Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.8
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
 
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
  32#include <linux/kcov.h>
  33#include <linux/property.h>
  34#include <linux/suspend.h>
  35#include <linux/wait.h>
  36#include <asm/unaligned.h>
  37
  38#include <net/bluetooth/bluetooth.h>
  39#include <net/bluetooth/hci_core.h>
  40#include <net/bluetooth/l2cap.h>
  41#include <net/bluetooth/mgmt.h>
  42
  43#include "hci_request.h"
  44#include "hci_debugfs.h"
  45#include "smp.h"
  46#include "leds.h"
  47#include "msft.h"
  48#include "aosp.h"
  49#include "hci_codec.h"
  50
  51static void hci_rx_work(struct work_struct *work);
  52static void hci_cmd_work(struct work_struct *work);
  53static void hci_tx_work(struct work_struct *work);
  54
  55/* HCI device list */
  56LIST_HEAD(hci_dev_list);
  57DEFINE_RWLOCK(hci_dev_list_lock);
  58
  59/* HCI callback list */
  60LIST_HEAD(hci_cb_list);
  61DEFINE_MUTEX(hci_cb_list_lock);
  62
  63/* HCI ID Numbering */
  64static DEFINE_IDA(hci_index_ida);
  65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66static int hci_scan_req(struct hci_request *req, unsigned long opt)
  67{
  68	__u8 scan = opt;
  69
  70	BT_DBG("%s %x", req->hdev->name, scan);
  71
  72	/* Inquiry and Page scans */
  73	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
  74	return 0;
  75}
  76
  77static int hci_auth_req(struct hci_request *req, unsigned long opt)
  78{
  79	__u8 auth = opt;
  80
  81	BT_DBG("%s %x", req->hdev->name, auth);
  82
  83	/* Authentication */
  84	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
  85	return 0;
  86}
  87
  88static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
  89{
  90	__u8 encrypt = opt;
  91
  92	BT_DBG("%s %x", req->hdev->name, encrypt);
  93
  94	/* Encryption */
  95	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
  96	return 0;
  97}
  98
  99static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 100{
 101	__le16 policy = cpu_to_le16(opt);
 102
 103	BT_DBG("%s %x", req->hdev->name, policy);
 104
 105	/* Default link policy */
 106	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 107	return 0;
 108}
 109
 110/* Get HCI device by index.
 111 * Device is held on return. */
 112struct hci_dev *hci_dev_get(int index)
 113{
 114	struct hci_dev *hdev = NULL, *d;
 115
 116	BT_DBG("%d", index);
 117
 118	if (index < 0)
 119		return NULL;
 120
 121	read_lock(&hci_dev_list_lock);
 122	list_for_each_entry(d, &hci_dev_list, list) {
 123		if (d->id == index) {
 124			hdev = hci_dev_hold(d);
 125			break;
 126		}
 127	}
 128	read_unlock(&hci_dev_list_lock);
 129	return hdev;
 130}
 131
 132/* ---- Inquiry support ---- */
 133
 134bool hci_discovery_active(struct hci_dev *hdev)
 135{
 136	struct discovery_state *discov = &hdev->discovery;
 137
 138	switch (discov->state) {
 139	case DISCOVERY_FINDING:
 140	case DISCOVERY_RESOLVING:
 141		return true;
 142
 143	default:
 144		return false;
 145	}
 146}
 147
 148void hci_discovery_set_state(struct hci_dev *hdev, int state)
 149{
 150	int old_state = hdev->discovery.state;
 151
 152	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 153
 154	if (old_state == state)
 155		return;
 156
 157	hdev->discovery.state = state;
 158
 159	switch (state) {
 160	case DISCOVERY_STOPPED:
 161		hci_update_passive_scan(hdev);
 162
 163		if (old_state != DISCOVERY_STARTING)
 164			mgmt_discovering(hdev, 0);
 165		break;
 166	case DISCOVERY_STARTING:
 167		break;
 168	case DISCOVERY_FINDING:
 169		mgmt_discovering(hdev, 1);
 170		break;
 171	case DISCOVERY_RESOLVING:
 172		break;
 173	case DISCOVERY_STOPPING:
 174		break;
 175	}
 176}
 177
 178void hci_inquiry_cache_flush(struct hci_dev *hdev)
 179{
 180	struct discovery_state *cache = &hdev->discovery;
 181	struct inquiry_entry *p, *n;
 182
 183	list_for_each_entry_safe(p, n, &cache->all, all) {
 184		list_del(&p->all);
 185		kfree(p);
 186	}
 187
 188	INIT_LIST_HEAD(&cache->unknown);
 189	INIT_LIST_HEAD(&cache->resolve);
 190}
 191
 192struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 193					       bdaddr_t *bdaddr)
 194{
 195	struct discovery_state *cache = &hdev->discovery;
 196	struct inquiry_entry *e;
 197
 198	BT_DBG("cache %p, %pMR", cache, bdaddr);
 199
 200	list_for_each_entry(e, &cache->all, all) {
 201		if (!bacmp(&e->data.bdaddr, bdaddr))
 202			return e;
 203	}
 204
 205	return NULL;
 206}
 207
 208struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
 209						       bdaddr_t *bdaddr)
 210{
 211	struct discovery_state *cache = &hdev->discovery;
 212	struct inquiry_entry *e;
 213
 214	BT_DBG("cache %p, %pMR", cache, bdaddr);
 215
 216	list_for_each_entry(e, &cache->unknown, list) {
 217		if (!bacmp(&e->data.bdaddr, bdaddr))
 218			return e;
 219	}
 220
 221	return NULL;
 222}
 223
 224struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
 225						       bdaddr_t *bdaddr,
 226						       int state)
 227{
 228	struct discovery_state *cache = &hdev->discovery;
 229	struct inquiry_entry *e;
 230
 231	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
 232
 233	list_for_each_entry(e, &cache->resolve, list) {
 234		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
 235			return e;
 236		if (!bacmp(&e->data.bdaddr, bdaddr))
 237			return e;
 238	}
 239
 240	return NULL;
 241}
 242
 243void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
 244				      struct inquiry_entry *ie)
 245{
 246	struct discovery_state *cache = &hdev->discovery;
 247	struct list_head *pos = &cache->resolve;
 248	struct inquiry_entry *p;
 249
 250	list_del(&ie->list);
 251
 252	list_for_each_entry(p, &cache->resolve, list) {
 253		if (p->name_state != NAME_PENDING &&
 254		    abs(p->data.rssi) >= abs(ie->data.rssi))
 255			break;
 256		pos = &p->list;
 257	}
 258
 259	list_add(&ie->list, pos);
 260}
 261
 262u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
 263			     bool name_known)
 264{
 265	struct discovery_state *cache = &hdev->discovery;
 266	struct inquiry_entry *ie;
 267	u32 flags = 0;
 268
 269	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
 270
 271	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
 272
 273	if (!data->ssp_mode)
 274		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 275
 276	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 277	if (ie) {
 278		if (!ie->data.ssp_mode)
 279			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 280
 281		if (ie->name_state == NAME_NEEDED &&
 282		    data->rssi != ie->data.rssi) {
 283			ie->data.rssi = data->rssi;
 284			hci_inquiry_cache_update_resolve(hdev, ie);
 285		}
 286
 287		goto update;
 288	}
 289
 290	/* Entry not in the cache. Add new one. */
 291	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
 292	if (!ie) {
 293		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 294		goto done;
 295	}
 296
 297	list_add(&ie->all, &cache->all);
 298
 299	if (name_known) {
 300		ie->name_state = NAME_KNOWN;
 301	} else {
 302		ie->name_state = NAME_NOT_KNOWN;
 303		list_add(&ie->list, &cache->unknown);
 304	}
 305
 306update:
 307	if (name_known && ie->name_state != NAME_KNOWN &&
 308	    ie->name_state != NAME_PENDING) {
 309		ie->name_state = NAME_KNOWN;
 310		list_del(&ie->list);
 311	}
 312
 313	memcpy(&ie->data, data, sizeof(*data));
 314	ie->timestamp = jiffies;
 315	cache->timestamp = jiffies;
 316
 317	if (ie->name_state == NAME_NOT_KNOWN)
 318		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 319
 320done:
 321	return flags;
 322}
 323
 324static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 325{
 326	struct discovery_state *cache = &hdev->discovery;
 327	struct inquiry_info *info = (struct inquiry_info *) buf;
 328	struct inquiry_entry *e;
 329	int copied = 0;
 330
 331	list_for_each_entry(e, &cache->all, all) {
 332		struct inquiry_data *data = &e->data;
 333
 334		if (copied >= num)
 335			break;
 336
 337		bacpy(&info->bdaddr, &data->bdaddr);
 338		info->pscan_rep_mode	= data->pscan_rep_mode;
 339		info->pscan_period_mode	= data->pscan_period_mode;
 340		info->pscan_mode	= data->pscan_mode;
 341		memcpy(info->dev_class, data->dev_class, 3);
 342		info->clock_offset	= data->clock_offset;
 343
 344		info++;
 345		copied++;
 346	}
 347
 348	BT_DBG("cache %p, copied %d", cache, copied);
 349	return copied;
 350}
 351
 352static int hci_inq_req(struct hci_request *req, unsigned long opt)
 353{
 354	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
 355	struct hci_dev *hdev = req->hdev;
 356	struct hci_cp_inquiry cp;
 357
 358	BT_DBG("%s", hdev->name);
 359
 360	if (test_bit(HCI_INQUIRY, &hdev->flags))
 361		return 0;
 362
 363	/* Start Inquiry */
 364	memcpy(&cp.lap, &ir->lap, 3);
 365	cp.length  = ir->length;
 366	cp.num_rsp = ir->num_rsp;
 367	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
 368
 369	return 0;
 370}
 371
 372int hci_inquiry(void __user *arg)
 373{
 374	__u8 __user *ptr = arg;
 375	struct hci_inquiry_req ir;
 376	struct hci_dev *hdev;
 377	int err = 0, do_inquiry = 0, max_rsp;
 378	long timeo;
 379	__u8 *buf;
 380
 381	if (copy_from_user(&ir, ptr, sizeof(ir)))
 382		return -EFAULT;
 383
 384	hdev = hci_dev_get(ir.dev_id);
 385	if (!hdev)
 386		return -ENODEV;
 387
 388	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 389		err = -EBUSY;
 390		goto done;
 391	}
 392
 393	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 394		err = -EOPNOTSUPP;
 395		goto done;
 396	}
 397
 398	if (hdev->dev_type != HCI_PRIMARY) {
 399		err = -EOPNOTSUPP;
 400		goto done;
 401	}
 402
 403	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 404		err = -EOPNOTSUPP;
 405		goto done;
 406	}
 407
 408	/* Restrict maximum inquiry length to 60 seconds */
 409	if (ir.length > 60) {
 410		err = -EINVAL;
 411		goto done;
 412	}
 413
 414	hci_dev_lock(hdev);
 415	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 416	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
 417		hci_inquiry_cache_flush(hdev);
 418		do_inquiry = 1;
 419	}
 420	hci_dev_unlock(hdev);
 421
 422	timeo = ir.length * msecs_to_jiffies(2000);
 423
 424	if (do_inquiry) {
 425		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
 426				   timeo, NULL);
 427		if (err < 0)
 428			goto done;
 429
 430		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
 431		 * cleared). If it is interrupted by a signal, return -EINTR.
 432		 */
 433		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
 434				TASK_INTERRUPTIBLE)) {
 435			err = -EINTR;
 436			goto done;
 437		}
 438	}
 439
 440	/* for unlimited number of responses we will use buffer with
 441	 * 255 entries
 442	 */
 443	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 444
 445	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 446	 * copy it to the user space.
 447	 */
 448	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
 449	if (!buf) {
 450		err = -ENOMEM;
 451		goto done;
 452	}
 453
 454	hci_dev_lock(hdev);
 455	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 456	hci_dev_unlock(hdev);
 457
 458	BT_DBG("num_rsp %d", ir.num_rsp);
 459
 460	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 461		ptr += sizeof(ir);
 462		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 463				 ir.num_rsp))
 464			err = -EFAULT;
 465	} else
 466		err = -EFAULT;
 467
 468	kfree(buf);
 469
 470done:
 471	hci_dev_put(hdev);
 472	return err;
 473}
 474
 475static int hci_dev_do_open(struct hci_dev *hdev)
 476{
 477	int ret = 0;
 478
 479	BT_DBG("%s %p", hdev->name, hdev);
 480
 481	hci_req_sync_lock(hdev);
 482
 483	ret = hci_dev_open_sync(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484
 
 
 
 
 
 
 
 
 485	hci_req_sync_unlock(hdev);
 486	return ret;
 487}
 488
 489/* ---- HCI ioctl helpers ---- */
 490
 491int hci_dev_open(__u16 dev)
 492{
 493	struct hci_dev *hdev;
 494	int err;
 495
 496	hdev = hci_dev_get(dev);
 497	if (!hdev)
 498		return -ENODEV;
 499
 500	/* Devices that are marked as unconfigured can only be powered
 501	 * up as user channel. Trying to bring them up as normal devices
 502	 * will result into a failure. Only user channel operation is
 503	 * possible.
 504	 *
 505	 * When this function is called for a user channel, the flag
 506	 * HCI_USER_CHANNEL will be set first before attempting to
 507	 * open the device.
 508	 */
 509	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
 510	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 511		err = -EOPNOTSUPP;
 512		goto done;
 513	}
 514
 515	/* We need to ensure that no other power on/off work is pending
 516	 * before proceeding to call hci_dev_do_open. This is
 517	 * particularly important if the setup procedure has not yet
 518	 * completed.
 519	 */
 520	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 521		cancel_delayed_work(&hdev->power_off);
 522
 523	/* After this call it is guaranteed that the setup procedure
 524	 * has finished. This means that error conditions like RFKILL
 525	 * or no valid public or static random address apply.
 526	 */
 527	flush_workqueue(hdev->req_workqueue);
 528
 529	/* For controllers not using the management interface and that
 530	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
 531	 * so that pairing works for them. Once the management interface
 532	 * is in use this bit will be cleared again and userspace has
 533	 * to explicitly enable it.
 534	 */
 535	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 536	    !hci_dev_test_flag(hdev, HCI_MGMT))
 537		hci_dev_set_flag(hdev, HCI_BONDABLE);
 538
 539	err = hci_dev_do_open(hdev);
 540
 541done:
 542	hci_dev_put(hdev);
 543	return err;
 544}
 545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 546int hci_dev_do_close(struct hci_dev *hdev)
 547{
 548	int err;
 549
 550	BT_DBG("%s %p", hdev->name, hdev);
 551
 
 
 
 
 
 
 
 
 
 
 
 552	hci_req_sync_lock(hdev);
 553
 554	err = hci_dev_close_sync(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555
 556	hci_req_sync_unlock(hdev);
 557
 558	return err;
 
 559}
 560
 561int hci_dev_close(__u16 dev)
 562{
 563	struct hci_dev *hdev;
 564	int err;
 565
 566	hdev = hci_dev_get(dev);
 567	if (!hdev)
 568		return -ENODEV;
 569
 570	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 571		err = -EBUSY;
 572		goto done;
 573	}
 574
 575	cancel_work_sync(&hdev->power_on);
 576	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 577		cancel_delayed_work(&hdev->power_off);
 578
 579	err = hci_dev_do_close(hdev);
 580
 581done:
 582	hci_dev_put(hdev);
 583	return err;
 584}
 585
 586static int hci_dev_do_reset(struct hci_dev *hdev)
 587{
 588	int ret;
 589
 590	BT_DBG("%s %p", hdev->name, hdev);
 591
 592	hci_req_sync_lock(hdev);
 593
 594	/* Drop queues */
 595	skb_queue_purge(&hdev->rx_q);
 596	skb_queue_purge(&hdev->cmd_q);
 597
 598	/* Cancel these to avoid queueing non-chained pending work */
 599	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 600	/* Wait for
 601	 *
 602	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
 603	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
 604	 *
 605	 * inside RCU section to see the flag or complete scheduling.
 606	 */
 607	synchronize_rcu();
 608	/* Explicitly cancel works in case scheduled after setting the flag. */
 609	cancel_delayed_work(&hdev->cmd_timer);
 610	cancel_delayed_work(&hdev->ncmd_timer);
 611
 612	/* Avoid potential lockdep warnings from the *_flush() calls by
 613	 * ensuring the workqueue is empty up front.
 614	 */
 615	drain_workqueue(hdev->workqueue);
 616
 617	hci_dev_lock(hdev);
 618	hci_inquiry_cache_flush(hdev);
 619	hci_conn_hash_flush(hdev);
 620	hci_dev_unlock(hdev);
 621
 622	if (hdev->flush)
 623		hdev->flush(hdev);
 624
 625	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 626
 627	atomic_set(&hdev->cmd_cnt, 1);
 628	hdev->acl_cnt = 0;
 629	hdev->sco_cnt = 0;
 630	hdev->le_cnt = 0;
 631	hdev->iso_cnt = 0;
 632
 633	ret = hci_reset_sync(hdev);
 634
 635	hci_req_sync_unlock(hdev);
 636	return ret;
 637}
 638
 639int hci_dev_reset(__u16 dev)
 640{
 641	struct hci_dev *hdev;
 642	int err;
 643
 644	hdev = hci_dev_get(dev);
 645	if (!hdev)
 646		return -ENODEV;
 647
 648	if (!test_bit(HCI_UP, &hdev->flags)) {
 649		err = -ENETDOWN;
 650		goto done;
 651	}
 652
 653	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 654		err = -EBUSY;
 655		goto done;
 656	}
 657
 658	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 659		err = -EOPNOTSUPP;
 660		goto done;
 661	}
 662
 663	err = hci_dev_do_reset(hdev);
 664
 665done:
 666	hci_dev_put(hdev);
 667	return err;
 668}
 669
 670int hci_dev_reset_stat(__u16 dev)
 671{
 672	struct hci_dev *hdev;
 673	int ret = 0;
 674
 675	hdev = hci_dev_get(dev);
 676	if (!hdev)
 677		return -ENODEV;
 678
 679	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 680		ret = -EBUSY;
 681		goto done;
 682	}
 683
 684	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 685		ret = -EOPNOTSUPP;
 686		goto done;
 687	}
 688
 689	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 690
 691done:
 692	hci_dev_put(hdev);
 693	return ret;
 694}
 695
 696static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
 697{
 698	bool conn_changed, discov_changed;
 699
 700	BT_DBG("%s scan 0x%02x", hdev->name, scan);
 701
 702	if ((scan & SCAN_PAGE))
 703		conn_changed = !hci_dev_test_and_set_flag(hdev,
 704							  HCI_CONNECTABLE);
 705	else
 706		conn_changed = hci_dev_test_and_clear_flag(hdev,
 707							   HCI_CONNECTABLE);
 708
 709	if ((scan & SCAN_INQUIRY)) {
 710		discov_changed = !hci_dev_test_and_set_flag(hdev,
 711							    HCI_DISCOVERABLE);
 712	} else {
 713		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
 714		discov_changed = hci_dev_test_and_clear_flag(hdev,
 715							     HCI_DISCOVERABLE);
 716	}
 717
 718	if (!hci_dev_test_flag(hdev, HCI_MGMT))
 719		return;
 720
 721	if (conn_changed || discov_changed) {
 722		/* In case this was disabled through mgmt */
 723		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 724
 725		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 726			hci_update_adv_data(hdev, hdev->cur_adv_instance);
 727
 728		mgmt_new_settings(hdev);
 729	}
 730}
 731
 732int hci_dev_cmd(unsigned int cmd, void __user *arg)
 733{
 734	struct hci_dev *hdev;
 735	struct hci_dev_req dr;
 736	int err = 0;
 737
 738	if (copy_from_user(&dr, arg, sizeof(dr)))
 739		return -EFAULT;
 740
 741	hdev = hci_dev_get(dr.dev_id);
 742	if (!hdev)
 743		return -ENODEV;
 744
 745	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 746		err = -EBUSY;
 747		goto done;
 748	}
 749
 750	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 751		err = -EOPNOTSUPP;
 752		goto done;
 753	}
 754
 755	if (hdev->dev_type != HCI_PRIMARY) {
 756		err = -EOPNOTSUPP;
 757		goto done;
 758	}
 759
 760	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 761		err = -EOPNOTSUPP;
 762		goto done;
 763	}
 764
 765	switch (cmd) {
 766	case HCISETAUTH:
 767		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 768				   HCI_INIT_TIMEOUT, NULL);
 769		break;
 770
 771	case HCISETENCRYPT:
 772		if (!lmp_encrypt_capable(hdev)) {
 773			err = -EOPNOTSUPP;
 774			break;
 775		}
 776
 777		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 778			/* Auth must be enabled first */
 779			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 780					   HCI_INIT_TIMEOUT, NULL);
 781			if (err)
 782				break;
 783		}
 784
 785		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
 786				   HCI_INIT_TIMEOUT, NULL);
 787		break;
 788
 789	case HCISETSCAN:
 790		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
 791				   HCI_INIT_TIMEOUT, NULL);
 792
 793		/* Ensure that the connectable and discoverable states
 794		 * get correctly modified as this was a non-mgmt change.
 795		 */
 796		if (!err)
 797			hci_update_passive_scan_state(hdev, dr.dev_opt);
 798		break;
 799
 800	case HCISETLINKPOL:
 801		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
 802				   HCI_INIT_TIMEOUT, NULL);
 803		break;
 804
 805	case HCISETLINKMODE:
 806		hdev->link_mode = ((__u16) dr.dev_opt) &
 807					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 808		break;
 809
 810	case HCISETPTYPE:
 811		if (hdev->pkt_type == (__u16) dr.dev_opt)
 812			break;
 813
 814		hdev->pkt_type = (__u16) dr.dev_opt;
 815		mgmt_phy_configuration_changed(hdev, NULL);
 816		break;
 817
 818	case HCISETACLMTU:
 819		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 820		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 821		break;
 822
 823	case HCISETSCOMTU:
 824		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 825		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 826		break;
 827
 828	default:
 829		err = -EINVAL;
 830		break;
 831	}
 832
 833done:
 834	hci_dev_put(hdev);
 835	return err;
 836}
 837
 838int hci_get_dev_list(void __user *arg)
 839{
 840	struct hci_dev *hdev;
 841	struct hci_dev_list_req *dl;
 842	struct hci_dev_req *dr;
 843	int n = 0, size, err;
 844	__u16 dev_num;
 845
 846	if (get_user(dev_num, (__u16 __user *) arg))
 847		return -EFAULT;
 848
 849	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
 850		return -EINVAL;
 851
 852	size = sizeof(*dl) + dev_num * sizeof(*dr);
 853
 854	dl = kzalloc(size, GFP_KERNEL);
 855	if (!dl)
 856		return -ENOMEM;
 857
 858	dr = dl->dev_req;
 859
 860	read_lock(&hci_dev_list_lock);
 861	list_for_each_entry(hdev, &hci_dev_list, list) {
 862		unsigned long flags = hdev->flags;
 863
 864		/* When the auto-off is configured it means the transport
 865		 * is running, but in that case still indicate that the
 866		 * device is actually down.
 867		 */
 868		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 869			flags &= ~BIT(HCI_UP);
 870
 871		(dr + n)->dev_id  = hdev->id;
 872		(dr + n)->dev_opt = flags;
 873
 874		if (++n >= dev_num)
 875			break;
 876	}
 877	read_unlock(&hci_dev_list_lock);
 878
 879	dl->dev_num = n;
 880	size = sizeof(*dl) + n * sizeof(*dr);
 881
 882	err = copy_to_user(arg, dl, size);
 883	kfree(dl);
 884
 885	return err ? -EFAULT : 0;
 886}
 887
 888int hci_get_dev_info(void __user *arg)
 889{
 890	struct hci_dev *hdev;
 891	struct hci_dev_info di;
 892	unsigned long flags;
 893	int err = 0;
 894
 895	if (copy_from_user(&di, arg, sizeof(di)))
 896		return -EFAULT;
 897
 898	hdev = hci_dev_get(di.dev_id);
 899	if (!hdev)
 900		return -ENODEV;
 901
 902	/* When the auto-off is configured it means the transport
 903	 * is running, but in that case still indicate that the
 904	 * device is actually down.
 905	 */
 906	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 907		flags = hdev->flags & ~BIT(HCI_UP);
 908	else
 909		flags = hdev->flags;
 910
 911	strcpy(di.name, hdev->name);
 912	di.bdaddr   = hdev->bdaddr;
 913	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
 914	di.flags    = flags;
 915	di.pkt_type = hdev->pkt_type;
 916	if (lmp_bredr_capable(hdev)) {
 917		di.acl_mtu  = hdev->acl_mtu;
 918		di.acl_pkts = hdev->acl_pkts;
 919		di.sco_mtu  = hdev->sco_mtu;
 920		di.sco_pkts = hdev->sco_pkts;
 921	} else {
 922		di.acl_mtu  = hdev->le_mtu;
 923		di.acl_pkts = hdev->le_pkts;
 924		di.sco_mtu  = 0;
 925		di.sco_pkts = 0;
 926	}
 927	di.link_policy = hdev->link_policy;
 928	di.link_mode   = hdev->link_mode;
 929
 930	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
 931	memcpy(&di.features, &hdev->features, sizeof(di.features));
 932
 933	if (copy_to_user(arg, &di, sizeof(di)))
 934		err = -EFAULT;
 935
 936	hci_dev_put(hdev);
 937
 938	return err;
 939}
 940
 941/* ---- Interface to HCI drivers ---- */
 942
 943static int hci_rfkill_set_block(void *data, bool blocked)
 944{
 945	struct hci_dev *hdev = data;
 946
 947	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
 948
 949	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
 950		return -EBUSY;
 951
 952	if (blocked) {
 953		hci_dev_set_flag(hdev, HCI_RFKILLED);
 954		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 955		    !hci_dev_test_flag(hdev, HCI_CONFIG))
 956			hci_dev_do_close(hdev);
 957	} else {
 958		hci_dev_clear_flag(hdev, HCI_RFKILLED);
 959	}
 960
 961	return 0;
 962}
 963
 964static const struct rfkill_ops hci_rfkill_ops = {
 965	.set_block = hci_rfkill_set_block,
 966};
 967
 968static void hci_power_on(struct work_struct *work)
 969{
 970	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 971	int err;
 972
 973	BT_DBG("%s", hdev->name);
 974
 975	if (test_bit(HCI_UP, &hdev->flags) &&
 976	    hci_dev_test_flag(hdev, HCI_MGMT) &&
 977	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
 978		cancel_delayed_work(&hdev->power_off);
 979		err = hci_powered_update_sync(hdev);
 
 
 980		mgmt_power_on(hdev, err);
 981		return;
 982	}
 983
 984	err = hci_dev_do_open(hdev);
 985	if (err < 0) {
 986		hci_dev_lock(hdev);
 987		mgmt_set_powered_failed(hdev, err);
 988		hci_dev_unlock(hdev);
 989		return;
 990	}
 991
 992	/* During the HCI setup phase, a few error conditions are
 993	 * ignored and they need to be checked now. If they are still
 994	 * valid, it is important to turn the device back off.
 995	 */
 996	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
 997	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
 998	    (hdev->dev_type == HCI_PRIMARY &&
 999	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1000	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1001		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1002		hci_dev_do_close(hdev);
1003	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1004		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1005				   HCI_AUTO_OFF_TIMEOUT);
1006	}
1007
1008	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1009		/* For unconfigured devices, set the HCI_RAW flag
1010		 * so that userspace can easily identify them.
1011		 */
1012		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1013			set_bit(HCI_RAW, &hdev->flags);
1014
1015		/* For fully configured devices, this will send
1016		 * the Index Added event. For unconfigured devices,
1017		 * it will send Unconfigued Index Added event.
1018		 *
1019		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1020		 * and no event will be send.
1021		 */
1022		mgmt_index_added(hdev);
1023	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1024		/* When the controller is now configured, then it
1025		 * is important to clear the HCI_RAW flag.
1026		 */
1027		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1028			clear_bit(HCI_RAW, &hdev->flags);
1029
1030		/* Powering on the controller with HCI_CONFIG set only
1031		 * happens with the transition from unconfigured to
1032		 * configured. This will send the Index Added event.
1033		 */
1034		mgmt_index_added(hdev);
1035	}
1036}
1037
1038static void hci_power_off(struct work_struct *work)
1039{
1040	struct hci_dev *hdev = container_of(work, struct hci_dev,
1041					    power_off.work);
1042
1043	BT_DBG("%s", hdev->name);
1044
1045	hci_dev_do_close(hdev);
1046}
1047
1048static void hci_error_reset(struct work_struct *work)
1049{
1050	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1051
1052	hci_dev_hold(hdev);
1053	BT_DBG("%s", hdev->name);
1054
1055	if (hdev->hw_error)
1056		hdev->hw_error(hdev, hdev->hw_error_code);
1057	else
1058		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
 
