Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/bpf_trace.h>
   5#include <linux/prefetch.h>
   6#include <linux/sctp.h>
   7#include <net/mpls.h>
   8#include <net/xdp.h>
   9#include "i40e_txrx_common.h"
  10#include "i40e_trace.h"
  11#include "i40e_xsk.h"
  12
  13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  14/**
  15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  16 * @tx_ring: Tx ring to send buffer on
  17 * @fdata: Flow director filter data
  18 * @add: Indicate if we are adding a rule or deleting one
  19 *
  20 **/
  21static void i40e_fdir(struct i40e_ring *tx_ring,
  22		      struct i40e_fdir_filter *fdata, bool add)
  23{
  24	struct i40e_filter_program_desc *fdir_desc;
  25	struct i40e_pf *pf = tx_ring->vsi->back;
  26	u32 flex_ptype, dtype_cmd;
  27	u16 i;
  28
  29	/* grab the next descriptor */
  30	i = tx_ring->next_to_use;
  31	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  32
  33	i++;
  34	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  35
  36	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
  37
  38	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
  39				 fdata->flex_off);
  40
  41	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
  42
  43	/* Use LAN VSI Id if not programmed by user */
  44	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK,
  45				 fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id);
  46
  47	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  48
  49	dtype_cmd |= add ?
  50		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  51		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  52		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  53		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  54
  55	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
  56
  57	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
  58				fdata->fd_status);
  59
  60	if (fdata->cnt_index) {
  61		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  62		dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
  63					fdata->cnt_index);
  64	}
  65
  66	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  67	fdir_desc->rsvd = cpu_to_le32(0);
  68	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  69	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
 
 
 
 
 
 
 
 
 
  70}
  71
 
  72#define I40E_FD_CLEAN_DELAY 10
  73/**
  74 * i40e_program_fdir_filter - Program a Flow Director filter
  75 * @fdir_data: Packet data that will be filter parameters
  76 * @raw_packet: the pre-allocated packet buffer for FDir
  77 * @pf: The PF pointer
  78 * @add: True for add/update, False for remove
  79 **/
  80static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  81				    u8 *raw_packet, struct i40e_pf *pf,
  82				    bool add)
  83{
 
  84	struct i40e_tx_buffer *tx_buf, *first;
  85	struct i40e_tx_desc *tx_desc;
  86	struct i40e_ring *tx_ring;
 
  87	struct i40e_vsi *vsi;
  88	struct device *dev;
  89	dma_addr_t dma;
  90	u32 td_cmd = 0;
 
  91	u16 i;
  92
  93	/* find existing FDIR VSI */
  94	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 
 
 
  95	if (!vsi)
  96		return -ENOENT;
  97
  98	tx_ring = vsi->tx_rings[0];
  99	dev = tx_ring->dev;
 100
 101	/* we need two descriptors to add/del a filter and we can wait */
 102	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 103		if (!i)
 104			return -EAGAIN;
 105		msleep_interruptible(1);
 106	}
 
 
 
 
 107
 108	dma = dma_map_single(dev, raw_packet,
 109			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 110	if (dma_mapping_error(dev, dma))
 111		goto dma_fail;
 112
 113	/* grab the next descriptor */
 114	i = tx_ring->next_to_use;
 
 115	first = &tx_ring->tx_bi[i];
 116	i40e_fdir(tx_ring, fdir_data, add);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117
 118	/* Now program a dummy descriptor */
 119	i = tx_ring->next_to_use;
 120	tx_desc = I40E_TX_DESC(tx_ring, i);
 121	tx_buf = &tx_ring->tx_bi[i];
 122
 123	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 124
 125	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 126
 127	/* record length, and DMA address */
 128	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 129	dma_unmap_addr_set(tx_buf, dma, dma);
 130
 131	tx_desc->buffer_addr = cpu_to_le64(dma);
 132	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 133
 134	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 135	tx_buf->raw_buf = (void *)raw_packet;
 136
 137	tx_desc->cmd_type_offset_bsz =
 138		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 139
 140	/* Force memory writes to complete before letting h/w
 141	 * know there are new descriptors to fetch.
 142	 */
 143	wmb();
 144
 145	/* Mark the data descriptor to be watched */
 146	first->next_to_watch = tx_desc;
 147
 148	writel(tx_ring->next_to_use, tx_ring->tail);
 149	return 0;
 150
 151dma_fail:
 152	return -1;
 153}
 154
 
 
 155/**
 156 * i40e_create_dummy_packet - Constructs dummy packet for HW
 157 * @dummy_packet: preallocated space for dummy packet
 158 * @ipv4: is layer 3 packet of version 4 or 6
 159 * @l4proto: next level protocol used in data portion of l3
 160 * @data: filter data
 161 *
 162 * Returns address of layer 4 protocol dummy packet.
 163 **/
 164static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
 165				      struct i40e_fdir_filter *data)
 166{
 167	bool is_vlan = !!data->vlan_tag;
 168	struct vlan_hdr vlan = {};
 169	struct ipv6hdr ipv6 = {};
 170	struct ethhdr eth = {};
 171	struct iphdr ip = {};
 172	u8 *tmp;
 173
 174	if (ipv4) {
 175		eth.h_proto = cpu_to_be16(ETH_P_IP);
 176		ip.protocol = l4proto;
 177		ip.version = 0x4;
 178		ip.ihl = 0x5;
 179
 180		ip.daddr = data->dst_ip;
 181		ip.saddr = data->src_ip;
 182	} else {
 183		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
 184		ipv6.nexthdr = l4proto;
 185		ipv6.version = 0x6;
 186
 187		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
 188		       sizeof(__be32) * 4);
 189		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
 190		       sizeof(__be32) * 4);
 191	}
 192
 193	if (is_vlan) {
 194		vlan.h_vlan_TCI = data->vlan_tag;
 195		vlan.h_vlan_encapsulated_proto = eth.h_proto;
 196		eth.h_proto = data->vlan_etype;
 197	}
 198
 199	tmp = dummy_packet;
 200	memcpy(tmp, &eth, sizeof(eth));
 201	tmp += sizeof(eth);
 202
 203	if (is_vlan) {
 204		memcpy(tmp, &vlan, sizeof(vlan));
 205		tmp += sizeof(vlan);
 206	}
 207
 208	if (ipv4) {
 209		memcpy(tmp, &ip, sizeof(ip));
 210		tmp += sizeof(ip);
 211	} else {
 212		memcpy(tmp, &ipv6, sizeof(ipv6));
 213		tmp += sizeof(ipv6);
 214	}
 215
 216	return tmp;
 217}
 218
 219/**
 220 * i40e_create_dummy_udp_packet - helper function to create UDP packet
 221 * @raw_packet: preallocated space for dummy packet
 222 * @ipv4: is layer 3 packet of version 4 or 6
 223 * @l4proto: next level protocol used in data portion of l3
 224 * @data: filter data
 225 *
 226 * Helper function to populate udp fields.
 227 **/
 228static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 229					 struct i40e_fdir_filter *data)
 
 230{
 
 231	struct udphdr *udp;
 232	u8 *tmp;
 233
 234	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
 235	udp = (struct udphdr *)(tmp);
 236	udp->dest = data->dst_port;
 237	udp->source = data->src_port;
 238}
 239
 240/**
 241 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
 242 * @raw_packet: preallocated space for dummy packet
 243 * @ipv4: is layer 3 packet of version 4 or 6
 244 * @l4proto: next level protocol used in data portion of l3
 245 * @data: filter data
 246 *
 247 * Helper function to populate tcp fields.
 248 **/
 249static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 250					 struct i40e_fdir_filter *data)
 251{
 252	struct tcphdr *tcp;
 253	u8 *tmp;
 254	/* Dummy tcp packet */
 255	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 256		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
 257
 258	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
 259
 260	tcp = (struct tcphdr *)tmp;
 261	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
 262	tcp->dest = data->dst_port;
 263	tcp->source = data->src_port;
 264}
 265
 266/**
 267 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
 268 * @raw_packet: preallocated space for dummy packet
 269 * @ipv4: is layer 3 packet of version 4 or 6
 270 * @l4proto: next level protocol used in data portion of l3
 271 * @data: filter data
 272 *
 273 * Helper function to populate sctp fields.
 274 **/
 275static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
 276					  u8 l4proto,
 277					  struct i40e_fdir_filter *data)
 278{
 279	struct sctphdr *sctp;
 280	u8 *tmp;
 281
 282	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
 283
 284	sctp = (struct sctphdr *)tmp;
 285	sctp->dest = data->dst_port;
 286	sctp->source = data->src_port;
 287}
 288
 289/**
 290 * i40e_prepare_fdir_filter - Prepare and program fdir filter
 291 * @pf: physical function to attach filter to
 292 * @fd_data: filter data
 293 * @add: add or delete filter
 294 * @packet_addr: address of dummy packet, used in filtering
 295 * @payload_offset: offset from dummy packet address to user defined data
 296 * @pctype: Packet type for which filter is used
 297 *
 298 * Helper function to offset data of dummy packet, program it and
 299 * handle errors.
 300 **/
 301static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
 302				    struct i40e_fdir_filter *fd_data,
 303				    bool add, char *packet_addr,
 304				    int payload_offset, u8 pctype)
 305{
 306	int ret;
 
 
 
 307
 308	if (fd_data->flex_filter) {
 309		u8 *payload;
 310		__be16 pattern = fd_data->flex_word;
 311		u16 off = fd_data->flex_offset;
 312
 313		payload = packet_addr + payload_offset;
 314
 315		/* If user provided vlan, offset payload by vlan header length */
 316		if (!!fd_data->vlan_tag)
 317			payload += VLAN_HLEN;
 
 
 
 
 
 318
 319		*((__force __be16 *)(payload + off)) = pattern;
 320	}
 321
 322	fd_data->pctype = pctype;
 323	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
 324	if (ret) {
 325		dev_info(&pf->pdev->dev,
 326			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 327			 fd_data->pctype, fd_data->fd_id, ret);
 328		/* Free the packet buffer since it wasn't added to the ring */
 329		return -EOPNOTSUPP;
 330	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 331		if (add)
 332			dev_info(&pf->pdev->dev,
 333				 "Filter OK for PCTYPE %d loc = %d\n",
 334				 fd_data->pctype, fd_data->fd_id);
 335		else
 336			dev_info(&pf->pdev->dev,
 337				 "Filter deleted for PCTYPE %d loc = %d\n",
 338				 fd_data->pctype, fd_data->fd_id);
 339	}
 
 
 340
 341	return ret;
 342}
 343
 344/**
 345 * i40e_change_filter_num - Prepare and program fdir filter
 346 * @ipv4: is layer 3 packet of version 4 or 6
 347 * @add: add or delete filter
 348 * @ipv4_filter_num: field to update
 349 * @ipv6_filter_num: field to update
 350 *
 351 * Update filter number field for pf.
 352 **/
 353static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
 354				   u16 *ipv6_filter_num)
 355{
 356	if (add) {
 357		if (ipv4)
 358			(*ipv4_filter_num)++;
 359		else
 360			(*ipv6_filter_num)++;
 361	} else {
 362		if (ipv4)
 363			(*ipv4_filter_num)--;
 364		else
 365			(*ipv6_filter_num)--;
 366	}
 367}
 368
 369#define I40E_UDPIP_DUMMY_PACKET_LEN	42
 370#define I40E_UDPIP6_DUMMY_PACKET_LEN	62
 371/**
 372 * i40e_add_del_fdir_udp - Add/Remove UDP filters
 373 * @vsi: pointer to the targeted VSI
 374 * @fd_data: the flow director data required for the FDir descriptor
 375 * @add: true adds a filter, false removes it
 376 * @ipv4: true is v4, false is v6
 377 *
 378 * Returns 0 if the filters were successfully added or removed
 379 **/
 380static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
 381				 struct i40e_fdir_filter *fd_data,
 382				 bool add,
 383				 bool ipv4)
 384{
 385	struct i40e_pf *pf = vsi->back;
 
 
 
 386	u8 *raw_packet;
 387	int ret;
 
 
 
 
 
 388
 389	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 390	if (!raw_packet)
 391		return -ENOMEM;
 
 392
 393	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
 
 
 
 
 
 
 
 394
 395	if (ipv4)
 396		ret = i40e_prepare_fdir_filter
 397			(pf, fd_data, add, raw_packet,
 398			 I40E_UDPIP_DUMMY_PACKET_LEN,
 399			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
 400	else
 401		ret = i40e_prepare_fdir_filter
 402			(pf, fd_data, add, raw_packet,
 403			 I40E_UDPIP6_DUMMY_PACKET_LEN,
 404			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
 405
 406	if (ret) {
 407		kfree(raw_packet);
 408		return ret;
 
 409	}
 410
 411	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
 412			       &pf->fd_udp6_filter_cnt);
 413
 414	return 0;
 415}
 416
 417#define I40E_TCPIP_DUMMY_PACKET_LEN	54
 418#define I40E_TCPIP6_DUMMY_PACKET_LEN	74
 419/**
 420 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
 421 * @vsi: pointer to the targeted VSI
 422 * @fd_data: the flow director data required for the FDir descriptor
 423 * @add: true adds a filter, false removes it
 424 * @ipv4: true is v4, false is v6
 425 *
 426 * Returns 0 if the filters were successfully added or removed
 427 **/
 428static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
 429				 struct i40e_fdir_filter *fd_data,
 430				 bool add,
 431				 bool ipv4)
 432{
 433	struct i40e_pf *pf = vsi->back;
 434	u8 *raw_packet;
 435	int ret;
 436
 437	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 438	if (!raw_packet)
 439		return -ENOMEM;
 440
 441	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
 442	if (ipv4)
 443		ret = i40e_prepare_fdir_filter
 444			(pf, fd_data, add, raw_packet,
 445			 I40E_TCPIP_DUMMY_PACKET_LEN,
 446			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
 447	else
 448		ret = i40e_prepare_fdir_filter
 449			(pf, fd_data, add, raw_packet,
 450			 I40E_TCPIP6_DUMMY_PACKET_LEN,
 451			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
 452
 453	if (ret) {
 454		kfree(raw_packet);
 455		return ret;
 
 
 
 
 
 
 
 
 
 
 456	}
 457
 458	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
 459			       &pf->fd_tcp6_filter_cnt);
 460
 461	if (add) {
 462		if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
 463		    I40E_DEBUG_FD & pf->hw.debug_mask)
 464			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 465		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 466	}
 467	return 0;
 468}
 469
 470#define I40E_SCTPIP_DUMMY_PACKET_LEN	46
 471#define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
 472/**
 473 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
 474 * a specific flow spec
 475 * @vsi: pointer to the targeted VSI
 476 * @fd_data: the flow director data required for the FDir descriptor
 477 * @add: true adds a filter, false removes it
 478 * @ipv4: true is v4, false is v6
 479 *
 480 * Returns 0 if the filters were successfully added or removed
 481 **/
 482static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
 483				  struct i40e_fdir_filter *fd_data,
 484				  bool add,
 485				  bool ipv4)
 486{
 487	struct i40e_pf *pf = vsi->back;
 488	u8 *raw_packet;
 489	int ret;
 490
 491	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 492	if (!raw_packet)
 493		return -ENOMEM;
 494
 495	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
 496
 497	if (ipv4)
 498		ret = i40e_prepare_fdir_filter
 499			(pf, fd_data, add, raw_packet,
 500			 I40E_SCTPIP_DUMMY_PACKET_LEN,
 501			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
 502	else
 503		ret = i40e_prepare_fdir_filter
 504			(pf, fd_data, add, raw_packet,
 505			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
 506			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
 507
 508	if (ret) {
 509		kfree(raw_packet);
 510		return ret;
 511	}
 512
 513	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
 514			       &pf->fd_sctp6_filter_cnt);
 515
 516	return 0;
 517}
 518
 519#define I40E_IP_DUMMY_PACKET_LEN	34
 520#define I40E_IP6_DUMMY_PACKET_LEN	54
 521/**
 522 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
 523 * a specific flow spec
 524 * @vsi: pointer to the targeted VSI
 525 * @fd_data: the flow director data required for the FDir descriptor
 526 * @add: true adds a filter, false removes it
 527 * @ipv4: true is v4, false is v6
 528 *
 529 * Returns 0 if the filters were successfully added or removed
 530 **/
 531static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
 532				struct i40e_fdir_filter *fd_data,
 533				bool add,
 534				bool ipv4)
 535{
 536	struct i40e_pf *pf = vsi->back;
 537	int payload_offset;
 
 538	u8 *raw_packet;
 539	int iter_start;
 540	int iter_end;
 541	int ret;
 542	int i;
 
 
 
 543
 544	if (ipv4) {
 545		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 546		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
 547	} else {
 548		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
 549		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
 550	}
 551
 552	for (i = iter_start; i <= iter_end; i++) {
 553		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 554		if (!raw_packet)
 555			return -ENOMEM;
 
 
 
 
 
 
 556
 557		/* IPv6 no header option differs from IPv4 */
 558		(void)i40e_create_dummy_packet
 559			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
 560			 fd_data);
 561
 562		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
 563			I40E_IP6_DUMMY_PACKET_LEN;
 564		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
 565					       payload_offset, i);
 566		if (ret)
 567			goto err;
 
 
 
 
 
 
 
 568	}
 569
 570	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
 571			       &pf->fd_ip6_filter_cnt);
 572
 573	return 0;
 574err:
 575	kfree(raw_packet);
 576	return ret;
 577}
 578
 579/**
 580 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 581 * @vsi: pointer to the targeted VSI
 582 * @input: filter to add or delete
 583 * @add: true adds a filter, false removes it
 584 *
 585 **/
 586int i40e_add_del_fdir(struct i40e_vsi *vsi,
 587		      struct i40e_fdir_filter *input, bool add)
 588{
 589	enum ip_ver { ipv6 = 0, ipv4 = 1 };
 590	struct i40e_pf *pf = vsi->back;
 591	int ret;
 592
 593	switch (input->flow_type & ~FLOW_EXT) {
 594	case TCP_V4_FLOW:
 595		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 596		break;
 597	case UDP_V4_FLOW:
 598		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 599		break;
 600	case SCTP_V4_FLOW:
 601		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 602		break;
 603	case TCP_V6_FLOW:
 604		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 605		break;
 606	case UDP_V6_FLOW:
 607		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 608		break;
 609	case SCTP_V6_FLOW:
 610		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 611		break;
 612	case IP_USER_FLOW:
 613		switch (input->ipl4_proto) {
 614		case IPPROTO_TCP:
 615			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 616			break;
 617		case IPPROTO_UDP:
 618			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 619			break;
 620		case IPPROTO_SCTP:
 621			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 622			break;
 623		case IPPROTO_IP:
 624			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
 625			break;
 626		default:
 627			/* We cannot support masking based on protocol */
 628			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 629				 input->ipl4_proto);
 630			return -EINVAL;
 631		}
 632		break;
 633	case IPV6_USER_FLOW:
 634		switch (input->ipl4_proto) {
 635		case IPPROTO_TCP:
 636			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 637			break;
 638		case IPPROTO_UDP:
 639			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 640			break;
 641		case IPPROTO_SCTP:
 642			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 643			break;
 644		case IPPROTO_IP:
 645			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
 646			break;
 647		default:
 648			/* We cannot support masking based on protocol */
 649			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
 650				 input->ipl4_proto);
 651			return -EINVAL;
 652		}
 653		break;
 654	default:
 655		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 656			 input->flow_type);
 657		return -EINVAL;
 658	}
 659
 660	/* The buffer allocated here will be normally be freed by
 661	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 662	 * completion. In the event of an error adding the buffer to the FDIR
 663	 * ring, it will immediately be freed. It may also be freed by
 664	 * i40e_clean_tx_ring() when closing the VSI.
 665	 */
 666	return ret;
 667}
 668
 669/**
 670 * i40e_fd_handle_status - check the Programming Status for FD
 671 * @rx_ring: the Rx ring for this descriptor
 672 * @qword0_raw: qword0
 673 * @qword1: qword1 after le_to_cpu
 674 * @prog_id: the id originally used for programming
 675 *
 676 * This is used to verify if the FD programming or invalidation
 677 * requested by SW to the HW is successful or not and take actions accordingly.
 678 **/
 679static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
 680				  u64 qword1, u8 prog_id)
 681{
 682	struct i40e_pf *pf = rx_ring->vsi->back;
 683	struct pci_dev *pdev = pf->pdev;
 684	struct i40e_16b_rx_wb_qw0 *qw0;
 685	u32 fcnt_prog, fcnt_avail;
 686	u32 error;
 
 687
 688	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
 689	error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
 
 690
 691	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 692		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
 693		if (qw0->hi_dword.fd_id != 0 ||
 694		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 695			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 696				 pf->fd_inv);
 697
 698		/* Check if the programming error is for ATR.
 699		 * If so, auto disable ATR and set a state for
 700		 * flush in progress. Next time we come here if flush is in
 701		 * progress do nothing, once flush is complete the state will
 702		 * be cleared.
 703		 */
 704		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 705			return;
 706
 707		pf->fd_add_err++;
 708		/* store the current atr filter count */
 709		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 710
 711		if (qw0->hi_dword.fd_id == 0 &&
 712		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 713			/* These set_bit() calls aren't atomic with the
 714			 * test_bit() here, but worse case we potentially
 715			 * disable ATR and queue a flush right after SB
 716			 * support is re-enabled. That shouldn't cause an
 717			 * issue in practice
 718			 */
 719			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 720			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 721		}
 722
 723		/* filter programming failed most likely due to table full */
 724		fcnt_prog = i40e_get_global_fd_count(pf);
 725		fcnt_avail = pf->fdir_pf_filter_count;
 726		/* If ATR is running fcnt_prog can quickly change,
 727		 * if we are very close to full, it makes sense to disable
 728		 * FD ATR/SB and then re-enable it when there is room.
 729		 */
 730		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 731			if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
 732			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 733					      pf->state))
 734				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 735					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 
 
 
 736		}
 737	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 738		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 739			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 740				 qw0->hi_dword.fd_id);
 741	}
 742}
 743
 744/**
 745 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 746 * @ring:      the ring that owns the buffer
 747 * @tx_buffer: the buffer to free
 748 **/
 749static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 750					    struct i40e_tx_buffer *tx_buffer)
 751{
 752	if (tx_buffer->skb) {
 753		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 754			kfree(tx_buffer->raw_buf);
 755		else if (ring_is_xdp(ring))
 756			xdp_return_frame(tx_buffer->xdpf);
 757		else
 758			dev_kfree_skb_any(tx_buffer->skb);
 759		if (dma_unmap_len(tx_buffer, len))
 760			dma_unmap_single(ring->dev,
 761					 dma_unmap_addr(tx_buffer, dma),
 762					 dma_unmap_len(tx_buffer, len),
 763					 DMA_TO_DEVICE);
 764	} else if (dma_unmap_len(tx_buffer, len)) {
 765		dma_unmap_page(ring->dev,
 766			       dma_unmap_addr(tx_buffer, dma),
 767			       dma_unmap_len(tx_buffer, len),
 768			       DMA_TO_DEVICE);
 769	}
 770
 
 
 
 771	tx_buffer->next_to_watch = NULL;
 772	tx_buffer->skb = NULL;
 773	dma_unmap_len_set(tx_buffer, len, 0);
 774	/* tx_buffer must be completely set up in the transmit path */
 775}
 776
 777/**
 778 * i40e_clean_tx_ring - Free any empty Tx buffers
 779 * @tx_ring: ring to be cleaned
 780 **/
 781void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 782{
 783	unsigned long bi_size;
 784	u16 i;
 785
 786	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
 787		i40e_xsk_clean_tx_ring(tx_ring);
 788	} else {
 789		/* ring already cleared, nothing to do */
 790		if (!tx_ring->tx_bi)
 791			return;
 792
 793		/* Free all the Tx ring sk_buffs */
 794		for (i = 0; i < tx_ring->count; i++)
 795			i40e_unmap_and_free_tx_resource(tx_ring,
 796							&tx_ring->tx_bi[i]);
 797	}
 798
 799	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 800	memset(tx_ring->tx_bi, 0, bi_size);
 801
 802	/* Zero out the descriptor ring */
 803	memset(tx_ring->desc, 0, tx_ring->size);
 804
 805	tx_ring->next_to_use = 0;
 806	tx_ring->next_to_clean = 0;
 807
 808	if (!tx_ring->netdev)
 809		return;
 810
 811	/* cleanup Tx queue statistics */
 812	netdev_tx_reset_queue(txring_txq(tx_ring));
 
