137
2138 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2139 if (!entry)
2140 return -ENOMEM;
2141
2142 bacpy(&entry->bdaddr, bdaddr);
2143 entry->bdaddr_type = type;
2144
2145 if (peer_irk)
2146 memcpy(entry->peer_irk, peer_irk, 16);
2147
2148 if (local_irk)
2149 memcpy(entry->local_irk, local_irk, 16);
2150
2151 list_add(&entry->list, list);
2152
2153 return 0;
2154}
2155
2156int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2157 u8 type, u32 flags)
2158{
2159 struct bdaddr_list_with_flags *entry;
2160
2161 if (!bacmp(bdaddr, BDADDR_ANY))
2162 return -EBADF;
2163
2164 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2165 return -EEXIST;
2166
2167 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2168 if (!entry)
2169 return -ENOMEM;
2170
2171 bacpy(&entry->bdaddr, bdaddr);
2172 entry->bdaddr_type = type;
2173 entry->flags = flags;
2174
2175 list_add(&entry->list, list);
2176
2177 return 0;
2178}
2179
2180int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2181{
2182 struct bdaddr_list *entry;
2183
2184 if (!bacmp(bdaddr, BDADDR_ANY)) {
2185 hci_bdaddr_list_clear(list);
2186 return 0;
2187 }
2188
2189 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2190 if (!entry)
2191 return -ENOENT;
2192
2193 list_del(&entry->list);
2194 kfree(entry);
2195
2196 return 0;
2197}
2198
2199int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2200 u8 type)
2201{
2202 struct bdaddr_list_with_irk *entry;
2203
2204 if (!bacmp(bdaddr, BDADDR_ANY)) {
2205 hci_bdaddr_list_clear(list);
2206 return 0;
2207 }
2208
2209 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2210 if (!entry)
2211 return -ENOENT;
2212
2213 list_del(&entry->list);
2214 kfree(entry);
2215
2216 return 0;
2217}
2218
2219int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2220 u8 type)
2221{
2222 struct bdaddr_list_with_flags *entry;
2223
2224 if (!bacmp(bdaddr, BDADDR_ANY)) {
2225 hci_bdaddr_list_clear(list);
2226 return 0;
2227 }
2228
2229 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2230 if (!entry)
2231 return -ENOENT;
2232
2233 list_del(&entry->list);
2234 kfree(entry);
2235
2236 return 0;
2237}
2238
2239/* This function requires the caller holds hdev->lock */
2240struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2241 bdaddr_t *addr, u8 addr_type)
2242{
2243 struct hci_conn_params *params;
2244
2245 list_for_each_entry(params, &hdev->le_conn_params, list) {
2246 if (bacmp(¶ms->addr, addr) == 0 &&
2247 params->addr_type == addr_type) {
2248 return params;
2249 }
2250 }
2251
2252 return NULL;
2253}
2254
2255/* This function requires the caller holds hdev->lock or rcu_read_lock */
2256struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2257 bdaddr_t *addr, u8 addr_type)
2258{
2259 struct hci_conn_params *param;
2260
2261 rcu_read_lock();
2262
2263 list_for_each_entry_rcu(param, list, action) {
2264 if (bacmp(¶m->addr, addr) == 0 &&
2265 param->addr_type == addr_type) {
2266 rcu_read_unlock();
2267 return param;
2268 }
2269 }
2270
2271 rcu_read_unlock();
2272
2273 return NULL;
2274}
2275
2276/* This function requires the caller holds hdev->lock */
2277void hci_pend_le_list_del_init(struct hci_conn_params *param)
2278{
2279 if (list_empty(¶m->action))
2280 return;
2281
2282 list_del_rcu(¶m->action);
2283 synchronize_rcu();
2284 INIT_LIST_HEAD(¶m->action);
2285}
2286
2287/* This function requires the caller holds hdev->lock */
2288void hci_pend_le_list_add(struct hci_conn_params *param,
2289 struct list_head *list)
2290{
2291 list_add_rcu(¶m->action, list);
2292}
2293
2294/* This function requires the caller holds hdev->lock */
2295struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2296 bdaddr_t *addr, u8 addr_type)
2297{
2298 struct hci_conn_params *params;
2299
2300 params = hci_conn_params_lookup(hdev, addr, addr_type);
2301 if (params)
2302 return params;
2303
2304 params = kzalloc(sizeof(*params), GFP_KERNEL);
2305 if (!params) {
2306 bt_dev_err(hdev, "out of memory");
2307 return NULL;
2308 }
2309
2310 bacpy(¶ms->addr, addr);
2311 params->addr_type = addr_type;
2312
2313 list_add(¶ms->list, &hdev->le_conn_params);
2314 INIT_LIST_HEAD(¶ms->action);
2315
2316 params->conn_min_interval = hdev->le_conn_min_interval;
2317 params->conn_max_interval = hdev->le_conn_max_interval;
2318 params->conn_latency = hdev->le_conn_latency;
2319 params->supervision_timeout = hdev->le_supv_timeout;
2320 params->auto_connect = HCI_AUTO_CONN_DISABLED;
2321
2322 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2323
2324 return params;
2325}
2326
2327void hci_conn_params_free(struct hci_conn_params *params)
2328{
2329 hci_pend_le_list_del_init(params);
2330
2331 if (params->conn) {
2332 hci_conn_drop(params->conn);
2333 hci_conn_put(params->conn);
2334 }
2335
2336 list_del(¶ms->list);
2337 kfree(params);
2338}
2339
2340/* This function requires the caller holds hdev->lock */
2341void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2342{
2343 struct hci_conn_params *params;
2344
2345 params = hci_conn_params_lookup(hdev, addr, addr_type);
2346 if (!params)
2347 return;
2348
2349 hci_conn_params_free(params);
2350
2351 hci_update_passive_scan(hdev);
2352
2353 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2354}
2355
2356/* This function requires the caller holds hdev->lock */
2357void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2358{
2359 struct hci_conn_params *params, *tmp;
2360
2361 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2362 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2363 continue;
2364
2365 /* If trying to establish one time connection to disabled
2366 * device, leave the params, but mark them as just once.
2367 */
2368 if (params->explicit_connect) {
2369 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2370 continue;
2371 }
2372
2373 hci_conn_params_free(params);
2374 }
2375
2376 BT_DBG("All LE disabled connection parameters were removed");
2377}
2378
2379/* This function requires the caller holds hdev->lock */
2380static void hci_conn_params_clear_all(struct hci_dev *hdev)
2381{
2382 struct hci_conn_params *params, *tmp;
2383
2384 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2385 hci_conn_params_free(params);
2386
2387 BT_DBG("All LE connection parameters were removed");
2388}
2389
2390/* Copy the Identity Address of the controller.
2391 *
2392 * If the controller has a public BD_ADDR, then by default use that one.
2393 * If this is a LE only controller without a public address, default to
2394 * the static random address.
2395 *
2396 * For debugging purposes it is possible to force controllers with a
2397 * public address to use the static random address instead.
2398 *
2399 * In case BR/EDR has been disabled on a dual-mode controller and
2400 * userspace has configured a static address, then that address
2401 * becomes the identity address instead of the public BR/EDR address.
2402 */
2403void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2404 u8 *bdaddr_type)
2405{
2406 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2407 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2408 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2409 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2410 bacpy(bdaddr, &hdev->static_addr);
2411 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2412 } else {
2413 bacpy(bdaddr, &hdev->bdaddr);
2414 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2415 }
2416}
2417
2418static void hci_clear_wake_reason(struct hci_dev *hdev)
2419{
2420 hci_dev_lock(hdev);
2421
2422 hdev->wake_reason = 0;
2423 bacpy(&hdev->wake_addr, BDADDR_ANY);
2424 hdev->wake_addr_type = 0;
2425
2426 hci_dev_unlock(hdev);
2427}
2428
2429static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2430 void *data)
2431{
2432 struct hci_dev *hdev =
2433 container_of(nb, struct hci_dev, suspend_notifier);
2434 int ret = 0;
2435
2436 /* Userspace has full control of this device. Do nothing. */
2437 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2438 return NOTIFY_DONE;
2439
2440 /* To avoid a potential race with hci_unregister_dev. */
2441 hci_dev_hold(hdev);
2442
2443 if (action == PM_SUSPEND_PREPARE)
2444 ret = hci_suspend_dev(hdev);
2445 else if (action == PM_POST_SUSPEND)
2446 ret = hci_resume_dev(hdev);
2447
2448 if (ret)
2449 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2450 action, ret);
2451
2452 hci_dev_put(hdev);
2453 return NOTIFY_DONE;
2454}
2455
2456/* Alloc HCI device */
2457struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2458{
2459 struct hci_dev *hdev;
2460 unsigned int alloc_size;
2461
2462 alloc_size = sizeof(*hdev);
2463 if (sizeof_priv) {
2464 /* Fixme: May need ALIGN-ment? */
2465 alloc_size += sizeof_priv;
2466 }
2467
2468 hdev = kzalloc(alloc_size, GFP_KERNEL);
2469 if (!hdev)
2470 return NULL;
2471
2472 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2473 hdev->esco_type = (ESCO_HV1);
2474 hdev->link_mode = (HCI_LM_ACCEPT);
2475 hdev->num_iac = 0x01; /* One IAC support is mandatory */
2476 hdev->io_capability = 0x03; /* No Input No Output */
2477 hdev->manufacturer = 0xffff; /* Default to internal use */
2478 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2479 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2480 hdev->adv_instance_cnt = 0;
2481 hdev->cur_adv_instance = 0x00;
2482 hdev->adv_instance_timeout = 0;
2483
2484 hdev->advmon_allowlist_duration = 300;
2485 hdev->advmon_no_filter_duration = 500;
2486 hdev->enable_advmon_interleave_scan = 0x00; /* Default to disable */
2487
2488 hdev->sniff_max_interval = 800;
2489 hdev->sniff_min_interval = 80;
2490
2491 hdev->le_adv_channel_map = 0x07;
2492 hdev->le_adv_min_interval = 0x0800;
2493 hdev->le_adv_max_interval = 0x0800;
2494 hdev->le_scan_interval = 0x0060;
2495 hdev->le_scan_window = 0x0030;
2496 hdev->le_scan_int_suspend = 0x0400;
2497 hdev->le_scan_window_suspend = 0x0012;
2498 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2499 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2500 hdev->le_scan_int_adv_monitor = 0x0060;
2501 hdev->le_scan_window_adv_monitor = 0x0030;
2502 hdev->le_scan_int_connect = 0x0060;
2503 hdev->le_scan_window_connect = 0x0060;
2504 hdev->le_conn_min_interval = 0x0018;
2505 hdev->le_conn_max_interval = 0x0028;
2506 hdev->le_conn_latency = 0x0000;
2507 hdev->le_supv_timeout = 0x002a;
2508 hdev->le_def_tx_len = 0x001b;
2509 hdev->le_def_tx_time = 0x0148;
2510 hdev->le_max_tx_len = 0x001b;
2511 hdev->le_max_tx_time = 0x0148;
2512 hdev->le_max_rx_len = 0x001b;
2513 hdev->le_max_rx_time = 0x0148;
2514 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2515 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2516 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2517 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2518 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2519 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2520 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2521 hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2522 hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2523
2524 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2525 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2526 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2527 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2528 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2529 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2530
2531 /* default 1.28 sec page scan */
2532 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2533 hdev->def_page_scan_int = 0x0800;
2534 hdev->def_page_scan_window = 0x0012;
2535
2536 mutex_init(&hdev->lock);
2537 mutex_init(&hdev->req_lock);
2538
2539 ida_init(&hdev->unset_handle_ida);
2540
2541 INIT_LIST_HEAD(&hdev->mesh_pending);
2542 INIT_LIST_HEAD(&hdev->mgmt_pending);
2543 INIT_LIST_HEAD(&hdev->reject_list);
2544 INIT_LIST_HEAD(&hdev->accept_list);
2545 INIT_LIST_HEAD(&hdev->uuids);
2546 INIT_LIST_HEAD(&hdev->link_keys);
2547 INIT_LIST_HEAD(&hdev->long_term_keys);
2548 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2549 INIT_LIST_HEAD(&hdev->remote_oob_data);
2550 INIT_LIST_HEAD(&hdev->le_accept_list);
2551 INIT_LIST_HEAD(&hdev->le_resolv_list);
2552 INIT_LIST_HEAD(&hdev->le_conn_params);
2553 INIT_LIST_HEAD(&hdev->pend_le_conns);
2554 INIT_LIST_HEAD(&hdev->pend_le_reports);
2555 INIT_LIST_HEAD(&hdev->conn_hash.list);
2556 INIT_LIST_HEAD(&hdev->adv_instances);
2557 INIT_LIST_HEAD(&hdev->blocked_keys);
2558 INIT_LIST_HEAD(&hdev->monitored_devices);
2559
2560 INIT_LIST_HEAD(&hdev->local_codecs);
2561 INIT_WORK(&hdev->rx_work, hci_rx_work);
2562 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2563 INIT_WORK(&hdev->tx_work, hci_tx_work);
2564 INIT_WORK(&hdev->power_on, hci_power_on);
2565 INIT_WORK(&hdev->error_reset, hci_error_reset);
2566
2567 hci_cmd_sync_init(hdev);
2568
2569 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2570
2571 skb_queue_head_init(&hdev->rx_q);
2572 skb_queue_head_init(&hdev->cmd_q);
2573 skb_queue_head_init(&hdev->raw_q);
2574
2575 init_waitqueue_head(&hdev->req_wait_q);
2576
2577 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2578 INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2579
2580 hci_devcd_setup(hdev);
2581 hci_request_setup(hdev);
2582
2583 hci_init_sysfs(hdev);
2584 discovery_init(hdev);
2585
2586 return hdev;
2587}
2588EXPORT_SYMBOL(hci_alloc_dev_priv);
2589
2590/* Free HCI device */
2591void hci_free_dev(struct hci_dev *hdev)
2592{
2593 /* will free via device release */
2594 put_device(&hdev->dev);
2595}
2596EXPORT_SYMBOL(hci_free_dev);
2597
2598/* Register HCI device */
2599int hci_register_dev(struct hci_dev *hdev)
2600{
2601 int id, error;
2602
2603 if (!hdev->open || !hdev->close || !hdev->send)
2604 return -EINVAL;
2605
2606 /* Do not allow HCI_AMP devices to register at index 0,
2607 * so the index can be used as the AMP controller ID.
2608 */
2609 switch (hdev->dev_type) {
2610 case HCI_PRIMARY:
2611 id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
2612 break;
2613 case HCI_AMP:
2614 id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
2615 break;
2616 default:
2617 return -EINVAL;
2618 }
2619
2620 if (id < 0)
2621 return id;
2622
2623 error = dev_set_name(&hdev->dev, "hci%u", id);
2624 if (error)
2625 return error;
2626
2627 hdev->name = dev_name(&hdev->dev);
2628 hdev->id = id;
2629
2630 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2631
2632 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2633 if (!hdev->workqueue) {
2634 error = -ENOMEM;
2635 goto err;
2636 }
2637
2638 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2639 hdev->name);
2640 if (!hdev->req_workqueue) {
2641 destroy_workqueue(hdev->workqueue);
2642 error = -ENOMEM;
2643 goto err;
2644 }
2645
2646 if (!IS_ERR_OR_NULL(bt_debugfs))
2647 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2648
2649 error = device_add(&hdev->dev);
2650 if (error < 0)
2651 goto err_wqueue;
2652
2653 hci_leds_init(hdev);
2654
2655 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2656 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2657 hdev);
2658 if (hdev->rfkill) {
2659 if (rfkill_register(hdev->rfkill) < 0) {
2660 rfkill_destroy(hdev->rfkill);
2661 hdev->rfkill = NULL;
2662 }
2663 }
2664
2665 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2666 hci_dev_set_flag(hdev, HCI_RFKILLED);
2667
2668 hci_dev_set_flag(hdev, HCI_SETUP);
2669 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2670
2671 if (hdev->dev_type == HCI_PRIMARY) {
2672 /* Assume BR/EDR support until proven otherwise (such as
2673 * through reading supported features during init.
2674 */
2675 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2676 }
2677
2678 write_lock(&hci_dev_list_lock);
2679 list_add(&hdev->list, &hci_dev_list);
2680 write_unlock(&hci_dev_list_lock);
2681
2682 /* Devices that are marked for raw-only usage are unconfigured
2683 * and should not be included in normal operation.
2684 */
2685 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2686 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2687
2688 /* Mark Remote Wakeup connection flag as supported if driver has wakeup
2689 * callback.
