Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/bpf_trace.h>
5#include <linux/prefetch.h>
6#include <linux/sctp.h>
7#include <net/mpls.h>
8#include <net/xdp.h>
9#include "i40e_txrx_common.h"
10#include "i40e_trace.h"
11#include "i40e_xsk.h"
12
13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14/**
15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
16 * @tx_ring: Tx ring to send buffer on
17 * @fdata: Flow director filter data
18 * @add: Indicate if we are adding a rule or deleting one
19 *
20 **/
21static void i40e_fdir(struct i40e_ring *tx_ring,
22 struct i40e_fdir_filter *fdata, bool add)
23{
24 struct i40e_filter_program_desc *fdir_desc;
25 struct i40e_pf *pf = tx_ring->vsi->back;
26 u32 flex_ptype, dtype_cmd;
27 u16 i;
28
29 /* grab the next descriptor */
30 i = tx_ring->next_to_use;
31 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32
33 i++;
34 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35
36 flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
37
38 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
39 fdata->flex_off);
40
41 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
42
43 /* Use LAN VSI Id if not programmed by user */
44 flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK,
45 fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id);
46
47 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
48
49 dtype_cmd |= add ?
50 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
51 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
52 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
53 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
54
55 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
56
57 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
58 fdata->fd_status);
59
60 if (fdata->cnt_index) {
61 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
62 dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
63 fdata->cnt_index);
64 }
65
66 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
67 fdir_desc->rsvd = cpu_to_le32(0);
68 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
69 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
70}
71
72#define I40E_FD_CLEAN_DELAY 10
73/**
74 * i40e_program_fdir_filter - Program a Flow Director filter
75 * @fdir_data: Packet data that will be filter parameters
76 * @raw_packet: the pre-allocated packet buffer for FDir
77 * @pf: The PF pointer
78 * @add: True for add/update, False for remove
79 **/
80static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
81 u8 *raw_packet, struct i40e_pf *pf,
82 bool add)
83{
84 struct i40e_tx_buffer *tx_buf, *first;
85 struct i40e_tx_desc *tx_desc;
86 struct i40e_ring *tx_ring;
87 struct i40e_vsi *vsi;
88 struct device *dev;
89 dma_addr_t dma;
90 u32 td_cmd = 0;
91 u16 i;
92
93 /* find existing FDIR VSI */
94 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
95 if (!vsi)
96 return -ENOENT;
97
98 tx_ring = vsi->tx_rings[0];
99 dev = tx_ring->dev;
100
101 /* we need two descriptors to add/del a filter and we can wait */
102 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
103 if (!i)
104 return -EAGAIN;
105 msleep_interruptible(1);
106 }
107
108 dma = dma_map_single(dev, raw_packet,
109 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
110 if (dma_mapping_error(dev, dma))
111 goto dma_fail;
112
113 /* grab the next descriptor */
114 i = tx_ring->next_to_use;
115 first = &tx_ring->tx_bi[i];
116 i40e_fdir(tx_ring, fdir_data, add);
117
118 /* Now program a dummy descriptor */
119 i = tx_ring->next_to_use;
120 tx_desc = I40E_TX_DESC(tx_ring, i);
121 tx_buf = &tx_ring->tx_bi[i];
122
123 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
124
125 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
126
127 /* record length, and DMA address */
128 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
129 dma_unmap_addr_set(tx_buf, dma, dma);
130
131 tx_desc->buffer_addr = cpu_to_le64(dma);
132 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
133
134 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
135 tx_buf->raw_buf = (void *)raw_packet;
136
137 tx_desc->cmd_type_offset_bsz =
138 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
139
140 /* Force memory writes to complete before letting h/w
141 * know there are new descriptors to fetch.
142 */
143 wmb();
144
145 /* Mark the data descriptor to be watched */
146 first->next_to_watch = tx_desc;
147
148 writel(tx_ring->next_to_use, tx_ring->tail);
149 return 0;
150
151dma_fail:
152 return -1;
153}
154
155/**
156 * i40e_create_dummy_packet - Constructs dummy packet for HW
157 * @dummy_packet: preallocated space for dummy packet
158 * @ipv4: is layer 3 packet of version 4 or 6
159 * @l4proto: next level protocol used in data portion of l3
160 * @data: filter data
161 *
162 * Returns address of layer 4 protocol dummy packet.
163 **/
164static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
165 struct i40e_fdir_filter *data)
166{
167 bool is_vlan = !!data->vlan_tag;
168 struct vlan_hdr vlan = {};
169 struct ipv6hdr ipv6 = {};
170 struct ethhdr eth = {};
171 struct iphdr ip = {};
172 u8 *tmp;
173
174 if (ipv4) {
175 eth.h_proto = cpu_to_be16(ETH_P_IP);
176 ip.protocol = l4proto;
177 ip.version = 0x4;
178 ip.ihl = 0x5;
179
180 ip.daddr = data->dst_ip;
181 ip.saddr = data->src_ip;
182 } else {
183 eth.h_proto = cpu_to_be16(ETH_P_IPV6);
184 ipv6.nexthdr = l4proto;
185 ipv6.version = 0x6;
186
187 memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
188 sizeof(__be32) * 4);
189 memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
190 sizeof(__be32) * 4);
191 }
192
193 if (is_vlan) {
194 vlan.h_vlan_TCI = data->vlan_tag;
195 vlan.h_vlan_encapsulated_proto = eth.h_proto;
196 eth.h_proto = data->vlan_etype;
197 }
198
199 tmp = dummy_packet;
200 memcpy(tmp, ð, sizeof(eth));
201 tmp += sizeof(eth);
202
203 if (is_vlan) {
204 memcpy(tmp, &vlan, sizeof(vlan));
205 tmp += sizeof(vlan);
206 }
207
208 if (ipv4) {
209 memcpy(tmp, &ip, sizeof(ip));
210 tmp += sizeof(ip);
211 } else {
212 memcpy(tmp, &ipv6, sizeof(ipv6));
213 tmp += sizeof(ipv6);
214 }
215
216 return tmp;
217}
218
219/**
220 * i40e_create_dummy_udp_packet - helper function to create UDP packet
221 * @raw_packet: preallocated space for dummy packet
222 * @ipv4: is layer 3 packet of version 4 or 6
223 * @l4proto: next level protocol used in data portion of l3
224 * @data: filter data
225 *
226 * Helper function to populate udp fields.
227 **/
228static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
229 struct i40e_fdir_filter *data)
230{
231 struct udphdr *udp;
232 u8 *tmp;
233
234 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
235 udp = (struct udphdr *)(tmp);
236 udp->dest = data->dst_port;
237 udp->source = data->src_port;
238}
239
240/**
241 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
242 * @raw_packet: preallocated space for dummy packet
243 * @ipv4: is layer 3 packet of version 4 or 6
244 * @l4proto: next level protocol used in data portion of l3
245 * @data: filter data
246 *
247 * Helper function to populate tcp fields.
248 **/
249static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
250 struct i40e_fdir_filter *data)
251{
252 struct tcphdr *tcp;
253 u8 *tmp;
254 /* Dummy tcp packet */
255 static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
256 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
257
258 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
259
260 tcp = (struct tcphdr *)tmp;
261 memcpy(tcp, tcp_packet, sizeof(tcp_packet));
262 tcp->dest = data->dst_port;
263 tcp->source = data->src_port;
264}
265
266/**
267 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
268 * @raw_packet: preallocated space for dummy packet
269 * @ipv4: is layer 3 packet of version 4 or 6
270 * @l4proto: next level protocol used in data portion of l3
271 * @data: filter data
272 *
273 * Helper function to populate sctp fields.
274 **/
275static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
276 u8 l4proto,
277 struct i40e_fdir_filter *data)
278{
279 struct sctphdr *sctp;
280 u8 *tmp;
281
282 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
283
284 sctp = (struct sctphdr *)tmp;
285 sctp->dest = data->dst_port;
286 sctp->source = data->src_port;
287}
288
289/**
290 * i40e_prepare_fdir_filter - Prepare and program fdir filter
291 * @pf: physical function to attach filter to
292 * @fd_data: filter data
293 * @add: add or delete filter
294 * @packet_addr: address of dummy packet, used in filtering
295 * @payload_offset: offset from dummy packet address to user defined data
296 * @pctype: Packet type for which filter is used
297 *
298 * Helper function to offset data of dummy packet, program it and
299 * handle errors.
300 **/
301static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
302 struct i40e_fdir_filter *fd_data,
303 bool add, char *packet_addr,
304 int payload_offset, u8 pctype)
305{
306 int ret;
307
308 if (fd_data->flex_filter) {
309 u8 *payload;
310 __be16 pattern = fd_data->flex_word;
311 u16 off = fd_data->flex_offset;
312
313 payload = packet_addr + payload_offset;
314
315 /* If user provided vlan, offset payload by vlan header length */
316 if (!!fd_data->vlan_tag)
317 payload += VLAN_HLEN;
318
319 *((__force __be16 *)(payload + off)) = pattern;
320 }
321
322 fd_data->pctype = pctype;
323 ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
324 if (ret) {
325 dev_info(&pf->pdev->dev,
326 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
327 fd_data->pctype, fd_data->fd_id, ret);
328 /* Free the packet buffer since it wasn't added to the ring */
329 return -EOPNOTSUPP;
330 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
331 if (add)
332 dev_info(&pf->pdev->dev,
333 "Filter OK for PCTYPE %d loc = %d\n",
334 fd_data->pctype, fd_data->fd_id);
335 else
336 dev_info(&pf->pdev->dev,
337 "Filter deleted for PCTYPE %d loc = %d\n",
338 fd_data->pctype, fd_data->fd_id);
339 }
340
341 return ret;
342}
343
344/**
345 * i40e_change_filter_num - Prepare and program fdir filter
346 * @ipv4: is layer 3 packet of version 4 or 6
347 * @add: add or delete filter
348 * @ipv4_filter_num: field to update
349 * @ipv6_filter_num: field to update
350 *
351 * Update filter number field for pf.
352 **/
353static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
354 u16 *ipv6_filter_num)
355{
356 if (add) {
357 if (ipv4)
358 (*ipv4_filter_num)++;
359 else
360 (*ipv6_filter_num)++;
361 } else {
362 if (ipv4)
363 (*ipv4_filter_num)--;
364 else
365 (*ipv6_filter_num)--;
366 }
367}
368
369#define I40E_UDPIP_DUMMY_PACKET_LEN 42
370#define I40E_UDPIP6_DUMMY_PACKET_LEN 62
371/**
372 * i40e_add_del_fdir_udp - Add/Remove UDP filters
373 * @vsi: pointer to the targeted VSI
374 * @fd_data: the flow director data required for the FDir descriptor
375 * @add: true adds a filter, false removes it
376 * @ipv4: true is v4, false is v6
377 *
378 * Returns 0 if the filters were successfully added or removed
379 **/
380static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
381 struct i40e_fdir_filter *fd_data,
382 bool add,
383 bool ipv4)
384{
385 struct i40e_pf *pf = vsi->back;
386 u8 *raw_packet;
387 int ret;
388
389 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
390 if (!raw_packet)
391 return -ENOMEM;
392
393 i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
394
395 if (ipv4)
396 ret = i40e_prepare_fdir_filter
397 (pf, fd_data, add, raw_packet,
398 I40E_UDPIP_DUMMY_PACKET_LEN,
399 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
400 else
401 ret = i40e_prepare_fdir_filter
402 (pf, fd_data, add, raw_packet,
403 I40E_UDPIP6_DUMMY_PACKET_LEN,
404 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
405
406 if (ret) {
407 kfree(raw_packet);
408 return ret;
409 }
410
411 i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
412 &pf->fd_udp6_filter_cnt);
413
414 return 0;
415}
416
417#define I40E_TCPIP_DUMMY_PACKET_LEN 54
418#define I40E_TCPIP6_DUMMY_PACKET_LEN 74
419/**
420 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
421 * @vsi: pointer to the targeted VSI
422 * @fd_data: the flow director data required for the FDir descriptor
423 * @add: true adds a filter, false removes it
424 * @ipv4: true is v4, false is v6
425 *
426 * Returns 0 if the filters were successfully added or removed
427 **/
428static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
429 struct i40e_fdir_filter *fd_data,
430 bool add,
431 bool ipv4)
432{
433 struct i40e_pf *pf = vsi->back;
434 u8 *raw_packet;
435 int ret;
436
437 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
438 if (!raw_packet)
439 return -ENOMEM;
440
441 i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
442 if (ipv4)
443 ret = i40e_prepare_fdir_filter
444 (pf, fd_data, add, raw_packet,
445 I40E_TCPIP_DUMMY_PACKET_LEN,
446 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
447 else
448 ret = i40e_prepare_fdir_filter
449 (pf, fd_data, add, raw_packet,
450 I40E_TCPIP6_DUMMY_PACKET_LEN,
451 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
452
453 if (ret) {
454 kfree(raw_packet);
455 return ret;
456 }
457
458 i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
459 &pf->fd_tcp6_filter_cnt);
460
461 if (add) {
462 if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
463 I40E_DEBUG_FD & pf->hw.debug_mask)
464 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
465 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
466 }
467 return 0;
468}
469
470#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
471#define I40E_SCTPIP6_DUMMY_PACKET_LEN 66
472/**
473 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
474 * a specific flow spec
475 * @vsi: pointer to the targeted VSI
476 * @fd_data: the flow director data required for the FDir descriptor
477 * @add: true adds a filter, false removes it
478 * @ipv4: true is v4, false is v6
479 *
480 * Returns 0 if the filters were successfully added or removed
481 **/
482static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
483 struct i40e_fdir_filter *fd_data,
484 bool add,
485 bool ipv4)
486{
487 struct i40e_pf *pf = vsi->back;
488 u8 *raw_packet;
489 int ret;
490
491 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
492 if (!raw_packet)
493 return -ENOMEM;
494
495 i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
496
497 if (ipv4)
498 ret = i40e_prepare_fdir_filter
499 (pf, fd_data, add, raw_packet,
500 I40E_SCTPIP_DUMMY_PACKET_LEN,
501 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
502 else
503 ret = i40e_prepare_fdir_filter
504 (pf, fd_data, add, raw_packet,
505 I40E_SCTPIP6_DUMMY_PACKET_LEN,
506 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
507
508 if (ret) {
509 kfree(raw_packet);
510 return ret;
511 }
512
513 i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
514 &pf->fd_sctp6_filter_cnt);
515
516 return 0;
517}
518
519#define I40E_IP_DUMMY_PACKET_LEN 34
520#define I40E_IP6_DUMMY_PACKET_LEN 54
521/**
522 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
523 * a specific flow spec
524 * @vsi: pointer to the targeted VSI
525 * @fd_data: the flow director data required for the FDir descriptor
526 * @add: true adds a filter, false removes it
527 * @ipv4: true is v4, false is v6
528 *
529 * Returns 0 if the filters were successfully added or removed
530 **/
531static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
532 struct i40e_fdir_filter *fd_data,
533 bool add,
534 bool ipv4)
535{
536 struct i40e_pf *pf = vsi->back;
537 int payload_offset;
538 u8 *raw_packet;
539 int iter_start;
540 int iter_end;
541 int ret;
542 int i;
543
544 if (ipv4) {
545 iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
546 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
547 } else {
548 iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
549 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
550 }
551
552 for (i = iter_start; i <= iter_end; i++) {
553 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
554 if (!raw_packet)
555 return -ENOMEM;
556
557 /* IPv6 no header option differs from IPv4 */
558 (void)i40e_create_dummy_packet
559 (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
560 fd_data);
561
562 payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
563 I40E_IP6_DUMMY_PACKET_LEN;
564 ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
565 payload_offset, i);
566 if (ret)
567 goto err;
568 }
569
570 i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
571 &pf->fd_ip6_filter_cnt);
572
573 return 0;
574err:
575 kfree(raw_packet);
576 return ret;
577}
578
579/**
580 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
581 * @vsi: pointer to the targeted VSI
582 * @input: filter to add or delete
583 * @add: true adds a filter, false removes it
584 *
585 **/
586int i40e_add_del_fdir(struct i40e_vsi *vsi,
587 struct i40e_fdir_filter *input, bool add)
588{
589 enum ip_ver { ipv6 = 0, ipv4 = 1 };
590 struct i40e_pf *pf = vsi->back;
591 int ret;
592
593 switch (input->flow_type & ~FLOW_EXT) {
594 case TCP_V4_FLOW:
595 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
596 break;
597 case UDP_V4_FLOW:
598 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
599 break;
600 case SCTP_V4_FLOW:
601 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
602 break;
603 case TCP_V6_FLOW:
604 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
605 break;
606 case UDP_V6_FLOW:
607 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
608 break;
609 case SCTP_V6_FLOW:
610 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
611 break;
612 case IP_USER_FLOW:
613 switch (input->ipl4_proto) {
614 case IPPROTO_TCP:
615 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
616 break;
617 case IPPROTO_UDP:
618 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
619 break;
620 case IPPROTO_SCTP:
621 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
622 break;
623 case IPPROTO_IP:
624 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
625 break;
626 default:
627 /* We cannot support masking based on protocol */
628 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
629 input->ipl4_proto);
630 return -EINVAL;
631 }
632 break;
633 case IPV6_USER_FLOW:
634 switch (input->ipl4_proto) {
635 case IPPROTO_TCP:
636 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
637 break;
638 case IPPROTO_UDP:
639 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
640 break;
641 case IPPROTO_SCTP:
642 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
643 break;
644 case IPPROTO_IP:
645 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
646 break;
647 default:
648 /* We cannot support masking based on protocol */
649 dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
650 input->ipl4_proto);
651 return -EINVAL;
652 }
653 break;
654 default:
655 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
656 input->flow_type);
657 return -EINVAL;
658 }
659
660 /* The buffer allocated here will be normally be freed by
661 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
662 * completion. In the event of an error adding the buffer to the FDIR
663 * ring, it will immediately be freed. It may also be freed by
664 * i40e_clean_tx_ring() when closing the VSI.
665 */
666 return ret;
667}
668
669/**
670 * i40e_fd_handle_status - check the Programming Status for FD
671 * @rx_ring: the Rx ring for this descriptor
672 * @qword0_raw: qword0
673 * @qword1: qword1 after le_to_cpu
674 * @prog_id: the id originally used for programming
675 *
676 * This is used to verify if the FD programming or invalidation
677 * requested by SW to the HW is successful or not and take actions accordingly.
678 **/
679static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
680 u64 qword1, u8 prog_id)
681{
682 struct i40e_pf *pf = rx_ring->vsi->back;
683 struct pci_dev *pdev = pf->pdev;
684 struct i40e_16b_rx_wb_qw0 *qw0;
685 u32 fcnt_prog, fcnt_avail;
686 u32 error;
687
688 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
689 error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
690
691 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
692 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
693 if (qw0->hi_dword.fd_id != 0 ||
694 (I40E_DEBUG_FD & pf->hw.debug_mask))
695 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
696 pf->fd_inv);
697
698 /* Check if the programming error is for ATR.
699 * If so, auto disable ATR and set a state for
700 * flush in progress. Next time we come here if flush is in
701 * progress do nothing, once flush is complete the state will
702 * be cleared.
703 */
704 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
705 return;
706
707 pf->fd_add_err++;
708 /* store the current atr filter count */
709 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
710
711 if (qw0->hi_dword.fd_id == 0 &&
712 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
713 /* These set_bit() calls aren't atomic with the
714 * test_bit() here, but worse case we potentially
715 * disable ATR and queue a flush right after SB
716 * support is re-enabled. That shouldn't cause an
717 * issue in practice
718 */
719 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
720 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
721 }
722
723 /* filter programming failed most likely due to table full */
724 fcnt_prog = i40e_get_global_fd_count(pf);
725 fcnt_avail = pf->fdir_pf_filter_count;
726 /* If ATR is running fcnt_prog can quickly change,
727 * if we are very close to full, it makes sense to disable
728 * FD ATR/SB and then re-enable it when there is room.
729 */
730 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
731 if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
732 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
733 pf->state))
734 if (I40E_DEBUG_FD & pf->hw.debug_mask)
735 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
736 }
737 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
738 if (I40E_DEBUG_FD & pf->hw.debug_mask)
739 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
740 qw0->hi_dword.fd_id);
741 }
742}
743
744/**
745 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
746 * @ring: the ring that owns the buffer
747 * @tx_buffer: the buffer to free
748 **/
749static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
750 struct i40e_tx_buffer *tx_buffer)
751{
752 if (tx_buffer->skb) {
753 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
754 kfree(tx_buffer->raw_buf);
755 else if (ring_is_xdp(ring))
756 xdp_return_frame(tx_buffer->xdpf);
757 else
758 dev_kfree_skb_any(tx_buffer->skb);
759 if (dma_unmap_len(tx_buffer, len))
760 dma_unmap_single(ring->dev,
761 dma_unmap_addr(tx_buffer, dma),
762 dma_unmap_len(tx_buffer, len),
763 DMA_TO_DEVICE);
764 } else if (dma_unmap_len(tx_buffer, len)) {
765 dma_unmap_page(ring->dev,
766 dma_unmap_addr(tx_buffer, dma),
767 dma_unmap_len(tx_buffer, len),
768 DMA_TO_DEVICE);
769 }
770
771 tx_buffer->next_to_watch = NULL;
772 tx_buffer->skb = NULL;
773 dma_unmap_len_set(tx_buffer, len, 0);
774 /* tx_buffer must be completely set up in the transmit path */
775}
776
777/**
778 * i40e_clean_tx_ring - Free any empty Tx buffers
779 * @tx_ring: ring to be cleaned
780 **/
781void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
782{
783 unsigned long bi_size;
784 u16 i;
785
786 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
787 i40e_xsk_clean_tx_ring(tx_ring);
788 } else {
789 /* ring already cleared, nothing to do */
790 if (!tx_ring->tx_bi)
791 return;
792
793 /* Free all the Tx ring sk_buffs */
794 for (i = 0; i < tx_ring->count; i++)
795 i40e_unmap_and_free_tx_resource(tx_ring,
796 &tx_ring->tx_bi[i]);
797 }
798
799 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
800 memset(tx_ring->tx_bi, 0, bi_size);
801
802 /* Zero out the descriptor ring */
803 memset(tx_ring->desc, 0, tx_ring->size);
804
805 tx_ring->next_to_use = 0;
806 tx_ring->next_to_clean = 0;
807
808 if (!tx_ring->netdev)
809 return;
810
811 /* cleanup Tx queue statistics */
812 netdev_tx_reset_queue(txring_txq(tx_ring));
813}
814
815/**
816 * i40e_free_tx_resources - Free Tx resources per queue
817 * @tx_ring: Tx descriptor ring for a specific queue
818 *
819 * Free all transmit software resources
820 **/
821void i40e_free_tx_resources(struct i40e_ring *tx_ring)
822{
823 i40e_clean_tx_ring(tx_ring);
824 kfree(tx_ring->tx_bi);
825 tx_ring->tx_bi = NULL;
826
827 if (tx_ring->desc) {
828 dma_free_coherent(tx_ring->dev, tx_ring->size,
829 tx_ring->desc, tx_ring->dma);
830 tx_ring->desc = NULL;
831 }
832}
833
834/**
835 * i40e_get_tx_pending - how many tx descriptors not processed
836 * @ring: the ring of descriptors
837 * @in_sw: use SW variables
838 *
839 * Since there is no access to the ring head register
840 * in XL710, we need to use our local copies
841 **/
842u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
843{
844 u32 head, tail;
845
846 if (!in_sw) {
847 head = i40e_get_head(ring);
848 tail = readl(ring->tail);
849 } else {
850 head = ring->next_to_clean;
851 tail = ring->next_to_use;
852 }
853
854 if (head != tail)
855 return (head < tail) ?
