Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
  32#include <linux/kcov.h>
  33#include <linux/property.h>
  34#include <linux/suspend.h>
  35#include <linux/wait.h>
  36#include <asm/unaligned.h>
  37
  38#include <net/bluetooth/bluetooth.h>
  39#include <net/bluetooth/hci_core.h>
  40#include <net/bluetooth/l2cap.h>
  41#include <net/bluetooth/mgmt.h>
  42
  43#include "hci_request.h"
  44#include "hci_debugfs.h"
  45#include "smp.h"
  46#include "leds.h"
  47#include "msft.h"
  48#include "aosp.h"
  49#include "hci_codec.h"
  50
  51static void hci_rx_work(struct work_struct *work);
  52static void hci_cmd_work(struct work_struct *work);
  53static void hci_tx_work(struct work_struct *work);
  54
  55/* HCI device list */
  56LIST_HEAD(hci_dev_list);
  57DEFINE_RWLOCK(hci_dev_list_lock);
  58
  59/* HCI callback list */
  60LIST_HEAD(hci_cb_list);
  61DEFINE_MUTEX(hci_cb_list_lock);
  62
  63/* HCI ID Numbering */
  64static DEFINE_IDA(hci_index_ida);
 
  65
  66static int hci_scan_req(struct hci_request *req, unsigned long opt)
  67{
  68	__u8 scan = opt;
  69
  70	BT_DBG("%s %x", req->hdev->name, scan);
  71
  72	/* Inquiry and Page scans */
  73	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
  74	return 0;
  75}
  76
  77static int hci_auth_req(struct hci_request *req, unsigned long opt)
  78{
  79	__u8 auth = opt;
  80
  81	BT_DBG("%s %x", req->hdev->name, auth);
  82
  83	/* Authentication */
  84	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
  85	return 0;
  86}
  87
  88static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 
 
  89{
  90	__u8 encrypt = opt;
  91
  92	BT_DBG("%s %x", req->hdev->name, encrypt);
 
 
 
 
  93
  94	/* Encryption */
  95	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
  96	return 0;
 
 
  97}
  98
  99static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 100{
 101	__le16 policy = cpu_to_le16(opt);
 102
 103	BT_DBG("%s %x", req->hdev->name, policy);
 104
 105	/* Default link policy */
 106	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 107	return 0;
 108}
 109
 110/* Get HCI device by index.
 111 * Device is held on return. */
 112struct hci_dev *hci_dev_get(int index)
 113{
 114	struct hci_dev *hdev = NULL, *d;
 
 115
 116	BT_DBG("%d", index);
 117
 118	if (index < 0)
 119		return NULL;
 120
 121	read_lock(&hci_dev_list_lock);
 122	list_for_each_entry(d, &hci_dev_list, list) {
 123		if (d->id == index) {
 124			hdev = hci_dev_hold(d);
 125			break;
 126		}
 127	}
 128	read_unlock(&hci_dev_list_lock);
 129	return hdev;
 130}
 131
 132/* ---- Inquiry support ---- */
 
 133
 134bool hci_discovery_active(struct hci_dev *hdev)
 135{
 136	struct discovery_state *discov = &hdev->discovery;
 137
 138	switch (discov->state) {
 139	case DISCOVERY_FINDING:
 140	case DISCOVERY_RESOLVING:
 141		return true;
 
 
 
 
 
 
 
 142
 143	default:
 144		return false;
 
 145	}
 
 
 
 
 
 
 146}
 147
 148void hci_discovery_set_state(struct hci_dev *hdev, int state)
 
 149{
 150	int old_state = hdev->discovery.state;
 151
 152	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 
 153
 154	if (old_state == state)
 155		return;
 
 
 156
 157	hdev->discovery.state = state;
 
 158
 159	switch (state) {
 160	case DISCOVERY_STOPPED:
 161		hci_update_passive_scan(hdev);
 162
 163		if (old_state != DISCOVERY_STARTING)
 164			mgmt_discovering(hdev, 0);
 165		break;
 166	case DISCOVERY_STARTING:
 167		break;
 168	case DISCOVERY_FINDING:
 169		mgmt_discovering(hdev, 1);
 170		break;
 171	case DISCOVERY_RESOLVING:
 172		break;
 173	case DISCOVERY_STOPPING:
 174		break;
 175	}
 176}
 177
 178void hci_inquiry_cache_flush(struct hci_dev *hdev)
 179{
 180	struct discovery_state *cache = &hdev->discovery;
 181	struct inquiry_entry *p, *n;
 
 
 
 
 182
 183	list_for_each_entry_safe(p, n, &cache->all, all) {
 184		list_del(&p->all);
 185		kfree(p);
 
 
 
 
 
 
 186	}
 
 187
 188	INIT_LIST_HEAD(&cache->unknown);
 189	INIT_LIST_HEAD(&cache->resolve);
 190}
 191
 192struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 193					       bdaddr_t *bdaddr)
 194{
 195	struct discovery_state *cache = &hdev->discovery;
 196	struct inquiry_entry *e;
 197
 198	BT_DBG("cache %p, %pMR", cache, bdaddr);
 
 199
 200	list_for_each_entry(e, &cache->all, all) {
 201		if (!bacmp(&e->data.bdaddr, bdaddr))
 202			return e;
 
 
 
 
 
 
 
 
 
 
 
 
 203	}
 
 204
 205	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 206}
 207
 208struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
 209						       bdaddr_t *bdaddr)
 210{
 211	struct discovery_state *cache = &hdev->discovery;
 212	struct inquiry_entry *e;
 213
 214	BT_DBG("cache %p, %pMR", cache, bdaddr);
 
 
 215
 216	list_for_each_entry(e, &cache->unknown, list) {
 217		if (!bacmp(&e->data.bdaddr, bdaddr))
 218			return e;
 219	}
 220
 221	return NULL;
 
 
 
 222}
 223
 224struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
 225						       bdaddr_t *bdaddr,
 226						       int state)
 227{
 228	struct discovery_state *cache = &hdev->discovery;
 229	struct inquiry_entry *e;
 230
 231	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
 232
 233	list_for_each_entry(e, &cache->resolve, list) {
 234		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
 235			return e;
 236		if (!bacmp(&e->data.bdaddr, bdaddr))
 237			return e;
 238	}
 239
 240	return NULL;
 241}
 242
 243void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
 244				      struct inquiry_entry *ie)
 245{
 246	struct discovery_state *cache = &hdev->discovery;
 247	struct list_head *pos = &cache->resolve;
 248	struct inquiry_entry *p;
 249
 250	list_del(&ie->list);
 251
 252	list_for_each_entry(p, &cache->resolve, list) {
 253		if (p->name_state != NAME_PENDING &&
 254		    abs(p->data.rssi) >= abs(ie->data.rssi))
 255			break;
 256		pos = &p->list;
 257	}
 258
 259	list_add(&ie->list, pos);
 
 260}
 261
 262u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
 263			     bool name_known)
 264{
 265	struct discovery_state *cache = &hdev->discovery;
 266	struct inquiry_entry *ie;
 267	u32 flags = 0;
 268
 269	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
 270
 271	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
 
 
 272
 273	if (!data->ssp_mode)
 274		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 
 
 
 
 275
 276	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 277	if (ie) {
 278		if (!ie->data.ssp_mode)
 279			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 280
 281		if (ie->name_state == NAME_NEEDED &&
 282		    data->rssi != ie->data.rssi) {
 283			ie->data.rssi = data->rssi;
 284			hci_inquiry_cache_update_resolve(hdev, ie);
 285		}
 286
 287		goto update;
 288	}
 289
 290	/* Entry not in the cache. Add new one. */
 291	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
 292	if (!ie) {
 293		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 294		goto done;
 
 
 295	}
 
 
 
 296
 297	list_add(&ie->all, &cache->all);
 
 
 
 
 298
 299	if (name_known) {
 300		ie->name_state = NAME_KNOWN;
 301	} else {
 302		ie->name_state = NAME_NOT_KNOWN;
 303		list_add(&ie->list, &cache->unknown);
 
 304	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305
 306update:
 307	if (name_known && ie->name_state != NAME_KNOWN &&
 308	    ie->name_state != NAME_PENDING) {
 309		ie->name_state = NAME_KNOWN;
 310		list_del(&ie->list);
 
 
 
 
 311	}
 312
 313	memcpy(&ie->data, data, sizeof(*data));
 314	ie->timestamp = jiffies;
 315	cache->timestamp = jiffies;
 316
 317	if (ie->name_state == NAME_NOT_KNOWN)
 318		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 319
 320done:
 321	return flags;
 322}
 323
 324static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 325{
 326	struct discovery_state *cache = &hdev->discovery;
 327	struct inquiry_info *info = (struct inquiry_info *) buf;
 328	struct inquiry_entry *e;
 329	int copied = 0;
 330
 331	list_for_each_entry(e, &cache->all, all) {
 332		struct inquiry_data *data = &e->data;
 333
 334		if (copied >= num)
 335			break;
 336
 337		bacpy(&info->bdaddr, &data->bdaddr);
 338		info->pscan_rep_mode	= data->pscan_rep_mode;
 339		info->pscan_period_mode	= data->pscan_period_mode;
 340		info->pscan_mode	= data->pscan_mode;
 341		memcpy(info->dev_class, data->dev_class, 3);
 342		info->clock_offset	= data->clock_offset;
 343
 344		info++;
 345		copied++;
 346	}
 347
 348	BT_DBG("cache %p, copied %d", cache, copied);
 349	return copied;
 350}
 351
 352static int hci_inq_req(struct hci_request *req, unsigned long opt)
 353{
 354	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
 355	struct hci_dev *hdev = req->hdev;
 356	struct hci_cp_inquiry cp;
 357
 358	BT_DBG("%s", hdev->name);
 359
 360	if (test_bit(HCI_INQUIRY, &hdev->flags))
 361		return 0;
 362
 363	/* Start Inquiry */
 364	memcpy(&cp.lap, &ir->lap, 3);
 365	cp.length  = ir->length;
 366	cp.num_rsp = ir->num_rsp;
 367	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
 368
 369	return 0;
 370}
 371
 372int hci_inquiry(void __user *arg)
 373{
 374	__u8 __user *ptr = arg;
 375	struct hci_inquiry_req ir;
 376	struct hci_dev *hdev;
 377	int err = 0, do_inquiry = 0, max_rsp;
 378	long timeo;
 379	__u8 *buf;
 380
 381	if (copy_from_user(&ir, ptr, sizeof(ir)))
 382		return -EFAULT;
 383
 384	hdev = hci_dev_get(ir.dev_id);
 385	if (!hdev)
 386		return -ENODEV;
 387
 388	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 389		err = -EBUSY;
 390		goto done;
 391	}
 392
 393	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 394		err = -EOPNOTSUPP;
 395		goto done;
 396	}
 397
 398	if (hdev->dev_type != HCI_PRIMARY) {
 399		err = -EOPNOTSUPP;
 400		goto done;
 401	}
 402
 403	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 404		err = -EOPNOTSUPP;
 405		goto done;
 406	}
 407
 408	/* Restrict maximum inquiry length to 60 seconds */
 409	if (ir.length > 60) {
 410		err = -EINVAL;
 411		goto done;
 412	}
 413
 414	hci_dev_lock(hdev);
 415	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 416	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
 417		hci_inquiry_cache_flush(hdev);
 
 418		do_inquiry = 1;
 419	}
 420	hci_dev_unlock(hdev);
 421
 422	timeo = ir.length * msecs_to_jiffies(2000);
 423
 424	if (do_inquiry) {
 425		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
 426				   timeo, NULL);
 427		if (err < 0)
 428			goto done;
 429
 430		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
 431		 * cleared). If it is interrupted by a signal, return -EINTR.
 432		 */
 433		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
 434				TASK_INTERRUPTIBLE)) {
 435			err = -EINTR;
 436			goto done;
 437		}
 438	}
 439
 440	/* for unlimited number of responses we will use buffer with
 441	 * 255 entries
 442	 */
 443	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 444
 445	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 446	 * copy it to the user space.
 447	 */
 448	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
 449	if (!buf) {
 450		err = -ENOMEM;
 451		goto done;
 452	}
 453
 454	hci_dev_lock(hdev);
 455	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 456	hci_dev_unlock(hdev);
 457
 458	BT_DBG("num_rsp %d", ir.num_rsp);
 459
 460	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 461		ptr += sizeof(ir);
 462		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 463				 ir.num_rsp))
 464			err = -EFAULT;
 465	} else
 466		err = -EFAULT;
 467
 468	kfree(buf);
 469
 470done:
 471	hci_dev_put(hdev);
 472	return err;
 473}
 474
 475static int hci_dev_do_open(struct hci_dev *hdev)
 476{
 477	int ret = 0;
 478
 479	BT_DBG("%s %p", hdev->name, hdev);
 480
 481	hci_req_sync_lock(hdev);
 482
 483	ret = hci_dev_open_sync(hdev);
 484
 485	hci_req_sync_unlock(hdev);
 486	return ret;
 487}
 488
 489/* ---- HCI ioctl helpers ---- */
 490
 491int hci_dev_open(__u16 dev)
 492{
 493	struct hci_dev *hdev;
 494	int err;
 495
 496	hdev = hci_dev_get(dev);
 497	if (!hdev)
 498		return -ENODEV;
 499
 500	/* Devices that are marked as unconfigured can only be powered
 501	 * up as user channel. Trying to bring them up as normal devices
 502	 * will result into a failure. Only user channel operation is
 503	 * possible.
 504	 *
 505	 * When this function is called for a user channel, the flag
 506	 * HCI_USER_CHANNEL will be set first before attempting to
 507	 * open the device.
 508	 */
 509	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
 510	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 511		err = -EOPNOTSUPP;
 512		goto done;
 513	}
 514
 515	/* We need to ensure that no other power on/off work is pending
 516	 * before proceeding to call hci_dev_do_open. This is
 517	 * particularly important if the setup procedure has not yet
 518	 * completed.
 519	 */
 520	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 521		cancel_delayed_work(&hdev->power_off);
 522
 523	/* After this call it is guaranteed that the setup procedure
 524	 * has finished. This means that error conditions like RFKILL
 525	 * or no valid public or static random address apply.
 526	 */
 527	flush_workqueue(hdev->req_workqueue);
 528
 529	/* For controllers not using the management interface and that
 530	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
 531	 * so that pairing works for them. Once the management interface
 532	 * is in use this bit will be cleared again and userspace has
 533	 * to explicitly enable it.
 534	 */
 535	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 536	    !hci_dev_test_flag(hdev, HCI_MGMT))
 537		hci_dev_set_flag(hdev, HCI_BONDABLE);
 538
 539	err = hci_dev_do_open(hdev);
 
 
 540
 541done:
 542	hci_dev_put(hdev);
 543	return err;
 544}
 545
 546int hci_dev_do_close(struct hci_dev *hdev)
 547{
 548	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549
 550	BT_DBG("%s %p", hdev->name, hdev);
 
 551
 552	hci_req_sync_lock(hdev);
 
 553
 554	err = hci_dev_close_sync(hdev);
 
 
 
 555
 556	hci_req_sync_unlock(hdev);
 
 
 557
 558	return err;
 
 
 
 559}
 560
 561int hci_dev_close(__u16 dev)
 562{
 563	struct hci_dev *hdev;
 564	int err;
 565
 566	hdev = hci_dev_get(dev);
 567	if (!hdev)
 568		return -ENODEV;
 569
 570	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 571		err = -EBUSY;
 572		goto done;
 
 573	}
 574
 575	cancel_work_sync(&hdev->power_on);
 576	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 577		cancel_delayed_work(&hdev->power_off);
 578
 579	err = hci_dev_do_close(hdev);
 
 
 
 580
 581done:
 582	hci_dev_put(hdev);
 583	return err;
 584}
 585
 586static int hci_dev_do_reset(struct hci_dev *hdev)
 587{
 588	int ret;
 589
 590	BT_DBG("%s %p", hdev->name, hdev);
 
 
 
 
 
 
 
 
 591
 592	hci_req_sync_lock(hdev);
 
 593
 594	/* Drop queues */
 595	skb_queue_purge(&hdev->rx_q);
 596	skb_queue_purge(&hdev->cmd_q);
 
 597
 598	/* Cancel these to avoid queueing non-chained pending work */
 599	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 600	/* Wait for
 601	 *
 602	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
 603	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
 604	 *
 605	 * inside RCU section to see the flag or complete scheduling.
 606	 */
 607	synchronize_rcu();
 608	/* Explicitly cancel works in case scheduled after setting the flag. */
 609	cancel_delayed_work(&hdev->cmd_timer);
 610	cancel_delayed_work(&hdev->ncmd_timer);
 611
 612	/* Avoid potential lockdep warnings from the *_flush() calls by
 613	 * ensuring the workqueue is empty up front.
 614	 */
 615	drain_workqueue(hdev->workqueue);
 616
 617	hci_dev_lock(hdev);
 618	hci_inquiry_cache_flush(hdev);
 619	hci_conn_hash_flush(hdev);
 620	hci_dev_unlock(hdev);
 621
 622	if (hdev->flush)
 623		hdev->flush(hdev);
 
 624
 625	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 626
 627	atomic_set(&hdev->cmd_cnt, 1);
 628	hdev->acl_cnt = 0;
 629	hdev->sco_cnt = 0;
 630	hdev->le_cnt = 0;
 631	hdev->iso_cnt = 0;
 632
 633	ret = hci_reset_sync(hdev);
 634
 635	hci_req_sync_unlock(hdev);
 636	return ret;
 637}
 638
 639int hci_dev_reset(__u16 dev)
 640{
 641	struct hci_dev *hdev;
 642	int err;
 643
 644	hdev = hci_dev_get(dev);
 645	if (!hdev)
 646		return -ENODEV;
 647
 648	if (!test_bit(HCI_UP, &hdev->flags)) {
 649		err = -ENETDOWN;
 650		goto done;
 651	}
 652
 653	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 654		err = -EBUSY;
 655		goto done;
 656	}
 657
 658	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 659		err = -EOPNOTSUPP;
 660		goto done;
 661	}
 662
 663	err = hci_dev_do_reset(hdev);
 664
 665done:
 666	hci_dev_put(hdev);
 667	return err;
 668}
 669
 670int hci_dev_reset_stat(__u16 dev)
 671{
 672	struct hci_dev *hdev;
 673	int ret = 0;
 674
 675	hdev = hci_dev_get(dev);
 676	if (!hdev)
 677		return -ENODEV;
 678
 679	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 680		ret = -EBUSY;
 681		goto done;
 682	}
 683
 684	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 685		ret = -EOPNOTSUPP;
 686		goto done;
 687	}
 688
 689	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690
 691done:
 
 
 692	hci_dev_put(hdev);
 693	return ret;
 694}
 695
 696static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
 697{
 698	bool conn_changed, discov_changed;
 699
 700	BT_DBG("%s scan 0x%02x", hdev->name, scan);
 701
 702	if ((scan & SCAN_PAGE))
 703		conn_changed = !hci_dev_test_and_set_flag(hdev,
 704							  HCI_CONNECTABLE);
 705	else
 706		conn_changed = hci_dev_test_and_clear_flag(hdev,
 707							   HCI_CONNECTABLE);
 708
 709	if ((scan & SCAN_INQUIRY)) {
 710		discov_changed = !hci_dev_test_and_set_flag(hdev,
 711							    HCI_DISCOVERABLE);
 712	} else {
 713		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
 714		discov_changed = hci_dev_test_and_clear_flag(hdev,
 715							     HCI_DISCOVERABLE);
 716	}
 717
 718	if (!hci_dev_test_flag(hdev, HCI_MGMT))
 719		return;
 
 720
 721	if (conn_changed || discov_changed) {
 722		/* In case this was disabled through mgmt */
 723		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 724
 725		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 726			hci_update_adv_data(hdev, hdev->cur_adv_instance);
 727
 728		mgmt_new_settings(hdev);
 729	}
 730}
 731
 732int hci_dev_cmd(unsigned int cmd, void __user *arg)
 733{
 734	struct hci_dev *hdev;
 735	struct hci_dev_req dr;
 736	int err = 0;
 737
 738	if (copy_from_user(&dr, arg, sizeof(dr)))
 739		return -EFAULT;
 740
 741	hdev = hci_dev_get(dr.dev_id);
 742	if (!hdev)
 743		return -ENODEV;
 744
 745	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 746		err = -EBUSY;
 747		goto done;
 748	}
 749
 750	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 751		err = -EOPNOTSUPP;
 752		goto done;
 753	}
 754
 755	if (hdev->dev_type != HCI_PRIMARY) {
 756		err = -EOPNOTSUPP;
 757		goto done;
 758	}
 759
 760	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 761		err = -EOPNOTSUPP;
 762		goto done;
 763	}
 764
 765	switch (cmd) {
 766	case HCISETAUTH:
 767		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 768				   HCI_INIT_TIMEOUT, NULL);
 769		break;
 770
 771	case HCISETENCRYPT:
 772		if (!lmp_encrypt_capable(hdev)) {
 773			err = -EOPNOTSUPP;
 774			break;
 775		}
 776
 777		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 778			/* Auth must be enabled first */
 779			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 780					   HCI_INIT_TIMEOUT, NULL);
 781			if (err)
 782				break;
 783		}
 784
 785		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
 786				   HCI_INIT_TIMEOUT, NULL);
 787		break;
 788
 789	case HCISETSCAN:
 790		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
 791				   HCI_INIT_TIMEOUT, NULL);
 792
 793		/* Ensure that the connectable and discoverable states
 794		 * get correctly modified as this was a non-mgmt change.
 795		 */
 796		if (!err)
 797			hci_update_passive_scan_state(hdev, dr.dev_opt);
 798		break;
 799
 800	case HCISETLINKPOL:
 801		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
 802				   HCI_INIT_TIMEOUT, NULL);
 803		break;
 804
 805	case HCISETLINKMODE:
 806		hdev->link_mode = ((__u16) dr.dev_opt) &
 807					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 808		break;
 809
 810	case HCISETPTYPE:
 811		if (hdev->pkt_type == (__u16) dr.dev_opt)
 812			break;
 813
 814		hdev->pkt_type = (__u16) dr.dev_opt;
 815		mgmt_phy_configuration_changed(hdev, NULL);
 816		break;
 817
 818	case HCISETACLMTU:
 819		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 820		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 821		break;
 822
 823	case HCISETSCOMTU:
 824		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 825		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 826		break;
 827
 828	default:
 829		err = -EINVAL;
 830		break;
 831	}
 832
 833done:
 834	hci_dev_put(hdev);
 835	return err;
 836}
 837
 838int hci_get_dev_list(void __user *arg)
 839{
 840	struct hci_dev *hdev;
 841	struct hci_dev_list_req *dl;
 842	struct hci_dev_req *dr;
 