2690 */
2691 if (hdev->wakeup)
2692 hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2693
2694 hci_sock_dev_event(hdev, HCI_DEV_REG);
2695 hci_dev_hold(hdev);
2696
2697 error = hci_register_suspend_notifier(hdev);
2698 if (error)
2699 BT_WARN("register suspend notifier failed error:%d\n", error);
2700
2701 queue_work(hdev->req_workqueue, &hdev->power_on);
2702
2703 idr_init(&hdev->adv_monitors_idr);
2704 msft_register(hdev);
2705
2706 return id;
2707
2708err_wqueue:
2709 debugfs_remove_recursive(hdev->debugfs);
2710 destroy_workqueue(hdev->workqueue);
2711 destroy_workqueue(hdev->req_workqueue);
2712err:
2713 ida_simple_remove(&hci_index_ida, hdev->id);
2714
2715 return error;
2716}
2717EXPORT_SYMBOL(hci_register_dev);
2718
2719/* Unregister HCI device */
2720void hci_unregister_dev(struct hci_dev *hdev)
2721{
2722 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2723
2724 mutex_lock(&hdev->unregister_lock);
2725 hci_dev_set_flag(hdev, HCI_UNREGISTER);
2726 mutex_unlock(&hdev->unregister_lock);
2727
2728 write_lock(&hci_dev_list_lock);
2729 list_del(&hdev->list);
2730 write_unlock(&hci_dev_list_lock);
2731
2732 cancel_work_sync(&hdev->power_on);
2733
2734 hci_cmd_sync_clear(hdev);
2735
2736 hci_unregister_suspend_notifier(hdev);
2737
2738 msft_unregister(hdev);
2739
2740 hci_dev_do_close(hdev);
2741
2742 if (!test_bit(HCI_INIT, &hdev->flags) &&
2743 !hci_dev_test_flag(hdev, HCI_SETUP) &&
2744 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2745 hci_dev_lock(hdev);
2746 mgmt_index_removed(hdev);
2747 hci_dev_unlock(hdev);
2748 }
2749
2750 /* mgmt_index_removed should take care of emptying the
2751 * pending list */
2752 BUG_ON(!list_empty(&hdev->mgmt_pending));
2753
2754 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2755
2756 if (hdev->rfkill) {
2757 rfkill_unregister(hdev->rfkill);
2758 rfkill_destroy(hdev->rfkill);
2759 }
2760
2761 device_del(&hdev->dev);
2762 /* Actual cleanup is deferred until hci_release_dev(). */
2763 hci_dev_put(hdev);
2764}
2765EXPORT_SYMBOL(hci_unregister_dev);
2766
2767/* Release HCI device */
2768void hci_release_dev(struct hci_dev *hdev)
2769{
2770 debugfs_remove_recursive(hdev->debugfs);
2771 kfree_const(hdev->hw_info);
2772 kfree_const(hdev->fw_info);
2773
2774 destroy_workqueue(hdev->workqueue);
2775 destroy_workqueue(hdev->req_workqueue);
2776
2777 hci_dev_lock(hdev);
2778 hci_bdaddr_list_clear(&hdev->reject_list);
2779 hci_bdaddr_list_clear(&hdev->accept_list);
2780 hci_uuids_clear(hdev);
2781 hci_link_keys_clear(hdev);
2782 hci_smp_ltks_clear(hdev);
2783 hci_smp_irks_clear(hdev);
2784 hci_remote_oob_data_clear(hdev);
2785 hci_adv_instances_clear(hdev);
2786 hci_adv_monitors_clear(hdev);
2787 hci_bdaddr_list_clear(&hdev->le_accept_list);
2788 hci_bdaddr_list_clear(&hdev->le_resolv_list);
2789 hci_conn_params_clear_all(hdev);
2790 hci_discovery_filter_clear(hdev);
2791 hci_blocked_keys_clear(hdev);
2792 hci_codec_list_clear(&hdev->local_codecs);
2793 hci_dev_unlock(hdev);
2794
2795 ida_destroy(&hdev->unset_handle_ida);
2796 ida_simple_remove(&hci_index_ida, hdev->id);
2797 kfree_skb(hdev->sent_cmd);
2798 kfree_skb(hdev->recv_event);
2799 kfree(hdev);
2800}
2801EXPORT_SYMBOL(hci_release_dev);
2802
2803int hci_register_suspend_notifier(struct hci_dev *hdev)
2804{
2805 int ret = 0;
2806
2807 if (!hdev->suspend_notifier.notifier_call &&
2808 !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2809 hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2810 ret = register_pm_notifier(&hdev->suspend_notifier);
2811 }
2812
2813 return ret;
2814}
2815
2816int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2817{
2818 int ret = 0;
2819
2820 if (hdev->suspend_notifier.notifier_call) {
2821 ret = unregister_pm_notifier(&hdev->suspend_notifier);
2822 if (!ret)
2823 hdev->suspend_notifier.notifier_call = NULL;
2824 }
2825
2826 return ret;
2827}
2828
2829/* Suspend HCI device */
2830int hci_suspend_dev(struct hci_dev *hdev)
2831{
2832 int ret;
2833
2834 bt_dev_dbg(hdev, "");
2835
2836 /* Suspend should only act on when powered. */
2837 if (!hdev_is_powered(hdev) ||
2838 hci_dev_test_flag(hdev, HCI_UNREGISTER))
2839 return 0;
2840
2841 /* If powering down don't attempt to suspend */
2842 if (mgmt_powering_down(hdev))
2843 return 0;
2844
2845 /* Cancel potentially blocking sync operation before suspend */
2846 __hci_cmd_sync_cancel(hdev, -EHOSTDOWN);
2847
2848 hci_req_sync_lock(hdev);
2849 ret = hci_suspend_sync(hdev);
2850 hci_req_sync_unlock(hdev);
2851
2852 hci_clear_wake_reason(hdev);
2853 mgmt_suspending(hdev, hdev->suspend_state);
2854
2855 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2856 return ret;
2857}
2858EXPORT_SYMBOL(hci_suspend_dev);
2859
2860/* Resume HCI device */
2861int hci_resume_dev(struct hci_dev *hdev)
2862{
2863 int ret;
2864
2865 bt_dev_dbg(hdev, "");
2866
2867 /* Resume should only act on when powered. */
2868 if (!hdev_is_powered(hdev) ||
2869 hci_dev_test_flag(hdev, HCI_UNREGISTER))
2870 return 0;
2871
2872 /* If powering down don't attempt to resume */
2873 if (mgmt_powering_down(hdev))
2874 return 0;
2875
2876 hci_req_sync_lock(hdev);
2877 ret = hci_resume_sync(hdev);
2878 hci_req_sync_unlock(hdev);
2879
2880 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2881 hdev->wake_addr_type);
2882
2883 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2884 return ret;
2885}
2886EXPORT_SYMBOL(hci_resume_dev);
2887
2888/* Reset HCI device */
2889int hci_reset_dev(struct hci_dev *hdev)
2890{
2891 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2892 struct sk_buff *skb;
2893
2894 skb = bt_skb_alloc(3, GFP_ATOMIC);
2895 if (!skb)
2896 return -ENOMEM;
2897
2898 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2899 skb_put_data(skb, hw_err, 3);
2900
2901 bt_dev_err(hdev, "Injecting HCI hardware error event");
2902
2903 /* Send Hardware Error to upper stack */
2904 return hci_recv_frame(hdev, skb);
2905}
2906EXPORT_SYMBOL(hci_reset_dev);
2907
2908/* Receive frame from HCI drivers */
2909int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2910{
2911 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2912 && !test_bit(HCI_INIT, &hdev->flags))) {
2913 kfree_skb(skb);
2914 return -ENXIO;
2915 }
2916
2917 switch (hci_skb_pkt_type(skb)) {
2918 case HCI_EVENT_PKT:
2919 break;
2920 case HCI_ACLDATA_PKT:
2921 /* Detect if ISO packet has been sent as ACL */
2922 if (hci_conn_num(hdev, ISO_LINK)) {
2923 __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2924 __u8 type;
2925
2926 type = hci_conn_lookup_type(hdev, hci_handle(handle));
2927 if (type == ISO_LINK)
2928 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2929 }
2930 break;
2931 case HCI_SCODATA_PKT:
2932 break;
2933 case HCI_ISODATA_PKT:
2934 break;
2935 default:
2936 kfree_skb(skb);
2937 return -EINVAL;
2938 }
2939
2940 /* Incoming skb */
2941 bt_cb(skb)->incoming = 1;
2942
2943 /* Time stamp */
2944 __net_timestamp(skb);
2945
2946 skb_queue_tail(&hdev->rx_q, skb);
2947 queue_work(hdev->workqueue, &hdev->rx_work);
2948
2949 return 0;
2950}
2951EXPORT_SYMBOL(hci_recv_frame);
2952
2953/* Receive diagnostic message from HCI drivers */
2954int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2955{
2956 /* Mark as diagnostic packet */
2957 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2958
2959 /* Time stamp */
2960 __net_timestamp(skb);
2961
2962 skb_queue_tail(&hdev->rx_q, skb);
2963 queue_work(hdev->workqueue, &hdev->rx_work);
2964
2965 return 0;
2966}
2967EXPORT_SYMBOL(hci_recv_diag);
2968
2969void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2970{
2971 va_list vargs;
2972
2973 va_start(vargs, fmt);
2974 kfree_const(hdev->hw_info);
2975 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2976 va_end(vargs);
2977}
2978EXPORT_SYMBOL(hci_set_hw_info);
2979
2980void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2981{
2982 va_list vargs;
2983
2984 va_start(vargs, fmt);
2985 kfree_const(hdev->fw_info);
2986 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2987 va_end(vargs);
2988}
2989EXPORT_SYMBOL(hci_set_fw_info);
2990
2991/* ---- Interface to upper protocols ---- */
2992
2993int hci_register_cb(struct hci_cb *cb)
2994{
2995 BT_DBG("%p name %s", cb, cb->name);
2996
2997 mutex_lock(&hci_cb_list_lock);
2998 list_add_tail(&cb->list, &hci_cb_list);
2999 mutex_unlock(&hci_cb_list_lock);
3000
3001 return 0;
3002}
3003EXPORT_SYMBOL(hci_register_cb);
3004
3005int hci_unregister_cb(struct hci_cb *cb)
3006{
3007 BT_DBG("%p name %s", cb, cb->name);
3008
3009 mutex_lock(&hci_cb_list_lock);
3010 list_del(&cb->list);
3011 mutex_unlock(&hci_cb_list_lock);
3012
3013 return 0;
3014}
3015EXPORT_SYMBOL(hci_unregister_cb);
3016
3017static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3018{
3019 int err;
3020
3021 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3022 skb->len);
3023
3024 /* Time stamp */
3025 __net_timestamp(skb);
3026
3027 /* Send copy to monitor */
3028 hci_send_to_monitor(hdev, skb);
3029
3030 if (atomic_read(&hdev->promisc)) {
3031 /* Send copy to the sockets */
3032 hci_send_to_sock(hdev, skb);
3033 }
3034
3035 /* Get rid of skb owner, prior to sending to the driver. */
3036 skb_orphan(skb);
3037
3038 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3039 kfree_skb(skb);
3040 return -EINVAL;
3041 }
3042
3043 err = hdev->send(hdev, skb);
3044 if (err < 0) {
3045 bt_dev_err(hdev, "sending frame failed (%d)", err);
3046 kfree_skb(skb);
3047 return err;
3048 }
3049
3050 return 0;
3051}
3052
3053/* Send HCI command */
3054int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3055 const void *param)
3056{
3057 struct sk_buff *skb;
3058
3059 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3060
3061 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3062 if (!skb) {
3063 bt_dev_err(hdev, "no memory for command");
3064 return -ENOMEM;
3065 }
3066
3067 /* Stand-alone HCI commands must be flagged as
3068 * single-command requests.
3069 */
3070 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3071
3072 skb_queue_tail(&hdev->cmd_q, skb);
3073 queue_work(hdev->workqueue, &hdev->cmd_work);
3074
3075 return 0;
3076}
3077
3078int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3079 const void *param)
3080{
3081 struct sk_buff *skb;
3082
3083 if (hci_opcode_ogf(opcode) != 0x3f) {
3084 /* A controller receiving a command shall respond with either
3085 * a Command Status Event or a Command Complete Event.
3086 * Therefore, all standard HCI commands must be sent via the
3087 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3088 * Some vendors do not comply with this rule for vendor-specific
3089 * commands and do not return any event. We want to support
3090 * unresponded commands for such cases only.
3091 */
3092 bt_dev_err(hdev, "unresponded command not supported");
3093 return -EINVAL;
3094 }
3095
3096 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3097 if (!skb) {
3098 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3099 opcode);
3100 return -ENOMEM;
3101 }
3102
3103 hci_send_frame(hdev, skb);
3104
3105 return 0;
3106}
3107EXPORT_SYMBOL(__hci_cmd_send);
3108
3109/* Get data from the previously sent command */
3110void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3111{
3112 struct hci_command_hdr *hdr;
3113
3114 if (!hdev->sent_cmd)
3115 return NULL;
3116
3117 hdr = (void *) hdev->sent_cmd->data;
3118
3119 if (hdr->opcode != cpu_to_le16(opcode))
3120 return NULL;
3121
3122 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3123
3124 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3125}
3126
3127/* Get data from last received event */
3128void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3129{
3130 struct hci_event_hdr *hdr;
3131 int offset;
3132
3133 if (!hdev->recv_event)
3134 return NULL;
3135
3136 hdr = (void *)hdev->recv_event->data;
3137 offset = sizeof(*hdr);
3138
3139 if (hdr->evt != event) {
3140 /* In case of LE metaevent check the subevent match */
3141 if (hdr->evt == HCI_EV_LE_META) {
3142 struct hci_ev_le_meta *ev;
3143
3144 ev = (void *)hdev->recv_event->data + offset;
3145 offset += sizeof(*ev);
3146 if (ev->subevent == event)
3147 goto found;
3148 }
3149 return NULL;
3150 }
3151
3152found:
3153 bt_dev_dbg(hdev, "event 0x%2.2x", event);
3154
3155 return hdev->recv_event->data + offset;
3156}
3157
3158/* Send ACL data */
3159static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3160{
3161 struct hci_acl_hdr *hdr;
3162 int len = skb->len;
3163
3164 skb_push(skb, HCI_ACL_HDR_SIZE);
3165 skb_reset_transport_header(skb);
3166 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3167 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3168 hdr->dlen = cpu_to_le16(len);
3169}
3170
3171static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3172 struct sk_buff *skb, __u16 flags)
3173{
3174 struct hci_conn *conn = chan->conn;
3175 struct hci_dev *hdev = conn->hdev;
3176 struct sk_buff *list;
3177
3178 skb->len = skb_headlen(skb);
3179 skb->data_len = 0;
3180
3181 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3182
3183 switch (hdev->dev_type) {
3184 case HCI_PRIMARY:
3185 hci_add_acl_hdr(skb, conn->handle, flags);
3186 break;
3187 case HCI_AMP:
3188 hci_add_acl_hdr(skb, chan->handle, flags);
3189 break;
3190 default:
3191 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3192 return;
3193 }
3194
3195 list = skb_shinfo(skb)->frag_list;
3196 if (!list) {
3197 /* Non fragmented */
3198 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3199
3200 skb_queue_tail(queue, skb);
3201 } else {
3202 /* Fragmented */
3203 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3204
3205 skb_shinfo(skb)->frag_list = NULL;
3206
3207 /* Queue all fragments atomically. We need to use spin_lock_bh
3208 * here because of 6LoWPAN links, as there this function is
3209 * called from softirq and using normal spin lock could cause
3210 * deadlocks.
3211 */
3212 spin_lock_bh(&queue->lock);
3213
3214 __skb_queue_tail(queue, skb);
3215
3216 flags &= ~ACL_START;
3217 flags |= ACL_CONT;
3218 do {
3219 skb = list; list = list->next;
3220
3221 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3222 hci_add_acl_hdr(skb, conn->handle, flags);
3223
3224 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3225
3226 __skb_queue_tail(queue, skb);
3227 } while (list);
3228
3229 spin_unlock_bh(&queue->lock);
3230 }
3231}
3232
3233void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3234{
3235 struct hci_dev *hdev = chan->conn->hdev;
3236
3237 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3238
3239 hci_queue_acl(chan, &chan->data_q, skb, flags);
3240
3241 queue_work(hdev->workqueue, &hdev->tx_work);
3242}
3243
3244/* Send SCO data */
3245void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3246{
3247 struct hci_dev *hdev = conn->hdev;
3248 struct hci_sco_hdr hdr;
3249
3250 BT_DBG("%s len %d", hdev->name, skb->len);
3251
3252 hdr.handle = cpu_to_le16(conn->handle);
3253 hdr.dlen = skb->len;
3254
3255 skb_push(skb, HCI_SCO_HDR_SIZE);
3256 skb_reset_transport_header(skb);
3257 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3258
3259 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3260
3261 skb_queue_tail(&conn->data_q, skb);
3262 queue_work(hdev->workqueue, &hdev->tx_work);
3263}
3264
3265/* Send ISO data */
3266static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3267{
3268 struct hci_iso_hdr *hdr;
3269 int len = skb->len;
3270
3271 skb_push(skb, HCI_ISO_HDR_SIZE);
3272 skb_reset_transport_header(skb);
3273 hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3274 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3275 hdr->dlen = cpu_to_le16(len);
3276}
3277
3278static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3279 struct sk_buff *skb)
3280{
3281 struct hci_dev *hdev = conn->hdev;
3282 struct sk_buff *list;
3283 __u16 flags;
3284
3285 skb->len = skb_headlen(skb);
3286 skb->data_len = 0;
3287
3288 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3289
3290 list = skb_shinfo(skb)->frag_list;
3291
3292 flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3293 hci_add_iso_hdr(skb, conn->handle, flags);
3294
3295 if (!list) {
3296 /* Non fragmented */
3297 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3298
3299 skb_queue_tail(queue, skb);
3300 } else {
3301 /* Fragmented */
3302 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3303
3304 skb_shinfo(skb)->frag_list = NULL;
3305
3306 __skb_queue_tail(queue, skb);
3307
3308 do {
3309 skb = list; list = list->next;
3310
3311 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3312 flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3313 0x00);
3314 hci_add_iso_hdr(skb, conn->handle, flags);
3315
3316 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3317
3318 __skb_queue_tail(queue, skb);
3319 } while (list);
3320 }
3321}
3322
3323void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3324{
3325 struct hci_dev *hdev = conn->hdev;
3326
3327 BT_DBG("%s len %d", hdev->name, skb->len);
3328
3329 hci_queue_iso(conn, &conn->data_q, skb);
3330
3331 queue_work(hdev->workqueue, &hdev->tx_work);
3332}
3333
3334/* ---- HCI TX task (outgoing data) ---- */
3335
3336/* HCI Connection scheduler */
3337static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3338{
3339 struct hci_dev *hdev;
3340 int cnt, q;
3341
3342 if (!conn) {
3343 *quote = 0;
3344 return;
3345 }
3346
3347 hdev = conn->hdev;
3348
3349 switch (conn->type) {
3350 case ACL_LINK:
3351 cnt = hdev->acl_cnt;
3352 break;
3353 case AMP_LINK:
3354 cnt = hdev->block_cnt;
3355 break;
3356 case SCO_LINK:
3357 case ESCO_LINK:
3358 cnt = hdev->sco_cnt;
3359 break;
3360 case LE_LINK:
3361 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3362 break;
3363 case ISO_LINK:
3364 cnt = hdev->iso_mtu ? hdev->iso_cnt :
3365 hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3366 break;
3367 default:
3368 cnt = 0;
3369 bt_dev_err(hdev, "unknown link type %d", conn->type);
3370 }
3371
3372 q = cnt / num;
3373 *quote = q ? q : 1;
3374}
3375
3376static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3377 int *quote)
3378{
3379 struct hci_conn_hash *h = &hdev->conn_hash;
3380 struct hci_conn *conn = NULL, *c;
3381 unsigned int num = 0, min = ~0;
3382
3383 /* We don't have to lock device here. Connections are always
3384 * added and removed with TX task disabled. */
3385
3386 rcu_read_lock();
3387
3388 list_for_each_entry_rcu(c, &h->list, list) {
3389 if (c->type != type || skb_queue_empty(&c->data_q))
3390 continue;
3391
3392 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3393 continue;
3394
3395 num++;
3396
3397 if (c->sent < min) {
3398 min = c->sent;
3399 conn = c;
3400 }
3401
3402 if (hci_conn_num(hdev, type) == num)
3403 break;
3404 }
3405
3406 rcu_read_unlock();
3407
3408 hci_quote_sent(conn, num, quote);
3409
3410 BT_DBG("conn %p quote %d", conn, *quote);
3411 return conn;
3412}
3413
3414static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3415{
3416 struct hci_conn_hash *h = &hdev->conn_hash;
3417 struct hci_conn *c;
3418
3419 bt_dev_err(hdev, "link tx timeout");
3420
3421 rcu_read_lock();
3422
3423 /* Kill stalled connections */
3424 list_for_each_entry_rcu(c, &h->list, list) {
3425 if (c->type == type && c->sent) {
3426 bt_dev_err(hdev, "killing stalled connection %pMR",
3427 &c->dst);
3428 /* hci_disconnect might sleep, so, we have to release
3429 * the RCU read lock before calling it.
