Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
  32#include <linux/kcov.h>
  33#include <linux/property.h>
  34#include <linux/suspend.h>
  35#include <linux/wait.h>
  36#include <asm/unaligned.h>
  37
  38#include <net/bluetooth/bluetooth.h>
  39#include <net/bluetooth/hci_core.h>
  40#include <net/bluetooth/l2cap.h>
  41#include <net/bluetooth/mgmt.h>
  42
  43#include "hci_request.h"
  44#include "hci_debugfs.h"
  45#include "smp.h"
  46#include "leds.h"
  47#include "msft.h"
  48#include "aosp.h"
  49#include "hci_codec.h"
  50
  51static void hci_rx_work(struct work_struct *work);
  52static void hci_cmd_work(struct work_struct *work);
  53static void hci_tx_work(struct work_struct *work);
  54
  55/* HCI device list */
  56LIST_HEAD(hci_dev_list);
  57DEFINE_RWLOCK(hci_dev_list_lock);
  58
  59/* HCI callback list */
  60LIST_HEAD(hci_cb_list);
  61DEFINE_MUTEX(hci_cb_list_lock);
  62
  63/* HCI ID Numbering */
  64static DEFINE_IDA(hci_index_ida);
  65
  66static int hci_scan_req(struct hci_request *req, unsigned long opt)
  67{
  68	__u8 scan = opt;
  69
  70	BT_DBG("%s %x", req->hdev->name, scan);
  71
  72	/* Inquiry and Page scans */
  73	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
  74	return 0;
  75}
  76
  77static int hci_auth_req(struct hci_request *req, unsigned long opt)
  78{
  79	__u8 auth = opt;
  80
  81	BT_DBG("%s %x", req->hdev->name, auth);
  82
  83	/* Authentication */
  84	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
  85	return 0;
  86}
  87
  88static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
  89{
  90	__u8 encrypt = opt;
  91
  92	BT_DBG("%s %x", req->hdev->name, encrypt);
  93
  94	/* Encryption */
  95	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
  96	return 0;
  97}
  98
  99static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 100{
 101	__le16 policy = cpu_to_le16(opt);
 102
 103	BT_DBG("%s %x", req->hdev->name, policy);
 104
 105	/* Default link policy */
 106	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 107	return 0;
 108}
 109
 110/* Get HCI device by index.
 111 * Device is held on return. */
 112struct hci_dev *hci_dev_get(int index)
 113{
 114	struct hci_dev *hdev = NULL, *d;
 115
 116	BT_DBG("%d", index);
 117
 118	if (index < 0)
 119		return NULL;
 120
 121	read_lock(&hci_dev_list_lock);
 122	list_for_each_entry(d, &hci_dev_list, list) {
 123		if (d->id == index) {
 124			hdev = hci_dev_hold(d);
 125			break;
 126		}
 127	}
 128	read_unlock(&hci_dev_list_lock);
 129	return hdev;
 130}
 131
 132/* ---- Inquiry support ---- */
 133
 134bool hci_discovery_active(struct hci_dev *hdev)
 135{
 136	struct discovery_state *discov = &hdev->discovery;
 137
 138	switch (discov->state) {
 139	case DISCOVERY_FINDING:
 140	case DISCOVERY_RESOLVING:
 141		return true;
 142
 143	default:
 144		return false;
 145	}
 146}
 147
 148void hci_discovery_set_state(struct hci_dev *hdev, int state)
 149{
 150	int old_state = hdev->discovery.state;
 151
 152	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 153
 154	if (old_state == state)
 155		return;
 156
 157	hdev->discovery.state = state;
 158
 159	switch (state) {
 160	case DISCOVERY_STOPPED:
 161		hci_update_passive_scan(hdev);
 162
 163		if (old_state != DISCOVERY_STARTING)
 164			mgmt_discovering(hdev, 0);
 165		break;
 166	case DISCOVERY_STARTING:
 167		break;
 168	case DISCOVERY_FINDING:
 169		mgmt_discovering(hdev, 1);
 170		break;
 171	case DISCOVERY_RESOLVING:
 172		break;
 173	case DISCOVERY_STOPPING:
 174		break;
 175	}
 176}
 177
 178void hci_inquiry_cache_flush(struct hci_dev *hdev)
 179{
 180	struct discovery_state *cache = &hdev->discovery;
 181	struct inquiry_entry *p, *n;
 182
 183	list_for_each_entry_safe(p, n, &cache->all, all) {
 184		list_del(&p->all);
 185		kfree(p);
 186	}
 187
 188	INIT_LIST_HEAD(&cache->unknown);
 189	INIT_LIST_HEAD(&cache->resolve);
 190}
 191
 192struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 193					       bdaddr_t *bdaddr)
 194{
 195	struct discovery_state *cache = &hdev->discovery;
 196	struct inquiry_entry *e;
 197
 198	BT_DBG("cache %p, %pMR", cache, bdaddr);
 199
 200	list_for_each_entry(e, &cache->all, all) {
 201		if (!bacmp(&e->data.bdaddr, bdaddr))
 202			return e;
 203	}
 204
 205	return NULL;
 206}
 207
 208struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
 209						       bdaddr_t *bdaddr)
 210{
 211	struct discovery_state *cache = &hdev->discovery;
 212	struct inquiry_entry *e;
 213
 214	BT_DBG("cache %p, %pMR", cache, bdaddr);
 215
 216	list_for_each_entry(e, &cache->unknown, list) {
 217		if (!bacmp(&e->data.bdaddr, bdaddr))
 218			return e;
 219	}
 220
 221	return NULL;
 222}
 223
 224struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
 225						       bdaddr_t *bdaddr,
 226						       int state)
 227{
 228	struct discovery_state *cache = &hdev->discovery;
 229	struct inquiry_entry *e;
 230
 231	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
 232
 233	list_for_each_entry(e, &cache->resolve, list) {
 234		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
 235			return e;
 236		if (!bacmp(&e->data.bdaddr, bdaddr))
 237			return e;
 238	}
 239
 240	return NULL;
 241}
 242
 243void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
 244				      struct inquiry_entry *ie)
 245{
 246	struct discovery_state *cache = &hdev->discovery;
 247	struct list_head *pos = &cache->resolve;
 248	struct inquiry_entry *p;
 249
 250	list_del(&ie->list);
 251
 252	list_for_each_entry(p, &cache->resolve, list) {
 253		if (p->name_state != NAME_PENDING &&
 254		    abs(p->data.rssi) >= abs(ie->data.rssi))
 255			break;
 256		pos = &p->list;
 257	}
 258
 259	list_add(&ie->list, pos);
 260}
 261
 262u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
 263			     bool name_known)
 264{
 265	struct discovery_state *cache = &hdev->discovery;
 266	struct inquiry_entry *ie;
 267	u32 flags = 0;
 268
 269	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
 270
 271	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
 272
 273	if (!data->ssp_mode)
 274		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 275
 276	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 277	if (ie) {
 278		if (!ie->data.ssp_mode)
 279			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 280
 281		if (ie->name_state == NAME_NEEDED &&
 282		    data->rssi != ie->data.rssi) {
 283			ie->data.rssi = data->rssi;
 284			hci_inquiry_cache_update_resolve(hdev, ie);
 285		}
 286
 287		goto update;
 288	}
 289
 290	/* Entry not in the cache. Add new one. */
 291	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
 292	if (!ie) {
 293		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 294		goto done;
 295	}
 296
 297	list_add(&ie->all, &cache->all);
 298
 299	if (name_known) {
 300		ie->name_state = NAME_KNOWN;
 301	} else {
 302		ie->name_state = NAME_NOT_KNOWN;
 303		list_add(&ie->list, &cache->unknown);
 304	}
 305
 306update:
 307	if (name_known && ie->name_state != NAME_KNOWN &&
 308	    ie->name_state != NAME_PENDING) {
 309		ie->name_state = NAME_KNOWN;
 310		list_del(&ie->list);
 311	}
 312
 313	memcpy(&ie->data, data, sizeof(*data));
 314	ie->timestamp = jiffies;
 315	cache->timestamp = jiffies;
 316
 317	if (ie->name_state == NAME_NOT_KNOWN)
 318		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 319
 320done:
 321	return flags;
 322}
 323
 324static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 325{
 326	struct discovery_state *cache = &hdev->discovery;
 327	struct inquiry_info *info = (struct inquiry_info *) buf;
 328	struct inquiry_entry *e;
 329	int copied = 0;
 330
 331	list_for_each_entry(e, &cache->all, all) {
 332		struct inquiry_data *data = &e->data;
 333
 334		if (copied >= num)
 335			break;
 336
 337		bacpy(&info->bdaddr, &data->bdaddr);
 338		info->pscan_rep_mode	= data->pscan_rep_mode;
 339		info->pscan_period_mode	= data->pscan_period_mode;
 340		info->pscan_mode	= data->pscan_mode;
 341		memcpy(info->dev_class, data->dev_class, 3);
 342		info->clock_offset	= data->clock_offset;
 343
 344		info++;
 345		copied++;
 346	}
 347
 348	BT_DBG("cache %p, copied %d", cache, copied);
 349	return copied;
 350}
 351
 352static int hci_inq_req(struct hci_request *req, unsigned long opt)
 353{
 354	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
 355	struct hci_dev *hdev = req->hdev;
 356	struct hci_cp_inquiry cp;
 357
 358	BT_DBG("%s", hdev->name);
 359
 360	if (test_bit(HCI_INQUIRY, &hdev->flags))
 361		return 0;
 362
 363	/* Start Inquiry */
 364	memcpy(&cp.lap, &ir->lap, 3);
 365	cp.length  = ir->length;
 366	cp.num_rsp = ir->num_rsp;
 367	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
 368
 369	return 0;
 370}
 371
 372int hci_inquiry(void __user *arg)
 373{
 374	__u8 __user *ptr = arg;
 375	struct hci_inquiry_req ir;
 376	struct hci_dev *hdev;
 377	int err = 0, do_inquiry = 0, max_rsp;
 378	long timeo;
 379	__u8 *buf;
 380
 381	if (copy_from_user(&ir, ptr, sizeof(ir)))
 382		return -EFAULT;
 383
 384	hdev = hci_dev_get(ir.dev_id);
 385	if (!hdev)
 386		return -ENODEV;
 387
 388	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 389		err = -EBUSY;
 390		goto done;
 391	}
 392
 393	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 394		err = -EOPNOTSUPP;
 395		goto done;
 396	}
 397
 398	if (hdev->dev_type != HCI_PRIMARY) {
 399		err = -EOPNOTSUPP;
 400		goto done;
 401	}
 402
 403	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 404		err = -EOPNOTSUPP;
 405		goto done;
 406	}
 407
 408	/* Restrict maximum inquiry length to 60 seconds */
 409	if (ir.length > 60) {
 410		err = -EINVAL;
 411		goto done;
 412	}
 413
 414	hci_dev_lock(hdev);
 415	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 416	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
 417		hci_inquiry_cache_flush(hdev);
 418		do_inquiry = 1;
 419	}
 420	hci_dev_unlock(hdev);
 421
 422	timeo = ir.length * msecs_to_jiffies(2000);
 423
 424	if (do_inquiry) {
 425		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
 426				   timeo, NULL);
 427		if (err < 0)
 428			goto done;
 429
 430		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
 431		 * cleared). If it is interrupted by a signal, return -EINTR.
 432		 */
 433		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
 434				TASK_INTERRUPTIBLE)) {
 435			err = -EINTR;
 436			goto done;
 437		}
 438	}
 439
 440	/* for unlimited number of responses we will use buffer with
 441	 * 255 entries
 442	 */
 443	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 444
 445	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 446	 * copy it to the user space.
 447	 */
 448	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
 449	if (!buf) {
 450		err = -ENOMEM;
 451		goto done;
 452	}
 453
 454	hci_dev_lock(hdev);
 455	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 456	hci_dev_unlock(hdev);
 457
 458	BT_DBG("num_rsp %d", ir.num_rsp);
 459
 460	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 461		ptr += sizeof(ir);
 462		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 463				 ir.num_rsp))
 464			err = -EFAULT;
 465	} else
 466		err = -EFAULT;
 467
 468	kfree(buf);
 469
 470done:
 471	hci_dev_put(hdev);
 472	return err;
 473}
 474
 475static int hci_dev_do_open(struct hci_dev *hdev)
 476{
 477	int ret = 0;
 478
 479	BT_DBG("%s %p", hdev->name, hdev);
 480
 481	hci_req_sync_lock(hdev);
 482
 483	ret = hci_dev_open_sync(hdev);
 484
 485	hci_req_sync_unlock(hdev);
 486	return ret;
 487}
 488
 489/* ---- HCI ioctl helpers ---- */
 490
 491int hci_dev_open(__u16 dev)
 492{
 493	struct hci_dev *hdev;
 494	int err;
 495
 496	hdev = hci_dev_get(dev);
 497	if (!hdev)
 498		return -ENODEV;
 499
 500	/* Devices that are marked as unconfigured can only be powered
 501	 * up as user channel. Trying to bring them up as normal devices
 502	 * will result into a failure. Only user channel operation is
 503	 * possible.
 504	 *
 505	 * When this function is called for a user channel, the flag
 506	 * HCI_USER_CHANNEL will be set first before attempting to
 507	 * open the device.
 508	 */
 509	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
 510	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 511		err = -EOPNOTSUPP;
 512		goto done;
 513	}
 514
 515	/* We need to ensure that no other power on/off work is pending
 516	 * before proceeding to call hci_dev_do_open. This is
 517	 * particularly important if the setup procedure has not yet
 518	 * completed.
 519	 */
 520	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 521		cancel_delayed_work(&hdev->power_off);
 522
 523	/* After this call it is guaranteed that the setup procedure
 524	 * has finished. This means that error conditions like RFKILL
 525	 * or no valid public or static random address apply.
 526	 */
 527	flush_workqueue(hdev->req_workqueue);
 528
 529	/* For controllers not using the management interface and that
 530	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
 531	 * so that pairing works for them. Once the management interface
 532	 * is in use this bit will be cleared again and userspace has
 533	 * to explicitly enable it.
 534	 */
 535	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 536	    !hci_dev_test_flag(hdev, HCI_MGMT))
 537		hci_dev_set_flag(hdev, HCI_BONDABLE);
 538
 539	err = hci_dev_do_open(hdev);
 540
 541done:
 542	hci_dev_put(hdev);
 543	return err;
 544}
 545
 546int hci_dev_do_close(struct hci_dev *hdev)
 547{
 548	int err;
 549
 550	BT_DBG("%s %p", hdev->name, hdev);
 551
 552	hci_req_sync_lock(hdev);
 553
 554	err = hci_dev_close_sync(hdev);
 555
 556	hci_req_sync_unlock(hdev);
 557
 558	return err;
 559}
 560
 561int hci_dev_close(__u16 dev)
 562{
 563	struct hci_dev *hdev;
 564	int err;
 565
 566	hdev = hci_dev_get(dev);
 567	if (!hdev)
 568		return -ENODEV;
 569
 570	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 571		err = -EBUSY;
 572		goto done;
 573	}
 574
 575	cancel_work_sync(&hdev->power_on);
 576	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 577		cancel_delayed_work(&hdev->power_off);
 578
 579	err = hci_dev_do_close(hdev);
 580
 581done:
 582	hci_dev_put(hdev);
 583	return err;
 584}
 585
 586static int hci_dev_do_reset(struct hci_dev *hdev)
 587{
 588	int ret;
 589
 590	BT_DBG("%s %p", hdev->name, hdev);
 591
 592	hci_req_sync_lock(hdev);
 593
 594	/* Drop queues */
 595	skb_queue_purge(&hdev->rx_q);
 596	skb_queue_purge(&hdev->cmd_q);
 597
 598	/* Cancel these to avoid queueing non-chained pending work */
 599	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 600	/* Wait for
 601	 *
 602	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
 603	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
 604	 *
 605	 * inside RCU section to see the flag or complete scheduling.
 606	 */
 607	synchronize_rcu();
 608	/* Explicitly cancel works in case scheduled after setting the flag. */
 609	cancel_delayed_work(&hdev->cmd_timer);
 610	cancel_delayed_work(&hdev->ncmd_timer);
 611
 612	/* Avoid potential lockdep warnings from the *_flush() calls by
 613	 * ensuring the workqueue is empty up front.
 614	 */
 615	drain_workqueue(hdev->workqueue);
 616
 617	hci_dev_lock(hdev);
 618	hci_inquiry_cache_flush(hdev);
 619	hci_conn_hash_flush(hdev);
 620	hci_dev_unlock(hdev);
 621
 622	if (hdev->flush)
 623		hdev->flush(hdev);
 624
 625	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 626
 627	atomic_set(&hdev->cmd_cnt, 1);
 628	hdev->acl_cnt = 0;
 629	hdev->sco_cnt = 0;
 630	hdev->le_cnt = 0;
 631	hdev->iso_cnt = 0;
 632
 633	ret = hci_reset_sync(hdev);
 634
 635	hci_req_sync_unlock(hdev);
 636	return ret;
 637}
 638
 639int hci_dev_reset(__u16 dev)
 640{
 641	struct hci_dev *hdev;
 642	int err;
 643
 644	hdev = hci_dev_get(dev);
 645	if (!hdev)
 646		return -ENODEV;
 647
 648	if (!test_bit(HCI_UP, &hdev->flags)) {
 649		err = -ENETDOWN;
 650		goto done;
 651	}
 652
 653	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 654		err = -EBUSY;
 655		goto done;
 656	}
 657
 658	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 659		err = -EOPNOTSUPP;
 660		goto done;
 661	}
 662
 663	err = hci_dev_do_reset(hdev);
 664
 665done:
 666	hci_dev_put(hdev);
 667	return err;
 668}
 669
 670int hci_dev_reset_stat(__u16 dev)
 671{
 672	struct hci_dev *hdev;
 673	int ret = 0;
 674
 675	hdev = hci_dev_get(dev);
 676	if (!hdev)
 677		return -ENODEV;
 678
 679	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 680		ret = -EBUSY;
 681		goto done;
 682	}
 683
 684	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 685		ret = -EOPNOTSUPP;
 686		goto done;
 687	}
 688
 689	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 690
 691done:
 692	hci_dev_put(hdev);
 693	return ret;
 694}
 695
 696static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
 697{
 698	bool conn_changed, discov_changed;
 699
 700	BT_DBG("%s scan 0x%02x", hdev->name, scan);
 701
 702	if ((scan & SCAN_PAGE))
 703		conn_changed = !hci_dev_test_and_set_flag(hdev,
 704							  HCI_CONNECTABLE);
 705	else
 706		conn_changed = hci_dev_test_and_clear_flag(hdev,
 707							   HCI_CONNECTABLE);
 708
 709	if ((scan & SCAN_INQUIRY)) {
 710		discov_changed = !hci_dev_test_and_set_flag(hdev,
 711							    HCI_DISCOVERABLE);
 712	} else {
 713		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
 714		discov_changed = hci_dev_test_and_clear_flag(hdev,
 715							     HCI_DISCOVERABLE);
 716	}
 717
 718	if (!hci_dev_test_flag(hdev, HCI_MGMT))
 719		return;
 720
 721	if (conn_changed || discov_changed) {
 722		/* In case this was disabled through mgmt */
 723		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 724
 725		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 726			hci_update_adv_data(hdev, hdev->cur_adv_instance);
 727
 728		mgmt_new_settings(hdev);
 729	}
 730}
 731
 732int hci_dev_cmd(unsigned int cmd, void __user *arg)
 733{
 734	struct hci_dev *hdev;
 735	struct hci_dev_req dr;
 736	int err = 0;
 737
 738	if (copy_from_user(&dr, arg, sizeof(dr)))
 739		return -EFAULT;
 740
 741	hdev = hci_dev_get(dr.dev_id);
 742	if (!hdev)
 743		return -ENODEV;
 744
 745	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 746		err = -EBUSY;
 747		goto done;
 748	}
 749
 750	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 751		err = -EOPNOTSUPP;
 752		goto done;
 753	}
 754
 755	if (hdev->dev_type != HCI_PRIMARY) {
 756		err = -EOPNOTSUPP;
 757		goto done;
 758	}
 759
 760	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 761		err = -EOPNOTSUPP;
 762		goto done;
 763	}
 764
 765	switch (cmd) {
 766	case HCISETAUTH:
 767		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 768				   HCI_INIT_TIMEOUT, NULL);
 769		break;
 770
 771	case HCISETENCRYPT:
 772		if (!lmp_encrypt_capable(hdev)) {
 773			err = -EOPNOTSUPP;
 774			break;
 775		}
 776
 777		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 778			/* Auth must be enabled first */
 779			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 780					   HCI_INIT_TIMEOUT, NULL);
 781			if (err)
 782				break;
 783		}
 784
 785		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
 786				   HCI_INIT_TIMEOUT, NULL);
 787		break;
 788
 789	case HCISETSCAN:
 790		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
 791				   HCI_INIT_TIMEOUT, NULL);
 792
 793		/* Ensure that the connectable and discoverable states
 794		 * get correctly modified as this was a non-mgmt change.
 795		 */
 796		if (!err)
 797			hci_update_passive_scan_state(hdev, dr.dev_opt);
 798		break;
 799
 800	case HCISETLINKPOL:
 801		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
 802				   HCI_INIT_TIMEOUT, NULL);
 803		break;
 804
 805	case HCISETLINKMODE:
 806		hdev->link_mode = ((__u16) dr.dev_opt) &
 807					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 808		break;
 809
 810	case HCISETPTYPE:
 811		if (hdev->pkt_type == (__u16) dr.dev_opt)
 812			break;
 813
 814		hdev->pkt_type = (__u16) dr.dev_opt;
 815		mgmt_phy_configuration_changed(hdev, NULL);
 816		break;
 817
 818	case HCISETACLMTU:
 819		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 820		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 821		break;
 822
 823	case HCISETSCOMTU:
 824		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 825		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 826		break;
 827
 828	default:
 829		err = -EINVAL;
 830		break;
 831	}
 832
 833done:
 834	hci_dev_put(hdev);
 835	return err;
 836}
 837
 838int hci_get_dev_list(void __user *arg)
 839{
 840	struct hci_dev *hdev;
 841	struct hci_dev_list_req *dl;
 842	struct hci_dev_req *dr;
 843	int n = 0, size, err;
 844	__u16 dev_num;
 845
 846	if (get_user(dev_num, (__u16 __user *) arg))
 847		return -EFAULT;
 848
 849	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
 850		return -EINVAL;
 851
 852	size = sizeof(*dl) + dev_num * sizeof(*dr);
 853
 854	dl = kzalloc(size, GFP_KERNEL);
 855	if (!dl)
 856		return -ENOMEM;
 857
 858	dr = dl->dev_req;
 859
 860	read_lock(&hci_dev_list_lock);
 861	list_for_each_entry(hdev, &hci_dev_list, list) {
 862		unsigned long flags = hdev->flags;
 863
 864		/* When the auto-off is configured it means the transport
 865		 * is running, but in that case still indicate that the
 866		 * device is actually down.
 867		 */
 868		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 869			flags &= ~BIT(HCI_UP);
 870
 871		(dr + n)->dev_id  = hdev->id;
 872		(dr + n)->dev_opt = flags;
 873
 874		if (++n >= dev_num)
 875			break;
 876	}
 877	read_unlock(&hci_dev_list_lock);
 878
 879	dl->dev_num = n;
 880	size = sizeof(*dl) + n * sizeof(*dr);
 881
 882	err = copy_to_user(arg, dl, size);
 883	kfree(dl);
 884
 885	return err ? -EFAULT : 0;
 886}
 887
 888int hci_get_dev_info(void __user *arg)
 889{
 890	struct hci_dev *hdev;
 891	struct hci_dev_info di;
 892	unsigned long flags;
 893	int err = 0;
 894
 895	if (copy_from_user(&di, arg, sizeof(di)))
 896		return -EFAULT;
 897
 898	hdev = hci_dev_get(di.dev_id);
 899	if (!hdev)
 900		return -ENODEV;
 901
 902	/* When the auto-off is configured it means the transport
 903	 * is running, but in that case still indicate that the
 904	 * device is actually down.
 905	 */
 906	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 907		flags = hdev->flags & ~BIT(HCI_UP);
 908	else
 909		flags = hdev->flags;
 910
 911	strcpy(di.name, hdev->name);
 912	di.bdaddr   = hdev->bdaddr;
 913	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
 914	di.flags    = flags;
 915	di.pkt_type = hdev->pkt_type;
 916	if (lmp_bredr_capable(hdev)) {
 917		di.acl_mtu  = hdev->acl_mtu;
 918		di.acl_pkts = hdev->acl_pkts;
 919		di.sco_mtu  = hdev->sco_mtu;
 920		di.sco_pkts = hdev->sco_pkts;
 921	} else {
 922		di.acl_mtu  = hdev->le_mtu;
 923		di.acl_pkts = hdev->le_pkts;
 924		di.sco_mtu  = 0;
 925		di.sco_pkts = 0;
 926	}
 927	di.link_policy = hdev->link_policy;
 928	di.link_mode   = hdev->link_mode;
 929
 930	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
 931	memcpy(&di.features, &hdev->features, sizeof(di.features));
 932
 933	if (copy_to_user(arg, &di, sizeof(di)))
 934		err = -EFAULT;
 935
 936	hci_dev_put(hdev);
 937
 938	return err;
 939}
 940
 941/* ---- Interface to HCI drivers ---- */
 942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943static int hci_rfkill_set_block(void *data, bool blocked)
 944{
 945	struct hci_dev *hdev = data;
 
 946
 947	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
 948
 949	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
 950		return -EBUSY;
 951
 
 
 
 952	if (blocked) {
 953		hci_dev_set_flag(hdev, HCI_RFKILLED);
 
 954		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 955		    !hci_dev_test_flag(hdev, HCI_CONFIG))
 956			hci_dev_do_close(hdev);
 
 
 
 
 
 
 
 
 
 
 