 813}
 814
 815/**
 816 * i40e_free_tx_resources - Free Tx resources per queue
 817 * @tx_ring: Tx descriptor ring for a specific queue
 818 *
 819 * Free all transmit software resources
 820 **/
 821void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 822{
 823	i40e_clean_tx_ring(tx_ring);
 824	kfree(tx_ring->tx_bi);
 825	tx_ring->tx_bi = NULL;
 826
 827	if (tx_ring->desc) {
 828		dma_free_coherent(tx_ring->dev, tx_ring->size,
 829				  tx_ring->desc, tx_ring->dma);
 830		tx_ring->desc = NULL;
 831	}
 832}
 833
 834/**
 835 * i40e_get_tx_pending - how many tx descriptors not processed
 836 * @ring: the ring of descriptors
 837 * @in_sw: use SW variables
 838 *
 839 * Since there is no access to the ring head register
 840 * in XL710, we need to use our local copies
 841 **/
 842u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 843{
 844	u32 head, tail;
 845
 846	if (!in_sw) {
 847		head = i40e_get_head(ring);
 848		tail = readl(ring->tail);
 849	} else {
 850		head = ring->next_to_clean;
 851		tail = ring->next_to_use;
 852	}
 853
 854	if (head != tail)
 855		return (head < tail) ?
 856			tail - head : (tail + ring->count - head);
 857
 858	return 0;
 859}
 860
 861/**
 862 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 863 * @vsi:  pointer to vsi struct with tx queues
 864 *
 865 * VSI has netdev and netdev has TX queues. This function is to check each of
 866 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 867 **/
 868void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 869{
 870	struct i40e_ring *tx_ring = NULL;
 871	struct net_device *netdev;
 872	unsigned int i;
 873	int packets;
 874
 875	if (!vsi)
 876		return;
 877
 878	if (test_bit(__I40E_VSI_DOWN, vsi->state))
 879		return;
 880
 881	netdev = vsi->netdev;
 882	if (!netdev)
 883		return;
 884
 885	if (!netif_carrier_ok(netdev))
 886		return;
 887
 888	for (i = 0; i < vsi->num_queue_pairs; i++) {
 889		tx_ring = vsi->tx_rings[i];
 890		if (tx_ring && tx_ring->desc) {
 891			/* If packet counter has not changed the queue is
 892			 * likely stalled, so force an interrupt for this
 893			 * queue.
 894			 *
 895			 * prev_pkt_ctr would be negative if there was no
 896			 * pending work.
 897			 */
 898			packets = tx_ring->stats.packets & INT_MAX;
 899			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 900				i40e_force_wb(vsi, tx_ring->q_vector);
 901				continue;
 902			}
 903
 904			/* Memory barrier between read of packet count and call
 905			 * to i40e_get_tx_pending()
 906			 */
 907			smp_rmb();
 908			tx_ring->tx_stats.prev_pkt_ctr =
 909			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 910		}
 911	}
 912}
 913
 914/**
 915 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 916 * @vsi: the VSI we care about
 917 * @tx_ring: Tx ring to clean
 918 * @napi_budget: Used to determine if we are in netpoll
 919 * @tx_cleaned: Out parameter set to the number of TXes cleaned
 920 *
 921 * Returns true if there's any budget left (e.g. the clean is finished)
 922 **/
 923static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 924			      struct i40e_ring *tx_ring, int napi_budget,
 925			      unsigned int *tx_cleaned)
 926{
 927	int i = tx_ring->next_to_clean;
 928	struct i40e_tx_buffer *tx_buf;
 929	struct i40e_tx_desc *tx_head;
 930	struct i40e_tx_desc *tx_desc;
 931	unsigned int total_bytes = 0, total_packets = 0;
 932	unsigned int budget = vsi->work_limit;
 933
 934	tx_buf = &tx_ring->tx_bi[i];
 935	tx_desc = I40E_TX_DESC(tx_ring, i);
 936	i -= tx_ring->count;
 937
 938	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 939
 940	do {
 941		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 942
 943		/* if next_to_watch is not set then there is no work pending */
 944		if (!eop_desc)
 945			break;
 946
 947		/* prevent any other reads prior to eop_desc */
 948		smp_rmb();
 949
 950		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 951		/* we have caught up to head, no work left to do */
 952		if (tx_head == tx_desc)
 953			break;
 954
 955		/* clear next_to_watch to prevent false hangs */
 956		tx_buf->next_to_watch = NULL;
 957
 958		/* update the statistics for this packet */
 959		total_bytes += tx_buf->bytecount;
 960		total_packets += tx_buf->gso_segs;
 961
 962		/* free the skb/XDP data */
 963		if (ring_is_xdp(tx_ring))
 964			xdp_return_frame(tx_buf->xdpf);
 965		else
 966			napi_consume_skb(tx_buf->skb, napi_budget);
 967
 968		/* unmap skb header data */
 969		dma_unmap_single(tx_ring->dev,
 970				 dma_unmap_addr(tx_buf, dma),
 971				 dma_unmap_len(tx_buf, len),
 972				 DMA_TO_DEVICE);
 973
 974		/* clear tx_buffer data */
 975		tx_buf->skb = NULL;
 976		dma_unmap_len_set(tx_buf, len, 0);
 977
 978		/* unmap remaining buffers */
 979		while (tx_desc != eop_desc) {
 980			i40e_trace(clean_tx_irq_unmap,
 981				   tx_ring, tx_desc, tx_buf);
 982
 983			tx_buf++;
 984			tx_desc++;
 985			i++;
 986			if (unlikely(!i)) {
 987				i -= tx_ring->count;
 988				tx_buf = tx_ring->tx_bi;
 989				tx_desc = I40E_TX_DESC(tx_ring, 0);
 990			}
 991
 992			/* unmap any remaining paged data */
 993			if (dma_unmap_len(tx_buf, len)) {
 994				dma_unmap_page(tx_ring->dev,
 995					       dma_unmap_addr(tx_buf, dma),
 996					       dma_unmap_len(tx_buf, len),
 997					       DMA_TO_DEVICE);
 998				dma_unmap_len_set(tx_buf, len, 0);
 999			}
1000		}
1001
1002		/* move us one more past the eop_desc for start of next pkt */
1003		tx_buf++;
1004		tx_desc++;
1005		i++;
1006		if (unlikely(!i)) {
1007			i -= tx_ring->count;
1008			tx_buf = tx_ring->tx_bi;
1009			tx_desc = I40E_TX_DESC(tx_ring, 0);
1010		}
1011
1012		prefetch(tx_desc);
1013
1014		/* update budget accounting */
1015		budget--;
1016	} while (likely(budget));
1017
1018	i += tx_ring->count;
1019	tx_ring->next_to_clean = i;
1020	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1021	i40e_arm_wb(tx_ring, vsi, budget);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022
1023	if (ring_is_xdp(tx_ring))
1024		return !!budget;
 
 
 
 
1025
1026	/* notify netdev of completed buffers */
1027	netdev_tx_completed_queue(txring_txq(tx_ring),
1028				  total_packets, total_bytes);
1029
1030#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1031	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1032		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1033		/* Make sure that anybody stopping the queue after this
1034		 * sees the new next_to_clean.
1035		 */
1036		smp_mb();
1037		if (__netif_subqueue_stopped(tx_ring->netdev,
1038					     tx_ring->queue_index) &&
1039		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1040			netif_wake_subqueue(tx_ring->netdev,
1041					    tx_ring->queue_index);
1042			++tx_ring->tx_stats.restart_queue;
1043		}
1044	}
1045
1046	*tx_cleaned = total_packets;
1047	return !!budget;
1048}
1049
1050/**
1051 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1052 * @vsi: the VSI we care about
1053 * @q_vector: the vector on which to enable writeback
1054 *
1055 **/
1056static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1057				  struct i40e_q_vector *q_vector)
1058{
1059	u16 flags = q_vector->tx.ring[0].flags;
1060	u32 val;
1061
1062	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1063		return;
1064
1065	if (q_vector->arm_wb_state)
1066		return;
1067
1068	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1069		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1070		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1071
1072		wr32(&vsi->back->hw,
1073		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1074		     val);
1075	} else {
1076		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1077		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1078
1079		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1080	}
1081	q_vector->arm_wb_state = true;
1082}
1083
1084/**
1085 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1086 * @vsi: the VSI we care about
1087 * @q_vector: the vector  on which to force writeback
1088 *
1089 **/
1090void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1091{
1092	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1093		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1094			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1095			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1096			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1097			  /* allow 00 to be written to the index */
1098
1099		wr32(&vsi->back->hw,
1100		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
 
1101	} else {
1102		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1103			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1104			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1105			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1106			/* allow 00 to be written to the index */
1107
1108		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1109	}
1110}
1111
1112static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1113					struct i40e_ring_container *rc)
1114{
1115	return &q_vector->rx == rc;
1116}
1117
1118static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1119{
1120	unsigned int divisor;
1121
1122	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1123	case I40E_LINK_SPEED_40GB:
1124		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1125		break;
1126	case I40E_LINK_SPEED_25GB:
1127	case I40E_LINK_SPEED_20GB:
1128		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1129		break;
1130	default:
1131	case I40E_LINK_SPEED_10GB:
1132		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1133		break;
1134	case I40E_LINK_SPEED_1GB:
1135	case I40E_LINK_SPEED_100MB:
1136		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1137		break;
1138	}
1139
1140	return divisor;
1141}
1142
1143/**
1144 * i40e_update_itr - update the dynamic ITR value based on statistics
1145 * @q_vector: structure containing interrupt and ring information
1146 * @rc: structure containing ring performance data
1147 *
1148 * Stores a new ITR value based on packets and byte
1149 * counts during the last interrupt.  The advantage of per interrupt
1150 * computation is faster updates and more accurate ITR for the current
1151 * traffic pattern.  Constants in this function were computed
1152 * based on theoretical maximum wire speed and thresholds were set based
1153 * on testing data as well as attempting to minimize response time
 
 
1154 * while increasing bulk throughput.
1155 **/
1156static void i40e_update_itr(struct i40e_q_vector *q_vector,
1157			    struct i40e_ring_container *rc)
1158{
1159	unsigned int avg_wire_size, packets, bytes, itr;
1160	unsigned long next_update = jiffies;
1161
1162	/* If we don't have any rings just leave ourselves set for maximum
1163	 * possible latency so we take ourselves out of the equation.
1164	 */
1165	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1166		return;
1167
1168	/* For Rx we want to push the delay up and default to low latency.
1169	 * for Tx we want to pull the delay down and default to high latency.
1170	 */
1171	itr = i40e_container_is_rx(q_vector, rc) ?
1172	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1173	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1174
1175	/* If we didn't update within up to 1 - 2 jiffies we can assume
1176	 * that either packets are coming in so slow there hasn't been
1177	 * any work, or that there is so much work that NAPI is dealing
1178	 * with interrupt moderation and we don't need to do anything.
1179	 */
1180	if (time_after(next_update, rc->next_update))
1181		goto clear_counts;
1182
1183	/* If itr_countdown is set it means we programmed an ITR within
1184	 * the last 4 interrupt cycles. This has a side effect of us
1185	 * potentially firing an early interrupt. In order to work around
1186	 * this we need to throw out any data received for a few
1187	 * interrupts following the update.
1188	 */
1189	if (q_vector->itr_countdown) {
1190		itr = rc->target_itr;
1191		goto clear_counts;
1192	}
1193
1194	packets = rc->total_packets;
1195	bytes = rc->total_bytes;
1196
1197	if (i40e_container_is_rx(q_vector, rc)) {
1198		/* If Rx there are 1 to 4 packets and bytes are less than
1199		 * 9000 assume insufficient data to use bulk rate limiting
1200		 * approach unless Tx is already in bulk rate limiting. We
1201		 * are likely latency driven.
1202		 */
1203		if (packets && packets < 4 && bytes < 9000 &&
1204		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1205			itr = I40E_ITR_ADAPTIVE_LATENCY;
1206			goto adjust_by_size;
1207		}
1208	} else if (packets < 4) {
1209		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1210		 * bulk mode and we are receiving 4 or fewer packets just
1211		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1212		 * that the Rx can relax.
1213		 */
1214		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1215		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1216		     I40E_ITR_ADAPTIVE_MAX_USECS)
1217			goto clear_counts;
1218	} else if (packets > 32) {
1219		/* If we have processed over 32 packets in a single interrupt
1220		 * for Tx assume we need to switch over to "bulk" mode.
1221		 */
1222		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1223	}
1224
1225	/* We have no packets to actually measure against. This means
1226	 * either one of the other queues on this vector is active or
1227	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1228	 *
1229	 * Between 4 and 56 we can assume that our current interrupt delay
1230	 * is only slightly too low. As such we should increase it by a small
1231	 * fixed amount.
1232	 */
1233	if (packets < 56) {
1234		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1235		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1236			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1237			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1238		}
1239		goto clear_counts;
1240	}
1241
1242	if (packets <= 256) {
1243		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1244		itr &= I40E_ITR_MASK;
1245
1246		/* Between 56 and 112 is our "goldilocks" zone where we are
1247		 * working out "just right". Just report that our current
1248		 * ITR is good for us.
1249		 */
1250		if (packets <= 112)
1251			goto clear_counts;
1252
1253		/* If packet count is 128 or greater we are likely looking
1254		 * at a slight overrun of the delay we want. Try halving
1255		 * our delay to see if that will cut the number of packets
1256		 * in half per interrupt.
1257		 */
1258		itr /= 2;
1259		itr &= I40E_ITR_MASK;
1260		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1261			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1262
1263		goto clear_counts;
1264	}
1265
1266	/* The paths below assume we are dealing with a bulk ITR since
1267	 * number of packets is greater than 256. We are just going to have
1268	 * to compute a value and try to bring the count under control,
1269	 * though for smaller packet sizes there isn't much we can do as
1270	 * NAPI polling will likely be kicking in sooner rather than later.
1271	 */
1272	itr = I40E_ITR_ADAPTIVE_BULK;
1273
1274adjust_by_size:
1275	/* If packet counts are 256 or greater we can assume we have a gross
1276	 * overestimation of what the rate should be. Instead of trying to fine
1277	 * tune it just use the formula below to try and dial in an exact value
1278	 * give the current packet size of the frame.
1279	 */
1280	avg_wire_size = bytes / packets;
1281
1282	/* The following is a crude approximation of:
1283	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1284	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1285	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1286	 *
1287	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1288	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1289	 * formula down to
1290	 *
1291	 *  (170 * (size + 24)) / (size + 640) = ITR
1292	 *
1293	 * We first do some math on the packet size and then finally bitshift
1294	 * by 8 after rounding up. We also have to account for PCIe link speed
1295	 * difference as ITR scales based on this.
1296	 */
1297	if (avg_wire_size <= 60) {
1298		/* Start at 250k ints/sec */
1299		avg_wire_size = 4096;
1300	} else if (avg_wire_size <= 380) {
1301		/* 250K ints/sec to 60K ints/sec */
1302		avg_wire_size *= 40;
1303		avg_wire_size += 1696;
1304	} else if (avg_wire_size <= 1084) {
1305		/* 60K ints/sec to 36K ints/sec */
1306		avg_wire_size *= 15;
1307		avg_wire_size += 11452;
1308	} else if (avg_wire_size <= 1980) {
1309		/* 36K ints/sec to 30K ints/sec */
1310		avg_wire_size *= 5;
1311		avg_wire_size += 22420;
1312	} else {
1313		/* plateau at a limit of 30K ints/sec */
1314		avg_wire_size = 32256;
 
 
 
 
1315	}
1316
1317	/* If we are in low latency mode halve our delay which doubles the
1318	 * rate to somewhere between 100K to 16K ints/sec
1319	 */
1320	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1321		avg_wire_size /= 2;
1322
1323	/* Resultant value is 256 times larger than it needs to be. This
1324	 * gives us room to adjust the value as needed to either increase
1325	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1326	 *
1327	 * Use addition as we have already recorded the new latency flag
1328	 * for the ITR value.
1329	 */
1330	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1331	       I40E_ITR_ADAPTIVE_MIN_INC;
1332
1333	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1334		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1335		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
 
 
 
 
 
 
 
 
 
1336	}
1337
1338clear_counts:
1339	/* write back value */
1340	rc->target_itr = itr;
1341
1342	/* next update should occur within next jiffy */
1343	rc->next_update = next_update + 1;
1344
1345	rc->total_bytes = 0;
1346	rc->total_packets = 0;
1347}
1348
1349static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1350{
1351	return &rx_ring->rx_bi[idx];
1352}
1353
1354/**
1355 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1356 * @rx_ring: rx descriptor ring to store buffers on
1357 * @old_buff: donor buffer to have page reused
1358 *
1359 * Synchronizes page for reuse by the adapter
1360 **/
1361static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1362			       struct i40e_rx_buffer *old_buff)
1363{
1364	struct i40e_rx_buffer *new_buff;
1365	u16 nta = rx_ring->next_to_alloc;
1366
1367	new_buff = i40e_rx_bi(rx_ring, nta);
1368
1369	/* update, and store next to alloc */
1370	nta++;
1371	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1372
1373	/* transfer page from old buffer to new buffer */
1374	new_buff->dma		= old_buff->dma;
1375	new_buff->page		= old_buff->page;
1376	new_buff->page_offset	= old_buff->page_offset;
1377	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1378
1379	/* clear contents of buffer_info */
1380	old_buff->page = NULL;
1381}
1382
1383/**
1384 * i40e_clean_programming_status - clean the programming status descriptor
1385 * @rx_ring: the rx ring that has this descriptor
1386 * @qword0_raw: qword0
1387 * @qword1: qword1 representing status_error_len in CPU ordering
1388 *
1389 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1390 * status being successful or not and take actions accordingly. FCoE should
1391 * handle its context/filter programming/invalidation status and take actions.
1392 *
1393 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1394 **/
1395void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1396				   u64 qword1)
1397{
 
1398	u8 id;
1399
1400	id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
 
 
1401
1402	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1403		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
 
 
 
 
 
1404}
1405
1406/**
1407 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1408 * @tx_ring: the tx ring to set up
1409 *
1410 * Return 0 on success, negative on error
1411 **/
1412int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1413{
1414	struct device *dev = tx_ring->dev;
1415	int bi_size;
1416
1417	if (!dev)
1418		return -ENOMEM;
1419
1420	/* warn if we are about to overwrite the pointer */
1421	WARN_ON(tx_ring->tx_bi);
1422	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1423	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1424	if (!tx_ring->tx_bi)
1425		goto err;
1426
1427	u64_stats_init(&tx_ring->syncp);
1428
1429	/* round up to nearest 4K */
1430	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1431	/* add u32 for head writeback, align after this takes care of
1432	 * guaranteeing this is at least one cache line in size
1433	 */
1434	tx_ring->size += sizeof(u32);
1435	tx_ring->size = ALIGN(tx_ring->size, 4096);
1436	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1437					   &tx_ring->dma, GFP_KERNEL);
1438	if (!tx_ring->desc) {
1439		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1440			 tx_ring->size);
1441		goto err;
1442	}
1443
1444	tx_ring->next_to_use = 0;
1445	tx_ring->next_to_clean = 0;
1446	tx_ring->tx_stats.prev_pkt_ctr = -1;
1447	return 0;
1448
1449err:
1450	kfree(tx_ring->tx_bi);
1451	tx_ring->tx_bi = NULL;
1452	return -ENOMEM;
1453}
1454
1455static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1456{
1457	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1458}
1459
1460/**
1461 * i40e_clean_rx_ring - Free Rx buffers
1462 * @rx_ring: ring to be cleaned
1463 **/
1464void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1465{
 
 
 
1466	u16 i;
1467
1468	/* ring already cleared, nothing to do */
1469	if (!rx_ring->rx_bi)
1470		return;
1471
1472	if (rx_ring->xsk_pool) {
1473		i40e_xsk_clean_rx_ring(rx_ring);
1474		goto skip_free;
1475	}
1476
 
 
 
 
 
 
 
 
 
 
 
 
 
1477	/* Free all the Rx ring sk_buffs */
1478	for (i = 0; i < rx_ring->count; i++) {
1479		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1480
1481		if (!rx_bi->page)
1482			continue;
1483
1484		/* Invalidate cache lines that may have been written to by
1485		 * device so that we avoid corrupting memory.
1486		 */
1487		dma_sync_single_range_for_cpu(rx_ring->dev,
1488					      rx_bi->dma,
1489					      rx_bi->page_offset,
1490					      rx_ring->rx_buf_len,
1491					      DMA_FROM_DEVICE);
1492
1493		/* free resources associated with mapping */
1494		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1495				     i40e_rx_pg_size(rx_ring),
1496				     DMA_FROM_DEVICE,
1497				     I40E_RX_DMA_ATTR);
1498
1499		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1500
1501		rx_bi->page = NULL;
1502		rx_bi->page_offset = 0;
1503	}
1504
1505skip_free:
1506	if (rx_ring->xsk_pool)
1507		i40e_clear_rx_bi_zc(rx_ring);
1508	else
1509		i40e_clear_rx_bi(rx_ring);
1510
1511	/* Zero out the descriptor ring */
1512	memset(rx_ring->desc, 0, rx_ring->size);
1513
1514	rx_ring->next_to_alloc = 0;
1515	rx_ring->next_to_clean = 0;
1516	rx_ring->next_to_process = 0;
1517	rx_ring->next_to_use = 0;
1518}
1519
1520/**
1521 * i40e_free_rx_resources - Free Rx resources
1522 * @rx_ring: ring to clean the resources from
1523 *
1524 * Free all receive software resources
1525 **/
1526void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1527{
1528	i40e_clean_rx_ring(rx_ring);
1529	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1530		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1531	rx_ring->xdp_prog = NULL;
1532	kfree(rx_ring->rx_bi);
1533	rx_ring->rx_bi = NULL;
1534
1535	if (rx_ring->desc) {
1536		dma_free_coherent(rx_ring->dev, rx_ring->size,
1537				  rx_ring->desc, rx_ring->dma);
1538		rx_ring->desc = NULL;
1539	}
1540}
1541
1542/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1543 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1544 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1545 *
1546 * Returns 0 on success, negative on failure
1547 **/
1548int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1549{
1550	struct device *dev = rx_ring->dev;
 
 
 
 
 
 
 
 
1551
1552	u64_stats_init(&rx_ring->syncp);
1553
1554	/* Round up to nearest 4K */
1555	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
 
 
1556	rx_ring->size = ALIGN(rx_ring->size, 4096);
1557	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1558					   &rx_ring->dma, GFP_KERNEL);
1559
1560	if (!rx_ring->desc) {
1561		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1562			 rx_ring->size);
1563		return -ENOMEM;
1564	}
1565
1566	rx_ring->next_to_alloc = 0;
1567	rx_ring->next_to_clean = 0;
1568	rx_ring->next_to_process = 0;
1569	rx_ring->next_to_use = 0;
1570
1571	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1572
1573	rx_ring->rx_bi =
1574		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1575	if (!rx_ring->rx_bi)
1576		return -ENOMEM;
1577
1578	return 0;
 
 
 
 
1579}
1580
1581/**
1582 * i40e_release_rx_desc - Store the new tail and head values
1583 * @rx_ring: ring to bump
1584 * @val: new head index
1585 **/
1586void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1587{
1588	rx_ring->next_to_use = val;
1589
1590	/* update next to alloc since we have filled the ring */
1591	rx_ring->next_to_alloc = val;
1592
1593	/* Force memory writes to complete before letting h/w
1594	 * know there are new descriptors to fetch.  (Only
1595	 * applicable for weak-ordered memory model archs,
1596	 * such as IA-64).
1597	 */
1598	wmb();
1599	writel(val, rx_ring->tail);
1600}
1601
1602#if (PAGE_SIZE >= 8192)
1603static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1604					   unsigned int size)
1605{
1606	unsigned int truesize;
1607
1608	truesize = rx_ring->rx_offset ?
1609		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1610		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1611		SKB_DATA_ALIGN(size);
1612	return truesize;
1613}
1614#endif
1615
1616/**
1617 * i40e_alloc_mapped_page - recycle or make a new page
1618 * @rx_ring: ring to use
1619 * @bi: rx_buffer struct to modify
1620 *
1621 * Returns true if the page was successfully allocated or
1622 * reused.
1623 **/
1624static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1625				   struct i40e_rx_buffer *bi)
1626{
1627	struct page *page = bi->page;
1628	dma_addr_t dma;
1629
1630	/* since we are recycling buffers we should seldom need to alloc */
1631	if (likely(page)) {
1632		rx_ring->rx_stats.page_reuse_count++;
1633		return true;
1634	}
1635
1636	/* alloc new page for storage */
1637	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1638	if (unlikely(!page)) {
1639		rx_ring->rx_stats.alloc_page_failed++;
1640		return false;
1641	}
1642
1643	rx_ring->rx_stats.page_alloc_count++;
 
 
1644
1645	/* map page for use */
1646	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1647				 i40e_rx_pg_size(rx_ring),
1648				 DMA_FROM_DEVICE,
1649				 I40E_RX_DMA_ATTR);
1650
1651	/* if mapping failed free memory back to system since
1652	 * there isn't much point in holding memory we can't use
1653	 */
1654	if (dma_mapping_error(rx_ring->dev, dma)) {
1655		__free_pages(page, i40e_rx_pg_order(rx_ring));
1656		rx_ring->rx_stats.alloc_page_failed++;
1657		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1658	}
1659
1660	bi->dma = dma;
1661	bi->page = page;
1662	bi->page_offset = rx_ring->rx_offset;
1663	page_ref_add(page, USHRT_MAX - 1);
1664	bi->pagecnt_bias = USHRT_MAX;
1665
 
 
 
 
 
 
 
 
 
1666	return true;
1667}
1668
1669/**
1670 * i40e_alloc_rx_buffers - Replace used receive buffers
1671 * @rx_ring: ring to place buffers on
1672 * @cleaned_count: number of buffers to replace
1673 *
1674 * Returns false if all allocations were successful, true if any fail
1675 **/
1676bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1677{
1678	u16 ntu = rx_ring->next_to_use;
1679	union i40e_rx_desc *rx_desc;
1680	struct i40e_rx_buffer *bi;
 
1681
1682	/* do nothing if no valid netdev defined */
1683	if (!rx_ring->netdev || !cleaned_count)
1684		return false;
1685
1686	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1687	bi = i40e_rx_bi(rx_ring, ntu);
1688
1689	do {
1690		if (!i40e_alloc_mapped_page(rx_ring, bi))
1691			goto no_buffers;
 
 
 
 
 
 
 
 
 
 
 
 
1692
1693		/* sync the buffer for use by the device */
1694		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1695						 bi->page_offset,
1696						 rx_ring->rx_buf_len,
1697						 DMA_FROM_DEVICE);
1698
1699		/* Refresh the desc even if buffer_addrs didn't change
1700		 * because each write-back erases this info.
1701		 */
1702		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1703
1704		rx_desc++;
1705		bi++;
1706		ntu++;
1707		if (unlikely(ntu == rx_ring->count)) {
1708			rx_desc = I40E_RX_DESC(rx_ring, 0);
1709			bi = i40e_rx_bi(rx_ring, 0);
1710			ntu = 0;
1711		}
1712
1713		/* clear the status bits for the next_to_use descriptor */
1714		rx_desc->wb.qword1.status_error_len = 0;
1715
1716		cleaned_count--;
1717	} while (cleaned_count);
 
1718
1719	if (rx_ring->next_to_use != ntu)
1720		i40e_release_rx_desc(rx_ring, ntu);
1721
1722	return false;
1723
1724no_buffers:
1725	if (rx_ring->next_to_use != ntu)
1726		i40e_release_rx_desc(rx_ring, ntu);
1727
1728	/* make sure to come back via polling to try again after
1729	 * allocation failure
1730	 */
1731	return true;
1732}
1733
1734/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1735 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1736 * @vsi: the VSI we care about
1737 * @skb: skb currently being received and modified
1738 * @rx_desc: the receive descriptor
 
 
1739 **/
1740static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1741				    struct sk_buff *skb,
1742				    union i40e_rx_desc *rx_desc)
 