1059
1060	if (!hci_dev_do_close(hdev))
1061		hci_dev_do_open(hdev);
1062
1063	hci_dev_put(hdev);
1064}
1065
1066void hci_uuids_clear(struct hci_dev *hdev)
1067{
1068	struct bt_uuid *uuid, *tmp;
1069
1070	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1071		list_del(&uuid->list);
1072		kfree(uuid);
1073	}
1074}
1075
1076void hci_link_keys_clear(struct hci_dev *hdev)
1077{
1078	struct link_key *key, *tmp;
1079
1080	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1081		list_del_rcu(&key->list);
1082		kfree_rcu(key, rcu);
1083	}
1084}
1085
1086void hci_smp_ltks_clear(struct hci_dev *hdev)
1087{
1088	struct smp_ltk *k, *tmp;
1089
1090	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1091		list_del_rcu(&k->list);
1092		kfree_rcu(k, rcu);
1093	}
1094}
1095
1096void hci_smp_irks_clear(struct hci_dev *hdev)
1097{
1098	struct smp_irk *k, *tmp;
1099
1100	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1101		list_del_rcu(&k->list);
1102		kfree_rcu(k, rcu);
1103	}
1104}
1105
1106void hci_blocked_keys_clear(struct hci_dev *hdev)
1107{
1108	struct blocked_key *b, *tmp;
1109
1110	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1111		list_del_rcu(&b->list);
1112		kfree_rcu(b, rcu);
1113	}
1114}
1115
1116bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1117{
1118	bool blocked = false;
1119	struct blocked_key *b;
1120
1121	rcu_read_lock();
1122	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1123		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1124			blocked = true;
1125			break;
1126		}
1127	}
1128
1129	rcu_read_unlock();
1130	return blocked;
1131}
1132
1133struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1134{
1135	struct link_key *k;
1136
1137	rcu_read_lock();
1138	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1139		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1140			rcu_read_unlock();
1141
1142			if (hci_is_blocked_key(hdev,
1143					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1144					       k->val)) {
1145				bt_dev_warn_ratelimited(hdev,
1146							"Link key blocked for %pMR",
1147							&k->bdaddr);
1148				return NULL;
1149			}
1150
1151			return k;
1152		}
1153	}
1154	rcu_read_unlock();
1155
1156	return NULL;
1157}
1158
1159static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1160			       u8 key_type, u8 old_key_type)
1161{
1162	/* Legacy key */
1163	if (key_type < 0x03)
1164		return true;
1165
1166	/* Debug keys are insecure so don't store them persistently */
1167	if (key_type == HCI_LK_DEBUG_COMBINATION)
1168		return false;
1169
1170	/* Changed combination key and there's no previous one */
1171	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1172		return false;
1173
1174	/* Security mode 3 case */
1175	if (!conn)
1176		return true;
1177
1178	/* BR/EDR key derived using SC from an LE link */
1179	if (conn->type == LE_LINK)
1180		return true;
1181
1182	/* Neither local nor remote side had no-bonding as requirement */
1183	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1184		return true;
1185
1186	/* Local side had dedicated bonding as requirement */
1187	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1188		return true;
1189
1190	/* Remote side had dedicated bonding as requirement */
1191	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1192		return true;
1193
1194	/* If none of the above criteria match, then don't store the key
1195	 * persistently */
1196	return false;
1197}
1198
1199static u8 ltk_role(u8 type)
1200{
1201	if (type == SMP_LTK)
1202		return HCI_ROLE_MASTER;
1203
1204	return HCI_ROLE_SLAVE;
1205}
1206
1207struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1208			     u8 addr_type, u8 role)
1209{
1210	struct smp_ltk *k;
1211
1212	rcu_read_lock();
1213	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1214		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1215			continue;
1216
1217		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1218			rcu_read_unlock();
1219
1220			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1221					       k->val)) {
1222				bt_dev_warn_ratelimited(hdev,
1223							"LTK blocked for %pMR",
1224							&k->bdaddr);
1225				return NULL;
1226			}
1227
1228			return k;
1229		}
1230	}
1231	rcu_read_unlock();
1232
1233	return NULL;
1234}
1235
1236struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1237{
1238	struct smp_irk *irk_to_return = NULL;
1239	struct smp_irk *irk;
1240
1241	rcu_read_lock();
1242	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1243		if (!bacmp(&irk->rpa, rpa)) {
1244			irk_to_return = irk;
1245			goto done;
1246		}
1247	}
1248
1249	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1250		if (smp_irk_matches(hdev, irk->val, rpa)) {
1251			bacpy(&irk->rpa, rpa);
1252			irk_to_return = irk;
1253			goto done;
1254		}
1255	}
1256
1257done:
1258	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1259						irk_to_return->val)) {
1260		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1261					&irk_to_return->bdaddr);
1262		irk_to_return = NULL;
1263	}
1264
1265	rcu_read_unlock();
1266
1267	return irk_to_return;
1268}
1269
1270struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1271				     u8 addr_type)
1272{
1273	struct smp_irk *irk_to_return = NULL;
1274	struct smp_irk *irk;
1275
1276	/* Identity Address must be public or static random */
1277	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1278		return NULL;
1279
1280	rcu_read_lock();
1281	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1282		if (addr_type == irk->addr_type &&
1283		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1284			irk_to_return = irk;
1285			goto done;
1286		}
1287	}
1288
1289done:
1290
1291	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1292						irk_to_return->val)) {
1293		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1294					&irk_to_return->bdaddr);
1295		irk_to_return = NULL;
1296	}
1297
1298	rcu_read_unlock();
1299
1300	return irk_to_return;
1301}
1302
1303struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1304				  bdaddr_t *bdaddr, u8 *val, u8 type,
1305				  u8 pin_len, bool *persistent)
1306{
1307	struct link_key *key, *old_key;
1308	u8 old_key_type;
1309
1310	old_key = hci_find_link_key(hdev, bdaddr);
1311	if (old_key) {
1312		old_key_type = old_key->type;
1313		key = old_key;
1314	} else {
1315		old_key_type = conn ? conn->key_type : 0xff;
1316		key = kzalloc(sizeof(*key), GFP_KERNEL);
1317		if (!key)
1318			return NULL;
1319		list_add_rcu(&key->list, &hdev->link_keys);
1320	}
1321
1322	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1323
1324	/* Some buggy controller combinations generate a changed
1325	 * combination key for legacy pairing even when there's no
1326	 * previous key */
1327	if (type == HCI_LK_CHANGED_COMBINATION &&
1328	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1329		type = HCI_LK_COMBINATION;
1330		if (conn)
1331			conn->key_type = type;
1332	}
1333
1334	bacpy(&key->bdaddr, bdaddr);
1335	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1336	key->pin_len = pin_len;
1337
1338	if (type == HCI_LK_CHANGED_COMBINATION)
1339		key->type = old_key_type;
1340	else
1341		key->type = type;
1342
1343	if (persistent)
1344		*persistent = hci_persistent_key(hdev, conn, type,
1345						 old_key_type);
1346
1347	return key;
1348}
1349
1350struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1351			    u8 addr_type, u8 type, u8 authenticated,
1352			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1353{
1354	struct smp_ltk *key, *old_key;
1355	u8 role = ltk_role(type);
1356
1357	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1358	if (old_key)
1359		key = old_key;
1360	else {
1361		key = kzalloc(sizeof(*key), GFP_KERNEL);
1362		if (!key)
1363			return NULL;
1364		list_add_rcu(&key->list, &hdev->long_term_keys);
1365	}
1366
1367	bacpy(&key->bdaddr, bdaddr);
1368	key->bdaddr_type = addr_type;
1369	memcpy(key->val, tk, sizeof(key->val));
1370	key->authenticated = authenticated;
1371	key->ediv = ediv;
1372	key->rand = rand;
1373	key->enc_size = enc_size;
1374	key->type = type;
1375
1376	return key;
1377}
1378
1379struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1380			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1381{
1382	struct smp_irk *irk;
1383
1384	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1385	if (!irk) {
1386		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1387		if (!irk)
1388			return NULL;
1389
1390		bacpy(&irk->bdaddr, bdaddr);
1391		irk->addr_type = addr_type;
1392
1393		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1394	}
1395
1396	memcpy(irk->val, val, 16);
1397	bacpy(&irk->rpa, rpa);
1398
1399	return irk;
1400}
1401
1402int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1403{
1404	struct link_key *key;
1405
1406	key = hci_find_link_key(hdev, bdaddr);
1407	if (!key)
1408		return -ENOENT;
1409
1410	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1411
1412	list_del_rcu(&key->list);
1413	kfree_rcu(key, rcu);
1414
1415	return 0;
1416}
1417
1418int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1419{
1420	struct smp_ltk *k, *tmp;
1421	int removed = 0;
1422
1423	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1424		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1425			continue;
1426
1427		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1428
1429		list_del_rcu(&k->list);
1430		kfree_rcu(k, rcu);
1431		removed++;
1432	}
1433
1434	return removed ? 0 : -ENOENT;
1435}
1436
1437void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1438{
1439	struct smp_irk *k, *tmp;
1440
1441	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1442		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1443			continue;
1444
1445		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1446
1447		list_del_rcu(&k->list);
1448		kfree_rcu(k, rcu);
1449	}
1450}
1451
1452bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1453{
1454	struct smp_ltk *k;
1455	struct smp_irk *irk;
1456	u8 addr_type;
1457
1458	if (type == BDADDR_BREDR) {
1459		if (hci_find_link_key(hdev, bdaddr))
1460			return true;
1461		return false;
1462	}
1463
1464	/* Convert to HCI addr type which struct smp_ltk uses */
1465	if (type == BDADDR_LE_PUBLIC)
1466		addr_type = ADDR_LE_DEV_PUBLIC;
1467	else
1468		addr_type = ADDR_LE_DEV_RANDOM;
1469
1470	irk = hci_get_irk(hdev, bdaddr, addr_type);
1471	if (irk) {
1472		bdaddr = &irk->bdaddr;
1473		addr_type = irk->addr_type;
1474	}
1475
1476	rcu_read_lock();
1477	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1478		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1479			rcu_read_unlock();
1480			return true;
1481		}
1482	}
1483	rcu_read_unlock();
1484
1485	return false;
1486}
1487
1488/* HCI command timer function */
1489static void hci_cmd_timeout(struct work_struct *work)
1490{
1491	struct hci_dev *hdev = container_of(work, struct hci_dev,
1492					    cmd_timer.work);
1493
1494	if (hdev->sent_cmd) {
1495		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1496		u16 opcode = __le16_to_cpu(sent->opcode);
1497
1498		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1499	} else {
1500		bt_dev_err(hdev, "command tx timeout");
1501	}
1502
1503	if (hdev->cmd_timeout)
1504		hdev->cmd_timeout(hdev);
1505
1506	atomic_set(&hdev->cmd_cnt, 1);
1507	queue_work(hdev->workqueue, &hdev->cmd_work);
1508}
1509
1510/* HCI ncmd timer function */
1511static void hci_ncmd_timeout(struct work_struct *work)
1512{
1513	struct hci_dev *hdev = container_of(work, struct hci_dev,
1514					    ncmd_timer.work);
1515
1516	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1517
1518	/* During HCI_INIT phase no events can be injected if the ncmd timer
1519	 * triggers since the procedure has its own timeout handling.
1520	 */
1521	if (test_bit(HCI_INIT, &hdev->flags))
1522		return;
1523
1524	/* This is an irrecoverable state, inject hardware error event */
1525	hci_reset_dev(hdev);
1526}
1527
1528struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1529					  bdaddr_t *bdaddr, u8 bdaddr_type)
1530{
1531	struct oob_data *data;
1532
1533	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1534		if (bacmp(bdaddr, &data->bdaddr) != 0)
1535			continue;
1536		if (data->bdaddr_type != bdaddr_type)
1537			continue;
1538		return data;
1539	}
1540
1541	return NULL;
1542}
1543
1544int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1545			       u8 bdaddr_type)
1546{
1547	struct oob_data *data;
1548
1549	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1550	if (!data)
1551		return -ENOENT;
1552
1553	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1554
1555	list_del(&data->list);
1556	kfree(data);
1557
1558	return 0;
1559}
1560
1561void hci_remote_oob_data_clear(struct hci_dev *hdev)
1562{
1563	struct oob_data *data, *n;
1564
1565	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1566		list_del(&data->list);
1567		kfree(data);
1568	}
1569}
1570
1571int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1572			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1573			    u8 *hash256, u8 *rand256)
1574{
1575	struct oob_data *data;
1576
1577	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1578	if (!data) {
1579		data = kmalloc(sizeof(*data), GFP_KERNEL);
1580		if (!data)
1581			return -ENOMEM;
1582
1583		bacpy(&data->bdaddr, bdaddr);
1584		data->bdaddr_type = bdaddr_type;
1585		list_add(&data->list, &hdev->remote_oob_data);
1586	}
1587
1588	if (hash192 && rand192) {
1589		memcpy(data->hash192, hash192, sizeof(data->hash192));
1590		memcpy(data->rand192, rand192, sizeof(data->rand192));
1591		if (hash256 && rand256)
1592			data->present = 0x03;
1593	} else {
1594		memset(data->hash192, 0, sizeof(data->hash192));
1595		memset(data->rand192, 0, sizeof(data->rand192));
1596		if (hash256 && rand256)
1597			data->present = 0x02;
1598		else
1599			data->present = 0x00;
1600	}
1601
1602	if (hash256 && rand256) {
1603		memcpy(data->hash256, hash256, sizeof(data->hash256));
1604		memcpy(data->rand256, rand256, sizeof(data->rand256));
1605	} else {
1606		memset(data->hash256, 0, sizeof(data->hash256));
1607		memset(data->rand256, 0, sizeof(data->rand256));
1608		if (hash192 && rand192)
1609			data->present = 0x01;
1610	}
1611
1612	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1613
1614	return 0;
1615}
1616
1617/* This function requires the caller holds hdev->lock */
1618struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1619{
1620	struct adv_info *adv_instance;
1621
1622	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1623		if (adv_instance->instance == instance)
1624			return adv_instance;
1625	}
1626
1627	return NULL;
1628}
1629
1630/* This function requires the caller holds hdev->lock */
1631struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1632{
1633	struct adv_info *cur_instance;
1634
1635	cur_instance = hci_find_adv_instance(hdev, instance);
1636	if (!cur_instance)
1637		return NULL;
1638
1639	if (cur_instance == list_last_entry(&hdev->adv_instances,
1640					    struct adv_info, list))
1641		return list_first_entry(&hdev->adv_instances,
1642						 struct adv_info, list);
1643	else
1644		return list_next_entry(cur_instance, list);
1645}
1646
1647/* This function requires the caller holds hdev->lock */
1648int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1649{
1650	struct adv_info *adv_instance;
1651
1652	adv_instance = hci_find_adv_instance(hdev, instance);
1653	if (!adv_instance)
1654		return -ENOENT;
1655
1656	BT_DBG("%s removing %dMR", hdev->name, instance);
1657
1658	if (hdev->cur_adv_instance == instance) {
1659		if (hdev->adv_instance_timeout) {
1660			cancel_delayed_work(&hdev->adv_instance_expire);
1661			hdev->adv_instance_timeout = 0;
1662		}
1663		hdev->cur_adv_instance = 0x00;
1664	}
1665
1666	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1667
1668	list_del(&adv_instance->list);
1669	kfree(adv_instance);
1670
1671	hdev->adv_instance_cnt--;
1672
1673	return 0;
1674}
1675
1676void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1677{
1678	struct adv_info *adv_instance, *n;
1679
1680	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1681		adv_instance->rpa_expired = rpa_expired;
1682}
1683
1684/* This function requires the caller holds hdev->lock */
1685void hci_adv_instances_clear(struct hci_dev *hdev)
1686{
1687	struct adv_info *adv_instance, *n;
1688
1689	if (hdev->adv_instance_timeout) {
1690		cancel_delayed_work(&hdev->adv_instance_expire);
1691		hdev->adv_instance_timeout = 0;
1692	}
1693
1694	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1695		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1696		list_del(&adv_instance->list);
1697		kfree(adv_instance);
1698	}
1699
1700	hdev->adv_instance_cnt = 0;
1701	hdev->cur_adv_instance = 0x00;
1702}
1703
1704static void adv_instance_rpa_expired(struct work_struct *work)
 
 
 
 
1705{
1706	struct adv_info *adv_instance = container_of(work, struct adv_info,
1707						     rpa_expired_cb.work);
1708
1709	BT_DBG("");
 
 
 
 
 
 
 
 
 
1710
1711	adv_instance->rpa_expired = true;
1712}
 
1713
1714/* This function requires the caller holds hdev->lock */
1715struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1716				      u32 flags, u16 adv_data_len, u8 *adv_data,
1717				      u16 scan_rsp_len, u8 *scan_rsp_data,
1718				      u16 timeout, u16 duration, s8 tx_power,
1719				      u32 min_interval, u32 max_interval,
1720				      u8 mesh_handle)
1721{
1722	struct adv_info *adv;
1723
1724	adv = hci_find_adv_instance(hdev, instance);
1725	if (adv) {
1726		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1727		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1728		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1729	} else {
1730		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1731		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1732			return ERR_PTR(-EOVERFLOW);
1733
1734		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1735		if (!adv)
1736			return ERR_PTR(-ENOMEM);
1737
1738		adv->pending = true;
1739		adv->instance = instance;
1740		list_add(&adv->list, &hdev->adv_instances);
1741		hdev->adv_instance_cnt++;
1742	}
1743
1744	adv->flags = flags;
1745	adv->min_interval = min_interval;
1746	adv->max_interval = max_interval;
1747	adv->tx_power = tx_power;
1748	/* Defining a mesh_handle changes the timing units to ms,
1749	 * rather than seconds, and ties the instance to the requested
1750	 * mesh_tx queue.
1751	 */
1752	adv->mesh = mesh_handle;
1753
1754	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1755				  scan_rsp_len, scan_rsp_data);
1756
1757	adv->timeout = timeout;
1758	adv->remaining_time = timeout;
1759
1760	if (duration == 0)
1761		adv->duration = hdev->def_multi_adv_rotation_duration;
1762	else
1763		adv->duration = duration;
1764
1765	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1766
1767	BT_DBG("%s for %dMR", hdev->name, instance);
1768
1769	return adv;
1770}
1771
1772/* This function requires the caller holds hdev->lock */
1773struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1774				      u32 flags, u8 data_len, u8 *data,
1775				      u32 min_interval, u32 max_interval)
1776{
1777	struct adv_info *adv;
1778
1779	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1780				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1781				   min_interval, max_interval, 0);
1782	if (IS_ERR(adv))
1783		return adv;
1784
1785	adv->periodic = true;
1786	adv->per_adv_data_len = data_len;
1787
1788	if (data)
1789		memcpy(adv->per_adv_data, data, data_len);
1790
1791	return adv;
1792}
1793
1794/* This function requires the caller holds hdev->lock */
1795int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1796			      u16 adv_data_len, u8 *adv_data,
1797			      u16 scan_rsp_len, u8 *scan_rsp_data)
1798{
1799	struct adv_info *adv;
1800
1801	adv = hci_find_adv_instance(hdev, instance);
1802
1803	/* If advertisement doesn't exist, we can't modify its data */
1804	if (!adv)
1805		return -ENOENT;
1806
1807	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1808		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1809		memcpy(adv->adv_data, adv_data, adv_data_len);
1810		adv->adv_data_len = adv_data_len;
1811		adv->adv_data_changed = true;
1812	}
1813
1814	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1815		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1816		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1817		adv->scan_rsp_len = scan_rsp_len;
1818		adv->scan_rsp_changed = true;
1819	}
1820
1821	/* Mark as changed if there are flags which would affect it */
1822	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1823	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1824		adv->scan_rsp_changed = true;
1825
1826	return 0;
1827}
1828
1829/* This function requires the caller holds hdev->lock */
1830u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1831{
1832	u32 flags;
1833	struct adv_info *adv;
1834
1835	if (instance == 0x00) {
1836		/* Instance 0 always manages the "Tx Power" and "Flags"
1837		 * fields
1838		 */
1839		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1840
1841		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1842		 * corresponds to the "connectable" instance flag.
1843		 */
1844		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1845			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1846
1847		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1848			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1849		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1850			flags |= MGMT_ADV_FLAG_DISCOV;
1851
1852		return flags;
1853	}
1854
1855	adv = hci_find_adv_instance(hdev, instance);
1856
1857	/* Return 0 when we got an invalid instance identifier. */
1858	if (!adv)
1859		return 0;
1860
1861	return adv->flags;
1862}
1863
1864bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1865{
1866	struct adv_info *adv;
1867
1868	/* Instance 0x00 always set local name */
1869	if (instance == 0x00)
1870		return true;
1871
1872	adv = hci_find_adv_instance(hdev, instance);
1873	if (!adv)
1874		return false;
1875
1876	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1877	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1878		return true;
1879
1880	return adv->scan_rsp_len ? true : false;
1881}
1882
1883/* This function requires the caller holds hdev->lock */
1884void hci_adv_monitors_clear(struct hci_dev *hdev)
1885{
1886	struct adv_monitor *monitor;
1887	int handle;
1888
1889	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1890		hci_free_adv_monitor(hdev, monitor);
1891
1892	idr_destroy(&hdev->adv_monitors_idr);
1893}
1894
1895/* Frees the monitor structure and do some bookkeepings.
1896 * This function requires the caller holds hdev->lock.
1897 */
1898void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1899{
1900	struct adv_pattern *pattern;
1901	struct adv_pattern *tmp;
1902
1903	if (!monitor)
1904		return;
1905
1906	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1907		list_del(&pattern->list);
1908		kfree(pattern);
1909	}
1910
1911	if (monitor->handle)
1912		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1913
1914	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1915		hdev->adv_monitors_cnt--;
1916		mgmt_adv_monitor_removed(hdev, monitor->handle);
1917	}
1918
1919	kfree(monitor);
1920}
1921
1922/* Assigns handle to a monitor, and if offloading is supported and power is on,
1923 * also attempts to forward the request to the controller.
1924 * This function requires the caller holds hci_req_sync_lock.
1925 */
1926int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1927{
1928	int min, max, handle;
1929	int status = 0;
1930
1931	if (!monitor)
1932		return -EINVAL;
1933
1934	hci_dev_lock(hdev);
1935
1936	min = HCI_MIN_ADV_MONITOR_HANDLE;
1937	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1938	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1939			   GFP_KERNEL);
1940
1941	hci_dev_unlock(hdev);
1942
1943	if (handle < 0)
1944		return handle;
1945
1946	monitor->handle = handle;
1947
1948	if (!hdev_is_powered(hdev))
1949		return status;
1950
1951	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1952	case HCI_ADV_MONITOR_EXT_NONE:
1953		bt_dev_dbg(hdev, "add monitor %d status %d",
1954			   monitor->handle, status);
1955		/* Message was not forwarded to controller - not an error */
1956		break;
1957
1958	case HCI_ADV_MONITOR_EXT_MSFT:
1959		status = msft_add_monitor_pattern(hdev, monitor);
1960		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1961			   handle, status);
1962		break;
1963	}
1964
1965	return status;
1966}
1967
1968/* Attempts to tell the controller and free the monitor. If somehow the
1969 * controller doesn't have a corresponding handle, remove anyway.
1970 * This function requires the caller holds hci_req_sync_lock.
1971 */
1972static int hci_remove_adv_monitor(struct hci_dev *hdev,
1973				  struct adv_monitor *monitor)
1974{
1975	int status = 0;
1976	int handle;
1977
1978	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1979	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1980		bt_dev_dbg(hdev, "remove monitor %d status %d",
1981			   monitor->handle, status);
1982		goto free_monitor;
1983
1984	case HCI_ADV_MONITOR_EXT_MSFT:
1985		handle = monitor->handle;
1986		status = msft_remove_monitor(hdev, monitor);
1987		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1988			   handle, status);
1989		break;
1990	}
1991
1992	/* In case no matching handle registered, just free the monitor */
1993	if (status == -ENOENT)
1994		goto free_monitor;
1995
1996	return status;
1997
1998free_monitor:
1999	if (status == -ENOENT)
2000		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
2001			    monitor->handle);
2002	hci_free_adv_monitor(hdev, monitor);
2003
2004	return status;
2005}
2006
2007/* This function requires the caller holds hci_req_sync_lock */
2008int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2009{
2010	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2011
2012	if (!monitor)
2013		return -EINVAL;
2014
2015	return hci_remove_adv_monitor(hdev, monitor);
2016}
2017
2018/* This function requires the caller holds hci_req_sync_lock */
2019int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2020{
2021	struct adv_monitor *monitor;
2022	int idr_next_id = 0;
2023	int status = 0;
2024
2025	while (1) {
2026		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2027		if (!monitor)
2028			break;
2029
2030		status = hci_remove_adv_monitor(hdev, monitor);
2031		if (status)
2032			return status;
2033
2034		idr_next_id++;
2035	}
2036
2037	return status;
2038}
2039
2040/* This function requires the caller holds hdev->lock */
2041bool hci_is_adv_monitoring(struct hci_dev *hdev)
2042{
2043	return !idr_is_empty(&hdev->adv_monitors_idr);
2044}
2045
2046int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2047{
2048	if (msft_monitor_supported(hdev))
2049		return HCI_ADV_MONITOR_EXT_MSFT;
2050
2051	return HCI_ADV_MONITOR_EXT_NONE;
2052}
2053
2054struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2055					 bdaddr_t *bdaddr, u8 type)
2056{
2057	struct bdaddr_list *b;
2058
2059	list_for_each_entry(b, bdaddr_list, list) {
2060		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2061			return b;
2062	}
2063
2064	return NULL;
2065}
2066
2067struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2068				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2069				u8 type)
2070{
2071	struct bdaddr_list_with_irk *b;
2072
2073	list_for_each_entry(b, bdaddr_list, list) {
2074		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2075			return b;
2076	}
2077
2078	return NULL;
2079}
2080
2081struct bdaddr_list_with_flags *
2082hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2083				  bdaddr_t *bdaddr, u8 type)
2084{
2085	struct bdaddr_list_with_flags *b;
2086
2087	list_for_each_entry(b, bdaddr_list, list) {
2088		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2089			return b;
2090	}
2091
2092	return NULL;
2093}
2094
2095void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2096{
2097	struct bdaddr_list *b, *n;
2098
2099	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2100		list_del(&b->list);
2101		kfree(b);
2102	}
2103}
2104
2105int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2106{
2107	struct bdaddr_list *entry;
2108
2109	if (!bacmp(bdaddr, BDADDR_ANY))
2110		return -EBADF;
2111
2112	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2113		return -EEXIST;
2114
2115	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2116	if (!entry)
2117		return -ENOMEM;
2118
2119	bacpy(&entry->bdaddr, bdaddr);
2120	entry->bdaddr_type = type;
2121
2122	list_add(&entry->list, list);
2123
2124	return 0;
2125}
2126
2127int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2128					u8 type, u8 *peer_irk, u8 *local_irk)
2129{
2130	struct bdaddr_list_with_irk *entry;
2131
2132	if (!bacmp(bdaddr, BDADDR_ANY))
2133		return -EBADF;
2134
2135	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2136		return -EEXIST;
2137
2138	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2139	if (!entry)
2140		return -ENOMEM;
2141
2142	bacpy(&entry->bdaddr, bdaddr);
2143	entry->bdaddr_type = type;
2144
2145	if (peer_irk)
2146		memcpy(entry->peer_irk, peer_irk, 16);
2147
2148	if (local_irk)
2149		memcpy(entry->local_irk, local_irk, 16);
2150
2151	list_add(&entry->list, list);
2152
2153	return 0;
2154}
2155
2156int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2157				   u8 type, u32 flags)
2158{
2159	struct bdaddr_list_with_flags *entry;
2160
2161	if (!bacmp(bdaddr, BDADDR_ANY))
2162		return -EBADF;
2163
2164	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2165		return -EEXIST;
2166
2167	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2168	if (!entry)
2169		return -ENOMEM;
2170
2171	bacpy(&entry->bdaddr, bdaddr);
2172	entry->bdaddr_type = type;
2173	entry->flags = flags;
2174
2175	list_add(&entry->list, list);
2176
2177	return 0;
2178}
2179
2180int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2181{
2182	struct bdaddr_list *entry;
2183
2184	if (!bacmp(bdaddr, BDADDR_ANY)) {
2185		hci_bdaddr_list_clear(list);
2186		return 0;
2187	}
2188
2189	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2190	if (!entry)
2191		return -ENOENT;
2192
2193	list_del(&entry->list);
2194	kfree(entry);
2195
2196	return 0;
2197}
2198
2199int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2200							u8 type)
2201{
2202	struct bdaddr_list_with_irk *entry;
2203
2204	if (!bacmp(bdaddr, BDADDR_ANY)) {
2205		hci_bdaddr_list_clear(list);
2206		return 0;
2207	}
2208
2209	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2210	if (!entry)
2211		return -ENOENT;
2212
2213	list_del(&entry->list);
2214	kfree(entry);
2215
2216	return 0;
2217}
2218
2219int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2220				   u8 type)
2221{
2222	struct bdaddr_list_with_flags *entry;
2223
2224	if (!bacmp(bdaddr, BDADDR_ANY)) {
2225		hci_bdaddr_list_clear(list);
2226		return 0;
2227	}
2228
2229	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2230	if (!entry)
2231		return -ENOENT;
2232
2233	list_del(&entry->list);
2234	kfree(entry);
2235
2236	return 0;
2237}
2238
2239/* This function requires the caller holds hdev->lock */
2240struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2241					       bdaddr_t *addr, u8 addr_type)
2242{
2243	struct hci_conn_params *params;
2244
2245	list_for_each_entry(params, &hdev->le_conn_params, list) {
2246		if (bacmp(&params->addr, addr) == 0 &&
2247		    params->addr_type == addr_type) {
2248			return params;
2249		}
2250	}
2251
2252	return NULL;
2253}
2254
2255/* This function requires the caller holds hdev->lock or rcu_read_lock */
2256struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2257						  bdaddr_t *addr, u8 addr_type)
2258{
2259	struct hci_conn_params *param;
2260
2261	rcu_read_lock();
2262
2263	list_for_each_entry_rcu(param, list, action) {
2264		if (bacmp(&param->addr, addr) == 0 &&
2265		    param->addr_type == addr_type) {
2266			rcu_read_unlock();
2267			return param;
2268		}
2269	}
2270
2271	rcu_read_unlock();
2272
2273	return NULL;
2274}
2275
2276/* This function requires the caller holds hdev->lock */
2277void hci_pend_le_list_del_init(struct hci_conn_params *param)
2278{
2279	if (list_empty(&param->action))
2280		return;
2281
2282	list_del_rcu(&param->action);
2283	synchronize_rcu();
2284	INIT_LIST_HEAD(&param->action);
2285}
2286
2287/* This function requires the caller holds hdev->lock */
2288void hci_pend_le_list_add(struct hci_conn_params *param,
2289			  struct list_head *list)
2290{
2291	list_add_rcu(&param->action, list);
2292}
2293
2294/* This function requires the caller holds hdev->lock */
2295struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2296					    bdaddr_t *addr, u8 addr_type)
2297{
2298	struct hci_conn_params *params;
2299
2300	params = hci_conn_params_lookup(hdev, addr, addr_type);
2301	if (params)
2302		return params;
2303
2304	params = kzalloc(sizeof(*params), GFP_KERNEL);
2305	if (!params) {
2306		bt_dev_err(hdev, "out of memory");
2307		return NULL;
2308	}
2309
2310	bacpy(&params->addr, addr);
2311	params->addr_type = addr_type;
2312
2313	list_add(&params->list, &hdev->le_conn_params);
2314	INIT_LIST_HEAD(&params->action);
2315
2316	params->conn_min_interval = hdev->le_conn_min_interval;
2317	params->conn_max_interval = hdev->le_conn_max_interval;
2318	params->conn_latency = hdev->le_conn_latency;
2319	params->supervision_timeout = hdev->le_supv_timeout;
2320	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2321
2322	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2323
2324	return params;
2325}
2326
2327void hci_conn_params_free(struct hci_conn_params *params)
2328{
2329	hci_pend_le_list_del_init(params);
2330
2331	if (params->conn) {
2332		hci_conn_drop(params->conn);
2333		hci_conn_put(params->conn);
2334	}
2335
 