 843	int n = 0, size, err;
 844	__u16 dev_num;
 845
 846	if (get_user(dev_num, (__u16 __user *) arg))
 847		return -EFAULT;
 848
 849	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
 850		return -EINVAL;
 851
 852	size = sizeof(*dl) + dev_num * sizeof(*dr);
 853
 854	dl = kzalloc(size, GFP_KERNEL);
 855	if (!dl)
 856		return -ENOMEM;
 857
 858	dr = dl->dev_req;
 859
 860	read_lock(&hci_dev_list_lock);
 861	list_for_each_entry(hdev, &hci_dev_list, list) {
 862		unsigned long flags = hdev->flags;
 863
 864		/* When the auto-off is configured it means the transport
 865		 * is running, but in that case still indicate that the
 866		 * device is actually down.
 867		 */
 868		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 869			flags &= ~BIT(HCI_UP);
 870
 871		(dr + n)->dev_id  = hdev->id;
 872		(dr + n)->dev_opt = flags;
 873
 874		if (++n >= dev_num)
 875			break;
 876	}
 877	read_unlock(&hci_dev_list_lock);
 878
 879	dl->dev_num = n;
 880	size = sizeof(*dl) + n * sizeof(*dr);
 881
 882	err = copy_to_user(arg, dl, size);
 883	kfree(dl);
 884
 885	return err ? -EFAULT : 0;
 886}
 887
 888int hci_get_dev_info(void __user *arg)
 889{
 890	struct hci_dev *hdev;
 891	struct hci_dev_info di;
 892	unsigned long flags;
 893	int err = 0;
 894
 895	if (copy_from_user(&di, arg, sizeof(di)))
 896		return -EFAULT;
 897
 898	hdev = hci_dev_get(di.dev_id);
 899	if (!hdev)
 900		return -ENODEV;
 901
 902	/* When the auto-off is configured it means the transport
 903	 * is running, but in that case still indicate that the
 904	 * device is actually down.
 905	 */
 906	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 907		flags = hdev->flags & ~BIT(HCI_UP);
 908	else
 909		flags = hdev->flags;
 910
 911	strcpy(di.name, hdev->name);
 912	di.bdaddr   = hdev->bdaddr;
 913	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
 914	di.flags    = flags;
 915	di.pkt_type = hdev->pkt_type;
 916	if (lmp_bredr_capable(hdev)) {
 917		di.acl_mtu  = hdev->acl_mtu;
 918		di.acl_pkts = hdev->acl_pkts;
 919		di.sco_mtu  = hdev->sco_mtu;
 920		di.sco_pkts = hdev->sco_pkts;
 921	} else {
 922		di.acl_mtu  = hdev->le_mtu;
 923		di.acl_pkts = hdev->le_pkts;
 924		di.sco_mtu  = 0;
 925		di.sco_pkts = 0;
 926	}
 927	di.link_policy = hdev->link_policy;
 928	di.link_mode   = hdev->link_mode;
 929
 930	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
 931	memcpy(&di.features, &hdev->features, sizeof(di.features));
 932
 933	if (copy_to_user(arg, &di, sizeof(di)))
 934		err = -EFAULT;
 935
 936	hci_dev_put(hdev);
 937
 938	return err;
 939}
 940
 941/* ---- Interface to HCI drivers ---- */
 942
 943static int hci_rfkill_set_block(void *data, bool blocked)
 944{
 945	struct hci_dev *hdev = data;
 946
 947	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
 948
 949	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
 950		return -EBUSY;
 951
 952	if (blocked) {
 953		hci_dev_set_flag(hdev, HCI_RFKILLED);
 954		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 955		    !hci_dev_test_flag(hdev, HCI_CONFIG))
 956			hci_dev_do_close(hdev);
 957	} else {
 958		hci_dev_clear_flag(hdev, HCI_RFKILLED);
 959	}
 960
 961	return 0;
 962}
 963
 964static const struct rfkill_ops hci_rfkill_ops = {
 965	.set_block = hci_rfkill_set_block,
 966};
 967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968static void hci_power_on(struct work_struct *work)
 969{
 970	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 971	int err;
 972
 973	BT_DBG("%s", hdev->name);
 974
 975	if (test_bit(HCI_UP, &hdev->flags) &&
 976	    hci_dev_test_flag(hdev, HCI_MGMT) &&
 977	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
 978		cancel_delayed_work(&hdev->power_off);
 979		err = hci_powered_update_sync(hdev);
 980		mgmt_power_on(hdev, err);
 981		return;
 982	}
 983
 984	err = hci_dev_do_open(hdev);
 985	if (err < 0) {
 986		hci_dev_lock(hdev);
 987		mgmt_set_powered_failed(hdev, err);
 988		hci_dev_unlock(hdev);
 989		return;
 990	}
 991
 992	/* During the HCI setup phase, a few error conditions are
 993	 * ignored and they need to be checked now. If they are still
 994	 * valid, it is important to turn the device back off.
 995	 */
 996	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
 997	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
 998	    (hdev->dev_type == HCI_PRIMARY &&
 999	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1000	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1001		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1002		hci_dev_do_close(hdev);
1003	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1004		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1005				   HCI_AUTO_OFF_TIMEOUT);
1006	}
1007
1008	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1009		/* For unconfigured devices, set the HCI_RAW flag
1010		 * so that userspace can easily identify them.
1011		 */
1012		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1013			set_bit(HCI_RAW, &hdev->flags);
1014
1015		/* For fully configured devices, this will send
1016		 * the Index Added event. For unconfigured devices,
1017		 * it will send Unconfigued Index Added event.
1018		 *
1019		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1020		 * and no event will be send.
1021		 */
1022		mgmt_index_added(hdev);
1023	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1024		/* When the controller is now configured, then it
1025		 * is important to clear the HCI_RAW flag.
1026		 */
1027		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1028			clear_bit(HCI_RAW, &hdev->flags);
1029
1030		/* Powering on the controller with HCI_CONFIG set only
1031		 * happens with the transition from unconfigured to
1032		 * configured. This will send the Index Added event.
1033		 */
1034		mgmt_index_added(hdev);
1035	}
1036}
1037
1038static void hci_power_off(struct work_struct *work)
1039{
1040	struct hci_dev *hdev = container_of(work, struct hci_dev,
1041					    power_off.work);
1042
1043	BT_DBG("%s", hdev->name);
1044
1045	hci_dev_do_close(hdev);
1046}
1047
1048static void hci_error_reset(struct work_struct *work)
1049{
1050	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1051
1052	hci_dev_hold(hdev);
1053	BT_DBG("%s", hdev->name);
1054
1055	if (hdev->hw_error)
1056		hdev->hw_error(hdev, hdev->hw_error_code);
1057	else
1058		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1059
1060	if (!hci_dev_do_close(hdev))
1061		hci_dev_do_open(hdev);
1062
1063	hci_dev_put(hdev);
1064}
1065
1066void hci_uuids_clear(struct hci_dev *hdev)
1067{
1068	struct bt_uuid *uuid, *tmp;
1069
1070	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1071		list_del(&uuid->list);
1072		kfree(uuid);
1073	}
1074}
1075
1076void hci_link_keys_clear(struct hci_dev *hdev)
1077{
1078	struct link_key *key, *tmp;
1079
1080	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1081		list_del_rcu(&key->list);
1082		kfree_rcu(key, rcu);
1083	}
1084}
1085
1086void hci_smp_ltks_clear(struct hci_dev *hdev)
1087{
1088	struct smp_ltk *k, *tmp;
1089
1090	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1091		list_del_rcu(&k->list);
1092		kfree_rcu(k, rcu);
1093	}
1094}
1095
1096void hci_smp_irks_clear(struct hci_dev *hdev)
1097{
1098	struct smp_irk *k, *tmp;
1099
1100	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1101		list_del_rcu(&k->list);
1102		kfree_rcu(k, rcu);
1103	}
1104}
1105
1106void hci_blocked_keys_clear(struct hci_dev *hdev)
1107{
1108	struct blocked_key *b, *tmp;
1109
1110	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1111		list_del_rcu(&b->list);
1112		kfree_rcu(b, rcu);
1113	}
1114}
1115
1116bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1117{
1118	bool blocked = false;
1119	struct blocked_key *b;
1120
1121	rcu_read_lock();
1122	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1123		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1124			blocked = true;
1125			break;
1126		}
1127	}
1128
1129	rcu_read_unlock();
1130	return blocked;
1131}
1132
1133struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1134{
1135	struct link_key *k;
1136
1137	rcu_read_lock();
1138	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1139		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1140			rcu_read_unlock();
1141
1142			if (hci_is_blocked_key(hdev,
1143					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1144					       k->val)) {
1145				bt_dev_warn_ratelimited(hdev,
1146							"Link key blocked for %pMR",
1147							&k->bdaddr);
1148				return NULL;
1149			}
1150
 
 
 
1151			return k;
1152		}
1153	}
1154	rcu_read_unlock();
1155
1156	return NULL;
1157}
1158
1159static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1160			       u8 key_type, u8 old_key_type)
1161{
1162	/* Legacy key */
1163	if (key_type < 0x03)
1164		return true;
1165
1166	/* Debug keys are insecure so don't store them persistently */
1167	if (key_type == HCI_LK_DEBUG_COMBINATION)
1168		return false;
1169
1170	/* Changed combination key and there's no previous one */
1171	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1172		return false;
1173
1174	/* Security mode 3 case */
1175	if (!conn)
1176		return true;
1177
1178	/* BR/EDR key derived using SC from an LE link */
1179	if (conn->type == LE_LINK)
1180		return true;
1181
1182	/* Neither local nor remote side had no-bonding as requirement */
1183	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1184		return true;
1185
1186	/* Local side had dedicated bonding as requirement */
1187	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1188		return true;
1189
1190	/* Remote side had dedicated bonding as requirement */
1191	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1192		return true;
1193
1194	/* If none of the above criteria match, then don't store the key
1195	 * persistently */
1196	return false;
1197}
1198
1199static u8 ltk_role(u8 type)
1200{
1201	if (type == SMP_LTK)
1202		return HCI_ROLE_MASTER;
1203
1204	return HCI_ROLE_SLAVE;
1205}
1206
1207struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1208			     u8 addr_type, u8 role)
1209{
1210	struct smp_ltk *k;
1211
1212	rcu_read_lock();
1213	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1214		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1215			continue;
1216
1217		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1218			rcu_read_unlock();
1219
1220			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1221					       k->val)) {
1222				bt_dev_warn_ratelimited(hdev,
1223							"LTK blocked for %pMR",
1224							&k->bdaddr);
1225				return NULL;
1226			}
1227
 
 
 
1228			return k;
1229		}
1230	}
1231	rcu_read_unlock();
1232
1233	return NULL;
1234}
 
1235
1236struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1237{
1238	struct smp_irk *irk_to_return = NULL;
1239	struct smp_irk *irk;
1240
1241	rcu_read_lock();
1242	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1243		if (!bacmp(&irk->rpa, rpa)) {
1244			irk_to_return = irk;
1245			goto done;
1246		}
1247	}
1248
1249	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1250		if (smp_irk_matches(hdev, irk->val, rpa)) {
1251			bacpy(&irk->rpa, rpa);
1252			irk_to_return = irk;
1253			goto done;
1254		}
1255	}
1256
1257done:
1258	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1259						irk_to_return->val)) {
1260		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1261					&irk_to_return->bdaddr);
1262		irk_to_return = NULL;
1263	}
1264
1265	rcu_read_unlock();
1266
1267	return irk_to_return;
1268}
1269
1270struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1271				     u8 addr_type)
1272{
1273	struct smp_irk *irk_to_return = NULL;
1274	struct smp_irk *irk;
1275
1276	/* Identity Address must be public or static random */
1277	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1278		return NULL;
1279
1280	rcu_read_lock();
1281	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1282		if (addr_type == irk->addr_type &&
1283		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1284			irk_to_return = irk;
1285			goto done;
1286		}
1287	}
1288
1289done:
1290
1291	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1292						irk_to_return->val)) {
1293		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1294					&irk_to_return->bdaddr);
1295		irk_to_return = NULL;
1296	}
1297
1298	rcu_read_unlock();
 
 
1299
1300	return irk_to_return;
1301}
 
1302
1303struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1304				  bdaddr_t *bdaddr, u8 *val, u8 type,
1305				  u8 pin_len, bool *persistent)
1306{
1307	struct link_key *key, *old_key;
1308	u8 old_key_type;
1309
1310	old_key = hci_find_link_key(hdev, bdaddr);
1311	if (old_key) {
1312		old_key_type = old_key->type;
1313		key = old_key;
1314	} else {
1315		old_key_type = conn ? conn->key_type : 0xff;
1316		key = kzalloc(sizeof(*key), GFP_KERNEL);
1317		if (!key)
1318			return NULL;
1319		list_add_rcu(&key->list, &hdev->link_keys);
1320	}
1321
1322	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1323
1324	/* Some buggy controller combinations generate a changed
1325	 * combination key for legacy pairing even when there's no
1326	 * previous key */
1327	if (type == HCI_LK_CHANGED_COMBINATION &&
1328	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
 
1329		type = HCI_LK_COMBINATION;
1330		if (conn)
1331			conn->key_type = type;
1332	}
1333
1334	bacpy(&key->bdaddr, bdaddr);
1335	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1336	key->pin_len = pin_len;
1337
1338	if (type == HCI_LK_CHANGED_COMBINATION)
1339		key->type = old_key_type;
1340	else
1341		key->type = type;
1342
1343	if (persistent)
1344		*persistent = hci_persistent_key(hdev, conn, type,
1345						 old_key_type);
1346
1347	return key;
1348}
1349
1350struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1351			    u8 addr_type, u8 type, u8 authenticated,
1352			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1353{
1354	struct smp_ltk *key, *old_key;
1355	u8 role = ltk_role(type);
1356
1357	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1358	if (old_key)
1359		key = old_key;
1360	else {
1361		key = kzalloc(sizeof(*key), GFP_KERNEL);
1362		if (!key)
1363			return NULL;
1364		list_add_rcu(&key->list, &hdev->long_term_keys);
1365	}
1366
1367	bacpy(&key->bdaddr, bdaddr);
1368	key->bdaddr_type = addr_type;
1369	memcpy(key->val, tk, sizeof(key->val));
1370	key->authenticated = authenticated;
1371	key->ediv = ediv;
1372	key->rand = rand;
1373	key->enc_size = enc_size;
1374	key->type = type;
1375
1376	return key;
1377}
1378
1379struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1380			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1381{
1382	struct smp_irk *irk;
1383
1384	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1385	if (!irk) {
1386		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1387		if (!irk)
1388			return NULL;
1389
1390		bacpy(&irk->bdaddr, bdaddr);
1391		irk->addr_type = addr_type;
1392
1393		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
 
 
 
 
 
 
 
 
 
1394	}
1395
1396	memcpy(irk->val, val, 16);
1397	bacpy(&irk->rpa, rpa);
 
 
 
 
 
 
 
 
1398
1399	return irk;
 
 
 
1400}
1401
1402int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1403{
1404	struct link_key *key;
1405
1406	key = hci_find_link_key(hdev, bdaddr);
1407	if (!key)
1408		return -ENOENT;
1409
1410	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1411
1412	list_del_rcu(&key->list);
1413	kfree_rcu(key, rcu);
1414
1415	return 0;
1416}
1417
1418int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1419{
1420	struct smp_ltk *k, *tmp;
1421	int removed = 0;
1422
1423	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1424		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1425			continue;
1426
1427		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1428
1429		list_del_rcu(&k->list);
1430		kfree_rcu(k, rcu);
1431		removed++;
1432	}
1433
1434	return removed ? 0 : -ENOENT;
1435}
1436
1437void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1438{
1439	struct smp_irk *k, *tmp;
1440
1441	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1442		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1443			continue;
1444
1445		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1446
1447		list_del_rcu(&k->list);
1448		kfree_rcu(k, rcu);
1449	}
1450}
1451
1452bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1453{
1454	struct smp_ltk *k;
1455	struct smp_irk *irk;
1456	u8 addr_type;
1457
1458	if (type == BDADDR_BREDR) {
1459		if (hci_find_link_key(hdev, bdaddr))
1460			return true;
1461		return false;
1462	}
1463
1464	/* Convert to HCI addr type which struct smp_ltk uses */
1465	if (type == BDADDR_LE_PUBLIC)
1466		addr_type = ADDR_LE_DEV_PUBLIC;
1467	else
1468		addr_type = ADDR_LE_DEV_RANDOM;
1469
1470	irk = hci_get_irk(hdev, bdaddr, addr_type);
1471	if (irk) {
1472		bdaddr = &irk->bdaddr;
1473		addr_type = irk->addr_type;
1474	}
1475
1476	rcu_read_lock();
1477	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1478		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1479			rcu_read_unlock();
1480			return true;
1481		}
1482	}
1483	rcu_read_unlock();
1484
1485	return false;
1486}
1487
1488/* HCI command timer function */
1489static void hci_cmd_timeout(struct work_struct *work)
1490{
1491	struct hci_dev *hdev = container_of(work, struct hci_dev,
1492					    cmd_timer.work);
1493
1494	if (hdev->sent_cmd) {
1495		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1496		u16 opcode = __le16_to_cpu(sent->opcode);
1497
1498		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1499	} else {
1500		bt_dev_err(hdev, "command tx timeout");
1501	}
1502
1503	if (hdev->cmd_timeout)
1504		hdev->cmd_timeout(hdev);
1505
 
1506	atomic_set(&hdev->cmd_cnt, 1);
1507	queue_work(hdev->workqueue, &hdev->cmd_work);
1508}
1509
1510/* HCI ncmd timer function */
1511static void hci_ncmd_timeout(struct work_struct *work)
1512{
1513	struct hci_dev *hdev = container_of(work, struct hci_dev,
1514					    ncmd_timer.work);
1515
1516	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1517
1518	/* During HCI_INIT phase no events can be injected if the ncmd timer
1519	 * triggers since the procedure has its own timeout handling.
1520	 */
1521	if (test_bit(HCI_INIT, &hdev->flags))
1522		return;
1523
1524	/* This is an irrecoverable state, inject hardware error event */
1525	hci_reset_dev(hdev);
1526}
1527
1528struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1529					  bdaddr_t *bdaddr, u8 bdaddr_type)
1530{
1531	struct oob_data *data;
1532
1533	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1534		if (bacmp(bdaddr, &data->bdaddr) != 0)
1535			continue;
1536		if (data->bdaddr_type != bdaddr_type)
1537			continue;
1538		return data;
1539	}
1540
1541	return NULL;
1542}
1543
1544int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1545			       u8 bdaddr_type)
1546{
1547	struct oob_data *data;
1548
1549	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1550	if (!data)
1551		return -ENOENT;
1552
1553	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1554
1555	list_del(&data->list);
1556	kfree(data);
1557
1558	return 0;
1559}
1560
1561void hci_remote_oob_data_clear(struct hci_dev *hdev)
1562{
1563	struct oob_data *data, *n;
1564
1565	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1566		list_del(&data->list);
1567		kfree(data);
1568	}
 
 
1569}
1570
1571int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1572			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1573			    u8 *hash256, u8 *rand256)
1574{
1575	struct oob_data *data;
1576
1577	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
 
1578	if (!data) {
1579		data = kmalloc(sizeof(*data), GFP_KERNEL);
1580		if (!data)
1581			return -ENOMEM;
1582
1583		bacpy(&data->bdaddr, bdaddr);
1584		data->bdaddr_type = bdaddr_type;
1585		list_add(&data->list, &hdev->remote_oob_data);
1586	}
1587
1588	if (hash192 && rand192) {
1589		memcpy(data->hash192, hash192, sizeof(data->hash192));
1590		memcpy(data->rand192, rand192, sizeof(data->rand192));
1591		if (hash256 && rand256)
1592			data->present = 0x03;
1593	} else {
1594		memset(data->hash192, 0, sizeof(data->hash192));
1595		memset(data->rand192, 0, sizeof(data->rand192));
1596		if (hash256 && rand256)
1597			data->present = 0x02;
1598		else
1599			data->present = 0x00;
1600	}
1601
1602	if (hash256 && rand256) {
1603		memcpy(data->hash256, hash256, sizeof(data->hash256));
1604		memcpy(data->rand256, rand256, sizeof(data->rand256));
1605	} else {
1606		memset(data->hash256, 0, sizeof(data->hash256));
1607		memset(data->rand256, 0, sizeof(data->rand256));
1608		if (hash192 && rand192)
1609			data->present = 0x01;
1610	}
1611
1612	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1613
1614	return 0;
1615}
1616
1617/* This function requires the caller holds hdev->lock */
1618struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1619{
1620	struct adv_info *adv_instance;
1621
1622	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1623		if (adv_instance->instance == instance)
1624			return adv_instance;
1625	}
1626
1627	return NULL;
1628}
1629
1630/* This function requires the caller holds hdev->lock */
1631struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1632{
1633	struct adv_info *cur_instance;
1634
1635	cur_instance = hci_find_adv_instance(hdev, instance);
1636	if (!cur_instance)
1637		return NULL;
1638
1639	if (cur_instance == list_last_entry(&hdev->adv_instances,
1640					    struct adv_info, list))
1641		return list_first_entry(&hdev->adv_instances,
1642						 struct adv_info, list);
1643	else
1644		return list_next_entry(cur_instance, list);
1645}
1646
1647/* This function requires the caller holds hdev->lock */
1648int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1649{
1650	struct adv_info *adv_instance;
1651
1652	adv_instance = hci_find_adv_instance(hdev, instance);
1653	if (!adv_instance)
1654		return -ENOENT;
1655
1656	BT_DBG("%s removing %dMR", hdev->name, instance);
1657
1658	if (hdev->cur_adv_instance == instance) {
1659		if (hdev->adv_instance_timeout) {
1660			cancel_delayed_work(&hdev->adv_instance_expire);
1661			hdev->adv_instance_timeout = 0;
1662		}
1663		hdev->cur_adv_instance = 0x00;
1664	}
1665
1666	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1667
1668	list_del(&adv_instance->list);
1669	kfree(adv_instance);
1670
1671	hdev->adv_instance_cnt--;
1672
1673	return 0;
1674}
1675
1676void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1677{
1678	struct adv_info *adv_instance, *n;
 
1679
1680	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1681		adv_instance->rpa_expired = rpa_expired;
1682}
1683
1684/* This function requires the caller holds hdev->lock */
1685void hci_adv_instances_clear(struct hci_dev *hdev)
1686{
1687	struct adv_info *adv_instance, *n;
1688
1689	if (hdev->adv_instance_timeout) {
1690		cancel_delayed_work(&hdev->adv_instance_expire);
1691		hdev->adv_instance_timeout = 0;
1692	}
1693
1694	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1695		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1696		list_del(&adv_instance->list);
1697		kfree(adv_instance);
1698	}
1699
1700	hdev->adv_instance_cnt = 0;
1701	hdev->cur_adv_instance = 0x00;
1702}
1703
1704static void adv_instance_rpa_expired(struct work_struct *work)
1705{
1706	struct adv_info *adv_instance = container_of(work, struct adv_info,
1707						     rpa_expired_cb.work);
1708
1709	BT_DBG("");
1710
1711	adv_instance->rpa_expired = true;
1712}
1713
1714/* This function requires the caller holds hdev->lock */
1715struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1716				      u32 flags, u16 adv_data_len, u8 *adv_data,
1717				      u16 scan_rsp_len, u8 *scan_rsp_data,
1718				      u16 timeout, u16 duration, s8 tx_power,
1719				      u32 min_interval, u32 max_interval,
1720				      u8 mesh_handle)
1721{
1722	struct adv_info *adv;
1723
1724	adv = hci_find_adv_instance(hdev, instance);
1725	if (adv) {
1726		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1727		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1728		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1729	} else {
1730		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1731		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1732			return ERR_PTR(-EOVERFLOW);
1733
1734		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1735		if (!adv)
1736			return ERR_PTR(-ENOMEM);
1737
1738		adv->pending = true;
1739		adv->instance = instance;
1740		list_add(&adv->list, &hdev->adv_instances);
1741		hdev->adv_instance_cnt++;
1742	}
1743
1744	adv->flags = flags;
1745	adv->min_interval = min_interval;
1746	adv->max_interval = max_interval;
1747	adv->tx_power = tx_power;
1748	/* Defining a mesh_handle changes the timing units to ms,
1749	 * rather than seconds, and ties the instance to the requested
1750	 * mesh_tx queue.
1751	 */
1752	adv->mesh = mesh_handle;
1753
1754	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1755				  scan_rsp_len, scan_rsp_data);
1756
1757	adv->timeout = timeout;
1758	adv->remaining_time = timeout;
1759
1760	if (duration == 0)
1761		adv->duration = hdev->def_multi_adv_rotation_duration;
1762	else
1763		adv->duration = duration;
1764
1765	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1766
1767	BT_DBG("%s for %dMR", hdev->name, instance);
1768
1769	return adv;
1770}
1771
1772/* This function requires the caller holds hdev->lock */
1773struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1774				      u32 flags, u8 data_len, u8 *data,
1775				      u32 min_interval, u32 max_interval)
1776{
1777	struct adv_info *adv;
1778
1779	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1780				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1781				   min_interval, max_interval, 0);
1782	if (IS_ERR(adv))
1783		return adv;
1784
1785	adv->periodic = true;
1786	adv->per_adv_data_len = data_len;
1787
1788	if (data)
1789		memcpy(adv->per_adv_data, data, data_len);
1790
1791	return adv;
1792}
1793
1794/* This function requires the caller holds hdev->lock */
1795int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1796			      u16 adv_data_len, u8 *adv_data,
1797			      u16 scan_rsp_len, u8 *scan_rsp_data)
1798{
1799	struct adv_info *adv;
1800
1801	adv = hci_find_adv_instance(hdev, instance);
1802
1803	/* If advertisement doesn't exist, we can't modify its data */
1804	if (!adv)
1805		return -ENOENT;
1806
1807	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1808		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1809		memcpy(adv->adv_data, adv_data, adv_data_len);
1810		adv->adv_data_len = adv_data_len;
1811		adv->adv_data_changed = true;
1812	}
1813
1814	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1815		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1816		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1817		adv->scan_rsp_len = scan_rsp_len;
1818		adv->scan_rsp_changed = true;
1819	}
1820
1821	/* Mark as changed if there are flags which would affect it */
1822	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1823	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1824		adv->scan_rsp_changed = true;
1825
1826	return 0;
 