856 tail - head : (tail + ring->count - head);
857
858 return 0;
859}
860
861/**
862 * i40e_detect_recover_hung - Function to detect and recover hung_queues
863 * @vsi: pointer to vsi struct with tx queues
864 *
865 * VSI has netdev and netdev has TX queues. This function is to check each of
866 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
867 **/
868void i40e_detect_recover_hung(struct i40e_vsi *vsi)
869{
870 struct i40e_ring *tx_ring = NULL;
871 struct net_device *netdev;
872 unsigned int i;
873 int packets;
874
875 if (!vsi)
876 return;
877
878 if (test_bit(__I40E_VSI_DOWN, vsi->state))
879 return;
880
881 netdev = vsi->netdev;
882 if (!netdev)
883 return;
884
885 if (!netif_carrier_ok(netdev))
886 return;
887
888 for (i = 0; i < vsi->num_queue_pairs; i++) {
889 tx_ring = vsi->tx_rings[i];
890 if (tx_ring && tx_ring->desc) {
891 /* If packet counter has not changed the queue is
892 * likely stalled, so force an interrupt for this
893 * queue.
894 *
895 * prev_pkt_ctr would be negative if there was no
896 * pending work.
897 */
898 packets = tx_ring->stats.packets & INT_MAX;
899 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
900 i40e_force_wb(vsi, tx_ring->q_vector);
901 continue;
902 }
903
904 /* Memory barrier between read of packet count and call
905 * to i40e_get_tx_pending()
906 */
907 smp_rmb();
908 tx_ring->tx_stats.prev_pkt_ctr =
909 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
910 }
911 }
912}
913
914/**
915 * i40e_clean_tx_irq - Reclaim resources after transmit completes
916 * @vsi: the VSI we care about
917 * @tx_ring: Tx ring to clean
918 * @napi_budget: Used to determine if we are in netpoll
919 * @tx_cleaned: Out parameter set to the number of TXes cleaned
920 *
921 * Returns true if there's any budget left (e.g. the clean is finished)
922 **/
923static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
924 struct i40e_ring *tx_ring, int napi_budget,
925 unsigned int *tx_cleaned)
926{
927 int i = tx_ring->next_to_clean;
928 struct i40e_tx_buffer *tx_buf;
929 struct i40e_tx_desc *tx_head;
930 struct i40e_tx_desc *tx_desc;
931 unsigned int total_bytes = 0, total_packets = 0;
932 unsigned int budget = vsi->work_limit;
933
934 tx_buf = &tx_ring->tx_bi[i];
935 tx_desc = I40E_TX_DESC(tx_ring, i);
936 i -= tx_ring->count;
937
938 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
939
940 do {
941 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
942
943 /* if next_to_watch is not set then there is no work pending */
944 if (!eop_desc)
945 break;
946
947 /* prevent any other reads prior to eop_desc */
948 smp_rmb();
949
950 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
951 /* we have caught up to head, no work left to do */
952 if (tx_head == tx_desc)
953 break;
954
955 /* clear next_to_watch to prevent false hangs */
956 tx_buf->next_to_watch = NULL;
957
958 /* update the statistics for this packet */
959 total_bytes += tx_buf->bytecount;
960 total_packets += tx_buf->gso_segs;
961
962 /* free the skb/XDP data */
963 if (ring_is_xdp(tx_ring))
964 xdp_return_frame(tx_buf->xdpf);
965 else
966 napi_consume_skb(tx_buf->skb, napi_budget);
967
968 /* unmap skb header data */
969 dma_unmap_single(tx_ring->dev,
970 dma_unmap_addr(tx_buf, dma),
971 dma_unmap_len(tx_buf, len),
972 DMA_TO_DEVICE);
973
974 /* clear tx_buffer data */
975 tx_buf->skb = NULL;
976 dma_unmap_len_set(tx_buf, len, 0);
977
978 /* unmap remaining buffers */
979 while (tx_desc != eop_desc) {
980 i40e_trace(clean_tx_irq_unmap,
981 tx_ring, tx_desc, tx_buf);
982
983 tx_buf++;
984 tx_desc++;
985 i++;
986 if (unlikely(!i)) {
987 i -= tx_ring->count;
988 tx_buf = tx_ring->tx_bi;
989 tx_desc = I40E_TX_DESC(tx_ring, 0);
990 }
991
992 /* unmap any remaining paged data */
993 if (dma_unmap_len(tx_buf, len)) {
994 dma_unmap_page(tx_ring->dev,
995 dma_unmap_addr(tx_buf, dma),
996 dma_unmap_len(tx_buf, len),
997 DMA_TO_DEVICE);
998 dma_unmap_len_set(tx_buf, len, 0);
999 }
1000 }
1001
1002 /* move us one more past the eop_desc for start of next pkt */
1003 tx_buf++;
1004 tx_desc++;
1005 i++;
1006 if (unlikely(!i)) {
1007 i -= tx_ring->count;
1008 tx_buf = tx_ring->tx_bi;
1009 tx_desc = I40E_TX_DESC(tx_ring, 0);
1010 }
1011
1012 prefetch(tx_desc);
1013
1014 /* update budget accounting */
1015 budget--;
1016 } while (likely(budget));
1017
1018 i += tx_ring->count;
1019 tx_ring->next_to_clean = i;
1020 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1021 i40e_arm_wb(tx_ring, vsi, budget);
1022
1023 if (ring_is_xdp(tx_ring))
1024 return !!budget;
1025
1026 /* notify netdev of completed buffers */
1027 netdev_tx_completed_queue(txring_txq(tx_ring),
1028 total_packets, total_bytes);
1029
1030#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1031 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1032 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1033 /* Make sure that anybody stopping the queue after this
1034 * sees the new next_to_clean.
1035 */
1036 smp_mb();
1037 if (__netif_subqueue_stopped(tx_ring->netdev,
1038 tx_ring->queue_index) &&
1039 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1040 netif_wake_subqueue(tx_ring->netdev,
1041 tx_ring->queue_index);
1042 ++tx_ring->tx_stats.restart_queue;
1043 }
1044 }
1045
1046 *tx_cleaned = total_packets;
1047 return !!budget;
1048}
1049
1050/**
1051 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1052 * @vsi: the VSI we care about
1053 * @q_vector: the vector on which to enable writeback
1054 *
1055 **/
1056static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1057 struct i40e_q_vector *q_vector)
1058{
1059 u16 flags = q_vector->tx.ring[0].flags;
1060 u32 val;
1061
1062 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1063 return;
1064
1065 if (q_vector->arm_wb_state)
1066 return;
1067
1068 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1069 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1070 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1071
1072 wr32(&vsi->back->hw,
1073 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1074 val);
1075 } else {
1076 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1077 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1078
1079 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1080 }
1081 q_vector->arm_wb_state = true;
1082}
1083
1084/**
1085 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1086 * @vsi: the VSI we care about
1087 * @q_vector: the vector on which to force writeback
1088 *
1089 **/
1090void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1091{
1092 if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1093 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1094 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1095 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1096 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1097 /* allow 00 to be written to the index */
1098
1099 wr32(&vsi->back->hw,
1100 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1101 } else {
1102 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1103 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1104 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1105 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1106 /* allow 00 to be written to the index */
1107
1108 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1109 }
1110}
1111
1112static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1113 struct i40e_ring_container *rc)
1114{
1115 return &q_vector->rx == rc;
1116}
1117
1118static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1119{
1120 unsigned int divisor;
1121
1122 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1123 case I40E_LINK_SPEED_40GB:
1124 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1125 break;
1126 case I40E_LINK_SPEED_25GB:
1127 case I40E_LINK_SPEED_20GB:
1128 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1129 break;
1130 default:
1131 case I40E_LINK_SPEED_10GB:
1132 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1133 break;
1134 case I40E_LINK_SPEED_1GB:
1135 case I40E_LINK_SPEED_100MB:
1136 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1137 break;
1138 }
1139
1140 return divisor;
1141}
1142
1143/**
1144 * i40e_update_itr - update the dynamic ITR value based on statistics
1145 * @q_vector: structure containing interrupt and ring information
1146 * @rc: structure containing ring performance data
1147 *
1148 * Stores a new ITR value based on packets and byte
1149 * counts during the last interrupt. The advantage of per interrupt
1150 * computation is faster updates and more accurate ITR for the current
1151 * traffic pattern. Constants in this function were computed
1152 * based on theoretical maximum wire speed and thresholds were set based
1153 * on testing data as well as attempting to minimize response time
1154 * while increasing bulk throughput.
1155 **/
1156static void i40e_update_itr(struct i40e_q_vector *q_vector,
1157 struct i40e_ring_container *rc)
1158{
1159 unsigned int avg_wire_size, packets, bytes, itr;
1160 unsigned long next_update = jiffies;
1161
1162 /* If we don't have any rings just leave ourselves set for maximum
1163 * possible latency so we take ourselves out of the equation.
1164 */
1165 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1166 return;
1167
1168 /* For Rx we want to push the delay up and default to low latency.
1169 * for Tx we want to pull the delay down and default to high latency.
1170 */
1171 itr = i40e_container_is_rx(q_vector, rc) ?
1172 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1173 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1174
1175 /* If we didn't update within up to 1 - 2 jiffies we can assume
1176 * that either packets are coming in so slow there hasn't been
1177 * any work, or that there is so much work that NAPI is dealing
1178 * with interrupt moderation and we don't need to do anything.
1179 */
1180 if (time_after(next_update, rc->next_update))
1181 goto clear_counts;
1182
1183 /* If itr_countdown is set it means we programmed an ITR within
1184 * the last 4 interrupt cycles. This has a side effect of us
1185 * potentially firing an early interrupt. In order to work around
1186 * this we need to throw out any data received for a few
1187 * interrupts following the update.
1188 */
1189 if (q_vector->itr_countdown) {
1190 itr = rc->target_itr;
1191 goto clear_counts;
1192 }
1193
1194 packets = rc->total_packets;
1195 bytes = rc->total_bytes;
1196
1197 if (i40e_container_is_rx(q_vector, rc)) {
1198 /* If Rx there are 1 to 4 packets and bytes are less than
1199 * 9000 assume insufficient data to use bulk rate limiting
1200 * approach unless Tx is already in bulk rate limiting. We
1201 * are likely latency driven.
1202 */
1203 if (packets && packets < 4 && bytes < 9000 &&
1204 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1205 itr = I40E_ITR_ADAPTIVE_LATENCY;
1206 goto adjust_by_size;
1207 }
1208 } else if (packets < 4) {
1209 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1210 * bulk mode and we are receiving 4 or fewer packets just
1211 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1212 * that the Rx can relax.
1213 */
1214 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1215 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1216 I40E_ITR_ADAPTIVE_MAX_USECS)
1217 goto clear_counts;
1218 } else if (packets > 32) {
1219 /* If we have processed over 32 packets in a single interrupt
1220 * for Tx assume we need to switch over to "bulk" mode.
1221 */
1222 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1223 }
1224
1225 /* We have no packets to actually measure against. This means
1226 * either one of the other queues on this vector is active or
1227 * we are a Tx queue doing TSO with too high of an interrupt rate.
1228 *
1229 * Between 4 and 56 we can assume that our current interrupt delay
1230 * is only slightly too low. As such we should increase it by a small
1231 * fixed amount.
1232 */
1233 if (packets < 56) {
1234 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1235 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1236 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1237 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1238 }
1239 goto clear_counts;
1240 }
1241
1242 if (packets <= 256) {
1243 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1244 itr &= I40E_ITR_MASK;
1245
1246 /* Between 56 and 112 is our "goldilocks" zone where we are
1247 * working out "just right". Just report that our current
1248 * ITR is good for us.
1249 */
1250 if (packets <= 112)
1251 goto clear_counts;
1252
1253 /* If packet count is 128 or greater we are likely looking
1254 * at a slight overrun of the delay we want. Try halving
1255 * our delay to see if that will cut the number of packets
1256 * in half per interrupt.
1257 */
1258 itr /= 2;
1259 itr &= I40E_ITR_MASK;
1260 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1261 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1262
1263 goto clear_counts;
1264 }
1265
1266 /* The paths below assume we are dealing with a bulk ITR since
1267 * number of packets is greater than 256. We are just going to have
1268 * to compute a value and try to bring the count under control,
1269 * though for smaller packet sizes there isn't much we can do as
1270 * NAPI polling will likely be kicking in sooner rather than later.
1271 */
1272 itr = I40E_ITR_ADAPTIVE_BULK;
1273
1274adjust_by_size:
1275 /* If packet counts are 256 or greater we can assume we have a gross
1276 * overestimation of what the rate should be. Instead of trying to fine
1277 * tune it just use the formula below to try and dial in an exact value
1278 * give the current packet size of the frame.
1279 */
1280 avg_wire_size = bytes / packets;
1281
1282 /* The following is a crude approximation of:
1283 * wmem_default / (size + overhead) = desired_pkts_per_int
1284 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1285 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1286 *
1287 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1288 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1289 * formula down to
1290 *
1291 * (170 * (size + 24)) / (size + 640) = ITR
1292 *
1293 * We first do some math on the packet size and then finally bitshift
1294 * by 8 after rounding up. We also have to account for PCIe link speed
1295 * difference as ITR scales based on this.
1296 */
1297 if (avg_wire_size <= 60) {
1298 /* Start at 250k ints/sec */
1299 avg_wire_size = 4096;
1300 } else if (avg_wire_size <= 380) {
1301 /* 250K ints/sec to 60K ints/sec */
1302 avg_wire_size *= 40;
1303 avg_wire_size += 1696;
1304 } else if (avg_wire_size <= 1084) {
1305 /* 60K ints/sec to 36K ints/sec */
1306 avg_wire_size *= 15;
1307 avg_wire_size += 11452;
1308 } else if (avg_wire_size <= 1980) {
1309 /* 36K ints/sec to 30K ints/sec */
1310 avg_wire_size *= 5;
1311 avg_wire_size += 22420;
1312 } else {
1313 /* plateau at a limit of 30K ints/sec */
1314 avg_wire_size = 32256;
1315 }
1316
1317 /* If we are in low latency mode halve our delay which doubles the
1318 * rate to somewhere between 100K to 16K ints/sec
1319 */
1320 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1321 avg_wire_size /= 2;
1322
1323 /* Resultant value is 256 times larger than it needs to be. This
1324 * gives us room to adjust the value as needed to either increase
1325 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1326 *
1327 * Use addition as we have already recorded the new latency flag
1328 * for the ITR value.
1329 */
1330 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1331 I40E_ITR_ADAPTIVE_MIN_INC;
1332
1333 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1334 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1335 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1336 }
1337
1338clear_counts:
1339 /* write back value */
1340 rc->target_itr = itr;
1341
1342 /* next update should occur within next jiffy */
1343 rc->next_update = next_update + 1;
1344
1345 rc->total_bytes = 0;
1346 rc->total_packets = 0;
1347}
1348
1349static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1350{
1351 return &rx_ring->rx_bi[idx];
1352}
1353
1354/**
1355 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1356 * @rx_ring: rx descriptor ring to store buffers on
1357 * @old_buff: donor buffer to have page reused
1358 *
1359 * Synchronizes page for reuse by the adapter
1360 **/
1361static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1362 struct i40e_rx_buffer *old_buff)
1363{
1364 struct i40e_rx_buffer *new_buff;
1365 u16 nta = rx_ring->next_to_alloc;
1366
1367 new_buff = i40e_rx_bi(rx_ring, nta);
1368
1369 /* update, and store next to alloc */
1370 nta++;
1371 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1372
1373 /* transfer page from old buffer to new buffer */
1374 new_buff->dma = old_buff->dma;
1375 new_buff->page = old_buff->page;
1376 new_buff->page_offset = old_buff->page_offset;
1377 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1378
1379 /* clear contents of buffer_info */
1380 old_buff->page = NULL;
1381}
1382
1383/**
1384 * i40e_clean_programming_status - clean the programming status descriptor
1385 * @rx_ring: the rx ring that has this descriptor
1386 * @qword0_raw: qword0
1387 * @qword1: qword1 representing status_error_len in CPU ordering
1388 *
1389 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1390 * status being successful or not and take actions accordingly. FCoE should
1391 * handle its context/filter programming/invalidation status and take actions.
1392 *
1393 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1394 **/
1395void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1396 u64 qword1)
1397{
1398 u8 id;
1399
1400 id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
1401
1402 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1403 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1404}
1405
1406/**
1407 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1408 * @tx_ring: the tx ring to set up
1409 *
1410 * Return 0 on success, negative on error
1411 **/
1412int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1413{
1414 struct device *dev = tx_ring->dev;
1415 int bi_size;
1416
1417 if (!dev)
1418 return -ENOMEM;
1419
1420 /* warn if we are about to overwrite the pointer */
1421 WARN_ON(tx_ring->tx_bi);
1422 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1423 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1424 if (!tx_ring->tx_bi)
1425 goto err;
1426
1427 u64_stats_init(&tx_ring->syncp);
1428
1429 /* round up to nearest 4K */
1430 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1431 /* add u32 for head writeback, align after this takes care of
1432 * guaranteeing this is at least one cache line in size
1433 */
1434 tx_ring->size += sizeof(u32);
1435 tx_ring->size = ALIGN(tx_ring->size, 4096);
1436 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1437 &tx_ring->dma, GFP_KERNEL);
1438 if (!tx_ring->desc) {
1439 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1440 tx_ring->size);
1441 goto err;
1442 }
1443
1444 tx_ring->next_to_use = 0;
1445 tx_ring->next_to_clean = 0;
1446 tx_ring->tx_stats.prev_pkt_ctr = -1;
1447 return 0;
1448
1449err:
1450 kfree(tx_ring->tx_bi);
1451 tx_ring->tx_bi = NULL;
1452 return -ENOMEM;
1453}
1454
1455static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1456{
1457 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1458}
1459
1460/**
1461 * i40e_clean_rx_ring - Free Rx buffers
1462 * @rx_ring: ring to be cleaned
1463 **/
1464void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1465{
1466 u16 i;
1467
1468 /* ring already cleared, nothing to do */
1469 if (!rx_ring->rx_bi)
1470 return;
1471
1472 if (rx_ring->xsk_pool) {
1473 i40e_xsk_clean_rx_ring(rx_ring);
1474 goto skip_free;
1475 }
1476
1477 /* Free all the Rx ring sk_buffs */
1478 for (i = 0; i < rx_ring->count; i++) {
1479 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1480
1481 if (!rx_bi->page)
1482 continue;
1483
1484 /* Invalidate cache lines that may have been written to by
1485 * device so that we avoid corrupting memory.
1486 */
1487 dma_sync_single_range_for_cpu(rx_ring->dev,
1488 rx_bi->dma,
1489 rx_bi->page_offset,
1490 rx_ring->rx_buf_len,
1491 DMA_FROM_DEVICE);
1492
1493 /* free resources associated with mapping */
1494 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1495 i40e_rx_pg_size(rx_ring),
1496 DMA_FROM_DEVICE,
1497 I40E_RX_DMA_ATTR);
1498
1499 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1500
1501 rx_bi->page = NULL;
1502 rx_bi->page_offset = 0;
1503 }
1504
1505skip_free:
1506 if (rx_ring->xsk_pool)
1507 i40e_clear_rx_bi_zc(rx_ring);
1508 else
1509 i40e_clear_rx_bi(rx_ring);
1510
1511 /* Zero out the descriptor ring */
1512 memset(rx_ring->desc, 0, rx_ring->size);
1513
1514 rx_ring->next_to_alloc = 0;
1515 rx_ring->next_to_clean = 0;
1516 rx_ring->next_to_process = 0;
1517 rx_ring->next_to_use = 0;
1518}
1519
1520/**
1521 * i40e_free_rx_resources - Free Rx resources
1522 * @rx_ring: ring to clean the resources from
1523 *
1524 * Free all receive software resources
1525 **/
1526void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1527{
1528 i40e_clean_rx_ring(rx_ring);
1529 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1530 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1531 rx_ring->xdp_prog = NULL;
1532 kfree(rx_ring->rx_bi);
1533 rx_ring->rx_bi = NULL;
1534
1535 if (rx_ring->desc) {
1536 dma_free_coherent(rx_ring->dev, rx_ring->size,
1537 rx_ring->desc, rx_ring->dma);
1538 rx_ring->desc = NULL;
1539 }
1540}
1541
1542/**
1543 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1544 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1545 *
1546 * Returns 0 on success, negative on failure
1547 **/
1548int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1549{
1550 struct device *dev = rx_ring->dev;
1551
1552 u64_stats_init(&rx_ring->syncp);
1553
1554 /* Round up to nearest 4K */
1555 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1556 rx_ring->size = ALIGN(rx_ring->size, 4096);
1557 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1558 &rx_ring->dma, GFP_KERNEL);
1559
1560 if (!rx_ring->desc) {
1561 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1562 rx_ring->size);
1563 return -ENOMEM;
1564 }
1565
1566 rx_ring->next_to_alloc = 0;
1567 rx_ring->next_to_clean = 0;
1568 rx_ring->next_to_process = 0;
1569 rx_ring->next_to_use = 0;
1570
1571 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1572
1573 rx_ring->rx_bi =
1574 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1575 if (!rx_ring->rx_bi)
1576 return -ENOMEM;
1577
1578 return 0;
1579}
1580
1581/**
1582 * i40e_release_rx_desc - Store the new tail and head values
1583 * @rx_ring: ring to bump
1584 * @val: new head index
1585 **/
1586void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1587{
1588 rx_ring->next_to_use = val;
1589
1590 /* update next to alloc since we have filled the ring */
1591 rx_ring->next_to_alloc = val;
1592
1593 /* Force memory writes to complete before letting h/w
1594 * know there are new descriptors to fetch. (Only
1595 * applicable for weak-ordered memory model archs,
1596 * such as IA-64).
1597 */
1598 wmb();
1599 writel(val, rx_ring->tail);
1600}
1601
1602#if (PAGE_SIZE >= 8192)
1603static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1604 unsigned int size)
1605{
1606 unsigned int truesize;
1607
1608 truesize = rx_ring->rx_offset ?
1609 SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1610 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1611 SKB_DATA_ALIGN(size);
1612 return truesize;
1613}
1614#endif
1615
1616/**
1617 * i40e_alloc_mapped_page - recycle or make a new page
1618 * @rx_ring: ring to use
1619 * @bi: rx_buffer struct to modify
1620 *
1621 * Returns true if the page was successfully allocated or
1622 * reused.