2336	list_del(&params->list);
2337	kfree(params);
2338}
2339
2340/* This function requires the caller holds hdev->lock */
2341void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2342{
2343	struct hci_conn_params *params;
2344
2345	params = hci_conn_params_lookup(hdev, addr, addr_type);
2346	if (!params)
2347		return;
2348
2349	hci_conn_params_free(params);
2350
2351	hci_update_passive_scan(hdev);
2352
2353	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2354}
2355
2356/* This function requires the caller holds hdev->lock */
2357void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2358{
2359	struct hci_conn_params *params, *tmp;
2360
2361	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2362		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2363			continue;
2364
2365		/* If trying to establish one time connection to disabled
2366		 * device, leave the params, but mark them as just once.
2367		 */
2368		if (params->explicit_connect) {
2369			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2370			continue;
2371		}
2372
2373		hci_conn_params_free(params);
 
2374	}
2375
2376	BT_DBG("All LE disabled connection parameters were removed");
2377}
2378
2379/* This function requires the caller holds hdev->lock */
2380static void hci_conn_params_clear_all(struct hci_dev *hdev)
2381{
2382	struct hci_conn_params *params, *tmp;
2383
2384	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2385		hci_conn_params_free(params);
2386
2387	BT_DBG("All LE connection parameters were removed");
2388}
2389
2390/* Copy the Identity Address of the controller.
2391 *
2392 * If the controller has a public BD_ADDR, then by default use that one.
2393 * If this is a LE only controller without a public address, default to
2394 * the static random address.
2395 *
2396 * For debugging purposes it is possible to force controllers with a
2397 * public address to use the static random address instead.
2398 *
2399 * In case BR/EDR has been disabled on a dual-mode controller and
2400 * userspace has configured a static address, then that address
2401 * becomes the identity address instead of the public BR/EDR address.
2402 */
2403void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2404			       u8 *bdaddr_type)
2405{
2406	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2407	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2408	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2409	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2410		bacpy(bdaddr, &hdev->static_addr);
2411		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2412	} else {
2413		bacpy(bdaddr, &hdev->bdaddr);
2414		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2415	}
2416}
2417
2418static void hci_clear_wake_reason(struct hci_dev *hdev)
2419{
2420	hci_dev_lock(hdev);
2421
2422	hdev->wake_reason = 0;
2423	bacpy(&hdev->wake_addr, BDADDR_ANY);
2424	hdev->wake_addr_type = 0;
2425
2426	hci_dev_unlock(hdev);
2427}
2428
2429static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2430				void *data)
2431{
2432	struct hci_dev *hdev =
2433		container_of(nb, struct hci_dev, suspend_notifier);
2434	int ret = 0;
2435
2436	/* Userspace has full control of this device. Do nothing. */
2437	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2438		return NOTIFY_DONE;
2439
2440	/* To avoid a potential race with hci_unregister_dev. */
2441	hci_dev_hold(hdev);
2442
2443	if (action == PM_SUSPEND_PREPARE)
2444		ret = hci_suspend_dev(hdev);
2445	else if (action == PM_POST_SUSPEND)
2446		ret = hci_resume_dev(hdev);
2447
2448	if (ret)
2449		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2450			   action, ret);
2451
2452	hci_dev_put(hdev);
2453	return NOTIFY_DONE;
2454}
2455
2456/* Alloc HCI device */
2457struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2458{
2459	struct hci_dev *hdev;
2460	unsigned int alloc_size;
2461
2462	alloc_size = sizeof(*hdev);
2463	if (sizeof_priv) {
2464		/* Fixme: May need ALIGN-ment? */
2465		alloc_size += sizeof_priv;
2466	}
2467
2468	hdev = kzalloc(alloc_size, GFP_KERNEL);
2469	if (!hdev)
2470		return NULL;
2471
2472	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2473	hdev->esco_type = (ESCO_HV1);
2474	hdev->link_mode = (HCI_LM_ACCEPT);
2475	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2476	hdev->io_capability = 0x03;	/* No Input No Output */
2477	hdev->manufacturer = 0xffff;	/* Default to internal use */
2478	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2479	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2480	hdev->adv_instance_cnt = 0;
2481	hdev->cur_adv_instance = 0x00;
2482	hdev->adv_instance_timeout = 0;
2483
2484	hdev->advmon_allowlist_duration = 300;
2485	hdev->advmon_no_filter_duration = 500;
2486	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2487
2488	hdev->sniff_max_interval = 800;
2489	hdev->sniff_min_interval = 80;
2490
2491	hdev->le_adv_channel_map = 0x07;
2492	hdev->le_adv_min_interval = 0x0800;
2493	hdev->le_adv_max_interval = 0x0800;
2494	hdev->le_scan_interval = 0x0060;
2495	hdev->le_scan_window = 0x0030;
2496	hdev->le_scan_int_suspend = 0x0400;
2497	hdev->le_scan_window_suspend = 0x0012;
2498	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2499	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2500	hdev->le_scan_int_adv_monitor = 0x0060;
2501	hdev->le_scan_window_adv_monitor = 0x0030;
2502	hdev->le_scan_int_connect = 0x0060;
2503	hdev->le_scan_window_connect = 0x0060;
2504	hdev->le_conn_min_interval = 0x0018;
2505	hdev->le_conn_max_interval = 0x0028;
2506	hdev->le_conn_latency = 0x0000;
2507	hdev->le_supv_timeout = 0x002a;
2508	hdev->le_def_tx_len = 0x001b;
2509	hdev->le_def_tx_time = 0x0148;
2510	hdev->le_max_tx_len = 0x001b;
2511	hdev->le_max_tx_time = 0x0148;
2512	hdev->le_max_rx_len = 0x001b;
2513	hdev->le_max_rx_time = 0x0148;
2514	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2515	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2516	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2517	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2518	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2519	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2520	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2521	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2522	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2523
2524	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2525	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2526	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2527	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2528	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2529	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2530
2531	/* default 1.28 sec page scan */
2532	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2533	hdev->def_page_scan_int = 0x0800;
2534	hdev->def_page_scan_window = 0x0012;
2535
2536	mutex_init(&hdev->lock);
2537	mutex_init(&hdev->req_lock);
2538
2539	ida_init(&hdev->unset_handle_ida);
2540
2541	INIT_LIST_HEAD(&hdev->mesh_pending);
2542	INIT_LIST_HEAD(&hdev->mgmt_pending);
2543	INIT_LIST_HEAD(&hdev->reject_list);
2544	INIT_LIST_HEAD(&hdev->accept_list);
2545	INIT_LIST_HEAD(&hdev->uuids);
2546	INIT_LIST_HEAD(&hdev->link_keys);
2547	INIT_LIST_HEAD(&hdev->long_term_keys);
2548	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2549	INIT_LIST_HEAD(&hdev->remote_oob_data);
2550	INIT_LIST_HEAD(&hdev->le_accept_list);
2551	INIT_LIST_HEAD(&hdev->le_resolv_list);
2552	INIT_LIST_HEAD(&hdev->le_conn_params);
2553	INIT_LIST_HEAD(&hdev->pend_le_conns);
2554	INIT_LIST_HEAD(&hdev->pend_le_reports);
2555	INIT_LIST_HEAD(&hdev->conn_hash.list);
2556	INIT_LIST_HEAD(&hdev->adv_instances);
2557	INIT_LIST_HEAD(&hdev->blocked_keys);
2558	INIT_LIST_HEAD(&hdev->monitored_devices);
2559
2560	INIT_LIST_HEAD(&hdev->local_codecs);
2561	INIT_WORK(&hdev->rx_work, hci_rx_work);
2562	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2563	INIT_WORK(&hdev->tx_work, hci_tx_work);
2564	INIT_WORK(&hdev->power_on, hci_power_on);
2565	INIT_WORK(&hdev->error_reset, hci_error_reset);
2566
2567	hci_cmd_sync_init(hdev);
2568
2569	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2570
2571	skb_queue_head_init(&hdev->rx_q);
2572	skb_queue_head_init(&hdev->cmd_q);
2573	skb_queue_head_init(&hdev->raw_q);
2574
2575	init_waitqueue_head(&hdev->req_wait_q);
2576
2577	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2578	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2579
2580	hci_devcd_setup(hdev);
2581	hci_request_setup(hdev);
2582
2583	hci_init_sysfs(hdev);
2584	discovery_init(hdev);
2585
2586	return hdev;
2587}
2588EXPORT_SYMBOL(hci_alloc_dev_priv);
2589
2590/* Free HCI device */
2591void hci_free_dev(struct hci_dev *hdev)
2592{
2593	/* will free via device release */
2594	put_device(&hdev->dev);
2595}
2596EXPORT_SYMBOL(hci_free_dev);
2597
2598/* Register HCI device */
2599int hci_register_dev(struct hci_dev *hdev)
2600{
2601	int id, error;
2602
2603	if (!hdev->open || !hdev->close || !hdev->send)
2604		return -EINVAL;
2605
2606	/* Do not allow HCI_AMP devices to register at index 0,
2607	 * so the index can be used as the AMP controller ID.
2608	 */
2609	switch (hdev->dev_type) {
2610	case HCI_PRIMARY:
2611		id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
2612		break;
2613	case HCI_AMP:
2614		id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
2615		break;
2616	default:
2617		return -EINVAL;
2618	}
2619
2620	if (id < 0)
2621		return id;
2622
2623	error = dev_set_name(&hdev->dev, "hci%u", id);
2624	if (error)
2625		return error;
2626
2627	hdev->name = dev_name(&hdev->dev);
2628	hdev->id = id;
2629
2630	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2631
2632	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
 
2633	if (!hdev->workqueue) {
2634		error = -ENOMEM;
2635		goto err;
2636	}
2637
2638	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2639						      hdev->name);
2640	if (!hdev->req_workqueue) {
2641		destroy_workqueue(hdev->workqueue);
2642		error = -ENOMEM;
2643		goto err;
2644	}
2645
2646	if (!IS_ERR_OR_NULL(bt_debugfs))
2647		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2648
 
 
2649	error = device_add(&hdev->dev);
2650	if (error < 0)
2651		goto err_wqueue;
2652
2653	hci_leds_init(hdev);
2654
2655	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2656				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2657				    hdev);
2658	if (hdev->rfkill) {
2659		if (rfkill_register(hdev->rfkill) < 0) {
2660			rfkill_destroy(hdev->rfkill);
2661			hdev->rfkill = NULL;
2662		}
2663	}
2664
2665	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2666		hci_dev_set_flag(hdev, HCI_RFKILLED);
2667
2668	hci_dev_set_flag(hdev, HCI_SETUP);
2669	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2670
2671	if (hdev->dev_type == HCI_PRIMARY) {
2672		/* Assume BR/EDR support until proven otherwise (such as
2673		 * through reading supported features during init.
2674		 */
2675		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2676	}
2677
2678	write_lock(&hci_dev_list_lock);
2679	list_add(&hdev->list, &hci_dev_list);
2680	write_unlock(&hci_dev_list_lock);
2681
2682	/* Devices that are marked for raw-only usage are unconfigured
2683	 * and should not be included in normal operation.
2684	 */
2685	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2686		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2687
2688	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2689	 * callback.
2690	 */
2691	if (hdev->wakeup)
2692		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2693
2694	hci_sock_dev_event(hdev, HCI_DEV_REG);
2695	hci_dev_hold(hdev);
2696
2697	error = hci_register_suspend_notifier(hdev);
2698	if (error)
2699		BT_WARN("register suspend notifier failed error:%d\n", error);
2700
2701	queue_work(hdev->req_workqueue, &hdev->power_on);
2702
2703	idr_init(&hdev->adv_monitors_idr);
2704	msft_register(hdev);
2705
2706	return id;
2707
2708err_wqueue:
2709	debugfs_remove_recursive(hdev->debugfs);
2710	destroy_workqueue(hdev->workqueue);
2711	destroy_workqueue(hdev->req_workqueue);
2712err:
2713	ida_simple_remove(&hci_index_ida, hdev->id);
2714
2715	return error;
2716}
2717EXPORT_SYMBOL(hci_register_dev);
2718
2719/* Unregister HCI device */
2720void hci_unregister_dev(struct hci_dev *hdev)
2721{
 
 
2722	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2723
2724	mutex_lock(&hdev->unregister_lock);
2725	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2726	mutex_unlock(&hdev->unregister_lock);
 
2727
2728	write_lock(&hci_dev_list_lock);
2729	list_del(&hdev->list);
2730	write_unlock(&hci_dev_list_lock);
2731
2732	cancel_work_sync(&hdev->power_on);
2733
2734	hci_cmd_sync_clear(hdev);
2735
2736	hci_unregister_suspend_notifier(hdev);
2737
2738	msft_unregister(hdev);
2739
2740	hci_dev_do_close(hdev);
2741
2742	if (!test_bit(HCI_INIT, &hdev->flags) &&
2743	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2744	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2745		hci_dev_lock(hdev);
2746		mgmt_index_removed(hdev);
2747		hci_dev_unlock(hdev);
2748	}
2749
2750	/* mgmt_index_removed should take care of emptying the
2751	 * pending list */
2752	BUG_ON(!list_empty(&hdev->mgmt_pending));
2753
2754	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2755
2756	if (hdev->rfkill) {
2757		rfkill_unregister(hdev->rfkill);
2758		rfkill_destroy(hdev->rfkill);
2759	}
2760
2761	device_del(&hdev->dev);
2762	/* Actual cleanup is deferred until hci_release_dev(). */
2763	hci_dev_put(hdev);
2764}
2765EXPORT_SYMBOL(hci_unregister_dev);
2766
2767/* Release HCI device */
2768void hci_release_dev(struct hci_dev *hdev)
2769{
2770	debugfs_remove_recursive(hdev->debugfs);
2771	kfree_const(hdev->hw_info);
2772	kfree_const(hdev->fw_info);
2773
2774	destroy_workqueue(hdev->workqueue);
2775	destroy_workqueue(hdev->req_workqueue);
2776
2777	hci_dev_lock(hdev);
2778	hci_bdaddr_list_clear(&hdev->reject_list);
2779	hci_bdaddr_list_clear(&hdev->accept_list);
2780	hci_uuids_clear(hdev);
2781	hci_link_keys_clear(hdev);
2782	hci_smp_ltks_clear(hdev);
2783	hci_smp_irks_clear(hdev);
2784	hci_remote_oob_data_clear(hdev);
2785	hci_adv_instances_clear(hdev);
2786	hci_adv_monitors_clear(hdev);
2787	hci_bdaddr_list_clear(&hdev->le_accept_list);
2788	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2789	hci_conn_params_clear_all(hdev);
2790	hci_discovery_filter_clear(hdev);
2791	hci_blocked_keys_clear(hdev);
2792	hci_codec_list_clear(&hdev->local_codecs);
2793	hci_dev_unlock(hdev);
2794
2795	ida_destroy(&hdev->unset_handle_ida);
2796	ida_simple_remove(&hci_index_ida, hdev->id);
2797	kfree_skb(hdev->sent_cmd);
2798	kfree_skb(hdev->recv_event);
2799	kfree(hdev);
2800}
2801EXPORT_SYMBOL(hci_release_dev);
2802
2803int hci_register_suspend_notifier(struct hci_dev *hdev)
2804{
2805	int ret = 0;
2806
2807	if (!hdev->suspend_notifier.notifier_call &&
2808	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2809		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2810		ret = register_pm_notifier(&hdev->suspend_notifier);
2811	}
2812
2813	return ret;
2814}
2815
2816int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2817{
2818	int ret = 0;
2819
2820	if (hdev->suspend_notifier.notifier_call) {
2821		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2822		if (!ret)
2823			hdev->suspend_notifier.notifier_call = NULL;
2824	}
2825
2826	return ret;
2827}
 
2828
2829/* Suspend HCI device */
2830int hci_suspend_dev(struct hci_dev *hdev)
2831{
2832	int ret;
2833
2834	bt_dev_dbg(hdev, "");
2835
2836	/* Suspend should only act on when powered. */
2837	if (!hdev_is_powered(hdev) ||
2838	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2839		return 0;
2840
2841	/* If powering down don't attempt to suspend */
2842	if (mgmt_powering_down(hdev))
2843		return 0;
2844
2845	/* Cancel potentially blocking sync operation before suspend */
2846	__hci_cmd_sync_cancel(hdev, -EHOSTDOWN);
2847
2848	hci_req_sync_lock(hdev);
2849	ret = hci_suspend_sync(hdev);
2850	hci_req_sync_unlock(hdev);
2851
2852	hci_clear_wake_reason(hdev);
2853	mgmt_suspending(hdev, hdev->suspend_state);
2854
2855	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2856	return ret;
2857}
2858EXPORT_SYMBOL(hci_suspend_dev);
2859
2860/* Resume HCI device */
2861int hci_resume_dev(struct hci_dev *hdev)
2862{
2863	int ret;
2864
2865	bt_dev_dbg(hdev, "");
2866
2867	/* Resume should only act on when powered. */
2868	if (!hdev_is_powered(hdev) ||
2869	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2870		return 0;
2871
2872	/* If powering down don't attempt to resume */
2873	if (mgmt_powering_down(hdev))
2874		return 0;
2875
2876	hci_req_sync_lock(hdev);
2877	ret = hci_resume_sync(hdev);
2878	hci_req_sync_unlock(hdev);
2879
2880	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2881		      hdev->wake_addr_type);
2882
2883	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2884	return ret;
2885}
2886EXPORT_SYMBOL(hci_resume_dev);
2887
2888/* Reset HCI device */
2889int hci_reset_dev(struct hci_dev *hdev)
2890{
2891	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2892	struct sk_buff *skb;
2893
2894	skb = bt_skb_alloc(3, GFP_ATOMIC);
2895	if (!skb)
2896		return -ENOMEM;
2897
2898	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2899	skb_put_data(skb, hw_err, 3);
2900
2901	bt_dev_err(hdev, "Injecting HCI hardware error event");
2902
2903	/* Send Hardware Error to upper stack */
2904	return hci_recv_frame(hdev, skb);
2905}
2906EXPORT_SYMBOL(hci_reset_dev);
2907
2908/* Receive frame from HCI drivers */
2909int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2910{
2911	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2912		      && !test_bit(HCI_INIT, &hdev->flags))) {
2913		kfree_skb(skb);
2914		return -ENXIO;
2915	}
2916
2917	switch (hci_skb_pkt_type(skb)) {
2918	case HCI_EVENT_PKT:
2919		break;
2920	case HCI_ACLDATA_PKT:
2921		/* Detect if ISO packet has been sent as ACL */
2922		if (hci_conn_num(hdev, ISO_LINK)) {
2923			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2924			__u8 type;
2925
2926			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2927			if (type == ISO_LINK)
2928				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2929		}
2930		break;
2931	case HCI_SCODATA_PKT:
2932		break;
2933	case HCI_ISODATA_PKT:
2934		break;
2935	default:
2936		kfree_skb(skb);
2937		return -EINVAL;
2938	}
2939
2940	/* Incoming skb */
2941	bt_cb(skb)->incoming = 1;
2942
2943	/* Time stamp */
2944	__net_timestamp(skb);
2945
2946	skb_queue_tail(&hdev->rx_q, skb);
2947	queue_work(hdev->workqueue, &hdev->rx_work);
2948
2949	return 0;
2950}
2951EXPORT_SYMBOL(hci_recv_frame);
2952
2953/* Receive diagnostic message from HCI drivers */
2954int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2955{
2956	/* Mark as diagnostic packet */
2957	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2958
2959	/* Time stamp */
2960	__net_timestamp(skb);
2961
2962	skb_queue_tail(&hdev->rx_q, skb);
2963	queue_work(hdev->workqueue, &hdev->rx_work);
2964
2965	return 0;
2966}
2967EXPORT_SYMBOL(hci_recv_diag);
2968
2969void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2970{
2971	va_list vargs;
2972
2973	va_start(vargs, fmt);
2974	kfree_const(hdev->hw_info);
2975	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2976	va_end(vargs);
2977}
2978EXPORT_SYMBOL(hci_set_hw_info);
2979
2980void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2981{
2982	va_list vargs;
2983
2984	va_start(vargs, fmt);
2985	kfree_const(hdev->fw_info);
2986	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2987	va_end(vargs);
2988}
2989EXPORT_SYMBOL(hci_set_fw_info);
2990
2991/* ---- Interface to upper protocols ---- */
2992
2993int hci_register_cb(struct hci_cb *cb)
2994{
2995	BT_DBG("%p name %s", cb, cb->name);
2996
2997	mutex_lock(&hci_cb_list_lock);
2998	list_add_tail(&cb->list, &hci_cb_list);
2999	mutex_unlock(&hci_cb_list_lock);
3000
3001	return 0;
3002}
3003EXPORT_SYMBOL(hci_register_cb);
3004
3005int hci_unregister_cb(struct hci_cb *cb)
3006{
3007	BT_DBG("%p name %s", cb, cb->name);
3008
3009	mutex_lock(&hci_cb_list_lock);
3010	list_del(&cb->list);
3011	mutex_unlock(&hci_cb_list_lock);
3012
3013	return 0;
3014}
3015EXPORT_SYMBOL(hci_unregister_cb);
3016
3017static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3018{
3019	int err;
3020
3021	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3022	       skb->len);
3023
3024	/* Time stamp */
3025	__net_timestamp(skb);
3026
3027	/* Send copy to monitor */
3028	hci_send_to_monitor(hdev, skb);
3029
3030	if (atomic_read(&hdev->promisc)) {
3031		/* Send copy to the sockets */
3032		hci_send_to_sock(hdev, skb);
3033	}
3034
3035	/* Get rid of skb owner, prior to sending to the driver. */
3036	skb_orphan(skb);
3037
3038	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3039		kfree_skb(skb);
3040		return -EINVAL;
3041	}
3042
3043	err = hdev->send(hdev, skb);
3044	if (err < 0) {
3045		bt_dev_err(hdev, "sending frame failed (%d)", err);
3046		kfree_skb(skb);
3047		return err;
3048	}
3049
3050	return 0;
3051}
3052
3053/* Send HCI command */
3054int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3055		 const void *param)
3056{
3057	struct sk_buff *skb;
3058
3059	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3060
3061	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3062	if (!skb) {
3063		bt_dev_err(hdev, "no memory for command");
3064		return -ENOMEM;
3065	}
3066
3067	/* Stand-alone HCI commands must be flagged as
3068	 * single-command requests.
3069	 */
3070	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3071
3072	skb_queue_tail(&hdev->cmd_q, skb);
3073	queue_work(hdev->workqueue, &hdev->cmd_work);
3074
3075	return 0;
3076}
3077
3078int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3079		   const void *param)
3080{
3081	struct sk_buff *skb;
3082
3083	if (hci_opcode_ogf(opcode) != 0x3f) {
3084		/* A controller receiving a command shall respond with either
3085		 * a Command Status Event or a Command Complete Event.
3086		 * Therefore, all standard HCI commands must be sent via the
3087		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3088		 * Some vendors do not comply with this rule for vendor-specific
3089		 * commands and do not return any event. We want to support
3090		 * unresponded commands for such cases only.
3091		 */
3092		bt_dev_err(hdev, "unresponded command not supported");
3093		return -EINVAL;
3094	}
3095
3096	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3097	if (!skb) {
3098		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3099			   opcode);
3100		return -ENOMEM;
3101	}
3102
3103	hci_send_frame(hdev, skb);
3104
3105	return 0;
3106}
3107EXPORT_SYMBOL(__hci_cmd_send);
3108
3109/* Get data from the previously sent command */
3110void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3111{
3112	struct hci_command_hdr *hdr;
3113
3114	if (!hdev->sent_cmd)
3115		return NULL;
3116
3117	hdr = (void *) hdev->sent_cmd->data;
3118
3119	if (hdr->opcode != cpu_to_le16(opcode))
3120		return NULL;
3121
3122	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3123
3124	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3125}
3126
3127/* Get data from last received event */
3128void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
 
3129{
3130	struct hci_event_hdr *hdr;
3131	int offset;
3132
3133	if (!hdev->recv_event)
3134		return NULL;
3135
3136	hdr = (void *)hdev->recv_event->data;
3137	offset = sizeof(*hdr);
3138
3139	if (hdr->evt != event) {
3140		/* In case of LE metaevent check the subevent match */
3141		if (hdr->evt == HCI_EV_LE_META) {
3142			struct hci_ev_le_meta *ev;
3143
3144			ev = (void *)hdev->recv_event->data + offset;
3145			offset += sizeof(*ev);
3146			if (ev->subevent == event)
3147				goto found;
3148		}
3149		return NULL;
3150	}
3151
3152found:
3153	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3154
3155	return hdev->recv_event->data + offset;
3156}
 