 957	} else {
 958		hci_dev_clear_flag(hdev, HCI_RFKILLED);
 959	}
 960
 961	return 0;
 962}
 963
 964static const struct rfkill_ops hci_rfkill_ops = {
 965	.set_block = hci_rfkill_set_block,
 966};
 967
 968static void hci_power_on(struct work_struct *work)
 969{
 970	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 971	int err;
 972
 973	BT_DBG("%s", hdev->name);
 974
 975	if (test_bit(HCI_UP, &hdev->flags) &&
 976	    hci_dev_test_flag(hdev, HCI_MGMT) &&
 977	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
 978		cancel_delayed_work(&hdev->power_off);
 979		err = hci_powered_update_sync(hdev);
 980		mgmt_power_on(hdev, err);
 981		return;
 982	}
 983
 984	err = hci_dev_do_open(hdev);
 985	if (err < 0) {
 986		hci_dev_lock(hdev);
 987		mgmt_set_powered_failed(hdev, err);
 988		hci_dev_unlock(hdev);
 989		return;
 990	}
 991
 992	/* During the HCI setup phase, a few error conditions are
 993	 * ignored and they need to be checked now. If they are still
 994	 * valid, it is important to turn the device back off.
 995	 */
 996	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
 997	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
 998	    (hdev->dev_type == HCI_PRIMARY &&
 999	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1000	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1001		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1002		hci_dev_do_close(hdev);
1003	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1004		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1005				   HCI_AUTO_OFF_TIMEOUT);
1006	}
1007
1008	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1009		/* For unconfigured devices, set the HCI_RAW flag
1010		 * so that userspace can easily identify them.
1011		 */
1012		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1013			set_bit(HCI_RAW, &hdev->flags);
1014
1015		/* For fully configured devices, this will send
1016		 * the Index Added event. For unconfigured devices,
1017		 * it will send Unconfigued Index Added event.
1018		 *
1019		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1020		 * and no event will be send.
1021		 */
1022		mgmt_index_added(hdev);
1023	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1024		/* When the controller is now configured, then it
1025		 * is important to clear the HCI_RAW flag.
1026		 */
1027		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1028			clear_bit(HCI_RAW, &hdev->flags);
1029
1030		/* Powering on the controller with HCI_CONFIG set only
1031		 * happens with the transition from unconfigured to
1032		 * configured. This will send the Index Added event.
1033		 */
1034		mgmt_index_added(hdev);
1035	}
1036}
1037
1038static void hci_power_off(struct work_struct *work)
1039{
1040	struct hci_dev *hdev = container_of(work, struct hci_dev,
1041					    power_off.work);
1042
1043	BT_DBG("%s", hdev->name);
1044
1045	hci_dev_do_close(hdev);
1046}
1047
1048static void hci_error_reset(struct work_struct *work)
1049{
1050	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1051
1052	hci_dev_hold(hdev);
1053	BT_DBG("%s", hdev->name);
1054
1055	if (hdev->hw_error)
1056		hdev->hw_error(hdev, hdev->hw_error_code);
1057	else
1058		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1059
1060	if (!hci_dev_do_close(hdev))
1061		hci_dev_do_open(hdev);
1062
1063	hci_dev_put(hdev);
1064}
1065
1066void hci_uuids_clear(struct hci_dev *hdev)
1067{
1068	struct bt_uuid *uuid, *tmp;
1069
1070	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1071		list_del(&uuid->list);
1072		kfree(uuid);
1073	}
1074}
1075
1076void hci_link_keys_clear(struct hci_dev *hdev)
1077{
1078	struct link_key *key, *tmp;
1079
1080	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1081		list_del_rcu(&key->list);
1082		kfree_rcu(key, rcu);
1083	}
1084}
1085
1086void hci_smp_ltks_clear(struct hci_dev *hdev)
1087{
1088	struct smp_ltk *k, *tmp;
1089
1090	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1091		list_del_rcu(&k->list);
1092		kfree_rcu(k, rcu);
1093	}
1094}
1095
1096void hci_smp_irks_clear(struct hci_dev *hdev)
1097{
1098	struct smp_irk *k, *tmp;
1099
1100	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1101		list_del_rcu(&k->list);
1102		kfree_rcu(k, rcu);
1103	}
1104}
1105
1106void hci_blocked_keys_clear(struct hci_dev *hdev)
1107{
1108	struct blocked_key *b, *tmp;
1109
1110	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1111		list_del_rcu(&b->list);
1112		kfree_rcu(b, rcu);
1113	}
1114}
1115
1116bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1117{
1118	bool blocked = false;
1119	struct blocked_key *b;
1120
1121	rcu_read_lock();
1122	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1123		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1124			blocked = true;
1125			break;
1126		}
1127	}
1128
1129	rcu_read_unlock();
1130	return blocked;
1131}
1132
1133struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1134{
1135	struct link_key *k;
1136
1137	rcu_read_lock();
1138	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1139		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1140			rcu_read_unlock();
1141
1142			if (hci_is_blocked_key(hdev,
1143					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1144					       k->val)) {
1145				bt_dev_warn_ratelimited(hdev,
1146							"Link key blocked for %pMR",
1147							&k->bdaddr);
1148				return NULL;
1149			}
1150
1151			return k;
1152		}
1153	}
1154	rcu_read_unlock();
1155
1156	return NULL;
1157}
1158
1159static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1160			       u8 key_type, u8 old_key_type)
1161{
1162	/* Legacy key */
1163	if (key_type < 0x03)
1164		return true;
1165
1166	/* Debug keys are insecure so don't store them persistently */
1167	if (key_type == HCI_LK_DEBUG_COMBINATION)
1168		return false;
1169
1170	/* Changed combination key and there's no previous one */
1171	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1172		return false;
1173
1174	/* Security mode 3 case */
1175	if (!conn)
1176		return true;
1177
1178	/* BR/EDR key derived using SC from an LE link */
1179	if (conn->type == LE_LINK)
1180		return true;
1181
1182	/* Neither local nor remote side had no-bonding as requirement */
1183	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1184		return true;
1185
1186	/* Local side had dedicated bonding as requirement */
1187	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1188		return true;
1189
1190	/* Remote side had dedicated bonding as requirement */
1191	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1192		return true;
1193
1194	/* If none of the above criteria match, then don't store the key
1195	 * persistently */
1196	return false;
1197}
1198
1199static u8 ltk_role(u8 type)
1200{
1201	if (type == SMP_LTK)
1202		return HCI_ROLE_MASTER;
1203
1204	return HCI_ROLE_SLAVE;
1205}
1206
1207struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1208			     u8 addr_type, u8 role)
1209{
1210	struct smp_ltk *k;
1211
1212	rcu_read_lock();
1213	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1214		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1215			continue;
1216
1217		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1218			rcu_read_unlock();
1219
1220			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1221					       k->val)) {
1222				bt_dev_warn_ratelimited(hdev,
1223							"LTK blocked for %pMR",
1224							&k->bdaddr);
1225				return NULL;
1226			}
1227
1228			return k;
1229		}
1230	}
1231	rcu_read_unlock();
1232
1233	return NULL;
1234}
1235
1236struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1237{
1238	struct smp_irk *irk_to_return = NULL;
1239	struct smp_irk *irk;
1240
1241	rcu_read_lock();
1242	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1243		if (!bacmp(&irk->rpa, rpa)) {
1244			irk_to_return = irk;
1245			goto done;
1246		}
1247	}
1248
1249	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1250		if (smp_irk_matches(hdev, irk->val, rpa)) {
1251			bacpy(&irk->rpa, rpa);
1252			irk_to_return = irk;
1253			goto done;
1254		}
1255	}
1256
1257done:
1258	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1259						irk_to_return->val)) {
1260		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1261					&irk_to_return->bdaddr);
1262		irk_to_return = NULL;
1263	}
1264
1265	rcu_read_unlock();
1266
1267	return irk_to_return;
1268}
1269
1270struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1271				     u8 addr_type)
1272{
1273	struct smp_irk *irk_to_return = NULL;
1274	struct smp_irk *irk;
1275
1276	/* Identity Address must be public or static random */
1277	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1278		return NULL;
1279
1280	rcu_read_lock();
1281	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1282		if (addr_type == irk->addr_type &&
1283		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1284			irk_to_return = irk;
1285			goto done;
1286		}
1287	}
1288
1289done:
1290
1291	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1292						irk_to_return->val)) {
1293		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1294					&irk_to_return->bdaddr);
1295		irk_to_return = NULL;
1296	}
1297
1298	rcu_read_unlock();
1299
1300	return irk_to_return;
1301}
1302
1303struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1304				  bdaddr_t *bdaddr, u8 *val, u8 type,
1305				  u8 pin_len, bool *persistent)
1306{
1307	struct link_key *key, *old_key;
1308	u8 old_key_type;
1309
1310	old_key = hci_find_link_key(hdev, bdaddr);
1311	if (old_key) {
1312		old_key_type = old_key->type;
1313		key = old_key;
1314	} else {
1315		old_key_type = conn ? conn->key_type : 0xff;
1316		key = kzalloc(sizeof(*key), GFP_KERNEL);
1317		if (!key)
1318			return NULL;
1319		list_add_rcu(&key->list, &hdev->link_keys);
1320	}
1321
1322	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1323
1324	/* Some buggy controller combinations generate a changed
1325	 * combination key for legacy pairing even when there's no
1326	 * previous key */
1327	if (type == HCI_LK_CHANGED_COMBINATION &&
1328	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1329		type = HCI_LK_COMBINATION;
1330		if (conn)
1331			conn->key_type = type;
1332	}
1333
1334	bacpy(&key->bdaddr, bdaddr);
1335	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1336	key->pin_len = pin_len;
1337
1338	if (type == HCI_LK_CHANGED_COMBINATION)
1339		key->type = old_key_type;
1340	else
1341		key->type = type;
1342
1343	if (persistent)
1344		*persistent = hci_persistent_key(hdev, conn, type,
1345						 old_key_type);
1346
1347	return key;
1348}
1349
1350struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1351			    u8 addr_type, u8 type, u8 authenticated,
1352			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1353{
1354	struct smp_ltk *key, *old_key;
1355	u8 role = ltk_role(type);
1356
1357	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1358	if (old_key)
1359		key = old_key;
1360	else {
1361		key = kzalloc(sizeof(*key), GFP_KERNEL);
1362		if (!key)
1363			return NULL;
1364		list_add_rcu(&key->list, &hdev->long_term_keys);
1365	}
1366
1367	bacpy(&key->bdaddr, bdaddr);
1368	key->bdaddr_type = addr_type;
1369	memcpy(key->val, tk, sizeof(key->val));
1370	key->authenticated = authenticated;
1371	key->ediv = ediv;
1372	key->rand = rand;
1373	key->enc_size = enc_size;
1374	key->type = type;
1375
1376	return key;
1377}
1378
1379struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1380			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1381{
1382	struct smp_irk *irk;
1383
1384	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1385	if (!irk) {
1386		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1387		if (!irk)
1388			return NULL;
1389
1390		bacpy(&irk->bdaddr, bdaddr);
1391		irk->addr_type = addr_type;
1392
1393		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1394	}
1395
1396	memcpy(irk->val, val, 16);
1397	bacpy(&irk->rpa, rpa);
1398
1399	return irk;
1400}
1401
1402int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1403{
1404	struct link_key *key;
1405
1406	key = hci_find_link_key(hdev, bdaddr);
1407	if (!key)
1408		return -ENOENT;
1409
1410	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1411
1412	list_del_rcu(&key->list);
1413	kfree_rcu(key, rcu);
1414
1415	return 0;
1416}
1417
1418int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1419{
1420	struct smp_ltk *k, *tmp;
1421	int removed = 0;
1422
1423	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1424		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1425			continue;
1426
1427		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1428
1429		list_del_rcu(&k->list);
1430		kfree_rcu(k, rcu);
1431		removed++;
1432	}
1433
1434	return removed ? 0 : -ENOENT;
1435}
1436
1437void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1438{
1439	struct smp_irk *k, *tmp;
1440
1441	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1442		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1443			continue;
1444
1445		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1446
1447		list_del_rcu(&k->list);
1448		kfree_rcu(k, rcu);
1449	}
1450}
1451
1452bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1453{
1454	struct smp_ltk *k;
1455	struct smp_irk *irk;
1456	u8 addr_type;
1457
1458	if (type == BDADDR_BREDR) {
1459		if (hci_find_link_key(hdev, bdaddr))
1460			return true;
1461		return false;
1462	}
1463
1464	/* Convert to HCI addr type which struct smp_ltk uses */
1465	if (type == BDADDR_LE_PUBLIC)
1466		addr_type = ADDR_LE_DEV_PUBLIC;
1467	else
1468		addr_type = ADDR_LE_DEV_RANDOM;
1469
1470	irk = hci_get_irk(hdev, bdaddr, addr_type);
1471	if (irk) {
1472		bdaddr = &irk->bdaddr;
1473		addr_type = irk->addr_type;
1474	}
1475
1476	rcu_read_lock();
1477	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1478		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1479			rcu_read_unlock();
1480			return true;
1481		}
1482	}
1483	rcu_read_unlock();
1484
1485	return false;
1486}
1487
1488/* HCI command timer function */
1489static void hci_cmd_timeout(struct work_struct *work)
1490{
1491	struct hci_dev *hdev = container_of(work, struct hci_dev,
1492					    cmd_timer.work);
1493
1494	if (hdev->sent_cmd) {
1495		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1496		u16 opcode = __le16_to_cpu(sent->opcode);
1497
1498		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
 
 
1499	} else {
1500		bt_dev_err(hdev, "command tx timeout");
1501	}
1502
1503	if (hdev->cmd_timeout)
1504		hdev->cmd_timeout(hdev);
1505
1506	atomic_set(&hdev->cmd_cnt, 1);
1507	queue_work(hdev->workqueue, &hdev->cmd_work);
1508}
1509
1510/* HCI ncmd timer function */
1511static void hci_ncmd_timeout(struct work_struct *work)
1512{
1513	struct hci_dev *hdev = container_of(work, struct hci_dev,
1514					    ncmd_timer.work);
1515
1516	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1517
1518	/* During HCI_INIT phase no events can be injected if the ncmd timer
1519	 * triggers since the procedure has its own timeout handling.
1520	 */
1521	if (test_bit(HCI_INIT, &hdev->flags))
1522		return;
1523
1524	/* This is an irrecoverable state, inject hardware error event */
1525	hci_reset_dev(hdev);
1526}
1527
1528struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1529					  bdaddr_t *bdaddr, u8 bdaddr_type)
1530{
1531	struct oob_data *data;
1532
1533	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1534		if (bacmp(bdaddr, &data->bdaddr) != 0)
1535			continue;
1536		if (data->bdaddr_type != bdaddr_type)
1537			continue;
1538		return data;
1539	}
1540
1541	return NULL;
1542}
1543
1544int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1545			       u8 bdaddr_type)
1546{
1547	struct oob_data *data;
1548
1549	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1550	if (!data)
1551		return -ENOENT;
1552
1553	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1554
1555	list_del(&data->list);
1556	kfree(data);
1557
1558	return 0;
1559}
1560
1561void hci_remote_oob_data_clear(struct hci_dev *hdev)
1562{
1563	struct oob_data *data, *n;
1564
1565	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1566		list_del(&data->list);
1567		kfree(data);
1568	}
1569}
1570
1571int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1572			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1573			    u8 *hash256, u8 *rand256)
1574{
1575	struct oob_data *data;
1576
1577	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1578	if (!data) {
1579		data = kmalloc(sizeof(*data), GFP_KERNEL);
1580		if (!data)
1581			return -ENOMEM;
1582
1583		bacpy(&data->bdaddr, bdaddr);
1584		data->bdaddr_type = bdaddr_type;
1585		list_add(&data->list, &hdev->remote_oob_data);
1586	}
1587
1588	if (hash192 && rand192) {
1589		memcpy(data->hash192, hash192, sizeof(data->hash192));
1590		memcpy(data->rand192, rand192, sizeof(data->rand192));
1591		if (hash256 && rand256)
1592			data->present = 0x03;
1593	} else {
1594		memset(data->hash192, 0, sizeof(data->hash192));
1595		memset(data->rand192, 0, sizeof(data->rand192));
1596		if (hash256 && rand256)
1597			data->present = 0x02;
1598		else
1599			data->present = 0x00;
1600	}
1601
1602	if (hash256 && rand256) {
1603		memcpy(data->hash256, hash256, sizeof(data->hash256));
1604		memcpy(data->rand256, rand256, sizeof(data->rand256));
1605	} else {
1606		memset(data->hash256, 0, sizeof(data->hash256));
1607		memset(data->rand256, 0, sizeof(data->rand256));
1608		if (hash192 && rand192)
1609			data->present = 0x01;
1610	}
1611
1612	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1613
1614	return 0;
1615}
1616
1617/* This function requires the caller holds hdev->lock */
1618struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1619{
1620	struct adv_info *adv_instance;
1621
1622	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1623		if (adv_instance->instance == instance)
1624			return adv_instance;
1625	}
1626
1627	return NULL;
1628}
1629
1630/* This function requires the caller holds hdev->lock */
1631struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1632{
1633	struct adv_info *cur_instance;
1634
1635	cur_instance = hci_find_adv_instance(hdev, instance);
1636	if (!cur_instance)
1637		return NULL;
1638
1639	if (cur_instance == list_last_entry(&hdev->adv_instances,
1640					    struct adv_info, list))
1641		return list_first_entry(&hdev->adv_instances,
1642						 struct adv_info, list);
1643	else
1644		return list_next_entry(cur_instance, list);
1645}
1646
1647/* This function requires the caller holds hdev->lock */
1648int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1649{
1650	struct adv_info *adv_instance;
1651
1652	adv_instance = hci_find_adv_instance(hdev, instance);
1653	if (!adv_instance)
1654		return -ENOENT;
1655
1656	BT_DBG("%s removing %dMR", hdev->name, instance);
1657
1658	if (hdev->cur_adv_instance == instance) {
1659		if (hdev->adv_instance_timeout) {
1660			cancel_delayed_work(&hdev->adv_instance_expire);
1661			hdev->adv_instance_timeout = 0;
1662		}
1663		hdev->cur_adv_instance = 0x00;
1664	}
1665
1666	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1667
1668	list_del(&adv_instance->list);
1669	kfree(adv_instance);
1670
1671	hdev->adv_instance_cnt--;
1672
1673	return 0;
1674}
1675
1676void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1677{
1678	struct adv_info *adv_instance, *n;
1679
1680	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1681		adv_instance->rpa_expired = rpa_expired;
1682}
1683
1684/* This function requires the caller holds hdev->lock */
1685void hci_adv_instances_clear(struct hci_dev *hdev)
1686{
1687	struct adv_info *adv_instance, *n;
1688
1689	if (hdev->adv_instance_timeout) {
1690		cancel_delayed_work(&hdev->adv_instance_expire);
1691		hdev->adv_instance_timeout = 0;
1692	}
1693
1694	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1695		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1696		list_del(&adv_instance->list);
1697		kfree(adv_instance);
1698	}
1699
1700	hdev->adv_instance_cnt = 0;
1701	hdev->cur_adv_instance = 0x00;
1702}
1703
1704static void adv_instance_rpa_expired(struct work_struct *work)
1705{
1706	struct adv_info *adv_instance = container_of(work, struct adv_info,
1707						     rpa_expired_cb.work);
1708
1709	BT_DBG("");
1710
1711	adv_instance->rpa_expired = true;
1712}
1713
1714/* This function requires the caller holds hdev->lock */
1715struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1716				      u32 flags, u16 adv_data_len, u8 *adv_data,
1717				      u16 scan_rsp_len, u8 *scan_rsp_data,
1718				      u16 timeout, u16 duration, s8 tx_power,
1719				      u32 min_interval, u32 max_interval,
1720				      u8 mesh_handle)
1721{
1722	struct adv_info *adv;
1723
1724	adv = hci_find_adv_instance(hdev, instance);
1725	if (adv) {
1726		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1727		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1728		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1729	} else {
1730		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1731		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1732			return ERR_PTR(-EOVERFLOW);
1733
1734		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1735		if (!adv)
1736			return ERR_PTR(-ENOMEM);
1737
1738		adv->pending = true;
1739		adv->instance = instance;
 
 
 
 
 
 
 
 
 
