Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/bpf_trace.h>
   5#include <linux/prefetch.h>
   6#include <linux/sctp.h>
   7#include <net/mpls.h>
   8#include <net/xdp.h>
   9#include "i40e_txrx_common.h"
  10#include "i40e_trace.h"
  11#include "i40e_xsk.h"
 
 
 
 
 
 
 
  12
  13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  14/**
  15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  16 * @tx_ring: Tx ring to send buffer on
  17 * @fdata: Flow director filter data
  18 * @add: Indicate if we are adding a rule or deleting one
  19 *
  20 **/
  21static void i40e_fdir(struct i40e_ring *tx_ring,
  22		      struct i40e_fdir_filter *fdata, bool add)
  23{
  24	struct i40e_filter_program_desc *fdir_desc;
  25	struct i40e_pf *pf = tx_ring->vsi->back;
  26	u32 flex_ptype, dtype_cmd;
  27	u16 i;
  28
  29	/* grab the next descriptor */
  30	i = tx_ring->next_to_use;
  31	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  32
  33	i++;
  34	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  35
  36	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
 
  37
  38	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
  39				 fdata->flex_off);
  40
  41	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
 
  42
  43	/* Use LAN VSI Id if not programmed by user */
  44	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK,
  45				 fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id);
 
  46
  47	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  48
  49	dtype_cmd |= add ?
  50		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  51		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  52		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  53		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  54
  55	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
 
  56
  57	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
  58				fdata->fd_status);
  59
  60	if (fdata->cnt_index) {
  61		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  62		dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
  63					fdata->cnt_index);
 
  64	}
  65
  66	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  67	fdir_desc->rsvd = cpu_to_le32(0);
  68	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  69	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
  70}
  71
  72#define I40E_FD_CLEAN_DELAY 10
  73/**
  74 * i40e_program_fdir_filter - Program a Flow Director filter
  75 * @fdir_data: Packet data that will be filter parameters
  76 * @raw_packet: the pre-allocated packet buffer for FDir
  77 * @pf: The PF pointer
  78 * @add: True for add/update, False for remove
  79 **/
  80static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  81				    u8 *raw_packet, struct i40e_pf *pf,
  82				    bool add)
  83{
  84	struct i40e_tx_buffer *tx_buf, *first;
  85	struct i40e_tx_desc *tx_desc;
  86	struct i40e_ring *tx_ring;
  87	struct i40e_vsi *vsi;
  88	struct device *dev;
  89	dma_addr_t dma;
  90	u32 td_cmd = 0;
  91	u16 i;
  92
  93	/* find existing FDIR VSI */
  94	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
  95	if (!vsi)
  96		return -ENOENT;
  97
  98	tx_ring = vsi->tx_rings[0];
  99	dev = tx_ring->dev;
 100
 101	/* we need two descriptors to add/del a filter and we can wait */
 102	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 103		if (!i)
 104			return -EAGAIN;
 105		msleep_interruptible(1);
 106	}
 107
 108	dma = dma_map_single(dev, raw_packet,
 109			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 110	if (dma_mapping_error(dev, dma))
 111		goto dma_fail;
 112
 113	/* grab the next descriptor */
 114	i = tx_ring->next_to_use;
 115	first = &tx_ring->tx_bi[i];
 116	i40e_fdir(tx_ring, fdir_data, add);
 117
 118	/* Now program a dummy descriptor */
 119	i = tx_ring->next_to_use;
 120	tx_desc = I40E_TX_DESC(tx_ring, i);
 121	tx_buf = &tx_ring->tx_bi[i];
 122
 123	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 124
 125	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 126
 127	/* record length, and DMA address */
 128	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 129	dma_unmap_addr_set(tx_buf, dma, dma);
 130
 131	tx_desc->buffer_addr = cpu_to_le64(dma);
 132	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 133
 134	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 135	tx_buf->raw_buf = (void *)raw_packet;
 136
 137	tx_desc->cmd_type_offset_bsz =
 138		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 139
 140	/* Force memory writes to complete before letting h/w
 141	 * know there are new descriptors to fetch.
 142	 */
 143	wmb();
 144
 145	/* Mark the data descriptor to be watched */
 146	first->next_to_watch = tx_desc;
 147
 148	writel(tx_ring->next_to_use, tx_ring->tail);
 149	return 0;
 150
 151dma_fail:
 152	return -1;
 153}
 154
 
 
 155/**
 156 * i40e_create_dummy_packet - Constructs dummy packet for HW
 157 * @dummy_packet: preallocated space for dummy packet
 158 * @ipv4: is layer 3 packet of version 4 or 6
 159 * @l4proto: next level protocol used in data portion of l3
 160 * @data: filter data
 161 *
 162 * Returns address of layer 4 protocol dummy packet.
 163 **/
 164static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
 165				      struct i40e_fdir_filter *data)
 166{
 167	bool is_vlan = !!data->vlan_tag;
 168	struct vlan_hdr vlan = {};
 169	struct ipv6hdr ipv6 = {};
 170	struct ethhdr eth = {};
 171	struct iphdr ip = {};
 172	u8 *tmp;
 173
 174	if (ipv4) {
 175		eth.h_proto = cpu_to_be16(ETH_P_IP);
 176		ip.protocol = l4proto;
 177		ip.version = 0x4;
 178		ip.ihl = 0x5;
 179
 180		ip.daddr = data->dst_ip;
 181		ip.saddr = data->src_ip;
 182	} else {
 183		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
 184		ipv6.nexthdr = l4proto;
 185		ipv6.version = 0x6;
 186
 187		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
 188		       sizeof(__be32) * 4);
 189		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
 190		       sizeof(__be32) * 4);
 191	}
 192
 193	if (is_vlan) {
 194		vlan.h_vlan_TCI = data->vlan_tag;
 195		vlan.h_vlan_encapsulated_proto = eth.h_proto;
 196		eth.h_proto = data->vlan_etype;
 197	}
 198
 199	tmp = dummy_packet;
 200	memcpy(tmp, &eth, sizeof(eth));
 201	tmp += sizeof(eth);
 202
 203	if (is_vlan) {
 204		memcpy(tmp, &vlan, sizeof(vlan));
 205		tmp += sizeof(vlan);
 206	}
 207
 208	if (ipv4) {
 209		memcpy(tmp, &ip, sizeof(ip));
 210		tmp += sizeof(ip);
 211	} else {
 212		memcpy(tmp, &ipv6, sizeof(ipv6));
 213		tmp += sizeof(ipv6);
 214	}
 215
 216	return tmp;
 217}
 218
 219/**
 220 * i40e_create_dummy_udp_packet - helper function to create UDP packet
 221 * @raw_packet: preallocated space for dummy packet
 222 * @ipv4: is layer 3 packet of version 4 or 6
 223 * @l4proto: next level protocol used in data portion of l3
 224 * @data: filter data
 225 *
 226 * Helper function to populate udp fields.
 227 **/
 228static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 229					 struct i40e_fdir_filter *data)
 
 230{
 
 231	struct udphdr *udp;
 232	u8 *tmp;
 233
 234	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
 235	udp = (struct udphdr *)(tmp);
 236	udp->dest = data->dst_port;
 237	udp->source = data->src_port;
 238}
 239
 240/**
 241 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
 242 * @raw_packet: preallocated space for dummy packet
 243 * @ipv4: is layer 3 packet of version 4 or 6
 244 * @l4proto: next level protocol used in data portion of l3
 245 * @data: filter data
 246 *
 247 * Helper function to populate tcp fields.
 248 **/
 249static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 250					 struct i40e_fdir_filter *data)
 251{
 252	struct tcphdr *tcp;
 253	u8 *tmp;
 254	/* Dummy tcp packet */
 255	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 256		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
 257
 258	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
 259
 260	tcp = (struct tcphdr *)tmp;
 261	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
 262	tcp->dest = data->dst_port;
 263	tcp->source = data->src_port;
 264}
 265
 266/**
 267 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
 268 * @raw_packet: preallocated space for dummy packet
 269 * @ipv4: is layer 3 packet of version 4 or 6
 270 * @l4proto: next level protocol used in data portion of l3
 271 * @data: filter data
 272 *
 273 * Helper function to populate sctp fields.
 274 **/
 275static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
 276					  u8 l4proto,
 277					  struct i40e_fdir_filter *data)
 278{
 279	struct sctphdr *sctp;
 280	u8 *tmp;
 281
 282	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
 283
 284	sctp = (struct sctphdr *)tmp;
 285	sctp->dest = data->dst_port;
 286	sctp->source = data->src_port;
 287}
 288
 289/**
 290 * i40e_prepare_fdir_filter - Prepare and program fdir filter
 291 * @pf: physical function to attach filter to
 292 * @fd_data: filter data
 293 * @add: add or delete filter
 294 * @packet_addr: address of dummy packet, used in filtering
 295 * @payload_offset: offset from dummy packet address to user defined data
 296 * @pctype: Packet type for which filter is used
 297 *
 298 * Helper function to offset data of dummy packet, program it and
 299 * handle errors.
 300 **/
 301static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
 302				    struct i40e_fdir_filter *fd_data,
 303				    bool add, char *packet_addr,
 304				    int payload_offset, u8 pctype)
 305{
 306	int ret;
 
 
 
 307
 308	if (fd_data->flex_filter) {
 309		u8 *payload;
 310		__be16 pattern = fd_data->flex_word;
 311		u16 off = fd_data->flex_offset;
 312
 313		payload = packet_addr + payload_offset;
 314
 315		/* If user provided vlan, offset payload by vlan header length */
 316		if (!!fd_data->vlan_tag)
 317			payload += VLAN_HLEN;
 318
 319		*((__force __be16 *)(payload + off)) = pattern;
 320	}
 
 
 
 
 
 
 321
 322	fd_data->pctype = pctype;
 323	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
 324	if (ret) {
 325		dev_info(&pf->pdev->dev,
 326			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 327			 fd_data->pctype, fd_data->fd_id, ret);
 328		/* Free the packet buffer since it wasn't added to the ring */
 329		return -EOPNOTSUPP;
 330	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 331		if (add)
 332			dev_info(&pf->pdev->dev,
 333				 "Filter OK for PCTYPE %d loc = %d\n",
 334				 fd_data->pctype, fd_data->fd_id);
 335		else
 336			dev_info(&pf->pdev->dev,
 337				 "Filter deleted for PCTYPE %d loc = %d\n",
 338				 fd_data->pctype, fd_data->fd_id);
 339	}
 340
 341	return ret;
 342}
 343
 344/**
 345 * i40e_change_filter_num - Prepare and program fdir filter
 346 * @ipv4: is layer 3 packet of version 4 or 6
 347 * @add: add or delete filter
 348 * @ipv4_filter_num: field to update
 349 * @ipv6_filter_num: field to update
 350 *
 351 * Update filter number field for pf.
 352 **/
 353static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
 354				   u16 *ipv6_filter_num)
 355{
 356	if (add) {
 357		if (ipv4)
 358			(*ipv4_filter_num)++;
 359		else
 360			(*ipv6_filter_num)++;
 361	} else {
 362		if (ipv4)
 363			(*ipv4_filter_num)--;
 364		else
 365			(*ipv6_filter_num)--;
 366	}
 367}
 368
 369#define I40E_UDPIP_DUMMY_PACKET_LEN	42
 370#define I40E_UDPIP6_DUMMY_PACKET_LEN	62
 371/**
 372 * i40e_add_del_fdir_udp - Add/Remove UDP filters
 373 * @vsi: pointer to the targeted VSI
 374 * @fd_data: the flow director data required for the FDir descriptor
 375 * @add: true adds a filter, false removes it
 376 * @ipv4: true is v4, false is v6
 377 *
 378 * Returns 0 if the filters were successfully added or removed
 379 **/
 380static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
 381				 struct i40e_fdir_filter *fd_data,
 382				 bool add,
 383				 bool ipv4)
 384{
 385	struct i40e_pf *pf = vsi->back;
 386	u8 *raw_packet;
 387	int ret;
 388
 389	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 390	if (!raw_packet)
 391		return -ENOMEM;
 392
 393	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
 394
 395	if (ipv4)
 396		ret = i40e_prepare_fdir_filter
 397			(pf, fd_data, add, raw_packet,
 398			 I40E_UDPIP_DUMMY_PACKET_LEN,
 399			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
 400	else
 401		ret = i40e_prepare_fdir_filter
 402			(pf, fd_data, add, raw_packet,
 403			 I40E_UDPIP6_DUMMY_PACKET_LEN,
 404			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
 405
 406	if (ret) {
 407		kfree(raw_packet);
 408		return ret;
 409	}
 410
 411	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
 412			       &pf->fd_udp6_filter_cnt);
 413
 414	return 0;
 415}
 416
 417#define I40E_TCPIP_DUMMY_PACKET_LEN	54
 418#define I40E_TCPIP6_DUMMY_PACKET_LEN	74
 419/**
 420 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
 421 * @vsi: pointer to the targeted VSI
 422 * @fd_data: the flow director data required for the FDir descriptor
 423 * @add: true adds a filter, false removes it
 424 * @ipv4: true is v4, false is v6
 425 *
 426 * Returns 0 if the filters were successfully added or removed
 427 **/
 428static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
 429				 struct i40e_fdir_filter *fd_data,
 430				 bool add,
 431				 bool ipv4)
 432{
 433	struct i40e_pf *pf = vsi->back;
 
 
 
 434	u8 *raw_packet;
 435	int ret;
 
 
 
 
 
 436
 437	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 438	if (!raw_packet)
 439		return -ENOMEM;
 
 440
 441	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
 442	if (ipv4)
 443		ret = i40e_prepare_fdir_filter
 444			(pf, fd_data, add, raw_packet,
 445			 I40E_TCPIP_DUMMY_PACKET_LEN,
 446			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
 447	else
 448		ret = i40e_prepare_fdir_filter
 449			(pf, fd_data, add, raw_packet,
 450			 I40E_TCPIP6_DUMMY_PACKET_LEN,
 451			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
 452
 453	if (ret) {
 454		kfree(raw_packet);
 455		return ret;
 456	}
 457
 458	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
 459			       &pf->fd_tcp6_filter_cnt);
 460
 461	if (add) {
 462		if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
 
 463		    I40E_DEBUG_FD & pf->hw.debug_mask)
 464			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 465		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 
 
 
 
 
 
 
 
 
 466	}
 467	return 0;
 468}
 469
 470#define I40E_SCTPIP_DUMMY_PACKET_LEN	46
 471#define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
 472/**
 473 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
 474 * a specific flow spec
 475 * @vsi: pointer to the targeted VSI
 476 * @fd_data: the flow director data required for the FDir descriptor
 477 * @add: true adds a filter, false removes it
 478 * @ipv4: true is v4, false is v6
 479 *
 480 * Returns 0 if the filters were successfully added or removed
 481 **/
 482static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
 483				  struct i40e_fdir_filter *fd_data,
 484				  bool add,
 485				  bool ipv4)
 486{
 487	struct i40e_pf *pf = vsi->back;
 488	u8 *raw_packet;
 489	int ret;
 490
 491	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 492	if (!raw_packet)
 493		return -ENOMEM;
 494
 495	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
 496
 497	if (ipv4)
 498		ret = i40e_prepare_fdir_filter
 499			(pf, fd_data, add, raw_packet,
 500			 I40E_SCTPIP_DUMMY_PACKET_LEN,
 501			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
 502	else
 503		ret = i40e_prepare_fdir_filter
 504			(pf, fd_data, add, raw_packet,
 505			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
 506			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
 507
 508	if (ret) {
 509		kfree(raw_packet);
 510		return ret;
 
 
 
 
 
 
 
 
 
 
 511	}
 512
 513	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
 514			       &pf->fd_sctp6_filter_cnt);
 515
 516	return 0;
 517}
 518
 519#define I40E_IP_DUMMY_PACKET_LEN	34
 520#define I40E_IP6_DUMMY_PACKET_LEN	54
 521/**
 522 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
 523 * a specific flow spec
 524 * @vsi: pointer to the targeted VSI
 525 * @fd_data: the flow director data required for the FDir descriptor
 526 * @add: true adds a filter, false removes it
 527 * @ipv4: true is v4, false is v6
 528 *
 529 * Returns 0 if the filters were successfully added or removed
 530 **/
 531static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
 532				struct i40e_fdir_filter *fd_data,
 533				bool add,
 534				bool ipv4)
 535{
 536	struct i40e_pf *pf = vsi->back;
 537	int payload_offset;
 
 538	u8 *raw_packet;
 539	int iter_start;
 540	int iter_end;
 541	int ret;
 542	int i;
 
 
 
 543
 544	if (ipv4) {
 545		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 546		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
 547	} else {
 548		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
 549		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
 550	}
 551
 552	for (i = iter_start; i <= iter_end; i++) {
 553		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 554		if (!raw_packet)
 555			return -ENOMEM;
 
 
 
 
 
 
 556
 557		/* IPv6 no header option differs from IPv4 */
 558		(void)i40e_create_dummy_packet
 559			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
 560			 fd_data);
 561
 562		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
 563			I40E_IP6_DUMMY_PACKET_LEN;
 564		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
 565					       payload_offset, i);
 566		if (ret)
 567			goto err;
 
 
 
 
 
 
 
 568	}
 569
 570	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
 571			       &pf->fd_ip6_filter_cnt);
 572
 573	return 0;
 574err:
 575	kfree(raw_packet);
 576	return ret;
 577}
 578
 579/**
 580 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 581 * @vsi: pointer to the targeted VSI
 582 * @input: filter to add or delete
 583 * @add: true adds a filter, false removes it
 584 *
 585 **/
 586int i40e_add_del_fdir(struct i40e_vsi *vsi,
 587		      struct i40e_fdir_filter *input, bool add)
 588{
 589	enum ip_ver { ipv6 = 0, ipv4 = 1 };
 590	struct i40e_pf *pf = vsi->back;
 591	int ret;
 592
 593	switch (input->flow_type & ~FLOW_EXT) {
 594	case TCP_V4_FLOW:
 595		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 596		break;
 597	case UDP_V4_FLOW:
 598		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 599		break;
 600	case SCTP_V4_FLOW:
 601		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 602		break;
 603	case TCP_V6_FLOW:
 604		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 605		break;
 606	case UDP_V6_FLOW:
 607		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 608		break;
 609	case SCTP_V6_FLOW:
 610		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 611		break;
 612	case IP_USER_FLOW:
 613		switch (input->ipl4_proto) {
 614		case IPPROTO_TCP:
 615			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 616			break;
 617		case IPPROTO_UDP:
 618			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 619			break;
 620		case IPPROTO_SCTP:
 621			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 622			break;
 623		case IPPROTO_IP:
 624			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
 625			break;
 626		default:
 627			/* We cannot support masking based on protocol */
 628			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 629				 input->ipl4_proto);
 630			return -EINVAL;
 631		}
 632		break;
 633	case IPV6_USER_FLOW:
 634		switch (input->ipl4_proto) {
 635		case IPPROTO_TCP:
 636			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 637			break;
 638		case IPPROTO_UDP:
 639			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 640			break;
 641		case IPPROTO_SCTP:
 642			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 643			break;
 644		case IPPROTO_IP:
 645			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
 646			break;
 647		default:
 648			/* We cannot support masking based on protocol */
 649			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
 650				 input->ipl4_proto);
 651			return -EINVAL;
 652		}
 653		break;
 654	default:
 655		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 
 656			 input->flow_type);
 657		return -EINVAL;
 658	}
 659
 660	/* The buffer allocated here will be normally be freed by
 661	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 662	 * completion. In the event of an error adding the buffer to the FDIR
 663	 * ring, it will immediately be freed. It may also be freed by
 664	 * i40e_clean_tx_ring() when closing the VSI.
 665	 */
 666	return ret;
 667}
 668
 669/**
 670 * i40e_fd_handle_status - check the Programming Status for FD
 671 * @rx_ring: the Rx ring for this descriptor
 672 * @qword0_raw: qword0
 673 * @qword1: qword1 after le_to_cpu
 674 * @prog_id: the id originally used for programming
 675 *
 676 * This is used to verify if the FD programming or invalidation
 677 * requested by SW to the HW is successful or not and take actions accordingly.
 678 **/
 679static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
 680				  u64 qword1, u8 prog_id)
 681{
 682	struct i40e_pf *pf = rx_ring->vsi->back;
 683	struct pci_dev *pdev = pf->pdev;
 684	struct i40e_16b_rx_wb_qw0 *qw0;
 685	u32 fcnt_prog, fcnt_avail;
 686	u32 error;
 
 687
 688	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
 689	error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
 
 690
 691	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 692		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
 693		if (qw0->hi_dword.fd_id != 0 ||
 694		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 695			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 696				 pf->fd_inv);
 697
 698		/* Check if the programming error is for ATR.
 699		 * If so, auto disable ATR and set a state for
 700		 * flush in progress. Next time we come here if flush is in
 701		 * progress do nothing, once flush is complete the state will
 702		 * be cleared.
 703		 */
 704		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 705			return;
 706
 707		pf->fd_add_err++;
 708		/* store the current atr filter count */
 709		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 710
 711		if (qw0->hi_dword.fd_id == 0 &&
 712		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 713			/* These set_bit() calls aren't atomic with the
 714			 * test_bit() here, but worse case we potentially
 715			 * disable ATR and queue a flush right after SB
 716			 * support is re-enabled. That shouldn't cause an
 717			 * issue in practice
 718			 */
 719			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 720			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 721		}
 722
 723		/* filter programming failed most likely due to table full */
 724		fcnt_prog = i40e_get_global_fd_count(pf);
 725		fcnt_avail = pf->fdir_pf_filter_count;
 726		/* If ATR is running fcnt_prog can quickly change,
 727		 * if we are very close to full, it makes sense to disable
 728		 * FD ATR/SB and then re-enable it when there is room.
 729		 */
 730		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 731			if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
 732			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 733					      pf->state))
 734				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 735					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 
 
 
 736		}
 737	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 738		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 739			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 740				 qw0->hi_dword.fd_id);
 741	}
 742}
 743
 744/**
 745 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 746 * @ring:      the ring that owns the buffer
 747 * @tx_buffer: the buffer to free
 748 **/
 749static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 750					    struct i40e_tx_buffer *tx_buffer)
 751{
 752	if (tx_buffer->skb) {
 753		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 754			kfree(tx_buffer->raw_buf);
 755		else if (ring_is_xdp(ring))
 756			xdp_return_frame(tx_buffer->xdpf);
 757		else
 758			dev_kfree_skb_any(tx_buffer->skb);
 759		if (dma_unmap_len(tx_buffer, len))
 760			dma_unmap_single(ring->dev,
 761					 dma_unmap_addr(tx_buffer, dma),
 762					 dma_unmap_len(tx_buffer, len),
 763					 DMA_TO_DEVICE);
 764	} else if (dma_unmap_len(tx_buffer, len)) {
 765		dma_unmap_page(ring->dev,
 766			       dma_unmap_addr(tx_buffer, dma),
 767			       dma_unmap_len(tx_buffer, len),
 768			       DMA_TO_DEVICE);
 769	}
 770
 771	tx_buffer->next_to_watch = NULL;
 772	tx_buffer->skb = NULL;
 773	dma_unmap_len_set(tx_buffer, len, 0);
 774	/* tx_buffer must be completely set up in the transmit path */
 775}
 776
 777/**
 778 * i40e_clean_tx_ring - Free any empty Tx buffers
 779 * @tx_ring: ring to be cleaned
 780 **/
 781void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 782{
 783	unsigned long bi_size;
 784	u16 i;
 785
 786	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
 787		i40e_xsk_clean_tx_ring(tx_ring);
 788	} else {
 789		/* ring already cleared, nothing to do */
 790		if (!tx_ring->tx_bi)
 791			return;
 792
 793		/* Free all the Tx ring sk_buffs */
 794		for (i = 0; i < tx_ring->count; i++)
 795			i40e_unmap_and_free_tx_resource(tx_ring,
 796							&tx_ring->tx_bi[i]);
 797	}
 798
 799	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 800	memset(tx_ring->tx_bi, 0, bi_size);
 801
 802	/* Zero out the descriptor ring */
 803	memset(tx_ring->desc, 0, tx_ring->size);
 804
 805	tx_ring->next_to_use = 0;
 806	tx_ring->next_to_clean = 0;
 807
 808	if (!tx_ring->netdev)
 809		return;
 810
 811	/* cleanup Tx queue statistics */
 812	netdev_tx_reset_queue(txring_txq(tx_ring));
 813}
 814
 815/**
 816 * i40e_free_tx_resources - Free Tx resources per queue
 817 * @tx_ring: Tx descriptor ring for a specific queue
 818 *
 819 * Free all transmit software resources
 820 **/
 821void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 822{
 823	i40e_clean_tx_ring(tx_ring);
 824	kfree(tx_ring->tx_bi);
 825	tx_ring->tx_bi = NULL;
 826
 827	if (tx_ring->desc) {
 828		dma_free_coherent(tx_ring->dev, tx_ring->size,
 829				  tx_ring->desc, tx_ring->dma);
 830		tx_ring->desc = NULL;
 831	}
 832}
 833
 834/**
 835 * i40e_get_tx_pending - how many tx descriptors not processed
 836 * @ring: the ring of descriptors
 837 * @in_sw: use SW variables
 838 *
 839 * Since there is no access to the ring head register
 840 * in XL710, we need to use our local copies
 841 **/
 842u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 843{
 844	u32 head, tail;
 845
 846	if (!in_sw) {
 847		head = i40e_get_head(ring);
 848		tail = readl(ring->tail);
 849	} else {
 850		head = ring->next_to_clean;
 851		tail = ring->next_to_use;
 852	}
 853
 854	if (head != tail)
 855		return (head < tail) ?
 856			tail - head : (tail + ring->count - head);
 857
 858	return 0;
 859}
 860
 861/**
 862 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 863 * @vsi:  pointer to vsi struct with tx queues
 864 *
 865 * VSI has netdev and netdev has TX queues. This function is to check each of
 866 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 867 **/
 868void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 869{
 870	struct i40e_ring *tx_ring = NULL;
 871	struct net_device *netdev;
 872	unsigned int i;
 873	int packets;
 874
 875	if (!vsi)
 876		return;
 877
 878	if (test_bit(__I40E_VSI_DOWN, vsi->state))
 879		return;
 880
 881	netdev = vsi->netdev;
 882	if (!netdev)
 883		return;
 884
 885	if (!netif_carrier_ok(netdev))
 886		return;
 887
 888	for (i = 0; i < vsi->num_queue_pairs; i++) {
 889		tx_ring = vsi->tx_rings[i];
 890		if (tx_ring && tx_ring->desc) {
 891			/* If packet counter has not changed the queue is
 892			 * likely stalled, so force an interrupt for this
 893			 * queue.
 894			 *
 895			 * prev_pkt_ctr would be negative if there was no
 896			 * pending work.
 897			 */
 898			packets = tx_ring->stats.packets & INT_MAX;
 899			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 900				i40e_force_wb(vsi, tx_ring->q_vector);
 901				continue;
 902			}
 903
 904			/* Memory barrier between read of packet count and call
 905			 * to i40e_get_tx_pending()
 906			 */
 907			smp_rmb();
 908			tx_ring->tx_stats.prev_pkt_ctr =
 909			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 910		}
 911	}
 912}
 913
 914/**
 915 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 916 * @vsi: the VSI we care about
 917 * @tx_ring: Tx ring to clean
 918 * @napi_budget: Used to determine if we are in netpoll
 919 * @tx_cleaned: Out parameter set to the number of TXes cleaned
 920 *
 921 * Returns true if there's any budget left (e.g. the clean is finished)
 922 **/
 923static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 924			      struct i40e_ring *tx_ring, int napi_budget,
 925			      unsigned int *tx_cleaned)
 926{
 927	int i = tx_ring->next_to_clean;
 928	struct i40e_tx_buffer *tx_buf;
 929	struct i40e_tx_desc *tx_head;
 930	struct i40e_tx_desc *tx_desc;
 931	unsigned int total_bytes = 0, total_packets = 0;
 932	unsigned int budget = vsi->work_limit;
 933
 934	tx_buf = &tx_ring->tx_bi[i];
 935	tx_desc = I40E_TX_DESC(tx_ring, i);
 936	i -= tx_ring->count;
 937
 938	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 939
 940	do {
 941		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 942
 943		/* if next_to_watch is not set then there is no work pending */
 944		if (!eop_desc)
 945			break;
 946
 947		/* prevent any other reads prior to eop_desc */
 948		smp_rmb();
 949
 950		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 951		/* we have caught up to head, no work left to do */
 952		if (tx_head == tx_desc)
 953			break;
 954
 955		/* clear next_to_watch to prevent false hangs */
 956		tx_buf->next_to_watch = NULL;
 957
 958		/* update the statistics for this packet */
 959		total_bytes += tx_buf->bytecount;
 960		total_packets += tx_buf->gso_segs;
 961
 962		/* free the skb/XDP data */
 963		if (ring_is_xdp(tx_ring))
 964			xdp_return_frame(tx_buf->xdpf);
 965		else
 966			napi_consume_skb(tx_buf->skb, napi_budget);
 967
 968		/* unmap skb header data */
 969		dma_unmap_single(tx_ring->dev,
 970				 dma_unmap_addr(tx_buf, dma),
 971				 dma_unmap_len(tx_buf, len),
 972				 DMA_TO_DEVICE);
 973
 974		/* clear tx_buffer data */
 975		tx_buf->skb = NULL;
 976		dma_unmap_len_set(tx_buf, len, 0);
 977
 978		/* unmap remaining buffers */
 979		while (tx_desc != eop_desc) {
 980			i40e_trace(clean_tx_irq_unmap,
 981				   tx_ring, tx_desc, tx_buf);
 982
 983			tx_buf++;
 984			tx_desc++;
 985			i++;
 986			if (unlikely(!i)) {
 987				i -= tx_ring->count;
 988				tx_buf = tx_ring->tx_bi;
 989				tx_desc = I40E_TX_DESC(tx_ring, 0);
 990			}
 991
 992			/* unmap any remaining paged data */
 993			if (dma_unmap_len(tx_buf, len)) {
 994				dma_unmap_page(tx_ring->dev,
 995					       dma_unmap_addr(tx_buf, dma),
 996					       dma_unmap_len(tx_buf, len),
 997					       DMA_TO_DEVICE);
 998				dma_unmap_len_set(tx_buf, len, 0);
 999			}
1000		}
1001
1002		/* move us one more past the eop_desc for start of next pkt */
1003		tx_buf++;
1004		tx_desc++;
1005		i++;
1006		if (unlikely(!i)) {
1007			i -= tx_ring->count;
1008			tx_buf = tx_ring->tx_bi;
1009			tx_desc = I40E_TX_DESC(tx_ring, 0);
1010		}
1011
1012		prefetch(tx_desc);
1013
1014		/* update budget accounting */
1015		budget--;
1016	} while (likely(budget));
1017
1018	i += tx_ring->count;
1019	tx_ring->next_to_clean = i;
1020	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1021	i40e_arm_wb(tx_ring, vsi, budget);
 