 
1743{
1744	struct i40e_rx_ptype_decoded decoded;
1745	u32 rx_error, rx_status;
1746	bool ipv4, ipv6;
1747	u8 ptype;
1748	u64 qword;
1749
1750	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1751	ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1752	rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1753	rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1754	decoded = decode_rx_desc_ptype(ptype);
1755
1756	skb->ip_summed = CHECKSUM_NONE;
1757
1758	skb_checksum_none_assert(skb);
1759
1760	/* Rx csum enabled and ip headers found? */
1761	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1762		return;
1763
1764	/* did the hardware decode the packet and checksum? */
1765	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1766		return;
1767
1768	/* both known and outer_ip must be set for the below code to work */
1769	if (!(decoded.known && decoded.outer_ip))
1770		return;
1771
1772	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1773	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1774	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1775	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1776
1777	if (ipv4 &&
1778	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1779			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1780		goto checksum_fail;
1781
1782	/* likely incorrect csum if alternate IP extension headers found */
1783	if (ipv6 &&
1784	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1785		/* don't increment checksum err here, non-fatal err */
1786		return;
1787
1788	/* there was some L4 error, count error and punt packet to the stack */
1789	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1790		goto checksum_fail;
1791
1792	/* handle packets that were not able to be checksummed due
1793	 * to arrival speed, in this case the stack can compute
1794	 * the csum.
1795	 */
1796	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1797		return;
1798
1799	/* If there is an outer header present that might contain a checksum
1800	 * we need to bump the checksum level by 1 to reflect the fact that
1801	 * we are indicating we validated the inner checksum.
1802	 */
1803	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1804		skb->csum_level = 1;
1805
1806	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1807	switch (decoded.inner_prot) {
1808	case I40E_RX_PTYPE_INNER_PROT_TCP:
1809	case I40E_RX_PTYPE_INNER_PROT_UDP:
1810	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1811		skb->ip_summed = CHECKSUM_UNNECESSARY;
1812		fallthrough;
1813	default:
1814		break;
1815	}
1816
1817	return;
1818
1819checksum_fail:
1820	vsi->back->hw_csum_rx_error++;
1821}
1822
1823/**
1824 * i40e_ptype_to_htype - get a hash type
1825 * @ptype: the ptype value from the descriptor
1826 *
1827 * Returns a hash type to be used by skb_set_hash
1828 **/
1829static inline int i40e_ptype_to_htype(u8 ptype)
1830{
1831	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1832
1833	if (!decoded.known)
1834		return PKT_HASH_TYPE_NONE;
1835
1836	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1837	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1838		return PKT_HASH_TYPE_L4;
1839	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1840		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1841		return PKT_HASH_TYPE_L3;
1842	else
1843		return PKT_HASH_TYPE_L2;
1844}
1845
1846/**
1847 * i40e_rx_hash - set the hash value in the skb
1848 * @ring: descriptor ring
1849 * @rx_desc: specific descriptor
1850 * @skb: skb currently being received and modified
1851 * @rx_ptype: Rx packet type
1852 **/
1853static inline void i40e_rx_hash(struct i40e_ring *ring,
1854				union i40e_rx_desc *rx_desc,
1855				struct sk_buff *skb,
1856				u8 rx_ptype)
1857{
1858	u32 hash;
1859	const __le64 rss_mask =
1860		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1861			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1862
1863	if (!(ring->netdev->features & NETIF_F_RXHASH))
1864		return;
1865
1866	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1867		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1868		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1869	}
1870}
1871
1872/**
1873 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1874 * @rx_ring: rx descriptor ring packet is being transacted on
1875 * @rx_desc: pointer to the EOP Rx descriptor
1876 * @skb: pointer to current skb being populated
1877 *
1878 * This function checks the ring, descriptor, and packet information in
1879 * order to populate the hash, checksum, VLAN, protocol, and
1880 * other fields within the skb.
1881 **/
1882void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1883			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1884{
1885	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1886	u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1887	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1888	u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1889	u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1890
1891	if (unlikely(tsynvalid))
1892		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1893
1894	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1895
1896	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1897
1898	skb_record_rx_queue(skb, rx_ring->queue_index);
1899
1900	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1901		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1902
1903		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1904				       le16_to_cpu(vlan_tag));
1905	}
1906
1907	/* modifies the skb - consumes the enet header */
1908	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1909}
1910
1911/**
1912 * i40e_cleanup_headers - Correct empty headers
1913 * @rx_ring: rx descriptor ring packet is being transacted on
1914 * @skb: pointer to current skb being fixed
1915 * @rx_desc: pointer to the EOP Rx descriptor
1916 *
1917 * In addition if skb is not at least 60 bytes we need to pad it so that
1918 * it is large enough to qualify as a valid Ethernet frame.
1919 *
1920 * Returns true if an error was encountered and skb was freed.
1921 **/
1922static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1923				 union i40e_rx_desc *rx_desc)
1924
1925{
1926	/* ERR_MASK will only have valid bits if EOP set, and
1927	 * what we are doing here is actually checking
1928	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1929	 * the error field
1930	 */
1931	if (unlikely(i40e_test_staterr(rx_desc,
1932				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1933		dev_kfree_skb_any(skb);
1934		return true;
1935	}
1936
1937	/* if eth_skb_pad returns an error the skb was freed */
1938	if (eth_skb_pad(skb))
1939		return true;
1940
1941	return false;
1942}
1943
1944/**
1945 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1946 * @rx_buffer: buffer containing the page
1947 * @rx_stats: rx stats structure for the rx ring
1948 *
1949 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1950 * which will assign the current buffer to the buffer that next_to_alloc is
1951 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1952 * page freed.
1953 *
1954 * rx_stats will be updated to indicate whether the page was waived
1955 * or busy if it could not be reused.
1956 */
1957static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1958				   struct i40e_rx_queue_stats *rx_stats)
1959{
1960	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1961	struct page *page = rx_buffer->page;
1962
1963	/* Is any reuse possible? */
1964	if (!dev_page_is_reusable(page)) {
1965		rx_stats->page_waive_count++;
1966		return false;
1967	}
1968
1969#if (PAGE_SIZE < 8192)
1970	/* if we are only owner of page we can reuse it */
1971	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1972		rx_stats->page_busy_count++;
1973		return false;
1974	}
1975#else
1976#define I40E_LAST_OFFSET \
1977	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1978	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1979		rx_stats->page_busy_count++;
1980		return false;
1981	}
1982#endif
1983
1984	/* If we have drained the page fragment pool we need to update
1985	 * the pagecnt_bias and page count so that we fully restock the
1986	 * number of references the driver holds.
1987	 */
1988	if (unlikely(pagecnt_bias == 1)) {
1989		page_ref_add(page, USHRT_MAX - 1);
1990		rx_buffer->pagecnt_bias = USHRT_MAX;
1991	}
1992
1993	return true;
1994}
1995
1996/**
1997 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1998 * @rx_buffer: Rx buffer to adjust
1999 * @truesize: Size of adjustment
2000 **/
2001static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
2002				unsigned int truesize)
2003{
2004#if (PAGE_SIZE < 8192)
2005	rx_buffer->page_offset ^= truesize;
2006#else
2007	rx_buffer->page_offset += truesize;
2008#endif
2009}
2010
2011/**
2012 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2013 * @rx_ring: rx descriptor ring to transact packets on
2014 * @size: size of buffer to add to skb
2015 *
2016 * This function will pull an Rx buffer from the ring and synchronize it
2017 * for use by the CPU.
2018 */
2019static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2020						 const unsigned int size)
2021{
2022	struct i40e_rx_buffer *rx_buffer;
2023
2024	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
2025	rx_buffer->page_count =
2026#if (PAGE_SIZE < 8192)
2027		page_count(rx_buffer->page);
2028#else
2029		0;
2030#endif
2031	prefetch_page_address(rx_buffer->page);
2032
2033	/* we are reusing so sync this buffer for CPU use */
2034	dma_sync_single_range_for_cpu(rx_ring->dev,
2035				      rx_buffer->dma,
2036				      rx_buffer->page_offset,
2037				      size,
2038				      DMA_FROM_DEVICE);
2039
2040	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2041	rx_buffer->pagecnt_bias--;
2042
2043	return rx_buffer;
2044}
2045
2046/**
2047 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2048 * @rx_ring: rx descriptor ring to transact packets on
2049 * @rx_buffer: rx buffer to pull data from
2050 *
2051 * This function will clean up the contents of the rx_buffer.  It will
2052 * either recycle the buffer or unmap it and free the associated resources.
2053 */
2054static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2055			       struct i40e_rx_buffer *rx_buffer)
2056{
2057	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2058		/* hand second half of page back to the ring */
2059		i40e_reuse_rx_page(rx_ring, rx_buffer);
2060	} else {
2061		/* we are not reusing the buffer so unmap it */
2062		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2063				     i40e_rx_pg_size(rx_ring),
2064				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2065		__page_frag_cache_drain(rx_buffer->page,
2066					rx_buffer->pagecnt_bias);
2067		/* clear contents of buffer_info */
2068		rx_buffer->page = NULL;
2069	}
2070}
2071
2072/**
2073 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2074 * @rx_ring: Rx descriptor ring to transact packets on
2075 * @xdp_res: Result of the XDP program
2076 * @xdp: xdp_buff pointing to the data
2077 **/
2078static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2079				  struct xdp_buff *xdp)
2080{
2081	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2082	u32 next = rx_ring->next_to_clean, i = 0;
2083	struct i40e_rx_buffer *rx_buffer;
2084
2085	xdp->flags = 0;
 
 
 
 
2086
2087	while (1) {
2088		rx_buffer = i40e_rx_bi(rx_ring, next);
2089		if (++next == rx_ring->count)
2090			next = 0;
2091
2092		if (!rx_buffer->page)
 
 
 
 
 
 
 
 
 
 
 
 
 
2093			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
2094
2095		if (xdp_res != I40E_XDP_CONSUMED)
2096			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2097		else if (i++ <= nr_frags)
2098			rx_buffer->pagecnt_bias++;
2099
2100		/* EOP buffer will be put in i40e_clean_rx_irq() */
2101		if (next == rx_ring->next_to_process)
2102			return;
2103
2104		i40e_put_rx_buffer(rx_ring, rx_buffer);
2105	}
2106}
2107
2108/**
2109 * i40e_construct_skb - Allocate skb and populate it
2110 * @rx_ring: rx descriptor ring to transact packets on
2111 * @xdp: xdp_buff pointing to the data
2112 *
2113 * This function allocates an skb.  It then populates it with the page
2114 * data from the current receive descriptor, taking care to set up the
2115 * skb correctly.
2116 */
2117static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2118					  struct xdp_buff *xdp)
2119{
2120	unsigned int size = xdp->data_end - xdp->data;
2121	struct i40e_rx_buffer *rx_buffer;
2122	struct skb_shared_info *sinfo;
2123	unsigned int headlen;
2124	struct sk_buff *skb;
2125	u32 nr_frags = 0;
2126
2127	/* prefetch first cache line of first page */
2128	net_prefetch(xdp->data);
2129
2130	/* Note, we get here by enabling legacy-rx via:
2131	 *
2132	 *    ethtool --set-priv-flags <dev> legacy-rx on
2133	 *
2134	 * In this mode, we currently get 0 extra XDP headroom as
2135	 * opposed to having legacy-rx off, where we process XDP
2136	 * packets going to stack via i40e_build_skb(). The latter
2137	 * provides us currently with 192 bytes of headroom.
2138	 *
2139	 * For i40e_construct_skb() mode it means that the
2140	 * xdp->data_meta will always point to xdp->data, since
2141	 * the helper cannot expand the head. Should this ever
2142	 * change in future for legacy-rx mode on, then lets also
2143	 * add xdp->data_meta handling here.
2144	 */
2145
2146	/* allocate a skb to store the frags */
2147	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2148			       I40E_RX_HDR_SIZE,
2149			       GFP_ATOMIC | __GFP_NOWARN);
2150	if (unlikely(!skb))
2151		return NULL;
2152
2153	/* Determine available headroom for copy */
2154	headlen = size;
2155	if (headlen > I40E_RX_HDR_SIZE)
2156		headlen = eth_get_headlen(skb->dev, xdp->data,
2157					  I40E_RX_HDR_SIZE);
2158
2159	/* align pull length to size of long to optimize memcpy performance */
2160	memcpy(__skb_put(skb, headlen), xdp->data,
2161	       ALIGN(headlen, sizeof(long)));
2162
2163	if (unlikely(xdp_buff_has_frags(xdp))) {
2164		sinfo = xdp_get_shared_info_from_buff(xdp);
2165		nr_frags = sinfo->nr_frags;
2166	}
2167	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2168	/* update all of the pointers */
2169	size -= headlen;
2170	if (size) {
2171		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2172			dev_kfree_skb(skb);
2173			return NULL;
2174		}
2175		skb_add_rx_frag(skb, 0, rx_buffer->page,
2176				rx_buffer->page_offset + headlen,
2177				size, xdp->frame_sz);
2178		/* buffer is used by skb, update page_offset */
2179		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2180	} else {
2181		/* buffer is unused, reset bias back to rx_buffer */
2182		rx_buffer->pagecnt_bias++;
2183	}
2184
2185	if (unlikely(xdp_buff_has_frags(xdp))) {
2186		struct skb_shared_info *skinfo = skb_shinfo(skb);
2187
2188		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2189		       sizeof(skb_frag_t) * nr_frags);
2190
2191		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2192					   sinfo->xdp_frags_size,
2193					   nr_frags * xdp->frame_sz,
2194					   xdp_buff_is_frag_pfmemalloc(xdp));
2195
2196		/* First buffer has already been processed, so bump ntc */
2197		if (++rx_ring->next_to_clean == rx_ring->count)
2198			rx_ring->next_to_clean = 0;
2199
2200		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2201	}
2202
2203	return skb;
2204}
2205
2206/**
2207 * i40e_build_skb - Build skb around an existing buffer
2208 * @rx_ring: Rx descriptor ring to transact packets on
2209 * @xdp: xdp_buff pointing to the data
2210 *
2211 * This function builds an skb around an existing Rx buffer, taking care
2212 * to set up the skb correctly and avoid any memcpy overhead.
2213 */
2214static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2215				      struct xdp_buff *xdp)
2216{
2217	unsigned int metasize = xdp->data - xdp->data_meta;
2218	struct skb_shared_info *sinfo;
2219	struct sk_buff *skb;
2220	u32 nr_frags;
2221
2222	/* Prefetch first cache line of first page. If xdp->data_meta
2223	 * is unused, this points exactly as xdp->data, otherwise we
2224	 * likely have a consumer accessing first few bytes of meta
2225	 * data, and then actual data.
2226	 */
2227	net_prefetch(xdp->data_meta);
2228
2229	if (unlikely(xdp_buff_has_frags(xdp))) {
2230		sinfo = xdp_get_shared_info_from_buff(xdp);
2231		nr_frags = sinfo->nr_frags;
2232	}
2233
2234	/* build an skb around the page buffer */
2235	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2236	if (unlikely(!skb))
2237		return NULL;
2238
2239	/* update pointers within the skb to store the data */
2240	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2241	__skb_put(skb, xdp->data_end - xdp->data);
2242	if (metasize)
2243		skb_metadata_set(skb, metasize);
2244
2245	if (unlikely(xdp_buff_has_frags(xdp))) {
2246		xdp_update_skb_shared_info(skb, nr_frags,
2247					   sinfo->xdp_frags_size,
2248					   nr_frags * xdp->frame_sz,
2249					   xdp_buff_is_frag_pfmemalloc(xdp));
2250
2251		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2252	} else {
2253		struct i40e_rx_buffer *rx_buffer;
2254
2255		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2256		/* buffer is used by skb, update page_offset */
2257		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2258	}
2259
2260	return skb;
2261}
2262
2263/**
2264 * i40e_is_non_eop - process handling of non-EOP buffers
2265 * @rx_ring: Rx ring being processed
2266 * @rx_desc: Rx descriptor for current buffer
2267 *
2268 * If the buffer is an EOP buffer, this function exits returning false,
2269 * otherwise return true indicating that this is in fact a non-EOP buffer.
2270 */
2271bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2272		     union i40e_rx_desc *rx_desc)
2273{
2274	/* if we are the last buffer then there is nothing else to do */
2275#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2276	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2277		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2278
2279	rx_ring->rx_stats.non_eop_descs++;
 
2280
2281	return true;
2282}
 
 
 
 
 
 
 
2283
2284static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2285			      struct i40e_ring *xdp_ring);
 
 
 
2286
2287int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2288{
2289	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2290
2291	if (unlikely(!xdpf))
2292		return I40E_XDP_CONSUMED;
 
 
 
 
2293
2294	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2295}
 
2296
2297/**
2298 * i40e_run_xdp - run an XDP program
2299 * @rx_ring: Rx ring being processed
2300 * @xdp: XDP buffer containing the frame
2301 * @xdp_prog: XDP program to run
2302 **/
2303static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2304{
2305	int err, result = I40E_XDP_PASS;
2306	struct i40e_ring *xdp_ring;
2307	u32 act;
2308
2309	if (!xdp_prog)
2310		goto xdp_out;
2311
2312	prefetchw(xdp->data_hard_start); /* xdp_frame write */
 
 
 
 
 
 
 
 
 
2313
2314	act = bpf_prog_run_xdp(xdp_prog, xdp);
2315	switch (act) {
2316	case XDP_PASS:
2317		break;
2318	case XDP_TX:
2319		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2320		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2321		if (result == I40E_XDP_CONSUMED)
2322			goto out_failure;
2323		break;
2324	case XDP_REDIRECT:
2325		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2326		if (err)
2327			goto out_failure;
2328		result = I40E_XDP_REDIR;
2329		break;
2330	default:
2331		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2332		fallthrough;
2333	case XDP_ABORTED:
2334out_failure:
2335		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2336		fallthrough; /* handle aborts by dropping packet */
2337	case XDP_DROP:
2338		result = I40E_XDP_CONSUMED;
2339		break;
2340	}
2341xdp_out:
2342	return result;
2343}
2344
2345/**
2346 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2347 * @xdp_ring: XDP Tx ring
2348 *
2349 * This function updates the XDP Tx ring tail register.
2350 **/
2351void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2352{
2353	/* Force memory writes to complete before letting h/w
2354	 * know there are new descriptors to fetch.
2355	 */
2356	wmb();
2357	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2358}
2359
2360/**
2361 * i40e_update_rx_stats - Update Rx ring statistics
2362 * @rx_ring: rx descriptor ring
2363 * @total_rx_bytes: number of bytes received
2364 * @total_rx_packets: number of packets received
2365 *
2366 * This function updates the Rx ring statistics.
2367 **/
2368void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2369			  unsigned int total_rx_bytes,
2370			  unsigned int total_rx_packets)
2371{
2372	u64_stats_update_begin(&rx_ring->syncp);
2373	rx_ring->stats.packets += total_rx_packets;
2374	rx_ring->stats.bytes += total_rx_bytes;
2375	u64_stats_update_end(&rx_ring->syncp);
2376	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2377	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2378}
2379
2380/**
2381 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2382 * @rx_ring: Rx ring
2383 * @xdp_res: Result of the receive batch
2384 *
2385 * This function bumps XDP Tx tail and/or flush redirect map, and
2386 * should be called when a batch of packets has been processed in the
2387 * napi loop.
2388 **/
2389void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2390{
2391	if (xdp_res & I40E_XDP_REDIR)
2392		xdp_do_flush();
2393
2394	if (xdp_res & I40E_XDP_TX) {
2395		struct i40e_ring *xdp_ring =
2396			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2397
2398		i40e_xdp_ring_update_tail(xdp_ring);
2399	}
2400}
2401
2402/**
2403 * i40e_inc_ntp: Advance the next_to_process index
2404 * @rx_ring: Rx ring
2405 **/
2406static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2407{
2408	u32 ntp = rx_ring->next_to_process + 1;
2409
2410	ntp = (ntp < rx_ring->count) ? ntp : 0;
2411	rx_ring->next_to_process = ntp;
2412	prefetch(I40E_RX_DESC(rx_ring, ntp));
2413}
2414
2415/**
2416 * i40e_add_xdp_frag: Add a frag to xdp_buff
2417 * @xdp: xdp_buff pointing to the data
2418 * @nr_frags: return number of buffers for the packet
2419 * @rx_buffer: rx_buffer holding data of the current frag
2420 * @size: size of data of current frag
2421 */
2422static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2423			     struct i40e_rx_buffer *rx_buffer, u32 size)
2424{
2425	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2426
2427	if (!xdp_buff_has_frags(xdp)) {
2428		sinfo->nr_frags = 0;
2429		sinfo->xdp_frags_size = 0;
2430		xdp_buff_set_frags_flag(xdp);
2431	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2432		/* Overflowing packet: All frags need to be dropped */
2433		return -ENOMEM;
2434	}
2435
2436	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2437				   rx_buffer->page_offset, size);
2438
2439	sinfo->xdp_frags_size += size;
2440
2441	if (page_is_pfmemalloc(rx_buffer->page))
2442		xdp_buff_set_frag_pfmemalloc(xdp);
2443	*nr_frags = sinfo->nr_frags;
2444
2445	return 0;
2446}
2447
2448/**
2449 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2450 * @rx_ring: rx descriptor ring to transact packets on
2451 * @xdp: xdp_buff pointing to the data
2452 * @rx_buffer: rx_buffer of eop desc
2453 */
2454static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2455				  struct xdp_buff *xdp,
2456				  struct i40e_rx_buffer *rx_buffer)
2457{
2458	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2459	i40e_put_rx_buffer(rx_ring, rx_buffer);
2460	rx_ring->next_to_clean = rx_ring->next_to_process;
2461	xdp->data = NULL;
2462}
2463
2464/**
2465 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2466 * @rx_ring: rx descriptor ring to transact packets on
2467 * @budget: Total limit on number of packets to process
2468 * @rx_cleaned: Out parameter of the number of packets processed
2469 *
2470 * This function provides a "bounce buffer" approach to Rx interrupt
2471 * processing.  The advantage to this is that on systems that have
2472 * expensive overhead for IOMMU access this provides a means of avoiding
2473 * it by maintaining the mapping of the page to the system.
2474 *
2475 * Returns amount of work completed
2476 **/
2477static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2478			     unsigned int *rx_cleaned)
2479{
2480	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2481	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2482	u16 clean_threshold = rx_ring->count / 2;
2483	unsigned int offset = rx_ring->rx_offset;
2484	struct xdp_buff *xdp = &rx_ring->xdp;
2485	unsigned int xdp_xmit = 0;
2486	struct bpf_prog *xdp_prog;
2487	bool failure = false;
2488	int xdp_res = 0;
2489
2490	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2491
2492	while (likely(total_rx_packets < (unsigned int)budget)) {
2493		u16 ntp = rx_ring->next_to_process;
2494		struct i40e_rx_buffer *rx_buffer;
2495		union i40e_rx_desc *rx_desc;
2496		struct sk_buff *skb;
2497		unsigned int size;
2498		u32 nfrags = 0;
2499		bool neop;
2500		u64 qword;
2501
2502		/* return some buffers to hardware, one at a time is too slow */
2503		if (cleaned_count >= clean_threshold) {
2504			failure = failure ||
2505				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
 
2506			cleaned_count = 0;
2507		}
2508
2509		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2510
2511		/* status_error_len will always be zero for unused descriptors
2512		 * because it's cleared in cleanup, and overlaps with hdr_addr
2513		 * which is always zero because packet split isn't used, if the
2514		 * hardware wrote DD then the length will be non-zero
2515		 */
2516		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 
 
 
 
 
2517
2518		/* This memory barrier is needed to keep us from reading
2519		 * any other fields out of the rx_desc until we have
2520		 * verified the descriptor has been written back.
2521		 */
2522		dma_rmb();
2523
2524		if (i40e_rx_is_programming_status(qword)) {
2525			i40e_clean_programming_status(rx_ring,
2526						      rx_desc->raw.qword[0],
2527						      qword);
2528			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2529			i40e_inc_ntp(rx_ring);
2530			i40e_reuse_rx_page(rx_ring, rx_buffer);
2531			/* Update ntc and bump cleaned count if not in the
2532			 * middle of mb packet.
2533			 */
2534			if (rx_ring->next_to_clean == ntp) {
2535				rx_ring->next_to_clean =
2536					rx_ring->next_to_process;
2537				cleaned_count++;
2538			}
2539			continue;
2540		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2541
2542		size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2543		if (!size)
2544			break;
2545
2546		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2547		/* retrieve a buffer from the ring */
2548		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2549
2550		neop = i40e_is_non_eop(rx_ring, rx_desc);
2551		i40e_inc_ntp(rx_ring);
2552
2553		if (!xdp->data) {
2554			unsigned char *hard_start;
2555
2556			hard_start = page_address(rx_buffer->page) +
2557				     rx_buffer->page_offset - offset;
2558			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2559#if (PAGE_SIZE > 4096)
2560			/* At larger PAGE_SIZE, frame_sz depend on len size */
2561			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2562#endif
2563		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2564			   !neop) {
2565			/* Overflowing packet: Drop all frags on EOP */
2566			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2567			break;
2568		}
2569
2570		if (neop)
 
 
2571			continue;
 
2572
2573		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2574
2575		if (xdp_res) {
2576			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2577
2578			if (unlikely(xdp_buff_has_frags(xdp))) {
2579				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2580				size = xdp_get_buff_len(xdp);
2581			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2582				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2583			} else {
2584				rx_buffer->pagecnt_bias++;
2585			}
2586			total_rx_bytes += size;
2587		} else {
2588			if (ring_uses_build_skb(rx_ring))
2589				skb = i40e_build_skb(rx_ring, xdp);
2590			else
2591				skb = i40e_construct_skb(rx_ring, xdp);
2592
2593			/* drop if we failed to retrieve a buffer */
2594			if (!skb) {
2595				rx_ring->rx_stats.alloc_buff_failed++;
2596				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2597				break;
2598			}
2599
2600			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2601				goto process_next;
2602
2603			/* probably a little skewed due to removing CRC */
2604			total_rx_bytes += skb->len;
2605
2606			/* populate checksum, VLAN, and protocol */
2607			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2608
2609			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2610			napi_gro_receive(&rx_ring->q_vector->napi, skb);
2611		}
2612
2613		/* update budget accounting */
 
2614		total_rx_packets++;
2615process_next:
2616		cleaned_count += nfrags + 1;
2617		i40e_put_rx_buffer(rx_ring, rx_buffer);
2618		rx_ring->next_to_clean = rx_ring->next_to_process;
2619
2620		xdp->data = NULL;
2621	}
2622
2623	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2624
2625	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
 
 
 
 
 
 
 
 
 
2626
2627	*rx_cleaned = total_rx_packets;
 
 
 
 
 
 
 
 
2628
2629	/* guarantee a trip back through this routine if there was a failure */
2630	return failure ? budget : (int)total_rx_packets;
2631}
2632
2633static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2634{
2635	u32 val;
2636
2637	/* We don't bother with setting the CLEARPBA bit as the data sheet
2638	 * points out doing so is "meaningless since it was already
2639	 * auto-cleared". The auto-clearing happens when the interrupt is
2640	 * asserted.
2641	 *
2642	 * Hardware errata 28 for also indicates that writing to a
2643	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2644	 * an event in the PBA anyway so we need to rely on the automask
2645	 * to hold pending events for us until the interrupt is re-enabled
2646	 *
2647	 * The itr value is reported in microseconds, and the register
2648	 * value is recorded in 2 microsecond units. For this reason we
2649	 * only need to shift by the interval shift - 1 instead of the
2650	 * full value.
2651	 */
2652	itr &= I40E_ITR_MASK;
2653
2654	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 
 