1623 **/
1624static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1625 struct i40e_rx_buffer *bi)
1626{
1627 struct page *page = bi->page;
1628 dma_addr_t dma;
1629
1630 /* since we are recycling buffers we should seldom need to alloc */
1631 if (likely(page)) {
1632 rx_ring->rx_stats.page_reuse_count++;
1633 return true;
1634 }
1635
1636 /* alloc new page for storage */
1637 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1638 if (unlikely(!page)) {
1639 rx_ring->rx_stats.alloc_page_failed++;
1640 return false;
1641 }
1642
1643 rx_ring->rx_stats.page_alloc_count++;
1644
1645 /* map page for use */
1646 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1647 i40e_rx_pg_size(rx_ring),
1648 DMA_FROM_DEVICE,
1649 I40E_RX_DMA_ATTR);
1650
1651 /* if mapping failed free memory back to system since
1652 * there isn't much point in holding memory we can't use
1653 */
1654 if (dma_mapping_error(rx_ring->dev, dma)) {
1655 __free_pages(page, i40e_rx_pg_order(rx_ring));
1656 rx_ring->rx_stats.alloc_page_failed++;
1657 return false;
1658 }
1659
1660 bi->dma = dma;
1661 bi->page = page;
1662 bi->page_offset = rx_ring->rx_offset;
1663 page_ref_add(page, USHRT_MAX - 1);
1664 bi->pagecnt_bias = USHRT_MAX;
1665
1666 return true;
1667}
1668
1669/**
1670 * i40e_alloc_rx_buffers - Replace used receive buffers
1671 * @rx_ring: ring to place buffers on
1672 * @cleaned_count: number of buffers to replace
1673 *
1674 * Returns false if all allocations were successful, true if any fail
1675 **/
1676bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1677{
1678 u16 ntu = rx_ring->next_to_use;
1679 union i40e_rx_desc *rx_desc;
1680 struct i40e_rx_buffer *bi;
1681
1682 /* do nothing if no valid netdev defined */
1683 if (!rx_ring->netdev || !cleaned_count)
1684 return false;
1685
1686 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1687 bi = i40e_rx_bi(rx_ring, ntu);
1688
1689 do {
1690 if (!i40e_alloc_mapped_page(rx_ring, bi))
1691 goto no_buffers;
1692
1693 /* sync the buffer for use by the device */
1694 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1695 bi->page_offset,
1696 rx_ring->rx_buf_len,
1697 DMA_FROM_DEVICE);
1698
1699 /* Refresh the desc even if buffer_addrs didn't change
1700 * because each write-back erases this info.
1701 */
1702 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1703
1704 rx_desc++;
1705 bi++;
1706 ntu++;
1707 if (unlikely(ntu == rx_ring->count)) {
1708 rx_desc = I40E_RX_DESC(rx_ring, 0);
1709 bi = i40e_rx_bi(rx_ring, 0);
1710 ntu = 0;
1711 }
1712
1713 /* clear the status bits for the next_to_use descriptor */
1714 rx_desc->wb.qword1.status_error_len = 0;
1715
1716 cleaned_count--;
1717 } while (cleaned_count);
1718
1719 if (rx_ring->next_to_use != ntu)
1720 i40e_release_rx_desc(rx_ring, ntu);
1721
1722 return false;
1723
1724no_buffers:
1725 if (rx_ring->next_to_use != ntu)
1726 i40e_release_rx_desc(rx_ring, ntu);
1727
1728 /* make sure to come back via polling to try again after
1729 * allocation failure
1730 */
1731 return true;
1732}
1733
1734/**
1735 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1736 * @vsi: the VSI we care about
1737 * @skb: skb currently being received and modified
1738 * @rx_desc: the receive descriptor
1739 **/
1740static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1741 struct sk_buff *skb,
1742 union i40e_rx_desc *rx_desc)
1743{
1744 struct i40e_rx_ptype_decoded decoded;
1745 u32 rx_error, rx_status;
1746 bool ipv4, ipv6;
1747 u8 ptype;
1748 u64 qword;
1749
1750 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1751 ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1752 rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1753 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1754 decoded = decode_rx_desc_ptype(ptype);
1755
1756 skb->ip_summed = CHECKSUM_NONE;
1757
1758 skb_checksum_none_assert(skb);
1759
1760 /* Rx csum enabled and ip headers found? */
1761 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1762 return;
1763
1764 /* did the hardware decode the packet and checksum? */
1765 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1766 return;
1767
1768 /* both known and outer_ip must be set for the below code to work */
1769 if (!(decoded.known && decoded.outer_ip))
1770 return;
1771
1772 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1773 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1774 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1775 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1776
1777 if (ipv4 &&
1778 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1779 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1780 goto checksum_fail;
1781
1782 /* likely incorrect csum if alternate IP extension headers found */
1783 if (ipv6 &&
1784 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1785 /* don't increment checksum err here, non-fatal err */
1786 return;
1787
1788 /* there was some L4 error, count error and punt packet to the stack */
1789 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1790 goto checksum_fail;
1791
1792 /* handle packets that were not able to be checksummed due
1793 * to arrival speed, in this case the stack can compute
1794 * the csum.
1795 */
1796 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1797 return;
1798
1799 /* If there is an outer header present that might contain a checksum
1800 * we need to bump the checksum level by 1 to reflect the fact that
1801 * we are indicating we validated the inner checksum.
1802 */
1803 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1804 skb->csum_level = 1;
1805
1806 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1807 switch (decoded.inner_prot) {
1808 case I40E_RX_PTYPE_INNER_PROT_TCP:
1809 case I40E_RX_PTYPE_INNER_PROT_UDP:
1810 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1811 skb->ip_summed = CHECKSUM_UNNECESSARY;
1812 fallthrough;
1813 default:
1814 break;
1815 }
1816
1817 return;
1818
1819checksum_fail:
1820 vsi->back->hw_csum_rx_error++;
1821}
1822
1823/**
1824 * i40e_ptype_to_htype - get a hash type
1825 * @ptype: the ptype value from the descriptor
1826 *
1827 * Returns a hash type to be used by skb_set_hash
1828 **/
1829static inline int i40e_ptype_to_htype(u8 ptype)
1830{
1831 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1832
1833 if (!decoded.known)
1834 return PKT_HASH_TYPE_NONE;
1835
1836 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1837 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1838 return PKT_HASH_TYPE_L4;
1839 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1840 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1841 return PKT_HASH_TYPE_L3;
1842 else
1843 return PKT_HASH_TYPE_L2;
1844}
1845
1846/**
1847 * i40e_rx_hash - set the hash value in the skb
1848 * @ring: descriptor ring
1849 * @rx_desc: specific descriptor
1850 * @skb: skb currently being received and modified
1851 * @rx_ptype: Rx packet type
1852 **/
1853static inline void i40e_rx_hash(struct i40e_ring *ring,
1854 union i40e_rx_desc *rx_desc,
1855 struct sk_buff *skb,
1856 u8 rx_ptype)
1857{
1858 u32 hash;
1859 const __le64 rss_mask =
1860 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1861 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1862
1863 if (!(ring->netdev->features & NETIF_F_RXHASH))
1864 return;
1865
1866 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1867 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1868 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1869 }
1870}
1871
1872/**
1873 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1874 * @rx_ring: rx descriptor ring packet is being transacted on
1875 * @rx_desc: pointer to the EOP Rx descriptor
1876 * @skb: pointer to current skb being populated
1877 *
1878 * This function checks the ring, descriptor, and packet information in
1879 * order to populate the hash, checksum, VLAN, protocol, and
1880 * other fields within the skb.
1881 **/
1882void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1883 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1884{
1885 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1886 u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1887 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1888 u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1889 u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1890
1891 if (unlikely(tsynvalid))
1892 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1893
1894 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1895
1896 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1897
1898 skb_record_rx_queue(skb, rx_ring->queue_index);
1899
1900 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1901 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1902
1903 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1904 le16_to_cpu(vlan_tag));
1905 }
1906
1907 /* modifies the skb - consumes the enet header */
1908 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1909}
1910
1911/**
1912 * i40e_cleanup_headers - Correct empty headers
1913 * @rx_ring: rx descriptor ring packet is being transacted on
1914 * @skb: pointer to current skb being fixed
1915 * @rx_desc: pointer to the EOP Rx descriptor
1916 *
1917 * In addition if skb is not at least 60 bytes we need to pad it so that
1918 * it is large enough to qualify as a valid Ethernet frame.
1919 *
1920 * Returns true if an error was encountered and skb was freed.
1921 **/
1922static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1923 union i40e_rx_desc *rx_desc)
1924
1925{
1926 /* ERR_MASK will only have valid bits if EOP set, and
1927 * what we are doing here is actually checking
1928 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1929 * the error field
1930 */
1931 if (unlikely(i40e_test_staterr(rx_desc,
1932 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1933 dev_kfree_skb_any(skb);
1934 return true;
1935 }
1936
1937 /* if eth_skb_pad returns an error the skb was freed */
1938 if (eth_skb_pad(skb))
1939 return true;
1940
1941 return false;
1942}
1943
1944/**
1945 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1946 * @rx_buffer: buffer containing the page
1947 * @rx_stats: rx stats structure for the rx ring
1948 *
1949 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1950 * which will assign the current buffer to the buffer that next_to_alloc is
1951 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1952 * page freed.
1953 *
1954 * rx_stats will be updated to indicate whether the page was waived
1955 * or busy if it could not be reused.
1956 */
1957static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1958 struct i40e_rx_queue_stats *rx_stats)
1959{
1960 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1961 struct page *page = rx_buffer->page;
1962
1963 /* Is any reuse possible? */
1964 if (!dev_page_is_reusable(page)) {
1965 rx_stats->page_waive_count++;
1966 return false;
1967 }
1968
1969#if (PAGE_SIZE < 8192)
1970 /* if we are only owner of page we can reuse it */
1971 if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1972 rx_stats->page_busy_count++;
1973 return false;
1974 }
1975#else
1976#define I40E_LAST_OFFSET \
1977 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1978 if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1979 rx_stats->page_busy_count++;
1980 return false;
1981 }
1982#endif
1983
1984 /* If we have drained the page fragment pool we need to update
1985 * the pagecnt_bias and page count so that we fully restock the
1986 * number of references the driver holds.
1987 */
1988 if (unlikely(pagecnt_bias == 1)) {
1989 page_ref_add(page, USHRT_MAX - 1);
1990 rx_buffer->pagecnt_bias = USHRT_MAX;
1991 }
1992
1993 return true;
1994}
1995
1996/**
1997 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1998 * @rx_buffer: Rx buffer to adjust
1999 * @truesize: Size of adjustment
2000 **/
2001static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
2002 unsigned int truesize)
2003{
2004#if (PAGE_SIZE < 8192)
2005 rx_buffer->page_offset ^= truesize;
2006#else
2007 rx_buffer->page_offset += truesize;
2008#endif
2009}
2010
2011/**
2012 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2013 * @rx_ring: rx descriptor ring to transact packets on
2014 * @size: size of buffer to add to skb
2015 *
2016 * This function will pull an Rx buffer from the ring and synchronize it
2017 * for use by the CPU.
2018 */
2019static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2020 const unsigned int size)
2021{
2022 struct i40e_rx_buffer *rx_buffer;
2023
2024 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
2025 rx_buffer->page_count =
2026#if (PAGE_SIZE < 8192)
2027 page_count(rx_buffer->page);
2028#else
2029 0;
2030#endif
2031 prefetch_page_address(rx_buffer->page);
2032
2033 /* we are reusing so sync this buffer for CPU use */
2034 dma_sync_single_range_for_cpu(rx_ring->dev,
2035 rx_buffer->dma,
2036 rx_buffer->page_offset,
2037 size,
2038 DMA_FROM_DEVICE);
2039
2040 /* We have pulled a buffer for use, so decrement pagecnt_bias */
2041 rx_buffer->pagecnt_bias--;
2042
2043 return rx_buffer;
2044}
2045
2046/**
2047 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2048 * @rx_ring: rx descriptor ring to transact packets on
2049 * @rx_buffer: rx buffer to pull data from
2050 *
2051 * This function will clean up the contents of the rx_buffer. It will
2052 * either recycle the buffer or unmap it and free the associated resources.
2053 */
2054static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2055 struct i40e_rx_buffer *rx_buffer)
2056{
2057 if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2058 /* hand second half of page back to the ring */
2059 i40e_reuse_rx_page(rx_ring, rx_buffer);
2060 } else {
2061 /* we are not reusing the buffer so unmap it */
2062 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2063 i40e_rx_pg_size(rx_ring),
2064 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2065 __page_frag_cache_drain(rx_buffer->page,
2066 rx_buffer->pagecnt_bias);
2067 /* clear contents of buffer_info */
2068 rx_buffer->page = NULL;
2069 }
2070}
2071
2072/**
2073 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2074 * @rx_ring: Rx descriptor ring to transact packets on
2075 * @xdp_res: Result of the XDP program
2076 * @xdp: xdp_buff pointing to the data
2077 **/
2078static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2079 struct xdp_buff *xdp)
2080{
2081 u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2082 u32 next = rx_ring->next_to_clean, i = 0;
2083 struct i40e_rx_buffer *rx_buffer;
2084
2085 xdp->flags = 0;
2086
2087 while (1) {
2088 rx_buffer = i40e_rx_bi(rx_ring, next);
2089 if (++next == rx_ring->count)
2090 next = 0;
2091
2092 if (!rx_buffer->page)
2093 continue;
2094
2095 if (xdp_res != I40E_XDP_CONSUMED)
2096 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2097 else if (i++ <= nr_frags)
2098 rx_buffer->pagecnt_bias++;
2099
2100 /* EOP buffer will be put in i40e_clean_rx_irq() */
2101 if (next == rx_ring->next_to_process)
2102 return;
2103
2104 i40e_put_rx_buffer(rx_ring, rx_buffer);
2105 }
2106}
2107
2108/**
2109 * i40e_construct_skb - Allocate skb and populate it
2110 * @rx_ring: rx descriptor ring to transact packets on
2111 * @xdp: xdp_buff pointing to the data
2112 *
2113 * This function allocates an skb. It then populates it with the page
2114 * data from the current receive descriptor, taking care to set up the
2115 * skb correctly.
2116 */
2117static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2118 struct xdp_buff *xdp)
2119{
2120 unsigned int size = xdp->data_end - xdp->data;
2121 struct i40e_rx_buffer *rx_buffer;
2122 struct skb_shared_info *sinfo;
2123 unsigned int headlen;
2124 struct sk_buff *skb;
2125 u32 nr_frags = 0;
2126
2127 /* prefetch first cache line of first page */
2128 net_prefetch(xdp->data);
2129
2130 /* Note, we get here by enabling legacy-rx via:
2131 *
2132 * ethtool --set-priv-flags <dev> legacy-rx on
2133 *
2134 * In this mode, we currently get 0 extra XDP headroom as
2135 * opposed to having legacy-rx off, where we process XDP
2136 * packets going to stack via i40e_build_skb(). The latter
2137 * provides us currently with 192 bytes of headroom.
2138 *
2139 * For i40e_construct_skb() mode it means that the
2140 * xdp->data_meta will always point to xdp->data, since
2141 * the helper cannot expand the head. Should this ever
2142 * change in future for legacy-rx mode on, then lets also
2143 * add xdp->data_meta handling here.
2144 */
2145
2146 /* allocate a skb to store the frags */
2147 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2148 I40E_RX_HDR_SIZE,
2149 GFP_ATOMIC | __GFP_NOWARN);
2150 if (unlikely(!skb))
2151 return NULL;
2152
2153 /* Determine available headroom for copy */
2154 headlen = size;
2155 if (headlen > I40E_RX_HDR_SIZE)
2156 headlen = eth_get_headlen(skb->dev, xdp->data,
2157 I40E_RX_HDR_SIZE);
2158
2159 /* align pull length to size of long to optimize memcpy performance */
2160 memcpy(__skb_put(skb, headlen), xdp->data,
2161 ALIGN(headlen, sizeof(long)));
2162
2163 if (unlikely(xdp_buff_has_frags(xdp))) {
2164 sinfo = xdp_get_shared_info_from_buff(xdp);
2165 nr_frags = sinfo->nr_frags;
2166 }
2167 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2168 /* update all of the pointers */
2169 size -= headlen;
2170 if (size) {
2171 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2172 dev_kfree_skb(skb);
2173 return NULL;
2174 }
2175 skb_add_rx_frag(skb, 0, rx_buffer->page,
2176 rx_buffer->page_offset + headlen,
2177 size, xdp->frame_sz);
2178 /* buffer is used by skb, update page_offset */
2179 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2180 } else {
2181 /* buffer is unused, reset bias back to rx_buffer */
2182 rx_buffer->pagecnt_bias++;
2183 }
2184
2185 if (unlikely(xdp_buff_has_frags(xdp))) {
2186 struct skb_shared_info *skinfo = skb_shinfo(skb);
2187
2188 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2189 sizeof(skb_frag_t) * nr_frags);
2190
2191 xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2192 sinfo->xdp_frags_size,
2193 nr_frags * xdp->frame_sz,
2194 xdp_buff_is_frag_pfmemalloc(xdp));
2195
2196 /* First buffer has already been processed, so bump ntc */
2197 if (++rx_ring->next_to_clean == rx_ring->count)
2198 rx_ring->next_to_clean = 0;
2199
2200 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2201 }
2202
2203 return skb;
2204}
2205
2206/**
2207 * i40e_build_skb - Build skb around an existing buffer
2208 * @rx_ring: Rx descriptor ring to transact packets on
2209 * @xdp: xdp_buff pointing to the data
2210 *
2211 * This function builds an skb around an existing Rx buffer, taking care
2212 * to set up the skb correctly and avoid any memcpy overhead.
2213 */
2214static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2215 struct xdp_buff *xdp)
2216{
2217 unsigned int metasize = xdp->data - xdp->data_meta;
2218 struct skb_shared_info *sinfo;
2219 struct sk_buff *skb;
2220 u32 nr_frags;
2221
2222 /* Prefetch first cache line of first page. If xdp->data_meta
2223 * is unused, this points exactly as xdp->data, otherwise we
2224 * likely have a consumer accessing first few bytes of meta
2225 * data, and then actual data.
2226 */
2227 net_prefetch(xdp->data_meta);
2228
2229 if (unlikely(xdp_buff_has_frags(xdp))) {
2230 sinfo = xdp_get_shared_info_from_buff(xdp);
2231 nr_frags = sinfo->nr_frags;
2232 }
2233
2234 /* build an skb around the page buffer */
2235 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2236 if (unlikely(!skb))
2237 return NULL;
2238
2239 /* update pointers within the skb to store the data */
2240 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2241 __skb_put(skb, xdp->data_end - xdp->data);
2242 if (metasize)
2243 skb_metadata_set(skb, metasize);
2244
2245 if (unlikely(xdp_buff_has_frags(xdp))) {
2246 xdp_update_skb_shared_info(skb, nr_frags,
2247 sinfo->xdp_frags_size,
2248 nr_frags * xdp->frame_sz,
2249 xdp_buff_is_frag_pfmemalloc(xdp));
2250
2251 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2252 } else {
2253 struct i40e_rx_buffer *rx_buffer;
2254
2255 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2256 /* buffer is used by skb, update page_offset */
2257 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2258 }
2259
2260 return skb;
2261}
2262
2263/**
2264 * i40e_is_non_eop - process handling of non-EOP buffers
2265 * @rx_ring: Rx ring being processed
2266 * @rx_desc: Rx descriptor for current buffer
2267 *
2268 * If the buffer is an EOP buffer, this function exits returning false,
2269 * otherwise return true indicating that this is in fact a non-EOP buffer.
2270 */
2271bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2272 union i40e_rx_desc *rx_desc)
2273{
2274 /* if we are the last buffer then there is nothing else to do */
2275#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2276 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2277 return false;
2278
2279 rx_ring->rx_stats.non_eop_descs++;
2280
2281 return true;
2282}
2283
2284static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2285 struct i40e_ring *xdp_ring);
2286
2287int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2288{
2289 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2290
2291 if (unlikely(!xdpf))
2292 return I40E_XDP_CONSUMED;
2293
2294 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2295}
2296
2297/**
2298 * i40e_run_xdp - run an XDP program
2299 * @rx_ring: Rx ring being processed
2300 * @xdp: XDP buffer containing the frame
2301 * @xdp_prog: XDP program to run
2302 **/
2303static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2304{
2305 int err, result = I40E_XDP_PASS;
2306 struct i40e_ring *xdp_ring;
2307 u32 act;
2308
2309 if (!xdp_prog)
2310 goto xdp_out;
2311
2312 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2313
2314 act = bpf_prog_run_xdp(xdp_prog, xdp);
2315 switch (act) {
2316 case XDP_PASS:
2317 break;
2318 case XDP_TX:
2319 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2320 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2321 if (result == I40E_XDP_CONSUMED)
2322 goto out_failure;
2323 break;
2324 case XDP_REDIRECT:
2325 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2326 if (err)
2327 goto out_failure;
2328 result = I40E_XDP_REDIR;
2329 break;
2330 default:
2331 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2332 fallthrough;
2333 case XDP_ABORTED:
2334out_failure:
2335 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2336 fallthrough; /* handle aborts by dropping packet */
2337 case XDP_DROP:
2338 result = I40E_XDP_CONSUMED;
2339 break;
2340 }
2341xdp_out:
2342 return result;
2343}
2344
2345/**
2346 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2347 * @xdp_ring: XDP Tx ring
2348 *
2349 * This function updates the XDP Tx ring tail register.
2350 **/
2351void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2352{
2353 /* Force memory writes to complete before letting h/w
2354 * know there are new descriptors to fetch.
2355 */
2356 wmb();
2357 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2358}
2359
2360/**
2361 * i40e_update_rx_stats - Update Rx ring statistics
2362 * @rx_ring: rx descriptor ring
2363 * @total_rx_bytes: number of bytes received
2364 * @total_rx_packets: number of packets received
2365 *
2366 * This function updates the Rx ring statistics.
2367 **/
2368void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2369 unsigned int total_rx_bytes,
2370 unsigned int total_rx_packets)
2371{
2372 u64_stats_update_begin(&rx_ring->syncp);
2373 rx_ring->stats.packets += total_rx_packets;
2374 rx_ring->stats.bytes += total_rx_bytes;
2375 u64_stats_update_end(&rx_ring->syncp);
2376 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2377 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2378}
2379
2380/**
2381 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2382 * @rx_ring: Rx ring
2383 * @xdp_res: Result of the receive batch
2384 *
2385 * This function bumps XDP Tx tail and/or flush redirect map, and
2386 * should be called when a batch of packets has been processed in the
2387 * napi loop.