 
 
 
 
 
 
 
 
 
 
 
1022
1023	if (ring_is_xdp(tx_ring))
1024		return !!budget;
 
 
 
 
1025
1026	/* notify netdev of completed buffers */
1027	netdev_tx_completed_queue(txring_txq(tx_ring),
1028				  total_packets, total_bytes);
1029
1030#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1031	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1032		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1033		/* Make sure that anybody stopping the queue after this
1034		 * sees the new next_to_clean.
1035		 */
1036		smp_mb();
1037		if (__netif_subqueue_stopped(tx_ring->netdev,
1038					     tx_ring->queue_index) &&
1039		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1040			netif_wake_subqueue(tx_ring->netdev,
1041					    tx_ring->queue_index);
1042			++tx_ring->tx_stats.restart_queue;
1043		}
1044	}
1045
1046	*tx_cleaned = total_packets;
1047	return !!budget;
1048}
1049
1050/**
1051 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1052 * @vsi: the VSI we care about
1053 * @q_vector: the vector on which to enable writeback
1054 *
1055 **/
1056static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1057				  struct i40e_q_vector *q_vector)
1058{
1059	u16 flags = q_vector->tx.ring[0].flags;
1060	u32 val;
1061
1062	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1063		return;
1064
1065	if (q_vector->arm_wb_state)
1066		return;
1067
1068	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1069		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1070		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1071
1072		wr32(&vsi->back->hw,
1073		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1074		     val);
1075	} else {
1076		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1077		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1078
1079		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1080	}
1081	q_vector->arm_wb_state = true;
1082}
1083
1084/**
1085 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1086 * @vsi: the VSI we care about
1087 * @q_vector: the vector  on which to force writeback
1088 *
1089 **/
1090void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1091{
1092	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1093		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1094			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1095			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1096			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1097			  /* allow 00 to be written to the index */
1098
1099		wr32(&vsi->back->hw,
1100		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
 
1101	} else {
1102		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1103			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1104			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1105			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1106			/* allow 00 to be written to the index */
1107
1108		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1109	}
1110}
1111
1112static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1113					struct i40e_ring_container *rc)
1114{
1115	return &q_vector->rx == rc;
1116}
1117
1118static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1119{
1120	unsigned int divisor;
1121
1122	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1123	case I40E_LINK_SPEED_40GB:
1124		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1125		break;
1126	case I40E_LINK_SPEED_25GB:
1127	case I40E_LINK_SPEED_20GB:
1128		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1129		break;
1130	default:
1131	case I40E_LINK_SPEED_10GB:
1132		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1133		break;
1134	case I40E_LINK_SPEED_1GB:
1135	case I40E_LINK_SPEED_100MB:
1136		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1137		break;
1138	}
1139
1140	return divisor;
1141}
1142
1143/**
1144 * i40e_update_itr - update the dynamic ITR value based on statistics
1145 * @q_vector: structure containing interrupt and ring information
1146 * @rc: structure containing ring performance data
1147 *
1148 * Stores a new ITR value based on packets and byte
1149 * counts during the last interrupt.  The advantage of per interrupt
1150 * computation is faster updates and more accurate ITR for the current
1151 * traffic pattern.  Constants in this function were computed
1152 * based on theoretical maximum wire speed and thresholds were set based
1153 * on testing data as well as attempting to minimize response time
 
 
1154 * while increasing bulk throughput.
1155 **/
1156static void i40e_update_itr(struct i40e_q_vector *q_vector,
1157			    struct i40e_ring_container *rc)
1158{
1159	unsigned int avg_wire_size, packets, bytes, itr;
1160	unsigned long next_update = jiffies;
 
 
 
1161
1162	/* If we don't have any rings just leave ourselves set for maximum
1163	 * possible latency so we take ourselves out of the equation.
1164	 */
1165	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1166		return;
1167
1168	/* For Rx we want to push the delay up and default to low latency.
1169	 * for Tx we want to pull the delay down and default to high latency.
1170	 */
1171	itr = i40e_container_is_rx(q_vector, rc) ?
1172	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1173	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1174
1175	/* If we didn't update within up to 1 - 2 jiffies we can assume
1176	 * that either packets are coming in so slow there hasn't been
1177	 * any work, or that there is so much work that NAPI is dealing
1178	 * with interrupt moderation and we don't need to do anything.
1179	 */
1180	if (time_after(next_update, rc->next_update))
1181		goto clear_counts;
1182
1183	/* If itr_countdown is set it means we programmed an ITR within
1184	 * the last 4 interrupt cycles. This has a side effect of us
1185	 * potentially firing an early interrupt. In order to work around
1186	 * this we need to throw out any data received for a few
1187	 * interrupts following the update.
1188	 */
1189	if (q_vector->itr_countdown) {
1190		itr = rc->target_itr;
1191		goto clear_counts;
1192	}
1193
1194	packets = rc->total_packets;
1195	bytes = rc->total_bytes;
1196
1197	if (i40e_container_is_rx(q_vector, rc)) {
1198		/* If Rx there are 1 to 4 packets and bytes are less than
1199		 * 9000 assume insufficient data to use bulk rate limiting
1200		 * approach unless Tx is already in bulk rate limiting. We
1201		 * are likely latency driven.
1202		 */
1203		if (packets && packets < 4 && bytes < 9000 &&
1204		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1205			itr = I40E_ITR_ADAPTIVE_LATENCY;
1206			goto adjust_by_size;
1207		}
1208	} else if (packets < 4) {
1209		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1210		 * bulk mode and we are receiving 4 or fewer packets just
1211		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1212		 * that the Rx can relax.
1213		 */
1214		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1215		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1216		     I40E_ITR_ADAPTIVE_MAX_USECS)
1217			goto clear_counts;
1218	} else if (packets > 32) {
1219		/* If we have processed over 32 packets in a single interrupt
1220		 * for Tx assume we need to switch over to "bulk" mode.
1221		 */
1222		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1223	}
1224
1225	/* We have no packets to actually measure against. This means
1226	 * either one of the other queues on this vector is active or
1227	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1228	 *
1229	 * Between 4 and 56 we can assume that our current interrupt delay
1230	 * is only slightly too low. As such we should increase it by a small
1231	 * fixed amount.
1232	 */
1233	if (packets < 56) {
1234		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1235		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1236			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1237			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1238		}
1239		goto clear_counts;
1240	}
1241
1242	if (packets <= 256) {
1243		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1244		itr &= I40E_ITR_MASK;
1245
1246		/* Between 56 and 112 is our "goldilocks" zone where we are
1247		 * working out "just right". Just report that our current
1248		 * ITR is good for us.
1249		 */
1250		if (packets <= 112)
1251			goto clear_counts;
1252
1253		/* If packet count is 128 or greater we are likely looking
1254		 * at a slight overrun of the delay we want. Try halving
1255		 * our delay to see if that will cut the number of packets
1256		 * in half per interrupt.
1257		 */
1258		itr /= 2;
1259		itr &= I40E_ITR_MASK;
1260		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1261			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1262
1263		goto clear_counts;
1264	}
1265
1266	/* The paths below assume we are dealing with a bulk ITR since
1267	 * number of packets is greater than 256. We are just going to have
1268	 * to compute a value and try to bring the count under control,
1269	 * though for smaller packet sizes there isn't much we can do as
1270	 * NAPI polling will likely be kicking in sooner rather than later.
1271	 */
1272	itr = I40E_ITR_ADAPTIVE_BULK;
1273
1274adjust_by_size:
1275	/* If packet counts are 256 or greater we can assume we have a gross
1276	 * overestimation of what the rate should be. Instead of trying to fine
1277	 * tune it just use the formula below to try and dial in an exact value
1278	 * give the current packet size of the frame.
1279	 */
1280	avg_wire_size = bytes / packets;
1281
1282	/* The following is a crude approximation of:
1283	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1284	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1285	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1286	 *
1287	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1288	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1289	 * formula down to
1290	 *
1291	 *  (170 * (size + 24)) / (size + 640) = ITR
1292	 *
1293	 * We first do some math on the packet size and then finally bitshift
1294	 * by 8 after rounding up. We also have to account for PCIe link speed
1295	 * difference as ITR scales based on this.
1296	 */
1297	if (avg_wire_size <= 60) {
1298		/* Start at 250k ints/sec */
1299		avg_wire_size = 4096;
1300	} else if (avg_wire_size <= 380) {
1301		/* 250K ints/sec to 60K ints/sec */
1302		avg_wire_size *= 40;
1303		avg_wire_size += 1696;
1304	} else if (avg_wire_size <= 1084) {
1305		/* 60K ints/sec to 36K ints/sec */
1306		avg_wire_size *= 15;
1307		avg_wire_size += 11452;
1308	} else if (avg_wire_size <= 1980) {
1309		/* 36K ints/sec to 30K ints/sec */
1310		avg_wire_size *= 5;
1311		avg_wire_size += 22420;
1312	} else {
1313		/* plateau at a limit of 30K ints/sec */
1314		avg_wire_size = 32256;
1315	}
1316
1317	/* If we are in low latency mode halve our delay which doubles the
1318	 * rate to somewhere between 100K to 16K ints/sec
1319	 */
1320	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1321		avg_wire_size /= 2;
1322
1323	/* Resultant value is 256 times larger than it needs to be. This
1324	 * gives us room to adjust the value as needed to either increase
1325	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1326	 *
1327	 * Use addition as we have already recorded the new latency flag
1328	 * for the ITR value.
1329	 */
1330	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1331	       I40E_ITR_ADAPTIVE_MIN_INC;
1332
1333	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1334		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1335		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
 
 
 
 
 
 
 
 
 
1336	}
1337
1338clear_counts:
1339	/* write back value */
1340	rc->target_itr = itr;
1341
1342	/* next update should occur within next jiffy */
1343	rc->next_update = next_update + 1;
1344
1345	rc->total_bytes = 0;
1346	rc->total_packets = 0;
1347}
1348
1349static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1350{
1351	return &rx_ring->rx_bi[idx];
1352}
1353
1354/**
1355 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1356 * @rx_ring: rx descriptor ring to store buffers on
1357 * @old_buff: donor buffer to have page reused
1358 *
1359 * Synchronizes page for reuse by the adapter
1360 **/
1361static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1362			       struct i40e_rx_buffer *old_buff)
1363{
1364	struct i40e_rx_buffer *new_buff;
1365	u16 nta = rx_ring->next_to_alloc;
1366
1367	new_buff = i40e_rx_bi(rx_ring, nta);
1368
1369	/* update, and store next to alloc */
1370	nta++;
1371	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1372
1373	/* transfer page from old buffer to new buffer */
1374	new_buff->dma		= old_buff->dma;
1375	new_buff->page		= old_buff->page;
1376	new_buff->page_offset	= old_buff->page_offset;
1377	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1378
1379	/* clear contents of buffer_info */
1380	old_buff->page = NULL;
1381}
1382
1383/**
1384 * i40e_clean_programming_status - clean the programming status descriptor
1385 * @rx_ring: the rx ring that has this descriptor
1386 * @qword0_raw: qword0
1387 * @qword1: qword1 representing status_error_len in CPU ordering
1388 *
1389 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1390 * status being successful or not and take actions accordingly. FCoE should
1391 * handle its context/filter programming/invalidation status and take actions.
1392 *
1393 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1394 **/
1395void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1396				   u64 qword1)
1397{
 
1398	u8 id;
1399
1400	id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
 
 
1401
1402	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1403		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
 
 
 
 
 
1404}
1405
1406/**
1407 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1408 * @tx_ring: the tx ring to set up
1409 *
1410 * Return 0 on success, negative on error
1411 **/
1412int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1413{
1414	struct device *dev = tx_ring->dev;
1415	int bi_size;
1416
1417	if (!dev)
1418		return -ENOMEM;
1419
1420	/* warn if we are about to overwrite the pointer */
1421	WARN_ON(tx_ring->tx_bi);
1422	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1423	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1424	if (!tx_ring->tx_bi)
1425		goto err;
1426
1427	u64_stats_init(&tx_ring->syncp);
1428
1429	/* round up to nearest 4K */
1430	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1431	/* add u32 for head writeback, align after this takes care of
1432	 * guaranteeing this is at least one cache line in size
1433	 */
1434	tx_ring->size += sizeof(u32);
1435	tx_ring->size = ALIGN(tx_ring->size, 4096);
1436	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1437					   &tx_ring->dma, GFP_KERNEL);
1438	if (!tx_ring->desc) {
1439		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1440			 tx_ring->size);
1441		goto err;
1442	}
1443
1444	tx_ring->next_to_use = 0;
1445	tx_ring->next_to_clean = 0;
1446	tx_ring->tx_stats.prev_pkt_ctr = -1;
1447	return 0;
1448
1449err:
1450	kfree(tx_ring->tx_bi);
1451	tx_ring->tx_bi = NULL;
1452	return -ENOMEM;
1453}
1454
1455static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1456{
1457	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1458}
1459
1460/**
1461 * i40e_clean_rx_ring - Free Rx buffers
1462 * @rx_ring: ring to be cleaned
1463 **/
1464void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1465{
 
 
1466	u16 i;
1467
1468	/* ring already cleared, nothing to do */
1469	if (!rx_ring->rx_bi)
1470		return;
1471
1472	if (rx_ring->xsk_pool) {
1473		i40e_xsk_clean_rx_ring(rx_ring);
1474		goto skip_free;
1475	}
1476
1477	/* Free all the Rx ring sk_buffs */
1478	for (i = 0; i < rx_ring->count; i++) {
1479		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1480
 
 
 
 
1481		if (!rx_bi->page)
1482			continue;
1483
1484		/* Invalidate cache lines that may have been written to by
1485		 * device so that we avoid corrupting memory.
1486		 */
1487		dma_sync_single_range_for_cpu(rx_ring->dev,
1488					      rx_bi->dma,
1489					      rx_bi->page_offset,
1490					      rx_ring->rx_buf_len,
1491					      DMA_FROM_DEVICE);
1492
1493		/* free resources associated with mapping */
1494		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1495				     i40e_rx_pg_size(rx_ring),
1496				     DMA_FROM_DEVICE,
1497				     I40E_RX_DMA_ATTR);
1498
1499		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1500
1501		rx_bi->page = NULL;
1502		rx_bi->page_offset = 0;
1503	}
1504
1505skip_free:
1506	if (rx_ring->xsk_pool)
1507		i40e_clear_rx_bi_zc(rx_ring);
1508	else
1509		i40e_clear_rx_bi(rx_ring);
1510
1511	/* Zero out the descriptor ring */
1512	memset(rx_ring->desc, 0, rx_ring->size);
1513
1514	rx_ring->next_to_alloc = 0;
1515	rx_ring->next_to_clean = 0;
1516	rx_ring->next_to_process = 0;
1517	rx_ring->next_to_use = 0;
1518}
1519
1520/**
1521 * i40e_free_rx_resources - Free Rx resources
1522 * @rx_ring: ring to clean the resources from
1523 *
1524 * Free all receive software resources
1525 **/
1526void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1527{
1528	i40e_clean_rx_ring(rx_ring);
1529	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1530		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1531	rx_ring->xdp_prog = NULL;
1532	kfree(rx_ring->rx_bi);
1533	rx_ring->rx_bi = NULL;
1534
1535	if (rx_ring->desc) {
1536		dma_free_coherent(rx_ring->dev, rx_ring->size,
1537				  rx_ring->desc, rx_ring->dma);
1538		rx_ring->desc = NULL;
1539	}
1540}
1541
1542/**
1543 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1544 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1545 *
1546 * Returns 0 on success, negative on failure
1547 **/
1548int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1549{
1550	struct device *dev = rx_ring->dev;
 
 
 
 
 
 
 
 
1551
1552	u64_stats_init(&rx_ring->syncp);
1553
1554	/* Round up to nearest 4K */
1555	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1556	rx_ring->size = ALIGN(rx_ring->size, 4096);
1557	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1558					   &rx_ring->dma, GFP_KERNEL);
1559
1560	if (!rx_ring->desc) {
1561		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1562			 rx_ring->size);
1563		return -ENOMEM;
1564	}
1565
1566	rx_ring->next_to_alloc = 0;
1567	rx_ring->next_to_clean = 0;
1568	rx_ring->next_to_process = 0;
1569	rx_ring->next_to_use = 0;
1570
1571	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1572
1573	rx_ring->rx_bi =
1574		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1575	if (!rx_ring->rx_bi)
1576		return -ENOMEM;
1577
1578	return 0;
 
 
 
 
1579}
1580
1581/**
1582 * i40e_release_rx_desc - Store the new tail and head values
1583 * @rx_ring: ring to bump
1584 * @val: new head index
1585 **/
1586void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1587{
1588	rx_ring->next_to_use = val;
1589
1590	/* update next to alloc since we have filled the ring */
1591	rx_ring->next_to_alloc = val;
1592
1593	/* Force memory writes to complete before letting h/w
1594	 * know there are new descriptors to fetch.  (Only
1595	 * applicable for weak-ordered memory model archs,
1596	 * such as IA-64).
1597	 */
1598	wmb();
1599	writel(val, rx_ring->tail);
1600}
1601
1602#if (PAGE_SIZE >= 8192)
1603static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1604					   unsigned int size)
1605{
1606	unsigned int truesize;
1607
1608	truesize = rx_ring->rx_offset ?
1609		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1610		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1611		SKB_DATA_ALIGN(size);
1612	return truesize;
1613}
1614#endif
1615
1616/**
1617 * i40e_alloc_mapped_page - recycle or make a new page
1618 * @rx_ring: ring to use
1619 * @bi: rx_buffer struct to modify
1620 *
1621 * Returns true if the page was successfully allocated or
1622 * reused.
1623 **/
1624static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1625				   struct i40e_rx_buffer *bi)
1626{
1627	struct page *page = bi->page;
1628	dma_addr_t dma;
1629
1630	/* since we are recycling buffers we should seldom need to alloc */
1631	if (likely(page)) {
1632		rx_ring->rx_stats.page_reuse_count++;
1633		return true;
1634	}
1635
1636	/* alloc new page for storage */
1637	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1638	if (unlikely(!page)) {
1639		rx_ring->rx_stats.alloc_page_failed++;
1640		return false;
1641	}
1642
1643	rx_ring->rx_stats.page_alloc_count++;
1644
1645	/* map page for use */
1646	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1647				 i40e_rx_pg_size(rx_ring),
1648				 DMA_FROM_DEVICE,
1649				 I40E_RX_DMA_ATTR);
1650
1651	/* if mapping failed free memory back to system since
1652	 * there isn't much point in holding memory we can't use
1653	 */
1654	if (dma_mapping_error(rx_ring->dev, dma)) {
1655		__free_pages(page, i40e_rx_pg_order(rx_ring));
1656		rx_ring->rx_stats.alloc_page_failed++;
1657		return false;
1658	}
1659
1660	bi->dma = dma;
1661	bi->page = page;
1662	bi->page_offset = rx_ring->rx_offset;
1663	page_ref_add(page, USHRT_MAX - 1);
1664	bi->pagecnt_bias = USHRT_MAX;
1665
1666	return true;
1667}
1668
1669/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1670 * i40e_alloc_rx_buffers - Replace used receive buffers
1671 * @rx_ring: ring to place buffers on
1672 * @cleaned_count: number of buffers to replace
1673 *
1674 * Returns false if all allocations were successful, true if any fail
1675 **/
1676bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1677{
1678	u16 ntu = rx_ring->next_to_use;
1679	union i40e_rx_desc *rx_desc;
1680	struct i40e_rx_buffer *bi;
1681
1682	/* do nothing if no valid netdev defined */
1683	if (!rx_ring->netdev || !cleaned_count)
1684		return false;
1685
1686	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1687	bi = i40e_rx_bi(rx_ring, ntu);
1688
1689	do {
1690		if (!i40e_alloc_mapped_page(rx_ring, bi))
1691			goto no_buffers;
1692
1693		/* sync the buffer for use by the device */
1694		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1695						 bi->page_offset,
1696						 rx_ring->rx_buf_len,
1697						 DMA_FROM_DEVICE);
1698
1699		/* Refresh the desc even if buffer_addrs didn't change
1700		 * because each write-back erases this info.
1701		 */
1702		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1703
1704		rx_desc++;
1705		bi++;
1706		ntu++;
1707		if (unlikely(ntu == rx_ring->count)) {
1708			rx_desc = I40E_RX_DESC(rx_ring, 0);
1709			bi = i40e_rx_bi(rx_ring, 0);
1710			ntu = 0;
1711		}
1712
1713		/* clear the status bits for the next_to_use descriptor */
1714		rx_desc->wb.qword1.status_error_len = 0;
1715
1716		cleaned_count--;
1717	} while (cleaned_count);
1718
1719	if (rx_ring->next_to_use != ntu)
1720		i40e_release_rx_desc(rx_ring, ntu);
1721
1722	return false;
1723
1724no_buffers:
1725	if (rx_ring->next_to_use != ntu)
1726		i40e_release_rx_desc(rx_ring, ntu);
1727
1728	/* make sure to come back via polling to try again after
1729	 * allocation failure
1730	 */
1731	return true;
1732}
1733
1734/**
1735 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1736 * @vsi: the VSI we care about
1737 * @skb: skb currently being received and modified
1738 * @rx_desc: the receive descriptor
 
 
1739 **/
1740static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1741				    struct sk_buff *skb,
1742				    union i40e_rx_desc *rx_desc)
1743{
1744	struct i40e_rx_ptype_decoded decoded;
1745	u32 rx_error, rx_status;
1746	bool ipv4, ipv6;
1747	u8 ptype;
1748	u64 qword;
1749
1750	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1751	ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1752	rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1753	rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
 