3157
3158/* Send ACL data */
3159static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3160{
3161	struct hci_acl_hdr *hdr;
3162	int len = skb->len;
3163
3164	skb_push(skb, HCI_ACL_HDR_SIZE);
3165	skb_reset_transport_header(skb);
3166	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3167	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3168	hdr->dlen   = cpu_to_le16(len);
3169}
3170
3171static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3172			  struct sk_buff *skb, __u16 flags)
3173{
3174	struct hci_conn *conn = chan->conn;
3175	struct hci_dev *hdev = conn->hdev;
3176	struct sk_buff *list;
3177
3178	skb->len = skb_headlen(skb);
3179	skb->data_len = 0;
3180
3181	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3182
3183	switch (hdev->dev_type) {
3184	case HCI_PRIMARY:
3185		hci_add_acl_hdr(skb, conn->handle, flags);
3186		break;
3187	case HCI_AMP:
3188		hci_add_acl_hdr(skb, chan->handle, flags);
3189		break;
3190	default:
3191		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3192		return;
3193	}
3194
3195	list = skb_shinfo(skb)->frag_list;
3196	if (!list) {
3197		/* Non fragmented */
3198		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3199
3200		skb_queue_tail(queue, skb);
3201	} else {
3202		/* Fragmented */
3203		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3204
3205		skb_shinfo(skb)->frag_list = NULL;
3206
3207		/* Queue all fragments atomically. We need to use spin_lock_bh
3208		 * here because of 6LoWPAN links, as there this function is
3209		 * called from softirq and using normal spin lock could cause
3210		 * deadlocks.
3211		 */
3212		spin_lock_bh(&queue->lock);
3213
3214		__skb_queue_tail(queue, skb);
3215
3216		flags &= ~ACL_START;
3217		flags |= ACL_CONT;
3218		do {
3219			skb = list; list = list->next;
3220
3221			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3222			hci_add_acl_hdr(skb, conn->handle, flags);
3223
3224			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3225
3226			__skb_queue_tail(queue, skb);
3227		} while (list);
3228
3229		spin_unlock_bh(&queue->lock);
3230	}
3231}
3232
3233void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3234{
3235	struct hci_dev *hdev = chan->conn->hdev;
3236
3237	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3238
3239	hci_queue_acl(chan, &chan->data_q, skb, flags);
3240
3241	queue_work(hdev->workqueue, &hdev->tx_work);
3242}
3243
3244/* Send SCO data */
3245void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3246{
3247	struct hci_dev *hdev = conn->hdev;
3248	struct hci_sco_hdr hdr;
3249
3250	BT_DBG("%s len %d", hdev->name, skb->len);
3251
3252	hdr.handle = cpu_to_le16(conn->handle);
3253	hdr.dlen   = skb->len;
3254
3255	skb_push(skb, HCI_SCO_HDR_SIZE);
3256	skb_reset_transport_header(skb);
3257	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3258
3259	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3260
3261	skb_queue_tail(&conn->data_q, skb);
3262	queue_work(hdev->workqueue, &hdev->tx_work);
3263}
3264
3265/* Send ISO data */
3266static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3267{
3268	struct hci_iso_hdr *hdr;
3269	int len = skb->len;
3270
3271	skb_push(skb, HCI_ISO_HDR_SIZE);
3272	skb_reset_transport_header(skb);
3273	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3274	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3275	hdr->dlen   = cpu_to_le16(len);
3276}
3277
3278static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3279			  struct sk_buff *skb)
3280{
3281	struct hci_dev *hdev = conn->hdev;
3282	struct sk_buff *list;
3283	__u16 flags;
3284
3285	skb->len = skb_headlen(skb);
3286	skb->data_len = 0;
3287
3288	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3289
3290	list = skb_shinfo(skb)->frag_list;
3291
3292	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3293	hci_add_iso_hdr(skb, conn->handle, flags);
3294
3295	if (!list) {
3296		/* Non fragmented */
3297		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3298
3299		skb_queue_tail(queue, skb);
3300	} else {
3301		/* Fragmented */
3302		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3303
3304		skb_shinfo(skb)->frag_list = NULL;
3305
3306		__skb_queue_tail(queue, skb);
3307
3308		do {
3309			skb = list; list = list->next;
3310
3311			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3312			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3313						   0x00);
3314			hci_add_iso_hdr(skb, conn->handle, flags);
3315
3316			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3317
3318			__skb_queue_tail(queue, skb);
3319		} while (list);
3320	}
3321}
3322
3323void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3324{
3325	struct hci_dev *hdev = conn->hdev;
3326
3327	BT_DBG("%s len %d", hdev->name, skb->len);
3328
3329	hci_queue_iso(conn, &conn->data_q, skb);
3330
3331	queue_work(hdev->workqueue, &hdev->tx_work);
3332}
3333
3334/* ---- HCI TX task (outgoing data) ---- */
3335
3336/* HCI Connection scheduler */
3337static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3338{
3339	struct hci_dev *hdev;
3340	int cnt, q;
3341
3342	if (!conn) {
3343		*quote = 0;
3344		return;
3345	}
3346
3347	hdev = conn->hdev;
3348
3349	switch (conn->type) {
3350	case ACL_LINK:
3351		cnt = hdev->acl_cnt;
3352		break;
3353	case AMP_LINK:
3354		cnt = hdev->block_cnt;
3355		break;
3356	case SCO_LINK:
3357	case ESCO_LINK:
3358		cnt = hdev->sco_cnt;
3359		break;
3360	case LE_LINK:
3361		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3362		break;
3363	case ISO_LINK:
3364		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3365			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3366		break;
3367	default:
3368		cnt = 0;
3369		bt_dev_err(hdev, "unknown link type %d", conn->type);
3370	}
3371
3372	q = cnt / num;
3373	*quote = q ? q : 1;
3374}
3375
3376static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3377				     int *quote)
3378{
3379	struct hci_conn_hash *h = &hdev->conn_hash;
3380	struct hci_conn *conn = NULL, *c;
3381	unsigned int num = 0, min = ~0;
3382
3383	/* We don't have to lock device here. Connections are always
3384	 * added and removed with TX task disabled. */
3385
3386	rcu_read_lock();
3387
3388	list_for_each_entry_rcu(c, &h->list, list) {
3389		if (c->type != type || skb_queue_empty(&c->data_q))
3390			continue;
3391
3392		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3393			continue;
3394
3395		num++;
3396
3397		if (c->sent < min) {
3398			min  = c->sent;
3399			conn = c;
3400		}
3401
3402		if (hci_conn_num(hdev, type) == num)
3403			break;
3404	}
3405
3406	rcu_read_unlock();
3407
3408	hci_quote_sent(conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3409
3410	BT_DBG("conn %p quote %d", conn, *quote);
3411	return conn;
3412}
3413
3414static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3415{
3416	struct hci_conn_hash *h = &hdev->conn_hash;
3417	struct hci_conn *c;
3418
3419	bt_dev_err(hdev, "link tx timeout");
3420
3421	rcu_read_lock();
3422
3423	/* Kill stalled connections */
3424	list_for_each_entry_rcu(c, &h->list, list) {
3425		if (c->type == type && c->sent) {
3426			bt_dev_err(hdev, "killing stalled connection %pMR",
3427				   &c->dst);
3428			/* hci_disconnect might sleep, so, we have to release
3429			 * the RCU read lock before calling it.
3430			 */
3431			rcu_read_unlock();
3432			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3433			rcu_read_lock();
3434		}
3435	}
3436
3437	rcu_read_unlock();
3438}
3439
3440static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3441				      int *quote)
3442{
3443	struct hci_conn_hash *h = &hdev->conn_hash;
3444	struct hci_chan *chan = NULL;
3445	unsigned int num = 0, min = ~0, cur_prio = 0;
3446	struct hci_conn *conn;
3447	int conn_num = 0;
3448
3449	BT_DBG("%s", hdev->name);
3450
3451	rcu_read_lock();
3452
3453	list_for_each_entry_rcu(conn, &h->list, list) {
3454		struct hci_chan *tmp;
3455
3456		if (conn->type != type)
3457			continue;
3458
3459		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3460			continue;
3461
3462		conn_num++;
3463
3464		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3465			struct sk_buff *skb;
3466
3467			if (skb_queue_empty(&tmp->data_q))
3468				continue;
3469
3470			skb = skb_peek(&tmp->data_q);
3471			if (skb->priority < cur_prio)
3472				continue;
3473
3474			if (skb->priority > cur_prio) {
3475				num = 0;
3476				min = ~0;
3477				cur_prio = skb->priority;
3478			}
3479
3480			num++;
3481
3482			if (conn->sent < min) {
3483				min  = conn->sent;
3484				chan = tmp;
3485			}
3486		}
3487
3488		if (hci_conn_num(hdev, type) == conn_num)
3489			break;
3490	}
3491
3492	rcu_read_unlock();
3493
3494	if (!chan)
3495		return NULL;
3496
3497	hci_quote_sent(chan->conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3498
 
 
3499	BT_DBG("chan %p quote %d", chan, *quote);
3500	return chan;
3501}
3502
3503static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3504{
3505	struct hci_conn_hash *h = &hdev->conn_hash;
3506	struct hci_conn *conn;
3507	int num = 0;
3508
3509	BT_DBG("%s", hdev->name);
3510
3511	rcu_read_lock();
3512
3513	list_for_each_entry_rcu(conn, &h->list, list) {
3514		struct hci_chan *chan;
3515
3516		if (conn->type != type)
3517			continue;
3518
3519		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3520			continue;
3521
3522		num++;
3523
3524		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3525			struct sk_buff *skb;
3526
3527			if (chan->sent) {
3528				chan->sent = 0;
3529				continue;
3530			}
3531
3532			if (skb_queue_empty(&chan->data_q))
3533				continue;
3534
3535			skb = skb_peek(&chan->data_q);
3536			if (skb->priority >= HCI_PRIO_MAX - 1)
3537				continue;
3538
3539			skb->priority = HCI_PRIO_MAX - 1;
3540
3541			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3542			       skb->priority);
3543		}
3544
3545		if (hci_conn_num(hdev, type) == num)
3546			break;
3547	}
3548
3549	rcu_read_unlock();
3550
3551}
3552
3553static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3554{
3555	/* Calculate count of blocks used by this packet */
3556	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3557}
3558
3559static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3560{
3561	unsigned long last_tx;
3562
3563	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3564		return;
3565
3566	switch (type) {
3567	case LE_LINK:
3568		last_tx = hdev->le_last_tx;
3569		break;
3570	default:
3571		last_tx = hdev->acl_last_tx;
3572		break;
3573	}
3574
3575	/* tx timeout must be longer than maximum link supervision timeout
3576	 * (40.9 seconds)
3577	 */
3578	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3579		hci_link_tx_to(hdev, type);
3580}
3581
3582/* Schedule SCO */
3583static void hci_sched_sco(struct hci_dev *hdev)
3584{
3585	struct hci_conn *conn;
3586	struct sk_buff *skb;
3587	int quote;
3588
3589	BT_DBG("%s", hdev->name);
3590
3591	if (!hci_conn_num(hdev, SCO_LINK))
3592		return;
3593
3594	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3595		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3596			BT_DBG("skb %p len %d", skb, skb->len);
3597			hci_send_frame(hdev, skb);
3598
3599			conn->sent++;
3600			if (conn->sent == ~0)
3601				conn->sent = 0;
3602		}
3603	}
3604}
3605
3606static void hci_sched_esco(struct hci_dev *hdev)
3607{
3608	struct hci_conn *conn;
3609	struct sk_buff *skb;
3610	int quote;
3611
3612	BT_DBG("%s", hdev->name);
3613
3614	if (!hci_conn_num(hdev, ESCO_LINK))
3615		return;
3616
3617	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3618						     &quote))) {
3619		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3620			BT_DBG("skb %p len %d", skb, skb->len);
3621			hci_send_frame(hdev, skb);
3622
3623			conn->sent++;
3624			if (conn->sent == ~0)
3625				conn->sent = 0;
3626		}
3627	}
3628}
3629
3630static void hci_sched_acl_pkt(struct hci_dev *hdev)
3631{
3632	unsigned int cnt = hdev->acl_cnt;
3633	struct hci_chan *chan;
3634	struct sk_buff *skb;
3635	int quote;
3636
3637	__check_timeout(hdev, cnt, ACL_LINK);
3638
3639	while (hdev->acl_cnt &&
3640	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3641		u32 priority = (skb_peek(&chan->data_q))->priority;
3642		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3643			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3644			       skb->len, skb->priority);
3645
3646			/* Stop if priority has changed */
3647			if (skb->priority < priority)
3648				break;
3649
3650			skb = skb_dequeue(&chan->data_q);
3651
3652			hci_conn_enter_active_mode(chan->conn,
3653						   bt_cb(skb)->force_active);
3654
3655			hci_send_frame(hdev, skb);
3656			hdev->acl_last_tx = jiffies;
3657
3658			hdev->acl_cnt--;
3659			chan->sent++;
3660			chan->conn->sent++;
3661
3662			/* Send pending SCO packets right away */
3663			hci_sched_sco(hdev);
3664			hci_sched_esco(hdev);
3665		}
3666	}
3667
3668	if (cnt != hdev->acl_cnt)
3669		hci_prio_recalculate(hdev, ACL_LINK);
3670}
3671
3672static void hci_sched_acl_blk(struct hci_dev *hdev)
3673{
3674	unsigned int cnt = hdev->block_cnt;
3675	struct hci_chan *chan;
3676	struct sk_buff *skb;
3677	int quote;
3678	u8 type;
3679
 
 
3680	BT_DBG("%s", hdev->name);
3681
3682	if (hdev->dev_type == HCI_AMP)
3683		type = AMP_LINK;
3684	else
3685		type = ACL_LINK;
3686
3687	__check_timeout(hdev, cnt, type);
3688
3689	while (hdev->block_cnt > 0 &&
3690	       (chan = hci_chan_sent(hdev, type, &quote))) {
3691		u32 priority = (skb_peek(&chan->data_q))->priority;
3692		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3693			int blocks;
3694
3695			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3696			       skb->len, skb->priority);
3697
3698			/* Stop if priority has changed */
3699			if (skb->priority < priority)
3700				break;
3701
3702			skb = skb_dequeue(&chan->data_q);
3703
3704			blocks = __get_blocks(hdev, skb);
3705			if (blocks > hdev->block_cnt)
3706				return;
3707
3708			hci_conn_enter_active_mode(chan->conn,
3709						   bt_cb(skb)->force_active);
3710
3711			hci_send_frame(hdev, skb);
3712			hdev->acl_last_tx = jiffies;
3713
3714			hdev->block_cnt -= blocks;
3715			quote -= blocks;
3716
3717			chan->sent += blocks;
3718			chan->conn->sent += blocks;
3719		}
3720	}
3721
3722	if (cnt != hdev->block_cnt)
3723		hci_prio_recalculate(hdev, type);
3724}
3725
3726static void hci_sched_acl(struct hci_dev *hdev)
3727{
3728	BT_DBG("%s", hdev->name);
3729
3730	/* No ACL link over BR/EDR controller */
3731	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3732		return;
3733
3734	/* No AMP link over AMP controller */
3735	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3736		return;
3737
3738	switch (hdev->flow_ctl_mode) {
3739	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3740		hci_sched_acl_pkt(hdev);
3741		break;
3742
3743	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3744		hci_sched_acl_blk(hdev);
3745		break;
3746	}
3747}
3748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3749static void hci_sched_le(struct hci_dev *hdev)
3750{
3751	struct hci_chan *chan;
3752	struct sk_buff *skb;
3753	int quote, cnt, tmp;
3754
3755	BT_DBG("%s", hdev->name);
3756
3757	if (!hci_conn_num(hdev, LE_LINK))
3758		return;
3759
3760	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3761
3762	__check_timeout(hdev, cnt, LE_LINK);
 
 
 
 
3763
 
3764	tmp = cnt;
3765	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3766		u32 priority = (skb_peek(&chan->data_q))->priority;
3767		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3768			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3769			       skb->len, skb->priority);
3770
3771			/* Stop if priority has changed */
3772			if (skb->priority < priority)
3773				break;
3774
3775			skb = skb_dequeue(&chan->data_q);
3776
3777			hci_send_frame(hdev, skb);
3778			hdev->le_last_tx = jiffies;
3779
3780			cnt--;
3781			chan->sent++;
3782			chan->conn->sent++;
3783
3784			/* Send pending SCO packets right away */
3785			hci_sched_sco(hdev);
3786			hci_sched_esco(hdev);
3787		}
3788	}
3789
3790	if (hdev->le_pkts)
3791		hdev->le_cnt = cnt;
3792	else
3793		hdev->acl_cnt = cnt;
3794
3795	if (cnt != tmp)
3796		hci_prio_recalculate(hdev, LE_LINK);
3797}
3798
3799/* Schedule CIS */
3800static void hci_sched_iso(struct hci_dev *hdev)
3801{
3802	struct hci_conn *conn;
3803	struct sk_buff *skb;
3804	int quote, *cnt;
3805
3806	BT_DBG("%s", hdev->name);
3807
3808	if (!hci_conn_num(hdev, ISO_LINK))
3809		return;
3810
3811	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3812		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3813	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3814		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3815			BT_DBG("skb %p len %d", skb, skb->len);
3816			hci_send_frame(hdev, skb);
3817
3818			conn->sent++;
3819			if (conn->sent == ~0)
3820				conn->sent = 0;
3821			(*cnt)--;
3822		}
3823	}
3824}
3825
3826static void hci_tx_work(struct work_struct *work)
3827{
3828	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3829	struct sk_buff *skb;
3830
3831	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3832	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3833
3834	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3835		/* Schedule queues and send stuff to HCI driver */
 
3836		hci_sched_sco(hdev);
3837		hci_sched_esco(hdev);
3838		hci_sched_iso(hdev);
3839		hci_sched_acl(hdev);
3840		hci_sched_le(hdev);
3841	}
3842
3843	/* Send next queued raw (unknown type) packet */
3844	while ((skb = skb_dequeue(&hdev->raw_q)))
3845		hci_send_frame(hdev, skb);
3846}
3847
3848/* ----- HCI RX task (incoming data processing) ----- */
3849
3850/* ACL data packet */
3851static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3852{
3853	struct hci_acl_hdr *hdr = (void *) skb->data;
3854	struct hci_conn *conn;
3855	__u16 handle, flags;
3856
3857	skb_pull(skb, HCI_ACL_HDR_SIZE);
3858
3859	handle = __le16_to_cpu(hdr->handle);
3860	flags  = hci_flags(handle);
3861	handle = hci_handle(handle);
3862
3863	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3864	       handle, flags);
3865
3866	hdev->stat.acl_rx++;
3867
3868	hci_dev_lock(hdev);
3869	conn = hci_conn_hash_lookup_handle(hdev, handle);
3870	hci_dev_unlock(hdev);
3871
3872	if (conn) {
3873		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3874
3875		/* Send to upper protocol */
3876		l2cap_recv_acldata(conn, skb, flags);
3877		return;
3878	} else {
3879		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3880			   handle);
3881	}
3882
3883	kfree_skb(skb);
3884}
3885
3886/* SCO data packet */
3887static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3888{
3889	struct hci_sco_hdr *hdr = (void *) skb->data;
3890	struct hci_conn *conn;
3891	__u16 handle, flags;
3892
3893	skb_pull(skb, HCI_SCO_HDR_SIZE);
3894
3895	handle = __le16_to_cpu(hdr->handle);
3896	flags  = hci_flags(handle);
3897	handle = hci_handle(handle);
3898
3899	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3900	       handle, flags);
3901
3902	hdev->stat.sco_rx++;
3903
3904	hci_dev_lock(hdev);
3905	conn = hci_conn_hash_lookup_handle(hdev, handle);
3906	hci_dev_unlock(hdev);
3907
3908	if (conn) {
3909		/* Send to upper protocol */
3910		hci_skb_pkt_status(skb) = flags & 0x03;
3911		sco_recv_scodata(conn, skb);
3912		return;
3913	} else {
3914		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3915				       handle);
3916	}
3917
3918	kfree_skb(skb);
3919}
3920
3921static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3922{
3923	struct hci_iso_hdr *hdr;
3924	struct hci_conn *conn;
3925	__u16 handle, flags;
3926
3927	hdr = skb_pull_data(skb, sizeof(*hdr));
3928	if (!hdr) {
3929		bt_dev_err(hdev, "ISO packet too small");
3930		goto drop;
3931	}
3932
3933	handle = __le16_to_cpu(hdr->handle);
3934	flags  = hci_flags(handle);
3935	handle = hci_handle(handle);
3936
3937	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3938		   handle, flags);
3939
3940	hci_dev_lock(hdev);
3941	conn = hci_conn_hash_lookup_handle(hdev, handle);
3942	hci_dev_unlock(hdev);
3943
3944	if (!conn) {
3945		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3946			   handle);
3947		goto drop;
3948	}
3949
3950	/* Send to upper protocol */
3951	iso_recv(conn, skb, flags);
3952	return;
3953
3954drop:
3955	kfree_skb(skb);
3956}
3957
3958static bool hci_req_is_complete(struct hci_dev *hdev)
3959{
3960	struct sk_buff *skb;
3961
3962	skb = skb_peek(&hdev->cmd_q);
3963	if (!skb)
3964		return true;
3965
3966	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3967}
3968
3969static void hci_resend_last(struct hci_dev *hdev)
3970{
3971	struct hci_command_hdr *sent;
3972	struct sk_buff *skb;
3973	u16 opcode;
3974
3975	if (!hdev->sent_cmd)
3976		return;
3977
3978	sent = (void *) hdev->sent_cmd->data;
3979	opcode = __le16_to_cpu(sent->opcode);
3980	if (opcode == HCI_OP_RESET)
3981		return;
3982
3983	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3984	if (!skb)
3985		return;
3986
3987	skb_queue_head(&hdev->cmd_q, skb);
3988	queue_work(hdev->workqueue, &hdev->cmd_work);
3989}
3990
3991void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3992			  hci_req_complete_t *req_complete,
3993			  hci_req_complete_skb_t *req_complete_skb)
3994{
3995	struct sk_buff *skb;
3996	unsigned long flags;
3997
3998	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3999
4000	/* If the completed command doesn't match the last one that was
4001	 * sent we need to do special handling of it.
4002	 */
4003	if (!hci_sent_cmd_data(hdev, opcode)) {
4004		/* Some CSR based controllers generate a spontaneous
4005		 * reset complete event during init and any pending
4006		 * command will never be completed. In such a case we
4007		 * need to resend whatever was the last sent
4008		 * command.
4009		 */
4010		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4011			hci_resend_last(hdev);
4012
4013		return;
4014	}
4015
4016	/* If we reach this point this event matches the last command sent */
4017	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4018
4019	/* If the command succeeded and there's still more commands in
4020	 * this request the request is not yet complete.
4021	 */
4022	if (!status && !hci_req_is_complete(hdev))
4023		return;
4024
4025	/* If this was the last command in a request the complete
4026	 * callback would be found in hdev->sent_cmd instead of the
4027	 * command queue (hdev->cmd_q).
4028	 */
4029	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4030		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4031		return;
4032	}
4033
4034	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4035		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4036		return;
4037	}
4038
4039	/* Remove all pending commands belonging to this request */
4040	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4041	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4042		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4043			__skb_queue_head(&hdev->cmd_q, skb);
4044			break;
4045		}
4046
4047		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4048			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4049		else
4050			*req_complete = bt_cb(skb)->hci.req_complete;
4051		dev_kfree_skb_irq(skb);
4052	}
4053	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4054}
4055
4056static void hci_rx_work(struct work_struct *work)
4057{
4058	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4059	struct sk_buff *skb;
4060
4061	BT_DBG("%s", hdev->name);
4062
4063	/* The kcov_remote functions used for collecting packet parsing
4064	 * coverage information from this background thread and associate
4065	 * the coverage with the syscall's thread which originally injected
4066	 * the packet. This helps fuzzing the kernel.
4067	 */
4068	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4069		kcov_remote_start_common(skb_get_kcov_handle(skb));
4070
4071		/* Send copy to monitor */
4072		hci_send_to_monitor(hdev, skb);
4073
4074		if (atomic_read(&hdev->promisc)) {
4075			/* Send copy to the sockets */
4076			hci_send_to_sock(hdev, skb);
4077		}
4078
4079		/* If the device has been opened in HCI_USER_CHANNEL,
4080		 * the userspace has exclusive access to device.
4081		 * When device is HCI_INIT, we still need to process
4082		 * the data packets to the driver in order
4083		 * to complete its setup().
4084		 */
4085		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4086		    !test_bit(HCI_INIT, &hdev->flags)) {
4087			kfree_skb(skb);
4088			continue;
4089		}
4090
4091		if (test_bit(HCI_INIT, &hdev->flags)) {
4092			/* Don't process data packets in this states. */
4093			switch (hci_skb_pkt_type(skb)) {
4094			case HCI_ACLDATA_PKT:
4095			case HCI_SCODATA_PKT:
4096			case HCI_ISODATA_PKT:
4097				kfree_skb(skb);
4098				continue;
4099			}
4100		}
4101
4102		/* Process frame */
4103		switch (hci_skb_pkt_type(skb)) {
4104		case HCI_EVENT_PKT:
4105			BT_DBG("%s Event packet", hdev->name);
4106			hci_event_packet(hdev, skb);
4107			break;
4108
4109		case HCI_ACLDATA_PKT:
4110			BT_DBG("%s ACL data packet", hdev->name);
4111			hci_acldata_packet(hdev, skb);
4112			break;
4113
4114		case HCI_SCODATA_PKT:
4115			BT_DBG("%s SCO data packet", hdev->name);
4116			hci_scodata_packet(hdev, skb);
4117			break;
4118
4119		case HCI_ISODATA_PKT:
4120			BT_DBG("%s ISO data packet", hdev->name);
4121			hci_isodata_packet(hdev, skb);
4122			break;
4123
4124		default:
4125			kfree_skb(skb);
4126			break;
4127		}
4128	}
4129}
4130
4131static void hci_cmd_work(struct work_struct *work)
4132{
4133	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4134	struct sk_buff *skb;
4135
4136	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4137	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4138
4139	/* Send queued commands */
4140	if (atomic_read(&hdev->cmd_cnt)) {
4141		skb = skb_dequeue(&hdev->cmd_q);
4142		if (!skb)
4143			return;
4144
4145		kfree_skb(hdev->sent_cmd);
4146
4147		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4148		if (hdev->sent_cmd) {
4149			int res;
4150			if (hci_req_status_pend(hdev))
4151				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4152			atomic_dec(&hdev->cmd_cnt);
4153
4154			res = hci_send_frame(hdev, skb);
4155			if (res < 0)
4156				__hci_cmd_sync_cancel(hdev, -res);
4157
4158			rcu_read_lock();
4159			if (test_bit(HCI_RESET, &hdev->flags) ||
4160			    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4161				cancel_delayed_work(&hdev->cmd_timer);
4162			else
4163				queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4164						   HCI_CMD_TIMEOUT);
4165			rcu_read_unlock();
4166		} else {
4167			skb_queue_head(&hdev->cmd_q, skb);
4168			queue_work(hdev->workqueue, &hdev->cmd_work);
4169		}
4170	}
4171}
v4.10.11
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
 
 
 
 
  33#include <asm/unaligned.h>
  34
  35#include <net/bluetooth/bluetooth.h>
  36#include <net/bluetooth/hci_core.h>
  37#include <net/bluetooth/l2cap.h>
  38#include <net/bluetooth/mgmt.h>
  39
  40#include "hci_request.h"
  41#include "hci_debugfs.h"
  42#include "smp.h"
  43#include "leds.h"
 
 
 