1740		list_add(&adv->list, &hdev->adv_instances);
1741		hdev->adv_instance_cnt++;
1742	}
1743
1744	adv->flags = flags;
1745	adv->min_interval = min_interval;
1746	adv->max_interval = max_interval;
1747	adv->tx_power = tx_power;
1748	/* Defining a mesh_handle changes the timing units to ms,
1749	 * rather than seconds, and ties the instance to the requested
1750	 * mesh_tx queue.
1751	 */
1752	adv->mesh = mesh_handle;
1753
1754	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1755				  scan_rsp_len, scan_rsp_data);
1756
1757	adv->timeout = timeout;
1758	adv->remaining_time = timeout;
1759
1760	if (duration == 0)
1761		adv->duration = hdev->def_multi_adv_rotation_duration;
1762	else
1763		adv->duration = duration;
1764
1765	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1766
1767	BT_DBG("%s for %dMR", hdev->name, instance);
1768
1769	return adv;
1770}
1771
1772/* This function requires the caller holds hdev->lock */
1773struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1774				      u32 flags, u8 data_len, u8 *data,
1775				      u32 min_interval, u32 max_interval)
1776{
1777	struct adv_info *adv;
1778
1779	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1780				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1781				   min_interval, max_interval, 0);
1782	if (IS_ERR(adv))
1783		return adv;
1784
1785	adv->periodic = true;
1786	adv->per_adv_data_len = data_len;
1787
1788	if (data)
1789		memcpy(adv->per_adv_data, data, data_len);
1790
1791	return adv;
1792}
1793
1794/* This function requires the caller holds hdev->lock */
1795int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1796			      u16 adv_data_len, u8 *adv_data,
1797			      u16 scan_rsp_len, u8 *scan_rsp_data)
1798{
1799	struct adv_info *adv;
1800
1801	adv = hci_find_adv_instance(hdev, instance);
1802
1803	/* If advertisement doesn't exist, we can't modify its data */
1804	if (!adv)
1805		return -ENOENT;
1806
1807	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1808		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1809		memcpy(adv->adv_data, adv_data, adv_data_len);
1810		adv->adv_data_len = adv_data_len;
1811		adv->adv_data_changed = true;
1812	}
1813
1814	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1815		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1816		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1817		adv->scan_rsp_len = scan_rsp_len;
1818		adv->scan_rsp_changed = true;
1819	}
1820
1821	/* Mark as changed if there are flags which would affect it */
1822	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1823	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1824		adv->scan_rsp_changed = true;
1825
1826	return 0;
1827}
1828
1829/* This function requires the caller holds hdev->lock */
1830u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1831{
1832	u32 flags;
1833	struct adv_info *adv;
1834
1835	if (instance == 0x00) {
1836		/* Instance 0 always manages the "Tx Power" and "Flags"
1837		 * fields
1838		 */
1839		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1840
1841		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1842		 * corresponds to the "connectable" instance flag.
1843		 */
1844		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1845			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1846
1847		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1848			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1849		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1850			flags |= MGMT_ADV_FLAG_DISCOV;
1851
1852		return flags;
1853	}
1854
1855	adv = hci_find_adv_instance(hdev, instance);
1856
1857	/* Return 0 when we got an invalid instance identifier. */
1858	if (!adv)
1859		return 0;
1860
1861	return adv->flags;
1862}
1863
1864bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1865{
1866	struct adv_info *adv;
1867
1868	/* Instance 0x00 always set local name */
1869	if (instance == 0x00)
1870		return true;
1871
1872	adv = hci_find_adv_instance(hdev, instance);
1873	if (!adv)
1874		return false;
1875
1876	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1877	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1878		return true;
1879
1880	return adv->scan_rsp_len ? true : false;
1881}
1882
1883/* This function requires the caller holds hdev->lock */
1884void hci_adv_monitors_clear(struct hci_dev *hdev)
1885{
1886	struct adv_monitor *monitor;
1887	int handle;
1888
1889	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1890		hci_free_adv_monitor(hdev, monitor);
1891
1892	idr_destroy(&hdev->adv_monitors_idr);
1893}
1894
1895/* Frees the monitor structure and do some bookkeepings.
1896 * This function requires the caller holds hdev->lock.
1897 */
1898void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1899{
1900	struct adv_pattern *pattern;
1901	struct adv_pattern *tmp;
1902
1903	if (!monitor)
1904		return;
1905
1906	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1907		list_del(&pattern->list);
1908		kfree(pattern);
1909	}
1910
1911	if (monitor->handle)
1912		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1913
1914	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1915		hdev->adv_monitors_cnt--;
1916		mgmt_adv_monitor_removed(hdev, monitor->handle);
1917	}
1918
1919	kfree(monitor);
1920}
1921
1922/* Assigns handle to a monitor, and if offloading is supported and power is on,
1923 * also attempts to forward the request to the controller.
1924 * This function requires the caller holds hci_req_sync_lock.
1925 */
1926int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1927{
1928	int min, max, handle;
1929	int status = 0;
1930
1931	if (!monitor)
1932		return -EINVAL;
1933
1934	hci_dev_lock(hdev);
1935
1936	min = HCI_MIN_ADV_MONITOR_HANDLE;
1937	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1938	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1939			   GFP_KERNEL);
1940
1941	hci_dev_unlock(hdev);
1942
1943	if (handle < 0)
1944		return handle;
1945
1946	monitor->handle = handle;
1947
1948	if (!hdev_is_powered(hdev))
1949		return status;
1950
1951	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1952	case HCI_ADV_MONITOR_EXT_NONE:
1953		bt_dev_dbg(hdev, "add monitor %d status %d",
1954			   monitor->handle, status);
1955		/* Message was not forwarded to controller - not an error */
1956		break;
1957
1958	case HCI_ADV_MONITOR_EXT_MSFT:
1959		status = msft_add_monitor_pattern(hdev, monitor);
1960		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1961			   handle, status);
1962		break;
1963	}
1964
1965	return status;
1966}
1967
1968/* Attempts to tell the controller and free the monitor. If somehow the
1969 * controller doesn't have a corresponding handle, remove anyway.
1970 * This function requires the caller holds hci_req_sync_lock.
1971 */
1972static int hci_remove_adv_monitor(struct hci_dev *hdev,
1973				  struct adv_monitor *monitor)
1974{
1975	int status = 0;
1976	int handle;
1977
1978	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1979	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1980		bt_dev_dbg(hdev, "remove monitor %d status %d",
1981			   monitor->handle, status);
1982		goto free_monitor;
1983
1984	case HCI_ADV_MONITOR_EXT_MSFT:
1985		handle = monitor->handle;
1986		status = msft_remove_monitor(hdev, monitor);
1987		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1988			   handle, status);
1989		break;
1990	}
1991
1992	/* In case no matching handle registered, just free the monitor */
1993	if (status == -ENOENT)
1994		goto free_monitor;
1995
1996	return status;
1997
1998free_monitor:
1999	if (status == -ENOENT)
2000		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
2001			    monitor->handle);
2002	hci_free_adv_monitor(hdev, monitor);
2003
2004	return status;
2005}
2006
2007/* This function requires the caller holds hci_req_sync_lock */
2008int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2009{
2010	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2011
2012	if (!monitor)
2013		return -EINVAL;
2014
2015	return hci_remove_adv_monitor(hdev, monitor);
2016}
2017
2018/* This function requires the caller holds hci_req_sync_lock */
2019int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2020{
2021	struct adv_monitor *monitor;
2022	int idr_next_id = 0;
2023	int status = 0;
2024
2025	while (1) {
2026		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2027		if (!monitor)
2028			break;
2029
2030		status = hci_remove_adv_monitor(hdev, monitor);
2031		if (status)
2032			return status;
2033
2034		idr_next_id++;
2035	}
2036
2037	return status;
2038}
2039
2040/* This function requires the caller holds hdev->lock */
2041bool hci_is_adv_monitoring(struct hci_dev *hdev)
2042{
2043	return !idr_is_empty(&hdev->adv_monitors_idr);
2044}
2045
2046int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2047{
2048	if (msft_monitor_supported(hdev))
2049		return HCI_ADV_MONITOR_EXT_MSFT;
2050
2051	return HCI_ADV_MONITOR_EXT_NONE;
2052}
2053
2054struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2055					 bdaddr_t *bdaddr, u8 type)
2056{
2057	struct bdaddr_list *b;
2058
2059	list_for_each_entry(b, bdaddr_list, list) {
2060		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2061			return b;
2062	}
2063
2064	return NULL;
2065}
2066
2067struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2068				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2069				u8 type)
2070{
2071	struct bdaddr_list_with_irk *b;
2072
2073	list_for_each_entry(b, bdaddr_list, list) {
2074		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2075			return b;
2076	}
2077
2078	return NULL;
2079}
2080
2081struct bdaddr_list_with_flags *
2082hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2083				  bdaddr_t *bdaddr, u8 type)
2084{
2085	struct bdaddr_list_with_flags *b;
2086
2087	list_for_each_entry(b, bdaddr_list, list) {
2088		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2089			return b;
2090	}
2091
2092	return NULL;
2093}
2094
2095void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2096{
2097	struct bdaddr_list *b, *n;
2098
2099	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2100		list_del(&b->list);
2101		kfree(b);
2102	}
2103}
2104
2105int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2106{
2107	struct bdaddr_list *entry;
2108
2109	if (!bacmp(bdaddr, BDADDR_ANY))
2110		return -EBADF;
2111
2112	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2113		return -EEXIST;
2114
2115	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2116	if (!entry)
2117		return -ENOMEM;
2118
2119	bacpy(&entry->bdaddr, bdaddr);
2120	entry->bdaddr_type = type;
2121
2122	list_add(&entry->list, list);
2123
2124	return 0;
2125}
2126
2127int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2128					u8 type, u8 *peer_irk, u8 *local_irk)
2129{
2130	struct bdaddr_list_with_irk *entry;
2131
2132	if (!bacmp(bdaddr, BDADDR_ANY))
2133		return -EBADF;
2134
2135	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2136		return -EEXIST;
2137
2138	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2139	if (!entry)
2140		return -ENOMEM;
2141
2142	bacpy(&entry->bdaddr, bdaddr);
2143	entry->bdaddr_type = type;
2144
2145	if (peer_irk)
2146		memcpy(entry->peer_irk, peer_irk, 16);
2147
2148	if (local_irk)
2149		memcpy(entry->local_irk, local_irk, 16);
2150
2151	list_add(&entry->list, list);
2152
2153	return 0;
2154}
2155
2156int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2157				   u8 type, u32 flags)
2158{
2159	struct bdaddr_list_with_flags *entry;
2160
2161	if (!bacmp(bdaddr, BDADDR_ANY))
2162		return -EBADF;
2163
2164	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2165		return -EEXIST;
2166
2167	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2168	if (!entry)
2169		return -ENOMEM;
2170
2171	bacpy(&entry->bdaddr, bdaddr);
2172	entry->bdaddr_type = type;
2173	entry->flags = flags;
2174
2175	list_add(&entry->list, list);
2176
2177	return 0;
2178}
2179
2180int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2181{
2182	struct bdaddr_list *entry;
2183
2184	if (!bacmp(bdaddr, BDADDR_ANY)) {
2185		hci_bdaddr_list_clear(list);
2186		return 0;
2187	}
2188
2189	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2190	if (!entry)
2191		return -ENOENT;
2192
2193	list_del(&entry->list);
2194	kfree(entry);
2195
2196	return 0;
2197}
2198
2199int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2200							u8 type)
2201{
2202	struct bdaddr_list_with_irk *entry;
2203
2204	if (!bacmp(bdaddr, BDADDR_ANY)) {
2205		hci_bdaddr_list_clear(list);
2206		return 0;
2207	}
2208
2209	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2210	if (!entry)
2211		return -ENOENT;
2212
2213	list_del(&entry->list);
2214	kfree(entry);
2215
2216	return 0;
2217}
2218
2219int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2220				   u8 type)
2221{
2222	struct bdaddr_list_with_flags *entry;
2223
2224	if (!bacmp(bdaddr, BDADDR_ANY)) {
2225		hci_bdaddr_list_clear(list);
2226		return 0;
2227	}
2228
2229	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2230	if (!entry)
2231		return -ENOENT;
2232
2233	list_del(&entry->list);
2234	kfree(entry);
2235
2236	return 0;
2237}
2238
2239/* This function requires the caller holds hdev->lock */
2240struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2241					       bdaddr_t *addr, u8 addr_type)
2242{
2243	struct hci_conn_params *params;
2244
2245	list_for_each_entry(params, &hdev->le_conn_params, list) {
2246		if (bacmp(&params->addr, addr) == 0 &&
2247		    params->addr_type == addr_type) {
2248			return params;
2249		}
2250	}
2251
2252	return NULL;
2253}
2254
2255/* This function requires the caller holds hdev->lock or rcu_read_lock */
2256struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2257						  bdaddr_t *addr, u8 addr_type)
2258{
2259	struct hci_conn_params *param;
2260
2261	rcu_read_lock();
2262
2263	list_for_each_entry_rcu(param, list, action) {
2264		if (bacmp(&param->addr, addr) == 0 &&
2265		    param->addr_type == addr_type) {
2266			rcu_read_unlock();
2267			return param;
2268		}
2269	}
2270
2271	rcu_read_unlock();
2272
2273	return NULL;
2274}
2275
2276/* This function requires the caller holds hdev->lock */
2277void hci_pend_le_list_del_init(struct hci_conn_params *param)
2278{
2279	if (list_empty(&param->action))
2280		return;
2281
2282	list_del_rcu(&param->action);
2283	synchronize_rcu();
2284	INIT_LIST_HEAD(&param->action);
2285}
2286
2287/* This function requires the caller holds hdev->lock */
2288void hci_pend_le_list_add(struct hci_conn_params *param,
2289			  struct list_head *list)
2290{
2291	list_add_rcu(&param->action, list);
2292}
2293
2294/* This function requires the caller holds hdev->lock */
2295struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2296					    bdaddr_t *addr, u8 addr_type)
2297{
2298	struct hci_conn_params *params;
2299
2300	params = hci_conn_params_lookup(hdev, addr, addr_type);
2301	if (params)
2302		return params;
2303
2304	params = kzalloc(sizeof(*params), GFP_KERNEL);
2305	if (!params) {
2306		bt_dev_err(hdev, "out of memory");
2307		return NULL;
2308	}
2309
2310	bacpy(&params->addr, addr);
2311	params->addr_type = addr_type;
2312
2313	list_add(&params->list, &hdev->le_conn_params);
2314	INIT_LIST_HEAD(&params->action);
2315
2316	params->conn_min_interval = hdev->le_conn_min_interval;
2317	params->conn_max_interval = hdev->le_conn_max_interval;
2318	params->conn_latency = hdev->le_conn_latency;
2319	params->supervision_timeout = hdev->le_supv_timeout;
2320	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2321
2322	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2323
2324	return params;
2325}
2326
2327void hci_conn_params_free(struct hci_conn_params *params)
2328{
2329	hci_pend_le_list_del_init(params);
2330
2331	if (params->conn) {
2332		hci_conn_drop(params->conn);
2333		hci_conn_put(params->conn);
2334	}
2335
2336	list_del(&params->list);
2337	kfree(params);
2338}
2339
2340/* This function requires the caller holds hdev->lock */
2341void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2342{
2343	struct hci_conn_params *params;
2344
2345	params = hci_conn_params_lookup(hdev, addr, addr_type);
2346	if (!params)
2347		return;
2348
2349	hci_conn_params_free(params);
2350
2351	hci_update_passive_scan(hdev);
2352
2353	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2354}
2355
2356/* This function requires the caller holds hdev->lock */
2357void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2358{
2359	struct hci_conn_params *params, *tmp;
2360
2361	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2362		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2363			continue;
2364
2365		/* If trying to establish one time connection to disabled
2366		 * device, leave the params, but mark them as just once.
2367		 */
2368		if (params->explicit_connect) {
2369			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2370			continue;
2371		}
2372
2373		hci_conn_params_free(params);
2374	}
2375
2376	BT_DBG("All LE disabled connection parameters were removed");
2377}
2378
2379/* This function requires the caller holds hdev->lock */
2380static void hci_conn_params_clear_all(struct hci_dev *hdev)
2381{
2382	struct hci_conn_params *params, *tmp;
2383
2384	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2385		hci_conn_params_free(params);
2386
2387	BT_DBG("All LE connection parameters were removed");
2388}
2389
2390/* Copy the Identity Address of the controller.
2391 *
2392 * If the controller has a public BD_ADDR, then by default use that one.
2393 * If this is a LE only controller without a public address, default to
2394 * the static random address.
2395 *
2396 * For debugging purposes it is possible to force controllers with a
2397 * public address to use the static random address instead.
2398 *
2399 * In case BR/EDR has been disabled on a dual-mode controller and
2400 * userspace has configured a static address, then that address
2401 * becomes the identity address instead of the public BR/EDR address.
2402 */
2403void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2404			       u8 *bdaddr_type)
2405{
2406	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2407	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2408	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2409	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2410		bacpy(bdaddr, &hdev->static_addr);
2411		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2412	} else {
2413		bacpy(bdaddr, &hdev->bdaddr);
2414		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2415	}
2416}
2417
2418static void hci_clear_wake_reason(struct hci_dev *hdev)
2419{
2420	hci_dev_lock(hdev);
2421
2422	hdev->wake_reason = 0;
2423	bacpy(&hdev->wake_addr, BDADDR_ANY);
2424	hdev->wake_addr_type = 0;
2425
2426	hci_dev_unlock(hdev);
2427}
2428
2429static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2430				void *data)
2431{
2432	struct hci_dev *hdev =
2433		container_of(nb, struct hci_dev, suspend_notifier);
2434	int ret = 0;
2435
2436	/* Userspace has full control of this device. Do nothing. */
2437	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2438		return NOTIFY_DONE;
2439
2440	/* To avoid a potential race with hci_unregister_dev. */
2441	hci_dev_hold(hdev);
2442
2443	if (action == PM_SUSPEND_PREPARE)
2444		ret = hci_suspend_dev(hdev);
2445	else if (action == PM_POST_SUSPEND)
2446		ret = hci_resume_dev(hdev);
2447
2448	if (ret)
2449		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2450			   action, ret);
2451
2452	hci_dev_put(hdev);
2453	return NOTIFY_DONE;
2454}
2455
2456/* Alloc HCI device */
2457struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2458{
2459	struct hci_dev *hdev;
2460	unsigned int alloc_size;
2461
2462	alloc_size = sizeof(*hdev);
2463	if (sizeof_priv) {
2464		/* Fixme: May need ALIGN-ment? */
2465		alloc_size += sizeof_priv;
2466	}
2467
2468	hdev = kzalloc(alloc_size, GFP_KERNEL);
2469	if (!hdev)
2470		return NULL;
2471
2472	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2473	hdev->esco_type = (ESCO_HV1);
2474	hdev->link_mode = (HCI_LM_ACCEPT);
2475	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2476	hdev->io_capability = 0x03;	/* No Input No Output */
2477	hdev->manufacturer = 0xffff;	/* Default to internal use */
2478	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2479	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2480	hdev->adv_instance_cnt = 0;
2481	hdev->cur_adv_instance = 0x00;
2482	hdev->adv_instance_timeout = 0;
2483
2484	hdev->advmon_allowlist_duration = 300;
2485	hdev->advmon_no_filter_duration = 500;
2486	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2487
2488	hdev->sniff_max_interval = 800;
2489	hdev->sniff_min_interval = 80;
2490
2491	hdev->le_adv_channel_map = 0x07;
2492	hdev->le_adv_min_interval = 0x0800;
2493	hdev->le_adv_max_interval = 0x0800;
2494	hdev->le_scan_interval = 0x0060;
2495	hdev->le_scan_window = 0x0030;
2496	hdev->le_scan_int_suspend = 0x0400;
2497	hdev->le_scan_window_suspend = 0x0012;
2498	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2499	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2500	hdev->le_scan_int_adv_monitor = 0x0060;
2501	hdev->le_scan_window_adv_monitor = 0x0030;
2502	hdev->le_scan_int_connect = 0x0060;
2503	hdev->le_scan_window_connect = 0x0060;
2504	hdev->le_conn_min_interval = 0x0018;
2505	hdev->le_conn_max_interval = 0x0028;
2506	hdev->le_conn_latency = 0x0000;
2507	hdev->le_supv_timeout = 0x002a;
2508	hdev->le_def_tx_len = 0x001b;
2509	hdev->le_def_tx_time = 0x0148;
2510	hdev->le_max_tx_len = 0x001b;
2511	hdev->le_max_tx_time = 0x0148;
2512	hdev->le_max_rx_len = 0x001b;
2513	hdev->le_max_rx_time = 0x0148;
2514	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2515	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2516	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2517	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2518	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2519	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2520	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2521	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2522	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2523
2524	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2525	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2526	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2527	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2528	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2529	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2530
2531	/* default 1.28 sec page scan */
2532	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2533	hdev->def_page_scan_int = 0x0800;
2534	hdev->def_page_scan_window = 0x0012;
2535
2536	mutex_init(&hdev->lock);
2537	mutex_init(&hdev->req_lock);
2538
2539	ida_init(&hdev->unset_handle_ida);
2540
2541	INIT_LIST_HEAD(&hdev->mesh_pending);
2542	INIT_LIST_HEAD(&hdev->mgmt_pending);
2543	INIT_LIST_HEAD(&hdev->reject_list);
2544	INIT_LIST_HEAD(&hdev->accept_list);
2545	INIT_LIST_HEAD(&hdev->uuids);
2546	INIT_LIST_HEAD(&hdev->link_keys);
2547	INIT_LIST_HEAD(&hdev->long_term_keys);
2548	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2549	INIT_LIST_HEAD(&hdev->remote_oob_data);
2550	INIT_LIST_HEAD(&hdev->le_accept_list);
2551	INIT_LIST_HEAD(&hdev->le_resolv_list);
2552	INIT_LIST_HEAD(&hdev->le_conn_params);
2553	INIT_LIST_HEAD(&hdev->pend_le_conns);
2554	INIT_LIST_HEAD(&hdev->pend_le_reports);
2555	INIT_LIST_HEAD(&hdev->conn_hash.list);
2556	INIT_LIST_HEAD(&hdev->adv_instances);
2557	INIT_LIST_HEAD(&hdev->blocked_keys);
2558	INIT_LIST_HEAD(&hdev->monitored_devices);
2559
2560	INIT_LIST_HEAD(&hdev->local_codecs);
2561	INIT_WORK(&hdev->rx_work, hci_rx_work);
2562	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2563	INIT_WORK(&hdev->tx_work, hci_tx_work);
2564	INIT_WORK(&hdev->power_on, hci_power_on);
2565	INIT_WORK(&hdev->error_reset, hci_error_reset);
2566
2567	hci_cmd_sync_init(hdev);
2568
2569	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2570
2571	skb_queue_head_init(&hdev->rx_q);
2572	skb_queue_head_init(&hdev->cmd_q);
2573	skb_queue_head_init(&hdev->raw_q);
2574
2575	init_waitqueue_head(&hdev->req_wait_q);
2576
2577	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2578	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2579
2580	hci_devcd_setup(hdev);
2581	hci_request_setup(hdev);
2582
2583	hci_init_sysfs(hdev);
2584	discovery_init(hdev);
2585
2586	return hdev;
2587}
2588EXPORT_SYMBOL(hci_alloc_dev_priv);
2589
2590/* Free HCI device */
2591void hci_free_dev(struct hci_dev *hdev)
2592{
2593	/* will free via device release */
2594	put_device(&hdev->dev);
2595}
2596EXPORT_SYMBOL(hci_free_dev);
2597
2598/* Register HCI device */
2599int hci_register_dev(struct hci_dev *hdev)
2600{
2601	int id, error;
2602
2603	if (!hdev->open || !hdev->close || !hdev->send)
2604		return -EINVAL;
2605
2606	/* Do not allow HCI_AMP devices to register at index 0,
2607	 * so the index can be used as the AMP controller ID.
2608	 */
2609	switch (hdev->dev_type) {
2610	case HCI_PRIMARY:
2611		id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
2612		break;
2613	case HCI_AMP:
2614		id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
2615		break;
2616	default:
2617		return -EINVAL;
2618	}
2619
2620	if (id < 0)
2621		return id;
2622
2623	error = dev_set_name(&hdev->dev, "hci%u", id);
2624	if (error)
2625		return error;
2626
2627	hdev->name = dev_name(&hdev->dev);
2628	hdev->id = id;
2629
2630	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2631
2632	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2633	if (!hdev->workqueue) {
2634		error = -ENOMEM;
2635		goto err;
2636	}
2637
2638	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2639						      hdev->name);
2640	if (!hdev->req_workqueue) {
2641		destroy_workqueue(hdev->workqueue);
2642		error = -ENOMEM;
2643		goto err;
2644	}
2645
2646	if (!IS_ERR_OR_NULL(bt_debugfs))
2647		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2648
2649	error = device_add(&hdev->dev);
2650	if (error < 0)
2651		goto err_wqueue;
2652
2653	hci_leds_init(hdev);
2654
2655	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2656				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2657				    hdev);
2658	if (hdev->rfkill) {
2659		if (rfkill_register(hdev->rfkill) < 0) {
2660			rfkill_destroy(hdev->rfkill);
2661			hdev->rfkill = NULL;
2662		}
2663	}
2664
2665	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2666		hci_dev_set_flag(hdev, HCI_RFKILLED);
2667
2668	hci_dev_set_flag(hdev, HCI_SETUP);
2669	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2670
2671	if (hdev->dev_type == HCI_PRIMARY) {
2672		/* Assume BR/EDR support until proven otherwise (such as
2673		 * through reading supported features during init.
2674		 */
2675		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2676	}
2677
2678	write_lock(&hci_dev_list_lock);
2679	list_add(&hdev->list, &hci_dev_list);
2680	write_unlock(&hci_dev_list_lock);
2681
2682	/* Devices that are marked for raw-only usage are unconfigured
2683	 * and should not be included in normal operation.
2684	 */
2685	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2686		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2687
2688	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2689	 * callback.
2690	 */
2691	if (hdev->wakeup)
2692		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2693
2694	hci_sock_dev_event(hdev, HCI_DEV_REG);
2695	hci_dev_hold(hdev);
2696
2697	error = hci_register_suspend_notifier(hdev);
2698	if (error)
2699		BT_WARN("register suspend notifier failed error:%d\n", error);
2700
2701	queue_work(hdev->req_workqueue, &hdev->power_on);
2702
2703	idr_init(&hdev->adv_monitors_idr);
2704	msft_register(hdev);
2705
2706	return id;
2707
2708err_wqueue:
2709	debugfs_remove_recursive(hdev->debugfs);
2710	destroy_workqueue(hdev->workqueue);
2711	destroy_workqueue(hdev->req_workqueue);
2712err:
2713	ida_simple_remove(&hci_index_ida, hdev->id);
2714
2715	return error;
2716}
2717EXPORT_SYMBOL(hci_register_dev);
2718
2719/* Unregister HCI device */
2720void hci_unregister_dev(struct hci_dev *hdev)
2721{
2722	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2723
2724	mutex_lock(&hdev->unregister_lock);
2725	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2726	mutex_unlock(&hdev->unregister_lock);
2727
2728	write_lock(&hci_dev_list_lock);
2729	list_del(&hdev->list);
2730	write_unlock(&hci_dev_list_lock);
2731
2732	cancel_work_sync(&hdev->power_on);
2733
2734	hci_cmd_sync_clear(hdev);
2735
2736	hci_unregister_suspend_notifier(hdev);
2737
2738	msft_unregister(hdev);
2739
2740	hci_dev_do_close(hdev);
2741
2742	if (!test_bit(HCI_INIT, &hdev->flags) &&
2743	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2744	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2745		hci_dev_lock(hdev);
2746		mgmt_index_removed(hdev);
2747		hci_dev_unlock(hdev);
2748	}
2749
2750	/* mgmt_index_removed should take care of emptying the
2751	 * pending list */
2752	BUG_ON(!list_empty(&hdev->mgmt_pending));
2753
2754	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2755
2756	if (hdev->rfkill) {
2757		rfkill_unregister(hdev->rfkill);
2758		rfkill_destroy(hdev->rfkill);
2759	}
2760
2761	device_del(&hdev->dev);
2762	/* Actual cleanup is deferred until hci_release_dev(). */
2763	hci_dev_put(hdev);
2764}
2765EXPORT_SYMBOL(hci_unregister_dev);
2766
2767/* Release HCI device */
2768void hci_release_dev(struct hci_dev *hdev)
2769{
2770	debugfs_remove_recursive(hdev->debugfs);
2771	kfree_const(hdev->hw_info);
2772	kfree_const(hdev->fw_info);
2773
2774	destroy_workqueue(hdev->workqueue);
2775	destroy_workqueue(hdev->req_workqueue);
2776
2777	hci_dev_lock(hdev);
2778	hci_bdaddr_list_clear(&hdev->reject_list);
2779	hci_bdaddr_list_clear(&hdev->accept_list);
2780	hci_uuids_clear(hdev);
2781	hci_link_keys_clear(hdev);
2782	hci_smp_ltks_clear(hdev);
2783	hci_smp_irks_clear(hdev);
2784	hci_remote_oob_data_clear(hdev);
2785	hci_adv_instances_clear(hdev);
2786	hci_adv_monitors_clear(hdev);
2787	hci_bdaddr_list_clear(&hdev->le_accept_list);
2788	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2789	hci_conn_params_clear_all(hdev);
2790	hci_discovery_filter_clear(hdev);
2791	hci_blocked_keys_clear(hdev);
2792	hci_codec_list_clear(&hdev->local_codecs);
 
2793	hci_dev_unlock(hdev);
2794
2795	ida_destroy(&hdev->unset_handle_ida);
2796	ida_simple_remove(&hci_index_ida, hdev->id);
2797	kfree_skb(hdev->sent_cmd);
 
2798	kfree_skb(hdev->recv_event);
2799	kfree(hdev);
2800}
2801EXPORT_SYMBOL(hci_release_dev);
2802
2803int hci_register_suspend_notifier(struct hci_dev *hdev)
2804{
2805	int ret = 0;
2806
2807	if (!hdev->suspend_notifier.notifier_call &&
2808	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2809		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2810		ret = register_pm_notifier(&hdev->suspend_notifier);
2811	}
2812
2813	return ret;
2814}
2815
2816int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2817{
2818	int ret = 0;
2819
2820	if (hdev->suspend_notifier.notifier_call) {
2821		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2822		if (!ret)
2823			hdev->suspend_notifier.notifier_call = NULL;
2824	}
2825
2826	return ret;
2827}
2828
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2829/* Suspend HCI device */
2830int hci_suspend_dev(struct hci_dev *hdev)
2831{
2832	int ret;
2833
2834	bt_dev_dbg(hdev, "");
2835
2836	/* Suspend should only act on when powered. */
2837	if (!hdev_is_powered(hdev) ||
2838	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2839		return 0;
2840
2841	/* If powering down don't attempt to suspend */
2842	if (mgmt_powering_down(hdev))
2843		return 0;
2844
2845	/* Cancel potentially blocking sync operation before suspend */
2846	__hci_cmd_sync_cancel(hdev, -EHOSTDOWN);
2847
2848	hci_req_sync_lock(hdev);
2849	ret = hci_suspend_sync(hdev);
2850	hci_req_sync_unlock(hdev);
2851
2852	hci_clear_wake_reason(hdev);
2853	mgmt_suspending(hdev, hdev->suspend_state);
2854
2855	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2856	return ret;
2857}
2858EXPORT_SYMBOL(hci_suspend_dev);
2859
2860/* Resume HCI device */
2861int hci_resume_dev(struct hci_dev *hdev)
2862{
2863	int ret;
2864
2865	bt_dev_dbg(hdev, "");
2866
2867	/* Resume should only act on when powered. */
2868	if (!hdev_is_powered(hdev) ||
2869	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2870		return 0;
2871
2872	/* If powering down don't attempt to resume */
2873	if (mgmt_powering_down(hdev))
2874		return 0;
2875
2876	hci_req_sync_lock(hdev);
2877	ret = hci_resume_sync(hdev);
2878	hci_req_sync_unlock(hdev);
2879
2880	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2881		      hdev->wake_addr_type);
2882
2883	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2884	return ret;
2885}
2886EXPORT_SYMBOL(hci_resume_dev);
2887
2888/* Reset HCI device */
2889int hci_reset_dev(struct hci_dev *hdev)
2890{
2891	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2892	struct sk_buff *skb;
2893
2894	skb = bt_skb_alloc(3, GFP_ATOMIC);
2895	if (!skb)
2896		return -ENOMEM;
2897
2898	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2899	skb_put_data(skb, hw_err, 3);
2900
2901	bt_dev_err(hdev, "Injecting HCI hardware error event");
2902
2903	/* Send Hardware Error to upper stack */
2904	return hci_recv_frame(hdev, skb);
2905}
2906EXPORT_SYMBOL(hci_reset_dev);
2907
2908/* Receive frame from HCI drivers */
2909int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2910{
2911	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2912		      && !test_bit(HCI_INIT, &hdev->flags))) {
2913		kfree_skb(skb);
2914		return -ENXIO;
2915	}
2916
2917	switch (hci_skb_pkt_type(skb)) {
2918	case HCI_EVENT_PKT:
2919		break;
2920	case HCI_ACLDATA_PKT:
2921		/* Detect if ISO packet has been sent as ACL */
2922		if (hci_conn_num(hdev, ISO_LINK)) {
2923			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2924			__u8 type;
2925
2926			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2927			if (type == ISO_LINK)
2928				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2929		}
2930		break;
2931	case HCI_SCODATA_PKT:
2932		break;
2933	case HCI_ISODATA_PKT:
2934		break;
2935	default:
2936		kfree_skb(skb);
2937		return -EINVAL;
2938	}
2939
2940	/* Incoming skb */
2941	bt_cb(skb)->incoming = 1;
2942
2943	/* Time stamp */
2944	__net_timestamp(skb);
2945
2946	skb_queue_tail(&hdev->rx_q, skb);
2947	queue_work(hdev->workqueue, &hdev->rx_work);
2948
2949	return 0;
2950}
2951EXPORT_SYMBOL(hci_recv_frame);
2952
2953/* Receive diagnostic message from HCI drivers */
2954int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2955{
2956	/* Mark as diagnostic packet */
2957	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2958
2959	/* Time stamp */
2960	__net_timestamp(skb);
2961
2962	skb_queue_tail(&hdev->rx_q, skb);
2963	queue_work(hdev->workqueue, &hdev->rx_work);
2964
2965	return 0;
2966}
2967EXPORT_SYMBOL(hci_recv_diag);
2968
2969void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2970{
2971	va_list vargs;
2972
2973	va_start(vargs, fmt);
2974	kfree_const(hdev->hw_info);
2975	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2976	va_end(vargs);
2977}
2978EXPORT_SYMBOL(hci_set_hw_info);
2979
2980void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2981{
2982	va_list vargs;
2983
2984	va_start(vargs, fmt);
2985	kfree_const(hdev->fw_info);
2986	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2987	va_end(vargs);
2988}
2989EXPORT_SYMBOL(hci_set_fw_info);
2990
2991/* ---- Interface to upper protocols ---- */
2992
2993int hci_register_cb(struct hci_cb *cb)
2994{
2995	BT_DBG("%p name %s", cb, cb->name);
2996
2997	mutex_lock(&hci_cb_list_lock);
2998	list_add_tail(&cb->list, &hci_cb_list);
2999	mutex_unlock(&hci_cb_list_lock);
3000
3001	return 0;
3002}
3003EXPORT_SYMBOL(hci_register_cb);
3004
3005int hci_unregister_cb(struct hci_cb *cb)
3006{
3007	BT_DBG("%p name %s", cb, cb->name);
3008
3009	mutex_lock(&hci_cb_list_lock);
3010	list_del(&cb->list);
3011	mutex_unlock(&hci_cb_list_lock);
3012
3013	return 0;
3014}
3015EXPORT_SYMBOL(hci_unregister_cb);
3016
3017static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3018{
3019	int err;
3020
3021	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3022	       skb->len);
3023
3024	/* Time stamp */
3025	__net_timestamp(skb);
3026
3027	/* Send copy to monitor */
3028	hci_send_to_monitor(hdev, skb);
3029
3030	if (atomic_read(&hdev->promisc)) {
3031		/* Send copy to the sockets */
3032		hci_send_to_sock(hdev, skb);
3033	}
3034
3035	/* Get rid of skb owner, prior to sending to the driver. */
3036	skb_orphan(skb);
3037
3038	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3039		kfree_skb(skb);
3040		return -EINVAL;
3041	}
3042
3043	err = hdev->send(hdev, skb);
3044	if (err < 0) {
3045		bt_dev_err(hdev, "sending frame failed (%d)", err);
3046		kfree_skb(skb);
3047		return err;
3048	}
3049
3050	return 0;
3051}
3052
3053/* Send HCI command */
3054int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3055		 const void *param)
3056{
3057	struct sk_buff *skb;
3058
3059	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3060
3061	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3062	if (!skb) {
3063		bt_dev_err(hdev, "no memory for command");
3064		return -ENOMEM;
3065	}
3066
3067	/* Stand-alone HCI commands must be flagged as
3068	 * single-command requests.
3069	 */
3070	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3071
3072	skb_queue_tail(&hdev->cmd_q, skb);
3073	queue_work(hdev->workqueue, &hdev->cmd_work);
3074
3075	return 0;
3076}
3077
3078int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3079		   const void *param)
3080{
3081	struct sk_buff *skb;
3082
3083	if (hci_opcode_ogf(opcode) != 0x3f) {
3084		/* A controller receiving a command shall respond with either
3085		 * a Command Status Event or a Command Complete Event.
3086		 * Therefore, all standard HCI commands must be sent via the
3087		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3088		 * Some vendors do not comply with this rule for vendor-specific
3089		 * commands and do not return any event. We want to support
3090		 * unresponded commands for such cases only.
3091		 */
3092		bt_dev_err(hdev, "unresponded command not supported");
3093		return -EINVAL;
3094	}
3095
3096	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3097	if (!skb) {
3098		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3099			   opcode);
3100		return -ENOMEM;
3101	}
3102
3103	hci_send_frame(hdev, skb);
3104
3105	return 0;
3106}
3107EXPORT_SYMBOL(__hci_cmd_send);
3108
3109/* Get data from the previously sent command */
3110void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3111{
3112	struct hci_command_hdr *hdr;
3113
3114	if (!hdev->sent_cmd)
3115		return NULL;
3116
3117	hdr = (void *) hdev->sent_cmd->data;
3118
3119	if (hdr->opcode != cpu_to_le16(opcode))
3120		return NULL;
3121
3122	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
 