 
1754	decoded = decode_rx_desc_ptype(ptype);
1755
1756	skb->ip_summed = CHECKSUM_NONE;
1757
1758	skb_checksum_none_assert(skb);
1759
1760	/* Rx csum enabled and ip headers found? */
1761	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1762		return;
1763
1764	/* did the hardware decode the packet and checksum? */
1765	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1766		return;
1767
1768	/* both known and outer_ip must be set for the below code to work */
1769	if (!(decoded.known && decoded.outer_ip))
1770		return;
1771
1772	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1773	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1774	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1775	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1776
1777	if (ipv4 &&
1778	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1779			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1780		goto checksum_fail;
1781
1782	/* likely incorrect csum if alternate IP extension headers found */
1783	if (ipv6 &&
1784	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1785		/* don't increment checksum err here, non-fatal err */
1786		return;
1787
1788	/* there was some L4 error, count error and punt packet to the stack */
1789	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1790		goto checksum_fail;
1791
1792	/* handle packets that were not able to be checksummed due
1793	 * to arrival speed, in this case the stack can compute
1794	 * the csum.
1795	 */
1796	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1797		return;
1798
1799	/* If there is an outer header present that might contain a checksum
1800	 * we need to bump the checksum level by 1 to reflect the fact that
1801	 * we are indicating we validated the inner checksum.
1802	 */
1803	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1804		skb->csum_level = 1;
1805
1806	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1807	switch (decoded.inner_prot) {
1808	case I40E_RX_PTYPE_INNER_PROT_TCP:
1809	case I40E_RX_PTYPE_INNER_PROT_UDP:
1810	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1811		skb->ip_summed = CHECKSUM_UNNECESSARY;
1812		fallthrough;
1813	default:
1814		break;
1815	}
1816
1817	return;
1818
1819checksum_fail:
1820	vsi->back->hw_csum_rx_error++;
1821}
1822
1823/**
1824 * i40e_ptype_to_htype - get a hash type
1825 * @ptype: the ptype value from the descriptor
1826 *
1827 * Returns a hash type to be used by skb_set_hash
1828 **/
1829static inline int i40e_ptype_to_htype(u8 ptype)
1830{
1831	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1832
1833	if (!decoded.known)
1834		return PKT_HASH_TYPE_NONE;
1835
1836	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1837	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1838		return PKT_HASH_TYPE_L4;
1839	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1840		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1841		return PKT_HASH_TYPE_L3;
1842	else
1843		return PKT_HASH_TYPE_L2;
1844}
1845
1846/**
1847 * i40e_rx_hash - set the hash value in the skb
1848 * @ring: descriptor ring
1849 * @rx_desc: specific descriptor
1850 * @skb: skb currently being received and modified
1851 * @rx_ptype: Rx packet type
1852 **/
1853static inline void i40e_rx_hash(struct i40e_ring *ring,
1854				union i40e_rx_desc *rx_desc,
1855				struct sk_buff *skb,
1856				u8 rx_ptype)
1857{
1858	u32 hash;
1859	const __le64 rss_mask =
1860		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1861			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1862
1863	if (!(ring->netdev->features & NETIF_F_RXHASH))
1864		return;
1865
1866	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1867		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1868		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1869	}
1870}
1871
1872/**
1873 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1874 * @rx_ring: rx descriptor ring packet is being transacted on
1875 * @rx_desc: pointer to the EOP Rx descriptor
1876 * @skb: pointer to current skb being populated
 
1877 *
1878 * This function checks the ring, descriptor, and packet information in
1879 * order to populate the hash, checksum, VLAN, protocol, and
1880 * other fields within the skb.
1881 **/
 
1882void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1883			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
 
1884{
1885	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1886	u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
 
1887	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1888	u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1889	u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1890
1891	if (unlikely(tsynvalid))
1892		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1893
1894	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1895
 
 
 
1896	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1897
1898	skb_record_rx_queue(skb, rx_ring->queue_index);
 
1899
1900	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1901		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1902
1903		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1904				       le16_to_cpu(vlan_tag));
1905	}
 
 
1906
1907	/* modifies the skb - consumes the enet header */
1908	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 
 
 
 
 
 
 
 
 
 
 
1909}
1910
1911/**
1912 * i40e_cleanup_headers - Correct empty headers
1913 * @rx_ring: rx descriptor ring packet is being transacted on
1914 * @skb: pointer to current skb being fixed
1915 * @rx_desc: pointer to the EOP Rx descriptor
 
 
1916 *
1917 * In addition if skb is not at least 60 bytes we need to pad it so that
1918 * it is large enough to qualify as a valid Ethernet frame.
1919 *
1920 * Returns true if an error was encountered and skb was freed.
1921 **/
1922static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1923				 union i40e_rx_desc *rx_desc)
1924
1925{
1926	/* ERR_MASK will only have valid bits if EOP set, and
1927	 * what we are doing here is actually checking
1928	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1929	 * the error field
1930	 */
1931	if (unlikely(i40e_test_staterr(rx_desc,
1932				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1933		dev_kfree_skb_any(skb);
1934		return true;
1935	}
1936
1937	/* if eth_skb_pad returns an error the skb was freed */
1938	if (eth_skb_pad(skb))
1939		return true;
1940
1941	return false;
1942}
1943
1944/**
1945 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1946 * @rx_buffer: buffer containing the page
1947 * @rx_stats: rx stats structure for the rx ring
1948 *
1949 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1950 * which will assign the current buffer to the buffer that next_to_alloc is
1951 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1952 * page freed.
1953 *
1954 * rx_stats will be updated to indicate whether the page was waived
1955 * or busy if it could not be reused.
1956 */
1957static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1958				   struct i40e_rx_queue_stats *rx_stats)
1959{
1960	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1961	struct page *page = rx_buffer->page;
1962
1963	/* Is any reuse possible? */
1964	if (!dev_page_is_reusable(page)) {
1965		rx_stats->page_waive_count++;
1966		return false;
1967	}
1968
1969#if (PAGE_SIZE < 8192)
1970	/* if we are only owner of page we can reuse it */
1971	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1972		rx_stats->page_busy_count++;
1973		return false;
1974	}
1975#else
1976#define I40E_LAST_OFFSET \
1977	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1978	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1979		rx_stats->page_busy_count++;
1980		return false;
1981	}
1982#endif
1983
1984	/* If we have drained the page fragment pool we need to update
1985	 * the pagecnt_bias and page count so that we fully restock the
1986	 * number of references the driver holds.
1987	 */
1988	if (unlikely(pagecnt_bias == 1)) {
1989		page_ref_add(page, USHRT_MAX - 1);
1990		rx_buffer->pagecnt_bias = USHRT_MAX;
1991	}
1992
1993	return true;
 
1994}
1995
1996/**
1997 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1998 * @rx_buffer: Rx buffer to adjust
1999 * @truesize: Size of adjustment
2000 **/
2001static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
2002				unsigned int truesize)
2003{
2004#if (PAGE_SIZE < 8192)
2005	rx_buffer->page_offset ^= truesize;
2006#else
2007	rx_buffer->page_offset += truesize;
2008#endif
2009}
2010
2011/**
2012 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2013 * @rx_ring: rx descriptor ring to transact packets on
2014 * @size: size of buffer to add to skb
2015 *
2016 * This function will pull an Rx buffer from the ring and synchronize it
2017 * for use by the CPU.
2018 */
2019static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2020						 const unsigned int size)
 
 
 
 
 
 
 
 
 
2021{
2022	struct i40e_rx_buffer *rx_buffer;
2023
2024	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
2025	rx_buffer->page_count =
2026#if (PAGE_SIZE < 8192)
2027		page_count(rx_buffer->page);
2028#else
2029		0;
 
2030#endif
2031	prefetch_page_address(rx_buffer->page);
2032
2033	/* we are reusing so sync this buffer for CPU use */
2034	dma_sync_single_range_for_cpu(rx_ring->dev,
2035				      rx_buffer->dma,
2036				      rx_buffer->page_offset,
2037				      size,
2038				      DMA_FROM_DEVICE);
2039
2040	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2041	rx_buffer->pagecnt_bias--;
2042
2043	return rx_buffer;
2044}
 
2045
2046/**
2047 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2048 * @rx_ring: rx descriptor ring to transact packets on
2049 * @rx_buffer: rx buffer to pull data from
2050 *
2051 * This function will clean up the contents of the rx_buffer.  It will
2052 * either recycle the buffer or unmap it and free the associated resources.
2053 */
2054static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2055			       struct i40e_rx_buffer *rx_buffer)
2056{
2057	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2058		/* hand second half of page back to the ring */
2059		i40e_reuse_rx_page(rx_ring, rx_buffer);
2060	} else {
2061		/* we are not reusing the buffer so unmap it */
2062		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2063				     i40e_rx_pg_size(rx_ring),
2064				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2065		__page_frag_cache_drain(rx_buffer->page,
2066					rx_buffer->pagecnt_bias);
2067		/* clear contents of buffer_info */
2068		rx_buffer->page = NULL;
2069	}
2070}
2071
2072/**
2073 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2074 * @rx_ring: Rx descriptor ring to transact packets on
2075 * @xdp_res: Result of the XDP program
2076 * @xdp: xdp_buff pointing to the data
2077 **/
2078static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2079				  struct xdp_buff *xdp)
2080{
2081	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2082	u32 next = rx_ring->next_to_clean, i = 0;
2083	struct i40e_rx_buffer *rx_buffer;
2084
2085	xdp->flags = 0;
 
 
2086
2087	while (1) {
2088		rx_buffer = i40e_rx_bi(rx_ring, next);
2089		if (++next == rx_ring->count)
2090			next = 0;
2091
2092		if (!rx_buffer->page)
2093			continue;
 
 
 
2094
2095		if (xdp_res != I40E_XDP_CONSUMED)
2096			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2097		else if (i++ <= nr_frags)
2098			rx_buffer->pagecnt_bias++;
2099
2100		/* EOP buffer will be put in i40e_clean_rx_irq() */
2101		if (next == rx_ring->next_to_process)
2102			return;
 
2103
2104		i40e_put_rx_buffer(rx_ring, rx_buffer);
2105	}
2106}
2107
2108/**
2109 * i40e_construct_skb - Allocate skb and populate it
2110 * @rx_ring: rx descriptor ring to transact packets on
2111 * @xdp: xdp_buff pointing to the data
2112 *
2113 * This function allocates an skb.  It then populates it with the page
2114 * data from the current receive descriptor, taking care to set up the
2115 * skb correctly.
 
2116 */
2117static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2118					  struct xdp_buff *xdp)
 
2119{
2120	unsigned int size = xdp->data_end - xdp->data;
2121	struct i40e_rx_buffer *rx_buffer;
2122	struct skb_shared_info *sinfo;
2123	unsigned int headlen;
2124	struct sk_buff *skb;
2125	u32 nr_frags = 0;
2126
2127	/* prefetch first cache line of first page */
2128	net_prefetch(xdp->data);
 
2129
2130	/* Note, we get here by enabling legacy-rx via:
2131	 *
2132	 *    ethtool --set-priv-flags <dev> legacy-rx on
2133	 *
2134	 * In this mode, we currently get 0 extra XDP headroom as
2135	 * opposed to having legacy-rx off, where we process XDP
2136	 * packets going to stack via i40e_build_skb(). The latter
2137	 * provides us currently with 192 bytes of headroom.
2138	 *
2139	 * For i40e_construct_skb() mode it means that the
2140	 * xdp->data_meta will always point to xdp->data, since
2141	 * the helper cannot expand the head. Should this ever
2142	 * change in future for legacy-rx mode on, then lets also
2143	 * add xdp->data_meta handling here.
2144	 */
2145
2146	/* allocate a skb to store the frags */
2147	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2148			       I40E_RX_HDR_SIZE,
2149			       GFP_ATOMIC | __GFP_NOWARN);
2150	if (unlikely(!skb))
2151		return NULL;
2152
2153	/* Determine available headroom for copy */
2154	headlen = size;
2155	if (headlen > I40E_RX_HDR_SIZE)
2156		headlen = eth_get_headlen(skb->dev, xdp->data,
2157					  I40E_RX_HDR_SIZE);
2158
2159	/* align pull length to size of long to optimize memcpy performance */
2160	memcpy(__skb_put(skb, headlen), xdp->data,
2161	       ALIGN(headlen, sizeof(long)));
2162
2163	if (unlikely(xdp_buff_has_frags(xdp))) {
2164		sinfo = xdp_get_shared_info_from_buff(xdp);
2165		nr_frags = sinfo->nr_frags;
2166	}
2167	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2168	/* update all of the pointers */
2169	size -= headlen;
2170	if (size) {
2171		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2172			dev_kfree_skb(skb);
 
 
2173			return NULL;
2174		}
2175		skb_add_rx_frag(skb, 0, rx_buffer->page,
2176				rx_buffer->page_offset + headlen,
2177				size, xdp->frame_sz);
2178		/* buffer is used by skb, update page_offset */
2179		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2180	} else {
2181		/* buffer is unused, reset bias back to rx_buffer */
2182		rx_buffer->pagecnt_bias++;
2183	}
2184
2185	if (unlikely(xdp_buff_has_frags(xdp))) {
2186		struct skb_shared_info *skinfo = skb_shinfo(skb);
2187
2188		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2189		       sizeof(skb_frag_t) * nr_frags);
2190
2191		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2192					   sinfo->xdp_frags_size,
2193					   nr_frags * xdp->frame_sz,
2194					   xdp_buff_is_frag_pfmemalloc(xdp));
2195
2196		/* First buffer has already been processed, so bump ntc */
2197		if (++rx_ring->next_to_clean == rx_ring->count)
2198			rx_ring->next_to_clean = 0;
2199
2200		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
 
 
 
 
 
 
2201	}
2202
2203	return skb;
2204}
2205
2206/**
2207 * i40e_build_skb - Build skb around an existing buffer
2208 * @rx_ring: Rx descriptor ring to transact packets on
2209 * @xdp: xdp_buff pointing to the data
2210 *
2211 * This function builds an skb around an existing Rx buffer, taking care
2212 * to set up the skb correctly and avoid any memcpy overhead.
2213 */
2214static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2215				      struct xdp_buff *xdp)
2216{
2217	unsigned int metasize = xdp->data - xdp->data_meta;
2218	struct skb_shared_info *sinfo;
2219	struct sk_buff *skb;
2220	u32 nr_frags;
2221
2222	/* Prefetch first cache line of first page. If xdp->data_meta
2223	 * is unused, this points exactly as xdp->data, otherwise we
2224	 * likely have a consumer accessing first few bytes of meta
2225	 * data, and then actual data.
2226	 */
2227	net_prefetch(xdp->data_meta);
2228
2229	if (unlikely(xdp_buff_has_frags(xdp))) {
2230		sinfo = xdp_get_shared_info_from_buff(xdp);
2231		nr_frags = sinfo->nr_frags;
2232	}
2233
2234	/* build an skb around the page buffer */
2235	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2236	if (unlikely(!skb))
2237		return NULL;
2238
2239	/* update pointers within the skb to store the data */
2240	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2241	__skb_put(skb, xdp->data_end - xdp->data);
2242	if (metasize)
2243		skb_metadata_set(skb, metasize);
2244
2245	if (unlikely(xdp_buff_has_frags(xdp))) {
2246		xdp_update_skb_shared_info(skb, nr_frags,
2247					   sinfo->xdp_frags_size,
2248					   nr_frags * xdp->frame_sz,
2249					   xdp_buff_is_frag_pfmemalloc(xdp));
2250
2251		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
 
 
 
 
2252	} else {
2253		struct i40e_rx_buffer *rx_buffer;
2254
2255		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2256		/* buffer is used by skb, update page_offset */
2257		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2258	}
2259
 
 
 
2260	return skb;
2261}
2262
2263/**
2264 * i40e_is_non_eop - process handling of non-EOP buffers
2265 * @rx_ring: Rx ring being processed
2266 * @rx_desc: Rx descriptor for current buffer
 
2267 *
2268 * If the buffer is an EOP buffer, this function exits returning false,
2269 * otherwise return true indicating that this is in fact a non-EOP buffer.
2270 */
2271bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2272		     union i40e_rx_desc *rx_desc)
 
 
 
2273{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2274	/* if we are the last buffer then there is nothing else to do */
2275#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2276	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2277		return false;
2278
 
 
2279	rx_ring->rx_stats.non_eop_descs++;
2280
2281	return true;
2282}
2283
2284static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2285			      struct i40e_ring *xdp_ring);
2286
2287int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2288{
2289	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2290
2291	if (unlikely(!xdpf))
2292		return I40E_XDP_CONSUMED;
2293
2294	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2295}
2296
2297/**
2298 * i40e_run_xdp - run an XDP program
2299 * @rx_ring: Rx ring being processed
2300 * @xdp: XDP buffer containing the frame
2301 * @xdp_prog: XDP program to run
2302 **/
2303static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2304{
2305	int err, result = I40E_XDP_PASS;
2306	struct i40e_ring *xdp_ring;
2307	u32 act;
2308
2309	if (!xdp_prog)
2310		goto xdp_out;
2311
2312	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2313
2314	act = bpf_prog_run_xdp(xdp_prog, xdp);
2315	switch (act) {
2316	case XDP_PASS:
2317		break;
2318	case XDP_TX:
2319		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2320		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2321		if (result == I40E_XDP_CONSUMED)
2322			goto out_failure;
2323		break;
2324	case XDP_REDIRECT:
2325		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2326		if (err)
2327			goto out_failure;
2328		result = I40E_XDP_REDIR;
2329		break;
2330	default:
2331		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2332		fallthrough;
2333	case XDP_ABORTED:
2334out_failure:
2335		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2336		fallthrough; /* handle aborts by dropping packet */
2337	case XDP_DROP:
2338		result = I40E_XDP_CONSUMED;
2339		break;
2340	}
2341xdp_out:
2342	return result;
2343}
2344
2345/**
2346 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2347 * @xdp_ring: XDP Tx ring
2348 *
2349 * This function updates the XDP Tx ring tail register.
2350 **/
2351void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2352{
2353	/* Force memory writes to complete before letting h/w
2354	 * know there are new descriptors to fetch.
2355	 */
2356	wmb();
2357	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2358}
2359
2360/**
2361 * i40e_update_rx_stats - Update Rx ring statistics
2362 * @rx_ring: rx descriptor ring
2363 * @total_rx_bytes: number of bytes received
2364 * @total_rx_packets: number of packets received
2365 *
2366 * This function updates the Rx ring statistics.
2367 **/
2368void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2369			  unsigned int total_rx_bytes,
2370			  unsigned int total_rx_packets)
2371{
2372	u64_stats_update_begin(&rx_ring->syncp);
2373	rx_ring->stats.packets += total_rx_packets;
2374	rx_ring->stats.bytes += total_rx_bytes;
2375	u64_stats_update_end(&rx_ring->syncp);
2376	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2377	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2378}
2379
2380/**
2381 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2382 * @rx_ring: Rx ring
2383 * @xdp_res: Result of the receive batch
2384 *
2385 * This function bumps XDP Tx tail and/or flush redirect map, and
2386 * should be called when a batch of packets has been processed in the
2387 * napi loop.
2388 **/
2389void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2390{
2391	if (xdp_res & I40E_XDP_REDIR)
2392		xdp_do_flush();
2393
2394	if (xdp_res & I40E_XDP_TX) {
2395		struct i40e_ring *xdp_ring =
2396			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2397
2398		i40e_xdp_ring_update_tail(xdp_ring);
2399	}
2400}
2401
2402/**
2403 * i40e_inc_ntp: Advance the next_to_process index
2404 * @rx_ring: Rx ring
2405 **/
2406static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2407{
2408	u32 ntp = rx_ring->next_to_process + 1;
2409
2410	ntp = (ntp < rx_ring->count) ? ntp : 0;
2411	rx_ring->next_to_process = ntp;
2412	prefetch(I40E_RX_DESC(rx_ring, ntp));
2413}
2414
2415/**
2416 * i40e_add_xdp_frag: Add a frag to xdp_buff
2417 * @xdp: xdp_buff pointing to the data
2418 * @nr_frags: return number of buffers for the packet
2419 * @rx_buffer: rx_buffer holding data of the current frag
2420 * @size: size of data of current frag
2421 */
2422static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2423			     struct i40e_rx_buffer *rx_buffer, u32 size)
2424{
2425	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2426
2427	if (!xdp_buff_has_frags(xdp)) {
2428		sinfo->nr_frags = 0;
2429		sinfo->xdp_frags_size = 0;
2430		xdp_buff_set_frags_flag(xdp);
2431	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2432		/* Overflowing packet: All frags need to be dropped */
2433		return -ENOMEM;
2434	}
2435
2436	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2437				   rx_buffer->page_offset, size);
2438
2439	sinfo->xdp_frags_size += size;
2440
2441	if (page_is_pfmemalloc(rx_buffer->page))
2442		xdp_buff_set_frag_pfmemalloc(xdp);
2443	*nr_frags = sinfo->nr_frags;
2444
2445	return 0;
2446}
2447
2448/**
2449 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2450 * @rx_ring: rx descriptor ring to transact packets on
2451 * @xdp: xdp_buff pointing to the data
2452 * @rx_buffer: rx_buffer of eop desc
2453 */
2454static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2455				  struct xdp_buff *xdp,
2456				  struct i40e_rx_buffer *rx_buffer)
2457{
2458	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2459	i40e_put_rx_buffer(rx_ring, rx_buffer);
2460	rx_ring->next_to_clean = rx_ring->next_to_process;
2461	xdp->data = NULL;
2462}
2463
2464/**
2465 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2466 * @rx_ring: rx descriptor ring to transact packets on
2467 * @budget: Total limit on number of packets to process
2468 * @rx_cleaned: Out parameter of the number of packets processed
2469 *
2470 * This function provides a "bounce buffer" approach to Rx interrupt
2471 * processing.  The advantage to this is that on systems that have
2472 * expensive overhead for IOMMU access this provides a means of avoiding
2473 * it by maintaining the mapping of the page to the system.
2474 *
2475 * Returns amount of work completed
2476 **/
2477static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2478			     unsigned int *rx_cleaned)
2479{
2480	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2481	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2482	u16 clean_threshold = rx_ring->count / 2;
2483	unsigned int offset = rx_ring->rx_offset;
2484	struct xdp_buff *xdp = &rx_ring->xdp;
2485	unsigned int xdp_xmit = 0;
2486	struct bpf_prog *xdp_prog;
2487	bool failure = false;
2488	int xdp_res = 0;
2489
2490	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2491
2492	while (likely(total_rx_packets < (unsigned int)budget)) {
2493		u16 ntp = rx_ring->next_to_process;
2494		struct i40e_rx_buffer *rx_buffer;
2495		union i40e_rx_desc *rx_desc;
2496		struct sk_buff *skb;
2497		unsigned int size;
2498		u32 nfrags = 0;
2499		bool neop;
2500		u64 qword;
2501
2502		/* return some buffers to hardware, one at a time is too slow */
2503		if (cleaned_count >= clean_threshold) {
2504			failure = failure ||
2505				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2506			cleaned_count = 0;
2507		}
2508
2509		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2510
2511		/* status_error_len will always be zero for unused descriptors
2512		 * because it's cleared in cleanup, and overlaps with hdr_addr
2513		 * which is always zero because packet split isn't used, if the
2514		 * hardware wrote DD then the length will be non-zero
2515		 */
2516		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 
 
2517
2518		/* This memory barrier is needed to keep us from reading
2519		 * any other fields out of the rx_desc until we have
2520		 * verified the descriptor has been written back.
2521		 */
2522		dma_rmb();
2523
2524		if (i40e_rx_is_programming_status(qword)) {
2525			i40e_clean_programming_status(rx_ring,
2526						      rx_desc->raw.qword[0],
2527						      qword);
2528			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2529			i40e_inc_ntp(rx_ring);
2530			i40e_reuse_rx_page(rx_ring, rx_buffer);
2531			/* Update ntc and bump cleaned count if not in the
2532			 * middle of mb packet.
2533			 */
2534			if (rx_ring->next_to_clean == ntp) {
2535				rx_ring->next_to_clean =
2536					rx_ring->next_to_process;
2537				cleaned_count++;
2538			}
2539			continue;
2540		}
2541
2542		size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2543		if (!size)
2544			break;
2545
2546		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2547		/* retrieve a buffer from the ring */
2548		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2549
2550		neop = i40e_is_non_eop(rx_ring, rx_desc);
2551		i40e_inc_ntp(rx_ring);
2552
2553		if (!xdp->data) {
2554			unsigned char *hard_start;
2555
2556			hard_start = page_address(rx_buffer->page) +
2557				     rx_buffer->page_offset - offset;
2558			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2559#if (PAGE_SIZE > 4096)
2560			/* At larger PAGE_SIZE, frame_sz depend on len size */
2561			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2562#endif
2563		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2564			   !neop) {
2565			/* Overflowing packet: Drop all frags on EOP */
2566			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2567			break;
2568		}
2569
2570		if (neop)
2571			continue;
2572
2573		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
 
 
 
 
 
 
 
 
2574
2575		if (xdp_res) {
2576			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2577
2578			if (unlikely(xdp_buff_has_frags(xdp))) {
2579				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2580				size = xdp_get_buff_len(xdp);
2581			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2582				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2583			} else {
2584				rx_buffer->pagecnt_bias++;
2585			}
2586			total_rx_bytes += size;
2587		} else {
2588			if (ring_uses_build_skb(rx_ring))
2589				skb = i40e_build_skb(rx_ring, xdp);
2590			else
2591				skb = i40e_construct_skb(rx_ring, xdp);
2592
2593			/* drop if we failed to retrieve a buffer */
2594			if (!skb) {
2595				rx_ring->rx_stats.alloc_buff_failed++;
2596				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2597				break;
2598			}
2599
2600			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2601				goto process_next;
2602
2603			/* probably a little skewed due to removing CRC */
2604			total_rx_bytes += skb->len;
 
 
 
 
 
 
2605
2606			/* populate checksum, VLAN, and protocol */
2607			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2608
2609			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2610			napi_gro_receive(&rx_ring->q_vector->napi, skb);
2611		}
2612
2613		/* update budget accounting */
2614		total_rx_packets++;
2615process_next:
2616		cleaned_count += nfrags + 1;
2617		i40e_put_rx_buffer(rx_ring, rx_buffer);
2618		rx_ring->next_to_clean = rx_ring->next_to_process;
2619
2620		xdp->data = NULL;
2621	}
2622
2623	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2624
2625	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2626
2627	*rx_cleaned = total_rx_packets;
 
2628
2629	/* guarantee a trip back through this routine if there was a failure */
2630	return failure ? budget : (int)total_rx_packets;
2631}
2632
2633static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2634{
2635	u32 val;
2636
2637	/* We don't bother with setting the CLEARPBA bit as the data sheet
2638	 * points out doing so is "meaningless since it was already
2639	 * auto-cleared". The auto-clearing happens when the interrupt is
2640	 * asserted.
2641	 *
2642	 * Hardware errata 28 for also indicates that writing to a
2643	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2644	 * an event in the PBA anyway so we need to rely on the automask
2645	 * to hold pending events for us until the interrupt is re-enabled
2646	 *
2647	 * The itr value is reported in microseconds, and the register
2648	 * value is recorded in 2 microsecond units. For this reason we
2649	 * only need to shift by the interval shift - 1 instead of the
2650	 * full value.
2651	 */
2652	itr &= I40E_ITR_MASK;
2653
2654	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 
 