  44
  45static void hci_rx_work(struct work_struct *work);
  46static void hci_cmd_work(struct work_struct *work);
  47static void hci_tx_work(struct work_struct *work);
  48
  49/* HCI device list */
  50LIST_HEAD(hci_dev_list);
  51DEFINE_RWLOCK(hci_dev_list_lock);
  52
  53/* HCI callback list */
  54LIST_HEAD(hci_cb_list);
  55DEFINE_MUTEX(hci_cb_list_lock);
  56
  57/* HCI ID Numbering */
  58static DEFINE_IDA(hci_index_ida);
  59
  60/* ---- HCI debugfs entries ---- */
  61
  62static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  63			     size_t count, loff_t *ppos)
  64{
  65	struct hci_dev *hdev = file->private_data;
  66	char buf[3];
  67
  68	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
  69	buf[1] = '\n';
  70	buf[2] = '\0';
  71	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  72}
  73
  74static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  75			      size_t count, loff_t *ppos)
  76{
  77	struct hci_dev *hdev = file->private_data;
  78	struct sk_buff *skb;
  79	char buf[32];
  80	size_t buf_size = min(count, (sizeof(buf)-1));
  81	bool enable;
  82
  83	if (!test_bit(HCI_UP, &hdev->flags))
  84		return -ENETDOWN;
  85
  86	if (copy_from_user(buf, user_buf, buf_size))
  87		return -EFAULT;
  88
  89	buf[buf_size] = '\0';
  90	if (strtobool(buf, &enable))
  91		return -EINVAL;
  92
  93	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
  94		return -EALREADY;
  95
  96	hci_req_sync_lock(hdev);
  97	if (enable)
  98		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
  99				     HCI_CMD_TIMEOUT);
 100	else
 101		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	hci_req_sync_unlock(hdev);
 104
 105	if (IS_ERR(skb))
 106		return PTR_ERR(skb);
 107
 108	kfree_skb(skb);
 109
 110	hci_dev_change_flag(hdev, HCI_DUT_MODE);
 111
 112	return count;
 113}
 114
 115static const struct file_operations dut_mode_fops = {
 116	.open		= simple_open,
 117	.read		= dut_mode_read,
 118	.write		= dut_mode_write,
 119	.llseek		= default_llseek,
 120};
 121
 122static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
 123				size_t count, loff_t *ppos)
 124{
 125	struct hci_dev *hdev = file->private_data;
 126	char buf[3];
 127
 128	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
 129	buf[1] = '\n';
 130	buf[2] = '\0';
 131	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 132}
 133
 134static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
 135				 size_t count, loff_t *ppos)
 136{
 137	struct hci_dev *hdev = file->private_data;
 138	char buf[32];
 139	size_t buf_size = min(count, (sizeof(buf)-1));
 140	bool enable;
 141	int err;
 142
 143	if (copy_from_user(buf, user_buf, buf_size))
 144		return -EFAULT;
 145
 146	buf[buf_size] = '\0';
 147	if (strtobool(buf, &enable))
 148		return -EINVAL;
 149
 150	/* When the diagnostic flags are not persistent and the transport
 151	 * is not active, then there is no need for the vendor callback.
 152	 *
 153	 * Instead just store the desired value. If needed the setting
 154	 * will be programmed when the controller gets powered on.
 155	 */
 156	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
 157	    !test_bit(HCI_RUNNING, &hdev->flags))
 158		goto done;
 159
 160	hci_req_sync_lock(hdev);
 161	err = hdev->set_diag(hdev, enable);
 162	hci_req_sync_unlock(hdev);
 163
 164	if (err < 0)
 165		return err;
 166
 167done:
 168	if (enable)
 169		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
 170	else
 171		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
 172
 173	return count;
 174}
 175
 176static const struct file_operations vendor_diag_fops = {
 177	.open		= simple_open,
 178	.read		= vendor_diag_read,
 179	.write		= vendor_diag_write,
 180	.llseek		= default_llseek,
 181};
 182
 183static void hci_debugfs_create_basic(struct hci_dev *hdev)
 184{
 185	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
 186			    &dut_mode_fops);
 187
 188	if (hdev->set_diag)
 189		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
 190				    &vendor_diag_fops);
 191}
 192
 193static int hci_reset_req(struct hci_request *req, unsigned long opt)
 194{
 195	BT_DBG("%s %ld", req->hdev->name, opt);
 196
 197	/* Reset device */
 198	set_bit(HCI_RESET, &req->hdev->flags);
 199	hci_req_add(req, HCI_OP_RESET, 0, NULL);
 200	return 0;
 201}
 202
 203static void bredr_init(struct hci_request *req)
 204{
 205	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
 206
 207	/* Read Local Supported Features */
 208	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 209
 210	/* Read Local Version */
 211	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 212
 213	/* Read BD Address */
 214	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 215}
 216
 217static void amp_init1(struct hci_request *req)
 218{
 219	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
 220
 221	/* Read Local Version */
 222	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 223
 224	/* Read Local Supported Commands */
 225	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 226
 227	/* Read Local AMP Info */
 228	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
 229
 230	/* Read Data Blk size */
 231	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
 232
 233	/* Read Flow Control Mode */
 234	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
 235
 236	/* Read Location Data */
 237	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
 238}
 239
 240static int amp_init2(struct hci_request *req)
 241{
 242	/* Read Local Supported Features. Not all AMP controllers
 243	 * support this so it's placed conditionally in the second
 244	 * stage init.
 245	 */
 246	if (req->hdev->commands[14] & 0x20)
 247		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
 248
 249	return 0;
 250}
 251
 252static int hci_init1_req(struct hci_request *req, unsigned long opt)
 253{
 254	struct hci_dev *hdev = req->hdev;
 255
 256	BT_DBG("%s %ld", hdev->name, opt);
 257
 258	/* Reset */
 259	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 260		hci_reset_req(req, 0);
 261
 262	switch (hdev->dev_type) {
 263	case HCI_PRIMARY:
 264		bredr_init(req);
 265		break;
 266	case HCI_AMP:
 267		amp_init1(req);
 268		break;
 269	default:
 270		BT_ERR("Unknown device type %d", hdev->dev_type);
 271		break;
 272	}
 273
 274	return 0;
 275}
 276
 277static void bredr_setup(struct hci_request *req)
 278{
 279	__le16 param;
 280	__u8 flt_type;
 281
 282	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
 283	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
 284
 285	/* Read Class of Device */
 286	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
 287
 288	/* Read Local Name */
 289	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
 290
 291	/* Read Voice Setting */
 292	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
 293
 294	/* Read Number of Supported IAC */
 295	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
 296
 297	/* Read Current IAC LAP */
 298	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
 299
 300	/* Clear Event Filters */
 301	flt_type = HCI_FLT_CLEAR_ALL;
 302	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
 303
 304	/* Connection accept timeout ~20 secs */
 305	param = cpu_to_le16(0x7d00);
 306	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
 307}
 308
 309static void le_setup(struct hci_request *req)
 310{
 311	struct hci_dev *hdev = req->hdev;
 312
 313	/* Read LE Buffer Size */
 314	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
 315
 316	/* Read LE Local Supported Features */
 317	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
 318
 319	/* Read LE Supported States */
 320	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
 321
 322	/* LE-only controllers have LE implicitly enabled */
 323	if (!lmp_bredr_capable(hdev))
 324		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
 325}
 326
 327static void hci_setup_event_mask(struct hci_request *req)
 328{
 329	struct hci_dev *hdev = req->hdev;
 330
 331	/* The second byte is 0xff instead of 0x9f (two reserved bits
 332	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
 333	 * command otherwise.
 334	 */
 335	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
 336
 337	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
 338	 * any event mask for pre 1.2 devices.
 339	 */
 340	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
 341		return;
 342
 343	if (lmp_bredr_capable(hdev)) {
 344		events[4] |= 0x01; /* Flow Specification Complete */
 345	} else {
 346		/* Use a different default for LE-only devices */
 347		memset(events, 0, sizeof(events));
 348		events[1] |= 0x20; /* Command Complete */
 349		events[1] |= 0x40; /* Command Status */
 350		events[1] |= 0x80; /* Hardware Error */
 351
 352		/* If the controller supports the Disconnect command, enable
 353		 * the corresponding event. In addition enable packet flow
 354		 * control related events.
 355		 */
 356		if (hdev->commands[0] & 0x20) {
 357			events[0] |= 0x10; /* Disconnection Complete */
 358			events[2] |= 0x04; /* Number of Completed Packets */
 359			events[3] |= 0x02; /* Data Buffer Overflow */
 360		}
 361
 362		/* If the controller supports the Read Remote Version
 363		 * Information command, enable the corresponding event.
 364		 */
 365		if (hdev->commands[2] & 0x80)
 366			events[1] |= 0x08; /* Read Remote Version Information
 367					    * Complete
 368					    */
 369
 370		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
 371			events[0] |= 0x80; /* Encryption Change */
 372			events[5] |= 0x80; /* Encryption Key Refresh Complete */
 373		}
 374	}
 375
 376	if (lmp_inq_rssi_capable(hdev) ||
 377	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
 378		events[4] |= 0x02; /* Inquiry Result with RSSI */
 379
 380	if (lmp_ext_feat_capable(hdev))
 381		events[4] |= 0x04; /* Read Remote Extended Features Complete */
 382
 383	if (lmp_esco_capable(hdev)) {
 384		events[5] |= 0x08; /* Synchronous Connection Complete */
 385		events[5] |= 0x10; /* Synchronous Connection Changed */
 386	}
 387
 388	if (lmp_sniffsubr_capable(hdev))
 389		events[5] |= 0x20; /* Sniff Subrating */
 390
 391	if (lmp_pause_enc_capable(hdev))
 392		events[5] |= 0x80; /* Encryption Key Refresh Complete */
 393
 394	if (lmp_ext_inq_capable(hdev))
 395		events[5] |= 0x40; /* Extended Inquiry Result */
 396
 397	if (lmp_no_flush_capable(hdev))
 398		events[7] |= 0x01; /* Enhanced Flush Complete */
 399
 400	if (lmp_lsto_capable(hdev))
 401		events[6] |= 0x80; /* Link Supervision Timeout Changed */
 402
 403	if (lmp_ssp_capable(hdev)) {
 404		events[6] |= 0x01;	/* IO Capability Request */
 405		events[6] |= 0x02;	/* IO Capability Response */
 406		events[6] |= 0x04;	/* User Confirmation Request */
 407		events[6] |= 0x08;	/* User Passkey Request */
 408		events[6] |= 0x10;	/* Remote OOB Data Request */
 409		events[6] |= 0x20;	/* Simple Pairing Complete */
 410		events[7] |= 0x04;	/* User Passkey Notification */
 411		events[7] |= 0x08;	/* Keypress Notification */
 412		events[7] |= 0x10;	/* Remote Host Supported
 413					 * Features Notification
 414					 */
 415	}
 416
 417	if (lmp_le_capable(hdev))
 418		events[7] |= 0x20;	/* LE Meta-Event */
 419
 420	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
 421}
 422
 423static int hci_init2_req(struct hci_request *req, unsigned long opt)
 424{
 425	struct hci_dev *hdev = req->hdev;
 426
 427	if (hdev->dev_type == HCI_AMP)
 428		return amp_init2(req);
 429
 430	if (lmp_bredr_capable(hdev))
 431		bredr_setup(req);
 432	else
 433		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
 434
 435	if (lmp_le_capable(hdev))
 436		le_setup(req);
 437
 438	/* All Bluetooth 1.2 and later controllers should support the
 439	 * HCI command for reading the local supported commands.
 440	 *
 441	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
 442	 * but do not have support for this command. If that is the case,
 443	 * the driver can quirk the behavior and skip reading the local
 444	 * supported commands.
 445	 */
 446	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
 447	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
 448		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
 449
 450	if (lmp_ssp_capable(hdev)) {
 451		/* When SSP is available, then the host features page
 452		 * should also be available as well. However some
 453		 * controllers list the max_page as 0 as long as SSP
 454		 * has not been enabled. To achieve proper debugging
 455		 * output, force the minimum max_page to 1 at least.
 456		 */
 457		hdev->max_page = 0x01;
 458
 459		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
 460			u8 mode = 0x01;
 461
 462			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
 463				    sizeof(mode), &mode);
 464		} else {
 465			struct hci_cp_write_eir cp;
 466
 467			memset(hdev->eir, 0, sizeof(hdev->eir));
 468			memset(&cp, 0, sizeof(cp));
 469
 470			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
 471		}
 472	}
 473
 474	if (lmp_inq_rssi_capable(hdev) ||
 475	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
 476		u8 mode;
 477
 478		/* If Extended Inquiry Result events are supported, then
 479		 * they are clearly preferred over Inquiry Result with RSSI
 480		 * events.
 481		 */
 482		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
 483
 484		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
 485	}
 486
 487	if (lmp_inq_tx_pwr_capable(hdev))
 488		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
 489
 490	if (lmp_ext_feat_capable(hdev)) {
 491		struct hci_cp_read_local_ext_features cp;
 492
 493		cp.page = 0x01;
 494		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 495			    sizeof(cp), &cp);
 496	}
 497
 498	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
 499		u8 enable = 1;
 500		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
 501			    &enable);
 502	}
 503
 504	return 0;
 505}
 506
 507static void hci_setup_link_policy(struct hci_request *req)
 508{
 509	struct hci_dev *hdev = req->hdev;
 510	struct hci_cp_write_def_link_policy cp;
 511	u16 link_policy = 0;
 512
 513	if (lmp_rswitch_capable(hdev))
 514		link_policy |= HCI_LP_RSWITCH;
 515	if (lmp_hold_capable(hdev))
 516		link_policy |= HCI_LP_HOLD;
 517	if (lmp_sniff_capable(hdev))
 518		link_policy |= HCI_LP_SNIFF;
 519	if (lmp_park_capable(hdev))
 520		link_policy |= HCI_LP_PARK;
 521
 522	cp.policy = cpu_to_le16(link_policy);
 523	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
 524}
 525
 526static void hci_set_le_support(struct hci_request *req)
 527{
 528	struct hci_dev *hdev = req->hdev;
 529	struct hci_cp_write_le_host_supported cp;
 530
 531	/* LE-only devices do not support explicit enablement */
 532	if (!lmp_bredr_capable(hdev))
 533		return;
 534
 535	memset(&cp, 0, sizeof(cp));
 536
 537	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
 538		cp.le = 0x01;
 539		cp.simul = 0x00;
 540	}
 541
 542	if (cp.le != lmp_host_le_capable(hdev))
 543		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
 544			    &cp);
 545}
 546
 547static void hci_set_event_mask_page_2(struct hci_request *req)
 548{
 549	struct hci_dev *hdev = req->hdev;
 550	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
 551
 552	/* If Connectionless Slave Broadcast master role is supported
 553	 * enable all necessary events for it.
 554	 */
 555	if (lmp_csb_master_capable(hdev)) {
 556		events[1] |= 0x40;	/* Triggered Clock Capture */
 557		events[1] |= 0x80;	/* Synchronization Train Complete */
 558		events[2] |= 0x10;	/* Slave Page Response Timeout */
 559		events[2] |= 0x20;	/* CSB Channel Map Change */
 560	}
 561
 562	/* If Connectionless Slave Broadcast slave role is supported
 563	 * enable all necessary events for it.
 564	 */
 565	if (lmp_csb_slave_capable(hdev)) {
 566		events[2] |= 0x01;	/* Synchronization Train Received */
 567		events[2] |= 0x02;	/* CSB Receive */
 568		events[2] |= 0x04;	/* CSB Timeout */
 569		events[2] |= 0x08;	/* Truncated Page Complete */
 570	}
 571
 572	/* Enable Authenticated Payload Timeout Expired event if supported */
 573	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
 574		events[2] |= 0x80;
 575
 576	hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
 577}
 578
 579static int hci_init3_req(struct hci_request *req, unsigned long opt)
 580{
 581	struct hci_dev *hdev = req->hdev;
 582	u8 p;
 583
 584	hci_setup_event_mask(req);
 585
 586	if (hdev->commands[6] & 0x20 &&
 587	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 588		struct hci_cp_read_stored_link_key cp;
 589
 590		bacpy(&cp.bdaddr, BDADDR_ANY);
 591		cp.read_all = 0x01;
 592		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
 593	}
 594
 595	if (hdev->commands[5] & 0x10)
 596		hci_setup_link_policy(req);
 597
 598	if (hdev->commands[8] & 0x01)
 599		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
 600
 601	/* Some older Broadcom based Bluetooth 1.2 controllers do not
 602	 * support the Read Page Scan Type command. Check support for
 603	 * this command in the bit mask of supported commands.
 604	 */
 605	if (hdev->commands[13] & 0x01)
 606		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
 607
 608	if (lmp_le_capable(hdev)) {
 609		u8 events[8];
 610
 611		memset(events, 0, sizeof(events));
 612
 613		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
 614			events[0] |= 0x10;	/* LE Long Term Key Request */
 615
 616		/* If controller supports the Connection Parameters Request
 617		 * Link Layer Procedure, enable the corresponding event.
 618		 */
 619		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
 620			events[0] |= 0x20;	/* LE Remote Connection
 621						 * Parameter Request
 622						 */
 623
 624		/* If the controller supports the Data Length Extension
 625		 * feature, enable the corresponding event.
 626		 */
 627		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
 628			events[0] |= 0x40;	/* LE Data Length Change */
 629
 630		/* If the controller supports Extended Scanner Filter
 631		 * Policies, enable the correspondig event.
 632		 */
 633		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
 634			events[1] |= 0x04;	/* LE Direct Advertising
 635						 * Report
 636						 */
 637
 638		/* If the controller supports the LE Set Scan Enable command,
 639		 * enable the corresponding advertising report event.
 640		 */
 641		if (hdev->commands[26] & 0x08)
 642			events[0] |= 0x02;	/* LE Advertising Report */
 643
 644		/* If the controller supports the LE Create Connection
 645		 * command, enable the corresponding event.
 646		 */
 647		if (hdev->commands[26] & 0x10)
 648			events[0] |= 0x01;	/* LE Connection Complete */
 649
 650		/* If the controller supports the LE Connection Update
 651		 * command, enable the corresponding event.
 652		 */
 653		if (hdev->commands[27] & 0x04)
 654			events[0] |= 0x04;	/* LE Connection Update
 655						 * Complete
 656						 */
 657
 658		/* If the controller supports the LE Read Remote Used Features
 659		 * command, enable the corresponding event.
 660		 */
 661		if (hdev->commands[27] & 0x20)
 662			events[0] |= 0x08;	/* LE Read Remote Used
 663						 * Features Complete
 664						 */
 665
 666		/* If the controller supports the LE Read Local P-256
 667		 * Public Key command, enable the corresponding event.
 668		 */
 669		if (hdev->commands[34] & 0x02)
 670			events[0] |= 0x80;	/* LE Read Local P-256
 671						 * Public Key Complete
 672						 */
 673
 674		/* If the controller supports the LE Generate DHKey
 675		 * command, enable the corresponding event.
 676		 */
 677		if (hdev->commands[34] & 0x04)
 678			events[1] |= 0x01;	/* LE Generate DHKey Complete */
 679
 680		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
 681			    events);
 682
 683		if (hdev->commands[25] & 0x40) {
 684			/* Read LE Advertising Channel TX Power */
 685			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
 686		}
 687
 688		if (hdev->commands[26] & 0x40) {
 689			/* Read LE White List Size */
 690			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
 691				    0, NULL);
 692		}
 693
 694		if (hdev->commands[26] & 0x80) {
 695			/* Clear LE White List */
 696			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
 697		}
 698
 699		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
 700			/* Read LE Maximum Data Length */
 701			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
 702
 703			/* Read LE Suggested Default Data Length */
 704			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
 705		}
 706
 707		hci_set_le_support(req);
 708	}
 709
 710	/* Read features beyond page 1 if available */
 711	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 712		struct hci_cp_read_local_ext_features cp;
 713
 714		cp.page = p;
 715		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
 716			    sizeof(cp), &cp);
 717	}
 718
 719	return 0;
 720}
 721
 722static int hci_init4_req(struct hci_request *req, unsigned long opt)
 723{
 724	struct hci_dev *hdev = req->hdev;
 725
 726	/* Some Broadcom based Bluetooth controllers do not support the
 727	 * Delete Stored Link Key command. They are clearly indicating its
 728	 * absence in the bit mask of supported commands.
 729	 *
 730	 * Check the supported commands and only if the the command is marked
 731	 * as supported send it. If not supported assume that the controller
 732	 * does not have actual support for stored link keys which makes this
 733	 * command redundant anyway.
 734	 *
 735	 * Some controllers indicate that they support handling deleting
 736	 * stored link keys, but they don't. The quirk lets a driver
 737	 * just disable this command.
 738	 */
 739	if (hdev->commands[6] & 0x80 &&
 740	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
 741		struct hci_cp_delete_stored_link_key cp;
 742
 743		bacpy(&cp.bdaddr, BDADDR_ANY);
 744		cp.delete_all = 0x01;
 745		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
 746			    sizeof(cp), &cp);
 747	}
 748
 749	/* Set event mask page 2 if the HCI command for it is supported */
 750	if (hdev->commands[22] & 0x04)
 751		hci_set_event_mask_page_2(req);
 752
 753	/* Read local codec list if the HCI command is supported */
 754	if (hdev->commands[29] & 0x20)
 755		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
 756
 757	/* Get MWS transport configuration if the HCI command is supported */
 758	if (hdev->commands[30] & 0x08)
 759		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
 760
 761	/* Check for Synchronization Train support */
 762	if (lmp_sync_train_capable(hdev))
 763		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
 764
 765	/* Enable Secure Connections if supported and configured */
 766	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
 767	    bredr_sc_enabled(hdev)) {
 768		u8 support = 0x01;
 769
 770		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
 771			    sizeof(support), &support);
 772	}
 773
 774	return 0;
 775}
 776
 777static int __hci_init(struct hci_dev *hdev)
 778{
 779	int err;
 780
 781	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
 782	if (err < 0)
 783		return err;
 784
 785	if (hci_dev_test_flag(hdev, HCI_SETUP))
 786		hci_debugfs_create_basic(hdev);
 787
 788	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
 789	if (err < 0)
 790		return err;
 791
 792	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
 793	 * BR/EDR/LE type controllers. AMP controllers only need the
 794	 * first two stages of init.
 795	 */
 796	if (hdev->dev_type != HCI_PRIMARY)
 797		return 0;
 798
 799	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
 800	if (err < 0)
 801		return err;
 802
 803	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
 804	if (err < 0)
 805		return err;
 806
 807	/* This function is only called when the controller is actually in
 808	 * configured state. When the controller is marked as unconfigured,
 809	 * this initialization procedure is not run.
 810	 *
 811	 * It means that it is possible that a controller runs through its
 812	 * setup phase and then discovers missing settings. If that is the
 813	 * case, then this function will not be called. It then will only
 814	 * be called during the config phase.
 815	 *
 816	 * So only when in setup phase or config phase, create the debugfs
 817	 * entries and register the SMP channels.
 818	 */
 819	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 820	    !hci_dev_test_flag(hdev, HCI_CONFIG))
 821		return 0;
 822
 823	hci_debugfs_create_common(hdev);
 824
 825	if (lmp_bredr_capable(hdev))
 826		hci_debugfs_create_bredr(hdev);
 827
 828	if (lmp_le_capable(hdev))
 829		hci_debugfs_create_le(hdev);
 830
 831	return 0;
 832}
 833
 834static int hci_init0_req(struct hci_request *req, unsigned long opt)
 835{
 836	struct hci_dev *hdev = req->hdev;
 837
 838	BT_DBG("%s %ld", hdev->name, opt);
 839
 840	/* Reset */
 841	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
 842		hci_reset_req(req, 0);
 843
 844	/* Read Local Version */
 845	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
 846
 847	/* Read BD Address */
 848	if (hdev->set_bdaddr)
 849		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
 850
 851	return 0;
 852}
 853
 854static int __hci_unconf_init(struct hci_dev *hdev)
 855{
 856	int err;
 857
 858	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
 859		return 0;
 860
 861	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
 862	if (err < 0)
 863		return err;
 864
 865	if (hci_dev_test_flag(hdev, HCI_SETUP))
 866		hci_debugfs_create_basic(hdev);
 867
 868	return 0;
 869}
 870
 871static int hci_scan_req(struct hci_request *req, unsigned long opt)
 872{
 873	__u8 scan = opt;
 874
 875	BT_DBG("%s %x", req->hdev->name, scan);
 876
 877	/* Inquiry and Page scans */
 878	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 879	return 0;
 880}
 881
 882static int hci_auth_req(struct hci_request *req, unsigned long opt)
 883{
 884	__u8 auth = opt;
 885
 886	BT_DBG("%s %x", req->hdev->name, auth);
 887
 888	/* Authentication */
 889	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 890	return 0;
 891}
 892
 893static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
 894{
 895	__u8 encrypt = opt;
 896
 897	BT_DBG("%s %x", req->hdev->name, encrypt);
 898
 899	/* Encryption */
 900	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 901	return 0;
 902}
 903
 904static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 905{
 906	__le16 policy = cpu_to_le16(opt);
 907
 908	BT_DBG("%s %x", req->hdev->name, policy);
 909
 910	/* Default link policy */
 911	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 912	return 0;
 913}
 914
 915/* Get HCI device by index.
 916 * Device is held on return. */
 917struct hci_dev *hci_dev_get(int index)
 918{
 919	struct hci_dev *hdev = NULL, *d;
 920
 921	BT_DBG("%d", index);
 922
 923	if (index < 0)
 924		return NULL;
 925
 926	read_lock(&hci_dev_list_lock);
 927	list_for_each_entry(d, &hci_dev_list, list) {
 928		if (d->id == index) {
 929			hdev = hci_dev_hold(d);
 930			break;
 931		}
 932	}
 933	read_unlock(&hci_dev_list_lock);
 934	return hdev;
 935}
 936
 937/* ---- Inquiry support ---- */
 938
 939bool hci_discovery_active(struct hci_dev *hdev)
 940{
 941	struct discovery_state *discov = &hdev->discovery;
 942
 943	switch (discov->state) {
 944	case DISCOVERY_FINDING:
 945	case DISCOVERY_RESOLVING:
 946		return true;
 947
 948	default:
 949		return false;
 950	}
 951}
 952
 953void hci_discovery_set_state(struct hci_dev *hdev, int state)
 954{
 955	int old_state = hdev->discovery.state;
 956
 957	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 958
 959	if (old_state == state)
 960		return;
 961
 962	hdev->discovery.state = state;
 963
 964	switch (state) {
 965	case DISCOVERY_STOPPED:
 966		hci_update_background_scan(hdev);
 967
 968		if (old_state != DISCOVERY_STARTING)
 969			mgmt_discovering(hdev, 0);
 970		break;
 971	case DISCOVERY_STARTING:
 972		break;
 973	case DISCOVERY_FINDING:
 974		mgmt_discovering(hdev, 1);
 975		break;
 976	case DISCOVERY_RESOLVING:
 977		break;
 978	case DISCOVERY_STOPPING:
 979		break;
 980	}
 981}
 982
 983void hci_inquiry_cache_flush(struct hci_dev *hdev)
 984{
 985	struct discovery_state *cache = &hdev->discovery;
 986	struct inquiry_entry *p, *n;
 987
 988	list_for_each_entry_safe(p, n, &cache->all, all) {
 989		list_del(&p->all);
 990		kfree(p);
 991	}
 992
 993	INIT_LIST_HEAD(&cache->unknown);
 994	INIT_LIST_HEAD(&cache->resolve);
 995}
 996
 997struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 998					       bdaddr_t *bdaddr)
 999{
1000	struct discovery_state *cache = &hdev->discovery;
1001	struct inquiry_entry *e;
1002
1003	BT_DBG("cache %p, %pMR", cache, bdaddr);
1004
1005	list_for_each_entry(e, &cache->all, all) {
1006		if (!bacmp(&e->data.bdaddr, bdaddr))
1007			return e;
1008	}
1009
1010	return NULL;
1011}
1012
1013struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1014						       bdaddr_t *bdaddr)
1015{
1016	struct discovery_state *cache = &hdev->discovery;
1017	struct inquiry_entry *e;
1018
1019	BT_DBG("cache %p, %pMR", cache, bdaddr);
1020
1021	list_for_each_entry(e, &cache->unknown, list) {
1022		if (!bacmp(&e->data.bdaddr, bdaddr))
1023			return e;
1024	}
1025
1026	return NULL;
1027}
1028
1029struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1030						       bdaddr_t *bdaddr,
1031						       int state)
1032{
1033	struct discovery_state *cache = &hdev->discovery;
1034	struct inquiry_entry *e;
1035
1036	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1037
1038	list_for_each_entry(e, &cache->resolve, list) {
1039		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1040			return e;
1041		if (!bacmp(&e->data.bdaddr, bdaddr))
1042			return e;
1043	}
1044
1045	return NULL;
1046}
1047
1048void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1049				      struct inquiry_entry *ie)
1050{
1051	struct discovery_state *cache = &hdev->discovery;
1052	struct list_head *pos = &cache->resolve;
1053	struct inquiry_entry *p;
1054
1055	list_del(&ie->list);
1056
1057	list_for_each_entry(p, &cache->resolve, list) {
1058		if (p->name_state != NAME_PENDING &&
1059		    abs(p->data.rssi) >= abs(ie->data.rssi))
1060			break;
1061		pos = &p->list;
1062	}
1063
1064	list_add(&ie->list, pos);
1065}
1066
1067u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1068			     bool name_known)
1069{
1070	struct discovery_state *cache = &hdev->discovery;
1071	struct inquiry_entry *ie;
1072	u32 flags = 0;
1073
1074	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1075
1076	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1077
1078	if (!data->ssp_mode)
1079		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1080
1081	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1082	if (ie) {
1083		if (!ie->data.ssp_mode)
1084			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1085
1086		if (ie->name_state == NAME_NEEDED &&
1087		    data->rssi != ie->data.rssi) {
1088			ie->data.rssi = data->rssi;
1089			hci_inquiry_cache_update_resolve(hdev, ie);
1090		}
1091
1092		goto update;
1093	}
1094
1095	/* Entry not in the cache. Add new one. */
1096	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1097	if (!ie) {
1098		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1099		goto done;
1100	}
1101
1102	list_add(&ie->all, &cache->all);
1103
1104	if (name_known) {
1105		ie->name_state = NAME_KNOWN;
1106	} else {
1107		ie->name_state = NAME_NOT_KNOWN;
1108		list_add(&ie->list, &cache->unknown);
1109	}
1110
1111update:
1112	if (name_known && ie->name_state != NAME_KNOWN &&
1113	    ie->name_state != NAME_PENDING) {
1114		ie->name_state = NAME_KNOWN;
1115		list_del(&ie->list);
1116	}
1117
1118	memcpy(&ie->data, data, sizeof(*data));
1119	ie->timestamp = jiffies;
1120	cache->timestamp = jiffies;
1121
1122	if (ie->name_state == NAME_NOT_KNOWN)
1123		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1124
1125done:
1126	return flags;
1127}
1128
1129static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1130{
1131	struct discovery_state *cache = &hdev->discovery;
1132	struct inquiry_info *info = (struct inquiry_info *) buf;
1133	struct inquiry_entry *e;
1134	int copied = 0;
1135
1136	list_for_each_entry(e, &cache->all, all) {
1137		struct inquiry_data *data = &e->data;
1138
1139		if (copied >= num)
1140			break;
1141
1142		bacpy(&info->bdaddr, &data->bdaddr);
1143		info->pscan_rep_mode	= data->pscan_rep_mode;
1144		info->pscan_period_mode	= data->pscan_period_mode;
1145		info->pscan_mode	= data->pscan_mode;
1146		memcpy(info->dev_class, data->dev_class, 3);
1147		info->clock_offset	= data->clock_offset;
1148
1149		info++;
1150		copied++;
1151	}
1152
1153	BT_DBG("cache %p, copied %d", cache, copied);
1154	return copied;
1155}
1156
1157static int hci_inq_req(struct hci_request *req, unsigned long opt)
1158{
1159	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1160	struct hci_dev *hdev = req->hdev;
1161	struct hci_cp_inquiry cp;
1162
1163	BT_DBG("%s", hdev->name);
1164
1165	if (test_bit(HCI_INQUIRY, &hdev->flags))
1166		return 0;
1167
1168	/* Start Inquiry */
1169	memcpy(&cp.lap, &ir->lap, 3);
1170	cp.length  = ir->length;
1171	cp.num_rsp = ir->num_rsp;
1172	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1173
1174	return 0;
1175}
1176
1177int hci_inquiry(void __user *arg)
1178{
1179	__u8 __user *ptr = arg;
1180	struct hci_inquiry_req ir;
1181	struct hci_dev *hdev;
1182	int err = 0, do_inquiry = 0, max_rsp;
1183	long timeo;
1184	__u8 *buf;
1185
1186	if (copy_from_user(&ir, ptr, sizeof(ir)))
1187		return -EFAULT;
1188
1189	hdev = hci_dev_get(ir.dev_id);
1190	if (!hdev)
1191		return -ENODEV;
1192
1193	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1194		err = -EBUSY;
1195		goto done;
1196	}
1197
1198	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1199		err = -EOPNOTSUPP;
1200		goto done;
1201	}
1202
1203	if (hdev->dev_type != HCI_PRIMARY) {
1204		err = -EOPNOTSUPP;
1205		goto done;
1206	}
1207
1208	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1209		err = -EOPNOTSUPP;
1210		goto done;
1211	}
1212
 
