Loading...
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24*/
25
26/* Bluetooth HCI core. */
27
28#include <linux/export.h>
29#include <linux/rfkill.h>
30#include <linux/debugfs.h>
31#include <linux/crypto.h>
32#include <linux/kcov.h>
33#include <linux/property.h>
34#include <linux/suspend.h>
35#include <linux/wait.h>
36#include <asm/unaligned.h>
37
38#include <net/bluetooth/bluetooth.h>
39#include <net/bluetooth/hci_core.h>
40#include <net/bluetooth/l2cap.h>
41#include <net/bluetooth/mgmt.h>
42
43#include "hci_request.h"
44#include "hci_debugfs.h"
45#include "smp.h"
46#include "leds.h"
47#include "msft.h"
48#include "aosp.h"
49#include "hci_codec.h"
50
51static void hci_rx_work(struct work_struct *work);
52static void hci_cmd_work(struct work_struct *work);
53static void hci_tx_work(struct work_struct *work);
54
55/* HCI device list */
56LIST_HEAD(hci_dev_list);
57DEFINE_RWLOCK(hci_dev_list_lock);
58
59/* HCI callback list */
60LIST_HEAD(hci_cb_list);
61DEFINE_MUTEX(hci_cb_list_lock);
62
63/* HCI ID Numbering */
64static DEFINE_IDA(hci_index_ida);
65
66static int hci_scan_req(struct hci_request *req, unsigned long opt)
67{
68 __u8 scan = opt;
69
70 BT_DBG("%s %x", req->hdev->name, scan);
71
72 /* Inquiry and Page scans */
73 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
74 return 0;
75}
76
77static int hci_auth_req(struct hci_request *req, unsigned long opt)
78{
79 __u8 auth = opt;
80
81 BT_DBG("%s %x", req->hdev->name, auth);
82
83 /* Authentication */
84 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
85 return 0;
86}
87
88static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
89{
90 __u8 encrypt = opt;
91
92 BT_DBG("%s %x", req->hdev->name, encrypt);
93
94 /* Encryption */
95 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
96 return 0;
97}
98
99static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
100{
101 __le16 policy = cpu_to_le16(opt);
102
103 BT_DBG("%s %x", req->hdev->name, policy);
104
105 /* Default link policy */
106 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
107 return 0;
108}
109
110/* Get HCI device by index.
111 * Device is held on return. */
112struct hci_dev *hci_dev_get(int index)
113{
114 struct hci_dev *hdev = NULL, *d;
115
116 BT_DBG("%d", index);
117
118 if (index < 0)
119 return NULL;
120
121 read_lock(&hci_dev_list_lock);
122 list_for_each_entry(d, &hci_dev_list, list) {
123 if (d->id == index) {
124 hdev = hci_dev_hold(d);
125 break;
126 }
127 }
128 read_unlock(&hci_dev_list_lock);
129 return hdev;
130}
131
132/* ---- Inquiry support ---- */
133
134bool hci_discovery_active(struct hci_dev *hdev)
135{
136 struct discovery_state *discov = &hdev->discovery;
137
138 switch (discov->state) {
139 case DISCOVERY_FINDING:
140 case DISCOVERY_RESOLVING:
141 return true;
142
143 default:
144 return false;
145 }
146}
147
148void hci_discovery_set_state(struct hci_dev *hdev, int state)
149{
150 int old_state = hdev->discovery.state;
151
152 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
153
154 if (old_state == state)
155 return;
156
157 hdev->discovery.state = state;
158
159 switch (state) {
160 case DISCOVERY_STOPPED:
161 hci_update_passive_scan(hdev);
162
163 if (old_state != DISCOVERY_STARTING)
164 mgmt_discovering(hdev, 0);
165 break;
166 case DISCOVERY_STARTING:
167 break;
168 case DISCOVERY_FINDING:
169 mgmt_discovering(hdev, 1);
170 break;
171 case DISCOVERY_RESOLVING:
172 break;
173 case DISCOVERY_STOPPING:
174 break;
175 }
176}
177
178void hci_inquiry_cache_flush(struct hci_dev *hdev)
179{
180 struct discovery_state *cache = &hdev->discovery;
181 struct inquiry_entry *p, *n;
182
183 list_for_each_entry_safe(p, n, &cache->all, all) {
184 list_del(&p->all);
185 kfree(p);
186 }
187
188 INIT_LIST_HEAD(&cache->unknown);
189 INIT_LIST_HEAD(&cache->resolve);
190}
191
192struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
193 bdaddr_t *bdaddr)
194{
195 struct discovery_state *cache = &hdev->discovery;
196 struct inquiry_entry *e;
197
198 BT_DBG("cache %p, %pMR", cache, bdaddr);
199
200 list_for_each_entry(e, &cache->all, all) {
201 if (!bacmp(&e->data.bdaddr, bdaddr))
202 return e;
203 }
204
205 return NULL;
206}
207
208struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
209 bdaddr_t *bdaddr)
210{
211 struct discovery_state *cache = &hdev->discovery;
212 struct inquiry_entry *e;
213
214 BT_DBG("cache %p, %pMR", cache, bdaddr);
215
216 list_for_each_entry(e, &cache->unknown, list) {
217 if (!bacmp(&e->data.bdaddr, bdaddr))
218 return e;
219 }
220
221 return NULL;
222}
223
224struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
225 bdaddr_t *bdaddr,
226 int state)
227{
228 struct discovery_state *cache = &hdev->discovery;
229 struct inquiry_entry *e;
230
231 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
232
233 list_for_each_entry(e, &cache->resolve, list) {
234 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
235 return e;
236 if (!bacmp(&e->data.bdaddr, bdaddr))
237 return e;
238 }
239
240 return NULL;
241}
242
243void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
244 struct inquiry_entry *ie)
245{
246 struct discovery_state *cache = &hdev->discovery;
247 struct list_head *pos = &cache->resolve;
248 struct inquiry_entry *p;
249
250 list_del(&ie->list);
251
252 list_for_each_entry(p, &cache->resolve, list) {
253 if (p->name_state != NAME_PENDING &&
254 abs(p->data.rssi) >= abs(ie->data.rssi))
255 break;
256 pos = &p->list;
257 }
258
259 list_add(&ie->list, pos);
260}
261
262u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
263 bool name_known)
264{
265 struct discovery_state *cache = &hdev->discovery;
266 struct inquiry_entry *ie;
267 u32 flags = 0;
268
269 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
270
271 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
272
273 if (!data->ssp_mode)
274 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
275
276 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
277 if (ie) {
278 if (!ie->data.ssp_mode)
279 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
280
281 if (ie->name_state == NAME_NEEDED &&
282 data->rssi != ie->data.rssi) {
283 ie->data.rssi = data->rssi;
284 hci_inquiry_cache_update_resolve(hdev, ie);
285 }
286
287 goto update;
288 }
289
290 /* Entry not in the cache. Add new one. */
291 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
292 if (!ie) {
293 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
294 goto done;
295 }
296
297 list_add(&ie->all, &cache->all);
298
299 if (name_known) {
300 ie->name_state = NAME_KNOWN;
301 } else {
302 ie->name_state = NAME_NOT_KNOWN;
303 list_add(&ie->list, &cache->unknown);
304 }
305
306update:
307 if (name_known && ie->name_state != NAME_KNOWN &&
308 ie->name_state != NAME_PENDING) {
309 ie->name_state = NAME_KNOWN;
310 list_del(&ie->list);
311 }
312
313 memcpy(&ie->data, data, sizeof(*data));
314 ie->timestamp = jiffies;
315 cache->timestamp = jiffies;
316
317 if (ie->name_state == NAME_NOT_KNOWN)
318 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
319
320done:
321 return flags;
322}
323
324static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
325{
326 struct discovery_state *cache = &hdev->discovery;
327 struct inquiry_info *info = (struct inquiry_info *) buf;
328 struct inquiry_entry *e;
329 int copied = 0;
330
331 list_for_each_entry(e, &cache->all, all) {
332 struct inquiry_data *data = &e->data;
333
334 if (copied >= num)
335 break;
336
337 bacpy(&info->bdaddr, &data->bdaddr);
338 info->pscan_rep_mode = data->pscan_rep_mode;
339 info->pscan_period_mode = data->pscan_period_mode;
340 info->pscan_mode = data->pscan_mode;
341 memcpy(info->dev_class, data->dev_class, 3);
342 info->clock_offset = data->clock_offset;
343
344 info++;
345 copied++;
346 }
347
348 BT_DBG("cache %p, copied %d", cache, copied);
349 return copied;
350}
351
352static int hci_inq_req(struct hci_request *req, unsigned long opt)
353{
354 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
355 struct hci_dev *hdev = req->hdev;
356 struct hci_cp_inquiry cp;
357
358 BT_DBG("%s", hdev->name);
359
360 if (test_bit(HCI_INQUIRY, &hdev->flags))
361 return 0;
362
363 /* Start Inquiry */
364 memcpy(&cp.lap, &ir->lap, 3);
365 cp.length = ir->length;
366 cp.num_rsp = ir->num_rsp;
367 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
368
369 return 0;
370}
371
372int hci_inquiry(void __user *arg)
373{
374 __u8 __user *ptr = arg;
375 struct hci_inquiry_req ir;
376 struct hci_dev *hdev;
377 int err = 0, do_inquiry = 0, max_rsp;
378 long timeo;
379 __u8 *buf;
380
381 if (copy_from_user(&ir, ptr, sizeof(ir)))
382 return -EFAULT;
383
384 hdev = hci_dev_get(ir.dev_id);
385 if (!hdev)
386 return -ENODEV;
387
388 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
389 err = -EBUSY;
390 goto done;
391 }
392
393 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
394 err = -EOPNOTSUPP;
395 goto done;
396 }
397
398 if (hdev->dev_type != HCI_PRIMARY) {
399 err = -EOPNOTSUPP;
400 goto done;
401 }
402
403 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
404 err = -EOPNOTSUPP;
405 goto done;
406 }
407
408 /* Restrict maximum inquiry length to 60 seconds */
409 if (ir.length > 60) {
410 err = -EINVAL;
411 goto done;
412 }
413
414 hci_dev_lock(hdev);
415 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
416 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
417 hci_inquiry_cache_flush(hdev);
418 do_inquiry = 1;
419 }
420 hci_dev_unlock(hdev);
421
422 timeo = ir.length * msecs_to_jiffies(2000);
423
424 if (do_inquiry) {
425 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
426 timeo, NULL);
427 if (err < 0)
428 goto done;
429
430 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
431 * cleared). If it is interrupted by a signal, return -EINTR.
432 */
433 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
434 TASK_INTERRUPTIBLE)) {
435 err = -EINTR;
436 goto done;
437 }
438 }
439
440 /* for unlimited number of responses we will use buffer with
441 * 255 entries
442 */
443 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
444
445 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
446 * copy it to the user space.
447 */
448 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
449 if (!buf) {
450 err = -ENOMEM;
451 goto done;
452 }
453
454 hci_dev_lock(hdev);
455 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
456 hci_dev_unlock(hdev);
457
458 BT_DBG("num_rsp %d", ir.num_rsp);
459
460 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
461 ptr += sizeof(ir);
462 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
463 ir.num_rsp))
464 err = -EFAULT;
465 } else
466 err = -EFAULT;
467
468 kfree(buf);
469
470done:
471 hci_dev_put(hdev);
472 return err;
473}
474
475static int hci_dev_do_open(struct hci_dev *hdev)
476{
477 int ret = 0;
478
479 BT_DBG("%s %p", hdev->name, hdev);
480
481 hci_req_sync_lock(hdev);
482
483 ret = hci_dev_open_sync(hdev);
484
485 hci_req_sync_unlock(hdev);
486 return ret;
487}
488
489/* ---- HCI ioctl helpers ---- */
490
491int hci_dev_open(__u16 dev)
492{
493 struct hci_dev *hdev;
494 int err;
495
496 hdev = hci_dev_get(dev);
497 if (!hdev)
498 return -ENODEV;
499
500 /* Devices that are marked as unconfigured can only be powered
501 * up as user channel. Trying to bring them up as normal devices
502 * will result into a failure. Only user channel operation is
503 * possible.
504 *
505 * When this function is called for a user channel, the flag
506 * HCI_USER_CHANNEL will be set first before attempting to
507 * open the device.
508 */
509 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
510 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
511 err = -EOPNOTSUPP;
512 goto done;
513 }
514
515 /* We need to ensure that no other power on/off work is pending
516 * before proceeding to call hci_dev_do_open. This is
517 * particularly important if the setup procedure has not yet
518 * completed.
519 */
520 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
521 cancel_delayed_work(&hdev->power_off);
522
523 /* After this call it is guaranteed that the setup procedure
524 * has finished. This means that error conditions like RFKILL
525 * or no valid public or static random address apply.
526 */
527 flush_workqueue(hdev->req_workqueue);
528
529 /* For controllers not using the management interface and that
530 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
531 * so that pairing works for them. Once the management interface
532 * is in use this bit will be cleared again and userspace has
533 * to explicitly enable it.
534 */
535 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
536 !hci_dev_test_flag(hdev, HCI_MGMT))
537 hci_dev_set_flag(hdev, HCI_BONDABLE);
538
539 err = hci_dev_do_open(hdev);
540
541done:
542 hci_dev_put(hdev);
543 return err;
544}
545
546int hci_dev_do_close(struct hci_dev *hdev)
547{
548 int err;
549
550 BT_DBG("%s %p", hdev->name, hdev);
551
552 hci_req_sync_lock(hdev);
553
554 err = hci_dev_close_sync(hdev);
555
556 hci_req_sync_unlock(hdev);
557
558 return err;
559}
560
561int hci_dev_close(__u16 dev)
562{
563 struct hci_dev *hdev;
564 int err;
565
566 hdev = hci_dev_get(dev);
567 if (!hdev)
568 return -ENODEV;
569
570 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
571 err = -EBUSY;
572 goto done;
573 }
574
575 cancel_work_sync(&hdev->power_on);
576 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
577 cancel_delayed_work(&hdev->power_off);
578
579 err = hci_dev_do_close(hdev);
580
581done:
582 hci_dev_put(hdev);
583 return err;
584}
585
586static int hci_dev_do_reset(struct hci_dev *hdev)
587{
588 int ret;
589
590 BT_DBG("%s %p", hdev->name, hdev);
591
592 hci_req_sync_lock(hdev);
593
594 /* Drop queues */
595 skb_queue_purge(&hdev->rx_q);
596 skb_queue_purge(&hdev->cmd_q);
597
598 /* Cancel these to avoid queueing non-chained pending work */
599 hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
600 /* Wait for
601 *
602 * if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
603 * queue_delayed_work(&hdev->{cmd,ncmd}_timer)
604 *
605 * inside RCU section to see the flag or complete scheduling.
606 */
607 synchronize_rcu();
608 /* Explicitly cancel works in case scheduled after setting the flag. */
609 cancel_delayed_work(&hdev->cmd_timer);
610 cancel_delayed_work(&hdev->ncmd_timer);
611
612 /* Avoid potential lockdep warnings from the *_flush() calls by
613 * ensuring the workqueue is empty up front.
614 */
615 drain_workqueue(hdev->workqueue);
616
617 hci_dev_lock(hdev);
618 hci_inquiry_cache_flush(hdev);
619 hci_conn_hash_flush(hdev);
620 hci_dev_unlock(hdev);
621
622 if (hdev->flush)
623 hdev->flush(hdev);
624
625 hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
626
627 atomic_set(&hdev->cmd_cnt, 1);
628 hdev->acl_cnt = 0;
629 hdev->sco_cnt = 0;
630 hdev->le_cnt = 0;
631 hdev->iso_cnt = 0;
632
633 ret = hci_reset_sync(hdev);
634
635 hci_req_sync_unlock(hdev);
636 return ret;
637}
638
639int hci_dev_reset(__u16 dev)
640{
641 struct hci_dev *hdev;
642 int err;
643
644 hdev = hci_dev_get(dev);
645 if (!hdev)
646 return -ENODEV;
647
648 if (!test_bit(HCI_UP, &hdev->flags)) {
649 err = -ENETDOWN;
650 goto done;
651 }
652
653 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
654 err = -EBUSY;
655 goto done;
656 }
657
658 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
659 err = -EOPNOTSUPP;
660 goto done;
661 }
662
663 err = hci_dev_do_reset(hdev);
664
665done:
666 hci_dev_put(hdev);
667 return err;
668}
669
670int hci_dev_reset_stat(__u16 dev)
671{
672 struct hci_dev *hdev;
673 int ret = 0;
674
675 hdev = hci_dev_get(dev);
676 if (!hdev)
677 return -ENODEV;
678
679 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
680 ret = -EBUSY;
681 goto done;
682 }
683
684 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
685 ret = -EOPNOTSUPP;
686 goto done;
687 }
688
689 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
690
691done:
692 hci_dev_put(hdev);
693 return ret;
694}
695
696static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
697{
698 bool conn_changed, discov_changed;
699
700 BT_DBG("%s scan 0x%02x", hdev->name, scan);
701
702 if ((scan & SCAN_PAGE))
703 conn_changed = !hci_dev_test_and_set_flag(hdev,
704 HCI_CONNECTABLE);
705 else
706 conn_changed = hci_dev_test_and_clear_flag(hdev,
707 HCI_CONNECTABLE);
708
709 if ((scan & SCAN_INQUIRY)) {
710 discov_changed = !hci_dev_test_and_set_flag(hdev,
711 HCI_DISCOVERABLE);
712 } else {
713 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
714 discov_changed = hci_dev_test_and_clear_flag(hdev,
715 HCI_DISCOVERABLE);
716 }
717
718 if (!hci_dev_test_flag(hdev, HCI_MGMT))
719 return;
720
721 if (conn_changed || discov_changed) {
722 /* In case this was disabled through mgmt */
723 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
724
725 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
726 hci_update_adv_data(hdev, hdev->cur_adv_instance);
727
728 mgmt_new_settings(hdev);
729 }
730}
731
732int hci_dev_cmd(unsigned int cmd, void __user *arg)
733{
734 struct hci_dev *hdev;
735 struct hci_dev_req dr;
736 int err = 0;
737
738 if (copy_from_user(&dr, arg, sizeof(dr)))
739 return -EFAULT;
740
741 hdev = hci_dev_get(dr.dev_id);
742 if (!hdev)
743 return -ENODEV;
744
745 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
746 err = -EBUSY;
747 goto done;
748 }
749
750 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
751 err = -EOPNOTSUPP;
752 goto done;
753 }
754
755 if (hdev->dev_type != HCI_PRIMARY) {
756 err = -EOPNOTSUPP;
757 goto done;
758 }
759
760 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
761 err = -EOPNOTSUPP;
762 goto done;
763 }
764
765 switch (cmd) {
766 case HCISETAUTH:
767 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
768 HCI_INIT_TIMEOUT, NULL);
769 break;
770
771 case HCISETENCRYPT:
772 if (!lmp_encrypt_capable(hdev)) {
773 err = -EOPNOTSUPP;
774 break;
775 }
776
777 if (!test_bit(HCI_AUTH, &hdev->flags)) {
778 /* Auth must be enabled first */
779 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
780 HCI_INIT_TIMEOUT, NULL);
781 if (err)
782 break;
783 }
784
785 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
786 HCI_INIT_TIMEOUT, NULL);
787 break;
788
789 case HCISETSCAN:
790 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
791 HCI_INIT_TIMEOUT, NULL);
792
793 /* Ensure that the connectable and discoverable states
794 * get correctly modified as this was a non-mgmt change.
795 */
796 if (!err)
797 hci_update_passive_scan_state(hdev, dr.dev_opt);
798 break;
799
800 case HCISETLINKPOL:
801 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
802 HCI_INIT_TIMEOUT, NULL);
803 break;
804
805 case HCISETLINKMODE:
806 hdev->link_mode = ((__u16) dr.dev_opt) &
807 (HCI_LM_MASTER | HCI_LM_ACCEPT);
808 break;
809
810 case HCISETPTYPE:
811 if (hdev->pkt_type == (__u16) dr.dev_opt)
812 break;
813
814 hdev->pkt_type = (__u16) dr.dev_opt;
815 mgmt_phy_configuration_changed(hdev, NULL);
816 break;
817
818 case HCISETACLMTU:
819 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
820 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
821 break;
822
823 case HCISETSCOMTU:
824 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
825 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
826 break;
827
828 default:
829 err = -EINVAL;
830 break;
831 }
832
833done:
834 hci_dev_put(hdev);
835 return err;
836}
837
838int hci_get_dev_list(void __user *arg)
839{
840 struct hci_dev *hdev;
841 struct hci_dev_list_req *dl;
842 struct hci_dev_req *dr;
843 int n = 0, size, err;
844 __u16 dev_num;
845
846 if (get_user(dev_num, (__u16 __user *) arg))
847 return -EFAULT;
848
849 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
850 return -EINVAL;
851
852 size = sizeof(*dl) + dev_num * sizeof(*dr);
853
854 dl = kzalloc(size, GFP_KERNEL);
855 if (!dl)
856 return -ENOMEM;
857
858 dr = dl->dev_req;
859
860 read_lock(&hci_dev_list_lock);
861 list_for_each_entry(hdev, &hci_dev_list, list) {
862 unsigned long flags = hdev->flags;
863
864 /* When the auto-off is configured it means the transport
865 * is running, but in that case still indicate that the
866 * device is actually down.
867 */
868 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
869 flags &= ~BIT(HCI_UP);
870
871 (dr + n)->dev_id = hdev->id;
872 (dr + n)->dev_opt = flags;
873
874 if (++n >= dev_num)
875 break;
876 }
877 read_unlock(&hci_dev_list_lock);
878
879 dl->dev_num = n;
880 size = sizeof(*dl) + n * sizeof(*dr);
881
882 err = copy_to_user(arg, dl, size);
883 kfree(dl);
884
885 return err ? -EFAULT : 0;
886}
887
888int hci_get_dev_info(void __user *arg)
889{
890 struct hci_dev *hdev;
891 struct hci_dev_info di;
892 unsigned long flags;
893 int err = 0;
894
895 if (copy_from_user(&di, arg, sizeof(di)))
896 return -EFAULT;
897
898 hdev = hci_dev_get(di.dev_id);
899 if (!hdev)
900 return -ENODEV;
901
902 /* When the auto-off is configured it means the transport
903 * is running, but in that case still indicate that the
904 * device is actually down.
905 */
906 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
907 flags = hdev->flags & ~BIT(HCI_UP);
908 else
909 flags = hdev->flags;
910
911 strcpy(di.name, hdev->name);
912 di.bdaddr = hdev->bdaddr;
913 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
914 di.flags = flags;
915 di.pkt_type = hdev->pkt_type;
916 if (lmp_bredr_capable(hdev)) {
917 di.acl_mtu = hdev->acl_mtu;
918 di.acl_pkts = hdev->acl_pkts;
919 di.sco_mtu = hdev->sco_mtu;
920 di.sco_pkts = hdev->sco_pkts;
921 } else {
922 di.acl_mtu = hdev->le_mtu;
923 di.acl_pkts = hdev->le_pkts;
924 di.sco_mtu = 0;
925 di.sco_pkts = 0;
926 }
927 di.link_policy = hdev->link_policy;
928 di.link_mode = hdev->link_mode;
929
930 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
931 memcpy(&di.features, &hdev->features, sizeof(di.features));
932
933 if (copy_to_user(arg, &di, sizeof(di)))
934 err = -EFAULT;
935
936 hci_dev_put(hdev);
937
938 return err;
939}
940
941/* ---- Interface to HCI drivers ---- */
942
943static int hci_rfkill_set_block(void *data, bool blocked)
944{
945 struct hci_dev *hdev = data;
946
947 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
948
949 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
950 return -EBUSY;
951
952 if (blocked) {
953 hci_dev_set_flag(hdev, HCI_RFKILLED);
954 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
955 !hci_dev_test_flag(hdev, HCI_CONFIG))
956 hci_dev_do_close(hdev);
957 } else {
958 hci_dev_clear_flag(hdev, HCI_RFKILLED);
959 }
960
961 return 0;
962}
963
964static const struct rfkill_ops hci_rfkill_ops = {
965 .set_block = hci_rfkill_set_block,
966};
967
968static void hci_power_on(struct work_struct *work)
969{
970 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
971 int err;
972
973 BT_DBG("%s", hdev->name);
974
975 if (test_bit(HCI_UP, &hdev->flags) &&
976 hci_dev_test_flag(hdev, HCI_MGMT) &&
977 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
978 cancel_delayed_work(&hdev->power_off);
979 err = hci_powered_update_sync(hdev);
980 mgmt_power_on(hdev, err);
981 return;
982 }
983
984 err = hci_dev_do_open(hdev);
985 if (err < 0) {
986 hci_dev_lock(hdev);
987 mgmt_set_powered_failed(hdev, err);
988 hci_dev_unlock(hdev);
989 return;
990 }
991
992 /* During the HCI setup phase, a few error conditions are
993 * ignored and they need to be checked now. If they are still
994 * valid, it is important to turn the device back off.
995 */
996 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
997 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
998 (hdev->dev_type == HCI_PRIMARY &&
999 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1000 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1001 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1002 hci_dev_do_close(hdev);
1003 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1004 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1005 HCI_AUTO_OFF_TIMEOUT);
1006 }
1007
1008 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1009 /* For unconfigured devices, set the HCI_RAW flag
1010 * so that userspace can easily identify them.
1011 */
1012 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1013 set_bit(HCI_RAW, &hdev->flags);
1014
1015 /* For fully configured devices, this will send
1016 * the Index Added event. For unconfigured devices,
1017 * it will send Unconfigued Index Added event.
1018 *
1019 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1020 * and no event will be send.
1021 */
1022 mgmt_index_added(hdev);
1023 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1024 /* When the controller is now configured, then it
1025 * is important to clear the HCI_RAW flag.
1026 */
1027 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1028 clear_bit(HCI_RAW, &hdev->flags);
1029
1030 /* Powering on the controller with HCI_CONFIG set only
1031 * happens with the transition from unconfigured to
1032 * configured. This will send the Index Added event.