 
 
 
 
 
 
 
 
 
 
 
3123
3124	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3125}
3126
3127/* Get data from last received event */
3128void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3129{
3130	struct hci_event_hdr *hdr;
3131	int offset;
3132
3133	if (!hdev->recv_event)
3134		return NULL;
3135
3136	hdr = (void *)hdev->recv_event->data;
3137	offset = sizeof(*hdr);
3138
3139	if (hdr->evt != event) {
3140		/* In case of LE metaevent check the subevent match */
3141		if (hdr->evt == HCI_EV_LE_META) {
3142			struct hci_ev_le_meta *ev;
3143
3144			ev = (void *)hdev->recv_event->data + offset;
3145			offset += sizeof(*ev);
3146			if (ev->subevent == event)
3147				goto found;
3148		}
3149		return NULL;
3150	}
3151
3152found:
3153	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3154
3155	return hdev->recv_event->data + offset;
3156}
3157
3158/* Send ACL data */
3159static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3160{
3161	struct hci_acl_hdr *hdr;
3162	int len = skb->len;
3163
3164	skb_push(skb, HCI_ACL_HDR_SIZE);
3165	skb_reset_transport_header(skb);
3166	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3167	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3168	hdr->dlen   = cpu_to_le16(len);
3169}
3170
3171static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3172			  struct sk_buff *skb, __u16 flags)
3173{
3174	struct hci_conn *conn = chan->conn;
3175	struct hci_dev *hdev = conn->hdev;
3176	struct sk_buff *list;
3177
3178	skb->len = skb_headlen(skb);
3179	skb->data_len = 0;
3180
3181	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3182
3183	switch (hdev->dev_type) {
3184	case HCI_PRIMARY:
3185		hci_add_acl_hdr(skb, conn->handle, flags);
3186		break;
3187	case HCI_AMP:
3188		hci_add_acl_hdr(skb, chan->handle, flags);
3189		break;
3190	default:
3191		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3192		return;
3193	}
3194
3195	list = skb_shinfo(skb)->frag_list;
3196	if (!list) {
3197		/* Non fragmented */
3198		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3199
3200		skb_queue_tail(queue, skb);
3201	} else {
3202		/* Fragmented */
3203		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3204
3205		skb_shinfo(skb)->frag_list = NULL;
3206
3207		/* Queue all fragments atomically. We need to use spin_lock_bh
3208		 * here because of 6LoWPAN links, as there this function is
3209		 * called from softirq and using normal spin lock could cause
3210		 * deadlocks.
3211		 */
3212		spin_lock_bh(&queue->lock);
3213
3214		__skb_queue_tail(queue, skb);
3215
3216		flags &= ~ACL_START;
3217		flags |= ACL_CONT;
3218		do {
3219			skb = list; list = list->next;
3220
3221			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3222			hci_add_acl_hdr(skb, conn->handle, flags);
3223
3224			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3225
3226			__skb_queue_tail(queue, skb);
3227		} while (list);
3228
3229		spin_unlock_bh(&queue->lock);
3230	}
3231}
3232
3233void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3234{
3235	struct hci_dev *hdev = chan->conn->hdev;
3236
3237	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3238
3239	hci_queue_acl(chan, &chan->data_q, skb, flags);
3240
3241	queue_work(hdev->workqueue, &hdev->tx_work);
3242}
3243
3244/* Send SCO data */
3245void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3246{
3247	struct hci_dev *hdev = conn->hdev;
3248	struct hci_sco_hdr hdr;
3249
3250	BT_DBG("%s len %d", hdev->name, skb->len);
3251
3252	hdr.handle = cpu_to_le16(conn->handle);
3253	hdr.dlen   = skb->len;
3254
3255	skb_push(skb, HCI_SCO_HDR_SIZE);
3256	skb_reset_transport_header(skb);
3257	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3258
3259	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3260
3261	skb_queue_tail(&conn->data_q, skb);
3262	queue_work(hdev->workqueue, &hdev->tx_work);
3263}
3264
3265/* Send ISO data */
3266static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3267{
3268	struct hci_iso_hdr *hdr;
3269	int len = skb->len;
3270
3271	skb_push(skb, HCI_ISO_HDR_SIZE);
3272	skb_reset_transport_header(skb);
3273	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3274	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3275	hdr->dlen   = cpu_to_le16(len);
3276}
3277
3278static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3279			  struct sk_buff *skb)
3280{
3281	struct hci_dev *hdev = conn->hdev;
3282	struct sk_buff *list;
3283	__u16 flags;
3284
3285	skb->len = skb_headlen(skb);
3286	skb->data_len = 0;
3287
3288	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3289
3290	list = skb_shinfo(skb)->frag_list;
3291
3292	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3293	hci_add_iso_hdr(skb, conn->handle, flags);
3294
3295	if (!list) {
3296		/* Non fragmented */
3297		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3298
3299		skb_queue_tail(queue, skb);
3300	} else {
3301		/* Fragmented */
3302		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3303
3304		skb_shinfo(skb)->frag_list = NULL;
3305
3306		__skb_queue_tail(queue, skb);
3307
3308		do {
3309			skb = list; list = list->next;
3310
3311			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3312			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3313						   0x00);
3314			hci_add_iso_hdr(skb, conn->handle, flags);
3315
3316			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3317
3318			__skb_queue_tail(queue, skb);
3319		} while (list);
3320	}
3321}
3322
3323void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3324{
3325	struct hci_dev *hdev = conn->hdev;
3326
3327	BT_DBG("%s len %d", hdev->name, skb->len);
3328
3329	hci_queue_iso(conn, &conn->data_q, skb);
3330
3331	queue_work(hdev->workqueue, &hdev->tx_work);
3332}
3333
3334/* ---- HCI TX task (outgoing data) ---- */
3335
3336/* HCI Connection scheduler */
3337static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3338{
3339	struct hci_dev *hdev;
3340	int cnt, q;
3341
3342	if (!conn) {
3343		*quote = 0;
3344		return;
3345	}
3346
3347	hdev = conn->hdev;
3348
3349	switch (conn->type) {
3350	case ACL_LINK:
3351		cnt = hdev->acl_cnt;
3352		break;
3353	case AMP_LINK:
3354		cnt = hdev->block_cnt;
3355		break;
3356	case SCO_LINK:
3357	case ESCO_LINK:
3358		cnt = hdev->sco_cnt;
3359		break;
3360	case LE_LINK:
3361		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3362		break;
3363	case ISO_LINK:
3364		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3365			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3366		break;
3367	default:
3368		cnt = 0;
3369		bt_dev_err(hdev, "unknown link type %d", conn->type);
3370	}
3371
3372	q = cnt / num;
3373	*quote = q ? q : 1;
3374}
3375
3376static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3377				     int *quote)
3378{
3379	struct hci_conn_hash *h = &hdev->conn_hash;
3380	struct hci_conn *conn = NULL, *c;
3381	unsigned int num = 0, min = ~0;
3382
3383	/* We don't have to lock device here. Connections are always
3384	 * added and removed with TX task disabled. */
3385
3386	rcu_read_lock();
3387
3388	list_for_each_entry_rcu(c, &h->list, list) {
3389		if (c->type != type || skb_queue_empty(&c->data_q))
3390			continue;
3391
3392		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3393			continue;
3394
3395		num++;
3396
3397		if (c->sent < min) {
3398			min  = c->sent;
3399			conn = c;
3400		}
3401
3402		if (hci_conn_num(hdev, type) == num)
3403			break;
3404	}
3405
3406	rcu_read_unlock();
3407
3408	hci_quote_sent(conn, num, quote);
3409
3410	BT_DBG("conn %p quote %d", conn, *quote);
3411	return conn;
3412}
3413
3414static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3415{
3416	struct hci_conn_hash *h = &hdev->conn_hash;
3417	struct hci_conn *c;
3418
3419	bt_dev_err(hdev, "link tx timeout");
3420
3421	rcu_read_lock();
3422
3423	/* Kill stalled connections */
3424	list_for_each_entry_rcu(c, &h->list, list) {
3425		if (c->type == type && c->sent) {
3426			bt_dev_err(hdev, "killing stalled connection %pMR",
3427				   &c->dst);
3428			/* hci_disconnect might sleep, so, we have to release
3429			 * the RCU read lock before calling it.
3430			 */
3431			rcu_read_unlock();
3432			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3433			rcu_read_lock();
3434		}
3435	}
3436
3437	rcu_read_unlock();
3438}
3439
3440static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3441				      int *quote)
3442{
3443	struct hci_conn_hash *h = &hdev->conn_hash;
3444	struct hci_chan *chan = NULL;
3445	unsigned int num = 0, min = ~0, cur_prio = 0;
3446	struct hci_conn *conn;
3447	int conn_num = 0;
3448
3449	BT_DBG("%s", hdev->name);
3450
3451	rcu_read_lock();
3452
3453	list_for_each_entry_rcu(conn, &h->list, list) {
3454		struct hci_chan *tmp;
3455
3456		if (conn->type != type)
3457			continue;
3458
3459		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3460			continue;
3461
3462		conn_num++;
3463
3464		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3465			struct sk_buff *skb;
3466
3467			if (skb_queue_empty(&tmp->data_q))
3468				continue;
3469
3470			skb = skb_peek(&tmp->data_q);
3471			if (skb->priority < cur_prio)
3472				continue;
3473
3474			if (skb->priority > cur_prio) {
3475				num = 0;
3476				min = ~0;
3477				cur_prio = skb->priority;
3478			}
3479
3480			num++;
3481
3482			if (conn->sent < min) {
3483				min  = conn->sent;
3484				chan = tmp;
3485			}
3486		}
3487
3488		if (hci_conn_num(hdev, type) == conn_num)
3489			break;
3490	}
3491
3492	rcu_read_unlock();
3493
3494	if (!chan)
3495		return NULL;
3496
3497	hci_quote_sent(chan->conn, num, quote);
3498
3499	BT_DBG("chan %p quote %d", chan, *quote);
3500	return chan;
3501}
3502
3503static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3504{
3505	struct hci_conn_hash *h = &hdev->conn_hash;
3506	struct hci_conn *conn;
3507	int num = 0;
3508
3509	BT_DBG("%s", hdev->name);
3510
3511	rcu_read_lock();
3512
3513	list_for_each_entry_rcu(conn, &h->list, list) {
3514		struct hci_chan *chan;
3515
3516		if (conn->type != type)
3517			continue;
3518
3519		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3520			continue;
3521
3522		num++;
3523
3524		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3525			struct sk_buff *skb;
3526
3527			if (chan->sent) {
3528				chan->sent = 0;
3529				continue;
3530			}
3531
3532			if (skb_queue_empty(&chan->data_q))
3533				continue;
3534
3535			skb = skb_peek(&chan->data_q);
3536			if (skb->priority >= HCI_PRIO_MAX - 1)
3537				continue;
3538
3539			skb->priority = HCI_PRIO_MAX - 1;
3540
3541			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3542			       skb->priority);
3543		}
3544
3545		if (hci_conn_num(hdev, type) == num)
3546			break;
3547	}
3548
3549	rcu_read_unlock();
3550
3551}
3552
3553static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3554{
3555	/* Calculate count of blocks used by this packet */
3556	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3557}
3558
3559static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3560{
3561	unsigned long last_tx;
3562
3563	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3564		return;
3565
3566	switch (type) {
3567	case LE_LINK:
3568		last_tx = hdev->le_last_tx;
3569		break;
3570	default:
3571		last_tx = hdev->acl_last_tx;
3572		break;
3573	}
3574
3575	/* tx timeout must be longer than maximum link supervision timeout
3576	 * (40.9 seconds)
3577	 */
3578	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3579		hci_link_tx_to(hdev, type);
3580}
3581
3582/* Schedule SCO */
3583static void hci_sched_sco(struct hci_dev *hdev)
3584{
3585	struct hci_conn *conn;
3586	struct sk_buff *skb;
3587	int quote;
3588
3589	BT_DBG("%s", hdev->name);
3590
3591	if (!hci_conn_num(hdev, SCO_LINK))
3592		return;
3593
3594	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3595		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3596			BT_DBG("skb %p len %d", skb, skb->len);
3597			hci_send_frame(hdev, skb);
3598
3599			conn->sent++;
3600			if (conn->sent == ~0)
3601				conn->sent = 0;
3602		}
3603	}
3604}
3605
3606static void hci_sched_esco(struct hci_dev *hdev)
3607{
3608	struct hci_conn *conn;
3609	struct sk_buff *skb;
3610	int quote;
3611
3612	BT_DBG("%s", hdev->name);
3613
3614	if (!hci_conn_num(hdev, ESCO_LINK))
3615		return;
3616
3617	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3618						     &quote))) {
3619		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3620			BT_DBG("skb %p len %d", skb, skb->len);
3621			hci_send_frame(hdev, skb);
3622
3623			conn->sent++;
3624			if (conn->sent == ~0)
3625				conn->sent = 0;
3626		}
3627	}
3628}
3629
3630static void hci_sched_acl_pkt(struct hci_dev *hdev)
3631{
3632	unsigned int cnt = hdev->acl_cnt;
3633	struct hci_chan *chan;
3634	struct sk_buff *skb;
3635	int quote;
3636
3637	__check_timeout(hdev, cnt, ACL_LINK);
3638
3639	while (hdev->acl_cnt &&
3640	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3641		u32 priority = (skb_peek(&chan->data_q))->priority;
3642		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3643			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3644			       skb->len, skb->priority);
3645
3646			/* Stop if priority has changed */
3647			if (skb->priority < priority)
3648				break;
3649
3650			skb = skb_dequeue(&chan->data_q);
3651
3652			hci_conn_enter_active_mode(chan->conn,
3653						   bt_cb(skb)->force_active);
3654
3655			hci_send_frame(hdev, skb);
3656			hdev->acl_last_tx = jiffies;
3657
3658			hdev->acl_cnt--;
3659			chan->sent++;
3660			chan->conn->sent++;
3661
3662			/* Send pending SCO packets right away */
3663			hci_sched_sco(hdev);
3664			hci_sched_esco(hdev);
3665		}
3666	}
3667
3668	if (cnt != hdev->acl_cnt)
3669		hci_prio_recalculate(hdev, ACL_LINK);
3670}
3671
3672static void hci_sched_acl_blk(struct hci_dev *hdev)
3673{
3674	unsigned int cnt = hdev->block_cnt;
3675	struct hci_chan *chan;
3676	struct sk_buff *skb;
3677	int quote;
3678	u8 type;
3679
3680	BT_DBG("%s", hdev->name);
3681
3682	if (hdev->dev_type == HCI_AMP)
3683		type = AMP_LINK;
3684	else
3685		type = ACL_LINK;
3686
3687	__check_timeout(hdev, cnt, type);
3688
3689	while (hdev->block_cnt > 0 &&
3690	       (chan = hci_chan_sent(hdev, type, &quote))) {
3691		u32 priority = (skb_peek(&chan->data_q))->priority;
3692		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3693			int blocks;
3694
3695			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3696			       skb->len, skb->priority);
3697
3698			/* Stop if priority has changed */
3699			if (skb->priority < priority)
3700				break;
3701
3702			skb = skb_dequeue(&chan->data_q);
3703
3704			blocks = __get_blocks(hdev, skb);
3705			if (blocks > hdev->block_cnt)
3706				return;
3707
3708			hci_conn_enter_active_mode(chan->conn,
3709						   bt_cb(skb)->force_active);
3710
3711			hci_send_frame(hdev, skb);
3712			hdev->acl_last_tx = jiffies;
3713
3714			hdev->block_cnt -= blocks;
3715			quote -= blocks;
3716
3717			chan->sent += blocks;
3718			chan->conn->sent += blocks;
3719		}
3720	}
3721
3722	if (cnt != hdev->block_cnt)
3723		hci_prio_recalculate(hdev, type);
3724}
3725
3726static void hci_sched_acl(struct hci_dev *hdev)
3727{
3728	BT_DBG("%s", hdev->name);
3729
3730	/* No ACL link over BR/EDR controller */
3731	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3732		return;
3733
3734	/* No AMP link over AMP controller */
3735	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3736		return;
3737
3738	switch (hdev->flow_ctl_mode) {
3739	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3740		hci_sched_acl_pkt(hdev);
3741		break;
3742
3743	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3744		hci_sched_acl_blk(hdev);
3745		break;
3746	}
3747}
3748
3749static void hci_sched_le(struct hci_dev *hdev)
3750{
3751	struct hci_chan *chan;
3752	struct sk_buff *skb;
3753	int quote, cnt, tmp;
3754
3755	BT_DBG("%s", hdev->name);
3756
3757	if (!hci_conn_num(hdev, LE_LINK))
3758		return;
3759
3760	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3761
3762	__check_timeout(hdev, cnt, LE_LINK);
3763
3764	tmp = cnt;
3765	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3766		u32 priority = (skb_peek(&chan->data_q))->priority;
3767		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3768			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3769			       skb->len, skb->priority);
3770
3771			/* Stop if priority has changed */
3772			if (skb->priority < priority)
3773				break;
3774
3775			skb = skb_dequeue(&chan->data_q);
3776
3777			hci_send_frame(hdev, skb);
3778			hdev->le_last_tx = jiffies;
3779
3780			cnt--;
3781			chan->sent++;
3782			chan->conn->sent++;
3783
3784			/* Send pending SCO packets right away */
3785			hci_sched_sco(hdev);
3786			hci_sched_esco(hdev);
3787		}
3788	}
3789
3790	if (hdev->le_pkts)
3791		hdev->le_cnt = cnt;
3792	else
3793		hdev->acl_cnt = cnt;
3794
3795	if (cnt != tmp)
3796		hci_prio_recalculate(hdev, LE_LINK);
3797}
3798
3799/* Schedule CIS */
3800static void hci_sched_iso(struct hci_dev *hdev)
3801{
3802	struct hci_conn *conn;
3803	struct sk_buff *skb;
3804	int quote, *cnt;
3805
3806	BT_DBG("%s", hdev->name);
3807
3808	if (!hci_conn_num(hdev, ISO_LINK))
3809		return;
3810
3811	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3812		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3813	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3814		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3815			BT_DBG("skb %p len %d", skb, skb->len);
3816			hci_send_frame(hdev, skb);
3817
3818			conn->sent++;
3819			if (conn->sent == ~0)
3820				conn->sent = 0;
3821			(*cnt)--;
3822		}
3823	}
3824}
3825
3826static void hci_tx_work(struct work_struct *work)
3827{
3828	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3829	struct sk_buff *skb;
3830
3831	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3832	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3833
3834	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3835		/* Schedule queues and send stuff to HCI driver */
3836		hci_sched_sco(hdev);
3837		hci_sched_esco(hdev);
3838		hci_sched_iso(hdev);
3839		hci_sched_acl(hdev);
3840		hci_sched_le(hdev);
3841	}
3842
3843	/* Send next queued raw (unknown type) packet */
3844	while ((skb = skb_dequeue(&hdev->raw_q)))
3845		hci_send_frame(hdev, skb);
3846}
3847
3848/* ----- HCI RX task (incoming data processing) ----- */
3849
3850/* ACL data packet */
3851static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3852{
3853	struct hci_acl_hdr *hdr = (void *) skb->data;
3854	struct hci_conn *conn;
3855	__u16 handle, flags;
3856
3857	skb_pull(skb, HCI_ACL_HDR_SIZE);
3858
3859	handle = __le16_to_cpu(hdr->handle);
3860	flags  = hci_flags(handle);
3861	handle = hci_handle(handle);
3862
3863	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3864	       handle, flags);
3865
3866	hdev->stat.acl_rx++;
3867
3868	hci_dev_lock(hdev);
3869	conn = hci_conn_hash_lookup_handle(hdev, handle);
3870	hci_dev_unlock(hdev);
3871
3872	if (conn) {
3873		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3874
3875		/* Send to upper protocol */
3876		l2cap_recv_acldata(conn, skb, flags);
3877		return;
3878	} else {
3879		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3880			   handle);
3881	}
3882
3883	kfree_skb(skb);
3884}
3885
3886/* SCO data packet */
3887static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3888{
3889	struct hci_sco_hdr *hdr = (void *) skb->data;
3890	struct hci_conn *conn;
3891	__u16 handle, flags;
3892
3893	skb_pull(skb, HCI_SCO_HDR_SIZE);
3894
3895	handle = __le16_to_cpu(hdr->handle);
3896	flags  = hci_flags(handle);
3897	handle = hci_handle(handle);
3898
3899	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3900	       handle, flags);
3901
3902	hdev->stat.sco_rx++;
3903
3904	hci_dev_lock(hdev);
3905	conn = hci_conn_hash_lookup_handle(hdev, handle);
3906	hci_dev_unlock(hdev);
3907
3908	if (conn) {
3909		/* Send to upper protocol */
3910		hci_skb_pkt_status(skb) = flags & 0x03;
3911		sco_recv_scodata(conn, skb);
3912		return;
3913	} else {
3914		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3915				       handle);
3916	}
3917
3918	kfree_skb(skb);
3919}
3920
3921static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3922{
3923	struct hci_iso_hdr *hdr;
3924	struct hci_conn *conn;
3925	__u16 handle, flags;
3926
3927	hdr = skb_pull_data(skb, sizeof(*hdr));
3928	if (!hdr) {
3929		bt_dev_err(hdev, "ISO packet too small");
3930		goto drop;
3931	}
3932
3933	handle = __le16_to_cpu(hdr->handle);
3934	flags  = hci_flags(handle);
3935	handle = hci_handle(handle);
3936
3937	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3938		   handle, flags);
3939
3940	hci_dev_lock(hdev);
3941	conn = hci_conn_hash_lookup_handle(hdev, handle);
3942	hci_dev_unlock(hdev);
3943
3944	if (!conn) {
3945		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3946			   handle);
3947		goto drop;
3948	}
3949
3950	/* Send to upper protocol */
3951	iso_recv(conn, skb, flags);
3952	return;
3953
3954drop:
3955	kfree_skb(skb);
3956}
3957
3958static bool hci_req_is_complete(struct hci_dev *hdev)
3959{
3960	struct sk_buff *skb;
3961
3962	skb = skb_peek(&hdev->cmd_q);
3963	if (!skb)
3964		return true;
3965
3966	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3967}
3968
3969static void hci_resend_last(struct hci_dev *hdev)
3970{
3971	struct hci_command_hdr *sent;
3972	struct sk_buff *skb;
3973	u16 opcode;
3974
3975	if (!hdev->sent_cmd)
3976		return;
3977
3978	sent = (void *) hdev->sent_cmd->data;
3979	opcode = __le16_to_cpu(sent->opcode);
3980	if (opcode == HCI_OP_RESET)
3981		return;
3982
3983	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3984	if (!skb)
3985		return;
3986
3987	skb_queue_head(&hdev->cmd_q, skb);
3988	queue_work(hdev->workqueue, &hdev->cmd_work);
3989}
3990
3991void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3992			  hci_req_complete_t *req_complete,
3993			  hci_req_complete_skb_t *req_complete_skb)
3994{
3995	struct sk_buff *skb;
3996	unsigned long flags;
3997
3998	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3999
4000	/* If the completed command doesn't match the last one that was
4001	 * sent we need to do special handling of it.
4002	 */
4003	if (!hci_sent_cmd_data(hdev, opcode)) {
4004		/* Some CSR based controllers generate a spontaneous
4005		 * reset complete event during init and any pending
4006		 * command will never be completed. In such a case we
4007		 * need to resend whatever was the last sent
4008		 * command.
4009		 */
4010		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4011			hci_resend_last(hdev);
4012
4013		return;
4014	}
4015
4016	/* If we reach this point this event matches the last command sent */
4017	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4018
4019	/* If the command succeeded and there's still more commands in
4020	 * this request the request is not yet complete.
4021	 */
4022	if (!status && !hci_req_is_complete(hdev))
4023		return;
4024
 