 
2655	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2656	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2657
2658	return val;
2659}
2660
2661/* a small macro to shorten up some long lines */
2662#define INTREG I40E_PFINT_DYN_CTLN
2663
2664/* The act of updating the ITR will cause it to immediately trigger. In order
2665 * to prevent this from throwing off adaptive update statistics we defer the
2666 * update so that it can only happen so often. So after either Tx or Rx are
2667 * updated we make the adaptive scheme wait until either the ITR completely
2668 * expires via the next_update expiration or we have been through at least
2669 * 3 interrupts.
2670 */
2671#define ITR_COUNTDOWN_START 3
2672
2673/**
2674 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2675 * @vsi: the VSI we care about
2676 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2677 *
2678 **/
2679static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2680					  struct i40e_q_vector *q_vector)
2681{
2682	struct i40e_hw *hw = &vsi->back->hw;
2683	u32 intval;
 
 
 
2684
2685	/* If we don't have MSIX, then we only need to re-enable icr0 */
2686	if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2687		i40e_irq_dynamic_enable_icr0(vsi->back);
2688		return;
 
 
 
 
 
 
 
2689	}
2690
2691	/* These will do nothing if dynamic updates are not enabled */
2692	i40e_update_itr(q_vector, &q_vector->tx);
2693	i40e_update_itr(q_vector, &q_vector->rx);
 
2694
2695	/* This block of logic allows us to get away with only updating
2696	 * one ITR value with each interrupt. The idea is to perform a
2697	 * pseudo-lazy update with the following criteria.
2698	 *
2699	 * 1. Rx is given higher priority than Tx if both are in same state
2700	 * 2. If we must reduce an ITR that is given highest priority.
2701	 * 3. We then give priority to increasing ITR based on amount.
2702	 */
2703	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2704		/* Rx ITR needs to be reduced, this is highest priority */
2705		intval = i40e_buildreg_itr(I40E_RX_ITR,
2706					   q_vector->rx.target_itr);
2707		q_vector->rx.current_itr = q_vector->rx.target_itr;
2708		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2709	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2710		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2711		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2712		/* Tx ITR needs to be reduced, this is second priority
2713		 * Tx ITR needs to be increased more than Rx, fourth priority
2714		 */
2715		intval = i40e_buildreg_itr(I40E_TX_ITR,
2716					   q_vector->tx.target_itr);
2717		q_vector->tx.current_itr = q_vector->tx.target_itr;
2718		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2719	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2720		/* Rx ITR needs to be increased, third priority */
2721		intval = i40e_buildreg_itr(I40E_RX_ITR,
2722					   q_vector->rx.target_itr);
2723		q_vector->rx.current_itr = q_vector->rx.target_itr;
2724		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2725	} else {
2726		/* No ITR update, lowest priority */
2727		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2728		if (q_vector->itr_countdown)
2729			q_vector->itr_countdown--;
 
 
 
 
 
2730	}
2731
2732	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2733		wr32(hw, INTREG(q_vector->reg_idx), intval);
 
 
 
 
 
 
2734}
2735
2736/**
2737 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2738 * @napi: napi struct with our devices info in it
2739 * @budget: amount of work driver is allowed to do this pass, in packets
2740 *
2741 * This function will clean all queues associated with a q_vector.
2742 *
2743 * Returns the amount of work done
2744 **/
2745int i40e_napi_poll(struct napi_struct *napi, int budget)
2746{
2747	struct i40e_q_vector *q_vector =
2748			       container_of(napi, struct i40e_q_vector, napi);
2749	struct i40e_vsi *vsi = q_vector->vsi;
2750	struct i40e_ring *ring;
2751	bool tx_clean_complete = true;
2752	bool rx_clean_complete = true;
2753	unsigned int tx_cleaned = 0;
2754	unsigned int rx_cleaned = 0;
2755	bool clean_complete = true;
2756	bool arm_wb = false;
2757	int budget_per_ring;
2758	int work_done = 0;
2759
2760	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2761		napi_complete(napi);
2762		return 0;
2763	}
2764
 
 
2765	/* Since the actual Tx work is minimal, we can give the Tx a larger
2766	 * budget and be more aggressive about cleaning up the Tx descriptors.
2767	 */
2768	i40e_for_each_ring(ring, q_vector->tx) {
2769		bool wd = ring->xsk_pool ?
2770			  i40e_clean_xdp_tx_irq(vsi, ring) :
2771			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2772
2773		if (!wd) {
2774			clean_complete = tx_clean_complete = false;
2775			continue;
2776		}
2777		arm_wb |= ring->arm_wb;
2778		ring->arm_wb = false;
2779	}
2780
2781	/* Handle case where we are called by netpoll with a budget of 0 */
2782	if (budget <= 0)
2783		goto tx_only;
2784
2785	/* normally we have 1 Rx ring per q_vector */
2786	if (unlikely(q_vector->num_ringpairs > 1))
2787		/* We attempt to distribute budget to each Rx queue fairly, but
2788		 * don't allow the budget to go below 1 because that would exit
2789		 * polling early.
2790		 */
2791		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2792	else
2793		/* Max of 1 Rx ring in this q_vector so give it the budget */
2794		budget_per_ring = budget;
2795
2796	i40e_for_each_ring(ring, q_vector->rx) {
2797		int cleaned = ring->xsk_pool ?
2798			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2799			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
 
 
 
2800
2801		work_done += cleaned;
2802		/* if we clean as many as budgeted, we must not be done */
2803		if (cleaned >= budget_per_ring)
2804			clean_complete = rx_clean_complete = false;
2805	}
2806
2807	if (!i40e_enabled_xdp_vsi(vsi))
2808		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2809				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2810
2811	/* If work not completed, return budget and polling will return */
2812	if (!clean_complete) {
2813		int cpu_id = smp_processor_id();
2814
2815		/* It is possible that the interrupt affinity has changed but,
2816		 * if the cpu is pegged at 100%, polling will never exit while
2817		 * traffic continues and the interrupt will be stuck on this
2818		 * cpu.  We check to make sure affinity is correct before we
2819		 * continue to poll, otherwise we must stop polling so the
2820		 * interrupt can move to the correct cpu.
2821		 */
2822		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2823			/* Tell napi that we are done polling */
2824			napi_complete_done(napi, work_done);
2825
2826			/* Force an interrupt */
2827			i40e_force_wb(vsi, q_vector);
2828
2829			/* Return budget-1 so that polling stops */
2830			return budget - 1;
2831		}
2832tx_only:
2833		if (arm_wb) {
2834			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2835			i40e_enable_wb_on_itr(vsi, q_vector);
2836		}
2837		return budget;
2838	}
2839
2840	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2841		q_vector->arm_wb_state = false;
2842
2843	/* Exit the polling mode, but don't re-enable interrupts if stack might
2844	 * poll us due to busy-polling
2845	 */
2846	if (likely(napi_complete_done(napi, work_done)))
2847		i40e_update_enable_itr(vsi, q_vector);
2848
2849	return min(work_done, budget - 1);
 
 
2850}
2851
2852/**
2853 * i40e_atr - Add a Flow Director ATR filter
2854 * @tx_ring:  ring to add programming descriptor to
2855 * @skb:      send buffer
2856 * @tx_flags: send tx flags
2857 **/
2858static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2859		     u32 tx_flags)
2860{
2861	struct i40e_filter_program_desc *fdir_desc;
2862	struct i40e_pf *pf = tx_ring->vsi->back;
2863	union {
2864		unsigned char *network;
2865		struct iphdr *ipv4;
2866		struct ipv6hdr *ipv6;
2867	} hdr;
2868	struct tcphdr *th;
2869	unsigned int hlen;
2870	u32 flex_ptype, dtype_cmd;
2871	int l4_proto;
2872	u16 i;
2873
2874	/* make sure ATR is enabled */
2875	if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2876		return;
2877
2878	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2879		return;
2880
2881	/* if sampling is disabled do nothing */
2882	if (!tx_ring->atr_sample_rate)
2883		return;
2884
2885	/* Currently only IPv4/IPv6 with TCP is supported */
2886	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2887		return;
2888
2889	/* snag network header to get L4 type and address */
2890	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2891		      skb_inner_network_header(skb) : skb_network_header(skb);
2892
2893	/* Note: tx_flags gets modified to reflect inner protocols in
2894	 * tx_enable_csum function if encap is enabled.
2895	 */
2896	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2897		/* access ihl as u8 to avoid unaligned access on ia64 */
2898		hlen = (hdr.network[0] & 0x0F) << 2;
2899		l4_proto = hdr.ipv4->protocol;
2900	} else {
2901		/* find the start of the innermost ipv6 header */
2902		unsigned int inner_hlen = hdr.network - skb->data;
2903		unsigned int h_offset = inner_hlen;
2904
2905		/* this function updates h_offset to the end of the header */
2906		l4_proto =
2907		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2908		/* hlen will contain our best estimate of the tcp header */
2909		hlen = h_offset - inner_hlen;
2910	}
2911
2912	if (l4_proto != IPPROTO_TCP)
2913		return;
2914
2915	th = (struct tcphdr *)(hdr.network + hlen);
2916
2917	/* Due to lack of space, no more new filters can be programmed */
2918	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2919		return;
2920	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
 
2921		/* HW ATR eviction will take care of removing filters on FIN
2922		 * and RST packets.
2923		 */
2924		if (th->fin || th->rst)
2925			return;
2926	}
2927
2928	tx_ring->atr_count++;
2929
2930	/* sample on all syn/fin/rst packets or once every atr sample rate */
2931	if (!th->fin &&
2932	    !th->syn &&
2933	    !th->rst &&
2934	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2935		return;
2936
2937	tx_ring->atr_count = 0;
2938
2939	/* grab the next descriptor */
2940	i = tx_ring->next_to_use;
2941	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2942
2943	i++;
2944	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2945
2946	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2947				tx_ring->queue_index);
2948	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2949		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2950		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2951		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2952		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2953
2954	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2955
2956	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2957
2958	dtype_cmd |= (th->fin || th->rst) ?
2959		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2960		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2961		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2962		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2963
2964	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2965		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2966
2967	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2968		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2969
2970	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2971	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2972		dtype_cmd |=
2973			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2974				   I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
 
2975	else
2976		dtype_cmd |=
2977			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2978				   I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
 
2979
2980	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
 
2981		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2982
2983	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2984	fdir_desc->rsvd = cpu_to_le32(0);
2985	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2986	fdir_desc->fd_id = cpu_to_le32(0);
2987}
2988
2989/**
2990 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2991 * @skb:     send buffer
2992 * @tx_ring: ring to send buffer on
2993 * @flags:   the tx flags to be set
2994 *
2995 * Checks the skb and set up correspondingly several generic transmit flags
2996 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2997 *
2998 * Returns error code indicate the frame should be dropped upon error and the
2999 * otherwise  returns 0 to indicate the flags has been set properly.
3000 **/
 
 
 
 
 
3001static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3002					     struct i40e_ring *tx_ring,
3003					     u32 *flags)
 
3004{
3005	__be16 protocol = skb->protocol;
3006	u32  tx_flags = 0;
3007
3008	if (protocol == htons(ETH_P_8021Q) &&
3009	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3010		/* When HW VLAN acceleration is turned off by the user the
3011		 * stack sets the protocol to 8021q so that the driver
3012		 * can take any steps required to support the SW only
3013		 * VLAN handling.  In our case the driver doesn't need
3014		 * to take any further steps so just set the protocol
3015		 * to the encapsulated ethertype.
3016		 */
3017		skb->protocol = vlan_get_protocol(skb);
3018		goto out;
3019	}
3020
3021	/* if we have a HW VLAN tag being added, default to the HW one */
3022	if (skb_vlan_tag_present(skb)) {
3023		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3024		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3025	/* else if it is a SW VLAN, check the next protocol and store the tag */
3026	} else if (protocol == htons(ETH_P_8021Q)) {
3027		struct vlan_hdr *vhdr, _vhdr;
3028
3029		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3030		if (!vhdr)
3031			return -EINVAL;
3032
3033		protocol = vhdr->h_vlan_encapsulated_proto;
3034		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3035		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3036	}
3037
3038	if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3039		goto out;
3040
3041	/* Insert 802.1p priority into VLAN header */
3042	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3043	    (skb->priority != TC_PRIO_CONTROL)) {
3044		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3045		tx_flags |= (skb->priority & 0x7) <<
3046				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3047		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3048			struct vlan_ethhdr *vhdr;
3049			int rc;
3050
3051			rc = skb_cow_head(skb, 0);
3052			if (rc < 0)
3053				return rc;
3054			vhdr = skb_vlan_eth_hdr(skb);
3055			vhdr->h_vlan_TCI = htons(tx_flags >>
3056						 I40E_TX_FLAGS_VLAN_SHIFT);
3057		} else {
3058			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3059		}
3060	}
3061
3062out:
3063	*flags = tx_flags;
3064	return 0;
3065}
3066
3067/**
3068 * i40e_tso - set up the tso context descriptor
3069 * @first:    pointer to first Tx buffer for xmit
 
3070 * @hdr_len:  ptr to the size of the packet header
3071 * @cd_type_cmd_tso_mss: Quad Word 1
3072 *
3073 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3074 **/
3075static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3076		    u64 *cd_type_cmd_tso_mss)
3077{
3078	struct sk_buff *skb = first->skb;
3079	u64 cd_cmd, cd_tso_len, cd_mss;
3080	__be16 protocol;
3081	union {
3082		struct iphdr *v4;
3083		struct ipv6hdr *v6;
3084		unsigned char *hdr;
3085	} ip;
3086	union {
3087		struct tcphdr *tcp;
3088		struct udphdr *udp;
3089		unsigned char *hdr;
3090	} l4;
3091	u32 paylen, l4_offset;
3092	u16 gso_size;
3093	int err;
3094
3095	if (skb->ip_summed != CHECKSUM_PARTIAL)
3096		return 0;
3097
3098	if (!skb_is_gso(skb))
3099		return 0;
3100
3101	err = skb_cow_head(skb, 0);
3102	if (err < 0)
3103		return err;
3104
3105	protocol = vlan_get_protocol(skb);
3106
3107	if (eth_p_mpls(protocol))
3108		ip.hdr = skb_inner_network_header(skb);
3109	else
3110		ip.hdr = skb_network_header(skb);
3111	l4.hdr = skb_checksum_start(skb);
3112
3113	/* initialize outer IP header fields */
3114	if (ip.v4->version == 4) {
3115		ip.v4->tot_len = 0;
3116		ip.v4->check = 0;
3117
3118		first->tx_flags |= I40E_TX_FLAGS_TSO;
3119	} else {
3120		ip.v6->payload_len = 0;
3121		first->tx_flags |= I40E_TX_FLAGS_TSO;
3122	}
3123
3124	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3125					 SKB_GSO_GRE_CSUM |
3126					 SKB_GSO_IPXIP4 |
3127					 SKB_GSO_IPXIP6 |
3128					 SKB_GSO_UDP_TUNNEL |
3129					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3130		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3131		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3132			l4.udp->len = 0;
3133
3134			/* determine offset of outer transport header */
3135			l4_offset = l4.hdr - skb->data;
3136
3137			/* remove payload length from outer checksum */
3138			paylen = skb->len - l4_offset;
3139			csum_replace_by_diff(&l4.udp->check,
3140					     (__force __wsum)htonl(paylen));
3141		}
3142
3143		/* reset pointers to inner headers */
3144		ip.hdr = skb_inner_network_header(skb);
3145		l4.hdr = skb_inner_transport_header(skb);
3146
3147		/* initialize inner IP header fields */
3148		if (ip.v4->version == 4) {
3149			ip.v4->tot_len = 0;
3150			ip.v4->check = 0;
3151		} else {
3152			ip.v6->payload_len = 0;
3153		}
3154	}
3155
3156	/* determine offset of inner transport header */
3157	l4_offset = l4.hdr - skb->data;
3158
3159	/* remove payload length from inner checksum */
3160	paylen = skb->len - l4_offset;
3161
3162	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3163		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3164		/* compute length of segmentation header */
3165		*hdr_len = sizeof(*l4.udp) + l4_offset;
3166	} else {
3167		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3168		/* compute length of segmentation header */
3169		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3170	}
3171
3172	/* pull values out of skb_shinfo */
3173	gso_size = skb_shinfo(skb)->gso_size;
3174
3175	/* update GSO size and bytecount with header size */
3176	first->gso_segs = skb_shinfo(skb)->gso_segs;
3177	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3178
3179	/* find the field values */
3180	cd_cmd = I40E_TX_CTX_DESC_TSO;
3181	cd_tso_len = skb->len - *hdr_len;
3182	cd_mss = gso_size;
3183	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3184				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3185				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3186	return 1;
3187}
3188
3189/**
3190 * i40e_tsyn - set up the tsyn context descriptor
3191 * @tx_ring:  ptr to the ring to send
3192 * @skb:      ptr to the skb we're sending
3193 * @tx_flags: the collected send information
3194 * @cd_type_cmd_tso_mss: Quad Word 1
3195 *
3196 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3197 **/
3198static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3199		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3200{
3201	struct i40e_pf *pf;
3202
3203	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3204		return 0;
3205
3206	/* Tx timestamps cannot be sampled when doing TSO */
3207	if (tx_flags & I40E_TX_FLAGS_TSO)
3208		return 0;
3209
3210	/* only timestamp the outbound packet if the user has requested it and
3211	 * we are not already transmitting a packet to be timestamped
3212	 */
3213	pf = i40e_netdev_to_pf(tx_ring->netdev);
3214	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3215		return 0;
3216
3217	if (pf->ptp_tx &&
3218	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3219		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3220		pf->ptp_tx_start = jiffies;
3221		pf->ptp_tx_skb = skb_get(skb);
3222	} else {
3223		pf->tx_hwtstamp_skipped++;
3224		return 0;
3225	}
3226
3227	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3228				I40E_TXD_CTX_QW1_CMD_SHIFT;
3229
3230	return 1;
3231}
3232
3233/**
3234 * i40e_tx_enable_csum - Enable Tx checksum offloads
3235 * @skb: send buffer
3236 * @tx_flags: pointer to Tx flags currently set
3237 * @td_cmd: Tx descriptor command bits to set
3238 * @td_offset: Tx descriptor header offsets to set
3239 * @tx_ring: Tx descriptor ring
3240 * @cd_tunneling: ptr to context desc bits
3241 **/
3242static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3243			       u32 *td_cmd, u32 *td_offset,
3244			       struct i40e_ring *tx_ring,
3245			       u32 *cd_tunneling)
3246{
3247	union {
3248		struct iphdr *v4;
3249		struct ipv6hdr *v6;
3250		unsigned char *hdr;
3251	} ip;
3252	union {
3253		struct tcphdr *tcp;
3254		struct udphdr *udp;
3255		unsigned char *hdr;
3256	} l4;
3257	unsigned char *exthdr;
3258	u32 offset, cmd = 0;
3259	__be16 frag_off;
3260	__be16 protocol;
3261	u8 l4_proto = 0;
3262
3263	if (skb->ip_summed != CHECKSUM_PARTIAL)
3264		return 0;
3265
3266	protocol = vlan_get_protocol(skb);
3267
3268	if (eth_p_mpls(protocol)) {
3269		ip.hdr = skb_inner_network_header(skb);
3270		l4.hdr = skb_checksum_start(skb);
3271	} else {
3272		ip.hdr = skb_network_header(skb);
3273		l4.hdr = skb_transport_header(skb);
3274	}
3275
3276	/* set the tx_flags to indicate the IP protocol type. this is
3277	 * required so that checksum header computation below is accurate.
3278	 */
3279	if (ip.v4->version == 4)
3280		*tx_flags |= I40E_TX_FLAGS_IPV4;
3281	else
3282		*tx_flags |= I40E_TX_FLAGS_IPV6;
3283
3284	/* compute outer L2 header size */
3285	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3286
3287	if (skb->encapsulation) {
3288		u32 tunnel = 0;
3289		/* define outer network header type */
3290		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3291			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3292				  I40E_TX_CTX_EXT_IP_IPV4 :
3293				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3294
3295			l4_proto = ip.v4->protocol;
3296		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3297			int ret;
3298
3299			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3300
3301			exthdr = ip.hdr + sizeof(*ip.v6);
3302			l4_proto = ip.v6->nexthdr;
3303			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3304					       &l4_proto, &frag_off);
3305			if (ret < 0)
3306				return -1;
3307		}
3308
 
 
 
 
 
 
 
3309		/* define outer transport */
3310		switch (l4_proto) {
3311		case IPPROTO_UDP:
3312			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3313			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3314			break;
3315		case IPPROTO_GRE:
3316			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3317			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3318			break;
3319		case IPPROTO_IPIP:
3320		case IPPROTO_IPV6:
3321			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3322			l4.hdr = skb_inner_network_header(skb);
3323			break;
3324		default:
3325			if (*tx_flags & I40E_TX_FLAGS_TSO)
3326				return -1;
3327
3328			skb_checksum_help(skb);
3329			return 0;
3330		}
3331
3332		/* compute outer L3 header size */
3333		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3334			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3335
3336		/* switch IP header pointer from outer to inner header */
3337		ip.hdr = skb_inner_network_header(skb);
3338
3339		/* compute tunnel header size */
3340		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3341			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3342
3343		/* indicate if we need to offload outer UDP header */
3344		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3345		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3346		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3347			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3348
3349		/* record tunnel offload values */
3350		*cd_tunneling |= tunnel;
3351
3352		/* switch L4 header pointer from outer to inner */
3353		l4.hdr = skb_inner_transport_header(skb);
3354		l4_proto = 0;
3355
3356		/* reset type as we transition from outer to inner headers */
3357		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3358		if (ip.v4->version == 4)
3359			*tx_flags |= I40E_TX_FLAGS_IPV4;
3360		if (ip.v6->version == 6)
3361			*tx_flags |= I40E_TX_FLAGS_IPV6;
3362	}
3363
3364	/* Enable IP checksum offloads */
3365	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3366		l4_proto = ip.v4->protocol;
3367		/* the stack computes the IP header already, the only time we
3368		 * need the hardware to recompute it is in the case of TSO.
3369		 */
3370		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3371		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3372		       I40E_TX_DESC_CMD_IIPT_IPV4;
3373	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3374		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3375
3376		exthdr = ip.hdr + sizeof(*ip.v6);
3377		l4_proto = ip.v6->nexthdr;
3378		if (l4.hdr != exthdr)
3379			ipv6_skip_exthdr(skb, exthdr - skb->data,
3380					 &l4_proto, &frag_off);
3381	}
3382
3383	/* compute inner L3 header size */
3384	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3385
3386	/* Enable L4 checksum offloads */
3387	switch (l4_proto) {
3388	case IPPROTO_TCP:
3389		/* enable checksum offloads */
3390		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3391		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3392		break;
3393	case IPPROTO_SCTP:
3394		/* enable SCTP checksum offload */
3395		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3396		offset |= (sizeof(struct sctphdr) >> 2) <<
3397			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3398		break;
3399	case IPPROTO_UDP:
3400		/* enable UDP checksum offload */
3401		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3402		offset |= (sizeof(struct udphdr) >> 2) <<
3403			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3404		break;
3405	default:
3406		if (*tx_flags & I40E_TX_FLAGS_TSO)
3407			return -1;
3408		skb_checksum_help(skb);
3409		return 0;
3410	}
3411
3412	*td_cmd |= cmd;
3413	*td_offset |= offset;
3414
3415	return 1;
3416}
3417
3418/**
3419 * i40e_create_tx_ctx - Build the Tx context descriptor
3420 * @tx_ring:  ring to create the descriptor on
3421 * @cd_type_cmd_tso_mss: Quad Word 1
3422 * @cd_tunneling: Quad Word 0 - bits 0-31
3423 * @cd_l2tag2: Quad Word 0 - bits 32-63
3424 **/
3425static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3426			       const u64 cd_type_cmd_tso_mss,
3427			       const u32 cd_tunneling, const u32 cd_l2tag2)
3428{
3429	struct i40e_tx_context_desc *context_desc;
3430	int i = tx_ring->next_to_use;
3431
3432	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3433	    !cd_tunneling && !cd_l2tag2)
3434		return;
3435
3436	/* grab the next descriptor */
3437	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3438
3439	i++;
3440	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3441
3442	/* cpu_to_le32 and assign to struct fields */
3443	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3444	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3445	context_desc->rsvd = cpu_to_le16(0);
3446	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3447}
3448
3449/**
3450 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3451 * @tx_ring: the ring to be checked
3452 * @size:    the size buffer we want to assure is available
3453 *
3454 * Returns -EBUSY if a stop is needed, else 0
3455 **/
3456int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3457{
3458	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3459	/* Memory barrier before checking head and tail */
3460	smp_mb();
3461
3462	++tx_ring->tx_stats.tx_stopped;
3463
3464	/* Check again in a case another CPU has just made room available. */
3465	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3466		return -EBUSY;
3467
3468	/* A reprieve! - use start_queue because it doesn't call schedule */
3469	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3470	++tx_ring->tx_stats.restart_queue;
3471	return 0;
3472}
3473
3474/**
3475 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3476 * @skb:      send buffer
3477 *
3478 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3479 * and so we need to figure out the cases where we need to linearize the skb.
3480 *
3481 * For TSO we need to count the TSO header and segment payload separately.
3482 * As such we need to check cases where we have 7 fragments or more as we
3483 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3484 * the segment payload in the first descriptor, and another 7 for the
3485 * fragments.
3486 **/
3487bool __i40e_chk_linearize(struct sk_buff *skb)
3488{
3489	const skb_frag_t *frag, *stale;
3490	int nr_frags, sum;
3491
3492	/* no need to check if number of frags is less than 7 */
3493	nr_frags = skb_shinfo(skb)->nr_frags;
3494	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3495		return false;
3496
3497	/* We need to walk through the list and validate that each group
3498	 * of 6 fragments totals at least gso_size.
 