 
 
 
 
 
1213	hci_dev_lock(hdev);
1214	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1215	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1216		hci_inquiry_cache_flush(hdev);
1217		do_inquiry = 1;
1218	}
1219	hci_dev_unlock(hdev);
1220
1221	timeo = ir.length * msecs_to_jiffies(2000);
1222
1223	if (do_inquiry) {
1224		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1225				   timeo, NULL);
1226		if (err < 0)
1227			goto done;
1228
1229		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1230		 * cleared). If it is interrupted by a signal, return -EINTR.
1231		 */
1232		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1233				TASK_INTERRUPTIBLE))
1234			return -EINTR;
 
 
1235	}
1236
1237	/* for unlimited number of responses we will use buffer with
1238	 * 255 entries
1239	 */
1240	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1241
1242	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1243	 * copy it to the user space.
1244	 */
1245	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1246	if (!buf) {
1247		err = -ENOMEM;
1248		goto done;
1249	}
1250
1251	hci_dev_lock(hdev);
1252	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1253	hci_dev_unlock(hdev);
1254
1255	BT_DBG("num_rsp %d", ir.num_rsp);
1256
1257	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1258		ptr += sizeof(ir);
1259		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1260				 ir.num_rsp))
1261			err = -EFAULT;
1262	} else
1263		err = -EFAULT;
1264
1265	kfree(buf);
1266
1267done:
1268	hci_dev_put(hdev);
1269	return err;
1270}
1271
1272static int hci_dev_do_open(struct hci_dev *hdev)
1273{
1274	int ret = 0;
1275
1276	BT_DBG("%s %p", hdev->name, hdev);
1277
1278	hci_req_sync_lock(hdev);
1279
1280	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1281		ret = -ENODEV;
1282		goto done;
1283	}
1284
1285	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1286	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1287		/* Check for rfkill but allow the HCI setup stage to
1288		 * proceed (which in itself doesn't cause any RF activity).
1289		 */
1290		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1291			ret = -ERFKILL;
1292			goto done;
1293		}
1294
1295		/* Check for valid public address or a configured static
1296		 * random adddress, but let the HCI setup proceed to
1297		 * be able to determine if there is a public address
1298		 * or not.
1299		 *
1300		 * In case of user channel usage, it is not important
1301		 * if a public address or static random address is
1302		 * available.
1303		 *
1304		 * This check is only valid for BR/EDR controllers
1305		 * since AMP controllers do not have an address.
1306		 */
1307		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1308		    hdev->dev_type == HCI_PRIMARY &&
1309		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1310		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1311			ret = -EADDRNOTAVAIL;
1312			goto done;
1313		}
1314	}
1315
1316	if (test_bit(HCI_UP, &hdev->flags)) {
1317		ret = -EALREADY;
1318		goto done;
1319	}
1320
1321	if (hdev->open(hdev)) {
1322		ret = -EIO;
1323		goto done;
1324	}
1325
1326	set_bit(HCI_RUNNING, &hdev->flags);
1327	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1328
1329	atomic_set(&hdev->cmd_cnt, 1);
1330	set_bit(HCI_INIT, &hdev->flags);
1331
1332	if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1333		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1334
1335		if (hdev->setup)
1336			ret = hdev->setup(hdev);
1337
1338		/* The transport driver can set these quirks before
1339		 * creating the HCI device or in its setup callback.
1340		 *
1341		 * In case any of them is set, the controller has to
1342		 * start up as unconfigured.
1343		 */
1344		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1345		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1346			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1347
1348		/* For an unconfigured controller it is required to
1349		 * read at least the version information provided by
1350		 * the Read Local Version Information command.
1351		 *
1352		 * If the set_bdaddr driver callback is provided, then
1353		 * also the original Bluetooth public device address
1354		 * will be read using the Read BD Address command.
1355		 */
1356		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1357			ret = __hci_unconf_init(hdev);
1358	}
1359
1360	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1361		/* If public address change is configured, ensure that
1362		 * the address gets programmed. If the driver does not
1363		 * support changing the public address, fail the power
1364		 * on procedure.
1365		 */
1366		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1367		    hdev->set_bdaddr)
1368			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1369		else
1370			ret = -EADDRNOTAVAIL;
1371	}
1372
1373	if (!ret) {
1374		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1375		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1376			ret = __hci_init(hdev);
1377			if (!ret && hdev->post_init)
1378				ret = hdev->post_init(hdev);
1379		}
1380	}
1381
1382	/* If the HCI Reset command is clearing all diagnostic settings,
1383	 * then they need to be reprogrammed after the init procedure
1384	 * completed.
1385	 */
1386	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1387	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1388		ret = hdev->set_diag(hdev, true);
1389
1390	clear_bit(HCI_INIT, &hdev->flags);
1391
1392	if (!ret) {
1393		hci_dev_hold(hdev);
1394		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1395		set_bit(HCI_UP, &hdev->flags);
1396		hci_sock_dev_event(hdev, HCI_DEV_UP);
1397		hci_leds_update_powered(hdev, true);
1398		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1400		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1401		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1402		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1403		    hdev->dev_type == HCI_PRIMARY) {
1404			ret = __hci_req_hci_power_on(hdev);
1405			mgmt_power_on(hdev, ret);
1406		}
1407	} else {
1408		/* Init failed, cleanup */
1409		flush_work(&hdev->tx_work);
1410		flush_work(&hdev->cmd_work);
1411		flush_work(&hdev->rx_work);
1412
1413		skb_queue_purge(&hdev->cmd_q);
1414		skb_queue_purge(&hdev->rx_q);
1415
1416		if (hdev->flush)
1417			hdev->flush(hdev);
1418
1419		if (hdev->sent_cmd) {
1420			kfree_skb(hdev->sent_cmd);
1421			hdev->sent_cmd = NULL;
1422		}
1423
1424		clear_bit(HCI_RUNNING, &hdev->flags);
1425		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1426
1427		hdev->close(hdev);
1428		hdev->flags &= BIT(HCI_RAW);
1429	}
1430
1431done:
1432	hci_req_sync_unlock(hdev);
1433	return ret;
1434}
1435
1436/* ---- HCI ioctl helpers ---- */
1437
1438int hci_dev_open(__u16 dev)
1439{
1440	struct hci_dev *hdev;
1441	int err;
1442
1443	hdev = hci_dev_get(dev);
1444	if (!hdev)
1445		return -ENODEV;
1446
1447	/* Devices that are marked as unconfigured can only be powered
1448	 * up as user channel. Trying to bring them up as normal devices
1449	 * will result into a failure. Only user channel operation is
1450	 * possible.
1451	 *
1452	 * When this function is called for a user channel, the flag
1453	 * HCI_USER_CHANNEL will be set first before attempting to
1454	 * open the device.
1455	 */
1456	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1457	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1458		err = -EOPNOTSUPP;
1459		goto done;
1460	}
1461
1462	/* We need to ensure that no other power on/off work is pending
1463	 * before proceeding to call hci_dev_do_open. This is
1464	 * particularly important if the setup procedure has not yet
1465	 * completed.
1466	 */
1467	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1468		cancel_delayed_work(&hdev->power_off);
1469
1470	/* After this call it is guaranteed that the setup procedure
1471	 * has finished. This means that error conditions like RFKILL
1472	 * or no valid public or static random address apply.
1473	 */
1474	flush_workqueue(hdev->req_workqueue);
1475
1476	/* For controllers not using the management interface and that
1477	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1478	 * so that pairing works for them. Once the management interface
1479	 * is in use this bit will be cleared again and userspace has
1480	 * to explicitly enable it.
1481	 */
1482	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1483	    !hci_dev_test_flag(hdev, HCI_MGMT))
1484		hci_dev_set_flag(hdev, HCI_BONDABLE);
1485
1486	err = hci_dev_do_open(hdev);
1487
1488done:
1489	hci_dev_put(hdev);
1490	return err;
1491}
1492
1493/* This function requires the caller holds hdev->lock */
1494static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1495{
1496	struct hci_conn_params *p;
1497
1498	list_for_each_entry(p, &hdev->le_conn_params, list) {
1499		if (p->conn) {
1500			hci_conn_drop(p->conn);
1501			hci_conn_put(p->conn);
1502			p->conn = NULL;
1503		}
1504		list_del_init(&p->action);
1505	}
1506
1507	BT_DBG("All LE pending actions cleared");
1508}
1509
1510int hci_dev_do_close(struct hci_dev *hdev)
1511{
1512	bool auto_off;
1513
1514	BT_DBG("%s %p", hdev->name, hdev);
1515
1516	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1517	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1518	    test_bit(HCI_UP, &hdev->flags)) {
1519		/* Execute vendor specific shutdown routine */
1520		if (hdev->shutdown)
1521			hdev->shutdown(hdev);
1522	}
1523
1524	cancel_delayed_work(&hdev->power_off);
1525
1526	hci_request_cancel_all(hdev);
1527	hci_req_sync_lock(hdev);
1528
1529	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1530		cancel_delayed_work_sync(&hdev->cmd_timer);
1531		hci_req_sync_unlock(hdev);
1532		return 0;
1533	}
1534
1535	hci_leds_update_powered(hdev, false);
1536
1537	/* Flush RX and TX works */
1538	flush_work(&hdev->tx_work);
1539	flush_work(&hdev->rx_work);
1540
1541	if (hdev->discov_timeout > 0) {
1542		hdev->discov_timeout = 0;
1543		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1544		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1545	}
1546
1547	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1548		cancel_delayed_work(&hdev->service_cache);
1549
1550	if (hci_dev_test_flag(hdev, HCI_MGMT))
1551		cancel_delayed_work_sync(&hdev->rpa_expired);
1552
1553	/* Avoid potential lockdep warnings from the *_flush() calls by
1554	 * ensuring the workqueue is empty up front.
1555	 */
1556	drain_workqueue(hdev->workqueue);
1557
1558	hci_dev_lock(hdev);
1559
1560	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1561
1562	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1563
1564	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1565	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1566	    hci_dev_test_flag(hdev, HCI_MGMT))
1567		__mgmt_power_off(hdev);
1568
1569	hci_inquiry_cache_flush(hdev);
1570	hci_pend_le_actions_clear(hdev);
1571	hci_conn_hash_flush(hdev);
1572	hci_dev_unlock(hdev);
1573
1574	smp_unregister(hdev);
1575
1576	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1577
1578	if (hdev->flush)
1579		hdev->flush(hdev);
1580
1581	/* Reset device */
1582	skb_queue_purge(&hdev->cmd_q);
1583	atomic_set(&hdev->cmd_cnt, 1);
1584	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1585	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1586		set_bit(HCI_INIT, &hdev->flags);
1587		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1588		clear_bit(HCI_INIT, &hdev->flags);
1589	}
1590
1591	/* flush cmd  work */
1592	flush_work(&hdev->cmd_work);
1593
1594	/* Drop queues */
1595	skb_queue_purge(&hdev->rx_q);
1596	skb_queue_purge(&hdev->cmd_q);
1597	skb_queue_purge(&hdev->raw_q);
1598
1599	/* Drop last sent command */
1600	if (hdev->sent_cmd) {
1601		cancel_delayed_work_sync(&hdev->cmd_timer);
1602		kfree_skb(hdev->sent_cmd);
1603		hdev->sent_cmd = NULL;
1604	}
1605
1606	clear_bit(HCI_RUNNING, &hdev->flags);
1607	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1608
1609	/* After this point our queues are empty
1610	 * and no tasks are scheduled. */
1611	hdev->close(hdev);
1612
1613	/* Clear flags */
1614	hdev->flags &= BIT(HCI_RAW);
1615	hci_dev_clear_volatile_flags(hdev);
1616
1617	/* Controller radio is available but is currently powered down */
1618	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1619
1620	memset(hdev->eir, 0, sizeof(hdev->eir));
1621	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1622	bacpy(&hdev->random_addr, BDADDR_ANY);
1623
1624	hci_req_sync_unlock(hdev);
1625
1626	hci_dev_put(hdev);
1627	return 0;
1628}
1629
1630int hci_dev_close(__u16 dev)
1631{
1632	struct hci_dev *hdev;
1633	int err;
1634
1635	hdev = hci_dev_get(dev);
1636	if (!hdev)
1637		return -ENODEV;
1638
1639	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1640		err = -EBUSY;
1641		goto done;
1642	}
1643
 
1644	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1645		cancel_delayed_work(&hdev->power_off);
1646
1647	err = hci_dev_do_close(hdev);
1648
1649done:
1650	hci_dev_put(hdev);
1651	return err;
1652}
1653
1654static int hci_dev_do_reset(struct hci_dev *hdev)
1655{
1656	int ret;
1657
1658	BT_DBG("%s %p", hdev->name, hdev);
1659
1660	hci_req_sync_lock(hdev);
1661
1662	/* Drop queues */
1663	skb_queue_purge(&hdev->rx_q);
1664	skb_queue_purge(&hdev->cmd_q);
1665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666	/* Avoid potential lockdep warnings from the *_flush() calls by
1667	 * ensuring the workqueue is empty up front.
1668	 */
1669	drain_workqueue(hdev->workqueue);
1670
1671	hci_dev_lock(hdev);
1672	hci_inquiry_cache_flush(hdev);
1673	hci_conn_hash_flush(hdev);
1674	hci_dev_unlock(hdev);
1675
1676	if (hdev->flush)
1677		hdev->flush(hdev);
1678
 
 
1679	atomic_set(&hdev->cmd_cnt, 1);
1680	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
 
 
 
1681
1682	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1683
1684	hci_req_sync_unlock(hdev);
1685	return ret;
1686}
1687
1688int hci_dev_reset(__u16 dev)
1689{
1690	struct hci_dev *hdev;
1691	int err;
1692
1693	hdev = hci_dev_get(dev);
1694	if (!hdev)
1695		return -ENODEV;
1696
1697	if (!test_bit(HCI_UP, &hdev->flags)) {
1698		err = -ENETDOWN;
1699		goto done;
1700	}
1701
1702	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1703		err = -EBUSY;
1704		goto done;
1705	}
1706
1707	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1708		err = -EOPNOTSUPP;
1709		goto done;
1710	}
1711
1712	err = hci_dev_do_reset(hdev);
1713
1714done:
1715	hci_dev_put(hdev);
1716	return err;
1717}
1718
1719int hci_dev_reset_stat(__u16 dev)
1720{
1721	struct hci_dev *hdev;
1722	int ret = 0;
1723
1724	hdev = hci_dev_get(dev);
1725	if (!hdev)
1726		return -ENODEV;
1727
1728	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1729		ret = -EBUSY;
1730		goto done;
1731	}
1732
1733	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1734		ret = -EOPNOTSUPP;
1735		goto done;
1736	}
1737
1738	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1739
1740done:
1741	hci_dev_put(hdev);
1742	return ret;
1743}
1744
1745static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1746{
1747	bool conn_changed, discov_changed;
1748
1749	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1750
1751	if ((scan & SCAN_PAGE))
1752		conn_changed = !hci_dev_test_and_set_flag(hdev,
1753							  HCI_CONNECTABLE);
1754	else
1755		conn_changed = hci_dev_test_and_clear_flag(hdev,
1756							   HCI_CONNECTABLE);
1757
1758	if ((scan & SCAN_INQUIRY)) {
1759		discov_changed = !hci_dev_test_and_set_flag(hdev,
1760							    HCI_DISCOVERABLE);
1761	} else {
1762		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1763		discov_changed = hci_dev_test_and_clear_flag(hdev,
1764							     HCI_DISCOVERABLE);
1765	}
1766
1767	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1768		return;
1769
1770	if (conn_changed || discov_changed) {
1771		/* In case this was disabled through mgmt */
1772		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1773
1774		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1775			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1776
1777		mgmt_new_settings(hdev);
1778	}
1779}
1780
1781int hci_dev_cmd(unsigned int cmd, void __user *arg)
1782{
1783	struct hci_dev *hdev;
1784	struct hci_dev_req dr;
1785	int err = 0;
1786
1787	if (copy_from_user(&dr, arg, sizeof(dr)))
1788		return -EFAULT;
1789
1790	hdev = hci_dev_get(dr.dev_id);
1791	if (!hdev)
1792		return -ENODEV;
1793
1794	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1795		err = -EBUSY;
1796		goto done;
1797	}
1798
1799	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1800		err = -EOPNOTSUPP;
1801		goto done;
1802	}
1803
1804	if (hdev->dev_type != HCI_PRIMARY) {
1805		err = -EOPNOTSUPP;
1806		goto done;
1807	}
1808
1809	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1810		err = -EOPNOTSUPP;
1811		goto done;
1812	}
1813
1814	switch (cmd) {
1815	case HCISETAUTH:
1816		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1817				   HCI_INIT_TIMEOUT, NULL);
1818		break;
1819
1820	case HCISETENCRYPT:
1821		if (!lmp_encrypt_capable(hdev)) {
1822			err = -EOPNOTSUPP;
1823			break;
1824		}
1825
1826		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1827			/* Auth must be enabled first */
1828			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1829					   HCI_INIT_TIMEOUT, NULL);
1830			if (err)
1831				break;
1832		}
1833
1834		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1835				   HCI_INIT_TIMEOUT, NULL);
1836		break;
1837
1838	case HCISETSCAN:
1839		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1840				   HCI_INIT_TIMEOUT, NULL);
1841
1842		/* Ensure that the connectable and discoverable states
1843		 * get correctly modified as this was a non-mgmt change.
1844		 */
1845		if (!err)
1846			hci_update_scan_state(hdev, dr.dev_opt);
1847		break;
1848
1849	case HCISETLINKPOL:
1850		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1851				   HCI_INIT_TIMEOUT, NULL);
1852		break;
1853
1854	case HCISETLINKMODE:
1855		hdev->link_mode = ((__u16) dr.dev_opt) &
1856					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1857		break;
1858
1859	case HCISETPTYPE:
 
 
 
1860		hdev->pkt_type = (__u16) dr.dev_opt;
 
1861		break;
1862
1863	case HCISETACLMTU:
1864		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1865		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1866		break;
1867
1868	case HCISETSCOMTU:
1869		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1870		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1871		break;
1872
1873	default:
1874		err = -EINVAL;
1875		break;
1876	}
1877
1878done:
1879	hci_dev_put(hdev);
1880	return err;
1881}
1882
1883int hci_get_dev_list(void __user *arg)
1884{
1885	struct hci_dev *hdev;
1886	struct hci_dev_list_req *dl;
1887	struct hci_dev_req *dr;
1888	int n = 0, size, err;
1889	__u16 dev_num;
1890
1891	if (get_user(dev_num, (__u16 __user *) arg))
1892		return -EFAULT;
1893
1894	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1895		return -EINVAL;
1896
1897	size = sizeof(*dl) + dev_num * sizeof(*dr);
1898
1899	dl = kzalloc(size, GFP_KERNEL);
1900	if (!dl)
1901		return -ENOMEM;
1902
1903	dr = dl->dev_req;
1904
1905	read_lock(&hci_dev_list_lock);
1906	list_for_each_entry(hdev, &hci_dev_list, list) {
1907		unsigned long flags = hdev->flags;
1908
1909		/* When the auto-off is configured it means the transport
1910		 * is running, but in that case still indicate that the
1911		 * device is actually down.
1912		 */
1913		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1914			flags &= ~BIT(HCI_UP);
1915
1916		(dr + n)->dev_id  = hdev->id;
1917		(dr + n)->dev_opt = flags;
1918
1919		if (++n >= dev_num)
1920			break;
1921	}
1922	read_unlock(&hci_dev_list_lock);
1923
1924	dl->dev_num = n;
1925	size = sizeof(*dl) + n * sizeof(*dr);
1926
1927	err = copy_to_user(arg, dl, size);
1928	kfree(dl);
1929
1930	return err ? -EFAULT : 0;
1931}
1932
1933int hci_get_dev_info(void __user *arg)
1934{
1935	struct hci_dev *hdev;
1936	struct hci_dev_info di;
1937	unsigned long flags;
1938	int err = 0;
1939
1940	if (copy_from_user(&di, arg, sizeof(di)))
1941		return -EFAULT;
1942
1943	hdev = hci_dev_get(di.dev_id);
1944	if (!hdev)
1945		return -ENODEV;
1946
1947	/* When the auto-off is configured it means the transport
1948	 * is running, but in that case still indicate that the
1949	 * device is actually down.
1950	 */
1951	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1952		flags = hdev->flags & ~BIT(HCI_UP);
1953	else
1954		flags = hdev->flags;
1955
1956	strcpy(di.name, hdev->name);
1957	di.bdaddr   = hdev->bdaddr;
1958	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
1959	di.flags    = flags;
1960	di.pkt_type = hdev->pkt_type;
1961	if (lmp_bredr_capable(hdev)) {
1962		di.acl_mtu  = hdev->acl_mtu;
1963		di.acl_pkts = hdev->acl_pkts;
1964		di.sco_mtu  = hdev->sco_mtu;
1965		di.sco_pkts = hdev->sco_pkts;
1966	} else {
1967		di.acl_mtu  = hdev->le_mtu;
1968		di.acl_pkts = hdev->le_pkts;
1969		di.sco_mtu  = 0;
1970		di.sco_pkts = 0;
1971	}
1972	di.link_policy = hdev->link_policy;
1973	di.link_mode   = hdev->link_mode;
1974
1975	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
1976	memcpy(&di.features, &hdev->features, sizeof(di.features));
1977
1978	if (copy_to_user(arg, &di, sizeof(di)))
1979		err = -EFAULT;
1980
1981	hci_dev_put(hdev);
1982
1983	return err;
1984}
1985
1986/* ---- Interface to HCI drivers ---- */
1987
1988static int hci_rfkill_set_block(void *data, bool blocked)
1989{
1990	struct hci_dev *hdev = data;
1991
1992	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
1993
1994	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1995		return -EBUSY;
1996
1997	if (blocked) {
1998		hci_dev_set_flag(hdev, HCI_RFKILLED);
1999		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2000		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2001			hci_dev_do_close(hdev);
2002	} else {
2003		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2004	}
2005
2006	return 0;
2007}
2008
2009static const struct rfkill_ops hci_rfkill_ops = {
2010	.set_block = hci_rfkill_set_block,
2011};
2012
2013static void hci_power_on(struct work_struct *work)
2014{
2015	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2016	int err;
2017
2018	BT_DBG("%s", hdev->name);
2019
2020	if (test_bit(HCI_UP, &hdev->flags) &&
2021	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2022	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2023		cancel_delayed_work(&hdev->power_off);
2024		hci_req_sync_lock(hdev);
2025		err = __hci_req_hci_power_on(hdev);
2026		hci_req_sync_unlock(hdev);
2027		mgmt_power_on(hdev, err);
2028		return;
2029	}
2030
2031	err = hci_dev_do_open(hdev);
2032	if (err < 0) {
2033		hci_dev_lock(hdev);
2034		mgmt_set_powered_failed(hdev, err);
2035		hci_dev_unlock(hdev);
2036		return;
2037	}
2038
2039	/* During the HCI setup phase, a few error conditions are
2040	 * ignored and they need to be checked now. If they are still
2041	 * valid, it is important to turn the device back off.
2042	 */
2043	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2044	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2045	    (hdev->dev_type == HCI_PRIMARY &&
2046	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2047	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2048		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2049		hci_dev_do_close(hdev);
2050	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2051		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2052				   HCI_AUTO_OFF_TIMEOUT);
2053	}
2054
2055	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2056		/* For unconfigured devices, set the HCI_RAW flag
2057		 * so that userspace can easily identify them.
2058		 */
2059		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2060			set_bit(HCI_RAW, &hdev->flags);
2061
2062		/* For fully configured devices, this will send
2063		 * the Index Added event. For unconfigured devices,
2064		 * it will send Unconfigued Index Added event.
2065		 *
2066		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2067		 * and no event will be send.
2068		 */
2069		mgmt_index_added(hdev);
2070	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2071		/* When the controller is now configured, then it
2072		 * is important to clear the HCI_RAW flag.
2073		 */
2074		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2075			clear_bit(HCI_RAW, &hdev->flags);
2076
2077		/* Powering on the controller with HCI_CONFIG set only
2078		 * happens with the transition from unconfigured to
2079		 * configured. This will send the Index Added event.
2080		 */
2081		mgmt_index_added(hdev);
2082	}
2083}
2084
2085static void hci_power_off(struct work_struct *work)
2086{
2087	struct hci_dev *hdev = container_of(work, struct hci_dev,
2088					    power_off.work);
2089
2090	BT_DBG("%s", hdev->name);
2091
2092	hci_dev_do_close(hdev);
2093}
2094
2095static void hci_error_reset(struct work_struct *work)
2096{
2097	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2098
 