3430 */
3431 rcu_read_unlock();
3432 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3433 rcu_read_lock();
3434 }
3435 }
3436
3437 rcu_read_unlock();
3438}
3439
3440static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3441 int *quote)
3442{
3443 struct hci_conn_hash *h = &hdev->conn_hash;
3444 struct hci_chan *chan = NULL;
3445 unsigned int num = 0, min = ~0, cur_prio = 0;
3446 struct hci_conn *conn;
3447 int conn_num = 0;
3448
3449 BT_DBG("%s", hdev->name);
3450
3451 rcu_read_lock();
3452
3453 list_for_each_entry_rcu(conn, &h->list, list) {
3454 struct hci_chan *tmp;
3455
3456 if (conn->type != type)
3457 continue;
3458
3459 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3460 continue;
3461
3462 conn_num++;
3463
3464 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3465 struct sk_buff *skb;
3466
3467 if (skb_queue_empty(&tmp->data_q))
3468 continue;
3469
3470 skb = skb_peek(&tmp->data_q);
3471 if (skb->priority < cur_prio)
3472 continue;
3473
3474 if (skb->priority > cur_prio) {
3475 num = 0;
3476 min = ~0;
3477 cur_prio = skb->priority;
3478 }
3479
3480 num++;
3481
3482 if (conn->sent < min) {
3483 min = conn->sent;
3484 chan = tmp;
3485 }
3486 }
3487
3488 if (hci_conn_num(hdev, type) == conn_num)
3489 break;
3490 }
3491
3492 rcu_read_unlock();
3493
3494 if (!chan)
3495 return NULL;
3496
3497 hci_quote_sent(chan->conn, num, quote);
3498
3499 BT_DBG("chan %p quote %d", chan, *quote);
3500 return chan;
3501}
3502
3503static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3504{
3505 struct hci_conn_hash *h = &hdev->conn_hash;
3506 struct hci_conn *conn;
3507 int num = 0;
3508
3509 BT_DBG("%s", hdev->name);
3510
3511 rcu_read_lock();
3512
3513 list_for_each_entry_rcu(conn, &h->list, list) {
3514 struct hci_chan *chan;
3515
3516 if (conn->type != type)
3517 continue;
3518
3519 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3520 continue;
3521
3522 num++;
3523
3524 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3525 struct sk_buff *skb;
3526
3527 if (chan->sent) {
3528 chan->sent = 0;
3529 continue;
3530 }
3531
3532 if (skb_queue_empty(&chan->data_q))
3533 continue;
3534
3535 skb = skb_peek(&chan->data_q);
3536 if (skb->priority >= HCI_PRIO_MAX - 1)
3537 continue;
3538
3539 skb->priority = HCI_PRIO_MAX - 1;
3540
3541 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3542 skb->priority);
3543 }
3544
3545 if (hci_conn_num(hdev, type) == num)
3546 break;
3547 }
3548
3549 rcu_read_unlock();
3550
3551}
3552
3553static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3554{
3555 /* Calculate count of blocks used by this packet */
3556 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3557}
3558
3559static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3560{
3561 unsigned long last_tx;
3562
3563 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3564 return;
3565
3566 switch (type) {
3567 case LE_LINK:
3568 last_tx = hdev->le_last_tx;
3569 break;
3570 default:
3571 last_tx = hdev->acl_last_tx;
3572 break;
3573 }
3574
3575 /* tx timeout must be longer than maximum link supervision timeout
3576 * (40.9 seconds)
3577 */
3578 if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3579 hci_link_tx_to(hdev, type);
3580}
3581
3582/* Schedule SCO */
3583static void hci_sched_sco(struct hci_dev *hdev)
3584{
3585 struct hci_conn *conn;
3586 struct sk_buff *skb;
3587 int quote;
3588
3589 BT_DBG("%s", hdev->name);
3590
3591 if (!hci_conn_num(hdev, SCO_LINK))
3592 return;
3593
3594 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
3595 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3596 BT_DBG("skb %p len %d", skb, skb->len);
3597 hci_send_frame(hdev, skb);
3598
3599 conn->sent++;
3600 if (conn->sent == ~0)
3601 conn->sent = 0;
3602 }
3603 }
3604}
3605
3606static void hci_sched_esco(struct hci_dev *hdev)
3607{
3608 struct hci_conn *conn;
3609 struct sk_buff *skb;
3610 int quote;
3611
3612 BT_DBG("%s", hdev->name);
3613
3614 if (!hci_conn_num(hdev, ESCO_LINK))
3615 return;
3616
3617 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3618 "e))) {
3619 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3620 BT_DBG("skb %p len %d", skb, skb->len);
3621 hci_send_frame(hdev, skb);
3622
3623 conn->sent++;
3624 if (conn->sent == ~0)
3625 conn->sent = 0;
3626 }
3627 }
3628}
3629
3630static void hci_sched_acl_pkt(struct hci_dev *hdev)
3631{
3632 unsigned int cnt = hdev->acl_cnt;
3633 struct hci_chan *chan;
3634 struct sk_buff *skb;
3635 int quote;
3636
3637 __check_timeout(hdev, cnt, ACL_LINK);
3638
3639 while (hdev->acl_cnt &&
3640 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
3641 u32 priority = (skb_peek(&chan->data_q))->priority;
3642 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3643 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3644 skb->len, skb->priority);
3645
3646 /* Stop if priority has changed */
3647 if (skb->priority < priority)
3648 break;
3649
3650 skb = skb_dequeue(&chan->data_q);
3651
3652 hci_conn_enter_active_mode(chan->conn,
3653 bt_cb(skb)->force_active);
3654
3655 hci_send_frame(hdev, skb);
3656 hdev->acl_last_tx = jiffies;
3657
3658 hdev->acl_cnt--;
3659 chan->sent++;
3660 chan->conn->sent++;
3661
3662 /* Send pending SCO packets right away */
3663 hci_sched_sco(hdev);
3664 hci_sched_esco(hdev);
3665 }
3666 }
3667
3668 if (cnt != hdev->acl_cnt)
3669 hci_prio_recalculate(hdev, ACL_LINK);
3670}
3671
3672static void hci_sched_acl_blk(struct hci_dev *hdev)
3673{
3674 unsigned int cnt = hdev->block_cnt;
3675 struct hci_chan *chan;
3676 struct sk_buff *skb;
3677 int quote;
3678 u8 type;
3679
3680 BT_DBG("%s", hdev->name);
3681
3682 if (hdev->dev_type == HCI_AMP)
3683 type = AMP_LINK;
3684 else
3685 type = ACL_LINK;
3686
3687 __check_timeout(hdev, cnt, type);
3688
3689 while (hdev->block_cnt > 0 &&
3690 (chan = hci_chan_sent(hdev, type, "e))) {
3691 u32 priority = (skb_peek(&chan->data_q))->priority;
3692 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3693 int blocks;
3694
3695 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3696 skb->len, skb->priority);
3697
3698 /* Stop if priority has changed */
3699 if (skb->priority < priority)
3700 break;
3701
3702 skb = skb_dequeue(&chan->data_q);
3703
3704 blocks = __get_blocks(hdev, skb);
3705 if (blocks > hdev->block_cnt)
3706 return;
3707
3708 hci_conn_enter_active_mode(chan->conn,
3709 bt_cb(skb)->force_active);
3710
3711 hci_send_frame(hdev, skb);
3712 hdev->acl_last_tx = jiffies;
3713
3714 hdev->block_cnt -= blocks;
3715 quote -= blocks;
3716
3717 chan->sent += blocks;
3718 chan->conn->sent += blocks;
3719 }
3720 }
3721
3722 if (cnt != hdev->block_cnt)
3723 hci_prio_recalculate(hdev, type);
3724}
3725
3726static void hci_sched_acl(struct hci_dev *hdev)
3727{
3728 BT_DBG("%s", hdev->name);
3729
3730 /* No ACL link over BR/EDR controller */
3731 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3732 return;
3733
3734 /* No AMP link over AMP controller */
3735 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3736 return;
3737
3738 switch (hdev->flow_ctl_mode) {
3739 case HCI_FLOW_CTL_MODE_PACKET_BASED:
3740 hci_sched_acl_pkt(hdev);
3741 break;
3742
3743 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3744 hci_sched_acl_blk(hdev);
3745 break;
3746 }
3747}
3748
3749static void hci_sched_le(struct hci_dev *hdev)
3750{
3751 struct hci_chan *chan;
3752 struct sk_buff *skb;
3753 int quote, cnt, tmp;
3754
3755 BT_DBG("%s", hdev->name);
3756
3757 if (!hci_conn_num(hdev, LE_LINK))
3758 return;
3759
3760 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3761
3762 __check_timeout(hdev, cnt, LE_LINK);
3763
3764 tmp = cnt;
3765 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
3766 u32 priority = (skb_peek(&chan->data_q))->priority;
3767 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3768 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3769 skb->len, skb->priority);
3770
3771 /* Stop if priority has changed */
3772 if (skb->priority < priority)
3773 break;
3774
3775 skb = skb_dequeue(&chan->data_q);
3776
3777 hci_send_frame(hdev, skb);
3778 hdev->le_last_tx = jiffies;
3779
3780 cnt--;
3781 chan->sent++;
3782 chan->conn->sent++;
3783
3784 /* Send pending SCO packets right away */
3785 hci_sched_sco(hdev);
3786 hci_sched_esco(hdev);
3787 }
3788 }
3789
3790 if (hdev->le_pkts)
3791 hdev->le_cnt = cnt;
3792 else
3793 hdev->acl_cnt = cnt;
3794
3795 if (cnt != tmp)
3796 hci_prio_recalculate(hdev, LE_LINK);
3797}
3798
3799/* Schedule CIS */
3800static void hci_sched_iso(struct hci_dev *hdev)
3801{
3802 struct hci_conn *conn;
3803 struct sk_buff *skb;
3804 int quote, *cnt;
3805
3806 BT_DBG("%s", hdev->name);
3807
3808 if (!hci_conn_num(hdev, ISO_LINK))
3809 return;
3810
3811 cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3812 hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3813 while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, "e))) {
3814 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3815 BT_DBG("skb %p len %d", skb, skb->len);
3816 hci_send_frame(hdev, skb);
3817
3818 conn->sent++;
3819 if (conn->sent == ~0)
3820 conn->sent = 0;
3821 (*cnt)--;
3822 }
3823 }
3824}
3825
3826static void hci_tx_work(struct work_struct *work)
3827{
3828 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3829 struct sk_buff *skb;
3830
3831 BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3832 hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3833
3834 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3835 /* Schedule queues and send stuff to HCI driver */
3836 hci_sched_sco(hdev);
3837 hci_sched_esco(hdev);
3838 hci_sched_iso(hdev);
3839 hci_sched_acl(hdev);
3840 hci_sched_le(hdev);
3841 }
3842
3843 /* Send next queued raw (unknown type) packet */
3844 while ((skb = skb_dequeue(&hdev->raw_q)))
3845 hci_send_frame(hdev, skb);
3846}
3847
3848/* ----- HCI RX task (incoming data processing) ----- */
3849
3850/* ACL data packet */
3851static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3852{
3853 struct hci_acl_hdr *hdr = (void *) skb->data;
3854 struct hci_conn *conn;
3855 __u16 handle, flags;
3856
3857 skb_pull(skb, HCI_ACL_HDR_SIZE);
3858
3859 handle = __le16_to_cpu(hdr->handle);
3860 flags = hci_flags(handle);
3861 handle = hci_handle(handle);
3862
3863 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3864 handle, flags);
3865
3866 hdev->stat.acl_rx++;
3867
3868 hci_dev_lock(hdev);
3869 conn = hci_conn_hash_lookup_handle(hdev, handle);
3870 hci_dev_unlock(hdev);
3871
3872 if (conn) {
3873 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3874
3875 /* Send to upper protocol */
3876 l2cap_recv_acldata(conn, skb, flags);
3877 return;
3878 } else {
3879 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3880 handle);
3881 }
3882
3883 kfree_skb(skb);
3884}
3885
3886/* SCO data packet */
3887static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3888{
3889 struct hci_sco_hdr *hdr = (void *) skb->data;
3890 struct hci_conn *conn;
3891 __u16 handle, flags;
3892
3893 skb_pull(skb, HCI_SCO_HDR_SIZE);
3894
3895 handle = __le16_to_cpu(hdr->handle);
3896 flags = hci_flags(handle);
3897 handle = hci_handle(handle);
3898
3899 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3900 handle, flags);
3901
3902 hdev->stat.sco_rx++;
3903
3904 hci_dev_lock(hdev);
3905 conn = hci_conn_hash_lookup_handle(hdev, handle);
3906 hci_dev_unlock(hdev);
3907
3908 if (conn) {
3909 /* Send to upper protocol */
3910 hci_skb_pkt_status(skb) = flags & 0x03;
3911 sco_recv_scodata(conn, skb);
3912 return;
3913 } else {
3914 bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3915 handle);
3916 }
3917
3918 kfree_skb(skb);
3919}
3920
3921static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3922{
3923 struct hci_iso_hdr *hdr;
3924 struct hci_conn *conn;
3925 __u16 handle, flags;
3926
3927 hdr = skb_pull_data(skb, sizeof(*hdr));
3928 if (!hdr) {
3929 bt_dev_err(hdev, "ISO packet too small");
3930 goto drop;
3931 }
3932
3933 handle = __le16_to_cpu(hdr->handle);
3934 flags = hci_flags(handle);
3935 handle = hci_handle(handle);
3936
3937 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3938 handle, flags);
3939
3940 hci_dev_lock(hdev);
3941 conn = hci_conn_hash_lookup_handle(hdev, handle);
3942 hci_dev_unlock(hdev);
3943
3944 if (!conn) {
3945 bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3946 handle);
3947 goto drop;
3948 }
3949
3950 /* Send to upper protocol */
3951 iso_recv(conn, skb, flags);
3952 return;
3953
3954drop:
3955 kfree_skb(skb);
3956}
3957
3958static bool hci_req_is_complete(struct hci_dev *hdev)
3959{
3960 struct sk_buff *skb;
3961
3962 skb = skb_peek(&hdev->cmd_q);
3963 if (!skb)
3964 return true;
3965
3966 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3967}
3968
3969static void hci_resend_last(struct hci_dev *hdev)
3970{
3971 struct hci_command_hdr *sent;
3972 struct sk_buff *skb;
3973 u16 opcode;
3974
3975 if (!hdev->sent_cmd)
3976 return;
3977
3978 sent = (void *) hdev->sent_cmd->data;
3979 opcode = __le16_to_cpu(sent->opcode);
3980 if (opcode == HCI_OP_RESET)
3981 return;
3982
3983 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3984 if (!skb)
3985 return;
3986
3987 skb_queue_head(&hdev->cmd_q, skb);
3988 queue_work(hdev->workqueue, &hdev->cmd_work);
3989}
3990
3991void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3992 hci_req_complete_t *req_complete,
3993 hci_req_complete_skb_t *req_complete_skb)
3994{
3995 struct sk_buff *skb;
3996 unsigned long flags;
3997
3998 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3999
4000 /* If the completed command doesn't match the last one that was
4001 * sent we need to do special handling of it.
4002 */
4003 if (!hci_sent_cmd_data(hdev, opcode)) {
4004 /* Some CSR based controllers generate a spontaneous
4005 * reset complete event during init and any pending
4006 * command will never be completed. In such a case we
4007 * need to resend whatever was the last sent
4008 * command.
4009 */
4010 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4011 hci_resend_last(hdev);
4012
4013 return;
4014 }
4015
4016 /* If we reach this point this event matches the last command sent */
4017 hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4018
4019 /* If the command succeeded and there's still more commands in
4020 * this request the request is not yet complete.
4021 */
4022 if (!status && !hci_req_is_complete(hdev))
4023 return;
4024
4025 /* If this was the last command in a request the complete
4026 * callback would be found in hdev->sent_cmd instead of the
4027 * command queue (hdev->cmd_q).
4028 */
4029 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4030 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4031 return;
4032 }
4033
4034 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4035 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4036 return;
4037 }
4038
4039 /* Remove all pending commands belonging to this request */
4040 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4041 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4042 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4043 __skb_queue_head(&hdev->cmd_q, skb);
4044 break;
4045 }
4046
4047 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4048 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4049 else
4050 *req_complete = bt_cb(skb)->hci.req_complete;
4051 dev_kfree_skb_irq(skb);
4052 }
4053 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4054}
4055
4056static void hci_rx_work(struct work_struct *work)
4057{
4058 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4059 struct sk_buff *skb;
4060
4061 BT_DBG("%s", hdev->name);
4062
4063 /* The kcov_remote functions used for collecting packet parsing
4064 * coverage information from this background thread and associate
4065 * the coverage with the syscall's thread which originally injected
4066 * the packet. This helps fuzzing the kernel.
4067 */
4068 for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4069 kcov_remote_start_common(skb_get_kcov_handle(skb));
4070
4071 /* Send copy to monitor */
4072 hci_send_to_monitor(hdev, skb);
4073
4074 if (atomic_read(&hdev->promisc)) {
4075 /* Send copy to the sockets */
4076 hci_send_to_sock(hdev, skb);
4077 }
4078
4079 /* If the device has been opened in HCI_USER_CHANNEL,
4080 * the userspace has exclusive access to device.
4081 * When device is HCI_INIT, we still need to process
4082 * the data packets to the driver in order
4083 * to complete its setup().
4084 */
4085 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4086 !test_bit(HCI_INIT, &hdev->flags)) {
4087 kfree_skb(skb);
4088 continue;
4089 }
4090
4091 if (test_bit(HCI_INIT, &hdev->flags)) {
4092 /* Don't process data packets in this states. */
4093 switch (hci_skb_pkt_type(skb)) {
4094 case HCI_ACLDATA_PKT:
4095 case HCI_SCODATA_PKT:
4096 case HCI_ISODATA_PKT:
4097 kfree_skb(skb);
4098 continue;
4099 }
4100 }
4101
4102 /* Process frame */
4103 switch (hci_skb_pkt_type(skb)) {
4104 case HCI_EVENT_PKT:
4105 BT_DBG("%s Event packet", hdev->name);
4106 hci_event_packet(hdev, skb);
4107 break;
4108
4109 case HCI_ACLDATA_PKT:
4110 BT_DBG("%s ACL data packet", hdev->name);
4111 hci_acldata_packet(hdev, skb);
4112 break;
4113
4114 case HCI_SCODATA_PKT:
4115 BT_DBG("%s SCO data packet", hdev->name);
4116 hci_scodata_packet(hdev, skb);
4117 break;
4118
4119 case HCI_ISODATA_PKT:
4120 BT_DBG("%s ISO data packet", hdev->name);
4121 hci_isodata_packet(hdev, skb);
4122 break;
4123
4124 default:
4125 kfree_skb(skb);
4126 break;
4127 }
4128 }
4129}
4130
4131static void hci_cmd_work(struct work_struct *work)
4132{
4133 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4134 struct sk_buff *skb;
4135
4136 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4137 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4138
4139 /* Send queued commands */
4140 if (atomic_read(&hdev->cmd_cnt)) {
4141 skb = skb_dequeue(&hdev->cmd_q);
4142 if (!skb)
4143 return;
4144
4145 kfree_skb(hdev->sent_cmd);
4146
4147 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4148 if (hdev->sent_cmd) {
4149 int res;
4150 if (hci_req_status_pend(hdev))
4151 hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4152 atomic_dec(&hdev->cmd_cnt);
4153
4154 res = hci_send_frame(hdev, skb);
4155 if (res < 0)
4156 __hci_cmd_sync_cancel(hdev, -res);
4157
4158 rcu_read_lock();
4159 if (test_bit(HCI_RESET, &hdev->flags) ||
4160 hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4161 cancel_delayed_work(&hdev->cmd_timer);
4162 else
4163 queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4164 HCI_CMD_TIMEOUT);
4165 rcu_read_unlock();
4166 } else {
4167 skb_queue_head(&hdev->cmd_q, skb);
4168 queue_work(hdev->workqueue, &hdev->cmd_work);
4169 }
4170 }
4171}
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24*/
25
26/* Bluetooth HCI core. */
27
28#include <linux/export.h>
29#include <linux/idr.h>
30#include <linux/rfkill.h>
31#include <linux/debugfs.h>
32#include <linux/crypto.h>
33#include <asm/unaligned.h>
34
35#include <net/bluetooth/bluetooth.h>
36#include <net/bluetooth/hci_core.h>
37#include <net/bluetooth/l2cap.h>
38#include <net/bluetooth/mgmt.h>
39
40#include "hci_request.h"
41#include "hci_debugfs.h"
42#include "smp.h"
43#include "leds.h"
44
45static void hci_rx_work(struct work_struct *work);
46static void hci_cmd_work(struct work_struct *work);
47static void hci_tx_work(struct work_struct *work);
48
49/* HCI device list */
50LIST_HEAD(hci_dev_list);
51DEFINE_RWLOCK(hci_dev_list_lock);
52
53/* HCI callback list */
54LIST_HEAD(hci_cb_list);
55DEFINE_MUTEX(hci_cb_list_lock);
56
57/* HCI ID Numbering */
58static DEFINE_IDA(hci_index_ida);
59
60/* ---- HCI debugfs entries ---- */
61
62static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
63 size_t count, loff_t *ppos)
64{
65 struct hci_dev *hdev = file->private_data;
66 char buf[3];
67
68 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
69 buf[1] = '\n';
70 buf[2] = '\0';
71 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
72}
73
74static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
75 size_t count, loff_t *ppos)
76{
77 struct hci_dev *hdev = file->private_data;
78 struct sk_buff *skb;
79 char buf[32];
80 size_t buf_size = min(count, (sizeof(buf)-1));
81 bool enable;
82
83 if (!test_bit(HCI_UP, &hdev->flags))
84 return -ENETDOWN;
85
86 if (copy_from_user(buf, user_buf, buf_size))
87 return -EFAULT;
88
89 buf[buf_size] = '\0';
90 if (strtobool(buf, &enable))
91 return -EINVAL;
92
93 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94 return -EALREADY;
95
96 hci_req_sync_lock(hdev);
97 if (enable)
98 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99 HCI_CMD_TIMEOUT);
100 else
101 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102 HCI_CMD_TIMEOUT);
103 hci_req_sync_unlock(hdev);
104
105 if (IS_ERR(skb))
106 return PTR_ERR(skb);
107
108 kfree_skb(skb);
109
110 hci_dev_change_flag(hdev, HCI_DUT_MODE);
111
112 return count;
113}
114
115static const struct file_operations dut_mode_fops = {
116 .open = simple_open,
117 .read = dut_mode_read,
118 .write = dut_mode_write,
119 .llseek = default_llseek,
120};
121
122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123 size_t count, loff_t *ppos)
124{
125 struct hci_dev *hdev = file->private_data;
126 char buf[3];
127
128 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129 buf[1] = '\n';
130 buf[2] = '\0';
131 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
132}
133
134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135 size_t count, loff_t *ppos)
136{
137 struct hci_dev *hdev = file->private_data;
138 char buf[32];
139 size_t buf_size = min(count, (sizeof(buf)-1));
140 bool enable;
141 int err;
142
143 if (copy_from_user(buf, user_buf, buf_size))
144 return -EFAULT;
145
146 buf[buf_size] = '\0';
147 if (strtobool(buf, &enable))
148 return -EINVAL;
149
150 /* When the diagnostic flags are not persistent and the transport
151 * is not active, then there is no need for the vendor callback.
152 *
153 * Instead just store the desired value. If needed the setting
154 * will be programmed when the controller gets powered on.
155 */
156 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
157 !test_bit(HCI_RUNNING, &hdev->flags))
158 goto done;
159
160 hci_req_sync_lock(hdev);
161 err = hdev->set_diag(hdev, enable);
162 hci_req_sync_unlock(hdev);
163
164 if (err < 0)
165 return err;
166
167done:
168 if (enable)
169 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
170 else
171 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
172
173 return count;
174}
175
176static const struct file_operations vendor_diag_fops = {
177 .open = simple_open,
178 .read = vendor_diag_read,
179 .write = vendor_diag_write,
180 .llseek = default_llseek,
181};
182
183static void hci_debugfs_create_basic(struct hci_dev *hdev)
184{
185 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
186 &dut_mode_fops);
187
188 if (hdev->set_diag)
189 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
190 &vendor_diag_fops);
191}
192
193static int hci_reset_req(struct hci_request *req, unsigned long opt)
194{
195 BT_DBG("%s %ld", req->hdev->name, opt);
196
197 /* Reset device */
198 set_bit(HCI_RESET, &req->hdev->flags);
199 hci_req_add(req, HCI_OP_RESET, 0, NULL);
200 return 0;
201}
202
203static void bredr_init(struct hci_request *req)
204{
205 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
206
207 /* Read Local Supported Features */
208 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
209
210 /* Read Local Version */
211 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
212
213 /* Read BD Address */
214 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
215}
216
217static void amp_init1(struct hci_request *req)
218{
219 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
220
221 /* Read Local Version */
222 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
223
224 /* Read Local Supported Commands */
225 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
226
227 /* Read Local AMP Info */
228 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
229
230 /* Read Data Blk size */
231 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
232
233 /* Read Flow Control Mode */
234 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
235
236 /* Read Location Data */
237 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
238}
239
240static int amp_init2(struct hci_request *req)
241{
242 /* Read Local Supported Features. Not all AMP controllers
243 * support this so it's placed conditionally in the second
244 * stage init.
245 */
246 if (req->hdev->commands[14] & 0x20)
247 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
248
249 return 0;
250}
251
252static int hci_init1_req(struct hci_request *req, unsigned long opt)
253{
254 struct hci_dev *hdev = req->hdev;
255
256 BT_DBG("%s %ld", hdev->name, opt);
257
258 /* Reset */
259 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
260 hci_reset_req(req, 0);
261
262 switch (hdev->dev_type) {
263 case HCI_BREDR:
264 bredr_init(req);
265 break;
266
267 case HCI_AMP:
268 amp_init1(req);
269 break;
270
271 default:
272 BT_ERR("Unknown device type %d", hdev->dev_type);
273 break;
274 }
275
276 return 0;
277}
278
279static void bredr_setup(struct hci_request *req)
280{
281 __le16 param;
282 __u8 flt_type;
283
284 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
285 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
286
287 /* Read Class of Device */
288 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
289
290 /* Read Local Name */
291 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
292
293 /* Read Voice Setting */
294 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
295
296 /* Read Number of Supported IAC */
297 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
298
299 /* Read Current IAC LAP */
300 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
301
302 /* Clear Event Filters */
303 flt_type = HCI_FLT_CLEAR_ALL;
304 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
305
306 /* Connection accept timeout ~20 secs */
307 param = cpu_to_le16(0x7d00);
308 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m);
309}
310
311static void le_setup(struct hci_request *req)
312{
313 struct hci_dev *hdev = req->hdev;
314
315 /* Read LE Buffer Size */
316 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
317
318 /* Read LE Local Supported Features */
319 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
320
321 /* Read LE Supported States */
322 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
323
324 /* LE-only controllers have LE implicitly enabled */
325 if (!lmp_bredr_capable(hdev))
326 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
327}
328
329static void hci_setup_event_mask(struct hci_request *req)
330{
331 struct hci_dev *hdev = req->hdev;
332
333 /* The second byte is 0xff instead of 0x9f (two reserved bits
334 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
335 * command otherwise.