 
3499	 */
3500	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3501	frag = &skb_shinfo(skb)->frags[0];
3502
3503	/* Initialize size to the negative value of gso_size minus 1.  We
3504	 * use this as the worst case scenerio in which the frag ahead
3505	 * of us only provides one byte which is why we are limited to 6
3506	 * descriptors for a single transmit as the header and previous
3507	 * fragment are already consuming 2 descriptors.
3508	 */
3509	sum = 1 - skb_shinfo(skb)->gso_size;
3510
3511	/* Add size of frags 0 through 4 to create our initial sum */
3512	sum += skb_frag_size(frag++);
3513	sum += skb_frag_size(frag++);
3514	sum += skb_frag_size(frag++);
3515	sum += skb_frag_size(frag++);
3516	sum += skb_frag_size(frag++);
3517
3518	/* Walk through fragments adding latest fragment, testing it, and
3519	 * then removing stale fragments from the sum.
3520	 */
3521	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3522		int stale_size = skb_frag_size(stale);
3523
3524		sum += skb_frag_size(frag++);
3525
3526		/* The stale fragment may present us with a smaller
3527		 * descriptor than the actual fragment size. To account
3528		 * for that we need to remove all the data on the front and
3529		 * figure out what the remainder would be in the last
3530		 * descriptor associated with the fragment.
3531		 */
3532		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3533			int align_pad = -(skb_frag_off(stale)) &
3534					(I40E_MAX_READ_REQ_SIZE - 1);
3535
3536			sum -= align_pad;
3537			stale_size -= align_pad;
3538
3539			do {
3540				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3541				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3542			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3543		}
3544
3545		/* if sum is negative we failed to make sufficient progress */
3546		if (sum < 0)
3547			return true;
3548
3549		if (!nr_frags--)
 
3550			break;
3551
3552		sum -= stale_size;
3553	}
3554
3555	return false;
3556}
3557
3558/**
3559 * i40e_tx_map - Build the Tx descriptor
3560 * @tx_ring:  ring to send buffer on
3561 * @skb:      send buffer
3562 * @first:    first buffer info buffer to use
3563 * @tx_flags: collected send information
3564 * @hdr_len:  size of the packet header
3565 * @td_cmd:   the command field in the descriptor
3566 * @td_offset: offset for checksum or crc
3567 *
3568 * Returns 0 on success, -1 on failure to DMA
3569 **/
3570static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3571			      struct i40e_tx_buffer *first, u32 tx_flags,
3572			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
 
 
 
 
 
 
3573{
3574	unsigned int data_len = skb->data_len;
3575	unsigned int size = skb_headlen(skb);
3576	skb_frag_t *frag;
3577	struct i40e_tx_buffer *tx_bi;
3578	struct i40e_tx_desc *tx_desc;
3579	u16 i = tx_ring->next_to_use;
3580	u32 td_tag = 0;
3581	dma_addr_t dma;
3582	u16 desc_count = 1;
 
 
 
3583
3584	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3585		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3586		td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
 
3587	}
3588
 
 
 
 
 
 
 
 
 
3589	first->tx_flags = tx_flags;
3590
3591	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3592
3593	tx_desc = I40E_TX_DESC(tx_ring, i);
3594	tx_bi = first;
3595
3596	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3597		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3598
3599		if (dma_mapping_error(tx_ring->dev, dma))
3600			goto dma_error;
3601
3602		/* record length, and DMA address */
3603		dma_unmap_len_set(tx_bi, len, size);
3604		dma_unmap_addr_set(tx_bi, dma, dma);
3605
3606		/* align size to end of page */
3607		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3608		tx_desc->buffer_addr = cpu_to_le64(dma);
3609
3610		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3611			tx_desc->cmd_type_offset_bsz =
3612				build_ctob(td_cmd, td_offset,
3613					   max_data, td_tag);
3614
3615			tx_desc++;
3616			i++;
3617			desc_count++;
3618
3619			if (i == tx_ring->count) {
3620				tx_desc = I40E_TX_DESC(tx_ring, 0);
3621				i = 0;
3622			}
3623
3624			dma += max_data;
3625			size -= max_data;
3626
3627			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3628			tx_desc->buffer_addr = cpu_to_le64(dma);
3629		}
3630
3631		if (likely(!data_len))
3632			break;
3633
3634		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3635							  size, td_tag);
3636
3637		tx_desc++;
3638		i++;
3639		desc_count++;
3640
3641		if (i == tx_ring->count) {
3642			tx_desc = I40E_TX_DESC(tx_ring, 0);
3643			i = 0;
3644		}
3645
3646		size = skb_frag_size(frag);
3647		data_len -= size;
3648
3649		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3650				       DMA_TO_DEVICE);
3651
3652		tx_bi = &tx_ring->tx_bi[i];
3653	}
3654
3655	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
 
3656
3657	i++;
3658	if (i == tx_ring->count)
3659		i = 0;
3660
3661	tx_ring->next_to_use = i;
3662
 
 
 
3663	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3664
3665	/* write last descriptor with EOP bit */
3666	td_cmd |= I40E_TX_DESC_CMD_EOP;
3667
3668	/* We OR these values together to check both against 4 (WB_STRIDE)
3669	 * below. This is safe since we don't re-use desc_count afterwards.
3670	 */
3671	desc_count |= ++tx_ring->packet_stride;
3672
3673	if (desc_count >= WB_STRIDE) {
3674		/* write last descriptor with RS bit set */
3675		td_cmd |= I40E_TX_DESC_CMD_RS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3676		tx_ring->packet_stride = 0;
 
 
3677	}
 
 
3678
3679	tx_desc->cmd_type_offset_bsz =
3680			build_ctob(td_cmd, td_offset, size, td_tag);
3681
3682	skb_tx_timestamp(skb);
3683
3684	/* Force memory writes to complete before letting h/w know there
3685	 * are new descriptors to fetch.
3686	 *
3687	 * We also use this memory barrier to make certain all of the
3688	 * status bits have been updated before next_to_watch is written.
3689	 */
3690	wmb();
3691
3692	/* set next_to_watch value indicating a packet is present */
3693	first->next_to_watch = tx_desc;
3694
3695	/* notify HW of packet */
3696	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
 
 
 
 
 
 
 
 
 
3697		writel(i, tx_ring->tail);
3698	}
3699
3700	return 0;
3701
3702dma_error:
3703	dev_info(tx_ring->dev, "TX DMA map failed\n");
3704
3705	/* clear dma mappings for failed tx_bi map */
3706	for (;;) {
3707		tx_bi = &tx_ring->tx_bi[i];
3708		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3709		if (tx_bi == first)
3710			break;
3711		if (i == 0)
3712			i = tx_ring->count;
3713		i--;
3714	}
3715
3716	tx_ring->next_to_use = i;
3717
3718	return -1;
3719}
3720
3721static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3722				  const struct sk_buff *skb,
3723				  u16 num_tx_queues)
3724{
3725	u32 jhash_initval_salt = 0xd631614b;
3726	u32 hash;
3727
3728	if (skb->sk && skb->sk->sk_hash)
3729		hash = skb->sk->sk_hash;
3730	else
3731		hash = (__force u16)skb->protocol ^ skb->hash;
3732
3733	hash = jhash_1word(hash, jhash_initval_salt);
3734
3735	return (u16)(((u64)hash * num_tx_queues) >> 32);
3736}
3737
3738u16 i40e_lan_select_queue(struct net_device *netdev,
3739			  struct sk_buff *skb,
3740			  struct net_device __always_unused *sb_dev)
3741{
3742	struct i40e_netdev_priv *np = netdev_priv(netdev);
3743	struct i40e_vsi *vsi = np->vsi;
3744	struct i40e_hw *hw;
3745	u16 qoffset;
3746	u16 qcount;
3747	u8 tclass;
3748	u16 hash;
3749	u8 prio;
3750
3751	/* is DCB enabled at all? */
3752	if (vsi->tc_config.numtc == 1 ||
3753	    i40e_is_tc_mqprio_enabled(vsi->back))
3754		return netdev_pick_tx(netdev, skb, sb_dev);
3755
3756	prio = skb->priority;
3757	hw = &vsi->back->hw;
3758	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3759	/* sanity check */
3760	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3761		tclass = 0;
3762
3763	/* select a queue assigned for the given TC */
3764	qcount = vsi->tc_config.tc_info[tclass].qcount;
3765	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3766
3767	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3768	return qoffset + hash;
3769}
3770
3771/**
3772 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3773 * @xdpf: data to transmit
3774 * @xdp_ring: XDP Tx ring
3775 **/
3776static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3777			      struct i40e_ring *xdp_ring)
3778{
3779	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3780	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3781	u16 i = 0, index = xdp_ring->next_to_use;
3782	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3783	struct i40e_tx_buffer *tx_bi = tx_head;
3784	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3785	void *data = xdpf->data;
3786	u32 size = xdpf->len;
3787
3788	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3789		xdp_ring->tx_stats.tx_busy++;
3790		return I40E_XDP_CONSUMED;
3791	}
3792
3793	tx_head->bytecount = xdp_get_frame_len(xdpf);
3794	tx_head->gso_segs = 1;
3795	tx_head->xdpf = xdpf;
3796
3797	for (;;) {
3798		dma_addr_t dma;
3799
3800		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3801		if (dma_mapping_error(xdp_ring->dev, dma))
3802			goto unmap;
3803
3804		/* record length, and DMA address */
3805		dma_unmap_len_set(tx_bi, len, size);
3806		dma_unmap_addr_set(tx_bi, dma, dma);
3807
3808		tx_desc->buffer_addr = cpu_to_le64(dma);
3809		tx_desc->cmd_type_offset_bsz =
3810			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3811
3812		if (++index == xdp_ring->count)
3813			index = 0;
3814
3815		if (i == nr_frags)
3816			break;
3817
3818		tx_bi = &xdp_ring->tx_bi[index];
3819		tx_desc = I40E_TX_DESC(xdp_ring, index);
3820
3821		data = skb_frag_address(&sinfo->frags[i]);
3822		size = skb_frag_size(&sinfo->frags[i]);
3823		i++;
3824	}
3825
3826	tx_desc->cmd_type_offset_bsz |=
3827		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3828
3829	/* Make certain all of the status bits have been updated
3830	 * before next_to_watch is written.
3831	 */
3832	smp_wmb();
3833
3834	xdp_ring->xdp_tx_active++;
3835
3836	tx_head->next_to_watch = tx_desc;
3837	xdp_ring->next_to_use = index;
3838
3839	return I40E_XDP_TX;
3840
3841unmap:
3842	for (;;) {
3843		tx_bi = &xdp_ring->tx_bi[index];
3844		if (dma_unmap_len(tx_bi, len))
3845			dma_unmap_page(xdp_ring->dev,
3846				       dma_unmap_addr(tx_bi, dma),
3847				       dma_unmap_len(tx_bi, len),
3848				       DMA_TO_DEVICE);
3849		dma_unmap_len_set(tx_bi, len, 0);
3850		if (tx_bi == tx_head)
3851			break;
3852
3853		if (!index)
3854			index += xdp_ring->count;
3855		index--;
3856	}
3857
3858	return I40E_XDP_CONSUMED;
3859}
3860
3861/**
3862 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3863 * @skb:     send buffer
3864 * @tx_ring: ring to send buffer on
3865 *
3866 * Returns NETDEV_TX_OK if sent, else an error code
3867 **/
3868static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3869					struct i40e_ring *tx_ring)
3870{
3871	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3872	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3873	struct i40e_tx_buffer *first;
3874	u32 td_offset = 0;
3875	u32 tx_flags = 0;
 
3876	u32 td_cmd = 0;
3877	u8 hdr_len = 0;
3878	int tso, count;
3879	int tsyn;
3880
3881	/* prefetch the data, we'll need it later */
3882	prefetch(skb->data);
3883
3884	i40e_trace(xmit_frame_ring, skb, tx_ring);
3885
3886	count = i40e_xmit_descriptor_count(skb);
3887	if (i40e_chk_linearize(skb, count)) {
3888		if (__skb_linearize(skb)) {
3889			dev_kfree_skb_any(skb);
3890			return NETDEV_TX_OK;
3891		}
3892		count = i40e_txd_use_count(skb->len);
3893		tx_ring->tx_stats.tx_linearize++;
3894	}
3895
3896	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3897	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3898	 *       + 4 desc gap to avoid the cache line where head is,
3899	 *       + 1 desc for context descriptor,
3900	 * otherwise try next time
3901	 */
3902	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3903		tx_ring->tx_stats.tx_busy++;
3904		return NETDEV_TX_BUSY;
3905	}
3906
3907	/* record the location of the first descriptor for this packet */
3908	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3909	first->skb = skb;
3910	first->bytecount = skb->len;
3911	first->gso_segs = 1;
3912
3913	/* prepare the xmit flags */
3914	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3915		goto out_drop;
3916
3917	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
 
 
 
 
 
 
 
 
 
 
 
 
3918
3919	if (tso < 0)
3920		goto out_drop;
3921	else if (tso)
3922		tx_flags |= I40E_TX_FLAGS_TSO;
3923
3924	/* Always offload the checksum, since it's in the data descriptor */
3925	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3926				  tx_ring, &cd_tunneling);
3927	if (tso < 0)
3928		goto out_drop;
3929
3930	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3931
3932	if (tsyn)
3933		tx_flags |= I40E_TX_FLAGS_TSYN;
3934
 
 
3935	/* always enable CRC insertion offload */
3936	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3937
3938	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3939			   cd_tunneling, cd_l2tag2);
3940
3941	/* Add Flow Director ATR if it's enabled.
3942	 *
3943	 * NOTE: this must always be directly before the data descriptor.
3944	 */
3945	i40e_atr(tx_ring, skb, tx_flags);
3946
3947	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3948			td_cmd, td_offset))
3949		goto cleanup_tx_tstamp;
3950
3951	return NETDEV_TX_OK;
3952
3953out_drop:
3954	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3955	dev_kfree_skb_any(first->skb);
3956	first->skb = NULL;
3957cleanup_tx_tstamp:
3958	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3959		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3960
3961		dev_kfree_skb_any(pf->ptp_tx_skb);
3962		pf->ptp_tx_skb = NULL;
3963		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3964	}
3965
3966	return NETDEV_TX_OK;
3967}
3968
3969/**
3970 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3971 * @skb:    send buffer
3972 * @netdev: network interface device structure
3973 *
3974 * Returns NETDEV_TX_OK if sent, else an error code
3975 **/
3976netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3977{
3978	struct i40e_netdev_priv *np = netdev_priv(netdev);
3979	struct i40e_vsi *vsi = np->vsi;
3980	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3981
3982	/* hardware can't handle really short frames, hardware padding works
3983	 * beyond this point
3984	 */
3985	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3986		return NETDEV_TX_OK;
3987
3988	return i40e_xmit_frame_ring(skb, tx_ring);
3989}
3990
3991/**
3992 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3993 * @dev: netdev
3994 * @n: number of frames
3995 * @frames: array of XDP buffer pointers
3996 * @flags: XDP extra info
3997 *
3998 * Returns number of frames successfully sent. Failed frames
3999 * will be free'ed by XDP core.
4000 *
4001 * For error cases, a negative errno code is returned and no-frames
4002 * are transmitted (caller must handle freeing frames).
4003 **/
4004int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4005		  u32 flags)
4006{
4007	struct i40e_netdev_priv *np = netdev_priv(dev);
4008	unsigned int queue_index = smp_processor_id();
4009	struct i40e_vsi *vsi = np->vsi;
4010	struct i40e_pf *pf = vsi->back;
4011	struct i40e_ring *xdp_ring;
4012	int nxmit = 0;
4013	int i;
4014
4015	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4016		return -ENETDOWN;
4017
4018	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4019	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4020		return -ENXIO;
4021
4022	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4023		return -EINVAL;
4024
4025	xdp_ring = vsi->xdp_rings[queue_index];
4026
4027	for (i = 0; i < n; i++) {
4028		struct xdp_frame *xdpf = frames[i];
4029		int err;
4030
4031		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4032		if (err != I40E_XDP_TX)
4033			break;
4034		nxmit++;
4035	}
4036
4037	if (unlikely(flags & XDP_XMIT_FLUSH))
4038		i40e_xdp_ring_update_tail(xdp_ring);
4039
4040	return nxmit;
4041}
v4.6
   1/*******************************************************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   2 *
   3 * Intel Ethernet Controller XL710 Family Linux Driver
   4 * Copyright(c) 2013 - 2016 Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * The full GNU General Public License is included in this distribution in
  19 * the file called "COPYING".
  20 *
  21 * Contact Information:
  22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24 *
  25 ******************************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  26
  27#include <linux/prefetch.h>
  28#include <net/busy_poll.h>
  29#include "i40e.h"
  30#include "i40e_prototype.h"
  31
  32static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  33				u32 td_tag)
  34{
  35	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  36			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
  37			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  38			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  39			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
  40}
  41
  42#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  43#define I40E_FD_CLEAN_DELAY 10
  44/**
  45 * i40e_program_fdir_filter - Program a Flow Director filter
  46 * @fdir_data: Packet data that will be filter parameters
  47 * @raw_packet: the pre-allocated packet buffer for FDir
  48 * @pf: The PF pointer
  49 * @add: True for add/update, False for remove
  50 **/
  51int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
  52			     struct i40e_pf *pf, bool add)
 
  53{
  54	struct i40e_filter_program_desc *fdir_desc;
  55	struct i40e_tx_buffer *tx_buf, *first;
  56	struct i40e_tx_desc *tx_desc;
  57	struct i40e_ring *tx_ring;
  58	unsigned int fpt, dcc;
  59	struct i40e_vsi *vsi;
  60	struct device *dev;
  61	dma_addr_t dma;
  62	u32 td_cmd = 0;
  63	u16 delay = 0;
  64	u16 i;
  65
  66	/* find existing FDIR VSI */
  67	vsi = NULL;
  68	for (i = 0; i < pf->num_alloc_vsi; i++)
  69		if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
  70			vsi = pf->vsi[i];
  71	if (!vsi)
  72		return -ENOENT;
  73
  74	tx_ring = vsi->tx_rings[0];
  75	dev = tx_ring->dev;
  76
  77	/* we need two descriptors to add/del a filter and we can wait */
  78	do {
  79		if (I40E_DESC_UNUSED(tx_ring) > 1)
  80			break;
  81		msleep_interruptible(1);
  82		delay++;
  83	} while (delay < I40E_FD_CLEAN_DELAY);
  84
  85	if (!(I40E_DESC_UNUSED(tx_ring) > 1))
  86		return -EAGAIN;
  87
  88	dma = dma_map_single(dev, raw_packet,
  89			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
  90	if (dma_mapping_error(dev, dma))
  91		goto dma_fail;
  92
  93	/* grab the next descriptor */
  94	i = tx_ring->next_to_use;
  95	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  96	first = &tx_ring->tx_bi[i];
  97	memset(first, 0, sizeof(struct i40e_tx_buffer));
  98
  99	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 100
 101	fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
 102	      I40E_TXD_FLTR_QW0_QINDEX_MASK;
 103
 104	fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
 105	       I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
 106
 107	fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
 108	       I40E_TXD_FLTR_QW0_PCTYPE_MASK;
 109
 110	/* Use LAN VSI Id if not programmed by user */
 111	if (fdir_data->dest_vsi == 0)
 112		fpt |= (pf->vsi[pf->lan_vsi]->id) <<
 113		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
 114	else
 115		fpt |= ((u32)fdir_data->dest_vsi <<
 116			I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
 117		       I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
 118
 119	dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
 120
 121	if (add)
 122		dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
 123		       I40E_TXD_FLTR_QW1_PCMD_SHIFT;
 124	else
 125		dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
 126		       I40E_TXD_FLTR_QW1_PCMD_SHIFT;
 127
 128	dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
 129	       I40E_TXD_FLTR_QW1_DEST_MASK;
 130
 131	dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
 132	       I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
 133
 134	if (fdir_data->cnt_index != 0) {
 135		dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
 136		dcc |= ((u32)fdir_data->cnt_index <<
 137			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
 138			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
 139	}
 140
 141	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
 142	fdir_desc->rsvd = cpu_to_le32(0);
 143	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
 144	fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
 145
 146	/* Now program a dummy descriptor */
 147	i = tx_ring->next_to_use;
 148	tx_desc = I40E_TX_DESC(tx_ring, i);
 149	tx_buf = &tx_ring->tx_bi[i];
 150
 151	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 152
 153	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 154
 155	/* record length, and DMA address */
 156	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 157	dma_unmap_addr_set(tx_buf, dma, dma);
 158
 159	tx_desc->buffer_addr = cpu_to_le64(dma);
 160	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 161
 162	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 163	tx_buf->raw_buf = (void *)raw_packet;
 164
 165	tx_desc->cmd_type_offset_bsz =
 166		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 167
 168	/* Force memory writes to complete before letting h/w
 169	 * know there are new descriptors to fetch.
 170	 */
 171	wmb();
 172
 173	/* Mark the data descriptor to be watched */
 174	first->next_to_watch = tx_desc;
 175
 176	writel(tx_ring->next_to_use, tx_ring->tail);
 177	return 0;
 178
 179dma_fail:
 180	return -1;
 181}
 182
 183#define IP_HEADER_OFFSET 14
 184#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 185/**
 186 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 187 * @vsi: pointer to the targeted VSI
 188 * @fd_data: the flow director data required for the FDir descriptor
 189 * @add: true adds a filter, false removes it
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190 *
 191 * Returns 0 if the filters were successfully added or removed
 192 **/
 193static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 194				   struct i40e_fdir_filter *fd_data,
 195				   bool add)
 196{
 197	struct i40e_pf *pf = vsi->back;
 198	struct udphdr *udp;
 199	struct iphdr *ip;
 200	bool err = false;
 201	u8 *raw_packet;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202	int ret;
 203	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 204		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 205		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 206
 207	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 208	if (!raw_packet)
 209		return -ENOMEM;
 210	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 
 
 211
 212	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 213	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 214	      + sizeof(struct iphdr));
 215
 216	ip->daddr = fd_data->dst_ip[0];
 217	udp->dest = fd_data->dst_port;
 218	ip->saddr = fd_data->src_ip[0];
 219	udp->source = fd_data->src_port;
 220
 221	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
 222	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 
 
 
 223	if (ret) {
 224		dev_info(&pf->pdev->dev,
 225			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 226			 fd_data->pctype, fd_data->fd_id, ret);
 227		err = true;
 
 228	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 229		if (add)
 230			dev_info(&pf->pdev->dev,
 231				 "Filter OK for PCTYPE %d loc = %d\n",
 232				 fd_data->pctype, fd_data->fd_id);
 233		else
 234			dev_info(&pf->pdev->dev,
 235				 "Filter deleted for PCTYPE %d loc = %d\n",
 236				 fd_data->pctype, fd_data->fd_id);
 237	}
 238	if (err)
 239		kfree(raw_packet);
 240
 241	return err ? -EOPNOTSUPP : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242}
 243
 244#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 
 245/**
 246 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 247 * @vsi: pointer to the targeted VSI
 248 * @fd_data: the flow director data required for the FDir descriptor
 249 * @add: true adds a filter, false removes it
 
 250 *
 251 * Returns 0 if the filters were successfully added or removed
 252 **/
 253static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 254				   struct i40e_fdir_filter *fd_data,
 255				   bool add)
 
 256{
 257	struct i40e_pf *pf = vsi->back;
 258	struct tcphdr *tcp;
 259	struct iphdr *ip;
 260	bool err = false;
 261	u8 *raw_packet;
 262	int ret;
 263	/* Dummy packet */
 264	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 265		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 266		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 267		0x0, 0x72, 0, 0, 0, 0};
 268
 269	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 270	if (!raw_packet)
 271		return -ENOMEM;
 272	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 273
 274	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 275	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 276	      + sizeof(struct iphdr));
 277
 278	ip->daddr = fd_data->dst_ip[0];
 279	tcp->dest = fd_data->dst_port;
 280	ip->saddr = fd_data->src_ip[0];
 281	tcp->source = fd_data->src_port;
 282
 283	if (add) {
 284		pf->fd_tcp_rule++;
 285		if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
 286			if (I40E_DEBUG_FD & pf->hw.debug_mask)
 287				dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 288			pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
 289		}
 290	} else {
 291		pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
 292				  (pf->fd_tcp_rule - 1) : 0;
 293		if (pf->fd_tcp_rule == 0) {
 294			pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
 295			if (I40E_DEBUG_FD & pf->hw.debug_mask)
 296				dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
 297		}
 298	}
 299
 300	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 301	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 302
 303	if (ret) {
 304		dev_info(&pf->pdev->dev,
 305			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 306			 fd_data->pctype, fd_data->fd_id, ret);
 307		err = true;
 308	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 309		if (add)
 310			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
 311				 fd_data->pctype, fd_data->fd_id);
 312		else
 313			dev_info(&pf->pdev->dev,
 314				 "Filter deleted for PCTYPE %d loc = %d\n",
 315				 fd_data->pctype, fd_data->fd_id);
 316	}
 317
 318	if (err)
 319		kfree(raw_packet);
 320
 321	return err ? -EOPNOTSUPP : 0;
 
 
 
 
 
 
 322}
 323
 
 
 324/**
 325 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 326 * a specific flow spec
 327 * @vsi: pointer to the targeted VSI
 328 * @fd_data: the flow director data required for the FDir descriptor
 329 * @add: true adds a filter, false removes it
 
 330 *
 331 * Returns 0 if the filters were successfully added or removed
 332 **/
 333static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
 334				    struct i40e_fdir_filter *fd_data,
 335				    bool add)
 
 336{
 337	return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338}
 339
 340#define I40E_IP_DUMMY_PACKET_LEN 34
 
 341/**
 342 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 343 * a specific flow spec
 344 * @vsi: pointer to the targeted VSI
 345 * @fd_data: the flow director data required for the FDir descriptor
 346 * @add: true adds a filter, false removes it
 
 347 *
 348 * Returns 0 if the filters were successfully added or removed
 349 **/
 350static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 351				  struct i40e_fdir_filter *fd_data,
 352				  bool add)
 
 353{
 354	struct i40e_pf *pf = vsi->back;
 355	struct iphdr *ip;
 356	bool err = false;
 357	u8 *raw_packet;
 
 
 358	int ret;
 359	int i;
 360	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 361		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 362		0, 0, 0, 0};
 363
 364	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 365	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
 
 
 
 
 
 
 
 366		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 367		if (!raw_packet)
 368			return -ENOMEM;
 369		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 370		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 371
 372		ip->saddr = fd_data->src_ip[0];
 373		ip->daddr = fd_data->dst_ip[0];
 374		ip->protocol = 0;
 375
 376		fd_data->pctype = i;
 377		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 378
 379		if (ret) {
 380			dev_info(&pf->pdev->dev,
 381				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 382				 fd_data->pctype, fd_data->fd_id, ret);
 383			err = true;
 384		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 385			if (add)
 386				dev_info(&pf->pdev->dev,
 387					 "Filter OK for PCTYPE %d loc = %d\n",
 388					 fd_data->pctype, fd_data->fd_id);
 389			else
 390				dev_info(&pf->pdev->dev,
 391					 "Filter deleted for PCTYPE %d loc = %d\n",
 392					 fd_data->pctype, fd_data->fd_id);
 393		}
 394	}
 395
 396	if (err)
 397		kfree(raw_packet);
 398
 399	return err ? -EOPNOTSUPP : 0;
 
 
 