 
4025	/* If this was the last command in a request the complete
4026	 * callback would be found in hdev->sent_cmd instead of the
4027	 * command queue (hdev->cmd_q).
4028	 */
4029	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4030		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4031		return;
4032	}
4033
4034	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4035		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4036		return;
4037	}
4038
4039	/* Remove all pending commands belonging to this request */
4040	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4041	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4042		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4043			__skb_queue_head(&hdev->cmd_q, skb);
4044			break;
4045		}
4046
4047		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4048			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4049		else
4050			*req_complete = bt_cb(skb)->hci.req_complete;
4051		dev_kfree_skb_irq(skb);
4052	}
4053	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4054}
4055
4056static void hci_rx_work(struct work_struct *work)
4057{
4058	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4059	struct sk_buff *skb;
4060
4061	BT_DBG("%s", hdev->name);
4062
4063	/* The kcov_remote functions used for collecting packet parsing
4064	 * coverage information from this background thread and associate
4065	 * the coverage with the syscall's thread which originally injected
4066	 * the packet. This helps fuzzing the kernel.
4067	 */
4068	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4069		kcov_remote_start_common(skb_get_kcov_handle(skb));
4070
4071		/* Send copy to monitor */
4072		hci_send_to_monitor(hdev, skb);
4073
4074		if (atomic_read(&hdev->promisc)) {
4075			/* Send copy to the sockets */
4076			hci_send_to_sock(hdev, skb);
4077		}
4078
4079		/* If the device has been opened in HCI_USER_CHANNEL,
4080		 * the userspace has exclusive access to device.
4081		 * When device is HCI_INIT, we still need to process
4082		 * the data packets to the driver in order
4083		 * to complete its setup().
4084		 */
4085		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4086		    !test_bit(HCI_INIT, &hdev->flags)) {
4087			kfree_skb(skb);
4088			continue;
4089		}
4090
4091		if (test_bit(HCI_INIT, &hdev->flags)) {
4092			/* Don't process data packets in this states. */
4093			switch (hci_skb_pkt_type(skb)) {
4094			case HCI_ACLDATA_PKT:
4095			case HCI_SCODATA_PKT:
4096			case HCI_ISODATA_PKT:
4097				kfree_skb(skb);
4098				continue;
4099			}
4100		}
4101
4102		/* Process frame */
4103		switch (hci_skb_pkt_type(skb)) {
4104		case HCI_EVENT_PKT:
4105			BT_DBG("%s Event packet", hdev->name);
4106			hci_event_packet(hdev, skb);
4107			break;
4108
4109		case HCI_ACLDATA_PKT:
4110			BT_DBG("%s ACL data packet", hdev->name);
4111			hci_acldata_packet(hdev, skb);
4112			break;
4113
4114		case HCI_SCODATA_PKT:
4115			BT_DBG("%s SCO data packet", hdev->name);
4116			hci_scodata_packet(hdev, skb);
4117			break;
4118
4119		case HCI_ISODATA_PKT:
4120			BT_DBG("%s ISO data packet", hdev->name);
4121			hci_isodata_packet(hdev, skb);
4122			break;
4123
4124		default:
4125			kfree_skb(skb);
4126			break;
4127		}
4128	}
4129}
4130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4131static void hci_cmd_work(struct work_struct *work)
4132{
4133	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4134	struct sk_buff *skb;
4135
4136	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4137	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4138
4139	/* Send queued commands */
4140	if (atomic_read(&hdev->cmd_cnt)) {
4141		skb = skb_dequeue(&hdev->cmd_q);
4142		if (!skb)
4143			return;
4144
4145		kfree_skb(hdev->sent_cmd);
4146
4147		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4148		if (hdev->sent_cmd) {
4149			int res;
4150			if (hci_req_status_pend(hdev))
4151				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4152			atomic_dec(&hdev->cmd_cnt);
4153
4154			res = hci_send_frame(hdev, skb);
4155			if (res < 0)
4156				__hci_cmd_sync_cancel(hdev, -res);
4157
4158			rcu_read_lock();
4159			if (test_bit(HCI_RESET, &hdev->flags) ||
4160			    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4161				cancel_delayed_work(&hdev->cmd_timer);
4162			else
4163				queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4164						   HCI_CMD_TIMEOUT);
4165			rcu_read_unlock();
4166		} else {
4167			skb_queue_head(&hdev->cmd_q, skb);
4168			queue_work(hdev->workqueue, &hdev->cmd_work);
4169		}
4170	}
4171}
v6.9.4
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
  32#include <linux/kcov.h>
  33#include <linux/property.h>
  34#include <linux/suspend.h>
  35#include <linux/wait.h>
  36#include <asm/unaligned.h>
  37
  38#include <net/bluetooth/bluetooth.h>
  39#include <net/bluetooth/hci_core.h>
  40#include <net/bluetooth/l2cap.h>
  41#include <net/bluetooth/mgmt.h>
  42
  43#include "hci_request.h"
  44#include "hci_debugfs.h"
  45#include "smp.h"
  46#include "leds.h"
  47#include "msft.h"
  48#include "aosp.h"
  49#include "hci_codec.h"
  50
  51static void hci_rx_work(struct work_struct *work);
  52static void hci_cmd_work(struct work_struct *work);
  53static void hci_tx_work(struct work_struct *work);
  54
  55/* HCI device list */
  56LIST_HEAD(hci_dev_list);
  57DEFINE_RWLOCK(hci_dev_list_lock);
  58
  59/* HCI callback list */
  60LIST_HEAD(hci_cb_list);
  61DEFINE_MUTEX(hci_cb_list_lock);
  62
  63/* HCI ID Numbering */
  64static DEFINE_IDA(hci_index_ida);
  65
  66static int hci_scan_req(struct hci_request *req, unsigned long opt)
  67{
  68	__u8 scan = opt;
  69
  70	BT_DBG("%s %x", req->hdev->name, scan);
  71
  72	/* Inquiry and Page scans */
  73	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
  74	return 0;
  75}
  76
  77static int hci_auth_req(struct hci_request *req, unsigned long opt)
  78{
  79	__u8 auth = opt;
  80
  81	BT_DBG("%s %x", req->hdev->name, auth);
  82
  83	/* Authentication */
  84	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
  85	return 0;
  86}
  87
  88static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
  89{
  90	__u8 encrypt = opt;
  91
  92	BT_DBG("%s %x", req->hdev->name, encrypt);
  93
  94	/* Encryption */
  95	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
  96	return 0;
  97}
  98
  99static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 100{
 101	__le16 policy = cpu_to_le16(opt);
 102
 103	BT_DBG("%s %x", req->hdev->name, policy);
 104
 105	/* Default link policy */
 106	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 107	return 0;
 108}
 109
 110/* Get HCI device by index.
 111 * Device is held on return. */
 112struct hci_dev *hci_dev_get(int index)
 113{
 114	struct hci_dev *hdev = NULL, *d;
 115
 116	BT_DBG("%d", index);
 117
 118	if (index < 0)
 119		return NULL;
 120
 121	read_lock(&hci_dev_list_lock);
 122	list_for_each_entry(d, &hci_dev_list, list) {
 123		if (d->id == index) {
 124			hdev = hci_dev_hold(d);
 125			break;
 126		}
 127	}
 128	read_unlock(&hci_dev_list_lock);
 129	return hdev;
 130}
 131
 132/* ---- Inquiry support ---- */
 133
 134bool hci_discovery_active(struct hci_dev *hdev)
 135{
 136	struct discovery_state *discov = &hdev->discovery;
 137
 138	switch (discov->state) {
 139	case DISCOVERY_FINDING:
 140	case DISCOVERY_RESOLVING:
 141		return true;
 142
 143	default:
 144		return false;
 145	}
 146}
 147
 148void hci_discovery_set_state(struct hci_dev *hdev, int state)
 149{
 150	int old_state = hdev->discovery.state;
 151
 152	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 153
 154	if (old_state == state)
 155		return;
 156
 157	hdev->discovery.state = state;
 158
 159	switch (state) {
 160	case DISCOVERY_STOPPED:
 161		hci_update_passive_scan(hdev);
 162
 163		if (old_state != DISCOVERY_STARTING)
 164			mgmt_discovering(hdev, 0);
 165		break;
 166	case DISCOVERY_STARTING:
 167		break;
 168	case DISCOVERY_FINDING:
 169		mgmt_discovering(hdev, 1);
 170		break;
 171	case DISCOVERY_RESOLVING:
 172		break;
 173	case DISCOVERY_STOPPING:
 174		break;
 175	}
 176}
 177
 178void hci_inquiry_cache_flush(struct hci_dev *hdev)
 179{
 180	struct discovery_state *cache = &hdev->discovery;
 181	struct inquiry_entry *p, *n;
 182
 183	list_for_each_entry_safe(p, n, &cache->all, all) {
 184		list_del(&p->all);
 185		kfree(p);
 186	}
 187
 188	INIT_LIST_HEAD(&cache->unknown);
 189	INIT_LIST_HEAD(&cache->resolve);
 190}
 191
 192struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 193					       bdaddr_t *bdaddr)
 194{
 195	struct discovery_state *cache = &hdev->discovery;
 196	struct inquiry_entry *e;
 197
 198	BT_DBG("cache %p, %pMR", cache, bdaddr);
 199
 200	list_for_each_entry(e, &cache->all, all) {
 201		if (!bacmp(&e->data.bdaddr, bdaddr))
 202			return e;
 203	}
 204
 205	return NULL;
 206}
 207
 208struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
 209						       bdaddr_t *bdaddr)
 210{
 211	struct discovery_state *cache = &hdev->discovery;
 212	struct inquiry_entry *e;
 213
 214	BT_DBG("cache %p, %pMR", cache, bdaddr);
 215
 216	list_for_each_entry(e, &cache->unknown, list) {
 217		if (!bacmp(&e->data.bdaddr, bdaddr))
 218			return e;
 219	}
 220
 221	return NULL;
 222}
 223
 224struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
 225						       bdaddr_t *bdaddr,
 226						       int state)
 227{
 228	struct discovery_state *cache = &hdev->discovery;
 229	struct inquiry_entry *e;
 230
 231	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
 232
 233	list_for_each_entry(e, &cache->resolve, list) {
 234		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
 235			return e;
 236		if (!bacmp(&e->data.bdaddr, bdaddr))
 237			return e;
 238	}
 239
 240	return NULL;
 241}
 242
 243void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
 244				      struct inquiry_entry *ie)
 245{
 246	struct discovery_state *cache = &hdev->discovery;
 247	struct list_head *pos = &cache->resolve;
 248	struct inquiry_entry *p;
 249
 250	list_del(&ie->list);
 251
 252	list_for_each_entry(p, &cache->resolve, list) {
 253		if (p->name_state != NAME_PENDING &&
 254		    abs(p->data.rssi) >= abs(ie->data.rssi))
 255			break;
 256		pos = &p->list;
 257	}
 258
 259	list_add(&ie->list, pos);
 260}
 261
 262u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
 263			     bool name_known)
 264{
 265	struct discovery_state *cache = &hdev->discovery;
 266	struct inquiry_entry *ie;
 267	u32 flags = 0;
 268
 269	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
 270
 271	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
 272
 273	if (!data->ssp_mode)
 274		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 275
 276	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 277	if (ie) {
 278		if (!ie->data.ssp_mode)
 279			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 280
 281		if (ie->name_state == NAME_NEEDED &&
 282		    data->rssi != ie->data.rssi) {
 283			ie->data.rssi = data->rssi;
 284			hci_inquiry_cache_update_resolve(hdev, ie);
 285		}
 286
 287		goto update;
 288	}
 289
 290	/* Entry not in the cache. Add new one. */
 291	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
 292	if (!ie) {
 293		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 294		goto done;
 295	}
 296
 297	list_add(&ie->all, &cache->all);
 298
 299	if (name_known) {
 300		ie->name_state = NAME_KNOWN;
 301	} else {
 302		ie->name_state = NAME_NOT_KNOWN;
 303		list_add(&ie->list, &cache->unknown);
 304	}
 305
 306update:
 307	if (name_known && ie->name_state != NAME_KNOWN &&
 308	    ie->name_state != NAME_PENDING) {
 309		ie->name_state = NAME_KNOWN;
 310		list_del(&ie->list);
 311	}
 312
 313	memcpy(&ie->data, data, sizeof(*data));
 314	ie->timestamp = jiffies;
 315	cache->timestamp = jiffies;
 316
 317	if (ie->name_state == NAME_NOT_KNOWN)
 318		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 319
 320done:
 321	return flags;
 322}
 323
 324static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 325{
 326	struct discovery_state *cache = &hdev->discovery;
 327	struct inquiry_info *info = (struct inquiry_info *) buf;
 328	struct inquiry_entry *e;
 329	int copied = 0;
 330
 331	list_for_each_entry(e, &cache->all, all) {
 332		struct inquiry_data *data = &e->data;
 333
 334		if (copied >= num)
 335			break;
 336
 337		bacpy(&info->bdaddr, &data->bdaddr);
 338		info->pscan_rep_mode	= data->pscan_rep_mode;
 339		info->pscan_period_mode	= data->pscan_period_mode;
 340		info->pscan_mode	= data->pscan_mode;
 341		memcpy(info->dev_class, data->dev_class, 3);
 342		info->clock_offset	= data->clock_offset;
 343
 344		info++;
 345		copied++;
 346	}
 347
 348	BT_DBG("cache %p, copied %d", cache, copied);
 349	return copied;
 350}
 351
 352static int hci_inq_req(struct hci_request *req, unsigned long opt)
 353{
 354	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
 355	struct hci_dev *hdev = req->hdev;
 356	struct hci_cp_inquiry cp;
 357
 358	BT_DBG("%s", hdev->name);
 359
 360	if (test_bit(HCI_INQUIRY, &hdev->flags))
 361		return 0;
 362
 363	/* Start Inquiry */
 364	memcpy(&cp.lap, &ir->lap, 3);
 365	cp.length  = ir->length;
 366	cp.num_rsp = ir->num_rsp;
 367	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
 368
 369	return 0;
 370}
 371
 372int hci_inquiry(void __user *arg)
 373{
 374	__u8 __user *ptr = arg;
 375	struct hci_inquiry_req ir;
 376	struct hci_dev *hdev;
 377	int err = 0, do_inquiry = 0, max_rsp;
 378	long timeo;
 379	__u8 *buf;
 380
 381	if (copy_from_user(&ir, ptr, sizeof(ir)))
 382		return -EFAULT;
 383
 384	hdev = hci_dev_get(ir.dev_id);
 385	if (!hdev)
 386		return -ENODEV;
 387
 388	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 389		err = -EBUSY;
 390		goto done;
 391	}
 392
 393	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 394		err = -EOPNOTSUPP;
 395		goto done;
 396	}
 397
 
 
 
 
 
 398	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 399		err = -EOPNOTSUPP;
 400		goto done;
 401	}
 402
 403	/* Restrict maximum inquiry length to 60 seconds */
 404	if (ir.length > 60) {
 405		err = -EINVAL;
 406		goto done;
 407	}
 408
 409	hci_dev_lock(hdev);
 410	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 411	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
 412		hci_inquiry_cache_flush(hdev);
 413		do_inquiry = 1;
 414	}
 415	hci_dev_unlock(hdev);
 416
 417	timeo = ir.length * msecs_to_jiffies(2000);
 418
 419	if (do_inquiry) {
 420		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
 421				   timeo, NULL);
 422		if (err < 0)
 423			goto done;
 424
 425		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
 426		 * cleared). If it is interrupted by a signal, return -EINTR.
 427		 */
 428		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
 429				TASK_INTERRUPTIBLE)) {
 430			err = -EINTR;
 431			goto done;
 432		}
 433	}
 434
 435	/* for unlimited number of responses we will use buffer with
 436	 * 255 entries
 437	 */
 438	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 439
 440	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 441	 * copy it to the user space.
 442	 */
 443	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
 444	if (!buf) {
 445		err = -ENOMEM;
 446		goto done;
 447	}
 448
 449	hci_dev_lock(hdev);
 450	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 451	hci_dev_unlock(hdev);
 452
 453	BT_DBG("num_rsp %d", ir.num_rsp);
 454
 455	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 456		ptr += sizeof(ir);
 457		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 458				 ir.num_rsp))
 459			err = -EFAULT;
 460	} else
 461		err = -EFAULT;
 462
 463	kfree(buf);
 464
 465done:
 466	hci_dev_put(hdev);
 467	return err;
 468}
 469
 470static int hci_dev_do_open(struct hci_dev *hdev)
 471{
 472	int ret = 0;
 473
 474	BT_DBG("%s %p", hdev->name, hdev);
 475
 476	hci_req_sync_lock(hdev);
 477
 478	ret = hci_dev_open_sync(hdev);
 479
 480	hci_req_sync_unlock(hdev);
 481	return ret;
 482}
 483
 484/* ---- HCI ioctl helpers ---- */
 485
 486int hci_dev_open(__u16 dev)
 487{
 488	struct hci_dev *hdev;
 489	int err;
 490
 491	hdev = hci_dev_get(dev);
 492	if (!hdev)
 493		return -ENODEV;
 494
 495	/* Devices that are marked as unconfigured can only be powered
 496	 * up as user channel. Trying to bring them up as normal devices
 497	 * will result into a failure. Only user channel operation is
 498	 * possible.
 499	 *
 500	 * When this function is called for a user channel, the flag
 501	 * HCI_USER_CHANNEL will be set first before attempting to
 502	 * open the device.
 503	 */
 504	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
 505	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 506		err = -EOPNOTSUPP;
 507		goto done;
 508	}
 509
 510	/* We need to ensure that no other power on/off work is pending
 511	 * before proceeding to call hci_dev_do_open. This is
 512	 * particularly important if the setup procedure has not yet
 513	 * completed.
 514	 */
 515	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 516		cancel_delayed_work(&hdev->power_off);
 517
 518	/* After this call it is guaranteed that the setup procedure
 519	 * has finished. This means that error conditions like RFKILL
 520	 * or no valid public or static random address apply.
 521	 */
 522	flush_workqueue(hdev->req_workqueue);
 523
 524	/* For controllers not using the management interface and that
 525	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
 526	 * so that pairing works for them. Once the management interface
 527	 * is in use this bit will be cleared again and userspace has
 528	 * to explicitly enable it.
 529	 */
 530	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 531	    !hci_dev_test_flag(hdev, HCI_MGMT))
 532		hci_dev_set_flag(hdev, HCI_BONDABLE);
 533
 534	err = hci_dev_do_open(hdev);
 535
 536done:
 537	hci_dev_put(hdev);
 538	return err;
 539}
 540
 541int hci_dev_do_close(struct hci_dev *hdev)
 542{
 543	int err;
 544
 545	BT_DBG("%s %p", hdev->name, hdev);
 546
 547	hci_req_sync_lock(hdev);
 548
 549	err = hci_dev_close_sync(hdev);
 550
 551	hci_req_sync_unlock(hdev);
 552
 553	return err;
 554}
 555
 556int hci_dev_close(__u16 dev)
 557{
 558	struct hci_dev *hdev;
 559	int err;
 560
 561	hdev = hci_dev_get(dev);
 562	if (!hdev)
 563		return -ENODEV;
 564
 565	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 566		err = -EBUSY;
 567		goto done;
 568	}
 569
 570	cancel_work_sync(&hdev->power_on);
 571	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 572		cancel_delayed_work(&hdev->power_off);
 573
 574	err = hci_dev_do_close(hdev);
 575
 576done:
 577	hci_dev_put(hdev);
 578	return err;
 579}
 580
 581static int hci_dev_do_reset(struct hci_dev *hdev)
 582{
 583	int ret;
 584
 585	BT_DBG("%s %p", hdev->name, hdev);
 586
 587	hci_req_sync_lock(hdev);
 588
 589	/* Drop queues */
 590	skb_queue_purge(&hdev->rx_q);
 591	skb_queue_purge(&hdev->cmd_q);
 592
 593	/* Cancel these to avoid queueing non-chained pending work */
 594	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 595	/* Wait for
 596	 *
 597	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
 598	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
 599	 *
 600	 * inside RCU section to see the flag or complete scheduling.
 601	 */
 602	synchronize_rcu();
 603	/* Explicitly cancel works in case scheduled after setting the flag. */
 604	cancel_delayed_work(&hdev->cmd_timer);
 605	cancel_delayed_work(&hdev->ncmd_timer);
 606
 607	/* Avoid potential lockdep warnings from the *_flush() calls by
 608	 * ensuring the workqueue is empty up front.
 609	 */
 610	drain_workqueue(hdev->workqueue);
 611
 612	hci_dev_lock(hdev);
 613	hci_inquiry_cache_flush(hdev);
 614	hci_conn_hash_flush(hdev);
 615	hci_dev_unlock(hdev);
 616
 617	if (hdev->flush)
 618		hdev->flush(hdev);
 619
 620	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 621
 622	atomic_set(&hdev->cmd_cnt, 1);
 623	hdev->acl_cnt = 0;
 624	hdev->sco_cnt = 0;
 625	hdev->le_cnt = 0;
 626	hdev->iso_cnt = 0;
 627
 628	ret = hci_reset_sync(hdev);
 629
 630	hci_req_sync_unlock(hdev);
 631	return ret;
 632}
 633
 634int hci_dev_reset(__u16 dev)
 635{
 636	struct hci_dev *hdev;
 637	int err;
 638
 639	hdev = hci_dev_get(dev);
 640	if (!hdev)
 641		return -ENODEV;
 642
 643	if (!test_bit(HCI_UP, &hdev->flags)) {
 644		err = -ENETDOWN;
 645		goto done;
 646	}
 647
 648	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 649		err = -EBUSY;
 650		goto done;
 651	}
 652
 653	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 654		err = -EOPNOTSUPP;
 655		goto done;
 656	}
 657
 658	err = hci_dev_do_reset(hdev);
 659
 660done:
 661	hci_dev_put(hdev);
 662	return err;
 663}
 664
 665int hci_dev_reset_stat(__u16 dev)
 666{
 667	struct hci_dev *hdev;
 668	int ret = 0;
 669
 670	hdev = hci_dev_get(dev);
 671	if (!hdev)
 672		return -ENODEV;
 673
 674	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 675		ret = -EBUSY;
 676		goto done;
 677	}
 678
 679	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 680		ret = -EOPNOTSUPP;
 681		goto done;
 682	}
 683
 684	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 685
 686done:
 687	hci_dev_put(hdev);
 688	return ret;
 689}
 690
 691static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
 692{
 693	bool conn_changed, discov_changed;
 694
 695	BT_DBG("%s scan 0x%02x", hdev->name, scan);
 696
 697	if ((scan & SCAN_PAGE))
 698		conn_changed = !hci_dev_test_and_set_flag(hdev,
 699							  HCI_CONNECTABLE);
 700	else
 701		conn_changed = hci_dev_test_and_clear_flag(hdev,
 702							   HCI_CONNECTABLE);
 703
 704	if ((scan & SCAN_INQUIRY)) {
 705		discov_changed = !hci_dev_test_and_set_flag(hdev,
 706							    HCI_DISCOVERABLE);
 707	} else {
 708		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
 709		discov_changed = hci_dev_test_and_clear_flag(hdev,
 710							     HCI_DISCOVERABLE);
 711	}
 712
 713	if (!hci_dev_test_flag(hdev, HCI_MGMT))
 714		return;
 715
 716	if (conn_changed || discov_changed) {
 717		/* In case this was disabled through mgmt */
 718		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 719
 720		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 721			hci_update_adv_data(hdev, hdev->cur_adv_instance);
 722
 723		mgmt_new_settings(hdev);
 724	}
 725}
 726
 727int hci_dev_cmd(unsigned int cmd, void __user *arg)
 728{
 729	struct hci_dev *hdev;
 730	struct hci_dev_req dr;
 731	int err = 0;
 732
 733	if (copy_from_user(&dr, arg, sizeof(dr)))
 734		return -EFAULT;
 735
 736	hdev = hci_dev_get(dr.dev_id);
 737	if (!hdev)
 738		return -ENODEV;
 739
 740	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 741		err = -EBUSY;
 742		goto done;
 743	}
 744
 745	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 746		err = -EOPNOTSUPP;
 747		goto done;
 748	}
 749
 
 
 
 
 
 750	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 751		err = -EOPNOTSUPP;
 752		goto done;
 753	}
 754
 755	switch (cmd) {
 756	case HCISETAUTH:
 757		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 758				   HCI_INIT_TIMEOUT, NULL);
 759		break;
 760
 761	case HCISETENCRYPT:
 762		if (!lmp_encrypt_capable(hdev)) {
 763			err = -EOPNOTSUPP;
 764			break;
 765		}
 766
 767		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 768			/* Auth must be enabled first */
 769			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 770					   HCI_INIT_TIMEOUT, NULL);
 771			if (err)
 772				break;
 773		}
 774
 775		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
 776				   HCI_INIT_TIMEOUT, NULL);
 777		break;
 778
 779	case HCISETSCAN:
 780		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
 781				   HCI_INIT_TIMEOUT, NULL);
 782
 783		/* Ensure that the connectable and discoverable states
 784		 * get correctly modified as this was a non-mgmt change.
 785		 */
 786		if (!err)
 787			hci_update_passive_scan_state(hdev, dr.dev_opt);
 788		break;
 789
 790	case HCISETLINKPOL:
 791		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
 792				   HCI_INIT_TIMEOUT, NULL);
 793		break;
 794
 795	case HCISETLINKMODE:
 796		hdev->link_mode = ((__u16) dr.dev_opt) &
 797					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 798		break;
 799
 800	case HCISETPTYPE:
 801		if (hdev->pkt_type == (__u16) dr.dev_opt)
 802			break;
 803
 804		hdev->pkt_type = (__u16) dr.dev_opt;
 805		mgmt_phy_configuration_changed(hdev, NULL);
 806		break;
 807
 808	case HCISETACLMTU:
 809		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 810		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 811		break;
 812
 813	case HCISETSCOMTU:
 814		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 815		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 816		break;
 817
 818	default:
 819		err = -EINVAL;
 820		break;
 821	}
 822
 823done:
 824	hci_dev_put(hdev);
 825	return err;
 826}
 827
 828int hci_get_dev_list(void __user *arg)
 829{
 830	struct hci_dev *hdev;
 831	struct hci_dev_list_req *dl;
 832	struct hci_dev_req *dr;
 833	int n = 0, size, err;
 834	__u16 dev_num;
 835
 836	if (get_user(dev_num, (__u16 __user *) arg))
 837		return -EFAULT;
 838
 839	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
 840		return -EINVAL;
 841
 842	size = sizeof(*dl) + dev_num * sizeof(*dr);
 843
 844	dl = kzalloc(size, GFP_KERNEL);
 845	if (!dl)
 846		return -ENOMEM;
 847
 848	dr = dl->dev_req;
 849
 850	read_lock(&hci_dev_list_lock);
 851	list_for_each_entry(hdev, &hci_dev_list, list) {
 852		unsigned long flags = hdev->flags;
 853
 854		/* When the auto-off is configured it means the transport
 855		 * is running, but in that case still indicate that the
 856		 * device is actually down.
 857		 */
 858		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 859			flags &= ~BIT(HCI_UP);
 860
 861		(dr + n)->dev_id  = hdev->id;
 862		(dr + n)->dev_opt = flags;
 863
 864		if (++n >= dev_num)
 865			break;
 866	}
 867	read_unlock(&hci_dev_list_lock);
 868
 869	dl->dev_num = n;
 870	size = sizeof(*dl) + n * sizeof(*dr);
 871
 872	err = copy_to_user(arg, dl, size);
 873	kfree(dl);
 874
 875	return err ? -EFAULT : 0;
 876}
 877
 878int hci_get_dev_info(void __user *arg)
 879{
 880	struct hci_dev *hdev;
 881	struct hci_dev_info di;
 882	unsigned long flags;
 883	int err = 0;
 884
 885	if (copy_from_user(&di, arg, sizeof(di)))
 886		return -EFAULT;
 887
 888	hdev = hci_dev_get(di.dev_id);
 889	if (!hdev)
 890		return -ENODEV;
 891
 892	/* When the auto-off is configured it means the transport
 893	 * is running, but in that case still indicate that the
 894	 * device is actually down.
 895	 */
 896	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 897		flags = hdev->flags & ~BIT(HCI_UP);
 898	else
 899		flags = hdev->flags;
 900
 901	strscpy(di.name, hdev->name, sizeof(di.name));
 902	di.bdaddr   = hdev->bdaddr;
 903	di.type     = (hdev->bus & 0x0f);
 904	di.flags    = flags;
 905	di.pkt_type = hdev->pkt_type;
 906	if (lmp_bredr_capable(hdev)) {
 907		di.acl_mtu  = hdev->acl_mtu;
 908		di.acl_pkts = hdev->acl_pkts;
 909		di.sco_mtu  = hdev->sco_mtu;
 910		di.sco_pkts = hdev->sco_pkts;
 911	} else {
 912		di.acl_mtu  = hdev->le_mtu;
 913		di.acl_pkts = hdev->le_pkts;
 914		di.sco_mtu  = 0;
 915		di.sco_pkts = 0;
 916	}
 917	di.link_policy = hdev->link_policy;
 918	di.link_mode   = hdev->link_mode;
 919
 920	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
 921	memcpy(&di.features, &hdev->features, sizeof(di.features));
 922
 923	if (copy_to_user(arg, &di, sizeof(di)))
 924		err = -EFAULT;
 925
 926	hci_dev_put(hdev);
 927
 928	return err;
 929}
 930
 931/* ---- Interface to HCI drivers ---- */
 932
 933static int hci_dev_do_poweroff(struct hci_dev *hdev)
 934{
 935	int err;
 936
 937	BT_DBG("%s %p", hdev->name, hdev);
 938
 939	hci_req_sync_lock(hdev);
 940
 941	err = hci_set_powered_sync(hdev, false);
 942
 943	hci_req_sync_unlock(hdev);
 944
 945	return err;
 946}
 947
 948static int hci_rfkill_set_block(void *data, bool blocked)
 949{
 950	struct hci_dev *hdev = data;
 951	int err;
 952
 953	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
 954
 955	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
 956		return -EBUSY;
 957
 958	if (blocked == hci_dev_test_flag(hdev, HCI_RFKILLED))
 959		return 0;
 960
 961	if (blocked) {
 962		hci_dev_set_flag(hdev, HCI_RFKILLED);
 963
 964		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 965		    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
 966			err = hci_dev_do_poweroff(hdev);
 967			if (err) {
 968				bt_dev_err(hdev, "Error when powering off device on rfkill (%d)",
 969					   err);
 970
 971				/* Make sure the device is still closed even if
 972				 * anything during power off sequence (eg.
 973				 * disconnecting devices) failed.
 974				 */
 975				hci_dev_do_close(hdev);
 976			}
 977		}
 978	} else {
 979		hci_dev_clear_flag(hdev, HCI_RFKILLED);
 980	}
 981
 982	return 0;
 983}
 984
 985static const struct rfkill_ops hci_rfkill_ops = {
 986	.set_block = hci_rfkill_set_block,
 987};
 988
 989static void hci_power_on(struct work_struct *work)
 990{
 991	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 992	int err;
 993
 994	BT_DBG("%s", hdev->name);
 995
 996	if (test_bit(HCI_UP, &hdev->flags) &&
 997	    hci_dev_test_flag(hdev, HCI_MGMT) &&
 998	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
 999		cancel_delayed_work(&hdev->power_off);
1000		err = hci_powered_update_sync(hdev);
1001		mgmt_power_on(hdev, err);
1002		return;
1003	}
1004
1005	err = hci_dev_do_open(hdev);
1006	if (err < 0) {
1007		hci_dev_lock(hdev);
1008		mgmt_set_powered_failed(hdev, err);
1009		hci_dev_unlock(hdev);
1010		return;
1011	}
1012
1013	/* During the HCI setup phase, a few error conditions are
1014	 * ignored and they need to be checked now. If they are still
1015	 * valid, it is important to turn the device back off.
1016	 */
1017	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
1018	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
1019	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
 