336 */
337 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
338
339 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
340 * any event mask for pre 1.2 devices.
341 */
342 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
343 return;
344
345 if (lmp_bredr_capable(hdev)) {
346 events[4] |= 0x01; /* Flow Specification Complete */
347 } else {
348 /* Use a different default for LE-only devices */
349 memset(events, 0, sizeof(events));
350 events[1] |= 0x20; /* Command Complete */
351 events[1] |= 0x40; /* Command Status */
352 events[1] |= 0x80; /* Hardware Error */
353
354 /* If the controller supports the Disconnect command, enable
355 * the corresponding event. In addition enable packet flow
356 * control related events.
357 */
358 if (hdev->commands[0] & 0x20) {
359 events[0] |= 0x10; /* Disconnection Complete */
360 events[2] |= 0x04; /* Number of Completed Packets */
361 events[3] |= 0x02; /* Data Buffer Overflow */
362 }
363
364 /* If the controller supports the Read Remote Version
365 * Information command, enable the corresponding event.
366 */
367 if (hdev->commands[2] & 0x80)
368 events[1] |= 0x08; /* Read Remote Version Information
369 * Complete
370 */
371
372 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
373 events[0] |= 0x80; /* Encryption Change */
374 events[5] |= 0x80; /* Encryption Key Refresh Complete */
375 }
376 }
377
378 if (lmp_inq_rssi_capable(hdev) ||
379 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
380 events[4] |= 0x02; /* Inquiry Result with RSSI */
381
382 if (lmp_ext_feat_capable(hdev))
383 events[4] |= 0x04; /* Read Remote Extended Features Complete */
384
385 if (lmp_esco_capable(hdev)) {
386 events[5] |= 0x08; /* Synchronous Connection Complete */
387 events[5] |= 0x10; /* Synchronous Connection Changed */
388 }
389
390 if (lmp_sniffsubr_capable(hdev))
391 events[5] |= 0x20; /* Sniff Subrating */
392
393 if (lmp_pause_enc_capable(hdev))
394 events[5] |= 0x80; /* Encryption Key Refresh Complete */
395
396 if (lmp_ext_inq_capable(hdev))
397 events[5] |= 0x40; /* Extended Inquiry Result */
398
399 if (lmp_no_flush_capable(hdev))
400 events[7] |= 0x01; /* Enhanced Flush Complete */
401
402 if (lmp_lsto_capable(hdev))
403 events[6] |= 0x80; /* Link Supervision Timeout Changed */
404
405 if (lmp_ssp_capable(hdev)) {
406 events[6] |= 0x01; /* IO Capability Request */
407 events[6] |= 0x02; /* IO Capability Response */
408 events[6] |= 0x04; /* User Confirmation Request */
409 events[6] |= 0x08; /* User Passkey Request */
410 events[6] |= 0x10; /* Remote OOB Data Request */
411 events[6] |= 0x20; /* Simple Pairing Complete */
412 events[7] |= 0x04; /* User Passkey Notification */
413 events[7] |= 0x08; /* Keypress Notification */
414 events[7] |= 0x10; /* Remote Host Supported
415 * Features Notification
416 */
417 }
418
419 if (lmp_le_capable(hdev))
420 events[7] |= 0x20; /* LE Meta-Event */
421
422 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
423}
424
425static int hci_init2_req(struct hci_request *req, unsigned long opt)
426{
427 struct hci_dev *hdev = req->hdev;
428
429 if (hdev->dev_type == HCI_AMP)
430 return amp_init2(req);
431
432 if (lmp_bredr_capable(hdev))
433 bredr_setup(req);
434 else
435 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
436
437 if (lmp_le_capable(hdev))
438 le_setup(req);
439
440 /* All Bluetooth 1.2 and later controllers should support the
441 * HCI command for reading the local supported commands.
442 *
443 * Unfortunately some controllers indicate Bluetooth 1.2 support,
444 * but do not have support for this command. If that is the case,
445 * the driver can quirk the behavior and skip reading the local
446 * supported commands.
447 */
448 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
449 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
450 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
451
452 if (lmp_ssp_capable(hdev)) {
453 /* When SSP is available, then the host features page
454 * should also be available as well. However some
455 * controllers list the max_page as 0 as long as SSP
456 * has not been enabled. To achieve proper debugging
457 * output, force the minimum max_page to 1 at least.
458 */
459 hdev->max_page = 0x01;
460
461 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
462 u8 mode = 0x01;
463
464 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
465 sizeof(mode), &mode);
466 } else {
467 struct hci_cp_write_eir cp;
468
469 memset(hdev->eir, 0, sizeof(hdev->eir));
470 memset(&cp, 0, sizeof(cp));
471
472 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
473 }
474 }
475
476 if (lmp_inq_rssi_capable(hdev) ||
477 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
478 u8 mode;
479
480 /* If Extended Inquiry Result events are supported, then
481 * they are clearly preferred over Inquiry Result with RSSI
482 * events.
483 */
484 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
485
486 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
487 }
488
489 if (lmp_inq_tx_pwr_capable(hdev))
490 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
491
492 if (lmp_ext_feat_capable(hdev)) {
493 struct hci_cp_read_local_ext_features cp;
494
495 cp.page = 0x01;
496 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
497 sizeof(cp), &cp);
498 }
499
500 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
501 u8 enable = 1;
502 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
503 &enable);
504 }
505
506 return 0;
507}
508
509static void hci_setup_link_policy(struct hci_request *req)
510{
511 struct hci_dev *hdev = req->hdev;
512 struct hci_cp_write_def_link_policy cp;
513 u16 link_policy = 0;
514
515 if (lmp_rswitch_capable(hdev))
516 link_policy |= HCI_LP_RSWITCH;
517 if (lmp_hold_capable(hdev))
518 link_policy |= HCI_LP_HOLD;
519 if (lmp_sniff_capable(hdev))
520 link_policy |= HCI_LP_SNIFF;
521 if (lmp_park_capable(hdev))
522 link_policy |= HCI_LP_PARK;
523
524 cp.policy = cpu_to_le16(link_policy);
525 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
526}
527
528static void hci_set_le_support(struct hci_request *req)
529{
530 struct hci_dev *hdev = req->hdev;
531 struct hci_cp_write_le_host_supported cp;
532
533 /* LE-only devices do not support explicit enablement */
534 if (!lmp_bredr_capable(hdev))
535 return;
536
537 memset(&cp, 0, sizeof(cp));
538
539 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
540 cp.le = 0x01;
541 cp.simul = 0x00;
542 }
543
544 if (cp.le != lmp_host_le_capable(hdev))
545 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
546 &cp);
547}
548
549static void hci_set_event_mask_page_2(struct hci_request *req)
550{
551 struct hci_dev *hdev = req->hdev;
552 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
553
554 /* If Connectionless Slave Broadcast master role is supported
555 * enable all necessary events for it.
556 */
557 if (lmp_csb_master_capable(hdev)) {
558 events[1] |= 0x40; /* Triggered Clock Capture */
559 events[1] |= 0x80; /* Synchronization Train Complete */
560 events[2] |= 0x10; /* Slave Page Response Timeout */
561 events[2] |= 0x20; /* CSB Channel Map Change */
562 }
563
564 /* If Connectionless Slave Broadcast slave role is supported
565 * enable all necessary events for it.
566 */
567 if (lmp_csb_slave_capable(hdev)) {
568 events[2] |= 0x01; /* Synchronization Train Received */
569 events[2] |= 0x02; /* CSB Receive */
570 events[2] |= 0x04; /* CSB Timeout */
571 events[2] |= 0x08; /* Truncated Page Complete */
572 }
573
574 /* Enable Authenticated Payload Timeout Expired event if supported */
575 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
576 events[2] |= 0x80;
577
578 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
579}
580
581static int hci_init3_req(struct hci_request *req, unsigned long opt)
582{
583 struct hci_dev *hdev = req->hdev;
584 u8 p;
585
586 hci_setup_event_mask(req);
587
588 if (hdev->commands[6] & 0x20 &&
589 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
590 struct hci_cp_read_stored_link_key cp;
591
592 bacpy(&cp.bdaddr, BDADDR_ANY);
593 cp.read_all = 0x01;
594 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
595 }
596
597 if (hdev->commands[5] & 0x10)
598 hci_setup_link_policy(req);
599
600 if (hdev->commands[8] & 0x01)
601 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
602
603 /* Some older Broadcom based Bluetooth 1.2 controllers do not
604 * support the Read Page Scan Type command. Check support for
605 * this command in the bit mask of supported commands.
606 */
607 if (hdev->commands[13] & 0x01)
608 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
609
610 if (lmp_le_capable(hdev)) {
611 u8 events[8];
612
613 memset(events, 0, sizeof(events));
614
615 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
616 events[0] |= 0x10; /* LE Long Term Key Request */
617
618 /* If controller supports the Connection Parameters Request
619 * Link Layer Procedure, enable the corresponding event.
620 */
621 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
622 events[0] |= 0x20; /* LE Remote Connection
623 * Parameter Request
624 */
625
626 /* If the controller supports the Data Length Extension
627 * feature, enable the corresponding event.
628 */
629 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
630 events[0] |= 0x40; /* LE Data Length Change */
631
632 /* If the controller supports Extended Scanner Filter
633 * Policies, enable the correspondig event.
634 */
635 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
636 events[1] |= 0x04; /* LE Direct Advertising
637 * Report
638 */
639
640 /* If the controller supports the LE Set Scan Enable command,
641 * enable the corresponding advertising report event.
642 */
643 if (hdev->commands[26] & 0x08)
644 events[0] |= 0x02; /* LE Advertising Report */
645
646 /* If the controller supports the LE Create Connection
647 * command, enable the corresponding event.
648 */
649 if (hdev->commands[26] & 0x10)
650 events[0] |= 0x01; /* LE Connection Complete */
651
652 /* If the controller supports the LE Connection Update
653 * command, enable the corresponding event.
654 */
655 if (hdev->commands[27] & 0x04)
656 events[0] |= 0x04; /* LE Connection Update
657 * Complete
658 */
659
660 /* If the controller supports the LE Read Remote Used Features
661 * command, enable the corresponding event.
662 */
663 if (hdev->commands[27] & 0x20)
664 events[0] |= 0x08; /* LE Read Remote Used
665 * Features Complete
666 */
667
668 /* If the controller supports the LE Read Local P-256
669 * Public Key command, enable the corresponding event.
670 */
671 if (hdev->commands[34] & 0x02)
672 events[0] |= 0x80; /* LE Read Local P-256
673 * Public Key Complete
674 */
675
676 /* If the controller supports the LE Generate DHKey
677 * command, enable the corresponding event.
678 */
679 if (hdev->commands[34] & 0x04)
680 events[1] |= 0x01; /* LE Generate DHKey Complete */
681
682 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
683 events);
684
685 if (hdev->commands[25] & 0x40) {
686 /* Read LE Advertising Channel TX Power */
687 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
688 }
689
690 if (hdev->commands[26] & 0x40) {
691 /* Read LE White List Size */
692 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
693 0, NULL);
694 }
695
696 if (hdev->commands[26] & 0x80) {
697 /* Clear LE White List */
698 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
699 }
700
701 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
702 /* Read LE Maximum Data Length */
703 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
704
705 /* Read LE Suggested Default Data Length */
706 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
707 }
708
709 hci_set_le_support(req);
710 }
711
712 /* Read features beyond page 1 if available */
713 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
714 struct hci_cp_read_local_ext_features cp;
715
716 cp.page = p;
717 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
718 sizeof(cp), &cp);
719 }
720
721 return 0;
722}
723
724static int hci_init4_req(struct hci_request *req, unsigned long opt)
725{
726 struct hci_dev *hdev = req->hdev;
727
728 /* Some Broadcom based Bluetooth controllers do not support the
729 * Delete Stored Link Key command. They are clearly indicating its
730 * absence in the bit mask of supported commands.
731 *
732 * Check the supported commands and only if the the command is marked
733 * as supported send it. If not supported assume that the controller
734 * does not have actual support for stored link keys which makes this
735 * command redundant anyway.
736 *
737 * Some controllers indicate that they support handling deleting
738 * stored link keys, but they don't. The quirk lets a driver
739 * just disable this command.
740 */
741 if (hdev->commands[6] & 0x80 &&
742 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
743 struct hci_cp_delete_stored_link_key cp;
744
745 bacpy(&cp.bdaddr, BDADDR_ANY);
746 cp.delete_all = 0x01;
747 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
748 sizeof(cp), &cp);
749 }
750
751 /* Set event mask page 2 if the HCI command for it is supported */
752 if (hdev->commands[22] & 0x04)
753 hci_set_event_mask_page_2(req);
754
755 /* Read local codec list if the HCI command is supported */
756 if (hdev->commands[29] & 0x20)
757 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
758
759 /* Get MWS transport configuration if the HCI command is supported */
760 if (hdev->commands[30] & 0x08)
761 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
762
763 /* Check for Synchronization Train support */
764 if (lmp_sync_train_capable(hdev))
765 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
766
767 /* Enable Secure Connections if supported and configured */
768 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
769 bredr_sc_enabled(hdev)) {
770 u8 support = 0x01;
771
772 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
773 sizeof(support), &support);
774 }
775
776 return 0;
777}
778
779static int __hci_init(struct hci_dev *hdev)
780{
781 int err;
782
783 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
784 if (err < 0)
785 return err;
786
787 if (hci_dev_test_flag(hdev, HCI_SETUP))
788 hci_debugfs_create_basic(hdev);
789
790 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
791 if (err < 0)
792 return err;
793
794 /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
795 * BR/EDR/LE type controllers. AMP controllers only need the
796 * first two stages of init.
797 */
798 if (hdev->dev_type != HCI_BREDR)
799 return 0;
800
801 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
802 if (err < 0)
803 return err;
804
805 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
806 if (err < 0)
807 return err;
808
809 /* This function is only called when the controller is actually in
810 * configured state. When the controller is marked as unconfigured,
811 * this initialization procedure is not run.
812 *
813 * It means that it is possible that a controller runs through its
814 * setup phase and then discovers missing settings. If that is the
815 * case, then this function will not be called. It then will only
816 * be called during the config phase.
817 *
818 * So only when in setup phase or config phase, create the debugfs
819 * entries and register the SMP channels.
820 */
821 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
822 !hci_dev_test_flag(hdev, HCI_CONFIG))
823 return 0;
824
825 hci_debugfs_create_common(hdev);
826
827 if (lmp_bredr_capable(hdev))
828 hci_debugfs_create_bredr(hdev);
829
830 if (lmp_le_capable(hdev))
831 hci_debugfs_create_le(hdev);
832
833 return 0;
834}
835
836static int hci_init0_req(struct hci_request *req, unsigned long opt)
837{
838 struct hci_dev *hdev = req->hdev;
839
840 BT_DBG("%s %ld", hdev->name, opt);
841
842 /* Reset */
843 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
844 hci_reset_req(req, 0);
845
846 /* Read Local Version */
847 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
848
849 /* Read BD Address */
850 if (hdev->set_bdaddr)
851 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
852
853 return 0;
854}
855
856static int __hci_unconf_init(struct hci_dev *hdev)
857{
858 int err;
859
860 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
861 return 0;
862
863 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
864 if (err < 0)
865 return err;
866
867 if (hci_dev_test_flag(hdev, HCI_SETUP))
868 hci_debugfs_create_basic(hdev);
869
870 return 0;
871}
872
873static int hci_scan_req(struct hci_request *req, unsigned long opt)
874{
875 __u8 scan = opt;
876
877 BT_DBG("%s %x", req->hdev->name, scan);
878
879 /* Inquiry and Page scans */
880 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
881 return 0;
882}
883
884static int hci_auth_req(struct hci_request *req, unsigned long opt)
885{
886 __u8 auth = opt;
887
888 BT_DBG("%s %x", req->hdev->name, auth);
889
890 /* Authentication */
891 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
892 return 0;
893}
894
895static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
896{
897 __u8 encrypt = opt;
898
899 BT_DBG("%s %x", req->hdev->name, encrypt);
900
901 /* Encryption */
902 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
903 return 0;
904}
905
906static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
907{
908 __le16 policy = cpu_to_le16(opt);
909
910 BT_DBG("%s %x", req->hdev->name, policy);
911
912 /* Default link policy */
913 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
914 return 0;
915}
916
917/* Get HCI device by index.
918 * Device is held on return. */
919struct hci_dev *hci_dev_get(int index)
920{
921 struct hci_dev *hdev = NULL, *d;
922
923 BT_DBG("%d", index);
924
925 if (index < 0)
926 return NULL;
927
928 read_lock(&hci_dev_list_lock);
929 list_for_each_entry(d, &hci_dev_list, list) {
930 if (d->id == index) {
931 hdev = hci_dev_hold(d);
932 break;
933 }
934 }
935 read_unlock(&hci_dev_list_lock);
936 return hdev;
937}
938
939/* ---- Inquiry support ---- */
940
941bool hci_discovery_active(struct hci_dev *hdev)
942{
943 struct discovery_state *discov = &hdev->discovery;
944
945 switch (discov->state) {
946 case DISCOVERY_FINDING:
947 case DISCOVERY_RESOLVING:
948 return true;
949
950 default:
951 return false;
952 }
953}
954
955void hci_discovery_set_state(struct hci_dev *hdev, int state)
956{
957 int old_state = hdev->discovery.state;
958
959 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
960
961 if (old_state == state)
962 return;
963
964 hdev->discovery.state = state;
965
966 switch (state) {
967 case DISCOVERY_STOPPED:
968 hci_update_background_scan(hdev);
969
970 if (old_state != DISCOVERY_STARTING)
971 mgmt_discovering(hdev, 0);
972 break;
973 case DISCOVERY_STARTING:
974 break;
975 case DISCOVERY_FINDING:
976 mgmt_discovering(hdev, 1);
977 break;
978 case DISCOVERY_RESOLVING:
979 break;
980 case DISCOVERY_STOPPING:
981 break;
982 }
983}
984
985void hci_inquiry_cache_flush(struct hci_dev *hdev)
986{
987 struct discovery_state *cache = &hdev->discovery;
988 struct inquiry_entry *p, *n;
989
990 list_for_each_entry_safe(p, n, &cache->all, all) {
991 list_del(&p->all);
992 kfree(p);
993 }
994
995 INIT_LIST_HEAD(&cache->unknown);
996 INIT_LIST_HEAD(&cache->resolve);
997}
998
999struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1000 bdaddr_t *bdaddr)
1001{
1002 struct discovery_state *cache = &hdev->discovery;
1003 struct inquiry_entry *e;
1004
1005 BT_DBG("cache %p, %pMR", cache, bdaddr);
1006
1007 list_for_each_entry(e, &cache->all, all) {
1008 if (!bacmp(&e->data.bdaddr, bdaddr))
1009 return e;
1010 }
1011
1012 return NULL;
1013}
1014
1015struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1016 bdaddr_t *bdaddr)
1017{
1018 struct discovery_state *cache = &hdev->discovery;
1019 struct inquiry_entry *e;
1020
1021 BT_DBG("cache %p, %pMR", cache, bdaddr);
1022
1023 list_for_each_entry(e, &cache->unknown, list) {
1024 if (!bacmp(&e->data.bdaddr, bdaddr))
1025 return e;
1026 }
1027
1028 return NULL;
1029}
1030
1031struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1032 bdaddr_t *bdaddr,
1033 int state)
1034{
1035 struct discovery_state *cache = &hdev->discovery;
1036 struct inquiry_entry *e;
1037
1038 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1039
1040 list_for_each_entry(e, &cache->resolve, list) {
1041 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1042 return e;
1043 if (!bacmp(&e->data.bdaddr, bdaddr))
1044 return e;
1045 }
1046
1047 return NULL;
1048}
1049
1050void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1051 struct inquiry_entry *ie)
1052{
1053 struct discovery_state *cache = &hdev->discovery;
1054 struct list_head *pos = &cache->resolve;
1055 struct inquiry_entry *p;
1056
1057 list_del(&ie->list);
1058
1059 list_for_each_entry(p, &cache->resolve, list) {
1060 if (p->name_state != NAME_PENDING &&
1061 abs(p->data.rssi) >= abs(ie->data.rssi))
1062 break;
1063 pos = &p->list;
1064 }
1065
1066 list_add(&ie->list, pos);
1067}
1068
1069u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1070 bool name_known)
1071{
1072 struct discovery_state *cache = &hdev->discovery;
1073 struct inquiry_entry *ie;
1074 u32 flags = 0;
1075
1076 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1077
1078 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1079
1080 if (!data->ssp_mode)
1081 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1082
1083 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1084 if (ie) {
1085 if (!ie->data.ssp_mode)
1086 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1087
1088 if (ie->name_state == NAME_NEEDED &&
1089 data->rssi != ie->data.rssi) {
1090 ie->data.rssi = data->rssi;
1091 hci_inquiry_cache_update_resolve(hdev, ie);
1092 }
1093
1094 goto update;
1095 }
1096
1097 /* Entry not in the cache. Add new one. */
1098 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1099 if (!ie) {
1100 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1101 goto done;
1102 }
1103
1104 list_add(&ie->all, &cache->all);
1105
1106 if (name_known) {
1107 ie->name_state = NAME_KNOWN;
1108 } else {
1109 ie->name_state = NAME_NOT_KNOWN;
1110 list_add(&ie->list, &cache->unknown);
1111 }
1112
1113update:
1114 if (name_known && ie->name_state != NAME_KNOWN &&
1115 ie->name_state != NAME_PENDING) {
1116 ie->name_state = NAME_KNOWN;
1117 list_del(&ie->list);
1118 }
1119
1120 memcpy(&ie->data, data, sizeof(*data));
1121 ie->timestamp = jiffies;
1122 cache->timestamp = jiffies;
1123
1124 if (ie->name_state == NAME_NOT_KNOWN)
1125 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1126
1127done:
1128 return flags;
1129}
1130
1131static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1132{
1133 struct discovery_state *cache = &hdev->discovery;
1134 struct inquiry_info *info = (struct inquiry_info *) buf;
1135 struct inquiry_entry *e;
1136 int copied = 0;
1137
1138 list_for_each_entry(e, &cache->all, all) {
1139 struct inquiry_data *data = &e->data;
1140
1141 if (copied >= num)
1142 break;
1143
1144 bacpy(&info->bdaddr, &data->bdaddr);
1145 info->pscan_rep_mode = data->pscan_rep_mode;
1146 info->pscan_period_mode = data->pscan_period_mode;
1147 info->pscan_mode = data->pscan_mode;
1148 memcpy(info->dev_class, data->dev_class, 3);
1149 info->clock_offset = data->clock_offset;
1150
1151 info++;
1152 copied++;
1153 }
1154
1155 BT_DBG("cache %p, copied %d", cache, copied);
1156 return copied;
1157}
1158
1159static int hci_inq_req(struct hci_request *req, unsigned long opt)
1160{
1161 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1162 struct hci_dev *hdev = req->hdev;
1163 struct hci_cp_inquiry cp;
1164
1165 BT_DBG("%s", hdev->name);
1166
1167 if (test_bit(HCI_INQUIRY, &hdev->flags))
1168 return 0;
1169
1170 /* Start Inquiry */
1171 memcpy(&cp.lap, &ir->lap, 3);
1172 cp.length = ir->length;
1173 cp.num_rsp = ir->num_rsp;
1174 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1175
1176 return 0;
1177}
1178
1179int hci_inquiry(void __user *arg)
1180{
1181 __u8 __user *ptr = arg;
1182 struct hci_inquiry_req ir;
1183 struct hci_dev *hdev;
1184 int err = 0, do_inquiry = 0, max_rsp;
1185 long timeo;
1186 __u8 *buf;
1187
1188 if (copy_from_user(&ir, ptr, sizeof(ir)))
1189 return -EFAULT;
1190
1191 hdev = hci_dev_get(ir.dev_id);
1192 if (!hdev)
1193 return -ENODEV;
1194
1195 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1196 err = -EBUSY;
1197 goto done;
1198 }
1199
1200 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1201 err = -EOPNOTSUPP;
1202 goto done;
1203 }
1204
1205 if (hdev->dev_type != HCI_BREDR) {
1206 err = -EOPNOTSUPP;
1207 goto done;
1208 }
1209
1210 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1211 err = -EOPNOTSUPP;
1212 goto done;
1213 }
1214
1215 hci_dev_lock(hdev);
1216 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1217 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1218 hci_inquiry_cache_flush(hdev);
1219 do_inquiry = 1;
1220 }
1221 hci_dev_unlock(hdev);
1222
1223 timeo = ir.length * msecs_to_jiffies(2000);
1224
1225 if (do_inquiry) {
1226 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1227 timeo, NULL);
1228 if (err < 0)
1229 goto done;
1230
1231 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1232 * cleared). If it is interrupted by a signal, return -EINTR.