 400}
 401
 402/**
 403 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 404 * @vsi: pointer to the targeted VSI
 405 * @cmd: command to get or set RX flow classification rules
 406 * @add: true adds a filter, false removes it
 407 *
 408 **/
 409int i40e_add_del_fdir(struct i40e_vsi *vsi,
 410		      struct i40e_fdir_filter *input, bool add)
 411{
 
 412	struct i40e_pf *pf = vsi->back;
 413	int ret;
 414
 415	switch (input->flow_type & ~FLOW_EXT) {
 416	case TCP_V4_FLOW:
 417		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 418		break;
 419	case UDP_V4_FLOW:
 420		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 421		break;
 422	case SCTP_V4_FLOW:
 423		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 
 
 
 424		break;
 425	case IPV4_FLOW:
 426		ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 
 
 
 427		break;
 428	case IP_USER_FLOW:
 429		switch (input->ip4_proto) {
 430		case IPPROTO_TCP:
 431			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 432			break;
 433		case IPPROTO_UDP:
 434			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 435			break;
 436		case IPPROTO_SCTP:
 437			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 
 
 
 438			break;
 439		default:
 440			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441			break;
 
 
 
 
 
 
 
 
 442		}
 443		break;
 444	default:
 445		dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
 446			 input->flow_type);
 447		ret = -EINVAL;
 448	}
 449
 450	/* The buffer allocated here is freed by the i40e_clean_tx_ring() */
 
 
 
 
 
 451	return ret;
 452}
 453
 454/**
 455 * i40e_fd_handle_status - check the Programming Status for FD
 456 * @rx_ring: the Rx ring for this descriptor
 457 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 
 458 * @prog_id: the id originally used for programming
 459 *
 460 * This is used to verify if the FD programming or invalidation
 461 * requested by SW to the HW is successful or not and take actions accordingly.
 462 **/
 463static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 464				  union i40e_rx_desc *rx_desc, u8 prog_id)
 465{
 466	struct i40e_pf *pf = rx_ring->vsi->back;
 467	struct pci_dev *pdev = pf->pdev;
 
 468	u32 fcnt_prog, fcnt_avail;
 469	u32 error;
 470	u64 qw;
 471
 472	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 473	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 474		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 475
 476	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 477		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
 478		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
 479		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 480			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 481				 pf->fd_inv);
 482
 483		/* Check if the programming error is for ATR.
 484		 * If so, auto disable ATR and set a state for
 485		 * flush in progress. Next time we come here if flush is in
 486		 * progress do nothing, once flush is complete the state will
 487		 * be cleared.
 488		 */
 489		if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
 490			return;
 491
 492		pf->fd_add_err++;
 493		/* store the current atr filter count */
 494		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 495
 496		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
 497		    (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
 498			pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
 499			set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
 
 
 
 
 
 
 500		}
 501
 502		/* filter programming failed most likely due to table full */
 503		fcnt_prog = i40e_get_global_fd_count(pf);
 504		fcnt_avail = pf->fdir_pf_filter_count;
 505		/* If ATR is running fcnt_prog can quickly change,
 506		 * if we are very close to full, it makes sense to disable
 507		 * FD ATR/SB and then re-enable it when there is room.
 508		 */
 509		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 510			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 511			    !(pf->auto_disable_flags &
 512				     I40E_FLAG_FD_SB_ENABLED)) {
 513				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 514					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 515				pf->auto_disable_flags |=
 516							I40E_FLAG_FD_SB_ENABLED;
 517			}
 518		}
 519	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 520		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 521			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 522				 rx_desc->wb.qword0.hi_dword.fd_id);
 523	}
 524}
 525
 526/**
 527 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 528 * @ring:      the ring that owns the buffer
 529 * @tx_buffer: the buffer to free
 530 **/
 531static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 532					    struct i40e_tx_buffer *tx_buffer)
 533{
 534	if (tx_buffer->skb) {
 535		dev_kfree_skb_any(tx_buffer->skb);
 
 
 
 
 
 536		if (dma_unmap_len(tx_buffer, len))
 537			dma_unmap_single(ring->dev,
 538					 dma_unmap_addr(tx_buffer, dma),
 539					 dma_unmap_len(tx_buffer, len),
 540					 DMA_TO_DEVICE);
 541	} else if (dma_unmap_len(tx_buffer, len)) {
 542		dma_unmap_page(ring->dev,
 543			       dma_unmap_addr(tx_buffer, dma),
 544			       dma_unmap_len(tx_buffer, len),
 545			       DMA_TO_DEVICE);
 546	}
 547
 548	if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 549		kfree(tx_buffer->raw_buf);
 550
 551	tx_buffer->next_to_watch = NULL;
 552	tx_buffer->skb = NULL;
 553	dma_unmap_len_set(tx_buffer, len, 0);
 554	/* tx_buffer must be completely set up in the transmit path */
 555}
 556
 557/**
 558 * i40e_clean_tx_ring - Free any empty Tx buffers
 559 * @tx_ring: ring to be cleaned
 560 **/
 561void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 562{
 563	unsigned long bi_size;
 564	u16 i;
 565
 566	/* ring already cleared, nothing to do */
 567	if (!tx_ring->tx_bi)
 568		return;
 
 
 
 569
 570	/* Free all the Tx ring sk_buffs */
 571	for (i = 0; i < tx_ring->count; i++)
 572		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
 
 
 573
 574	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 575	memset(tx_ring->tx_bi, 0, bi_size);
 576
 577	/* Zero out the descriptor ring */
 578	memset(tx_ring->desc, 0, tx_ring->size);
 579
 580	tx_ring->next_to_use = 0;
 581	tx_ring->next_to_clean = 0;
 582
 583	if (!tx_ring->netdev)
 584		return;
 585
 586	/* cleanup Tx queue statistics */
 587	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
 588						  tx_ring->queue_index));
 589}
 590
 591/**
 592 * i40e_free_tx_resources - Free Tx resources per queue
 593 * @tx_ring: Tx descriptor ring for a specific queue
 594 *
 595 * Free all transmit software resources
 596 **/
 597void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 598{
 599	i40e_clean_tx_ring(tx_ring);
 600	kfree(tx_ring->tx_bi);
 601	tx_ring->tx_bi = NULL;
 602
 603	if (tx_ring->desc) {
 604		dma_free_coherent(tx_ring->dev, tx_ring->size,
 605				  tx_ring->desc, tx_ring->dma);
 606		tx_ring->desc = NULL;
 607	}
 608}
 609
 610/**
 611 * i40e_get_tx_pending - how many tx descriptors not processed
 612 * @tx_ring: the ring of descriptors
 613 * @in_sw: is tx_pending being checked in SW or HW
 614 *
 615 * Since there is no access to the ring head register
 616 * in XL710, we need to use our local copies
 617 **/
 618u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 619{
 620	u32 head, tail;
 621
 622	if (!in_sw)
 623		head = i40e_get_head(ring);
 624	else
 
 625		head = ring->next_to_clean;
 626	tail = readl(ring->tail);
 
 627
 628	if (head != tail)
 629		return (head < tail) ?
 630			tail - head : (tail + ring->count - head);
 631
 632	return 0;
 633}
 634
 635#define WB_STRIDE 0x3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636
 637/**
 638 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 639 * @tx_ring:  tx ring to clean
 640 * @budget:   how many cleans we're allowed
 
 
 641 *
 642 * Returns true if there's any budget left (e.g. the clean is finished)
 643 **/
 644static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
 
 
 645{
 646	u16 i = tx_ring->next_to_clean;
 647	struct i40e_tx_buffer *tx_buf;
 648	struct i40e_tx_desc *tx_head;
 649	struct i40e_tx_desc *tx_desc;
 650	unsigned int total_packets = 0;
 651	unsigned int total_bytes = 0;
 652
 653	tx_buf = &tx_ring->tx_bi[i];
 654	tx_desc = I40E_TX_DESC(tx_ring, i);
 655	i -= tx_ring->count;
 656
 657	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 658
 659	do {
 660		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 661
 662		/* if next_to_watch is not set then there is no work pending */
 663		if (!eop_desc)
 664			break;
 665
 666		/* prevent any other reads prior to eop_desc */
 667		read_barrier_depends();
 668
 
 669		/* we have caught up to head, no work left to do */
 670		if (tx_head == tx_desc)
 671			break;
 672
 673		/* clear next_to_watch to prevent false hangs */
 674		tx_buf->next_to_watch = NULL;
 675
 676		/* update the statistics for this packet */
 677		total_bytes += tx_buf->bytecount;
 678		total_packets += tx_buf->gso_segs;
 679
 680		/* free the skb */
 681		dev_consume_skb_any(tx_buf->skb);
 
 
 
 682
 683		/* unmap skb header data */
 684		dma_unmap_single(tx_ring->dev,
 685				 dma_unmap_addr(tx_buf, dma),
 686				 dma_unmap_len(tx_buf, len),
 687				 DMA_TO_DEVICE);
 688
 689		/* clear tx_buffer data */
 690		tx_buf->skb = NULL;
 691		dma_unmap_len_set(tx_buf, len, 0);
 692
 693		/* unmap remaining buffers */
 694		while (tx_desc != eop_desc) {
 
 
 695
 696			tx_buf++;
 697			tx_desc++;
 698			i++;
 699			if (unlikely(!i)) {
 700				i -= tx_ring->count;
 701				tx_buf = tx_ring->tx_bi;
 702				tx_desc = I40E_TX_DESC(tx_ring, 0);
 703			}
 704
 705			/* unmap any remaining paged data */
 706			if (dma_unmap_len(tx_buf, len)) {
 707				dma_unmap_page(tx_ring->dev,
 708					       dma_unmap_addr(tx_buf, dma),
 709					       dma_unmap_len(tx_buf, len),
 710					       DMA_TO_DEVICE);
 711				dma_unmap_len_set(tx_buf, len, 0);
 712			}
 713		}
 714
 715		/* move us one more past the eop_desc for start of next pkt */
 716		tx_buf++;
 717		tx_desc++;
 718		i++;
 719		if (unlikely(!i)) {
 720			i -= tx_ring->count;
 721			tx_buf = tx_ring->tx_bi;
 722			tx_desc = I40E_TX_DESC(tx_ring, 0);
 723		}
 724
 725		prefetch(tx_desc);
 726
 727		/* update budget accounting */
 728		budget--;
 729	} while (likely(budget));
 730
 731	i += tx_ring->count;
 732	tx_ring->next_to_clean = i;
 733	u64_stats_update_begin(&tx_ring->syncp);
 734	tx_ring->stats.bytes += total_bytes;
 735	tx_ring->stats.packets += total_packets;
 736	u64_stats_update_end(&tx_ring->syncp);
 737	tx_ring->q_vector->tx.total_bytes += total_bytes;
 738	tx_ring->q_vector->tx.total_packets += total_packets;
 739
 740	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
 741		unsigned int j = 0;
 742
 743		/* check to see if there are < 4 descriptors
 744		 * waiting to be written back, then kick the hardware to force
 745		 * them to be written back in case we stay in NAPI.
 746		 * In this mode on X722 we do not enable Interrupt.
 747		 */
 748		j = i40e_get_tx_pending(tx_ring, false);
 749
 750		if (budget &&
 751		    ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
 752		    !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
 753		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
 754			tx_ring->arm_wb = true;
 755	}
 756
 757	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
 758						      tx_ring->queue_index),
 759				  total_packets, total_bytes);
 760
 761#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
 762	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 763		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 764		/* Make sure that anybody stopping the queue after this
 765		 * sees the new next_to_clean.
 766		 */
 767		smp_mb();
 768		if (__netif_subqueue_stopped(tx_ring->netdev,
 769					     tx_ring->queue_index) &&
 770		   !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
 771			netif_wake_subqueue(tx_ring->netdev,
 772					    tx_ring->queue_index);
 773			++tx_ring->tx_stats.restart_queue;
 774		}
 775	}
 776
 
 777	return !!budget;
 778}
 779
 780/**
 781 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 782 * @vsi: the VSI we care about
 783 * @q_vector: the vector on which to enable writeback
 784 *
 785 **/
 786static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 787				  struct i40e_q_vector *q_vector)
 788{
 789	u16 flags = q_vector->tx.ring[0].flags;
 790	u32 val;
 791
 792	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 793		return;
 794
 795	if (q_vector->arm_wb_state)
 796		return;
 797
 798	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 799		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
 800		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
 801
 802		wr32(&vsi->back->hw,
 803		     I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
 804		     val);
 805	} else {
 806		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
 807		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
 808
 809		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 810	}
 811	q_vector->arm_wb_state = true;
 812}
 813
 814/**
 815 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 816 * @vsi: the VSI we care about
 817 * @q_vector: the vector  on which to force writeback
 818 *
 819 **/
 820void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 821{
 822	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 823		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 824			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
 825			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
 826			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
 827			  /* allow 00 to be written to the index */
 828
 829		wr32(&vsi->back->hw,
 830		     I40E_PFINT_DYN_CTLN(q_vector->v_idx +
 831					 vsi->base_vector - 1), val);
 832	} else {
 833		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
 834			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
 835			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
 836			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
 837			/* allow 00 to be written to the index */
 838
 839		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 840	}
 841}
 842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843/**
 844 * i40e_set_new_dynamic_itr - Find new ITR level
 
 845 * @rc: structure containing ring performance data
 846 *
 847 * Returns true if ITR changed, false if not
 848 *
 849 * Stores a new ITR value based on packets and byte counts during
 850 * the last interrupt.  The advantage of per interrupt computation
 851 * is faster updates and more accurate ITR for the current traffic
 852 * pattern.  Constants in this function were computed based on
 853 * theoretical maximum wire speed and thresholds were set based on
 854 * testing data as well as attempting to minimize response time
 855 * while increasing bulk throughput.
 856 **/
 857static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
 
 858{
 859	enum i40e_latency_range new_latency_range = rc->latency_range;
 860	struct i40e_q_vector *qv = rc->ring->q_vector;
 861	u32 new_itr = rc->itr;
 862	int bytes_per_int;
 863	int usecs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 864
 865	if (rc->total_packets == 0 || !rc->itr)
 866		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867
 868	/* simple throttlerate management
 869	 *   0-10MB/s   lowest (50000 ints/s)
 870	 *  10-20MB/s   low    (20000 ints/s)
 871	 *  20-1249MB/s bulk   (18000 ints/s)
 872	 *  > 40000 Rx packets per second (8000 ints/s)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873	 *
 874	 * The math works out because the divisor is in 10^(-6) which
 875	 * turns the bytes/us input value into MB/s values, but
 876	 * make sure to use usecs, as the register values written
 877	 * are in 2 usec increments in the ITR registers, and make sure
 878	 * to use the smoothed values that the countdown timer gives us.
 879	 */
 880	usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
 881	bytes_per_int = rc->total_bytes / usecs;
 882
 883	switch (new_latency_range) {
 884	case I40E_LOWEST_LATENCY:
 885		if (bytes_per_int > 10)
 886			new_latency_range = I40E_LOW_LATENCY;
 887		break;
 888	case I40E_LOW_LATENCY:
 889		if (bytes_per_int > 20)
 890			new_latency_range = I40E_BULK_LATENCY;
 891		else if (bytes_per_int <= 10)
 892			new_latency_range = I40E_LOWEST_LATENCY;
 893		break;
 894	case I40E_BULK_LATENCY:
 895	case I40E_ULTRA_LATENCY:
 896	default:
 897		if (bytes_per_int <= 20)
 898			new_latency_range = I40E_LOW_LATENCY;
 899		break;
 900	}
 901
 902	/* this is to adjust RX more aggressively when streaming small
 903	 * packets.  The value of 40000 was picked as it is just beyond
 904	 * what the hardware can receive per second if in low latency
 905	 * mode.
 906	 */
 907#define RX_ULTRA_PACKET_RATE 40000
 908
 909	if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
 910	    (&qv->rx == rc))
 911		new_latency_range = I40E_ULTRA_LATENCY;
 912
 913	rc->latency_range = new_latency_range;
 914
 915	switch (new_latency_range) {
 916	case I40E_LOWEST_LATENCY:
 917		new_itr = I40E_ITR_50K;
 918		break;
 919	case I40E_LOW_LATENCY:
 920		new_itr = I40E_ITR_20K;
 921		break;
 922	case I40E_BULK_LATENCY:
 923		new_itr = I40E_ITR_18K;
 924		break;
 925	case I40E_ULTRA_LATENCY:
 926		new_itr = I40E_ITR_8K;
 927		break;
 928	default:
 929		break;
 930	}
 931
 
 
 
 
 
 
 
 932	rc->total_bytes = 0;
 933	rc->total_packets = 0;
 
 934
 935	if (new_itr != rc->itr) {
 936		rc->itr = new_itr;
 937		return true;
 938	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939
 940	return false;
 
 941}
 942
 943/**
 944 * i40e_clean_programming_status - clean the programming status descriptor
 945 * @rx_ring: the rx ring that has this descriptor
 946 * @rx_desc: the rx descriptor written back by HW
 
 947 *
 948 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 949 * status being successful or not and take actions accordingly. FCoE should
 950 * handle its context/filter programming/invalidation status and take actions.
 951 *
 
 952 **/
 953static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
 954					  union i40e_rx_desc *rx_desc)
 955{
 956	u64 qw;
 957	u8 id;
 958
 959	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 960	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
 961		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
 962
 963	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
 964		i40e_fd_handle_status(rx_ring, rx_desc, id);
 965#ifdef I40E_FCOE
 966	else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
 967		 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
 968		i40e_fcoe_handle_status(rx_ring, rx_desc, id);
 969#endif
 970}
 971
 972/**
 973 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 974 * @tx_ring: the tx ring to set up
 975 *
 976 * Return 0 on success, negative on error
 977 **/
 978int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
 979{
 980	struct device *dev = tx_ring->dev;
 981	int bi_size;
 982
 983	if (!dev)
 984		return -ENOMEM;
 985
 986	/* warn if we are about to overwrite the pointer */
 987	WARN_ON(tx_ring->tx_bi);
 988	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 989	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 990	if (!tx_ring->tx_bi)
 991		goto err;
 992
 
 
 993	/* round up to nearest 4K */
 994	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
 995	/* add u32 for head writeback, align after this takes care of
 996	 * guaranteeing this is at least one cache line in size
 997	 */
 998	tx_ring->size += sizeof(u32);
 999	tx_ring->size = ALIGN(tx_ring->size, 4096);
1000	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1001					   &tx_ring->dma, GFP_KERNEL);
1002	if (!tx_ring->desc) {
1003		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1004			 tx_ring->size);
1005		goto err;
1006	}
1007
1008	tx_ring->next_to_use = 0;
1009	tx_ring->next_to_clean = 0;
 
1010	return 0;
1011
1012err:
1013	kfree(tx_ring->tx_bi);
1014	tx_ring->tx_bi = NULL;
1015	return -ENOMEM;
1016}
1017
 
 
 
 
 
1018/**
1019 * i40e_clean_rx_ring - Free Rx buffers
1020 * @rx_ring: ring to be cleaned
1021 **/
1022void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1023{
1024	struct device *dev = rx_ring->dev;
1025	struct i40e_rx_buffer *rx_bi;
1026	unsigned long bi_size;
1027	u16 i;
1028
1029	/* ring already cleared, nothing to do */
1030	if (!rx_ring->rx_bi)
1031		return;
1032
1033	if (ring_is_ps_enabled(rx_ring)) {
1034		int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
 
 
1035
1036		rx_bi = &rx_ring->rx_bi[0];
1037		if (rx_bi->hdr_buf) {
1038			dma_free_coherent(dev,
1039					  bufsz,
1040					  rx_bi->hdr_buf,
1041					  rx_bi->dma);
1042			for (i = 0; i < rx_ring->count; i++) {
1043				rx_bi = &rx_ring->rx_bi[i];
1044				rx_bi->dma = 0;
1045				rx_bi->hdr_buf = NULL;
1046			}
1047		}
1048	}
1049	/* Free all the Rx ring sk_buffs */
1050	for (i = 0; i < rx_ring->count; i++) {
1051		rx_bi = &rx_ring->rx_bi[i];
1052		if (rx_bi->dma) {
1053			dma_unmap_single(dev,
1054					 rx_bi->dma,
1055					 rx_ring->rx_buf_len,
1056					 DMA_FROM_DEVICE);
1057			rx_bi->dma = 0;
1058		}
1059		if (rx_bi->skb) {
1060			dev_kfree_skb(rx_bi->skb);
1061			rx_bi->skb = NULL;
1062		}
1063		if (rx_bi->page) {
1064			if (rx_bi->page_dma) {
1065				dma_unmap_page(dev,
1066					       rx_bi->page_dma,
1067					       PAGE_SIZE,
1068					       DMA_FROM_DEVICE);
1069				rx_bi->page_dma = 0;
1070			}
1071			__free_page(rx_bi->page);
1072			rx_bi->page = NULL;
1073			rx_bi->page_offset = 0;
1074		}
1075	}
1076
1077	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1078	memset(rx_ring->rx_bi, 0, bi_size);
 
 
 
1079
1080	/* Zero out the descriptor ring */
1081	memset(rx_ring->desc, 0, rx_ring->size);
1082
 
1083	rx_ring->next_to_clean = 0;
 
1084	rx_ring->next_to_use = 0;
1085}
1086
1087/**
1088 * i40e_free_rx_resources - Free Rx resources
1089 * @rx_ring: ring to clean the resources from
1090 *
1091 * Free all receive software resources
1092 **/
1093void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1094{
1095	i40e_clean_rx_ring(rx_ring);
 
 
 
1096	kfree(rx_ring->rx_bi);
1097	rx_ring->rx_bi = NULL;
1098
1099	if (rx_ring->desc) {
1100		dma_free_coherent(rx_ring->dev, rx_ring->size,
1101				  rx_ring->desc, rx_ring->dma);
1102		rx_ring->desc = NULL;
1103	}
1104}
1105
1106/**
1107 * i40e_alloc_rx_headers - allocate rx header buffers
1108 * @rx_ring: ring to alloc buffers
1109 *
1110 * Allocate rx header buffers for the entire ring. As these are static,
1111 * this is only called when setting up a new ring.
1112 **/
1113void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1114{
1115	struct device *dev = rx_ring->dev;
1116	struct i40e_rx_buffer *rx_bi;
1117	dma_addr_t dma;
1118	void *buffer;
1119	int buf_size;
1120	int i;
1121
1122	if (rx_ring->rx_bi[0].hdr_buf)
1123		return;
1124	/* Make sure the buffers don't cross cache line boundaries. */
1125	buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1126	buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1127				    &dma, GFP_KERNEL);
1128	if (!buffer)
1129		return;
1130	for (i = 0; i < rx_ring->count; i++) {
1131		rx_bi = &rx_ring->rx_bi[i];
1132		rx_bi->dma = dma + (i * buf_size);
1133		rx_bi->hdr_buf = buffer + (i * buf_size);
1134	}
1135}
1136
1137/**
1138 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1139 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1140 *
1141 * Returns 0 on success, negative on failure
1142 **/
1143int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1144{
1145	struct device *dev = rx_ring->dev;
1146	int bi_size;
1147
1148	/* warn if we are about to overwrite the pointer */
1149	WARN_ON(rx_ring->rx_bi);
1150	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1151	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1152	if (!rx_ring->rx_bi)
1153		goto err;
1154
1155	u64_stats_init(&rx_ring->syncp);
1156
1157	/* Round up to nearest 4K */
1158	rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1159		? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1160		: rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1161	rx_ring->size = ALIGN(rx_ring->size, 4096);
1162	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1163					   &rx_ring->dma, GFP_KERNEL);
1164
1165	if (!rx_ring->desc) {
1166		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1167			 rx_ring->size);
1168		goto err;
1169	}
1170
 
1171	rx_ring->next_to_clean = 0;
 
1172	rx_ring->next_to_use = 0;
1173
 
 
 
 
 
 
 
1174	return 0;
1175err:
1176	kfree(rx_ring->rx_bi);
1177	rx_ring->rx_bi = NULL;
1178	return -ENOMEM;
1179}
1180
1181/**
1182 * i40e_release_rx_desc - Store the new tail and head values
1183 * @rx_ring: ring to bump
1184 * @val: new head index
1185 **/
1186static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1187{
1188	rx_ring->next_to_use = val;
 
 
 
 
1189	/* Force memory writes to complete before letting h/w
1190	 * know there are new descriptors to fetch.  (Only
1191	 * applicable for weak-ordered memory model archs,
1192	 * such as IA-64).
1193	 */
1194	wmb();
1195	writel(val, rx_ring->tail);
1196}
1197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1198/**
1199 * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1200 * @rx_ring: ring to place buffers on
1201 * @cleaned_count: number of buffers to replace
1202 *
1203 * Returns true if any errors on allocation
 
1204 **/
1205bool i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
 
1206{
1207	u16 i = rx_ring->next_to_use;
1208	union i40e_rx_desc *rx_desc;
1209	struct i40e_rx_buffer *bi;
1210	const int current_node = numa_node_id();
 
 
 
 
1211
1212	/* do nothing if no valid netdev defined */
1213	if (!rx_ring->netdev || !cleaned_count)
 
 
1214		return false;
 
1215
1216	while (cleaned_count--) {
1217		rx_desc = I40E_RX_DESC(rx_ring, i);
1218		bi = &rx_ring->rx_bi[i];
1219
1220		if (bi->skb) /* desc is in use */
1221			goto no_buffers;
1222
1223	/* If we've been moved to a different NUMA node, release the
1224	 * page so we can get a new one on the current node.
1225	 */
1226		if (bi->page &&  page_to_nid(bi->page) != current_node) {
1227			dma_unmap_page(rx_ring->dev,
1228				       bi->page_dma,
1229				       PAGE_SIZE,
1230				       DMA_FROM_DEVICE);
1231			__free_page(bi->page);
1232			bi->page = NULL;
1233			bi->page_dma = 0;
1234			rx_ring->rx_stats.realloc_count++;
1235		} else if (bi->page) {
1236			rx_ring->rx_stats.page_reuse_count++;
1237		}
1238
1239		if (!bi->page) {
1240			bi->page = alloc_page(GFP_ATOMIC);
1241			if (!bi->page) {
1242				rx_ring->rx_stats.alloc_page_failed++;
1243				goto no_buffers;
1244			}
1245			bi->page_dma = dma_map_page(rx_ring->dev,
1246						    bi->page,
1247						    0,
1248						    PAGE_SIZE,
1249						    DMA_FROM_DEVICE);
1250			if (dma_mapping_error(rx_ring->dev, bi->page_dma)) {
1251				rx_ring->rx_stats.alloc_page_failed++;
1252				__free_page(bi->page);
1253				bi->page = NULL;
1254				bi->page_dma = 0;
1255				bi->page_offset = 0;
1256				goto no_buffers;
1257			}
1258			bi->page_offset = 0;
1259		}
1260
1261		/* Refresh the desc even if buffer_addrs didn't change
1262		 * because each write-back erases this info.
1263		 */
1264		rx_desc->read.pkt_addr =
1265				cpu_to_le64(bi->page_dma + bi->page_offset);
1266		rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1267		i++;
1268		if (i == rx_ring->count)
1269			i = 0;
1270	}
1271
1272	if (rx_ring->next_to_use != i)
1273		i40e_release_rx_desc(rx_ring, i);
 