 
1827}
1828
1829/* This function requires the caller holds hdev->lock */
1830u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1831{
1832	u32 flags;
1833	struct adv_info *adv;
1834
1835	if (instance == 0x00) {
1836		/* Instance 0 always manages the "Tx Power" and "Flags"
1837		 * fields
1838		 */
1839		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1840
1841		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1842		 * corresponds to the "connectable" instance flag.
1843		 */
1844		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1845			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1846
1847		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1848			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1849		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1850			flags |= MGMT_ADV_FLAG_DISCOV;
1851
1852		return flags;
 
 
1853	}
1854
1855	adv = hci_find_adv_instance(hdev, instance);
1856
1857	/* Return 0 when we got an invalid instance identifier. */
1858	if (!adv)
1859		return 0;
1860
1861	return adv->flags;
1862}
1863
1864bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1865{
1866	struct adv_info *adv;
1867
1868	/* Instance 0x00 always set local name */
1869	if (instance == 0x00)
1870		return true;
1871
1872	adv = hci_find_adv_instance(hdev, instance);
1873	if (!adv)
1874		return false;
1875
1876	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1877	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1878		return true;
1879
1880	return adv->scan_rsp_len ? true : false;
1881}
1882
1883/* This function requires the caller holds hdev->lock */
1884void hci_adv_monitors_clear(struct hci_dev *hdev)
1885{
1886	struct adv_monitor *monitor;
1887	int handle;
1888
1889	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1890		hci_free_adv_monitor(hdev, monitor);
1891
1892	idr_destroy(&hdev->adv_monitors_idr);
1893}
1894
1895/* Frees the monitor structure and do some bookkeepings.
1896 * This function requires the caller holds hdev->lock.
1897 */
1898void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1899{
1900	struct adv_pattern *pattern;
1901	struct adv_pattern *tmp;
1902
1903	if (!monitor)
1904		return;
1905
1906	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1907		list_del(&pattern->list);
1908		kfree(pattern);
1909	}
1910
1911	if (monitor->handle)
1912		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1913
1914	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1915		hdev->adv_monitors_cnt--;
1916		mgmt_adv_monitor_removed(hdev, monitor->handle);
1917	}
1918
1919	kfree(monitor);
 
 
1920}
1921
1922/* Assigns handle to a monitor, and if offloading is supported and power is on,
1923 * also attempts to forward the request to the controller.
1924 * This function requires the caller holds hci_req_sync_lock.
1925 */
1926int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1927{
1928	int min, max, handle;
1929	int status = 0;
1930
1931	if (!monitor)
1932		return -EINVAL;
1933
1934	hci_dev_lock(hdev);
1935
1936	min = HCI_MIN_ADV_MONITOR_HANDLE;
1937	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1938	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1939			   GFP_KERNEL);
1940
1941	hci_dev_unlock(hdev);
1942
1943	if (handle < 0)
1944		return handle;
1945
1946	monitor->handle = handle;
1947
1948	if (!hdev_is_powered(hdev))
1949		return status;
1950
1951	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1952	case HCI_ADV_MONITOR_EXT_NONE:
1953		bt_dev_dbg(hdev, "add monitor %d status %d",
1954			   monitor->handle, status);
1955		/* Message was not forwarded to controller - not an error */
1956		break;
1957
1958	case HCI_ADV_MONITOR_EXT_MSFT:
1959		status = msft_add_monitor_pattern(hdev, monitor);
1960		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1961			   handle, status);
1962		break;
1963	}
1964
1965	return status;
1966}
1967
1968/* Attempts to tell the controller and free the monitor. If somehow the
1969 * controller doesn't have a corresponding handle, remove anyway.
1970 * This function requires the caller holds hci_req_sync_lock.
1971 */
1972static int hci_remove_adv_monitor(struct hci_dev *hdev,
1973				  struct adv_monitor *monitor)
1974{
1975	int status = 0;
1976	int handle;
1977
1978	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1979	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1980		bt_dev_dbg(hdev, "remove monitor %d status %d",
1981			   monitor->handle, status);
1982		goto free_monitor;
1983
1984	case HCI_ADV_MONITOR_EXT_MSFT:
1985		handle = monitor->handle;
1986		status = msft_remove_monitor(hdev, monitor);
1987		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1988			   handle, status);
1989		break;
1990	}
1991
1992	/* In case no matching handle registered, just free the monitor */
1993	if (status == -ENOENT)
1994		goto free_monitor;
1995
1996	return status;
1997
1998free_monitor:
1999	if (status == -ENOENT)
2000		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
2001			    monitor->handle);
2002	hci_free_adv_monitor(hdev, monitor);
2003
2004	return status;
2005}
2006
2007/* This function requires the caller holds hci_req_sync_lock */
2008int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2009{
2010	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2011
2012	if (!monitor)
2013		return -EINVAL;
2014
2015	return hci_remove_adv_monitor(hdev, monitor);
2016}
2017
2018/* This function requires the caller holds hci_req_sync_lock */
2019int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2020{
2021	struct adv_monitor *monitor;
2022	int idr_next_id = 0;
2023	int status = 0;
2024
2025	while (1) {
2026		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2027		if (!monitor)
2028			break;
2029
2030		status = hci_remove_adv_monitor(hdev, monitor);
2031		if (status)
2032			return status;
2033
2034		idr_next_id++;
2035	}
2036
2037	return status;
2038}
2039
2040/* This function requires the caller holds hdev->lock */
2041bool hci_is_adv_monitoring(struct hci_dev *hdev)
2042{
2043	return !idr_is_empty(&hdev->adv_monitors_idr);
2044}
2045
2046int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2047{
2048	if (msft_monitor_supported(hdev))
2049		return HCI_ADV_MONITOR_EXT_MSFT;
2050
2051	return HCI_ADV_MONITOR_EXT_NONE;
2052}
2053
2054struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2055					 bdaddr_t *bdaddr, u8 type)
2056{
2057	struct bdaddr_list *b;
2058
2059	list_for_each_entry(b, bdaddr_list, list) {
2060		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2061			return b;
2062	}
2063
2064	return NULL;
2065}
2066
2067struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2068				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2069				u8 type)
2070{
2071	struct bdaddr_list_with_irk *b;
2072
2073	list_for_each_entry(b, bdaddr_list, list) {
2074		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2075			return b;
2076	}
2077
2078	return NULL;
2079}
2080
2081struct bdaddr_list_with_flags *
2082hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2083				  bdaddr_t *bdaddr, u8 type)
2084{
2085	struct bdaddr_list_with_flags *b;
2086
2087	list_for_each_entry(b, bdaddr_list, list) {
2088		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2089			return b;
2090	}
2091
2092	return NULL;
2093}
2094
2095void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2096{
2097	struct bdaddr_list *b, *n;
2098
2099	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2100		list_del(&b->list);
2101		kfree(b);
2102	}
2103}
2104
2105int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2106{
2107	struct bdaddr_list *entry;
2108
2109	if (!bacmp(bdaddr, BDADDR_ANY))
2110		return -EBADF;
2111
2112	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2113		return -EEXIST;
2114
2115	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2116	if (!entry)
2117		return -ENOMEM;
2118
2119	bacpy(&entry->bdaddr, bdaddr);
2120	entry->bdaddr_type = type;
2121
2122	list_add(&entry->list, list);
2123
2124	return 0;
2125}
2126
2127int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2128					u8 type, u8 *peer_irk, u8 *local_irk)
2129{
2130	struct bdaddr_list_with_irk *entry;
2131
2132	if (!bacmp(bdaddr, BDADDR_ANY))
2133		return -EBADF;
2134
2135	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2136		return -EEXIST;
 
2137
2138	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2139	if (!entry)
2140		return -ENOMEM;
2141
2142	bacpy(&entry->bdaddr, bdaddr);
2143	entry->bdaddr_type = type;
2144
2145	if (peer_irk)
2146		memcpy(entry->peer_irk, peer_irk, 16);
2147
2148	if (local_irk)
2149		memcpy(entry->local_irk, local_irk, 16);
2150
2151	list_add(&entry->list, list);
2152
2153	return 0;
2154}
2155
2156int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2157				   u8 type, u32 flags)
2158{
2159	struct bdaddr_list_with_flags *entry;
2160
2161	if (!bacmp(bdaddr, BDADDR_ANY))
2162		return -EBADF;
2163
2164	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2165		return -EEXIST;
2166
2167	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2168	if (!entry)
2169		return -ENOMEM;
2170
2171	bacpy(&entry->bdaddr, bdaddr);
2172	entry->bdaddr_type = type;
2173	entry->flags = flags;
2174
2175	list_add(&entry->list, list);
2176
2177	return 0;
2178}
2179
2180int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
 
2181{
2182	struct bdaddr_list *entry;
2183
2184	if (!bacmp(bdaddr, BDADDR_ANY)) {
2185		hci_bdaddr_list_clear(list);
2186		return 0;
2187	}
2188
2189	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2190	if (!entry)
2191		return -ENOENT;
2192
2193	list_del(&entry->list);
2194	kfree(entry);
2195
2196	return 0;
2197}
2198
2199int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2200							u8 type)
2201{
2202	struct bdaddr_list_with_irk *entry;
2203
2204	if (!bacmp(bdaddr, BDADDR_ANY)) {
2205		hci_bdaddr_list_clear(list);
 
2206		return 0;
2207	}
2208
2209	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2210	if (!entry)
2211		return -ENOENT;
2212
2213	list_del(&entry->list);
2214	kfree(entry);
2215
2216	return 0;
2217}
2218
2219int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2220				   u8 type)
2221{
2222	struct bdaddr_list_with_flags *entry;
2223
2224	if (!bacmp(bdaddr, BDADDR_ANY)) {
2225		hci_bdaddr_list_clear(list);
2226		return 0;
2227	}
2228
2229	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2230	if (!entry)
2231		return -ENOENT;
2232
2233	list_del(&entry->list);
2234	kfree(entry);
2235
2236	return 0;
2237}
2238
2239/* This function requires the caller holds hdev->lock */
2240struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2241					       bdaddr_t *addr, u8 addr_type)
2242{
2243	struct hci_conn_params *params;
2244
2245	list_for_each_entry(params, &hdev->le_conn_params, list) {
2246		if (bacmp(&params->addr, addr) == 0 &&
2247		    params->addr_type == addr_type) {
2248			return params;
2249		}
2250	}
2251
2252	return NULL;
2253}
2254
2255/* This function requires the caller holds hdev->lock or rcu_read_lock */
2256struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2257						  bdaddr_t *addr, u8 addr_type)
2258{
2259	struct hci_conn_params *param;
2260
2261	rcu_read_lock();
2262
2263	list_for_each_entry_rcu(param, list, action) {
2264		if (bacmp(&param->addr, addr) == 0 &&
2265		    param->addr_type == addr_type) {
2266			rcu_read_unlock();
2267			return param;
2268		}
2269	}
2270
2271	rcu_read_unlock();
2272
2273	return NULL;
2274}
2275
2276/* This function requires the caller holds hdev->lock */
2277void hci_pend_le_list_del_init(struct hci_conn_params *param)
2278{
2279	if (list_empty(&param->action))
2280		return;
2281
2282	list_del_rcu(&param->action);
2283	synchronize_rcu();
2284	INIT_LIST_HEAD(&param->action);
2285}
2286
2287/* This function requires the caller holds hdev->lock */
2288void hci_pend_le_list_add(struct hci_conn_params *param,
2289			  struct list_head *list)
2290{
2291	list_add_rcu(&param->action, list);
2292}
2293
2294/* This function requires the caller holds hdev->lock */
2295struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2296					    bdaddr_t *addr, u8 addr_type)
2297{
2298	struct hci_conn_params *params;
2299
2300	params = hci_conn_params_lookup(hdev, addr, addr_type);
2301	if (params)
2302		return params;
2303
2304	params = kzalloc(sizeof(*params), GFP_KERNEL);
2305	if (!params) {
2306		bt_dev_err(hdev, "out of memory");
2307		return NULL;
2308	}
2309
2310	bacpy(&params->addr, addr);
2311	params->addr_type = addr_type;
2312
2313	list_add(&params->list, &hdev->le_conn_params);
2314	INIT_LIST_HEAD(&params->action);
2315
2316	params->conn_min_interval = hdev->le_conn_min_interval;
2317	params->conn_max_interval = hdev->le_conn_max_interval;
2318	params->conn_latency = hdev->le_conn_latency;
2319	params->supervision_timeout = hdev->le_supv_timeout;
2320	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2321
2322	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2323
2324	return params;
2325}
2326
2327void hci_conn_params_free(struct hci_conn_params *params)
2328{
2329	hci_pend_le_list_del_init(params);
2330
2331	if (params->conn) {
2332		hci_conn_drop(params->conn);
2333		hci_conn_put(params->conn);
2334	}
2335
2336	list_del(&params->list);
2337	kfree(params);
2338}
2339
2340/* This function requires the caller holds hdev->lock */
2341void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2342{
2343	struct hci_conn_params *params;
2344
2345	params = hci_conn_params_lookup(hdev, addr, addr_type);
2346	if (!params)
2347		return;
2348
2349	hci_conn_params_free(params);
2350
2351	hci_update_passive_scan(hdev);
 
2352
2353	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2354}
2355
2356/* This function requires the caller holds hdev->lock */
2357void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2358{
2359	struct hci_conn_params *params, *tmp;
2360
2361	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2362		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2363			continue;
2364
2365		/* If trying to establish one time connection to disabled
2366		 * device, leave the params, but mark them as just once.
2367		 */
2368		if (params->explicit_connect) {
2369			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2370			continue;
2371		}
2372
2373		hci_conn_params_free(params);
2374	}
2375
2376	BT_DBG("All LE disabled connection parameters were removed");
2377}
2378
2379/* This function requires the caller holds hdev->lock */
2380static void hci_conn_params_clear_all(struct hci_dev *hdev)
2381{
2382	struct hci_conn_params *params, *tmp;
2383
2384	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2385		hci_conn_params_free(params);
2386
2387	BT_DBG("All LE connection parameters were removed");
2388}
2389
2390/* Copy the Identity Address of the controller.
2391 *
2392 * If the controller has a public BD_ADDR, then by default use that one.
2393 * If this is a LE only controller without a public address, default to
2394 * the static random address.
2395 *
2396 * For debugging purposes it is possible to force controllers with a
2397 * public address to use the static random address instead.
2398 *
2399 * In case BR/EDR has been disabled on a dual-mode controller and
2400 * userspace has configured a static address, then that address
2401 * becomes the identity address instead of the public BR/EDR address.
2402 */
2403void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2404			       u8 *bdaddr_type)
2405{
2406	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2407	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2408	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2409	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2410		bacpy(bdaddr, &hdev->static_addr);
2411		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2412	} else {
2413		bacpy(bdaddr, &hdev->bdaddr);
2414		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2415	}
2416}
2417
2418static void hci_clear_wake_reason(struct hci_dev *hdev)
2419{
2420	hci_dev_lock(hdev);
2421
2422	hdev->wake_reason = 0;
2423	bacpy(&hdev->wake_addr, BDADDR_ANY);
2424	hdev->wake_addr_type = 0;
2425
2426	hci_dev_unlock(hdev);
2427}
2428
2429static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2430				void *data)
2431{
2432	struct hci_dev *hdev =
2433		container_of(nb, struct hci_dev, suspend_notifier);
2434	int ret = 0;
2435
2436	/* Userspace has full control of this device. Do nothing. */
2437	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2438		return NOTIFY_DONE;
2439
2440	/* To avoid a potential race with hci_unregister_dev. */
2441	hci_dev_hold(hdev);
2442
2443	if (action == PM_SUSPEND_PREPARE)
2444		ret = hci_suspend_dev(hdev);
2445	else if (action == PM_POST_SUSPEND)
2446		ret = hci_resume_dev(hdev);
2447
2448	if (ret)
2449		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2450			   action, ret);
2451
2452	hci_dev_put(hdev);
2453	return NOTIFY_DONE;
2454}
2455
2456/* Alloc HCI device */
2457struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2458{
2459	struct hci_dev *hdev;
2460	unsigned int alloc_size;
2461
2462	alloc_size = sizeof(*hdev);
2463	if (sizeof_priv) {
2464		/* Fixme: May need ALIGN-ment? */
2465		alloc_size += sizeof_priv;
2466	}
2467
2468	hdev = kzalloc(alloc_size, GFP_KERNEL);
2469	if (!hdev)
2470		return NULL;
2471
 
2472	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2473	hdev->esco_type = (ESCO_HV1);
2474	hdev->link_mode = (HCI_LM_ACCEPT);
2475	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2476	hdev->io_capability = 0x03;	/* No Input No Output */
2477	hdev->manufacturer = 0xffff;	/* Default to internal use */
2478	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2479	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2480	hdev->adv_instance_cnt = 0;
2481	hdev->cur_adv_instance = 0x00;
2482	hdev->adv_instance_timeout = 0;
2483
2484	hdev->advmon_allowlist_duration = 300;
2485	hdev->advmon_no_filter_duration = 500;
2486	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2487
 
2488	hdev->sniff_max_interval = 800;
2489	hdev->sniff_min_interval = 80;
2490
2491	hdev->le_adv_channel_map = 0x07;
2492	hdev->le_adv_min_interval = 0x0800;
2493	hdev->le_adv_max_interval = 0x0800;
2494	hdev->le_scan_interval = 0x0060;
2495	hdev->le_scan_window = 0x0030;
2496	hdev->le_scan_int_suspend = 0x0400;
2497	hdev->le_scan_window_suspend = 0x0012;
2498	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2499	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2500	hdev->le_scan_int_adv_monitor = 0x0060;
2501	hdev->le_scan_window_adv_monitor = 0x0030;
2502	hdev->le_scan_int_connect = 0x0060;
2503	hdev->le_scan_window_connect = 0x0060;
2504	hdev->le_conn_min_interval = 0x0018;
2505	hdev->le_conn_max_interval = 0x0028;
2506	hdev->le_conn_latency = 0x0000;
2507	hdev->le_supv_timeout = 0x002a;
2508	hdev->le_def_tx_len = 0x001b;
2509	hdev->le_def_tx_time = 0x0148;
2510	hdev->le_max_tx_len = 0x001b;
2511	hdev->le_max_tx_time = 0x0148;
2512	hdev->le_max_rx_len = 0x001b;
2513	hdev->le_max_rx_time = 0x0148;
2514	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2515	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2516	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2517	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2518	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2519	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2520	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2521	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2522	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2523
2524	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2525	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2526	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2527	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2528	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2529	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2530
2531	/* default 1.28 sec page scan */
2532	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2533	hdev->def_page_scan_int = 0x0800;
2534	hdev->def_page_scan_window = 0x0012;
2535
2536	mutex_init(&hdev->lock);
2537	mutex_init(&hdev->req_lock);
2538
2539	ida_init(&hdev->unset_handle_ida);
2540
2541	INIT_LIST_HEAD(&hdev->mesh_pending);
2542	INIT_LIST_HEAD(&hdev->mgmt_pending);
2543	INIT_LIST_HEAD(&hdev->reject_list);
2544	INIT_LIST_HEAD(&hdev->accept_list);
2545	INIT_LIST_HEAD(&hdev->uuids);
2546	INIT_LIST_HEAD(&hdev->link_keys);
2547	INIT_LIST_HEAD(&hdev->long_term_keys);
2548	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2549	INIT_LIST_HEAD(&hdev->remote_oob_data);
2550	INIT_LIST_HEAD(&hdev->le_accept_list);
2551	INIT_LIST_HEAD(&hdev->le_resolv_list);
2552	INIT_LIST_HEAD(&hdev->le_conn_params);
2553	INIT_LIST_HEAD(&hdev->pend_le_conns);
2554	INIT_LIST_HEAD(&hdev->pend_le_reports);
2555	INIT_LIST_HEAD(&hdev->conn_hash.list);
2556	INIT_LIST_HEAD(&hdev->adv_instances);
2557	INIT_LIST_HEAD(&hdev->blocked_keys);
2558	INIT_LIST_HEAD(&hdev->monitored_devices);
2559
2560	INIT_LIST_HEAD(&hdev->local_codecs);
2561	INIT_WORK(&hdev->rx_work, hci_rx_work);
2562	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2563	INIT_WORK(&hdev->tx_work, hci_tx_work);
2564	INIT_WORK(&hdev->power_on, hci_power_on);
2565	INIT_WORK(&hdev->error_reset, hci_error_reset);
2566
2567	hci_cmd_sync_init(hdev);
2568
2569	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2570
2571	skb_queue_head_init(&hdev->rx_q);
2572	skb_queue_head_init(&hdev->cmd_q);
2573	skb_queue_head_init(&hdev->raw_q);
2574
2575	init_waitqueue_head(&hdev->req_wait_q);
2576
2577	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2578	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2579
2580	hci_devcd_setup(hdev);
2581	hci_request_setup(hdev);
2582
2583	hci_init_sysfs(hdev);
2584	discovery_init(hdev);
2585
2586	return hdev;
2587}
2588EXPORT_SYMBOL(hci_alloc_dev_priv);
2589
2590/* Free HCI device */
2591void hci_free_dev(struct hci_dev *hdev)
2592{
2593	/* will free via device release */
2594	put_device(&hdev->dev);
2595}
2596EXPORT_SYMBOL(hci_free_dev);
2597
2598/* Register HCI device */
2599int hci_register_dev(struct hci_dev *hdev)
2600{
2601	int id, error;
2602
2603	if (!hdev->open || !hdev->close || !hdev->send)
2604		return -EINVAL;
2605
2606	/* Do not allow HCI_AMP devices to register at index 0,
2607	 * so the index can be used as the AMP controller ID.
2608	 */
2609	switch (hdev->dev_type) {
2610	case HCI_PRIMARY:
2611		id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
2612		break;
2613	case HCI_AMP:
2614		id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
2615		break;
2616	default:
2617		return -EINVAL;
2618	}
2619
2620	if (id < 0)
2621		return id;
2622
2623	error = dev_set_name(&hdev->dev, "hci%u", id);
2624	if (error)
2625		return error;
2626
2627	hdev->name = dev_name(&hdev->dev);
2628	hdev->id = id;
 