2388 **/
2389void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2390{
2391 if (xdp_res & I40E_XDP_REDIR)
2392 xdp_do_flush();
2393
2394 if (xdp_res & I40E_XDP_TX) {
2395 struct i40e_ring *xdp_ring =
2396 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2397
2398 i40e_xdp_ring_update_tail(xdp_ring);
2399 }
2400}
2401
2402/**
2403 * i40e_inc_ntp: Advance the next_to_process index
2404 * @rx_ring: Rx ring
2405 **/
2406static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2407{
2408 u32 ntp = rx_ring->next_to_process + 1;
2409
2410 ntp = (ntp < rx_ring->count) ? ntp : 0;
2411 rx_ring->next_to_process = ntp;
2412 prefetch(I40E_RX_DESC(rx_ring, ntp));
2413}
2414
2415/**
2416 * i40e_add_xdp_frag: Add a frag to xdp_buff
2417 * @xdp: xdp_buff pointing to the data
2418 * @nr_frags: return number of buffers for the packet
2419 * @rx_buffer: rx_buffer holding data of the current frag
2420 * @size: size of data of current frag
2421 */
2422static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2423 struct i40e_rx_buffer *rx_buffer, u32 size)
2424{
2425 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2426
2427 if (!xdp_buff_has_frags(xdp)) {
2428 sinfo->nr_frags = 0;
2429 sinfo->xdp_frags_size = 0;
2430 xdp_buff_set_frags_flag(xdp);
2431 } else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2432 /* Overflowing packet: All frags need to be dropped */
2433 return -ENOMEM;
2434 }
2435
2436 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2437 rx_buffer->page_offset, size);
2438
2439 sinfo->xdp_frags_size += size;
2440
2441 if (page_is_pfmemalloc(rx_buffer->page))
2442 xdp_buff_set_frag_pfmemalloc(xdp);
2443 *nr_frags = sinfo->nr_frags;
2444
2445 return 0;
2446}
2447
2448/**
2449 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2450 * @rx_ring: rx descriptor ring to transact packets on
2451 * @xdp: xdp_buff pointing to the data
2452 * @rx_buffer: rx_buffer of eop desc
2453 */
2454static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2455 struct xdp_buff *xdp,
2456 struct i40e_rx_buffer *rx_buffer)
2457{
2458 i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2459 i40e_put_rx_buffer(rx_ring, rx_buffer);
2460 rx_ring->next_to_clean = rx_ring->next_to_process;
2461 xdp->data = NULL;
2462}
2463
2464/**
2465 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2466 * @rx_ring: rx descriptor ring to transact packets on
2467 * @budget: Total limit on number of packets to process
2468 * @rx_cleaned: Out parameter of the number of packets processed
2469 *
2470 * This function provides a "bounce buffer" approach to Rx interrupt
2471 * processing. The advantage to this is that on systems that have
2472 * expensive overhead for IOMMU access this provides a means of avoiding
2473 * it by maintaining the mapping of the page to the system.
2474 *
2475 * Returns amount of work completed
2476 **/
2477static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2478 unsigned int *rx_cleaned)
2479{
2480 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2481 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2482 u16 clean_threshold = rx_ring->count / 2;
2483 unsigned int offset = rx_ring->rx_offset;
2484 struct xdp_buff *xdp = &rx_ring->xdp;
2485 unsigned int xdp_xmit = 0;
2486 struct bpf_prog *xdp_prog;
2487 bool failure = false;
2488 int xdp_res = 0;
2489
2490 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2491
2492 while (likely(total_rx_packets < (unsigned int)budget)) {
2493 u16 ntp = rx_ring->next_to_process;
2494 struct i40e_rx_buffer *rx_buffer;
2495 union i40e_rx_desc *rx_desc;
2496 struct sk_buff *skb;
2497 unsigned int size;
2498 u32 nfrags = 0;
2499 bool neop;
2500 u64 qword;
2501
2502 /* return some buffers to hardware, one at a time is too slow */
2503 if (cleaned_count >= clean_threshold) {
2504 failure = failure ||
2505 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2506 cleaned_count = 0;
2507 }
2508
2509 rx_desc = I40E_RX_DESC(rx_ring, ntp);
2510
2511 /* status_error_len will always be zero for unused descriptors
2512 * because it's cleared in cleanup, and overlaps with hdr_addr
2513 * which is always zero because packet split isn't used, if the
2514 * hardware wrote DD then the length will be non-zero
2515 */
2516 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2517
2518 /* This memory barrier is needed to keep us from reading
2519 * any other fields out of the rx_desc until we have
2520 * verified the descriptor has been written back.
2521 */
2522 dma_rmb();
2523
2524 if (i40e_rx_is_programming_status(qword)) {
2525 i40e_clean_programming_status(rx_ring,
2526 rx_desc->raw.qword[0],
2527 qword);
2528 rx_buffer = i40e_rx_bi(rx_ring, ntp);
2529 i40e_inc_ntp(rx_ring);
2530 i40e_reuse_rx_page(rx_ring, rx_buffer);
2531 /* Update ntc and bump cleaned count if not in the
2532 * middle of mb packet.
2533 */
2534 if (rx_ring->next_to_clean == ntp) {
2535 rx_ring->next_to_clean =
2536 rx_ring->next_to_process;
2537 cleaned_count++;
2538 }
2539 continue;
2540 }
2541
2542 size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2543 if (!size)
2544 break;
2545
2546 i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2547 /* retrieve a buffer from the ring */
2548 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2549
2550 neop = i40e_is_non_eop(rx_ring, rx_desc);
2551 i40e_inc_ntp(rx_ring);
2552
2553 if (!xdp->data) {
2554 unsigned char *hard_start;
2555
2556 hard_start = page_address(rx_buffer->page) +
2557 rx_buffer->page_offset - offset;
2558 xdp_prepare_buff(xdp, hard_start, offset, size, true);
2559#if (PAGE_SIZE > 4096)
2560 /* At larger PAGE_SIZE, frame_sz depend on len size */
2561 xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2562#endif
2563 } else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2564 !neop) {
2565 /* Overflowing packet: Drop all frags on EOP */
2566 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2567 break;
2568 }
2569
2570 if (neop)
2571 continue;
2572
2573 xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2574
2575 if (xdp_res) {
2576 xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2577
2578 if (unlikely(xdp_buff_has_frags(xdp))) {
2579 i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2580 size = xdp_get_buff_len(xdp);
2581 } else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2582 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2583 } else {
2584 rx_buffer->pagecnt_bias++;
2585 }
2586 total_rx_bytes += size;
2587 } else {
2588 if (ring_uses_build_skb(rx_ring))
2589 skb = i40e_build_skb(rx_ring, xdp);
2590 else
2591 skb = i40e_construct_skb(rx_ring, xdp);
2592
2593 /* drop if we failed to retrieve a buffer */
2594 if (!skb) {
2595 rx_ring->rx_stats.alloc_buff_failed++;
2596 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2597 break;
2598 }
2599
2600 if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2601 goto process_next;
2602
2603 /* probably a little skewed due to removing CRC */
2604 total_rx_bytes += skb->len;
2605
2606 /* populate checksum, VLAN, and protocol */
2607 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2608
2609 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2610 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2611 }
2612
2613 /* update budget accounting */
2614 total_rx_packets++;
2615process_next:
2616 cleaned_count += nfrags + 1;
2617 i40e_put_rx_buffer(rx_ring, rx_buffer);
2618 rx_ring->next_to_clean = rx_ring->next_to_process;
2619
2620 xdp->data = NULL;
2621 }
2622
2623 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2624
2625 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2626
2627 *rx_cleaned = total_rx_packets;
2628
2629 /* guarantee a trip back through this routine if there was a failure */
2630 return failure ? budget : (int)total_rx_packets;
2631}
2632
2633static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2634{
2635 u32 val;
2636
2637 /* We don't bother with setting the CLEARPBA bit as the data sheet
2638 * points out doing so is "meaningless since it was already
2639 * auto-cleared". The auto-clearing happens when the interrupt is
2640 * asserted.
2641 *
2642 * Hardware errata 28 for also indicates that writing to a
2643 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2644 * an event in the PBA anyway so we need to rely on the automask
2645 * to hold pending events for us until the interrupt is re-enabled
2646 *
2647 * The itr value is reported in microseconds, and the register
2648 * value is recorded in 2 microsecond units. For this reason we
2649 * only need to shift by the interval shift - 1 instead of the
2650 * full value.
2651 */
2652 itr &= I40E_ITR_MASK;
2653
2654 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2655 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2656 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2657
2658 return val;
2659}
2660
2661/* a small macro to shorten up some long lines */
2662#define INTREG I40E_PFINT_DYN_CTLN
2663
2664/* The act of updating the ITR will cause it to immediately trigger. In order
2665 * to prevent this from throwing off adaptive update statistics we defer the
2666 * update so that it can only happen so often. So after either Tx or Rx are
2667 * updated we make the adaptive scheme wait until either the ITR completely
2668 * expires via the next_update expiration or we have been through at least
2669 * 3 interrupts.
2670 */
2671#define ITR_COUNTDOWN_START 3
2672
2673/**
2674 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2675 * @vsi: the VSI we care about
2676 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2677 *
2678 **/
2679static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2680 struct i40e_q_vector *q_vector)
2681{
2682 struct i40e_hw *hw = &vsi->back->hw;
2683 u32 intval;
2684
2685 /* If we don't have MSIX, then we only need to re-enable icr0 */
2686 if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2687 i40e_irq_dynamic_enable_icr0(vsi->back);
2688 return;
2689 }
2690
2691 /* These will do nothing if dynamic updates are not enabled */
2692 i40e_update_itr(q_vector, &q_vector->tx);
2693 i40e_update_itr(q_vector, &q_vector->rx);
2694
2695 /* This block of logic allows us to get away with only updating
2696 * one ITR value with each interrupt. The idea is to perform a
2697 * pseudo-lazy update with the following criteria.
2698 *
2699 * 1. Rx is given higher priority than Tx if both are in same state
2700 * 2. If we must reduce an ITR that is given highest priority.
2701 * 3. We then give priority to increasing ITR based on amount.
2702 */
2703 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2704 /* Rx ITR needs to be reduced, this is highest priority */
2705 intval = i40e_buildreg_itr(I40E_RX_ITR,
2706 q_vector->rx.target_itr);
2707 q_vector->rx.current_itr = q_vector->rx.target_itr;
2708 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2709 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2710 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2711 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2712 /* Tx ITR needs to be reduced, this is second priority
2713 * Tx ITR needs to be increased more than Rx, fourth priority
2714 */
2715 intval = i40e_buildreg_itr(I40E_TX_ITR,
2716 q_vector->tx.target_itr);
2717 q_vector->tx.current_itr = q_vector->tx.target_itr;
2718 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2719 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2720 /* Rx ITR needs to be increased, third priority */
2721 intval = i40e_buildreg_itr(I40E_RX_ITR,
2722 q_vector->rx.target_itr);
2723 q_vector->rx.current_itr = q_vector->rx.target_itr;
2724 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2725 } else {
2726 /* No ITR update, lowest priority */
2727 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2728 if (q_vector->itr_countdown)
2729 q_vector->itr_countdown--;
2730 }
2731
2732 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2733 wr32(hw, INTREG(q_vector->reg_idx), intval);
2734}
2735
2736/**
2737 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2738 * @napi: napi struct with our devices info in it
2739 * @budget: amount of work driver is allowed to do this pass, in packets
2740 *
2741 * This function will clean all queues associated with a q_vector.
2742 *
2743 * Returns the amount of work done
2744 **/
2745int i40e_napi_poll(struct napi_struct *napi, int budget)
2746{
2747 struct i40e_q_vector *q_vector =
2748 container_of(napi, struct i40e_q_vector, napi);
2749 struct i40e_vsi *vsi = q_vector->vsi;
2750 struct i40e_ring *ring;
2751 bool tx_clean_complete = true;
2752 bool rx_clean_complete = true;
2753 unsigned int tx_cleaned = 0;
2754 unsigned int rx_cleaned = 0;
2755 bool clean_complete = true;
2756 bool arm_wb = false;
2757 int budget_per_ring;
2758 int work_done = 0;
2759
2760 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2761 napi_complete(napi);
2762 return 0;
2763 }
2764
2765 /* Since the actual Tx work is minimal, we can give the Tx a larger
2766 * budget and be more aggressive about cleaning up the Tx descriptors.
2767 */
2768 i40e_for_each_ring(ring, q_vector->tx) {
2769 bool wd = ring->xsk_pool ?
2770 i40e_clean_xdp_tx_irq(vsi, ring) :
2771 i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2772
2773 if (!wd) {
2774 clean_complete = tx_clean_complete = false;
2775 continue;
2776 }
2777 arm_wb |= ring->arm_wb;
2778 ring->arm_wb = false;
2779 }
2780
2781 /* Handle case where we are called by netpoll with a budget of 0 */
2782 if (budget <= 0)
2783 goto tx_only;
2784
2785 /* normally we have 1 Rx ring per q_vector */
2786 if (unlikely(q_vector->num_ringpairs > 1))
2787 /* We attempt to distribute budget to each Rx queue fairly, but
2788 * don't allow the budget to go below 1 because that would exit
2789 * polling early.
2790 */
2791 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2792 else
2793 /* Max of 1 Rx ring in this q_vector so give it the budget */
2794 budget_per_ring = budget;
2795
2796 i40e_for_each_ring(ring, q_vector->rx) {
2797 int cleaned = ring->xsk_pool ?
2798 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2799 i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2800
2801 work_done += cleaned;
2802 /* if we clean as many as budgeted, we must not be done */
2803 if (cleaned >= budget_per_ring)
2804 clean_complete = rx_clean_complete = false;
2805 }
2806
2807 if (!i40e_enabled_xdp_vsi(vsi))
2808 trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2809 tx_cleaned, rx_clean_complete, tx_clean_complete);
2810
2811 /* If work not completed, return budget and polling will return */
2812 if (!clean_complete) {
2813 int cpu_id = smp_processor_id();
2814
2815 /* It is possible that the interrupt affinity has changed but,
2816 * if the cpu is pegged at 100%, polling will never exit while
2817 * traffic continues and the interrupt will be stuck on this
2818 * cpu. We check to make sure affinity is correct before we
2819 * continue to poll, otherwise we must stop polling so the
2820 * interrupt can move to the correct cpu.
2821 */
2822 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2823 /* Tell napi that we are done polling */
2824 napi_complete_done(napi, work_done);
2825
2826 /* Force an interrupt */
2827 i40e_force_wb(vsi, q_vector);
2828
2829 /* Return budget-1 so that polling stops */
2830 return budget - 1;
2831 }
2832tx_only:
2833 if (arm_wb) {
2834 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2835 i40e_enable_wb_on_itr(vsi, q_vector);
2836 }
2837 return budget;
2838 }
2839
2840 if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2841 q_vector->arm_wb_state = false;
2842
2843 /* Exit the polling mode, but don't re-enable interrupts if stack might
2844 * poll us due to busy-polling
2845 */
2846 if (likely(napi_complete_done(napi, work_done)))
2847 i40e_update_enable_itr(vsi, q_vector);
2848
2849 return min(work_done, budget - 1);
2850}
2851
2852/**
2853 * i40e_atr - Add a Flow Director ATR filter
2854 * @tx_ring: ring to add programming descriptor to
2855 * @skb: send buffer
2856 * @tx_flags: send tx flags
2857 **/
2858static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2859 u32 tx_flags)
2860{
2861 struct i40e_filter_program_desc *fdir_desc;
2862 struct i40e_pf *pf = tx_ring->vsi->back;
2863 union {
2864 unsigned char *network;
2865 struct iphdr *ipv4;
2866 struct ipv6hdr *ipv6;
2867 } hdr;
2868 struct tcphdr *th;
2869 unsigned int hlen;
2870 u32 flex_ptype, dtype_cmd;
2871 int l4_proto;
2872 u16 i;
2873
2874 /* make sure ATR is enabled */
2875 if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2876 return;
2877
2878 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2879 return;
2880
2881 /* if sampling is disabled do nothing */
2882 if (!tx_ring->atr_sample_rate)
2883 return;
2884
2885 /* Currently only IPv4/IPv6 with TCP is supported */
2886 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2887 return;
2888
2889 /* snag network header to get L4 type and address */
2890 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2891 skb_inner_network_header(skb) : skb_network_header(skb);
2892
2893 /* Note: tx_flags gets modified to reflect inner protocols in
2894 * tx_enable_csum function if encap is enabled.
2895 */
2896 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2897 /* access ihl as u8 to avoid unaligned access on ia64 */
2898 hlen = (hdr.network[0] & 0x0F) << 2;
2899 l4_proto = hdr.ipv4->protocol;
2900 } else {
2901 /* find the start of the innermost ipv6 header */
2902 unsigned int inner_hlen = hdr.network - skb->data;
2903 unsigned int h_offset = inner_hlen;
2904
2905 /* this function updates h_offset to the end of the header */
2906 l4_proto =
2907 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2908 /* hlen will contain our best estimate of the tcp header */
2909 hlen = h_offset - inner_hlen;
2910 }
2911
2912 if (l4_proto != IPPROTO_TCP)
2913 return;
2914
2915 th = (struct tcphdr *)(hdr.network + hlen);
2916
2917 /* Due to lack of space, no more new filters can be programmed */
2918 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2919 return;
2920 if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2921 /* HW ATR eviction will take care of removing filters on FIN
2922 * and RST packets.
2923 */
2924 if (th->fin || th->rst)
2925 return;
2926 }
2927
2928 tx_ring->atr_count++;
2929
2930 /* sample on all syn/fin/rst packets or once every atr sample rate */
2931 if (!th->fin &&
2932 !th->syn &&
2933 !th->rst &&
2934 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2935 return;
2936
2937 tx_ring->atr_count = 0;
2938
2939 /* grab the next descriptor */
2940 i = tx_ring->next_to_use;
2941 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2942
2943 i++;
2944 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2945
2946 flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2947 tx_ring->queue_index);
2948 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2949 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2950 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2951 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2952 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2953
2954 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2955
2956 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2957
2958 dtype_cmd |= (th->fin || th->rst) ?
2959 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2960 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2961 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2962 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2963
2964 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2965 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2966
2967 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2968 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2969
2970 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2971 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2972 dtype_cmd |=
2973 FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2974 I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
2975 else
2976 dtype_cmd |=
2977 FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2978 I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
2979
2980 if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
2981 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2982
2983 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2984 fdir_desc->rsvd = cpu_to_le32(0);
2985 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2986 fdir_desc->fd_id = cpu_to_le32(0);
2987}
2988
2989/**
2990 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2991 * @skb: send buffer
2992 * @tx_ring: ring to send buffer on
2993 * @flags: the tx flags to be set
2994 *
2995 * Checks the skb and set up correspondingly several generic transmit flags
2996 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2997 *
2998 * Returns error code indicate the frame should be dropped upon error and the
2999 * otherwise returns 0 to indicate the flags has been set properly.
3000 **/
3001static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3002 struct i40e_ring *tx_ring,
3003 u32 *flags)
3004{
3005 __be16 protocol = skb->protocol;
3006 u32 tx_flags = 0;
3007
3008 if (protocol == htons(ETH_P_8021Q) &&
3009 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3010 /* When HW VLAN acceleration is turned off by the user the
3011 * stack sets the protocol to 8021q so that the driver
3012 * can take any steps required to support the SW only
3013 * VLAN handling. In our case the driver doesn't need
3014 * to take any further steps so just set the protocol
3015 * to the encapsulated ethertype.
3016 */
3017 skb->protocol = vlan_get_protocol(skb);
3018 goto out;
3019 }
3020
3021 /* if we have a HW VLAN tag being added, default to the HW one */
3022 if (skb_vlan_tag_present(skb)) {
3023 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3024 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3025 /* else if it is a SW VLAN, check the next protocol and store the tag */
3026 } else if (protocol == htons(ETH_P_8021Q)) {
3027 struct vlan_hdr *vhdr, _vhdr;
3028
3029 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3030 if (!vhdr)
3031 return -EINVAL;
3032
3033 protocol = vhdr->h_vlan_encapsulated_proto;
3034 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3035 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3036 }
3037
3038 if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3039 goto out;
3040
3041 /* Insert 802.1p priority into VLAN header */
3042 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3043 (skb->priority != TC_PRIO_CONTROL)) {
3044 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3045 tx_flags |= (skb->priority & 0x7) <<
3046 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3047 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3048 struct vlan_ethhdr *vhdr;
3049 int rc;
3050
3051 rc = skb_cow_head(skb, 0);
3052 if (rc < 0)
3053 return rc;
3054 vhdr = skb_vlan_eth_hdr(skb);
3055 vhdr->h_vlan_TCI = htons(tx_flags >>
3056 I40E_TX_FLAGS_VLAN_SHIFT);
3057 } else {
3058 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3059 }
3060 }
3061
3062out:
3063 *flags = tx_flags;
3064 return 0;
3065}
3066
3067/**
3068 * i40e_tso - set up the tso context descriptor
3069 * @first: pointer to first Tx buffer for xmit
3070 * @hdr_len: ptr to the size of the packet header
3071 * @cd_type_cmd_tso_mss: Quad Word 1
3072 *
3073 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3074 **/
3075static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3076 u64 *cd_type_cmd_tso_mss)
3077{
3078 struct sk_buff *skb = first->skb;
3079 u64 cd_cmd, cd_tso_len, cd_mss;
3080 __be16 protocol;
3081 union {
3082 struct iphdr *v4;
3083 struct ipv6hdr *v6;
3084 unsigned char *hdr;
3085 } ip;
3086 union {
3087 struct tcphdr *tcp;
3088 struct udphdr *udp;
3089 unsigned char *hdr;
3090 } l4;
3091 u32 paylen, l4_offset;
3092 u16 gso_size;
3093 int err;
3094
3095 if (skb->ip_summed != CHECKSUM_PARTIAL)
3096 return 0;
3097
3098 if (!skb_is_gso(skb))
3099 return 0;
3100
3101 err = skb_cow_head(skb, 0);
3102 if (err < 0)
3103 return err;
3104
3105 protocol = vlan_get_protocol(skb);
3106
3107 if (eth_p_mpls(protocol))
3108 ip.hdr = skb_inner_network_header(skb);
3109 else
3110 ip.hdr = skb_network_header(skb);
3111 l4.hdr = skb_checksum_start(skb);
3112
3113 /* initialize outer IP header fields */
3114 if (ip.v4->version == 4) {
3115 ip.v4->tot_len = 0;
3116 ip.v4->check = 0;
3117
3118 first->tx_flags |= I40E_TX_FLAGS_TSO;
3119 } else {
3120 ip.v6->payload_len = 0;
3121 first->tx_flags |= I40E_TX_FLAGS_TSO;
3122 }
3123
3124 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3125 SKB_GSO_GRE_CSUM |
3126 SKB_GSO_IPXIP4 |
3127 SKB_GSO_IPXIP6 |
3128 SKB_GSO_UDP_TUNNEL |
3129 SKB_GSO_UDP_TUNNEL_CSUM)) {
3130 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3131 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3132 l4.udp->len = 0;
3133
3134 /* determine offset of outer transport header */
3135 l4_offset = l4.hdr - skb->data;
3136
3137 /* remove payload length from outer checksum */
3138 paylen = skb->len - l4_offset;
3139 csum_replace_by_diff(&l4.udp->check,
3140 (__force __wsum)htonl(paylen));
3141 }
3142
3143 /* reset pointers to inner headers */
3144 ip.hdr = skb_inner_network_header(skb);
3145 l4.hdr = skb_inner_transport_header(skb);
3146
3147 /* initialize inner IP header fields */
3148 if (ip.v4->version == 4) {
3149 ip.v4->tot_len = 0;
3150 ip.v4->check = 0;
3151 } else {
3152 ip.v6->payload_len = 0;
3153 }
3154 }
3155
3156 /* determine offset of inner transport header */
3157 l4_offset = l4.hdr - skb->data;
3158
3159 /* remove payload length from inner checksum */
3160 paylen = skb->len - l4_offset;
3161
3162 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3163 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3164 /* compute length of segmentation header */
3165 *hdr_len = sizeof(*l4.udp) + l4_offset;
3166 } else {
3167 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3168 /* compute length of segmentation header */
3169 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3170 }
3171
3172 /* pull values out of skb_shinfo */
3173 gso_size = skb_shinfo(skb)->gso_size;
3174
3175 /* update GSO size and bytecount with header size */
3176 first->gso_segs = skb_shinfo(skb)->gso_segs;
3177 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3178
3179 /* find the field values */
3180 cd_cmd = I40E_TX_CTX_DESC_TSO;
3181 cd_tso_len = skb->len - *hdr_len;
3182 cd_mss = gso_size;
3183 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3184 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3185 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3186 return 1;
3187}
3188
3189/**
3190 * i40e_tsyn - set up the tsyn context descriptor
3191 * @tx_ring: ptr to the ring to send
3192 * @skb: ptr to the skb we're sending
3193 * @tx_flags: the collected send information
3194 * @cd_type_cmd_tso_mss: Quad Word 1
3195 *
3196 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3197 **/
3198static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3199 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3200{
3201 struct i40e_pf *pf;
3202
3203 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3204 return 0;
3205
3206 /* Tx timestamps cannot be sampled when doing TSO */
3207 if (tx_flags & I40E_TX_FLAGS_TSO)
3208 return 0;
3209
3210 /* only timestamp the outbound packet if the user has requested it and
3211 * we are not already transmitting a packet to be timestamped
3212 */
3213 pf = i40e_netdev_to_pf(tx_ring->netdev);
3214 if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3215 return 0;
3216
3217 if (pf->ptp_tx &&
3218 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3219 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3220 pf->ptp_tx_start = jiffies;
3221 pf->ptp_tx_skb = skb_get(skb);
3222 } else {
3223 pf->tx_hwtstamp_skipped++;
3224 return 0;
3225 }
3226
3227 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3228 I40E_TXD_CTX_QW1_CMD_SHIFT;
3229
3230 return 1;
3231}
3232
3233/**
3234 * i40e_tx_enable_csum - Enable Tx checksum offloads
3235 * @skb: send buffer
3236 * @tx_flags: pointer to Tx flags currently set
3237 * @td_cmd: Tx descriptor command bits to set
3238 * @td_offset: Tx descriptor header offsets to set
3239 * @tx_ring: Tx descriptor ring
3240 * @cd_tunneling: ptr to context desc bits
3241 **/
3242static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3243 u32 *td_cmd, u32 *td_offset,
3244 struct i40e_ring *tx_ring,
3245 u32 *cd_tunneling)
3246{
3247 union {
3248 struct iphdr *v4;
3249 struct ipv6hdr *v6;
3250 unsigned char *hdr;
3251 } ip;
3252 union {
3253 struct tcphdr *tcp;
3254 struct udphdr *udp;
3255 unsigned char *hdr;
3256 } l4;
3257 unsigned char *exthdr;
3258 u32 offset, cmd = 0;
3259 __be16 frag_off;
3260 __be16 protocol;
3261 u8 l4_proto = 0;
3262
3263 if (skb->ip_summed != CHECKSUM_PARTIAL)
3264 return 0;
3265
3266 protocol = vlan_get_protocol(skb);
3267
3268 if (eth_p_mpls(protocol)) {
3269 ip.hdr = skb_inner_network_header(skb);
3270 l4.hdr = skb_checksum_start(skb);
3271 } else {
3272 ip.hdr = skb_network_header(skb);
3273 l4.hdr = skb_transport_header(skb);
3274 }
3275
3276 /* set the tx_flags to indicate the IP protocol type. this is
3277 * required so that checksum header computation below is accurate.