1020	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1021		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1022		hci_dev_do_close(hdev);
1023	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1024		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1025				   HCI_AUTO_OFF_TIMEOUT);
1026	}
1027
1028	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1029		/* For unconfigured devices, set the HCI_RAW flag
1030		 * so that userspace can easily identify them.
1031		 */
1032		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1033			set_bit(HCI_RAW, &hdev->flags);
1034
1035		/* For fully configured devices, this will send
1036		 * the Index Added event. For unconfigured devices,
1037		 * it will send Unconfigued Index Added event.
1038		 *
1039		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1040		 * and no event will be send.
1041		 */
1042		mgmt_index_added(hdev);
1043	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1044		/* When the controller is now configured, then it
1045		 * is important to clear the HCI_RAW flag.
1046		 */
1047		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1048			clear_bit(HCI_RAW, &hdev->flags);
1049
1050		/* Powering on the controller with HCI_CONFIG set only
1051		 * happens with the transition from unconfigured to
1052		 * configured. This will send the Index Added event.
1053		 */
1054		mgmt_index_added(hdev);
1055	}
1056}
1057
1058static void hci_power_off(struct work_struct *work)
1059{
1060	struct hci_dev *hdev = container_of(work, struct hci_dev,
1061					    power_off.work);
1062
1063	BT_DBG("%s", hdev->name);
1064
1065	hci_dev_do_close(hdev);
1066}
1067
1068static void hci_error_reset(struct work_struct *work)
1069{
1070	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1071
1072	hci_dev_hold(hdev);
1073	BT_DBG("%s", hdev->name);
1074
1075	if (hdev->hw_error)
1076		hdev->hw_error(hdev, hdev->hw_error_code);
1077	else
1078		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1079
1080	if (!hci_dev_do_close(hdev))
1081		hci_dev_do_open(hdev);
1082
1083	hci_dev_put(hdev);
1084}
1085
1086void hci_uuids_clear(struct hci_dev *hdev)
1087{
1088	struct bt_uuid *uuid, *tmp;
1089
1090	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1091		list_del(&uuid->list);
1092		kfree(uuid);
1093	}
1094}
1095
1096void hci_link_keys_clear(struct hci_dev *hdev)
1097{
1098	struct link_key *key, *tmp;
1099
1100	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1101		list_del_rcu(&key->list);
1102		kfree_rcu(key, rcu);
1103	}
1104}
1105
1106void hci_smp_ltks_clear(struct hci_dev *hdev)
1107{
1108	struct smp_ltk *k, *tmp;
1109
1110	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1111		list_del_rcu(&k->list);
1112		kfree_rcu(k, rcu);
1113	}
1114}
1115
1116void hci_smp_irks_clear(struct hci_dev *hdev)
1117{
1118	struct smp_irk *k, *tmp;
1119
1120	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1121		list_del_rcu(&k->list);
1122		kfree_rcu(k, rcu);
1123	}
1124}
1125
1126void hci_blocked_keys_clear(struct hci_dev *hdev)
1127{
1128	struct blocked_key *b, *tmp;
1129
1130	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1131		list_del_rcu(&b->list);
1132		kfree_rcu(b, rcu);
1133	}
1134}
1135
1136bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1137{
1138	bool blocked = false;
1139	struct blocked_key *b;
1140
1141	rcu_read_lock();
1142	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1143		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1144			blocked = true;
1145			break;
1146		}
1147	}
1148
1149	rcu_read_unlock();
1150	return blocked;
1151}
1152
1153struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1154{
1155	struct link_key *k;
1156
1157	rcu_read_lock();
1158	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1159		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1160			rcu_read_unlock();
1161
1162			if (hci_is_blocked_key(hdev,
1163					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1164					       k->val)) {
1165				bt_dev_warn_ratelimited(hdev,
1166							"Link key blocked for %pMR",
1167							&k->bdaddr);
1168				return NULL;
1169			}
1170
1171			return k;
1172		}
1173	}
1174	rcu_read_unlock();
1175
1176	return NULL;
1177}
1178
1179static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1180			       u8 key_type, u8 old_key_type)
1181{
1182	/* Legacy key */
1183	if (key_type < 0x03)
1184		return true;
1185
1186	/* Debug keys are insecure so don't store them persistently */
1187	if (key_type == HCI_LK_DEBUG_COMBINATION)
1188		return false;
1189
1190	/* Changed combination key and there's no previous one */
1191	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1192		return false;
1193
1194	/* Security mode 3 case */
1195	if (!conn)
1196		return true;
1197
1198	/* BR/EDR key derived using SC from an LE link */
1199	if (conn->type == LE_LINK)
1200		return true;
1201
1202	/* Neither local nor remote side had no-bonding as requirement */
1203	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1204		return true;
1205
1206	/* Local side had dedicated bonding as requirement */
1207	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1208		return true;
1209
1210	/* Remote side had dedicated bonding as requirement */
1211	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1212		return true;
1213
1214	/* If none of the above criteria match, then don't store the key
1215	 * persistently */
1216	return false;
1217}
1218
1219static u8 ltk_role(u8 type)
1220{
1221	if (type == SMP_LTK)
1222		return HCI_ROLE_MASTER;
1223
1224	return HCI_ROLE_SLAVE;
1225}
1226
1227struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1228			     u8 addr_type, u8 role)
1229{
1230	struct smp_ltk *k;
1231
1232	rcu_read_lock();
1233	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1234		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1235			continue;
1236
1237		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1238			rcu_read_unlock();
1239
1240			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1241					       k->val)) {
1242				bt_dev_warn_ratelimited(hdev,
1243							"LTK blocked for %pMR",
1244							&k->bdaddr);
1245				return NULL;
1246			}
1247
1248			return k;
1249		}
1250	}
1251	rcu_read_unlock();
1252
1253	return NULL;
1254}
1255
1256struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1257{
1258	struct smp_irk *irk_to_return = NULL;
1259	struct smp_irk *irk;
1260
1261	rcu_read_lock();
1262	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1263		if (!bacmp(&irk->rpa, rpa)) {
1264			irk_to_return = irk;
1265			goto done;
1266		}
1267	}
1268
1269	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1270		if (smp_irk_matches(hdev, irk->val, rpa)) {
1271			bacpy(&irk->rpa, rpa);
1272			irk_to_return = irk;
1273			goto done;
1274		}
1275	}
1276
1277done:
1278	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1279						irk_to_return->val)) {
1280		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1281					&irk_to_return->bdaddr);
1282		irk_to_return = NULL;
1283	}
1284
1285	rcu_read_unlock();
1286
1287	return irk_to_return;
1288}
1289
1290struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1291				     u8 addr_type)
1292{
1293	struct smp_irk *irk_to_return = NULL;
1294	struct smp_irk *irk;
1295
1296	/* Identity Address must be public or static random */
1297	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1298		return NULL;
1299
1300	rcu_read_lock();
1301	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1302		if (addr_type == irk->addr_type &&
1303		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1304			irk_to_return = irk;
1305			goto done;
1306		}
1307	}
1308
1309done:
1310
1311	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1312						irk_to_return->val)) {
1313		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1314					&irk_to_return->bdaddr);
1315		irk_to_return = NULL;
1316	}
1317
1318	rcu_read_unlock();
1319
1320	return irk_to_return;
1321}
1322
1323struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1324				  bdaddr_t *bdaddr, u8 *val, u8 type,
1325				  u8 pin_len, bool *persistent)
1326{
1327	struct link_key *key, *old_key;
1328	u8 old_key_type;
1329
1330	old_key = hci_find_link_key(hdev, bdaddr);
1331	if (old_key) {
1332		old_key_type = old_key->type;
1333		key = old_key;
1334	} else {
1335		old_key_type = conn ? conn->key_type : 0xff;
1336		key = kzalloc(sizeof(*key), GFP_KERNEL);
1337		if (!key)
1338			return NULL;
1339		list_add_rcu(&key->list, &hdev->link_keys);
1340	}
1341
1342	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1343
1344	/* Some buggy controller combinations generate a changed
1345	 * combination key for legacy pairing even when there's no
1346	 * previous key */
1347	if (type == HCI_LK_CHANGED_COMBINATION &&
1348	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1349		type = HCI_LK_COMBINATION;
1350		if (conn)
1351			conn->key_type = type;
1352	}
1353
1354	bacpy(&key->bdaddr, bdaddr);
1355	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1356	key->pin_len = pin_len;
1357
1358	if (type == HCI_LK_CHANGED_COMBINATION)
1359		key->type = old_key_type;
1360	else
1361		key->type = type;
1362
1363	if (persistent)
1364		*persistent = hci_persistent_key(hdev, conn, type,
1365						 old_key_type);
1366
1367	return key;
1368}
1369
1370struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1371			    u8 addr_type, u8 type, u8 authenticated,
1372			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1373{
1374	struct smp_ltk *key, *old_key;
1375	u8 role = ltk_role(type);
1376
1377	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1378	if (old_key)
1379		key = old_key;
1380	else {
1381		key = kzalloc(sizeof(*key), GFP_KERNEL);
1382		if (!key)
1383			return NULL;
1384		list_add_rcu(&key->list, &hdev->long_term_keys);
1385	}
1386
1387	bacpy(&key->bdaddr, bdaddr);
1388	key->bdaddr_type = addr_type;
1389	memcpy(key->val, tk, sizeof(key->val));
1390	key->authenticated = authenticated;
1391	key->ediv = ediv;
1392	key->rand = rand;
1393	key->enc_size = enc_size;
1394	key->type = type;
1395
1396	return key;
1397}
1398
1399struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1400			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1401{
1402	struct smp_irk *irk;
1403
1404	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1405	if (!irk) {
1406		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1407		if (!irk)
1408			return NULL;
1409
1410		bacpy(&irk->bdaddr, bdaddr);
1411		irk->addr_type = addr_type;
1412
1413		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1414	}
1415
1416	memcpy(irk->val, val, 16);
1417	bacpy(&irk->rpa, rpa);
1418
1419	return irk;
1420}
1421
1422int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1423{
1424	struct link_key *key;
1425
1426	key = hci_find_link_key(hdev, bdaddr);
1427	if (!key)
1428		return -ENOENT;
1429
1430	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1431
1432	list_del_rcu(&key->list);
1433	kfree_rcu(key, rcu);
1434
1435	return 0;
1436}
1437
1438int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1439{
1440	struct smp_ltk *k, *tmp;
1441	int removed = 0;
1442
1443	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1444		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1445			continue;
1446
1447		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1448
1449		list_del_rcu(&k->list);
1450		kfree_rcu(k, rcu);
1451		removed++;
1452	}
1453
1454	return removed ? 0 : -ENOENT;
1455}
1456
1457void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1458{
1459	struct smp_irk *k, *tmp;
1460
1461	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1462		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1463			continue;
1464
1465		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1466
1467		list_del_rcu(&k->list);
1468		kfree_rcu(k, rcu);
1469	}
1470}
1471
1472bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1473{
1474	struct smp_ltk *k;
1475	struct smp_irk *irk;
1476	u8 addr_type;
1477
1478	if (type == BDADDR_BREDR) {
1479		if (hci_find_link_key(hdev, bdaddr))
1480			return true;
1481		return false;
1482	}
1483
1484	/* Convert to HCI addr type which struct smp_ltk uses */
1485	if (type == BDADDR_LE_PUBLIC)
1486		addr_type = ADDR_LE_DEV_PUBLIC;
1487	else
1488		addr_type = ADDR_LE_DEV_RANDOM;
1489
1490	irk = hci_get_irk(hdev, bdaddr, addr_type);
1491	if (irk) {
1492		bdaddr = &irk->bdaddr;
1493		addr_type = irk->addr_type;
1494	}
1495
1496	rcu_read_lock();
1497	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1498		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1499			rcu_read_unlock();
1500			return true;
1501		}
1502	}
1503	rcu_read_unlock();
1504
1505	return false;
1506}
1507
1508/* HCI command timer function */
1509static void hci_cmd_timeout(struct work_struct *work)
1510{
1511	struct hci_dev *hdev = container_of(work, struct hci_dev,
1512					    cmd_timer.work);
1513
1514	if (hdev->req_skb) {
1515		u16 opcode = hci_skb_opcode(hdev->req_skb);
 
1516
1517		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1518
1519		hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT);
1520	} else {
1521		bt_dev_err(hdev, "command tx timeout");
1522	}
1523
1524	if (hdev->cmd_timeout)
1525		hdev->cmd_timeout(hdev);
1526
1527	atomic_set(&hdev->cmd_cnt, 1);
1528	queue_work(hdev->workqueue, &hdev->cmd_work);
1529}
1530
1531/* HCI ncmd timer function */
1532static void hci_ncmd_timeout(struct work_struct *work)
1533{
1534	struct hci_dev *hdev = container_of(work, struct hci_dev,
1535					    ncmd_timer.work);
1536
1537	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1538
1539	/* During HCI_INIT phase no events can be injected if the ncmd timer
1540	 * triggers since the procedure has its own timeout handling.
1541	 */
1542	if (test_bit(HCI_INIT, &hdev->flags))
1543		return;
1544
1545	/* This is an irrecoverable state, inject hardware error event */
1546	hci_reset_dev(hdev);
1547}
1548
1549struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1550					  bdaddr_t *bdaddr, u8 bdaddr_type)
1551{
1552	struct oob_data *data;
1553
1554	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1555		if (bacmp(bdaddr, &data->bdaddr) != 0)
1556			continue;
1557		if (data->bdaddr_type != bdaddr_type)
1558			continue;
1559		return data;
1560	}
1561
1562	return NULL;
1563}
1564
1565int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1566			       u8 bdaddr_type)
1567{
1568	struct oob_data *data;
1569
1570	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1571	if (!data)
1572		return -ENOENT;
1573
1574	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1575
1576	list_del(&data->list);
1577	kfree(data);
1578
1579	return 0;
1580}
1581
1582void hci_remote_oob_data_clear(struct hci_dev *hdev)
1583{
1584	struct oob_data *data, *n;
1585
1586	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1587		list_del(&data->list);
1588		kfree(data);
1589	}
1590}
1591
1592int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1593			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1594			    u8 *hash256, u8 *rand256)
1595{
1596	struct oob_data *data;
1597
1598	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1599	if (!data) {
1600		data = kmalloc(sizeof(*data), GFP_KERNEL);
1601		if (!data)
1602			return -ENOMEM;
1603
1604		bacpy(&data->bdaddr, bdaddr);
1605		data->bdaddr_type = bdaddr_type;
1606		list_add(&data->list, &hdev->remote_oob_data);
1607	}
1608
1609	if (hash192 && rand192) {
1610		memcpy(data->hash192, hash192, sizeof(data->hash192));
1611		memcpy(data->rand192, rand192, sizeof(data->rand192));
1612		if (hash256 && rand256)
1613			data->present = 0x03;
1614	} else {
1615		memset(data->hash192, 0, sizeof(data->hash192));
1616		memset(data->rand192, 0, sizeof(data->rand192));
1617		if (hash256 && rand256)
1618			data->present = 0x02;
1619		else
1620			data->present = 0x00;
1621	}
1622
1623	if (hash256 && rand256) {
1624		memcpy(data->hash256, hash256, sizeof(data->hash256));
1625		memcpy(data->rand256, rand256, sizeof(data->rand256));
1626	} else {
1627		memset(data->hash256, 0, sizeof(data->hash256));
1628		memset(data->rand256, 0, sizeof(data->rand256));
1629		if (hash192 && rand192)
1630			data->present = 0x01;
1631	}
1632
1633	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1634
1635	return 0;
1636}
1637
1638/* This function requires the caller holds hdev->lock */
1639struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1640{
1641	struct adv_info *adv_instance;
1642
1643	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1644		if (adv_instance->instance == instance)
1645			return adv_instance;
1646	}
1647
1648	return NULL;
1649}
1650
1651/* This function requires the caller holds hdev->lock */
1652struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1653{
1654	struct adv_info *cur_instance;
1655
1656	cur_instance = hci_find_adv_instance(hdev, instance);
1657	if (!cur_instance)
1658		return NULL;
1659
1660	if (cur_instance == list_last_entry(&hdev->adv_instances,
1661					    struct adv_info, list))
1662		return list_first_entry(&hdev->adv_instances,
1663						 struct adv_info, list);
1664	else
1665		return list_next_entry(cur_instance, list);
1666}
1667
1668/* This function requires the caller holds hdev->lock */
1669int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1670{
1671	struct adv_info *adv_instance;
1672
1673	adv_instance = hci_find_adv_instance(hdev, instance);
1674	if (!adv_instance)
1675		return -ENOENT;
1676
1677	BT_DBG("%s removing %dMR", hdev->name, instance);
1678
1679	if (hdev->cur_adv_instance == instance) {
1680		if (hdev->adv_instance_timeout) {
1681			cancel_delayed_work(&hdev->adv_instance_expire);
1682			hdev->adv_instance_timeout = 0;
1683		}
1684		hdev->cur_adv_instance = 0x00;
1685	}
1686
1687	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1688
1689	list_del(&adv_instance->list);
1690	kfree(adv_instance);
1691
1692	hdev->adv_instance_cnt--;
1693
1694	return 0;
1695}
1696
1697void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1698{
1699	struct adv_info *adv_instance, *n;
1700
1701	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1702		adv_instance->rpa_expired = rpa_expired;
1703}
1704
1705/* This function requires the caller holds hdev->lock */
1706void hci_adv_instances_clear(struct hci_dev *hdev)
1707{
1708	struct adv_info *adv_instance, *n;
1709
1710	if (hdev->adv_instance_timeout) {
1711		cancel_delayed_work(&hdev->adv_instance_expire);
1712		hdev->adv_instance_timeout = 0;
1713	}
1714
1715	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1716		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1717		list_del(&adv_instance->list);
1718		kfree(adv_instance);
1719	}
1720
1721	hdev->adv_instance_cnt = 0;
1722	hdev->cur_adv_instance = 0x00;
1723}
1724
1725static void adv_instance_rpa_expired(struct work_struct *work)
1726{
1727	struct adv_info *adv_instance = container_of(work, struct adv_info,
1728						     rpa_expired_cb.work);
1729
1730	BT_DBG("");
1731
1732	adv_instance->rpa_expired = true;
1733}
1734
1735/* This function requires the caller holds hdev->lock */
1736struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1737				      u32 flags, u16 adv_data_len, u8 *adv_data,
1738				      u16 scan_rsp_len, u8 *scan_rsp_data,
1739				      u16 timeout, u16 duration, s8 tx_power,
1740				      u32 min_interval, u32 max_interval,
1741				      u8 mesh_handle)
1742{
1743	struct adv_info *adv;
1744
1745	adv = hci_find_adv_instance(hdev, instance);
1746	if (adv) {
1747		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1748		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1749		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1750	} else {
1751		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1752		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1753			return ERR_PTR(-EOVERFLOW);
1754
1755		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1756		if (!adv)
1757			return ERR_PTR(-ENOMEM);
1758
1759		adv->pending = true;
1760		adv->instance = instance;
1761
1762		/* If controller support only one set and the instance is set to
1763		 * 1 then there is no option other than using handle 0x00.
1764		 */
1765		if (hdev->le_num_of_adv_sets == 1 && instance == 1)
1766			adv->handle = 0x00;
1767		else
1768			adv->handle = instance;
1769
1770		list_add(&adv->list, &hdev->adv_instances);
1771		hdev->adv_instance_cnt++;
1772	}
1773
1774	adv->flags = flags;
1775	adv->min_interval = min_interval;
1776	adv->max_interval = max_interval;
1777	adv->tx_power = tx_power;
1778	/* Defining a mesh_handle changes the timing units to ms,
1779	 * rather than seconds, and ties the instance to the requested
1780	 * mesh_tx queue.
1781	 */
1782	adv->mesh = mesh_handle;
1783
1784	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1785				  scan_rsp_len, scan_rsp_data);
1786
1787	adv->timeout = timeout;
1788	adv->remaining_time = timeout;
1789
1790	if (duration == 0)
1791		adv->duration = hdev->def_multi_adv_rotation_duration;
1792	else
1793		adv->duration = duration;
1794
1795	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1796
1797	BT_DBG("%s for %dMR", hdev->name, instance);
1798
1799	return adv;
1800}
1801
1802/* This function requires the caller holds hdev->lock */
1803struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1804				      u32 flags, u8 data_len, u8 *data,
1805				      u32 min_interval, u32 max_interval)
1806{
1807	struct adv_info *adv;
1808
1809	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1810				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1811				   min_interval, max_interval, 0);
1812	if (IS_ERR(adv))
1813		return adv;
1814
1815	adv->periodic = true;
1816	adv->per_adv_data_len = data_len;
1817
1818	if (data)
1819		memcpy(adv->per_adv_data, data, data_len);
1820
1821	return adv;
1822}
1823
1824/* This function requires the caller holds hdev->lock */
1825int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1826			      u16 adv_data_len, u8 *adv_data,
1827			      u16 scan_rsp_len, u8 *scan_rsp_data)
1828{
1829	struct adv_info *adv;
1830
1831	adv = hci_find_adv_instance(hdev, instance);
1832
1833	/* If advertisement doesn't exist, we can't modify its data */
1834	if (!adv)
1835		return -ENOENT;
1836
1837	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1838		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1839		memcpy(adv->adv_data, adv_data, adv_data_len);
1840		adv->adv_data_len = adv_data_len;
1841		adv->adv_data_changed = true;
1842	}
1843
1844	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1845		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1846		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1847		adv->scan_rsp_len = scan_rsp_len;
1848		adv->scan_rsp_changed = true;
1849	}
1850
1851	/* Mark as changed if there are flags which would affect it */
1852	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1853	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1854		adv->scan_rsp_changed = true;
1855
1856	return 0;
1857}
1858
1859/* This function requires the caller holds hdev->lock */
1860u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1861{
1862	u32 flags;
1863	struct adv_info *adv;
1864
1865	if (instance == 0x00) {
1866		/* Instance 0 always manages the "Tx Power" and "Flags"
1867		 * fields
1868		 */
1869		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1870
1871		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1872		 * corresponds to the "connectable" instance flag.
1873		 */
1874		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1875			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1876
1877		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1878			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1879		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1880			flags |= MGMT_ADV_FLAG_DISCOV;
1881
1882		return flags;
1883	}
1884
1885	adv = hci_find_adv_instance(hdev, instance);
1886
1887	/* Return 0 when we got an invalid instance identifier. */
1888	if (!adv)
1889		return 0;
1890
1891	return adv->flags;
1892}
1893
1894bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1895{
1896	struct adv_info *adv;
1897
1898	/* Instance 0x00 always set local name */
1899	if (instance == 0x00)
1900		return true;
1901
1902	adv = hci_find_adv_instance(hdev, instance);
1903	if (!adv)
1904		return false;
1905
1906	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1907	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1908		return true;
1909
1910	return adv->scan_rsp_len ? true : false;
1911}
1912
1913/* This function requires the caller holds hdev->lock */
1914void hci_adv_monitors_clear(struct hci_dev *hdev)
1915{
1916	struct adv_monitor *monitor;
1917	int handle;
1918
1919	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1920		hci_free_adv_monitor(hdev, monitor);
1921
1922	idr_destroy(&hdev->adv_monitors_idr);
1923}
1924
1925/* Frees the monitor structure and do some bookkeepings.
1926 * This function requires the caller holds hdev->lock.
1927 */
1928void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1929{
1930	struct adv_pattern *pattern;
1931	struct adv_pattern *tmp;
1932
1933	if (!monitor)
1934		return;
1935
1936	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1937		list_del(&pattern->list);
1938		kfree(pattern);
1939	}
1940
1941	if (monitor->handle)
1942		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1943
1944	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1945		hdev->adv_monitors_cnt--;
1946		mgmt_adv_monitor_removed(hdev, monitor->handle);
1947	}
1948
1949	kfree(monitor);
1950}
1951
1952/* Assigns handle to a monitor, and if offloading is supported and power is on,
1953 * also attempts to forward the request to the controller.
1954 * This function requires the caller holds hci_req_sync_lock.
1955 */
1956int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1957{
1958	int min, max, handle;
1959	int status = 0;
1960
1961	if (!monitor)
1962		return -EINVAL;
1963
1964	hci_dev_lock(hdev);
1965
1966	min = HCI_MIN_ADV_MONITOR_HANDLE;
1967	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1968	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1969			   GFP_KERNEL);
1970
1971	hci_dev_unlock(hdev);
1972
1973	if (handle < 0)
1974		return handle;
1975
1976	monitor->handle = handle;
1977
1978	if (!hdev_is_powered(hdev))
1979		return status;
1980
1981	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1982	case HCI_ADV_MONITOR_EXT_NONE:
1983		bt_dev_dbg(hdev, "add monitor %d status %d",
1984			   monitor->handle, status);
1985		/* Message was not forwarded to controller - not an error */
1986		break;
1987
1988	case HCI_ADV_MONITOR_EXT_MSFT:
1989		status = msft_add_monitor_pattern(hdev, monitor);
1990		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1991			   handle, status);
1992		break;
1993	}
1994
1995	return status;
1996}
1997
1998/* Attempts to tell the controller and free the monitor. If somehow the
1999 * controller doesn't have a corresponding handle, remove anyway.
2000 * This function requires the caller holds hci_req_sync_lock.
2001 */
2002static int hci_remove_adv_monitor(struct hci_dev *hdev,
2003				  struct adv_monitor *monitor)
2004{
2005	int status = 0;
2006	int handle;
2007
2008	switch (hci_get_adv_monitor_offload_ext(hdev)) {
2009	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
2010		bt_dev_dbg(hdev, "remove monitor %d status %d",
2011			   monitor->handle, status);
2012		goto free_monitor;
2013
2014	case HCI_ADV_MONITOR_EXT_MSFT:
2015		handle = monitor->handle;
2016		status = msft_remove_monitor(hdev, monitor);
2017		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
2018			   handle, status);
2019		break;
2020	}
2021
2022	/* In case no matching handle registered, just free the monitor */
2023	if (status == -ENOENT)
2024		goto free_monitor;
2025
2026	return status;
2027
2028free_monitor:
2029	if (status == -ENOENT)
2030		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
2031			    monitor->handle);
2032	hci_free_adv_monitor(hdev, monitor);
2033
2034	return status;
2035}
2036
2037/* This function requires the caller holds hci_req_sync_lock */
2038int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2039{
2040	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2041
2042	if (!monitor)
2043		return -EINVAL;
2044
2045	return hci_remove_adv_monitor(hdev, monitor);
2046}
2047
2048/* This function requires the caller holds hci_req_sync_lock */
2049int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2050{
2051	struct adv_monitor *monitor;
2052	int idr_next_id = 0;
2053	int status = 0;
2054
2055	while (1) {
2056		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2057		if (!monitor)
2058			break;
2059
2060		status = hci_remove_adv_monitor(hdev, monitor);
2061		if (status)
2062			return status;
2063
2064		idr_next_id++;
2065	}
2066
2067	return status;
2068}
2069
2070/* This function requires the caller holds hdev->lock */
2071bool hci_is_adv_monitoring(struct hci_dev *hdev)
2072{
2073	return !idr_is_empty(&hdev->adv_monitors_idr);
2074}
2075
2076int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2077{
2078	if (msft_monitor_supported(hdev))
2079		return HCI_ADV_MONITOR_EXT_MSFT;
2080
2081	return HCI_ADV_MONITOR_EXT_NONE;
2082}
2083
2084struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2085					 bdaddr_t *bdaddr, u8 type)
2086{
2087	struct bdaddr_list *b;
2088
2089	list_for_each_entry(b, bdaddr_list, list) {
2090		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2091			return b;
2092	}
2093
2094	return NULL;
2095}
2096
2097struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2098				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2099				u8 type)
2100{
2101	struct bdaddr_list_with_irk *b;
2102
2103	list_for_each_entry(b, bdaddr_list, list) {
2104		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2105			return b;
2106	}
2107
2108	return NULL;
2109}
2110
2111struct bdaddr_list_with_flags *
2112hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2113				  bdaddr_t *bdaddr, u8 type)
2114{
2115	struct bdaddr_list_with_flags *b;
2116
2117	list_for_each_entry(b, bdaddr_list, list) {
2118		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2119			return b;
2120	}
2121
2122	return NULL;
2123}
2124
2125void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2126{
2127	struct bdaddr_list *b, *n;
2128
2129	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2130		list_del(&b->list);
2131		kfree(b);
2132	}
2133}
2134
2135int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2136{
2137	struct bdaddr_list *entry;
2138
2139	if (!bacmp(bdaddr, BDADDR_ANY))
2140		return -EBADF;
2141
2142	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2143		return -EEXIST;
2144
2145	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2146	if (!entry)
2147		return -ENOMEM;
2148
2149	bacpy(&entry->bdaddr, bdaddr);
2150	entry->bdaddr_type = type;
2151
2152	list_add(&entry->list, list);
2153
2154	return 0;
2155}
2156
2157int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2158					u8 type, u8 *peer_irk, u8 *local_irk)
2159{
2160	struct bdaddr_list_with_irk *entry;
2161
2162	if (!bacmp(bdaddr, BDADDR_ANY))
2163		return -EBADF;
2164
2165	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2166		return -EEXIST;
2167
2168	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2169	if (!entry)
2170		return -ENOMEM;
2171
2172	bacpy(&entry->bdaddr, bdaddr);
2173	entry->bdaddr_type = type;
2174
2175	if (peer_irk)
2176		memcpy(entry->peer_irk, peer_irk, 16);
2177
2178	if (local_irk)
2179		memcpy(entry->local_irk, local_irk, 16);
2180
2181	list_add(&entry->list, list);
2182
2183	return 0;
2184}
2185
2186int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2187				   u8 type, u32 flags)
2188{
2189	struct bdaddr_list_with_flags *entry;
2190
2191	if (!bacmp(bdaddr, BDADDR_ANY))
2192		return -EBADF;
2193
2194	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2195		return -EEXIST;
2196
2197	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2198	if (!entry)
2199		return -ENOMEM;
2200
2201	bacpy(&entry->bdaddr, bdaddr);
2202	entry->bdaddr_type = type;
2203	entry->flags = flags;
2204
2205	list_add(&entry->list, list);
2206
2207	return 0;
2208}
2209
2210int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2211{
2212	struct bdaddr_list *entry;
2213
2214	if (!bacmp(bdaddr, BDADDR_ANY)) {
2215		hci_bdaddr_list_clear(list);
2216		return 0;
2217	}
2218
2219	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2220	if (!entry)
2221		return -ENOENT;
2222
2223	list_del(&entry->list);
2224	kfree(entry);
2225
2226	return 0;
2227}
2228
2229int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2230							u8 type)
2231{
2232	struct bdaddr_list_with_irk *entry;
2233
2234	if (!bacmp(bdaddr, BDADDR_ANY)) {
2235		hci_bdaddr_list_clear(list);
2236		return 0;
2237	}
2238
2239	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2240	if (!entry)
2241		return -ENOENT;
2242
2243	list_del(&entry->list);
2244	kfree(entry);
2245
2246	return 0;
2247}
2248
2249int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2250				   u8 type)
2251{
2252	struct bdaddr_list_with_flags *entry;
2253
2254	if (!bacmp(bdaddr, BDADDR_ANY)) {
2255		hci_bdaddr_list_clear(list);
2256		return 0;
2257	}
2258
2259	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2260	if (!entry)
2261		return -ENOENT;
2262
2263	list_del(&entry->list);
2264	kfree(entry);
2265
2266	return 0;
2267}
2268
2269/* This function requires the caller holds hdev->lock */
2270struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2271					       bdaddr_t *addr, u8 addr_type)
2272{
2273	struct hci_conn_params *params;
2274
2275	list_for_each_entry(params, &hdev->le_conn_params, list) {
2276		if (bacmp(&params->addr, addr) == 0 &&
2277		    params->addr_type == addr_type) {
2278			return params;
2279		}
2280	}
2281
2282	return NULL;
2283}
2284
2285/* This function requires the caller holds hdev->lock or rcu_read_lock */
2286struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2287						  bdaddr_t *addr, u8 addr_type)
2288{
2289	struct hci_conn_params *param;
2290
2291	rcu_read_lock();
2292
2293	list_for_each_entry_rcu(param, list, action) {
2294		if (bacmp(&param->addr, addr) == 0 &&
2295		    param->addr_type == addr_type) {
2296			rcu_read_unlock();
2297			return param;
2298		}
2299	}
2300
2301	rcu_read_unlock();
2302
2303	return NULL;
2304}
2305
2306/* This function requires the caller holds hdev->lock */
2307void hci_pend_le_list_del_init(struct hci_conn_params *param)
2308{
2309	if (list_empty(&param->action))
2310		return;
2311
2312	list_del_rcu(&param->action);
2313	synchronize_rcu();
2314	INIT_LIST_HEAD(&param->action);
2315}
2316
2317/* This function requires the caller holds hdev->lock */
2318void hci_pend_le_list_add(struct hci_conn_params *param,
2319			  struct list_head *list)
2320{
2321	list_add_rcu(&param->action, list);
2322}
2323
2324/* This function requires the caller holds hdev->lock */
2325struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2326					    bdaddr_t *addr, u8 addr_type)
2327{
2328	struct hci_conn_params *params;
2329
2330	params = hci_conn_params_lookup(hdev, addr, addr_type);
2331	if (params)
2332		return params;
2333
2334	params = kzalloc(sizeof(*params), GFP_KERNEL);
2335	if (!params) {
2336		bt_dev_err(hdev, "out of memory");
2337		return NULL;
2338	}
2339
2340	bacpy(&params->addr, addr);
2341	params->addr_type = addr_type;
2342
2343	list_add(&params->list, &hdev->le_conn_params);
2344	INIT_LIST_HEAD(&params->action);
2345
2346	params->conn_min_interval = hdev->le_conn_min_interval;
2347	params->conn_max_interval = hdev->le_conn_max_interval;
2348	params->conn_latency = hdev->le_conn_latency;
2349	params->supervision_timeout = hdev->le_supv_timeout;
2350	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2351
2352	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2353
2354	return params;
2355}
2356
2357void hci_conn_params_free(struct hci_conn_params *params)
2358{
2359	hci_pend_le_list_del_init(params);
2360
2361	if (params->conn) {
2362		hci_conn_drop(params->conn);
2363		hci_conn_put(params->conn);
2364	}
2365
2366	list_del(&params->list);
2367	kfree(params);
2368}
2369
2370/* This function requires the caller holds hdev->lock */
2371void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2372{
2373	struct hci_conn_params *params;
2374
2375	params = hci_conn_params_lookup(hdev, addr, addr_type);
2376	if (!params)
2377		return;
2378
2379	hci_conn_params_free(params);
2380
2381	hci_update_passive_scan(hdev);
2382
2383	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2384}
2385
2386/* This function requires the caller holds hdev->lock */
2387void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2388{
2389	struct hci_conn_params *params, *tmp;
2390
2391	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2392		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2393			continue;
2394
2395		/* If trying to establish one time connection to disabled
2396		 * device, leave the params, but mark them as just once.
2397		 */
2398		if (params->explicit_connect) {
2399			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2400			continue;
2401		}
2402
2403		hci_conn_params_free(params);
2404	}
2405
2406	BT_DBG("All LE disabled connection parameters were removed");
2407}
2408
2409/* This function requires the caller holds hdev->lock */
2410static void hci_conn_params_clear_all(struct hci_dev *hdev)
2411{
2412	struct hci_conn_params *params, *tmp;
2413
2414	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2415		hci_conn_params_free(params);
2416
2417	BT_DBG("All LE connection parameters were removed");
2418}
2419
2420/* Copy the Identity Address of the controller.
2421 *
2422 * If the controller has a public BD_ADDR, then by default use that one.
2423 * If this is a LE only controller without a public address, default to
2424 * the static random address.
2425 *
2426 * For debugging purposes it is possible to force controllers with a
2427 * public address to use the static random address instead.
2428 *
2429 * In case BR/EDR has been disabled on a dual-mode controller and
2430 * userspace has configured a static address, then that address
2431 * becomes the identity address instead of the public BR/EDR address.
2432 */
2433void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2434			       u8 *bdaddr_type)
2435{
2436	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2437	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2438	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2439	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2440		bacpy(bdaddr, &hdev->static_addr);
2441		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2442	} else {
2443		bacpy(bdaddr, &hdev->bdaddr);
2444		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2445	}
2446}
2447
2448static void hci_clear_wake_reason(struct hci_dev *hdev)
2449{
2450	hci_dev_lock(hdev);
2451
2452	hdev->wake_reason = 0;
2453	bacpy(&hdev->wake_addr, BDADDR_ANY);
2454	hdev->wake_addr_type = 0;
2455
2456	hci_dev_unlock(hdev);
2457}
2458
2459static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2460				void *data)
2461{
2462	struct hci_dev *hdev =
2463		container_of(nb, struct hci_dev, suspend_notifier);
2464	int ret = 0;
2465
2466	/* Userspace has full control of this device. Do nothing. */
2467	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2468		return NOTIFY_DONE;
2469
2470	/* To avoid a potential race with hci_unregister_dev. */
2471	hci_dev_hold(hdev);
2472
2473	if (action == PM_SUSPEND_PREPARE)
2474		ret = hci_suspend_dev(hdev);
2475	else if (action == PM_POST_SUSPEND)
2476		ret = hci_resume_dev(hdev);
2477
2478	if (ret)
2479		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2480			   action, ret);
2481
2482	hci_dev_put(hdev);
2483	return NOTIFY_DONE;
2484}
2485
2486/* Alloc HCI device */
2487struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2488{
2489	struct hci_dev *hdev;
2490	unsigned int alloc_size;
2491
2492	alloc_size = sizeof(*hdev);
2493	if (sizeof_priv) {
2494		/* Fixme: May need ALIGN-ment? */
2495		alloc_size += sizeof_priv;
2496	}
2497
2498	hdev = kzalloc(alloc_size, GFP_KERNEL);
2499	if (!hdev)
2500		return NULL;
2501
2502	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2503	hdev->esco_type = (ESCO_HV1);
2504	hdev->link_mode = (HCI_LM_ACCEPT);
2505	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2506	hdev->io_capability = 0x03;	/* No Input No Output */
2507	hdev->manufacturer = 0xffff;	/* Default to internal use */
2508	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2509	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2510	hdev->adv_instance_cnt = 0;
2511	hdev->cur_adv_instance = 0x00;
2512	hdev->adv_instance_timeout = 0;
2513
2514	hdev->advmon_allowlist_duration = 300;
2515	hdev->advmon_no_filter_duration = 500;
2516	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2517
2518	hdev->sniff_max_interval = 800;
2519	hdev->sniff_min_interval = 80;
2520
2521	hdev->le_adv_channel_map = 0x07;
2522	hdev->le_adv_min_interval = 0x0800;
2523	hdev->le_adv_max_interval = 0x0800;
2524	hdev->le_scan_interval = 0x0060;
2525	hdev->le_scan_window = 0x0030;
2526	hdev->le_scan_int_suspend = 0x0400;
2527	hdev->le_scan_window_suspend = 0x0012;
2528	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2529	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2530	hdev->le_scan_int_adv_monitor = 0x0060;
2531	hdev->le_scan_window_adv_monitor = 0x0030;
2532	hdev->le_scan_int_connect = 0x0060;
2533	hdev->le_scan_window_connect = 0x0060;
2534	hdev->le_conn_min_interval = 0x0018;
2535	hdev->le_conn_max_interval = 0x0028;
2536	hdev->le_conn_latency = 0x0000;
2537	hdev->le_supv_timeout = 0x002a;
2538	hdev->le_def_tx_len = 0x001b;
2539	hdev->le_def_tx_time = 0x0148;
2540	hdev->le_max_tx_len = 0x001b;
2541	hdev->le_max_tx_time = 0x0148;
2542	hdev->le_max_rx_len = 0x001b;
2543	hdev->le_max_rx_time = 0x0148;
2544	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2545	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2546	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2547	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2548	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2549	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2550	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2551	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2552	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2553
2554	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2555	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2556	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2557	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2558	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2559	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2560
2561	/* default 1.28 sec page scan */
2562	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2563	hdev->def_page_scan_int = 0x0800;
2564	hdev->def_page_scan_window = 0x0012;
2565
2566	mutex_init(&hdev->lock);
2567	mutex_init(&hdev->req_lock);
2568
2569	ida_init(&hdev->unset_handle_ida);
2570
2571	INIT_LIST_HEAD(&hdev->mesh_pending);
2572	INIT_LIST_HEAD(&hdev->mgmt_pending);
2573	INIT_LIST_HEAD(&hdev->reject_list);
2574	INIT_LIST_HEAD(&hdev->accept_list);
2575	INIT_LIST_HEAD(&hdev->uuids);
2576	INIT_LIST_HEAD(&hdev->link_keys);
2577	INIT_LIST_HEAD(&hdev->long_term_keys);
2578	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2579	INIT_LIST_HEAD(&hdev->remote_oob_data);
2580	INIT_LIST_HEAD(&hdev->le_accept_list);
2581	INIT_LIST_HEAD(&hdev->le_resolv_list);
2582	INIT_LIST_HEAD(&hdev->le_conn_params);
2583	INIT_LIST_HEAD(&hdev->pend_le_conns);
2584	INIT_LIST_HEAD(&hdev->pend_le_reports);
2585	INIT_LIST_HEAD(&hdev->conn_hash.list);
2586	INIT_LIST_HEAD(&hdev->adv_instances);
2587	INIT_LIST_HEAD(&hdev->blocked_keys);
2588	INIT_LIST_HEAD(&hdev->monitored_devices);
2589
2590	INIT_LIST_HEAD(&hdev->local_codecs);
2591	INIT_WORK(&hdev->rx_work, hci_rx_work);
2592	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2593	INIT_WORK(&hdev->tx_work, hci_tx_work);
2594	INIT_WORK(&hdev->power_on, hci_power_on);
2595	INIT_WORK(&hdev->error_reset, hci_error_reset);
2596
2597	hci_cmd_sync_init(hdev);
2598
2599	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2600
2601	skb_queue_head_init(&hdev->rx_q);
2602	skb_queue_head_init(&hdev->cmd_q);
2603	skb_queue_head_init(&hdev->raw_q);
2604
2605	init_waitqueue_head(&hdev->req_wait_q);
2606
2607	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2608	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2609
2610	hci_devcd_setup(hdev);
2611	hci_request_setup(hdev);
2612
2613	hci_init_sysfs(hdev);
2614	discovery_init(hdev);
2615
2616	return hdev;
2617}
2618EXPORT_SYMBOL(hci_alloc_dev_priv);
2619
2620/* Free HCI device */
2621void hci_free_dev(struct hci_dev *hdev)
2622{
2623	/* will free via device release */
2624	put_device(&hdev->dev);
2625}
2626EXPORT_SYMBOL(hci_free_dev);
2627
2628/* Register HCI device */
2629int hci_register_dev(struct hci_dev *hdev)
2630{
2631	int id, error;
2632
2633	if (!hdev->open || !hdev->close || !hdev->send)
2634		return -EINVAL;
2635
2636	id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
2637	if (id < 0)
2638		return id;
2639
2640	error = dev_set_name(&hdev->dev, "hci%u", id);
2641	if (error)
2642		return error;
2643
2644	hdev->name = dev_name(&hdev->dev);
2645	hdev->id = id;
2646
2647	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2648
2649	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2650	if (!hdev->workqueue) {
2651		error = -ENOMEM;
2652		goto err;
2653	}
2654
2655	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2656						      hdev->name);
2657	if (!hdev->req_workqueue) {
2658		destroy_workqueue(hdev->workqueue);
2659		error = -ENOMEM;
2660		goto err;
2661	}
2662
2663	if (!IS_ERR_OR_NULL(bt_debugfs))
2664		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2665
2666	error = device_add(&hdev->dev);
2667	if (error < 0)
2668		goto err_wqueue;
2669
2670	hci_leds_init(hdev);
2671
2672	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2673				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2674				    hdev);
2675	if (hdev->rfkill) {
2676		if (rfkill_register(hdev->rfkill) < 0) {
2677			rfkill_destroy(hdev->rfkill);
2678			hdev->rfkill = NULL;
2679		}
2680	}
2681
2682	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2683		hci_dev_set_flag(hdev, HCI_RFKILLED);
2684
2685	hci_dev_set_flag(hdev, HCI_SETUP);
2686	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2687
2688	/* Assume BR/EDR support until proven otherwise (such as
2689	 * through reading supported features during init.
2690	 */
2691	hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 
 