2629
2630	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2631
2632	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2633	if (!hdev->workqueue) {
2634		error = -ENOMEM;
2635		goto err;
2636	}
2637
2638	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2639						      hdev->name);
2640	if (!hdev->req_workqueue) {
2641		destroy_workqueue(hdev->workqueue);
2642		error = -ENOMEM;
2643		goto err;
2644	}
2645
2646	if (!IS_ERR_OR_NULL(bt_debugfs))
2647		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
 
2648
2649	error = device_add(&hdev->dev);
2650	if (error < 0)
2651		goto err_wqueue;
 
2652
2653	hci_leds_init(hdev);
2654
2655	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2656				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2657				    hdev);
2658	if (hdev->rfkill) {
2659		if (rfkill_register(hdev->rfkill) < 0) {
2660			rfkill_destroy(hdev->rfkill);
2661			hdev->rfkill = NULL;
2662		}
2663	}
2664
2665	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2666		hci_dev_set_flag(hdev, HCI_RFKILLED);
 
2667
2668	hci_dev_set_flag(hdev, HCI_SETUP);
2669	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2670
2671	if (hdev->dev_type == HCI_PRIMARY) {
2672		/* Assume BR/EDR support until proven otherwise (such as
2673		 * through reading supported features during init.
2674		 */
2675		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2676	}
2677
2678	write_lock(&hci_dev_list_lock);
2679	list_add(&hdev->list, &hci_dev_list);
2680	write_unlock(&hci_dev_list_lock);
2681
2682	/* Devices that are marked for raw-only usage are unconfigured
2683	 * and should not be included in normal operation.
2684	 */
2685	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2686		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2687
2688	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2689	 * callback.
2690	 */
2691	if (hdev->wakeup)
2692		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2693
2694	hci_sock_dev_event(hdev, HCI_DEV_REG);
2695	hci_dev_hold(hdev);
2696
2697	error = hci_register_suspend_notifier(hdev);
2698	if (error)
2699		BT_WARN("register suspend notifier failed error:%d\n", error);
2700
2701	queue_work(hdev->req_workqueue, &hdev->power_on);
2702
2703	idr_init(&hdev->adv_monitors_idr);
2704	msft_register(hdev);
2705
2706	return id;
2707
2708err_wqueue:
2709	debugfs_remove_recursive(hdev->debugfs);
2710	destroy_workqueue(hdev->workqueue);
2711	destroy_workqueue(hdev->req_workqueue);
2712err:
2713	ida_simple_remove(&hci_index_ida, hdev->id);
2714
2715	return error;
2716}
2717EXPORT_SYMBOL(hci_register_dev);
2718
2719/* Unregister HCI device */
2720void hci_unregister_dev(struct hci_dev *hdev)
2721{
2722	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2723
2724	mutex_lock(&hdev->unregister_lock);
2725	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2726	mutex_unlock(&hdev->unregister_lock);
2727
2728	write_lock(&hci_dev_list_lock);
2729	list_del(&hdev->list);
2730	write_unlock(&hci_dev_list_lock);
2731
2732	cancel_work_sync(&hdev->power_on);
2733
2734	hci_cmd_sync_clear(hdev);
2735
2736	hci_unregister_suspend_notifier(hdev);
2737
2738	msft_unregister(hdev);
2739
2740	hci_dev_do_close(hdev);
2741
 
 
 
2742	if (!test_bit(HCI_INIT, &hdev->flags) &&
2743	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2744	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2745		hci_dev_lock(hdev);
2746		mgmt_index_removed(hdev);
2747		hci_dev_unlock(hdev);
2748	}
2749
2750	/* mgmt_index_removed should take care of emptying the
2751	 * pending list */
2752	BUG_ON(!list_empty(&hdev->mgmt_pending));
2753
2754	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2755
2756	if (hdev->rfkill) {
2757		rfkill_unregister(hdev->rfkill);
2758		rfkill_destroy(hdev->rfkill);
2759	}
2760
2761	device_del(&hdev->dev);
2762	/* Actual cleanup is deferred until hci_release_dev(). */
2763	hci_dev_put(hdev);
2764}
2765EXPORT_SYMBOL(hci_unregister_dev);
2766
2767/* Release HCI device */
2768void hci_release_dev(struct hci_dev *hdev)
2769{
2770	debugfs_remove_recursive(hdev->debugfs);
2771	kfree_const(hdev->hw_info);
2772	kfree_const(hdev->fw_info);
2773
2774	destroy_workqueue(hdev->workqueue);
2775	destroy_workqueue(hdev->req_workqueue);
2776
2777	hci_dev_lock(hdev);
2778	hci_bdaddr_list_clear(&hdev->reject_list);
2779	hci_bdaddr_list_clear(&hdev->accept_list);
2780	hci_uuids_clear(hdev);
2781	hci_link_keys_clear(hdev);
2782	hci_smp_ltks_clear(hdev);
2783	hci_smp_irks_clear(hdev);
2784	hci_remote_oob_data_clear(hdev);
2785	hci_adv_instances_clear(hdev);
2786	hci_adv_monitors_clear(hdev);
2787	hci_bdaddr_list_clear(&hdev->le_accept_list);
2788	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2789	hci_conn_params_clear_all(hdev);
2790	hci_discovery_filter_clear(hdev);
2791	hci_blocked_keys_clear(hdev);
2792	hci_codec_list_clear(&hdev->local_codecs);
2793	hci_dev_unlock(hdev);
2794
2795	ida_destroy(&hdev->unset_handle_ida);
2796	ida_simple_remove(&hci_index_ida, hdev->id);
2797	kfree_skb(hdev->sent_cmd);
2798	kfree_skb(hdev->recv_event);
2799	kfree(hdev);
2800}
2801EXPORT_SYMBOL(hci_release_dev);
2802
2803int hci_register_suspend_notifier(struct hci_dev *hdev)
 
2804{
2805	int ret = 0;
2806
2807	if (!hdev->suspend_notifier.notifier_call &&
2808	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2809		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2810		ret = register_pm_notifier(&hdev->suspend_notifier);
2811	}
2812
2813	return ret;
2814}
 
2815
2816int hci_unregister_suspend_notifier(struct hci_dev *hdev)
 
2817{
2818	int ret = 0;
 
 
 
2819
2820	if (hdev->suspend_notifier.notifier_call) {
2821		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2822		if (!ret)
2823			hdev->suspend_notifier.notifier_call = NULL;
 
 
 
 
2824	}
2825
2826	return ret;
 
 
 
 
 
 
 
 
 
 
2827}
 
2828
2829/* Suspend HCI device */
2830int hci_suspend_dev(struct hci_dev *hdev)
2831{
2832	int ret;
 
 
 
 
2833
2834	bt_dev_dbg(hdev, "");
 
 
2835
2836	/* Suspend should only act on when powered. */
2837	if (!hdev_is_powered(hdev) ||
2838	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2839		return 0;
2840
2841	/* If powering down don't attempt to suspend */
2842	if (mgmt_powering_down(hdev))
2843		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
2844
2845	/* Cancel potentially blocking sync operation before suspend */
2846	__hci_cmd_sync_cancel(hdev, -EHOSTDOWN);
 
2847
2848	hci_req_sync_lock(hdev);
2849	ret = hci_suspend_sync(hdev);
2850	hci_req_sync_unlock(hdev);
2851
2852	hci_clear_wake_reason(hdev);
2853	mgmt_suspending(hdev, hdev->suspend_state);
 
2854
2855	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2856	return ret;
2857}
2858EXPORT_SYMBOL(hci_suspend_dev);
2859
2860/* Resume HCI device */
2861int hci_resume_dev(struct hci_dev *hdev)
2862{
2863	int ret;
2864
2865	bt_dev_dbg(hdev, "");
 
 
 
2866
2867	/* Resume should only act on when powered. */
2868	if (!hdev_is_powered(hdev) ||
2869	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2870		return 0;
 
 
 
 
 
 
 
 
 
2871
2872	/* If powering down don't attempt to resume */
2873	if (mgmt_powering_down(hdev))
2874		return 0;
 
 
 
 
 
 
 
 
 
2875
2876	hci_req_sync_lock(hdev);
2877	ret = hci_resume_sync(hdev);
2878	hci_req_sync_unlock(hdev);
 
 
 
 
 
 
 
 
 
 
2879
2880	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2881		      hdev->wake_addr_type);
2882
2883	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2884	return ret;
 
 
 
 
 
 
 
2885}
2886EXPORT_SYMBOL(hci_resume_dev);
2887
2888/* Reset HCI device */
2889int hci_reset_dev(struct hci_dev *hdev)
2890{
2891	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2892	struct sk_buff *skb;
2893
2894	skb = bt_skb_alloc(3, GFP_ATOMIC);
2895	if (!skb)
2896		return -ENOMEM;
2897
2898	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2899	skb_put_data(skb, hw_err, 3);
 
 
2900
2901	bt_dev_err(hdev, "Injecting HCI hardware error event");
 
 
2902
2903	/* Send Hardware Error to upper stack */
2904	return hci_recv_frame(hdev, skb);
2905}
2906EXPORT_SYMBOL(hci_reset_dev);
2907
2908/* Receive frame from HCI drivers */
2909int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
 
2910{
2911	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2912		      && !test_bit(HCI_INIT, &hdev->flags))) {
2913		kfree_skb(skb);
2914		return -ENXIO;
2915	}
2916
2917	switch (hci_skb_pkt_type(skb)) {
2918	case HCI_EVENT_PKT:
2919		break;
2920	case HCI_ACLDATA_PKT:
2921		/* Detect if ISO packet has been sent as ACL */
2922		if (hci_conn_num(hdev, ISO_LINK)) {
2923			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2924			__u8 type;
2925
2926			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2927			if (type == ISO_LINK)
2928				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2929		}
2930		break;
2931	case HCI_SCODATA_PKT:
2932		break;
2933	case HCI_ISODATA_PKT:
2934		break;
2935	default:
2936		kfree_skb(skb);
2937		return -EINVAL;
2938	}
2939
2940	/* Incoming skb */
2941	bt_cb(skb)->incoming = 1;
2942
2943	/* Time stamp */
2944	__net_timestamp(skb);
 
2945
2946	skb_queue_tail(&hdev->rx_q, skb);
2947	queue_work(hdev->workqueue, &hdev->rx_work);
 
 
2948
2949	return 0;
 
 
 
 
 
 
 
 
 
2950}
2951EXPORT_SYMBOL(hci_recv_frame);
2952
2953/* Receive diagnostic message from HCI drivers */
2954int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
 
 
 
2955{
2956	/* Mark as diagnostic packet */
2957	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2958
2959	/* Time stamp */
2960	__net_timestamp(skb);
2961
2962	skb_queue_tail(&hdev->rx_q, skb);
2963	queue_work(hdev->workqueue, &hdev->rx_work);
2964
2965	return 0;
2966}
2967EXPORT_SYMBOL(hci_recv_diag);
2968
2969void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2970{
2971	va_list vargs;
 
2972
2973	va_start(vargs, fmt);
2974	kfree_const(hdev->hw_info);
2975	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2976	va_end(vargs);
2977}
2978EXPORT_SYMBOL(hci_set_hw_info);
2979
2980void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2981{
2982	va_list vargs;
2983
2984	va_start(vargs, fmt);
2985	kfree_const(hdev->fw_info);
2986	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2987	va_end(vargs);
2988}
2989EXPORT_SYMBOL(hci_set_fw_info);
2990
2991/* ---- Interface to upper protocols ---- */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2992
2993int hci_register_cb(struct hci_cb *cb)
2994{
2995	BT_DBG("%p name %s", cb, cb->name);
2996
2997	mutex_lock(&hci_cb_list_lock);
2998	list_add_tail(&cb->list, &hci_cb_list);
2999	mutex_unlock(&hci_cb_list_lock);
3000
3001	return 0;
3002}
3003EXPORT_SYMBOL(hci_register_cb);
3004
3005int hci_unregister_cb(struct hci_cb *cb)
3006{
3007	BT_DBG("%p name %s", cb, cb->name);
3008
3009	mutex_lock(&hci_cb_list_lock);
3010	list_del(&cb->list);
3011	mutex_unlock(&hci_cb_list_lock);
3012
3013	return 0;
3014}
3015EXPORT_SYMBOL(hci_unregister_cb);
3016
3017static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3018{
3019	int err;
3020
3021	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3022	       skb->len);
3023
3024	/* Time stamp */
3025	__net_timestamp(skb);
3026
3027	/* Send copy to monitor */
3028	hci_send_to_monitor(hdev, skb);
3029
3030	if (atomic_read(&hdev->promisc)) {
3031		/* Send copy to the sockets */
3032		hci_send_to_sock(hdev, skb);
 
 
3033	}
3034
3035	/* Get rid of skb owner, prior to sending to the driver. */
3036	skb_orphan(skb);
3037
3038	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3039		kfree_skb(skb);
3040		return -EINVAL;
3041	}
3042
3043	err = hdev->send(hdev, skb);
3044	if (err < 0) {
3045		bt_dev_err(hdev, "sending frame failed (%d)", err);
3046		kfree_skb(skb);
3047		return err;
3048	}
3049
3050	return 0;
3051}
3052
3053/* Send HCI command */
3054int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3055		 const void *param)
3056{
 
 
3057	struct sk_buff *skb;
3058
3059	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3060
3061	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3062	if (!skb) {
3063		bt_dev_err(hdev, "no memory for command");
3064		return -ENOMEM;
3065	}
3066
3067	/* Stand-alone HCI commands must be flagged as
3068	 * single-command requests.
3069	 */
3070	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3071
3072	skb_queue_tail(&hdev->cmd_q, skb);
3073	queue_work(hdev->workqueue, &hdev->cmd_work);
3074
3075	return 0;
3076}
3077
3078int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3079		   const void *param)
3080{
3081	struct sk_buff *skb;
3082
3083	if (hci_opcode_ogf(opcode) != 0x3f) {
3084		/* A controller receiving a command shall respond with either
3085		 * a Command Status Event or a Command Complete Event.
3086		 * Therefore, all standard HCI commands must be sent via the
3087		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3088		 * Some vendors do not comply with this rule for vendor-specific
3089		 * commands and do not return any event. We want to support
3090		 * unresponded commands for such cases only.
3091		 */
3092		bt_dev_err(hdev, "unresponded command not supported");
3093		return -EINVAL;
3094	}
3095
3096	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3097	if (!skb) {
3098		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3099			   opcode);
3100		return -ENOMEM;
3101	}
3102
3103	hci_send_frame(hdev, skb);
 
3104
3105	return 0;
3106}
3107EXPORT_SYMBOL(__hci_cmd_send);
3108
3109/* Get data from the previously sent command */
3110void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3111{
3112	struct hci_command_hdr *hdr;
3113
3114	if (!hdev->sent_cmd)
3115		return NULL;
3116
3117	hdr = (void *) hdev->sent_cmd->data;
3118
3119	if (hdr->opcode != cpu_to_le16(opcode))
3120		return NULL;
3121
3122	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3123
3124	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3125}
3126
3127/* Get data from last received event */
3128void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3129{
3130	struct hci_event_hdr *hdr;
3131	int offset;
3132
3133	if (!hdev->recv_event)
3134		return NULL;
3135
3136	hdr = (void *)hdev->recv_event->data;
3137	offset = sizeof(*hdr);
3138
3139	if (hdr->evt != event) {
3140		/* In case of LE metaevent check the subevent match */
3141		if (hdr->evt == HCI_EV_LE_META) {
3142			struct hci_ev_le_meta *ev;
3143
3144			ev = (void *)hdev->recv_event->data + offset;
3145			offset += sizeof(*ev);
3146			if (ev->subevent == event)
3147				goto found;
3148		}
3149		return NULL;
3150	}
3151
3152found:
3153	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3154
3155	return hdev->recv_event->data + offset;
3156}
3157
3158/* Send ACL data */
3159static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3160{
3161	struct hci_acl_hdr *hdr;
3162	int len = skb->len;
3163
3164	skb_push(skb, HCI_ACL_HDR_SIZE);
3165	skb_reset_transport_header(skb);
3166	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3167	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3168	hdr->dlen   = cpu_to_le16(len);
3169}
3170
3171static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3172			  struct sk_buff *skb, __u16 flags)
3173{
3174	struct hci_conn *conn = chan->conn;
3175	struct hci_dev *hdev = conn->hdev;
3176	struct sk_buff *list;
3177
3178	skb->len = skb_headlen(skb);
3179	skb->data_len = 0;
3180
3181	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3182
3183	switch (hdev->dev_type) {
3184	case HCI_PRIMARY:
3185		hci_add_acl_hdr(skb, conn->handle, flags);
3186		break;
3187	case HCI_AMP:
3188		hci_add_acl_hdr(skb, chan->handle, flags);
3189		break;
3190	default:
3191		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3192		return;
3193	}
3194
3195	list = skb_shinfo(skb)->frag_list;
3196	if (!list) {
3197		/* Non fragmented */
3198		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3199
3200		skb_queue_tail(queue, skb);
3201	} else {
3202		/* Fragmented */
3203		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3204
3205		skb_shinfo(skb)->frag_list = NULL;
3206
3207		/* Queue all fragments atomically. We need to use spin_lock_bh
3208		 * here because of 6LoWPAN links, as there this function is
3209		 * called from softirq and using normal spin lock could cause
3210		 * deadlocks.
3211		 */
3212		spin_lock_bh(&queue->lock);
3213
3214		__skb_queue_tail(queue, skb);
3215
3216		flags &= ~ACL_START;
3217		flags |= ACL_CONT;
3218		do {
3219			skb = list; list = list->next;
3220
3221			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
 
3222			hci_add_acl_hdr(skb, conn->handle, flags);
3223
3224			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3225
3226			__skb_queue_tail(queue, skb);
3227		} while (list);
3228
3229		spin_unlock_bh(&queue->lock);
3230	}
3231}
3232
3233void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3234{
3235	struct hci_dev *hdev = chan->conn->hdev;
3236
3237	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3238
3239	hci_queue_acl(chan, &chan->data_q, skb, flags);
3240
3241	queue_work(hdev->workqueue, &hdev->tx_work);
3242}
 
3243
3244/* Send SCO data */
3245void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3246{
3247	struct hci_dev *hdev = conn->hdev;
3248	struct hci_sco_hdr hdr;
3249
3250	BT_DBG("%s len %d", hdev->name, skb->len);
3251
3252	hdr.handle = cpu_to_le16(conn->handle);
3253	hdr.dlen   = skb->len;
3254
3255	skb_push(skb, HCI_SCO_HDR_SIZE);
3256	skb_reset_transport_header(skb);
3257	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3258
3259	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
 
3260
3261	skb_queue_tail(&conn->data_q, skb);
3262	queue_work(hdev->workqueue, &hdev->tx_work);
3263}
3264
3265/* Send ISO data */
3266static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3267{
3268	struct hci_iso_hdr *hdr;
3269	int len = skb->len;
3270
3271	skb_push(skb, HCI_ISO_HDR_SIZE);
3272	skb_reset_transport_header(skb);
3273	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3274	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3275	hdr->dlen   = cpu_to_le16(len);
3276}
3277
3278static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3279			  struct sk_buff *skb)
3280{
3281	struct hci_dev *hdev = conn->hdev;
3282	struct sk_buff *list;
3283	__u16 flags;
3284
3285	skb->len = skb_headlen(skb);
3286	skb->data_len = 0;
3287
3288	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3289
3290	list = skb_shinfo(skb)->frag_list;
3291
3292	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3293	hci_add_iso_hdr(skb, conn->handle, flags);
3294
3295	if (!list) {
3296		/* Non fragmented */
3297		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3298
3299		skb_queue_tail(queue, skb);
3300	} else {
3301		/* Fragmented */
3302		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3303
3304		skb_shinfo(skb)->frag_list = NULL;
3305
3306		__skb_queue_tail(queue, skb);
3307
3308		do {
3309			skb = list; list = list->next;
3310
3311			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3312			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3313						   0x00);
3314			hci_add_iso_hdr(skb, conn->handle, flags);
3315
3316			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3317
3318			__skb_queue_tail(queue, skb);
3319		} while (list);
3320	}
3321}
3322
3323void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3324{
3325	struct hci_dev *hdev = conn->hdev;
3326
3327	BT_DBG("%s len %d", hdev->name, skb->len);
3328
3329	hci_queue_iso(conn, &conn->data_q, skb);
3330
3331	queue_work(hdev->workqueue, &hdev->tx_work);
3332}
 
3333
3334/* ---- HCI TX task (outgoing data) ---- */
3335
3336/* HCI Connection scheduler */
3337static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3338{
3339	struct hci_dev *hdev;
3340	int cnt, q;
3341
3342	if (!conn) {
3343		*quote = 0;
3344		return;
3345	}
3346
3347	hdev = conn->hdev;
3348
3349	switch (conn->type) {
3350	case ACL_LINK:
3351		cnt = hdev->acl_cnt;
3352		break;
3353	case AMP_LINK:
3354		cnt = hdev->block_cnt;
3355		break;
3356	case SCO_LINK:
3357	case ESCO_LINK:
3358		cnt = hdev->sco_cnt;
3359		break;
3360	case LE_LINK:
3361		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3362		break;
3363	case ISO_LINK:
3364		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3365			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3366		break;
3367	default:
3368		cnt = 0;
3369		bt_dev_err(hdev, "unknown link type %d", conn->type);
3370	}
3371
3372	q = cnt / num;
3373	*quote = q ? q : 1;
3374}
3375
3376static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3377				     int *quote)
3378{
3379	struct hci_conn_hash *h = &hdev->conn_hash;
3380	struct hci_conn *conn = NULL, *c;
3381	unsigned int num = 0, min = ~0;
 
3382
3383	/* We don't have to lock device here. Connections are always
3384	 * added and removed with TX task disabled. */
 
 
 
3385
3386	rcu_read_lock();
3387
3388	list_for_each_entry_rcu(c, &h->list, list) {
3389		if (c->type != type || skb_queue_empty(&c->data_q))
3390			continue;
3391
3392		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3393			continue;
3394
3395		num++;
3396
3397		if (c->sent < min) {
3398			min  = c->sent;
3399			conn = c;
3400		}
3401
3402		if (hci_conn_num(hdev, type) == num)
3403			break;
3404	}
3405
3406	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3407
3408	hci_quote_sent(conn, num, quote);
 
 
 
3409
3410	BT_DBG("conn %p quote %d", conn, *quote);
3411	return conn;
3412}
3413
3414static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3415{
3416	struct hci_conn_hash *h = &hdev->conn_hash;
3417	struct hci_conn *c;
3418
3419	bt_dev_err(hdev, "link tx timeout");
3420
3421	rcu_read_lock();
3422
3423	/* Kill stalled connections */
3424	list_for_each_entry_rcu(c, &h->list, list) {
 
3425		if (c->type == type && c->sent) {
3426			bt_dev_err(hdev, "killing stalled connection %pMR",
3427				   &c->dst);
3428			/* hci_disconnect might sleep, so, we have to release
3429			 * the RCU read lock before calling it.
3430			 */
3431			rcu_read_unlock();
3432			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3433			rcu_read_lock();
3434		}
3435	}
3436
3437	rcu_read_unlock();
3438}
3439
3440static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3441				      int *quote)
3442{
3443	struct hci_conn_hash *h = &hdev->conn_hash;
3444	struct hci_chan *chan = NULL;
3445	unsigned int num = 0, min = ~0, cur_prio = 0;
3446	struct hci_conn *conn;
3447	int conn_num = 0;
 