3278 */
3279 if (ip.v4->version == 4)
3280 *tx_flags |= I40E_TX_FLAGS_IPV4;
3281 else
3282 *tx_flags |= I40E_TX_FLAGS_IPV6;
3283
3284 /* compute outer L2 header size */
3285 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3286
3287 if (skb->encapsulation) {
3288 u32 tunnel = 0;
3289 /* define outer network header type */
3290 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3291 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3292 I40E_TX_CTX_EXT_IP_IPV4 :
3293 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3294
3295 l4_proto = ip.v4->protocol;
3296 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3297 int ret;
3298
3299 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3300
3301 exthdr = ip.hdr + sizeof(*ip.v6);
3302 l4_proto = ip.v6->nexthdr;
3303 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3304 &l4_proto, &frag_off);
3305 if (ret < 0)
3306 return -1;
3307 }
3308
3309 /* define outer transport */
3310 switch (l4_proto) {
3311 case IPPROTO_UDP:
3312 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3313 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3314 break;
3315 case IPPROTO_GRE:
3316 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3317 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3318 break;
3319 case IPPROTO_IPIP:
3320 case IPPROTO_IPV6:
3321 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3322 l4.hdr = skb_inner_network_header(skb);
3323 break;
3324 default:
3325 if (*tx_flags & I40E_TX_FLAGS_TSO)
3326 return -1;
3327
3328 skb_checksum_help(skb);
3329 return 0;
3330 }
3331
3332 /* compute outer L3 header size */
3333 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3334 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3335
3336 /* switch IP header pointer from outer to inner header */
3337 ip.hdr = skb_inner_network_header(skb);
3338
3339 /* compute tunnel header size */
3340 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3341 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3342
3343 /* indicate if we need to offload outer UDP header */
3344 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3345 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3346 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3347 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3348
3349 /* record tunnel offload values */
3350 *cd_tunneling |= tunnel;
3351
3352 /* switch L4 header pointer from outer to inner */
3353 l4.hdr = skb_inner_transport_header(skb);
3354 l4_proto = 0;
3355
3356 /* reset type as we transition from outer to inner headers */
3357 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3358 if (ip.v4->version == 4)
3359 *tx_flags |= I40E_TX_FLAGS_IPV4;
3360 if (ip.v6->version == 6)
3361 *tx_flags |= I40E_TX_FLAGS_IPV6;
3362 }
3363
3364 /* Enable IP checksum offloads */
3365 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3366 l4_proto = ip.v4->protocol;
3367 /* the stack computes the IP header already, the only time we
3368 * need the hardware to recompute it is in the case of TSO.
3369 */
3370 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3371 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3372 I40E_TX_DESC_CMD_IIPT_IPV4;
3373 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3374 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3375
3376 exthdr = ip.hdr + sizeof(*ip.v6);
3377 l4_proto = ip.v6->nexthdr;
3378 if (l4.hdr != exthdr)
3379 ipv6_skip_exthdr(skb, exthdr - skb->data,
3380 &l4_proto, &frag_off);
3381 }
3382
3383 /* compute inner L3 header size */
3384 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3385
3386 /* Enable L4 checksum offloads */
3387 switch (l4_proto) {
3388 case IPPROTO_TCP:
3389 /* enable checksum offloads */
3390 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3391 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3392 break;
3393 case IPPROTO_SCTP:
3394 /* enable SCTP checksum offload */
3395 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3396 offset |= (sizeof(struct sctphdr) >> 2) <<
3397 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3398 break;
3399 case IPPROTO_UDP:
3400 /* enable UDP checksum offload */
3401 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3402 offset |= (sizeof(struct udphdr) >> 2) <<
3403 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3404 break;
3405 default:
3406 if (*tx_flags & I40E_TX_FLAGS_TSO)
3407 return -1;
3408 skb_checksum_help(skb);
3409 return 0;
3410 }
3411
3412 *td_cmd |= cmd;
3413 *td_offset |= offset;
3414
3415 return 1;
3416}
3417
3418/**
3419 * i40e_create_tx_ctx - Build the Tx context descriptor
3420 * @tx_ring: ring to create the descriptor on
3421 * @cd_type_cmd_tso_mss: Quad Word 1
3422 * @cd_tunneling: Quad Word 0 - bits 0-31
3423 * @cd_l2tag2: Quad Word 0 - bits 32-63
3424 **/
3425static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3426 const u64 cd_type_cmd_tso_mss,
3427 const u32 cd_tunneling, const u32 cd_l2tag2)
3428{
3429 struct i40e_tx_context_desc *context_desc;
3430 int i = tx_ring->next_to_use;
3431
3432 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3433 !cd_tunneling && !cd_l2tag2)
3434 return;
3435
3436 /* grab the next descriptor */
3437 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3438
3439 i++;
3440 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3441
3442 /* cpu_to_le32 and assign to struct fields */
3443 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3444 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3445 context_desc->rsvd = cpu_to_le16(0);
3446 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3447}
3448
3449/**
3450 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3451 * @tx_ring: the ring to be checked
3452 * @size: the size buffer we want to assure is available
3453 *
3454 * Returns -EBUSY if a stop is needed, else 0
3455 **/
3456int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3457{
3458 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3459 /* Memory barrier before checking head and tail */
3460 smp_mb();
3461
3462 ++tx_ring->tx_stats.tx_stopped;
3463
3464 /* Check again in a case another CPU has just made room available. */
3465 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3466 return -EBUSY;
3467
3468 /* A reprieve! - use start_queue because it doesn't call schedule */
3469 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3470 ++tx_ring->tx_stats.restart_queue;
3471 return 0;
3472}
3473
3474/**
3475 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3476 * @skb: send buffer
3477 *
3478 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3479 * and so we need to figure out the cases where we need to linearize the skb.
3480 *
3481 * For TSO we need to count the TSO header and segment payload separately.
3482 * As such we need to check cases where we have 7 fragments or more as we
3483 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3484 * the segment payload in the first descriptor, and another 7 for the
3485 * fragments.
3486 **/
3487bool __i40e_chk_linearize(struct sk_buff *skb)
3488{
3489 const skb_frag_t *frag, *stale;
3490 int nr_frags, sum;
3491
3492 /* no need to check if number of frags is less than 7 */
3493 nr_frags = skb_shinfo(skb)->nr_frags;
3494 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3495 return false;
3496
3497 /* We need to walk through the list and validate that each group
3498 * of 6 fragments totals at least gso_size.
3499 */
3500 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3501 frag = &skb_shinfo(skb)->frags[0];
3502
3503 /* Initialize size to the negative value of gso_size minus 1. We
3504 * use this as the worst case scenerio in which the frag ahead
3505 * of us only provides one byte which is why we are limited to 6
3506 * descriptors for a single transmit as the header and previous
3507 * fragment are already consuming 2 descriptors.
3508 */
3509 sum = 1 - skb_shinfo(skb)->gso_size;
3510
3511 /* Add size of frags 0 through 4 to create our initial sum */
3512 sum += skb_frag_size(frag++);
3513 sum += skb_frag_size(frag++);
3514 sum += skb_frag_size(frag++);
3515 sum += skb_frag_size(frag++);
3516 sum += skb_frag_size(frag++);
3517
3518 /* Walk through fragments adding latest fragment, testing it, and
3519 * then removing stale fragments from the sum.
3520 */
3521 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3522 int stale_size = skb_frag_size(stale);
3523
3524 sum += skb_frag_size(frag++);
3525
3526 /* The stale fragment may present us with a smaller
3527 * descriptor than the actual fragment size. To account
3528 * for that we need to remove all the data on the front and
3529 * figure out what the remainder would be in the last
3530 * descriptor associated with the fragment.
3531 */
3532 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3533 int align_pad = -(skb_frag_off(stale)) &
3534 (I40E_MAX_READ_REQ_SIZE - 1);
3535
3536 sum -= align_pad;
3537 stale_size -= align_pad;
3538
3539 do {
3540 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3541 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3542 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3543 }
3544
3545 /* if sum is negative we failed to make sufficient progress */
3546 if (sum < 0)
3547 return true;
3548
3549 if (!nr_frags--)
3550 break;
3551
3552 sum -= stale_size;
3553 }
3554
3555 return false;
3556}
3557
3558/**
3559 * i40e_tx_map - Build the Tx descriptor
3560 * @tx_ring: ring to send buffer on
3561 * @skb: send buffer
3562 * @first: first buffer info buffer to use
3563 * @tx_flags: collected send information
3564 * @hdr_len: size of the packet header
3565 * @td_cmd: the command field in the descriptor
3566 * @td_offset: offset for checksum or crc
3567 *
3568 * Returns 0 on success, -1 on failure to DMA
3569 **/
3570static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3571 struct i40e_tx_buffer *first, u32 tx_flags,
3572 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3573{
3574 unsigned int data_len = skb->data_len;
3575 unsigned int size = skb_headlen(skb);
3576 skb_frag_t *frag;
3577 struct i40e_tx_buffer *tx_bi;
3578 struct i40e_tx_desc *tx_desc;
3579 u16 i = tx_ring->next_to_use;
3580 u32 td_tag = 0;
3581 dma_addr_t dma;
3582 u16 desc_count = 1;
3583
3584 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3585 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3586 td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
3587 }
3588
3589 first->tx_flags = tx_flags;
3590
3591 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3592
3593 tx_desc = I40E_TX_DESC(tx_ring, i);
3594 tx_bi = first;
3595
3596 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3597 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3598
3599 if (dma_mapping_error(tx_ring->dev, dma))
3600 goto dma_error;
3601
3602 /* record length, and DMA address */
3603 dma_unmap_len_set(tx_bi, len, size);
3604 dma_unmap_addr_set(tx_bi, dma, dma);
3605
3606 /* align size to end of page */
3607 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3608 tx_desc->buffer_addr = cpu_to_le64(dma);
3609
3610 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3611 tx_desc->cmd_type_offset_bsz =
3612 build_ctob(td_cmd, td_offset,
3613 max_data, td_tag);
3614
3615 tx_desc++;
3616 i++;
3617 desc_count++;
3618
3619 if (i == tx_ring->count) {
3620 tx_desc = I40E_TX_DESC(tx_ring, 0);
3621 i = 0;
3622 }
3623
3624 dma += max_data;
3625 size -= max_data;
3626
3627 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3628 tx_desc->buffer_addr = cpu_to_le64(dma);
3629 }
3630
3631 if (likely(!data_len))
3632 break;
3633
3634 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3635 size, td_tag);
3636
3637 tx_desc++;
3638 i++;
3639 desc_count++;
3640
3641 if (i == tx_ring->count) {
3642 tx_desc = I40E_TX_DESC(tx_ring, 0);
3643 i = 0;
3644 }
3645
3646 size = skb_frag_size(frag);
3647 data_len -= size;
3648
3649 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3650 DMA_TO_DEVICE);
3651
3652 tx_bi = &tx_ring->tx_bi[i];
3653 }
3654
3655 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3656
3657 i++;
3658 if (i == tx_ring->count)
3659 i = 0;
3660
3661 tx_ring->next_to_use = i;
3662
3663 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3664
3665 /* write last descriptor with EOP bit */
3666 td_cmd |= I40E_TX_DESC_CMD_EOP;
3667
3668 /* We OR these values together to check both against 4 (WB_STRIDE)
3669 * below. This is safe since we don't re-use desc_count afterwards.
3670 */
3671 desc_count |= ++tx_ring->packet_stride;
3672
3673 if (desc_count >= WB_STRIDE) {
3674 /* write last descriptor with RS bit set */
3675 td_cmd |= I40E_TX_DESC_CMD_RS;
3676 tx_ring->packet_stride = 0;
3677 }
3678
3679 tx_desc->cmd_type_offset_bsz =
3680 build_ctob(td_cmd, td_offset, size, td_tag);
3681
3682 skb_tx_timestamp(skb);
3683
3684 /* Force memory writes to complete before letting h/w know there
3685 * are new descriptors to fetch.
3686 *
3687 * We also use this memory barrier to make certain all of the
3688 * status bits have been updated before next_to_watch is written.
3689 */
3690 wmb();
3691
3692 /* set next_to_watch value indicating a packet is present */
3693 first->next_to_watch = tx_desc;
3694
3695 /* notify HW of packet */
3696 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3697 writel(i, tx_ring->tail);
3698 }
3699
3700 return 0;
3701
3702dma_error:
3703 dev_info(tx_ring->dev, "TX DMA map failed\n");
3704
3705 /* clear dma mappings for failed tx_bi map */
3706 for (;;) {
3707 tx_bi = &tx_ring->tx_bi[i];
3708 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3709 if (tx_bi == first)
3710 break;
3711 if (i == 0)
3712 i = tx_ring->count;
3713 i--;
3714 }
3715
3716 tx_ring->next_to_use = i;
3717
3718 return -1;
3719}
3720
3721static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3722 const struct sk_buff *skb,
3723 u16 num_tx_queues)
3724{
3725 u32 jhash_initval_salt = 0xd631614b;
3726 u32 hash;
3727
3728 if (skb->sk && skb->sk->sk_hash)
3729 hash = skb->sk->sk_hash;
3730 else
3731 hash = (__force u16)skb->protocol ^ skb->hash;
3732
3733 hash = jhash_1word(hash, jhash_initval_salt);
3734
3735 return (u16)(((u64)hash * num_tx_queues) >> 32);
3736}
3737
3738u16 i40e_lan_select_queue(struct net_device *netdev,
3739 struct sk_buff *skb,
3740 struct net_device __always_unused *sb_dev)
3741{
3742 struct i40e_netdev_priv *np = netdev_priv(netdev);
3743 struct i40e_vsi *vsi = np->vsi;
3744 struct i40e_hw *hw;
3745 u16 qoffset;
3746 u16 qcount;
3747 u8 tclass;
3748 u16 hash;
3749 u8 prio;
3750
3751 /* is DCB enabled at all? */
3752 if (vsi->tc_config.numtc == 1 ||
3753 i40e_is_tc_mqprio_enabled(vsi->back))
3754 return netdev_pick_tx(netdev, skb, sb_dev);
3755
3756 prio = skb->priority;
3757 hw = &vsi->back->hw;
3758 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3759 /* sanity check */
3760 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3761 tclass = 0;
3762
3763 /* select a queue assigned for the given TC */
3764 qcount = vsi->tc_config.tc_info[tclass].qcount;
3765 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3766
3767 qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3768 return qoffset + hash;
3769}
3770
3771/**
3772 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3773 * @xdpf: data to transmit
3774 * @xdp_ring: XDP Tx ring
3775 **/
3776static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3777 struct i40e_ring *xdp_ring)
3778{
3779 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3780 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3781 u16 i = 0, index = xdp_ring->next_to_use;
3782 struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3783 struct i40e_tx_buffer *tx_bi = tx_head;
3784 struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3785 void *data = xdpf->data;
3786 u32 size = xdpf->len;
3787
3788 if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3789 xdp_ring->tx_stats.tx_busy++;
3790 return I40E_XDP_CONSUMED;
3791 }
3792
3793 tx_head->bytecount = xdp_get_frame_len(xdpf);
3794 tx_head->gso_segs = 1;
3795 tx_head->xdpf = xdpf;
3796
3797 for (;;) {
3798 dma_addr_t dma;
3799
3800 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3801 if (dma_mapping_error(xdp_ring->dev, dma))
3802 goto unmap;
3803
3804 /* record length, and DMA address */
3805 dma_unmap_len_set(tx_bi, len, size);
3806 dma_unmap_addr_set(tx_bi, dma, dma);
3807
3808 tx_desc->buffer_addr = cpu_to_le64(dma);
3809 tx_desc->cmd_type_offset_bsz =
3810 build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3811
3812 if (++index == xdp_ring->count)
3813 index = 0;
3814
3815 if (i == nr_frags)
3816 break;
3817
3818 tx_bi = &xdp_ring->tx_bi[index];
3819 tx_desc = I40E_TX_DESC(xdp_ring, index);
3820
3821 data = skb_frag_address(&sinfo->frags[i]);
3822 size = skb_frag_size(&sinfo->frags[i]);
3823 i++;
3824 }
3825
3826 tx_desc->cmd_type_offset_bsz |=
3827 cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3828
3829 /* Make certain all of the status bits have been updated
3830 * before next_to_watch is written.
3831 */
3832 smp_wmb();
3833
3834 xdp_ring->xdp_tx_active++;
3835
3836 tx_head->next_to_watch = tx_desc;
3837 xdp_ring->next_to_use = index;
3838
3839 return I40E_XDP_TX;
3840
3841unmap:
3842 for (;;) {
3843 tx_bi = &xdp_ring->tx_bi[index];
3844 if (dma_unmap_len(tx_bi, len))
3845 dma_unmap_page(xdp_ring->dev,
3846 dma_unmap_addr(tx_bi, dma),
3847 dma_unmap_len(tx_bi, len),
3848 DMA_TO_DEVICE);
3849 dma_unmap_len_set(tx_bi, len, 0);
3850 if (tx_bi == tx_head)
3851 break;
3852
3853 if (!index)
3854 index += xdp_ring->count;
3855 index--;
3856 }
3857
3858 return I40E_XDP_CONSUMED;
3859}
3860
3861/**
3862 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3863 * @skb: send buffer
3864 * @tx_ring: ring to send buffer on
3865 *
3866 * Returns NETDEV_TX_OK if sent, else an error code
3867 **/
3868static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3869 struct i40e_ring *tx_ring)
3870{
3871 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3872 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3873 struct i40e_tx_buffer *first;
3874 u32 td_offset = 0;
3875 u32 tx_flags = 0;
3876 u32 td_cmd = 0;
3877 u8 hdr_len = 0;
3878 int tso, count;
3879 int tsyn;
3880
3881 /* prefetch the data, we'll need it later */
3882 prefetch(skb->data);
3883
3884 i40e_trace(xmit_frame_ring, skb, tx_ring);
3885
3886 count = i40e_xmit_descriptor_count(skb);
3887 if (i40e_chk_linearize(skb, count)) {
3888 if (__skb_linearize(skb)) {
3889 dev_kfree_skb_any(skb);
3890 return NETDEV_TX_OK;
3891 }
3892 count = i40e_txd_use_count(skb->len);
3893 tx_ring->tx_stats.tx_linearize++;
3894 }
3895
3896 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3897 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3898 * + 4 desc gap to avoid the cache line where head is,
3899 * + 1 desc for context descriptor,
3900 * otherwise try next time
3901 */
3902 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3903 tx_ring->tx_stats.tx_busy++;
3904 return NETDEV_TX_BUSY;
3905 }
3906
3907 /* record the location of the first descriptor for this packet */
3908 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3909 first->skb = skb;
3910 first->bytecount = skb->len;
3911 first->gso_segs = 1;
3912
3913 /* prepare the xmit flags */
3914 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3915 goto out_drop;
3916
3917 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3918
3919 if (tso < 0)
3920 goto out_drop;
3921 else if (tso)
3922 tx_flags |= I40E_TX_FLAGS_TSO;
3923
3924 /* Always offload the checksum, since it's in the data descriptor */
3925 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3926 tx_ring, &cd_tunneling);
3927 if (tso < 0)
3928 goto out_drop;
3929
3930 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3931
3932 if (tsyn)
3933 tx_flags |= I40E_TX_FLAGS_TSYN;
3934
3935 /* always enable CRC insertion offload */
3936 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3937
3938 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3939 cd_tunneling, cd_l2tag2);
3940
3941 /* Add Flow Director ATR if it's enabled.
3942 *
3943 * NOTE: this must always be directly before the data descriptor.
3944 */
3945 i40e_atr(tx_ring, skb, tx_flags);
3946
3947 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3948 td_cmd, td_offset))
3949 goto cleanup_tx_tstamp;
3950
3951 return NETDEV_TX_OK;
3952
3953out_drop:
3954 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3955 dev_kfree_skb_any(first->skb);
3956 first->skb = NULL;
3957cleanup_tx_tstamp:
3958 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3959 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3960
3961 dev_kfree_skb_any(pf->ptp_tx_skb);
3962 pf->ptp_tx_skb = NULL;
3963 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3964 }
3965
3966 return NETDEV_TX_OK;
3967}
3968
3969/**
3970 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3971 * @skb: send buffer
3972 * @netdev: network interface device structure
3973 *
3974 * Returns NETDEV_TX_OK if sent, else an error code
3975 **/
3976netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3977{
3978 struct i40e_netdev_priv *np = netdev_priv(netdev);
3979 struct i40e_vsi *vsi = np->vsi;
3980 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3981
3982 /* hardware can't handle really short frames, hardware padding works
3983 * beyond this point
3984 */
3985 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3986 return NETDEV_TX_OK;
3987
3988 return i40e_xmit_frame_ring(skb, tx_ring);
3989}
3990
3991/**
3992 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3993 * @dev: netdev
3994 * @n: number of frames
3995 * @frames: array of XDP buffer pointers
3996 * @flags: XDP extra info
3997 *
3998 * Returns number of frames successfully sent. Failed frames
3999 * will be free'ed by XDP core.