 
2655	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2656	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2657
2658	return val;
2659}
2660
2661/* a small macro to shorten up some long lines */
2662#define INTREG I40E_PFINT_DYN_CTLN
 
 
 
 
2663
2664/* The act of updating the ITR will cause it to immediately trigger. In order
2665 * to prevent this from throwing off adaptive update statistics we defer the
2666 * update so that it can only happen so often. So after either Tx or Rx are
2667 * updated we make the adaptive scheme wait until either the ITR completely
2668 * expires via the next_update expiration or we have been through at least
2669 * 3 interrupts.
2670 */
2671#define ITR_COUNTDOWN_START 3
2672
2673/**
2674 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2675 * @vsi: the VSI we care about
2676 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2677 *
2678 **/
2679static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2680					  struct i40e_q_vector *q_vector)
2681{
2682	struct i40e_hw *hw = &vsi->back->hw;
2683	u32 intval;
 
 
 
 
2684
2685	/* If we don't have MSIX, then we only need to re-enable icr0 */
2686	if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2687		i40e_irq_dynamic_enable_icr0(vsi->back);
2688		return;
 
 
 
 
 
 
 
 
 
 
2689	}
2690
2691	/* These will do nothing if dynamic updates are not enabled */
2692	i40e_update_itr(q_vector, &q_vector->tx);
2693	i40e_update_itr(q_vector, &q_vector->rx);
2694
2695	/* This block of logic allows us to get away with only updating
2696	 * one ITR value with each interrupt. The idea is to perform a
2697	 * pseudo-lazy update with the following criteria.
2698	 *
2699	 * 1. Rx is given higher priority than Tx if both are in same state
2700	 * 2. If we must reduce an ITR that is given highest priority.
2701	 * 3. We then give priority to increasing ITR based on amount.
2702	 */
2703	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2704		/* Rx ITR needs to be reduced, this is highest priority */
2705		intval = i40e_buildreg_itr(I40E_RX_ITR,
2706					   q_vector->rx.target_itr);
2707		q_vector->rx.current_itr = q_vector->rx.target_itr;
2708		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2709	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2710		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2711		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2712		/* Tx ITR needs to be reduced, this is second priority
2713		 * Tx ITR needs to be increased more than Rx, fourth priority
2714		 */
2715		intval = i40e_buildreg_itr(I40E_TX_ITR,
2716					   q_vector->tx.target_itr);
2717		q_vector->tx.current_itr = q_vector->tx.target_itr;
2718		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2719	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2720		/* Rx ITR needs to be increased, third priority */
2721		intval = i40e_buildreg_itr(I40E_RX_ITR,
2722					   q_vector->rx.target_itr);
2723		q_vector->rx.current_itr = q_vector->rx.target_itr;
2724		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2725	} else {
2726		/* No ITR update, lowest priority */
2727		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2728		if (q_vector->itr_countdown)
2729			q_vector->itr_countdown--;
 
 
 
 
 
2730	}
2731
2732	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2733		wr32(hw, INTREG(q_vector->reg_idx), intval);
 
 
 
 
 
 
2734}
2735
2736/**
2737 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2738 * @napi: napi struct with our devices info in it
2739 * @budget: amount of work driver is allowed to do this pass, in packets
2740 *
2741 * This function will clean all queues associated with a q_vector.
2742 *
2743 * Returns the amount of work done
2744 **/
2745int i40e_napi_poll(struct napi_struct *napi, int budget)
2746{
2747	struct i40e_q_vector *q_vector =
2748			       container_of(napi, struct i40e_q_vector, napi);
2749	struct i40e_vsi *vsi = q_vector->vsi;
2750	struct i40e_ring *ring;
2751	bool tx_clean_complete = true;
2752	bool rx_clean_complete = true;
2753	unsigned int tx_cleaned = 0;
2754	unsigned int rx_cleaned = 0;
2755	bool clean_complete = true;
2756	bool arm_wb = false;
2757	int budget_per_ring;
2758	int work_done = 0;
2759
2760	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2761		napi_complete(napi);
2762		return 0;
2763	}
2764
 
 
2765	/* Since the actual Tx work is minimal, we can give the Tx a larger
2766	 * budget and be more aggressive about cleaning up the Tx descriptors.
2767	 */
2768	i40e_for_each_ring(ring, q_vector->tx) {
2769		bool wd = ring->xsk_pool ?
2770			  i40e_clean_xdp_tx_irq(vsi, ring) :
2771			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2772
2773		if (!wd) {
2774			clean_complete = tx_clean_complete = false;
2775			continue;
2776		}
2777		arm_wb |= ring->arm_wb;
2778		ring->arm_wb = false;
2779	}
2780
2781	/* Handle case where we are called by netpoll with a budget of 0 */
2782	if (budget <= 0)
2783		goto tx_only;
2784
2785	/* normally we have 1 Rx ring per q_vector */
2786	if (unlikely(q_vector->num_ringpairs > 1))
2787		/* We attempt to distribute budget to each Rx queue fairly, but
2788		 * don't allow the budget to go below 1 because that would exit
2789		 * polling early.
2790		 */
2791		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2792	else
2793		/* Max of 1 Rx ring in this q_vector so give it the budget */
2794		budget_per_ring = budget;
2795
2796	i40e_for_each_ring(ring, q_vector->rx) {
2797		int cleaned = ring->xsk_pool ?
2798			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2799			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2800
2801		work_done += cleaned;
2802		/* if we clean as many as budgeted, we must not be done */
2803		if (cleaned >= budget_per_ring)
2804			clean_complete = rx_clean_complete = false;
2805	}
2806
2807	if (!i40e_enabled_xdp_vsi(vsi))
2808		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2809				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2810
2811	/* If work not completed, return budget and polling will return */
2812	if (!clean_complete) {
 
2813		int cpu_id = smp_processor_id();
2814
2815		/* It is possible that the interrupt affinity has changed but,
2816		 * if the cpu is pegged at 100%, polling will never exit while
2817		 * traffic continues and the interrupt will be stuck on this
2818		 * cpu.  We check to make sure affinity is correct before we
2819		 * continue to poll, otherwise we must stop polling so the
2820		 * interrupt can move to the correct cpu.
2821		 */
2822		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2823			/* Tell napi that we are done polling */
2824			napi_complete_done(napi, work_done);
2825
2826			/* Force an interrupt */
2827			i40e_force_wb(vsi, q_vector);
2828
2829			/* Return budget-1 so that polling stops */
2830			return budget - 1;
2831		}
2832tx_only:
2833		if (arm_wb) {
2834			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2835			i40e_enable_wb_on_itr(vsi, q_vector);
 
 
2836		}
2837		return budget;
2838	}
2839
2840	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2841		q_vector->arm_wb_state = false;
2842
2843	/* Exit the polling mode, but don't re-enable interrupts if stack might
2844	 * poll us due to busy-polling
2845	 */
2846	if (likely(napi_complete_done(napi, work_done)))
 
 
 
 
 
 
 
 
2847		i40e_update_enable_itr(vsi, q_vector);
2848
2849	return min(work_done, budget - 1);
2850}
2851
2852/**
2853 * i40e_atr - Add a Flow Director ATR filter
2854 * @tx_ring:  ring to add programming descriptor to
2855 * @skb:      send buffer
2856 * @tx_flags: send tx flags
2857 **/
2858static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2859		     u32 tx_flags)
2860{
2861	struct i40e_filter_program_desc *fdir_desc;
2862	struct i40e_pf *pf = tx_ring->vsi->back;
2863	union {
2864		unsigned char *network;
2865		struct iphdr *ipv4;
2866		struct ipv6hdr *ipv6;
2867	} hdr;
2868	struct tcphdr *th;
2869	unsigned int hlen;
2870	u32 flex_ptype, dtype_cmd;
2871	int l4_proto;
2872	u16 i;
2873
2874	/* make sure ATR is enabled */
2875	if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2876		return;
2877
2878	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2879		return;
2880
2881	/* if sampling is disabled do nothing */
2882	if (!tx_ring->atr_sample_rate)
2883		return;
2884
2885	/* Currently only IPv4/IPv6 with TCP is supported */
2886	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2887		return;
2888
2889	/* snag network header to get L4 type and address */
2890	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2891		      skb_inner_network_header(skb) : skb_network_header(skb);
2892
2893	/* Note: tx_flags gets modified to reflect inner protocols in
2894	 * tx_enable_csum function if encap is enabled.
2895	 */
2896	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2897		/* access ihl as u8 to avoid unaligned access on ia64 */
2898		hlen = (hdr.network[0] & 0x0F) << 2;
2899		l4_proto = hdr.ipv4->protocol;
2900	} else {
2901		/* find the start of the innermost ipv6 header */
2902		unsigned int inner_hlen = hdr.network - skb->data;
2903		unsigned int h_offset = inner_hlen;
2904
2905		/* this function updates h_offset to the end of the header */
2906		l4_proto =
2907		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2908		/* hlen will contain our best estimate of the tcp header */
2909		hlen = h_offset - inner_hlen;
2910	}
2911
2912	if (l4_proto != IPPROTO_TCP)
2913		return;
2914
2915	th = (struct tcphdr *)(hdr.network + hlen);
2916
2917	/* Due to lack of space, no more new filters can be programmed */
2918	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2919		return;
2920	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
 
2921		/* HW ATR eviction will take care of removing filters on FIN
2922		 * and RST packets.
2923		 */
2924		if (th->fin || th->rst)
2925			return;
2926	}
2927
2928	tx_ring->atr_count++;
2929
2930	/* sample on all syn/fin/rst packets or once every atr sample rate */
2931	if (!th->fin &&
2932	    !th->syn &&
2933	    !th->rst &&
2934	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2935		return;
2936
2937	tx_ring->atr_count = 0;
2938
2939	/* grab the next descriptor */
2940	i = tx_ring->next_to_use;
2941	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2942
2943	i++;
2944	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2945
2946	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2947				tx_ring->queue_index);
2948	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2949		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2950		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2951		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2952		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2953
2954	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2955
2956	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2957
2958	dtype_cmd |= (th->fin || th->rst) ?
2959		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2960		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2961		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2962		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2963
2964	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2965		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2966
2967	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2968		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2969
2970	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2971	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2972		dtype_cmd |=
2973			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2974				   I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
 
2975	else
2976		dtype_cmd |=
2977			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2978				   I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
 
2979
2980	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
 
2981		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2982
2983	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2984	fdir_desc->rsvd = cpu_to_le32(0);
2985	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2986	fdir_desc->fd_id = cpu_to_le32(0);
2987}
2988
2989/**
2990 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2991 * @skb:     send buffer
2992 * @tx_ring: ring to send buffer on
2993 * @flags:   the tx flags to be set
2994 *
2995 * Checks the skb and set up correspondingly several generic transmit flags
2996 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2997 *
2998 * Returns error code indicate the frame should be dropped upon error and the
2999 * otherwise  returns 0 to indicate the flags has been set properly.
3000 **/
 
 
 
 
 
3001static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3002					     struct i40e_ring *tx_ring,
3003					     u32 *flags)
 
3004{
3005	__be16 protocol = skb->protocol;
3006	u32  tx_flags = 0;
3007
3008	if (protocol == htons(ETH_P_8021Q) &&
3009	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3010		/* When HW VLAN acceleration is turned off by the user the
3011		 * stack sets the protocol to 8021q so that the driver
3012		 * can take any steps required to support the SW only
3013		 * VLAN handling.  In our case the driver doesn't need
3014		 * to take any further steps so just set the protocol
3015		 * to the encapsulated ethertype.
3016		 */
3017		skb->protocol = vlan_get_protocol(skb);
3018		goto out;
3019	}
3020
3021	/* if we have a HW VLAN tag being added, default to the HW one */
3022	if (skb_vlan_tag_present(skb)) {
3023		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3024		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3025	/* else if it is a SW VLAN, check the next protocol and store the tag */
3026	} else if (protocol == htons(ETH_P_8021Q)) {
3027		struct vlan_hdr *vhdr, _vhdr;
3028
3029		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3030		if (!vhdr)
3031			return -EINVAL;
3032
3033		protocol = vhdr->h_vlan_encapsulated_proto;
3034		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3035		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3036	}
3037
3038	if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3039		goto out;
3040
3041	/* Insert 802.1p priority into VLAN header */
3042	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3043	    (skb->priority != TC_PRIO_CONTROL)) {
3044		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3045		tx_flags |= (skb->priority & 0x7) <<
3046				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3047		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3048			struct vlan_ethhdr *vhdr;
3049			int rc;
3050
3051			rc = skb_cow_head(skb, 0);
3052			if (rc < 0)
3053				return rc;
3054			vhdr = skb_vlan_eth_hdr(skb);
3055			vhdr->h_vlan_TCI = htons(tx_flags >>
3056						 I40E_TX_FLAGS_VLAN_SHIFT);
3057		} else {
3058			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3059		}
3060	}
3061
3062out:
3063	*flags = tx_flags;
3064	return 0;
3065}
3066
3067/**
3068 * i40e_tso - set up the tso context descriptor
3069 * @first:    pointer to first Tx buffer for xmit
3070 * @hdr_len:  ptr to the size of the packet header
3071 * @cd_type_cmd_tso_mss: Quad Word 1
3072 *
3073 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3074 **/
3075static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3076		    u64 *cd_type_cmd_tso_mss)
3077{
3078	struct sk_buff *skb = first->skb;
3079	u64 cd_cmd, cd_tso_len, cd_mss;
3080	__be16 protocol;
3081	union {
3082		struct iphdr *v4;
3083		struct ipv6hdr *v6;
3084		unsigned char *hdr;
3085	} ip;
3086	union {
3087		struct tcphdr *tcp;
3088		struct udphdr *udp;
3089		unsigned char *hdr;
3090	} l4;
3091	u32 paylen, l4_offset;
3092	u16 gso_size;
3093	int err;
3094
3095	if (skb->ip_summed != CHECKSUM_PARTIAL)
3096		return 0;
3097
3098	if (!skb_is_gso(skb))
3099		return 0;
3100
3101	err = skb_cow_head(skb, 0);
3102	if (err < 0)
3103		return err;
3104
3105	protocol = vlan_get_protocol(skb);
3106
3107	if (eth_p_mpls(protocol))
3108		ip.hdr = skb_inner_network_header(skb);
3109	else
3110		ip.hdr = skb_network_header(skb);
3111	l4.hdr = skb_checksum_start(skb);
3112
3113	/* initialize outer IP header fields */
3114	if (ip.v4->version == 4) {
3115		ip.v4->tot_len = 0;
3116		ip.v4->check = 0;
3117
3118		first->tx_flags |= I40E_TX_FLAGS_TSO;
3119	} else {
3120		ip.v6->payload_len = 0;
3121		first->tx_flags |= I40E_TX_FLAGS_TSO;
3122	}
3123
3124	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3125					 SKB_GSO_GRE_CSUM |
3126					 SKB_GSO_IPXIP4 |
3127					 SKB_GSO_IPXIP6 |
3128					 SKB_GSO_UDP_TUNNEL |
3129					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3130		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3131		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3132			l4.udp->len = 0;
3133
3134			/* determine offset of outer transport header */
3135			l4_offset = l4.hdr - skb->data;
3136
3137			/* remove payload length from outer checksum */
3138			paylen = skb->len - l4_offset;
3139			csum_replace_by_diff(&l4.udp->check,
3140					     (__force __wsum)htonl(paylen));
3141		}
3142
3143		/* reset pointers to inner headers */
3144		ip.hdr = skb_inner_network_header(skb);
3145		l4.hdr = skb_inner_transport_header(skb);
3146
3147		/* initialize inner IP header fields */
3148		if (ip.v4->version == 4) {
3149			ip.v4->tot_len = 0;
3150			ip.v4->check = 0;
3151		} else {
3152			ip.v6->payload_len = 0;
3153		}
3154	}
3155
3156	/* determine offset of inner transport header */
3157	l4_offset = l4.hdr - skb->data;
3158
3159	/* remove payload length from inner checksum */
3160	paylen = skb->len - l4_offset;
 
3161
3162	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3163		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3164		/* compute length of segmentation header */
3165		*hdr_len = sizeof(*l4.udp) + l4_offset;
3166	} else {
3167		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3168		/* compute length of segmentation header */
3169		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3170	}
3171
3172	/* pull values out of skb_shinfo */
3173	gso_size = skb_shinfo(skb)->gso_size;
3174
3175	/* update GSO size and bytecount with header size */
3176	first->gso_segs = skb_shinfo(skb)->gso_segs;
3177	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3178
3179	/* find the field values */
3180	cd_cmd = I40E_TX_CTX_DESC_TSO;
3181	cd_tso_len = skb->len - *hdr_len;
3182	cd_mss = gso_size;
3183	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3184				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3185				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3186	return 1;
3187}
3188
3189/**
3190 * i40e_tsyn - set up the tsyn context descriptor
3191 * @tx_ring:  ptr to the ring to send
3192 * @skb:      ptr to the skb we're sending
3193 * @tx_flags: the collected send information
3194 * @cd_type_cmd_tso_mss: Quad Word 1
3195 *
3196 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3197 **/
3198static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3199		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3200{
3201	struct i40e_pf *pf;
3202
3203	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3204		return 0;
3205
3206	/* Tx timestamps cannot be sampled when doing TSO */
3207	if (tx_flags & I40E_TX_FLAGS_TSO)
3208		return 0;
3209
3210	/* only timestamp the outbound packet if the user has requested it and
3211	 * we are not already transmitting a packet to be timestamped
3212	 */
3213	pf = i40e_netdev_to_pf(tx_ring->netdev);
3214	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3215		return 0;
3216
3217	if (pf->ptp_tx &&
3218	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3219		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3220		pf->ptp_tx_start = jiffies;
3221		pf->ptp_tx_skb = skb_get(skb);
3222	} else {
3223		pf->tx_hwtstamp_skipped++;
3224		return 0;
3225	}
3226
3227	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3228				I40E_TXD_CTX_QW1_CMD_SHIFT;
3229
3230	return 1;
3231}
3232
3233/**
3234 * i40e_tx_enable_csum - Enable Tx checksum offloads
3235 * @skb: send buffer
3236 * @tx_flags: pointer to Tx flags currently set
3237 * @td_cmd: Tx descriptor command bits to set
3238 * @td_offset: Tx descriptor header offsets to set
3239 * @tx_ring: Tx descriptor ring
3240 * @cd_tunneling: ptr to context desc bits
3241 **/
3242static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3243			       u32 *td_cmd, u32 *td_offset,
3244			       struct i40e_ring *tx_ring,
3245			       u32 *cd_tunneling)
3246{
3247	union {
3248		struct iphdr *v4;
3249		struct ipv6hdr *v6;
3250		unsigned char *hdr;
3251	} ip;
3252	union {
3253		struct tcphdr *tcp;
3254		struct udphdr *udp;
3255		unsigned char *hdr;
3256	} l4;
3257	unsigned char *exthdr;
3258	u32 offset, cmd = 0;
3259	__be16 frag_off;
3260	__be16 protocol;
3261	u8 l4_proto = 0;
3262
3263	if (skb->ip_summed != CHECKSUM_PARTIAL)
3264		return 0;
3265
3266	protocol = vlan_get_protocol(skb);
3267
3268	if (eth_p_mpls(protocol)) {
3269		ip.hdr = skb_inner_network_header(skb);
3270		l4.hdr = skb_checksum_start(skb);
3271	} else {
3272		ip.hdr = skb_network_header(skb);
3273		l4.hdr = skb_transport_header(skb);
3274	}
3275
3276	/* set the tx_flags to indicate the IP protocol type. this is
3277	 * required so that checksum header computation below is accurate.
3278	 */
3279	if (ip.v4->version == 4)
3280		*tx_flags |= I40E_TX_FLAGS_IPV4;
3281	else
3282		*tx_flags |= I40E_TX_FLAGS_IPV6;
3283
3284	/* compute outer L2 header size */
3285	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3286
3287	if (skb->encapsulation) {
3288		u32 tunnel = 0;
3289		/* define outer network header type */
3290		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3291			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3292				  I40E_TX_CTX_EXT_IP_IPV4 :
3293				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3294
3295			l4_proto = ip.v4->protocol;
3296		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3297			int ret;
3298
3299			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3300
3301			exthdr = ip.hdr + sizeof(*ip.v6);
3302			l4_proto = ip.v6->nexthdr;
3303			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3304					       &l4_proto, &frag_off);
3305			if (ret < 0)
3306				return -1;
3307		}
3308
3309		/* define outer transport */
3310		switch (l4_proto) {
3311		case IPPROTO_UDP:
3312			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3313			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3314			break;
3315		case IPPROTO_GRE:
3316			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3317			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3318			break;
3319		case IPPROTO_IPIP:
3320		case IPPROTO_IPV6:
3321			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3322			l4.hdr = skb_inner_network_header(skb);
3323			break;
3324		default:
3325			if (*tx_flags & I40E_TX_FLAGS_TSO)
3326				return -1;
3327
3328			skb_checksum_help(skb);
3329			return 0;
3330		}
3331
3332		/* compute outer L3 header size */
3333		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3334			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3335
3336		/* switch IP header pointer from outer to inner header */
3337		ip.hdr = skb_inner_network_header(skb);
3338
3339		/* compute tunnel header size */
3340		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3341			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3342
3343		/* indicate if we need to offload outer UDP header */
3344		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3345		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3346		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3347			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3348
3349		/* record tunnel offload values */
3350		*cd_tunneling |= tunnel;
3351
3352		/* switch L4 header pointer from outer to inner */
3353		l4.hdr = skb_inner_transport_header(skb);
3354		l4_proto = 0;
3355
3356		/* reset type as we transition from outer to inner headers */
3357		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3358		if (ip.v4->version == 4)
3359			*tx_flags |= I40E_TX_FLAGS_IPV4;
3360		if (ip.v6->version == 6)
3361			*tx_flags |= I40E_TX_FLAGS_IPV6;
3362	}
3363
3364	/* Enable IP checksum offloads */
3365	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3366		l4_proto = ip.v4->protocol;
3367		/* the stack computes the IP header already, the only time we
3368		 * need the hardware to recompute it is in the case of TSO.
3369		 */
3370		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3371		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3372		       I40E_TX_DESC_CMD_IIPT_IPV4;
3373	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3374		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3375
3376		exthdr = ip.hdr + sizeof(*ip.v6);
3377		l4_proto = ip.v6->nexthdr;
3378		if (l4.hdr != exthdr)
3379			ipv6_skip_exthdr(skb, exthdr - skb->data,
3380					 &l4_proto, &frag_off);
3381	}
3382
3383	/* compute inner L3 header size */
3384	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3385
3386	/* Enable L4 checksum offloads */
3387	switch (l4_proto) {
3388	case IPPROTO_TCP:
3389		/* enable checksum offloads */
3390		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3391		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3392		break;
3393	case IPPROTO_SCTP:
3394		/* enable SCTP checksum offload */
3395		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3396		offset |= (sizeof(struct sctphdr) >> 2) <<
3397			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3398		break;
3399	case IPPROTO_UDP:
3400		/* enable UDP checksum offload */
3401		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3402		offset |= (sizeof(struct udphdr) >> 2) <<
3403			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3404		break;
3405	default:
3406		if (*tx_flags & I40E_TX_FLAGS_TSO)
3407			return -1;
3408		skb_checksum_help(skb);
3409		return 0;
3410	}
3411
3412	*td_cmd |= cmd;
3413	*td_offset |= offset;
3414
3415	return 1;
3416}
3417
3418/**
3419 * i40e_create_tx_ctx - Build the Tx context descriptor
3420 * @tx_ring:  ring to create the descriptor on
3421 * @cd_type_cmd_tso_mss: Quad Word 1
3422 * @cd_tunneling: Quad Word 0 - bits 0-31
3423 * @cd_l2tag2: Quad Word 0 - bits 32-63
3424 **/
3425static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3426			       const u64 cd_type_cmd_tso_mss,
3427			       const u32 cd_tunneling, const u32 cd_l2tag2)
3428{
3429	struct i40e_tx_context_desc *context_desc;
3430	int i = tx_ring->next_to_use;
3431
3432	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3433	    !cd_tunneling && !cd_l2tag2)
3434		return;
3435
3436	/* grab the next descriptor */
3437	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3438
3439	i++;
3440	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3441
3442	/* cpu_to_le32 and assign to struct fields */
3443	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3444	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3445	context_desc->rsvd = cpu_to_le16(0);
3446	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3447}
3448
3449/**
3450 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3451 * @tx_ring: the ring to be checked
3452 * @size:    the size buffer we want to assure is available
3453 *
3454 * Returns -EBUSY if a stop is needed, else 0
3455 **/
3456int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3457{
3458	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3459	/* Memory barrier before checking head and tail */
3460	smp_mb();
3461
3462	++tx_ring->tx_stats.tx_stopped;
3463
3464	/* Check again in a case another CPU has just made room available. */
3465	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3466		return -EBUSY;
3467
3468	/* A reprieve! - use start_queue because it doesn't call schedule */
3469	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3470	++tx_ring->tx_stats.restart_queue;
3471	return 0;
3472}
3473
3474/**
3475 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3476 * @skb:      send buffer
3477 *
3478 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3479 * and so we need to figure out the cases where we need to linearize the skb.
3480 *
3481 * For TSO we need to count the TSO header and segment payload separately.
3482 * As such we need to check cases where we have 7 fragments or more as we
3483 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3484 * the segment payload in the first descriptor, and another 7 for the
3485 * fragments.
3486 **/
3487bool __i40e_chk_linearize(struct sk_buff *skb)
3488{
3489	const skb_frag_t *frag, *stale;
3490	int nr_frags, sum;
3491
3492	/* no need to check if number of frags is less than 7 */
3493	nr_frags = skb_shinfo(skb)->nr_frags;
3494	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3495		return false;
3496
3497	/* We need to walk through the list and validate that each group
3498	 * of 6 fragments totals at least gso_size.
3499	 */
3500	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3501	frag = &skb_shinfo(skb)->frags[0];
3502
3503	/* Initialize size to the negative value of gso_size minus 1.  We
3504	 * use this as the worst case scenerio in which the frag ahead
3505	 * of us only provides one byte which is why we are limited to 6
3506	 * descriptors for a single transmit as the header and previous
3507	 * fragment are already consuming 2 descriptors.
3508	 */
3509	sum = 1 - skb_shinfo(skb)->gso_size;
3510
3511	/* Add size of frags 0 through 4 to create our initial sum */
3512	sum += skb_frag_size(frag++);
3513	sum += skb_frag_size(frag++);
3514	sum += skb_frag_size(frag++);
3515	sum += skb_frag_size(frag++);
3516	sum += skb_frag_size(frag++);
3517
3518	/* Walk through fragments adding latest fragment, testing it, and
3519	 * then removing stale fragments from the sum.
3520	 */
3521	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3522		int stale_size = skb_frag_size(stale);
3523
3524		sum += skb_frag_size(frag++);
3525
3526		/* The stale fragment may present us with a smaller
3527		 * descriptor than the actual fragment size. To account
3528		 * for that we need to remove all the data on the front and
3529		 * figure out what the remainder would be in the last
3530		 * descriptor associated with the fragment.
3531		 */
3532		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3533			int align_pad = -(skb_frag_off(stale)) &
3534					(I40E_MAX_READ_REQ_SIZE - 1);
3535
3536			sum -= align_pad;
3537			stale_size -= align_pad;
3538
3539			do {
3540				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3541				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3542			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3543		}
3544
3545		/* if sum is negative we failed to make sufficient progress */
3546		if (sum < 0)
3547			return true;
3548
3549		if (!nr_frags--)
3550			break;
3551
3552		sum -= stale_size;
3553	}
3554
3555	return false;
3556}
3557
3558/**
3559 * i40e_tx_map - Build the Tx descriptor
3560 * @tx_ring:  ring to send buffer on
3561 * @skb:      send buffer
3562 * @first:    first buffer info buffer to use
3563 * @tx_flags: collected send information
3564 * @hdr_len:  size of the packet header
3565 * @td_cmd:   the command field in the descriptor
3566 * @td_offset: offset for checksum or crc
3567 *
3568 * Returns 0 on success, -1 on failure to DMA
3569 **/
3570static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3571			      struct i40e_tx_buffer *first, u32 tx_flags,
3572			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
 