1233 */
1234 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1235 TASK_INTERRUPTIBLE))
1236 return -EINTR;
1237 }
1238
1239 /* for unlimited number of responses we will use buffer with
1240 * 255 entries
1241 */
1242 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1243
1244 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1245 * copy it to the user space.
1246 */
1247 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1248 if (!buf) {
1249 err = -ENOMEM;
1250 goto done;
1251 }
1252
1253 hci_dev_lock(hdev);
1254 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1255 hci_dev_unlock(hdev);
1256
1257 BT_DBG("num_rsp %d", ir.num_rsp);
1258
1259 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1260 ptr += sizeof(ir);
1261 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1262 ir.num_rsp))
1263 err = -EFAULT;
1264 } else
1265 err = -EFAULT;
1266
1267 kfree(buf);
1268
1269done:
1270 hci_dev_put(hdev);
1271 return err;
1272}
1273
1274static int hci_dev_do_open(struct hci_dev *hdev)
1275{
1276 int ret = 0;
1277
1278 BT_DBG("%s %p", hdev->name, hdev);
1279
1280 hci_req_sync_lock(hdev);
1281
1282 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1283 ret = -ENODEV;
1284 goto done;
1285 }
1286
1287 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1288 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1289 /* Check for rfkill but allow the HCI setup stage to
1290 * proceed (which in itself doesn't cause any RF activity).
1291 */
1292 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1293 ret = -ERFKILL;
1294 goto done;
1295 }
1296
1297 /* Check for valid public address or a configured static
1298 * random adddress, but let the HCI setup proceed to
1299 * be able to determine if there is a public address
1300 * or not.
1301 *
1302 * In case of user channel usage, it is not important
1303 * if a public address or static random address is
1304 * available.
1305 *
1306 * This check is only valid for BR/EDR controllers
1307 * since AMP controllers do not have an address.
1308 */
1309 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1310 hdev->dev_type == HCI_BREDR &&
1311 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1312 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1313 ret = -EADDRNOTAVAIL;
1314 goto done;
1315 }
1316 }
1317
1318 if (test_bit(HCI_UP, &hdev->flags)) {
1319 ret = -EALREADY;
1320 goto done;
1321 }
1322
1323 if (hdev->open(hdev)) {
1324 ret = -EIO;
1325 goto done;
1326 }
1327
1328 set_bit(HCI_RUNNING, &hdev->flags);
1329 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1330
1331 atomic_set(&hdev->cmd_cnt, 1);
1332 set_bit(HCI_INIT, &hdev->flags);
1333
1334 if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1335 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1336
1337 if (hdev->setup)
1338 ret = hdev->setup(hdev);
1339
1340 /* The transport driver can set these quirks before
1341 * creating the HCI device or in its setup callback.
1342 *
1343 * In case any of them is set, the controller has to
1344 * start up as unconfigured.
1345 */
1346 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1347 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1348 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1349
1350 /* For an unconfigured controller it is required to
1351 * read at least the version information provided by
1352 * the Read Local Version Information command.
1353 *
1354 * If the set_bdaddr driver callback is provided, then
1355 * also the original Bluetooth public device address
1356 * will be read using the Read BD Address command.
1357 */
1358 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1359 ret = __hci_unconf_init(hdev);
1360 }
1361
1362 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1363 /* If public address change is configured, ensure that
1364 * the address gets programmed. If the driver does not
1365 * support changing the public address, fail the power
1366 * on procedure.
1367 */
1368 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1369 hdev->set_bdaddr)
1370 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1371 else
1372 ret = -EADDRNOTAVAIL;
1373 }
1374
1375 if (!ret) {
1376 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1377 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1378 ret = __hci_init(hdev);
1379 if (!ret && hdev->post_init)
1380 ret = hdev->post_init(hdev);
1381 }
1382 }
1383
1384 /* If the HCI Reset command is clearing all diagnostic settings,
1385 * then they need to be reprogrammed after the init procedure
1386 * completed.
1387 */
1388 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1389 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1390 ret = hdev->set_diag(hdev, true);
1391
1392 clear_bit(HCI_INIT, &hdev->flags);
1393
1394 if (!ret) {
1395 hci_dev_hold(hdev);
1396 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1397 set_bit(HCI_UP, &hdev->flags);
1398 hci_sock_dev_event(hdev, HCI_DEV_UP);
1399 hci_leds_update_powered(hdev, true);
1400 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1401 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1402 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1403 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1404 hci_dev_test_flag(hdev, HCI_MGMT) &&
1405 hdev->dev_type == HCI_BREDR) {
1406 ret = __hci_req_hci_power_on(hdev);
1407 mgmt_power_on(hdev, ret);
1408 }
1409 } else {
1410 /* Init failed, cleanup */
1411 flush_work(&hdev->tx_work);
1412 flush_work(&hdev->cmd_work);
1413 flush_work(&hdev->rx_work);
1414
1415 skb_queue_purge(&hdev->cmd_q);
1416 skb_queue_purge(&hdev->rx_q);
1417
1418 if (hdev->flush)
1419 hdev->flush(hdev);
1420
1421 if (hdev->sent_cmd) {
1422 kfree_skb(hdev->sent_cmd);
1423 hdev->sent_cmd = NULL;
1424 }
1425
1426 clear_bit(HCI_RUNNING, &hdev->flags);
1427 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1428
1429 hdev->close(hdev);
1430 hdev->flags &= BIT(HCI_RAW);
1431 }
1432
1433done:
1434 hci_req_sync_unlock(hdev);
1435 return ret;
1436}
1437
1438/* ---- HCI ioctl helpers ---- */
1439
1440int hci_dev_open(__u16 dev)
1441{
1442 struct hci_dev *hdev;
1443 int err;
1444
1445 hdev = hci_dev_get(dev);
1446 if (!hdev)
1447 return -ENODEV;
1448
1449 /* Devices that are marked as unconfigured can only be powered
1450 * up as user channel. Trying to bring them up as normal devices
1451 * will result into a failure. Only user channel operation is
1452 * possible.
1453 *
1454 * When this function is called for a user channel, the flag
1455 * HCI_USER_CHANNEL will be set first before attempting to
1456 * open the device.
1457 */
1458 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1459 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1460 err = -EOPNOTSUPP;
1461 goto done;
1462 }
1463
1464 /* We need to ensure that no other power on/off work is pending
1465 * before proceeding to call hci_dev_do_open. This is
1466 * particularly important if the setup procedure has not yet
1467 * completed.
1468 */
1469 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1470 cancel_delayed_work(&hdev->power_off);
1471
1472 /* After this call it is guaranteed that the setup procedure
1473 * has finished. This means that error conditions like RFKILL
1474 * or no valid public or static random address apply.
1475 */
1476 flush_workqueue(hdev->req_workqueue);
1477
1478 /* For controllers not using the management interface and that
1479 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1480 * so that pairing works for them. Once the management interface
1481 * is in use this bit will be cleared again and userspace has
1482 * to explicitly enable it.
1483 */
1484 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1485 !hci_dev_test_flag(hdev, HCI_MGMT))
1486 hci_dev_set_flag(hdev, HCI_BONDABLE);
1487
1488 err = hci_dev_do_open(hdev);
1489
1490done:
1491 hci_dev_put(hdev);
1492 return err;
1493}
1494
1495/* This function requires the caller holds hdev->lock */
1496static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1497{
1498 struct hci_conn_params *p;
1499
1500 list_for_each_entry(p, &hdev->le_conn_params, list) {
1501 if (p->conn) {
1502 hci_conn_drop(p->conn);
1503 hci_conn_put(p->conn);
1504 p->conn = NULL;
1505 }
1506 list_del_init(&p->action);
1507 }
1508
1509 BT_DBG("All LE pending actions cleared");
1510}
1511
1512int hci_dev_do_close(struct hci_dev *hdev)
1513{
1514 bool auto_off;
1515
1516 BT_DBG("%s %p", hdev->name, hdev);
1517
1518 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1519 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1520 test_bit(HCI_UP, &hdev->flags)) {
1521 /* Execute vendor specific shutdown routine */
1522 if (hdev->shutdown)
1523 hdev->shutdown(hdev);
1524 }
1525
1526 cancel_delayed_work(&hdev->power_off);
1527
1528 hci_request_cancel_all(hdev);
1529 hci_req_sync_lock(hdev);
1530
1531 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1532 cancel_delayed_work_sync(&hdev->cmd_timer);
1533 hci_req_sync_unlock(hdev);
1534 return 0;
1535 }
1536
1537 hci_leds_update_powered(hdev, false);
1538
1539 /* Flush RX and TX works */
1540 flush_work(&hdev->tx_work);
1541 flush_work(&hdev->rx_work);
1542
1543 if (hdev->discov_timeout > 0) {
1544 hdev->discov_timeout = 0;
1545 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1546 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1547 }
1548
1549 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1550 cancel_delayed_work(&hdev->service_cache);
1551
1552 if (hci_dev_test_flag(hdev, HCI_MGMT))
1553 cancel_delayed_work_sync(&hdev->rpa_expired);
1554
1555 /* Avoid potential lockdep warnings from the *_flush() calls by
1556 * ensuring the workqueue is empty up front.
1557 */
1558 drain_workqueue(hdev->workqueue);
1559
1560 hci_dev_lock(hdev);
1561
1562 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1563
1564 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1565
1566 if (!auto_off && hdev->dev_type == HCI_BREDR &&
1567 hci_dev_test_flag(hdev, HCI_MGMT))
1568 __mgmt_power_off(hdev);
1569
1570 hci_inquiry_cache_flush(hdev);
1571 hci_pend_le_actions_clear(hdev);
1572 hci_conn_hash_flush(hdev);
1573 hci_dev_unlock(hdev);
1574
1575 smp_unregister(hdev);
1576
1577 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1578
1579 if (hdev->flush)
1580 hdev->flush(hdev);
1581
1582 /* Reset device */
1583 skb_queue_purge(&hdev->cmd_q);
1584 atomic_set(&hdev->cmd_cnt, 1);
1585 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1586 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1587 set_bit(HCI_INIT, &hdev->flags);
1588 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1589 clear_bit(HCI_INIT, &hdev->flags);
1590 }
1591
1592 /* flush cmd work */
1593 flush_work(&hdev->cmd_work);
1594
1595 /* Drop queues */
1596 skb_queue_purge(&hdev->rx_q);
1597 skb_queue_purge(&hdev->cmd_q);
1598 skb_queue_purge(&hdev->raw_q);
1599
1600 /* Drop last sent command */
1601 if (hdev->sent_cmd) {
1602 cancel_delayed_work_sync(&hdev->cmd_timer);
1603 kfree_skb(hdev->sent_cmd);
1604 hdev->sent_cmd = NULL;
1605 }
1606
1607 clear_bit(HCI_RUNNING, &hdev->flags);
1608 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1609
1610 /* After this point our queues are empty
1611 * and no tasks are scheduled. */
1612 hdev->close(hdev);
1613
1614 /* Clear flags */
1615 hdev->flags &= BIT(HCI_RAW);
1616 hci_dev_clear_volatile_flags(hdev);
1617
1618 /* Controller radio is available but is currently powered down */
1619 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1620
1621 memset(hdev->eir, 0, sizeof(hdev->eir));
1622 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1623 bacpy(&hdev->random_addr, BDADDR_ANY);
1624
1625 hci_req_sync_unlock(hdev);
1626
1627 hci_dev_put(hdev);
1628 return 0;
1629}
1630
1631int hci_dev_close(__u16 dev)
1632{
1633 struct hci_dev *hdev;
1634 int err;
1635
1636 hdev = hci_dev_get(dev);
1637 if (!hdev)
1638 return -ENODEV;
1639
1640 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1641 err = -EBUSY;
1642 goto done;
1643 }
1644
1645 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1646 cancel_delayed_work(&hdev->power_off);
1647
1648 err = hci_dev_do_close(hdev);
1649
1650done:
1651 hci_dev_put(hdev);
1652 return err;
1653}
1654
1655static int hci_dev_do_reset(struct hci_dev *hdev)
1656{
1657 int ret;
1658
1659 BT_DBG("%s %p", hdev->name, hdev);
1660
1661 hci_req_sync_lock(hdev);
1662
1663 /* Drop queues */
1664 skb_queue_purge(&hdev->rx_q);
1665 skb_queue_purge(&hdev->cmd_q);
1666
1667 /* Avoid potential lockdep warnings from the *_flush() calls by
1668 * ensuring the workqueue is empty up front.
1669 */
1670 drain_workqueue(hdev->workqueue);
1671
1672 hci_dev_lock(hdev);
1673 hci_inquiry_cache_flush(hdev);
1674 hci_conn_hash_flush(hdev);
1675 hci_dev_unlock(hdev);
1676
1677 if (hdev->flush)
1678 hdev->flush(hdev);
1679
1680 atomic_set(&hdev->cmd_cnt, 1);
1681 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1682
1683 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1684
1685 hci_req_sync_unlock(hdev);
1686 return ret;
1687}
1688
1689int hci_dev_reset(__u16 dev)
1690{
1691 struct hci_dev *hdev;
1692 int err;
1693
1694 hdev = hci_dev_get(dev);
1695 if (!hdev)
1696 return -ENODEV;
1697
1698 if (!test_bit(HCI_UP, &hdev->flags)) {
1699 err = -ENETDOWN;
1700 goto done;
1701 }
1702
1703 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1704 err = -EBUSY;
1705 goto done;
1706 }
1707
1708 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1709 err = -EOPNOTSUPP;
1710 goto done;
1711 }
1712
1713 err = hci_dev_do_reset(hdev);
1714
1715done:
1716 hci_dev_put(hdev);
1717 return err;
1718}
1719
1720int hci_dev_reset_stat(__u16 dev)
1721{
1722 struct hci_dev *hdev;
1723 int ret = 0;
1724
1725 hdev = hci_dev_get(dev);
1726 if (!hdev)
1727 return -ENODEV;
1728
1729 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1730 ret = -EBUSY;
1731 goto done;
1732 }
1733
1734 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1735 ret = -EOPNOTSUPP;
1736 goto done;
1737 }
1738
1739 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1740
1741done:
1742 hci_dev_put(hdev);
1743 return ret;
1744}
1745
1746static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1747{
1748 bool conn_changed, discov_changed;
1749
1750 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1751
1752 if ((scan & SCAN_PAGE))
1753 conn_changed = !hci_dev_test_and_set_flag(hdev,
1754 HCI_CONNECTABLE);
1755 else
1756 conn_changed = hci_dev_test_and_clear_flag(hdev,
1757 HCI_CONNECTABLE);
1758
1759 if ((scan & SCAN_INQUIRY)) {
1760 discov_changed = !hci_dev_test_and_set_flag(hdev,
1761 HCI_DISCOVERABLE);
1762 } else {
1763 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1764 discov_changed = hci_dev_test_and_clear_flag(hdev,
1765 HCI_DISCOVERABLE);
1766 }
1767
1768 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1769 return;
1770
1771 if (conn_changed || discov_changed) {
1772 /* In case this was disabled through mgmt */
1773 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1774
1775 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1776 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1777
1778 mgmt_new_settings(hdev);
1779 }
1780}
1781
1782int hci_dev_cmd(unsigned int cmd, void __user *arg)
1783{
1784 struct hci_dev *hdev;
1785 struct hci_dev_req dr;
1786 int err = 0;
1787
1788 if (copy_from_user(&dr, arg, sizeof(dr)))
1789 return -EFAULT;
1790
1791 hdev = hci_dev_get(dr.dev_id);
1792 if (!hdev)
1793 return -ENODEV;
1794
1795 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1796 err = -EBUSY;
1797 goto done;
1798 }
1799
1800 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1801 err = -EOPNOTSUPP;
1802 goto done;
1803 }
1804
1805 if (hdev->dev_type != HCI_BREDR) {
1806 err = -EOPNOTSUPP;
1807 goto done;
1808 }
1809
1810 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1811 err = -EOPNOTSUPP;
1812 goto done;
1813 }
1814
1815 switch (cmd) {
1816 case HCISETAUTH:
1817 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1818 HCI_INIT_TIMEOUT, NULL);
1819 break;
1820
1821 case HCISETENCRYPT:
1822 if (!lmp_encrypt_capable(hdev)) {
1823 err = -EOPNOTSUPP;
1824 break;
1825 }
1826
1827 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1828 /* Auth must be enabled first */
1829 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1830 HCI_INIT_TIMEOUT, NULL);
1831 if (err)
1832 break;
1833 }
1834
1835 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1836 HCI_INIT_TIMEOUT, NULL);
1837 break;
1838
1839 case HCISETSCAN:
1840 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1841 HCI_INIT_TIMEOUT, NULL);
1842
1843 /* Ensure that the connectable and discoverable states
1844 * get correctly modified as this was a non-mgmt change.