4000 *
4001 * For error cases, a negative errno code is returned and no-frames
4002 * are transmitted (caller must handle freeing frames).
4003 **/
4004int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4005 u32 flags)
4006{
4007 struct i40e_netdev_priv *np = netdev_priv(dev);
4008 unsigned int queue_index = smp_processor_id();
4009 struct i40e_vsi *vsi = np->vsi;
4010 struct i40e_pf *pf = vsi->back;
4011 struct i40e_ring *xdp_ring;
4012 int nxmit = 0;
4013 int i;
4014
4015 if (test_bit(__I40E_VSI_DOWN, vsi->state))
4016 return -ENETDOWN;
4017
4018 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4019 test_bit(__I40E_CONFIG_BUSY, pf->state))
4020 return -ENXIO;
4021
4022 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4023 return -EINVAL;
4024
4025 xdp_ring = vsi->xdp_rings[queue_index];
4026
4027 for (i = 0; i < n; i++) {
4028 struct xdp_frame *xdpf = frames[i];
4029 int err;
4030
4031 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4032 if (err != I40E_XDP_TX)
4033 break;
4034 nxmit++;
4035 }
4036
4037 if (unlikely(flags & XDP_XMIT_FLUSH))
4038 i40e_xdp_ring_update_tail(xdp_ring);
4039
4040 return nxmit;
4041}
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2014 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27#include "i40e.h"
28#include "i40e_prototype.h"
29
30static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
31 u32 td_tag)
32{
33 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
34 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
35 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
36 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
37 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
38}
39
40#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
41/**
42 * i40e_program_fdir_filter - Program a Flow Director filter
43 * @fdir_data: Packet data that will be filter parameters
44 * @raw_packet: the pre-allocated packet buffer for FDir
45 * @pf: The pf pointer
46 * @add: True for add/update, False for remove
47 **/
48int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
49 struct i40e_pf *pf, bool add)
50{
51 struct i40e_filter_program_desc *fdir_desc;
52 struct i40e_tx_buffer *tx_buf;
53 struct i40e_tx_desc *tx_desc;
54 struct i40e_ring *tx_ring;
55 unsigned int fpt, dcc;
56 struct i40e_vsi *vsi;
57 struct device *dev;
58 dma_addr_t dma;
59 u32 td_cmd = 0;
60 u16 i;
61
62 /* find existing FDIR VSI */
63 vsi = NULL;
64 for (i = 0; i < pf->hw.func_caps.num_vsis; i++)
65 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
66 vsi = pf->vsi[i];
67 if (!vsi)
68 return -ENOENT;
69
70 tx_ring = vsi->tx_rings[0];
71 dev = tx_ring->dev;
72
73 dma = dma_map_single(dev, raw_packet,
74 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
75 if (dma_mapping_error(dev, dma))
76 goto dma_fail;
77
78 /* grab the next descriptor */
79 i = tx_ring->next_to_use;
80 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
81
82 tx_ring->next_to_use = (i + 1 < tx_ring->count) ? i + 1 : 0;
83
84 fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
85 I40E_TXD_FLTR_QW0_QINDEX_MASK;
86
87 fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
88 I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
89
90 fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
91 I40E_TXD_FLTR_QW0_PCTYPE_MASK;
92
93 /* Use LAN VSI Id if not programmed by user */
94 if (fdir_data->dest_vsi == 0)
95 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
96 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
97 else
98 fpt |= ((u32)fdir_data->dest_vsi <<
99 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
100 I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
101
102 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
103
104 dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
105
106 if (add)
107 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
108 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
109 else
110 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
111 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
112
113 dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
114 I40E_TXD_FLTR_QW1_DEST_MASK;
115
116 dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
117 I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
118
119 if (fdir_data->cnt_index != 0) {
120 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
121 dcc |= ((u32)fdir_data->cnt_index <<
122 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
123 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
124 }
125
126 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
127 fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
128
129 /* Now program a dummy descriptor */
130 i = tx_ring->next_to_use;
131 tx_desc = I40E_TX_DESC(tx_ring, i);
132 tx_buf = &tx_ring->tx_bi[i];
133
134 tx_ring->next_to_use = (i + 1 < tx_ring->count) ? i + 1 : 0;
135
136 /* record length, and DMA address */
137 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
138 dma_unmap_addr_set(tx_buf, dma, dma);
139
140 tx_desc->buffer_addr = cpu_to_le64(dma);
141 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
142
143 tx_desc->cmd_type_offset_bsz =
144 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
145
146 /* set the timestamp */
147 tx_buf->time_stamp = jiffies;
148
149 /* Force memory writes to complete before letting h/w
150 * know there are new descriptors to fetch. (Only
151 * applicable for weak-ordered memory model archs,
152 * such as IA-64).
153 */
154 wmb();
155
156 /* Mark the data descriptor to be watched */
157 tx_buf->next_to_watch = tx_desc;
158
159 writel(tx_ring->next_to_use, tx_ring->tail);
160 return 0;
161
162dma_fail:
163 return -1;
164}
165
166#define IP_HEADER_OFFSET 14
167#define I40E_UDPIP_DUMMY_PACKET_LEN 42
168/**
169 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
170 * @vsi: pointer to the targeted VSI
171 * @fd_data: the flow director data required for the FDir descriptor
172 * @raw_packet: the pre-allocated packet buffer for FDir
173 * @add: true adds a filter, false removes it
174 *
175 * Returns 0 if the filters were successfully added or removed
176 **/
177static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
178 struct i40e_fdir_filter *fd_data,
179 u8 *raw_packet, bool add)
180{
181 struct i40e_pf *pf = vsi->back;
182 struct udphdr *udp;
183 struct iphdr *ip;
184 bool err = false;
185 int ret;
186 int i;
187 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
188 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
189 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
190
191 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
192
193 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
194 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
195 + sizeof(struct iphdr));
196
197 ip->daddr = fd_data->dst_ip[0];
198 udp->dest = fd_data->dst_port;
199 ip->saddr = fd_data->src_ip[0];
200 udp->source = fd_data->src_port;
201
202 for (i = I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP;
203 i <= I40E_FILTER_PCTYPE_NONF_IPV4_UDP; i++) {
204 fd_data->pctype = i;
205 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
206
207 if (ret) {
208 dev_info(&pf->pdev->dev,
209 "Filter command send failed for PCTYPE %d (ret = %d)\n",
210 fd_data->pctype, ret);
211 err = true;
212 } else {
213 dev_info(&pf->pdev->dev,
214 "Filter OK for PCTYPE %d (ret = %d)\n",
215 fd_data->pctype, ret);
216 }
217 }
218
219 return err ? -EOPNOTSUPP : 0;
220}
221
222#define I40E_TCPIP_DUMMY_PACKET_LEN 54
223/**
224 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
225 * @vsi: pointer to the targeted VSI
226 * @fd_data: the flow director data required for the FDir descriptor
227 * @raw_packet: the pre-allocated packet buffer for FDir
228 * @add: true adds a filter, false removes it
229 *
230 * Returns 0 if the filters were successfully added or removed
231 **/
232static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
233 struct i40e_fdir_filter *fd_data,
234 u8 *raw_packet, bool add)
235{
236 struct i40e_pf *pf = vsi->back;
237 struct tcphdr *tcp;
238 struct iphdr *ip;
239 bool err = false;
240 int ret;
241 /* Dummy packet */
242 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
243 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
244 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
245 0x0, 0x72, 0, 0, 0, 0};
246
247 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
248
249 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
250 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
251 + sizeof(struct iphdr));
252
253 ip->daddr = fd_data->dst_ip[0];
254 tcp->dest = fd_data->dst_port;
255 ip->saddr = fd_data->src_ip[0];
256 tcp->source = fd_data->src_port;
257
258 if (add) {
259 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
260 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
261 pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
262 }
263 }
264
265 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN;
266 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
267
268 if (ret) {
269 dev_info(&pf->pdev->dev,
270 "Filter command send failed for PCTYPE %d (ret = %d)\n",
271 fd_data->pctype, ret);
272 err = true;
273 } else {
274 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d (ret = %d)\n",
275 fd_data->pctype, ret);
276 }
277
278 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
279
280 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
281 if (ret) {
282 dev_info(&pf->pdev->dev,
283 "Filter command send failed for PCTYPE %d (ret = %d)\n",
284 fd_data->pctype, ret);
285 err = true;
286 } else {
287 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d (ret = %d)\n",
288 fd_data->pctype, ret);
289 }
290
291 return err ? -EOPNOTSUPP : 0;
292}
293
294/**
295 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
296 * a specific flow spec
297 * @vsi: pointer to the targeted VSI
298 * @fd_data: the flow director data required for the FDir descriptor
299 * @raw_packet: the pre-allocated packet buffer for FDir
300 * @add: true adds a filter, false removes it
301 *
302 * Always returns -EOPNOTSUPP
303 **/
304static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
305 struct i40e_fdir_filter *fd_data,
306 u8 *raw_packet, bool add)
307{
308 return -EOPNOTSUPP;
309}
310
311#define I40E_IP_DUMMY_PACKET_LEN 34
312/**
313 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
314 * a specific flow spec
315 * @vsi: pointer to the targeted VSI
316 * @fd_data: the flow director data required for the FDir descriptor
317 * @raw_packet: the pre-allocated packet buffer for FDir
318 * @add: true adds a filter, false removes it
319 *
320 * Returns 0 if the filters were successfully added or removed
321 **/
322static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
323 struct i40e_fdir_filter *fd_data,
324 u8 *raw_packet, bool add)
325{
326 struct i40e_pf *pf = vsi->back;
327 struct iphdr *ip;
328 bool err = false;
329 int ret;
330 int i;
331 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
332 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
333 0, 0, 0, 0};
334
335 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
336 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
337
338 ip->saddr = fd_data->src_ip[0];
339 ip->daddr = fd_data->dst_ip[0];
340 ip->protocol = 0;
341
342 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
343 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
344 fd_data->pctype = i;
345 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
346
347 if (ret) {
348 dev_info(&pf->pdev->dev,
349 "Filter command send failed for PCTYPE %d (ret = %d)\n",
350 fd_data->pctype, ret);
351 err = true;
352 } else {
353 dev_info(&pf->pdev->dev,
354 "Filter OK for PCTYPE %d (ret = %d)\n",
355 fd_data->pctype, ret);
356 }
357 }
358
359 return err ? -EOPNOTSUPP : 0;
360}
361
362/**
363 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
364 * @vsi: pointer to the targeted VSI
365 * @cmd: command to get or set RX flow classification rules
366 * @add: true adds a filter, false removes it
367 *
368 **/
369int i40e_add_del_fdir(struct i40e_vsi *vsi,
370 struct i40e_fdir_filter *input, bool add)
371{
372 struct i40e_pf *pf = vsi->back;
373 u8 *raw_packet;
374 int ret;
375
376 /* Populate the Flow Director that we have at the moment
377 * and allocate the raw packet buffer for the calling functions
378 */
379 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
380 if (!raw_packet)
381 return -ENOMEM;
382
383 switch (input->flow_type & ~FLOW_EXT) {
384 case TCP_V4_FLOW:
385 ret = i40e_add_del_fdir_tcpv4(vsi, input, raw_packet,
386 add);
387 break;
388 case UDP_V4_FLOW:
389 ret = i40e_add_del_fdir_udpv4(vsi, input, raw_packet,
390 add);
391 break;
392 case SCTP_V4_FLOW:
393 ret = i40e_add_del_fdir_sctpv4(vsi, input, raw_packet,
394 add);
395 break;
396 case IPV4_FLOW:
397 ret = i40e_add_del_fdir_ipv4(vsi, input, raw_packet,
398 add);
399 break;
400 case IP_USER_FLOW:
401 switch (input->ip4_proto) {
402 case IPPROTO_TCP:
403 ret = i40e_add_del_fdir_tcpv4(vsi, input,
404 raw_packet, add);
405 break;
406 case IPPROTO_UDP:
407 ret = i40e_add_del_fdir_udpv4(vsi, input,
408 raw_packet, add);
409 break;
410 case IPPROTO_SCTP:
411 ret = i40e_add_del_fdir_sctpv4(vsi, input,
412 raw_packet, add);
413 break;
414 default:
415 ret = i40e_add_del_fdir_ipv4(vsi, input,
416 raw_packet, add);
417 break;
418 }
419 break;
420 default:
421 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
422 input->flow_type);
423 ret = -EINVAL;
424 }
425
426 kfree(raw_packet);
427 return ret;
428}
429
430/**
431 * i40e_fd_handle_status - check the Programming Status for FD
432 * @rx_ring: the Rx ring for this descriptor
433 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
434 * @prog_id: the id originally used for programming
435 *
436 * This is used to verify if the FD programming or invalidation
437 * requested by SW to the HW is successful or not and take actions accordingly.
438 **/
439static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
440 union i40e_rx_desc *rx_desc, u8 prog_id)
441{
442 struct i40e_pf *pf = rx_ring->vsi->back;
443 struct pci_dev *pdev = pf->pdev;
444 u32 fcnt_prog, fcnt_avail;
445 u32 error;
446 u64 qw;
447
448 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
449 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
450 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
451
452 if (error == (0x1 << I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
453 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
454 rx_desc->wb.qword0.hi_dword.fd_id);
455
456 /* filter programming failed most likely due to table full */
457 fcnt_prog = i40e_get_current_fd_count(pf);
458 fcnt_avail = pf->hw.fdir_shared_filter_count +
459 pf->fdir_pf_filter_count;
460
461 /* If ATR is running fcnt_prog can quickly change,
462 * if we are very close to full, it makes sense to disable
463 * FD ATR/SB and then re-enable it when there is room.
464 */
465 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
466 /* Turn off ATR first */
467 if (pf->flags | I40E_FLAG_FD_ATR_ENABLED) {
468 pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
469 dev_warn(&pdev->dev, "FD filter space full, ATR for further flows will be turned off\n");
470 pf->auto_disable_flags |=
471 I40E_FLAG_FD_ATR_ENABLED;
472 pf->flags |= I40E_FLAG_FDIR_REQUIRES_REINIT;
473 } else if (pf->flags | I40E_FLAG_FD_SB_ENABLED) {
474 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED;
475 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
476 pf->auto_disable_flags |=
477 I40E_FLAG_FD_SB_ENABLED;
478 pf->flags |= I40E_FLAG_FDIR_REQUIRES_REINIT;
479 }
480 } else {
481 dev_info(&pdev->dev, "FD filter programming error\n");
482 }
483 } else if (error ==
484 (0x1 << I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
485 if (I40E_DEBUG_FD & pf->hw.debug_mask)
486 dev_info(&pdev->dev, "ntuple filter loc = %d, could not be removed\n",
487 rx_desc->wb.qword0.hi_dword.fd_id);
488 }
489}
490
491/**
492 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
493 * @ring: the ring that owns the buffer
494 * @tx_buffer: the buffer to free
495 **/
496static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
497 struct i40e_tx_buffer *tx_buffer)
498{
499 if (tx_buffer->skb) {
500 dev_kfree_skb_any(tx_buffer->skb);
501 if (dma_unmap_len(tx_buffer, len))
502 dma_unmap_single(ring->dev,
503 dma_unmap_addr(tx_buffer, dma),
504 dma_unmap_len(tx_buffer, len),
505 DMA_TO_DEVICE);
506 } else if (dma_unmap_len(tx_buffer, len)) {
507 dma_unmap_page(ring->dev,
508 dma_unmap_addr(tx_buffer, dma),
509 dma_unmap_len(tx_buffer, len),
510 DMA_TO_DEVICE);
511 }
512 tx_buffer->next_to_watch = NULL;
513 tx_buffer->skb = NULL;
514 dma_unmap_len_set(tx_buffer, len, 0);
515 /* tx_buffer must be completely set up in the transmit path */
516}
517
518/**
519 * i40e_clean_tx_ring - Free any empty Tx buffers
520 * @tx_ring: ring to be cleaned
521 **/
522void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
523{
524 unsigned long bi_size;
525 u16 i;
526
527 /* ring already cleared, nothing to do */
528 if (!tx_ring->tx_bi)
529 return;
530
531 /* Free all the Tx ring sk_buffs */
532 for (i = 0; i < tx_ring->count; i++)
533 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
534
535 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
536 memset(tx_ring->tx_bi, 0, bi_size);
537
538 /* Zero out the descriptor ring */
539 memset(tx_ring->desc, 0, tx_ring->size);
540
541 tx_ring->next_to_use = 0;
542 tx_ring->next_to_clean = 0;
543
544 if (!tx_ring->netdev)
545 return;
546
547 /* cleanup Tx queue statistics */
548 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
549 tx_ring->queue_index));
550}
551
552/**
553 * i40e_free_tx_resources - Free Tx resources per queue
554 * @tx_ring: Tx descriptor ring for a specific queue
555 *
556 * Free all transmit software resources
557 **/
558void i40e_free_tx_resources(struct i40e_ring *tx_ring)
559{
560 i40e_clean_tx_ring(tx_ring);
561 kfree(tx_ring->tx_bi);
562 tx_ring->tx_bi = NULL;
563
564 if (tx_ring->desc) {
565 dma_free_coherent(tx_ring->dev, tx_ring->size,
566 tx_ring->desc, tx_ring->dma);
567 tx_ring->desc = NULL;
568 }
569}
570
571/**
572 * i40e_get_tx_pending - how many tx descriptors not processed
573 * @tx_ring: the ring of descriptors
574 *
575 * Since there is no access to the ring head register
576 * in XL710, we need to use our local copies
577 **/
578static u32 i40e_get_tx_pending(struct i40e_ring *ring)
579{
580 u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
581 ? ring->next_to_use
582 : ring->next_to_use + ring->count);
583 return ntu - ring->next_to_clean;
584}
585
586/**
587 * i40e_check_tx_hang - Is there a hang in the Tx queue
588 * @tx_ring: the ring of descriptors
589 **/
590static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
591{
592 u32 tx_pending = i40e_get_tx_pending(tx_ring);
593 bool ret = false;
594
595 clear_check_for_tx_hang(tx_ring);
596
597 /* Check for a hung queue, but be thorough. This verifies
598 * that a transmit has been completed since the previous
599 * check AND there is at least one packet pending. The
600 * ARMED bit is set to indicate a potential hang. The
601 * bit is cleared if a pause frame is received to remove
602 * false hang detection due to PFC or 802.3x frames. By
603 * requiring this to fail twice we avoid races with
604 * PFC clearing the ARMED bit and conditions where we
605 * run the check_tx_hang logic with a transmit completion
606 * pending but without time to complete it yet.
607 */
608 if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
609 tx_pending) {
610 /* make sure it is true for two checks in a row */
611 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
612 &tx_ring->state);
613 } else {
614 /* update completed stats and disarm the hang check */
615 tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets;
616 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
617 }
618
619 return ret;
620}
621
622/**
623 * i40e_get_head - Retrieve head from head writeback
624 * @tx_ring: tx ring to fetch head of
625 *
626 * Returns value of Tx ring head based on value stored
627 * in head write-back location
628 **/
629static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
630{
631 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
632
633 return le32_to_cpu(*(volatile __le32 *)head);
634}
635
636/**
637 * i40e_clean_tx_irq - Reclaim resources after transmit completes
638 * @tx_ring: tx ring to clean
639 * @budget: how many cleans we're allowed
640 *
641 * Returns true if there's any budget left (e.g. the clean is finished)
642 **/
643static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
644{
645 u16 i = tx_ring->next_to_clean;
646 struct i40e_tx_buffer *tx_buf;
647 struct i40e_tx_desc *tx_head;
648 struct i40e_tx_desc *tx_desc;
649 unsigned int total_packets = 0;
650 unsigned int total_bytes = 0;
651
652 tx_buf = &tx_ring->tx_bi[i];
653 tx_desc = I40E_TX_DESC(tx_ring, i);
654 i -= tx_ring->count;
655
656 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
657
658 do {
659 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
660
661 /* if next_to_watch is not set then there is no work pending */
662 if (!eop_desc)
663 break;
664
665 /* prevent any other reads prior to eop_desc */
666 read_barrier_depends();
667
668 /* we have caught up to head, no work left to do */
669 if (tx_head == tx_desc)
670 break;
671
672 /* clear next_to_watch to prevent false hangs */
673 tx_buf->next_to_watch = NULL;
674
675 /* update the statistics for this packet */
676 total_bytes += tx_buf->bytecount;
677 total_packets += tx_buf->gso_segs;
678
679 /* free the skb */
680 dev_kfree_skb_any(tx_buf->skb);
681
682 /* unmap skb header data */
683 dma_unmap_single(tx_ring->dev,
684 dma_unmap_addr(tx_buf, dma),
685 dma_unmap_len(tx_buf, len),
686 DMA_TO_DEVICE);
687
688 /* clear tx_buffer data */
689 tx_buf->skb = NULL;
690 dma_unmap_len_set(tx_buf, len, 0);
691
692 /* unmap remaining buffers */
693 while (tx_desc != eop_desc) {
694
695 tx_buf++;
696 tx_desc++;
697 i++;
698 if (unlikely(!i)) {
699 i -= tx_ring->count;
700 tx_buf = tx_ring->tx_bi;
701 tx_desc = I40E_TX_DESC(tx_ring, 0);
702 }
703
704 /* unmap any remaining paged data */
705 if (dma_unmap_len(tx_buf, len)) {
706 dma_unmap_page(tx_ring->dev,
707 dma_unmap_addr(tx_buf, dma),
708 dma_unmap_len(tx_buf, len),
709 DMA_TO_DEVICE);
710 dma_unmap_len_set(tx_buf, len, 0);
711 }
712 }
713
714 /* move us one more past the eop_desc for start of next pkt */
715 tx_buf++;
716 tx_desc++;
717 i++;
718 if (unlikely(!i)) {
719 i -= tx_ring->count;
720 tx_buf = tx_ring->tx_bi;
721 tx_desc = I40E_TX_DESC(tx_ring, 0);
722 }
723
724 /* update budget accounting */
725 budget--;
726 } while (likely(budget));
727
728 i += tx_ring->count;
729 tx_ring->next_to_clean = i;
730 u64_stats_update_begin(&tx_ring->syncp);
731 tx_ring->stats.bytes += total_bytes;
732 tx_ring->stats.packets += total_packets;
733 u64_stats_update_end(&tx_ring->syncp);
734 tx_ring->q_vector->tx.total_bytes += total_bytes;
735 tx_ring->q_vector->tx.total_packets += total_packets;
736
737 if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
738 /* schedule immediate reset if we believe we hung */
739 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
740 " VSI <%d>\n"
741 " Tx Queue <%d>\n"
742 " next_to_use <%x>\n"
743 " next_to_clean <%x>\n",
744 tx_ring->vsi->seid,
745 tx_ring->queue_index,
746 tx_ring->next_to_use, i);
747 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
748 " time_stamp <%lx>\n"
749 " jiffies <%lx>\n",
750 tx_ring->tx_bi[i].time_stamp, jiffies);
751
752 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
753
754 dev_info(tx_ring->dev,
755 "tx hang detected on queue %d, resetting adapter\n",
756 tx_ring->queue_index);
757
758 tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
759
760 /* the adapter is about to reset, no point in enabling stuff */
761 return true;
762 }
763
764 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
765 tx_ring->queue_index),
766 total_packets, total_bytes);
767
768#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
769 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
770 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
771 /* Make sure that anybody stopping the queue after this
772 * sees the new next_to_clean.