1033 */
1034 mgmt_index_added(hdev);
1035 }
1036}
1037
1038static void hci_power_off(struct work_struct *work)
1039{
1040 struct hci_dev *hdev = container_of(work, struct hci_dev,
1041 power_off.work);
1042
1043 BT_DBG("%s", hdev->name);
1044
1045 hci_dev_do_close(hdev);
1046}
1047
1048static void hci_error_reset(struct work_struct *work)
1049{
1050 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1051
1052 hci_dev_hold(hdev);
1053 BT_DBG("%s", hdev->name);
1054
1055 if (hdev->hw_error)
1056 hdev->hw_error(hdev, hdev->hw_error_code);
1057 else
1058 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1059
1060 if (!hci_dev_do_close(hdev))
1061 hci_dev_do_open(hdev);
1062
1063 hci_dev_put(hdev);
1064}
1065
1066void hci_uuids_clear(struct hci_dev *hdev)
1067{
1068 struct bt_uuid *uuid, *tmp;
1069
1070 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1071 list_del(&uuid->list);
1072 kfree(uuid);
1073 }
1074}
1075
1076void hci_link_keys_clear(struct hci_dev *hdev)
1077{
1078 struct link_key *key, *tmp;
1079
1080 list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1081 list_del_rcu(&key->list);
1082 kfree_rcu(key, rcu);
1083 }
1084}
1085
1086void hci_smp_ltks_clear(struct hci_dev *hdev)
1087{
1088 struct smp_ltk *k, *tmp;
1089
1090 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1091 list_del_rcu(&k->list);
1092 kfree_rcu(k, rcu);
1093 }
1094}
1095
1096void hci_smp_irks_clear(struct hci_dev *hdev)
1097{
1098 struct smp_irk *k, *tmp;
1099
1100 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1101 list_del_rcu(&k->list);
1102 kfree_rcu(k, rcu);
1103 }
1104}
1105
1106void hci_blocked_keys_clear(struct hci_dev *hdev)
1107{
1108 struct blocked_key *b, *tmp;
1109
1110 list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1111 list_del_rcu(&b->list);
1112 kfree_rcu(b, rcu);
1113 }
1114}
1115
1116bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1117{
1118 bool blocked = false;
1119 struct blocked_key *b;
1120
1121 rcu_read_lock();
1122 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1123 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1124 blocked = true;
1125 break;
1126 }
1127 }
1128
1129 rcu_read_unlock();
1130 return blocked;
1131}
1132
1133struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1134{
1135 struct link_key *k;
1136
1137 rcu_read_lock();
1138 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1139 if (bacmp(bdaddr, &k->bdaddr) == 0) {
1140 rcu_read_unlock();
1141
1142 if (hci_is_blocked_key(hdev,
1143 HCI_BLOCKED_KEY_TYPE_LINKKEY,
1144 k->val)) {
1145 bt_dev_warn_ratelimited(hdev,
1146 "Link key blocked for %pMR",
1147 &k->bdaddr);
1148 return NULL;
1149 }
1150
1151 return k;
1152 }
1153 }
1154 rcu_read_unlock();
1155
1156 return NULL;
1157}
1158
1159static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1160 u8 key_type, u8 old_key_type)
1161{
1162 /* Legacy key */
1163 if (key_type < 0x03)
1164 return true;
1165
1166 /* Debug keys are insecure so don't store them persistently */
1167 if (key_type == HCI_LK_DEBUG_COMBINATION)
1168 return false;
1169
1170 /* Changed combination key and there's no previous one */
1171 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1172 return false;
1173
1174 /* Security mode 3 case */
1175 if (!conn)
1176 return true;
1177
1178 /* BR/EDR key derived using SC from an LE link */
1179 if (conn->type == LE_LINK)
1180 return true;
1181
1182 /* Neither local nor remote side had no-bonding as requirement */
1183 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1184 return true;
1185
1186 /* Local side had dedicated bonding as requirement */
1187 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1188 return true;
1189
1190 /* Remote side had dedicated bonding as requirement */
1191 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1192 return true;
1193
1194 /* If none of the above criteria match, then don't store the key
1195 * persistently */
1196 return false;
1197}
1198
1199static u8 ltk_role(u8 type)
1200{
1201 if (type == SMP_LTK)
1202 return HCI_ROLE_MASTER;
1203
1204 return HCI_ROLE_SLAVE;
1205}
1206
1207struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1208 u8 addr_type, u8 role)
1209{
1210 struct smp_ltk *k;
1211
1212 rcu_read_lock();
1213 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1214 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1215 continue;
1216
1217 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1218 rcu_read_unlock();
1219
1220 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1221 k->val)) {
1222 bt_dev_warn_ratelimited(hdev,
1223 "LTK blocked for %pMR",
1224 &k->bdaddr);
1225 return NULL;
1226 }
1227
1228 return k;
1229 }
1230 }
1231 rcu_read_unlock();
1232
1233 return NULL;
1234}
1235
1236struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1237{
1238 struct smp_irk *irk_to_return = NULL;
1239 struct smp_irk *irk;
1240
1241 rcu_read_lock();
1242 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1243 if (!bacmp(&irk->rpa, rpa)) {
1244 irk_to_return = irk;
1245 goto done;
1246 }
1247 }
1248
1249 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1250 if (smp_irk_matches(hdev, irk->val, rpa)) {
1251 bacpy(&irk->rpa, rpa);
1252 irk_to_return = irk;
1253 goto done;
1254 }
1255 }
1256
1257done:
1258 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1259 irk_to_return->val)) {
1260 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1261 &irk_to_return->bdaddr);
1262 irk_to_return = NULL;
1263 }
1264
1265 rcu_read_unlock();
1266
1267 return irk_to_return;
1268}
1269
1270struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1271 u8 addr_type)
1272{
1273 struct smp_irk *irk_to_return = NULL;
1274 struct smp_irk *irk;
1275
1276 /* Identity Address must be public or static random */
1277 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1278 return NULL;
1279
1280 rcu_read_lock();
1281 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1282 if (addr_type == irk->addr_type &&
1283 bacmp(bdaddr, &irk->bdaddr) == 0) {
1284 irk_to_return = irk;
1285 goto done;
1286 }
1287 }
1288
1289done:
1290
1291 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1292 irk_to_return->val)) {
1293 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1294 &irk_to_return->bdaddr);
1295 irk_to_return = NULL;
1296 }
1297
1298 rcu_read_unlock();
1299
1300 return irk_to_return;
1301}
1302
1303struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1304 bdaddr_t *bdaddr, u8 *val, u8 type,
1305 u8 pin_len, bool *persistent)
1306{
1307 struct link_key *key, *old_key;
1308 u8 old_key_type;
1309
1310 old_key = hci_find_link_key(hdev, bdaddr);
1311 if (old_key) {
1312 old_key_type = old_key->type;
1313 key = old_key;
1314 } else {
1315 old_key_type = conn ? conn->key_type : 0xff;
1316 key = kzalloc(sizeof(*key), GFP_KERNEL);
1317 if (!key)
1318 return NULL;
1319 list_add_rcu(&key->list, &hdev->link_keys);
1320 }
1321
1322 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1323
1324 /* Some buggy controller combinations generate a changed
1325 * combination key for legacy pairing even when there's no
1326 * previous key */
1327 if (type == HCI_LK_CHANGED_COMBINATION &&
1328 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1329 type = HCI_LK_COMBINATION;
1330 if (conn)
1331 conn->key_type = type;
1332 }
1333
1334 bacpy(&key->bdaddr, bdaddr);
1335 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1336 key->pin_len = pin_len;
1337
1338 if (type == HCI_LK_CHANGED_COMBINATION)
1339 key->type = old_key_type;
1340 else
1341 key->type = type;
1342
1343 if (persistent)
1344 *persistent = hci_persistent_key(hdev, conn, type,
1345 old_key_type);
1346
1347 return key;
1348}
1349
1350struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1351 u8 addr_type, u8 type, u8 authenticated,
1352 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1353{
1354 struct smp_ltk *key, *old_key;
1355 u8 role = ltk_role(type);
1356
1357 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1358 if (old_key)
1359 key = old_key;
1360 else {
1361 key = kzalloc(sizeof(*key), GFP_KERNEL);
1362 if (!key)
1363 return NULL;
1364 list_add_rcu(&key->list, &hdev->long_term_keys);
1365 }
1366
1367 bacpy(&key->bdaddr, bdaddr);
1368 key->bdaddr_type = addr_type;
1369 memcpy(key->val, tk, sizeof(key->val));
1370 key->authenticated = authenticated;
1371 key->ediv = ediv;
1372 key->rand = rand;
1373 key->enc_size = enc_size;
1374 key->type = type;
1375
1376 return key;
1377}
1378
1379struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1380 u8 addr_type, u8 val[16], bdaddr_t *rpa)
1381{
1382 struct smp_irk *irk;
1383
1384 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1385 if (!irk) {
1386 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1387 if (!irk)
1388 return NULL;
1389
1390 bacpy(&irk->bdaddr, bdaddr);
1391 irk->addr_type = addr_type;
1392
1393 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1394 }
1395
1396 memcpy(irk->val, val, 16);
1397 bacpy(&irk->rpa, rpa);
1398
1399 return irk;
1400}
1401
1402int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1403{
1404 struct link_key *key;
1405
1406 key = hci_find_link_key(hdev, bdaddr);
1407 if (!key)
1408 return -ENOENT;
1409
1410 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1411
1412 list_del_rcu(&key->list);
1413 kfree_rcu(key, rcu);
1414
1415 return 0;
1416}
1417
1418int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1419{
1420 struct smp_ltk *k, *tmp;
1421 int removed = 0;
1422
1423 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1424 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1425 continue;
1426
1427 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1428
1429 list_del_rcu(&k->list);
1430 kfree_rcu(k, rcu);
1431 removed++;
1432 }
1433
1434 return removed ? 0 : -ENOENT;
1435}
1436
1437void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1438{
1439 struct smp_irk *k, *tmp;
1440
1441 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1442 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1443 continue;
1444
1445 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1446
1447 list_del_rcu(&k->list);
1448 kfree_rcu(k, rcu);
1449 }
1450}
1451
1452bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1453{
1454 struct smp_ltk *k;
1455 struct smp_irk *irk;
1456 u8 addr_type;
1457
1458 if (type == BDADDR_BREDR) {
1459 if (hci_find_link_key(hdev, bdaddr))
1460 return true;
1461 return false;
1462 }
1463
1464 /* Convert to HCI addr type which struct smp_ltk uses */
1465 if (type == BDADDR_LE_PUBLIC)
1466 addr_type = ADDR_LE_DEV_PUBLIC;
1467 else
1468 addr_type = ADDR_LE_DEV_RANDOM;
1469
1470 irk = hci_get_irk(hdev, bdaddr, addr_type);
1471 if (irk) {
1472 bdaddr = &irk->bdaddr;
1473 addr_type = irk->addr_type;
1474 }
1475
1476 rcu_read_lock();
1477 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1478 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1479 rcu_read_unlock();
1480 return true;
1481 }
1482 }
1483 rcu_read_unlock();
1484
1485 return false;
1486}
1487
1488/* HCI command timer function */
1489static void hci_cmd_timeout(struct work_struct *work)
1490{
1491 struct hci_dev *hdev = container_of(work, struct hci_dev,
1492 cmd_timer.work);
1493
1494 if (hdev->sent_cmd) {
1495 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1496 u16 opcode = __le16_to_cpu(sent->opcode);
1497
1498 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1499 } else {
1500 bt_dev_err(hdev, "command tx timeout");
1501 }
1502
1503 if (hdev->cmd_timeout)
1504 hdev->cmd_timeout(hdev);
1505
1506 atomic_set(&hdev->cmd_cnt, 1);
1507 queue_work(hdev->workqueue, &hdev->cmd_work);
1508}
1509
1510/* HCI ncmd timer function */
1511static void hci_ncmd_timeout(struct work_struct *work)
1512{
1513 struct hci_dev *hdev = container_of(work, struct hci_dev,
1514 ncmd_timer.work);
1515
1516 bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1517
1518 /* During HCI_INIT phase no events can be injected if the ncmd timer
1519 * triggers since the procedure has its own timeout handling.
1520 */
1521 if (test_bit(HCI_INIT, &hdev->flags))
1522 return;
1523
1524 /* This is an irrecoverable state, inject hardware error event */
1525 hci_reset_dev(hdev);
1526}
1527
1528struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1529 bdaddr_t *bdaddr, u8 bdaddr_type)
1530{
1531 struct oob_data *data;
1532
1533 list_for_each_entry(data, &hdev->remote_oob_data, list) {
1534 if (bacmp(bdaddr, &data->bdaddr) != 0)
1535 continue;
1536 if (data->bdaddr_type != bdaddr_type)
1537 continue;
1538 return data;
1539 }
1540
1541 return NULL;
1542}
1543
1544int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1545 u8 bdaddr_type)
1546{
1547 struct oob_data *data;
1548
1549 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1550 if (!data)
1551 return -ENOENT;
1552
1553 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1554
1555 list_del(&data->list);
1556 kfree(data);
1557
1558 return 0;
1559}
1560
1561void hci_remote_oob_data_clear(struct hci_dev *hdev)
1562{
1563 struct oob_data *data, *n;
1564
1565 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1566 list_del(&data->list);
1567 kfree(data);
1568 }
1569}
1570
1571int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1572 u8 bdaddr_type, u8 *hash192, u8 *rand192,
1573 u8 *hash256, u8 *rand256)
1574{
1575 struct oob_data *data;
1576
1577 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1578 if (!data) {
1579 data = kmalloc(sizeof(*data), GFP_KERNEL);
1580 if (!data)
1581 return -ENOMEM;
1582
1583 bacpy(&data->bdaddr, bdaddr);
1584 data->bdaddr_type = bdaddr_type;
1585 list_add(&data->list, &hdev->remote_oob_data);
1586 }
1587
1588 if (hash192 && rand192) {
1589 memcpy(data->hash192, hash192, sizeof(data->hash192));
1590 memcpy(data->rand192, rand192, sizeof(data->rand192));
1591 if (hash256 && rand256)
1592 data->present = 0x03;
1593 } else {
1594 memset(data->hash192, 0, sizeof(data->hash192));
1595 memset(data->rand192, 0, sizeof(data->rand192));
1596 if (hash256 && rand256)
1597 data->present = 0x02;
1598 else
1599 data->present = 0x00;
1600 }
1601
1602 if (hash256 && rand256) {
1603 memcpy(data->hash256, hash256, sizeof(data->hash256));
1604 memcpy(data->rand256, rand256, sizeof(data->rand256));
1605 } else {
1606 memset(data->hash256, 0, sizeof(data->hash256));
1607 memset(data->rand256, 0, sizeof(data->rand256));
1608 if (hash192 && rand192)
1609 data->present = 0x01;
1610 }
1611
1612 BT_DBG("%s for %pMR", hdev->name, bdaddr);
1613
1614 return 0;
1615}
1616
1617/* This function requires the caller holds hdev->lock */
1618struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1619{
1620 struct adv_info *adv_instance;
1621
1622 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1623 if (adv_instance->instance == instance)
1624 return adv_instance;
1625 }
1626
1627 return NULL;
1628}
1629
1630/* This function requires the caller holds hdev->lock */
1631struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1632{
1633 struct adv_info *cur_instance;
1634
1635 cur_instance = hci_find_adv_instance(hdev, instance);
1636 if (!cur_instance)
1637 return NULL;
1638
1639 if (cur_instance == list_last_entry(&hdev->adv_instances,
1640 struct adv_info, list))
1641 return list_first_entry(&hdev->adv_instances,
1642 struct adv_info, list);
1643 else
1644 return list_next_entry(cur_instance, list);
1645}
1646
1647/* This function requires the caller holds hdev->lock */
1648int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1649{
1650 struct adv_info *adv_instance;
1651
1652 adv_instance = hci_find_adv_instance(hdev, instance);
1653 if (!adv_instance)
1654 return -ENOENT;
1655
1656 BT_DBG("%s removing %dMR", hdev->name, instance);
1657
1658 if (hdev->cur_adv_instance == instance) {
1659 if (hdev->adv_instance_timeout) {
1660 cancel_delayed_work(&hdev->adv_instance_expire);
1661 hdev->adv_instance_timeout = 0;
1662 }
1663 hdev->cur_adv_instance = 0x00;
1664 }
1665
1666 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1667
1668 list_del(&adv_instance->list);
1669 kfree(adv_instance);
1670
1671 hdev->adv_instance_cnt--;
1672
1673 return 0;
1674}
1675
1676void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1677{
1678 struct adv_info *adv_instance, *n;
1679
1680 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1681 adv_instance->rpa_expired = rpa_expired;
1682}
1683
1684/* This function requires the caller holds hdev->lock */
1685void hci_adv_instances_clear(struct hci_dev *hdev)
1686{
1687 struct adv_info *adv_instance, *n;
1688
1689 if (hdev->adv_instance_timeout) {
1690 cancel_delayed_work(&hdev->adv_instance_expire);
1691 hdev->adv_instance_timeout = 0;
1692 }
1693
1694 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1695 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1696 list_del(&adv_instance->list);
1697 kfree(adv_instance);
1698 }
1699
1700 hdev->adv_instance_cnt = 0;
1701 hdev->cur_adv_instance = 0x00;
1702}
1703
1704static void adv_instance_rpa_expired(struct work_struct *work)
1705{
1706 struct adv_info *adv_instance = container_of(work, struct adv_info,
1707 rpa_expired_cb.work);
1708
1709 BT_DBG("");
1710
1711 adv_instance->rpa_expired = true;
1712}
1713
1714/* This function requires the caller holds hdev->lock */
1715struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1716 u32 flags, u16 adv_data_len, u8 *adv_data,
1717 u16 scan_rsp_len, u8 *scan_rsp_data,
1718 u16 timeout, u16 duration, s8 tx_power,
1719 u32 min_interval, u32 max_interval,
1720 u8 mesh_handle)
1721{
1722 struct adv_info *adv;
1723
1724 adv = hci_find_adv_instance(hdev, instance);
1725 if (adv) {
1726 memset(adv->adv_data, 0, sizeof(adv->adv_data));
1727 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1728 memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1729 } else {
1730 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1731 instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1732 return ERR_PTR(-EOVERFLOW);
1733
1734 adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1735 if (!adv)
1736 return ERR_PTR(-ENOMEM);
1737
1738 adv->pending = true;
1739 adv->instance = instance;
1740 list_add(&adv->list, &hdev->adv_instances);
1741 hdev->adv_instance_cnt++;
1742 }
1743
1744 adv->flags = flags;
1745 adv->min_interval = min_interval;
1746 adv->max_interval = max_interval;
1747 adv->tx_power = tx_power;
1748 /* Defining a mesh_handle changes the timing units to ms,
1749 * rather than seconds, and ties the instance to the requested
1750 * mesh_tx queue.
1751 */
1752 adv->mesh = mesh_handle;
1753
1754 hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1755 scan_rsp_len, scan_rsp_data);
1756
1757 adv->timeout = timeout;
1758 adv->remaining_time = timeout;
1759
1760 if (duration == 0)
1761 adv->duration = hdev->def_multi_adv_rotation_duration;
1762 else
1763 adv->duration = duration;
1764
1765 INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1766
1767 BT_DBG("%s for %dMR", hdev->name, instance);
1768
1769 return adv;
1770}
1771
1772/* This function requires the caller holds hdev->lock */
1773struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1774 u32 flags, u8 data_len, u8 *data,
1775 u32 min_interval, u32 max_interval)
1776{
1777 struct adv_info *adv;
1778
1779 adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1780 0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1781 min_interval, max_interval, 0);
1782 if (IS_ERR(adv))
1783 return adv;
1784
1785 adv->periodic = true;
1786 adv->per_adv_data_len = data_len;
1787
1788 if (data)
1789 memcpy(adv->per_adv_data, data, data_len);
1790
1791 return adv;
1792}
1793
1794/* This function requires the caller holds hdev->lock */
1795int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1796 u16 adv_data_len, u8 *adv_data,
1797 u16 scan_rsp_len, u8 *scan_rsp_data)
1798{
1799 struct adv_info *adv;
1800
1801 adv = hci_find_adv_instance(hdev, instance);
1802
1803 /* If advertisement doesn't exist, we can't modify its data */
1804 if (!adv)
1805 return -ENOENT;
1806
1807 if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1808 memset(adv->adv_data, 0, sizeof(adv->adv_data));
1809 memcpy(adv->adv_data, adv_data, adv_data_len);
1810 adv->adv_data_len = adv_data_len;
1811 adv->adv_data_changed = true;
1812 }
1813
1814 if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1815 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1816 memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1817 adv->scan_rsp_len = scan_rsp_len;
1818 adv->scan_rsp_changed = true;
1819 }
1820
1821 /* Mark as changed if there are flags which would affect it */
1822 if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1823 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1824 adv->scan_rsp_changed = true;
1825
1826 return 0;
1827}
1828
1829/* This function requires the caller holds hdev->lock */
1830u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1831{
1832 u32 flags;
1833 struct adv_info *adv;
1834
1835 if (instance == 0x00) {
1836 /* Instance 0 always manages the "Tx Power" and "Flags"
1837 * fields
1838 */
1839 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1840
1841 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1842 * corresponds to the "connectable" instance flag.
1843 */
1844 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1845 flags |= MGMT_ADV_FLAG_CONNECTABLE;
1846
1847 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1848 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1849 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1850 flags |= MGMT_ADV_FLAG_DISCOV;
1851
1852 return flags;
1853 }
1854
1855 adv = hci_find_adv_instance(hdev, instance);
1856
1857 /* Return 0 when we got an invalid instance identifier. */
1858 if (!adv)
1859 return 0;
1860
1861 return adv->flags;
1862}
1863
1864bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1865{
1866 struct adv_info *adv;
1867
1868 /* Instance 0x00 always set local name */
1869 if (instance == 0x00)
1870 return true;
1871
1872 adv = hci_find_adv_instance(hdev, instance);
1873 if (!adv)
1874 return false;
1875
1876 if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1877 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1878 return true;
1879
1880 return adv->scan_rsp_len ? true : false;
1881}
1882
1883/* This function requires the caller holds hdev->lock */
1884void hci_adv_monitors_clear(struct hci_dev *hdev)
1885{
1886 struct adv_monitor *monitor;
1887 int handle;
1888
1889 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1890 hci_free_adv_monitor(hdev, monitor);
1891
1892 idr_destroy(&hdev->adv_monitors_idr);
1893}
1894
1895/* Frees the monitor structure and do some bookkeepings.
1896 * This function requires the caller holds hdev->lock.
1897 */
1898void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1899{
1900 struct adv_pattern *pattern;
1901 struct adv_pattern *tmp;
1902
1903 if (!monitor)
1904 return;
1905
1906 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1907 list_del(&pattern->list);
1908 kfree(pattern);
1909 }
1910
1911 if (monitor->handle)
1912 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1913
1914 if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1915 hdev->adv_monitors_cnt--;
1916 mgmt_adv_monitor_removed(hdev, monitor->handle);
1917 }
1918
1919 kfree(monitor);
1920}
1921
1922/* Assigns handle to a monitor, and if offloading is supported and power is on,
1923 * also attempts to forward the request to the controller.
1924 * This function requires the caller holds hci_req_sync_lock.
1925 */
1926int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1927{
1928 int min, max, handle;
1929 int status = 0;
1930
1931 if (!monitor)
1932 return -EINVAL;
1933
1934 hci_dev_lock(hdev);
1935
1936 min = HCI_MIN_ADV_MONITOR_HANDLE;
1937 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1938 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1939 GFP_KERNEL);
1940
1941 hci_dev_unlock(hdev);
1942
1943 if (handle < 0)
1944 return handle;
1945
1946 monitor->handle = handle;
1947
1948 if (!hdev_is_powered(hdev))
1949 return status;
1950
1951 switch (hci_get_adv_monitor_offload_ext(hdev)) {
1952 case HCI_ADV_MONITOR_EXT_NONE:
1953 bt_dev_dbg(hdev, "add monitor %d status %d",
1954 monitor->handle, status);
1955 /* Message was not forwarded to controller - not an error */
1956 break;
1957
1958 case HCI_ADV_MONITOR_EXT_MSFT:
1959 status = msft_add_monitor_pattern(hdev, monitor);
1960 bt_dev_dbg(hdev, "add monitor %d msft status %d",
1961 handle, status);
1962 break;
1963 }
1964
1965 return status;
1966}
1967
1968/* Attempts to tell the controller and free the monitor. If somehow the
1969 * controller doesn't have a corresponding handle, remove anyway.
1970 * This function requires the caller holds hci_req_sync_lock.
1971 */
1972static int hci_remove_adv_monitor(struct hci_dev *hdev,
1973 struct adv_monitor *monitor)
1974{
1975 int status = 0;
1976 int handle;
1977
1978 switch (hci_get_adv_monitor_offload_ext(hdev)) {
1979 case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1980 bt_dev_dbg(hdev, "remove monitor %d status %d",
1981 monitor->handle, status);
1982 goto free_monitor;
1983
1984 case HCI_ADV_MONITOR_EXT_MSFT:
1985 handle = monitor->handle;
1986 status = msft_remove_monitor(hdev, monitor);
1987 bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1988 handle, status);
1989 break;
1990 }
1991
1992 /* In case no matching handle registered, just free the monitor */
1993 if (status == -ENOENT)
1994 goto free_monitor;
1995
1996 return status;
1997
1998free_monitor:
1999 if (status == -ENOENT)
2000 bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
2001 monitor->handle);
2002 hci_free_adv_monitor(hdev, monitor);
2003
2004 return status;
2005}
2006
2007/* This function requires the caller holds hci_req_sync_lock */
2008int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2009{
2010 struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2011
2012 if (!monitor)
2013 return -EINVAL;
2014
2015 return hci_remove_adv_monitor(hdev, monitor);
2016}
2017
2018/* This function requires the caller holds hci_req_sync_lock */
2019int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2020{
2021 struct adv_monitor *monitor;
2022 int idr_next_id = 0;
2023 int status = 0;
2024
2025 while (1) {
2026 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2027 if (!monitor)
2028 break;
2029
2030 status = hci_remove_adv_monitor(hdev, monitor);
2031 if (status)
2032 return status;
2033
2034 idr_next_id++;
2035 }
2036
2037 return status;
2038}
2039
2040/* This function requires the caller holds hdev->lock */
2041bool hci_is_adv_monitoring(struct hci_dev *hdev)
2042{
2043 return !idr_is_empty(&hdev->adv_monitors_idr);
2044}
2045
2046int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2047{
2048 if (msft_monitor_supported(hdev))
2049 return HCI_ADV_MONITOR_EXT_MSFT;
2050
2051 return HCI_ADV_MONITOR_EXT_NONE;
2052}
2053
2054struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2055 bdaddr_t *bdaddr, u8 type)
2056{
2057 struct bdaddr_list *b;
2058
2059 list_for_each_entry(b, bdaddr_list, list) {
2060 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2061 return b;
2062 }
2063
2064 return NULL;
2065}
2066
2067struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2068 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2069 u8 type)
2070{
2071 struct bdaddr_list_with_irk *b;
2072
2073 list_for_each_entry(b, bdaddr_list, list) {
2074 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2075 return b;
2076 }
2077
2078 return NULL;
2079}
2080
2081struct bdaddr_list_with_flags *
2082hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2083 bdaddr_t *bdaddr, u8 type)
2084{
2085 struct bdaddr_list_with_flags *b;
2086
2087 list_for_each_entry(b, bdaddr_list, list) {
2088 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2089 return b;
2090 }
2091
2092 return NULL;
2093}
2094
2095void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2096{
2097 struct bdaddr_list *b, *n;
2098
2099 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2100 list_del(&b->list);
2101 kfree(b);
2102 }
2103}
2104
2105int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2106{
2107 struct bdaddr_list *entry;
2108
2109 if (!bacmp(bdaddr, BDADDR_ANY))
2110 return -EBADF;
2111
2112 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2113 return -EEXIST;
2114
2115 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2116 if (!entry)
2117 return -ENOMEM;
2118
2119 bacpy(&entry->bdaddr, bdaddr);
2120 entry->bdaddr_type = type;
2121
2122 list_add(&entry->list, list);
2123
2124 return 0;
2125}
2126
2127int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2128 u8 type, u8 *peer_irk, u8 *local_irk)
2129{
2130 struct bdaddr_list_with_irk *entry;
2131
2132 if (!bacmp(bdaddr, BDADDR_ANY))
2133 return -EBADF;
2134
2135 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2136 return -EEXIST;
2137
2138 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2139 if (!entry)
2140 return -ENOMEM;
2141
2142 bacpy(&entry->bdaddr, bdaddr);
2143 entry->bdaddr_type = type;
2144
2145 if (peer_irk)
2146 memcpy(entry->peer_irk, peer_irk, 16);
2147
2148 if (local_irk)
2149 memcpy(entry->local_irk, local_irk, 16);
2150
2151 list_add(&entry->list, list);
2152
2153 return 0;
2154}
2155
2156int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2157 u8 type, u32 flags)
2158{
2159 struct bdaddr_list_with_flags *entry;
2160
2161 if (!bacmp(bdaddr, BDADDR_ANY))
2162 return -EBADF;
2163
2164 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2165 return -EEXIST;
2166
2167 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2168 if (!entry)
2169 return -ENOMEM;
2170
2171 bacpy(&entry->bdaddr, bdaddr);
2172 entry->bdaddr_type = type;
2173 entry->flags = flags;
2174
2175 list_add(&entry->list, list);
2176
2177 return 0;
2178}
2179
2180int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2181{
2182 struct bdaddr_list *entry;
2183
2184 if (!bacmp(bdaddr, BDADDR_ANY)) {
2185 hci_bdaddr_list_clear(list);
2186 return 0;
2187 }
2188
2189 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2190 if (!entry)
2191 return -ENOENT;
2192
2193 list_del(&entry->list);
2194 kfree(entry);
2195
2196 return 0;
2197}
2198
2199int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2200 u8 type)
2201{
2202 struct bdaddr_list_with_irk *entry;
2203
2204 if (!bacmp(bdaddr, BDADDR_ANY)) {
2205 hci_bdaddr_list_clear(list);
2206 return 0;
2207 }
2208
2209 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2210 if (!entry)
2211 return -ENOENT;
2212
2213 list_del(&entry->list);
2214 kfree(entry);
2215
2216 return 0;
2217}
2218
2219int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2220 u8 type)
2221{
2222 struct bdaddr_list_with_flags *entry;
2223
2224 if (!bacmp(bdaddr, BDADDR_ANY)) {
2225 hci_bdaddr_list_clear(list);
2226 return 0;
2227 }
2228
2229 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2230 if (!entry)
2231 return -ENOENT;
2232
2233 list_del(&entry->list);
2234 kfree(entry);
2235
2236 return 0;
2237}
2238
2239/* This function requires the caller holds hdev->lock */
2240struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2241 bdaddr_t *addr, u8 addr_type)
2242{
2243 struct hci_conn_params *params;
2244
2245 list_for_each_entry(params, &hdev->le_conn_params, list) {
2246 if (bacmp(¶ms->addr, addr) == 0 &&
2247 params->addr_type == addr_type) {
2248 return params;
2249 }
2250 }
2251
2252 return NULL;
2253}
2254
2255/* This function requires the caller holds hdev->lock or rcu_read_lock */
2256struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2257 bdaddr_t *addr, u8 addr_type)
2258{
2259 struct hci_conn_params *param;
2260
2261 rcu_read_lock();
2262
2263 list_for_each_entry_rcu(param, list, action) {
2264 if (bacmp(¶m->addr, addr) == 0 &&
2265 param->addr_type == addr_type) {
2266 rcu_read_unlock();
2267 return param;
2268 }
2269 }
2270
2271 rcu_read_unlock();
2272
2273 return NULL;
2274}
2275
2276/* This function requires the caller holds hdev->lock */
2277void hci_pend_le_list_del_init(struct hci_conn_params *param)
2278{
2279 if (list_empty(¶m->action))
2280 return;
2281
2282 list_del_rcu(¶m->action);
2283 synchronize_rcu();
2284 INIT_LIST_HEAD(¶m->action);
2285}
2286
2287/* This function requires the caller holds hdev->lock */
2288void hci_pend_le_list_add(struct hci_conn_params *param,
2289 struct list_head *list)
2290{
2291 list_add_rcu(¶m->action, list);
2292}
2293
2294/* This function requires the caller holds hdev->lock */
2295struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2296 bdaddr_t *addr, u8 addr_type)
2297{
2298 struct hci_conn_params *params;
2299
2300 params = hci_conn_params_lookup(hdev, addr, addr_type);
2301 if (params)
2302 return params;
2303
2304 params = kzalloc(sizeof(*params), GFP_KERNEL);
2305 if (!params) {
2306 bt_dev_err(hdev, "out of memory");
2307 return NULL;
2308 }
2309
2310 bacpy(¶ms->addr, addr);
2311 params->addr_type = addr_type;
2312
2313 list_add(¶ms->list, &hdev->le_conn_params);
2314 INIT_LIST_HEAD(¶ms->action);
2315
2316 params->conn_min_interval = hdev->le_conn_min_interval;
2317 params->conn_max_interval = hdev->le_conn_max_interval;
2318 params->conn_latency = hdev->le_conn_latency;
2319 params->supervision_timeout = hdev->le_supv_timeout;
2320 params->auto_connect = HCI_AUTO_CONN_DISABLED;
2321
2322 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2323
2324 return params;
2325}
2326
2327void hci_conn_params_free(struct hci_conn_params *params)
2328{
2329 hci_pend_le_list_del_init(params);
2330
2331 if (params->conn) {
2332 hci_conn_drop(params->conn);
2333 hci_conn_put(params->conn);
2334 }
2335
2336 list_del(¶ms->list);
2337 kfree(params);
2338}
2339
2340/* This function requires the caller holds hdev->lock */
2341void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2342{
2343 struct hci_conn_params *params;
2344
2345 params = hci_conn_params_lookup(hdev, addr, addr_type);
2346 if (!params)
2347 return;
2348
2349 hci_conn_params_free(params);
2350
2351 hci_update_passive_scan(hdev);
2352
2353 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2354}
2355
2356/* This function requires the caller holds hdev->lock */
2357void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2358{
2359 struct hci_conn_params *params, *tmp;
2360
2361 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2362 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2363 continue;
2364
2365 /* If trying to establish one time connection to disabled
2366 * device, leave the params, but mark them as just once.