1845 */
1846 if (!err)
1847 hci_update_scan_state(hdev, dr.dev_opt);
1848 break;
1849
1850 case HCISETLINKPOL:
1851 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1852 HCI_INIT_TIMEOUT, NULL);
1853 break;
1854
1855 case HCISETLINKMODE:
1856 hdev->link_mode = ((__u16) dr.dev_opt) &
1857 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1858 break;
1859
1860 case HCISETPTYPE:
1861 hdev->pkt_type = (__u16) dr.dev_opt;
1862 break;
1863
1864 case HCISETACLMTU:
1865 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
1866 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1867 break;
1868
1869 case HCISETSCOMTU:
1870 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
1871 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1872 break;
1873
1874 default:
1875 err = -EINVAL;
1876 break;
1877 }
1878
1879done:
1880 hci_dev_put(hdev);
1881 return err;
1882}
1883
1884int hci_get_dev_list(void __user *arg)
1885{
1886 struct hci_dev *hdev;
1887 struct hci_dev_list_req *dl;
1888 struct hci_dev_req *dr;
1889 int n = 0, size, err;
1890 __u16 dev_num;
1891
1892 if (get_user(dev_num, (__u16 __user *) arg))
1893 return -EFAULT;
1894
1895 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1896 return -EINVAL;
1897
1898 size = sizeof(*dl) + dev_num * sizeof(*dr);
1899
1900 dl = kzalloc(size, GFP_KERNEL);
1901 if (!dl)
1902 return -ENOMEM;
1903
1904 dr = dl->dev_req;
1905
1906 read_lock(&hci_dev_list_lock);
1907 list_for_each_entry(hdev, &hci_dev_list, list) {
1908 unsigned long flags = hdev->flags;
1909
1910 /* When the auto-off is configured it means the transport
1911 * is running, but in that case still indicate that the
1912 * device is actually down.
1913 */
1914 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1915 flags &= ~BIT(HCI_UP);
1916
1917 (dr + n)->dev_id = hdev->id;
1918 (dr + n)->dev_opt = flags;
1919
1920 if (++n >= dev_num)
1921 break;
1922 }
1923 read_unlock(&hci_dev_list_lock);
1924
1925 dl->dev_num = n;
1926 size = sizeof(*dl) + n * sizeof(*dr);
1927
1928 err = copy_to_user(arg, dl, size);
1929 kfree(dl);
1930
1931 return err ? -EFAULT : 0;
1932}
1933
1934int hci_get_dev_info(void __user *arg)
1935{
1936 struct hci_dev *hdev;
1937 struct hci_dev_info di;
1938 unsigned long flags;
1939 int err = 0;
1940
1941 if (copy_from_user(&di, arg, sizeof(di)))
1942 return -EFAULT;
1943
1944 hdev = hci_dev_get(di.dev_id);
1945 if (!hdev)
1946 return -ENODEV;
1947
1948 /* When the auto-off is configured it means the transport
1949 * is running, but in that case still indicate that the
1950 * device is actually down.
1951 */
1952 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1953 flags = hdev->flags & ~BIT(HCI_UP);
1954 else
1955 flags = hdev->flags;
1956
1957 strcpy(di.name, hdev->name);
1958 di.bdaddr = hdev->bdaddr;
1959 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1960 di.flags = flags;
1961 di.pkt_type = hdev->pkt_type;
1962 if (lmp_bredr_capable(hdev)) {
1963 di.acl_mtu = hdev->acl_mtu;
1964 di.acl_pkts = hdev->acl_pkts;
1965 di.sco_mtu = hdev->sco_mtu;
1966 di.sco_pkts = hdev->sco_pkts;
1967 } else {
1968 di.acl_mtu = hdev->le_mtu;
1969 di.acl_pkts = hdev->le_pkts;
1970 di.sco_mtu = 0;
1971 di.sco_pkts = 0;
1972 }
1973 di.link_policy = hdev->link_policy;
1974 di.link_mode = hdev->link_mode;
1975
1976 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1977 memcpy(&di.features, &hdev->features, sizeof(di.features));
1978
1979 if (copy_to_user(arg, &di, sizeof(di)))
1980 err = -EFAULT;
1981
1982 hci_dev_put(hdev);
1983
1984 return err;
1985}
1986
1987/* ---- Interface to HCI drivers ---- */
1988
1989static int hci_rfkill_set_block(void *data, bool blocked)
1990{
1991 struct hci_dev *hdev = data;
1992
1993 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1994
1995 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1996 return -EBUSY;
1997
1998 if (blocked) {
1999 hci_dev_set_flag(hdev, HCI_RFKILLED);
2000 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2001 !hci_dev_test_flag(hdev, HCI_CONFIG))
2002 hci_dev_do_close(hdev);
2003 } else {
2004 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2005 }
2006
2007 return 0;
2008}
2009
2010static const struct rfkill_ops hci_rfkill_ops = {
2011 .set_block = hci_rfkill_set_block,
2012};
2013
2014static void hci_power_on(struct work_struct *work)
2015{
2016 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2017 int err;
2018
2019 BT_DBG("%s", hdev->name);
2020
2021 if (test_bit(HCI_UP, &hdev->flags) &&
2022 hci_dev_test_flag(hdev, HCI_MGMT) &&
2023 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2024 cancel_delayed_work(&hdev->power_off);
2025 hci_req_sync_lock(hdev);
2026 err = __hci_req_hci_power_on(hdev);
2027 hci_req_sync_unlock(hdev);
2028 mgmt_power_on(hdev, err);
2029 return;
2030 }
2031
2032 err = hci_dev_do_open(hdev);
2033 if (err < 0) {
2034 hci_dev_lock(hdev);
2035 mgmt_set_powered_failed(hdev, err);
2036 hci_dev_unlock(hdev);
2037 return;
2038 }
2039
2040 /* During the HCI setup phase, a few error conditions are
2041 * ignored and they need to be checked now. If they are still
2042 * valid, it is important to turn the device back off.
2043 */
2044 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2045 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2046 (hdev->dev_type == HCI_BREDR &&
2047 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2048 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2049 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2050 hci_dev_do_close(hdev);
2051 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2052 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2053 HCI_AUTO_OFF_TIMEOUT);
2054 }
2055
2056 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2057 /* For unconfigured devices, set the HCI_RAW flag
2058 * so that userspace can easily identify them.
2059 */
2060 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2061 set_bit(HCI_RAW, &hdev->flags);
2062
2063 /* For fully configured devices, this will send
2064 * the Index Added event. For unconfigured devices,
2065 * it will send Unconfigued Index Added event.
2066 *
2067 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2068 * and no event will be send.
2069 */
2070 mgmt_index_added(hdev);
2071 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2072 /* When the controller is now configured, then it
2073 * is important to clear the HCI_RAW flag.
2074 */
2075 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2076 clear_bit(HCI_RAW, &hdev->flags);
2077
2078 /* Powering on the controller with HCI_CONFIG set only
2079 * happens with the transition from unconfigured to
2080 * configured. This will send the Index Added event.
2081 */
2082 mgmt_index_added(hdev);
2083 }
2084}
2085
2086static void hci_power_off(struct work_struct *work)
2087{
2088 struct hci_dev *hdev = container_of(work, struct hci_dev,
2089 power_off.work);
2090
2091 BT_DBG("%s", hdev->name);
2092
2093 hci_dev_do_close(hdev);
2094}
2095
2096static void hci_error_reset(struct work_struct *work)
2097{
2098 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2099
2100 BT_DBG("%s", hdev->name);
2101
2102 if (hdev->hw_error)
2103 hdev->hw_error(hdev, hdev->hw_error_code);
2104 else
2105 BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2106 hdev->hw_error_code);
2107
2108 if (hci_dev_do_close(hdev))
2109 return;
2110
2111 hci_dev_do_open(hdev);
2112}
2113
2114void hci_uuids_clear(struct hci_dev *hdev)
2115{
2116 struct bt_uuid *uuid, *tmp;
2117
2118 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2119 list_del(&uuid->list);
2120 kfree(uuid);
2121 }
2122}
2123
2124void hci_link_keys_clear(struct hci_dev *hdev)
2125{
2126 struct link_key *key;
2127
2128 list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2129 list_del_rcu(&key->list);
2130 kfree_rcu(key, rcu);
2131 }
2132}
2133
2134void hci_smp_ltks_clear(struct hci_dev *hdev)
2135{
2136 struct smp_ltk *k;
2137
2138 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2139 list_del_rcu(&k->list);
2140 kfree_rcu(k, rcu);
2141 }
2142}
2143
2144void hci_smp_irks_clear(struct hci_dev *hdev)
2145{
2146 struct smp_irk *k;
2147
2148 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2149 list_del_rcu(&k->list);
2150 kfree_rcu(k, rcu);
2151 }
2152}
2153
2154struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2155{
2156 struct link_key *k;
2157
2158 rcu_read_lock();
2159 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2160 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2161 rcu_read_unlock();
2162 return k;
2163 }
2164 }
2165 rcu_read_unlock();
2166
2167 return NULL;
2168}
2169
2170static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2171 u8 key_type, u8 old_key_type)
2172{
2173 /* Legacy key */
2174 if (key_type < 0x03)
2175 return true;
2176
2177 /* Debug keys are insecure so don't store them persistently */
2178 if (key_type == HCI_LK_DEBUG_COMBINATION)
2179 return false;
2180
2181 /* Changed combination key and there's no previous one */
2182 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2183 return false;
2184
2185 /* Security mode 3 case */
2186 if (!conn)
2187 return true;
2188
2189 /* BR/EDR key derived using SC from an LE link */
2190 if (conn->type == LE_LINK)
2191 return true;
2192
2193 /* Neither local nor remote side had no-bonding as requirement */
2194 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2195 return true;
2196
2197 /* Local side had dedicated bonding as requirement */
2198 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2199 return true;
2200
2201 /* Remote side had dedicated bonding as requirement */
2202 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2203 return true;
2204
2205 /* If none of the above criteria match, then don't store the key
2206 * persistently */
2207 return false;
2208}
2209
2210static u8 ltk_role(u8 type)
2211{
2212 if (type == SMP_LTK)
2213 return HCI_ROLE_MASTER;
2214
2215 return HCI_ROLE_SLAVE;
2216}
2217
2218struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2219 u8 addr_type, u8 role)
2220{
2221 struct smp_ltk *k;
2222
2223 rcu_read_lock();
2224 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2225 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2226 continue;
2227
2228 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2229 rcu_read_unlock();
2230 return k;
2231 }
2232 }
2233 rcu_read_unlock();
2234
2235 return NULL;
2236}
2237
2238struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2239{
2240 struct smp_irk *irk;
2241
2242 rcu_read_lock();
2243 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2244 if (!bacmp(&irk->rpa, rpa)) {
2245 rcu_read_unlock();
2246 return irk;
2247 }
2248 }
2249
2250 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2251 if (smp_irk_matches(hdev, irk->val, rpa)) {
2252 bacpy(&irk->rpa, rpa);
2253 rcu_read_unlock();
2254 return irk;
2255 }
2256 }
2257 rcu_read_unlock();
2258
2259 return NULL;
2260}
2261
2262struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2263 u8 addr_type)
2264{
2265 struct smp_irk *irk;
2266
2267 /* Identity Address must be public or static random */
2268 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2269 return NULL;
2270
2271 rcu_read_lock();
2272 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2273 if (addr_type == irk->addr_type &&
2274 bacmp(bdaddr, &irk->bdaddr) == 0) {
2275 rcu_read_unlock();
2276 return irk;
2277 }
2278 }
2279 rcu_read_unlock();
2280
2281 return NULL;
2282}
2283
2284struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2285 bdaddr_t *bdaddr, u8 *val, u8 type,
2286 u8 pin_len, bool *persistent)
2287{
2288 struct link_key *key, *old_key;
2289 u8 old_key_type;
2290
2291 old_key = hci_find_link_key(hdev, bdaddr);
2292 if (old_key) {
2293 old_key_type = old_key->type;
2294 key = old_key;
2295 } else {
2296 old_key_type = conn ? conn->key_type : 0xff;
2297 key = kzalloc(sizeof(*key), GFP_KERNEL);
2298 if (!key)
2299 return NULL;
2300 list_add_rcu(&key->list, &hdev->link_keys);
2301 }
2302
2303 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2304
2305 /* Some buggy controller combinations generate a changed
2306 * combination key for legacy pairing even when there's no
2307 * previous key */
2308 if (type == HCI_LK_CHANGED_COMBINATION &&
2309 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2310 type = HCI_LK_COMBINATION;
2311 if (conn)
2312 conn->key_type = type;
2313 }
2314
2315 bacpy(&key->bdaddr, bdaddr);
2316 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2317 key->pin_len = pin_len;
2318
2319 if (type == HCI_LK_CHANGED_COMBINATION)
2320 key->type = old_key_type;
2321 else
2322 key->type = type;
2323
2324 if (persistent)
2325 *persistent = hci_persistent_key(hdev, conn, type,
2326 old_key_type);
2327
2328 return key;
2329}
2330
2331struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2332 u8 addr_type, u8 type, u8 authenticated,
2333 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2334{
2335 struct smp_ltk *key, *old_key;
2336 u8 role = ltk_role(type);
2337
2338 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2339 if (old_key)
2340 key = old_key;
2341 else {
2342 key = kzalloc(sizeof(*key), GFP_KERNEL);
2343 if (!key)
2344 return NULL;
2345 list_add_rcu(&key->list, &hdev->long_term_keys);
2346 }
2347
2348 bacpy(&key->bdaddr, bdaddr);
2349 key->bdaddr_type = addr_type;
2350 memcpy(key->val, tk, sizeof(key->val));
2351 key->authenticated = authenticated;
2352 key->ediv = ediv;
2353 key->rand = rand;
2354 key->enc_size = enc_size;
2355 key->type = type;
2356
2357 return key;
2358}
2359
2360struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2361 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2362{
2363 struct smp_irk *irk;
2364
2365 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2366 if (!irk) {
2367 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2368 if (!irk)
2369 return NULL;
2370
2371 bacpy(&irk->bdaddr, bdaddr);
2372 irk->addr_type = addr_type;
2373
2374 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2375 }
2376
2377 memcpy(irk->val, val, 16);
2378 bacpy(&irk->rpa, rpa);
2379
2380 return irk;
2381}
2382
2383int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2384{
2385 struct link_key *key;
2386
2387 key = hci_find_link_key(hdev, bdaddr);
2388 if (!key)
2389 return -ENOENT;
2390
2391 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2392
2393 list_del_rcu(&key->list);
2394 kfree_rcu(key, rcu);
2395
2396 return 0;
2397}
2398
2399int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2400{
2401 struct smp_ltk *k;
2402 int removed = 0;
2403
2404 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2405 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2406 continue;
2407
2408 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2409
2410 list_del_rcu(&k->list);
2411 kfree_rcu(k, rcu);
2412 removed++;
2413 }
2414
2415 return removed ? 0 : -ENOENT;
2416}
2417
2418void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2419{
2420 struct smp_irk *k;
2421
2422 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2423 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2424 continue;
2425
2426 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2427
2428 list_del_rcu(&k->list);
2429 kfree_rcu(k, rcu);
2430 }
2431}
2432
2433bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2434{
2435 struct smp_ltk *k;
2436 struct smp_irk *irk;
2437 u8 addr_type;
2438
2439 if (type == BDADDR_BREDR) {
2440 if (hci_find_link_key(hdev, bdaddr))
2441 return true;
2442 return false;
2443 }
2444
2445 /* Convert to HCI addr type which struct smp_ltk uses */
2446 if (type == BDADDR_LE_PUBLIC)
2447 addr_type = ADDR_LE_DEV_PUBLIC;
2448 else
2449 addr_type = ADDR_LE_DEV_RANDOM;
2450
2451 irk = hci_get_irk(hdev, bdaddr, addr_type);
2452 if (irk) {
2453 bdaddr = &irk->bdaddr;
2454 addr_type = irk->addr_type;
2455 }
2456
2457 rcu_read_lock();
2458 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2459 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2460 rcu_read_unlock();
2461 return true;
2462 }
2463 }
2464 rcu_read_unlock();
2465
2466 return false;
2467}
2468
2469/* HCI command timer function */
2470static void hci_cmd_timeout(struct work_struct *work)
2471{
2472 struct hci_dev *hdev = container_of(work, struct hci_dev,
2473 cmd_timer.work);
2474
2475 if (hdev->sent_cmd) {
2476 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2477 u16 opcode = __le16_to_cpu(sent->opcode);
2478
2479 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2480 } else {
2481 BT_ERR("%s command tx timeout", hdev->name);
2482 }
2483
2484 atomic_set(&hdev->cmd_cnt, 1);
2485 queue_work(hdev->workqueue, &hdev->cmd_work);
2486}
2487
2488struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2489 bdaddr_t *bdaddr, u8 bdaddr_type)
2490{
2491 struct oob_data *data;
2492
2493 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2494 if (bacmp(bdaddr, &data->bdaddr) != 0)
2495 continue;
2496 if (data->bdaddr_type != bdaddr_type)
2497 continue;
2498 return data;
2499 }
2500
2501 return NULL;
2502}
2503
2504int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2505 u8 bdaddr_type)
2506{
2507 struct oob_data *data;
2508
2509 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2510 if (!data)
2511 return -ENOENT;
2512
2513 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2514
2515 list_del(&data->list);
2516 kfree(data);
2517
2518 return 0;
2519}
2520
2521void hci_remote_oob_data_clear(struct hci_dev *hdev)
2522{
2523 struct oob_data *data, *n;
2524
2525 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2526 list_del(&data->list);
2527 kfree(data);
2528 }
2529}
2530
2531int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2532 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2533 u8 *hash256, u8 *rand256)
2534{
2535 struct oob_data *data;
2536
2537 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2538 if (!data) {
2539 data = kmalloc(sizeof(*data), GFP_KERNEL);
2540 if (!data)
2541 return -ENOMEM;
2542
2543 bacpy(&data->bdaddr, bdaddr);
2544 data->bdaddr_type = bdaddr_type;
2545 list_add(&data->list, &hdev->remote_oob_data);
2546 }
2547
2548 if (hash192 && rand192) {
2549 memcpy(data->hash192, hash192, sizeof(data->hash192));
2550 memcpy(data->rand192, rand192, sizeof(data->rand192));
2551 if (hash256 && rand256)
2552 data->present = 0x03;
2553 } else {
2554 memset(data->hash192, 0, sizeof(data->hash192));
2555 memset(data->rand192, 0, sizeof(data->rand192));
2556 if (hash256 && rand256)
2557 data->present = 0x02;
2558 else
2559 data->present = 0x00;
2560 }
2561
2562 if (hash256 && rand256) {
2563 memcpy(data->hash256, hash256, sizeof(data->hash256));
2564 memcpy(data->rand256, rand256, sizeof(data->rand256));
2565 } else {
2566 memset(data->hash256, 0, sizeof(data->hash256));
2567 memset(data->rand256, 0, sizeof(data->rand256));
2568 if (hash192 && rand192)
2569 data->present = 0x01;
2570 }
2571
2572 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2573
2574 return 0;
2575}
2576
2577/* This function requires the caller holds hdev->lock */
2578struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2579{
2580 struct adv_info *adv_instance;
2581
2582 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2583 if (adv_instance->instance == instance)
2584 return adv_instance;
2585 }
2586
2587 return NULL;
2588}
2589
2590/* This function requires the caller holds hdev->lock */
2591struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2592{
2593 struct adv_info *cur_instance;
2594
2595 cur_instance = hci_find_adv_instance(hdev, instance);
2596 if (!cur_instance)
2597 return NULL;
2598
2599 if (cur_instance == list_last_entry(&hdev->adv_instances,
2600 struct adv_info, list))
2601 return list_first_entry(&hdev->adv_instances,
2602 struct adv_info, list);
2603 else
2604 return list_next_entry(cur_instance, list);
2605}
2606
2607/* This function requires the caller holds hdev->lock */
2608int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2609{
2610 struct adv_info *adv_instance;
2611
2612 adv_instance = hci_find_adv_instance(hdev, instance);
2613 if (!adv_instance)
2614 return -ENOENT;
2615
2616 BT_DBG("%s removing %dMR", hdev->name, instance);
2617
2618 if (hdev->cur_adv_instance == instance) {
2619 if (hdev->adv_instance_timeout) {
2620 cancel_delayed_work(&hdev->adv_instance_expire);
2621 hdev->adv_instance_timeout = 0;
2622 }
2623 hdev->cur_adv_instance = 0x00;
2624 }
2625
2626 list_del(&adv_instance->list);
2627 kfree(adv_instance);
2628
2629 hdev->adv_instance_cnt--;
2630
2631 return 0;
2632}
2633
2634/* This function requires the caller holds hdev->lock */
2635void hci_adv_instances_clear(struct hci_dev *hdev)
2636{
2637 struct adv_info *adv_instance, *n;
2638
2639 if (hdev->adv_instance_timeout) {
2640 cancel_delayed_work(&hdev->adv_instance_expire);
2641 hdev->adv_instance_timeout = 0;
2642 }
2643
2644 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2645 list_del(&adv_instance->list);
2646 kfree(adv_instance);
2647 }
2648
2649 hdev->adv_instance_cnt = 0;
2650 hdev->cur_adv_instance = 0x00;
2651}
2652
2653/* This function requires the caller holds hdev->lock */
2654int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2655 u16 adv_data_len, u8 *adv_data,
2656 u16 scan_rsp_len, u8 *scan_rsp_data,
2657 u16 timeout, u16 duration)
2658{
2659 struct adv_info *adv_instance;
2660
2661 adv_instance = hci_find_adv_instance(hdev, instance);
2662 if (adv_instance) {
2663 memset(adv_instance->adv_data, 0,
2664 sizeof(adv_instance->adv_data));
2665 memset(adv_instance->scan_rsp_data, 0,
2666 sizeof(adv_instance->scan_rsp_data));
2667 } else {
2668 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2669 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2670 return -EOVERFLOW;
2671
2672 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2673 if (!adv_instance)
2674 return -ENOMEM;
2675
2676 adv_instance->pending = true;
2677 adv_instance->instance = instance;
2678 list_add(&adv_instance->list, &hdev->adv_instances);
2679 hdev->adv_instance_cnt++;
2680 }
2681
2682 adv_instance->flags = flags;
2683 adv_instance->adv_data_len = adv_data_len;
2684 adv_instance->scan_rsp_len = scan_rsp_len;
2685
2686 if (adv_data_len)
2687 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2688
2689 if (scan_rsp_len)
2690 memcpy(adv_instance->scan_rsp_data,
2691 scan_rsp_data, scan_rsp_len);
2692
2693 adv_instance->timeout = timeout;
2694 adv_instance->remaining_time = timeout;
2695
2696 if (duration == 0)
2697 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2698 else
2699 adv_instance->duration = duration;
2700
2701 BT_DBG("%s for %dMR", hdev->name, instance);
2702
2703 return 0;
2704}
2705
2706struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2707 bdaddr_t *bdaddr, u8 type)
2708{
2709 struct bdaddr_list *b;
2710
2711 list_for_each_entry(b, bdaddr_list, list) {
2712 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2713 return b;
2714 }
2715
2716 return NULL;
2717}
2718
2719void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2720{
2721 struct bdaddr_list *b, *n;
2722
2723 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2724 list_del(&b->list);
2725 kfree(b);
2726 }
2727}
2728
2729int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2730{
2731 struct bdaddr_list *entry;
2732
2733 if (!bacmp(bdaddr, BDADDR_ANY))
2734 return -EBADF;
2735
2736 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2737 return -EEXIST;
2738
2739 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2740 if (!entry)
2741 return -ENOMEM;
2742
2743 bacpy(&entry->bdaddr, bdaddr);
2744 entry->bdaddr_type = type;
2745
2746 list_add(&entry->list, list);
2747
2748 return 0;
2749}
2750
2751int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2752{
2753 struct bdaddr_list *entry;
2754
2755 if (!bacmp(bdaddr, BDADDR_ANY)) {
2756 hci_bdaddr_list_clear(list);
2757 return 0;
2758 }
2759
2760 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2761 if (!entry)
2762 return -ENOENT;
2763
2764 list_del(&entry->list);
2765 kfree(entry);
2766
2767 return 0;
2768}
2769
2770/* This function requires the caller holds hdev->lock */
2771struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2772 bdaddr_t *addr, u8 addr_type)
2773{
2774 struct hci_conn_params *params;
2775
2776 list_for_each_entry(params, &hdev->le_conn_params, list) {
2777 if (bacmp(¶ms->addr, addr) == 0 &&
2778 params->addr_type == addr_type) {
2779 return params;
2780 }
2781 }
2782
2783 return NULL;
2784}
2785
2786/* This function requires the caller holds hdev->lock */
2787struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2788 bdaddr_t *addr, u8 addr_type)
2789{
2790 struct hci_conn_params *param;
2791
2792 list_for_each_entry(param, list, action) {
2793 if (bacmp(¶m->addr, addr) == 0 &&
2794 param->addr_type == addr_type)
2795 return param;
2796 }
2797
2798 return NULL;
2799}
2800
2801/* This function requires the caller holds hdev->lock */
2802struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2803 bdaddr_t *addr, u8 addr_type)
2804{
2805 struct hci_conn_params *params;
2806
2807 params = hci_conn_params_lookup(hdev, addr, addr_type);
2808 if (params)
2809 return params;
2810
2811 params = kzalloc(sizeof(*params), GFP_KERNEL);
2812 if (!params) {
2813 BT_ERR("Out of memory");
2814 return NULL;
2815 }
2816
2817 bacpy(¶ms->addr, addr);
2818 params->addr_type = addr_type;
2819
2820 list_add(¶ms->list, &hdev->le_conn_params);
2821 INIT_LIST_HEAD(¶ms->action);
2822
2823 params->conn_min_interval = hdev->le_conn_min_interval;
2824 params->conn_max_interval = hdev->le_conn_max_interval;
2825 params->conn_latency = hdev->le_conn_latency;
2826 params->supervision_timeout = hdev->le_supv_timeout;
2827 params->auto_connect = HCI_AUTO_CONN_DISABLED;
2828
2829 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2830
2831 return params;
2832}
2833
2834static void hci_conn_params_free(struct hci_conn_params *params)
2835{
2836 if (params->conn) {
2837 hci_conn_drop(params->conn);
2838 hci_conn_put(params->conn);
2839 }
2840
2841 list_del(¶ms->action);
2842 list_del(¶ms->list);
2843 kfree(params);
2844}
2845
2846/* This function requires the caller holds hdev->lock */
2847void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2848{
2849 struct hci_conn_params *params;
2850
2851 params = hci_conn_params_lookup(hdev, addr, addr_type);
2852 if (!params)
2853 return;
2854
2855 hci_conn_params_free(params);
2856
2857 hci_update_background_scan(hdev);
2858
2859 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2860}
2861
2862/* This function requires the caller holds hdev->lock */
2863void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2864{
2865 struct hci_conn_params *params, *tmp;
2866
2867 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2868 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2869 continue;
2870
2871 /* If trying to estabilish one time connection to disabled
2872 * device, leave the params, but mark them as just once.