2692
2693	write_lock(&hci_dev_list_lock);
2694	list_add(&hdev->list, &hci_dev_list);
2695	write_unlock(&hci_dev_list_lock);
2696
2697	/* Devices that are marked for raw-only usage are unconfigured
2698	 * and should not be included in normal operation.
2699	 */
2700	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2701		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2702
2703	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2704	 * callback.
2705	 */
2706	if (hdev->wakeup)
2707		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2708
2709	hci_sock_dev_event(hdev, HCI_DEV_REG);
2710	hci_dev_hold(hdev);
2711
2712	error = hci_register_suspend_notifier(hdev);
2713	if (error)
2714		BT_WARN("register suspend notifier failed error:%d\n", error);
2715
2716	queue_work(hdev->req_workqueue, &hdev->power_on);
2717
2718	idr_init(&hdev->adv_monitors_idr);
2719	msft_register(hdev);
2720
2721	return id;
2722
2723err_wqueue:
2724	debugfs_remove_recursive(hdev->debugfs);
2725	destroy_workqueue(hdev->workqueue);
2726	destroy_workqueue(hdev->req_workqueue);
2727err:
2728	ida_free(&hci_index_ida, hdev->id);
2729
2730	return error;
2731}
2732EXPORT_SYMBOL(hci_register_dev);
2733
2734/* Unregister HCI device */
2735void hci_unregister_dev(struct hci_dev *hdev)
2736{
2737	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2738
2739	mutex_lock(&hdev->unregister_lock);
2740	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2741	mutex_unlock(&hdev->unregister_lock);
2742
2743	write_lock(&hci_dev_list_lock);
2744	list_del(&hdev->list);
2745	write_unlock(&hci_dev_list_lock);
2746
2747	cancel_work_sync(&hdev->power_on);
2748
2749	hci_cmd_sync_clear(hdev);
2750
2751	hci_unregister_suspend_notifier(hdev);
2752
 
 
2753	hci_dev_do_close(hdev);
2754
2755	if (!test_bit(HCI_INIT, &hdev->flags) &&
2756	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2757	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2758		hci_dev_lock(hdev);
2759		mgmt_index_removed(hdev);
2760		hci_dev_unlock(hdev);
2761	}
2762
2763	/* mgmt_index_removed should take care of emptying the
2764	 * pending list */
2765	BUG_ON(!list_empty(&hdev->mgmt_pending));
2766
2767	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2768
2769	if (hdev->rfkill) {
2770		rfkill_unregister(hdev->rfkill);
2771		rfkill_destroy(hdev->rfkill);
2772	}
2773
2774	device_del(&hdev->dev);
2775	/* Actual cleanup is deferred until hci_release_dev(). */
2776	hci_dev_put(hdev);
2777}
2778EXPORT_SYMBOL(hci_unregister_dev);
2779
2780/* Release HCI device */
2781void hci_release_dev(struct hci_dev *hdev)
2782{
2783	debugfs_remove_recursive(hdev->debugfs);
2784	kfree_const(hdev->hw_info);
2785	kfree_const(hdev->fw_info);
2786
2787	destroy_workqueue(hdev->workqueue);
2788	destroy_workqueue(hdev->req_workqueue);
2789
2790	hci_dev_lock(hdev);
2791	hci_bdaddr_list_clear(&hdev->reject_list);
2792	hci_bdaddr_list_clear(&hdev->accept_list);
2793	hci_uuids_clear(hdev);
2794	hci_link_keys_clear(hdev);
2795	hci_smp_ltks_clear(hdev);
2796	hci_smp_irks_clear(hdev);
2797	hci_remote_oob_data_clear(hdev);
2798	hci_adv_instances_clear(hdev);
2799	hci_adv_monitors_clear(hdev);
2800	hci_bdaddr_list_clear(&hdev->le_accept_list);
2801	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2802	hci_conn_params_clear_all(hdev);
2803	hci_discovery_filter_clear(hdev);
2804	hci_blocked_keys_clear(hdev);
2805	hci_codec_list_clear(&hdev->local_codecs);
2806	msft_release(hdev);
2807	hci_dev_unlock(hdev);
2808
2809	ida_destroy(&hdev->unset_handle_ida);
2810	ida_free(&hci_index_ida, hdev->id);
2811	kfree_skb(hdev->sent_cmd);
2812	kfree_skb(hdev->req_skb);
2813	kfree_skb(hdev->recv_event);
2814	kfree(hdev);
2815}
2816EXPORT_SYMBOL(hci_release_dev);
2817
2818int hci_register_suspend_notifier(struct hci_dev *hdev)
2819{
2820	int ret = 0;
2821
2822	if (!hdev->suspend_notifier.notifier_call &&
2823	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2824		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2825		ret = register_pm_notifier(&hdev->suspend_notifier);
2826	}
2827
2828	return ret;
2829}
2830
2831int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2832{
2833	int ret = 0;
2834
2835	if (hdev->suspend_notifier.notifier_call) {
2836		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2837		if (!ret)
2838			hdev->suspend_notifier.notifier_call = NULL;
2839	}
2840
2841	return ret;
2842}
2843
2844/* Cancel ongoing command synchronously:
2845 *
2846 * - Cancel command timer
2847 * - Reset command counter
2848 * - Cancel command request
2849 */
2850static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err)
2851{
2852	bt_dev_dbg(hdev, "err 0x%2.2x", err);
2853
2854	cancel_delayed_work_sync(&hdev->cmd_timer);
2855	cancel_delayed_work_sync(&hdev->ncmd_timer);
2856	atomic_set(&hdev->cmd_cnt, 1);
2857
2858	hci_cmd_sync_cancel_sync(hdev, err);
2859}
2860
2861/* Suspend HCI device */
2862int hci_suspend_dev(struct hci_dev *hdev)
2863{
2864	int ret;
2865
2866	bt_dev_dbg(hdev, "");
2867
2868	/* Suspend should only act on when powered. */
2869	if (!hdev_is_powered(hdev) ||
2870	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2871		return 0;
2872
2873	/* If powering down don't attempt to suspend */
2874	if (mgmt_powering_down(hdev))
2875		return 0;
2876
2877	/* Cancel potentially blocking sync operation before suspend */
2878	hci_cancel_cmd_sync(hdev, EHOSTDOWN);
2879
2880	hci_req_sync_lock(hdev);
2881	ret = hci_suspend_sync(hdev);
2882	hci_req_sync_unlock(hdev);
2883
2884	hci_clear_wake_reason(hdev);
2885	mgmt_suspending(hdev, hdev->suspend_state);
2886
2887	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2888	return ret;
2889}
2890EXPORT_SYMBOL(hci_suspend_dev);
2891
2892/* Resume HCI device */
2893int hci_resume_dev(struct hci_dev *hdev)
2894{
2895	int ret;
2896
2897	bt_dev_dbg(hdev, "");
2898
2899	/* Resume should only act on when powered. */
2900	if (!hdev_is_powered(hdev) ||
2901	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2902		return 0;
2903
2904	/* If powering down don't attempt to resume */
2905	if (mgmt_powering_down(hdev))
2906		return 0;
2907
2908	hci_req_sync_lock(hdev);
2909	ret = hci_resume_sync(hdev);
2910	hci_req_sync_unlock(hdev);
2911
2912	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2913		      hdev->wake_addr_type);
2914
2915	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2916	return ret;
2917}
2918EXPORT_SYMBOL(hci_resume_dev);
2919
2920/* Reset HCI device */
2921int hci_reset_dev(struct hci_dev *hdev)
2922{
2923	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2924	struct sk_buff *skb;
2925
2926	skb = bt_skb_alloc(3, GFP_ATOMIC);
2927	if (!skb)
2928		return -ENOMEM;
2929
2930	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2931	skb_put_data(skb, hw_err, 3);
2932
2933	bt_dev_err(hdev, "Injecting HCI hardware error event");
2934
2935	/* Send Hardware Error to upper stack */
2936	return hci_recv_frame(hdev, skb);
2937}
2938EXPORT_SYMBOL(hci_reset_dev);
2939
2940/* Receive frame from HCI drivers */
2941int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2942{
2943	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2944		      && !test_bit(HCI_INIT, &hdev->flags))) {
2945		kfree_skb(skb);
2946		return -ENXIO;
2947	}
2948
2949	switch (hci_skb_pkt_type(skb)) {
2950	case HCI_EVENT_PKT:
2951		break;
2952	case HCI_ACLDATA_PKT:
2953		/* Detect if ISO packet has been sent as ACL */
2954		if (hci_conn_num(hdev, ISO_LINK)) {
2955			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2956			__u8 type;
2957
2958			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2959			if (type == ISO_LINK)
2960				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2961		}
2962		break;
2963	case HCI_SCODATA_PKT:
2964		break;
2965	case HCI_ISODATA_PKT:
2966		break;
2967	default:
2968		kfree_skb(skb);
2969		return -EINVAL;
2970	}
2971
2972	/* Incoming skb */
2973	bt_cb(skb)->incoming = 1;
2974
2975	/* Time stamp */
2976	__net_timestamp(skb);
2977
2978	skb_queue_tail(&hdev->rx_q, skb);
2979	queue_work(hdev->workqueue, &hdev->rx_work);
2980
2981	return 0;
2982}
2983EXPORT_SYMBOL(hci_recv_frame);
2984
2985/* Receive diagnostic message from HCI drivers */
2986int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2987{
2988	/* Mark as diagnostic packet */
2989	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2990
2991	/* Time stamp */
2992	__net_timestamp(skb);
2993
2994	skb_queue_tail(&hdev->rx_q, skb);
2995	queue_work(hdev->workqueue, &hdev->rx_work);
2996
2997	return 0;
2998}
2999EXPORT_SYMBOL(hci_recv_diag);
3000
3001void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3002{
3003	va_list vargs;
3004
3005	va_start(vargs, fmt);
3006	kfree_const(hdev->hw_info);
3007	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3008	va_end(vargs);
3009}
3010EXPORT_SYMBOL(hci_set_hw_info);
3011
3012void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3013{
3014	va_list vargs;
3015
3016	va_start(vargs, fmt);
3017	kfree_const(hdev->fw_info);
3018	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3019	va_end(vargs);
3020}
3021EXPORT_SYMBOL(hci_set_fw_info);
3022
3023/* ---- Interface to upper protocols ---- */
3024
3025int hci_register_cb(struct hci_cb *cb)
3026{
3027	BT_DBG("%p name %s", cb, cb->name);
3028
3029	mutex_lock(&hci_cb_list_lock);
3030	list_add_tail(&cb->list, &hci_cb_list);
3031	mutex_unlock(&hci_cb_list_lock);
3032
3033	return 0;
3034}
3035EXPORT_SYMBOL(hci_register_cb);
3036
3037int hci_unregister_cb(struct hci_cb *cb)
3038{
3039	BT_DBG("%p name %s", cb, cb->name);
3040
3041	mutex_lock(&hci_cb_list_lock);
3042	list_del(&cb->list);
3043	mutex_unlock(&hci_cb_list_lock);
3044
3045	return 0;
3046}
3047EXPORT_SYMBOL(hci_unregister_cb);
3048
3049static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3050{
3051	int err;
3052
3053	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3054	       skb->len);
3055
3056	/* Time stamp */
3057	__net_timestamp(skb);
3058
3059	/* Send copy to monitor */
3060	hci_send_to_monitor(hdev, skb);
3061
3062	if (atomic_read(&hdev->promisc)) {
3063		/* Send copy to the sockets */
3064		hci_send_to_sock(hdev, skb);
3065	}
3066
3067	/* Get rid of skb owner, prior to sending to the driver. */
3068	skb_orphan(skb);
3069
3070	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3071		kfree_skb(skb);
3072		return -EINVAL;
3073	}
3074
3075	err = hdev->send(hdev, skb);
3076	if (err < 0) {
3077		bt_dev_err(hdev, "sending frame failed (%d)", err);
3078		kfree_skb(skb);
3079		return err;
3080	}
3081
3082	return 0;
3083}
3084
3085/* Send HCI command */
3086int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3087		 const void *param)
3088{
3089	struct sk_buff *skb;
3090
3091	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3092
3093	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3094	if (!skb) {
3095		bt_dev_err(hdev, "no memory for command");
3096		return -ENOMEM;
3097	}
3098
3099	/* Stand-alone HCI commands must be flagged as
3100	 * single-command requests.
3101	 */
3102	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3103
3104	skb_queue_tail(&hdev->cmd_q, skb);
3105	queue_work(hdev->workqueue, &hdev->cmd_work);
3106
3107	return 0;
3108}
3109
3110int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3111		   const void *param)
3112{
3113	struct sk_buff *skb;
3114
3115	if (hci_opcode_ogf(opcode) != 0x3f) {
3116		/* A controller receiving a command shall respond with either
3117		 * a Command Status Event or a Command Complete Event.
3118		 * Therefore, all standard HCI commands must be sent via the
3119		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3120		 * Some vendors do not comply with this rule for vendor-specific
3121		 * commands and do not return any event. We want to support
3122		 * unresponded commands for such cases only.
3123		 */
3124		bt_dev_err(hdev, "unresponded command not supported");
3125		return -EINVAL;
3126	}
3127
3128	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3129	if (!skb) {
3130		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3131			   opcode);
3132		return -ENOMEM;
3133	}
3134
3135	hci_send_frame(hdev, skb);
3136
3137	return 0;
3138}
3139EXPORT_SYMBOL(__hci_cmd_send);
3140
3141/* Get data from the previously sent command */
3142static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode)
3143{
3144	struct hci_command_hdr *hdr;
3145
3146	if (!skb || skb->len < HCI_COMMAND_HDR_SIZE)
3147		return NULL;
3148
3149	hdr = (void *)skb->data;
3150
3151	if (hdr->opcode != cpu_to_le16(opcode))
3152		return NULL;
3153
3154	return skb->data + HCI_COMMAND_HDR_SIZE;
3155}
3156
3157/* Get data from the previously sent command */
3158void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3159{
3160	void *data;
3161
3162	/* Check if opcode matches last sent command */
3163	data = hci_cmd_data(hdev->sent_cmd, opcode);
3164	if (!data)
3165		/* Check if opcode matches last request */
3166		data = hci_cmd_data(hdev->req_skb, opcode);
3167
3168	return data;
3169}
3170
3171/* Get data from last received event */
3172void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3173{
3174	struct hci_event_hdr *hdr;
3175	int offset;
3176
3177	if (!hdev->recv_event)
3178		return NULL;
3179
3180	hdr = (void *)hdev->recv_event->data;
3181	offset = sizeof(*hdr);
3182
3183	if (hdr->evt != event) {
3184		/* In case of LE metaevent check the subevent match */
3185		if (hdr->evt == HCI_EV_LE_META) {
3186			struct hci_ev_le_meta *ev;
3187
3188			ev = (void *)hdev->recv_event->data + offset;
3189			offset += sizeof(*ev);
3190			if (ev->subevent == event)
3191				goto found;
3192		}
3193		return NULL;
3194	}
3195
3196found:
3197	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3198
3199	return hdev->recv_event->data + offset;
3200}
3201
3202/* Send ACL data */
3203static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3204{
3205	struct hci_acl_hdr *hdr;
3206	int len = skb->len;
3207
3208	skb_push(skb, HCI_ACL_HDR_SIZE);
3209	skb_reset_transport_header(skb);
3210	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3211	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3212	hdr->dlen   = cpu_to_le16(len);
3213}
3214
3215static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3216			  struct sk_buff *skb, __u16 flags)
3217{
3218	struct hci_conn *conn = chan->conn;
3219	struct hci_dev *hdev = conn->hdev;
3220	struct sk_buff *list;
3221
3222	skb->len = skb_headlen(skb);
3223	skb->data_len = 0;
3224
3225	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3226
3227	hci_add_acl_hdr(skb, conn->handle, flags);
 