2367 */
2368 if (params->explicit_connect) {
2369 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2370 continue;
2371 }
2372
2373 hci_conn_params_free(params);
2374 }
2375
2376 BT_DBG("All LE disabled connection parameters were removed");
2377}
2378
2379/* This function requires the caller holds hdev->lock */
2380static void hci_conn_params_clear_all(struct hci_dev *hdev)
2381{
2382 struct hci_conn_params *params, *tmp;
2383
2384 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2385 hci_conn_params_free(params);
2386
2387 BT_DBG("All LE connection parameters were removed");
2388}
2389
2390/* Copy the Identity Address of the controller.
2391 *
2392 * If the controller has a public BD_ADDR, then by default use that one.
2393 * If this is a LE only controller without a public address, default to
2394 * the static random address.
2395 *
2396 * For debugging purposes it is possible to force controllers with a
2397 * public address to use the static random address instead.
2398 *
2399 * In case BR/EDR has been disabled on a dual-mode controller and
2400 * userspace has configured a static address, then that address
2401 * becomes the identity address instead of the public BR/EDR address.
2402 */
2403void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2404 u8 *bdaddr_type)
2405{
2406 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2407 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2408 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2409 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2410 bacpy(bdaddr, &hdev->static_addr);
2411 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2412 } else {
2413 bacpy(bdaddr, &hdev->bdaddr);
2414 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2415 }
2416}
2417
2418static void hci_clear_wake_reason(struct hci_dev *hdev)
2419{
2420 hci_dev_lock(hdev);
2421
2422 hdev->wake_reason = 0;
2423 bacpy(&hdev->wake_addr, BDADDR_ANY);
2424 hdev->wake_addr_type = 0;
2425
2426 hci_dev_unlock(hdev);
2427}
2428
2429static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2430 void *data)
2431{
2432 struct hci_dev *hdev =
2433 container_of(nb, struct hci_dev, suspend_notifier);
2434 int ret = 0;
2435
2436 /* Userspace has full control of this device. Do nothing. */
2437 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2438 return NOTIFY_DONE;
2439
2440 /* To avoid a potential race with hci_unregister_dev. */
2441 hci_dev_hold(hdev);
2442
2443 if (action == PM_SUSPEND_PREPARE)
2444 ret = hci_suspend_dev(hdev);
2445 else if (action == PM_POST_SUSPEND)
2446 ret = hci_resume_dev(hdev);
2447
2448 if (ret)
2449 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2450 action, ret);
2451
2452 hci_dev_put(hdev);
2453 return NOTIFY_DONE;
2454}
2455
2456/* Alloc HCI device */
2457struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2458{
2459 struct hci_dev *hdev;
2460 unsigned int alloc_size;
2461
2462 alloc_size = sizeof(*hdev);
2463 if (sizeof_priv) {
2464 /* Fixme: May need ALIGN-ment? */
2465 alloc_size += sizeof_priv;
2466 }
2467
2468 hdev = kzalloc(alloc_size, GFP_KERNEL);
2469 if (!hdev)
2470 return NULL;
2471
2472 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2473 hdev->esco_type = (ESCO_HV1);
2474 hdev->link_mode = (HCI_LM_ACCEPT);
2475 hdev->num_iac = 0x01; /* One IAC support is mandatory */
2476 hdev->io_capability = 0x03; /* No Input No Output */
2477 hdev->manufacturer = 0xffff; /* Default to internal use */
2478 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2479 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2480 hdev->adv_instance_cnt = 0;
2481 hdev->cur_adv_instance = 0x00;
2482 hdev->adv_instance_timeout = 0;
2483
2484 hdev->advmon_allowlist_duration = 300;
2485 hdev->advmon_no_filter_duration = 500;
2486 hdev->enable_advmon_interleave_scan = 0x00; /* Default to disable */
2487
2488 hdev->sniff_max_interval = 800;
2489 hdev->sniff_min_interval = 80;
2490
2491 hdev->le_adv_channel_map = 0x07;
2492 hdev->le_adv_min_interval = 0x0800;
2493 hdev->le_adv_max_interval = 0x0800;
2494 hdev->le_scan_interval = 0x0060;
2495 hdev->le_scan_window = 0x0030;
2496 hdev->le_scan_int_suspend = 0x0400;
2497 hdev->le_scan_window_suspend = 0x0012;
2498 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2499 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2500 hdev->le_scan_int_adv_monitor = 0x0060;
2501 hdev->le_scan_window_adv_monitor = 0x0030;
2502 hdev->le_scan_int_connect = 0x0060;
2503 hdev->le_scan_window_connect = 0x0060;
2504 hdev->le_conn_min_interval = 0x0018;
2505 hdev->le_conn_max_interval = 0x0028;
2506 hdev->le_conn_latency = 0x0000;
2507 hdev->le_supv_timeout = 0x002a;
2508 hdev->le_def_tx_len = 0x001b;
2509 hdev->le_def_tx_time = 0x0148;
2510 hdev->le_max_tx_len = 0x001b;
2511 hdev->le_max_tx_time = 0x0148;
2512 hdev->le_max_rx_len = 0x001b;
2513 hdev->le_max_rx_time = 0x0148;
2514 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2515 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2516 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2517 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2518 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2519 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2520 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2521 hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2522 hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2523
2524 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2525 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2526 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2527 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2528 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2529 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2530
2531 /* default 1.28 sec page scan */
2532 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2533 hdev->def_page_scan_int = 0x0800;
2534 hdev->def_page_scan_window = 0x0012;
2535
2536 mutex_init(&hdev->lock);
2537 mutex_init(&hdev->req_lock);
2538
2539 ida_init(&hdev->unset_handle_ida);
2540
2541 INIT_LIST_HEAD(&hdev->mesh_pending);
2542 INIT_LIST_HEAD(&hdev->mgmt_pending);
2543 INIT_LIST_HEAD(&hdev->reject_list);
2544 INIT_LIST_HEAD(&hdev->accept_list);
2545 INIT_LIST_HEAD(&hdev->uuids);
2546 INIT_LIST_HEAD(&hdev->link_keys);
2547 INIT_LIST_HEAD(&hdev->long_term_keys);
2548 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2549 INIT_LIST_HEAD(&hdev->remote_oob_data);
2550 INIT_LIST_HEAD(&hdev->le_accept_list);
2551 INIT_LIST_HEAD(&hdev->le_resolv_list);
2552 INIT_LIST_HEAD(&hdev->le_conn_params);
2553 INIT_LIST_HEAD(&hdev->pend_le_conns);
2554 INIT_LIST_HEAD(&hdev->pend_le_reports);
2555 INIT_LIST_HEAD(&hdev->conn_hash.list);
2556 INIT_LIST_HEAD(&hdev->adv_instances);
2557 INIT_LIST_HEAD(&hdev->blocked_keys);
2558 INIT_LIST_HEAD(&hdev->monitored_devices);
2559
2560 INIT_LIST_HEAD(&hdev->local_codecs);
2561 INIT_WORK(&hdev->rx_work, hci_rx_work);
2562 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2563 INIT_WORK(&hdev->tx_work, hci_tx_work);
2564 INIT_WORK(&hdev->power_on, hci_power_on);
2565 INIT_WORK(&hdev->error_reset, hci_error_reset);
2566
2567 hci_cmd_sync_init(hdev);
2568
2569 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2570
2571 skb_queue_head_init(&hdev->rx_q);
2572 skb_queue_head_init(&hdev->cmd_q);
2573 skb_queue_head_init(&hdev->raw_q);
2574
2575 init_waitqueue_head(&hdev->req_wait_q);
2576
2577 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2578 INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2579
2580 hci_devcd_setup(hdev);
2581 hci_request_setup(hdev);
2582
2583 hci_init_sysfs(hdev);
2584 discovery_init(hdev);
2585
2586 return hdev;
2587}
2588EXPORT_SYMBOL(hci_alloc_dev_priv);
2589
2590/* Free HCI device */
2591void hci_free_dev(struct hci_dev *hdev)
2592{
2593 /* will free via device release */
2594 put_device(&hdev->dev);
2595}
2596EXPORT_SYMBOL(hci_free_dev);
2597
2598/* Register HCI device */
2599int hci_register_dev(struct hci_dev *hdev)
2600{
2601 int id, error;
2602
2603 if (!hdev->open || !hdev->close || !hdev->send)
2604 return -EINVAL;
2605
2606 /* Do not allow HCI_AMP devices to register at index 0,
2607 * so the index can be used as the AMP controller ID.
2608 */
2609 switch (hdev->dev_type) {
2610 case HCI_PRIMARY:
2611 id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
2612 break;
2613 case HCI_AMP:
2614 id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
2615 break;
2616 default:
2617 return -EINVAL;
2618 }
2619
2620 if (id < 0)
2621 return id;
2622
2623 error = dev_set_name(&hdev->dev, "hci%u", id);
2624 if (error)
2625 return error;
2626
2627 hdev->name = dev_name(&hdev->dev);
2628 hdev->id = id;
2629
2630 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2631
2632 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2633 if (!hdev->workqueue) {
2634 error = -ENOMEM;
2635 goto err;
2636 }
2637
2638 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2639 hdev->name);
2640 if (!hdev->req_workqueue) {
2641 destroy_workqueue(hdev->workqueue);
2642 error = -ENOMEM;
2643 goto err;
2644 }
2645
2646 if (!IS_ERR_OR_NULL(bt_debugfs))
2647 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2648
2649 error = device_add(&hdev->dev);
2650 if (error < 0)
2651 goto err_wqueue;
2652
2653 hci_leds_init(hdev);
2654
2655 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2656 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2657 hdev);
2658 if (hdev->rfkill) {
2659 if (rfkill_register(hdev->rfkill) < 0) {
2660 rfkill_destroy(hdev->rfkill);
2661 hdev->rfkill = NULL;
2662 }
2663 }
2664
2665 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2666 hci_dev_set_flag(hdev, HCI_RFKILLED);
2667
2668 hci_dev_set_flag(hdev, HCI_SETUP);
2669 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2670
2671 if (hdev->dev_type == HCI_PRIMARY) {
2672 /* Assume BR/EDR support until proven otherwise (such as
2673 * through reading supported features during init.
2674 */
2675 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2676 }
2677
2678 write_lock(&hci_dev_list_lock);
2679 list_add(&hdev->list, &hci_dev_list);
2680 write_unlock(&hci_dev_list_lock);
2681
2682 /* Devices that are marked for raw-only usage are unconfigured
2683 * and should not be included in normal operation.
2684 */
2685 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2686 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2687
2688 /* Mark Remote Wakeup connection flag as supported if driver has wakeup
2689 * callback.
2690 */
2691 if (hdev->wakeup)
2692 hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2693
2694 hci_sock_dev_event(hdev, HCI_DEV_REG);
2695 hci_dev_hold(hdev);
2696
2697 error = hci_register_suspend_notifier(hdev);
2698 if (error)
2699 BT_WARN("register suspend notifier failed error:%d\n", error);
2700
2701 queue_work(hdev->req_workqueue, &hdev->power_on);
2702
2703 idr_init(&hdev->adv_monitors_idr);
2704 msft_register(hdev);
2705
2706 return id;
2707
2708err_wqueue:
2709 debugfs_remove_recursive(hdev->debugfs);
2710 destroy_workqueue(hdev->workqueue);
2711 destroy_workqueue(hdev->req_workqueue);
2712err:
2713 ida_simple_remove(&hci_index_ida, hdev->id);
2714
2715 return error;
2716}
2717EXPORT_SYMBOL(hci_register_dev);
2718
2719/* Unregister HCI device */
2720void hci_unregister_dev(struct hci_dev *hdev)
2721{
2722 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2723
2724 mutex_lock(&hdev->unregister_lock);
2725 hci_dev_set_flag(hdev, HCI_UNREGISTER);
2726 mutex_unlock(&hdev->unregister_lock);
2727
2728 write_lock(&hci_dev_list_lock);
2729 list_del(&hdev->list);
2730 write_unlock(&hci_dev_list_lock);
2731
2732 cancel_work_sync(&hdev->power_on);
2733
2734 hci_cmd_sync_clear(hdev);
2735
2736 hci_unregister_suspend_notifier(hdev);
2737
2738 msft_unregister(hdev);
2739
2740 hci_dev_do_close(hdev);
2741
2742 if (!test_bit(HCI_INIT, &hdev->flags) &&
2743 !hci_dev_test_flag(hdev, HCI_SETUP) &&
2744 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2745 hci_dev_lock(hdev);
2746 mgmt_index_removed(hdev);
2747 hci_dev_unlock(hdev);
2748 }
2749
2750 /* mgmt_index_removed should take care of emptying the
2751 * pending list */
2752 BUG_ON(!list_empty(&hdev->mgmt_pending));
2753
2754 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2755
2756 if (hdev->rfkill) {
2757 rfkill_unregister(hdev->rfkill);
2758 rfkill_destroy(hdev->rfkill);
2759 }
2760
2761 device_del(&hdev->dev);
2762 /* Actual cleanup is deferred until hci_release_dev(). */
2763 hci_dev_put(hdev);
2764}
2765EXPORT_SYMBOL(hci_unregister_dev);
2766
2767/* Release HCI device */
2768void hci_release_dev(struct hci_dev *hdev)
2769{
2770 debugfs_remove_recursive(hdev->debugfs);
2771 kfree_const(hdev->hw_info);
2772 kfree_const(hdev->fw_info);
2773
2774 destroy_workqueue(hdev->workqueue);
2775 destroy_workqueue(hdev->req_workqueue);
2776
2777 hci_dev_lock(hdev);
2778 hci_bdaddr_list_clear(&hdev->reject_list);
2779 hci_bdaddr_list_clear(&hdev->accept_list);
2780 hci_uuids_clear(hdev);
2781 hci_link_keys_clear(hdev);
2782 hci_smp_ltks_clear(hdev);
2783 hci_smp_irks_clear(hdev);
2784 hci_remote_oob_data_clear(hdev);
2785 hci_adv_instances_clear(hdev);
2786 hci_adv_monitors_clear(hdev);
2787 hci_bdaddr_list_clear(&hdev->le_accept_list);
2788 hci_bdaddr_list_clear(&hdev->le_resolv_list);
2789 hci_conn_params_clear_all(hdev);
2790 hci_discovery_filter_clear(hdev);
2791 hci_blocked_keys_clear(hdev);
2792 hci_codec_list_clear(&hdev->local_codecs);
2793 hci_dev_unlock(hdev);
2794
2795 ida_destroy(&hdev->unset_handle_ida);
2796 ida_simple_remove(&hci_index_ida, hdev->id);
2797 kfree_skb(hdev->sent_cmd);
2798 kfree_skb(hdev->recv_event);
2799 kfree(hdev);
2800}
2801EXPORT_SYMBOL(hci_release_dev);
2802
2803int hci_register_suspend_notifier(struct hci_dev *hdev)
2804{
2805 int ret = 0;
2806
2807 if (!hdev->suspend_notifier.notifier_call &&
2808 !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2809 hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2810 ret = register_pm_notifier(&hdev->suspend_notifier);
2811 }
2812
2813 return ret;
2814}
2815
2816int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2817{
2818 int ret = 0;
2819
2820 if (hdev->suspend_notifier.notifier_call) {
2821 ret = unregister_pm_notifier(&hdev->suspend_notifier);
2822 if (!ret)
2823 hdev->suspend_notifier.notifier_call = NULL;
2824 }
2825
2826 return ret;
2827}
2828
2829/* Suspend HCI device */
2830int hci_suspend_dev(struct hci_dev *hdev)
2831{
2832 int ret;
2833
2834 bt_dev_dbg(hdev, "");
2835
2836 /* Suspend should only act on when powered. */
2837 if (!hdev_is_powered(hdev) ||
2838 hci_dev_test_flag(hdev, HCI_UNREGISTER))
2839 return 0;
2840
2841 /* If powering down don't attempt to suspend */
2842 if (mgmt_powering_down(hdev))
2843 return 0;
2844
2845 /* Cancel potentially blocking sync operation before suspend */
2846 __hci_cmd_sync_cancel(hdev, -EHOSTDOWN);
2847
2848 hci_req_sync_lock(hdev);
2849 ret = hci_suspend_sync(hdev);
2850 hci_req_sync_unlock(hdev);
2851
2852 hci_clear_wake_reason(hdev);
2853 mgmt_suspending(hdev, hdev->suspend_state);
2854
2855 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2856 return ret;
2857}
2858EXPORT_SYMBOL(hci_suspend_dev);
2859
2860/* Resume HCI device */
2861int hci_resume_dev(struct hci_dev *hdev)
2862{
2863 int ret;
2864
2865 bt_dev_dbg(hdev, "");
2866
2867 /* Resume should only act on when powered. */
2868 if (!hdev_is_powered(hdev) ||
2869 hci_dev_test_flag(hdev, HCI_UNREGISTER))
2870 return 0;
2871
2872 /* If powering down don't attempt to resume */
2873 if (mgmt_powering_down(hdev))
2874 return 0;
2875
2876 hci_req_sync_lock(hdev);
2877 ret = hci_resume_sync(hdev);
2878 hci_req_sync_unlock(hdev);
2879
2880 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2881 hdev->wake_addr_type);
2882
2883 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2884 return ret;
2885}
2886EXPORT_SYMBOL(hci_resume_dev);
2887
2888/* Reset HCI device */
2889int hci_reset_dev(struct hci_dev *hdev)
2890{
2891 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2892 struct sk_buff *skb;
2893
2894 skb = bt_skb_alloc(3, GFP_ATOMIC);
2895 if (!skb)
2896 return -ENOMEM;
2897
2898 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2899 skb_put_data(skb, hw_err, 3);
2900
2901 bt_dev_err(hdev, "Injecting HCI hardware error event");
2902
2903 /* Send Hardware Error to upper stack */
2904 return hci_recv_frame(hdev, skb);
2905}
2906EXPORT_SYMBOL(hci_reset_dev);
2907
2908/* Receive frame from HCI drivers */
2909int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2910{
2911 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2912 && !test_bit(HCI_INIT, &hdev->flags))) {
2913 kfree_skb(skb);
2914 return -ENXIO;
2915 }
2916
2917 switch (hci_skb_pkt_type(skb)) {
2918 case HCI_EVENT_PKT:
2919 break;
2920 case HCI_ACLDATA_PKT:
2921 /* Detect if ISO packet has been sent as ACL */
2922 if (hci_conn_num(hdev, ISO_LINK)) {
2923 __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2924 __u8 type;
2925
2926 type = hci_conn_lookup_type(hdev, hci_handle(handle));
2927 if (type == ISO_LINK)
2928 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2929 }
2930 break;
2931 case HCI_SCODATA_PKT:
2932 break;
2933 case HCI_ISODATA_PKT:
2934 break;
2935 default:
2936 kfree_skb(skb);
2937 return -EINVAL;
2938 }
2939
2940 /* Incoming skb */
2941 bt_cb(skb)->incoming = 1;
2942
2943 /* Time stamp */
2944 __net_timestamp(skb);
2945
2946 skb_queue_tail(&hdev->rx_q, skb);
2947 queue_work(hdev->workqueue, &hdev->rx_work);
2948
2949 return 0;
2950}
2951EXPORT_SYMBOL(hci_recv_frame);
2952
2953/* Receive diagnostic message from HCI drivers */
2954int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2955{
2956 /* Mark as diagnostic packet */
2957 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2958
2959 /* Time stamp */
2960 __net_timestamp(skb);
2961
2962 skb_queue_tail(&hdev->rx_q, skb);
2963 queue_work(hdev->workqueue, &hdev->rx_work);
2964
2965 return 0;
2966}
2967EXPORT_SYMBOL(hci_recv_diag);
2968
2969void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2970{
2971 va_list vargs;
2972
2973 va_start(vargs, fmt);
2974 kfree_const(hdev->hw_info);
2975 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2976 va_end(vargs);
2977}
2978EXPORT_SYMBOL(hci_set_hw_info);
2979
2980void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2981{
2982 va_list vargs;
2983
2984 va_start(vargs, fmt);
2985 kfree_const(hdev->fw_info);
2986 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2987 va_end(vargs);
2988}
2989EXPORT_SYMBOL(hci_set_fw_info);
2990
2991/* ---- Interface to upper protocols ---- */
2992
2993int hci_register_cb(struct hci_cb *cb)
2994{
2995 BT_DBG("%p name %s", cb, cb->name);
2996
2997 mutex_lock(&hci_cb_list_lock);
2998 list_add_tail(&cb->list, &hci_cb_list);
2999 mutex_unlock(&hci_cb_list_lock);
3000
3001 return 0;
3002}
3003EXPORT_SYMBOL(hci_register_cb);
3004
3005int hci_unregister_cb(struct hci_cb *cb)
3006{
3007 BT_DBG("%p name %s", cb, cb->name);
3008
3009 mutex_lock(&hci_cb_list_lock);
3010 list_del(&cb->list);
3011 mutex_unlock(&hci_cb_list_lock);
3012
3013 return 0;
3014}
3015EXPORT_SYMBOL(hci_unregister_cb);
3016
3017static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3018{
3019 int err;
3020
3021 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3022 skb->len);
3023
3024 /* Time stamp */
3025 __net_timestamp(skb);
3026
3027 /* Send copy to monitor */
3028 hci_send_to_monitor(hdev, skb);
3029
3030 if (atomic_read(&hdev->promisc)) {
3031 /* Send copy to the sockets */
3032 hci_send_to_sock(hdev, skb);
3033 }
3034
3035 /* Get rid of skb owner, prior to sending to the driver. */
3036 skb_orphan(skb);
3037
3038 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3039 kfree_skb(skb);
3040 return -EINVAL;
3041 }
3042
3043 err = hdev->send(hdev, skb);
3044 if (err < 0) {
3045 bt_dev_err(hdev, "sending frame failed (%d)", err);
3046 kfree_skb(skb);
3047 return err;
3048 }
3049
3050 return 0;
3051}
3052
3053/* Send HCI command */
3054int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3055 const void *param)
3056{
3057 struct sk_buff *skb;
3058
3059 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3060
3061 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3062 if (!skb) {
3063 bt_dev_err(hdev, "no memory for command");
3064 return -ENOMEM;
3065 }
3066
3067 /* Stand-alone HCI commands must be flagged as
3068 * single-command requests.
3069 */
3070 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3071
3072 skb_queue_tail(&hdev->cmd_q, skb);
3073 queue_work(hdev->workqueue, &hdev->cmd_work);
3074
3075 return 0;
3076}
3077
3078int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3079 const void *param)
3080{
3081 struct sk_buff *skb;
3082
3083 if (hci_opcode_ogf(opcode) != 0x3f) {
3084 /* A controller receiving a command shall respond with either
3085 * a Command Status Event or a Command Complete Event.
3086 * Therefore, all standard HCI commands must be sent via the
3087 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3088 * Some vendors do not comply with this rule for vendor-specific
3089 * commands and do not return any event. We want to support
3090 * unresponded commands for such cases only.
3091 */
3092 bt_dev_err(hdev, "unresponded command not supported");
3093 return -EINVAL;
3094 }
3095
3096 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3097 if (!skb) {
3098 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3099 opcode);
3100 return -ENOMEM;
3101 }
3102
3103 hci_send_frame(hdev, skb);
3104
3105 return 0;
3106}
3107EXPORT_SYMBOL(__hci_cmd_send);
3108
3109/* Get data from the previously sent command */
3110void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3111{
3112 struct hci_command_hdr *hdr;
3113
3114 if (!hdev->sent_cmd)
3115 return NULL;
3116
3117 hdr = (void *) hdev->sent_cmd->data;
3118
3119 if (hdr->opcode != cpu_to_le16(opcode))
3120 return NULL;
3121
3122 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3123
3124 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3125}
3126
3127/* Get data from last received event */
3128void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3129{
3130 struct hci_event_hdr *hdr;
3131 int offset;
3132
3133 if (!hdev->recv_event)
3134 return NULL;
3135
3136 hdr = (void *)hdev->recv_event->data;
3137 offset = sizeof(*hdr);
3138
3139 if (hdr->evt != event) {
3140 /* In case of LE metaevent check the subevent match */
3141 if (hdr->evt == HCI_EV_LE_META) {
3142 struct hci_ev_le_meta *ev;
3143
3144 ev = (void *)hdev->recv_event->data + offset;
3145 offset += sizeof(*ev);
3146 if (ev->subevent == event)
3147 goto found;
3148 }
3149 return NULL;
3150 }
3151
3152found:
3153 bt_dev_dbg(hdev, "event 0x%2.2x", event);
3154
3155 return hdev->recv_event->data + offset;
3156}
3157
3158/* Send ACL data */
3159static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3160{
3161 struct hci_acl_hdr *hdr;
3162 int len = skb->len;
3163
3164 skb_push(skb, HCI_ACL_HDR_SIZE);
3165 skb_reset_transport_header(skb);
3166 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3167 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3168 hdr->dlen = cpu_to_le16(len);
3169}
3170
3171static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3172 struct sk_buff *skb, __u16 flags)
3173{
3174 struct hci_conn *conn = chan->conn;
3175 struct hci_dev *hdev = conn->hdev;
3176 struct sk_buff *list;
3177
3178 skb->len = skb_headlen(skb);
3179 skb->data_len = 0;
3180
3181 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3182
3183 switch (hdev->dev_type) {
3184 case HCI_PRIMARY:
3185 hci_add_acl_hdr(skb, conn->handle, flags);
3186 break;
3187 case HCI_AMP:
3188 hci_add_acl_hdr(skb, chan->handle, flags);
3189 break;
3190 default:
3191 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3192 return;
3193 }
3194
3195 list = skb_shinfo(skb)->frag_list;
3196 if (!list) {
3197 /* Non fragmented */
3198 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3199
3200 skb_queue_tail(queue, skb);
3201 } else {
3202 /* Fragmented */
3203 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3204
3205 skb_shinfo(skb)->frag_list = NULL;
3206
3207 /* Queue all fragments atomically. We need to use spin_lock_bh
3208 * here because of 6LoWPAN links, as there this function is
3209 * called from softirq and using normal spin lock could cause
3210 * deadlocks.