 
 
 
 
 
3573{
3574	unsigned int data_len = skb->data_len;
3575	unsigned int size = skb_headlen(skb);
3576	skb_frag_t *frag;
3577	struct i40e_tx_buffer *tx_bi;
3578	struct i40e_tx_desc *tx_desc;
3579	u16 i = tx_ring->next_to_use;
3580	u32 td_tag = 0;
3581	dma_addr_t dma;
 
3582	u16 desc_count = 1;
3583
3584	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3585		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3586		td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
 
3587	}
3588
 
 
 
 
 
 
 
 
 
3589	first->tx_flags = tx_flags;
3590
3591	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3592
3593	tx_desc = I40E_TX_DESC(tx_ring, i);
3594	tx_bi = first;
3595
3596	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3597		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3598
3599		if (dma_mapping_error(tx_ring->dev, dma))
3600			goto dma_error;
3601
3602		/* record length, and DMA address */
3603		dma_unmap_len_set(tx_bi, len, size);
3604		dma_unmap_addr_set(tx_bi, dma, dma);
3605
3606		/* align size to end of page */
3607		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3608		tx_desc->buffer_addr = cpu_to_le64(dma);
3609
3610		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3611			tx_desc->cmd_type_offset_bsz =
3612				build_ctob(td_cmd, td_offset,
3613					   max_data, td_tag);
3614
3615			tx_desc++;
3616			i++;
3617			desc_count++;
3618
3619			if (i == tx_ring->count) {
3620				tx_desc = I40E_TX_DESC(tx_ring, 0);
3621				i = 0;
3622			}
3623
3624			dma += max_data;
3625			size -= max_data;
3626
3627			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3628			tx_desc->buffer_addr = cpu_to_le64(dma);
3629		}
3630
3631		if (likely(!data_len))
3632			break;
3633
3634		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3635							  size, td_tag);
3636
3637		tx_desc++;
3638		i++;
3639		desc_count++;
3640
3641		if (i == tx_ring->count) {
3642			tx_desc = I40E_TX_DESC(tx_ring, 0);
3643			i = 0;
3644		}
3645
3646		size = skb_frag_size(frag);
3647		data_len -= size;
3648
3649		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3650				       DMA_TO_DEVICE);
3651
3652		tx_bi = &tx_ring->tx_bi[i];
3653	}
3654
3655	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3656
3657	i++;
3658	if (i == tx_ring->count)
3659		i = 0;
3660
3661	tx_ring->next_to_use = i;
3662
3663	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3664
3665	/* write last descriptor with EOP bit */
3666	td_cmd |= I40E_TX_DESC_CMD_EOP;
3667
3668	/* We OR these values together to check both against 4 (WB_STRIDE)
3669	 * below. This is safe since we don't re-use desc_count afterwards.
 
3670	 */
3671	desc_count |= ++tx_ring->packet_stride;
3672
3673	if (desc_count >= WB_STRIDE) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3674		/* write last descriptor with RS bit set */
3675		td_cmd |= I40E_TX_DESC_CMD_RS;
3676		tx_ring->packet_stride = 0;
3677	}
3678
3679	tx_desc->cmd_type_offset_bsz =
3680			build_ctob(td_cmd, td_offset, size, td_tag);
3681
3682	skb_tx_timestamp(skb);
3683
3684	/* Force memory writes to complete before letting h/w know there
3685	 * are new descriptors to fetch.
3686	 *
3687	 * We also use this memory barrier to make certain all of the
3688	 * status bits have been updated before next_to_watch is written.
3689	 */
3690	wmb();
3691
3692	/* set next_to_watch value indicating a packet is present */
3693	first->next_to_watch = tx_desc;
3694
3695	/* notify HW of packet */
3696	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3697		writel(i, tx_ring->tail);
 
 
 
 
 
3698	}
3699
3700	return 0;
3701
3702dma_error:
3703	dev_info(tx_ring->dev, "TX DMA map failed\n");
3704
3705	/* clear dma mappings for failed tx_bi map */
3706	for (;;) {
3707		tx_bi = &tx_ring->tx_bi[i];
3708		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3709		if (tx_bi == first)
3710			break;
3711		if (i == 0)
3712			i = tx_ring->count;
3713		i--;
3714	}
3715
3716	tx_ring->next_to_use = i;
3717
3718	return -1;
3719}
3720
3721static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3722				  const struct sk_buff *skb,
3723				  u16 num_tx_queues)
3724{
3725	u32 jhash_initval_salt = 0xd631614b;
3726	u32 hash;
3727
3728	if (skb->sk && skb->sk->sk_hash)
3729		hash = skb->sk->sk_hash;
3730	else
3731		hash = (__force u16)skb->protocol ^ skb->hash;
3732
3733	hash = jhash_1word(hash, jhash_initval_salt);
3734
3735	return (u16)(((u64)hash * num_tx_queues) >> 32);
3736}
3737
3738u16 i40e_lan_select_queue(struct net_device *netdev,
3739			  struct sk_buff *skb,
3740			  struct net_device __always_unused *sb_dev)
3741{
3742	struct i40e_netdev_priv *np = netdev_priv(netdev);
3743	struct i40e_vsi *vsi = np->vsi;
3744	struct i40e_hw *hw;
3745	u16 qoffset;
3746	u16 qcount;
3747	u8 tclass;
3748	u16 hash;
3749	u8 prio;
3750
3751	/* is DCB enabled at all? */
3752	if (vsi->tc_config.numtc == 1 ||
3753	    i40e_is_tc_mqprio_enabled(vsi->back))
3754		return netdev_pick_tx(netdev, skb, sb_dev);
3755
3756	prio = skb->priority;
3757	hw = &vsi->back->hw;
3758	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3759	/* sanity check */
3760	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3761		tclass = 0;
3762
3763	/* select a queue assigned for the given TC */
3764	qcount = vsi->tc_config.tc_info[tclass].qcount;
3765	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3766
3767	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3768	return qoffset + hash;
3769}
3770
3771/**
3772 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3773 * @xdpf: data to transmit
3774 * @xdp_ring: XDP Tx ring
3775 **/
3776static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3777			      struct i40e_ring *xdp_ring)
3778{
3779	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3780	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3781	u16 i = 0, index = xdp_ring->next_to_use;
3782	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3783	struct i40e_tx_buffer *tx_bi = tx_head;
3784	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3785	void *data = xdpf->data;
3786	u32 size = xdpf->len;
3787
3788	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3789		xdp_ring->tx_stats.tx_busy++;
3790		return I40E_XDP_CONSUMED;
3791	}
3792
3793	tx_head->bytecount = xdp_get_frame_len(xdpf);
3794	tx_head->gso_segs = 1;
3795	tx_head->xdpf = xdpf;
3796
3797	for (;;) {
3798		dma_addr_t dma;
3799
3800		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3801		if (dma_mapping_error(xdp_ring->dev, dma))
3802			goto unmap;
3803
3804		/* record length, and DMA address */
3805		dma_unmap_len_set(tx_bi, len, size);
3806		dma_unmap_addr_set(tx_bi, dma, dma);
3807
3808		tx_desc->buffer_addr = cpu_to_le64(dma);
3809		tx_desc->cmd_type_offset_bsz =
3810			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3811
3812		if (++index == xdp_ring->count)
3813			index = 0;
3814
3815		if (i == nr_frags)
3816			break;
3817
3818		tx_bi = &xdp_ring->tx_bi[index];
3819		tx_desc = I40E_TX_DESC(xdp_ring, index);
3820
3821		data = skb_frag_address(&sinfo->frags[i]);
3822		size = skb_frag_size(&sinfo->frags[i]);
3823		i++;
3824	}
3825
3826	tx_desc->cmd_type_offset_bsz |=
3827		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3828
3829	/* Make certain all of the status bits have been updated
3830	 * before next_to_watch is written.
3831	 */
3832	smp_wmb();
3833
3834	xdp_ring->xdp_tx_active++;
3835
3836	tx_head->next_to_watch = tx_desc;
3837	xdp_ring->next_to_use = index;
3838
3839	return I40E_XDP_TX;
3840
3841unmap:
3842	for (;;) {
3843		tx_bi = &xdp_ring->tx_bi[index];
3844		if (dma_unmap_len(tx_bi, len))
3845			dma_unmap_page(xdp_ring->dev,
3846				       dma_unmap_addr(tx_bi, dma),
3847				       dma_unmap_len(tx_bi, len),
3848				       DMA_TO_DEVICE);
3849		dma_unmap_len_set(tx_bi, len, 0);
3850		if (tx_bi == tx_head)
3851			break;
3852
3853		if (!index)
3854			index += xdp_ring->count;
3855		index--;
3856	}
3857
3858	return I40E_XDP_CONSUMED;
3859}
3860
3861/**
3862 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3863 * @skb:     send buffer
3864 * @tx_ring: ring to send buffer on
3865 *
3866 * Returns NETDEV_TX_OK if sent, else an error code
3867 **/
3868static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3869					struct i40e_ring *tx_ring)
3870{
3871	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3872	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3873	struct i40e_tx_buffer *first;
3874	u32 td_offset = 0;
3875	u32 tx_flags = 0;
 
3876	u32 td_cmd = 0;
3877	u8 hdr_len = 0;
3878	int tso, count;
3879	int tsyn;
3880
3881	/* prefetch the data, we'll need it later */
3882	prefetch(skb->data);
3883
3884	i40e_trace(xmit_frame_ring, skb, tx_ring);
3885
3886	count = i40e_xmit_descriptor_count(skb);
3887	if (i40e_chk_linearize(skb, count)) {
3888		if (__skb_linearize(skb)) {
3889			dev_kfree_skb_any(skb);
3890			return NETDEV_TX_OK;
3891		}
3892		count = i40e_txd_use_count(skb->len);
3893		tx_ring->tx_stats.tx_linearize++;
3894	}
3895
3896	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3897	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3898	 *       + 4 desc gap to avoid the cache line where head is,
3899	 *       + 1 desc for context descriptor,
3900	 * otherwise try next time
3901	 */
3902	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3903		tx_ring->tx_stats.tx_busy++;
3904		return NETDEV_TX_BUSY;
3905	}
3906
3907	/* record the location of the first descriptor for this packet */
3908	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3909	first->skb = skb;
3910	first->bytecount = skb->len;
3911	first->gso_segs = 1;
3912
3913	/* prepare the xmit flags */
3914	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3915		goto out_drop;
3916
3917	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
 
 
 
 
 
 
 
 
 
 
 
 
3918
3919	if (tso < 0)
3920		goto out_drop;
3921	else if (tso)
3922		tx_flags |= I40E_TX_FLAGS_TSO;
3923
3924	/* Always offload the checksum, since it's in the data descriptor */
3925	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3926				  tx_ring, &cd_tunneling);
3927	if (tso < 0)
3928		goto out_drop;
3929
3930	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3931
3932	if (tsyn)
3933		tx_flags |= I40E_TX_FLAGS_TSYN;
3934
 
 
3935	/* always enable CRC insertion offload */
3936	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3937
3938	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3939			   cd_tunneling, cd_l2tag2);
3940
3941	/* Add Flow Director ATR if it's enabled.
3942	 *
3943	 * NOTE: this must always be directly before the data descriptor.
3944	 */
3945	i40e_atr(tx_ring, skb, tx_flags);
3946
3947	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3948			td_cmd, td_offset))
3949		goto cleanup_tx_tstamp;
3950
3951	return NETDEV_TX_OK;
3952
3953out_drop:
3954	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3955	dev_kfree_skb_any(first->skb);
3956	first->skb = NULL;
3957cleanup_tx_tstamp:
3958	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3959		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3960
3961		dev_kfree_skb_any(pf->ptp_tx_skb);
3962		pf->ptp_tx_skb = NULL;
3963		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3964	}
3965
3966	return NETDEV_TX_OK;
3967}
3968
3969/**
3970 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3971 * @skb:    send buffer
3972 * @netdev: network interface device structure
3973 *
3974 * Returns NETDEV_TX_OK if sent, else an error code
3975 **/
3976netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3977{
3978	struct i40e_netdev_priv *np = netdev_priv(netdev);
3979	struct i40e_vsi *vsi = np->vsi;
3980	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3981
3982	/* hardware can't handle really short frames, hardware padding works
3983	 * beyond this point
3984	 */
3985	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3986		return NETDEV_TX_OK;
3987
3988	return i40e_xmit_frame_ring(skb, tx_ring);
3989}
3990
3991/**
3992 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3993 * @dev: netdev
3994 * @n: number of frames
3995 * @frames: array of XDP buffer pointers
3996 * @flags: XDP extra info
3997 *
3998 * Returns number of frames successfully sent. Failed frames
3999 * will be free'ed by XDP core.
4000 *
4001 * For error cases, a negative errno code is returned and no-frames
4002 * are transmitted (caller must handle freeing frames).
4003 **/
4004int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4005		  u32 flags)
4006{
4007	struct i40e_netdev_priv *np = netdev_priv(dev);
4008	unsigned int queue_index = smp_processor_id();
4009	struct i40e_vsi *vsi = np->vsi;
4010	struct i40e_pf *pf = vsi->back;
4011	struct i40e_ring *xdp_ring;
4012	int nxmit = 0;
4013	int i;
4014
4015	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4016		return -ENETDOWN;
4017
4018	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4019	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4020		return -ENXIO;
4021
4022	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4023		return -EINVAL;
4024
4025	xdp_ring = vsi->xdp_rings[queue_index];
4026
4027	for (i = 0; i < n; i++) {
4028		struct xdp_frame *xdpf = frames[i];
4029		int err;
4030
4031		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4032		if (err != I40E_XDP_TX)
4033			break;
4034		nxmit++;
4035	}
4036
4037	if (unlikely(flags & XDP_XMIT_FLUSH))
4038		i40e_xdp_ring_update_tail(xdp_ring);
4039
4040	return nxmit;
4041}
v4.10.11
   1/*******************************************************************************
   2 *
   3 * Intel Ethernet Controller XL710 Family Linux Driver
   4 * Copyright(c) 2013 - 2016 Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * The full GNU General Public License is included in this distribution in
  19 * the file called "COPYING".
  20 *
  21 * Contact Information:
  22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24 *
  25 ******************************************************************************/
  26
 
  27#include <linux/prefetch.h>
  28#include <net/busy_poll.h>
  29#include "i40e.h"
  30#include "i40e_prototype.h"
  31
  32static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  33				u32 td_tag)
  34{
  35	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  36			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
  37			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  38			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  39			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
  40}
  41
  42#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  43/**
  44 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  45 * @tx_ring: Tx ring to send buffer on
  46 * @fdata: Flow director filter data
  47 * @add: Indicate if we are adding a rule or deleting one
  48 *
  49 **/
  50static void i40e_fdir(struct i40e_ring *tx_ring,
  51		      struct i40e_fdir_filter *fdata, bool add)
  52{
  53	struct i40e_filter_program_desc *fdir_desc;
  54	struct i40e_pf *pf = tx_ring->vsi->back;
  55	u32 flex_ptype, dtype_cmd;
  56	u16 i;
  57
  58	/* grab the next descriptor */
  59	i = tx_ring->next_to_use;
  60	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  61
  62	i++;
  63	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  64
  65	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
  66		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
  67
  68	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
  69		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  70
  71	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  72		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  73
  74	/* Use LAN VSI Id if not programmed by user */
  75	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
  76		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
  77		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
  78
  79	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  80
  81	dtype_cmd |= add ?
  82		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  83		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  84		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  85		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  86
  87	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
  88		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
  89
  90	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
  91		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
  92
  93	if (fdata->cnt_index) {
  94		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  95		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
  96			     ((u32)fdata->cnt_index <<
  97			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
  98	}
  99
 100	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
 101	fdir_desc->rsvd = cpu_to_le32(0);
 102	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
 103	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
 104}
 105
 106#define I40E_FD_CLEAN_DELAY 10
 107/**
 108 * i40e_program_fdir_filter - Program a Flow Director filter
 109 * @fdir_data: Packet data that will be filter parameters
 110 * @raw_packet: the pre-allocated packet buffer for FDir
 111 * @pf: The PF pointer
 112 * @add: True for add/update, False for remove
 113 **/
 114static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
 115				    u8 *raw_packet, struct i40e_pf *pf,
 116				    bool add)
 117{
 118	struct i40e_tx_buffer *tx_buf, *first;
 119	struct i40e_tx_desc *tx_desc;
 120	struct i40e_ring *tx_ring;
 121	struct i40e_vsi *vsi;
 122	struct device *dev;
 123	dma_addr_t dma;
 124	u32 td_cmd = 0;
 125	u16 i;
 126
 127	/* find existing FDIR VSI */
 128	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 129	if (!vsi)
 130		return -ENOENT;
 131
 132	tx_ring = vsi->tx_rings[0];
 133	dev = tx_ring->dev;
 134
 135	/* we need two descriptors to add/del a filter and we can wait */
 136	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 137		if (!i)
 138			return -EAGAIN;
 139		msleep_interruptible(1);
 140	}
 141
 142	dma = dma_map_single(dev, raw_packet,
 143			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 144	if (dma_mapping_error(dev, dma))
 145		goto dma_fail;
 146
 147	/* grab the next descriptor */
 148	i = tx_ring->next_to_use;
 149	first = &tx_ring->tx_bi[i];
 150	i40e_fdir(tx_ring, fdir_data, add);
 151
 152	/* Now program a dummy descriptor */
 153	i = tx_ring->next_to_use;
 154	tx_desc = I40E_TX_DESC(tx_ring, i);
 155	tx_buf = &tx_ring->tx_bi[i];
 156
 157	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 158
 159	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 160
 161	/* record length, and DMA address */
 162	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 163	dma_unmap_addr_set(tx_buf, dma, dma);
 164
 165	tx_desc->buffer_addr = cpu_to_le64(dma);
 166	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 167
 168	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 169	tx_buf->raw_buf = (void *)raw_packet;
 170
 171	tx_desc->cmd_type_offset_bsz =
 172		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 173
 174	/* Force memory writes to complete before letting h/w
 175	 * know there are new descriptors to fetch.
 176	 */
 177	wmb();
 178
 179	/* Mark the data descriptor to be watched */
 180	first->next_to_watch = tx_desc;
 181
 182	writel(tx_ring->next_to_use, tx_ring->tail);
 183	return 0;
 184
 185dma_fail:
 186	return -1;
 187}
 188
 189#define IP_HEADER_OFFSET 14
 190#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 191/**
 192 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 193 * @vsi: pointer to the targeted VSI
 194 * @fd_data: the flow director data required for the FDir descriptor
 195 * @add: true adds a filter, false removes it
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196 *
 197 * Returns 0 if the filters were successfully added or removed
 198 **/
 199static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 200				   struct i40e_fdir_filter *fd_data,
 201				   bool add)
 202{
 203	struct i40e_pf *pf = vsi->back;
 204	struct udphdr *udp;
 205	struct iphdr *ip;
 206	bool err = false;
 207	u8 *raw_packet;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208	int ret;
 209	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 210		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 211		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 212
 213	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 214	if (!raw_packet)
 215		return -ENOMEM;
 216	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 
 
 
 
 
 
 217
 218	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 219	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 220	      + sizeof(struct iphdr));
 221
 222	ip->daddr = fd_data->dst_ip[0];
 223	udp->dest = fd_data->dst_port;
 224	ip->saddr = fd_data->src_ip[0];
 225	udp->source = fd_data->src_port;
 226
 227	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
 228	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 229	if (ret) {
 230		dev_info(&pf->pdev->dev,
 231			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 232			 fd_data->pctype, fd_data->fd_id, ret);
 233		err = true;
 
 234	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 235		if (add)
 236			dev_info(&pf->pdev->dev,
 237				 "Filter OK for PCTYPE %d loc = %d\n",
 238				 fd_data->pctype, fd_data->fd_id);
 239		else
 240			dev_info(&pf->pdev->dev,
 241				 "Filter deleted for PCTYPE %d loc = %d\n",
 242				 fd_data->pctype, fd_data->fd_id);
 243	}
 244	if (err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 245		kfree(raw_packet);
 
 
 
 
 
 246
 247	return err ? -EOPNOTSUPP : 0;
 248}
 249
 250#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 
 251/**
 252 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 253 * @vsi: pointer to the targeted VSI
 254 * @fd_data: the flow director data required for the FDir descriptor
 255 * @add: true adds a filter, false removes it
 
 256 *
 257 * Returns 0 if the filters were successfully added or removed
 258 **/
 259static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 260				   struct i40e_fdir_filter *fd_data,
 261				   bool add)
 
 262{
 263	struct i40e_pf *pf = vsi->back;
 264	struct tcphdr *tcp;
 265	struct iphdr *ip;
 266	bool err = false;
 267	u8 *raw_packet;
 268	int ret;
 269	/* Dummy packet */
 270	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 271		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 272		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 273		0x0, 0x72, 0, 0, 0, 0};
 274
 275	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 276	if (!raw_packet)
 277		return -ENOMEM;
 278	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 279
 280	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 281	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 282	      + sizeof(struct iphdr));
 283
 284	ip->daddr = fd_data->dst_ip[0];
 285	tcp->dest = fd_data->dst_port;
 286	ip->saddr = fd_data->src_ip[0];
 287	tcp->source = fd_data->src_port;
 
 
 
 
 
 
 
 
 
 
 
 288
 289	if (add) {
 290		pf->fd_tcp_rule++;
 291		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 292		    I40E_DEBUG_FD & pf->hw.debug_mask)
 293			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 294		pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
 295	} else {
 296		pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
 297				  (pf->fd_tcp_rule - 1) : 0;
 298		if (pf->fd_tcp_rule == 0) {
 299			if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 300			    I40E_DEBUG_FD & pf->hw.debug_mask)
 301				dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
 302			pf->auto_disable_flags &= ~I40E_FLAG_FD_ATR_ENABLED;
 303		}
 304	}
 
 
 305
 306	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 307	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308
 309	if (ret) {
 310		dev_info(&pf->pdev->dev,
 311			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 312			 fd_data->pctype, fd_data->fd_id, ret);
 313		err = true;
 314	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 315		if (add)
 316			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
 317				 fd_data->pctype, fd_data->fd_id);
 318		else
 319			dev_info(&pf->pdev->dev,
 320				 "Filter deleted for PCTYPE %d loc = %d\n",
 321				 fd_data->pctype, fd_data->fd_id);
 322	}
 323
 324	if (err)
 325		kfree(raw_packet);
 326
 327	return err ? -EOPNOTSUPP : 0;
 328}
 329
 330#define I40E_IP_DUMMY_PACKET_LEN 34
 
 331/**
 332 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 333 * a specific flow spec
 334 * @vsi: pointer to the targeted VSI
 335 * @fd_data: the flow director data required for the FDir descriptor
 336 * @add: true adds a filter, false removes it
 
 337 *
 338 * Returns 0 if the filters were successfully added or removed
 339 **/
 340static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 341				  struct i40e_fdir_filter *fd_data,
 342				  bool add)
 
 343{
 344	struct i40e_pf *pf = vsi->back;
 345	struct iphdr *ip;
 346	bool err = false;
 347	u8 *raw_packet;
 
 
 348	int ret;
 349	int i;
 350	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 351		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 352		0, 0, 0, 0};
 353
 354	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 355	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
 
 
 
 
 
 
 
 356		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 357		if (!raw_packet)
 358			return -ENOMEM;
 359		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 360		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 361
 362		ip->saddr = fd_data->src_ip[0];
 363		ip->daddr = fd_data->dst_ip[0];
 364		ip->protocol = 0;
 365
 366		fd_data->pctype = i;
 367		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 368
 369		if (ret) {
 370			dev_info(&pf->pdev->dev,
 371				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 372				 fd_data->pctype, fd_data->fd_id, ret);
 373			err = true;
 374		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 375			if (add)
 376				dev_info(&pf->pdev->dev,
 377					 "Filter OK for PCTYPE %d loc = %d\n",
 378					 fd_data->pctype, fd_data->fd_id);
 379			else
 380				dev_info(&pf->pdev->dev,
 381					 "Filter deleted for PCTYPE %d loc = %d\n",
 382					 fd_data->pctype, fd_data->fd_id);
 383		}
 384	}
 385
 386	if (err)
 387		kfree(raw_packet);
 388
 389	return err ? -EOPNOTSUPP : 0;
 
 
 