3448
3449	BT_DBG("%s", hdev->name);
3450
3451	rcu_read_lock();
3452
3453	list_for_each_entry_rcu(conn, &h->list, list) {
3454		struct hci_chan *tmp;
3455
3456		if (conn->type != type)
3457			continue;
3458
3459		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3460			continue;
3461
3462		conn_num++;
3463
3464		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3465			struct sk_buff *skb;
3466
3467			if (skb_queue_empty(&tmp->data_q))
3468				continue;
3469
3470			skb = skb_peek(&tmp->data_q);
3471			if (skb->priority < cur_prio)
3472				continue;
3473
3474			if (skb->priority > cur_prio) {
3475				num = 0;
3476				min = ~0;
3477				cur_prio = skb->priority;
3478			}
3479
3480			num++;
3481
3482			if (conn->sent < min) {
3483				min  = conn->sent;
3484				chan = tmp;
3485			}
3486		}
3487
3488		if (hci_conn_num(hdev, type) == conn_num)
3489			break;
3490	}
3491
3492	rcu_read_unlock();
3493
3494	if (!chan)
3495		return NULL;
3496
3497	hci_quote_sent(chan->conn, num, quote);
3498
3499	BT_DBG("chan %p quote %d", chan, *quote);
3500	return chan;
3501}
3502
3503static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3504{
3505	struct hci_conn_hash *h = &hdev->conn_hash;
3506	struct hci_conn *conn;
3507	int num = 0;
3508
3509	BT_DBG("%s", hdev->name);
3510
3511	rcu_read_lock();
3512
3513	list_for_each_entry_rcu(conn, &h->list, list) {
3514		struct hci_chan *chan;
3515
3516		if (conn->type != type)
3517			continue;
3518
3519		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3520			continue;
3521
3522		num++;
3523
3524		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3525			struct sk_buff *skb;
3526
3527			if (chan->sent) {
3528				chan->sent = 0;
3529				continue;
3530			}
3531
3532			if (skb_queue_empty(&chan->data_q))
3533				continue;
3534
3535			skb = skb_peek(&chan->data_q);
3536			if (skb->priority >= HCI_PRIO_MAX - 1)
3537				continue;
3538
3539			skb->priority = HCI_PRIO_MAX - 1;
 
3540
3541			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3542			       skb->priority);
3543		}
3544
3545		if (hci_conn_num(hdev, type) == num)
3546			break;
3547	}
3548
3549	rcu_read_unlock();
3550
3551}
3552
3553static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3554{
3555	/* Calculate count of blocks used by this packet */
3556	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3557}
3558
3559static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3560{
3561	unsigned long last_tx;
3562
3563	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3564		return;
3565
3566	switch (type) {
3567	case LE_LINK:
3568		last_tx = hdev->le_last_tx;
3569		break;
3570	default:
3571		last_tx = hdev->acl_last_tx;
3572		break;
3573	}
3574
3575	/* tx timeout must be longer than maximum link supervision timeout
3576	 * (40.9 seconds)
3577	 */
3578	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3579		hci_link_tx_to(hdev, type);
3580}
3581
3582/* Schedule SCO */
3583static void hci_sched_sco(struct hci_dev *hdev)
3584{
3585	struct hci_conn *conn;
3586	struct sk_buff *skb;
3587	int quote;
3588
3589	BT_DBG("%s", hdev->name);
3590
3591	if (!hci_conn_num(hdev, SCO_LINK))
3592		return;
3593
3594	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3595		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3596			BT_DBG("skb %p len %d", skb, skb->len);
3597			hci_send_frame(hdev, skb);
3598
3599			conn->sent++;
3600			if (conn->sent == ~0)
3601				conn->sent = 0;
3602		}
3603	}
3604}
3605
3606static void hci_sched_esco(struct hci_dev *hdev)
3607{
3608	struct hci_conn *conn;
3609	struct sk_buff *skb;
3610	int quote;
3611
3612	BT_DBG("%s", hdev->name);
3613
3614	if (!hci_conn_num(hdev, ESCO_LINK))
3615		return;
3616
3617	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3618						     &quote))) {
3619		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3620			BT_DBG("skb %p len %d", skb, skb->len);
3621			hci_send_frame(hdev, skb);
3622
3623			conn->sent++;
3624			if (conn->sent == ~0)
3625				conn->sent = 0;
3626		}
3627	}
3628}
3629
3630static void hci_sched_acl_pkt(struct hci_dev *hdev)
3631{
3632	unsigned int cnt = hdev->acl_cnt;
3633	struct hci_chan *chan;
3634	struct sk_buff *skb;
3635	int quote;
3636
3637	__check_timeout(hdev, cnt, ACL_LINK);
3638
3639	while (hdev->acl_cnt &&
3640	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3641		u32 priority = (skb_peek(&chan->data_q))->priority;
3642		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3643			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3644			       skb->len, skb->priority);
3645
3646			/* Stop if priority has changed */
3647			if (skb->priority < priority)
3648				break;
3649
3650			skb = skb_dequeue(&chan->data_q);
3651
3652			hci_conn_enter_active_mode(chan->conn,
3653						   bt_cb(skb)->force_active);
3654
3655			hci_send_frame(hdev, skb);
3656			hdev->acl_last_tx = jiffies;
3657
3658			hdev->acl_cnt--;
3659			chan->sent++;
3660			chan->conn->sent++;
3661
3662			/* Send pending SCO packets right away */
3663			hci_sched_sco(hdev);
3664			hci_sched_esco(hdev);
3665		}
3666	}
3667
3668	if (cnt != hdev->acl_cnt)
3669		hci_prio_recalculate(hdev, ACL_LINK);
3670}
3671
3672static void hci_sched_acl_blk(struct hci_dev *hdev)
3673{
3674	unsigned int cnt = hdev->block_cnt;
3675	struct hci_chan *chan;
3676	struct sk_buff *skb;
3677	int quote;
3678	u8 type;
3679
3680	BT_DBG("%s", hdev->name);
3681
3682	if (hdev->dev_type == HCI_AMP)
3683		type = AMP_LINK;
3684	else
3685		type = ACL_LINK;
3686
3687	__check_timeout(hdev, cnt, type);
3688
3689	while (hdev->block_cnt > 0 &&
3690	       (chan = hci_chan_sent(hdev, type, &quote))) {
3691		u32 priority = (skb_peek(&chan->data_q))->priority;
3692		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3693			int blocks;
3694
3695			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3696			       skb->len, skb->priority);
3697
3698			/* Stop if priority has changed */
3699			if (skb->priority < priority)
3700				break;
3701
3702			skb = skb_dequeue(&chan->data_q);
3703
3704			blocks = __get_blocks(hdev, skb);
3705			if (blocks > hdev->block_cnt)
3706				return;
3707
3708			hci_conn_enter_active_mode(chan->conn,
3709						   bt_cb(skb)->force_active);
3710
3711			hci_send_frame(hdev, skb);
3712			hdev->acl_last_tx = jiffies;
3713
3714			hdev->block_cnt -= blocks;
3715			quote -= blocks;
3716
3717			chan->sent += blocks;
3718			chan->conn->sent += blocks;
3719		}
3720	}
3721
3722	if (cnt != hdev->block_cnt)
3723		hci_prio_recalculate(hdev, type);
3724}
3725
3726static void hci_sched_acl(struct hci_dev *hdev)
3727{
3728	BT_DBG("%s", hdev->name);
3729
3730	/* No ACL link over BR/EDR controller */
3731	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3732		return;
3733
3734	/* No AMP link over AMP controller */
3735	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3736		return;
3737
3738	switch (hdev->flow_ctl_mode) {
3739	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3740		hci_sched_acl_pkt(hdev);
3741		break;
3742
3743	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3744		hci_sched_acl_blk(hdev);
3745		break;
3746	}
3747}
3748
3749static void hci_sched_le(struct hci_dev *hdev)
3750{
3751	struct hci_chan *chan;
3752	struct sk_buff *skb;
3753	int quote, cnt, tmp;
3754
3755	BT_DBG("%s", hdev->name);
3756
3757	if (!hci_conn_num(hdev, LE_LINK))
3758		return;
3759
3760	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
 
 
 
3761
3762	__check_timeout(hdev, cnt, LE_LINK);
3763
3764	tmp = cnt;
3765	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3766		u32 priority = (skb_peek(&chan->data_q))->priority;
3767		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3768			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3769			       skb->len, skb->priority);
3770
3771			/* Stop if priority has changed */
3772			if (skb->priority < priority)
3773				break;
3774
3775			skb = skb_dequeue(&chan->data_q);
3776
3777			hci_send_frame(hdev, skb);
3778			hdev->le_last_tx = jiffies;
3779
3780			cnt--;
3781			chan->sent++;
3782			chan->conn->sent++;
3783
3784			/* Send pending SCO packets right away */
3785			hci_sched_sco(hdev);
3786			hci_sched_esco(hdev);
3787		}
3788	}
3789
3790	if (hdev->le_pkts)
3791		hdev->le_cnt = cnt;
3792	else
3793		hdev->acl_cnt = cnt;
3794
3795	if (cnt != tmp)
3796		hci_prio_recalculate(hdev, LE_LINK);
3797}
3798
3799/* Schedule CIS */
3800static void hci_sched_iso(struct hci_dev *hdev)
3801{
3802	struct hci_conn *conn;
3803	struct sk_buff *skb;
3804	int quote, *cnt;
3805
3806	BT_DBG("%s", hdev->name);
3807
3808	if (!hci_conn_num(hdev, ISO_LINK))
3809		return;
3810
3811	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3812		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3813	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3814		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3815			BT_DBG("skb %p len %d", skb, skb->len);
3816			hci_send_frame(hdev, skb);
3817
3818			conn->sent++;
3819			if (conn->sent == ~0)
3820				conn->sent = 0;
3821			(*cnt)--;
3822		}
3823	}
3824}
3825
3826static void hci_tx_work(struct work_struct *work)
3827{
3828	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3829	struct sk_buff *skb;
3830
3831	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3832	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3833
3834	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3835		/* Schedule queues and send stuff to HCI driver */
3836		hci_sched_sco(hdev);
3837		hci_sched_esco(hdev);
3838		hci_sched_iso(hdev);
3839		hci_sched_acl(hdev);
3840		hci_sched_le(hdev);
3841	}
3842
3843	/* Send next queued raw (unknown type) packet */
3844	while ((skb = skb_dequeue(&hdev->raw_q)))
3845		hci_send_frame(hdev, skb);
 
 
3846}
3847
3848/* ----- HCI RX task (incoming data processing) ----- */
3849
3850/* ACL data packet */
3851static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3852{
3853	struct hci_acl_hdr *hdr = (void *) skb->data;
3854	struct hci_conn *conn;
3855	__u16 handle, flags;
3856
3857	skb_pull(skb, HCI_ACL_HDR_SIZE);
3858
3859	handle = __le16_to_cpu(hdr->handle);
3860	flags  = hci_flags(handle);
3861	handle = hci_handle(handle);
3862
3863	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3864	       handle, flags);
3865
3866	hdev->stat.acl_rx++;
3867
3868	hci_dev_lock(hdev);
3869	conn = hci_conn_hash_lookup_handle(hdev, handle);
3870	hci_dev_unlock(hdev);
3871
3872	if (conn) {
3873		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
 
 
3874
3875		/* Send to upper protocol */
3876		l2cap_recv_acldata(conn, skb, flags);
3877		return;
 
 
 
3878	} else {
3879		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3880			   handle);
3881	}
3882
3883	kfree_skb(skb);
3884}
3885
3886/* SCO data packet */
3887static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3888{
3889	struct hci_sco_hdr *hdr = (void *) skb->data;
3890	struct hci_conn *conn;
3891	__u16 handle, flags;
3892
3893	skb_pull(skb, HCI_SCO_HDR_SIZE);
3894
3895	handle = __le16_to_cpu(hdr->handle);
3896	flags  = hci_flags(handle);
3897	handle = hci_handle(handle);
3898
3899	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3900	       handle, flags);
3901
3902	hdev->stat.sco_rx++;
3903
3904	hci_dev_lock(hdev);
3905	conn = hci_conn_hash_lookup_handle(hdev, handle);
3906	hci_dev_unlock(hdev);
3907
3908	if (conn) {
 
 
3909		/* Send to upper protocol */
3910		hci_skb_pkt_status(skb) = flags & 0x03;
3911		sco_recv_scodata(conn, skb);
3912		return;
 
 
3913	} else {
3914		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3915				       handle);
3916	}
3917
3918	kfree_skb(skb);
3919}
3920
3921static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3922{
3923	struct hci_iso_hdr *hdr;
3924	struct hci_conn *conn;
3925	__u16 handle, flags;
3926
3927	hdr = skb_pull_data(skb, sizeof(*hdr));
3928	if (!hdr) {
3929		bt_dev_err(hdev, "ISO packet too small");
3930		goto drop;
3931	}
3932
3933	handle = __le16_to_cpu(hdr->handle);
3934	flags  = hci_flags(handle);
3935	handle = hci_handle(handle);
3936
3937	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3938		   handle, flags);
3939
3940	hci_dev_lock(hdev);
3941	conn = hci_conn_hash_lookup_handle(hdev, handle);
3942	hci_dev_unlock(hdev);
3943
3944	if (!conn) {
3945		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3946			   handle);
3947		goto drop;
3948	}
3949
3950	/* Send to upper protocol */
3951	iso_recv(conn, skb, flags);
3952	return;
3953
3954drop:
3955	kfree_skb(skb);
3956}
3957
3958static bool hci_req_is_complete(struct hci_dev *hdev)
3959{
3960	struct sk_buff *skb;
3961
3962	skb = skb_peek(&hdev->cmd_q);
3963	if (!skb)
3964		return true;
3965
3966	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3967}
3968
3969static void hci_resend_last(struct hci_dev *hdev)
3970{
3971	struct hci_command_hdr *sent;
3972	struct sk_buff *skb;
3973	u16 opcode;
3974
3975	if (!hdev->sent_cmd)
3976		return;
3977
3978	sent = (void *) hdev->sent_cmd->data;
3979	opcode = __le16_to_cpu(sent->opcode);
3980	if (opcode == HCI_OP_RESET)
3981		return;
3982
3983	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3984	if (!skb)
3985		return;
3986
3987	skb_queue_head(&hdev->cmd_q, skb);
3988	queue_work(hdev->workqueue, &hdev->cmd_work);
3989}
3990
3991void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3992			  hci_req_complete_t *req_complete,
3993			  hci_req_complete_skb_t *req_complete_skb)
3994{
3995	struct sk_buff *skb;
3996	unsigned long flags;
3997
3998	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3999
4000	/* If the completed command doesn't match the last one that was
4001	 * sent we need to do special handling of it.
4002	 */
4003	if (!hci_sent_cmd_data(hdev, opcode)) {
4004		/* Some CSR based controllers generate a spontaneous
4005		 * reset complete event during init and any pending
4006		 * command will never be completed. In such a case we
4007		 * need to resend whatever was the last sent
4008		 * command.
4009		 */
4010		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4011			hci_resend_last(hdev);
4012
4013		return;
4014	}
4015
4016	/* If we reach this point this event matches the last command sent */
4017	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4018
4019	/* If the command succeeded and there's still more commands in
4020	 * this request the request is not yet complete.
4021	 */
4022	if (!status && !hci_req_is_complete(hdev))
4023		return;
4024
4025	/* If this was the last command in a request the complete
4026	 * callback would be found in hdev->sent_cmd instead of the
4027	 * command queue (hdev->cmd_q).
4028	 */
4029	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4030		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4031		return;
4032	}
4033
4034	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4035		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4036		return;
4037	}
4038
4039	/* Remove all pending commands belonging to this request */
4040	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4041	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4042		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4043			__skb_queue_head(&hdev->cmd_q, skb);
4044			break;
4045		}
4046
4047		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4048			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4049		else
4050			*req_complete = bt_cb(skb)->hci.req_complete;
4051		dev_kfree_skb_irq(skb);
4052	}
4053	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4054}
4055
4056static void hci_rx_work(struct work_struct *work)
4057{
4058	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4059	struct sk_buff *skb;
4060
4061	BT_DBG("%s", hdev->name);
4062
4063	/* The kcov_remote functions used for collecting packet parsing
4064	 * coverage information from this background thread and associate
4065	 * the coverage with the syscall's thread which originally injected
4066	 * the packet. This helps fuzzing the kernel.
4067	 */
4068	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4069		kcov_remote_start_common(skb_get_kcov_handle(skb));
4070
4071		/* Send copy to monitor */
4072		hci_send_to_monitor(hdev, skb);
4073
 
4074		if (atomic_read(&hdev->promisc)) {
4075			/* Send copy to the sockets */
4076			hci_send_to_sock(hdev, skb);
4077		}
4078
4079		/* If the device has been opened in HCI_USER_CHANNEL,
4080		 * the userspace has exclusive access to device.
4081		 * When device is HCI_INIT, we still need to process
4082		 * the data packets to the driver in order
4083		 * to complete its setup().
4084		 */
4085		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4086		    !test_bit(HCI_INIT, &hdev->flags)) {
4087			kfree_skb(skb);
4088			continue;
4089		}
4090
4091		if (test_bit(HCI_INIT, &hdev->flags)) {
4092			/* Don't process data packets in this states. */
4093			switch (hci_skb_pkt_type(skb)) {
4094			case HCI_ACLDATA_PKT:
4095			case HCI_SCODATA_PKT:
4096			case HCI_ISODATA_PKT:
4097				kfree_skb(skb);
4098				continue;
4099			}
4100		}
4101
4102		/* Process frame */
4103		switch (hci_skb_pkt_type(skb)) {
4104		case HCI_EVENT_PKT:
4105			BT_DBG("%s Event packet", hdev->name);
4106			hci_event_packet(hdev, skb);
4107			break;
4108
4109		case HCI_ACLDATA_PKT:
4110			BT_DBG("%s ACL data packet", hdev->name);
4111			hci_acldata_packet(hdev, skb);
4112			break;
4113
4114		case HCI_SCODATA_PKT:
4115			BT_DBG("%s SCO data packet", hdev->name);
4116			hci_scodata_packet(hdev, skb);
4117			break;
4118
4119		case HCI_ISODATA_PKT:
4120			BT_DBG("%s ISO data packet", hdev->name);
4121			hci_isodata_packet(hdev, skb);
4122			break;
4123
4124		default:
4125			kfree_skb(skb);
4126			break;
4127		}
4128	}
 
 
4129}
4130
4131static void hci_cmd_work(struct work_struct *work)
4132{
4133	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4134	struct sk_buff *skb;
4135
4136	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4137	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4138
4139	/* Send queued commands */
4140	if (atomic_read(&hdev->cmd_cnt)) {
4141		skb = skb_dequeue(&hdev->cmd_q);
4142		if (!skb)
4143			return;
4144
4145		kfree_skb(hdev->sent_cmd);
4146
4147		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4148		if (hdev->sent_cmd) {
4149			int res;
4150			if (hci_req_status_pend(hdev))
4151				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4152			atomic_dec(&hdev->cmd_cnt);
4153
4154			res = hci_send_frame(hdev, skb);
4155			if (res < 0)
4156				__hci_cmd_sync_cancel(hdev, -res);
4157
4158			rcu_read_lock();
4159			if (test_bit(HCI_RESET, &hdev->flags) ||
4160			    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4161				cancel_delayed_work(&hdev->cmd_timer);
4162			else
4163				queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4164						   HCI_CMD_TIMEOUT);
4165			rcu_read_unlock();
4166		} else {
4167			skb_queue_head(&hdev->cmd_q, skb);
4168			queue_work(hdev->workqueue, &hdev->cmd_work);
4169		}
4170	}
4171}
v3.1
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
 
   4
   5   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   6
   7   This program is free software; you can redistribute it and/or modify
   8   it under the terms of the GNU General Public License version 2 as
   9   published by the Free Software Foundation;
  10
  11   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  12   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  13   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  14   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  15   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  16   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  17   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  18   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  19
  20   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  21   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  22   SOFTWARE IS DISCLAIMED.
  23*/
  24
  25/* Bluetooth HCI core. */
  26
  27#include <linux/jiffies.h>
  28#include <linux/module.h>
  29#include <linux/kmod.h>
  30
  31#include <linux/types.h>
  32#include <linux/errno.h>
  33#include <linux/kernel.h>
  34#include <linux/sched.h>
  35#include <linux/slab.h>
  36#include <linux/poll.h>
  37#include <linux/fcntl.h>
  38#include <linux/init.h>
  39#include <linux/skbuff.h>
  40#include <linux/workqueue.h>
  41#include <linux/interrupt.h>
  42#include <linux/notifier.h>
  43#include <linux/rfkill.h>
  44#include <linux/timer.h>
  45#include <linux/crypto.h>
  46#include <net/sock.h>
  47
  48#include <asm/system.h>
  49#include <linux/uaccess.h>
  50#include <asm/unaligned.h>
  51
  52#include <net/bluetooth/bluetooth.h>
  53#include <net/bluetooth/hci_core.h>
 
 
  54
  55#define AUTO_OFF_TIMEOUT 2000
  56
  57static void hci_cmd_task(unsigned long arg);
  58static void hci_rx_task(unsigned long arg);
  59static void hci_tx_task(unsigned long arg);
  60
  61static DEFINE_RWLOCK(hci_task_lock);
 
 
 
 
  62
  63/* HCI device list */
  64LIST_HEAD(hci_dev_list);
  65DEFINE_RWLOCK(hci_dev_list_lock);
  66
  67/* HCI callback list */
  68LIST_HEAD(hci_cb_list);
  69DEFINE_RWLOCK(hci_cb_list_lock);
  70
  71/* HCI protocols */
  72#define HCI_MAX_PROTO	2
  73struct hci_proto *hci_proto[HCI_MAX_PROTO];
  74
  75/* HCI notifiers list */
  76static ATOMIC_NOTIFIER_HEAD(hci_notifier);
 
  77
  78/* ---- HCI notifications ---- */
  79
  80int hci_register_notifier(struct notifier_block *nb)
  81{
  82	return atomic_notifier_chain_register(&hci_notifier, nb);
  83}
  84
  85int hci_unregister_notifier(struct notifier_block *nb)
  86{
  87	return atomic_notifier_chain_unregister(&hci_notifier, nb);
  88}
 
  89
  90static void hci_notify(struct hci_dev *hdev, int event)
  91{
  92	atomic_notifier_call_chain(&hci_notifier, event, hdev);
  93}
  94
  95/* ---- HCI requests ---- */
  96
  97void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
  98{
  99	BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
 100
 101	/* If this is the init phase check if the completed command matches
 102	 * the last init command, and if not just return.
 103	 */
 104	if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd)
 105		return;
 106
 107	if (hdev->req_status == HCI_REQ_PEND) {
 108		hdev->req_result = result;
 109		hdev->req_status = HCI_REQ_DONE;
 110		wake_up_interruptible(&hdev->req_wait_q);
 111	}
 112}
 113
 114static void hci_req_cancel(struct hci_dev *hdev, int err)
 115{
 116	BT_DBG("%s err 0x%2.2x", hdev->name, err);
 117
 118	if (hdev->req_status == HCI_REQ_PEND) {
 119		hdev->req_result = err;
 120		hdev->req_status = HCI_REQ_CANCELED;
 121		wake_up_interruptible(&hdev->req_wait_q);
 122	}
 123}
 124
 125/* Execute request and wait for completion. */
 126static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
 127					unsigned long opt, __u32 timeout)
 128{
 129	DECLARE_WAITQUEUE(wait, current);
 130	int err = 0;
 131
 132	BT_DBG("%s start", hdev->name);
 133
 134	hdev->req_status = HCI_REQ_PEND;
 