3211 */
3212 spin_lock_bh(&queue->lock);
3213
3214 __skb_queue_tail(queue, skb);
3215
3216 flags &= ~ACL_START;
3217 flags |= ACL_CONT;
3218 do {
3219 skb = list; list = list->next;
3220
3221 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3222 hci_add_acl_hdr(skb, conn->handle, flags);
3223
3224 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3225
3226 __skb_queue_tail(queue, skb);
3227 } while (list);
3228
3229 spin_unlock_bh(&queue->lock);
3230 }
3231}
3232
3233void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3234{
3235 struct hci_dev *hdev = chan->conn->hdev;
3236
3237 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3238
3239 hci_queue_acl(chan, &chan->data_q, skb, flags);
3240
3241 queue_work(hdev->workqueue, &hdev->tx_work);
3242}
3243
3244/* Send SCO data */
3245void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3246{
3247 struct hci_dev *hdev = conn->hdev;
3248 struct hci_sco_hdr hdr;
3249
3250 BT_DBG("%s len %d", hdev->name, skb->len);
3251
3252 hdr.handle = cpu_to_le16(conn->handle);
3253 hdr.dlen = skb->len;
3254
3255 skb_push(skb, HCI_SCO_HDR_SIZE);
3256 skb_reset_transport_header(skb);
3257 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3258
3259 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3260
3261 skb_queue_tail(&conn->data_q, skb);
3262 queue_work(hdev->workqueue, &hdev->tx_work);
3263}
3264
3265/* Send ISO data */
3266static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3267{
3268 struct hci_iso_hdr *hdr;
3269 int len = skb->len;
3270
3271 skb_push(skb, HCI_ISO_HDR_SIZE);
3272 skb_reset_transport_header(skb);
3273 hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3274 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3275 hdr->dlen = cpu_to_le16(len);
3276}
3277
3278static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3279 struct sk_buff *skb)
3280{
3281 struct hci_dev *hdev = conn->hdev;
3282 struct sk_buff *list;
3283 __u16 flags;
3284
3285 skb->len = skb_headlen(skb);
3286 skb->data_len = 0;
3287
3288 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3289
3290 list = skb_shinfo(skb)->frag_list;
3291
3292 flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3293 hci_add_iso_hdr(skb, conn->handle, flags);
3294
3295 if (!list) {
3296 /* Non fragmented */
3297 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3298
3299 skb_queue_tail(queue, skb);
3300 } else {
3301 /* Fragmented */
3302 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3303
3304 skb_shinfo(skb)->frag_list = NULL;
3305
3306 __skb_queue_tail(queue, skb);
3307
3308 do {
3309 skb = list; list = list->next;
3310
3311 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3312 flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3313 0x00);
3314 hci_add_iso_hdr(skb, conn->handle, flags);
3315
3316 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3317
3318 __skb_queue_tail(queue, skb);
3319 } while (list);
3320 }
3321}
3322
3323void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3324{
3325 struct hci_dev *hdev = conn->hdev;
3326
3327 BT_DBG("%s len %d", hdev->name, skb->len);
3328
3329 hci_queue_iso(conn, &conn->data_q, skb);
3330
3331 queue_work(hdev->workqueue, &hdev->tx_work);
3332}
3333
3334/* ---- HCI TX task (outgoing data) ---- */
3335
3336/* HCI Connection scheduler */
3337static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3338{
3339 struct hci_dev *hdev;
3340 int cnt, q;
3341
3342 if (!conn) {
3343 *quote = 0;
3344 return;
3345 }
3346
3347 hdev = conn->hdev;
3348
3349 switch (conn->type) {
3350 case ACL_LINK:
3351 cnt = hdev->acl_cnt;
3352 break;
3353 case AMP_LINK:
3354 cnt = hdev->block_cnt;
3355 break;
3356 case SCO_LINK:
3357 case ESCO_LINK:
3358 cnt = hdev->sco_cnt;
3359 break;
3360 case LE_LINK:
3361 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3362 break;
3363 case ISO_LINK:
3364 cnt = hdev->iso_mtu ? hdev->iso_cnt :
3365 hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3366 break;
3367 default:
3368 cnt = 0;
3369 bt_dev_err(hdev, "unknown link type %d", conn->type);
3370 }
3371
3372 q = cnt / num;
3373 *quote = q ? q : 1;
3374}
3375
3376static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3377 int *quote)
3378{
3379 struct hci_conn_hash *h = &hdev->conn_hash;
3380 struct hci_conn *conn = NULL, *c;
3381 unsigned int num = 0, min = ~0;
3382
3383 /* We don't have to lock device here. Connections are always
3384 * added and removed with TX task disabled. */
3385
3386 rcu_read_lock();
3387
3388 list_for_each_entry_rcu(c, &h->list, list) {
3389 if (c->type != type || skb_queue_empty(&c->data_q))
3390 continue;
3391
3392 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3393 continue;
3394
3395 num++;
3396
3397 if (c->sent < min) {
3398 min = c->sent;
3399 conn = c;
3400 }
3401
3402 if (hci_conn_num(hdev, type) == num)
3403 break;
3404 }
3405
3406 rcu_read_unlock();
3407
3408 hci_quote_sent(conn, num, quote);
3409
3410 BT_DBG("conn %p quote %d", conn, *quote);
3411 return conn;
3412}
3413
3414static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3415{
3416 struct hci_conn_hash *h = &hdev->conn_hash;
3417 struct hci_conn *c;
3418
3419 bt_dev_err(hdev, "link tx timeout");
3420
3421 rcu_read_lock();
3422
3423 /* Kill stalled connections */
3424 list_for_each_entry_rcu(c, &h->list, list) {
3425 if (c->type == type && c->sent) {
3426 bt_dev_err(hdev, "killing stalled connection %pMR",
3427 &c->dst);
3428 /* hci_disconnect might sleep, so, we have to release
3429 * the RCU read lock before calling it.
3430 */
3431 rcu_read_unlock();
3432 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3433 rcu_read_lock();
3434 }
3435 }
3436
3437 rcu_read_unlock();
3438}
3439
3440static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3441 int *quote)
3442{
3443 struct hci_conn_hash *h = &hdev->conn_hash;
3444 struct hci_chan *chan = NULL;
3445 unsigned int num = 0, min = ~0, cur_prio = 0;
3446 struct hci_conn *conn;
3447 int conn_num = 0;
3448
3449 BT_DBG("%s", hdev->name);
3450
3451 rcu_read_lock();
3452
3453 list_for_each_entry_rcu(conn, &h->list, list) {
3454 struct hci_chan *tmp;
3455
3456 if (conn->type != type)
3457 continue;
3458
3459 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3460 continue;
3461
3462 conn_num++;
3463
3464 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3465 struct sk_buff *skb;
3466
3467 if (skb_queue_empty(&tmp->data_q))
3468 continue;
3469
3470 skb = skb_peek(&tmp->data_q);
3471 if (skb->priority < cur_prio)
3472 continue;
3473
3474 if (skb->priority > cur_prio) {
3475 num = 0;
3476 min = ~0;
3477 cur_prio = skb->priority;
3478 }
3479
3480 num++;
3481
3482 if (conn->sent < min) {
3483 min = conn->sent;
3484 chan = tmp;
3485 }
3486 }
3487
3488 if (hci_conn_num(hdev, type) == conn_num)
3489 break;
3490 }
3491
3492 rcu_read_unlock();
3493
3494 if (!chan)
3495 return NULL;
3496
3497 hci_quote_sent(chan->conn, num, quote);
3498
3499 BT_DBG("chan %p quote %d", chan, *quote);
3500 return chan;
3501}
3502
3503static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3504{
3505 struct hci_conn_hash *h = &hdev->conn_hash;
3506 struct hci_conn *conn;
3507 int num = 0;
3508
3509 BT_DBG("%s", hdev->name);
3510
3511 rcu_read_lock();
3512
3513 list_for_each_entry_rcu(conn, &h->list, list) {
3514 struct hci_chan *chan;
3515
3516 if (conn->type != type)
3517 continue;
3518
3519 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3520 continue;
3521
3522 num++;
3523
3524 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3525 struct sk_buff *skb;
3526
3527 if (chan->sent) {
3528 chan->sent = 0;
3529 continue;
3530 }
3531
3532 if (skb_queue_empty(&chan->data_q))
3533 continue;
3534
3535 skb = skb_peek(&chan->data_q);
3536 if (skb->priority >= HCI_PRIO_MAX - 1)
3537 continue;
3538
3539 skb->priority = HCI_PRIO_MAX - 1;
3540
3541 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3542 skb->priority);
3543 }
3544
3545 if (hci_conn_num(hdev, type) == num)
3546 break;
3547 }
3548
3549 rcu_read_unlock();
3550
3551}
3552
3553static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3554{
3555 /* Calculate count of blocks used by this packet */
3556 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3557}
3558
3559static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3560{
3561 unsigned long last_tx;
3562
3563 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3564 return;
3565
3566 switch (type) {
3567 case LE_LINK:
3568 last_tx = hdev->le_last_tx;
3569 break;
3570 default:
3571 last_tx = hdev->acl_last_tx;
3572 break;
3573 }
3574
3575 /* tx timeout must be longer than maximum link supervision timeout
3576 * (40.9 seconds)
3577 */
3578 if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3579 hci_link_tx_to(hdev, type);
3580}
3581
3582/* Schedule SCO */
3583static void hci_sched_sco(struct hci_dev *hdev)
3584{
3585 struct hci_conn *conn;
3586 struct sk_buff *skb;
3587 int quote;
3588
3589 BT_DBG("%s", hdev->name);
3590
3591 if (!hci_conn_num(hdev, SCO_LINK))
3592 return;
3593
3594 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
3595 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3596 BT_DBG("skb %p len %d", skb, skb->len);
3597 hci_send_frame(hdev, skb);
3598
3599 conn->sent++;
3600 if (conn->sent == ~0)
3601 conn->sent = 0;
3602 }
3603 }
3604}
3605
3606static void hci_sched_esco(struct hci_dev *hdev)
3607{
3608 struct hci_conn *conn;
3609 struct sk_buff *skb;
3610 int quote;
3611
3612 BT_DBG("%s", hdev->name);
3613
3614 if (!hci_conn_num(hdev, ESCO_LINK))
3615 return;
3616
3617 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3618 "e))) {
3619 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3620 BT_DBG("skb %p len %d", skb, skb->len);
3621 hci_send_frame(hdev, skb);
3622
3623 conn->sent++;
3624 if (conn->sent == ~0)
3625 conn->sent = 0;
3626 }
3627 }
3628}
3629
3630static void hci_sched_acl_pkt(struct hci_dev *hdev)
3631{
3632 unsigned int cnt = hdev->acl_cnt;
3633 struct hci_chan *chan;
3634 struct sk_buff *skb;
3635 int quote;
3636
3637 __check_timeout(hdev, cnt, ACL_LINK);
3638
3639 while (hdev->acl_cnt &&
3640 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
3641 u32 priority = (skb_peek(&chan->data_q))->priority;
3642 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3643 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3644 skb->len, skb->priority);
3645
3646 /* Stop if priority has changed */
3647 if (skb->priority < priority)
3648 break;
3649
3650 skb = skb_dequeue(&chan->data_q);
3651
3652 hci_conn_enter_active_mode(chan->conn,
3653 bt_cb(skb)->force_active);
3654
3655 hci_send_frame(hdev, skb);
3656 hdev->acl_last_tx = jiffies;
3657
3658 hdev->acl_cnt--;
3659 chan->sent++;
3660 chan->conn->sent++;
3661
3662 /* Send pending SCO packets right away */
3663 hci_sched_sco(hdev);
3664 hci_sched_esco(hdev);
3665 }
3666 }
3667
3668 if (cnt != hdev->acl_cnt)
3669 hci_prio_recalculate(hdev, ACL_LINK);
3670}
3671
3672static void hci_sched_acl_blk(struct hci_dev *hdev)
3673{
3674 unsigned int cnt = hdev->block_cnt;
3675 struct hci_chan *chan;
3676 struct sk_buff *skb;
3677 int quote;
3678 u8 type;
3679
3680 BT_DBG("%s", hdev->name);
3681
3682 if (hdev->dev_type == HCI_AMP)
3683 type = AMP_LINK;
3684 else
3685 type = ACL_LINK;
3686
3687 __check_timeout(hdev, cnt, type);
3688
3689 while (hdev->block_cnt > 0 &&
3690 (chan = hci_chan_sent(hdev, type, "e))) {
3691 u32 priority = (skb_peek(&chan->data_q))->priority;
3692 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3693 int blocks;
3694
3695 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3696 skb->len, skb->priority);
3697
3698 /* Stop if priority has changed */
3699 if (skb->priority < priority)
3700 break;
3701
3702 skb = skb_dequeue(&chan->data_q);
3703
3704 blocks = __get_blocks(hdev, skb);
3705 if (blocks > hdev->block_cnt)
3706 return;
3707
3708 hci_conn_enter_active_mode(chan->conn,
3709 bt_cb(skb)->force_active);
3710
3711 hci_send_frame(hdev, skb);
3712 hdev->acl_last_tx = jiffies;
3713
3714 hdev->block_cnt -= blocks;
3715 quote -= blocks;
3716
3717 chan->sent += blocks;
3718 chan->conn->sent += blocks;
3719 }
3720 }
3721
3722 if (cnt != hdev->block_cnt)
3723 hci_prio_recalculate(hdev, type);
3724}
3725
3726static void hci_sched_acl(struct hci_dev *hdev)
3727{
3728 BT_DBG("%s", hdev->name);
3729
3730 /* No ACL link over BR/EDR controller */
3731 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3732 return;
3733
3734 /* No AMP link over AMP controller */
3735 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3736 return;
3737
3738 switch (hdev->flow_ctl_mode) {
3739 case HCI_FLOW_CTL_MODE_PACKET_BASED:
3740 hci_sched_acl_pkt(hdev);
3741 break;
3742
3743 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3744 hci_sched_acl_blk(hdev);
3745 break;
3746 }
3747}
3748
3749static void hci_sched_le(struct hci_dev *hdev)
3750{
3751 struct hci_chan *chan;
3752 struct sk_buff *skb;
3753 int quote, cnt, tmp;
3754
3755 BT_DBG("%s", hdev->name);
3756
3757 if (!hci_conn_num(hdev, LE_LINK))
3758 return;
3759
3760 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3761
3762 __check_timeout(hdev, cnt, LE_LINK);
3763
3764 tmp = cnt;
3765 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
3766 u32 priority = (skb_peek(&chan->data_q))->priority;
3767 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3768 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3769 skb->len, skb->priority);
3770
3771 /* Stop if priority has changed */
3772 if (skb->priority < priority)
3773 break;
3774
3775 skb = skb_dequeue(&chan->data_q);
3776
3777 hci_send_frame(hdev, skb);
3778 hdev->le_last_tx = jiffies;
3779
3780 cnt--;
3781 chan->sent++;
3782 chan->conn->sent++;
3783
3784 /* Send pending SCO packets right away */
3785 hci_sched_sco(hdev);
3786 hci_sched_esco(hdev);
3787 }
3788 }
3789
3790 if (hdev->le_pkts)
3791 hdev->le_cnt = cnt;
3792 else
3793 hdev->acl_cnt = cnt;
3794
3795 if (cnt != tmp)
3796 hci_prio_recalculate(hdev, LE_LINK);
3797}
3798
3799/* Schedule CIS */
3800static void hci_sched_iso(struct hci_dev *hdev)
3801{
3802 struct hci_conn *conn;
3803 struct sk_buff *skb;
3804 int quote, *cnt;
3805
3806 BT_DBG("%s", hdev->name);
3807
3808 if (!hci_conn_num(hdev, ISO_LINK))
3809 return;
3810
3811 cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3812 hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3813 while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, "e))) {
3814 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3815 BT_DBG("skb %p len %d", skb, skb->len);
3816 hci_send_frame(hdev, skb);
3817
3818 conn->sent++;
3819 if (conn->sent == ~0)
3820 conn->sent = 0;
3821 (*cnt)--;
3822 }
3823 }
3824}
3825
3826static void hci_tx_work(struct work_struct *work)
3827{
3828 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3829 struct sk_buff *skb;
3830
3831 BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3832 hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3833
3834 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3835 /* Schedule queues and send stuff to HCI driver */
3836 hci_sched_sco(hdev);
3837 hci_sched_esco(hdev);
3838 hci_sched_iso(hdev);
3839 hci_sched_acl(hdev);
3840 hci_sched_le(hdev);
3841 }
3842
3843 /* Send next queued raw (unknown type) packet */
3844 while ((skb = skb_dequeue(&hdev->raw_q)))
3845 hci_send_frame(hdev, skb);
3846}
3847
3848/* ----- HCI RX task (incoming data processing) ----- */
3849
3850/* ACL data packet */
3851static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3852{
3853 struct hci_acl_hdr *hdr = (void *) skb->data;
3854 struct hci_conn *conn;
3855 __u16 handle, flags;
3856
3857 skb_pull(skb, HCI_ACL_HDR_SIZE);
3858
3859 handle = __le16_to_cpu(hdr->handle);
3860 flags = hci_flags(handle);
3861 handle = hci_handle(handle);
3862
3863 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3864 handle, flags);
3865
3866 hdev->stat.acl_rx++;
3867
3868 hci_dev_lock(hdev);
3869 conn = hci_conn_hash_lookup_handle(hdev, handle);
3870 hci_dev_unlock(hdev);
3871
3872 if (conn) {
3873 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3874
3875 /* Send to upper protocol */
3876 l2cap_recv_acldata(conn, skb, flags);
3877 return;
3878 } else {
3879 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3880 handle);
3881 }
3882
3883 kfree_skb(skb);
3884}
3885
3886/* SCO data packet */
3887static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3888{
3889 struct hci_sco_hdr *hdr = (void *) skb->data;
3890 struct hci_conn *conn;
3891 __u16 handle, flags;
3892
3893 skb_pull(skb, HCI_SCO_HDR_SIZE);
3894
3895 handle = __le16_to_cpu(hdr->handle);
3896 flags = hci_flags(handle);
3897 handle = hci_handle(handle);
3898
3899 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3900 handle, flags);
3901
3902 hdev->stat.sco_rx++;
3903
3904 hci_dev_lock(hdev);
3905 conn = hci_conn_hash_lookup_handle(hdev, handle);
3906 hci_dev_unlock(hdev);
3907
3908 if (conn) {
3909 /* Send to upper protocol */
3910 hci_skb_pkt_status(skb) = flags & 0x03;
3911 sco_recv_scodata(conn, skb);
3912 return;
3913 } else {
3914 bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3915 handle);
3916 }
3917
3918 kfree_skb(skb);
3919}
3920
3921static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3922{
3923 struct hci_iso_hdr *hdr;
3924 struct hci_conn *conn;
3925 __u16 handle, flags;
3926
3927 hdr = skb_pull_data(skb, sizeof(*hdr));
3928 if (!hdr) {
3929 bt_dev_err(hdev, "ISO packet too small");
3930 goto drop;
3931 }
3932
3933 handle = __le16_to_cpu(hdr->handle);
3934 flags = hci_flags(handle);
3935 handle = hci_handle(handle);
3936
3937 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3938 handle, flags);
3939
3940 hci_dev_lock(hdev);
3941 conn = hci_conn_hash_lookup_handle(hdev, handle);
3942 hci_dev_unlock(hdev);
3943
3944 if (!conn) {
3945 bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3946 handle);
3947 goto drop;
3948 }
3949
3950 /* Send to upper protocol */
3951 iso_recv(conn, skb, flags);
3952 return;
3953
3954drop:
3955 kfree_skb(skb);
3956}
3957
3958static bool hci_req_is_complete(struct hci_dev *hdev)
3959{
3960 struct sk_buff *skb;
3961
3962 skb = skb_peek(&hdev->cmd_q);
3963 if (!skb)
3964 return true;
3965
3966 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3967}
3968
3969static void hci_resend_last(struct hci_dev *hdev)
3970{
3971 struct hci_command_hdr *sent;
3972 struct sk_buff *skb;
3973 u16 opcode;
3974
3975 if (!hdev->sent_cmd)
3976 return;
3977
3978 sent = (void *) hdev->sent_cmd->data;
3979 opcode = __le16_to_cpu(sent->opcode);
3980 if (opcode == HCI_OP_RESET)
3981 return;
3982
3983 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3984 if (!skb)
3985 return;
3986
3987 skb_queue_head(&hdev->cmd_q, skb);
3988 queue_work(hdev->workqueue, &hdev->cmd_work);
3989}
3990
3991void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3992 hci_req_complete_t *req_complete,
3993 hci_req_complete_skb_t *req_complete_skb)
3994{
3995 struct sk_buff *skb;
3996 unsigned long flags;
3997
3998 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3999
4000 /* If the completed command doesn't match the last one that was
4001 * sent we need to do special handling of it.
4002 */
4003 if (!hci_sent_cmd_data(hdev, opcode)) {
4004 /* Some CSR based controllers generate a spontaneous
4005 * reset complete event during init and any pending
4006 * command will never be completed. In such a case we
4007 * need to resend whatever was the last sent
4008 * command.
4009 */
4010 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4011 hci_resend_last(hdev);
4012
4013 return;
4014 }
4015
4016 /* If we reach this point this event matches the last command sent */
4017 hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4018
4019 /* If the command succeeded and there's still more commands in
4020 * this request the request is not yet complete.
4021 */
4022 if (!status && !hci_req_is_complete(hdev))
4023 return;
4024
4025 /* If this was the last command in a request the complete
4026 * callback would be found in hdev->sent_cmd instead of the
4027 * command queue (hdev->cmd_q).
4028 */
4029 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4030 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4031 return;
4032 }
4033
4034 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4035 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4036 return;
4037 }
4038
4039 /* Remove all pending commands belonging to this request */
4040 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4041 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4042 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4043 __skb_queue_head(&hdev->cmd_q, skb);
4044 break;
4045 }
4046
4047 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4048 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4049 else
4050 *req_complete = bt_cb(skb)->hci.req_complete;
4051 dev_kfree_skb_irq(skb);
4052 }
4053 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4054}
4055
4056static void hci_rx_work(struct work_struct *work)
4057{
4058 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4059 struct sk_buff *skb;
4060
4061 BT_DBG("%s", hdev->name);
4062
4063 /* The kcov_remote functions used for collecting packet parsing
4064 * coverage information from this background thread and associate
4065 * the coverage with the syscall's thread which originally injected
4066 * the packet. This helps fuzzing the kernel.
4067 */
4068 for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4069 kcov_remote_start_common(skb_get_kcov_handle(skb));
4070
4071 /* Send copy to monitor */
4072 hci_send_to_monitor(hdev, skb);
4073
4074 if (atomic_read(&hdev->promisc)) {
4075 /* Send copy to the sockets */
4076 hci_send_to_sock(hdev, skb);
4077 }
4078
4079 /* If the device has been opened in HCI_USER_CHANNEL,
4080 * the userspace has exclusive access to device.
4081 * When device is HCI_INIT, we still need to process
4082 * the data packets to the driver in order
4083 * to complete its setup().
4084 */
4085 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4086 !test_bit(HCI_INIT, &hdev->flags)) {
4087 kfree_skb(skb);
4088 continue;
4089 }
4090
4091 if (test_bit(HCI_INIT, &hdev->flags)) {
4092 /* Don't process data packets in this states. */
4093 switch (hci_skb_pkt_type(skb)) {
4094 case HCI_ACLDATA_PKT:
4095 case HCI_SCODATA_PKT:
4096 case HCI_ISODATA_PKT:
4097 kfree_skb(skb);
4098 continue;
4099 }
4100 }
4101
4102 /* Process frame */
4103 switch (hci_skb_pkt_type(skb)) {
4104 case HCI_EVENT_PKT:
4105 BT_DBG("%s Event packet", hdev->name);
4106 hci_event_packet(hdev, skb);
4107 break;
4108
4109 case HCI_ACLDATA_PKT:
4110 BT_DBG("%s ACL data packet", hdev->name);
4111 hci_acldata_packet(hdev, skb);
4112 break;
4113
4114 case HCI_SCODATA_PKT:
4115 BT_DBG("%s SCO data packet", hdev->name);
4116 hci_scodata_packet(hdev, skb);
4117 break;
4118
4119 case HCI_ISODATA_PKT:
4120 BT_DBG("%s ISO data packet", hdev->name);
4121 hci_isodata_packet(hdev, skb);
4122 break;
4123
4124 default:
4125 kfree_skb(skb);
4126 break;
4127 }
4128 }
4129}
4130
4131static void hci_cmd_work(struct work_struct *work)
4132{
4133 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4134 struct sk_buff *skb;
4135
4136 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4137 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4138
4139 /* Send queued commands */
4140 if (atomic_read(&hdev->cmd_cnt)) {
4141 skb = skb_dequeue(&hdev->cmd_q);
4142 if (!skb)
4143 return;
4144
4145 kfree_skb(hdev->sent_cmd);
4146
4147 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4148 if (hdev->sent_cmd) {
4149 int res;
4150 if (hci_req_status_pend(hdev))
4151 hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4152 atomic_dec(&hdev->cmd_cnt);
4153
4154 res = hci_send_frame(hdev, skb);
4155 if (res < 0)
4156 __hci_cmd_sync_cancel(hdev, -res);
4157
4158 rcu_read_lock();
4159 if (test_bit(HCI_RESET, &hdev->flags) ||
4160 hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4161 cancel_delayed_work(&hdev->cmd_timer);
4162 else
4163 queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4164 HCI_CMD_TIMEOUT);
4165 rcu_read_unlock();
4166 } else {
4167 skb_queue_head(&hdev->cmd_q, skb);
4168 queue_work(hdev->workqueue, &hdev->cmd_work);
4169 }
4170 }
4171}
1/*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24*/
25
26/* Bluetooth HCI core. */
27
28#include <linux/export.h>
29#include <linux/idr.h>
30#include <linux/rfkill.h>
31#include <linux/debugfs.h>
32#include <linux/crypto.h>
33#include <asm/unaligned.h>
34
35#include <net/bluetooth/bluetooth.h>
36#include <net/bluetooth/hci_core.h>
37#include <net/bluetooth/l2cap.h>
38#include <net/bluetooth/mgmt.h>
39
40#include "hci_request.h"
41#include "hci_debugfs.h"
42#include "smp.h"
43#include "leds.h"
44
45static void hci_rx_work(struct work_struct *work);
46static void hci_cmd_work(struct work_struct *work);
47static void hci_tx_work(struct work_struct *work);
48
49/* HCI device list */
50LIST_HEAD(hci_dev_list);
51DEFINE_RWLOCK(hci_dev_list_lock);
52
53/* HCI callback list */
54LIST_HEAD(hci_cb_list);
55DEFINE_MUTEX(hci_cb_list_lock);
56
57/* HCI ID Numbering */
58static DEFINE_IDA(hci_index_ida);
59
60/* ---- HCI debugfs entries ---- */
61
62static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
63 size_t count, loff_t *ppos)
64{
65 struct hci_dev *hdev = file->private_data;
66 char buf[3];
67
68 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
69 buf[1] = '\n';
70 buf[2] = '\0';
71 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
72}
73
74static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
75 size_t count, loff_t *ppos)
76{
77 struct hci_dev *hdev = file->private_data;
78 struct sk_buff *skb;
79 char buf[32];
80 size_t buf_size = min(count, (sizeof(buf)-1));
81 bool enable;
82
83 if (!test_bit(HCI_UP, &hdev->flags))
84 return -ENETDOWN;
85
86 if (copy_from_user(buf, user_buf, buf_size))
87 return -EFAULT;
88
89 buf[buf_size] = '\0';
90 if (strtobool(buf, &enable))
91 return -EINVAL;
92
93 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94 return -EALREADY;
95
96 hci_req_sync_lock(hdev);
97 if (enable)
98 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99 HCI_CMD_TIMEOUT);
100 else
101 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102 HCI_CMD_TIMEOUT);
103 hci_req_sync_unlock(hdev);
104
105 if (IS_ERR(skb))
106 return PTR_ERR(skb);
107
108 kfree_skb(skb);
109
110 hci_dev_change_flag(hdev, HCI_DUT_MODE);
111
112 return count;
113}
114
115static const struct file_operations dut_mode_fops = {
116 .open = simple_open,
117 .read = dut_mode_read,
118 .write = dut_mode_write,
119 .llseek = default_llseek,
120};
121
122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123 size_t count, loff_t *ppos)
124{
125 struct hci_dev *hdev = file->private_data;
126 char buf[3];
127
128 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129 buf[1] = '\n';
130 buf[2] = '\0';
131 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
132}
133
134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135 size_t count, loff_t *ppos)
136{
137 struct hci_dev *hdev = file->private_data;
138 char buf[32];
139 size_t buf_size = min(count, (sizeof(buf)-1));
140 bool enable;
141 int err;
142
143 if (copy_from_user(buf, user_buf, buf_size))
144 return -EFAULT;
145
146 buf[buf_size] = '\0';
147 if (strtobool(buf, &enable))
148 return -EINVAL;
149
150 /* When the diagnostic flags are not persistent and the transport
151 * is not active, then there is no need for the vendor callback.