 390}
 391
 392/**
 393 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 394 * @vsi: pointer to the targeted VSI
 395 * @cmd: command to get or set RX flow classification rules
 396 * @add: true adds a filter, false removes it
 397 *
 398 **/
 399int i40e_add_del_fdir(struct i40e_vsi *vsi,
 400		      struct i40e_fdir_filter *input, bool add)
 401{
 
 402	struct i40e_pf *pf = vsi->back;
 403	int ret;
 404
 405	switch (input->flow_type & ~FLOW_EXT) {
 406	case TCP_V4_FLOW:
 407		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 408		break;
 409	case UDP_V4_FLOW:
 410		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 
 
 
 
 
 
 
 
 
 
 
 
 411		break;
 412	case IP_USER_FLOW:
 413		switch (input->ip4_proto) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414		case IPPROTO_TCP:
 415			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 416			break;
 417		case IPPROTO_UDP:
 418			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 
 
 
 419			break;
 420		case IPPROTO_IP:
 421			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 422			break;
 423		default:
 424			/* We cannot support masking based on protocol */
 425			goto unsupported_flow;
 
 
 426		}
 427		break;
 428	default:
 429unsupported_flow:
 430		dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
 431			 input->flow_type);
 432		ret = -EINVAL;
 433	}
 434
 435	/* The buffer allocated here is freed by the i40e_clean_tx_ring() */
 
 
 
 
 
 436	return ret;
 437}
 438
 439/**
 440 * i40e_fd_handle_status - check the Programming Status for FD
 441 * @rx_ring: the Rx ring for this descriptor
 442 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 
 443 * @prog_id: the id originally used for programming
 444 *
 445 * This is used to verify if the FD programming or invalidation
 446 * requested by SW to the HW is successful or not and take actions accordingly.
 447 **/
 448static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 449				  union i40e_rx_desc *rx_desc, u8 prog_id)
 450{
 451	struct i40e_pf *pf = rx_ring->vsi->back;
 452	struct pci_dev *pdev = pf->pdev;
 
 453	u32 fcnt_prog, fcnt_avail;
 454	u32 error;
 455	u64 qw;
 456
 457	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 458	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 459		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 460
 461	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 462		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
 463		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
 464		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 465			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 466				 pf->fd_inv);
 467
 468		/* Check if the programming error is for ATR.
 469		 * If so, auto disable ATR and set a state for
 470		 * flush in progress. Next time we come here if flush is in
 471		 * progress do nothing, once flush is complete the state will
 472		 * be cleared.
 473		 */
 474		if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
 475			return;
 476
 477		pf->fd_add_err++;
 478		/* store the current atr filter count */
 479		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 480
 481		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
 482		    (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
 483			pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
 484			set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
 
 
 
 
 
 
 485		}
 486
 487		/* filter programming failed most likely due to table full */
 488		fcnt_prog = i40e_get_global_fd_count(pf);
 489		fcnt_avail = pf->fdir_pf_filter_count;
 490		/* If ATR is running fcnt_prog can quickly change,
 491		 * if we are very close to full, it makes sense to disable
 492		 * FD ATR/SB and then re-enable it when there is room.
 493		 */
 494		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 495			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 496			    !(pf->auto_disable_flags &
 497				     I40E_FLAG_FD_SB_ENABLED)) {
 498				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 499					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 500				pf->auto_disable_flags |=
 501							I40E_FLAG_FD_SB_ENABLED;
 502			}
 503		}
 504	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 505		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 506			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 507				 rx_desc->wb.qword0.hi_dword.fd_id);
 508	}
 509}
 510
 511/**
 512 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 513 * @ring:      the ring that owns the buffer
 514 * @tx_buffer: the buffer to free
 515 **/
 516static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 517					    struct i40e_tx_buffer *tx_buffer)
 518{
 519	if (tx_buffer->skb) {
 520		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 521			kfree(tx_buffer->raw_buf);
 
 
 522		else
 523			dev_kfree_skb_any(tx_buffer->skb);
 524		if (dma_unmap_len(tx_buffer, len))
 525			dma_unmap_single(ring->dev,
 526					 dma_unmap_addr(tx_buffer, dma),
 527					 dma_unmap_len(tx_buffer, len),
 528					 DMA_TO_DEVICE);
 529	} else if (dma_unmap_len(tx_buffer, len)) {
 530		dma_unmap_page(ring->dev,
 531			       dma_unmap_addr(tx_buffer, dma),
 532			       dma_unmap_len(tx_buffer, len),
 533			       DMA_TO_DEVICE);
 534	}
 535
 536	tx_buffer->next_to_watch = NULL;
 537	tx_buffer->skb = NULL;
 538	dma_unmap_len_set(tx_buffer, len, 0);
 539	/* tx_buffer must be completely set up in the transmit path */
 540}
 541
 542/**
 543 * i40e_clean_tx_ring - Free any empty Tx buffers
 544 * @tx_ring: ring to be cleaned
 545 **/
 546void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 547{
 548	unsigned long bi_size;
 549	u16 i;
 550
 551	/* ring already cleared, nothing to do */
 552	if (!tx_ring->tx_bi)
 553		return;
 
 
 
 554
 555	/* Free all the Tx ring sk_buffs */
 556	for (i = 0; i < tx_ring->count; i++)
 557		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
 
 
 558
 559	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 560	memset(tx_ring->tx_bi, 0, bi_size);
 561
 562	/* Zero out the descriptor ring */
 563	memset(tx_ring->desc, 0, tx_ring->size);
 564
 565	tx_ring->next_to_use = 0;
 566	tx_ring->next_to_clean = 0;
 567
 568	if (!tx_ring->netdev)
 569		return;
 570
 571	/* cleanup Tx queue statistics */
 572	netdev_tx_reset_queue(txring_txq(tx_ring));
 573}
 574
 575/**
 576 * i40e_free_tx_resources - Free Tx resources per queue
 577 * @tx_ring: Tx descriptor ring for a specific queue
 578 *
 579 * Free all transmit software resources
 580 **/
 581void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 582{
 583	i40e_clean_tx_ring(tx_ring);
 584	kfree(tx_ring->tx_bi);
 585	tx_ring->tx_bi = NULL;
 586
 587	if (tx_ring->desc) {
 588		dma_free_coherent(tx_ring->dev, tx_ring->size,
 589				  tx_ring->desc, tx_ring->dma);
 590		tx_ring->desc = NULL;
 591	}
 592}
 593
 594/**
 595 * i40e_get_tx_pending - how many tx descriptors not processed
 596 * @tx_ring: the ring of descriptors
 597 * @in_sw: is tx_pending being checked in SW or HW
 598 *
 599 * Since there is no access to the ring head register
 600 * in XL710, we need to use our local copies
 601 **/
 602u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 603{
 604	u32 head, tail;
 605
 606	if (!in_sw)
 607		head = i40e_get_head(ring);
 608	else
 
 609		head = ring->next_to_clean;
 610	tail = readl(ring->tail);
 
 611
 612	if (head != tail)
 613		return (head < tail) ?
 614			tail - head : (tail + ring->count - head);
 615
 616	return 0;
 617}
 618
 619#define WB_STRIDE 4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 620
 621/**
 622 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 623 * @vsi: the VSI we care about
 624 * @tx_ring: Tx ring to clean
 625 * @napi_budget: Used to determine if we are in netpoll
 
 626 *
 627 * Returns true if there's any budget left (e.g. the clean is finished)
 628 **/
 629static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 630			      struct i40e_ring *tx_ring, int napi_budget)
 
 631{
 632	u16 i = tx_ring->next_to_clean;
 633	struct i40e_tx_buffer *tx_buf;
 634	struct i40e_tx_desc *tx_head;
 635	struct i40e_tx_desc *tx_desc;
 636	unsigned int total_bytes = 0, total_packets = 0;
 637	unsigned int budget = vsi->work_limit;
 638
 639	tx_buf = &tx_ring->tx_bi[i];
 640	tx_desc = I40E_TX_DESC(tx_ring, i);
 641	i -= tx_ring->count;
 642
 643	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 644
 645	do {
 646		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 647
 648		/* if next_to_watch is not set then there is no work pending */
 649		if (!eop_desc)
 650			break;
 651
 652		/* prevent any other reads prior to eop_desc */
 653		read_barrier_depends();
 654
 
 655		/* we have caught up to head, no work left to do */
 656		if (tx_head == tx_desc)
 657			break;
 658
 659		/* clear next_to_watch to prevent false hangs */
 660		tx_buf->next_to_watch = NULL;
 661
 662		/* update the statistics for this packet */
 663		total_bytes += tx_buf->bytecount;
 664		total_packets += tx_buf->gso_segs;
 665
 666		/* free the skb */
 667		napi_consume_skb(tx_buf->skb, napi_budget);
 
 
 
 668
 669		/* unmap skb header data */
 670		dma_unmap_single(tx_ring->dev,
 671				 dma_unmap_addr(tx_buf, dma),
 672				 dma_unmap_len(tx_buf, len),
 673				 DMA_TO_DEVICE);
 674
 675		/* clear tx_buffer data */
 676		tx_buf->skb = NULL;
 677		dma_unmap_len_set(tx_buf, len, 0);
 678
 679		/* unmap remaining buffers */
 680		while (tx_desc != eop_desc) {
 
 
 681
 682			tx_buf++;
 683			tx_desc++;
 684			i++;
 685			if (unlikely(!i)) {
 686				i -= tx_ring->count;
 687				tx_buf = tx_ring->tx_bi;
 688				tx_desc = I40E_TX_DESC(tx_ring, 0);
 689			}
 690
 691			/* unmap any remaining paged data */
 692			if (dma_unmap_len(tx_buf, len)) {
 693				dma_unmap_page(tx_ring->dev,
 694					       dma_unmap_addr(tx_buf, dma),
 695					       dma_unmap_len(tx_buf, len),
 696					       DMA_TO_DEVICE);
 697				dma_unmap_len_set(tx_buf, len, 0);
 698			}
 699		}
 700
 701		/* move us one more past the eop_desc for start of next pkt */
 702		tx_buf++;
 703		tx_desc++;
 704		i++;
 705		if (unlikely(!i)) {
 706			i -= tx_ring->count;
 707			tx_buf = tx_ring->tx_bi;
 708			tx_desc = I40E_TX_DESC(tx_ring, 0);
 709		}
 710
 711		prefetch(tx_desc);
 712
 713		/* update budget accounting */
 714		budget--;
 715	} while (likely(budget));
 716
 717	i += tx_ring->count;
 718	tx_ring->next_to_clean = i;
 719	u64_stats_update_begin(&tx_ring->syncp);
 720	tx_ring->stats.bytes += total_bytes;
 721	tx_ring->stats.packets += total_packets;
 722	u64_stats_update_end(&tx_ring->syncp);
 723	tx_ring->q_vector->tx.total_bytes += total_bytes;
 724	tx_ring->q_vector->tx.total_packets += total_packets;
 725
 726	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
 727		/* check to see if there are < 4 descriptors
 728		 * waiting to be written back, then kick the hardware to force
 729		 * them to be written back in case we stay in NAPI.
 730		 * In this mode on X722 we do not enable Interrupt.
 731		 */
 732		unsigned int j = i40e_get_tx_pending(tx_ring, false);
 733
 734		if (budget &&
 735		    ((j / WB_STRIDE) == 0) && (j > 0) &&
 736		    !test_bit(__I40E_DOWN, &vsi->state) &&
 737		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
 738			tx_ring->arm_wb = true;
 739	}
 740
 741	/* notify netdev of completed buffers */
 742	netdev_tx_completed_queue(txring_txq(tx_ring),
 743				  total_packets, total_bytes);
 744
 745#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
 746	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 747		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 748		/* Make sure that anybody stopping the queue after this
 749		 * sees the new next_to_clean.
 750		 */
 751		smp_mb();
 752		if (__netif_subqueue_stopped(tx_ring->netdev,
 753					     tx_ring->queue_index) &&
 754		   !test_bit(__I40E_DOWN, &vsi->state)) {
 755			netif_wake_subqueue(tx_ring->netdev,
 756					    tx_ring->queue_index);
 757			++tx_ring->tx_stats.restart_queue;
 758		}
 759	}
 760
 
 761	return !!budget;
 762}
 763
 764/**
 765 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 766 * @vsi: the VSI we care about
 767 * @q_vector: the vector on which to enable writeback
 768 *
 769 **/
 770static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 771				  struct i40e_q_vector *q_vector)
 772{
 773	u16 flags = q_vector->tx.ring[0].flags;
 774	u32 val;
 775
 776	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 777		return;
 778
 779	if (q_vector->arm_wb_state)
 780		return;
 781
 782	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 783		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
 784		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
 785
 786		wr32(&vsi->back->hw,
 787		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
 788		     val);
 789	} else {
 790		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
 791		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
 792
 793		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 794	}
 795	q_vector->arm_wb_state = true;
 796}
 797
 798/**
 799 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 800 * @vsi: the VSI we care about
 801 * @q_vector: the vector  on which to force writeback
 802 *
 803 **/
 804void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 805{
 806	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 807		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 808			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
 809			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
 810			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
 811			  /* allow 00 to be written to the index */
 812
 813		wr32(&vsi->back->hw,
 814		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
 815					 vsi->base_vector - 1), val);
 816	} else {
 817		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
 818			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
 819			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
 820			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
 821			/* allow 00 to be written to the index */
 822
 823		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 824	}
 825}
 826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827/**
 828 * i40e_set_new_dynamic_itr - Find new ITR level
 
 829 * @rc: structure containing ring performance data
 830 *
 831 * Returns true if ITR changed, false if not
 832 *
 833 * Stores a new ITR value based on packets and byte counts during
 834 * the last interrupt.  The advantage of per interrupt computation
 835 * is faster updates and more accurate ITR for the current traffic
 836 * pattern.  Constants in this function were computed based on
 837 * theoretical maximum wire speed and thresholds were set based on
 838 * testing data as well as attempting to minimize response time
 839 * while increasing bulk throughput.
 840 **/
 841static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
 
 842{
 843	enum i40e_latency_range new_latency_range = rc->latency_range;
 844	struct i40e_q_vector *qv = rc->ring->q_vector;
 845	u32 new_itr = rc->itr;
 846	int bytes_per_int;
 847	int usecs;
 848
 849	if (rc->total_packets == 0 || !rc->itr)
 850		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 851
 852	/* simple throttlerate management
 853	 *   0-10MB/s   lowest (50000 ints/s)
 854	 *  10-20MB/s   low    (20000 ints/s)
 855	 *  20-1249MB/s bulk   (18000 ints/s)
 856	 *  > 40000 Rx packets per second (8000 ints/s)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857	 *
 858	 * The math works out because the divisor is in 10^(-6) which
 859	 * turns the bytes/us input value into MB/s values, but
 860	 * make sure to use usecs, as the register values written
 861	 * are in 2 usec increments in the ITR registers, and make sure
 862	 * to use the smoothed values that the countdown timer gives us.
 863	 */
 864	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
 865	bytes_per_int = rc->total_bytes / usecs;
 866
 867	switch (new_latency_range) {
 868	case I40E_LOWEST_LATENCY:
 869		if (bytes_per_int > 10)
 870			new_latency_range = I40E_LOW_LATENCY;
 871		break;
 872	case I40E_LOW_LATENCY:
 873		if (bytes_per_int > 20)
 874			new_latency_range = I40E_BULK_LATENCY;
 875		else if (bytes_per_int <= 10)
 876			new_latency_range = I40E_LOWEST_LATENCY;
 877		break;
 878	case I40E_BULK_LATENCY:
 879	case I40E_ULTRA_LATENCY:
 880	default:
 881		if (bytes_per_int <= 20)
 882			new_latency_range = I40E_LOW_LATENCY;
 883		break;
 
 
 884	}
 885
 886	/* this is to adjust RX more aggressively when streaming small
 887	 * packets.  The value of 40000 was picked as it is just beyond
 888	 * what the hardware can receive per second if in low latency
 889	 * mode.
 890	 */
 891#define RX_ULTRA_PACKET_RATE 40000
 892
 893	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
 894	    (&qv->rx == rc))
 895		new_latency_range = I40E_ULTRA_LATENCY;
 896
 897	rc->latency_range = new_latency_range;
 898
 899	switch (new_latency_range) {
 900	case I40E_LOWEST_LATENCY:
 901		new_itr = I40E_ITR_50K;
 902		break;
 903	case I40E_LOW_LATENCY:
 904		new_itr = I40E_ITR_20K;
 905		break;
 906	case I40E_BULK_LATENCY:
 907		new_itr = I40E_ITR_18K;
 908		break;
 909	case I40E_ULTRA_LATENCY:
 910		new_itr = I40E_ITR_8K;
 911		break;
 912	default:
 913		break;
 914	}
 915
 
 
 
 
 
 
 
 916	rc->total_bytes = 0;
 917	rc->total_packets = 0;
 
 
 
 
 
 
 918
 919	if (new_itr != rc->itr) {
 920		rc->itr = new_itr;
 921		return true;
 922	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923
 924	return false;
 
 925}
 926
 927/**
 928 * i40e_clean_programming_status - clean the programming status descriptor
 929 * @rx_ring: the rx ring that has this descriptor
 930 * @rx_desc: the rx descriptor written back by HW
 
 931 *
 932 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 933 * status being successful or not and take actions accordingly. FCoE should
 934 * handle its context/filter programming/invalidation status and take actions.
 935 *
 
 936 **/
 937static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
 938					  union i40e_rx_desc *rx_desc)
 939{
 940	u64 qw;
 941	u8 id;
 942
 943	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 944	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
 945		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
 946
 947	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
 948		i40e_fd_handle_status(rx_ring, rx_desc, id);
 949#ifdef I40E_FCOE
 950	else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
 951		 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
 952		i40e_fcoe_handle_status(rx_ring, rx_desc, id);
 953#endif
 954}
 955
 956/**
 957 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 958 * @tx_ring: the tx ring to set up
 959 *
 960 * Return 0 on success, negative on error
 961 **/
 962int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
 963{
 964	struct device *dev = tx_ring->dev;
 965	int bi_size;
 966
 967	if (!dev)
 968		return -ENOMEM;
 969
 970	/* warn if we are about to overwrite the pointer */
 971	WARN_ON(tx_ring->tx_bi);
 972	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 973	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 974	if (!tx_ring->tx_bi)
 975		goto err;
 976
 
 
 977	/* round up to nearest 4K */
 978	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
 979	/* add u32 for head writeback, align after this takes care of
 980	 * guaranteeing this is at least one cache line in size
 981	 */
 982	tx_ring->size += sizeof(u32);
 983	tx_ring->size = ALIGN(tx_ring->size, 4096);
 984	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 985					   &tx_ring->dma, GFP_KERNEL);
 986	if (!tx_ring->desc) {
 987		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 988			 tx_ring->size);
 989		goto err;
 990	}
 991
 992	tx_ring->next_to_use = 0;
 993	tx_ring->next_to_clean = 0;
 
 994	return 0;
 995
 996err:
 997	kfree(tx_ring->tx_bi);
 998	tx_ring->tx_bi = NULL;
 999	return -ENOMEM;
1000}
1001
 
 
 
 
 
1002/**
1003 * i40e_clean_rx_ring - Free Rx buffers
1004 * @rx_ring: ring to be cleaned
1005 **/
1006void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1007{
1008	struct device *dev = rx_ring->dev;
1009	unsigned long bi_size;
1010	u16 i;
1011
1012	/* ring already cleared, nothing to do */
1013	if (!rx_ring->rx_bi)
1014		return;
1015
 
 
 
 
 
1016	/* Free all the Rx ring sk_buffs */
1017	for (i = 0; i < rx_ring->count; i++) {
1018		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1019
1020		if (rx_bi->skb) {
1021			dev_kfree_skb(rx_bi->skb);
1022			rx_bi->skb = NULL;
1023		}
1024		if (!rx_bi->page)
1025			continue;
1026
1027		dma_unmap_page(dev, rx_bi->dma, PAGE_SIZE, DMA_FROM_DEVICE);
1028		__free_pages(rx_bi->page, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029
1030		rx_bi->page = NULL;
1031		rx_bi->page_offset = 0;
1032	}
1033
1034	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1035	memset(rx_ring->rx_bi, 0, bi_size);
 
 
 
1036
1037	/* Zero out the descriptor ring */
1038	memset(rx_ring->desc, 0, rx_ring->size);
1039
1040	rx_ring->next_to_alloc = 0;
1041	rx_ring->next_to_clean = 0;
 
1042	rx_ring->next_to_use = 0;
1043}
1044
1045/**
1046 * i40e_free_rx_resources - Free Rx resources
1047 * @rx_ring: ring to clean the resources from
1048 *
1049 * Free all receive software resources
1050 **/
1051void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1052{
1053	i40e_clean_rx_ring(rx_ring);
 
 
 
1054	kfree(rx_ring->rx_bi);
1055	rx_ring->rx_bi = NULL;
1056
1057	if (rx_ring->desc) {
1058		dma_free_coherent(rx_ring->dev, rx_ring->size,
1059				  rx_ring->desc, rx_ring->dma);
1060		rx_ring->desc = NULL;
1061	}
1062}
1063
1064/**
1065 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1066 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1067 *
1068 * Returns 0 on success, negative on failure
1069 **/
1070int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1071{
1072	struct device *dev = rx_ring->dev;
1073	int bi_size;
1074
1075	/* warn if we are about to overwrite the pointer */
1076	WARN_ON(rx_ring->rx_bi);
1077	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1078	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1079	if (!rx_ring->rx_bi)
1080		goto err;
1081
1082	u64_stats_init(&rx_ring->syncp);
1083
1084	/* Round up to nearest 4K */
1085	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1086	rx_ring->size = ALIGN(rx_ring->size, 4096);
1087	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1088					   &rx_ring->dma, GFP_KERNEL);
1089
1090	if (!rx_ring->desc) {
1091		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1092			 rx_ring->size);
1093		goto err;
1094	}
1095
1096	rx_ring->next_to_alloc = 0;
1097	rx_ring->next_to_clean = 0;
 
1098	rx_ring->next_to_use = 0;
1099
 
 
 
 
 
 
 
1100	return 0;
1101err:
1102	kfree(rx_ring->rx_bi);
1103	rx_ring->rx_bi = NULL;
1104	return -ENOMEM;
1105}
1106
1107/**
1108 * i40e_release_rx_desc - Store the new tail and head values
1109 * @rx_ring: ring to bump
1110 * @val: new head index
1111 **/
1112static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1113{
1114	rx_ring->next_to_use = val;
1115
1116	/* update next to alloc since we have filled the ring */
1117	rx_ring->next_to_alloc = val;
1118
1119	/* Force memory writes to complete before letting h/w
1120	 * know there are new descriptors to fetch.  (Only
1121	 * applicable for weak-ordered memory model archs,
1122	 * such as IA-64).
1123	 */
1124	wmb();
1125	writel(val, rx_ring->tail);
1126}
1127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128/**
1129 * i40e_alloc_mapped_page - recycle or make a new page
1130 * @rx_ring: ring to use
1131 * @bi: rx_buffer struct to modify
1132 *
1133 * Returns true if the page was successfully allocated or
1134 * reused.
1135 **/
1136static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1137				   struct i40e_rx_buffer *bi)
1138{
1139	struct page *page = bi->page;
1140	dma_addr_t dma;
1141
1142	/* since we are recycling buffers we should seldom need to alloc */
1143	if (likely(page)) {
1144		rx_ring->rx_stats.page_reuse_count++;
1145		return true;
1146	}
1147
1148	/* alloc new page for storage */
1149	page = dev_alloc_page();
1150	if (unlikely(!page)) {
1151		rx_ring->rx_stats.alloc_page_failed++;
1152		return false;
1153	}
1154
 
 
1155	/* map page for use */
1156	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
 
 
 
1157
1158	/* if mapping failed free memory back to system since
1159	 * there isn't much point in holding memory we can't use
1160	 */
1161	if (dma_mapping_error(rx_ring->dev, dma)) {
1162		__free_pages(page, 0);
1163		rx_ring->rx_stats.alloc_page_failed++;
1164		return false;
1165	}
1166
1167	bi->dma = dma;
1168	bi->page = page;
1169	bi->page_offset = 0;
 
 
1170
1171	return true;
1172}
1173
1174/**
1175 * i40e_receive_skb - Send a completed packet up the stack
1176 * @rx_ring:  rx ring in play
1177 * @skb: packet to send up
1178 * @vlan_tag: vlan tag for packet
1179 **/
1180static void i40e_receive_skb(struct i40e_ring *rx_ring,
1181			     struct sk_buff *skb, u16 vlan_tag)
1182{
1183	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1184
1185	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1186	    (vlan_tag & VLAN_VID_MASK))
1187		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1188
1189	napi_gro_receive(&q_vector->napi, skb);
1190}
1191
1192/**
1193 * i40e_alloc_rx_buffers - Replace used receive buffers
1194 * @rx_ring: ring to place buffers on
1195 * @cleaned_count: number of buffers to replace
1196 *
1197 * Returns false if all allocations were successful, true if any fail
1198 **/
1199bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1200{
1201	u16 ntu = rx_ring->next_to_use;
1202	union i40e_rx_desc *rx_desc;
1203	struct i40e_rx_buffer *bi;
1204
1205	/* do nothing if no valid netdev defined */
1206	if (!rx_ring->netdev || !cleaned_count)
1207		return false;
1208
1209	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1210	bi = &rx_ring->rx_bi[ntu];
1211
1212	do {
1213		if (!i40e_alloc_mapped_page(rx_ring, bi))
1214			goto no_buffers;
1215
 
 
 
 
 