2099	BT_DBG("%s", hdev->name);
2100
2101	if (hdev->hw_error)
2102		hdev->hw_error(hdev, hdev->hw_error_code);
2103	else
2104		BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2105		       hdev->hw_error_code);
2106
2107	if (hci_dev_do_close(hdev))
2108		return;
2109
2110	hci_dev_do_open(hdev);
2111}
2112
2113void hci_uuids_clear(struct hci_dev *hdev)
2114{
2115	struct bt_uuid *uuid, *tmp;
2116
2117	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2118		list_del(&uuid->list);
2119		kfree(uuid);
2120	}
2121}
2122
2123void hci_link_keys_clear(struct hci_dev *hdev)
2124{
2125	struct link_key *key;
2126
2127	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2128		list_del_rcu(&key->list);
2129		kfree_rcu(key, rcu);
2130	}
2131}
2132
2133void hci_smp_ltks_clear(struct hci_dev *hdev)
2134{
2135	struct smp_ltk *k;
2136
2137	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2138		list_del_rcu(&k->list);
2139		kfree_rcu(k, rcu);
2140	}
2141}
2142
2143void hci_smp_irks_clear(struct hci_dev *hdev)
2144{
2145	struct smp_irk *k;
2146
2147	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2148		list_del_rcu(&k->list);
2149		kfree_rcu(k, rcu);
2150	}
2151}
2152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2153struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2154{
2155	struct link_key *k;
2156
2157	rcu_read_lock();
2158	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2159		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2160			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
2161			return k;
2162		}
2163	}
2164	rcu_read_unlock();
2165
2166	return NULL;
2167}
2168
2169static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2170			       u8 key_type, u8 old_key_type)
2171{
2172	/* Legacy key */
2173	if (key_type < 0x03)
2174		return true;
2175
2176	/* Debug keys are insecure so don't store them persistently */
2177	if (key_type == HCI_LK_DEBUG_COMBINATION)
2178		return false;
2179
2180	/* Changed combination key and there's no previous one */
2181	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2182		return false;
2183
2184	/* Security mode 3 case */
2185	if (!conn)
2186		return true;
2187
2188	/* BR/EDR key derived using SC from an LE link */
2189	if (conn->type == LE_LINK)
2190		return true;
2191
2192	/* Neither local nor remote side had no-bonding as requirement */
2193	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2194		return true;
2195
2196	/* Local side had dedicated bonding as requirement */
2197	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2198		return true;
2199
2200	/* Remote side had dedicated bonding as requirement */
2201	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2202		return true;
2203
2204	/* If none of the above criteria match, then don't store the key
2205	 * persistently */
2206	return false;
2207}
2208
2209static u8 ltk_role(u8 type)
2210{
2211	if (type == SMP_LTK)
2212		return HCI_ROLE_MASTER;
2213
2214	return HCI_ROLE_SLAVE;
2215}
2216
2217struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2218			     u8 addr_type, u8 role)
2219{
2220	struct smp_ltk *k;
2221
2222	rcu_read_lock();
2223	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2224		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2225			continue;
2226
2227		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2228			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
2229			return k;
2230		}
2231	}
2232	rcu_read_unlock();
2233
2234	return NULL;
2235}
2236
2237struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2238{
 
2239	struct smp_irk *irk;
2240
2241	rcu_read_lock();
2242	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2243		if (!bacmp(&irk->rpa, rpa)) {
2244			rcu_read_unlock();
2245			return irk;
2246		}
2247	}
2248
2249	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2250		if (smp_irk_matches(hdev, irk->val, rpa)) {
2251			bacpy(&irk->rpa, rpa);
2252			rcu_read_unlock();
2253			return irk;
2254		}
2255	}
 
 
 
 
 
 
 
 
 
2256	rcu_read_unlock();
2257
2258	return NULL;
2259}
2260
2261struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2262				     u8 addr_type)
2263{
 
2264	struct smp_irk *irk;
2265
2266	/* Identity Address must be public or static random */
2267	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2268		return NULL;
2269
2270	rcu_read_lock();
2271	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2272		if (addr_type == irk->addr_type &&
2273		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2274			rcu_read_unlock();
2275			return irk;
2276		}
2277	}
 
 
 
 
 
 
 
 
 
 
2278	rcu_read_unlock();
2279
2280	return NULL;
2281}
2282
2283struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2284				  bdaddr_t *bdaddr, u8 *val, u8 type,
2285				  u8 pin_len, bool *persistent)
2286{
2287	struct link_key *key, *old_key;
2288	u8 old_key_type;
2289
2290	old_key = hci_find_link_key(hdev, bdaddr);
2291	if (old_key) {
2292		old_key_type = old_key->type;
2293		key = old_key;
2294	} else {
2295		old_key_type = conn ? conn->key_type : 0xff;
2296		key = kzalloc(sizeof(*key), GFP_KERNEL);
2297		if (!key)
2298			return NULL;
2299		list_add_rcu(&key->list, &hdev->link_keys);
2300	}
2301
2302	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2303
2304	/* Some buggy controller combinations generate a changed
2305	 * combination key for legacy pairing even when there's no
2306	 * previous key */
2307	if (type == HCI_LK_CHANGED_COMBINATION &&
2308	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2309		type = HCI_LK_COMBINATION;
2310		if (conn)
2311			conn->key_type = type;
2312	}
2313
2314	bacpy(&key->bdaddr, bdaddr);
2315	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2316	key->pin_len = pin_len;
2317
2318	if (type == HCI_LK_CHANGED_COMBINATION)
2319		key->type = old_key_type;
2320	else
2321		key->type = type;
2322
2323	if (persistent)
2324		*persistent = hci_persistent_key(hdev, conn, type,
2325						 old_key_type);
2326
2327	return key;
2328}
2329
2330struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2331			    u8 addr_type, u8 type, u8 authenticated,
2332			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2333{
2334	struct smp_ltk *key, *old_key;
2335	u8 role = ltk_role(type);
2336
2337	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2338	if (old_key)
2339		key = old_key;
2340	else {
2341		key = kzalloc(sizeof(*key), GFP_KERNEL);
2342		if (!key)
2343			return NULL;
2344		list_add_rcu(&key->list, &hdev->long_term_keys);
2345	}
2346
2347	bacpy(&key->bdaddr, bdaddr);
2348	key->bdaddr_type = addr_type;
2349	memcpy(key->val, tk, sizeof(key->val));
2350	key->authenticated = authenticated;
2351	key->ediv = ediv;
2352	key->rand = rand;
2353	key->enc_size = enc_size;
2354	key->type = type;
2355
2356	return key;
2357}
2358
2359struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2360			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2361{
2362	struct smp_irk *irk;
2363
2364	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2365	if (!irk) {
2366		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2367		if (!irk)
2368			return NULL;
2369
2370		bacpy(&irk->bdaddr, bdaddr);
2371		irk->addr_type = addr_type;
2372
2373		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2374	}
2375
2376	memcpy(irk->val, val, 16);
2377	bacpy(&irk->rpa, rpa);
2378
2379	return irk;
2380}
2381
2382int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2383{
2384	struct link_key *key;
2385
2386	key = hci_find_link_key(hdev, bdaddr);
2387	if (!key)
2388		return -ENOENT;
2389
2390	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2391
2392	list_del_rcu(&key->list);
2393	kfree_rcu(key, rcu);
2394
2395	return 0;
2396}
2397
2398int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2399{
2400	struct smp_ltk *k;
2401	int removed = 0;
2402
2403	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2404		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2405			continue;
2406
2407		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2408
2409		list_del_rcu(&k->list);
2410		kfree_rcu(k, rcu);
2411		removed++;
2412	}
2413
2414	return removed ? 0 : -ENOENT;
2415}
2416
2417void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2418{
2419	struct smp_irk *k;
2420
2421	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2422		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2423			continue;
2424
2425		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2426
2427		list_del_rcu(&k->list);
2428		kfree_rcu(k, rcu);
2429	}
2430}
2431
2432bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2433{
2434	struct smp_ltk *k;
2435	struct smp_irk *irk;
2436	u8 addr_type;
2437
2438	if (type == BDADDR_BREDR) {
2439		if (hci_find_link_key(hdev, bdaddr))
2440			return true;
2441		return false;
2442	}
2443
2444	/* Convert to HCI addr type which struct smp_ltk uses */
2445	if (type == BDADDR_LE_PUBLIC)
2446		addr_type = ADDR_LE_DEV_PUBLIC;
2447	else
2448		addr_type = ADDR_LE_DEV_RANDOM;
2449
2450	irk = hci_get_irk(hdev, bdaddr, addr_type);
2451	if (irk) {
2452		bdaddr = &irk->bdaddr;
2453		addr_type = irk->addr_type;
2454	}
2455
2456	rcu_read_lock();
2457	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2458		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2459			rcu_read_unlock();
2460			return true;
2461		}
2462	}
2463	rcu_read_unlock();
2464
2465	return false;
2466}
2467
2468/* HCI command timer function */
2469static void hci_cmd_timeout(struct work_struct *work)
2470{
2471	struct hci_dev *hdev = container_of(work, struct hci_dev,
2472					    cmd_timer.work);
2473
2474	if (hdev->sent_cmd) {
2475		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2476		u16 opcode = __le16_to_cpu(sent->opcode);
2477
2478		BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2479	} else {
2480		BT_ERR("%s command tx timeout", hdev->name);
2481	}
2482
 
 
 
2483	atomic_set(&hdev->cmd_cnt, 1);
2484	queue_work(hdev->workqueue, &hdev->cmd_work);
2485}
2486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2487struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2488					  bdaddr_t *bdaddr, u8 bdaddr_type)
2489{
2490	struct oob_data *data;
2491
2492	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2493		if (bacmp(bdaddr, &data->bdaddr) != 0)
2494			continue;
2495		if (data->bdaddr_type != bdaddr_type)
2496			continue;
2497		return data;
2498	}
2499
2500	return NULL;
2501}
2502
2503int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2504			       u8 bdaddr_type)
2505{
2506	struct oob_data *data;
2507
2508	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2509	if (!data)
2510		return -ENOENT;
2511
2512	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2513
2514	list_del(&data->list);
2515	kfree(data);
2516
2517	return 0;
2518}
2519
2520void hci_remote_oob_data_clear(struct hci_dev *hdev)
2521{
2522	struct oob_data *data, *n;
2523
2524	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2525		list_del(&data->list);
2526		kfree(data);
2527	}
2528}
2529
2530int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2531			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2532			    u8 *hash256, u8 *rand256)
2533{
2534	struct oob_data *data;
2535
2536	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2537	if (!data) {
2538		data = kmalloc(sizeof(*data), GFP_KERNEL);
2539		if (!data)
2540			return -ENOMEM;
2541
2542		bacpy(&data->bdaddr, bdaddr);
2543		data->bdaddr_type = bdaddr_type;
2544		list_add(&data->list, &hdev->remote_oob_data);
2545	}
2546
2547	if (hash192 && rand192) {
2548		memcpy(data->hash192, hash192, sizeof(data->hash192));
2549		memcpy(data->rand192, rand192, sizeof(data->rand192));
2550		if (hash256 && rand256)
2551			data->present = 0x03;
2552	} else {
2553		memset(data->hash192, 0, sizeof(data->hash192));
2554		memset(data->rand192, 0, sizeof(data->rand192));
2555		if (hash256 && rand256)
2556			data->present = 0x02;
2557		else
2558			data->present = 0x00;
2559	}
2560
2561	if (hash256 && rand256) {
2562		memcpy(data->hash256, hash256, sizeof(data->hash256));
2563		memcpy(data->rand256, rand256, sizeof(data->rand256));
2564	} else {
2565		memset(data->hash256, 0, sizeof(data->hash256));
2566		memset(data->rand256, 0, sizeof(data->rand256));
2567		if (hash192 && rand192)
2568			data->present = 0x01;
2569	}
2570
2571	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2572
2573	return 0;
2574}
2575
2576/* This function requires the caller holds hdev->lock */
2577struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2578{
2579	struct adv_info *adv_instance;
2580
2581	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2582		if (adv_instance->instance == instance)
2583			return adv_instance;
2584	}
2585
2586	return NULL;
2587}
2588
2589/* This function requires the caller holds hdev->lock */
2590struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2591{
2592	struct adv_info *cur_instance;
2593
2594	cur_instance = hci_find_adv_instance(hdev, instance);
2595	if (!cur_instance)
2596		return NULL;
2597
2598	if (cur_instance == list_last_entry(&hdev->adv_instances,
2599					    struct adv_info, list))
2600		return list_first_entry(&hdev->adv_instances,
2601						 struct adv_info, list);
2602	else
2603		return list_next_entry(cur_instance, list);
2604}
2605
2606/* This function requires the caller holds hdev->lock */
2607int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2608{
2609	struct adv_info *adv_instance;
2610
2611	adv_instance = hci_find_adv_instance(hdev, instance);
2612	if (!adv_instance)
2613		return -ENOENT;
2614
2615	BT_DBG("%s removing %dMR", hdev->name, instance);
2616
2617	if (hdev->cur_adv_instance == instance) {
2618		if (hdev->adv_instance_timeout) {
2619			cancel_delayed_work(&hdev->adv_instance_expire);
2620			hdev->adv_instance_timeout = 0;
2621		}
2622		hdev->cur_adv_instance = 0x00;
2623	}
2624
 
 
2625	list_del(&adv_instance->list);
2626	kfree(adv_instance);
2627
2628	hdev->adv_instance_cnt--;
2629
2630	return 0;
2631}
2632
 
 
 
 
 
 
 
 
2633/* This function requires the caller holds hdev->lock */
2634void hci_adv_instances_clear(struct hci_dev *hdev)
2635{
2636	struct adv_info *adv_instance, *n;
2637
2638	if (hdev->adv_instance_timeout) {
2639		cancel_delayed_work(&hdev->adv_instance_expire);
2640		hdev->adv_instance_timeout = 0;
2641	}
2642
2643	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
 
2644		list_del(&adv_instance->list);
2645		kfree(adv_instance);
2646	}
2647
2648	hdev->adv_instance_cnt = 0;
2649	hdev->cur_adv_instance = 0x00;
2650}
2651
2652/* This function requires the caller holds hdev->lock */
2653int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2654			 u16 adv_data_len, u8 *adv_data,
2655			 u16 scan_rsp_len, u8 *scan_rsp_data,
2656			 u16 timeout, u16 duration)
2657{
2658	struct adv_info *adv_instance;
 
2659
2660	adv_instance = hci_find_adv_instance(hdev, instance);
2661	if (adv_instance) {
2662		memset(adv_instance->adv_data, 0,
2663		       sizeof(adv_instance->adv_data));
2664		memset(adv_instance->scan_rsp_data, 0,
2665		       sizeof(adv_instance->scan_rsp_data));
2666	} else {
2667		if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2668		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2669			return -EOVERFLOW;
2670
2671		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2672		if (!adv_instance)
2673			return -ENOMEM;
2674
2675		adv_instance->pending = true;
2676		adv_instance->instance = instance;
2677		list_add(&adv_instance->list, &hdev->adv_instances);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2678		hdev->adv_instance_cnt++;
2679	}
2680
2681	adv_instance->flags = flags;
2682	adv_instance->adv_data_len = adv_data_len;
2683	adv_instance->scan_rsp_len = scan_rsp_len;
2684
2685	if (adv_data_len)
2686		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2687
2688	if (scan_rsp_len)
2689		memcpy(adv_instance->scan_rsp_data,
2690		       scan_rsp_data, scan_rsp_len);
 
 
2691
2692	adv_instance->timeout = timeout;
2693	adv_instance->remaining_time = timeout;
2694
2695	if (duration == 0)
2696		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2697	else
2698		adv_instance->duration = duration;
 
 
2699
2700	BT_DBG("%s for %dMR", hdev->name, instance);
2701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2702	return 0;
2703}
2704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2705struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2706					 bdaddr_t *bdaddr, u8 type)
2707{
2708	struct bdaddr_list *b;
2709
2710	list_for_each_entry(b, bdaddr_list, list) {
2711		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2712			return b;
2713	}
2714
2715	return NULL;
2716}
2717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2718void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2719{
2720	struct bdaddr_list *b, *n;
2721
2722	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2723		list_del(&b->list);
2724		kfree(b);
2725	}
2726}
2727
2728int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2729{
2730	struct bdaddr_list *entry;
2731
2732	if (!bacmp(bdaddr, BDADDR_ANY))
2733		return -EBADF;
2734
2735	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2736		return -EEXIST;
2737
2738	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2739	if (!entry)
2740		return -ENOMEM;
2741
2742	bacpy(&entry->bdaddr, bdaddr);
2743	entry->bdaddr_type = type;
2744
2745	list_add(&entry->list, list);
2746
2747	return 0;
2748}
2749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2750int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2751{
2752	struct bdaddr_list *entry;
2753
2754	if (!bacmp(bdaddr, BDADDR_ANY)) {
2755		hci_bdaddr_list_clear(list);
2756		return 0;
2757	}
2758
2759	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2760	if (!entry)
2761		return -ENOENT;
2762
2763	list_del(&entry->list);
2764	kfree(entry);
2765
2766	return 0;
2767}
2768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2769/* This function requires the caller holds hdev->lock */
2770struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2771					       bdaddr_t *addr, u8 addr_type)
2772{
2773	struct hci_conn_params *params;
2774
2775	list_for_each_entry(params, &hdev->le_conn_params, list) {
2776		if (bacmp(&params->addr, addr) == 0 &&
2777		    params->addr_type == addr_type) {
2778			return params;
2779		}
2780	}
2781
2782	return NULL;
2783}
2784
2785/* This function requires the caller holds hdev->lock */
2786struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2787						  bdaddr_t *addr, u8 addr_type)
2788{
2789	struct hci_conn_params *param;
2790
2791	list_for_each_entry(param, list, action) {
 
 
2792		if (bacmp(&param->addr, addr) == 0 &&
2793		    param->addr_type == addr_type)
 
2794			return param;
 
2795	}
2796
 
 
2797	return NULL;
2798}
2799
2800/* This function requires the caller holds hdev->lock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2801struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2802					    bdaddr_t *addr, u8 addr_type)
2803{
2804	struct hci_conn_params *params;
2805
2806	params = hci_conn_params_lookup(hdev, addr, addr_type);
2807	if (params)
2808		return params;
2809
2810	params = kzalloc(sizeof(*params), GFP_KERNEL);
2811	if (!params) {
2812		BT_ERR("Out of memory");
2813		return NULL;
2814	}
2815
2816	bacpy(&params->addr, addr);
2817	params->addr_type = addr_type;
2818
2819	list_add(&params->list, &hdev->le_conn_params);
2820	INIT_LIST_HEAD(&params->action);
2821
2822	params->conn_min_interval = hdev->le_conn_min_interval;
2823	params->conn_max_interval = hdev->le_conn_max_interval;
2824	params->conn_latency = hdev->le_conn_latency;
2825	params->supervision_timeout = hdev->le_supv_timeout;
2826	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2827
2828	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2829
2830	return params;
2831}
2832
2833static void hci_conn_params_free(struct hci_conn_params *params)
2834{
 
 
2835	if (params->conn) {
2836		hci_conn_drop(params->conn);
2837		hci_conn_put(params->conn);
2838	}
2839
2840	list_del(&params->action);
2841	list_del(&params->list);
2842	kfree(params);
2843}
2844
2845/* This function requires the caller holds hdev->lock */
2846void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2847{
2848	struct hci_conn_params *params;
2849
2850	params = hci_conn_params_lookup(hdev, addr, addr_type);
2851	if (!params)
2852		return;
2853
2854	hci_conn_params_free(params);
2855
2856	hci_update_background_scan(hdev);
2857
2858	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2859}
2860
2861/* This function requires the caller holds hdev->lock */
2862void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2863{
2864	struct hci_conn_params *params, *tmp;
2865
2866	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2867		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2868			continue;
2869
2870		/* If trying to estabilish one time connection to disabled
2871		 * device, leave the params, but mark them as just once.
2872		 */
2873		if (params->explicit_connect) {
2874			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2875			continue;
2876		}
2877
2878		list_del(&params->list);
2879		kfree(params);
2880	}
2881
2882	BT_DBG("All LE disabled connection parameters were removed");
2883}
2884
2885/* This function requires the caller holds hdev->lock */
2886static void hci_conn_params_clear_all(struct hci_dev *hdev)
2887{
2888	struct hci_conn_params *params, *tmp;
2889
2890	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2891		hci_conn_params_free(params);
2892
2893	BT_DBG("All LE connection parameters were removed");
2894}
2895
2896/* Copy the Identity Address of the controller.
2897 *
2898 * If the controller has a public BD_ADDR, then by default use that one.
2899 * If this is a LE only controller without a public address, default to
2900 * the static random address.
2901 *
2902 * For debugging purposes it is possible to force controllers with a
2903 * public address to use the static random address instead.
2904 *
2905 * In case BR/EDR has been disabled on a dual-mode controller and
2906 * userspace has configured a static address, then that address
2907 * becomes the identity address instead of the public BR/EDR address.
2908 */
2909void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2910			       u8 *bdaddr_type)
2911{
2912	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2913	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2914	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2915	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2916		bacpy(bdaddr, &hdev->static_addr);
2917		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2918	} else {
2919		bacpy(bdaddr, &hdev->bdaddr);
2920		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2921	}
2922}
2923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2924/* Alloc HCI device */
2925struct hci_dev *hci_alloc_dev(void)
2926{
2927	struct hci_dev *hdev;
 
2928
2929	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
 
 
 
 
 
 
2930	if (!hdev)
2931		return NULL;
2932
2933	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2934	hdev->esco_type = (ESCO_HV1);
2935	hdev->link_mode = (HCI_LM_ACCEPT);
2936	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2937	hdev->io_capability = 0x03;	/* No Input No Output */
2938	hdev->manufacturer = 0xffff;	/* Default to internal use */
2939	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2940	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2941	hdev->adv_instance_cnt = 0;
2942	hdev->cur_adv_instance = 0x00;
2943	hdev->adv_instance_timeout = 0;
2944
 
 
 
 
2945	hdev->sniff_max_interval = 800;
2946	hdev->sniff_min_interval = 80;
2947
2948	hdev->le_adv_channel_map = 0x07;
2949	hdev->le_adv_min_interval = 0x0800;
2950	hdev->le_adv_max_interval = 0x0800;
2951	hdev->le_scan_interval = 0x0060;
2952	hdev->le_scan_window = 0x0030;
2953	hdev->le_conn_min_interval = 0x0028;
2954	hdev->le_conn_max_interval = 0x0038;
 
 
 
 
 
 
 
 
2955	hdev->le_conn_latency = 0x0000;
2956	hdev->le_supv_timeout = 0x002a;
2957	hdev->le_def_tx_len = 0x001b;
2958	hdev->le_def_tx_time = 0x0148;
2959	hdev->le_max_tx_len = 0x001b;
2960	hdev->le_max_tx_time = 0x0148;
2961	hdev->le_max_rx_len = 0x001b;
2962	hdev->le_max_rx_time = 0x0148;
 
 
 
 
 
 
 
 
 
2963
2964	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2965	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2966	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2967	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
 
 
 
 
 
 
 
2968
2969	mutex_init(&hdev->lock);
2970	mutex_init(&hdev->req_lock);
2971
 
 
 
2972	INIT_LIST_HEAD(&hdev->mgmt_pending);
2973	INIT_LIST_HEAD(&hdev->blacklist);
2974	INIT_LIST_HEAD(&hdev->whitelist);
2975	INIT_LIST_HEAD(&hdev->uuids);
2976	INIT_LIST_HEAD(&hdev->link_keys);
2977	INIT_LIST_HEAD(&hdev->long_term_keys);
2978	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2979	INIT_LIST_HEAD(&hdev->remote_oob_data);
2980	INIT_LIST_HEAD(&hdev->le_white_list);
 
2981	INIT_LIST_HEAD(&hdev->le_conn_params);
2982	INIT_LIST_HEAD(&hdev->pend_le_conns);
2983	INIT_LIST_HEAD(&hdev->pend_le_reports);
2984	INIT_LIST_HEAD(&hdev->conn_hash.list);
2985	INIT_LIST_HEAD(&hdev->adv_instances);
 
 
2986
 
2987	INIT_WORK(&hdev->rx_work, hci_rx_work);
2988	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2989	INIT_WORK(&hdev->tx_work, hci_tx_work);
2990	INIT_WORK(&hdev->power_on, hci_power_on);
2991	INIT_WORK(&hdev->error_reset, hci_error_reset);
2992
 
 
2993	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2994
2995	skb_queue_head_init(&hdev->rx_q);
2996	skb_queue_head_init(&hdev->cmd_q);
2997	skb_queue_head_init(&hdev->raw_q);
2998
2999	init_waitqueue_head(&hdev->req_wait_q);
3000
3001	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
 
3002
 
3003	hci_request_setup(hdev);
3004
3005	hci_init_sysfs(hdev);
3006	discovery_init(hdev);
3007
3008	return hdev;
3009}
3010EXPORT_SYMBOL(hci_alloc_dev);
3011
3012/* Free HCI device */
3013void hci_free_dev(struct hci_dev *hdev)
3014{
3015	/* will free via device release */
3016	put_device(&hdev->dev);
3017}
3018EXPORT_SYMBOL(hci_free_dev);
3019
3020/* Register HCI device */
3021int hci_register_dev(struct hci_dev *hdev)
3022{
3023	int id, error;
3024
3025	if (!hdev->open || !hdev->close || !hdev->send)
3026		return -EINVAL;
3027
3028	/* Do not allow HCI_AMP devices to register at index 0,
3029	 * so the index can be used as the AMP controller ID.
3030	 */
3031	switch (hdev->dev_type) {
3032	case HCI_PRIMARY:
3033		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3034		break;
3035	case HCI_AMP:
3036		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3037		break;
3038	default:
3039		return -EINVAL;
3040	}
3041
3042	if (id < 0)
3043		return id;
3044
3045	sprintf(hdev->name, "hci%d", id);
 
 
 
 
3046	hdev->id = id;
3047
3048	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3049
3050	hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3051					  WQ_MEM_RECLAIM, 1, hdev->name);
3052	if (!hdev->workqueue) {
3053		error = -ENOMEM;
3054		goto err;
3055	}
3056
3057	hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3058					      WQ_MEM_RECLAIM, 1, hdev->name);
3059	if (!hdev->req_workqueue) {
3060		destroy_workqueue(hdev->workqueue);
3061		error = -ENOMEM;
3062		goto err;
3063	}
3064
3065	if (!IS_ERR_OR_NULL(bt_debugfs))
3066		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3067
3068	dev_set_name(&hdev->dev, "%s", hdev->name);
3069
3070	error = device_add(&hdev->dev);
3071	if (error < 0)
3072		goto err_wqueue;
3073
3074	hci_leds_init(hdev);
3075
3076	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3077				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3078				    hdev);
3079	if (hdev->rfkill) {
3080		if (rfkill_register(hdev->rfkill) < 0) {
3081			rfkill_destroy(hdev->rfkill);
3082			hdev->rfkill = NULL;
3083		}
3084	}
3085
3086	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3087		hci_dev_set_flag(hdev, HCI_RFKILLED);
3088
3089	hci_dev_set_flag(hdev, HCI_SETUP);
3090	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3091
3092	if (hdev->dev_type == HCI_PRIMARY) {
3093		/* Assume BR/EDR support until proven otherwise (such as
3094		 * through reading supported features during init.
3095		 */
3096		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3097	}
3098
3099	write_lock(&hci_dev_list_lock);
3100	list_add(&hdev->list, &hci_dev_list);
3101	write_unlock(&hci_dev_list_lock);
3102
3103	/* Devices that are marked for raw-only usage are unconfigured
3104	 * and should not be included in normal operation.
3105	 */
3106	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3107		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3108
 
 
 
 
 
 
3109	hci_sock_dev_event(hdev, HCI_DEV_REG);
3110	hci_dev_hold(hdev);
3111
 
 
 
 
3112	queue_work(hdev->req_workqueue, &hdev->power_on);
3113
 
 
 
3114	return id;
3115
3116err_wqueue:
 
3117	destroy_workqueue(hdev->workqueue);
3118	destroy_workqueue(hdev->req_workqueue);
3119err:
3120	ida_simple_remove(&hci_index_ida, hdev->id);
3121
3122	return error;
3123}
3124EXPORT_SYMBOL(hci_register_dev);
3125
3126/* Unregister HCI device */
3127void hci_unregister_dev(struct hci_dev *hdev)
3128{
3129	int id;
3130
3131	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3132
 
3133	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3134
3135	id = hdev->id;
3136
3137	write_lock(&hci_dev_list_lock);
3138	list_del(&hdev->list);
3139	write_unlock(&hci_dev_list_lock);
3140
3141	cancel_work_sync(&hdev->power_on);
3142
 
 
 
 
 
 
3143	hci_dev_do_close(hdev);
3144
3145	if (!test_bit(HCI_INIT, &hdev->flags) &&
3146	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3147	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3148		hci_dev_lock(hdev);
3149		mgmt_index_removed(hdev);
3150		hci_dev_unlock(hdev);
3151	}
3152
3153	/* mgmt_index_removed should take care of emptying the
3154	 * pending list */
3155	BUG_ON(!list_empty(&hdev->mgmt_pending));
3156
3157	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3158
3159	if (hdev->rfkill) {
3160		rfkill_unregister(hdev->rfkill);
3161		rfkill_destroy(hdev->rfkill);
3162	}
3163
3164	device_del(&hdev->dev);
 
 
 
 
3165
 
 
 
3166	debugfs_remove_recursive(hdev->debugfs);
3167	kfree_const(hdev->hw_info);
3168	kfree_const(hdev->fw_info);
3169
3170	destroy_workqueue(hdev->workqueue);
3171	destroy_workqueue(hdev->req_workqueue);
3172
3173	hci_dev_lock(hdev);
3174	hci_bdaddr_list_clear(&hdev->blacklist);
3175	hci_bdaddr_list_clear(&hdev->whitelist);
3176	hci_uuids_clear(hdev);
3177	hci_link_keys_clear(hdev);
3178	hci_smp_ltks_clear(hdev);
3179	hci_smp_irks_clear(hdev);
3180	hci_remote_oob_data_clear(hdev);
3181	hci_adv_instances_clear(hdev);
3182	hci_bdaddr_list_clear(&hdev->le_white_list);
 