152 *
153 * Instead just store the desired value. If needed the setting
154 * will be programmed when the controller gets powered on.
155 */
156 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
157 !test_bit(HCI_RUNNING, &hdev->flags))
158 goto done;
159
160 hci_req_sync_lock(hdev);
161 err = hdev->set_diag(hdev, enable);
162 hci_req_sync_unlock(hdev);
163
164 if (err < 0)
165 return err;
166
167done:
168 if (enable)
169 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
170 else
171 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
172
173 return count;
174}
175
176static const struct file_operations vendor_diag_fops = {
177 .open = simple_open,
178 .read = vendor_diag_read,
179 .write = vendor_diag_write,
180 .llseek = default_llseek,
181};
182
183static void hci_debugfs_create_basic(struct hci_dev *hdev)
184{
185 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
186 &dut_mode_fops);
187
188 if (hdev->set_diag)
189 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
190 &vendor_diag_fops);
191}
192
193static int hci_reset_req(struct hci_request *req, unsigned long opt)
194{
195 BT_DBG("%s %ld", req->hdev->name, opt);
196
197 /* Reset device */
198 set_bit(HCI_RESET, &req->hdev->flags);
199 hci_req_add(req, HCI_OP_RESET, 0, NULL);
200 return 0;
201}
202
203static void bredr_init(struct hci_request *req)
204{
205 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
206
207 /* Read Local Supported Features */
208 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
209
210 /* Read Local Version */
211 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
212
213 /* Read BD Address */
214 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
215}
216
217static void amp_init1(struct hci_request *req)
218{
219 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
220
221 /* Read Local Version */
222 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
223
224 /* Read Local Supported Commands */
225 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
226
227 /* Read Local AMP Info */
228 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
229
230 /* Read Data Blk size */
231 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
232
233 /* Read Flow Control Mode */
234 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
235
236 /* Read Location Data */
237 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
238}
239
240static int amp_init2(struct hci_request *req)
241{
242 /* Read Local Supported Features. Not all AMP controllers
243 * support this so it's placed conditionally in the second
244 * stage init.
245 */
246 if (req->hdev->commands[14] & 0x20)
247 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
248
249 return 0;
250}
251
252static int hci_init1_req(struct hci_request *req, unsigned long opt)
253{
254 struct hci_dev *hdev = req->hdev;
255
256 BT_DBG("%s %ld", hdev->name, opt);
257
258 /* Reset */
259 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
260 hci_reset_req(req, 0);
261
262 switch (hdev->dev_type) {
263 case HCI_PRIMARY:
264 bredr_init(req);
265 break;
266 case HCI_AMP:
267 amp_init1(req);
268 break;
269 default:
270 BT_ERR("Unknown device type %d", hdev->dev_type);
271 break;
272 }
273
274 return 0;
275}
276
277static void bredr_setup(struct hci_request *req)
278{
279 __le16 param;
280 __u8 flt_type;
281
282 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
283 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
284
285 /* Read Class of Device */
286 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
287
288 /* Read Local Name */
289 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
290
291 /* Read Voice Setting */
292 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
293
294 /* Read Number of Supported IAC */
295 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
296
297 /* Read Current IAC LAP */
298 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
299
300 /* Clear Event Filters */
301 flt_type = HCI_FLT_CLEAR_ALL;
302 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
303
304 /* Connection accept timeout ~20 secs */
305 param = cpu_to_le16(0x7d00);
306 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m);
307}
308
309static void le_setup(struct hci_request *req)
310{
311 struct hci_dev *hdev = req->hdev;
312
313 /* Read LE Buffer Size */
314 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
315
316 /* Read LE Local Supported Features */
317 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
318
319 /* Read LE Supported States */
320 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
321
322 /* LE-only controllers have LE implicitly enabled */
323 if (!lmp_bredr_capable(hdev))
324 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
325}
326
327static void hci_setup_event_mask(struct hci_request *req)
328{
329 struct hci_dev *hdev = req->hdev;
330
331 /* The second byte is 0xff instead of 0x9f (two reserved bits
332 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
333 * command otherwise.
334 */
335 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
336
337 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
338 * any event mask for pre 1.2 devices.
339 */
340 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
341 return;
342
343 if (lmp_bredr_capable(hdev)) {
344 events[4] |= 0x01; /* Flow Specification Complete */
345 } else {
346 /* Use a different default for LE-only devices */
347 memset(events, 0, sizeof(events));
348 events[1] |= 0x20; /* Command Complete */
349 events[1] |= 0x40; /* Command Status */
350 events[1] |= 0x80; /* Hardware Error */
351
352 /* If the controller supports the Disconnect command, enable
353 * the corresponding event. In addition enable packet flow
354 * control related events.
355 */
356 if (hdev->commands[0] & 0x20) {
357 events[0] |= 0x10; /* Disconnection Complete */
358 events[2] |= 0x04; /* Number of Completed Packets */
359 events[3] |= 0x02; /* Data Buffer Overflow */
360 }
361
362 /* If the controller supports the Read Remote Version
363 * Information command, enable the corresponding event.
364 */
365 if (hdev->commands[2] & 0x80)
366 events[1] |= 0x08; /* Read Remote Version Information
367 * Complete
368 */
369
370 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
371 events[0] |= 0x80; /* Encryption Change */
372 events[5] |= 0x80; /* Encryption Key Refresh Complete */
373 }
374 }
375
376 if (lmp_inq_rssi_capable(hdev) ||
377 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
378 events[4] |= 0x02; /* Inquiry Result with RSSI */
379
380 if (lmp_ext_feat_capable(hdev))
381 events[4] |= 0x04; /* Read Remote Extended Features Complete */
382
383 if (lmp_esco_capable(hdev)) {
384 events[5] |= 0x08; /* Synchronous Connection Complete */
385 events[5] |= 0x10; /* Synchronous Connection Changed */
386 }
387
388 if (lmp_sniffsubr_capable(hdev))
389 events[5] |= 0x20; /* Sniff Subrating */
390
391 if (lmp_pause_enc_capable(hdev))
392 events[5] |= 0x80; /* Encryption Key Refresh Complete */
393
394 if (lmp_ext_inq_capable(hdev))
395 events[5] |= 0x40; /* Extended Inquiry Result */
396
397 if (lmp_no_flush_capable(hdev))
398 events[7] |= 0x01; /* Enhanced Flush Complete */
399
400 if (lmp_lsto_capable(hdev))
401 events[6] |= 0x80; /* Link Supervision Timeout Changed */
402
403 if (lmp_ssp_capable(hdev)) {
404 events[6] |= 0x01; /* IO Capability Request */
405 events[6] |= 0x02; /* IO Capability Response */
406 events[6] |= 0x04; /* User Confirmation Request */
407 events[6] |= 0x08; /* User Passkey Request */
408 events[6] |= 0x10; /* Remote OOB Data Request */
409 events[6] |= 0x20; /* Simple Pairing Complete */
410 events[7] |= 0x04; /* User Passkey Notification */
411 events[7] |= 0x08; /* Keypress Notification */
412 events[7] |= 0x10; /* Remote Host Supported
413 * Features Notification
414 */
415 }
416
417 if (lmp_le_capable(hdev))
418 events[7] |= 0x20; /* LE Meta-Event */
419
420 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
421}
422
423static int hci_init2_req(struct hci_request *req, unsigned long opt)
424{
425 struct hci_dev *hdev = req->hdev;
426
427 if (hdev->dev_type == HCI_AMP)
428 return amp_init2(req);
429
430 if (lmp_bredr_capable(hdev))
431 bredr_setup(req);
432 else
433 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
434
435 if (lmp_le_capable(hdev))
436 le_setup(req);
437
438 /* All Bluetooth 1.2 and later controllers should support the
439 * HCI command for reading the local supported commands.
440 *
441 * Unfortunately some controllers indicate Bluetooth 1.2 support,
442 * but do not have support for this command. If that is the case,
443 * the driver can quirk the behavior and skip reading the local
444 * supported commands.
445 */
446 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
447 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
448 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
449
450 if (lmp_ssp_capable(hdev)) {
451 /* When SSP is available, then the host features page
452 * should also be available as well. However some
453 * controllers list the max_page as 0 as long as SSP
454 * has not been enabled. To achieve proper debugging
455 * output, force the minimum max_page to 1 at least.
456 */
457 hdev->max_page = 0x01;
458
459 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
460 u8 mode = 0x01;
461
462 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
463 sizeof(mode), &mode);
464 } else {
465 struct hci_cp_write_eir cp;
466
467 memset(hdev->eir, 0, sizeof(hdev->eir));
468 memset(&cp, 0, sizeof(cp));
469
470 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
471 }
472 }
473
474 if (lmp_inq_rssi_capable(hdev) ||
475 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
476 u8 mode;
477
478 /* If Extended Inquiry Result events are supported, then
479 * they are clearly preferred over Inquiry Result with RSSI
480 * events.
481 */
482 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
483
484 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
485 }
486
487 if (lmp_inq_tx_pwr_capable(hdev))
488 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
489
490 if (lmp_ext_feat_capable(hdev)) {
491 struct hci_cp_read_local_ext_features cp;
492
493 cp.page = 0x01;
494 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
495 sizeof(cp), &cp);
496 }
497
498 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
499 u8 enable = 1;
500 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
501 &enable);
502 }
503
504 return 0;
505}
506
507static void hci_setup_link_policy(struct hci_request *req)
508{
509 struct hci_dev *hdev = req->hdev;
510 struct hci_cp_write_def_link_policy cp;
511 u16 link_policy = 0;
512
513 if (lmp_rswitch_capable(hdev))
514 link_policy |= HCI_LP_RSWITCH;
515 if (lmp_hold_capable(hdev))
516 link_policy |= HCI_LP_HOLD;
517 if (lmp_sniff_capable(hdev))
518 link_policy |= HCI_LP_SNIFF;
519 if (lmp_park_capable(hdev))
520 link_policy |= HCI_LP_PARK;
521
522 cp.policy = cpu_to_le16(link_policy);
523 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
524}
525
526static void hci_set_le_support(struct hci_request *req)
527{
528 struct hci_dev *hdev = req->hdev;
529 struct hci_cp_write_le_host_supported cp;
530
531 /* LE-only devices do not support explicit enablement */
532 if (!lmp_bredr_capable(hdev))
533 return;
534
535 memset(&cp, 0, sizeof(cp));
536
537 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
538 cp.le = 0x01;
539 cp.simul = 0x00;
540 }
541
542 if (cp.le != lmp_host_le_capable(hdev))
543 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
544 &cp);
545}
546
547static void hci_set_event_mask_page_2(struct hci_request *req)
548{
549 struct hci_dev *hdev = req->hdev;
550 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
551
552 /* If Connectionless Slave Broadcast master role is supported
553 * enable all necessary events for it.
554 */
555 if (lmp_csb_master_capable(hdev)) {
556 events[1] |= 0x40; /* Triggered Clock Capture */
557 events[1] |= 0x80; /* Synchronization Train Complete */
558 events[2] |= 0x10; /* Slave Page Response Timeout */
559 events[2] |= 0x20; /* CSB Channel Map Change */
560 }
561
562 /* If Connectionless Slave Broadcast slave role is supported
563 * enable all necessary events for it.
564 */
565 if (lmp_csb_slave_capable(hdev)) {
566 events[2] |= 0x01; /* Synchronization Train Received */
567 events[2] |= 0x02; /* CSB Receive */
568 events[2] |= 0x04; /* CSB Timeout */
569 events[2] |= 0x08; /* Truncated Page Complete */
570 }
571
572 /* Enable Authenticated Payload Timeout Expired event if supported */
573 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
574 events[2] |= 0x80;
575
576 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
577}
578
579static int hci_init3_req(struct hci_request *req, unsigned long opt)
580{
581 struct hci_dev *hdev = req->hdev;
582 u8 p;
583
584 hci_setup_event_mask(req);
585
586 if (hdev->commands[6] & 0x20 &&
587 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
588 struct hci_cp_read_stored_link_key cp;
589
590 bacpy(&cp.bdaddr, BDADDR_ANY);
591 cp.read_all = 0x01;
592 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
593 }
594
595 if (hdev->commands[5] & 0x10)
596 hci_setup_link_policy(req);
597
598 if (hdev->commands[8] & 0x01)
599 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
600
601 /* Some older Broadcom based Bluetooth 1.2 controllers do not
602 * support the Read Page Scan Type command. Check support for
603 * this command in the bit mask of supported commands.
604 */
605 if (hdev->commands[13] & 0x01)
606 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
607
608 if (lmp_le_capable(hdev)) {
609 u8 events[8];
610
611 memset(events, 0, sizeof(events));
612
613 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
614 events[0] |= 0x10; /* LE Long Term Key Request */
615
616 /* If controller supports the Connection Parameters Request
617 * Link Layer Procedure, enable the corresponding event.
618 */
619 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
620 events[0] |= 0x20; /* LE Remote Connection
621 * Parameter Request
622 */
623
624 /* If the controller supports the Data Length Extension
625 * feature, enable the corresponding event.
626 */
627 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
628 events[0] |= 0x40; /* LE Data Length Change */
629
630 /* If the controller supports Extended Scanner Filter
631 * Policies, enable the correspondig event.
632 */
633 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
634 events[1] |= 0x04; /* LE Direct Advertising
635 * Report
636 */
637
638 /* If the controller supports the LE Set Scan Enable command,
639 * enable the corresponding advertising report event.
640 */
641 if (hdev->commands[26] & 0x08)
642 events[0] |= 0x02; /* LE Advertising Report */
643
644 /* If the controller supports the LE Create Connection
645 * command, enable the corresponding event.
646 */
647 if (hdev->commands[26] & 0x10)
648 events[0] |= 0x01; /* LE Connection Complete */
649
650 /* If the controller supports the LE Connection Update
651 * command, enable the corresponding event.
652 */
653 if (hdev->commands[27] & 0x04)
654 events[0] |= 0x04; /* LE Connection Update
655 * Complete
656 */
657
658 /* If the controller supports the LE Read Remote Used Features
659 * command, enable the corresponding event.
660 */
661 if (hdev->commands[27] & 0x20)
662 events[0] |= 0x08; /* LE Read Remote Used
663 * Features Complete
664 */
665
666 /* If the controller supports the LE Read Local P-256
667 * Public Key command, enable the corresponding event.
668 */
669 if (hdev->commands[34] & 0x02)
670 events[0] |= 0x80; /* LE Read Local P-256
671 * Public Key Complete
672 */
673
674 /* If the controller supports the LE Generate DHKey
675 * command, enable the corresponding event.
676 */
677 if (hdev->commands[34] & 0x04)
678 events[1] |= 0x01; /* LE Generate DHKey Complete */
679
680 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
681 events);
682
683 if (hdev->commands[25] & 0x40) {
684 /* Read LE Advertising Channel TX Power */
685 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
686 }
687
688 if (hdev->commands[26] & 0x40) {
689 /* Read LE White List Size */
690 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
691 0, NULL);
692 }
693
694 if (hdev->commands[26] & 0x80) {
695 /* Clear LE White List */
696 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
697 }
698
699 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
700 /* Read LE Maximum Data Length */
701 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
702
703 /* Read LE Suggested Default Data Length */
704 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
705 }
706
707 hci_set_le_support(req);
708 }
709
710 /* Read features beyond page 1 if available */
711 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
712 struct hci_cp_read_local_ext_features cp;
713
714 cp.page = p;
715 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
716 sizeof(cp), &cp);
717 }
718
719 return 0;
720}
721
722static int hci_init4_req(struct hci_request *req, unsigned long opt)
723{
724 struct hci_dev *hdev = req->hdev;
725
726 /* Some Broadcom based Bluetooth controllers do not support the
727 * Delete Stored Link Key command. They are clearly indicating its
728 * absence in the bit mask of supported commands.
729 *
730 * Check the supported commands and only if the the command is marked
731 * as supported send it. If not supported assume that the controller
732 * does not have actual support for stored link keys which makes this
733 * command redundant anyway.
734 *
735 * Some controllers indicate that they support handling deleting
736 * stored link keys, but they don't. The quirk lets a driver
737 * just disable this command.
738 */
739 if (hdev->commands[6] & 0x80 &&
740 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
741 struct hci_cp_delete_stored_link_key cp;
742
743 bacpy(&cp.bdaddr, BDADDR_ANY);
744 cp.delete_all = 0x01;
745 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
746 sizeof(cp), &cp);
747 }
748
749 /* Set event mask page 2 if the HCI command for it is supported */
750 if (hdev->commands[22] & 0x04)
751 hci_set_event_mask_page_2(req);
752
753 /* Read local codec list if the HCI command is supported */
754 if (hdev->commands[29] & 0x20)
755 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
756
757 /* Get MWS transport configuration if the HCI command is supported */
758 if (hdev->commands[30] & 0x08)
759 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
760
761 /* Check for Synchronization Train support */
762 if (lmp_sync_train_capable(hdev))
763 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
764
765 /* Enable Secure Connections if supported and configured */
766 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
767 bredr_sc_enabled(hdev)) {
768 u8 support = 0x01;
769
770 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
771 sizeof(support), &support);
772 }
773
774 return 0;
775}
776
777static int __hci_init(struct hci_dev *hdev)
778{
779 int err;
780
781 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
782 if (err < 0)
783 return err;
784
785 if (hci_dev_test_flag(hdev, HCI_SETUP))
786 hci_debugfs_create_basic(hdev);
787
788 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
789 if (err < 0)
790 return err;
791
792 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
793 * BR/EDR/LE type controllers. AMP controllers only need the
794 * first two stages of init.
795 */
796 if (hdev->dev_type != HCI_PRIMARY)
797 return 0;
798
799 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
800 if (err < 0)
801 return err;
802
803 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
804 if (err < 0)
805 return err;
806
807 /* This function is only called when the controller is actually in
808 * configured state. When the controller is marked as unconfigured,
809 * this initialization procedure is not run.
810 *
811 * It means that it is possible that a controller runs through its
812 * setup phase and then discovers missing settings. If that is the
813 * case, then this function will not be called. It then will only
814 * be called during the config phase.
815 *
816 * So only when in setup phase or config phase, create the debugfs
817 * entries and register the SMP channels.
818 */
819 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
820 !hci_dev_test_flag(hdev, HCI_CONFIG))
821 return 0;
822
823 hci_debugfs_create_common(hdev);
824
825 if (lmp_bredr_capable(hdev))
826 hci_debugfs_create_bredr(hdev);
827
828 if (lmp_le_capable(hdev))
829 hci_debugfs_create_le(hdev);
830
831 return 0;
832}
833
834static int hci_init0_req(struct hci_request *req, unsigned long opt)
835{
836 struct hci_dev *hdev = req->hdev;
837
838 BT_DBG("%s %ld", hdev->name, opt);
839
840 /* Reset */
841 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
842 hci_reset_req(req, 0);
843
844 /* Read Local Version */
845 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
846
847 /* Read BD Address */
848 if (hdev->set_bdaddr)
849 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
850
851 return 0;
852}
853
854static int __hci_unconf_init(struct hci_dev *hdev)
855{
856 int err;
857
858 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
859 return 0;
860
861 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
862 if (err < 0)
863 return err;
864
865 if (hci_dev_test_flag(hdev, HCI_SETUP))
866 hci_debugfs_create_basic(hdev);
867
868 return 0;
869}
870
871static int hci_scan_req(struct hci_request *req, unsigned long opt)
872{
873 __u8 scan = opt;
874
875 BT_DBG("%s %x", req->hdev->name, scan);
876
877 /* Inquiry and Page scans */
878 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
879 return 0;
880}
881
882static int hci_auth_req(struct hci_request *req, unsigned long opt)
883{
884 __u8 auth = opt;
885
886 BT_DBG("%s %x", req->hdev->name, auth);
887
888 /* Authentication */
889 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
890 return 0;
891}
892
893static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
894{
895 __u8 encrypt = opt;
896
897 BT_DBG("%s %x", req->hdev->name, encrypt);
898
899 /* Encryption */
900 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
901 return 0;
902}
903
904static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
905{
906 __le16 policy = cpu_to_le16(opt);
907
908 BT_DBG("%s %x", req->hdev->name, policy);
909
910 /* Default link policy */
911 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
912 return 0;
913}
914
915/* Get HCI device by index.
916 * Device is held on return. */
917struct hci_dev *hci_dev_get(int index)
918{
919 struct hci_dev *hdev = NULL, *d;
920
921 BT_DBG("%d", index);
922
923 if (index < 0)
924 return NULL;
925
926 read_lock(&hci_dev_list_lock);
927 list_for_each_entry(d, &hci_dev_list, list) {
928 if (d->id == index) {
929 hdev = hci_dev_hold(d);
930 break;
931 }
932 }
933 read_unlock(&hci_dev_list_lock);
934 return hdev;
935}
936
937/* ---- Inquiry support ---- */
938
939bool hci_discovery_active(struct hci_dev *hdev)
940{
941 struct discovery_state *discov = &hdev->discovery;
942
943 switch (discov->state) {
944 case DISCOVERY_FINDING:
945 case DISCOVERY_RESOLVING:
946 return true;
947
948 default:
949 return false;
950 }
951}
952
953void hci_discovery_set_state(struct hci_dev *hdev, int state)
954{
955 int old_state = hdev->discovery.state;
956
957 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
958
959 if (old_state == state)
960 return;
961
962 hdev->discovery.state = state;
963
964 switch (state) {
965 case DISCOVERY_STOPPED:
966 hci_update_background_scan(hdev);
967
968 if (old_state != DISCOVERY_STARTING)
969 mgmt_discovering(hdev, 0);
970 break;
971 case DISCOVERY_STARTING:
972 break;
973 case DISCOVERY_FINDING:
974 mgmt_discovering(hdev, 1);
975 break;
976 case DISCOVERY_RESOLVING:
977 break;
978 case DISCOVERY_STOPPING:
979 break;
980 }
981}
982
983void hci_inquiry_cache_flush(struct hci_dev *hdev)
984{
985 struct discovery_state *cache = &hdev->discovery;
986 struct inquiry_entry *p, *n;
987
988 list_for_each_entry_safe(p, n, &cache->all, all) {
989 list_del(&p->all);
990 kfree(p);
991 }
992
993 INIT_LIST_HEAD(&cache->unknown);
994 INIT_LIST_HEAD(&cache->resolve);
995}
996
997struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
998 bdaddr_t *bdaddr)
999{
1000 struct discovery_state *cache = &hdev->discovery;
1001 struct inquiry_entry *e;
1002
1003 BT_DBG("cache %p, %pMR", cache, bdaddr);
1004
1005 list_for_each_entry(e, &cache->all, all) {
1006 if (!bacmp(&e->data.bdaddr, bdaddr))
1007 return e;
1008 }
1009
1010 return NULL;
1011}
1012
1013struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1014 bdaddr_t *bdaddr)
1015{
1016 struct discovery_state *cache = &hdev->discovery;
1017 struct inquiry_entry *e;
1018
1019 BT_DBG("cache %p, %pMR", cache, bdaddr);
1020
1021 list_for_each_entry(e, &cache->unknown, list) {
1022 if (!bacmp(&e->data.bdaddr, bdaddr))
1023 return e;
1024 }
1025
1026 return NULL;
1027}
1028
1029struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1030 bdaddr_t *bdaddr,
1031 int state)
1032{
1033 struct discovery_state *cache = &hdev->discovery;
1034 struct inquiry_entry *e;
1035
1036 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1037
1038 list_for_each_entry(e, &cache->resolve, list) {
1039 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1040 return e;
1041 if (!bacmp(&e->data.bdaddr, bdaddr))
1042 return e;
1043 }
1044
1045 return NULL;
1046}
1047
1048void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1049 struct inquiry_entry *ie)
1050{
1051 struct discovery_state *cache = &hdev->discovery;
1052 struct list_head *pos = &cache->resolve;
1053 struct inquiry_entry *p;
1054
1055 list_del(&ie->list);
1056
1057 list_for_each_entry(p, &cache->resolve, list) {
1058 if (p->name_state != NAME_PENDING &&
1059 abs(p->data.rssi) >= abs(ie->data.rssi))
1060 break;
1061 pos = &p->list;
1062 }
1063
1064 list_add(&ie->list, pos);
1065}
1066
1067u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1068 bool name_known)
1069{
1070 struct discovery_state *cache = &hdev->discovery;
1071 struct inquiry_entry *ie;
1072 u32 flags = 0;
1073
1074 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1075
1076 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1077
1078 if (!data->ssp_mode)
1079 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1080
1081 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1082 if (ie) {
1083 if (!ie->data.ssp_mode)
1084 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1085
1086 if (ie->name_state == NAME_NEEDED &&
1087 data->rssi != ie->data.rssi) {
1088 ie->data.rssi = data->rssi;
1089 hci_inquiry_cache_update_resolve(hdev, ie);
1090 }
1091
1092 goto update;
1093 }
1094
1095 /* Entry not in the cache. Add new one. */
1096 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1097 if (!ie) {
1098 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1099 goto done;
1100 }
1101
1102 list_add(&ie->all, &cache->all);
1103
1104 if (name_known) {
1105 ie->name_state = NAME_KNOWN;
1106 } else {
1107 ie->name_state = NAME_NOT_KNOWN;
1108 list_add(&ie->list, &cache->unknown);
1109 }
1110
1111update:
1112 if (name_known && ie->name_state != NAME_KNOWN &&
1113 ie->name_state != NAME_PENDING) {
1114 ie->name_state = NAME_KNOWN;
1115 list_del(&ie->list);
1116 }
1117
1118 memcpy(&ie->data, data, sizeof(*data));
1119 ie->timestamp = jiffies;
1120 cache->timestamp = jiffies;
1121
1122 if (ie->name_state == NAME_NOT_KNOWN)
1123 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1124
1125done:
1126 return flags;
1127}
1128
1129static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1130{
1131 struct discovery_state *cache = &hdev->discovery;
1132 struct inquiry_info *info = (struct inquiry_info *) buf;
1133 struct inquiry_entry *e;
1134 int copied = 0;
1135
1136 list_for_each_entry(e, &cache->all, all) {
1137 struct inquiry_data *data = &e->data;
1138
1139 if (copied >= num)
1140 break;
1141
1142 bacpy(&info->bdaddr, &data->bdaddr);
1143 info->pscan_rep_mode = data->pscan_rep_mode;
1144 info->pscan_period_mode = data->pscan_period_mode;
1145 info->pscan_mode = data->pscan_mode;
1146 memcpy(info->dev_class, data->dev_class, 3);
1147 info->clock_offset = data->clock_offset;
1148
1149 info++;
1150 copied++;
1151 }
1152
1153 BT_DBG("cache %p, copied %d", cache, copied);
1154 return copied;
1155}
1156
1157static int hci_inq_req(struct hci_request *req, unsigned long opt)
1158{
1159 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1160 struct hci_dev *hdev = req->hdev;
1161 struct hci_cp_inquiry cp;
1162
1163 BT_DBG("%s", hdev->name);
1164
1165 if (test_bit(HCI_INQUIRY, &hdev->flags))
1166 return 0;
1167
1168 /* Start Inquiry */
1169 memcpy(&cp.lap, &ir->lap, 3);
1170 cp.length = ir->length;
1171 cp.num_rsp = ir->num_rsp;
1172 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1173
1174 return 0;
1175}
1176
1177int hci_inquiry(void __user *arg)
1178{
1179 __u8 __user *ptr = arg;
1180 struct hci_inquiry_req ir;
1181 struct hci_dev *hdev;
1182 int err = 0, do_inquiry = 0, max_rsp;
1183 long timeo;
1184 __u8 *buf;
1185
1186 if (copy_from_user(&ir, ptr, sizeof(ir)))
1187 return -EFAULT;
1188
1189 hdev = hci_dev_get(ir.dev_id);
1190 if (!hdev)
1191 return -ENODEV;
1192
1193 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1194 err = -EBUSY;
1195 goto done;
1196 }
1197
1198 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1199 err = -EOPNOTSUPP;
1200 goto done;
1201 }
1202
1203 if (hdev->dev_type != HCI_PRIMARY) {
1204 err = -EOPNOTSUPP;
1205 goto done;
1206 }
1207
1208 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1209 err = -EOPNOTSUPP;
1210 goto done;
1211 }
1212
1213 hci_dev_lock(hdev);
1214 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1215 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1216 hci_inquiry_cache_flush(hdev);
1217 do_inquiry = 1;
1218 }
1219 hci_dev_unlock(hdev);
1220
1221 timeo = ir.length * msecs_to_jiffies(2000);
1222
1223 if (do_inquiry) {
1224 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1225 timeo, NULL);
1226 if (err < 0)
1227 goto done;
1228
1229 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1230 * cleared). If it is interrupted by a signal, return -EINTR.