 
1216		/* Refresh the desc even if buffer_addrs didn't change
1217		 * because each write-back erases this info.
1218		 */
1219		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1220
1221		rx_desc++;
1222		bi++;
1223		ntu++;
1224		if (unlikely(ntu == rx_ring->count)) {
1225			rx_desc = I40E_RX_DESC(rx_ring, 0);
1226			bi = rx_ring->rx_bi;
1227			ntu = 0;
1228		}
1229
1230		/* clear the status bits for the next_to_use descriptor */
1231		rx_desc->wb.qword1.status_error_len = 0;
1232
1233		cleaned_count--;
1234	} while (cleaned_count);
1235
1236	if (rx_ring->next_to_use != ntu)
1237		i40e_release_rx_desc(rx_ring, ntu);
1238
1239	return false;
1240
1241no_buffers:
1242	if (rx_ring->next_to_use != ntu)
1243		i40e_release_rx_desc(rx_ring, ntu);
1244
1245	/* make sure to come back via polling to try again after
1246	 * allocation failure
1247	 */
1248	return true;
1249}
1250
1251/**
1252 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1253 * @vsi: the VSI we care about
1254 * @skb: skb currently being received and modified
1255 * @rx_desc: the receive descriptor
1256 *
1257 * skb->protocol must be set before this function is called
1258 **/
1259static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1260				    struct sk_buff *skb,
1261				    union i40e_rx_desc *rx_desc)
1262{
1263	struct i40e_rx_ptype_decoded decoded;
1264	u32 rx_error, rx_status;
1265	bool ipv4, ipv6;
1266	u8 ptype;
1267	u64 qword;
1268
1269	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1270	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1271	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1272		   I40E_RXD_QW1_ERROR_SHIFT;
1273	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1274		    I40E_RXD_QW1_STATUS_SHIFT;
1275	decoded = decode_rx_desc_ptype(ptype);
1276
1277	skb->ip_summed = CHECKSUM_NONE;
1278
1279	skb_checksum_none_assert(skb);
1280
1281	/* Rx csum enabled and ip headers found? */
1282	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1283		return;
1284
1285	/* did the hardware decode the packet and checksum? */
1286	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1287		return;
1288
1289	/* both known and outer_ip must be set for the below code to work */
1290	if (!(decoded.known && decoded.outer_ip))
1291		return;
1292
1293	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1294	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1295	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1296	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1297
1298	if (ipv4 &&
1299	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1300			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1301		goto checksum_fail;
1302
1303	/* likely incorrect csum if alternate IP extension headers found */
1304	if (ipv6 &&
1305	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1306		/* don't increment checksum err here, non-fatal err */
1307		return;
1308
1309	/* there was some L4 error, count error and punt packet to the stack */
1310	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1311		goto checksum_fail;
1312
1313	/* handle packets that were not able to be checksummed due
1314	 * to arrival speed, in this case the stack can compute
1315	 * the csum.
1316	 */
1317	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1318		return;
1319
1320	/* If there is an outer header present that might contain a checksum
1321	 * we need to bump the checksum level by 1 to reflect the fact that
1322	 * we are indicating we validated the inner checksum.
1323	 */
1324	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1325		skb->csum_level = 1;
1326
1327	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1328	switch (decoded.inner_prot) {
1329	case I40E_RX_PTYPE_INNER_PROT_TCP:
1330	case I40E_RX_PTYPE_INNER_PROT_UDP:
1331	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1332		skb->ip_summed = CHECKSUM_UNNECESSARY;
1333		/* fall though */
1334	default:
1335		break;
1336	}
1337
1338	return;
1339
1340checksum_fail:
1341	vsi->back->hw_csum_rx_error++;
1342}
1343
1344/**
1345 * i40e_ptype_to_htype - get a hash type
1346 * @ptype: the ptype value from the descriptor
1347 *
1348 * Returns a hash type to be used by skb_set_hash
1349 **/
1350static inline int i40e_ptype_to_htype(u8 ptype)
1351{
1352	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1353
1354	if (!decoded.known)
1355		return PKT_HASH_TYPE_NONE;
1356
1357	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1358	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1359		return PKT_HASH_TYPE_L4;
1360	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1361		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1362		return PKT_HASH_TYPE_L3;
1363	else
1364		return PKT_HASH_TYPE_L2;
1365}
1366
1367/**
1368 * i40e_rx_hash - set the hash value in the skb
1369 * @ring: descriptor ring
1370 * @rx_desc: specific descriptor
 
 
1371 **/
1372static inline void i40e_rx_hash(struct i40e_ring *ring,
1373				union i40e_rx_desc *rx_desc,
1374				struct sk_buff *skb,
1375				u8 rx_ptype)
1376{
1377	u32 hash;
1378	const __le64 rss_mask =
1379		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1380			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1381
1382	if (!(ring->netdev->features & NETIF_F_RXHASH))
1383		return;
1384
1385	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1386		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1387		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1388	}
1389}
1390
1391/**
1392 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1393 * @rx_ring: rx descriptor ring packet is being transacted on
1394 * @rx_desc: pointer to the EOP Rx descriptor
1395 * @skb: pointer to current skb being populated
1396 * @rx_ptype: the packet type decoded by hardware
1397 *
1398 * This function checks the ring, descriptor, and packet information in
1399 * order to populate the hash, checksum, VLAN, protocol, and
1400 * other fields within the skb.
1401 **/
1402static inline
1403void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1404			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1405			     u8 rx_ptype)
1406{
1407	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1408	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1409			I40E_RXD_QW1_STATUS_SHIFT;
1410	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1411	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1412		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1413
1414	if (unlikely(tsynvalid))
1415		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1416
1417	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1418
1419	/* modifies the skb - consumes the enet header */
1420	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1421
1422	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1423
1424	skb_record_rx_queue(skb, rx_ring->queue_index);
1425}
1426
1427/**
1428 * i40e_pull_tail - i40e specific version of skb_pull_tail
1429 * @rx_ring: rx descriptor ring packet is being transacted on
1430 * @skb: pointer to current skb being adjusted
1431 *
1432 * This function is an i40e specific version of __pskb_pull_tail.  The
1433 * main difference between this version and the original function is that
1434 * this function can make several assumptions about the state of things
1435 * that allow for significant optimizations versus the standard function.
1436 * As a result we can do things like drop a frag and maintain an accurate
1437 * truesize for the skb.
1438 */
1439static void i40e_pull_tail(struct i40e_ring *rx_ring, struct sk_buff *skb)
1440{
1441	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
1442	unsigned char *va;
1443	unsigned int pull_len;
1444
1445	/* it is valid to use page_address instead of kmap since we are
1446	 * working with pages allocated out of the lomem pool per
1447	 * alloc_page(GFP_ATOMIC)
1448	 */
1449	va = skb_frag_address(frag);
1450
1451	/* we need the header to contain the greater of either ETH_HLEN or
1452	 * 60 bytes if the skb->len is less than 60 for skb_pad.
1453	 */
1454	pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1455
1456	/* align pull length to size of long to optimize memcpy performance */
1457	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
1458
1459	/* update all of the pointers */
1460	skb_frag_size_sub(frag, pull_len);
1461	frag->page_offset += pull_len;
1462	skb->data_len -= pull_len;
1463	skb->tail += pull_len;
1464}
1465
1466/**
1467 * i40e_cleanup_headers - Correct empty headers
1468 * @rx_ring: rx descriptor ring packet is being transacted on
1469 * @skb: pointer to current skb being fixed
1470 *
1471 * Also address the case where we are pulling data in on pages only
1472 * and as such no data is present in the skb header.
1473 *
1474 * In addition if skb is not at least 60 bytes we need to pad it so that
1475 * it is large enough to qualify as a valid Ethernet frame.
1476 *
1477 * Returns true if an error was encountered and skb was freed.
1478 **/
1479static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
 
 
1480{
1481	/* place header in linear portion of buffer */
1482	if (skb_is_nonlinear(skb))
1483		i40e_pull_tail(rx_ring, skb);
 
 
 
 
 
 
 
1484
1485	/* if eth_skb_pad returns an error the skb was freed */
1486	if (eth_skb_pad(skb))
1487		return true;
1488
1489	return false;
1490}
1491
1492/**
1493 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1494 * @rx_ring: rx descriptor ring to store buffers on
1495 * @old_buff: donor buffer to have page reused
 
 
 
 
 
1496 *
1497 * Synchronizes page for reuse by the adapter
1498 **/
1499static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1500			       struct i40e_rx_buffer *old_buff)
 
1501{
1502	struct i40e_rx_buffer *new_buff;
1503	u16 nta = rx_ring->next_to_alloc;
1504
1505	new_buff = &rx_ring->rx_bi[nta];
 
 
 
 
1506
1507	/* update, and store next to alloc */
1508	nta++;
1509	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510
1511	/* transfer page from old buffer to new buffer */
1512	*new_buff = *old_buff;
1513}
1514
1515/**
1516 * i40e_page_is_reserved - check if reuse is possible
1517 * @page: page struct to check
1518 */
1519static inline bool i40e_page_is_reserved(struct page *page)
 
 
1520{
1521	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 
 
 
 
1522}
1523
1524/**
1525 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1526 * @rx_ring: rx descriptor ring to transact packets on
1527 * @rx_buffer: buffer containing page to add
1528 * @rx_desc: descriptor containing length of buffer written by hardware
1529 * @skb: sk_buff to place the data into
1530 *
1531 * This function will add the data contained in rx_buffer->page to the skb.
1532 * This is done either through a direct copy if the data in the buffer is
1533 * less than the skb header size, otherwise it will just attach the page as
1534 * a frag to the skb.
1535 *
1536 * The function will then update the page offset if necessary and return
1537 * true if the buffer can be reused by the adapter.
1538 **/
1539static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
1540			     struct i40e_rx_buffer *rx_buffer,
1541			     union i40e_rx_desc *rx_desc,
1542			     struct sk_buff *skb)
1543{
1544	struct page *page = rx_buffer->page;
1545	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1546	unsigned int size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1547			    I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1548#if (PAGE_SIZE < 8192)
1549	unsigned int truesize = I40E_RXBUFFER_2048;
1550#else
1551	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
1552	unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
1553#endif
 
1554
1555	/* will the data fit in the skb we allocated? if so, just
1556	 * copy it as it is pretty small anyway
1557	 */
1558	if ((size <= I40E_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
1559		unsigned char *va = page_address(page) + rx_buffer->page_offset;
 
1560
1561		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 
1562
1563		/* page is not reserved, we can reuse buffer as-is */
1564		if (likely(!i40e_page_is_reserved(page)))
1565			return true;
1566
1567		/* this page cannot be reused so discard it */
1568		__free_pages(page, 0);
1569		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1570	}
 
1571
1572	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1573			rx_buffer->page_offset, size, truesize);
 
 
 
 
 
 
 
 
 
 
1574
1575	/* avoid re-using remote pages */
1576	if (unlikely(i40e_page_is_reserved(page)))
1577		return false;
1578
1579#if (PAGE_SIZE < 8192)
1580	/* if we are only owner of page we can reuse it */
1581	if (unlikely(page_count(page) != 1))
1582		return false;
1583
1584	/* flip page offset to other buffer */
1585	rx_buffer->page_offset ^= truesize;
1586#else
1587	/* move offset up to the next cache line */
1588	rx_buffer->page_offset += truesize;
1589
1590	if (rx_buffer->page_offset > last_offset)
1591		return false;
1592#endif
 
1593
1594	/* Even if we own the page, we are not allowed to use atomic_set()
1595	 * This would break get_page_unless_zero() users.
1596	 */
1597	get_page(rx_buffer->page);
1598
1599	return true;
 
1600}
1601
1602/**
1603 * i40e_fetch_rx_buffer - Allocate skb and populate it
1604 * @rx_ring: rx descriptor ring to transact packets on
1605 * @rx_desc: descriptor containing info written by hardware
1606 *
1607 * This function allocates an skb on the fly, and populates it with the page
1608 * data from the current receive descriptor, taking care to set up the skb
1609 * correctly, as well as handling calling the page recycle function if
1610 * necessary.
1611 */
1612static inline
1613struct sk_buff *i40e_fetch_rx_buffer(struct i40e_ring *rx_ring,
1614				     union i40e_rx_desc *rx_desc)
1615{
 
1616	struct i40e_rx_buffer *rx_buffer;
 
 
1617	struct sk_buff *skb;
1618	struct page *page;
1619
1620	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1621	page = rx_buffer->page;
1622	prefetchw(page);
1623
1624	skb = rx_buffer->skb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1625
1626	if (likely(!skb)) {
1627		void *page_addr = page_address(page) + rx_buffer->page_offset;
 
1628
1629		/* prefetch first cache line of first page */
1630		prefetch(page_addr);
1631#if L1_CACHE_BYTES < 128
1632		prefetch(page_addr + L1_CACHE_BYTES);
1633#endif
1634
1635		/* allocate a skb to store the frags */
1636		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1637				       I40E_RX_HDR_SIZE,
1638				       GFP_ATOMIC | __GFP_NOWARN);
1639		if (unlikely(!skb)) {
1640			rx_ring->rx_stats.alloc_buff_failed++;
1641			return NULL;
1642		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643
1644		/* we will be copying header into skb->data in
1645		 * pskb_may_pull so it is in our interest to prefetch
1646		 * it now to avoid a possible cache miss
1647		 */
1648		prefetchw(skb->data);
1649	} else {
1650		rx_buffer->skb = NULL;
1651	}
1652
1653	/* we are reusing so sync this buffer for CPU use */
1654	dma_sync_single_range_for_cpu(rx_ring->dev,
1655				      rx_buffer->dma,
1656				      rx_buffer->page_offset,
1657				      I40E_RXBUFFER_2048,
1658				      DMA_FROM_DEVICE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1659
1660	/* pull page into skb */
1661	if (i40e_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
1662		/* hand second half of page back to the ring */
1663		i40e_reuse_rx_page(rx_ring, rx_buffer);
1664		rx_ring->rx_stats.page_reuse_count++;
1665	} else {
1666		/* we are not reusing the buffer so unmap it */
1667		dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
1668			       DMA_FROM_DEVICE);
 
 
1669	}
1670
1671	/* clear contents of buffer_info */
1672	rx_buffer->page = NULL;
1673
1674	return skb;
1675}
1676
1677/**
1678 * i40e_is_non_eop - process handling of non-EOP buffers
1679 * @rx_ring: Rx ring being processed
1680 * @rx_desc: Rx descriptor for current buffer
1681 * @skb: Current socket buffer containing buffer in progress
1682 *
1683 * This function updates next to clean.  If the buffer is an EOP buffer
1684 * this function exits returning false, otherwise it will place the
1685 * sk_buff in the next buffer to be chained and return true indicating
1686 * that this is in fact a non-EOP buffer.
1687 **/
1688static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1689			    union i40e_rx_desc *rx_desc,
1690			    struct sk_buff *skb)
1691{
1692	u32 ntc = rx_ring->next_to_clean + 1;
1693
1694	/* fetch, update, and store next to clean */
1695	ntc = (ntc < rx_ring->count) ? ntc : 0;
1696	rx_ring->next_to_clean = ntc;
1697
1698	prefetch(I40E_RX_DESC(rx_ring, ntc));
1699
1700#define staterrlen rx_desc->wb.qword1.status_error_len
1701	if (unlikely(i40e_rx_is_programming_status(le64_to_cpu(staterrlen)))) {
1702		i40e_clean_programming_status(rx_ring, rx_desc);
1703		rx_ring->rx_bi[ntc].skb = skb;
1704		return true;
1705	}
1706	/* if we are the last buffer then there is nothing else to do */
1707#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1708	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1709		return false;
1710
1711	/* place skb in next buffer to be received */
1712	rx_ring->rx_bi[ntc].skb = skb;
1713	rx_ring->rx_stats.non_eop_descs++;
1714
1715	return true;
1716}
1717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1718/**
1719 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1720 * @rx_ring: rx descriptor ring to transact packets on
1721 * @budget: Total limit on number of packets to process
 
1722 *
1723 * This function provides a "bounce buffer" approach to Rx interrupt
1724 * processing.  The advantage to this is that on systems that have
1725 * expensive overhead for IOMMU access this provides a means of avoiding
1726 * it by maintaining the mapping of the page to the system.
1727 *
1728 * Returns amount of work completed
1729 **/
1730static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
 
1731{
1732	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1733	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
 
 
 
 
 
1734	bool failure = false;
 
 
 
1735
1736	while (likely(total_rx_packets < budget)) {
 
 
1737		union i40e_rx_desc *rx_desc;
1738		struct sk_buff *skb;
1739		u16 vlan_tag;
1740		u8 rx_ptype;
 
1741		u64 qword;
1742
1743		/* return some buffers to hardware, one at a time is too slow */
1744		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1745			failure = failure ||
1746				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1747			cleaned_count = 0;
1748		}
1749
1750		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1751
1752		/* status_error_len will always be zero for unused descriptors
1753		 * because it's cleared in cleanup, and overlaps with hdr_addr
1754		 * which is always zero because packet split isn't used, if the
1755		 * hardware wrote DD then it will be non-zero
1756		 */
1757		if (!i40e_test_staterr(rx_desc,
1758				       BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1759			break;
1760
1761		/* This memory barrier is needed to keep us from reading
1762		 * any other fields out of the rx_desc until we know the
1763		 * DD bit is set.
1764		 */
1765		dma_rmb();
1766
1767		skb = i40e_fetch_rx_buffer(rx_ring, rx_desc);
1768		if (!skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1769			break;
1770
1771		cleaned_count++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1772
1773		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1774			continue;
1775
1776		/* ERR_MASK will only have valid bits if EOP set, and
1777		 * what we are doing here is actually checking
1778		 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1779		 * the error field
1780		 */
1781		if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1782			dev_kfree_skb_any(skb);
1783			continue;
1784		}
1785
1786		if (i40e_cleanup_headers(rx_ring, skb))
1787			continue;
1788
1789		/* probably a little skewed due to removing CRC */
1790		total_rx_bytes += skb->len;
 
 
 
 
 
 
 
 
 
 
 
 
1791
1792		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1793		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1794			   I40E_RXD_QW1_PTYPE_SHIFT;
 
 
 
1795
1796		/* populate checksum, VLAN, and protocol */
1797		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1798
1799#ifdef I40E_FCOE
1800		if (unlikely(
1801		    i40e_rx_is_fcoe(rx_ptype) &&
1802		    !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
1803			dev_kfree_skb_any(skb);
1804			continue;
1805		}
1806#endif
1807
1808		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1809			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1810
1811		i40e_receive_skb(rx_ring, skb, vlan_tag);
 
 
1812
1813		/* update budget accounting */
1814		total_rx_packets++;
 
 
 
 
 
 
1815	}
1816
1817	u64_stats_update_begin(&rx_ring->syncp);
1818	rx_ring->stats.packets += total_rx_packets;
1819	rx_ring->stats.bytes += total_rx_bytes;
1820	u64_stats_update_end(&rx_ring->syncp);
1821	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1822	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1823
1824	/* guarantee a trip back through this routine if there was a failure */
1825	return failure ? budget : total_rx_packets;
1826}
1827
1828static u32 i40e_buildreg_itr(const int type, const u16 itr)
1829{
1830	u32 val;
1831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1832	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1833	      /* Don't clear PBA because that can cause lost interrupts that
1834	       * came in while we were cleaning/polling
1835	       */
1836	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1837	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1838
1839	return val;
1840}
1841
1842/* a small macro to shorten up some long lines */
1843#define INTREG I40E_PFINT_DYN_CTLN
1844static inline int get_rx_itr_enabled(struct i40e_vsi *vsi, int idx)
1845{
1846	return !!(vsi->rx_rings[idx]->rx_itr_setting);
1847}
1848
1849static inline int get_tx_itr_enabled(struct i40e_vsi *vsi, int idx)
1850{
1851	return !!(vsi->tx_rings[idx]->tx_itr_setting);
1852}
 
 
 
 
1853
1854/**
1855 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1856 * @vsi: the VSI we care about
1857 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1858 *
1859 **/
1860static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1861					  struct i40e_q_vector *q_vector)
1862{
1863	struct i40e_hw *hw = &vsi->back->hw;
1864	bool rx = false, tx = false;
1865	u32 rxval, txval;
1866	int vector;
1867	int idx = q_vector->v_idx;
1868	int rx_itr_setting, tx_itr_setting;
1869
1870	vector = (q_vector->v_idx + vsi->base_vector);
1871
1872	/* avoid dynamic calculation if in countdown mode OR if
1873	 * all dynamic is disabled
1874	 */
1875	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1876
1877	rx_itr_setting = get_rx_itr_enabled(vsi, idx);
1878	tx_itr_setting = get_tx_itr_enabled(vsi, idx);
1879
1880	if (q_vector->itr_countdown > 0 ||
1881	    (!ITR_IS_DYNAMIC(rx_itr_setting) &&
1882	     !ITR_IS_DYNAMIC(tx_itr_setting))) {
1883		goto enable_int;
1884	}
1885
1886	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1887		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1888		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1889	}
1890
1891	if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1892		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1893		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1894	}
1895
1896	if (rx || tx) {
1897		/* get the higher of the two ITR adjustments and
1898		 * use the same value for both ITR registers
1899		 * when in adaptive mode (Rx and/or Tx)
 
 
 
 
 
 
 
 
 
1900		 */
1901		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1902
1903		q_vector->tx.itr = q_vector->rx.itr = itr;
1904		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1905		tx = true;
1906		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1907		rx = true;
1908	}
1909
1910	/* only need to enable the interrupt once, but need
1911	 * to possibly update both ITR values
1912	 */
1913	if (rx) {
1914		/* set the INTENA_MSK_MASK so that this first write
1915		 * won't actually enable the interrupt, instead just
1916		 * updating the ITR (it's bit 31 PF and VF)
1917		 */
1918		rxval |= BIT(31);
1919		/* don't check _DOWN because interrupt isn't being enabled */
1920		wr32(hw, INTREG(vector - 1), rxval);
1921	}
1922
1923enable_int:
1924	if (!test_bit(__I40E_DOWN, &vsi->state))
1925		wr32(hw, INTREG(vector - 1), txval);
1926
1927	if (q_vector->itr_countdown)
1928		q_vector->itr_countdown--;
1929	else
1930		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1931}
1932
1933/**
1934 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1935 * @napi: napi struct with our devices info in it
1936 * @budget: amount of work driver is allowed to do this pass, in packets
1937 *
1938 * This function will clean all queues associated with a q_vector.
1939 *
1940 * Returns the amount of work done
1941 **/
1942int i40e_napi_poll(struct napi_struct *napi, int budget)
1943{
1944	struct i40e_q_vector *q_vector =
1945			       container_of(napi, struct i40e_q_vector, napi);
1946	struct i40e_vsi *vsi = q_vector->vsi;
1947	struct i40e_ring *ring;
 
 
 
 
1948	bool clean_complete = true;
1949	bool arm_wb = false;
1950	int budget_per_ring;
1951	int work_done = 0;
1952
1953	if (test_bit(__I40E_DOWN, &vsi->state)) {
1954		napi_complete(napi);
1955		return 0;
1956	}
1957
1958	/* Clear hung_detected bit */
1959	clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1960	/* Since the actual Tx work is minimal, we can give the Tx a larger
1961	 * budget and be more aggressive about cleaning up the Tx descriptors.
1962	 */
1963	i40e_for_each_ring(ring, q_vector->tx) {
1964		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1965			clean_complete = false;
 
 
 
 
1966			continue;
1967		}
1968		arm_wb |= ring->arm_wb;
1969		ring->arm_wb = false;
1970	}
1971
1972	/* Handle case where we are called by netpoll with a budget of 0 */
1973	if (budget <= 0)
1974		goto tx_only;
1975
1976	/* We attempt to distribute budget to each Rx queue fairly, but don't
1977	 * allow the budget to go below 1 because that would exit polling early.
1978	 */
1979	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
 
 
 
 
 
 
1980
1981	i40e_for_each_ring(ring, q_vector->rx) {
1982		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
 
 
1983
1984		work_done += cleaned;
1985		/* if we clean as many as budgeted, we must not be done */
1986		if (cleaned >= budget_per_ring)
1987			clean_complete = false;
1988	}
1989
 
 
 
 
1990	/* If work not completed, return budget and polling will return */
1991	if (!clean_complete) {
1992		const cpumask_t *aff_mask = &q_vector->affinity_mask;
1993		int cpu_id = smp_processor_id();
1994
1995		/* It is possible that the interrupt affinity has changed but,
1996		 * if the cpu is pegged at 100%, polling will never exit while
1997		 * traffic continues and the interrupt will be stuck on this
1998		 * cpu.  We check to make sure affinity is correct before we
1999		 * continue to poll, otherwise we must stop polling so the
2000		 * interrupt can move to the correct cpu.
2001		 */
2002		if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
2003			   !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
 
 
 
 
 
 
 
 
2004tx_only:
2005			if (arm_wb) {
2006				q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2007				i40e_enable_wb_on_itr(vsi, q_vector);
2008			}
2009			return budget;
2010		}
 
2011	}
2012
2013	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2014		q_vector->arm_wb_state = false;
2015
2016	/* Work is done so exit the polling mode and re-enable the interrupt */
2017	napi_complete_done(napi, work_done);
2018
2019	/* If we're prematurely stopping polling to fix the interrupt
2020	 * affinity we want to make sure polling starts back up so we
2021	 * issue a call to i40e_force_wb which triggers a SW interrupt.
2022	 */
2023	if (!clean_complete)
2024		i40e_force_wb(vsi, q_vector);
2025	else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
2026		i40e_irq_dynamic_enable_icr0(vsi->back, false);
2027	else
2028		i40e_update_enable_itr(vsi, q_vector);
2029
2030	return min(work_done, budget - 1);
2031}
2032
2033/**
2034 * i40e_atr - Add a Flow Director ATR filter
2035 * @tx_ring:  ring to add programming descriptor to
2036 * @skb:      send buffer
2037 * @tx_flags: send tx flags
2038 **/
2039static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2040		     u32 tx_flags)
2041{
2042	struct i40e_filter_program_desc *fdir_desc;
2043	struct i40e_pf *pf = tx_ring->vsi->back;
2044	union {
2045		unsigned char *network;
2046		struct iphdr *ipv4;
2047		struct ipv6hdr *ipv6;
2048	} hdr;
2049	struct tcphdr *th;
2050	unsigned int hlen;
2051	u32 flex_ptype, dtype_cmd;
2052	int l4_proto;
2053	u16 i;
2054
2055	/* make sure ATR is enabled */
2056	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2057		return;
2058
2059	if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2060		return;
2061
2062	/* if sampling is disabled do nothing */
2063	if (!tx_ring->atr_sample_rate)
2064		return;
2065
2066	/* Currently only IPv4/IPv6 with TCP is supported */
2067	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2068		return;
2069
2070	/* snag network header to get L4 type and address */
2071	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2072		      skb_inner_network_header(skb) : skb_network_header(skb);
2073
2074	/* Note: tx_flags gets modified to reflect inner protocols in
2075	 * tx_enable_csum function if encap is enabled.
2076	 */
2077	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2078		/* access ihl as u8 to avoid unaligned access on ia64 */
2079		hlen = (hdr.network[0] & 0x0F) << 2;
2080		l4_proto = hdr.ipv4->protocol;
2081	} else {
2082		hlen = hdr.network - skb->data;
2083		l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
2084		hlen -= hdr.network - skb->data;
 
 
 
 
 