 
 
1274
1275	return false;
1276
1277no_buffers:
1278	if (rx_ring->next_to_use != i)
1279		i40e_release_rx_desc(rx_ring, i);
1280
1281	/* make sure to come back via polling to try again after
1282	 * allocation failure
1283	 */
1284	return true;
1285}
1286
1287/**
1288 * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1289 * @rx_ring: ring to place buffers on
1290 * @cleaned_count: number of buffers to replace
1291 *
1292 * Returns true if any errors on allocation
1293 **/
1294bool i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1295{
1296	u16 i = rx_ring->next_to_use;
1297	union i40e_rx_desc *rx_desc;
1298	struct i40e_rx_buffer *bi;
1299	struct sk_buff *skb;
1300
1301	/* do nothing if no valid netdev defined */
1302	if (!rx_ring->netdev || !cleaned_count)
1303		return false;
1304
1305	while (cleaned_count--) {
1306		rx_desc = I40E_RX_DESC(rx_ring, i);
1307		bi = &rx_ring->rx_bi[i];
1308		skb = bi->skb;
1309
1310		if (!skb) {
1311			skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
1312							  rx_ring->rx_buf_len,
1313							  GFP_ATOMIC |
1314							  __GFP_NOWARN);
1315			if (!skb) {
1316				rx_ring->rx_stats.alloc_buff_failed++;
1317				goto no_buffers;
1318			}
1319			/* initialize queue mapping */
1320			skb_record_rx_queue(skb, rx_ring->queue_index);
1321			bi->skb = skb;
1322		}
1323
1324		if (!bi->dma) {
1325			bi->dma = dma_map_single(rx_ring->dev,
1326						 skb->data,
1327						 rx_ring->rx_buf_len,
1328						 DMA_FROM_DEVICE);
1329			if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1330				rx_ring->rx_stats.alloc_buff_failed++;
1331				bi->dma = 0;
1332				dev_kfree_skb(bi->skb);
1333				bi->skb = NULL;
1334				goto no_buffers;
1335			}
 
 
 
 
 
 
1336		}
1337
1338		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1339		rx_desc->read.hdr_addr = 0;
1340		i++;
1341		if (i == rx_ring->count)
1342			i = 0;
1343	}
1344
1345	if (rx_ring->next_to_use != i)
1346		i40e_release_rx_desc(rx_ring, i);
1347
1348	return false;
1349
1350no_buffers:
1351	if (rx_ring->next_to_use != i)
1352		i40e_release_rx_desc(rx_ring, i);
1353
1354	/* make sure to come back via polling to try again after
1355	 * allocation failure
1356	 */
1357	return true;
1358}
1359
1360/**
1361 * i40e_receive_skb - Send a completed packet up the stack
1362 * @rx_ring:  rx ring in play
1363 * @skb: packet to send up
1364 * @vlan_tag: vlan tag for packet
1365 **/
1366static void i40e_receive_skb(struct i40e_ring *rx_ring,
1367			     struct sk_buff *skb, u16 vlan_tag)
1368{
1369	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1370
1371	if (vlan_tag & VLAN_VID_MASK)
1372		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1373
1374	napi_gro_receive(&q_vector->napi, skb);
1375}
1376
1377/**
1378 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1379 * @vsi: the VSI we care about
1380 * @skb: skb currently being received and modified
1381 * @rx_status: status value of last descriptor in packet
1382 * @rx_error: error value of last descriptor in packet
1383 * @rx_ptype: ptype value of last descriptor in packet
1384 **/
1385static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1386				    struct sk_buff *skb,
1387				    u32 rx_status,
1388				    u32 rx_error,
1389				    u16 rx_ptype)
1390{
1391	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1392	bool ipv4, ipv6, ipv4_tunnel, ipv6_tunnel;
 
 
 
 
 
 
 
 
 
1393
1394	skb->ip_summed = CHECKSUM_NONE;
1395
 
 
1396	/* Rx csum enabled and ip headers found? */
1397	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1398		return;
1399
1400	/* did the hardware decode the packet and checksum? */
1401	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1402		return;
1403
1404	/* both known and outer_ip must be set for the below code to work */
1405	if (!(decoded.known && decoded.outer_ip))
1406		return;
1407
1408	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1409	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1410	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1411	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1412
1413	if (ipv4 &&
1414	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1415			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1416		goto checksum_fail;
1417
1418	/* likely incorrect csum if alternate IP extension headers found */
1419	if (ipv6 &&
1420	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1421		/* don't increment checksum err here, non-fatal err */
1422		return;
1423
1424	/* there was some L4 error, count error and punt packet to the stack */
1425	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1426		goto checksum_fail;
1427
1428	/* handle packets that were not able to be checksummed due
1429	 * to arrival speed, in this case the stack can compute
1430	 * the csum.
1431	 */
1432	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1433		return;
1434
1435	/* The hardware supported by this driver does not validate outer
1436	 * checksums for tunneled VXLAN or GENEVE frames.  I don't agree
1437	 * with it but the specification states that you "MAY validate", it
1438	 * doesn't make it a hard requirement so if we have validated the
1439	 * inner checksum report CHECKSUM_UNNECESSARY.
1440	 */
1441
1442	ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1443		     (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1444	ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1445		     (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1446
1447	skb->ip_summed = CHECKSUM_UNNECESSARY;
1448	skb->csum_level = ipv4_tunnel || ipv6_tunnel;
 
 
 
1449
1450	return;
1451
1452checksum_fail:
1453	vsi->back->hw_csum_rx_error++;
1454}
1455
1456/**
1457 * i40e_ptype_to_htype - get a hash type
1458 * @ptype: the ptype value from the descriptor
1459 *
1460 * Returns a hash type to be used by skb_set_hash
1461 **/
1462static inline enum pkt_hash_types i40e_ptype_to_htype(u8 ptype)
1463{
1464	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1465
1466	if (!decoded.known)
1467		return PKT_HASH_TYPE_NONE;
1468
1469	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1470	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1471		return PKT_HASH_TYPE_L4;
1472	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1473		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1474		return PKT_HASH_TYPE_L3;
1475	else
1476		return PKT_HASH_TYPE_L2;
1477}
1478
1479/**
1480 * i40e_rx_hash - set the hash value in the skb
1481 * @ring: descriptor ring
1482 * @rx_desc: specific descriptor
 
 
1483 **/
1484static inline void i40e_rx_hash(struct i40e_ring *ring,
1485				union i40e_rx_desc *rx_desc,
1486				struct sk_buff *skb,
1487				u8 rx_ptype)
1488{
1489	u32 hash;
1490	const __le64 rss_mask  =
1491		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1492			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1493
1494	if (ring->netdev->features & NETIF_F_RXHASH)
1495		return;
1496
1497	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1498		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1499		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1500	}
1501}
1502
1503/**
1504 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1505 * @rx_ring:  rx ring to clean
1506 * @budget:   how many cleans we're allowed
 
1507 *
1508 * Returns true if there's any budget left (e.g. the clean is finished)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509 **/
1510static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, const int budget)
 
1511{
1512	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1513	u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1514	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1515	struct i40e_vsi *vsi = rx_ring->vsi;
1516	u16 i = rx_ring->next_to_clean;
1517	union i40e_rx_desc *rx_desc;
1518	u32 rx_error, rx_status;
1519	bool failure = false;
1520	u8 rx_ptype;
1521	u64 qword;
1522	u32 copysize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1523
1524	if (budget <= 0)
1525		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1526
1527	do {
1528		struct i40e_rx_buffer *rx_bi;
1529		struct sk_buff *skb;
1530		u16 vlan_tag;
1531		/* return some buffers to hardware, one at a time is too slow */
1532		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1533			failure = failure ||
1534				  i40e_alloc_rx_buffers_ps(rx_ring,
1535							   cleaned_count);
1536			cleaned_count = 0;
1537		}
 
1538
1539		i = rx_ring->next_to_clean;
1540		rx_desc = I40E_RX_DESC(rx_ring, i);
1541		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1542		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1543			I40E_RXD_QW1_STATUS_SHIFT;
1544
1545		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1546			break;
 
 
1547
1548		/* This memory barrier is needed to keep us from reading
1549		 * any other fields out of the rx_desc until we know the
1550		 * DD bit is set.
1551		 */
1552		dma_rmb();
1553		/* sync header buffer for reading */
1554		dma_sync_single_range_for_cpu(rx_ring->dev,
1555					      rx_ring->rx_bi[0].dma,
1556					      i * rx_ring->rx_hdr_len,
1557					      rx_ring->rx_hdr_len,
1558					      DMA_FROM_DEVICE);
1559		if (i40e_rx_is_programming_status(qword)) {
1560			i40e_clean_programming_status(rx_ring, rx_desc);
1561			I40E_RX_INCREMENT(rx_ring, i);
1562			continue;
1563		}
1564		rx_bi = &rx_ring->rx_bi[i];
1565		skb = rx_bi->skb;
1566		if (likely(!skb)) {
1567			skb = __netdev_alloc_skb_ip_align(rx_ring->netdev,
1568							  rx_ring->rx_hdr_len,
1569							  GFP_ATOMIC |
1570							  __GFP_NOWARN);
1571			if (!skb) {
1572				rx_ring->rx_stats.alloc_buff_failed++;
1573				failure = true;
1574				break;
1575			}
1576
1577			/* initialize queue mapping */
1578			skb_record_rx_queue(skb, rx_ring->queue_index);
1579			/* we are reusing so sync this buffer for CPU use */
1580			dma_sync_single_range_for_cpu(rx_ring->dev,
1581						      rx_ring->rx_bi[0].dma,
1582						      i * rx_ring->rx_hdr_len,
1583						      rx_ring->rx_hdr_len,
1584						      DMA_FROM_DEVICE);
1585		}
1586		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1587				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1588		rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1589				I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1590		rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1591			 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1592
1593		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1594			   I40E_RXD_QW1_ERROR_SHIFT;
1595		rx_hbo = rx_error & BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1596		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1597
1598		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1599			   I40E_RXD_QW1_PTYPE_SHIFT;
1600		/* sync half-page for reading */
1601		dma_sync_single_range_for_cpu(rx_ring->dev,
1602					      rx_bi->page_dma,
1603					      rx_bi->page_offset,
1604					      PAGE_SIZE / 2,
1605					      DMA_FROM_DEVICE);
1606		prefetch(page_address(rx_bi->page) + rx_bi->page_offset);
1607		rx_bi->skb = NULL;
1608		cleaned_count++;
1609		copysize = 0;
1610		if (rx_hbo || rx_sph) {
1611			int len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1612
1613			if (rx_hbo)
1614				len = I40E_RX_HDR_SIZE;
1615			else
1616				len = rx_header_len;
1617			memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1618		} else if (skb->len == 0) {
1619			int len;
1620			unsigned char *va = page_address(rx_bi->page) +
1621					    rx_bi->page_offset;
1622
1623			len = min(rx_packet_len, rx_ring->rx_hdr_len);
1624			memcpy(__skb_put(skb, len), va, len);
1625			copysize = len;
1626			rx_packet_len -= len;
1627		}
1628		/* Get the rest of the data if this was a header split */
1629		if (rx_packet_len) {
1630			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
1631					rx_bi->page,
1632					rx_bi->page_offset + copysize,
1633					rx_packet_len, I40E_RXBUFFER_2048);
1634
1635			/* If the page count is more than 2, then both halves
1636			 * of the page are used and we need to free it. Do it
1637			 * here instead of in the alloc code. Otherwise one
1638			 * of the half-pages might be released between now and
1639			 * then, and we wouldn't know which one to use.
1640			 * Don't call get_page and free_page since those are
1641			 * both expensive atomic operations that just change
1642			 * the refcount in opposite directions. Just give the
1643			 * page to the stack; he can have our refcount.
1644			 */
1645			if (page_count(rx_bi->page) > 2) {
1646				dma_unmap_page(rx_ring->dev,
1647					       rx_bi->page_dma,
1648					       PAGE_SIZE,
1649					       DMA_FROM_DEVICE);
1650				rx_bi->page = NULL;
1651				rx_bi->page_dma = 0;
1652				rx_ring->rx_stats.realloc_count++;
1653			} else {
1654				get_page(rx_bi->page);
1655				/* switch to the other half-page here; the
1656				 * allocation code programs the right addr
1657				 * into HW. If we haven't used this half-page,
1658				 * the address won't be changed, and HW can
1659				 * just use it next time through.
1660				 */
1661				rx_bi->page_offset ^= PAGE_SIZE / 2;
1662			}
1663
1664		}
1665		I40E_RX_INCREMENT(rx_ring, i);
1666
1667		if (unlikely(
1668		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1669			struct i40e_rx_buffer *next_buffer;
1670
1671			next_buffer = &rx_ring->rx_bi[i];
1672			next_buffer->skb = skb;
1673			rx_ring->rx_stats.non_eop_descs++;
1674			continue;
1675		}
1676
1677		/* ERR_MASK will only have valid bits if EOP set */
1678		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1679			dev_kfree_skb_any(skb);
1680			continue;
1681		}
1682
1683		i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
 
 
1684
1685		if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1686			i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1687					   I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1688					   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1689			rx_ring->last_rx_timestamp = jiffies;
1690		}
1691
1692		/* probably a little skewed due to removing CRC */
1693		total_rx_bytes += skb->len;
1694		total_rx_packets++;
1695
1696		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 
 
 
 
 
 
 
 
 
 
1697
1698		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
 
1699
1700		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1701			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1702			 : 0;
1703#ifdef I40E_FCOE
1704		if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1705			dev_kfree_skb_any(skb);
1706			continue;
1707		}
1708#endif
1709		i40e_receive_skb(rx_ring, skb, vlan_tag);
1710
1711		rx_desc->wb.qword1.status_error_len = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1712
1713	} while (likely(total_rx_packets < budget));
 
 
 
 
 
 
 
 
 
 
 
 
 
1714
 
 
 
 
 
 
 
 
 
 
 
 
1715	u64_stats_update_begin(&rx_ring->syncp);
1716	rx_ring->stats.packets += total_rx_packets;
1717	rx_ring->stats.bytes += total_rx_bytes;
1718	u64_stats_update_end(&rx_ring->syncp);
1719	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1720	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
 
1721
1722	return failure ? budget : total_rx_packets;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723}
1724
1725/**
1726 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1727 * @rx_ring:  rx ring to clean
1728 * @budget:   how many cleans we're allowed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729 *
1730 * Returns number of packets cleaned
1731 **/
1732static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
 
1733{
1734	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1735	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1736	struct i40e_vsi *vsi = rx_ring->vsi;
1737	union i40e_rx_desc *rx_desc;
1738	u32 rx_error, rx_status;
1739	u16 rx_packet_len;
 
1740	bool failure = false;
1741	u8 rx_ptype;
1742	u64 qword;
1743	u16 i;
1744
1745	do {
1746		struct i40e_rx_buffer *rx_bi;
 
 
1747		struct sk_buff *skb;
1748		u16 vlan_tag;
 
 
 
 
1749		/* return some buffers to hardware, one at a time is too slow */
1750		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1751			failure = failure ||
1752				  i40e_alloc_rx_buffers_1buf(rx_ring,
1753							     cleaned_count);
1754			cleaned_count = 0;
1755		}
1756
1757		i = rx_ring->next_to_clean;
1758		rx_desc = I40E_RX_DESC(rx_ring, i);
 
 
 
 
 
1759		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1760		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1761			I40E_RXD_QW1_STATUS_SHIFT;
1762
1763		if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1764			break;
1765
1766		/* This memory barrier is needed to keep us from reading
1767		 * any other fields out of the rx_desc until we know the
1768		 * DD bit is set.
1769		 */
1770		dma_rmb();
1771
1772		if (i40e_rx_is_programming_status(qword)) {
1773			i40e_clean_programming_status(rx_ring, rx_desc);
1774			I40E_RX_INCREMENT(rx_ring, i);
 
 
 
 
 
 
 
 
 
 
 
 
1775			continue;
1776		}
1777		rx_bi = &rx_ring->rx_bi[i];
1778		skb = rx_bi->skb;
1779		prefetch(skb->data);
1780
1781		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1782				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1783
1784		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1785			   I40E_RXD_QW1_ERROR_SHIFT;
1786		rx_error &= ~BIT(I40E_RX_DESC_ERROR_HBO_SHIFT);
1787
1788		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1789			   I40E_RXD_QW1_PTYPE_SHIFT;
1790		rx_bi->skb = NULL;
1791		cleaned_count++;
1792
1793		/* Get the header and possibly the whole packet
1794		 * If this is an skb from previous receive dma will be 0
1795		 */
1796		skb_put(skb, rx_packet_len);
1797		dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1798				 DMA_FROM_DEVICE);
1799		rx_bi->dma = 0;
1800
1801		I40E_RX_INCREMENT(rx_ring, i);
1802
1803		if (unlikely(
1804		    !(rx_status & BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1805			rx_ring->rx_stats.non_eop_descs++;
1806			continue;
 
 
 
 
 
 
 
 
 
 
 
 
1807		}
1808
1809		/* ERR_MASK will only have valid bits if EOP set */
1810		if (unlikely(rx_error & BIT(I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1811			dev_kfree_skb_any(skb);
1812			continue;
1813		}
1814
1815		i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1816		if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1817			i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1818					   I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1819					   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1820			rx_ring->last_rx_timestamp = jiffies;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1821		}
1822
1823		/* probably a little skewed due to removing CRC */
1824		total_rx_bytes += skb->len;
1825		total_rx_packets++;
 
 
 
 
1826
1827		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 
1828
1829		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1830
1831		vlan_tag = rx_status & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1832			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1833			 : 0;
1834#ifdef I40E_FCOE
1835		if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1836			dev_kfree_skb_any(skb);
1837			continue;
1838		}
1839#endif
1840		i40e_receive_skb(rx_ring, skb, vlan_tag);
1841
1842		rx_desc->wb.qword1.status_error_len = 0;
1843	} while (likely(total_rx_packets < budget));
1844
1845	u64_stats_update_begin(&rx_ring->syncp);
1846	rx_ring->stats.packets += total_rx_packets;
1847	rx_ring->stats.bytes += total_rx_bytes;
1848	u64_stats_update_end(&rx_ring->syncp);
1849	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1850	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1851
1852	return failure ? budget : total_rx_packets;
 
1853}
1854
1855static u32 i40e_buildreg_itr(const int type, const u16 itr)
1856{
1857	u32 val;
1858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1859	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1860	      /* Don't clear PBA because that can cause lost interrupts that
1861	       * came in while we were cleaning/polling
1862	       */
1863	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1864	      (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1865
1866	return val;
1867}
1868
1869/* a small macro to shorten up some long lines */
1870#define INTREG I40E_PFINT_DYN_CTLN
1871
 
 
 
 
 
 
 
 
 
1872/**
1873 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1874 * @vsi: the VSI we care about
1875 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1876 *
1877 **/
1878static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1879					  struct i40e_q_vector *q_vector)
1880{
1881	struct i40e_hw *hw = &vsi->back->hw;
1882	bool rx = false, tx = false;
1883	u32 rxval, txval;
1884	int vector;
1885	int idx = q_vector->v_idx;
1886
1887	vector = (q_vector->v_idx + vsi->base_vector);
1888
1889	/* avoid dynamic calculation if in countdown mode OR if
1890	 * all dynamic is disabled
1891	 */
1892	rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1893
1894	if (q_vector->itr_countdown > 0 ||
1895	    (!ITR_IS_DYNAMIC(vsi->rx_rings[idx]->rx_itr_setting) &&
1896	     !ITR_IS_DYNAMIC(vsi->tx_rings[idx]->tx_itr_setting))) {
1897		goto enable_int;
1898	}
1899
1900	if (ITR_IS_DYNAMIC(vsi->rx_rings[idx]->rx_itr_setting)) {
1901		rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1902		rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1903	}
1904
1905	if (ITR_IS_DYNAMIC(vsi->tx_rings[idx]->tx_itr_setting)) {
1906		tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1907		txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1908	}
1909
1910	if (rx || tx) {
1911		/* get the higher of the two ITR adjustments and
1912		 * use the same value for both ITR registers
1913		 * when in adaptive mode (Rx and/or Tx)
 
 
 
 
 
 
 
 
 
 
1914		 */
1915		u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1916
1917		q_vector->tx.itr = q_vector->rx.itr = itr;
1918		txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1919		tx = true;
1920		rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1921		rx = true;
1922	}
1923
1924	/* only need to enable the interrupt once, but need
1925	 * to possibly update both ITR values
1926	 */
1927	if (rx) {
1928		/* set the INTENA_MSK_MASK so that this first write
1929		 * won't actually enable the interrupt, instead just
1930		 * updating the ITR (it's bit 31 PF and VF)
1931		 */
1932		rxval |= BIT(31);
1933		/* don't check _DOWN because interrupt isn't being enabled */
1934		wr32(hw, INTREG(vector - 1), rxval);
1935	}
1936
1937enable_int:
1938	if (!test_bit(__I40E_DOWN, &vsi->state))
1939		wr32(hw, INTREG(vector - 1), txval);
1940
1941	if (q_vector->itr_countdown)
1942		q_vector->itr_countdown--;
1943	else
1944		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1945}
1946
1947/**
1948 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1949 * @napi: napi struct with our devices info in it
1950 * @budget: amount of work driver is allowed to do this pass, in packets
1951 *
1952 * This function will clean all queues associated with a q_vector.
1953 *
1954 * Returns the amount of work done
1955 **/
1956int i40e_napi_poll(struct napi_struct *napi, int budget)
1957{
1958	struct i40e_q_vector *q_vector =
1959			       container_of(napi, struct i40e_q_vector, napi);
1960	struct i40e_vsi *vsi = q_vector->vsi;
1961	struct i40e_ring *ring;
 
 
 
 
1962	bool clean_complete = true;
1963	bool arm_wb = false;
1964	int budget_per_ring;
1965	int work_done = 0;
1966
1967	if (test_bit(__I40E_DOWN, &vsi->state)) {
1968		napi_complete(napi);
1969		return 0;
1970	}
1971
1972	/* Clear hung_detected bit */
1973	clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1974	/* Since the actual Tx work is minimal, we can give the Tx a larger
1975	 * budget and be more aggressive about cleaning up the Tx descriptors.
1976	 */
1977	i40e_for_each_ring(ring, q_vector->tx) {
1978		clean_complete = clean_complete &&
1979				 i40e_clean_tx_irq(ring, vsi->work_limit);
1980		arm_wb = arm_wb || ring->arm_wb;
 
 
 
 
 
 
1981		ring->arm_wb = false;
1982	}
1983
1984	/* Handle case where we are called by netpoll with a budget of 0 */
1985	if (budget <= 0)
1986		goto tx_only;
1987
1988	/* We attempt to distribute budget to each Rx queue fairly, but don't
1989	 * allow the budget to go below 1 because that would exit polling early.
1990	 */
1991	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
 
 
 
 
 
 
1992
1993	i40e_for_each_ring(ring, q_vector->rx) {
1994		int cleaned;
1995
1996		if (ring_is_ps_enabled(ring))
1997			cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1998		else
1999			cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
2000
2001		work_done += cleaned;
2002		/* if we didn't clean as many as budgeted, we must be done */
2003		clean_complete = clean_complete && (budget_per_ring > cleaned);
 
2004	}
2005
 
 
 
 
2006	/* If work not completed, return budget and polling will return */
2007	if (!clean_complete) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2008tx_only:
2009		if (arm_wb) {
2010			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2011			i40e_enable_wb_on_itr(vsi, q_vector);
2012		}
2013		return budget;
2014	}
2015
2016	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2017		q_vector->arm_wb_state = false;
2018
2019	/* Work is done so exit the polling mode and re-enable the interrupt */
2020	napi_complete_done(napi, work_done);
2021	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 
2022		i40e_update_enable_itr(vsi, q_vector);
2023	} else { /* Legacy mode */
2024		i40e_irq_dynamic_enable_icr0(vsi->back, false);
2025	}
2026	return 0;
2027}
2028
2029/**
2030 * i40e_atr - Add a Flow Director ATR filter
2031 * @tx_ring:  ring to add programming descriptor to
2032 * @skb:      send buffer
2033 * @tx_flags: send tx flags
2034 **/
2035static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2036		     u32 tx_flags)
2037{
2038	struct i40e_filter_program_desc *fdir_desc;
2039	struct i40e_pf *pf = tx_ring->vsi->back;
2040	union {
2041		unsigned char *network;
2042		struct iphdr *ipv4;
2043		struct ipv6hdr *ipv6;
2044	} hdr;
2045	struct tcphdr *th;
2046	unsigned int hlen;
2047	u32 flex_ptype, dtype_cmd;
2048	int l4_proto;
2049	u16 i;
2050
2051	/* make sure ATR is enabled */
2052	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2053		return;
2054
2055	if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2056		return;
2057
2058	/* if sampling is disabled do nothing */
2059	if (!tx_ring->atr_sample_rate)
2060		return;
2061
2062	/* Currently only IPv4/IPv6 with TCP is supported */
2063	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2064		return;
2065
2066	/* snag network header to get L4 type and address */
2067	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2068		      skb_inner_network_header(skb) : skb_network_header(skb);
2069
2070	/* Note: tx_flags gets modified to reflect inner protocols in
2071	 * tx_enable_csum function if encap is enabled.
2072	 */
2073	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2074		/* access ihl as u8 to avoid unaligned access on ia64 */
2075		hlen = (hdr.network[0] & 0x0F) << 2;
2076		l4_proto = hdr.ipv4->protocol;
2077	} else {
2078		hlen = hdr.network - skb->data;
2079		l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
2080		hlen -= hdr.network - skb->data;
 
 
 
 
 