 
 
 
 
 
 
 
 
 
3228
3229	list = skb_shinfo(skb)->frag_list;
3230	if (!list) {
3231		/* Non fragmented */
3232		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3233
3234		skb_queue_tail(queue, skb);
3235	} else {
3236		/* Fragmented */
3237		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3238
3239		skb_shinfo(skb)->frag_list = NULL;
3240
3241		/* Queue all fragments atomically. We need to use spin_lock_bh
3242		 * here because of 6LoWPAN links, as there this function is
3243		 * called from softirq and using normal spin lock could cause
3244		 * deadlocks.
3245		 */
3246		spin_lock_bh(&queue->lock);
3247
3248		__skb_queue_tail(queue, skb);
3249
3250		flags &= ~ACL_START;
3251		flags |= ACL_CONT;
3252		do {
3253			skb = list; list = list->next;
3254
3255			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3256			hci_add_acl_hdr(skb, conn->handle, flags);
3257
3258			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3259
3260			__skb_queue_tail(queue, skb);
3261		} while (list);
3262
3263		spin_unlock_bh(&queue->lock);
3264	}
3265}
3266
3267void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3268{
3269	struct hci_dev *hdev = chan->conn->hdev;
3270
3271	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3272
3273	hci_queue_acl(chan, &chan->data_q, skb, flags);
3274
3275	queue_work(hdev->workqueue, &hdev->tx_work);
3276}
3277
3278/* Send SCO data */
3279void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3280{
3281	struct hci_dev *hdev = conn->hdev;
3282	struct hci_sco_hdr hdr;
3283
3284	BT_DBG("%s len %d", hdev->name, skb->len);
3285
3286	hdr.handle = cpu_to_le16(conn->handle);
3287	hdr.dlen   = skb->len;
3288
3289	skb_push(skb, HCI_SCO_HDR_SIZE);
3290	skb_reset_transport_header(skb);
3291	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3292
3293	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3294
3295	skb_queue_tail(&conn->data_q, skb);
3296	queue_work(hdev->workqueue, &hdev->tx_work);
3297}
3298
3299/* Send ISO data */
3300static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3301{
3302	struct hci_iso_hdr *hdr;
3303	int len = skb->len;
3304
3305	skb_push(skb, HCI_ISO_HDR_SIZE);
3306	skb_reset_transport_header(skb);
3307	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3308	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3309	hdr->dlen   = cpu_to_le16(len);
3310}
3311
3312static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3313			  struct sk_buff *skb)
3314{
3315	struct hci_dev *hdev = conn->hdev;
3316	struct sk_buff *list;
3317	__u16 flags;
3318
3319	skb->len = skb_headlen(skb);
3320	skb->data_len = 0;
3321
3322	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3323
3324	list = skb_shinfo(skb)->frag_list;
3325
3326	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3327	hci_add_iso_hdr(skb, conn->handle, flags);
3328
3329	if (!list) {
3330		/* Non fragmented */
3331		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3332
3333		skb_queue_tail(queue, skb);
3334	} else {
3335		/* Fragmented */
3336		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3337
3338		skb_shinfo(skb)->frag_list = NULL;
3339
3340		__skb_queue_tail(queue, skb);
3341
3342		do {
3343			skb = list; list = list->next;
3344
3345			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3346			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3347						   0x00);
3348			hci_add_iso_hdr(skb, conn->handle, flags);
3349
3350			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3351
3352			__skb_queue_tail(queue, skb);
3353		} while (list);
3354	}
3355}
3356
3357void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3358{
3359	struct hci_dev *hdev = conn->hdev;
3360
3361	BT_DBG("%s len %d", hdev->name, skb->len);
3362
3363	hci_queue_iso(conn, &conn->data_q, skb);
3364
3365	queue_work(hdev->workqueue, &hdev->tx_work);
3366}
3367
3368/* ---- HCI TX task (outgoing data) ---- */
3369
3370/* HCI Connection scheduler */
3371static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3372{
3373	struct hci_dev *hdev;
3374	int cnt, q;
3375
3376	if (!conn) {
3377		*quote = 0;
3378		return;
3379	}
3380
3381	hdev = conn->hdev;
3382
3383	switch (conn->type) {
3384	case ACL_LINK:
3385		cnt = hdev->acl_cnt;
3386		break;
 
 
 
3387	case SCO_LINK:
3388	case ESCO_LINK:
3389		cnt = hdev->sco_cnt;
3390		break;
3391	case LE_LINK:
3392		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3393		break;
3394	case ISO_LINK:
3395		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3396			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3397		break;
3398	default:
3399		cnt = 0;
3400		bt_dev_err(hdev, "unknown link type %d", conn->type);
3401	}
3402
3403	q = cnt / num;
3404	*quote = q ? q : 1;
3405}
3406
3407static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3408				     int *quote)
3409{
3410	struct hci_conn_hash *h = &hdev->conn_hash;
3411	struct hci_conn *conn = NULL, *c;
3412	unsigned int num = 0, min = ~0;
3413
3414	/* We don't have to lock device here. Connections are always
3415	 * added and removed with TX task disabled. */
3416
3417	rcu_read_lock();
3418
3419	list_for_each_entry_rcu(c, &h->list, list) {
3420		if (c->type != type || skb_queue_empty(&c->data_q))
3421			continue;
3422
3423		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3424			continue;
3425
3426		num++;
3427
3428		if (c->sent < min) {
3429			min  = c->sent;
3430			conn = c;
3431		}
3432
3433		if (hci_conn_num(hdev, type) == num)
3434			break;
3435	}
3436
3437	rcu_read_unlock();
3438
3439	hci_quote_sent(conn, num, quote);
3440
3441	BT_DBG("conn %p quote %d", conn, *quote);
3442	return conn;
3443}
3444
3445static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3446{
3447	struct hci_conn_hash *h = &hdev->conn_hash;
3448	struct hci_conn *c;
3449
3450	bt_dev_err(hdev, "link tx timeout");
3451
3452	rcu_read_lock();
3453
3454	/* Kill stalled connections */
3455	list_for_each_entry_rcu(c, &h->list, list) {
3456		if (c->type == type && c->sent) {
3457			bt_dev_err(hdev, "killing stalled connection %pMR",
3458				   &c->dst);
3459			/* hci_disconnect might sleep, so, we have to release
3460			 * the RCU read lock before calling it.
3461			 */
3462			rcu_read_unlock();
3463			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3464			rcu_read_lock();
3465		}
3466	}
3467
3468	rcu_read_unlock();
3469}
3470
3471static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3472				      int *quote)
3473{
3474	struct hci_conn_hash *h = &hdev->conn_hash;
3475	struct hci_chan *chan = NULL;
3476	unsigned int num = 0, min = ~0, cur_prio = 0;
3477	struct hci_conn *conn;
3478	int conn_num = 0;
3479
3480	BT_DBG("%s", hdev->name);
3481
3482	rcu_read_lock();
3483
3484	list_for_each_entry_rcu(conn, &h->list, list) {
3485		struct hci_chan *tmp;
3486
3487		if (conn->type != type)
3488			continue;
3489
3490		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3491			continue;
3492
3493		conn_num++;
3494
3495		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3496			struct sk_buff *skb;
3497
3498			if (skb_queue_empty(&tmp->data_q))
3499				continue;
3500
3501			skb = skb_peek(&tmp->data_q);
3502			if (skb->priority < cur_prio)
3503				continue;
3504
3505			if (skb->priority > cur_prio) {
3506				num = 0;
3507				min = ~0;
3508				cur_prio = skb->priority;
3509			}
3510
3511			num++;
3512
3513			if (conn->sent < min) {
3514				min  = conn->sent;
3515				chan = tmp;
3516			}
3517		}
3518
3519		if (hci_conn_num(hdev, type) == conn_num)
3520			break;
3521	}
3522
3523	rcu_read_unlock();
3524
3525	if (!chan)
3526		return NULL;
3527
3528	hci_quote_sent(chan->conn, num, quote);
3529
3530	BT_DBG("chan %p quote %d", chan, *quote);
3531	return chan;
3532}
3533
3534static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3535{
3536	struct hci_conn_hash *h = &hdev->conn_hash;
3537	struct hci_conn *conn;
3538	int num = 0;
3539
3540	BT_DBG("%s", hdev->name);
3541
3542	rcu_read_lock();
3543
3544	list_for_each_entry_rcu(conn, &h->list, list) {
3545		struct hci_chan *chan;
3546
3547		if (conn->type != type)
3548			continue;
3549
3550		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3551			continue;
3552
3553		num++;
3554
3555		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3556			struct sk_buff *skb;
3557
3558			if (chan->sent) {
3559				chan->sent = 0;
3560				continue;
3561			}
3562
3563			if (skb_queue_empty(&chan->data_q))
3564				continue;
3565
3566			skb = skb_peek(&chan->data_q);
3567			if (skb->priority >= HCI_PRIO_MAX - 1)
3568				continue;
3569
3570			skb->priority = HCI_PRIO_MAX - 1;
3571
3572			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3573			       skb->priority);
3574		}
3575
3576		if (hci_conn_num(hdev, type) == num)
3577			break;
3578	}
3579
3580	rcu_read_unlock();
3581
3582}
3583
 
 
 
 
 
 
3584static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3585{
3586	unsigned long last_tx;
3587
3588	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3589		return;
3590
3591	switch (type) {
3592	case LE_LINK:
3593		last_tx = hdev->le_last_tx;
3594		break;
3595	default:
3596		last_tx = hdev->acl_last_tx;
3597		break;
3598	}
3599
3600	/* tx timeout must be longer than maximum link supervision timeout
3601	 * (40.9 seconds)
3602	 */
3603	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3604		hci_link_tx_to(hdev, type);
3605}
3606
3607/* Schedule SCO */
3608static void hci_sched_sco(struct hci_dev *hdev)
3609{
3610	struct hci_conn *conn;
3611	struct sk_buff *skb;
3612	int quote;
3613
3614	BT_DBG("%s", hdev->name);
3615
3616	if (!hci_conn_num(hdev, SCO_LINK))
3617		return;
3618
3619	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3620		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3621			BT_DBG("skb %p len %d", skb, skb->len);
3622			hci_send_frame(hdev, skb);
3623
3624			conn->sent++;
3625			if (conn->sent == ~0)
3626				conn->sent = 0;
3627		}
3628	}
3629}
3630
3631static void hci_sched_esco(struct hci_dev *hdev)
3632{
3633	struct hci_conn *conn;
3634	struct sk_buff *skb;
3635	int quote;
3636
3637	BT_DBG("%s", hdev->name);
3638
3639	if (!hci_conn_num(hdev, ESCO_LINK))
3640		return;
3641
3642	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3643						     &quote))) {
3644		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3645			BT_DBG("skb %p len %d", skb, skb->len);
3646			hci_send_frame(hdev, skb);
3647
3648			conn->sent++;
3649			if (conn->sent == ~0)
3650				conn->sent = 0;
3651		}
3652	}
3653}
3654
3655static void hci_sched_acl_pkt(struct hci_dev *hdev)
3656{
3657	unsigned int cnt = hdev->acl_cnt;
3658	struct hci_chan *chan;
3659	struct sk_buff *skb;
3660	int quote;
3661
3662	__check_timeout(hdev, cnt, ACL_LINK);
3663
3664	while (hdev->acl_cnt &&
3665	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3666		u32 priority = (skb_peek(&chan->data_q))->priority;
3667		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3668			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3669			       skb->len, skb->priority);
3670
3671			/* Stop if priority has changed */
3672			if (skb->priority < priority)
3673				break;
3674
3675			skb = skb_dequeue(&chan->data_q);
3676
3677			hci_conn_enter_active_mode(chan->conn,
3678						   bt_cb(skb)->force_active);
3679
3680			hci_send_frame(hdev, skb);
3681			hdev->acl_last_tx = jiffies;
3682
3683			hdev->acl_cnt--;
3684			chan->sent++;
3685			chan->conn->sent++;
3686
3687			/* Send pending SCO packets right away */
3688			hci_sched_sco(hdev);
3689			hci_sched_esco(hdev);
3690		}
3691	}
3692
3693	if (cnt != hdev->acl_cnt)
3694		hci_prio_recalculate(hdev, ACL_LINK);
3695}
3696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3697static void hci_sched_acl(struct hci_dev *hdev)
3698{
3699	BT_DBG("%s", hdev->name);
3700
3701	/* No ACL link over BR/EDR controller */
3702	if (!hci_conn_num(hdev, ACL_LINK))
3703		return;
3704
3705	hci_sched_acl_pkt(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
3706}
3707
3708static void hci_sched_le(struct hci_dev *hdev)
3709{
3710	struct hci_chan *chan;
3711	struct sk_buff *skb;
3712	int quote, cnt, tmp;
3713
3714	BT_DBG("%s", hdev->name);
3715
3716	if (!hci_conn_num(hdev, LE_LINK))
3717		return;
3718
3719	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3720
3721	__check_timeout(hdev, cnt, LE_LINK);
3722
3723	tmp = cnt;
3724	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3725		u32 priority = (skb_peek(&chan->data_q))->priority;
3726		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3727			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3728			       skb->len, skb->priority);
3729
3730			/* Stop if priority has changed */
3731			if (skb->priority < priority)
3732				break;
3733
3734			skb = skb_dequeue(&chan->data_q);
3735
3736			hci_send_frame(hdev, skb);
3737			hdev->le_last_tx = jiffies;
3738
3739			cnt--;
3740			chan->sent++;
3741			chan->conn->sent++;
3742
3743			/* Send pending SCO packets right away */
3744			hci_sched_sco(hdev);
3745			hci_sched_esco(hdev);
3746		}
3747	}
3748
3749	if (hdev->le_pkts)
3750		hdev->le_cnt = cnt;
3751	else
3752		hdev->acl_cnt = cnt;
3753
3754	if (cnt != tmp)
3755		hci_prio_recalculate(hdev, LE_LINK);
3756}
3757
3758/* Schedule CIS */
3759static void hci_sched_iso(struct hci_dev *hdev)
3760{
3761	struct hci_conn *conn;
3762	struct sk_buff *skb;
3763	int quote, *cnt;
3764
3765	BT_DBG("%s", hdev->name);
3766
3767	if (!hci_conn_num(hdev, ISO_LINK))
3768		return;
3769
3770	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3771		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3772	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3773		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3774			BT_DBG("skb %p len %d", skb, skb->len);
3775			hci_send_frame(hdev, skb);
3776
3777			conn->sent++;
3778			if (conn->sent == ~0)
3779				conn->sent = 0;
3780			(*cnt)--;
3781		}
3782	}
3783}
3784
3785static void hci_tx_work(struct work_struct *work)
3786{
3787	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3788	struct sk_buff *skb;
3789
3790	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3791	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3792
3793	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3794		/* Schedule queues and send stuff to HCI driver */
3795		hci_sched_sco(hdev);
3796		hci_sched_esco(hdev);
3797		hci_sched_iso(hdev);
3798		hci_sched_acl(hdev);
3799		hci_sched_le(hdev);
3800	}
3801
3802	/* Send next queued raw (unknown type) packet */
3803	while ((skb = skb_dequeue(&hdev->raw_q)))
3804		hci_send_frame(hdev, skb);
3805}
3806
3807/* ----- HCI RX task (incoming data processing) ----- */
3808
3809/* ACL data packet */
3810static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3811{
3812	struct hci_acl_hdr *hdr = (void *) skb->data;
3813	struct hci_conn *conn;
3814	__u16 handle, flags;
3815
3816	skb_pull(skb, HCI_ACL_HDR_SIZE);
3817
3818	handle = __le16_to_cpu(hdr->handle);
3819	flags  = hci_flags(handle);
3820	handle = hci_handle(handle);
3821
3822	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3823	       handle, flags);
3824
3825	hdev->stat.acl_rx++;
3826
3827	hci_dev_lock(hdev);
3828	conn = hci_conn_hash_lookup_handle(hdev, handle);
3829	hci_dev_unlock(hdev);
3830
3831	if (conn) {
3832		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3833
3834		/* Send to upper protocol */
3835		l2cap_recv_acldata(conn, skb, flags);
3836		return;
3837	} else {
3838		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3839			   handle);
3840	}
3841
3842	kfree_skb(skb);
3843}
3844
3845/* SCO data packet */
3846static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3847{
3848	struct hci_sco_hdr *hdr = (void *) skb->data;
3849	struct hci_conn *conn;
3850	__u16 handle, flags;
3851
3852	skb_pull(skb, HCI_SCO_HDR_SIZE);
3853
3854	handle = __le16_to_cpu(hdr->handle);
3855	flags  = hci_flags(handle);
3856	handle = hci_handle(handle);
3857
3858	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3859	       handle, flags);
3860
3861	hdev->stat.sco_rx++;
3862
3863	hci_dev_lock(hdev);
3864	conn = hci_conn_hash_lookup_handle(hdev, handle);
3865	hci_dev_unlock(hdev);
3866
3867	if (conn) {
3868		/* Send to upper protocol */
3869		hci_skb_pkt_status(skb) = flags & 0x03;
3870		sco_recv_scodata(conn, skb);
3871		return;
3872	} else {
3873		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3874				       handle);
3875	}
3876
3877	kfree_skb(skb);
3878}
3879
3880static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3881{
3882	struct hci_iso_hdr *hdr;
3883	struct hci_conn *conn;
3884	__u16 handle, flags;
3885
3886	hdr = skb_pull_data(skb, sizeof(*hdr));
3887	if (!hdr) {
3888		bt_dev_err(hdev, "ISO packet too small");
3889		goto drop;
3890	}
3891
3892	handle = __le16_to_cpu(hdr->handle);
3893	flags  = hci_flags(handle);
3894	handle = hci_handle(handle);
3895
3896	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3897		   handle, flags);
3898
3899	hci_dev_lock(hdev);
3900	conn = hci_conn_hash_lookup_handle(hdev, handle);
3901	hci_dev_unlock(hdev);
3902
3903	if (!conn) {
3904		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3905			   handle);
3906		goto drop;
3907	}
3908
3909	/* Send to upper protocol */
3910	iso_recv(conn, skb, flags);
3911	return;
3912
3913drop:
3914	kfree_skb(skb);
3915}
3916
3917static bool hci_req_is_complete(struct hci_dev *hdev)
3918{
3919	struct sk_buff *skb;
3920
3921	skb = skb_peek(&hdev->cmd_q);
3922	if (!skb)
3923		return true;
3924
3925	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3926}
3927
3928static void hci_resend_last(struct hci_dev *hdev)
3929{
3930	struct hci_command_hdr *sent;
3931	struct sk_buff *skb;
3932	u16 opcode;
3933
3934	if (!hdev->sent_cmd)
3935		return;
3936
3937	sent = (void *) hdev->sent_cmd->data;
3938	opcode = __le16_to_cpu(sent->opcode);
3939	if (opcode == HCI_OP_RESET)
3940		return;
3941
3942	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3943	if (!skb)
3944		return;
3945
3946	skb_queue_head(&hdev->cmd_q, skb);
3947	queue_work(hdev->workqueue, &hdev->cmd_work);
3948}
3949
3950void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3951			  hci_req_complete_t *req_complete,
3952			  hci_req_complete_skb_t *req_complete_skb)
3953{
3954	struct sk_buff *skb;
3955	unsigned long flags;
3956
3957	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3958
3959	/* If the completed command doesn't match the last one that was
3960	 * sent we need to do special handling of it.
3961	 */
3962	if (!hci_sent_cmd_data(hdev, opcode)) {
3963		/* Some CSR based controllers generate a spontaneous
3964		 * reset complete event during init and any pending
3965		 * command will never be completed. In such a case we
3966		 * need to resend whatever was the last sent
3967		 * command.
3968		 */
3969		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3970			hci_resend_last(hdev);
3971
3972		return;
3973	}
3974
3975	/* If we reach this point this event matches the last command sent */
3976	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3977
3978	/* If the command succeeded and there's still more commands in
3979	 * this request the request is not yet complete.
3980	 */
3981	if (!status && !hci_req_is_complete(hdev))
3982		return;
3983
3984	skb = hdev->req_skb;
3985
3986	/* If this was the last command in a request the complete
3987	 * callback would be found in hdev->req_skb instead of the
3988	 * command queue (hdev->cmd_q).
3989	 */
3990	if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) {
3991		*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3992		return;
3993	}
3994
3995	if (skb && bt_cb(skb)->hci.req_complete) {
3996		*req_complete = bt_cb(skb)->hci.req_complete;
3997		return;
3998	}
3999
4000	/* Remove all pending commands belonging to this request */
4001	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4002	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4003		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4004			__skb_queue_head(&hdev->cmd_q, skb);
4005			break;
4006		}
4007
4008		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4009			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4010		else
4011			*req_complete = bt_cb(skb)->hci.req_complete;
4012		dev_kfree_skb_irq(skb);
4013	}
4014	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4015}
4016
4017static void hci_rx_work(struct work_struct *work)
4018{
4019	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4020	struct sk_buff *skb;
4021
4022	BT_DBG("%s", hdev->name);
4023
4024	/* The kcov_remote functions used for collecting packet parsing
4025	 * coverage information from this background thread and associate
4026	 * the coverage with the syscall's thread which originally injected
4027	 * the packet. This helps fuzzing the kernel.
4028	 */
4029	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4030		kcov_remote_start_common(skb_get_kcov_handle(skb));
4031
4032		/* Send copy to monitor */
4033		hci_send_to_monitor(hdev, skb);
4034
4035		if (atomic_read(&hdev->promisc)) {
4036			/* Send copy to the sockets */
4037			hci_send_to_sock(hdev, skb);
4038		}
4039
4040		/* If the device has been opened in HCI_USER_CHANNEL,
4041		 * the userspace has exclusive access to device.
4042		 * When device is HCI_INIT, we still need to process
4043		 * the data packets to the driver in order
4044		 * to complete its setup().
4045		 */
4046		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4047		    !test_bit(HCI_INIT, &hdev->flags)) {
4048			kfree_skb(skb);
4049			continue;
4050		}
4051
4052		if (test_bit(HCI_INIT, &hdev->flags)) {
4053			/* Don't process data packets in this states. */
4054			switch (hci_skb_pkt_type(skb)) {
4055			case HCI_ACLDATA_PKT:
4056			case HCI_SCODATA_PKT:
4057			case HCI_ISODATA_PKT:
4058				kfree_skb(skb);
4059				continue;
4060			}
4061		}
4062
4063		/* Process frame */
4064		switch (hci_skb_pkt_type(skb)) {
4065		case HCI_EVENT_PKT:
4066			BT_DBG("%s Event packet", hdev->name);
4067			hci_event_packet(hdev, skb);
4068			break;
4069
4070		case HCI_ACLDATA_PKT:
4071			BT_DBG("%s ACL data packet", hdev->name);
4072			hci_acldata_packet(hdev, skb);
4073			break;
4074
4075		case HCI_SCODATA_PKT:
4076			BT_DBG("%s SCO data packet", hdev->name);
4077			hci_scodata_packet(hdev, skb);
4078			break;
4079
4080		case HCI_ISODATA_PKT:
4081			BT_DBG("%s ISO data packet", hdev->name);
4082			hci_isodata_packet(hdev, skb);
4083			break;
4084
4085		default:
4086			kfree_skb(skb);
4087			break;
4088		}
4089	}
4090}
4091
4092static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb)
4093{
4094	int err;
4095
4096	bt_dev_dbg(hdev, "skb %p", skb);
4097
4098	kfree_skb(hdev->sent_cmd);
4099
4100	hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4101	if (!hdev->sent_cmd) {
4102		skb_queue_head(&hdev->cmd_q, skb);
4103		queue_work(hdev->workqueue, &hdev->cmd_work);
4104		return;
4105	}
4106
4107	err = hci_send_frame(hdev, skb);
4108	if (err < 0) {
4109		hci_cmd_sync_cancel_sync(hdev, -err);
4110		return;
4111	}
4112
4113	if (hci_req_status_pend(hdev) &&
4114	    !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) {
4115		kfree_skb(hdev->req_skb);
4116		hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4117	}
4118
4119	atomic_dec(&hdev->cmd_cnt);
4120}
4121
4122static void hci_cmd_work(struct work_struct *work)
4123{
4124	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4125	struct sk_buff *skb;
4126
4127	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4128	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4129
4130	/* Send queued commands */
4131	if (atomic_read(&hdev->cmd_cnt)) {
4132		skb = skb_dequeue(&hdev->cmd_q);
4133		if (!skb)
4134			return;
4135
4136		hci_send_cmd_sync(hdev, skb);
 
 
 
 
 
 
 
 
 
 
 
4137
4138		rcu_read_lock();
4139		if (test_bit(HCI_RESET, &hdev->flags) ||
4140		    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4141			cancel_delayed_work(&hdev->cmd_timer);
4142		else
4143			queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4144					   HCI_CMD_TIMEOUT);
4145		rcu_read_unlock();
 
 
 
 
4146	}
4147}