773 */
774 smp_mb();
775 if (__netif_subqueue_stopped(tx_ring->netdev,
776 tx_ring->queue_index) &&
777 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
778 netif_wake_subqueue(tx_ring->netdev,
779 tx_ring->queue_index);
780 ++tx_ring->tx_stats.restart_queue;
781 }
782 }
783
784 return budget > 0;
785}
786
787/**
788 * i40e_set_new_dynamic_itr - Find new ITR level
789 * @rc: structure containing ring performance data
790 *
791 * Stores a new ITR value based on packets and byte counts during
792 * the last interrupt. The advantage of per interrupt computation
793 * is faster updates and more accurate ITR for the current traffic
794 * pattern. Constants in this function were computed based on
795 * theoretical maximum wire speed and thresholds were set based on
796 * testing data as well as attempting to minimize response time
797 * while increasing bulk throughput.
798 **/
799static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
800{
801 enum i40e_latency_range new_latency_range = rc->latency_range;
802 u32 new_itr = rc->itr;
803 int bytes_per_int;
804
805 if (rc->total_packets == 0 || !rc->itr)
806 return;
807
808 /* simple throttlerate management
809 * 0-10MB/s lowest (100000 ints/s)
810 * 10-20MB/s low (20000 ints/s)
811 * 20-1249MB/s bulk (8000 ints/s)
812 */
813 bytes_per_int = rc->total_bytes / rc->itr;
814 switch (rc->itr) {
815 case I40E_LOWEST_LATENCY:
816 if (bytes_per_int > 10)
817 new_latency_range = I40E_LOW_LATENCY;
818 break;
819 case I40E_LOW_LATENCY:
820 if (bytes_per_int > 20)
821 new_latency_range = I40E_BULK_LATENCY;
822 else if (bytes_per_int <= 10)
823 new_latency_range = I40E_LOWEST_LATENCY;
824 break;
825 case I40E_BULK_LATENCY:
826 if (bytes_per_int <= 20)
827 rc->latency_range = I40E_LOW_LATENCY;
828 break;
829 }
830
831 switch (new_latency_range) {
832 case I40E_LOWEST_LATENCY:
833 new_itr = I40E_ITR_100K;
834 break;
835 case I40E_LOW_LATENCY:
836 new_itr = I40E_ITR_20K;
837 break;
838 case I40E_BULK_LATENCY:
839 new_itr = I40E_ITR_8K;
840 break;
841 default:
842 break;
843 }
844
845 if (new_itr != rc->itr) {
846 /* do an exponential smoothing */
847 new_itr = (10 * new_itr * rc->itr) /
848 ((9 * new_itr) + rc->itr);
849 rc->itr = new_itr & I40E_MAX_ITR;
850 }
851
852 rc->total_bytes = 0;
853 rc->total_packets = 0;
854}
855
856/**
857 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
858 * @q_vector: the vector to adjust
859 **/
860static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
861{
862 u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
863 struct i40e_hw *hw = &q_vector->vsi->back->hw;
864 u32 reg_addr;
865 u16 old_itr;
866
867 reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
868 old_itr = q_vector->rx.itr;
869 i40e_set_new_dynamic_itr(&q_vector->rx);
870 if (old_itr != q_vector->rx.itr)
871 wr32(hw, reg_addr, q_vector->rx.itr);
872
873 reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
874 old_itr = q_vector->tx.itr;
875 i40e_set_new_dynamic_itr(&q_vector->tx);
876 if (old_itr != q_vector->tx.itr)
877 wr32(hw, reg_addr, q_vector->tx.itr);
878}
879
880/**
881 * i40e_clean_programming_status - clean the programming status descriptor
882 * @rx_ring: the rx ring that has this descriptor
883 * @rx_desc: the rx descriptor written back by HW
884 *
885 * Flow director should handle FD_FILTER_STATUS to check its filter programming
886 * status being successful or not and take actions accordingly. FCoE should
887 * handle its context/filter programming/invalidation status and take actions.
888 *
889 **/
890static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
891 union i40e_rx_desc *rx_desc)
892{
893 u64 qw;
894 u8 id;
895
896 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
897 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
898 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
899
900 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
901 i40e_fd_handle_status(rx_ring, rx_desc, id);
902}
903
904/**
905 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
906 * @tx_ring: the tx ring to set up
907 *
908 * Return 0 on success, negative on error
909 **/
910int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
911{
912 struct device *dev = tx_ring->dev;
913 int bi_size;
914
915 if (!dev)
916 return -ENOMEM;
917
918 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
919 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
920 if (!tx_ring->tx_bi)
921 goto err;
922
923 /* round up to nearest 4K */
924 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
925 /* add u32 for head writeback, align after this takes care of
926 * guaranteeing this is at least one cache line in size
927 */
928 tx_ring->size += sizeof(u32);
929 tx_ring->size = ALIGN(tx_ring->size, 4096);
930 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
931 &tx_ring->dma, GFP_KERNEL);
932 if (!tx_ring->desc) {
933 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
934 tx_ring->size);
935 goto err;
936 }
937
938 tx_ring->next_to_use = 0;
939 tx_ring->next_to_clean = 0;
940 return 0;
941
942err:
943 kfree(tx_ring->tx_bi);
944 tx_ring->tx_bi = NULL;
945 return -ENOMEM;
946}
947
948/**
949 * i40e_clean_rx_ring - Free Rx buffers
950 * @rx_ring: ring to be cleaned
951 **/
952void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
953{
954 struct device *dev = rx_ring->dev;
955 struct i40e_rx_buffer *rx_bi;
956 unsigned long bi_size;
957 u16 i;
958
959 /* ring already cleared, nothing to do */
960 if (!rx_ring->rx_bi)
961 return;
962
963 /* Free all the Rx ring sk_buffs */
964 for (i = 0; i < rx_ring->count; i++) {
965 rx_bi = &rx_ring->rx_bi[i];
966 if (rx_bi->dma) {
967 dma_unmap_single(dev,
968 rx_bi->dma,
969 rx_ring->rx_buf_len,
970 DMA_FROM_DEVICE);
971 rx_bi->dma = 0;
972 }
973 if (rx_bi->skb) {
974 dev_kfree_skb(rx_bi->skb);
975 rx_bi->skb = NULL;
976 }
977 if (rx_bi->page) {
978 if (rx_bi->page_dma) {
979 dma_unmap_page(dev,
980 rx_bi->page_dma,
981 PAGE_SIZE / 2,
982 DMA_FROM_DEVICE);
983 rx_bi->page_dma = 0;
984 }
985 __free_page(rx_bi->page);
986 rx_bi->page = NULL;
987 rx_bi->page_offset = 0;
988 }
989 }
990
991 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
992 memset(rx_ring->rx_bi, 0, bi_size);
993
994 /* Zero out the descriptor ring */
995 memset(rx_ring->desc, 0, rx_ring->size);
996
997 rx_ring->next_to_clean = 0;
998 rx_ring->next_to_use = 0;
999}
1000
1001/**
1002 * i40e_free_rx_resources - Free Rx resources
1003 * @rx_ring: ring to clean the resources from
1004 *
1005 * Free all receive software resources
1006 **/
1007void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1008{
1009 i40e_clean_rx_ring(rx_ring);
1010 kfree(rx_ring->rx_bi);
1011 rx_ring->rx_bi = NULL;
1012
1013 if (rx_ring->desc) {
1014 dma_free_coherent(rx_ring->dev, rx_ring->size,
1015 rx_ring->desc, rx_ring->dma);
1016 rx_ring->desc = NULL;
1017 }
1018}
1019
1020/**
1021 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1022 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1023 *
1024 * Returns 0 on success, negative on failure
1025 **/
1026int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1027{
1028 struct device *dev = rx_ring->dev;
1029 int bi_size;
1030
1031 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1032 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1033 if (!rx_ring->rx_bi)
1034 goto err;
1035
1036 /* Round up to nearest 4K */
1037 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1038 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1039 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1040 rx_ring->size = ALIGN(rx_ring->size, 4096);
1041 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1042 &rx_ring->dma, GFP_KERNEL);
1043
1044 if (!rx_ring->desc) {
1045 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1046 rx_ring->size);
1047 goto err;
1048 }
1049
1050 rx_ring->next_to_clean = 0;
1051 rx_ring->next_to_use = 0;
1052
1053 return 0;
1054err:
1055 kfree(rx_ring->rx_bi);
1056 rx_ring->rx_bi = NULL;
1057 return -ENOMEM;
1058}
1059
1060/**
1061 * i40e_release_rx_desc - Store the new tail and head values
1062 * @rx_ring: ring to bump
1063 * @val: new head index
1064 **/
1065static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1066{
1067 rx_ring->next_to_use = val;
1068 /* Force memory writes to complete before letting h/w
1069 * know there are new descriptors to fetch. (Only
1070 * applicable for weak-ordered memory model archs,
1071 * such as IA-64).
1072 */
1073 wmb();
1074 writel(val, rx_ring->tail);
1075}
1076
1077/**
1078 * i40e_alloc_rx_buffers - Replace used receive buffers; packet split
1079 * @rx_ring: ring to place buffers on
1080 * @cleaned_count: number of buffers to replace
1081 **/
1082void i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1083{
1084 u16 i = rx_ring->next_to_use;
1085 union i40e_rx_desc *rx_desc;
1086 struct i40e_rx_buffer *bi;
1087 struct sk_buff *skb;
1088
1089 /* do nothing if no valid netdev defined */
1090 if (!rx_ring->netdev || !cleaned_count)
1091 return;
1092
1093 while (cleaned_count--) {
1094 rx_desc = I40E_RX_DESC(rx_ring, i);
1095 bi = &rx_ring->rx_bi[i];
1096 skb = bi->skb;
1097
1098 if (!skb) {
1099 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1100 rx_ring->rx_buf_len);
1101 if (!skb) {
1102 rx_ring->rx_stats.alloc_buff_failed++;
1103 goto no_buffers;
1104 }
1105 /* initialize queue mapping */
1106 skb_record_rx_queue(skb, rx_ring->queue_index);
1107 bi->skb = skb;
1108 }
1109
1110 if (!bi->dma) {
1111 bi->dma = dma_map_single(rx_ring->dev,
1112 skb->data,
1113 rx_ring->rx_buf_len,
1114 DMA_FROM_DEVICE);
1115 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1116 rx_ring->rx_stats.alloc_buff_failed++;
1117 bi->dma = 0;
1118 goto no_buffers;
1119 }
1120 }
1121
1122 if (ring_is_ps_enabled(rx_ring)) {
1123 if (!bi->page) {
1124 bi->page = alloc_page(GFP_ATOMIC);
1125 if (!bi->page) {
1126 rx_ring->rx_stats.alloc_page_failed++;
1127 goto no_buffers;
1128 }
1129 }
1130
1131 if (!bi->page_dma) {
1132 /* use a half page if we're re-using */
1133 bi->page_offset ^= PAGE_SIZE / 2;
1134 bi->page_dma = dma_map_page(rx_ring->dev,
1135 bi->page,
1136 bi->page_offset,
1137 PAGE_SIZE / 2,
1138 DMA_FROM_DEVICE);
1139 if (dma_mapping_error(rx_ring->dev,
1140 bi->page_dma)) {
1141 rx_ring->rx_stats.alloc_page_failed++;
1142 bi->page_dma = 0;
1143 goto no_buffers;
1144 }
1145 }
1146
1147 /* Refresh the desc even if buffer_addrs didn't change
1148 * because each write-back erases this info.
1149 */
1150 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1151 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1152 } else {
1153 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1154 rx_desc->read.hdr_addr = 0;
1155 }
1156 i++;
1157 if (i == rx_ring->count)
1158 i = 0;
1159 }
1160
1161no_buffers:
1162 if (rx_ring->next_to_use != i)
1163 i40e_release_rx_desc(rx_ring, i);
1164}
1165
1166/**
1167 * i40e_receive_skb - Send a completed packet up the stack
1168 * @rx_ring: rx ring in play
1169 * @skb: packet to send up
1170 * @vlan_tag: vlan tag for packet
1171 **/
1172static void i40e_receive_skb(struct i40e_ring *rx_ring,
1173 struct sk_buff *skb, u16 vlan_tag)
1174{
1175 struct i40e_q_vector *q_vector = rx_ring->q_vector;
1176 struct i40e_vsi *vsi = rx_ring->vsi;
1177 u64 flags = vsi->back->flags;
1178
1179 if (vlan_tag & VLAN_VID_MASK)
1180 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1181
1182 if (flags & I40E_FLAG_IN_NETPOLL)
1183 netif_rx(skb);
1184 else
1185 napi_gro_receive(&q_vector->napi, skb);
1186}
1187
1188/**
1189 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1190 * @vsi: the VSI we care about
1191 * @skb: skb currently being received and modified
1192 * @rx_status: status value of last descriptor in packet
1193 * @rx_error: error value of last descriptor in packet
1194 * @rx_ptype: ptype value of last descriptor in packet
1195 **/
1196static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1197 struct sk_buff *skb,
1198 u32 rx_status,
1199 u32 rx_error,
1200 u16 rx_ptype)
1201{
1202 bool ipv4_tunnel, ipv6_tunnel;
1203 __wsum rx_udp_csum;
1204 __sum16 csum;
1205 struct iphdr *iph;
1206
1207 ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1208 (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1209 ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1210 (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1211
1212 skb->encapsulation = ipv4_tunnel || ipv6_tunnel;
1213 skb->ip_summed = CHECKSUM_NONE;
1214
1215 /* Rx csum enabled and ip headers found? */
1216 if (!(vsi->netdev->features & NETIF_F_RXCSUM &&
1217 rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1218 return;
1219
1220 /* likely incorrect csum if alternate IP extension headers found */
1221 if (rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1222 return;
1223
1224 /* IP or L4 or outmost IP checksum error */
1225 if (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
1226 (1 << I40E_RX_DESC_ERROR_L4E_SHIFT) |
1227 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))) {
1228 vsi->back->hw_csum_rx_error++;
1229 return;
1230 }
1231
1232 if (ipv4_tunnel &&
1233 !(rx_status & (1 << I40E_RX_DESC_STATUS_UDP_0_SHIFT))) {
1234 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1235 * it in the driver, hardware does not do it for us.
1236 * Since L3L4P bit was set we assume a valid IHL value (>=5)
1237 * so the total length of IPv4 header is IHL*4 bytes
1238 */
1239 skb->transport_header = skb->mac_header +
1240 sizeof(struct ethhdr) +
1241 (ip_hdr(skb)->ihl * 4);
1242
1243 /* Add 4 bytes for VLAN tagged packets */
1244 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1245 skb->protocol == htons(ETH_P_8021AD))
1246 ? VLAN_HLEN : 0;
1247
1248 rx_udp_csum = udp_csum(skb);
1249 iph = ip_hdr(skb);
1250 csum = csum_tcpudp_magic(
1251 iph->saddr, iph->daddr,
1252 (skb->len - skb_transport_offset(skb)),
1253 IPPROTO_UDP, rx_udp_csum);
1254
1255 if (udp_hdr(skb)->check != csum) {
1256 vsi->back->hw_csum_rx_error++;
1257 return;
1258 }
1259 }
1260
1261 skb->ip_summed = CHECKSUM_UNNECESSARY;
1262}
1263
1264/**
1265 * i40e_rx_hash - returns the hash value from the Rx descriptor
1266 * @ring: descriptor ring
1267 * @rx_desc: specific descriptor
1268 **/
1269static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1270 union i40e_rx_desc *rx_desc)
1271{
1272 const __le64 rss_mask =
1273 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1274 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1275
1276 if ((ring->netdev->features & NETIF_F_RXHASH) &&
1277 (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1278 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1279 else
1280 return 0;
1281}
1282
1283/**
1284 * i40e_ptype_to_hash - get a hash type
1285 * @ptype: the ptype value from the descriptor
1286 *
1287 * Returns a hash type to be used by skb_set_hash
1288 **/
1289static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1290{
1291 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1292
1293 if (!decoded.known)
1294 return PKT_HASH_TYPE_NONE;
1295
1296 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1297 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1298 return PKT_HASH_TYPE_L4;
1299 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1300 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1301 return PKT_HASH_TYPE_L3;
1302 else
1303 return PKT_HASH_TYPE_L2;
1304}
1305
1306/**
1307 * i40e_clean_rx_irq - Reclaim resources after receive completes
1308 * @rx_ring: rx ring to clean
1309 * @budget: how many cleans we're allowed
1310 *
1311 * Returns true if there's any budget left (e.g. the clean is finished)
1312 **/
1313static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1314{
1315 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1316 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1317 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1318 const int current_node = numa_node_id();
1319 struct i40e_vsi *vsi = rx_ring->vsi;
1320 u16 i = rx_ring->next_to_clean;
1321 union i40e_rx_desc *rx_desc;
1322 u32 rx_error, rx_status;
1323 u8 rx_ptype;
1324 u64 qword;
1325
1326 if (budget <= 0)
1327 return 0;
1328
1329 rx_desc = I40E_RX_DESC(rx_ring, i);
1330 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1331 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1332 I40E_RXD_QW1_STATUS_SHIFT;
1333
1334 while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1335 union i40e_rx_desc *next_rxd;
1336 struct i40e_rx_buffer *rx_bi;
1337 struct sk_buff *skb;
1338 u16 vlan_tag;
1339 if (i40e_rx_is_programming_status(qword)) {
1340 i40e_clean_programming_status(rx_ring, rx_desc);
1341 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1342 goto next_desc;
1343 }
1344 rx_bi = &rx_ring->rx_bi[i];
1345 skb = rx_bi->skb;
1346 prefetch(skb->data);
1347
1348 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1349 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1350 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1351 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1352 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1353 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1354
1355 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1356 I40E_RXD_QW1_ERROR_SHIFT;
1357 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1358 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1359
1360 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1361 I40E_RXD_QW1_PTYPE_SHIFT;
1362 rx_bi->skb = NULL;
1363
1364 /* This memory barrier is needed to keep us from reading
1365 * any other fields out of the rx_desc until we know the
1366 * STATUS_DD bit is set
1367 */
1368 rmb();
1369
1370 /* Get the header and possibly the whole packet
1371 * If this is an skb from previous receive dma will be 0
1372 */
1373 if (rx_bi->dma) {
1374 u16 len;
1375
1376 if (rx_hbo)
1377 len = I40E_RX_HDR_SIZE;
1378 else if (rx_sph)
1379 len = rx_header_len;
1380 else if (rx_packet_len)
1381 len = rx_packet_len; /* 1buf/no split found */
1382 else
1383 len = rx_header_len; /* split always mode */
1384
1385 skb_put(skb, len);
1386 dma_unmap_single(rx_ring->dev,
1387 rx_bi->dma,
1388 rx_ring->rx_buf_len,
1389 DMA_FROM_DEVICE);
1390 rx_bi->dma = 0;
1391 }
1392
1393 /* Get the rest of the data if this was a header split */
1394 if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
1395
1396 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1397 rx_bi->page,
1398 rx_bi->page_offset,
1399 rx_packet_len);
1400
1401 skb->len += rx_packet_len;
1402 skb->data_len += rx_packet_len;
1403 skb->truesize += rx_packet_len;
1404
1405 if ((page_count(rx_bi->page) == 1) &&
1406 (page_to_nid(rx_bi->page) == current_node))
1407 get_page(rx_bi->page);
1408 else
1409 rx_bi->page = NULL;
1410
1411 dma_unmap_page(rx_ring->dev,
1412 rx_bi->page_dma,
1413 PAGE_SIZE / 2,
1414 DMA_FROM_DEVICE);
1415 rx_bi->page_dma = 0;
1416 }
1417 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1418
1419 if (unlikely(
1420 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1421 struct i40e_rx_buffer *next_buffer;
1422
1423 next_buffer = &rx_ring->rx_bi[i];
1424
1425 if (ring_is_ps_enabled(rx_ring)) {
1426 rx_bi->skb = next_buffer->skb;
1427 rx_bi->dma = next_buffer->dma;
1428 next_buffer->skb = skb;
1429 next_buffer->dma = 0;
1430 }
1431 rx_ring->rx_stats.non_eop_descs++;
1432 goto next_desc;
1433 }
1434
1435 /* ERR_MASK will only have valid bits if EOP set */
1436 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1437 dev_kfree_skb_any(skb);
1438 goto next_desc;
1439 }
1440
1441 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1442 i40e_ptype_to_hash(rx_ptype));
1443 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1444 i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1445 I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1446 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1447 rx_ring->last_rx_timestamp = jiffies;
1448 }
1449
1450 /* probably a little skewed due to removing CRC */
1451 total_rx_bytes += skb->len;
1452 total_rx_packets++;
1453
1454 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1455
1456 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1457
1458 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1459 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1460 : 0;
1461 i40e_receive_skb(rx_ring, skb, vlan_tag);
1462
1463 rx_ring->netdev->last_rx = jiffies;
1464 budget--;
1465next_desc:
1466 rx_desc->wb.qword1.status_error_len = 0;
1467 if (!budget)
1468 break;
1469
1470 cleaned_count++;
1471 /* return some buffers to hardware, one at a time is too slow */
1472 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1473 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1474 cleaned_count = 0;
1475 }
1476
1477 /* use prefetched values */
1478 rx_desc = next_rxd;
1479 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1480 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1481 I40E_RXD_QW1_STATUS_SHIFT;
1482 }
1483
1484 rx_ring->next_to_clean = i;
1485 u64_stats_update_begin(&rx_ring->syncp);
1486 rx_ring->stats.packets += total_rx_packets;
1487 rx_ring->stats.bytes += total_rx_bytes;
1488 u64_stats_update_end(&rx_ring->syncp);
1489 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1490 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1491
1492 if (cleaned_count)
1493 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1494
1495 return budget > 0;
1496}
1497
1498/**
1499 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1500 * @napi: napi struct with our devices info in it
1501 * @budget: amount of work driver is allowed to do this pass, in packets
1502 *
1503 * This function will clean all queues associated with a q_vector.
1504 *
1505 * Returns the amount of work done
1506 **/
1507int i40e_napi_poll(struct napi_struct *napi, int budget)
1508{
1509 struct i40e_q_vector *q_vector =
1510 container_of(napi, struct i40e_q_vector, napi);
1511 struct i40e_vsi *vsi = q_vector->vsi;
1512 struct i40e_ring *ring;
1513 bool clean_complete = true;
1514 int budget_per_ring;
1515
1516 if (test_bit(__I40E_DOWN, &vsi->state)) {
1517 napi_complete(napi);
1518 return 0;
1519 }
1520
1521 /* Since the actual Tx work is minimal, we can give the Tx a larger
1522 * budget and be more aggressive about cleaning up the Tx descriptors.
1523 */
1524 i40e_for_each_ring(ring, q_vector->tx)
1525 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1526
1527 /* We attempt to distribute budget to each Rx queue fairly, but don't
1528 * allow the budget to go below 1 because that would exit polling early.