 
3183	hci_conn_params_clear_all(hdev);
3184	hci_discovery_filter_clear(hdev);
 
 
3185	hci_dev_unlock(hdev);
3186
3187	hci_dev_put(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3188
3189	ida_simple_remove(&hci_index_ida, id);
3190}
3191EXPORT_SYMBOL(hci_unregister_dev);
3192
3193/* Suspend HCI device */
3194int hci_suspend_dev(struct hci_dev *hdev)
3195{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3196	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3197	return 0;
3198}
3199EXPORT_SYMBOL(hci_suspend_dev);
3200
3201/* Resume HCI device */
3202int hci_resume_dev(struct hci_dev *hdev)
3203{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3204	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3205	return 0;
3206}
3207EXPORT_SYMBOL(hci_resume_dev);
3208
3209/* Reset HCI device */
3210int hci_reset_dev(struct hci_dev *hdev)
3211{
3212	const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3213	struct sk_buff *skb;
3214
3215	skb = bt_skb_alloc(3, GFP_ATOMIC);
3216	if (!skb)
3217		return -ENOMEM;
3218
3219	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3220	memcpy(skb_put(skb, 3), hw_err, 3);
 
 
3221
3222	/* Send Hardware Error to upper stack */
3223	return hci_recv_frame(hdev, skb);
3224}
3225EXPORT_SYMBOL(hci_reset_dev);
3226
3227/* Receive frame from HCI drivers */
3228int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3229{
3230	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3231		      && !test_bit(HCI_INIT, &hdev->flags))) {
3232		kfree_skb(skb);
3233		return -ENXIO;
3234	}
3235
3236	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3237	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3238	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3239		kfree_skb(skb);
3240		return -EINVAL;
3241	}
3242
3243	/* Incoming skb */
3244	bt_cb(skb)->incoming = 1;
3245
3246	/* Time stamp */
3247	__net_timestamp(skb);
3248
3249	skb_queue_tail(&hdev->rx_q, skb);
3250	queue_work(hdev->workqueue, &hdev->rx_work);
3251
3252	return 0;
3253}
3254EXPORT_SYMBOL(hci_recv_frame);
3255
3256/* Receive diagnostic message from HCI drivers */
3257int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3258{
3259	/* Mark as diagnostic packet */
3260	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3261
3262	/* Time stamp */
3263	__net_timestamp(skb);
3264
3265	skb_queue_tail(&hdev->rx_q, skb);
3266	queue_work(hdev->workqueue, &hdev->rx_work);
3267
3268	return 0;
3269}
3270EXPORT_SYMBOL(hci_recv_diag);
3271
3272void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3273{
3274	va_list vargs;
3275
3276	va_start(vargs, fmt);
3277	kfree_const(hdev->hw_info);
3278	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3279	va_end(vargs);
3280}
3281EXPORT_SYMBOL(hci_set_hw_info);
3282
3283void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3284{
3285	va_list vargs;
3286
3287	va_start(vargs, fmt);
3288	kfree_const(hdev->fw_info);
3289	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3290	va_end(vargs);
3291}
3292EXPORT_SYMBOL(hci_set_fw_info);
3293
3294/* ---- Interface to upper protocols ---- */
3295
3296int hci_register_cb(struct hci_cb *cb)
3297{
3298	BT_DBG("%p name %s", cb, cb->name);
3299
3300	mutex_lock(&hci_cb_list_lock);
3301	list_add_tail(&cb->list, &hci_cb_list);
3302	mutex_unlock(&hci_cb_list_lock);
3303
3304	return 0;
3305}
3306EXPORT_SYMBOL(hci_register_cb);
3307
3308int hci_unregister_cb(struct hci_cb *cb)
3309{
3310	BT_DBG("%p name %s", cb, cb->name);
3311
3312	mutex_lock(&hci_cb_list_lock);
3313	list_del(&cb->list);
3314	mutex_unlock(&hci_cb_list_lock);
3315
3316	return 0;
3317}
3318EXPORT_SYMBOL(hci_unregister_cb);
3319
3320static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3321{
3322	int err;
3323
3324	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3325	       skb->len);
3326
3327	/* Time stamp */
3328	__net_timestamp(skb);
3329
3330	/* Send copy to monitor */
3331	hci_send_to_monitor(hdev, skb);
3332
3333	if (atomic_read(&hdev->promisc)) {
3334		/* Send copy to the sockets */
3335		hci_send_to_sock(hdev, skb);
3336	}
3337
3338	/* Get rid of skb owner, prior to sending to the driver. */
3339	skb_orphan(skb);
3340
3341	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3342		kfree_skb(skb);
3343		return;
3344	}
3345
3346	err = hdev->send(hdev, skb);
3347	if (err < 0) {
3348		BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3349		kfree_skb(skb);
 
3350	}
 
 
3351}
3352
3353/* Send HCI command */
3354int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3355		 const void *param)
3356{
3357	struct sk_buff *skb;
3358
3359	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3360
3361	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3362	if (!skb) {
3363		BT_ERR("%s no memory for command", hdev->name);
3364		return -ENOMEM;
3365	}
3366
3367	/* Stand-alone HCI commands must be flagged as
3368	 * single-command requests.
3369	 */
3370	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3371
3372	skb_queue_tail(&hdev->cmd_q, skb);
3373	queue_work(hdev->workqueue, &hdev->cmd_work);
3374
3375	return 0;
3376}
3377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3378/* Get data from the previously sent command */
3379void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3380{
3381	struct hci_command_hdr *hdr;
3382
3383	if (!hdev->sent_cmd)
3384		return NULL;
3385
3386	hdr = (void *) hdev->sent_cmd->data;
3387
3388	if (hdr->opcode != cpu_to_le16(opcode))
3389		return NULL;
3390
3391	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3392
3393	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3394}
3395
3396/* Send HCI command and wait for command commplete event */
3397struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3398			     const void *param, u32 timeout)
3399{
3400	struct sk_buff *skb;
 
3401
3402	if (!test_bit(HCI_UP, &hdev->flags))
3403		return ERR_PTR(-ENETDOWN);
3404
3405	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
 
3406
3407	hci_req_sync_lock(hdev);
3408	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3409	hci_req_sync_unlock(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
3410
3411	return skb;
3412}
3413EXPORT_SYMBOL(hci_cmd_sync);
3414
3415/* Send ACL data */
3416static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3417{
3418	struct hci_acl_hdr *hdr;
3419	int len = skb->len;
3420
3421	skb_push(skb, HCI_ACL_HDR_SIZE);
3422	skb_reset_transport_header(skb);
3423	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3424	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3425	hdr->dlen   = cpu_to_le16(len);
3426}
3427
3428static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3429			  struct sk_buff *skb, __u16 flags)
3430{
3431	struct hci_conn *conn = chan->conn;
3432	struct hci_dev *hdev = conn->hdev;
3433	struct sk_buff *list;
3434
3435	skb->len = skb_headlen(skb);
3436	skb->data_len = 0;
3437
3438	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3439
3440	switch (hdev->dev_type) {
3441	case HCI_PRIMARY:
3442		hci_add_acl_hdr(skb, conn->handle, flags);
3443		break;
3444	case HCI_AMP:
3445		hci_add_acl_hdr(skb, chan->handle, flags);
3446		break;
3447	default:
3448		BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3449		return;
3450	}
3451
3452	list = skb_shinfo(skb)->frag_list;
3453	if (!list) {
3454		/* Non fragmented */
3455		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3456
3457		skb_queue_tail(queue, skb);
3458	} else {
3459		/* Fragmented */
3460		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3461
3462		skb_shinfo(skb)->frag_list = NULL;
3463
3464		/* Queue all fragments atomically. We need to use spin_lock_bh
3465		 * here because of 6LoWPAN links, as there this function is
3466		 * called from softirq and using normal spin lock could cause
3467		 * deadlocks.
3468		 */
3469		spin_lock_bh(&queue->lock);
3470
3471		__skb_queue_tail(queue, skb);
3472
3473		flags &= ~ACL_START;
3474		flags |= ACL_CONT;
3475		do {
3476			skb = list; list = list->next;
3477
3478			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3479			hci_add_acl_hdr(skb, conn->handle, flags);
3480
3481			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3482
3483			__skb_queue_tail(queue, skb);
3484		} while (list);
3485
3486		spin_unlock_bh(&queue->lock);
3487	}
3488}
3489
3490void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3491{
3492	struct hci_dev *hdev = chan->conn->hdev;
3493
3494	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3495
3496	hci_queue_acl(chan, &chan->data_q, skb, flags);
3497
3498	queue_work(hdev->workqueue, &hdev->tx_work);
3499}
3500
3501/* Send SCO data */
3502void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3503{
3504	struct hci_dev *hdev = conn->hdev;
3505	struct hci_sco_hdr hdr;
3506
3507	BT_DBG("%s len %d", hdev->name, skb->len);
3508
3509	hdr.handle = cpu_to_le16(conn->handle);
3510	hdr.dlen   = skb->len;
3511
3512	skb_push(skb, HCI_SCO_HDR_SIZE);
3513	skb_reset_transport_header(skb);
3514	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3515
3516	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3517
3518	skb_queue_tail(&conn->data_q, skb);
3519	queue_work(hdev->workqueue, &hdev->tx_work);
3520}
3521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3522/* ---- HCI TX task (outgoing data) ---- */
3523
3524/* HCI Connection scheduler */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3525static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3526				     int *quote)
3527{
3528	struct hci_conn_hash *h = &hdev->conn_hash;
3529	struct hci_conn *conn = NULL, *c;
3530	unsigned int num = 0, min = ~0;
3531
3532	/* We don't have to lock device here. Connections are always
3533	 * added and removed with TX task disabled. */
3534
3535	rcu_read_lock();
3536
3537	list_for_each_entry_rcu(c, &h->list, list) {
3538		if (c->type != type || skb_queue_empty(&c->data_q))
3539			continue;
3540
3541		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3542			continue;
3543
3544		num++;
3545
3546		if (c->sent < min) {
3547			min  = c->sent;
3548			conn = c;
3549		}
3550
3551		if (hci_conn_num(hdev, type) == num)
3552			break;
3553	}
3554
3555	rcu_read_unlock();
3556
3557	if (conn) {
3558		int cnt, q;
3559
3560		switch (conn->type) {
3561		case ACL_LINK:
3562			cnt = hdev->acl_cnt;
3563			break;
3564		case SCO_LINK:
3565		case ESCO_LINK:
3566			cnt = hdev->sco_cnt;
3567			break;
3568		case LE_LINK:
3569			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3570			break;
3571		default:
3572			cnt = 0;
3573			BT_ERR("Unknown link type");
3574		}
3575
3576		q = cnt / num;
3577		*quote = q ? q : 1;
3578	} else
3579		*quote = 0;
3580
3581	BT_DBG("conn %p quote %d", conn, *quote);
3582	return conn;
3583}
3584
3585static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3586{
3587	struct hci_conn_hash *h = &hdev->conn_hash;
3588	struct hci_conn *c;
3589
3590	BT_ERR("%s link tx timeout", hdev->name);
3591
3592	rcu_read_lock();
3593
3594	/* Kill stalled connections */
3595	list_for_each_entry_rcu(c, &h->list, list) {
3596		if (c->type == type && c->sent) {
3597			BT_ERR("%s killing stalled connection %pMR",
3598			       hdev->name, &c->dst);
 
 
 
 
3599			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
 
3600		}
3601	}
3602
3603	rcu_read_unlock();
3604}
3605
3606static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3607				      int *quote)
3608{
3609	struct hci_conn_hash *h = &hdev->conn_hash;
3610	struct hci_chan *chan = NULL;
3611	unsigned int num = 0, min = ~0, cur_prio = 0;
3612	struct hci_conn *conn;
3613	int cnt, q, conn_num = 0;
3614
3615	BT_DBG("%s", hdev->name);
3616
3617	rcu_read_lock();
3618
3619	list_for_each_entry_rcu(conn, &h->list, list) {
3620		struct hci_chan *tmp;
3621
3622		if (conn->type != type)
3623			continue;
3624
3625		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3626			continue;
3627
3628		conn_num++;
3629
3630		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3631			struct sk_buff *skb;
3632
3633			if (skb_queue_empty(&tmp->data_q))
3634				continue;
3635
3636			skb = skb_peek(&tmp->data_q);
3637			if (skb->priority < cur_prio)
3638				continue;
3639
3640			if (skb->priority > cur_prio) {
3641				num = 0;
3642				min = ~0;
3643				cur_prio = skb->priority;
3644			}
3645
3646			num++;
3647
3648			if (conn->sent < min) {
3649				min  = conn->sent;
3650				chan = tmp;
3651			}
3652		}
3653
3654		if (hci_conn_num(hdev, type) == conn_num)
3655			break;
3656	}
3657
3658	rcu_read_unlock();
3659
3660	if (!chan)
3661		return NULL;
3662
3663	switch (chan->conn->type) {
3664	case ACL_LINK:
3665		cnt = hdev->acl_cnt;
3666		break;
3667	case AMP_LINK:
3668		cnt = hdev->block_cnt;
3669		break;
3670	case SCO_LINK:
3671	case ESCO_LINK:
3672		cnt = hdev->sco_cnt;
3673		break;
3674	case LE_LINK:
3675		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3676		break;
3677	default:
3678		cnt = 0;
3679		BT_ERR("Unknown link type");
3680	}
3681
3682	q = cnt / num;
3683	*quote = q ? q : 1;
3684	BT_DBG("chan %p quote %d", chan, *quote);
3685	return chan;
3686}
3687
3688static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3689{
3690	struct hci_conn_hash *h = &hdev->conn_hash;
3691	struct hci_conn *conn;
3692	int num = 0;
3693
3694	BT_DBG("%s", hdev->name);
3695
3696	rcu_read_lock();
3697
3698	list_for_each_entry_rcu(conn, &h->list, list) {
3699		struct hci_chan *chan;
3700
3701		if (conn->type != type)
3702			continue;
3703
3704		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3705			continue;
3706
3707		num++;
3708
3709		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3710			struct sk_buff *skb;
3711
3712			if (chan->sent) {
3713				chan->sent = 0;
3714				continue;
3715			}
3716
3717			if (skb_queue_empty(&chan->data_q))
3718				continue;
3719
3720			skb = skb_peek(&chan->data_q);
3721			if (skb->priority >= HCI_PRIO_MAX - 1)
3722				continue;
3723
3724			skb->priority = HCI_PRIO_MAX - 1;
3725
3726			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3727			       skb->priority);
3728		}
3729
3730		if (hci_conn_num(hdev, type) == num)
3731			break;
3732	}
3733
3734	rcu_read_unlock();
3735
3736}
3737
3738static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3739{
3740	/* Calculate count of blocks used by this packet */
3741	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3742}
3743
3744static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3745{
3746	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3747		/* ACL tx timeout must be longer than maximum
3748		 * link supervision timeout (40.9 seconds) */
3749		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3750				       HCI_ACL_TX_TIMEOUT))
3751			hci_link_tx_to(hdev, ACL_LINK);
 
 
 
 
 
 
 
 
 
 
 
 
 
3752	}
3753}
3754
3755static void hci_sched_acl_pkt(struct hci_dev *hdev)
3756{
3757	unsigned int cnt = hdev->acl_cnt;
3758	struct hci_chan *chan;
3759	struct sk_buff *skb;
3760	int quote;
3761
3762	__check_timeout(hdev, cnt);
3763
3764	while (hdev->acl_cnt &&
3765	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3766		u32 priority = (skb_peek(&chan->data_q))->priority;
3767		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3768			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3769			       skb->len, skb->priority);
3770
3771			/* Stop if priority has changed */
3772			if (skb->priority < priority)
3773				break;
3774
3775			skb = skb_dequeue(&chan->data_q);
3776
3777			hci_conn_enter_active_mode(chan->conn,
3778						   bt_cb(skb)->force_active);
3779
3780			hci_send_frame(hdev, skb);
3781			hdev->acl_last_tx = jiffies;
3782
3783			hdev->acl_cnt--;
3784			chan->sent++;
3785			chan->conn->sent++;
 
 
 
 
3786		}
3787	}
3788
3789	if (cnt != hdev->acl_cnt)
3790		hci_prio_recalculate(hdev, ACL_LINK);
3791}
3792
3793static void hci_sched_acl_blk(struct hci_dev *hdev)
3794{
3795	unsigned int cnt = hdev->block_cnt;
3796	struct hci_chan *chan;
3797	struct sk_buff *skb;
3798	int quote;
3799	u8 type;
3800
3801	__check_timeout(hdev, cnt);
3802
3803	BT_DBG("%s", hdev->name);
3804
3805	if (hdev->dev_type == HCI_AMP)
3806		type = AMP_LINK;
3807	else
3808		type = ACL_LINK;
3809
 
 
3810	while (hdev->block_cnt > 0 &&
3811	       (chan = hci_chan_sent(hdev, type, &quote))) {
3812		u32 priority = (skb_peek(&chan->data_q))->priority;
3813		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3814			int blocks;
3815
3816			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3817			       skb->len, skb->priority);
3818
3819			/* Stop if priority has changed */
3820			if (skb->priority < priority)
3821				break;
3822
3823			skb = skb_dequeue(&chan->data_q);
3824
3825			blocks = __get_blocks(hdev, skb);
3826			if (blocks > hdev->block_cnt)
3827				return;
3828
3829			hci_conn_enter_active_mode(chan->conn,
3830						   bt_cb(skb)->force_active);
3831
3832			hci_send_frame(hdev, skb);
3833			hdev->acl_last_tx = jiffies;
3834
3835			hdev->block_cnt -= blocks;
3836			quote -= blocks;
3837
3838			chan->sent += blocks;
3839			chan->conn->sent += blocks;
3840		}
3841	}
3842
3843	if (cnt != hdev->block_cnt)
3844		hci_prio_recalculate(hdev, type);
3845}
3846
3847static void hci_sched_acl(struct hci_dev *hdev)
3848{
3849	BT_DBG("%s", hdev->name);
3850
3851	/* No ACL link over BR/EDR controller */
3852	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3853		return;
3854
3855	/* No AMP link over AMP controller */
3856	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3857		return;
3858
3859	switch (hdev->flow_ctl_mode) {
3860	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3861		hci_sched_acl_pkt(hdev);
3862		break;
3863
3864	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3865		hci_sched_acl_blk(hdev);
3866		break;
3867	}
3868}
3869
3870/* Schedule SCO */
3871static void hci_sched_sco(struct hci_dev *hdev)
3872{
3873	struct hci_conn *conn;
3874	struct sk_buff *skb;
3875	int quote;
3876
3877	BT_DBG("%s", hdev->name);
3878
3879	if (!hci_conn_num(hdev, SCO_LINK))
3880		return;
3881
3882	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3883		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3884			BT_DBG("skb %p len %d", skb, skb->len);
3885			hci_send_frame(hdev, skb);
3886
3887			conn->sent++;
3888			if (conn->sent == ~0)
3889				conn->sent = 0;
3890		}
3891	}
3892}
3893
3894static void hci_sched_esco(struct hci_dev *hdev)
3895{
3896	struct hci_conn *conn;
3897	struct sk_buff *skb;
3898	int quote;
3899
3900	BT_DBG("%s", hdev->name);
3901
3902	if (!hci_conn_num(hdev, ESCO_LINK))
3903		return;
3904
3905	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3906						     &quote))) {
3907		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3908			BT_DBG("skb %p len %d", skb, skb->len);
3909			hci_send_frame(hdev, skb);
3910
3911			conn->sent++;
3912			if (conn->sent == ~0)
3913				conn->sent = 0;
3914		}
3915	}
3916}
3917
3918static void hci_sched_le(struct hci_dev *hdev)
3919{
3920	struct hci_chan *chan;
3921	struct sk_buff *skb;
3922	int quote, cnt, tmp;
3923
3924	BT_DBG("%s", hdev->name);
3925
3926	if (!hci_conn_num(hdev, LE_LINK))
3927		return;
3928
3929	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3930		/* LE tx timeout must be longer than maximum
3931		 * link supervision timeout (40.9 seconds) */
3932		if (!hdev->le_cnt && hdev->le_pkts &&
3933		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
3934			hci_link_tx_to(hdev, LE_LINK);
3935	}
3936
3937	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3938	tmp = cnt;
3939	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3940		u32 priority = (skb_peek(&chan->data_q))->priority;
3941		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3942			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3943			       skb->len, skb->priority);
3944
3945			/* Stop if priority has changed */
3946			if (skb->priority < priority)
3947				break;
3948
3949			skb = skb_dequeue(&chan->data_q);
3950
3951			hci_send_frame(hdev, skb);
3952			hdev->le_last_tx = jiffies;
3953
3954			cnt--;
3955			chan->sent++;
3956			chan->conn->sent++;
 
 
 
 
3957		}
3958	}
3959
3960	if (hdev->le_pkts)
3961		hdev->le_cnt = cnt;
3962	else
3963		hdev->acl_cnt = cnt;
3964
3965	if (cnt != tmp)
3966		hci_prio_recalculate(hdev, LE_LINK);
3967}
3968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3969static void hci_tx_work(struct work_struct *work)
3970{
3971	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3972	struct sk_buff *skb;
3973
3974	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
3975	       hdev->sco_cnt, hdev->le_cnt);
3976
3977	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3978		/* Schedule queues and send stuff to HCI driver */
3979		hci_sched_acl(hdev);
3980		hci_sched_sco(hdev);
3981		hci_sched_esco(hdev);
 
 
3982		hci_sched_le(hdev);
3983	}
3984
3985	/* Send next queued raw (unknown type) packet */
3986	while ((skb = skb_dequeue(&hdev->raw_q)))
3987		hci_send_frame(hdev, skb);
3988}
3989
3990/* ----- HCI RX task (incoming data processing) ----- */
3991
3992/* ACL data packet */
3993static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3994{
3995	struct hci_acl_hdr *hdr = (void *) skb->data;
3996	struct hci_conn *conn;
3997	__u16 handle, flags;
3998
3999	skb_pull(skb, HCI_ACL_HDR_SIZE);
4000
4001	handle = __le16_to_cpu(hdr->handle);
4002	flags  = hci_flags(handle);
4003	handle = hci_handle(handle);
4004
4005	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4006	       handle, flags);
4007
4008	hdev->stat.acl_rx++;
4009
4010	hci_dev_lock(hdev);
4011	conn = hci_conn_hash_lookup_handle(hdev, handle);
4012	hci_dev_unlock(hdev);
4013
4014	if (conn) {
4015		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4016
4017		/* Send to upper protocol */
4018		l2cap_recv_acldata(conn, skb, flags);
4019		return;
4020	} else {
4021		BT_ERR("%s ACL packet for unknown connection handle %d",
4022		       hdev->name, handle);
4023	}
4024
4025	kfree_skb(skb);
4026}
4027
4028/* SCO data packet */
4029static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4030{
4031	struct hci_sco_hdr *hdr = (void *) skb->data;
4032	struct hci_conn *conn;
4033	__u16 handle;
4034
4035	skb_pull(skb, HCI_SCO_HDR_SIZE);
4036
4037	handle = __le16_to_cpu(hdr->handle);
 
 
4038
4039	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
 
4040
4041	hdev->stat.sco_rx++;
4042
4043	hci_dev_lock(hdev);
4044	conn = hci_conn_hash_lookup_handle(hdev, handle);
4045	hci_dev_unlock(hdev);
4046
4047	if (conn) {
4048		/* Send to upper protocol */
 
4049		sco_recv_scodata(conn, skb);
4050		return;
4051	} else {
4052		BT_ERR("%s SCO packet for unknown connection handle %d",
4053		       hdev->name, handle);
4054	}
4055
4056	kfree_skb(skb);
4057}
4058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4059static bool hci_req_is_complete(struct hci_dev *hdev)
4060{
4061	struct sk_buff *skb;
4062
4063	skb = skb_peek(&hdev->cmd_q);
4064	if (!skb)
4065		return true;
4066
4067	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4068}
4069
4070static void hci_resend_last(struct hci_dev *hdev)
4071{
4072	struct hci_command_hdr *sent;
4073	struct sk_buff *skb;
4074	u16 opcode;
4075
4076	if (!hdev->sent_cmd)
4077		return;
4078
4079	sent = (void *) hdev->sent_cmd->data;
4080	opcode = __le16_to_cpu(sent->opcode);
4081	if (opcode == HCI_OP_RESET)
4082		return;
4083
4084	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4085	if (!skb)
4086		return;
4087
4088	skb_queue_head(&hdev->cmd_q, skb);
4089	queue_work(hdev->workqueue, &hdev->cmd_work);
4090}
4091
4092void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4093			  hci_req_complete_t *req_complete,
4094			  hci_req_complete_skb_t *req_complete_skb)
4095{
4096	struct sk_buff *skb;
4097	unsigned long flags;
4098
4099	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4100
4101	/* If the completed command doesn't match the last one that was
4102	 * sent we need to do special handling of it.
4103	 */
4104	if (!hci_sent_cmd_data(hdev, opcode)) {
4105		/* Some CSR based controllers generate a spontaneous
4106		 * reset complete event during init and any pending
4107		 * command will never be completed. In such a case we
4108		 * need to resend whatever was the last sent
4109		 * command.
4110		 */
4111		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4112			hci_resend_last(hdev);
4113
4114		return;
4115	}
4116
 
 
 
4117	/* If the command succeeded and there's still more commands in
4118	 * this request the request is not yet complete.
4119	 */
4120	if (!status && !hci_req_is_complete(hdev))
4121		return;
4122
4123	/* If this was the last command in a request the complete
4124	 * callback would be found in hdev->sent_cmd instead of the
4125	 * command queue (hdev->cmd_q).
4126	 */
4127	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4128		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4129		return;
4130	}
4131
4132	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4133		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4134		return;
4135	}
4136
4137	/* Remove all pending commands belonging to this request */
4138	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4139	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4140		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4141			__skb_queue_head(&hdev->cmd_q, skb);
4142			break;
4143		}
4144
4145		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4146			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4147		else
4148			*req_complete = bt_cb(skb)->hci.req_complete;
4149		kfree_skb(skb);
4150	}
4151	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4152}
4153
4154static void hci_rx_work(struct work_struct *work)
4155{
4156	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4157	struct sk_buff *skb;
4158
4159	BT_DBG("%s", hdev->name);
4160
4161	while ((skb = skb_dequeue(&hdev->rx_q))) {
 
 
 
 
 
 
 
4162		/* Send copy to monitor */
4163		hci_send_to_monitor(hdev, skb);
4164
4165		if (atomic_read(&hdev->promisc)) {
4166			/* Send copy to the sockets */
4167			hci_send_to_sock(hdev, skb);
4168		}
4169
4170		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 
 
 
 
 
 
 
4171			kfree_skb(skb);
4172			continue;
4173		}
4174
4175		if (test_bit(HCI_INIT, &hdev->flags)) {
4176			/* Don't process data packets in this states. */
4177			switch (hci_skb_pkt_type(skb)) {
4178			case HCI_ACLDATA_PKT:
4179			case HCI_SCODATA_PKT:
 
4180				kfree_skb(skb);
4181				continue;
4182			}
4183		}
4184
4185		/* Process frame */
4186		switch (hci_skb_pkt_type(skb)) {
4187		case HCI_EVENT_PKT:
4188			BT_DBG("%s Event packet", hdev->name);
4189			hci_event_packet(hdev, skb);
4190			break;
4191
4192		case HCI_ACLDATA_PKT:
4193			BT_DBG("%s ACL data packet", hdev->name);
4194			hci_acldata_packet(hdev, skb);
4195			break;
4196
4197		case HCI_SCODATA_PKT:
4198			BT_DBG("%s SCO data packet", hdev->name);
4199			hci_scodata_packet(hdev, skb);
4200			break;
4201
 
 
 
 
 
4202		default:
4203			kfree_skb(skb);
4204			break;
4205		}
4206	}
4207}
4208
4209static void hci_cmd_work(struct work_struct *work)
4210{
4211	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4212	struct sk_buff *skb;
4213
4214	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4215	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4216
4217	/* Send queued commands */
4218	if (atomic_read(&hdev->cmd_cnt)) {
4219		skb = skb_dequeue(&hdev->cmd_q);
4220		if (!skb)
4221			return;
4222
4223		kfree_skb(hdev->sent_cmd);
4224
4225		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4226		if (hdev->sent_cmd) {
 
 
 
4227			atomic_dec(&hdev->cmd_cnt);
4228			hci_send_frame(hdev, skb);
4229			if (test_bit(HCI_RESET, &hdev->flags))
 
 
 
 
 
 
4230				cancel_delayed_work(&hdev->cmd_timer);
4231			else
4232				schedule_delayed_work(&hdev->cmd_timer,
4233						      HCI_CMD_TIMEOUT);
 
4234		} else {
4235			skb_queue_head(&hdev->cmd_q, skb);
4236			queue_work(hdev->workqueue, &hdev->cmd_work);
4237		}
4238	}
4239}