 135
 136	add_wait_queue(&hdev->req_wait_q, &wait);
 137	set_current_state(TASK_INTERRUPTIBLE);
 
 
 
 
 
 
 
 
 138
 139	req(hdev, opt);
 140	schedule_timeout(timeout);
 141
 142	remove_wait_queue(&hdev->req_wait_q, &wait);
 
 
 143
 144	if (signal_pending(current))
 145		return -EINTR;
 146
 147	switch (hdev->req_status) {
 148	case HCI_REQ_DONE:
 149		err = -bt_to_errno(hdev->req_result);
 150		break;
 151
 152	case HCI_REQ_CANCELED:
 153		err = -hdev->req_result;
 154		break;
 155
 156	default:
 157		err = -ETIMEDOUT;
 158		break;
 159	}
 160
 161	hdev->req_status = hdev->req_result = 0;
 162
 163	BT_DBG("%s end: err %d", hdev->name, err);
 164
 165	return err;
 166}
 167
 168static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
 169					unsigned long opt, __u32 timeout)
 170{
 171	int ret;
 172
 173	if (!test_bit(HCI_UP, &hdev->flags))
 174		return -ENETDOWN;
 175
 176	/* Serialize all requests */
 177	hci_req_lock(hdev);
 178	ret = __hci_request(hdev, req, opt, timeout);
 179	hci_req_unlock(hdev);
 180
 181	return ret;
 182}
 183
 184static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
 185{
 186	BT_DBG("%s %ld", hdev->name, opt);
 187
 188	/* Reset device */
 189	set_bit(HCI_RESET, &hdev->flags);
 190	hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 191}
 192
 193static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
 194{
 195	struct hci_cp_delete_stored_link_key cp;
 196	struct sk_buff *skb;
 197	__le16 param;
 198	__u8 flt_type;
 199
 200	BT_DBG("%s %ld", hdev->name, opt);
 201
 202	/* Driver initialization */
 203
 204	/* Special commands */
 205	while ((skb = skb_dequeue(&hdev->driver_init))) {
 206		bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
 207		skb->dev = (void *) hdev;
 208
 209		skb_queue_tail(&hdev->cmd_q, skb);
 210		tasklet_schedule(&hdev->cmd_task);
 211	}
 212	skb_queue_purge(&hdev->driver_init);
 213
 214	/* Mandatory initialization */
 
 
 215
 216	/* Reset */
 217	if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
 218			set_bit(HCI_RESET, &hdev->flags);
 219			hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
 220	}
 221
 222	/* Read Local Supported Features */
 223	hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 224
 225	/* Read Local Version */
 226	hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 227
 228	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 229	hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 230
 231#if 0
 232	/* Host buffer size */
 233	{
 234		struct hci_cp_host_buffer_size cp;
 235		cp.acl_mtu = cpu_to_le16(HCI_MAX_ACL_SIZE);
 236		cp.sco_mtu = HCI_MAX_SCO_SIZE;
 237		cp.acl_max_pkt = cpu_to_le16(0xffff);
 238		cp.sco_max_pkt = cpu_to_le16(0xffff);
 239		hci_send_cmd(hdev, HCI_OP_HOST_BUFFER_SIZE, sizeof(cp), &cp);
 240	}
 241#endif
 242
 243	/* Read BD Address */
 244	hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
 245
 246	/* Read Class of Device */
 247	hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 248
 249	/* Read Local Name */
 250	hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 251
 252	/* Read Voice Setting */
 253	hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 254
 255	/* Optional initialization */
 256
 257	/* Clear Event Filters */
 258	flt_type = HCI_FLT_CLEAR_ALL;
 259	hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 260
 261	/* Connection accept timeout ~20 secs */
 262	param = cpu_to_le16(0x7d00);
 263	hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 264
 265	bacpy(&cp.bdaddr, BDADDR_ANY);
 266	cp.delete_all = 1;
 267	hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
 268}
 269
 270static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
 
 271{
 272	BT_DBG("%s", hdev->name);
 
 273
 274	/* Read LE buffer size */
 275	hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 276}
 277
 278static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
 279{
 280	__u8 scan = opt;
 
 281
 282	BT_DBG("%s %x", hdev->name, scan);
 283
 284	/* Inquiry and Page scans */
 285	hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 286}
 287
 288static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
 
 
 289{
 290	__u8 auth = opt;
 
 291
 292	BT_DBG("%s %x", hdev->name, auth);
 293
 294	/* Authentication */
 295	hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 
 
 
 
 
 
 296}
 297
 298static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
 
 299{
 300	__u8 encrypt = opt;
 301
 302	BT_DBG("%s %x", hdev->name, encrypt);
 
 
 
 
 
 
 
 
 
 303
 304	/* Encryption */
 305	hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 306}
 307
 308static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
 
 309{
 310	__le16 policy = cpu_to_le16(opt);
 
 
 311
 312	BT_DBG("%s %x", hdev->name, policy);
 313
 314	/* Default link policy */
 315	hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 316}
 317
 318/* Get HCI device by index.
 319 * Device is held on return. */
 320struct hci_dev *hci_dev_get(int index)
 321{
 322	struct hci_dev *hdev = NULL;
 323	struct list_head *p;
 324
 325	BT_DBG("%d", index);
 
 
 
 
 
 
 
 
 
 326
 327	if (index < 0)
 328		return NULL;
 329
 330	read_lock(&hci_dev_list_lock);
 331	list_for_each(p, &hci_dev_list) {
 332		struct hci_dev *d = list_entry(p, struct hci_dev, list);
 333		if (d->id == index) {
 334			hdev = hci_dev_hold(d);
 335			break;
 336		}
 337	}
 338	read_unlock(&hci_dev_list_lock);
 339	return hdev;
 340}
 341
 342/* ---- Inquiry support ---- */
 343static void inquiry_cache_flush(struct hci_dev *hdev)
 344{
 345	struct inquiry_cache *cache = &hdev->inq_cache;
 346	struct inquiry_entry *next  = cache->list, *e;
 347
 348	BT_DBG("cache %p", cache);
 349
 350	cache->list = NULL;
 351	while ((e = next)) {
 352		next = e->next;
 353		kfree(e);
 354	}
 355}
 356
 357struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
 358{
 359	struct inquiry_cache *cache = &hdev->inq_cache;
 360	struct inquiry_entry *e;
 361
 362	BT_DBG("cache %p, %s", cache, batostr(bdaddr));
 363
 364	for (e = cache->list; e; e = e->next)
 365		if (!bacmp(&e->data.bdaddr, bdaddr))
 366			break;
 367	return e;
 368}
 369
 370void hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data)
 371{
 372	struct inquiry_cache *cache = &hdev->inq_cache;
 373	struct inquiry_entry *ie;
 374
 375	BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
 376
 377	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 378	if (!ie) {
 379		/* Entry not in the cache. Add new one. */
 380		ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
 381		if (!ie)
 382			return;
 383
 384		ie->next = cache->list;
 385		cache->list = ie;
 386	}
 387
 388	memcpy(&ie->data, data, sizeof(*data));
 389	ie->timestamp = jiffies;
 390	cache->timestamp = jiffies;
 
 
 
 
 
 
 391}
 392
 393static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 394{
 395	struct inquiry_cache *cache = &hdev->inq_cache;
 396	struct inquiry_info *info = (struct inquiry_info *) buf;
 397	struct inquiry_entry *e;
 398	int copied = 0;
 399
 400	for (e = cache->list; e && copied < num; e = e->next, copied++) {
 401		struct inquiry_data *data = &e->data;
 
 
 
 
 402		bacpy(&info->bdaddr, &data->bdaddr);
 403		info->pscan_rep_mode	= data->pscan_rep_mode;
 404		info->pscan_period_mode	= data->pscan_period_mode;
 405		info->pscan_mode	= data->pscan_mode;
 406		memcpy(info->dev_class, data->dev_class, 3);
 407		info->clock_offset	= data->clock_offset;
 
 408		info++;
 
 409	}
 410
 411	BT_DBG("cache %p, copied %d", cache, copied);
 412	return copied;
 413}
 414
 415static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
 416{
 417	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
 
 418	struct hci_cp_inquiry cp;
 419
 420	BT_DBG("%s", hdev->name);
 421
 422	if (test_bit(HCI_INQUIRY, &hdev->flags))
 423		return;
 424
 425	/* Start Inquiry */
 426	memcpy(&cp.lap, &ir->lap, 3);
 427	cp.length  = ir->length;
 428	cp.num_rsp = ir->num_rsp;
 429	hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
 
 
 430}
 431
 432int hci_inquiry(void __user *arg)
 433{
 434	__u8 __user *ptr = arg;
 435	struct hci_inquiry_req ir;
 436	struct hci_dev *hdev;
 437	int err = 0, do_inquiry = 0, max_rsp;
 438	long timeo;
 439	__u8 *buf;
 440
 441	if (copy_from_user(&ir, ptr, sizeof(ir)))
 442		return -EFAULT;
 443
 444	hdev = hci_dev_get(ir.dev_id);
 445	if (!hdev)
 446		return -ENODEV;
 447
 448	hci_dev_lock_bh(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 449	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 450				inquiry_cache_empty(hdev) ||
 451				ir.flags & IREQ_CACHE_FLUSH) {
 452		inquiry_cache_flush(hdev);
 453		do_inquiry = 1;
 454	}
 455	hci_dev_unlock_bh(hdev);
 456
 457	timeo = ir.length * msecs_to_jiffies(2000);
 458
 459	if (do_inquiry) {
 460		err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
 
 461		if (err < 0)
 462			goto done;
 
 
 
 
 
 
 
 
 
 463	}
 464
 465	/* for unlimited number of responses we will use buffer with 255 entries */
 
 
 466	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 467
 468	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 469	 * copy it to the user space.
 470	 */
 471	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
 472	if (!buf) {
 473		err = -ENOMEM;
 474		goto done;
 475	}
 476
 477	hci_dev_lock_bh(hdev);
 478	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 479	hci_dev_unlock_bh(hdev);
 480
 481	BT_DBG("num_rsp %d", ir.num_rsp);
 482
 483	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 484		ptr += sizeof(ir);
 485		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 486					ir.num_rsp))
 487			err = -EFAULT;
 488	} else
 489		err = -EFAULT;
 490
 491	kfree(buf);
 492
 493done:
 494	hci_dev_put(hdev);
 495	return err;
 496}
 497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498/* ---- HCI ioctl helpers ---- */
 499
 500int hci_dev_open(__u16 dev)
 501{
 502	struct hci_dev *hdev;
 503	int ret = 0;
 504
 505	hdev = hci_dev_get(dev);
 506	if (!hdev)
 507		return -ENODEV;
 508
 509	BT_DBG("%s %p", hdev->name, hdev);
 510
 511	hci_req_lock(hdev);
 512
 513	if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
 514		ret = -ERFKILL;
 
 
 
 
 
 
 515		goto done;
 516	}
 517
 518	if (test_bit(HCI_UP, &hdev->flags)) {
 519		ret = -EALREADY;
 520		goto done;
 521	}
 
 
 
 
 
 
 
 
 
 522
 523	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 524		set_bit(HCI_RAW, &hdev->flags);
 
 
 
 
 
 
 
 525
 526	/* Treat all non BR/EDR controllers as raw devices for now */
 527	if (hdev->dev_type != HCI_BREDR)
 528		set_bit(HCI_RAW, &hdev->flags);
 529
 530	if (hdev->open(hdev)) {
 531		ret = -EIO;
 532		goto done;
 533	}
 534
 535	if (!test_bit(HCI_RAW, &hdev->flags)) {
 536		atomic_set(&hdev->cmd_cnt, 1);
 537		set_bit(HCI_INIT, &hdev->flags);
 538		hdev->init_last_cmd = 0;
 539
 540		ret = __hci_request(hdev, hci_init_req, 0,
 541					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 542
 543		if (lmp_host_le_capable(hdev))
 544			ret = __hci_request(hdev, hci_le_init_req, 0,
 545					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 546
 547		clear_bit(HCI_INIT, &hdev->flags);
 548	}
 549
 550	if (!ret) {
 551		hci_dev_hold(hdev);
 552		set_bit(HCI_UP, &hdev->flags);
 553		hci_notify(hdev, HCI_DEV_UP);
 554		if (!test_bit(HCI_SETUP, &hdev->flags))
 555			mgmt_powered(hdev->id, 1);
 556	} else {
 557		/* Init failed, cleanup */
 558		tasklet_kill(&hdev->rx_task);
 559		tasklet_kill(&hdev->tx_task);
 560		tasklet_kill(&hdev->cmd_task);
 561
 562		skb_queue_purge(&hdev->cmd_q);
 563		skb_queue_purge(&hdev->rx_q);
 564
 565		if (hdev->flush)
 566			hdev->flush(hdev);
 567
 568		if (hdev->sent_cmd) {
 569			kfree_skb(hdev->sent_cmd);
 570			hdev->sent_cmd = NULL;
 571		}
 572
 573		hdev->close(hdev);
 574		hdev->flags = 0;
 575	}
 576
 577done:
 578	hci_req_unlock(hdev);
 579	hci_dev_put(hdev);
 580	return ret;
 581}
 582
 583static int hci_dev_do_close(struct hci_dev *hdev)
 584{
 585	BT_DBG("%s %p", hdev->name, hdev);
 
 586
 587	hci_req_cancel(hdev, ENODEV);
 588	hci_req_lock(hdev);
 
 589
 590	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
 591		del_timer_sync(&hdev->cmd_timer);
 592		hci_req_unlock(hdev);
 593		return 0;
 594	}
 595
 596	/* Kill RX and TX tasks */
 597	tasklet_kill(&hdev->rx_task);
 598	tasklet_kill(&hdev->tx_task);
 599
 600	hci_dev_lock_bh(hdev);
 601	inquiry_cache_flush(hdev);
 602	hci_conn_hash_flush(hdev);
 603	hci_dev_unlock_bh(hdev);
 604
 605	hci_notify(hdev, HCI_DEV_DOWN);
 
 
 
 606
 607	if (hdev->flush)
 608		hdev->flush(hdev);
 
 609
 610	/* Reset device */
 611	skb_queue_purge(&hdev->cmd_q);
 612	atomic_set(&hdev->cmd_cnt, 1);
 613	if (!test_bit(HCI_RAW, &hdev->flags)) {
 614		set_bit(HCI_INIT, &hdev->flags);
 615		__hci_request(hdev, hci_reset_req, 0,
 616					msecs_to_jiffies(250));
 617		clear_bit(HCI_INIT, &hdev->flags);
 618	}
 619
 620	/* Kill cmd task */
 621	tasklet_kill(&hdev->cmd_task);
 622
 623	/* Drop queues */
 624	skb_queue_purge(&hdev->rx_q);
 625	skb_queue_purge(&hdev->cmd_q);
 626	skb_queue_purge(&hdev->raw_q);
 627
 628	/* Drop last sent command */
 629	if (hdev->sent_cmd) {
 630		del_timer_sync(&hdev->cmd_timer);
 631		kfree_skb(hdev->sent_cmd);
 632		hdev->sent_cmd = NULL;
 633	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634
 635	/* After this point our queues are empty
 636	 * and no tasks are scheduled. */
 637	hdev->close(hdev);
 638
 639	mgmt_powered(hdev->id, 0);
 640
 641	/* Clear flags */
 642	hdev->flags = 0;
 
 
 
 643
 644	hci_req_unlock(hdev);
 645
 646	hci_dev_put(hdev);
 647	return 0;
 648}
 649
 650int hci_dev_close(__u16 dev)
 651{
 652	struct hci_dev *hdev;
 653	int err;
 654
 655	hdev = hci_dev_get(dev);
 656	if (!hdev)
 657		return -ENODEV;
 658	err = hci_dev_do_close(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659	hci_dev_put(hdev);
 660	return err;
 661}
 662
 663int hci_dev_reset(__u16 dev)
 664{
 665	struct hci_dev *hdev;
 666	int ret = 0;
 667
 668	hdev = hci_dev_get(dev);
 669	if (!hdev)
 670		return -ENODEV;
 671
 672	hci_req_lock(hdev);
 673	tasklet_disable(&hdev->tx_task);
 
 
 674
 675	if (!test_bit(HCI_UP, &hdev->flags))
 
 676		goto done;
 
 677
 678	/* Drop queues */
 679	skb_queue_purge(&hdev->rx_q);
 680	skb_queue_purge(&hdev->cmd_q);
 681
 682	hci_dev_lock_bh(hdev);
 683	inquiry_cache_flush(hdev);
 684	hci_conn_hash_flush(hdev);
 685	hci_dev_unlock_bh(hdev);
 686
 687	if (hdev->flush)
 688		hdev->flush(hdev);
 689
 690	atomic_set(&hdev->cmd_cnt, 1);
 691	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
 692
 693	if (!test_bit(HCI_RAW, &hdev->flags))
 694		ret = __hci_request(hdev, hci_reset_req, 0,
 695					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 696
 697done:
 698	tasklet_enable(&hdev->tx_task);
 699	hci_req_unlock(hdev);
 700	hci_dev_put(hdev);
 701	return ret;
 702}
 703
 704int hci_dev_reset_stat(__u16 dev)
 705{
 706	struct hci_dev *hdev;
 707	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 708
 709	hdev = hci_dev_get(dev);
 710	if (!hdev)
 711		return -ENODEV;
 712
 713	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 
 
 714
 715	hci_dev_put(hdev);
 
 716
 717	return ret;
 
 718}
 719
 720int hci_dev_cmd(unsigned int cmd, void __user *arg)
 721{
 722	struct hci_dev *hdev;
 723	struct hci_dev_req dr;
 724	int err = 0;
 725
 726	if (copy_from_user(&dr, arg, sizeof(dr)))
 727		return -EFAULT;
 728
 729	hdev = hci_dev_get(dr.dev_id);
 730	if (!hdev)
 731		return -ENODEV;
 732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 733	switch (cmd) {
 734	case HCISETAUTH:
 735		err = hci_request(hdev, hci_auth_req, dr.dev_opt,
 736					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 737		break;
 738
 739	case HCISETENCRYPT:
 740		if (!lmp_encrypt_capable(hdev)) {
 741			err = -EOPNOTSUPP;
 742			break;
 743		}
 744
 745		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 746			/* Auth must be enabled first */
 747			err = hci_request(hdev, hci_auth_req, dr.dev_opt,
 748					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 749			if (err)
 750				break;
 751		}
 752
 753		err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
 754					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 755		break;
 756
 757	case HCISETSCAN:
 758		err = hci_request(hdev, hci_scan_req, dr.dev_opt,
 759					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 
 
 
 
 
 
 760		break;
 761
 762	case HCISETLINKPOL:
 763		err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
 764					msecs_to_jiffies(HCI_INIT_TIMEOUT));
 765		break;
 766
 767	case HCISETLINKMODE:
 768		hdev->link_mode = ((__u16) dr.dev_opt) &
 769					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 770		break;
 771
 772	case HCISETPTYPE:
 
 
 
 773		hdev->pkt_type = (__u16) dr.dev_opt;
 
 774		break;
 775
 776	case HCISETACLMTU:
 777		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 778		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 779		break;
 780
 781	case HCISETSCOMTU:
 782		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 783		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 784		break;
 785
 786	default:
 787		err = -EINVAL;
 788		break;
 789	}
 790
 
 791	hci_dev_put(hdev);
 792	return err;
 793}
 794
 795int hci_get_dev_list(void __user *arg)
 796{
 
 797	struct hci_dev_list_req *dl;
 798	struct hci_dev_req *dr;
 799	struct list_head *p;
 800	int n = 0, size, err;
 801	__u16 dev_num;
 802
 803	if (get_user(dev_num, (__u16 __user *) arg))
 804		return -EFAULT;
 805
 806	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
 807		return -EINVAL;
 808
 809	size = sizeof(*dl) + dev_num * sizeof(*dr);
 810
 811	dl = kzalloc(size, GFP_KERNEL);
 812	if (!dl)
 813		return -ENOMEM;
 814
 815	dr = dl->dev_req;
 816
 817	read_lock_bh(&hci_dev_list_lock);
 818	list_for_each(p, &hci_dev_list) {
 819		struct hci_dev *hdev;
 820
 821		hdev = list_entry(p, struct hci_dev, list);
 822
 823		hci_del_off_timer(hdev);
 824
 825		if (!test_bit(HCI_MGMT, &hdev->flags))
 826			set_bit(HCI_PAIRABLE, &hdev->flags);
 827
 828		(dr + n)->dev_id  = hdev->id;
 829		(dr + n)->dev_opt = hdev->flags;
 830
 831		if (++n >= dev_num)
 832			break;
 833	}
 834	read_unlock_bh(&hci_dev_list_lock);
 835
 836	dl->dev_num = n;
 837	size = sizeof(*dl) + n * sizeof(*dr);
 838
 839	err = copy_to_user(arg, dl, size);
 840	kfree(dl);
 841
 842	return err ? -EFAULT : 0;
 843}
 844
 845int hci_get_dev_info(void __user *arg)
 846{
 847	struct hci_dev *hdev;
 848	struct hci_dev_info di;
 
 849	int err = 0;
 850
 851	if (copy_from_user(&di, arg, sizeof(di)))
 852		return -EFAULT;
 853
 854	hdev = hci_dev_get(di.dev_id);
 855	if (!hdev)
 856		return -ENODEV;
 857
 858	hci_del_off_timer(hdev);
 859
 860	if (!test_bit(HCI_MGMT, &hdev->flags))
 861		set_bit(HCI_PAIRABLE, &hdev->flags);
 
 
 
 
 862
 863	strcpy(di.name, hdev->name);
 864	di.bdaddr   = hdev->bdaddr;
 865	di.type     = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
 866	di.flags    = hdev->flags;
 867	di.pkt_type = hdev->pkt_type;
 868	di.acl_mtu  = hdev->acl_mtu;
 869	di.acl_pkts = hdev->acl_pkts;
 870	di.sco_mtu  = hdev->sco_mtu;
 871	di.sco_pkts = hdev->sco_pkts;
 
 
 
 
 
 
 
 872	di.link_policy = hdev->link_policy;
 873	di.link_mode   = hdev->link_mode;
 874
 875	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
 876	memcpy(&di.features, &hdev->features, sizeof(di.features));
 877
 878	if (copy_to_user(arg, &di, sizeof(di)))
 879		err = -EFAULT;
 880
 881	hci_dev_put(hdev);
 882
 883	return err;
 884}
 885
 886/* ---- Interface to HCI drivers ---- */
 887
 888static int hci_rfkill_set_block(void *data, bool blocked)
 889{
 890	struct hci_dev *hdev = data;
 891
 892	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
 893
 894	if (!blocked)
 895		return 0;
 896
 897	hci_dev_do_close(hdev);
 
 
 
 
 
 
 
 898
 899	return 0;
 900}
 901
 902static const struct rfkill_ops hci_rfkill_ops = {
 903	.set_block = hci_rfkill_set_block,
 904};
 905
 906/* Alloc HCI device */
 907struct hci_dev *hci_alloc_dev(void)
 908{
 909	struct hci_dev *hdev;
 910
 911	hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
 912	if (!hdev)
 913		return NULL;
 914
 915	skb_queue_head_init(&hdev->driver_init);
 916
 917	return hdev;
 918}
 919EXPORT_SYMBOL(hci_alloc_dev);
 920
 921/* Free HCI device */
 922void hci_free_dev(struct hci_dev *hdev)
 923{
 924	skb_queue_purge(&hdev->driver_init);
 925
 926	/* will free via device release */
 927	put_device(&hdev->dev);
 928}
 929EXPORT_SYMBOL(hci_free_dev);
 930
 931static void hci_power_on(struct work_struct *work)
 932{
 933	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 
 934
 935	BT_DBG("%s", hdev->name);
 936
 937	if (hci_dev_open(hdev->id) < 0)
 