 
2081	}
2082
2083	if (l4_proto != IPPROTO_TCP)
2084		return;
2085
2086	th = (struct tcphdr *)(hdr.network + hlen);
2087
2088	/* Due to lack of space, no more new filters can be programmed */
2089	if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2090		return;
2091	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2092	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2093		/* HW ATR eviction will take care of removing filters on FIN
2094		 * and RST packets.
2095		 */
2096		if (th->fin || th->rst)
2097			return;
2098	}
2099
2100	tx_ring->atr_count++;
2101
2102	/* sample on all syn/fin/rst packets or once every atr sample rate */
2103	if (!th->fin &&
2104	    !th->syn &&
2105	    !th->rst &&
2106	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2107		return;
2108
2109	tx_ring->atr_count = 0;
2110
2111	/* grab the next descriptor */
2112	i = tx_ring->next_to_use;
2113	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2114
2115	i++;
2116	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2117
2118	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2119		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2120	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2121		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2122		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2123		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2124		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2125
2126	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2127
2128	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2129
2130	dtype_cmd |= (th->fin || th->rst) ?
2131		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2132		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2133		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2134		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2135
2136	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2137		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2138
2139	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2140		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2141
2142	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2143	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2144		dtype_cmd |=
2145			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2146			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2147			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2148	else
2149		dtype_cmd |=
2150			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2151			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2152			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2153
2154	if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2155	    (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2156		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2157
2158	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2159	fdir_desc->rsvd = cpu_to_le32(0);
2160	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2161	fdir_desc->fd_id = cpu_to_le32(0);
2162}
2163
2164/**
2165 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2166 * @skb:     send buffer
2167 * @tx_ring: ring to send buffer on
2168 * @flags:   the tx flags to be set
2169 *
2170 * Checks the skb and set up correspondingly several generic transmit flags
2171 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2172 *
2173 * Returns error code indicate the frame should be dropped upon error and the
2174 * otherwise  returns 0 to indicate the flags has been set properly.
2175 **/
2176#ifdef I40E_FCOE
2177inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2178				      struct i40e_ring *tx_ring,
2179				      u32 *flags)
2180#else
2181static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2182					     struct i40e_ring *tx_ring,
2183					     u32 *flags)
2184#endif
2185{
2186	__be16 protocol = skb->protocol;
2187	u32  tx_flags = 0;
2188
2189	if (protocol == htons(ETH_P_8021Q) &&
2190	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2191		/* When HW VLAN acceleration is turned off by the user the
2192		 * stack sets the protocol to 8021q so that the driver
2193		 * can take any steps required to support the SW only
2194		 * VLAN handling.  In our case the driver doesn't need
2195		 * to take any further steps so just set the protocol
2196		 * to the encapsulated ethertype.
2197		 */
2198		skb->protocol = vlan_get_protocol(skb);
2199		goto out;
2200	}
2201
2202	/* if we have a HW VLAN tag being added, default to the HW one */
2203	if (skb_vlan_tag_present(skb)) {
2204		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2205		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2206	/* else if it is a SW VLAN, check the next protocol and store the tag */
2207	} else if (protocol == htons(ETH_P_8021Q)) {
2208		struct vlan_hdr *vhdr, _vhdr;
2209
2210		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2211		if (!vhdr)
2212			return -EINVAL;
2213
2214		protocol = vhdr->h_vlan_encapsulated_proto;
2215		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2216		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2217	}
2218
2219	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2220		goto out;
2221
2222	/* Insert 802.1p priority into VLAN header */
2223	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2224	    (skb->priority != TC_PRIO_CONTROL)) {
2225		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2226		tx_flags |= (skb->priority & 0x7) <<
2227				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2228		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2229			struct vlan_ethhdr *vhdr;
2230			int rc;
2231
2232			rc = skb_cow_head(skb, 0);
2233			if (rc < 0)
2234				return rc;
2235			vhdr = (struct vlan_ethhdr *)skb->data;
2236			vhdr->h_vlan_TCI = htons(tx_flags >>
2237						 I40E_TX_FLAGS_VLAN_SHIFT);
2238		} else {
2239			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2240		}
2241	}
2242
2243out:
2244	*flags = tx_flags;
2245	return 0;
2246}
2247
2248/**
2249 * i40e_tso - set up the tso context descriptor
2250 * @tx_ring:  ptr to the ring to send
2251 * @skb:      ptr to the skb we're sending
2252 * @hdr_len:  ptr to the size of the packet header
2253 * @cd_type_cmd_tso_mss: Quad Word 1
2254 *
2255 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2256 **/
2257static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2258		    u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
2259{
 
2260	u64 cd_cmd, cd_tso_len, cd_mss;
 
2261	union {
2262		struct iphdr *v4;
2263		struct ipv6hdr *v6;
2264		unsigned char *hdr;
2265	} ip;
2266	union {
2267		struct tcphdr *tcp;
2268		struct udphdr *udp;
2269		unsigned char *hdr;
2270	} l4;
2271	u32 paylen, l4_offset;
 
2272	int err;
2273
2274	if (skb->ip_summed != CHECKSUM_PARTIAL)
2275		return 0;
2276
2277	if (!skb_is_gso(skb))
2278		return 0;
2279
2280	err = skb_cow_head(skb, 0);
2281	if (err < 0)
2282		return err;
2283
2284	ip.hdr = skb_network_header(skb);
2285	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
2286
2287	/* initialize outer IP header fields */
2288	if (ip.v4->version == 4) {
2289		ip.v4->tot_len = 0;
2290		ip.v4->check = 0;
 
 
2291	} else {
2292		ip.v6->payload_len = 0;
 
2293	}
2294
2295	if (skb_shinfo(skb)->gso_type & (SKB_GSO_UDP_TUNNEL | SKB_GSO_GRE |
 
 
 
 
2296					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2297		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) {
 
 
 
2298			/* determine offset of outer transport header */
2299			l4_offset = l4.hdr - skb->data;
2300
2301			/* remove payload length from outer checksum */
2302			paylen = (__force u16)l4.udp->check;
2303			paylen += ntohs(1) * (u16)~(skb->len - l4_offset);
2304			l4.udp->check = ~csum_fold((__force __wsum)paylen);
2305		}
2306
2307		/* reset pointers to inner headers */
2308		ip.hdr = skb_inner_network_header(skb);
2309		l4.hdr = skb_inner_transport_header(skb);
2310
2311		/* initialize inner IP header fields */
2312		if (ip.v4->version == 4) {
2313			ip.v4->tot_len = 0;
2314			ip.v4->check = 0;
2315		} else {
2316			ip.v6->payload_len = 0;
2317		}
2318	}
2319
2320	/* determine offset of inner transport header */
2321	l4_offset = l4.hdr - skb->data;
2322
2323	/* remove payload length from inner checksum */
2324	paylen = (__force u16)l4.tcp->check;
2325	paylen += ntohs(1) * (u16)~(skb->len - l4_offset);
2326	l4.tcp->check = ~csum_fold((__force __wsum)paylen);
 
 
 
 
 
 
 
 
2327
2328	/* compute length of segmentation header */
2329	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
 
 
 
 
2330
2331	/* find the field values */
2332	cd_cmd = I40E_TX_CTX_DESC_TSO;
2333	cd_tso_len = skb->len - *hdr_len;
2334	cd_mss = skb_shinfo(skb)->gso_size;
2335	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2336				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2337				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2338	return 1;
2339}
2340
2341/**
2342 * i40e_tsyn - set up the tsyn context descriptor
2343 * @tx_ring:  ptr to the ring to send
2344 * @skb:      ptr to the skb we're sending
2345 * @tx_flags: the collected send information
2346 * @cd_type_cmd_tso_mss: Quad Word 1
2347 *
2348 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2349 **/
2350static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2351		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2352{
2353	struct i40e_pf *pf;
2354
2355	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2356		return 0;
2357
2358	/* Tx timestamps cannot be sampled when doing TSO */
2359	if (tx_flags & I40E_TX_FLAGS_TSO)
2360		return 0;
2361
2362	/* only timestamp the outbound packet if the user has requested it and
2363	 * we are not already transmitting a packet to be timestamped
2364	 */
2365	pf = i40e_netdev_to_pf(tx_ring->netdev);
2366	if (!(pf->flags & I40E_FLAG_PTP))
2367		return 0;
2368
2369	if (pf->ptp_tx &&
2370	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2371		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 
2372		pf->ptp_tx_skb = skb_get(skb);
2373	} else {
 
2374		return 0;
2375	}
2376
2377	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2378				I40E_TXD_CTX_QW1_CMD_SHIFT;
2379
2380	return 1;
2381}
2382
2383/**
2384 * i40e_tx_enable_csum - Enable Tx checksum offloads
2385 * @skb: send buffer
2386 * @tx_flags: pointer to Tx flags currently set
2387 * @td_cmd: Tx descriptor command bits to set
2388 * @td_offset: Tx descriptor header offsets to set
2389 * @tx_ring: Tx descriptor ring
2390 * @cd_tunneling: ptr to context desc bits
2391 **/
2392static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2393			       u32 *td_cmd, u32 *td_offset,
2394			       struct i40e_ring *tx_ring,
2395			       u32 *cd_tunneling)
2396{
2397	union {
2398		struct iphdr *v4;
2399		struct ipv6hdr *v6;
2400		unsigned char *hdr;
2401	} ip;
2402	union {
2403		struct tcphdr *tcp;
2404		struct udphdr *udp;
2405		unsigned char *hdr;
2406	} l4;
2407	unsigned char *exthdr;
2408	u32 offset, cmd = 0, tunnel = 0;
2409	__be16 frag_off;
 
2410	u8 l4_proto = 0;
2411
2412	if (skb->ip_summed != CHECKSUM_PARTIAL)
2413		return 0;
2414
2415	ip.hdr = skb_network_header(skb);
2416	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2417
2418	/* compute outer L2 header size */
2419	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2420
2421	if (skb->encapsulation) {
 
2422		/* define outer network header type */
2423		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2424			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2425				  I40E_TX_CTX_EXT_IP_IPV4 :
2426				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2427
2428			l4_proto = ip.v4->protocol;
2429		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
 
 
2430			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2431
2432			exthdr = ip.hdr + sizeof(*ip.v6);
2433			l4_proto = ip.v6->nexthdr;
2434			if (l4.hdr != exthdr)
2435				ipv6_skip_exthdr(skb, exthdr - skb->data,
2436						 &l4_proto, &frag_off);
 
2437		}
2438
2439		/* compute outer L3 header size */
2440		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2441			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2442
2443		/* switch IP header pointer from outer to inner header */
2444		ip.hdr = skb_inner_network_header(skb);
2445
2446		/* define outer transport */
2447		switch (l4_proto) {
2448		case IPPROTO_UDP:
2449			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2450			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2451			break;
2452		case IPPROTO_GRE:
2453			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2454			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2455			break;
 
 
 
 
 
2456		default:
2457			if (*tx_flags & I40E_TX_FLAGS_TSO)
2458				return -1;
2459
2460			skb_checksum_help(skb);
2461			return 0;
2462		}
2463
 
 
 
 
 
 
 
2464		/* compute tunnel header size */
2465		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2466			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2467
2468		/* indicate if we need to offload outer UDP header */
2469		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
 
2470		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2471			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2472
2473		/* record tunnel offload values */
2474		*cd_tunneling |= tunnel;
2475
2476		/* switch L4 header pointer from outer to inner */
2477		l4.hdr = skb_inner_transport_header(skb);
2478		l4_proto = 0;
2479
2480		/* reset type as we transition from outer to inner headers */
2481		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2482		if (ip.v4->version == 4)
2483			*tx_flags |= I40E_TX_FLAGS_IPV4;
2484		if (ip.v6->version == 6)
2485			*tx_flags |= I40E_TX_FLAGS_IPV6;
2486	}
2487
2488	/* Enable IP checksum offloads */
2489	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2490		l4_proto = ip.v4->protocol;
2491		/* the stack computes the IP header already, the only time we
2492		 * need the hardware to recompute it is in the case of TSO.
2493		 */
2494		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2495		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2496		       I40E_TX_DESC_CMD_IIPT_IPV4;
2497	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2498		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2499
2500		exthdr = ip.hdr + sizeof(*ip.v6);
2501		l4_proto = ip.v6->nexthdr;
2502		if (l4.hdr != exthdr)
2503			ipv6_skip_exthdr(skb, exthdr - skb->data,
2504					 &l4_proto, &frag_off);
2505	}
2506
2507	/* compute inner L3 header size */
2508	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2509
2510	/* Enable L4 checksum offloads */
2511	switch (l4_proto) {
2512	case IPPROTO_TCP:
2513		/* enable checksum offloads */
2514		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2515		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2516		break;
2517	case IPPROTO_SCTP:
2518		/* enable SCTP checksum offload */
2519		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2520		offset |= (sizeof(struct sctphdr) >> 2) <<
2521			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2522		break;
2523	case IPPROTO_UDP:
2524		/* enable UDP checksum offload */
2525		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2526		offset |= (sizeof(struct udphdr) >> 2) <<
2527			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2528		break;
2529	default:
2530		if (*tx_flags & I40E_TX_FLAGS_TSO)
2531			return -1;
2532		skb_checksum_help(skb);
2533		return 0;
2534	}
2535
2536	*td_cmd |= cmd;
2537	*td_offset |= offset;
2538
2539	return 1;
2540}
2541
2542/**
2543 * i40e_create_tx_ctx Build the Tx context descriptor
2544 * @tx_ring:  ring to create the descriptor on
2545 * @cd_type_cmd_tso_mss: Quad Word 1
2546 * @cd_tunneling: Quad Word 0 - bits 0-31
2547 * @cd_l2tag2: Quad Word 0 - bits 32-63
2548 **/
2549static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2550			       const u64 cd_type_cmd_tso_mss,
2551			       const u32 cd_tunneling, const u32 cd_l2tag2)
2552{
2553	struct i40e_tx_context_desc *context_desc;
2554	int i = tx_ring->next_to_use;
2555
2556	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2557	    !cd_tunneling && !cd_l2tag2)
2558		return;
2559
2560	/* grab the next descriptor */
2561	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2562
2563	i++;
2564	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2565
2566	/* cpu_to_le32 and assign to struct fields */
2567	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2568	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2569	context_desc->rsvd = cpu_to_le16(0);
2570	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2571}
2572
2573/**
2574 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2575 * @tx_ring: the ring to be checked
2576 * @size:    the size buffer we want to assure is available
2577 *
2578 * Returns -EBUSY if a stop is needed, else 0
2579 **/
2580int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2581{
2582	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2583	/* Memory barrier before checking head and tail */
2584	smp_mb();
2585
 
 
2586	/* Check again in a case another CPU has just made room available. */
2587	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2588		return -EBUSY;
2589
2590	/* A reprieve! - use start_queue because it doesn't call schedule */
2591	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2592	++tx_ring->tx_stats.restart_queue;
2593	return 0;
2594}
2595
2596/**
2597 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2598 * @skb:      send buffer
2599 *
2600 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2601 * and so we need to figure out the cases where we need to linearize the skb.
2602 *
2603 * For TSO we need to count the TSO header and segment payload separately.
2604 * As such we need to check cases where we have 7 fragments or more as we
2605 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2606 * the segment payload in the first descriptor, and another 7 for the
2607 * fragments.
2608 **/
2609bool __i40e_chk_linearize(struct sk_buff *skb)
2610{
2611	const struct skb_frag_struct *frag, *stale;
2612	int nr_frags, sum;
2613
2614	/* no need to check if number of frags is less than 7 */
2615	nr_frags = skb_shinfo(skb)->nr_frags;
2616	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2617		return false;
2618
2619	/* We need to walk through the list and validate that each group
2620	 * of 6 fragments totals at least gso_size.  However we don't need
2621	 * to perform such validation on the last 6 since the last 6 cannot
2622	 * inherit any data from a descriptor after them.
2623	 */
2624	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2625	frag = &skb_shinfo(skb)->frags[0];
2626
2627	/* Initialize size to the negative value of gso_size minus 1.  We
2628	 * use this as the worst case scenerio in which the frag ahead
2629	 * of us only provides one byte which is why we are limited to 6
2630	 * descriptors for a single transmit as the header and previous
2631	 * fragment are already consuming 2 descriptors.
2632	 */
2633	sum = 1 - skb_shinfo(skb)->gso_size;
2634
2635	/* Add size of frags 0 through 4 to create our initial sum */
2636	sum += skb_frag_size(frag++);
2637	sum += skb_frag_size(frag++);
2638	sum += skb_frag_size(frag++);
2639	sum += skb_frag_size(frag++);
2640	sum += skb_frag_size(frag++);
2641
2642	/* Walk through fragments adding latest fragment, testing it, and
2643	 * then removing stale fragments from the sum.
2644	 */
2645	stale = &skb_shinfo(skb)->frags[0];
2646	for (;;) {
 
2647		sum += skb_frag_size(frag++);
2648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2649		/* if sum is negative we failed to make sufficient progress */
2650		if (sum < 0)
2651			return true;
2652
2653		/* use pre-decrement to avoid processing last fragment */
2654		if (!--nr_frags)
2655			break;
2656
2657		sum -= skb_frag_size(stale++);
2658	}
2659
2660	return false;
2661}
2662
2663/**
2664 * i40e_tx_map - Build the Tx descriptor
2665 * @tx_ring:  ring to send buffer on
2666 * @skb:      send buffer
2667 * @first:    first buffer info buffer to use
2668 * @tx_flags: collected send information
2669 * @hdr_len:  size of the packet header
2670 * @td_cmd:   the command field in the descriptor
2671 * @td_offset: offset for checksum or crc
 
 
2672 **/
2673#ifdef I40E_FCOE
2674inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2675			struct i40e_tx_buffer *first, u32 tx_flags,
2676			const u8 hdr_len, u32 td_cmd, u32 td_offset)
2677#else
2678static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2679			       struct i40e_tx_buffer *first, u32 tx_flags,
2680			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2681#endif
2682{
2683	unsigned int data_len = skb->data_len;
2684	unsigned int size = skb_headlen(skb);
2685	struct skb_frag_struct *frag;
2686	struct i40e_tx_buffer *tx_bi;
2687	struct i40e_tx_desc *tx_desc;
2688	u16 i = tx_ring->next_to_use;
2689	u32 td_tag = 0;
2690	dma_addr_t dma;
2691	u16 gso_segs;
2692	u16 desc_count = 0;
2693	bool tail_bump = true;
2694	bool do_rs = false;
2695
2696	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2697		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2698		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2699			 I40E_TX_FLAGS_VLAN_SHIFT;
2700	}
2701
2702	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2703		gso_segs = skb_shinfo(skb)->gso_segs;
2704	else
2705		gso_segs = 1;
2706
2707	/* multiply data chunks by size of headers */
2708	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2709	first->gso_segs = gso_segs;
2710	first->skb = skb;
2711	first->tx_flags = tx_flags;
2712
2713	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2714
2715	tx_desc = I40E_TX_DESC(tx_ring, i);
2716	tx_bi = first;
2717
2718	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 
 
2719		if (dma_mapping_error(tx_ring->dev, dma))
2720			goto dma_error;
2721
2722		/* record length, and DMA address */
2723		dma_unmap_len_set(tx_bi, len, size);
2724		dma_unmap_addr_set(tx_bi, dma, dma);
2725
 
 
2726		tx_desc->buffer_addr = cpu_to_le64(dma);
2727
2728		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2729			tx_desc->cmd_type_offset_bsz =
2730				build_ctob(td_cmd, td_offset,
2731					   I40E_MAX_DATA_PER_TXD, td_tag);
2732
2733			tx_desc++;
2734			i++;
2735			desc_count++;
2736
2737			if (i == tx_ring->count) {
2738				tx_desc = I40E_TX_DESC(tx_ring, 0);
2739				i = 0;
2740			}
2741
2742			dma += I40E_MAX_DATA_PER_TXD;
2743			size -= I40E_MAX_DATA_PER_TXD;
2744
 
2745			tx_desc->buffer_addr = cpu_to_le64(dma);
2746		}
2747
2748		if (likely(!data_len))
2749			break;
2750
2751		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2752							  size, td_tag);
2753
2754		tx_desc++;
2755		i++;
2756		desc_count++;
2757
2758		if (i == tx_ring->count) {
2759			tx_desc = I40E_TX_DESC(tx_ring, 0);
2760			i = 0;
2761		}
2762
2763		size = skb_frag_size(frag);
2764		data_len -= size;
2765
2766		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2767				       DMA_TO_DEVICE);
2768
2769		tx_bi = &tx_ring->tx_bi[i];
2770	}
2771
2772	/* set next_to_watch value indicating a packet is present */
2773	first->next_to_watch = tx_desc;
2774
2775	i++;
2776	if (i == tx_ring->count)
2777		i = 0;
2778
2779	tx_ring->next_to_use = i;
2780
2781	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2782						 tx_ring->queue_index),
2783						 first->bytecount);
2784	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2785
2786	/* Algorithm to optimize tail and RS bit setting:
2787	 * if xmit_more is supported
2788	 *	if xmit_more is true
2789	 *		do not update tail and do not mark RS bit.
2790	 *	if xmit_more is false and last xmit_more was false
2791	 *		if every packet spanned less than 4 desc
2792	 *			then set RS bit on 4th packet and update tail
2793	 *			on every packet
2794	 *		else
2795	 *			update tail and set RS bit on every packet.
2796	 *	if xmit_more is false and last_xmit_more was true
2797	 *		update tail and set RS bit.
2798	 *
2799	 * Optimization: wmb to be issued only in case of tail update.
2800	 * Also optimize the Descriptor WB path for RS bit with the same
2801	 * algorithm.
2802	 *
2803	 * Note: If there are less than 4 packets
2804	 * pending and interrupts were disabled the service task will
2805	 * trigger a force WB.
2806	 */
2807	if (skb->xmit_more  &&
2808	    !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2809						    tx_ring->queue_index))) {
2810		tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2811		tail_bump = false;
2812	} else if (!skb->xmit_more &&
2813		   !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2814						       tx_ring->queue_index)) &&
2815		   (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2816		   (tx_ring->packet_stride < WB_STRIDE) &&
2817		   (desc_count < WB_STRIDE)) {
2818		tx_ring->packet_stride++;
2819	} else {
2820		tx_ring->packet_stride = 0;
2821		tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2822		do_rs = true;
2823	}
2824	if (do_rs)
2825		tx_ring->packet_stride = 0;
2826
2827	tx_desc->cmd_type_offset_bsz =
2828			build_ctob(td_cmd, td_offset, size, td_tag) |
2829			cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2830						  I40E_TX_DESC_CMD_EOP) <<
2831						  I40E_TXD_QW1_CMD_SHIFT);
 
 
 
 
 
 
 
 
 
 
2832
2833	/* notify HW of packet */
2834	if (!tail_bump)
2835		prefetchw(tx_desc + 1);
2836
2837	if (tail_bump) {
2838		/* Force memory writes to complete before letting h/w
2839		 * know there are new descriptors to fetch.  (Only
2840		 * applicable for weak-ordered memory model archs,
2841		 * such as IA-64).
2842		 */
2843		wmb();
2844		writel(i, tx_ring->tail);
2845	}
2846
2847	return;
2848
2849dma_error:
2850	dev_info(tx_ring->dev, "TX DMA map failed\n");
2851
2852	/* clear dma mappings for failed tx_bi map */
2853	for (;;) {
2854		tx_bi = &tx_ring->tx_bi[i];
2855		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2856		if (tx_bi == first)
2857			break;
2858		if (i == 0)
2859			i = tx_ring->count;
2860		i--;
2861	}
2862
2863	tx_ring->next_to_use = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864}
2865
2866/**
2867 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2868 * @skb:     send buffer
2869 * @tx_ring: ring to send buffer on
2870 *
2871 * Returns NETDEV_TX_OK if sent, else an error code
2872 **/
2873static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2874					struct i40e_ring *tx_ring)
2875{
2876	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2877	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2878	struct i40e_tx_buffer *first;
2879	u32 td_offset = 0;
2880	u32 tx_flags = 0;
2881	__be16 protocol;
2882	u32 td_cmd = 0;
2883	u8 hdr_len = 0;
2884	int tso, count;
2885	int tsyn;
2886
2887	/* prefetch the data, we'll need it later */
2888	prefetch(skb->data);
2889
 
 
2890	count = i40e_xmit_descriptor_count(skb);
2891	if (i40e_chk_linearize(skb, count)) {
2892		if (__skb_linearize(skb))
2893			goto out_drop;
2894		count = TXD_USE_COUNT(skb->len);
 
 
2895		tx_ring->tx_stats.tx_linearize++;
2896	}
2897
2898	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2899	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2900	 *       + 4 desc gap to avoid the cache line where head is,
2901	 *       + 1 desc for context descriptor,
2902	 * otherwise try next time
2903	 */
2904	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2905		tx_ring->tx_stats.tx_busy++;
2906		return NETDEV_TX_BUSY;
2907	}
2908
 
 
 
 
 
 
2909	/* prepare the xmit flags */
2910	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2911		goto out_drop;
2912
2913	/* obtain protocol of skb */
2914	protocol = vlan_get_protocol(skb);
2915
2916	/* record the location of the first descriptor for this packet */
2917	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2918
2919	/* setup IPv4/IPv6 offloads */
2920	if (protocol == htons(ETH_P_IP))
2921		tx_flags |= I40E_TX_FLAGS_IPV4;
2922	else if (protocol == htons(ETH_P_IPV6))
2923		tx_flags |= I40E_TX_FLAGS_IPV6;
2924
2925	tso = i40e_tso(tx_ring, skb, &hdr_len, &cd_type_cmd_tso_mss);
2926
2927	if (tso < 0)
2928		goto out_drop;
2929	else if (tso)
2930		tx_flags |= I40E_TX_FLAGS_TSO;
2931
2932	/* Always offload the checksum, since it's in the data descriptor */
2933	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2934				  tx_ring, &cd_tunneling);
2935	if (tso < 0)
2936		goto out_drop;
2937
2938	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2939
2940	if (tsyn)
2941		tx_flags |= I40E_TX_FLAGS_TSYN;
2942
2943	skb_tx_timestamp(skb);
2944
2945	/* always enable CRC insertion offload */
2946	td_cmd |= I40E_TX_DESC_CMD_ICRC;
2947
2948	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2949			   cd_tunneling, cd_l2tag2);
2950
2951	/* Add Flow Director ATR if it's enabled.
2952	 *
2953	 * NOTE: this must always be directly before the data descriptor.
2954	 */
2955	i40e_atr(tx_ring, skb, tx_flags);
2956
2957	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2958		    td_cmd, td_offset);
 
2959
2960	return NETDEV_TX_OK;
2961
2962out_drop:
2963	dev_kfree_skb_any(skb);
 
 
 
 
 
 
 
 
 
 
 
2964	return NETDEV_TX_OK;
2965}
2966
2967/**
2968 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2969 * @skb:    send buffer
2970 * @netdev: network interface device structure
2971 *
2972 * Returns NETDEV_TX_OK if sent, else an error code
2973 **/
2974netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2975{
2976	struct i40e_netdev_priv *np = netdev_priv(netdev);
2977	struct i40e_vsi *vsi = np->vsi;
2978	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2979
2980	/* hardware can't handle really short frames, hardware padding works
2981	 * beyond this point
2982	 */
2983	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2984		return NETDEV_TX_OK;
2985
2986	return i40e_xmit_frame_ring(skb, tx_ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2987}