2873 */
2874 if (params->explicit_connect) {
2875 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2876 continue;
2877 }
2878
2879 list_del(¶ms->list);
2880 kfree(params);
2881 }
2882
2883 BT_DBG("All LE disabled connection parameters were removed");
2884}
2885
2886/* This function requires the caller holds hdev->lock */
2887static void hci_conn_params_clear_all(struct hci_dev *hdev)
2888{
2889 struct hci_conn_params *params, *tmp;
2890
2891 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2892 hci_conn_params_free(params);
2893
2894 BT_DBG("All LE connection parameters were removed");
2895}
2896
2897/* Copy the Identity Address of the controller.
2898 *
2899 * If the controller has a public BD_ADDR, then by default use that one.
2900 * If this is a LE only controller without a public address, default to
2901 * the static random address.
2902 *
2903 * For debugging purposes it is possible to force controllers with a
2904 * public address to use the static random address instead.
2905 *
2906 * In case BR/EDR has been disabled on a dual-mode controller and
2907 * userspace has configured a static address, then that address
2908 * becomes the identity address instead of the public BR/EDR address.
2909 */
2910void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2911 u8 *bdaddr_type)
2912{
2913 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2914 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2915 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2916 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2917 bacpy(bdaddr, &hdev->static_addr);
2918 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2919 } else {
2920 bacpy(bdaddr, &hdev->bdaddr);
2921 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2922 }
2923}
2924
2925/* Alloc HCI device */
2926struct hci_dev *hci_alloc_dev(void)
2927{
2928 struct hci_dev *hdev;
2929
2930 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2931 if (!hdev)
2932 return NULL;
2933
2934 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2935 hdev->esco_type = (ESCO_HV1);
2936 hdev->link_mode = (HCI_LM_ACCEPT);
2937 hdev->num_iac = 0x01; /* One IAC support is mandatory */
2938 hdev->io_capability = 0x03; /* No Input No Output */
2939 hdev->manufacturer = 0xffff; /* Default to internal use */
2940 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2941 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2942 hdev->adv_instance_cnt = 0;
2943 hdev->cur_adv_instance = 0x00;
2944 hdev->adv_instance_timeout = 0;
2945
2946 hdev->sniff_max_interval = 800;
2947 hdev->sniff_min_interval = 80;
2948
2949 hdev->le_adv_channel_map = 0x07;
2950 hdev->le_adv_min_interval = 0x0800;
2951 hdev->le_adv_max_interval = 0x0800;
2952 hdev->le_scan_interval = 0x0060;
2953 hdev->le_scan_window = 0x0030;
2954 hdev->le_conn_min_interval = 0x0028;
2955 hdev->le_conn_max_interval = 0x0038;
2956 hdev->le_conn_latency = 0x0000;
2957 hdev->le_supv_timeout = 0x002a;
2958 hdev->le_def_tx_len = 0x001b;
2959 hdev->le_def_tx_time = 0x0148;
2960 hdev->le_max_tx_len = 0x001b;
2961 hdev->le_max_tx_time = 0x0148;
2962 hdev->le_max_rx_len = 0x001b;
2963 hdev->le_max_rx_time = 0x0148;
2964
2965 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2966 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2967 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2968 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2969
2970 mutex_init(&hdev->lock);
2971 mutex_init(&hdev->req_lock);
2972
2973 INIT_LIST_HEAD(&hdev->mgmt_pending);
2974 INIT_LIST_HEAD(&hdev->blacklist);
2975 INIT_LIST_HEAD(&hdev->whitelist);
2976 INIT_LIST_HEAD(&hdev->uuids);
2977 INIT_LIST_HEAD(&hdev->link_keys);
2978 INIT_LIST_HEAD(&hdev->long_term_keys);
2979 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2980 INIT_LIST_HEAD(&hdev->remote_oob_data);
2981 INIT_LIST_HEAD(&hdev->le_white_list);
2982 INIT_LIST_HEAD(&hdev->le_conn_params);
2983 INIT_LIST_HEAD(&hdev->pend_le_conns);
2984 INIT_LIST_HEAD(&hdev->pend_le_reports);
2985 INIT_LIST_HEAD(&hdev->conn_hash.list);
2986 INIT_LIST_HEAD(&hdev->adv_instances);
2987
2988 INIT_WORK(&hdev->rx_work, hci_rx_work);
2989 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2990 INIT_WORK(&hdev->tx_work, hci_tx_work);
2991 INIT_WORK(&hdev->power_on, hci_power_on);
2992 INIT_WORK(&hdev->error_reset, hci_error_reset);
2993
2994 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2995
2996 skb_queue_head_init(&hdev->rx_q);
2997 skb_queue_head_init(&hdev->cmd_q);
2998 skb_queue_head_init(&hdev->raw_q);
2999
3000 init_waitqueue_head(&hdev->req_wait_q);
3001
3002 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3003
3004 hci_request_setup(hdev);
3005
3006 hci_init_sysfs(hdev);
3007 discovery_init(hdev);
3008
3009 return hdev;
3010}
3011EXPORT_SYMBOL(hci_alloc_dev);
3012
3013/* Free HCI device */
3014void hci_free_dev(struct hci_dev *hdev)
3015{
3016 /* will free via device release */
3017 put_device(&hdev->dev);
3018}
3019EXPORT_SYMBOL(hci_free_dev);
3020
3021/* Register HCI device */
3022int hci_register_dev(struct hci_dev *hdev)
3023{
3024 int id, error;
3025
3026 if (!hdev->open || !hdev->close || !hdev->send)
3027 return -EINVAL;
3028
3029 /* Do not allow HCI_AMP devices to register at index 0,
3030 * so the index can be used as the AMP controller ID.
3031 */
3032 switch (hdev->dev_type) {
3033 case HCI_BREDR:
3034 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3035 break;
3036 case HCI_AMP:
3037 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3038 break;
3039 default:
3040 return -EINVAL;
3041 }
3042
3043 if (id < 0)
3044 return id;
3045
3046 sprintf(hdev->name, "hci%d", id);
3047 hdev->id = id;
3048
3049 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3050
3051 hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3052 WQ_MEM_RECLAIM, 1, hdev->name);
3053 if (!hdev->workqueue) {
3054 error = -ENOMEM;
3055 goto err;
3056 }
3057
3058 hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3059 WQ_MEM_RECLAIM, 1, hdev->name);
3060 if (!hdev->req_workqueue) {
3061 destroy_workqueue(hdev->workqueue);
3062 error = -ENOMEM;
3063 goto err;
3064 }
3065
3066 if (!IS_ERR_OR_NULL(bt_debugfs))
3067 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3068
3069 dev_set_name(&hdev->dev, "%s", hdev->name);
3070
3071 error = device_add(&hdev->dev);
3072 if (error < 0)
3073 goto err_wqueue;
3074
3075 hci_leds_init(hdev);
3076
3077 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3078 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3079 hdev);
3080 if (hdev->rfkill) {
3081 if (rfkill_register(hdev->rfkill) < 0) {
3082 rfkill_destroy(hdev->rfkill);
3083 hdev->rfkill = NULL;
3084 }
3085 }
3086
3087 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3088 hci_dev_set_flag(hdev, HCI_RFKILLED);
3089
3090 hci_dev_set_flag(hdev, HCI_SETUP);
3091 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3092
3093 if (hdev->dev_type == HCI_BREDR) {
3094 /* Assume BR/EDR support until proven otherwise (such as
3095 * through reading supported features during init.
3096 */
3097 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3098 }
3099
3100 write_lock(&hci_dev_list_lock);
3101 list_add(&hdev->list, &hci_dev_list);
3102 write_unlock(&hci_dev_list_lock);
3103
3104 /* Devices that are marked for raw-only usage are unconfigured
3105 * and should not be included in normal operation.
3106 */
3107 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3108 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3109
3110 hci_sock_dev_event(hdev, HCI_DEV_REG);
3111 hci_dev_hold(hdev);
3112
3113 queue_work(hdev->req_workqueue, &hdev->power_on);
3114
3115 return id;
3116
3117err_wqueue:
3118 destroy_workqueue(hdev->workqueue);
3119 destroy_workqueue(hdev->req_workqueue);
3120err:
3121 ida_simple_remove(&hci_index_ida, hdev->id);
3122
3123 return error;
3124}
3125EXPORT_SYMBOL(hci_register_dev);
3126
3127/* Unregister HCI device */
3128void hci_unregister_dev(struct hci_dev *hdev)
3129{
3130 int id;
3131
3132 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3133
3134 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3135
3136 id = hdev->id;
3137
3138 write_lock(&hci_dev_list_lock);
3139 list_del(&hdev->list);
3140 write_unlock(&hci_dev_list_lock);
3141
3142 hci_dev_do_close(hdev);
3143
3144 cancel_work_sync(&hdev->power_on);
3145
3146 if (!test_bit(HCI_INIT, &hdev->flags) &&
3147 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3148 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3149 hci_dev_lock(hdev);
3150 mgmt_index_removed(hdev);
3151 hci_dev_unlock(hdev);
3152 }
3153
3154 /* mgmt_index_removed should take care of emptying the
3155 * pending list */
3156 BUG_ON(!list_empty(&hdev->mgmt_pending));
3157
3158 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3159
3160 if (hdev->rfkill) {
3161 rfkill_unregister(hdev->rfkill);
3162 rfkill_destroy(hdev->rfkill);
3163 }
3164
3165 device_del(&hdev->dev);
3166
3167 debugfs_remove_recursive(hdev->debugfs);
3168
3169 destroy_workqueue(hdev->workqueue);
3170 destroy_workqueue(hdev->req_workqueue);
3171
3172 hci_dev_lock(hdev);
3173 hci_bdaddr_list_clear(&hdev->blacklist);
3174 hci_bdaddr_list_clear(&hdev->whitelist);
3175 hci_uuids_clear(hdev);
3176 hci_link_keys_clear(hdev);
3177 hci_smp_ltks_clear(hdev);
3178 hci_smp_irks_clear(hdev);
3179 hci_remote_oob_data_clear(hdev);
3180 hci_adv_instances_clear(hdev);
3181 hci_bdaddr_list_clear(&hdev->le_white_list);
3182 hci_conn_params_clear_all(hdev);
3183 hci_discovery_filter_clear(hdev);
3184 hci_dev_unlock(hdev);
3185
3186 hci_dev_put(hdev);
3187
3188 ida_simple_remove(&hci_index_ida, id);
3189}
3190EXPORT_SYMBOL(hci_unregister_dev);
3191
3192/* Suspend HCI device */
3193int hci_suspend_dev(struct hci_dev *hdev)
3194{
3195 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3196 return 0;
3197}
3198EXPORT_SYMBOL(hci_suspend_dev);
3199
3200/* Resume HCI device */
3201int hci_resume_dev(struct hci_dev *hdev)
3202{
3203 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3204 return 0;
3205}
3206EXPORT_SYMBOL(hci_resume_dev);
3207
3208/* Reset HCI device */
3209int hci_reset_dev(struct hci_dev *hdev)
3210{
3211 const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3212 struct sk_buff *skb;
3213
3214 skb = bt_skb_alloc(3, GFP_ATOMIC);
3215 if (!skb)
3216 return -ENOMEM;
3217
3218 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3219 memcpy(skb_put(skb, 3), hw_err, 3);
3220
3221 /* Send Hardware Error to upper stack */
3222 return hci_recv_frame(hdev, skb);
3223}
3224EXPORT_SYMBOL(hci_reset_dev);
3225
3226/* Receive frame from HCI drivers */
3227int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3228{
3229 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3230 && !test_bit(HCI_INIT, &hdev->flags))) {
3231 kfree_skb(skb);
3232 return -ENXIO;
3233 }
3234
3235 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3236 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3237 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3238 kfree_skb(skb);
3239 return -EINVAL;
3240 }
3241
3242 /* Incoming skb */
3243 bt_cb(skb)->incoming = 1;
3244
3245 /* Time stamp */
3246 __net_timestamp(skb);
3247
3248 skb_queue_tail(&hdev->rx_q, skb);
3249 queue_work(hdev->workqueue, &hdev->rx_work);
3250
3251 return 0;
3252}
3253EXPORT_SYMBOL(hci_recv_frame);
3254
3255/* Receive diagnostic message from HCI drivers */
3256int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3257{
3258 /* Mark as diagnostic packet */
3259 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3260
3261 /* Time stamp */
3262 __net_timestamp(skb);
3263
3264 skb_queue_tail(&hdev->rx_q, skb);
3265 queue_work(hdev->workqueue, &hdev->rx_work);
3266
3267 return 0;
3268}
3269EXPORT_SYMBOL(hci_recv_diag);
3270
3271/* ---- Interface to upper protocols ---- */
3272
3273int hci_register_cb(struct hci_cb *cb)
3274{
3275 BT_DBG("%p name %s", cb, cb->name);
3276
3277 mutex_lock(&hci_cb_list_lock);
3278 list_add_tail(&cb->list, &hci_cb_list);
3279 mutex_unlock(&hci_cb_list_lock);
3280
3281 return 0;
3282}
3283EXPORT_SYMBOL(hci_register_cb);
3284
3285int hci_unregister_cb(struct hci_cb *cb)
3286{
3287 BT_DBG("%p name %s", cb, cb->name);
3288
3289 mutex_lock(&hci_cb_list_lock);
3290 list_del(&cb->list);
3291 mutex_unlock(&hci_cb_list_lock);
3292
3293 return 0;
3294}
3295EXPORT_SYMBOL(hci_unregister_cb);
3296
3297static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3298{
3299 int err;
3300
3301 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3302 skb->len);
3303
3304 /* Time stamp */
3305 __net_timestamp(skb);
3306
3307 /* Send copy to monitor */
3308 hci_send_to_monitor(hdev, skb);
3309
3310 if (atomic_read(&hdev->promisc)) {
3311 /* Send copy to the sockets */
3312 hci_send_to_sock(hdev, skb);
3313 }
3314
3315 /* Get rid of skb owner, prior to sending to the driver. */
3316 skb_orphan(skb);
3317
3318 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3319 kfree_skb(skb);
3320 return;
3321 }
3322
3323 err = hdev->send(hdev, skb);
3324 if (err < 0) {
3325 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3326 kfree_skb(skb);
3327 }
3328}
3329
3330/* Send HCI command */
3331int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3332 const void *param)
3333{
3334 struct sk_buff *skb;
3335
3336 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3337
3338 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3339 if (!skb) {
3340 BT_ERR("%s no memory for command", hdev->name);
3341 return -ENOMEM;
3342 }
3343
3344 /* Stand-alone HCI commands must be flagged as
3345 * single-command requests.
3346 */
3347 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3348
3349 skb_queue_tail(&hdev->cmd_q, skb);
3350 queue_work(hdev->workqueue, &hdev->cmd_work);
3351
3352 return 0;
3353}
3354
3355/* Get data from the previously sent command */
3356void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3357{
3358 struct hci_command_hdr *hdr;
3359
3360 if (!hdev->sent_cmd)
3361 return NULL;
3362
3363 hdr = (void *) hdev->sent_cmd->data;
3364
3365 if (hdr->opcode != cpu_to_le16(opcode))
3366 return NULL;
3367
3368 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3369
3370 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3371}
3372
3373/* Send HCI command and wait for command commplete event */
3374struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3375 const void *param, u32 timeout)
3376{
3377 struct sk_buff *skb;
3378
3379 if (!test_bit(HCI_UP, &hdev->flags))
3380 return ERR_PTR(-ENETDOWN);
3381
3382 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3383
3384 hci_req_sync_lock(hdev);
3385 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3386 hci_req_sync_unlock(hdev);
3387
3388 return skb;
3389}
3390EXPORT_SYMBOL(hci_cmd_sync);
3391
3392/* Send ACL data */
3393static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3394{
3395 struct hci_acl_hdr *hdr;
3396 int len = skb->len;
3397
3398 skb_push(skb, HCI_ACL_HDR_SIZE);
3399 skb_reset_transport_header(skb);
3400 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3401 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3402 hdr->dlen = cpu_to_le16(len);
3403}
3404
3405static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3406 struct sk_buff *skb, __u16 flags)
3407{
3408 struct hci_conn *conn = chan->conn;
3409 struct hci_dev *hdev = conn->hdev;
3410 struct sk_buff *list;
3411
3412 skb->len = skb_headlen(skb);
3413 skb->data_len = 0;
3414
3415 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3416
3417 switch (hdev->dev_type) {
3418 case HCI_BREDR:
3419 hci_add_acl_hdr(skb, conn->handle, flags);
3420 break;
3421 case HCI_AMP:
3422 hci_add_acl_hdr(skb, chan->handle, flags);
3423 break;
3424 default:
3425 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3426 return;
3427 }
3428
3429 list = skb_shinfo(skb)->frag_list;
3430 if (!list) {
3431 /* Non fragmented */
3432 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3433
3434 skb_queue_tail(queue, skb);
3435 } else {
3436 /* Fragmented */
3437 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3438
3439 skb_shinfo(skb)->frag_list = NULL;
3440
3441 /* Queue all fragments atomically. We need to use spin_lock_bh
3442 * here because of 6LoWPAN links, as there this function is
3443 * called from softirq and using normal spin lock could cause
3444 * deadlocks.