 
 
 
 
 938		return;
 
 939
 940	if (test_bit(HCI_AUTO_OFF, &hdev->flags))
 941		mod_timer(&hdev->off_timer,
 942				jiffies + msecs_to_jiffies(AUTO_OFF_TIMEOUT));
 
 
 
 
 943
 944	if (test_and_clear_bit(HCI_SETUP, &hdev->flags))
 945		mgmt_index_added(hdev->id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 946}
 947
 948static void hci_power_off(struct work_struct *work)
 949{
 950	struct hci_dev *hdev = container_of(work, struct hci_dev, power_off);
 
 951
 952	BT_DBG("%s", hdev->name);
 953
 954	hci_dev_close(hdev->id);
 955}
 956
 957static void hci_auto_off(unsigned long data)
 958{
 959	struct hci_dev *hdev = (struct hci_dev *) data;
 960
 
 961	BT_DBG("%s", hdev->name);
 962
 963	clear_bit(HCI_AUTO_OFF, &hdev->flags);
 
 
 
 
 
 
 964
 965	queue_work(hdev->workqueue, &hdev->power_off);
 966}
 967
 968void hci_del_off_timer(struct hci_dev *hdev)
 969{
 970	BT_DBG("%s", hdev->name);
 971
 972	clear_bit(HCI_AUTO_OFF, &hdev->flags);
 973	del_timer(&hdev->off_timer);
 
 
 974}
 975
 976int hci_uuids_clear(struct hci_dev *hdev)
 977{
 978	struct list_head *p, *n;
 979
 980	list_for_each_safe(p, n, &hdev->uuids) {
 981		struct bt_uuid *uuid;
 
 
 
 982
 983		uuid = list_entry(p, struct bt_uuid, list);
 
 
 984
 985		list_del(p);
 986		kfree(uuid);
 
 987	}
 
 
 
 
 
 988
 989	return 0;
 
 
 
 990}
 991
 992int hci_link_keys_clear(struct hci_dev *hdev)
 993{
 994	struct list_head *p, *n;
 995
 996	list_for_each_safe(p, n, &hdev->link_keys) {
 997		struct link_key *key;
 
 
 
 998
 999		key = list_entry(p, struct link_key, list);
 
 
 
1000
1001		list_del(p);
1002		kfree(key);
 
 
 
 
1003	}
1004
1005	return 0;
 
1006}
1007
1008struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1009{
1010	struct list_head *p;
1011
1012	list_for_each(p, &hdev->link_keys) {
1013		struct link_key *k;
 
 
 
 
 
 
 
 
 
 
 
1014
1015		k = list_entry(p, struct link_key, list);
1016
1017		if (bacmp(bdaddr, &k->bdaddr) == 0)
1018			return k;
 
1019	}
 
1020
1021	return NULL;
1022}
1023
1024static int hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1025						u8 key_type, u8 old_key_type)
1026{
1027	/* Legacy key */
1028	if (key_type < 0x03)
1029		return 1;
1030
1031	/* Debug keys are insecure so don't store them persistently */
1032	if (key_type == HCI_LK_DEBUG_COMBINATION)
1033		return 0;
1034
1035	/* Changed combination key and there's no previous one */
1036	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1037		return 0;
1038
1039	/* Security mode 3 case */
1040	if (!conn)
1041		return 1;
 
 
 
 
1042
1043	/* Neither local nor remote side had no-bonding as requirement */
1044	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1045		return 1;
1046
1047	/* Local side had dedicated bonding as requirement */
1048	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1049		return 1;
1050
1051	/* Remote side had dedicated bonding as requirement */
1052	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1053		return 1;
1054
1055	/* If none of the above criteria match, then don't store the key
1056	 * persistently */
1057	return 0;
1058}
1059
1060struct link_key *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, u8 rand[8])
1061{
1062	struct link_key *k;
 
1063
1064	list_for_each_entry(k, &hdev->link_keys, list) {
1065		struct key_master_id *id;
1066
1067		if (k->type != HCI_LK_SMP_LTK)
 
 
 
 
 
 
 
1068			continue;
1069
1070		if (k->dlen != sizeof(*id))
1071			continue;
 
 
 
 
 
 
 
 
1072
1073		id = (void *) &k->data;
1074		if (id->ediv == ediv &&
1075				(memcmp(rand, id->rand, sizeof(id->rand)) == 0))
1076			return k;
 
1077	}
 
1078
1079	return NULL;
1080}
1081EXPORT_SYMBOL(hci_find_ltk);
1082
1083struct link_key *hci_find_link_key_type(struct hci_dev *hdev,
1084					bdaddr_t *bdaddr, u8 type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1085{
1086	struct link_key *k;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087
1088	list_for_each_entry(k, &hdev->link_keys, list)
1089		if (k->type == type && bacmp(bdaddr, &k->bdaddr) == 0)
1090			return k;
1091
1092	return NULL;
1093}
1094EXPORT_SYMBOL(hci_find_link_key_type);
1095
1096int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
1097				bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
 
1098{
1099	struct link_key *key, *old_key;
1100	u8 old_key_type, persistent;
1101
1102	old_key = hci_find_link_key(hdev, bdaddr);
1103	if (old_key) {
1104		old_key_type = old_key->type;
1105		key = old_key;
1106	} else {
1107		old_key_type = conn ? conn->key_type : 0xff;
1108		key = kzalloc(sizeof(*key), GFP_ATOMIC);
1109		if (!key)
1110			return -ENOMEM;
1111		list_add(&key->list, &hdev->link_keys);
1112	}
1113
1114	BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
1115
1116	/* Some buggy controller combinations generate a changed
1117	 * combination key for legacy pairing even when there's no
1118	 * previous key */
1119	if (type == HCI_LK_CHANGED_COMBINATION &&
1120					(!conn || conn->remote_auth == 0xff) &&
1121					old_key_type == 0xff) {
1122		type = HCI_LK_COMBINATION;
1123		if (conn)
1124			conn->key_type = type;
1125	}
1126
1127	bacpy(&key->bdaddr, bdaddr);
1128	memcpy(key->val, val, 16);
1129	key->pin_len = pin_len;
1130
1131	if (type == HCI_LK_CHANGED_COMBINATION)
1132		key->type = old_key_type;
1133	else
1134		key->type = type;
1135
1136	if (!new_key)
1137		return 0;
 
1138
1139	persistent = hci_persistent_key(hdev, conn, type, old_key_type);
 
1140
1141	mgmt_new_key(hdev->id, key, persistent);
 
 
 
 
 
1142
1143	if (!persistent) {
1144		list_del(&key->list);
1145		kfree(key);
 
 
 
 
 
1146	}
1147
1148	return 0;
 
 
 
 
 
 
 
 
 
1149}
1150
1151int hci_add_ltk(struct hci_dev *hdev, int new_key, bdaddr_t *bdaddr,
1152			u8 key_size, __le16 ediv, u8 rand[8], u8 ltk[16])
1153{
1154	struct link_key *key, *old_key;
1155	struct key_master_id *id;
1156	u8 old_key_type;
 
 
 
 
1157
1158	BT_DBG("%s addr %s", hdev->name, batostr(bdaddr));
 
1159
1160	old_key = hci_find_link_key_type(hdev, bdaddr, HCI_LK_SMP_LTK);
1161	if (old_key) {
1162		key = old_key;
1163		old_key_type = old_key->type;
1164	} else {
1165		key = kzalloc(sizeof(*key) + sizeof(*id), GFP_ATOMIC);
1166		if (!key)
1167			return -ENOMEM;
1168		list_add(&key->list, &hdev->link_keys);
1169		old_key_type = 0xff;
1170	}
1171
1172	key->dlen = sizeof(*id);
1173
1174	bacpy(&key->bdaddr, bdaddr);
1175	memcpy(key->val, ltk, sizeof(key->val));
1176	key->type = HCI_LK_SMP_LTK;
1177	key->pin_len = key_size;
1178
1179	id = (void *) &key->data;
1180	id->ediv = ediv;
1181	memcpy(id->rand, rand, sizeof(id->rand));
1182
1183	if (new_key)
1184		mgmt_new_key(hdev->id, key, old_key_type);
1185
1186	return 0;
1187}
1188
1189int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1190{
1191	struct link_key *key;
1192
1193	key = hci_find_link_key(hdev, bdaddr);
1194	if (!key)
1195		return -ENOENT;
1196
1197	BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1198
1199	list_del(&key->list);
1200	kfree(key);
1201
1202	return 0;
1203}
1204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1205/* HCI command timer function */
1206static void hci_cmd_timer(unsigned long arg)
1207{
1208	struct hci_dev *hdev = (void *) arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
1209
1210	BT_ERR("%s command tx timeout", hdev->name);
1211	atomic_set(&hdev->cmd_cnt, 1);
1212	tasklet_schedule(&hdev->cmd_task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1213}
1214
1215struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1216							bdaddr_t *bdaddr)
1217{
1218	struct oob_data *data;
1219
1220	list_for_each_entry(data, &hdev->remote_oob_data, list)
1221		if (bacmp(bdaddr, &data->bdaddr) == 0)
1222			return data;
 
 
 
 
1223
1224	return NULL;
1225}
1226
1227int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
 
1228{
1229	struct oob_data *data;
1230
1231	data = hci_find_remote_oob_data(hdev, bdaddr);
1232	if (!data)
1233		return -ENOENT;
1234
1235	BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1236
1237	list_del(&data->list);
1238	kfree(data);
1239
1240	return 0;
1241}
1242
1243int hci_remote_oob_data_clear(struct hci_dev *hdev)
1244{
1245	struct oob_data *data, *n;
1246
1247	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1248		list_del(&data->list);
1249		kfree(data);
1250	}
1251
1252	return 0;
1253}
1254
1255int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 *hash,
1256								u8 *randomizer)
 
1257{
1258	struct oob_data *data;
1259
1260	data = hci_find_remote_oob_data(hdev, bdaddr);
1261
1262	if (!data) {
1263		data = kmalloc(sizeof(*data), GFP_ATOMIC);
1264		if (!data)
1265			return -ENOMEM;
1266
1267		bacpy(&data->bdaddr, bdaddr);
 
1268		list_add(&data->list, &hdev->remote_oob_data);
1269	}
1270
1271	memcpy(data->hash, hash, sizeof(data->hash));
1272	memcpy(data->randomizer, randomizer, sizeof(data->randomizer));
 
 
 
 
 
 
 
 
 
 
 
1273
1274	BT_DBG("%s for %s", hdev->name, batostr(bdaddr));
 
 
 
 
 
 
 
 
 
 
1275
1276	return 0;
1277}
1278
1279struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
1280						bdaddr_t *bdaddr)
1281{
1282	struct list_head *p;
 
 
 
 
 
1283
1284	list_for_each(p, &hdev->blacklist) {
1285		struct bdaddr_list *b;
1286
1287		b = list_entry(p, struct bdaddr_list, list);
 
 
 
1288
1289		if (bacmp(bdaddr, &b->bdaddr) == 0)
1290			return b;
1291	}
1292
1293	return NULL;
 
 
 
 
 
1294}
1295
1296int hci_blacklist_clear(struct hci_dev *hdev)
 
1297{
1298	struct list_head *p, *n;
1299
1300	list_for_each_safe(p, n, &hdev->blacklist) {
1301		struct bdaddr_list *b;
 
1302
1303		b = list_entry(p, struct bdaddr_list, list);
1304
1305		list_del(p);
1306		kfree(b);
 
 
 
 
1307	}
1308
 
 
 
 
 
 
 
1309	return 0;
1310}
1311
1312int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr)
1313{
1314	struct bdaddr_list *entry;
1315	int err;
1316
1317	if (bacmp(bdaddr, BDADDR_ANY) == 0)
1318		return -EBADF;
 
1319
1320	hci_dev_lock_bh(hdev);
 
 
 
1321
1322	if (hci_blacklist_lookup(hdev, bdaddr)) {
1323		err = -EEXIST;
1324		goto err;
1325	}
1326
1327	entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
1328	if (!entry) {
1329		err = -ENOMEM;
1330		goto err;
1331	}
1332
1333	bacpy(&entry->bdaddr, bdaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334
1335	list_add(&entry->list, &hdev->blacklist);
 
 
1336
1337	err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1338
1339err:
1340	hci_dev_unlock_bh(hdev);
1341	return err;
1342}
1343
1344int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr)
 
1345{
1346	struct bdaddr_list *entry;
1347	int err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
1348
1349	hci_dev_lock_bh(hdev);
 
 
 
1350
1351	if (bacmp(bdaddr, BDADDR_ANY) == 0) {
1352		hci_blacklist_clear(hdev);
1353		goto done;
1354	}
1355
1356	entry = hci_blacklist_lookup(hdev, bdaddr);
1357	if (!entry) {
1358		err = -ENOENT;
1359		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1360	}
1361
1362	list_del(&entry->list);
1363	kfree(entry);
 
 
 
 
 
1364
1365done:
1366	hci_dev_unlock_bh(hdev);
1367	return err;
1368}
1369
1370static void hci_clear_adv_cache(unsigned long arg)
 
 
 
 
1371{
1372	struct hci_dev *hdev = (void *) arg;
 
 
 
 
1373
1374	hci_dev_lock(hdev);
1375
1376	hci_adv_entries_clear(hdev);
 
 
 
1377
1378	hci_dev_unlock(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379}
1380
1381int hci_adv_entries_clear(struct hci_dev *hdev)
 
1382{
1383	struct adv_entry *entry, *tmp;
1384
1385	list_for_each_entry_safe(entry, tmp, &hdev->adv_entries, list) {
1386		list_del(&entry->list);
1387		kfree(entry);
1388	}
1389
1390	BT_DBG("%s adv cache cleared", hdev->name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1391
1392	return 0;
1393}
1394
1395struct adv_entry *hci_find_adv_entry(struct hci_dev *hdev, bdaddr_t *bdaddr)
 
1396{
1397	struct adv_entry *entry;
 
 
 
1398
1399	list_for_each_entry(entry, &hdev->adv_entries, list)
1400		if (bacmp(bdaddr, &entry->bdaddr) == 0)
1401			return entry;
1402
1403	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1404}
1405
1406static inline int is_connectable_adv(u8 evt_type)
 
1407{
1408	if (evt_type == ADV_IND || evt_type == ADV_DIRECT_IND)
1409		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1410
1411	return 0;
1412}
1413
1414int hci_add_adv_entry(struct hci_dev *hdev,
1415					struct hci_ev_le_advertising_info *ev)
1416{
1417	struct adv_entry *entry;
 
 
 
 
 
1418
1419	if (!is_connectable_adv(ev->evt_type))
1420		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
1421
1422	/* Only new entries should be added to adv_entries. So, if
1423	 * bdaddr was found, don't add it. */
1424	if (hci_find_adv_entry(hdev, &ev->bdaddr))
1425		return 0;
 
1426
1427	entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1428	if (!entry)
1429		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
1430
1431	bacpy(&entry->bdaddr, &ev->bdaddr);
1432	entry->bdaddr_type = ev->bdaddr_type;
 
 
1433
1434	list_add(&entry->list, &hdev->adv_entries);
 
 
1435
1436	BT_DBG("%s adv entry added: address %s type %u", hdev->name,
1437				batostr(&entry->bdaddr), entry->bdaddr_type);
1438
1439	return 0;
1440}
1441
1442/* Register HCI device */
1443int hci_register_dev(struct hci_dev *hdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1444{
1445	struct list_head *head = &hci_dev_list, *p;
1446	int i, id = 0;
 
 
 
 
 
1447
1448	BT_DBG("%p name %s bus %d owner %p", hdev, hdev->name,
1449						hdev->bus, hdev->owner);
1450
1451	if (!hdev->open || !hdev->close || !hdev->destruct)
1452		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453
1454	write_lock_bh(&hci_dev_list_lock);
 
1455
1456	/* Find first available device id */
1457	list_for_each(p, &hci_dev_list) {
1458		if (list_entry(p, struct hci_dev, list)->id != id)
1459			break;
1460		head = p; id++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462
1463	sprintf(hdev->name, "hci%d", id);
1464	hdev->id = id;
1465	list_add(&hdev->list, head);
 
 
1466
1467	atomic_set(&hdev->refcnt, 1);
1468	spin_lock_init(&hdev->lock);
 
1469
1470	hdev->flags = 0;
1471	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1472	hdev->esco_type = (ESCO_HV1);
1473	hdev->link_mode = (HCI_LM_ACCEPT);
1474	hdev->io_capability = 0x03; /* No Input No Output */
 
 
 
 
 
 
 
 
 
 
 
1475
1476	hdev->idle_timeout = 0;
1477	hdev->sniff_max_interval = 800;
1478	hdev->sniff_min_interval = 80;
1479
1480	tasklet_init(&hdev->cmd_task, hci_cmd_task, (unsigned long) hdev);
1481	tasklet_init(&hdev->rx_task, hci_rx_task, (unsigned long) hdev);
1482	tasklet_init(&hdev->tx_task, hci_tx_task, (unsigned long) hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1483
1484	skb_queue_head_init(&hdev->rx_q);
1485	skb_queue_head_init(&hdev->cmd_q);
1486	skb_queue_head_init(&hdev->raw_q);
1487
1488	setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
 
 
 
1489
1490	for (i = 0; i < NUM_REASSEMBLY; i++)
1491		hdev->reassembly[i] = NULL;
1492
1493	init_waitqueue_head(&hdev->req_wait_q);
1494	mutex_init(&hdev->req_lock);
1495
1496	inquiry_cache_init(hdev);
 
 
1497
1498	hci_conn_hash_init(hdev);
 
 
 
 
 
 
1499
1500	INIT_LIST_HEAD(&hdev->blacklist);
 
 
 
1501
1502	INIT_LIST_HEAD(&hdev->uuids);
 
1503
1504	INIT_LIST_HEAD(&hdev->link_keys);
 
 
 
 
 
 
 
 
 
 
 
 
1505
1506	INIT_LIST_HEAD(&hdev->remote_oob_data);
 
1507
1508	INIT_LIST_HEAD(&hdev->adv_entries);
1509	setup_timer(&hdev->adv_timer, hci_clear_adv_cache,
1510						(unsigned long) hdev);
1511
1512	INIT_WORK(&hdev->power_on, hci_power_on);
1513	INIT_WORK(&hdev->power_off, hci_power_off);
1514	setup_timer(&hdev->off_timer, hci_auto_off, (unsigned long) hdev);
1515
1516	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1517
1518	atomic_set(&hdev->promisc, 0);
 
 
 
 
1519
1520	write_unlock_bh(&hci_dev_list_lock);
 
 
 
 
 
 
1521
1522	hdev->workqueue = create_singlethread_workqueue(hdev->name);
1523	if (!hdev->workqueue)
1524		goto nomem;
1525
1526	hdev->tfm = crypto_alloc_blkcipher("ecb(aes)", 0, CRYPTO_ALG_ASYNC);
1527	if (IS_ERR(hdev->tfm))
1528		BT_INFO("Failed to load transform for ecb(aes): %ld",
1529							PTR_ERR(hdev->tfm));
1530
1531	hci_register_sysfs(hdev);
1532
1533	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1534				RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
 
1535	if (hdev->rfkill) {
1536		if (rfkill_register(hdev->rfkill) < 0) {
1537			rfkill_destroy(hdev->rfkill);
1538			hdev->rfkill = NULL;
1539		}
1540	}
1541
1542	set_bit(HCI_AUTO_OFF, &hdev->flags);
1543	set_bit(HCI_SETUP, &hdev->flags);
1544	queue_work(hdev->workqueue, &hdev->power_on);
1545
1546	hci_notify(hdev, HCI_DEV_REG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1547
1548	return id;
1549
1550nomem:
1551	write_lock_bh(&hci_dev_list_lock);
1552	list_del(&hdev->list);
1553	write_unlock_bh(&hci_dev_list_lock);
 
 
1554
1555	return -ENOMEM;
1556}
1557EXPORT_SYMBOL(hci_register_dev);
1558
1559/* Unregister HCI device */
1560int hci_unregister_dev(struct hci_dev *hdev)
1561{
1562	int i;
1563
1564	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
 
 
1565
1566	write_lock_bh(&hci_dev_list_lock);
1567	list_del(&hdev->list);
1568	write_unlock_bh(&hci_dev_list_lock);
 
 
 
 
 
 
 
 
1569
1570	hci_dev_do_close(hdev);
1571
1572	for (i = 0; i < NUM_REASSEMBLY; i++)
1573		kfree_skb(hdev->reassembly[i]);
1574
1575	if (!test_bit(HCI_INIT, &hdev->flags) &&
1576					!test_bit(HCI_SETUP, &hdev->flags))
1577		mgmt_index_removed(hdev->id);
 
 
 
 
1578
1579	if (!IS_ERR(hdev->tfm))
1580		crypto_free_blkcipher(hdev->tfm);
 
1581
1582	hci_notify(hdev, HCI_DEV_UNREG);
1583
1584	if (hdev->rfkill) {
1585		rfkill_unregister(hdev->rfkill);
1586		rfkill_destroy(hdev->rfkill);
1587	}
1588
1589	hci_unregister_sysfs(hdev);
 
 
 
 
1590
1591	hci_del_off_timer(hdev);
1592	del_timer(&hdev->adv_timer);
 
 
 
 
1593
1594	destroy_workqueue(hdev->workqueue);
 
1595
1596	hci_dev_lock_bh(hdev);
1597	hci_blacklist_clear(hdev);
 
1598	hci_uuids_clear(hdev);
1599	hci_link_keys_clear(hdev);
 
 
1600	hci_remote_oob_data_clear(hdev);
1601	hci_adv_entries_clear(hdev);
1602	hci_dev_unlock_bh(hdev);
1603
1604	__hci_dev_put(hdev);
 
 
 
 
 
1605
1606	return 0;
 
 
 
 
1607}
1608EXPORT_SYMBOL(hci_unregister_dev);
1609
1610/* Suspend HCI device */
1611int hci_suspend_dev(struct hci_dev *hdev)
1612{
1613	hci_notify(hdev, HCI_DEV_SUSPEND);
1614	return 0;
 
 
 
 
 
 
 
1615}
1616EXPORT_SYMBOL(hci_suspend_dev);
1617
1618/* Resume HCI device */
1619int hci_resume_dev(struct hci_dev *hdev)
1620{
1621	hci_notify(hdev, HCI_DEV_RESUME);
1622	return 0;
1623}
1624EXPORT_SYMBOL(hci_resume_dev);
1625
1626/* Receive frame from HCI drivers */
1627int hci_recv_frame(struct sk_buff *skb)
1628{
1629	struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1630	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1631				&& !test_bit(HCI_INIT, &hdev->flags))) {
1632		kfree_skb(skb);
1633		return -ENXIO;
1634	}
1635
1636	/* Incomming skb */
1637	bt_cb(skb)->incoming = 1;
1638
1639	/* Time stamp */
1640	__net_timestamp(skb);
1641
1642	/* Queue frame for rx task */
1643	skb_queue_tail(&hdev->rx_q, skb);
1644	tasklet_schedule(&hdev->rx_task);
1645
1646	return 0;
1647}
1648EXPORT_SYMBOL(hci_recv_frame);
1649
1650static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1651						  int count, __u8 index)
1652{
1653	int len = 0;
1654	int hlen = 0;
1655	int remain = count;
1656	struct sk_buff *skb;
1657	struct bt_skb_cb *scb;
1658
1659	if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1660				index >= NUM_REASSEMBLY)
1661		return -EILSEQ;
1662
1663	skb = hdev->reassembly[index];
 