1231 */
1232 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1233 TASK_INTERRUPTIBLE))
1234 return -EINTR;
1235 }
1236
1237 /* for unlimited number of responses we will use buffer with
1238 * 255 entries
1239 */
1240 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1241
1242 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1243 * copy it to the user space.
1244 */
1245 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1246 if (!buf) {
1247 err = -ENOMEM;
1248 goto done;
1249 }
1250
1251 hci_dev_lock(hdev);
1252 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1253 hci_dev_unlock(hdev);
1254
1255 BT_DBG("num_rsp %d", ir.num_rsp);
1256
1257 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1258 ptr += sizeof(ir);
1259 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1260 ir.num_rsp))
1261 err = -EFAULT;
1262 } else
1263 err = -EFAULT;
1264
1265 kfree(buf);
1266
1267done:
1268 hci_dev_put(hdev);
1269 return err;
1270}
1271
1272static int hci_dev_do_open(struct hci_dev *hdev)
1273{
1274 int ret = 0;
1275
1276 BT_DBG("%s %p", hdev->name, hdev);
1277
1278 hci_req_sync_lock(hdev);
1279
1280 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1281 ret = -ENODEV;
1282 goto done;
1283 }
1284
1285 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1286 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1287 /* Check for rfkill but allow the HCI setup stage to
1288 * proceed (which in itself doesn't cause any RF activity).
1289 */
1290 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1291 ret = -ERFKILL;
1292 goto done;
1293 }
1294
1295 /* Check for valid public address or a configured static
1296 * random adddress, but let the HCI setup proceed to
1297 * be able to determine if there is a public address
1298 * or not.
1299 *
1300 * In case of user channel usage, it is not important
1301 * if a public address or static random address is
1302 * available.
1303 *
1304 * This check is only valid for BR/EDR controllers
1305 * since AMP controllers do not have an address.
1306 */
1307 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1308 hdev->dev_type == HCI_PRIMARY &&
1309 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1310 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1311 ret = -EADDRNOTAVAIL;
1312 goto done;
1313 }
1314 }
1315
1316 if (test_bit(HCI_UP, &hdev->flags)) {
1317 ret = -EALREADY;
1318 goto done;
1319 }
1320
1321 if (hdev->open(hdev)) {
1322 ret = -EIO;
1323 goto done;
1324 }
1325
1326 set_bit(HCI_RUNNING, &hdev->flags);
1327 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1328
1329 atomic_set(&hdev->cmd_cnt, 1);
1330 set_bit(HCI_INIT, &hdev->flags);
1331
1332 if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1333 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1334
1335 if (hdev->setup)
1336 ret = hdev->setup(hdev);
1337
1338 /* The transport driver can set these quirks before
1339 * creating the HCI device or in its setup callback.
1340 *
1341 * In case any of them is set, the controller has to
1342 * start up as unconfigured.
1343 */
1344 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1345 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1346 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1347
1348 /* For an unconfigured controller it is required to
1349 * read at least the version information provided by
1350 * the Read Local Version Information command.
1351 *
1352 * If the set_bdaddr driver callback is provided, then
1353 * also the original Bluetooth public device address
1354 * will be read using the Read BD Address command.
1355 */
1356 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1357 ret = __hci_unconf_init(hdev);
1358 }
1359
1360 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1361 /* If public address change is configured, ensure that
1362 * the address gets programmed. If the driver does not
1363 * support changing the public address, fail the power
1364 * on procedure.
1365 */
1366 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1367 hdev->set_bdaddr)
1368 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1369 else
1370 ret = -EADDRNOTAVAIL;
1371 }
1372
1373 if (!ret) {
1374 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1375 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1376 ret = __hci_init(hdev);
1377 if (!ret && hdev->post_init)
1378 ret = hdev->post_init(hdev);
1379 }
1380 }
1381
1382 /* If the HCI Reset command is clearing all diagnostic settings,
1383 * then they need to be reprogrammed after the init procedure
1384 * completed.
1385 */
1386 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1387 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1388 ret = hdev->set_diag(hdev, true);
1389
1390 clear_bit(HCI_INIT, &hdev->flags);
1391
1392 if (!ret) {
1393 hci_dev_hold(hdev);
1394 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1395 set_bit(HCI_UP, &hdev->flags);
1396 hci_sock_dev_event(hdev, HCI_DEV_UP);
1397 hci_leds_update_powered(hdev, true);
1398 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1400 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1401 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1402 hci_dev_test_flag(hdev, HCI_MGMT) &&
1403 hdev->dev_type == HCI_PRIMARY) {
1404 ret = __hci_req_hci_power_on(hdev);
1405 mgmt_power_on(hdev, ret);
1406 }
1407 } else {
1408 /* Init failed, cleanup */
1409 flush_work(&hdev->tx_work);
1410 flush_work(&hdev->cmd_work);
1411 flush_work(&hdev->rx_work);
1412
1413 skb_queue_purge(&hdev->cmd_q);
1414 skb_queue_purge(&hdev->rx_q);
1415
1416 if (hdev->flush)
1417 hdev->flush(hdev);
1418
1419 if (hdev->sent_cmd) {
1420 kfree_skb(hdev->sent_cmd);
1421 hdev->sent_cmd = NULL;
1422 }
1423
1424 clear_bit(HCI_RUNNING, &hdev->flags);
1425 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1426
1427 hdev->close(hdev);
1428 hdev->flags &= BIT(HCI_RAW);
1429 }
1430
1431done:
1432 hci_req_sync_unlock(hdev);
1433 return ret;
1434}
1435
1436/* ---- HCI ioctl helpers ---- */
1437
1438int hci_dev_open(__u16 dev)
1439{
1440 struct hci_dev *hdev;
1441 int err;
1442
1443 hdev = hci_dev_get(dev);
1444 if (!hdev)
1445 return -ENODEV;
1446
1447 /* Devices that are marked as unconfigured can only be powered
1448 * up as user channel. Trying to bring them up as normal devices
1449 * will result into a failure. Only user channel operation is
1450 * possible.
1451 *
1452 * When this function is called for a user channel, the flag
1453 * HCI_USER_CHANNEL will be set first before attempting to
1454 * open the device.
1455 */
1456 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1457 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1458 err = -EOPNOTSUPP;
1459 goto done;
1460 }
1461
1462 /* We need to ensure that no other power on/off work is pending
1463 * before proceeding to call hci_dev_do_open. This is
1464 * particularly important if the setup procedure has not yet
1465 * completed.
1466 */
1467 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1468 cancel_delayed_work(&hdev->power_off);
1469
1470 /* After this call it is guaranteed that the setup procedure
1471 * has finished. This means that error conditions like RFKILL
1472 * or no valid public or static random address apply.
1473 */
1474 flush_workqueue(hdev->req_workqueue);
1475
1476 /* For controllers not using the management interface and that
1477 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1478 * so that pairing works for them. Once the management interface
1479 * is in use this bit will be cleared again and userspace has
1480 * to explicitly enable it.
1481 */
1482 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1483 !hci_dev_test_flag(hdev, HCI_MGMT))
1484 hci_dev_set_flag(hdev, HCI_BONDABLE);
1485
1486 err = hci_dev_do_open(hdev);
1487
1488done:
1489 hci_dev_put(hdev);
1490 return err;
1491}
1492
1493/* This function requires the caller holds hdev->lock */
1494static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1495{
1496 struct hci_conn_params *p;
1497
1498 list_for_each_entry(p, &hdev->le_conn_params, list) {
1499 if (p->conn) {
1500 hci_conn_drop(p->conn);
1501 hci_conn_put(p->conn);
1502 p->conn = NULL;
1503 }
1504 list_del_init(&p->action);
1505 }
1506
1507 BT_DBG("All LE pending actions cleared");
1508}
1509
1510int hci_dev_do_close(struct hci_dev *hdev)
1511{
1512 bool auto_off;
1513
1514 BT_DBG("%s %p", hdev->name, hdev);
1515
1516 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1517 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1518 test_bit(HCI_UP, &hdev->flags)) {
1519 /* Execute vendor specific shutdown routine */
1520 if (hdev->shutdown)
1521 hdev->shutdown(hdev);
1522 }
1523
1524 cancel_delayed_work(&hdev->power_off);
1525
1526 hci_request_cancel_all(hdev);
1527 hci_req_sync_lock(hdev);
1528
1529 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1530 cancel_delayed_work_sync(&hdev->cmd_timer);
1531 hci_req_sync_unlock(hdev);
1532 return 0;
1533 }
1534
1535 hci_leds_update_powered(hdev, false);
1536
1537 /* Flush RX and TX works */
1538 flush_work(&hdev->tx_work);
1539 flush_work(&hdev->rx_work);
1540
1541 if (hdev->discov_timeout > 0) {
1542 hdev->discov_timeout = 0;
1543 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1544 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1545 }
1546
1547 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1548 cancel_delayed_work(&hdev->service_cache);
1549
1550 if (hci_dev_test_flag(hdev, HCI_MGMT))
1551 cancel_delayed_work_sync(&hdev->rpa_expired);
1552
1553 /* Avoid potential lockdep warnings from the *_flush() calls by
1554 * ensuring the workqueue is empty up front.
1555 */
1556 drain_workqueue(hdev->workqueue);
1557
1558 hci_dev_lock(hdev);
1559
1560 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1561
1562 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1563
1564 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1565 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1566 hci_dev_test_flag(hdev, HCI_MGMT))
1567 __mgmt_power_off(hdev);
1568
1569 hci_inquiry_cache_flush(hdev);
1570 hci_pend_le_actions_clear(hdev);
1571 hci_conn_hash_flush(hdev);
1572 hci_dev_unlock(hdev);
1573
1574 smp_unregister(hdev);
1575
1576 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1577
1578 if (hdev->flush)
1579 hdev->flush(hdev);
1580
1581 /* Reset device */
1582 skb_queue_purge(&hdev->cmd_q);
1583 atomic_set(&hdev->cmd_cnt, 1);
1584 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1585 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1586 set_bit(HCI_INIT, &hdev->flags);
1587 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1588 clear_bit(HCI_INIT, &hdev->flags);
1589 }
1590
1591 /* flush cmd work */
1592 flush_work(&hdev->cmd_work);
1593
1594 /* Drop queues */
1595 skb_queue_purge(&hdev->rx_q);
1596 skb_queue_purge(&hdev->cmd_q);
1597 skb_queue_purge(&hdev->raw_q);
1598
1599 /* Drop last sent command */
1600 if (hdev->sent_cmd) {
1601 cancel_delayed_work_sync(&hdev->cmd_timer);
1602 kfree_skb(hdev->sent_cmd);
1603 hdev->sent_cmd = NULL;
1604 }
1605
1606 clear_bit(HCI_RUNNING, &hdev->flags);
1607 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1608
1609 /* After this point our queues are empty
1610 * and no tasks are scheduled. */
1611 hdev->close(hdev);
1612
1613 /* Clear flags */
1614 hdev->flags &= BIT(HCI_RAW);
1615 hci_dev_clear_volatile_flags(hdev);
1616
1617 /* Controller radio is available but is currently powered down */
1618 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1619
1620 memset(hdev->eir, 0, sizeof(hdev->eir));
1621 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1622 bacpy(&hdev->random_addr, BDADDR_ANY);
1623
1624 hci_req_sync_unlock(hdev);
1625
1626 hci_dev_put(hdev);
1627 return 0;
1628}
1629
1630int hci_dev_close(__u16 dev)
1631{
1632 struct hci_dev *hdev;
1633 int err;
1634
1635 hdev = hci_dev_get(dev);
1636 if (!hdev)
1637 return -ENODEV;
1638
1639 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1640 err = -EBUSY;
1641 goto done;
1642 }
1643
1644 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1645 cancel_delayed_work(&hdev->power_off);
1646
1647 err = hci_dev_do_close(hdev);
1648
1649done:
1650 hci_dev_put(hdev);
1651 return err;
1652}
1653
1654static int hci_dev_do_reset(struct hci_dev *hdev)
1655{
1656 int ret;
1657
1658 BT_DBG("%s %p", hdev->name, hdev);
1659
1660 hci_req_sync_lock(hdev);
1661
1662 /* Drop queues */
1663 skb_queue_purge(&hdev->rx_q);
1664 skb_queue_purge(&hdev->cmd_q);
1665
1666 /* Avoid potential lockdep warnings from the *_flush() calls by
1667 * ensuring the workqueue is empty up front.
1668 */
1669 drain_workqueue(hdev->workqueue);
1670
1671 hci_dev_lock(hdev);
1672 hci_inquiry_cache_flush(hdev);
1673 hci_conn_hash_flush(hdev);
1674 hci_dev_unlock(hdev);
1675
1676 if (hdev->flush)
1677 hdev->flush(hdev);
1678
1679 atomic_set(&hdev->cmd_cnt, 1);
1680 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1681
1682 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1683
1684 hci_req_sync_unlock(hdev);
1685 return ret;
1686}
1687
1688int hci_dev_reset(__u16 dev)
1689{
1690 struct hci_dev *hdev;
1691 int err;
1692
1693 hdev = hci_dev_get(dev);
1694 if (!hdev)
1695 return -ENODEV;
1696
1697 if (!test_bit(HCI_UP, &hdev->flags)) {
1698 err = -ENETDOWN;
1699 goto done;
1700 }
1701
1702 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1703 err = -EBUSY;
1704 goto done;
1705 }
1706
1707 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1708 err = -EOPNOTSUPP;
1709 goto done;
1710 }
1711
1712 err = hci_dev_do_reset(hdev);
1713
1714done:
1715 hci_dev_put(hdev);
1716 return err;
1717}
1718
1719int hci_dev_reset_stat(__u16 dev)
1720{
1721 struct hci_dev *hdev;
1722 int ret = 0;
1723
1724 hdev = hci_dev_get(dev);
1725 if (!hdev)
1726 return -ENODEV;
1727
1728 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1729 ret = -EBUSY;
1730 goto done;
1731 }
1732
1733 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1734 ret = -EOPNOTSUPP;
1735 goto done;
1736 }
1737
1738 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1739
1740done:
1741 hci_dev_put(hdev);
1742 return ret;
1743}
1744
1745static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1746{
1747 bool conn_changed, discov_changed;
1748
1749 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1750
1751 if ((scan & SCAN_PAGE))
1752 conn_changed = !hci_dev_test_and_set_flag(hdev,
1753 HCI_CONNECTABLE);
1754 else
1755 conn_changed = hci_dev_test_and_clear_flag(hdev,
1756 HCI_CONNECTABLE);
1757
1758 if ((scan & SCAN_INQUIRY)) {
1759 discov_changed = !hci_dev_test_and_set_flag(hdev,
1760 HCI_DISCOVERABLE);
1761 } else {
1762 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1763 discov_changed = hci_dev_test_and_clear_flag(hdev,
1764 HCI_DISCOVERABLE);
1765 }
1766
1767 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1768 return;
1769
1770 if (conn_changed || discov_changed) {
1771 /* In case this was disabled through mgmt */
1772 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1773
1774 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1775 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1776
1777 mgmt_new_settings(hdev);
1778 }
1779}
1780
1781int hci_dev_cmd(unsigned int cmd, void __user *arg)
1782{
1783 struct hci_dev *hdev;
1784 struct hci_dev_req dr;
1785 int err = 0;
1786
1787 if (copy_from_user(&dr, arg, sizeof(dr)))
1788 return -EFAULT;
1789
1790 hdev = hci_dev_get(dr.dev_id);
1791 if (!hdev)
1792 return -ENODEV;
1793
1794 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1795 err = -EBUSY;
1796 goto done;
1797 }
1798
1799 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1800 err = -EOPNOTSUPP;
1801 goto done;
1802 }
1803
1804 if (hdev->dev_type != HCI_PRIMARY) {
1805 err = -EOPNOTSUPP;
1806 goto done;
1807 }
1808
1809 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1810 err = -EOPNOTSUPP;
1811 goto done;
1812 }
1813
1814 switch (cmd) {
1815 case HCISETAUTH:
1816 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1817 HCI_INIT_TIMEOUT, NULL);
1818 break;
1819
1820 case HCISETENCRYPT:
1821 if (!lmp_encrypt_capable(hdev)) {
1822 err = -EOPNOTSUPP;
1823 break;
1824 }
1825
1826 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1827 /* Auth must be enabled first */
1828 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1829 HCI_INIT_TIMEOUT, NULL);
1830 if (err)
1831 break;
1832 }
1833
1834 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1835 HCI_INIT_TIMEOUT, NULL);
1836 break;
1837
1838 case HCISETSCAN:
1839 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1840 HCI_INIT_TIMEOUT, NULL);
1841
1842 /* Ensure that the connectable and discoverable states
1843 * get correctly modified as this was a non-mgmt change.
1844 */
1845 if (!err)
1846 hci_update_scan_state(hdev, dr.dev_opt);
1847 break;
1848
1849 case HCISETLINKPOL:
1850 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1851 HCI_INIT_TIMEOUT, NULL);
1852 break;
1853
1854 case HCISETLINKMODE:
1855 hdev->link_mode = ((__u16) dr.dev_opt) &
1856 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1857 break;
1858
1859 case HCISETPTYPE:
1860 hdev->pkt_type = (__u16) dr.dev_opt;
1861 break;
1862
1863 case HCISETACLMTU:
1864 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
1865 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1866 break;
1867
1868 case HCISETSCOMTU:
1869 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
1870 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1871 break;
1872
1873 default:
1874 err = -EINVAL;
1875 break;
1876 }
1877
1878done:
1879 hci_dev_put(hdev);
1880 return err;
1881}
1882
1883int hci_get_dev_list(void __user *arg)
1884{
1885 struct hci_dev *hdev;
1886 struct hci_dev_list_req *dl;
1887 struct hci_dev_req *dr;
1888 int n = 0, size, err;
1889 __u16 dev_num;
1890
1891 if (get_user(dev_num, (__u16 __user *) arg))
1892 return -EFAULT;
1893
1894 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1895 return -EINVAL;
1896
1897 size = sizeof(*dl) + dev_num * sizeof(*dr);
1898
1899 dl = kzalloc(size, GFP_KERNEL);
1900 if (!dl)
1901 return -ENOMEM;
1902
1903 dr = dl->dev_req;
1904
1905 read_lock(&hci_dev_list_lock);
1906 list_for_each_entry(hdev, &hci_dev_list, list) {
1907 unsigned long flags = hdev->flags;
1908
1909 /* When the auto-off is configured it means the transport
1910 * is running, but in that case still indicate that the
1911 * device is actually down.
1912 */
1913 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1914 flags &= ~BIT(HCI_UP);
1915
1916 (dr + n)->dev_id = hdev->id;
1917 (dr + n)->dev_opt = flags;
1918
1919 if (++n >= dev_num)
1920 break;
1921 }
1922 read_unlock(&hci_dev_list_lock);
1923
1924 dl->dev_num = n;
1925 size = sizeof(*dl) + n * sizeof(*dr);
1926
1927 err = copy_to_user(arg, dl, size);
1928 kfree(dl);
1929
1930 return err ? -EFAULT : 0;
1931}
1932
1933int hci_get_dev_info(void __user *arg)
1934{
1935 struct hci_dev *hdev;
1936 struct hci_dev_info di;
1937 unsigned long flags;
1938 int err = 0;
1939
1940 if (copy_from_user(&di, arg, sizeof(di)))
1941 return -EFAULT;
1942
1943 hdev = hci_dev_get(di.dev_id);
1944 if (!hdev)
1945 return -ENODEV;
1946
1947 /* When the auto-off is configured it means the transport
1948 * is running, but in that case still indicate that the
1949 * device is actually down.
1950 */
1951 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1952 flags = hdev->flags & ~BIT(HCI_UP);
1953 else
1954 flags = hdev->flags;
1955
1956 strcpy(di.name, hdev->name);
1957 di.bdaddr = hdev->bdaddr;
1958 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1959 di.flags = flags;
1960 di.pkt_type = hdev->pkt_type;
1961 if (lmp_bredr_capable(hdev)) {
1962 di.acl_mtu = hdev->acl_mtu;
1963 di.acl_pkts = hdev->acl_pkts;
1964 di.sco_mtu = hdev->sco_mtu;
1965 di.sco_pkts = hdev->sco_pkts;
1966 } else {
1967 di.acl_mtu = hdev->le_mtu;
1968 di.acl_pkts = hdev->le_pkts;
1969 di.sco_mtu = 0;
1970 di.sco_pkts = 0;
1971 }
1972 di.link_policy = hdev->link_policy;
1973 di.link_mode = hdev->link_mode;
1974
1975 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1976 memcpy(&di.features, &hdev->features, sizeof(di.features));
1977
1978 if (copy_to_user(arg, &di, sizeof(di)))
1979 err = -EFAULT;
1980
1981 hci_dev_put(hdev);
1982
1983 return err;
1984}
1985
1986/* ---- Interface to HCI drivers ---- */
1987
1988static int hci_rfkill_set_block(void *data, bool blocked)
1989{
1990 struct hci_dev *hdev = data;
1991
1992 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1993
1994 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1995 return -EBUSY;
1996
1997 if (blocked) {
1998 hci_dev_set_flag(hdev, HCI_RFKILLED);
1999 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2000 !hci_dev_test_flag(hdev, HCI_CONFIG))
2001 hci_dev_do_close(hdev);
2002 } else {
2003 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2004 }
2005
2006 return 0;
2007}
2008
2009static const struct rfkill_ops hci_rfkill_ops = {
2010 .set_block = hci_rfkill_set_block,
2011};
2012
2013static void hci_power_on(struct work_struct *work)
2014{
2015 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2016 int err;
2017
2018 BT_DBG("%s", hdev->name);
2019
2020 if (test_bit(HCI_UP, &hdev->flags) &&
2021 hci_dev_test_flag(hdev, HCI_MGMT) &&
2022 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2023 cancel_delayed_work(&hdev->power_off);
2024 hci_req_sync_lock(hdev);
2025 err = __hci_req_hci_power_on(hdev);
2026 hci_req_sync_unlock(hdev);
2027 mgmt_power_on(hdev, err);
2028 return;
2029 }
2030
2031 err = hci_dev_do_open(hdev);
2032 if (err < 0) {
2033 hci_dev_lock(hdev);
2034 mgmt_set_powered_failed(hdev, err);
2035 hci_dev_unlock(hdev);
2036 return;
2037 }
2038
2039 /* During the HCI setup phase, a few error conditions are
2040 * ignored and they need to be checked now. If they are still
2041 * valid, it is important to turn the device back off.
2042 */
2043 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2044 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2045 (hdev->dev_type == HCI_PRIMARY &&
2046 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2047 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2048 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2049 hci_dev_do_close(hdev);
2050 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2051 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2052 HCI_AUTO_OFF_TIMEOUT);
2053 }
2054
2055 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2056 /* For unconfigured devices, set the HCI_RAW flag
2057 * so that userspace can easily identify them.
2058 */
2059 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2060 set_bit(HCI_RAW, &hdev->flags);
2061
2062 /* For fully configured devices, this will send
2063 * the Index Added event. For unconfigured devices,
2064 * it will send Unconfigued Index Added event.
2065 *
2066 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2067 * and no event will be send.
2068 */
2069 mgmt_index_added(hdev);
2070 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2071 /* When the controller is now configured, then it
2072 * is important to clear the HCI_RAW flag.
2073 */
2074 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2075 clear_bit(HCI_RAW, &hdev->flags);
2076
2077 /* Powering on the controller with HCI_CONFIG set only
2078 * happens with the transition from unconfigured to
2079 * configured. This will send the Index Added event.