3445 */
3446 spin_lock_bh(&queue->lock);
3447
3448 __skb_queue_tail(queue, skb);
3449
3450 flags &= ~ACL_START;
3451 flags |= ACL_CONT;
3452 do {
3453 skb = list; list = list->next;
3454
3455 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3456 hci_add_acl_hdr(skb, conn->handle, flags);
3457
3458 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3459
3460 __skb_queue_tail(queue, skb);
3461 } while (list);
3462
3463 spin_unlock_bh(&queue->lock);
3464 }
3465}
3466
3467void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3468{
3469 struct hci_dev *hdev = chan->conn->hdev;
3470
3471 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3472
3473 hci_queue_acl(chan, &chan->data_q, skb, flags);
3474
3475 queue_work(hdev->workqueue, &hdev->tx_work);
3476}
3477
3478/* Send SCO data */
3479void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3480{
3481 struct hci_dev *hdev = conn->hdev;
3482 struct hci_sco_hdr hdr;
3483
3484 BT_DBG("%s len %d", hdev->name, skb->len);
3485
3486 hdr.handle = cpu_to_le16(conn->handle);
3487 hdr.dlen = skb->len;
3488
3489 skb_push(skb, HCI_SCO_HDR_SIZE);
3490 skb_reset_transport_header(skb);
3491 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3492
3493 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3494
3495 skb_queue_tail(&conn->data_q, skb);
3496 queue_work(hdev->workqueue, &hdev->tx_work);
3497}
3498
3499/* ---- HCI TX task (outgoing data) ---- */
3500
3501/* HCI Connection scheduler */
3502static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3503 int *quote)
3504{
3505 struct hci_conn_hash *h = &hdev->conn_hash;
3506 struct hci_conn *conn = NULL, *c;
3507 unsigned int num = 0, min = ~0;
3508
3509 /* We don't have to lock device here. Connections are always
3510 * added and removed with TX task disabled. */
3511
3512 rcu_read_lock();
3513
3514 list_for_each_entry_rcu(c, &h->list, list) {
3515 if (c->type != type || skb_queue_empty(&c->data_q))
3516 continue;
3517
3518 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3519 continue;
3520
3521 num++;
3522
3523 if (c->sent < min) {
3524 min = c->sent;
3525 conn = c;
3526 }
3527
3528 if (hci_conn_num(hdev, type) == num)
3529 break;
3530 }
3531
3532 rcu_read_unlock();
3533
3534 if (conn) {
3535 int cnt, q;
3536
3537 switch (conn->type) {
3538 case ACL_LINK:
3539 cnt = hdev->acl_cnt;
3540 break;
3541 case SCO_LINK:
3542 case ESCO_LINK:
3543 cnt = hdev->sco_cnt;
3544 break;
3545 case LE_LINK:
3546 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3547 break;
3548 default:
3549 cnt = 0;
3550 BT_ERR("Unknown link type");
3551 }
3552
3553 q = cnt / num;
3554 *quote = q ? q : 1;
3555 } else
3556 *quote = 0;
3557
3558 BT_DBG("conn %p quote %d", conn, *quote);
3559 return conn;
3560}
3561
3562static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3563{
3564 struct hci_conn_hash *h = &hdev->conn_hash;
3565 struct hci_conn *c;
3566
3567 BT_ERR("%s link tx timeout", hdev->name);
3568
3569 rcu_read_lock();
3570
3571 /* Kill stalled connections */
3572 list_for_each_entry_rcu(c, &h->list, list) {
3573 if (c->type == type && c->sent) {
3574 BT_ERR("%s killing stalled connection %pMR",
3575 hdev->name, &c->dst);
3576 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3577 }
3578 }
3579
3580 rcu_read_unlock();
3581}
3582
3583static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3584 int *quote)
3585{
3586 struct hci_conn_hash *h = &hdev->conn_hash;
3587 struct hci_chan *chan = NULL;
3588 unsigned int num = 0, min = ~0, cur_prio = 0;
3589 struct hci_conn *conn;
3590 int cnt, q, conn_num = 0;
3591
3592 BT_DBG("%s", hdev->name);
3593
3594 rcu_read_lock();
3595
3596 list_for_each_entry_rcu(conn, &h->list, list) {
3597 struct hci_chan *tmp;
3598
3599 if (conn->type != type)
3600 continue;
3601
3602 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3603 continue;
3604
3605 conn_num++;
3606
3607 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3608 struct sk_buff *skb;
3609
3610 if (skb_queue_empty(&tmp->data_q))
3611 continue;
3612
3613 skb = skb_peek(&tmp->data_q);
3614 if (skb->priority < cur_prio)
3615 continue;
3616
3617 if (skb->priority > cur_prio) {
3618 num = 0;
3619 min = ~0;
3620 cur_prio = skb->priority;
3621 }
3622
3623 num++;
3624
3625 if (conn->sent < min) {
3626 min = conn->sent;
3627 chan = tmp;
3628 }
3629 }
3630
3631 if (hci_conn_num(hdev, type) == conn_num)
3632 break;
3633 }
3634
3635 rcu_read_unlock();
3636
3637 if (!chan)
3638 return NULL;
3639
3640 switch (chan->conn->type) {
3641 case ACL_LINK:
3642 cnt = hdev->acl_cnt;
3643 break;
3644 case AMP_LINK:
3645 cnt = hdev->block_cnt;
3646 break;
3647 case SCO_LINK:
3648 case ESCO_LINK:
3649 cnt = hdev->sco_cnt;
3650 break;
3651 case LE_LINK:
3652 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3653 break;
3654 default:
3655 cnt = 0;
3656 BT_ERR("Unknown link type");
3657 }
3658
3659 q = cnt / num;
3660 *quote = q ? q : 1;
3661 BT_DBG("chan %p quote %d", chan, *quote);
3662 return chan;
3663}
3664
3665static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3666{
3667 struct hci_conn_hash *h = &hdev->conn_hash;
3668 struct hci_conn *conn;
3669 int num = 0;
3670
3671 BT_DBG("%s", hdev->name);
3672
3673 rcu_read_lock();
3674
3675 list_for_each_entry_rcu(conn, &h->list, list) {
3676 struct hci_chan *chan;
3677
3678 if (conn->type != type)
3679 continue;
3680
3681 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3682 continue;
3683
3684 num++;
3685
3686 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3687 struct sk_buff *skb;
3688
3689 if (chan->sent) {
3690 chan->sent = 0;
3691 continue;
3692 }
3693
3694 if (skb_queue_empty(&chan->data_q))
3695 continue;
3696
3697 skb = skb_peek(&chan->data_q);
3698 if (skb->priority >= HCI_PRIO_MAX - 1)
3699 continue;
3700
3701 skb->priority = HCI_PRIO_MAX - 1;
3702
3703 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3704 skb->priority);
3705 }
3706
3707 if (hci_conn_num(hdev, type) == num)
3708 break;
3709 }
3710
3711 rcu_read_unlock();
3712
3713}
3714
3715static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3716{
3717 /* Calculate count of blocks used by this packet */
3718 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3719}
3720
3721static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3722{
3723 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3724 /* ACL tx timeout must be longer than maximum
3725 * link supervision timeout (40.9 seconds) */
3726 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3727 HCI_ACL_TX_TIMEOUT))
3728 hci_link_tx_to(hdev, ACL_LINK);
3729 }
3730}
3731
3732static void hci_sched_acl_pkt(struct hci_dev *hdev)
3733{
3734 unsigned int cnt = hdev->acl_cnt;
3735 struct hci_chan *chan;
3736 struct sk_buff *skb;
3737 int quote;
3738
3739 __check_timeout(hdev, cnt);
3740
3741 while (hdev->acl_cnt &&
3742 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
3743 u32 priority = (skb_peek(&chan->data_q))->priority;
3744 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3745 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3746 skb->len, skb->priority);
3747
3748 /* Stop if priority has changed */
3749 if (skb->priority < priority)
3750 break;
3751
3752 skb = skb_dequeue(&chan->data_q);
3753
3754 hci_conn_enter_active_mode(chan->conn,
3755 bt_cb(skb)->force_active);
3756
3757 hci_send_frame(hdev, skb);
3758 hdev->acl_last_tx = jiffies;
3759
3760 hdev->acl_cnt--;
3761 chan->sent++;
3762 chan->conn->sent++;
3763 }
3764 }
3765
3766 if (cnt != hdev->acl_cnt)
3767 hci_prio_recalculate(hdev, ACL_LINK);
3768}
3769
3770static void hci_sched_acl_blk(struct hci_dev *hdev)
3771{
3772 unsigned int cnt = hdev->block_cnt;
3773 struct hci_chan *chan;
3774 struct sk_buff *skb;
3775 int quote;
3776 u8 type;
3777
3778 __check_timeout(hdev, cnt);
3779
3780 BT_DBG("%s", hdev->name);
3781
3782 if (hdev->dev_type == HCI_AMP)
3783 type = AMP_LINK;
3784 else
3785 type = ACL_LINK;
3786
3787 while (hdev->block_cnt > 0 &&
3788 (chan = hci_chan_sent(hdev, type, "e))) {
3789 u32 priority = (skb_peek(&chan->data_q))->priority;
3790 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3791 int blocks;
3792
3793 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3794 skb->len, skb->priority);
3795
3796 /* Stop if priority has changed */
3797 if (skb->priority < priority)
3798 break;
3799
3800 skb = skb_dequeue(&chan->data_q);
3801
3802 blocks = __get_blocks(hdev, skb);
3803 if (blocks > hdev->block_cnt)
3804 return;
3805
3806 hci_conn_enter_active_mode(chan->conn,
3807 bt_cb(skb)->force_active);
3808
3809 hci_send_frame(hdev, skb);
3810 hdev->acl_last_tx = jiffies;
3811
3812 hdev->block_cnt -= blocks;
3813 quote -= blocks;
3814
3815 chan->sent += blocks;
3816 chan->conn->sent += blocks;
3817 }
3818 }
3819
3820 if (cnt != hdev->block_cnt)
3821 hci_prio_recalculate(hdev, type);
3822}
3823
3824static void hci_sched_acl(struct hci_dev *hdev)
3825{
3826 BT_DBG("%s", hdev->name);
3827
3828 /* No ACL link over BR/EDR controller */
3829 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
3830 return;
3831
3832 /* No AMP link over AMP controller */
3833 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3834 return;
3835
3836 switch (hdev->flow_ctl_mode) {
3837 case HCI_FLOW_CTL_MODE_PACKET_BASED:
3838 hci_sched_acl_pkt(hdev);
3839 break;
3840
3841 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3842 hci_sched_acl_blk(hdev);
3843 break;
3844 }
3845}
3846
3847/* Schedule SCO */
3848static void hci_sched_sco(struct hci_dev *hdev)
3849{
3850 struct hci_conn *conn;
3851 struct sk_buff *skb;
3852 int quote;
3853
3854 BT_DBG("%s", hdev->name);
3855
3856 if (!hci_conn_num(hdev, SCO_LINK))
3857 return;
3858
3859 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
3860 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3861 BT_DBG("skb %p len %d", skb, skb->len);
3862 hci_send_frame(hdev, skb);
3863
3864 conn->sent++;
3865 if (conn->sent == ~0)
3866 conn->sent = 0;
3867 }
3868 }
3869}
3870
3871static void hci_sched_esco(struct hci_dev *hdev)
3872{
3873 struct hci_conn *conn;
3874 struct sk_buff *skb;
3875 int quote;
3876
3877 BT_DBG("%s", hdev->name);
3878
3879 if (!hci_conn_num(hdev, ESCO_LINK))
3880 return;
3881
3882 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3883 "e))) {
3884 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3885 BT_DBG("skb %p len %d", skb, skb->len);
3886 hci_send_frame(hdev, skb);
3887
3888 conn->sent++;
3889 if (conn->sent == ~0)
3890 conn->sent = 0;
3891 }
3892 }
3893}
3894
3895static void hci_sched_le(struct hci_dev *hdev)
3896{
3897 struct hci_chan *chan;
3898 struct sk_buff *skb;
3899 int quote, cnt, tmp;
3900
3901 BT_DBG("%s", hdev->name);
3902
3903 if (!hci_conn_num(hdev, LE_LINK))
3904 return;
3905
3906 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3907 /* LE tx timeout must be longer than maximum
3908 * link supervision timeout (40.9 seconds) */
3909 if (!hdev->le_cnt && hdev->le_pkts &&
3910 time_after(jiffies, hdev->le_last_tx + HZ * 45))
3911 hci_link_tx_to(hdev, LE_LINK);
3912 }
3913
3914 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3915 tmp = cnt;
3916 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
3917 u32 priority = (skb_peek(&chan->data_q))->priority;
3918 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3919 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3920 skb->len, skb->priority);
3921
3922 /* Stop if priority has changed */
3923 if (skb->priority < priority)
3924 break;
3925
3926 skb = skb_dequeue(&chan->data_q);
3927
3928 hci_send_frame(hdev, skb);
3929 hdev->le_last_tx = jiffies;
3930
3931 cnt--;
3932 chan->sent++;
3933 chan->conn->sent++;
3934 }
3935 }
3936
3937 if (hdev->le_pkts)
3938 hdev->le_cnt = cnt;
3939 else
3940 hdev->acl_cnt = cnt;
3941
3942 if (cnt != tmp)
3943 hci_prio_recalculate(hdev, LE_LINK);
3944}
3945
3946static void hci_tx_work(struct work_struct *work)
3947{
3948 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3949 struct sk_buff *skb;
3950
3951 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3952 hdev->sco_cnt, hdev->le_cnt);
3953
3954 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3955 /* Schedule queues and send stuff to HCI driver */
3956 hci_sched_acl(hdev);
3957 hci_sched_sco(hdev);
3958 hci_sched_esco(hdev);
3959 hci_sched_le(hdev);
3960 }
3961
3962 /* Send next queued raw (unknown type) packet */
3963 while ((skb = skb_dequeue(&hdev->raw_q)))
3964 hci_send_frame(hdev, skb);
3965}
3966
3967/* ----- HCI RX task (incoming data processing) ----- */
3968
3969/* ACL data packet */
3970static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3971{
3972 struct hci_acl_hdr *hdr = (void *) skb->data;
3973 struct hci_conn *conn;
3974 __u16 handle, flags;
3975
3976 skb_pull(skb, HCI_ACL_HDR_SIZE);
3977
3978 handle = __le16_to_cpu(hdr->handle);
3979 flags = hci_flags(handle);
3980 handle = hci_handle(handle);
3981
3982 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3983 handle, flags);
3984
3985 hdev->stat.acl_rx++;
3986
3987 hci_dev_lock(hdev);
3988 conn = hci_conn_hash_lookup_handle(hdev, handle);
3989 hci_dev_unlock(hdev);
3990
3991 if (conn) {
3992 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3993
3994 /* Send to upper protocol */
3995 l2cap_recv_acldata(conn, skb, flags);
3996 return;
3997 } else {
3998 BT_ERR("%s ACL packet for unknown connection handle %d",
3999 hdev->name, handle);
4000 }
4001
4002 kfree_skb(skb);
4003}
4004
4005/* SCO data packet */
4006static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4007{
4008 struct hci_sco_hdr *hdr = (void *) skb->data;
4009 struct hci_conn *conn;
4010 __u16 handle;
4011
4012 skb_pull(skb, HCI_SCO_HDR_SIZE);
4013
4014 handle = __le16_to_cpu(hdr->handle);
4015
4016 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4017
4018 hdev->stat.sco_rx++;
4019
4020 hci_dev_lock(hdev);
4021 conn = hci_conn_hash_lookup_handle(hdev, handle);
4022 hci_dev_unlock(hdev);
4023
4024 if (conn) {
4025 /* Send to upper protocol */
4026 sco_recv_scodata(conn, skb);
4027 return;
4028 } else {
4029 BT_ERR("%s SCO packet for unknown connection handle %d",
4030 hdev->name, handle);
4031 }
4032
4033 kfree_skb(skb);
4034}
4035
4036static bool hci_req_is_complete(struct hci_dev *hdev)
4037{
4038 struct sk_buff *skb;
4039
4040 skb = skb_peek(&hdev->cmd_q);
4041 if (!skb)
4042 return true;
4043
4044 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4045}
4046
4047static void hci_resend_last(struct hci_dev *hdev)
4048{
4049 struct hci_command_hdr *sent;
4050 struct sk_buff *skb;
4051 u16 opcode;
4052
4053 if (!hdev->sent_cmd)
4054 return;
4055
4056 sent = (void *) hdev->sent_cmd->data;
4057 opcode = __le16_to_cpu(sent->opcode);
4058 if (opcode == HCI_OP_RESET)
4059 return;
4060
4061 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4062 if (!skb)
4063 return;
4064
4065 skb_queue_head(&hdev->cmd_q, skb);
4066 queue_work(hdev->workqueue, &hdev->cmd_work);
4067}
4068
4069void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4070 hci_req_complete_t *req_complete,
4071 hci_req_complete_skb_t *req_complete_skb)
4072{
4073 struct sk_buff *skb;
4074 unsigned long flags;
4075
4076 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4077
4078 /* If the completed command doesn't match the last one that was
4079 * sent we need to do special handling of it.
4080 */
4081 if (!hci_sent_cmd_data(hdev, opcode)) {
4082 /* Some CSR based controllers generate a spontaneous
4083 * reset complete event during init and any pending
4084 * command will never be completed. In such a case we
4085 * need to resend whatever was the last sent
4086 * command.
4087 */
4088 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4089 hci_resend_last(hdev);
4090
4091 return;
4092 }
4093
4094 /* If the command succeeded and there's still more commands in
4095 * this request the request is not yet complete.
4096 */
4097 if (!status && !hci_req_is_complete(hdev))
4098 return;
4099
4100 /* If this was the last command in a request the complete
4101 * callback would be found in hdev->sent_cmd instead of the
4102 * command queue (hdev->cmd_q).
4103 */
4104 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4105 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4106 return;
4107 }
4108
4109 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4110 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4111 return;
4112 }
4113
4114 /* Remove all pending commands belonging to this request */
4115 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4116 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4117 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4118 __skb_queue_head(&hdev->cmd_q, skb);
4119 break;
4120 }
4121
4122 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4123 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4124 else
4125 *req_complete = bt_cb(skb)->hci.req_complete;
4126 kfree_skb(skb);
4127 }
4128 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4129}
4130
4131static void hci_rx_work(struct work_struct *work)
4132{
4133 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4134 struct sk_buff *skb;
4135
4136 BT_DBG("%s", hdev->name);
4137
4138 while ((skb = skb_dequeue(&hdev->rx_q))) {
4139 /* Send copy to monitor */
4140 hci_send_to_monitor(hdev, skb);
4141
4142 if (atomic_read(&hdev->promisc)) {
4143 /* Send copy to the sockets */
4144 hci_send_to_sock(hdev, skb);
4145 }
4146
4147 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4148 kfree_skb(skb);
4149 continue;
4150 }
4151
4152 if (test_bit(HCI_INIT, &hdev->flags)) {
4153 /* Don't process data packets in this states. */
4154 switch (hci_skb_pkt_type(skb)) {
4155 case HCI_ACLDATA_PKT:
4156 case HCI_SCODATA_PKT:
4157 kfree_skb(skb);
4158 continue;
4159 }
4160 }
4161
4162 /* Process frame */
4163 switch (hci_skb_pkt_type(skb)) {
4164 case HCI_EVENT_PKT:
4165 BT_DBG("%s Event packet", hdev->name);
4166 hci_event_packet(hdev, skb);
4167 break;
4168
4169 case HCI_ACLDATA_PKT:
4170 BT_DBG("%s ACL data packet", hdev->name);
4171 hci_acldata_packet(hdev, skb);
4172 break;
4173
4174 case HCI_SCODATA_PKT:
4175 BT_DBG("%s SCO data packet", hdev->name);
4176 hci_scodata_packet(hdev, skb);
4177 break;
4178
4179 default:
4180 kfree_skb(skb);
4181 break;
4182 }
4183 }
4184}
4185
4186static void hci_cmd_work(struct work_struct *work)
4187{
4188 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4189 struct sk_buff *skb;
4190
4191 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4192 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4193
4194 /* Send queued commands */
4195 if (atomic_read(&hdev->cmd_cnt)) {
4196 skb = skb_dequeue(&hdev->cmd_q);
4197 if (!skb)
4198 return;
4199
4200 kfree_skb(hdev->sent_cmd);
4201
4202 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4203 if (hdev->sent_cmd) {
4204 atomic_dec(&hdev->cmd_cnt);
4205 hci_send_frame(hdev, skb);
4206 if (test_bit(HCI_RESET, &hdev->flags))
4207 cancel_delayed_work(&hdev->cmd_timer);
4208 else
4209 schedule_delayed_work(&hdev->cmd_timer,
4210 HCI_CMD_TIMEOUT);
4211 } else {
4212 skb_queue_head(&hdev->cmd_q, skb);
4213 queue_work(hdev->workqueue, &hdev->cmd_work);
4214 }
4215 }
4216}