 
 
1664
1665	if (!skb) {
1666		switch (type) {
1667		case HCI_ACLDATA_PKT:
1668			len = HCI_MAX_FRAME_SIZE;
1669			hlen = HCI_ACL_HDR_SIZE;
1670			break;
1671		case HCI_EVENT_PKT:
1672			len = HCI_MAX_EVENT_SIZE;
1673			hlen = HCI_EVENT_HDR_SIZE;
1674			break;
1675		case HCI_SCODATA_PKT:
1676			len = HCI_MAX_SCO_SIZE;
1677			hlen = HCI_SCO_HDR_SIZE;
1678			break;
1679		}
1680
1681		skb = bt_skb_alloc(len, GFP_ATOMIC);
1682		if (!skb)
1683			return -ENOMEM;
1684
1685		scb = (void *) skb->cb;
1686		scb->expect = hlen;
1687		scb->pkt_type = type;
1688
1689		skb->dev = (void *) hdev;
1690		hdev->reassembly[index] = skb;
1691	}
1692
1693	while (count) {
1694		scb = (void *) skb->cb;
1695		len = min(scb->expect, (__u16)count);
 
1696
1697		memcpy(skb_put(skb, len), data, len);
 
 
 
1698
1699		count -= len;
1700		data += len;
1701		scb->expect -= len;
1702		remain = count;
1703
1704		switch (type) {
1705		case HCI_EVENT_PKT:
1706			if (skb->len == HCI_EVENT_HDR_SIZE) {
1707				struct hci_event_hdr *h = hci_event_hdr(skb);
1708				scb->expect = h->plen;
1709
1710				if (skb_tailroom(skb) < scb->expect) {
1711					kfree_skb(skb);
1712					hdev->reassembly[index] = NULL;
1713					return -ENOMEM;
1714				}
1715			}
1716			break;
1717
1718		case HCI_ACLDATA_PKT:
1719			if (skb->len  == HCI_ACL_HDR_SIZE) {
1720				struct hci_acl_hdr *h = hci_acl_hdr(skb);
1721				scb->expect = __le16_to_cpu(h->dlen);
1722
1723				if (skb_tailroom(skb) < scb->expect) {
1724					kfree_skb(skb);
1725					hdev->reassembly[index] = NULL;
1726					return -ENOMEM;
1727				}
1728			}
1729			break;
1730
1731		case HCI_SCODATA_PKT:
1732			if (skb->len == HCI_SCO_HDR_SIZE) {
1733				struct hci_sco_hdr *h = hci_sco_hdr(skb);
1734				scb->expect = h->dlen;
1735
1736				if (skb_tailroom(skb) < scb->expect) {
1737					kfree_skb(skb);
1738					hdev->reassembly[index] = NULL;
1739					return -ENOMEM;
1740				}
1741			}
1742			break;
1743		}
1744
1745		if (scb->expect == 0) {
1746			/* Complete frame */
1747
1748			bt_cb(skb)->pkt_type = type;
1749			hci_recv_frame(skb);
1750
1751			hdev->reassembly[index] = NULL;
1752			return remain;
1753		}
1754	}
1755
1756	return remain;
1757}
 
1758
1759int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
 
1760{
1761	int rem = 0;
 
1762
1763	if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
1764		return -EILSEQ;
 
1765
1766	while (count) {
1767		rem = hci_reassembly(hdev, type, data, count, type - 1);
1768		if (rem < 0)
1769			return rem;
1770
1771		data += (count - rem);
1772		count = rem;
1773	}
1774
1775	return rem;
 
1776}
1777EXPORT_SYMBOL(hci_recv_fragment);
1778
1779#define STREAM_REASSEMBLY 0
1780
1781int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
1782{
1783	int type;
1784	int rem = 0;
 
 
 
1785
1786	while (count) {
1787		struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1788
1789		if (!skb) {
1790			struct { char type; } *pkt;
1791
1792			/* Start of the frame */
1793			pkt = data;
1794			type = pkt->type;
1795
1796			data++;
1797			count--;
1798		} else
1799			type = bt_cb(skb)->pkt_type;
1800
1801		rem = hci_reassembly(hdev, type, data, count,
1802							STREAM_REASSEMBLY);
1803		if (rem < 0)
1804			return rem;
1805
1806		data += (count - rem);
1807		count = rem;
1808	}
1809
1810	return rem;
1811}
1812EXPORT_SYMBOL(hci_recv_stream_fragment);
1813
1814/* ---- Interface to upper protocols ---- */
1815
1816/* Register/Unregister protocols.
1817 * hci_task_lock is used to ensure that no tasks are running. */
1818int hci_register_proto(struct hci_proto *hp)
1819{
1820	int err = 0;
 
1821
1822	BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
 
1823
1824	if (hp->id >= HCI_MAX_PROTO)
1825		return -EINVAL;
1826
1827	write_lock_bh(&hci_task_lock);
 
 
1828
1829	if (!hci_proto[hp->id])
1830		hci_proto[hp->id] = hp;
1831	else
1832		err = -EEXIST;
1833
1834	write_unlock_bh(&hci_task_lock);
1835
1836	return err;
 
1837}
1838EXPORT_SYMBOL(hci_register_proto);
1839
1840int hci_unregister_proto(struct hci_proto *hp)
1841{
1842	int err = 0;
1843
1844	BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
 
 
 
 
 
1845
1846	if (hp->id >= HCI_MAX_PROTO)
1847		return -EINVAL;
1848
1849	write_lock_bh(&hci_task_lock);
1850
1851	if (hci_proto[hp->id])
1852		hci_proto[hp->id] = NULL;
1853	else
1854		err = -ENOENT;
1855
1856	write_unlock_bh(&hci_task_lock);
1857
1858	return err;
1859}
1860EXPORT_SYMBOL(hci_unregister_proto);
1861
1862int hci_register_cb(struct hci_cb *cb)
1863{
1864	BT_DBG("%p name %s", cb, cb->name);
1865
1866	write_lock_bh(&hci_cb_list_lock);
1867	list_add(&cb->list, &hci_cb_list);
1868	write_unlock_bh(&hci_cb_list_lock);
1869
1870	return 0;
1871}
1872EXPORT_SYMBOL(hci_register_cb);
1873
1874int hci_unregister_cb(struct hci_cb *cb)
1875{
1876	BT_DBG("%p name %s", cb, cb->name);
1877
1878	write_lock_bh(&hci_cb_list_lock);
1879	list_del(&cb->list);
1880	write_unlock_bh(&hci_cb_list_lock);
1881
1882	return 0;
1883}
1884EXPORT_SYMBOL(hci_unregister_cb);
1885
1886static int hci_send_frame(struct sk_buff *skb)
1887{
1888	struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1889
1890	if (!hdev) {
1891		kfree_skb(skb);
1892		return -ENODEV;
1893	}
 
1894
1895	BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
 
1896
1897	if (atomic_read(&hdev->promisc)) {
1898		/* Time stamp */
1899		__net_timestamp(skb);
1900
1901		hci_send_to_sock(hdev, skb, NULL);
1902	}
1903
1904	/* Get rid of skb owner, prior to sending to the driver. */
1905	skb_orphan(skb);
1906
1907	return hdev->send(skb);
 
 
 
 
 
 
 
 
 
 
 
 
1908}
1909
1910/* Send HCI command */
1911int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
 
1912{
1913	int len = HCI_COMMAND_HDR_SIZE + plen;
1914	struct hci_command_hdr *hdr;
1915	struct sk_buff *skb;
1916
1917	BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
1918
1919	skb = bt_skb_alloc(len, GFP_ATOMIC);
1920	if (!skb) {
1921		BT_ERR("%s no memory for command", hdev->name);
1922		return -ENOMEM;
1923	}
1924
1925	hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
1926	hdr->opcode = cpu_to_le16(opcode);
1927	hdr->plen   = plen;
 
 
 
 
1928
1929	if (plen)
1930		memcpy(skb_put(skb, plen), param, plen);
1931
1932	BT_DBG("skb len %d", skb->len);
 
 
 
1933
1934	bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
1935	skb->dev = (void *) hdev;
 
 
 
 
 
 
 
 
 
 
1936
1937	if (test_bit(HCI_INIT, &hdev->flags))
1938		hdev->init_last_cmd = opcode;
 
 
 
 
1939
1940	skb_queue_tail(&hdev->cmd_q, skb);
1941	tasklet_schedule(&hdev->cmd_task);
1942
1943	return 0;
1944}
 
1945
1946/* Get data from the previously sent command */
1947void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
1948{
1949	struct hci_command_hdr *hdr;
1950
1951	if (!hdev->sent_cmd)
1952		return NULL;
1953
1954	hdr = (void *) hdev->sent_cmd->data;
1955
1956	if (hdr->opcode != cpu_to_le16(opcode))
1957		return NULL;
1958
1959	BT_DBG("%s opcode 0x%x", hdev->name, opcode);
1960
1961	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
1962}
1963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1964/* Send ACL data */
1965static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
1966{
1967	struct hci_acl_hdr *hdr;
1968	int len = skb->len;
1969
1970	skb_push(skb, HCI_ACL_HDR_SIZE);
1971	skb_reset_transport_header(skb);
1972	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
1973	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
1974	hdr->dlen   = cpu_to_le16(len);
1975}
1976
1977void hci_send_acl(struct hci_conn *conn, struct sk_buff *skb, __u16 flags)
 
1978{
 
1979	struct hci_dev *hdev = conn->hdev;
1980	struct sk_buff *list;
1981
1982	BT_DBG("%s conn %p flags 0x%x", hdev->name, conn, flags);
 
 
 
1983
1984	skb->dev = (void *) hdev;
1985	bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
1986	hci_add_acl_hdr(skb, conn->handle, flags);
 
 
 
 
 
 
 
 
1987
1988	list = skb_shinfo(skb)->frag_list;
1989	if (!list) {
1990		/* Non fragmented */
1991		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
1992
1993		skb_queue_tail(&conn->data_q, skb);
1994	} else {
1995		/* Fragmented */
1996		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
1997
1998		skb_shinfo(skb)->frag_list = NULL;
1999
2000		/* Queue all fragments atomically */
2001		spin_lock_bh(&conn->data_q.lock);
 
 
 
 
2002
2003		__skb_queue_tail(&conn->data_q, skb);
2004
2005		flags &= ~ACL_START;
2006		flags |= ACL_CONT;
2007		do {
2008			skb = list; list = list->next;
2009
2010			skb->dev = (void *) hdev;
2011			bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
2012			hci_add_acl_hdr(skb, conn->handle, flags);
2013
2014			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
2015
2016			__skb_queue_tail(&conn->data_q, skb);
2017		} while (list);
2018
2019		spin_unlock_bh(&conn->data_q.lock);
2020	}
 
 
 
 
 
2021
2022	tasklet_schedule(&hdev->tx_task);
 
 
 
 
2023}
2024EXPORT_SYMBOL(hci_send_acl);
2025
2026/* Send SCO data */
2027void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
2028{
2029	struct hci_dev *hdev = conn->hdev;
2030	struct hci_sco_hdr hdr;
2031
2032	BT_DBG("%s len %d", hdev->name, skb->len);
2033
2034	hdr.handle = cpu_to_le16(conn->handle);
2035	hdr.dlen   = skb->len;
2036
2037	skb_push(skb, HCI_SCO_HDR_SIZE);
2038	skb_reset_transport_header(skb);
2039	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
2040
2041	skb->dev = (void *) hdev;
2042	bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
2043
2044	skb_queue_tail(&conn->data_q, skb);
2045	tasklet_schedule(&hdev->tx_task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2046}
2047EXPORT_SYMBOL(hci_send_sco);
2048
2049/* ---- HCI TX task (outgoing data) ---- */
2050
2051/* HCI Connection scheduler */
2052static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2053{
2054	struct hci_conn_hash *h = &hdev->conn_hash;
2055	struct hci_conn *conn = NULL;
2056	int num = 0, min = ~0;
2057	struct list_head *p;
2058
2059	/* We don't have to lock device here. Connections are always
2060	 * added and removed with TX task disabled. */
2061	list_for_each(p, &h->list) {
2062		struct hci_conn *c;
2063		c = list_entry(p, struct hci_conn, list);
2064
 
 
 
2065		if (c->type != type || skb_queue_empty(&c->data_q))
2066			continue;
2067
2068		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
2069			continue;
2070
2071		num++;
2072
2073		if (c->sent < min) {
2074			min  = c->sent;
2075			conn = c;
2076		}
 
 
 
2077	}
2078
2079	if (conn) {
2080		int cnt, q;
2081
2082		switch (conn->type) {
2083		case ACL_LINK:
2084			cnt = hdev->acl_cnt;
2085			break;
2086		case SCO_LINK:
2087		case ESCO_LINK:
2088			cnt = hdev->sco_cnt;
2089			break;
2090		case LE_LINK:
2091			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
2092			break;
2093		default:
2094			cnt = 0;
2095			BT_ERR("Unknown link type");
2096		}
2097
2098		q = cnt / num;
2099		*quote = q ? q : 1;
2100	} else
2101		*quote = 0;
2102
2103	BT_DBG("conn %p quote %d", conn, *quote);
2104	return conn;
2105}
2106
2107static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
2108{
2109	struct hci_conn_hash *h = &hdev->conn_hash;
2110	struct list_head *p;
2111	struct hci_conn  *c;
 
2112
2113	BT_ERR("%s link tx timeout", hdev->name);
2114
2115	/* Kill stalled connections */
2116	list_for_each(p, &h->list) {
2117		c = list_entry(p, struct hci_conn, list);
2118		if (c->type == type && c->sent) {
2119			BT_ERR("%s killing stalled connection %s",
2120				hdev->name, batostr(&c->dst));
2121			hci_acl_disconn(c, 0x13);
 
 
 
 
 
2122		}
2123	}
 
 
2124}
2125
2126static inline void hci_sched_acl(struct hci_dev *hdev)
 
2127{
 
 
 
2128	struct hci_conn *conn;
2129	struct sk_buff *skb;
2130	int quote;
2131
2132	BT_DBG("%s", hdev->name);
2133
2134	if (!test_bit(HCI_RAW, &hdev->flags)) {
2135		/* ACL tx timeout must be longer than maximum
2136		 * link supervision timeout (40.9 seconds) */
2137		if (!hdev->acl_cnt && time_after(jiffies, hdev->acl_last_tx + HZ * 45))
2138			hci_link_tx_to(hdev, ACL_LINK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2139	}
2140
2141	while (hdev->acl_cnt && (conn = hci_low_sent(hdev, ACL_LINK, &quote))) {
2142		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2143			BT_DBG("skb %p len %d", skb, skb->len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2144
2145			hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
 
 
2146
2147			hci_send_frame(skb);
2148			hdev->acl_last_tx = jiffies;
2149
2150			hdev->acl_cnt--;
2151			conn->sent++;
2152		}
 
 
 
2153	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2154}
2155
2156/* Schedule SCO */
2157static inline void hci_sched_sco(struct hci_dev *hdev)
2158{
2159	struct hci_conn *conn;
2160	struct sk_buff *skb;
2161	int quote;
2162
2163	BT_DBG("%s", hdev->name);
2164
 
 
 
2165	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
2166		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2167			BT_DBG("skb %p len %d", skb, skb->len);
2168			hci_send_frame(skb);
2169
2170			conn->sent++;
2171			if (conn->sent == ~0)
2172				conn->sent = 0;
2173		}
2174	}
2175}
2176
2177static inline void hci_sched_esco(struct hci_dev *hdev)
2178{
2179	struct hci_conn *conn;
2180	struct sk_buff *skb;
2181	int quote;
2182
2183	BT_DBG("%s", hdev->name);
2184
2185	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
 
 
 
 
2186		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2187			BT_DBG("skb %p len %d", skb, skb->len);
2188			hci_send_frame(skb);
2189
2190			conn->sent++;
2191			if (conn->sent == ~0)
2192				conn->sent = 0;
2193		}
2194	}
2195}
2196
2197static inline void hci_sched_le(struct hci_dev *hdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2198{
2199	struct hci_conn *conn;
 
2200	struct sk_buff *skb;
2201	int quote, cnt;
 
2202
2203	BT_DBG("%s", hdev->name);
2204
2205	if (!test_bit(HCI_RAW, &hdev->flags)) {
2206		/* LE tx timeout must be longer than maximum
2207		 * link supervision timeout (40.9 seconds) */
2208		if (!hdev->le_cnt && hdev->le_pkts &&
2209				time_after(jiffies, hdev->le_last_tx + HZ * 45))
2210			hci_link_tx_to(hdev, LE_LINK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2211	}
2212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2213	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
2214	while (cnt && (conn = hci_low_sent(hdev, LE_LINK, &quote))) {
2215		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
2216			BT_DBG("skb %p len %d", skb, skb->len);
2217
2218			hci_send_frame(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2219			hdev->le_last_tx = jiffies;
2220
2221			cnt--;
2222			conn->sent++;
 
 
 
 
 
2223		}
2224	}
 
2225	if (hdev->le_pkts)
2226		hdev->le_cnt = cnt;
2227	else
2228		hdev->acl_cnt = cnt;
 
 
 
2229}
2230
2231static void hci_tx_task(unsigned long arg)
 
2232{
2233	struct hci_dev *hdev = (struct hci_dev *) arg;
2234	struct sk_buff *skb;
 
2235
2236	read_lock(&hci_task_lock);
2237
2238	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
2239		hdev->sco_cnt, hdev->le_cnt);
2240
2241	/* Schedule queues and send stuff to HCI driver */
 
 
 
 
 
2242
2243	hci_sched_acl(hdev);
 
 
 
 
 
 
2244
2245	hci_sched_sco(hdev);
 
 
 
2246
2247	hci_sched_esco(hdev);
 
2248
2249	hci_sched_le(hdev);
 
 
 
 
 
 
 
2250
2251	/* Send next queued raw (unknown type) packet */
2252	while ((skb = skb_dequeue(&hdev->raw_q)))
2253		hci_send_frame(skb);
2254
2255	read_unlock(&hci_task_lock);
2256}
2257
2258/* ----- HCI RX task (incoming data processing) ----- */
2259
2260/* ACL data packet */
2261static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2262{
2263	struct hci_acl_hdr *hdr = (void *) skb->data;
2264	struct hci_conn *conn;
2265	__u16 handle, flags;
2266
2267	skb_pull(skb, HCI_ACL_HDR_SIZE);
2268
2269	handle = __le16_to_cpu(hdr->handle);
2270	flags  = hci_flags(handle);
2271	handle = hci_handle(handle);
2272
2273	BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
 
2274
2275	hdev->stat.acl_rx++;
2276
2277	hci_dev_lock(hdev);
2278	conn = hci_conn_hash_lookup_handle(hdev, handle);
2279	hci_dev_unlock(hdev);
2280
2281	if (conn) {
2282		register struct hci_proto *hp;
2283
2284		hci_conn_enter_active_mode(conn, bt_cb(skb)->force_active);
2285
2286		/* Send to upper protocol */
2287		hp = hci_proto[HCI_PROTO_L2CAP];
2288		if (hp && hp->recv_acldata) {
2289			hp->recv_acldata(conn, skb, flags);
2290			return;
2291		}
2292	} else {
2293		BT_ERR("%s ACL packet for unknown connection handle %d",
2294			hdev->name, handle);
2295	}
2296
2297	kfree_skb(skb);
2298}
2299
2300/* SCO data packet */
2301static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
2302{
2303	struct hci_sco_hdr *hdr = (void *) skb->data;
2304	struct hci_conn *conn;
2305	__u16 handle;
2306
2307	skb_pull(skb, HCI_SCO_HDR_SIZE);
2308
2309	handle = __le16_to_cpu(hdr->handle);
 
 
2310
2311	BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
 
2312
2313	hdev->stat.sco_rx++;
2314
2315	hci_dev_lock(hdev);
2316	conn = hci_conn_hash_lookup_handle(hdev, handle);
2317	hci_dev_unlock(hdev);
2318
2319	if (conn) {
2320		register struct hci_proto *hp;
2321
2322		/* Send to upper protocol */
2323		hp = hci_proto[HCI_PROTO_SCO];
2324		if (hp && hp->recv_scodata) {
2325			hp->recv_scodata(conn, skb);
2326			return;
2327		}
2328	} else {
2329		BT_ERR("%s SCO packet for unknown connection handle %d",
2330			hdev->name, handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2331	}
2332
 
 
 
 
 
2333	kfree_skb(skb);
2334}
2335
2336static void hci_rx_task(unsigned long arg)
2337{
2338	struct hci_dev *hdev = (struct hci_dev *) arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339	struct sk_buff *skb;
2340
2341	BT_DBG("%s", hdev->name);
2342
2343	read_lock(&hci_task_lock);
 
 
 
 
 
 
 
 
 
2344
2345	while ((skb = skb_dequeue(&hdev->rx_q))) {
2346		if (atomic_read(&hdev->promisc)) {
2347			/* Send copy to the sockets */
2348			hci_send_to_sock(hdev, skb, NULL);
2349		}
2350
2351		if (test_bit(HCI_RAW, &hdev->flags)) {
 
 
 
 
 
 
 
2352			kfree_skb(skb);
2353			continue;
2354		}
2355
2356		if (test_bit(HCI_INIT, &hdev->flags)) {
2357			/* Don't process data packets in this states. */
2358			switch (bt_cb(skb)->pkt_type) {
2359			case HCI_ACLDATA_PKT:
2360			case HCI_SCODATA_PKT:
 
2361				kfree_skb(skb);
2362				continue;
2363			}
2364		}
2365
2366		/* Process frame */
2367		switch (bt_cb(skb)->pkt_type) {
2368		case HCI_EVENT_PKT:
 
2369			hci_event_packet(hdev, skb);
2370			break;
2371
2372		case HCI_ACLDATA_PKT:
2373			BT_DBG("%s ACL data packet", hdev->name);
2374			hci_acldata_packet(hdev, skb);
2375			break;
2376
2377		case HCI_SCODATA_PKT:
2378			BT_DBG("%s SCO data packet", hdev->name);
2379			hci_scodata_packet(hdev, skb);
2380			break;
2381
 
 
 
 
 
2382		default:
2383			kfree_skb(skb);
2384			break;
2385		}
2386	}
2387
2388	read_unlock(&hci_task_lock);
2389}
2390
2391static void hci_cmd_task(unsigned long arg)
2392{
2393	struct hci_dev *hdev = (struct hci_dev *) arg;
2394	struct sk_buff *skb;
2395
2396	BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
 
2397
2398	/* Send queued commands */
2399	if (atomic_read(&hdev->cmd_cnt)) {
2400		skb = skb_dequeue(&hdev->cmd_q);
2401		if (!skb)
2402			return;
2403
2404		kfree_skb(hdev->sent_cmd);
2405
2406		hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2407		if (hdev->sent_cmd) {
 
 
 
2408			atomic_dec(&hdev->cmd_cnt);
2409			hci_send_frame(skb);
2410			if (test_bit(HCI_RESET, &hdev->flags))
2411				del_timer(&hdev->cmd_timer);
 
 
 
 
 
 
2412			else
2413				mod_timer(&hdev->cmd_timer,
2414				  jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
 
2415		} else {
2416			skb_queue_head(&hdev->cmd_q, skb);
2417			tasklet_schedule(&hdev->cmd_task);
2418		}
2419	}
2420}