2080 */
2081 mgmt_index_added(hdev);
2082 }
2083}
2084
2085static void hci_power_off(struct work_struct *work)
2086{
2087 struct hci_dev *hdev = container_of(work, struct hci_dev,
2088 power_off.work);
2089
2090 BT_DBG("%s", hdev->name);
2091
2092 hci_dev_do_close(hdev);
2093}
2094
2095static void hci_error_reset(struct work_struct *work)
2096{
2097 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2098
2099 BT_DBG("%s", hdev->name);
2100
2101 if (hdev->hw_error)
2102 hdev->hw_error(hdev, hdev->hw_error_code);
2103 else
2104 BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2105 hdev->hw_error_code);
2106
2107 if (hci_dev_do_close(hdev))
2108 return;
2109
2110 hci_dev_do_open(hdev);
2111}
2112
2113void hci_uuids_clear(struct hci_dev *hdev)
2114{
2115 struct bt_uuid *uuid, *tmp;
2116
2117 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2118 list_del(&uuid->list);
2119 kfree(uuid);
2120 }
2121}
2122
2123void hci_link_keys_clear(struct hci_dev *hdev)
2124{
2125 struct link_key *key;
2126
2127 list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2128 list_del_rcu(&key->list);
2129 kfree_rcu(key, rcu);
2130 }
2131}
2132
2133void hci_smp_ltks_clear(struct hci_dev *hdev)
2134{
2135 struct smp_ltk *k;
2136
2137 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2138 list_del_rcu(&k->list);
2139 kfree_rcu(k, rcu);
2140 }
2141}
2142
2143void hci_smp_irks_clear(struct hci_dev *hdev)
2144{
2145 struct smp_irk *k;
2146
2147 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2148 list_del_rcu(&k->list);
2149 kfree_rcu(k, rcu);
2150 }
2151}
2152
2153struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2154{
2155 struct link_key *k;
2156
2157 rcu_read_lock();
2158 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2159 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2160 rcu_read_unlock();
2161 return k;
2162 }
2163 }
2164 rcu_read_unlock();
2165
2166 return NULL;
2167}
2168
2169static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2170 u8 key_type, u8 old_key_type)
2171{
2172 /* Legacy key */
2173 if (key_type < 0x03)
2174 return true;
2175
2176 /* Debug keys are insecure so don't store them persistently */
2177 if (key_type == HCI_LK_DEBUG_COMBINATION)
2178 return false;
2179
2180 /* Changed combination key and there's no previous one */
2181 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2182 return false;
2183
2184 /* Security mode 3 case */
2185 if (!conn)
2186 return true;
2187
2188 /* BR/EDR key derived using SC from an LE link */
2189 if (conn->type == LE_LINK)
2190 return true;
2191
2192 /* Neither local nor remote side had no-bonding as requirement */
2193 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2194 return true;
2195
2196 /* Local side had dedicated bonding as requirement */
2197 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2198 return true;
2199
2200 /* Remote side had dedicated bonding as requirement */
2201 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2202 return true;
2203
2204 /* If none of the above criteria match, then don't store the key
2205 * persistently */
2206 return false;
2207}
2208
2209static u8 ltk_role(u8 type)
2210{
2211 if (type == SMP_LTK)
2212 return HCI_ROLE_MASTER;
2213
2214 return HCI_ROLE_SLAVE;
2215}
2216
2217struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2218 u8 addr_type, u8 role)
2219{
2220 struct smp_ltk *k;
2221
2222 rcu_read_lock();
2223 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2224 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2225 continue;
2226
2227 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2228 rcu_read_unlock();
2229 return k;
2230 }
2231 }
2232 rcu_read_unlock();
2233
2234 return NULL;
2235}
2236
2237struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2238{
2239 struct smp_irk *irk;
2240
2241 rcu_read_lock();
2242 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2243 if (!bacmp(&irk->rpa, rpa)) {
2244 rcu_read_unlock();
2245 return irk;
2246 }
2247 }
2248
2249 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2250 if (smp_irk_matches(hdev, irk->val, rpa)) {
2251 bacpy(&irk->rpa, rpa);
2252 rcu_read_unlock();
2253 return irk;
2254 }
2255 }
2256 rcu_read_unlock();
2257
2258 return NULL;
2259}
2260
2261struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2262 u8 addr_type)
2263{
2264 struct smp_irk *irk;
2265
2266 /* Identity Address must be public or static random */
2267 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2268 return NULL;
2269
2270 rcu_read_lock();
2271 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2272 if (addr_type == irk->addr_type &&
2273 bacmp(bdaddr, &irk->bdaddr) == 0) {
2274 rcu_read_unlock();
2275 return irk;
2276 }
2277 }
2278 rcu_read_unlock();
2279
2280 return NULL;
2281}
2282
2283struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2284 bdaddr_t *bdaddr, u8 *val, u8 type,
2285 u8 pin_len, bool *persistent)
2286{
2287 struct link_key *key, *old_key;
2288 u8 old_key_type;
2289
2290 old_key = hci_find_link_key(hdev, bdaddr);
2291 if (old_key) {
2292 old_key_type = old_key->type;
2293 key = old_key;
2294 } else {
2295 old_key_type = conn ? conn->key_type : 0xff;
2296 key = kzalloc(sizeof(*key), GFP_KERNEL);
2297 if (!key)
2298 return NULL;
2299 list_add_rcu(&key->list, &hdev->link_keys);
2300 }
2301
2302 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2303
2304 /* Some buggy controller combinations generate a changed
2305 * combination key for legacy pairing even when there's no
2306 * previous key */
2307 if (type == HCI_LK_CHANGED_COMBINATION &&
2308 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2309 type = HCI_LK_COMBINATION;
2310 if (conn)
2311 conn->key_type = type;
2312 }
2313
2314 bacpy(&key->bdaddr, bdaddr);
2315 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2316 key->pin_len = pin_len;
2317
2318 if (type == HCI_LK_CHANGED_COMBINATION)
2319 key->type = old_key_type;
2320 else
2321 key->type = type;
2322
2323 if (persistent)
2324 *persistent = hci_persistent_key(hdev, conn, type,
2325 old_key_type);
2326
2327 return key;
2328}
2329
2330struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2331 u8 addr_type, u8 type, u8 authenticated,
2332 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2333{
2334 struct smp_ltk *key, *old_key;
2335 u8 role = ltk_role(type);
2336
2337 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2338 if (old_key)
2339 key = old_key;
2340 else {
2341 key = kzalloc(sizeof(*key), GFP_KERNEL);
2342 if (!key)
2343 return NULL;
2344 list_add_rcu(&key->list, &hdev->long_term_keys);
2345 }
2346
2347 bacpy(&key->bdaddr, bdaddr);
2348 key->bdaddr_type = addr_type;
2349 memcpy(key->val, tk, sizeof(key->val));
2350 key->authenticated = authenticated;
2351 key->ediv = ediv;
2352 key->rand = rand;
2353 key->enc_size = enc_size;
2354 key->type = type;
2355
2356 return key;
2357}
2358
2359struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2360 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2361{
2362 struct smp_irk *irk;
2363
2364 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2365 if (!irk) {
2366 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2367 if (!irk)
2368 return NULL;
2369
2370 bacpy(&irk->bdaddr, bdaddr);
2371 irk->addr_type = addr_type;
2372
2373 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2374 }
2375
2376 memcpy(irk->val, val, 16);
2377 bacpy(&irk->rpa, rpa);
2378
2379 return irk;
2380}
2381
2382int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2383{
2384 struct link_key *key;
2385
2386 key = hci_find_link_key(hdev, bdaddr);
2387 if (!key)
2388 return -ENOENT;
2389
2390 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2391
2392 list_del_rcu(&key->list);
2393 kfree_rcu(key, rcu);
2394
2395 return 0;
2396}
2397
2398int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2399{
2400 struct smp_ltk *k;
2401 int removed = 0;
2402
2403 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2404 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2405 continue;
2406
2407 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2408
2409 list_del_rcu(&k->list);
2410 kfree_rcu(k, rcu);
2411 removed++;
2412 }
2413
2414 return removed ? 0 : -ENOENT;
2415}
2416
2417void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2418{
2419 struct smp_irk *k;
2420
2421 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2422 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2423 continue;
2424
2425 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2426
2427 list_del_rcu(&k->list);
2428 kfree_rcu(k, rcu);
2429 }
2430}
2431
2432bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2433{
2434 struct smp_ltk *k;
2435 struct smp_irk *irk;
2436 u8 addr_type;
2437
2438 if (type == BDADDR_BREDR) {
2439 if (hci_find_link_key(hdev, bdaddr))
2440 return true;
2441 return false;
2442 }
2443
2444 /* Convert to HCI addr type which struct smp_ltk uses */
2445 if (type == BDADDR_LE_PUBLIC)
2446 addr_type = ADDR_LE_DEV_PUBLIC;
2447 else
2448 addr_type = ADDR_LE_DEV_RANDOM;
2449
2450 irk = hci_get_irk(hdev, bdaddr, addr_type);
2451 if (irk) {
2452 bdaddr = &irk->bdaddr;
2453 addr_type = irk->addr_type;
2454 }
2455
2456 rcu_read_lock();
2457 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2458 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2459 rcu_read_unlock();
2460 return true;
2461 }
2462 }
2463 rcu_read_unlock();
2464
2465 return false;
2466}
2467
2468/* HCI command timer function */
2469static void hci_cmd_timeout(struct work_struct *work)
2470{
2471 struct hci_dev *hdev = container_of(work, struct hci_dev,
2472 cmd_timer.work);
2473
2474 if (hdev->sent_cmd) {
2475 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2476 u16 opcode = __le16_to_cpu(sent->opcode);
2477
2478 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2479 } else {
2480 BT_ERR("%s command tx timeout", hdev->name);
2481 }
2482
2483 atomic_set(&hdev->cmd_cnt, 1);
2484 queue_work(hdev->workqueue, &hdev->cmd_work);
2485}
2486
2487struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2488 bdaddr_t *bdaddr, u8 bdaddr_type)
2489{
2490 struct oob_data *data;
2491
2492 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2493 if (bacmp(bdaddr, &data->bdaddr) != 0)
2494 continue;
2495 if (data->bdaddr_type != bdaddr_type)
2496 continue;
2497 return data;
2498 }
2499
2500 return NULL;
2501}
2502
2503int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2504 u8 bdaddr_type)
2505{
2506 struct oob_data *data;
2507
2508 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2509 if (!data)
2510 return -ENOENT;
2511
2512 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2513
2514 list_del(&data->list);
2515 kfree(data);
2516
2517 return 0;
2518}
2519
2520void hci_remote_oob_data_clear(struct hci_dev *hdev)
2521{
2522 struct oob_data *data, *n;
2523
2524 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2525 list_del(&data->list);
2526 kfree(data);
2527 }
2528}
2529
2530int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2531 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2532 u8 *hash256, u8 *rand256)
2533{
2534 struct oob_data *data;
2535
2536 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2537 if (!data) {
2538 data = kmalloc(sizeof(*data), GFP_KERNEL);
2539 if (!data)
2540 return -ENOMEM;
2541
2542 bacpy(&data->bdaddr, bdaddr);
2543 data->bdaddr_type = bdaddr_type;
2544 list_add(&data->list, &hdev->remote_oob_data);
2545 }
2546
2547 if (hash192 && rand192) {
2548 memcpy(data->hash192, hash192, sizeof(data->hash192));
2549 memcpy(data->rand192, rand192, sizeof(data->rand192));
2550 if (hash256 && rand256)
2551 data->present = 0x03;
2552 } else {
2553 memset(data->hash192, 0, sizeof(data->hash192));
2554 memset(data->rand192, 0, sizeof(data->rand192));
2555 if (hash256 && rand256)
2556 data->present = 0x02;
2557 else
2558 data->present = 0x00;
2559 }
2560
2561 if (hash256 && rand256) {
2562 memcpy(data->hash256, hash256, sizeof(data->hash256));
2563 memcpy(data->rand256, rand256, sizeof(data->rand256));
2564 } else {
2565 memset(data->hash256, 0, sizeof(data->hash256));
2566 memset(data->rand256, 0, sizeof(data->rand256));
2567 if (hash192 && rand192)
2568 data->present = 0x01;
2569 }
2570
2571 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2572
2573 return 0;
2574}
2575
2576/* This function requires the caller holds hdev->lock */
2577struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2578{
2579 struct adv_info *adv_instance;
2580
2581 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2582 if (adv_instance->instance == instance)
2583 return adv_instance;
2584 }
2585
2586 return NULL;
2587}
2588
2589/* This function requires the caller holds hdev->lock */
2590struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2591{
2592 struct adv_info *cur_instance;
2593
2594 cur_instance = hci_find_adv_instance(hdev, instance);
2595 if (!cur_instance)
2596 return NULL;
2597
2598 if (cur_instance == list_last_entry(&hdev->adv_instances,
2599 struct adv_info, list))
2600 return list_first_entry(&hdev->adv_instances,
2601 struct adv_info, list);
2602 else
2603 return list_next_entry(cur_instance, list);
2604}
2605
2606/* This function requires the caller holds hdev->lock */
2607int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2608{
2609 struct adv_info *adv_instance;
2610
2611 adv_instance = hci_find_adv_instance(hdev, instance);
2612 if (!adv_instance)
2613 return -ENOENT;
2614
2615 BT_DBG("%s removing %dMR", hdev->name, instance);
2616
2617 if (hdev->cur_adv_instance == instance) {
2618 if (hdev->adv_instance_timeout) {
2619 cancel_delayed_work(&hdev->adv_instance_expire);
2620 hdev->adv_instance_timeout = 0;
2621 }
2622 hdev->cur_adv_instance = 0x00;
2623 }
2624
2625 list_del(&adv_instance->list);
2626 kfree(adv_instance);
2627
2628 hdev->adv_instance_cnt--;
2629
2630 return 0;
2631}
2632
2633/* This function requires the caller holds hdev->lock */
2634void hci_adv_instances_clear(struct hci_dev *hdev)
2635{
2636 struct adv_info *adv_instance, *n;
2637
2638 if (hdev->adv_instance_timeout) {
2639 cancel_delayed_work(&hdev->adv_instance_expire);
2640 hdev->adv_instance_timeout = 0;
2641 }
2642
2643 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2644 list_del(&adv_instance->list);
2645 kfree(adv_instance);
2646 }
2647
2648 hdev->adv_instance_cnt = 0;
2649 hdev->cur_adv_instance = 0x00;
2650}
2651
2652/* This function requires the caller holds hdev->lock */
2653int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2654 u16 adv_data_len, u8 *adv_data,
2655 u16 scan_rsp_len, u8 *scan_rsp_data,
2656 u16 timeout, u16 duration)
2657{
2658 struct adv_info *adv_instance;
2659
2660 adv_instance = hci_find_adv_instance(hdev, instance);
2661 if (adv_instance) {
2662 memset(adv_instance->adv_data, 0,
2663 sizeof(adv_instance->adv_data));
2664 memset(adv_instance->scan_rsp_data, 0,
2665 sizeof(adv_instance->scan_rsp_data));
2666 } else {
2667 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2668 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2669 return -EOVERFLOW;
2670
2671 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2672 if (!adv_instance)
2673 return -ENOMEM;
2674
2675 adv_instance->pending = true;
2676 adv_instance->instance = instance;
2677 list_add(&adv_instance->list, &hdev->adv_instances);
2678 hdev->adv_instance_cnt++;
2679 }
2680
2681 adv_instance->flags = flags;
2682 adv_instance->adv_data_len = adv_data_len;
2683 adv_instance->scan_rsp_len = scan_rsp_len;
2684
2685 if (adv_data_len)
2686 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2687
2688 if (scan_rsp_len)
2689 memcpy(adv_instance->scan_rsp_data,
2690 scan_rsp_data, scan_rsp_len);
2691
2692 adv_instance->timeout = timeout;
2693 adv_instance->remaining_time = timeout;
2694
2695 if (duration == 0)
2696 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2697 else
2698 adv_instance->duration = duration;
2699
2700 BT_DBG("%s for %dMR", hdev->name, instance);
2701
2702 return 0;
2703}
2704
2705struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2706 bdaddr_t *bdaddr, u8 type)
2707{
2708 struct bdaddr_list *b;
2709
2710 list_for_each_entry(b, bdaddr_list, list) {
2711 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2712 return b;
2713 }
2714
2715 return NULL;
2716}
2717
2718void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2719{
2720 struct bdaddr_list *b, *n;
2721
2722 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2723 list_del(&b->list);
2724 kfree(b);
2725 }
2726}
2727
2728int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2729{
2730 struct bdaddr_list *entry;
2731
2732 if (!bacmp(bdaddr, BDADDR_ANY))
2733 return -EBADF;
2734
2735 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2736 return -EEXIST;
2737
2738 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2739 if (!entry)
2740 return -ENOMEM;
2741
2742 bacpy(&entry->bdaddr, bdaddr);
2743 entry->bdaddr_type = type;
2744
2745 list_add(&entry->list, list);
2746
2747 return 0;
2748}
2749
2750int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2751{
2752 struct bdaddr_list *entry;
2753
2754 if (!bacmp(bdaddr, BDADDR_ANY)) {
2755 hci_bdaddr_list_clear(list);
2756 return 0;
2757 }
2758
2759 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2760 if (!entry)
2761 return -ENOENT;
2762
2763 list_del(&entry->list);
2764 kfree(entry);
2765
2766 return 0;
2767}
2768
2769/* This function requires the caller holds hdev->lock */
2770struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2771 bdaddr_t *addr, u8 addr_type)
2772{
2773 struct hci_conn_params *params;
2774
2775 list_for_each_entry(params, &hdev->le_conn_params, list) {
2776 if (bacmp(¶ms->addr, addr) == 0 &&
2777 params->addr_type == addr_type) {
2778 return params;
2779 }
2780 }
2781
2782 return NULL;
2783}
2784
2785/* This function requires the caller holds hdev->lock */
2786struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2787 bdaddr_t *addr, u8 addr_type)
2788{
2789 struct hci_conn_params *param;
2790
2791 list_for_each_entry(param, list, action) {
2792 if (bacmp(¶m->addr, addr) == 0 &&
2793 param->addr_type == addr_type)
2794 return param;
2795 }
2796
2797 return NULL;
2798}
2799
2800/* This function requires the caller holds hdev->lock */
2801struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2802 bdaddr_t *addr, u8 addr_type)
2803{
2804 struct hci_conn_params *params;
2805
2806 params = hci_conn_params_lookup(hdev, addr, addr_type);
2807 if (params)
2808 return params;
2809
2810 params = kzalloc(sizeof(*params), GFP_KERNEL);
2811 if (!params) {
2812 BT_ERR("Out of memory");
2813 return NULL;
2814 }
2815
2816 bacpy(¶ms->addr, addr);
2817 params->addr_type = addr_type;
2818
2819 list_add(¶ms->list, &hdev->le_conn_params);
2820 INIT_LIST_HEAD(¶ms->action);
2821
2822 params->conn_min_interval = hdev->le_conn_min_interval;
2823 params->conn_max_interval = hdev->le_conn_max_interval;
2824 params->conn_latency = hdev->le_conn_latency;
2825 params->supervision_timeout = hdev->le_supv_timeout;
2826 params->auto_connect = HCI_AUTO_CONN_DISABLED;
2827
2828 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2829
2830 return params;
2831}
2832
2833static void hci_conn_params_free(struct hci_conn_params *params)
2834{
2835 if (params->conn) {
2836 hci_conn_drop(params->conn);
2837 hci_conn_put(params->conn);
2838 }
2839
2840 list_del(¶ms->action);
2841 list_del(¶ms->list);
2842 kfree(params);
2843}
2844
2845/* This function requires the caller holds hdev->lock */
2846void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2847{
2848 struct hci_conn_params *params;
2849
2850 params = hci_conn_params_lookup(hdev, addr, addr_type);
2851 if (!params)
2852 return;
2853
2854 hci_conn_params_free(params);
2855
2856 hci_update_background_scan(hdev);
2857
2858 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2859}
2860
2861/* This function requires the caller holds hdev->lock */
2862void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2863{
2864 struct hci_conn_params *params, *tmp;
2865
2866 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2867 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2868 continue;
2869
2870 /* If trying to estabilish one time connection to disabled
2871 * device, leave the params, but mark them as just once.
2872 */
2873 if (params->explicit_connect) {
2874 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2875 continue;
2876 }
2877
2878 list_del(¶ms->list);
2879 kfree(params);
2880 }
2881
2882 BT_DBG("All LE disabled connection parameters were removed");
2883}
2884
2885/* This function requires the caller holds hdev->lock */
2886static void hci_conn_params_clear_all(struct hci_dev *hdev)
2887{
2888 struct hci_conn_params *params, *tmp;
2889
2890 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2891 hci_conn_params_free(params);
2892
2893 BT_DBG("All LE connection parameters were removed");
2894}
2895
2896/* Copy the Identity Address of the controller.
2897 *
2898 * If the controller has a public BD_ADDR, then by default use that one.
2899 * If this is a LE only controller without a public address, default to
2900 * the static random address.
2901 *
2902 * For debugging purposes it is possible to force controllers with a
2903 * public address to use the static random address instead.
2904 *
2905 * In case BR/EDR has been disabled on a dual-mode controller and
2906 * userspace has configured a static address, then that address
2907 * becomes the identity address instead of the public BR/EDR address.
2908 */
2909void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2910 u8 *bdaddr_type)
2911{
2912 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2913 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2914 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2915 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2916 bacpy(bdaddr, &hdev->static_addr);
2917 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2918 } else {
2919 bacpy(bdaddr, &hdev->bdaddr);
2920 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2921 }
2922}
2923
2924/* Alloc HCI device */
2925struct hci_dev *hci_alloc_dev(void)
2926{
2927 struct hci_dev *hdev;
2928
2929 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2930 if (!hdev)
2931 return NULL;
2932
2933 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2934 hdev->esco_type = (ESCO_HV1);
2935 hdev->link_mode = (HCI_LM_ACCEPT);
2936 hdev->num_iac = 0x01; /* One IAC support is mandatory */
2937 hdev->io_capability = 0x03; /* No Input No Output */
2938 hdev->manufacturer = 0xffff; /* Default to internal use */
2939 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2940 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2941 hdev->adv_instance_cnt = 0;
2942 hdev->cur_adv_instance = 0x00;
2943 hdev->adv_instance_timeout = 0;
2944
2945 hdev->sniff_max_interval = 800;
2946 hdev->sniff_min_interval = 80;
2947
2948 hdev->le_adv_channel_map = 0x07;
2949 hdev->le_adv_min_interval = 0x0800;
2950 hdev->le_adv_max_interval = 0x0800;
2951 hdev->le_scan_interval = 0x0060;
2952 hdev->le_scan_window = 0x0030;
2953 hdev->le_conn_min_interval = 0x0028;
2954 hdev->le_conn_max_interval = 0x0038;
2955 hdev->le_conn_latency = 0x0000;
2956 hdev->le_supv_timeout = 0x002a;
2957 hdev->le_def_tx_len = 0x001b;
2958 hdev->le_def_tx_time = 0x0148;
2959 hdev->le_max_tx_len = 0x001b;
2960 hdev->le_max_tx_time = 0x0148;
2961 hdev->le_max_rx_len = 0x001b;
2962 hdev->le_max_rx_time = 0x0148;
2963
2964 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2965 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2966 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2967 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2968
2969 mutex_init(&hdev->lock);
2970 mutex_init(&hdev->req_lock);
2971
2972 INIT_LIST_HEAD(&hdev->mgmt_pending);
2973 INIT_LIST_HEAD(&hdev->blacklist);
2974 INIT_LIST_HEAD(&hdev->whitelist);
2975 INIT_LIST_HEAD(&hdev->uuids);
2976 INIT_LIST_HEAD(&hdev->link_keys);
2977 INIT_LIST_HEAD(&hdev->long_term_keys);
2978 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2979 INIT_LIST_HEAD(&hdev->remote_oob_data);
2980 INIT_LIST_HEAD(&hdev->le_white_list);
2981 INIT_LIST_HEAD(&hdev->le_conn_params);
2982 INIT_LIST_HEAD(&hdev->pend_le_conns);
2983 INIT_LIST_HEAD(&hdev->pend_le_reports);
2984 INIT_LIST_HEAD(&hdev->conn_hash.list);
2985 INIT_LIST_HEAD(&hdev->adv_instances);
2986
2987 INIT_WORK(&hdev->rx_work, hci_rx_work);
2988 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2989 INIT_WORK(&hdev->tx_work, hci_tx_work);
2990 INIT_WORK(&hdev->power_on, hci_power_on);
2991 INIT_WORK(&hdev->error_reset, hci_error_reset);
2992
2993 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2994
2995 skb_queue_head_init(&hdev->rx_q);
2996 skb_queue_head_init(&hdev->cmd_q);
2997 skb_queue_head_init(&hdev->raw_q);
2998
2999 init_waitqueue_head(&hdev->req_wait_q);
3000
3001 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3002
3003 hci_request_setup(hdev);
3004
3005 hci_init_sysfs(hdev);
3006 discovery_init(hdev);
3007
3008 return hdev;
3009}
3010EXPORT_SYMBOL(hci_alloc_dev);
3011
3012/* Free HCI device */
3013void hci_free_dev(struct hci_dev *hdev)
3014{
3015 /* will free via device release */
3016 put_device(&hdev->dev);
3017}
3018EXPORT_SYMBOL(hci_free_dev);
3019
3020/* Register HCI device */
3021int hci_register_dev(struct hci_dev *hdev)
3022{
3023 int id, error;
3024
3025 if (!hdev->open || !hdev->close || !hdev->send)
3026 return -EINVAL;
3027
3028 /* Do not allow HCI_AMP devices to register at index 0,
3029 * so the index can be used as the AMP controller ID.
3030 */
3031 switch (hdev->dev_type) {
3032 case HCI_PRIMARY:
3033 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3034 break;
3035 case HCI_AMP:
3036 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3037 break;
3038 default:
3039 return -EINVAL;
3040 }
3041
3042 if (id < 0)
3043 return id;
3044
3045 sprintf(hdev->name, "hci%d", id);
3046 hdev->id = id;
3047
3048 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3049
3050 hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3051 WQ_MEM_RECLAIM, 1, hdev->name);
3052 if (!hdev->workqueue) {
3053 error = -ENOMEM;
3054 goto err;
3055 }
3056
3057 hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3058 WQ_MEM_RECLAIM, 1, hdev->name);
3059 if (!hdev->req_workqueue) {
3060 destroy_workqueue(hdev->workqueue);
3061 error = -ENOMEM;
3062 goto err;
3063 }
3064
3065 if (!IS_ERR_OR_NULL(bt_debugfs))
3066 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3067
3068 dev_set_name(&hdev->dev, "%s", hdev->name);
3069
3070 error = device_add(&hdev->dev);
3071 if (error < 0)
3072 goto err_wqueue;
3073
3074 hci_leds_init(hdev);
3075
3076 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3077 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3078 hdev);
3079 if (hdev->rfkill) {
3080 if (rfkill_register(hdev->rfkill) < 0) {
3081 rfkill_destroy(hdev->rfkill);
3082 hdev->rfkill = NULL;
3083 }
3084 }
3085
3086 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3087 hci_dev_set_flag(hdev, HCI_RFKILLED);
3088
3089 hci_dev_set_flag(hdev, HCI_SETUP);
3090 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3091
3092 if (hdev->dev_type == HCI_PRIMARY) {
3093 /* Assume BR/EDR support until proven otherwise (such as
3094 * through reading supported features during init.
3095 */
3096 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3097 }
3098
3099 write_lock(&hci_dev_list_lock);
3100 list_add(&hdev->list, &hci_dev_list);
3101 write_unlock(&hci_dev_list_lock);
3102
3103 /* Devices that are marked for raw-only usage are unconfigured
3104 * and should not be included in normal operation.