 
2085	}
2086
2087	if (l4_proto != IPPROTO_TCP)
2088		return;
2089
2090	th = (struct tcphdr *)(hdr.network + hlen);
2091
2092	/* Due to lack of space, no more new filters can be programmed */
2093	if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2094		return;
2095	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2096	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2097		/* HW ATR eviction will take care of removing filters on FIN
2098		 * and RST packets.
2099		 */
2100		if (th->fin || th->rst)
2101			return;
2102	}
2103
2104	tx_ring->atr_count++;
2105
2106	/* sample on all syn/fin/rst packets or once every atr sample rate */
2107	if (!th->fin &&
2108	    !th->syn &&
2109	    !th->rst &&
2110	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2111		return;
2112
2113	tx_ring->atr_count = 0;
2114
2115	/* grab the next descriptor */
2116	i = tx_ring->next_to_use;
2117	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2118
2119	i++;
2120	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2121
2122	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2123		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2124	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2125		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2126		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2127		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2128		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2129
2130	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2131
2132	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2133
2134	dtype_cmd |= (th->fin || th->rst) ?
2135		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2136		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2137		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2138		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2139
2140	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2141		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2142
2143	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2144		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2145
2146	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2147	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2148		dtype_cmd |=
2149			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2150			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2151			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2152	else
2153		dtype_cmd |=
2154			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2155			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2156			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2157
2158	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2159	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2160		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2161
2162	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2163	fdir_desc->rsvd = cpu_to_le32(0);
2164	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2165	fdir_desc->fd_id = cpu_to_le32(0);
2166}
2167
2168/**
2169 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2170 * @skb:     send buffer
2171 * @tx_ring: ring to send buffer on
2172 * @flags:   the tx flags to be set
2173 *
2174 * Checks the skb and set up correspondingly several generic transmit flags
2175 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2176 *
2177 * Returns error code indicate the frame should be dropped upon error and the
2178 * otherwise  returns 0 to indicate the flags has been set properly.
2179 **/
2180#ifdef I40E_FCOE
2181inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2182				      struct i40e_ring *tx_ring,
2183				      u32 *flags)
2184#else
2185static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2186					     struct i40e_ring *tx_ring,
2187					     u32 *flags)
2188#endif
2189{
2190	__be16 protocol = skb->protocol;
2191	u32  tx_flags = 0;
2192
2193	if (protocol == htons(ETH_P_8021Q) &&
2194	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2195		/* When HW VLAN acceleration is turned off by the user the
2196		 * stack sets the protocol to 8021q so that the driver
2197		 * can take any steps required to support the SW only
2198		 * VLAN handling.  In our case the driver doesn't need
2199		 * to take any further steps so just set the protocol
2200		 * to the encapsulated ethertype.
2201		 */
2202		skb->protocol = vlan_get_protocol(skb);
2203		goto out;
2204	}
2205
2206	/* if we have a HW VLAN tag being added, default to the HW one */
2207	if (skb_vlan_tag_present(skb)) {
2208		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2209		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2210	/* else if it is a SW VLAN, check the next protocol and store the tag */
2211	} else if (protocol == htons(ETH_P_8021Q)) {
2212		struct vlan_hdr *vhdr, _vhdr;
2213
2214		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2215		if (!vhdr)
2216			return -EINVAL;
2217
2218		protocol = vhdr->h_vlan_encapsulated_proto;
2219		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2220		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2221	}
2222
2223	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2224		goto out;
2225
2226	/* Insert 802.1p priority into VLAN header */
2227	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2228	    (skb->priority != TC_PRIO_CONTROL)) {
2229		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2230		tx_flags |= (skb->priority & 0x7) <<
2231				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2232		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2233			struct vlan_ethhdr *vhdr;
2234			int rc;
2235
2236			rc = skb_cow_head(skb, 0);
2237			if (rc < 0)
2238				return rc;
2239			vhdr = (struct vlan_ethhdr *)skb->data;
2240			vhdr->h_vlan_TCI = htons(tx_flags >>
2241						 I40E_TX_FLAGS_VLAN_SHIFT);
2242		} else {
2243			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2244		}
2245	}
2246
2247out:
2248	*flags = tx_flags;
2249	return 0;
2250}
2251
2252/**
2253 * i40e_tso - set up the tso context descriptor
2254 * @skb:      ptr to the skb we're sending
2255 * @hdr_len:  ptr to the size of the packet header
2256 * @cd_type_cmd_tso_mss: Quad Word 1
2257 *
2258 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2259 **/
2260static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
 
2261{
 
2262	u64 cd_cmd, cd_tso_len, cd_mss;
 
2263	union {
2264		struct iphdr *v4;
2265		struct ipv6hdr *v6;
2266		unsigned char *hdr;
2267	} ip;
2268	union {
2269		struct tcphdr *tcp;
2270		struct udphdr *udp;
2271		unsigned char *hdr;
2272	} l4;
2273	u32 paylen, l4_offset;
 
2274	int err;
2275
2276	if (skb->ip_summed != CHECKSUM_PARTIAL)
2277		return 0;
2278
2279	if (!skb_is_gso(skb))
2280		return 0;
2281
2282	err = skb_cow_head(skb, 0);
2283	if (err < 0)
2284		return err;
2285
2286	ip.hdr = skb_network_header(skb);
2287	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
2288
2289	/* initialize outer IP header fields */
2290	if (ip.v4->version == 4) {
2291		ip.v4->tot_len = 0;
2292		ip.v4->check = 0;
 
 
2293	} else {
2294		ip.v6->payload_len = 0;
 
2295	}
2296
2297	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2298					 SKB_GSO_GRE_CSUM |
2299					 SKB_GSO_IPXIP4 |
2300					 SKB_GSO_IPXIP6 |
2301					 SKB_GSO_UDP_TUNNEL |
2302					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2303		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2304		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2305			l4.udp->len = 0;
2306
2307			/* determine offset of outer transport header */
2308			l4_offset = l4.hdr - skb->data;
2309
2310			/* remove payload length from outer checksum */
2311			paylen = skb->len - l4_offset;
2312			csum_replace_by_diff(&l4.udp->check, htonl(paylen));
 
2313		}
2314
2315		/* reset pointers to inner headers */
2316		ip.hdr = skb_inner_network_header(skb);
2317		l4.hdr = skb_inner_transport_header(skb);
2318
2319		/* initialize inner IP header fields */
2320		if (ip.v4->version == 4) {
2321			ip.v4->tot_len = 0;
2322			ip.v4->check = 0;
2323		} else {
2324			ip.v6->payload_len = 0;
2325		}
2326	}
2327
2328	/* determine offset of inner transport header */
2329	l4_offset = l4.hdr - skb->data;
2330
2331	/* remove payload length from inner checksum */
2332	paylen = skb->len - l4_offset;
2333	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2334
2335	/* compute length of segmentation header */
2336	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2337
2338	/* find the field values */
2339	cd_cmd = I40E_TX_CTX_DESC_TSO;
2340	cd_tso_len = skb->len - *hdr_len;
2341	cd_mss = skb_shinfo(skb)->gso_size;
2342	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2343				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2344				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2345	return 1;
2346}
2347
2348/**
2349 * i40e_tsyn - set up the tsyn context descriptor
2350 * @tx_ring:  ptr to the ring to send
2351 * @skb:      ptr to the skb we're sending
2352 * @tx_flags: the collected send information
2353 * @cd_type_cmd_tso_mss: Quad Word 1
2354 *
2355 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2356 **/
2357static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2358		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2359{
2360	struct i40e_pf *pf;
2361
2362	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2363		return 0;
2364
2365	/* Tx timestamps cannot be sampled when doing TSO */
2366	if (tx_flags & I40E_TX_FLAGS_TSO)
2367		return 0;
2368
2369	/* only timestamp the outbound packet if the user has requested it and
2370	 * we are not already transmitting a packet to be timestamped
2371	 */
2372	pf = i40e_netdev_to_pf(tx_ring->netdev);
2373	if (!(pf->flags & I40E_FLAG_PTP))
2374		return 0;
2375
2376	if (pf->ptp_tx &&
2377	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2378		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 
2379		pf->ptp_tx_skb = skb_get(skb);
2380	} else {
 
2381		return 0;
2382	}
2383
2384	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2385				I40E_TXD_CTX_QW1_CMD_SHIFT;
2386
2387	return 1;
2388}
2389
2390/**
2391 * i40e_tx_enable_csum - Enable Tx checksum offloads
2392 * @skb: send buffer
2393 * @tx_flags: pointer to Tx flags currently set
2394 * @td_cmd: Tx descriptor command bits to set
2395 * @td_offset: Tx descriptor header offsets to set
2396 * @tx_ring: Tx descriptor ring
2397 * @cd_tunneling: ptr to context desc bits
2398 **/
2399static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2400			       u32 *td_cmd, u32 *td_offset,
2401			       struct i40e_ring *tx_ring,
2402			       u32 *cd_tunneling)
2403{
2404	union {
2405		struct iphdr *v4;
2406		struct ipv6hdr *v6;
2407		unsigned char *hdr;
2408	} ip;
2409	union {
2410		struct tcphdr *tcp;
2411		struct udphdr *udp;
2412		unsigned char *hdr;
2413	} l4;
2414	unsigned char *exthdr;
2415	u32 offset, cmd = 0;
2416	__be16 frag_off;
 
2417	u8 l4_proto = 0;
2418
2419	if (skb->ip_summed != CHECKSUM_PARTIAL)
2420		return 0;
2421
2422	ip.hdr = skb_network_header(skb);
2423	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424
2425	/* compute outer L2 header size */
2426	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2427
2428	if (skb->encapsulation) {
2429		u32 tunnel = 0;
2430		/* define outer network header type */
2431		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2432			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2433				  I40E_TX_CTX_EXT_IP_IPV4 :
2434				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2435
2436			l4_proto = ip.v4->protocol;
2437		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
 
 
2438			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2439
2440			exthdr = ip.hdr + sizeof(*ip.v6);
2441			l4_proto = ip.v6->nexthdr;
2442			if (l4.hdr != exthdr)
2443				ipv6_skip_exthdr(skb, exthdr - skb->data,
2444						 &l4_proto, &frag_off);
 
2445		}
2446
2447		/* define outer transport */
2448		switch (l4_proto) {
2449		case IPPROTO_UDP:
2450			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2451			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2452			break;
2453		case IPPROTO_GRE:
2454			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2455			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2456			break;
2457		case IPPROTO_IPIP:
2458		case IPPROTO_IPV6:
2459			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2460			l4.hdr = skb_inner_network_header(skb);
2461			break;
2462		default:
2463			if (*tx_flags & I40E_TX_FLAGS_TSO)
2464				return -1;
2465
2466			skb_checksum_help(skb);
2467			return 0;
2468		}
2469
2470		/* compute outer L3 header size */
2471		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2472			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2473
2474		/* switch IP header pointer from outer to inner header */
2475		ip.hdr = skb_inner_network_header(skb);
2476
2477		/* compute tunnel header size */
2478		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2479			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2480
2481		/* indicate if we need to offload outer UDP header */
2482		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2483		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2484		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2485			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2486
2487		/* record tunnel offload values */
2488		*cd_tunneling |= tunnel;
2489
2490		/* switch L4 header pointer from outer to inner */
2491		l4.hdr = skb_inner_transport_header(skb);
2492		l4_proto = 0;
2493
2494		/* reset type as we transition from outer to inner headers */
2495		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2496		if (ip.v4->version == 4)
2497			*tx_flags |= I40E_TX_FLAGS_IPV4;
2498		if (ip.v6->version == 6)
2499			*tx_flags |= I40E_TX_FLAGS_IPV6;
2500	}
2501
2502	/* Enable IP checksum offloads */
2503	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2504		l4_proto = ip.v4->protocol;
2505		/* the stack computes the IP header already, the only time we
2506		 * need the hardware to recompute it is in the case of TSO.
2507		 */
2508		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2509		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2510		       I40E_TX_DESC_CMD_IIPT_IPV4;
2511	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2512		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2513
2514		exthdr = ip.hdr + sizeof(*ip.v6);
2515		l4_proto = ip.v6->nexthdr;
2516		if (l4.hdr != exthdr)
2517			ipv6_skip_exthdr(skb, exthdr - skb->data,
2518					 &l4_proto, &frag_off);
2519	}
2520
2521	/* compute inner L3 header size */
2522	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2523
2524	/* Enable L4 checksum offloads */
2525	switch (l4_proto) {
2526	case IPPROTO_TCP:
2527		/* enable checksum offloads */
2528		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2529		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2530		break;
2531	case IPPROTO_SCTP:
2532		/* enable SCTP checksum offload */
2533		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2534		offset |= (sizeof(struct sctphdr) >> 2) <<
2535			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2536		break;
2537	case IPPROTO_UDP:
2538		/* enable UDP checksum offload */
2539		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2540		offset |= (sizeof(struct udphdr) >> 2) <<
2541			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2542		break;
2543	default:
2544		if (*tx_flags & I40E_TX_FLAGS_TSO)
2545			return -1;
2546		skb_checksum_help(skb);
2547		return 0;
2548	}
2549
2550	*td_cmd |= cmd;
2551	*td_offset |= offset;
2552
2553	return 1;
2554}
2555
2556/**
2557 * i40e_create_tx_ctx Build the Tx context descriptor
2558 * @tx_ring:  ring to create the descriptor on
2559 * @cd_type_cmd_tso_mss: Quad Word 1
2560 * @cd_tunneling: Quad Word 0 - bits 0-31
2561 * @cd_l2tag2: Quad Word 0 - bits 32-63
2562 **/
2563static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2564			       const u64 cd_type_cmd_tso_mss,
2565			       const u32 cd_tunneling, const u32 cd_l2tag2)
2566{
2567	struct i40e_tx_context_desc *context_desc;
2568	int i = tx_ring->next_to_use;
2569
2570	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2571	    !cd_tunneling && !cd_l2tag2)
2572		return;
2573
2574	/* grab the next descriptor */
2575	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2576
2577	i++;
2578	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2579
2580	/* cpu_to_le32 and assign to struct fields */
2581	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2582	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2583	context_desc->rsvd = cpu_to_le16(0);
2584	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2585}
2586
2587/**
2588 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2589 * @tx_ring: the ring to be checked
2590 * @size:    the size buffer we want to assure is available
2591 *
2592 * Returns -EBUSY if a stop is needed, else 0
2593 **/
2594int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2595{
2596	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2597	/* Memory barrier before checking head and tail */
2598	smp_mb();
2599
 
 
2600	/* Check again in a case another CPU has just made room available. */
2601	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2602		return -EBUSY;
2603
2604	/* A reprieve! - use start_queue because it doesn't call schedule */
2605	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2606	++tx_ring->tx_stats.restart_queue;
2607	return 0;
2608}
2609
2610/**
2611 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2612 * @skb:      send buffer
2613 *
2614 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2615 * and so we need to figure out the cases where we need to linearize the skb.
2616 *
2617 * For TSO we need to count the TSO header and segment payload separately.
2618 * As such we need to check cases where we have 7 fragments or more as we
2619 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2620 * the segment payload in the first descriptor, and another 7 for the
2621 * fragments.
2622 **/
2623bool __i40e_chk_linearize(struct sk_buff *skb)
2624{
2625	const struct skb_frag_struct *frag, *stale;
2626	int nr_frags, sum;
2627
2628	/* no need to check if number of frags is less than 7 */
2629	nr_frags = skb_shinfo(skb)->nr_frags;
2630	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2631		return false;
2632
2633	/* We need to walk through the list and validate that each group
2634	 * of 6 fragments totals at least gso_size.
2635	 */
2636	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2637	frag = &skb_shinfo(skb)->frags[0];
2638
2639	/* Initialize size to the negative value of gso_size minus 1.  We
2640	 * use this as the worst case scenerio in which the frag ahead
2641	 * of us only provides one byte which is why we are limited to 6
2642	 * descriptors for a single transmit as the header and previous
2643	 * fragment are already consuming 2 descriptors.
2644	 */
2645	sum = 1 - skb_shinfo(skb)->gso_size;
2646
2647	/* Add size of frags 0 through 4 to create our initial sum */
2648	sum += skb_frag_size(frag++);
2649	sum += skb_frag_size(frag++);
2650	sum += skb_frag_size(frag++);
2651	sum += skb_frag_size(frag++);
2652	sum += skb_frag_size(frag++);
2653
2654	/* Walk through fragments adding latest fragment, testing it, and
2655	 * then removing stale fragments from the sum.
2656	 */
2657	stale = &skb_shinfo(skb)->frags[0];
2658	for (;;) {
 
2659		sum += skb_frag_size(frag++);
2660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2661		/* if sum is negative we failed to make sufficient progress */
2662		if (sum < 0)
2663			return true;
2664
2665		if (!nr_frags--)
2666			break;
2667
2668		sum -= skb_frag_size(stale++);
2669	}
2670
2671	return false;
2672}
2673
2674/**
2675 * i40e_tx_map - Build the Tx descriptor
2676 * @tx_ring:  ring to send buffer on
2677 * @skb:      send buffer
2678 * @first:    first buffer info buffer to use
2679 * @tx_flags: collected send information
2680 * @hdr_len:  size of the packet header
2681 * @td_cmd:   the command field in the descriptor
2682 * @td_offset: offset for checksum or crc
 
 
2683 **/
2684#ifdef I40E_FCOE
2685inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2686			struct i40e_tx_buffer *first, u32 tx_flags,
2687			const u8 hdr_len, u32 td_cmd, u32 td_offset)
2688#else
2689static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2690			       struct i40e_tx_buffer *first, u32 tx_flags,
2691			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2692#endif
2693{
2694	unsigned int data_len = skb->data_len;
2695	unsigned int size = skb_headlen(skb);
2696	struct skb_frag_struct *frag;
2697	struct i40e_tx_buffer *tx_bi;
2698	struct i40e_tx_desc *tx_desc;
2699	u16 i = tx_ring->next_to_use;
2700	u32 td_tag = 0;
2701	dma_addr_t dma;
2702	u16 gso_segs;
2703	u16 desc_count = 1;
2704
2705	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2706		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2707		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2708			 I40E_TX_FLAGS_VLAN_SHIFT;
2709	}
2710
2711	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2712		gso_segs = skb_shinfo(skb)->gso_segs;
2713	else
2714		gso_segs = 1;
2715
2716	/* multiply data chunks by size of headers */
2717	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2718	first->gso_segs = gso_segs;
2719	first->skb = skb;
2720	first->tx_flags = tx_flags;
2721
2722	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2723
2724	tx_desc = I40E_TX_DESC(tx_ring, i);
2725	tx_bi = first;
2726
2727	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2728		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2729
2730		if (dma_mapping_error(tx_ring->dev, dma))
2731			goto dma_error;
2732
2733		/* record length, and DMA address */
2734		dma_unmap_len_set(tx_bi, len, size);
2735		dma_unmap_addr_set(tx_bi, dma, dma);
2736
2737		/* align size to end of page */
2738		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2739		tx_desc->buffer_addr = cpu_to_le64(dma);
2740
2741		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2742			tx_desc->cmd_type_offset_bsz =
2743				build_ctob(td_cmd, td_offset,
2744					   max_data, td_tag);
2745
2746			tx_desc++;
2747			i++;
2748			desc_count++;
2749
2750			if (i == tx_ring->count) {
2751				tx_desc = I40E_TX_DESC(tx_ring, 0);
2752				i = 0;
2753			}
2754
2755			dma += max_data;
2756			size -= max_data;
2757
2758			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2759			tx_desc->buffer_addr = cpu_to_le64(dma);
2760		}
2761
2762		if (likely(!data_len))
2763			break;
2764
2765		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2766							  size, td_tag);
2767
2768		tx_desc++;
2769		i++;
2770		desc_count++;
2771
2772		if (i == tx_ring->count) {
2773			tx_desc = I40E_TX_DESC(tx_ring, 0);
2774			i = 0;
2775		}
2776
2777		size = skb_frag_size(frag);
2778		data_len -= size;
2779
2780		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2781				       DMA_TO_DEVICE);
2782
2783		tx_bi = &tx_ring->tx_bi[i];
2784	}
2785
2786	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2787
2788	i++;
2789	if (i == tx_ring->count)
2790		i = 0;
2791
2792	tx_ring->next_to_use = i;
2793
2794	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2795
2796	/* write last descriptor with EOP bit */
2797	td_cmd |= I40E_TX_DESC_CMD_EOP;
2798
2799	/* We can OR these values together as they both are checked against
2800	 * 4 below and at this point desc_count will be used as a boolean value
2801	 * after this if/else block.
2802	 */
2803	desc_count |= ++tx_ring->packet_stride;
2804
2805	/* Algorithm to optimize tail and RS bit setting:
2806	 * if queue is stopped
2807	 *	mark RS bit
2808	 *	reset packet counter
2809	 * else if xmit_more is supported and is true
2810	 *	advance packet counter to 4
2811	 *	reset desc_count to 0
2812	 *
2813	 * if desc_count >= 4
2814	 *	mark RS bit
2815	 *	reset packet counter
2816	 * if desc_count > 0
2817	 *	update tail
2818	 *
2819	 * Note: If there are less than 4 descriptors
2820	 * pending and interrupts were disabled the service task will
2821	 * trigger a force WB.
2822	 */
2823	if (netif_xmit_stopped(txring_txq(tx_ring))) {
2824		goto do_rs;
2825	} else if (skb->xmit_more) {
2826		/* set stride to arm on next packet and reset desc_count */
2827		tx_ring->packet_stride = WB_STRIDE;
2828		desc_count = 0;
2829	} else if (desc_count >= WB_STRIDE) {
2830do_rs:
2831		/* write last descriptor with RS bit set */
2832		td_cmd |= I40E_TX_DESC_CMD_RS;
2833		tx_ring->packet_stride = 0;
2834	}
2835
2836	tx_desc->cmd_type_offset_bsz =
2837			build_ctob(td_cmd, td_offset, size, td_tag);
2838
 
 
2839	/* Force memory writes to complete before letting h/w know there
2840	 * are new descriptors to fetch.
2841	 *
2842	 * We also use this memory barrier to make certain all of the
2843	 * status bits have been updated before next_to_watch is written.
2844	 */
2845	wmb();
2846
2847	/* set next_to_watch value indicating a packet is present */
2848	first->next_to_watch = tx_desc;
2849
2850	/* notify HW of packet */
2851	if (desc_count) {
2852		writel(i, tx_ring->tail);
2853
2854		/* we need this if more than one processor can write to our tail
2855		 * at a time, it synchronizes IO on IA64/Altix systems
2856		 */
2857		mmiowb();
2858	}
2859
2860	return;
2861
2862dma_error:
2863	dev_info(tx_ring->dev, "TX DMA map failed\n");
2864
2865	/* clear dma mappings for failed tx_bi map */
2866	for (;;) {
2867		tx_bi = &tx_ring->tx_bi[i];
2868		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2869		if (tx_bi == first)
2870			break;
2871		if (i == 0)
2872			i = tx_ring->count;
2873		i--;
2874	}
2875
2876	tx_ring->next_to_use = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2877}
2878
2879/**
2880 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2881 * @skb:     send buffer
2882 * @tx_ring: ring to send buffer on
2883 *
2884 * Returns NETDEV_TX_OK if sent, else an error code
2885 **/
2886static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2887					struct i40e_ring *tx_ring)
2888{
2889	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2890	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2891	struct i40e_tx_buffer *first;
2892	u32 td_offset = 0;
2893	u32 tx_flags = 0;
2894	__be16 protocol;
2895	u32 td_cmd = 0;
2896	u8 hdr_len = 0;
2897	int tso, count;
2898	int tsyn;
2899
2900	/* prefetch the data, we'll need it later */
2901	prefetch(skb->data);
2902
 
 
2903	count = i40e_xmit_descriptor_count(skb);
2904	if (i40e_chk_linearize(skb, count)) {
2905		if (__skb_linearize(skb))
2906			goto out_drop;
 
 
2907		count = i40e_txd_use_count(skb->len);
2908		tx_ring->tx_stats.tx_linearize++;
2909	}
2910
2911	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2912	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2913	 *       + 4 desc gap to avoid the cache line where head is,
2914	 *       + 1 desc for context descriptor,
2915	 * otherwise try next time
2916	 */
2917	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2918		tx_ring->tx_stats.tx_busy++;
2919		return NETDEV_TX_BUSY;
2920	}
2921
 
 
 
 
 
 
2922	/* prepare the xmit flags */
2923	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2924		goto out_drop;
2925
2926	/* obtain protocol of skb */
2927	protocol = vlan_get_protocol(skb);
2928
2929	/* record the location of the first descriptor for this packet */
2930	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2931
2932	/* setup IPv4/IPv6 offloads */
2933	if (protocol == htons(ETH_P_IP))
2934		tx_flags |= I40E_TX_FLAGS_IPV4;
2935	else if (protocol == htons(ETH_P_IPV6))
2936		tx_flags |= I40E_TX_FLAGS_IPV6;
2937
2938	tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
2939
2940	if (tso < 0)
2941		goto out_drop;
2942	else if (tso)
2943		tx_flags |= I40E_TX_FLAGS_TSO;
2944
2945	/* Always offload the checksum, since it's in the data descriptor */
2946	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2947				  tx_ring, &cd_tunneling);
2948	if (tso < 0)
2949		goto out_drop;
2950
2951	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2952
2953	if (tsyn)
2954		tx_flags |= I40E_TX_FLAGS_TSYN;
2955
2956	skb_tx_timestamp(skb);
2957
2958	/* always enable CRC insertion offload */
2959	td_cmd |= I40E_TX_DESC_CMD_ICRC;
2960
2961	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2962			   cd_tunneling, cd_l2tag2);
2963
2964	/* Add Flow Director ATR if it's enabled.
2965	 *
2966	 * NOTE: this must always be directly before the data descriptor.
2967	 */
2968	i40e_atr(tx_ring, skb, tx_flags);
2969
2970	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2971		    td_cmd, td_offset);
 
2972
2973	return NETDEV_TX_OK;
2974
2975out_drop:
2976	dev_kfree_skb_any(skb);
 
 
 
 
 
 
 
 
 
 
 
2977	return NETDEV_TX_OK;
2978}
2979
2980/**
2981 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2982 * @skb:    send buffer
2983 * @netdev: network interface device structure
2984 *
2985 * Returns NETDEV_TX_OK if sent, else an error code
2986 **/
2987netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2988{
2989	struct i40e_netdev_priv *np = netdev_priv(netdev);
2990	struct i40e_vsi *vsi = np->vsi;
2991	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2992
2993	/* hardware can't handle really short frames, hardware padding works
2994	 * beyond this point
2995	 */
2996	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2997		return NETDEV_TX_OK;
2998
2999	return i40e_xmit_frame_ring(skb, tx_ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3000}