1529 */
1530 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1531
1532 i40e_for_each_ring(ring, q_vector->rx)
1533 clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1534
1535 /* If work not completed, return budget and polling will return */
1536 if (!clean_complete)
1537 return budget;
1538
1539 /* Work is done so exit the polling mode and re-enable the interrupt */
1540 napi_complete(napi);
1541 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1542 ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1543 i40e_update_dynamic_itr(q_vector);
1544
1545 if (!test_bit(__I40E_DOWN, &vsi->state)) {
1546 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1547 i40e_irq_dynamic_enable(vsi,
1548 q_vector->v_idx + vsi->base_vector);
1549 } else {
1550 struct i40e_hw *hw = &vsi->back->hw;
1551 /* We re-enable the queue 0 cause, but
1552 * don't worry about dynamic_enable
1553 * because we left it on for the other
1554 * possible interrupts during napi
1555 */
1556 u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
1557 qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1558 wr32(hw, I40E_QINT_RQCTL(0), qval);
1559
1560 qval = rd32(hw, I40E_QINT_TQCTL(0));
1561 qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1562 wr32(hw, I40E_QINT_TQCTL(0), qval);
1563
1564 i40e_irq_dynamic_enable_icr0(vsi->back);
1565 }
1566 }
1567
1568 return 0;
1569}
1570
1571/**
1572 * i40e_atr - Add a Flow Director ATR filter
1573 * @tx_ring: ring to add programming descriptor to
1574 * @skb: send buffer
1575 * @flags: send flags
1576 * @protocol: wire protocol
1577 **/
1578static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1579 u32 flags, __be16 protocol)
1580{
1581 struct i40e_filter_program_desc *fdir_desc;
1582 struct i40e_pf *pf = tx_ring->vsi->back;
1583 union {
1584 unsigned char *network;
1585 struct iphdr *ipv4;
1586 struct ipv6hdr *ipv6;
1587 } hdr;
1588 struct tcphdr *th;
1589 unsigned int hlen;
1590 u32 flex_ptype, dtype_cmd;
1591 u16 i;
1592
1593 /* make sure ATR is enabled */
1594 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1595 return;
1596
1597 /* if sampling is disabled do nothing */
1598 if (!tx_ring->atr_sample_rate)
1599 return;
1600
1601 /* snag network header to get L4 type and address */
1602 hdr.network = skb_network_header(skb);
1603
1604 /* Currently only IPv4/IPv6 with TCP is supported */
1605 if (protocol == htons(ETH_P_IP)) {
1606 if (hdr.ipv4->protocol != IPPROTO_TCP)
1607 return;
1608
1609 /* access ihl as a u8 to avoid unaligned access on ia64 */
1610 hlen = (hdr.network[0] & 0x0F) << 2;
1611 } else if (protocol == htons(ETH_P_IPV6)) {
1612 if (hdr.ipv6->nexthdr != IPPROTO_TCP)
1613 return;
1614
1615 hlen = sizeof(struct ipv6hdr);
1616 } else {
1617 return;
1618 }
1619
1620 th = (struct tcphdr *)(hdr.network + hlen);
1621
1622 /* Due to lack of space, no more new filters can be programmed */
1623 if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1624 return;
1625
1626 tx_ring->atr_count++;
1627
1628 /* sample on all syn/fin/rst packets or once every atr sample rate */
1629 if (!th->fin &&
1630 !th->syn &&
1631 !th->rst &&
1632 (tx_ring->atr_count < tx_ring->atr_sample_rate))
1633 return;
1634
1635 tx_ring->atr_count = 0;
1636
1637 /* grab the next descriptor */
1638 i = tx_ring->next_to_use;
1639 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
1640
1641 i++;
1642 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1643
1644 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
1645 I40E_TXD_FLTR_QW0_QINDEX_MASK;
1646 flex_ptype |= (protocol == htons(ETH_P_IP)) ?
1647 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
1648 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
1649 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
1650 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
1651
1652 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
1653
1654 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
1655
1656 dtype_cmd |= (th->fin || th->rst) ?
1657 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
1658 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
1659 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
1660 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
1661
1662 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
1663 I40E_TXD_FLTR_QW1_DEST_SHIFT;
1664
1665 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
1666 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
1667
1668 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
1669 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
1670}
1671
1672/**
1673 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1674 * @skb: send buffer
1675 * @tx_ring: ring to send buffer on
1676 * @flags: the tx flags to be set
1677 *
1678 * Checks the skb and set up correspondingly several generic transmit flags
1679 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1680 *
1681 * Returns error code indicate the frame should be dropped upon error and the
1682 * otherwise returns 0 to indicate the flags has been set properly.
1683 **/
1684static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1685 struct i40e_ring *tx_ring,
1686 u32 *flags)
1687{
1688 __be16 protocol = skb->protocol;
1689 u32 tx_flags = 0;
1690
1691 /* if we have a HW VLAN tag being added, default to the HW one */
1692 if (vlan_tx_tag_present(skb)) {
1693 tx_flags |= vlan_tx_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1694 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1695 /* else if it is a SW VLAN, check the next protocol and store the tag */
1696 } else if (protocol == htons(ETH_P_8021Q)) {
1697 struct vlan_hdr *vhdr, _vhdr;
1698 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1699 if (!vhdr)
1700 return -EINVAL;
1701
1702 protocol = vhdr->h_vlan_encapsulated_proto;
1703 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1704 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1705 }
1706
1707 /* Insert 802.1p priority into VLAN header */
1708 if ((tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED) &&
1709 ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
1710 (skb->priority != TC_PRIO_CONTROL))) {
1711 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
1712 tx_flags |= (skb->priority & 0x7) <<
1713 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
1714 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
1715 struct vlan_ethhdr *vhdr;
1716 int rc;
1717
1718 rc = skb_cow_head(skb, 0);
1719 if (rc < 0)
1720 return rc;
1721 vhdr = (struct vlan_ethhdr *)skb->data;
1722 vhdr->h_vlan_TCI = htons(tx_flags >>
1723 I40E_TX_FLAGS_VLAN_SHIFT);
1724 } else {
1725 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1726 }
1727 }
1728 *flags = tx_flags;
1729 return 0;
1730}
1731
1732/**
1733 * i40e_tso - set up the tso context descriptor
1734 * @tx_ring: ptr to the ring to send
1735 * @skb: ptr to the skb we're sending
1736 * @tx_flags: the collected send information
1737 * @protocol: the send protocol
1738 * @hdr_len: ptr to the size of the packet header
1739 * @cd_tunneling: ptr to context descriptor bits
1740 *
1741 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1742 **/
1743static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1744 u32 tx_flags, __be16 protocol, u8 *hdr_len,
1745 u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1746{
1747 u32 cd_cmd, cd_tso_len, cd_mss;
1748 struct ipv6hdr *ipv6h;
1749 struct tcphdr *tcph;
1750 struct iphdr *iph;
1751 u32 l4len;
1752 int err;
1753
1754 if (!skb_is_gso(skb))
1755 return 0;
1756
1757 err = skb_cow_head(skb, 0);
1758 if (err < 0)
1759 return err;
1760
1761 if (protocol == htons(ETH_P_IP)) {
1762 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1763 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1764 iph->tot_len = 0;
1765 iph->check = 0;
1766 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1767 0, IPPROTO_TCP, 0);
1768 } else if (skb_is_gso_v6(skb)) {
1769
1770 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb)
1771 : ipv6_hdr(skb);
1772 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1773 ipv6h->payload_len = 0;
1774 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1775 0, IPPROTO_TCP, 0);
1776 }
1777
1778 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1779 *hdr_len = (skb->encapsulation
1780 ? (skb_inner_transport_header(skb) - skb->data)
1781 : skb_transport_offset(skb)) + l4len;
1782
1783 /* find the field values */
1784 cd_cmd = I40E_TX_CTX_DESC_TSO;
1785 cd_tso_len = skb->len - *hdr_len;
1786 cd_mss = skb_shinfo(skb)->gso_size;
1787 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1788 ((u64)cd_tso_len <<
1789 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1790 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1791 return 1;
1792}
1793
1794/**
1795 * i40e_tsyn - set up the tsyn context descriptor
1796 * @tx_ring: ptr to the ring to send
1797 * @skb: ptr to the skb we're sending
1798 * @tx_flags: the collected send information
1799 *
1800 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
1801 **/
1802static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
1803 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
1804{
1805 struct i40e_pf *pf;
1806
1807 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
1808 return 0;
1809
1810 /* Tx timestamps cannot be sampled when doing TSO */
1811 if (tx_flags & I40E_TX_FLAGS_TSO)
1812 return 0;
1813
1814 /* only timestamp the outbound packet if the user has requested it and
1815 * we are not already transmitting a packet to be timestamped
1816 */
1817 pf = i40e_netdev_to_pf(tx_ring->netdev);
1818 if (pf->ptp_tx && !pf->ptp_tx_skb) {
1819 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1820 pf->ptp_tx_skb = skb_get(skb);
1821 } else {
1822 return 0;
1823 }
1824
1825 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
1826 I40E_TXD_CTX_QW1_CMD_SHIFT;
1827
1828 pf->ptp_tx_start = jiffies;
1829 schedule_work(&pf->ptp_tx_work);
1830
1831 return 1;
1832}
1833
1834/**
1835 * i40e_tx_enable_csum - Enable Tx checksum offloads
1836 * @skb: send buffer
1837 * @tx_flags: Tx flags currently set
1838 * @td_cmd: Tx descriptor command bits to set
1839 * @td_offset: Tx descriptor header offsets to set
1840 * @cd_tunneling: ptr to context desc bits
1841 **/
1842static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1843 u32 *td_cmd, u32 *td_offset,
1844 struct i40e_ring *tx_ring,
1845 u32 *cd_tunneling)
1846{
1847 struct ipv6hdr *this_ipv6_hdr;
1848 unsigned int this_tcp_hdrlen;
1849 struct iphdr *this_ip_hdr;
1850 u32 network_hdr_len;
1851 u8 l4_hdr = 0;
1852
1853 if (skb->encapsulation) {
1854 network_hdr_len = skb_inner_network_header_len(skb);
1855 this_ip_hdr = inner_ip_hdr(skb);
1856 this_ipv6_hdr = inner_ipv6_hdr(skb);
1857 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1858
1859 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1860
1861 if (tx_flags & I40E_TX_FLAGS_TSO) {
1862 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1863 ip_hdr(skb)->check = 0;
1864 } else {
1865 *cd_tunneling |=
1866 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1867 }
1868 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1869 if (tx_flags & I40E_TX_FLAGS_TSO) {
1870 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1871 ip_hdr(skb)->check = 0;
1872 } else {
1873 *cd_tunneling |=
1874 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1875 }
1876 }
1877
1878 /* Now set the ctx descriptor fields */
1879 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1880 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1881 I40E_TXD_CTX_UDP_TUNNELING |
1882 ((skb_inner_network_offset(skb) -
1883 skb_transport_offset(skb)) >> 1) <<
1884 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1885
1886 } else {
1887 network_hdr_len = skb_network_header_len(skb);
1888 this_ip_hdr = ip_hdr(skb);
1889 this_ipv6_hdr = ipv6_hdr(skb);
1890 this_tcp_hdrlen = tcp_hdrlen(skb);
1891 }
1892
1893 /* Enable IP checksum offloads */
1894 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1895 l4_hdr = this_ip_hdr->protocol;
1896 /* the stack computes the IP header already, the only time we
1897 * need the hardware to recompute it is in the case of TSO.
1898 */
1899 if (tx_flags & I40E_TX_FLAGS_TSO) {
1900 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1901 this_ip_hdr->check = 0;
1902 } else {
1903 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1904 }
1905 /* Now set the td_offset for IP header length */
1906 *td_offset = (network_hdr_len >> 2) <<
1907 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1908 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1909 l4_hdr = this_ipv6_hdr->nexthdr;
1910 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1911 /* Now set the td_offset for IP header length */
1912 *td_offset = (network_hdr_len >> 2) <<
1913 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1914 }
1915 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1916 *td_offset |= (skb_network_offset(skb) >> 1) <<
1917 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1918
1919 /* Enable L4 checksum offloads */
1920 switch (l4_hdr) {
1921 case IPPROTO_TCP:
1922 /* enable checksum offloads */
1923 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1924 *td_offset |= (this_tcp_hdrlen >> 2) <<
1925 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1926 break;
1927 case IPPROTO_SCTP:
1928 /* enable SCTP checksum offload */
1929 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1930 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1931 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1932 break;
1933 case IPPROTO_UDP:
1934 /* enable UDP checksum offload */
1935 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1936 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1937 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1938 break;
1939 default:
1940 break;
1941 }
1942}
1943
1944/**
1945 * i40e_create_tx_ctx Build the Tx context descriptor
1946 * @tx_ring: ring to create the descriptor on
1947 * @cd_type_cmd_tso_mss: Quad Word 1
1948 * @cd_tunneling: Quad Word 0 - bits 0-31
1949 * @cd_l2tag2: Quad Word 0 - bits 32-63
1950 **/
1951static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1952 const u64 cd_type_cmd_tso_mss,
1953 const u32 cd_tunneling, const u32 cd_l2tag2)
1954{
1955 struct i40e_tx_context_desc *context_desc;
1956 int i = tx_ring->next_to_use;
1957
1958 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1959 !cd_tunneling && !cd_l2tag2)
1960 return;
1961
1962 /* grab the next descriptor */
1963 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1964
1965 i++;
1966 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1967
1968 /* cpu_to_le32 and assign to struct fields */
1969 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1970 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1971 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1972}
1973
1974/**
1975 * i40e_tx_map - Build the Tx descriptor
1976 * @tx_ring: ring to send buffer on
1977 * @skb: send buffer
1978 * @first: first buffer info buffer to use
1979 * @tx_flags: collected send information
1980 * @hdr_len: size of the packet header
1981 * @td_cmd: the command field in the descriptor
1982 * @td_offset: offset for checksum or crc
1983 **/
1984static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1985 struct i40e_tx_buffer *first, u32 tx_flags,
1986 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1987{
1988 unsigned int data_len = skb->data_len;
1989 unsigned int size = skb_headlen(skb);
1990 struct skb_frag_struct *frag;
1991 struct i40e_tx_buffer *tx_bi;
1992 struct i40e_tx_desc *tx_desc;
1993 u16 i = tx_ring->next_to_use;
1994 u32 td_tag = 0;
1995 dma_addr_t dma;
1996 u16 gso_segs;
1997
1998 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1999 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2000 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2001 I40E_TX_FLAGS_VLAN_SHIFT;
2002 }
2003
2004 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2005 gso_segs = skb_shinfo(skb)->gso_segs;
2006 else
2007 gso_segs = 1;
2008
2009 /* multiply data chunks by size of headers */
2010 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2011 first->gso_segs = gso_segs;
2012 first->skb = skb;
2013 first->tx_flags = tx_flags;
2014
2015 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2016
2017 tx_desc = I40E_TX_DESC(tx_ring, i);
2018 tx_bi = first;
2019
2020 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2021 if (dma_mapping_error(tx_ring->dev, dma))
2022 goto dma_error;
2023
2024 /* record length, and DMA address */
2025 dma_unmap_len_set(tx_bi, len, size);
2026 dma_unmap_addr_set(tx_bi, dma, dma);
2027
2028 tx_desc->buffer_addr = cpu_to_le64(dma);
2029
2030 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2031 tx_desc->cmd_type_offset_bsz =
2032 build_ctob(td_cmd, td_offset,
2033 I40E_MAX_DATA_PER_TXD, td_tag);
2034
2035 tx_desc++;
2036 i++;
2037 if (i == tx_ring->count) {
2038 tx_desc = I40E_TX_DESC(tx_ring, 0);
2039 i = 0;
2040 }
2041
2042 dma += I40E_MAX_DATA_PER_TXD;
2043 size -= I40E_MAX_DATA_PER_TXD;
2044
2045 tx_desc->buffer_addr = cpu_to_le64(dma);
2046 }
2047
2048 if (likely(!data_len))
2049 break;
2050
2051 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2052 size, td_tag);
2053
2054 tx_desc++;
2055 i++;
2056 if (i == tx_ring->count) {
2057 tx_desc = I40E_TX_DESC(tx_ring, 0);
2058 i = 0;
2059 }
2060
2061 size = skb_frag_size(frag);
2062 data_len -= size;
2063
2064 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2065 DMA_TO_DEVICE);
2066
2067 tx_bi = &tx_ring->tx_bi[i];
2068 }
2069
2070 /* Place RS bit on last descriptor of any packet that spans across the
2071 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
2072 */
2073#define WB_STRIDE 0x3
2074 if (((i & WB_STRIDE) != WB_STRIDE) &&
2075 (first <= &tx_ring->tx_bi[i]) &&
2076 (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
2077 tx_desc->cmd_type_offset_bsz =
2078 build_ctob(td_cmd, td_offset, size, td_tag) |
2079 cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
2080 I40E_TXD_QW1_CMD_SHIFT);
2081 } else {
2082 tx_desc->cmd_type_offset_bsz =
2083 build_ctob(td_cmd, td_offset, size, td_tag) |
2084 cpu_to_le64((u64)I40E_TXD_CMD <<
2085 I40E_TXD_QW1_CMD_SHIFT);
2086 }
2087
2088 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2089 tx_ring->queue_index),
2090 first->bytecount);
2091
2092 /* set the timestamp */
2093 first->time_stamp = jiffies;
2094
2095 /* Force memory writes to complete before letting h/w
2096 * know there are new descriptors to fetch. (Only
2097 * applicable for weak-ordered memory model archs,
2098 * such as IA-64).
2099 */
2100 wmb();
2101
2102 /* set next_to_watch value indicating a packet is present */
2103 first->next_to_watch = tx_desc;
2104
2105 i++;
2106 if (i == tx_ring->count)
2107 i = 0;
2108
2109 tx_ring->next_to_use = i;
2110
2111 /* notify HW of packet */
2112 writel(i, tx_ring->tail);
2113
2114 return;
2115
2116dma_error:
2117 dev_info(tx_ring->dev, "TX DMA map failed\n");
2118
2119 /* clear dma mappings for failed tx_bi map */
2120 for (;;) {
2121 tx_bi = &tx_ring->tx_bi[i];
2122 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2123 if (tx_bi == first)
2124 break;
2125 if (i == 0)
2126 i = tx_ring->count;
2127 i--;
2128 }
2129
2130 tx_ring->next_to_use = i;
2131}
2132
2133/**
2134 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2135 * @tx_ring: the ring to be checked
2136 * @size: the size buffer we want to assure is available
2137 *
2138 * Returns -EBUSY if a stop is needed, else 0
2139 **/
2140static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2141{
2142 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2143 /* Memory barrier before checking head and tail */
2144 smp_mb();
2145
2146 /* Check again in a case another CPU has just made room available. */
2147 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2148 return -EBUSY;
2149
2150 /* A reprieve! - use start_queue because it doesn't call schedule */
2151 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2152 ++tx_ring->tx_stats.restart_queue;
2153 return 0;
2154}
2155
2156/**
2157 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2158 * @tx_ring: the ring to be checked
2159 * @size: the size buffer we want to assure is available
2160 *
2161 * Returns 0 if stop is not needed
2162 **/
2163static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2164{
2165 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2166 return 0;
2167 return __i40e_maybe_stop_tx(tx_ring, size);
2168}
2169
2170/**
2171 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2172 * @skb: send buffer
2173 * @tx_ring: ring to send buffer on
2174 *
2175 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2176 * there is not enough descriptors available in this ring since we need at least
2177 * one descriptor.
2178 **/
2179static int i40e_xmit_descriptor_count(struct sk_buff *skb,
2180 struct i40e_ring *tx_ring)
2181{
2182#if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
2183 unsigned int f;
2184#endif
2185 int count = 0;
2186
2187 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2188 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2189 * + 4 desc gap to avoid the cache line where head is,
2190 * + 1 desc for context descriptor,
2191 * otherwise try next time
2192 */
2193#if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
2194 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2195 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2196#else
2197 count += skb_shinfo(skb)->nr_frags;
2198#endif
2199 count += TXD_USE_COUNT(skb_headlen(skb));
2200 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2201 tx_ring->tx_stats.tx_busy++;
2202 return 0;
2203 }
2204 return count;
2205}
2206
2207/**
2208 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2209 * @skb: send buffer
2210 * @tx_ring: ring to send buffer on
2211 *
2212 * Returns NETDEV_TX_OK if sent, else an error code
2213 **/
2214static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2215 struct i40e_ring *tx_ring)
2216{
2217 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2218 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2219 struct i40e_tx_buffer *first;
2220 u32 td_offset = 0;
2221 u32 tx_flags = 0;
2222 __be16 protocol;
2223 u32 td_cmd = 0;
2224 u8 hdr_len = 0;
2225 int tsyn;
2226 int tso;
2227 if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2228 return NETDEV_TX_BUSY;
2229
2230 /* prepare the xmit flags */
2231 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2232 goto out_drop;
2233
2234 /* obtain protocol of skb */
2235 protocol = skb->protocol;
2236
2237 /* record the location of the first descriptor for this packet */
2238 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2239
2240 /* setup IPv4/IPv6 offloads */
2241 if (protocol == htons(ETH_P_IP))
2242 tx_flags |= I40E_TX_FLAGS_IPV4;
2243 else if (protocol == htons(ETH_P_IPV6))
2244 tx_flags |= I40E_TX_FLAGS_IPV6;
2245
2246 tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
2247 &cd_type_cmd_tso_mss, &cd_tunneling);
2248
2249 if (tso < 0)
2250 goto out_drop;
2251 else if (tso)
2252 tx_flags |= I40E_TX_FLAGS_TSO;
2253
2254 skb_tx_timestamp(skb);
2255
2256 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2257
2258 if (tsyn)
2259 tx_flags |= I40E_TX_FLAGS_TSYN;
2260
2261 /* always enable CRC insertion offload */
2262 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2263
2264 /* Always offload the checksum, since it's in the data descriptor */
2265 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2266 tx_flags |= I40E_TX_FLAGS_CSUM;
2267
2268 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
2269 tx_ring, &cd_tunneling);
2270 }
2271
2272 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2273 cd_tunneling, cd_l2tag2);
2274
2275 /* Add Flow Director ATR if it's enabled.
2276 *
2277 * NOTE: this must always be directly before the data descriptor.
2278 */
2279 i40e_atr(tx_ring, skb, tx_flags, protocol);
2280
2281 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2282 td_cmd, td_offset);
2283
2284 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2285
2286 return NETDEV_TX_OK;
2287
2288out_drop:
2289 dev_kfree_skb_any(skb);
2290 return NETDEV_TX_OK;
2291}
2292
2293/**
2294 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2295 * @skb: send buffer
2296 * @netdev: network interface device structure
2297 *
2298 * Returns NETDEV_TX_OK if sent, else an error code
2299 **/
2300netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2301{
2302 struct i40e_netdev_priv *np = netdev_priv(netdev);
2303 struct i40e_vsi *vsi = np->vsi;
2304 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2305
2306 /* hardware can't handle really short frames, hardware padding works
2307 * beyond this point
2308 */
2309 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2310 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2311 return NETDEV_TX_OK;
2312 skb->len = I40E_MIN_TX_LEN;
2313 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2314 }
2315
2316 return i40e_xmit_frame_ring(skb, tx_ring);
2317}