3105 */
3106 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3107 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3108
3109 hci_sock_dev_event(hdev, HCI_DEV_REG);
3110 hci_dev_hold(hdev);
3111
3112 queue_work(hdev->req_workqueue, &hdev->power_on);
3113
3114 return id;
3115
3116err_wqueue:
3117 destroy_workqueue(hdev->workqueue);
3118 destroy_workqueue(hdev->req_workqueue);
3119err:
3120 ida_simple_remove(&hci_index_ida, hdev->id);
3121
3122 return error;
3123}
3124EXPORT_SYMBOL(hci_register_dev);
3125
3126/* Unregister HCI device */
3127void hci_unregister_dev(struct hci_dev *hdev)
3128{
3129 int id;
3130
3131 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3132
3133 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3134
3135 id = hdev->id;
3136
3137 write_lock(&hci_dev_list_lock);
3138 list_del(&hdev->list);
3139 write_unlock(&hci_dev_list_lock);
3140
3141 cancel_work_sync(&hdev->power_on);
3142
3143 hci_dev_do_close(hdev);
3144
3145 if (!test_bit(HCI_INIT, &hdev->flags) &&
3146 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3147 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3148 hci_dev_lock(hdev);
3149 mgmt_index_removed(hdev);
3150 hci_dev_unlock(hdev);
3151 }
3152
3153 /* mgmt_index_removed should take care of emptying the
3154 * pending list */
3155 BUG_ON(!list_empty(&hdev->mgmt_pending));
3156
3157 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3158
3159 if (hdev->rfkill) {
3160 rfkill_unregister(hdev->rfkill);
3161 rfkill_destroy(hdev->rfkill);
3162 }
3163
3164 device_del(&hdev->dev);
3165
3166 debugfs_remove_recursive(hdev->debugfs);
3167 kfree_const(hdev->hw_info);
3168 kfree_const(hdev->fw_info);
3169
3170 destroy_workqueue(hdev->workqueue);
3171 destroy_workqueue(hdev->req_workqueue);
3172
3173 hci_dev_lock(hdev);
3174 hci_bdaddr_list_clear(&hdev->blacklist);
3175 hci_bdaddr_list_clear(&hdev->whitelist);
3176 hci_uuids_clear(hdev);
3177 hci_link_keys_clear(hdev);
3178 hci_smp_ltks_clear(hdev);
3179 hci_smp_irks_clear(hdev);
3180 hci_remote_oob_data_clear(hdev);
3181 hci_adv_instances_clear(hdev);
3182 hci_bdaddr_list_clear(&hdev->le_white_list);
3183 hci_conn_params_clear_all(hdev);
3184 hci_discovery_filter_clear(hdev);
3185 hci_dev_unlock(hdev);
3186
3187 hci_dev_put(hdev);
3188
3189 ida_simple_remove(&hci_index_ida, id);
3190}
3191EXPORT_SYMBOL(hci_unregister_dev);
3192
3193/* Suspend HCI device */
3194int hci_suspend_dev(struct hci_dev *hdev)
3195{
3196 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3197 return 0;
3198}
3199EXPORT_SYMBOL(hci_suspend_dev);
3200
3201/* Resume HCI device */
3202int hci_resume_dev(struct hci_dev *hdev)
3203{
3204 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3205 return 0;
3206}
3207EXPORT_SYMBOL(hci_resume_dev);
3208
3209/* Reset HCI device */
3210int hci_reset_dev(struct hci_dev *hdev)
3211{
3212 const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3213 struct sk_buff *skb;
3214
3215 skb = bt_skb_alloc(3, GFP_ATOMIC);
3216 if (!skb)
3217 return -ENOMEM;
3218
3219 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3220 memcpy(skb_put(skb, 3), hw_err, 3);
3221
3222 /* Send Hardware Error to upper stack */
3223 return hci_recv_frame(hdev, skb);
3224}
3225EXPORT_SYMBOL(hci_reset_dev);
3226
3227/* Receive frame from HCI drivers */
3228int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3229{
3230 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3231 && !test_bit(HCI_INIT, &hdev->flags))) {
3232 kfree_skb(skb);
3233 return -ENXIO;
3234 }
3235
3236 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3237 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3238 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3239 kfree_skb(skb);
3240 return -EINVAL;
3241 }
3242
3243 /* Incoming skb */
3244 bt_cb(skb)->incoming = 1;
3245
3246 /* Time stamp */
3247 __net_timestamp(skb);
3248
3249 skb_queue_tail(&hdev->rx_q, skb);
3250 queue_work(hdev->workqueue, &hdev->rx_work);
3251
3252 return 0;
3253}
3254EXPORT_SYMBOL(hci_recv_frame);
3255
3256/* Receive diagnostic message from HCI drivers */
3257int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3258{
3259 /* Mark as diagnostic packet */
3260 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3261
3262 /* Time stamp */
3263 __net_timestamp(skb);
3264
3265 skb_queue_tail(&hdev->rx_q, skb);
3266 queue_work(hdev->workqueue, &hdev->rx_work);
3267
3268 return 0;
3269}
3270EXPORT_SYMBOL(hci_recv_diag);
3271
3272void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3273{
3274 va_list vargs;
3275
3276 va_start(vargs, fmt);
3277 kfree_const(hdev->hw_info);
3278 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3279 va_end(vargs);
3280}
3281EXPORT_SYMBOL(hci_set_hw_info);
3282
3283void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3284{
3285 va_list vargs;
3286
3287 va_start(vargs, fmt);
3288 kfree_const(hdev->fw_info);
3289 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3290 va_end(vargs);
3291}
3292EXPORT_SYMBOL(hci_set_fw_info);
3293
3294/* ---- Interface to upper protocols ---- */
3295
3296int hci_register_cb(struct hci_cb *cb)
3297{
3298 BT_DBG("%p name %s", cb, cb->name);
3299
3300 mutex_lock(&hci_cb_list_lock);
3301 list_add_tail(&cb->list, &hci_cb_list);
3302 mutex_unlock(&hci_cb_list_lock);
3303
3304 return 0;
3305}
3306EXPORT_SYMBOL(hci_register_cb);
3307
3308int hci_unregister_cb(struct hci_cb *cb)
3309{
3310 BT_DBG("%p name %s", cb, cb->name);
3311
3312 mutex_lock(&hci_cb_list_lock);
3313 list_del(&cb->list);
3314 mutex_unlock(&hci_cb_list_lock);
3315
3316 return 0;
3317}
3318EXPORT_SYMBOL(hci_unregister_cb);
3319
3320static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3321{
3322 int err;
3323
3324 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3325 skb->len);
3326
3327 /* Time stamp */
3328 __net_timestamp(skb);
3329
3330 /* Send copy to monitor */
3331 hci_send_to_monitor(hdev, skb);
3332
3333 if (atomic_read(&hdev->promisc)) {
3334 /* Send copy to the sockets */
3335 hci_send_to_sock(hdev, skb);
3336 }
3337
3338 /* Get rid of skb owner, prior to sending to the driver. */
3339 skb_orphan(skb);
3340
3341 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3342 kfree_skb(skb);
3343 return;
3344 }
3345
3346 err = hdev->send(hdev, skb);
3347 if (err < 0) {
3348 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3349 kfree_skb(skb);
3350 }
3351}
3352
3353/* Send HCI command */
3354int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3355 const void *param)
3356{
3357 struct sk_buff *skb;
3358
3359 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3360
3361 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3362 if (!skb) {
3363 BT_ERR("%s no memory for command", hdev->name);
3364 return -ENOMEM;
3365 }
3366
3367 /* Stand-alone HCI commands must be flagged as
3368 * single-command requests.
3369 */
3370 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3371
3372 skb_queue_tail(&hdev->cmd_q, skb);
3373 queue_work(hdev->workqueue, &hdev->cmd_work);
3374
3375 return 0;
3376}
3377
3378/* Get data from the previously sent command */
3379void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3380{
3381 struct hci_command_hdr *hdr;
3382
3383 if (!hdev->sent_cmd)
3384 return NULL;
3385
3386 hdr = (void *) hdev->sent_cmd->data;
3387
3388 if (hdr->opcode != cpu_to_le16(opcode))
3389 return NULL;
3390
3391 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3392
3393 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3394}
3395
3396/* Send HCI command and wait for command commplete event */
3397struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3398 const void *param, u32 timeout)
3399{
3400 struct sk_buff *skb;
3401
3402 if (!test_bit(HCI_UP, &hdev->flags))
3403 return ERR_PTR(-ENETDOWN);
3404
3405 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3406
3407 hci_req_sync_lock(hdev);
3408 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3409 hci_req_sync_unlock(hdev);
3410
3411 return skb;
3412}
3413EXPORT_SYMBOL(hci_cmd_sync);
3414
3415/* Send ACL data */
3416static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3417{
3418 struct hci_acl_hdr *hdr;
3419 int len = skb->len;
3420
3421 skb_push(skb, HCI_ACL_HDR_SIZE);
3422 skb_reset_transport_header(skb);
3423 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3424 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3425 hdr->dlen = cpu_to_le16(len);
3426}
3427
3428static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3429 struct sk_buff *skb, __u16 flags)
3430{
3431 struct hci_conn *conn = chan->conn;
3432 struct hci_dev *hdev = conn->hdev;
3433 struct sk_buff *list;
3434
3435 skb->len = skb_headlen(skb);
3436 skb->data_len = 0;
3437
3438 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3439
3440 switch (hdev->dev_type) {
3441 case HCI_PRIMARY:
3442 hci_add_acl_hdr(skb, conn->handle, flags);
3443 break;
3444 case HCI_AMP:
3445 hci_add_acl_hdr(skb, chan->handle, flags);
3446 break;
3447 default:
3448 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3449 return;
3450 }
3451
3452 list = skb_shinfo(skb)->frag_list;
3453 if (!list) {
3454 /* Non fragmented */
3455 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3456
3457 skb_queue_tail(queue, skb);
3458 } else {
3459 /* Fragmented */
3460 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3461
3462 skb_shinfo(skb)->frag_list = NULL;
3463
3464 /* Queue all fragments atomically. We need to use spin_lock_bh
3465 * here because of 6LoWPAN links, as there this function is
3466 * called from softirq and using normal spin lock could cause
3467 * deadlocks.
3468 */
3469 spin_lock_bh(&queue->lock);
3470
3471 __skb_queue_tail(queue, skb);
3472
3473 flags &= ~ACL_START;
3474 flags |= ACL_CONT;
3475 do {
3476 skb = list; list = list->next;
3477
3478 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3479 hci_add_acl_hdr(skb, conn->handle, flags);
3480
3481 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3482
3483 __skb_queue_tail(queue, skb);
3484 } while (list);
3485
3486 spin_unlock_bh(&queue->lock);
3487 }
3488}
3489
3490void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3491{
3492 struct hci_dev *hdev = chan->conn->hdev;
3493
3494 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3495
3496 hci_queue_acl(chan, &chan->data_q, skb, flags);
3497
3498 queue_work(hdev->workqueue, &hdev->tx_work);
3499}
3500
3501/* Send SCO data */
3502void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3503{
3504 struct hci_dev *hdev = conn->hdev;
3505 struct hci_sco_hdr hdr;
3506
3507 BT_DBG("%s len %d", hdev->name, skb->len);
3508
3509 hdr.handle = cpu_to_le16(conn->handle);
3510 hdr.dlen = skb->len;
3511
3512 skb_push(skb, HCI_SCO_HDR_SIZE);
3513 skb_reset_transport_header(skb);
3514 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3515
3516 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3517
3518 skb_queue_tail(&conn->data_q, skb);
3519 queue_work(hdev->workqueue, &hdev->tx_work);
3520}
3521
3522/* ---- HCI TX task (outgoing data) ---- */
3523
3524/* HCI Connection scheduler */
3525static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3526 int *quote)
3527{
3528 struct hci_conn_hash *h = &hdev->conn_hash;
3529 struct hci_conn *conn = NULL, *c;
3530 unsigned int num = 0, min = ~0;
3531
3532 /* We don't have to lock device here. Connections are always
3533 * added and removed with TX task disabled. */
3534
3535 rcu_read_lock();
3536
3537 list_for_each_entry_rcu(c, &h->list, list) {
3538 if (c->type != type || skb_queue_empty(&c->data_q))
3539 continue;
3540
3541 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3542 continue;
3543
3544 num++;
3545
3546 if (c->sent < min) {
3547 min = c->sent;
3548 conn = c;
3549 }
3550
3551 if (hci_conn_num(hdev, type) == num)
3552 break;
3553 }
3554
3555 rcu_read_unlock();
3556
3557 if (conn) {
3558 int cnt, q;
3559
3560 switch (conn->type) {
3561 case ACL_LINK:
3562 cnt = hdev->acl_cnt;
3563 break;
3564 case SCO_LINK:
3565 case ESCO_LINK:
3566 cnt = hdev->sco_cnt;
3567 break;
3568 case LE_LINK:
3569 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3570 break;
3571 default:
3572 cnt = 0;
3573 BT_ERR("Unknown link type");
3574 }
3575
3576 q = cnt / num;
3577 *quote = q ? q : 1;
3578 } else
3579 *quote = 0;
3580
3581 BT_DBG("conn %p quote %d", conn, *quote);
3582 return conn;
3583}
3584
3585static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3586{
3587 struct hci_conn_hash *h = &hdev->conn_hash;
3588 struct hci_conn *c;
3589
3590 BT_ERR("%s link tx timeout", hdev->name);
3591
3592 rcu_read_lock();
3593
3594 /* Kill stalled connections */
3595 list_for_each_entry_rcu(c, &h->list, list) {
3596 if (c->type == type && c->sent) {
3597 BT_ERR("%s killing stalled connection %pMR",
3598 hdev->name, &c->dst);
3599 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3600 }
3601 }
3602
3603 rcu_read_unlock();
3604}
3605
3606static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3607 int *quote)
3608{
3609 struct hci_conn_hash *h = &hdev->conn_hash;
3610 struct hci_chan *chan = NULL;
3611 unsigned int num = 0, min = ~0, cur_prio = 0;
3612 struct hci_conn *conn;
3613 int cnt, q, conn_num = 0;
3614
3615 BT_DBG("%s", hdev->name);
3616
3617 rcu_read_lock();
3618
3619 list_for_each_entry_rcu(conn, &h->list, list) {
3620 struct hci_chan *tmp;
3621
3622 if (conn->type != type)
3623 continue;
3624
3625 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3626 continue;
3627
3628 conn_num++;
3629
3630 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3631 struct sk_buff *skb;
3632
3633 if (skb_queue_empty(&tmp->data_q))
3634 continue;
3635
3636 skb = skb_peek(&tmp->data_q);
3637 if (skb->priority < cur_prio)
3638 continue;
3639
3640 if (skb->priority > cur_prio) {
3641 num = 0;
3642 min = ~0;
3643 cur_prio = skb->priority;
3644 }
3645
3646 num++;
3647
3648 if (conn->sent < min) {
3649 min = conn->sent;
3650 chan = tmp;
3651 }
3652 }
3653
3654 if (hci_conn_num(hdev, type) == conn_num)
3655 break;
3656 }
3657
3658 rcu_read_unlock();
3659
3660 if (!chan)
3661 return NULL;
3662
3663 switch (chan->conn->type) {
3664 case ACL_LINK:
3665 cnt = hdev->acl_cnt;
3666 break;
3667 case AMP_LINK:
3668 cnt = hdev->block_cnt;
3669 break;
3670 case SCO_LINK:
3671 case ESCO_LINK:
3672 cnt = hdev->sco_cnt;
3673 break;
3674 case LE_LINK:
3675 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3676 break;
3677 default:
3678 cnt = 0;
3679 BT_ERR("Unknown link type");
3680 }
3681
3682 q = cnt / num;
3683 *quote = q ? q : 1;
3684 BT_DBG("chan %p quote %d", chan, *quote);
3685 return chan;
3686}
3687
3688static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3689{
3690 struct hci_conn_hash *h = &hdev->conn_hash;
3691 struct hci_conn *conn;
3692 int num = 0;
3693
3694 BT_DBG("%s", hdev->name);
3695
3696 rcu_read_lock();
3697
3698 list_for_each_entry_rcu(conn, &h->list, list) {
3699 struct hci_chan *chan;
3700
3701 if (conn->type != type)
3702 continue;
3703
3704 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3705 continue;
3706
3707 num++;
3708
3709 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3710 struct sk_buff *skb;
3711
3712 if (chan->sent) {
3713 chan->sent = 0;
3714 continue;
3715 }
3716
3717 if (skb_queue_empty(&chan->data_q))
3718 continue;
3719
3720 skb = skb_peek(&chan->data_q);
3721 if (skb->priority >= HCI_PRIO_MAX - 1)
3722 continue;
3723
3724 skb->priority = HCI_PRIO_MAX - 1;
3725
3726 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3727 skb->priority);
3728 }
3729
3730 if (hci_conn_num(hdev, type) == num)
3731 break;
3732 }
3733
3734 rcu_read_unlock();
3735
3736}
3737
3738static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3739{
3740 /* Calculate count of blocks used by this packet */
3741 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3742}
3743
3744static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3745{
3746 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3747 /* ACL tx timeout must be longer than maximum
3748 * link supervision timeout (40.9 seconds) */
3749 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3750 HCI_ACL_TX_TIMEOUT))
3751 hci_link_tx_to(hdev, ACL_LINK);
3752 }
3753}
3754
3755static void hci_sched_acl_pkt(struct hci_dev *hdev)
3756{
3757 unsigned int cnt = hdev->acl_cnt;
3758 struct hci_chan *chan;
3759 struct sk_buff *skb;
3760 int quote;
3761
3762 __check_timeout(hdev, cnt);
3763
3764 while (hdev->acl_cnt &&
3765 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
3766 u32 priority = (skb_peek(&chan->data_q))->priority;
3767 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3768 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3769 skb->len, skb->priority);
3770
3771 /* Stop if priority has changed */
3772 if (skb->priority < priority)
3773 break;
3774
3775 skb = skb_dequeue(&chan->data_q);
3776
3777 hci_conn_enter_active_mode(chan->conn,
3778 bt_cb(skb)->force_active);
3779
3780 hci_send_frame(hdev, skb);
3781 hdev->acl_last_tx = jiffies;
3782
3783 hdev->acl_cnt--;
3784 chan->sent++;
3785 chan->conn->sent++;
3786 }
3787 }
3788
3789 if (cnt != hdev->acl_cnt)
3790 hci_prio_recalculate(hdev, ACL_LINK);
3791}
3792
3793static void hci_sched_acl_blk(struct hci_dev *hdev)
3794{
3795 unsigned int cnt = hdev->block_cnt;
3796 struct hci_chan *chan;
3797 struct sk_buff *skb;
3798 int quote;
3799 u8 type;
3800
3801 __check_timeout(hdev, cnt);
3802
3803 BT_DBG("%s", hdev->name);
3804
3805 if (hdev->dev_type == HCI_AMP)
3806 type = AMP_LINK;
3807 else
3808 type = ACL_LINK;
3809
3810 while (hdev->block_cnt > 0 &&
3811 (chan = hci_chan_sent(hdev, type, "e))) {
3812 u32 priority = (skb_peek(&chan->data_q))->priority;
3813 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3814 int blocks;
3815
3816 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3817 skb->len, skb->priority);
3818
3819 /* Stop if priority has changed */
3820 if (skb->priority < priority)
3821 break;
3822
3823 skb = skb_dequeue(&chan->data_q);
3824
3825 blocks = __get_blocks(hdev, skb);
3826 if (blocks > hdev->block_cnt)
3827 return;
3828
3829 hci_conn_enter_active_mode(chan->conn,
3830 bt_cb(skb)->force_active);
3831
3832 hci_send_frame(hdev, skb);
3833 hdev->acl_last_tx = jiffies;
3834
3835 hdev->block_cnt -= blocks;
3836 quote -= blocks;
3837
3838 chan->sent += blocks;
3839 chan->conn->sent += blocks;
3840 }
3841 }
3842
3843 if (cnt != hdev->block_cnt)
3844 hci_prio_recalculate(hdev, type);
3845}
3846
3847static void hci_sched_acl(struct hci_dev *hdev)
3848{
3849 BT_DBG("%s", hdev->name);
3850
3851 /* No ACL link over BR/EDR controller */
3852 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3853 return;
3854
3855 /* No AMP link over AMP controller */
3856 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3857 return;
3858
3859 switch (hdev->flow_ctl_mode) {
3860 case HCI_FLOW_CTL_MODE_PACKET_BASED:
3861 hci_sched_acl_pkt(hdev);
3862 break;
3863
3864 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3865 hci_sched_acl_blk(hdev);
3866 break;
3867 }
3868}
3869
3870/* Schedule SCO */
3871static void hci_sched_sco(struct hci_dev *hdev)
3872{
3873 struct hci_conn *conn;
3874 struct sk_buff *skb;
3875 int quote;
3876
3877 BT_DBG("%s", hdev->name);
3878
3879 if (!hci_conn_num(hdev, SCO_LINK))
3880 return;
3881
3882 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
3883 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3884 BT_DBG("skb %p len %d", skb, skb->len);
3885 hci_send_frame(hdev, skb);
3886
3887 conn->sent++;
3888 if (conn->sent == ~0)
3889 conn->sent = 0;
3890 }
3891 }
3892}
3893
3894static void hci_sched_esco(struct hci_dev *hdev)
3895{
3896 struct hci_conn *conn;
3897 struct sk_buff *skb;
3898 int quote;
3899
3900 BT_DBG("%s", hdev->name);
3901
3902 if (!hci_conn_num(hdev, ESCO_LINK))
3903 return;
3904
3905 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3906 "e))) {
3907 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3908 BT_DBG("skb %p len %d", skb, skb->len);
3909 hci_send_frame(hdev, skb);
3910
3911 conn->sent++;
3912 if (conn->sent == ~0)
3913 conn->sent = 0;
3914 }
3915 }
3916}
3917
3918static void hci_sched_le(struct hci_dev *hdev)
3919{
3920 struct hci_chan *chan;
3921 struct sk_buff *skb;
3922 int quote, cnt, tmp;
3923
3924 BT_DBG("%s", hdev->name);
3925
3926 if (!hci_conn_num(hdev, LE_LINK))
3927 return;
3928
3929 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3930 /* LE tx timeout must be longer than maximum
3931 * link supervision timeout (40.9 seconds) */
3932 if (!hdev->le_cnt && hdev->le_pkts &&
3933 time_after(jiffies, hdev->le_last_tx + HZ * 45))
3934 hci_link_tx_to(hdev, LE_LINK);
3935 }
3936
3937 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3938 tmp = cnt;
3939 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
3940 u32 priority = (skb_peek(&chan->data_q))->priority;
3941 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3942 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3943 skb->len, skb->priority);
3944
3945 /* Stop if priority has changed */
3946 if (skb->priority < priority)
3947 break;
3948
3949 skb = skb_dequeue(&chan->data_q);
3950
3951 hci_send_frame(hdev, skb);
3952 hdev->le_last_tx = jiffies;
3953
3954 cnt--;
3955 chan->sent++;
3956 chan->conn->sent++;
3957 }
3958 }
3959
3960 if (hdev->le_pkts)
3961 hdev->le_cnt = cnt;
3962 else
3963 hdev->acl_cnt = cnt;
3964
3965 if (cnt != tmp)
3966 hci_prio_recalculate(hdev, LE_LINK);
3967}
3968
3969static void hci_tx_work(struct work_struct *work)
3970{
3971 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3972 struct sk_buff *skb;
3973
3974 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3975 hdev->sco_cnt, hdev->le_cnt);
3976
3977 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3978 /* Schedule queues and send stuff to HCI driver */
3979 hci_sched_acl(hdev);
3980 hci_sched_sco(hdev);
3981 hci_sched_esco(hdev);
3982 hci_sched_le(hdev);
3983 }
3984
3985 /* Send next queued raw (unknown type) packet */
3986 while ((skb = skb_dequeue(&hdev->raw_q)))
3987 hci_send_frame(hdev, skb);
3988}
3989
3990/* ----- HCI RX task (incoming data processing) ----- */
3991
3992/* ACL data packet */
3993static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3994{
3995 struct hci_acl_hdr *hdr = (void *) skb->data;
3996 struct hci_conn *conn;
3997 __u16 handle, flags;
3998
3999 skb_pull(skb, HCI_ACL_HDR_SIZE);
4000
4001 handle = __le16_to_cpu(hdr->handle);
4002 flags = hci_flags(handle);
4003 handle = hci_handle(handle);
4004
4005 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4006 handle, flags);
4007
4008 hdev->stat.acl_rx++;
4009
4010 hci_dev_lock(hdev);
4011 conn = hci_conn_hash_lookup_handle(hdev, handle);
4012 hci_dev_unlock(hdev);
4013
4014 if (conn) {
4015 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4016
4017 /* Send to upper protocol */
4018 l2cap_recv_acldata(conn, skb, flags);
4019 return;
4020 } else {
4021 BT_ERR("%s ACL packet for unknown connection handle %d",
4022 hdev->name, handle);
4023 }
4024
4025 kfree_skb(skb);
4026}
4027
4028/* SCO data packet */
4029static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4030{
4031 struct hci_sco_hdr *hdr = (void *) skb->data;
4032 struct hci_conn *conn;
4033 __u16 handle;
4034
4035 skb_pull(skb, HCI_SCO_HDR_SIZE);
4036
4037 handle = __le16_to_cpu(hdr->handle);
4038
4039 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4040
4041 hdev->stat.sco_rx++;
4042
4043 hci_dev_lock(hdev);
4044 conn = hci_conn_hash_lookup_handle(hdev, handle);
4045 hci_dev_unlock(hdev);
4046
4047 if (conn) {
4048 /* Send to upper protocol */
4049 sco_recv_scodata(conn, skb);
4050 return;
4051 } else {
4052 BT_ERR("%s SCO packet for unknown connection handle %d",
4053 hdev->name, handle);
4054 }
4055
4056 kfree_skb(skb);
4057}
4058
4059static bool hci_req_is_complete(struct hci_dev *hdev)
4060{
4061 struct sk_buff *skb;
4062
4063 skb = skb_peek(&hdev->cmd_q);
4064 if (!skb)
4065 return true;
4066
4067 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4068}
4069
4070static void hci_resend_last(struct hci_dev *hdev)
4071{
4072 struct hci_command_hdr *sent;
4073 struct sk_buff *skb;
4074 u16 opcode;
4075
4076 if (!hdev->sent_cmd)
4077 return;
4078
4079 sent = (void *) hdev->sent_cmd->data;
4080 opcode = __le16_to_cpu(sent->opcode);
4081 if (opcode == HCI_OP_RESET)
4082 return;
4083
4084 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4085 if (!skb)
4086 return;
4087
4088 skb_queue_head(&hdev->cmd_q, skb);
4089 queue_work(hdev->workqueue, &hdev->cmd_work);
4090}
4091
4092void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4093 hci_req_complete_t *req_complete,
4094 hci_req_complete_skb_t *req_complete_skb)
4095{
4096 struct sk_buff *skb;
4097 unsigned long flags;
4098
4099 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4100
4101 /* If the completed command doesn't match the last one that was
4102 * sent we need to do special handling of it.
4103 */
4104 if (!hci_sent_cmd_data(hdev, opcode)) {
4105 /* Some CSR based controllers generate a spontaneous
4106 * reset complete event during init and any pending
4107 * command will never be completed. In such a case we
4108 * need to resend whatever was the last sent
4109 * command.
4110 */
4111 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4112 hci_resend_last(hdev);
4113
4114 return;
4115 }
4116
4117 /* If the command succeeded and there's still more commands in
4118 * this request the request is not yet complete.
4119 */
4120 if (!status && !hci_req_is_complete(hdev))
4121 return;
4122
4123 /* If this was the last command in a request the complete
4124 * callback would be found in hdev->sent_cmd instead of the
4125 * command queue (hdev->cmd_q).
4126 */
4127 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4128 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4129 return;
4130 }
4131
4132 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4133 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4134 return;
4135 }
4136
4137 /* Remove all pending commands belonging to this request */
4138 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4139 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4140 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4141 __skb_queue_head(&hdev->cmd_q, skb);
4142 break;
4143 }
4144
4145 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4146 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4147 else
4148 *req_complete = bt_cb(skb)->hci.req_complete;
4149 kfree_skb(skb);
4150 }
4151 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4152}
4153
4154static void hci_rx_work(struct work_struct *work)
4155{
4156 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4157 struct sk_buff *skb;
4158
4159 BT_DBG("%s", hdev->name);
4160
4161 while ((skb = skb_dequeue(&hdev->rx_q))) {
4162 /* Send copy to monitor */
4163 hci_send_to_monitor(hdev, skb);
4164
4165 if (atomic_read(&hdev->promisc)) {
4166 /* Send copy to the sockets */
4167 hci_send_to_sock(hdev, skb);
4168 }
4169
4170 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4171 kfree_skb(skb);
4172 continue;
4173 }
4174
4175 if (test_bit(HCI_INIT, &hdev->flags)) {
4176 /* Don't process data packets in this states. */
4177 switch (hci_skb_pkt_type(skb)) {
4178 case HCI_ACLDATA_PKT:
4179 case HCI_SCODATA_PKT:
4180 kfree_skb(skb);
4181 continue;
4182 }
4183 }
4184
4185 /* Process frame */
4186 switch (hci_skb_pkt_type(skb)) {
4187 case HCI_EVENT_PKT:
4188 BT_DBG("%s Event packet", hdev->name);
4189 hci_event_packet(hdev, skb);
4190 break;
4191
4192 case HCI_ACLDATA_PKT:
4193 BT_DBG("%s ACL data packet", hdev->name);
4194 hci_acldata_packet(hdev, skb);
4195 break;
4196
4197 case HCI_SCODATA_PKT:
4198 BT_DBG("%s SCO data packet", hdev->name);
4199 hci_scodata_packet(hdev, skb);
4200 break;
4201
4202 default:
4203 kfree_skb(skb);
4204 break;
4205 }
4206 }
4207}
4208
4209static void hci_cmd_work(struct work_struct *work)
4210{
4211 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4212 struct sk_buff *skb;
4213
4214 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4215 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4216
4217 /* Send queued commands */
4218 if (atomic_read(&hdev->cmd_cnt)) {
4219 skb = skb_dequeue(&hdev->cmd_q);
4220 if (!skb)
4221 return;
4222
4223 kfree_skb(hdev->sent_cmd);
4224
4225 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4226 if (hdev->sent_cmd) {
4227 atomic_dec(&hdev->cmd_cnt);
4228 hci_send_frame(hdev, skb);
4229 if (test_bit(HCI_RESET, &hdev->flags))
4230 cancel_delayed_work(&hdev->cmd_timer);
4231 else
4232 schedule_delayed_work(&hdev->cmd_timer,
4233 HCI_CMD_TIMEOUT);
4234 } else {
4235 skb_queue_head(&hdev->cmd_q, skb);
4236 queue_work(hdev->workqueue, &hdev->cmd_work);
4237 }
4238 }
4239}