Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/bpf_trace.h>
   5#include <linux/prefetch.h>
   6#include <linux/sctp.h>
   7#include <net/mpls.h>
   8#include <net/xdp.h>
   9#include "i40e_txrx_common.h"
  10#include "i40e_trace.h"
  11#include "i40e_xsk.h"
  12
  13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  14/**
  15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  16 * @tx_ring: Tx ring to send buffer on
  17 * @fdata: Flow director filter data
  18 * @add: Indicate if we are adding a rule or deleting one
  19 *
  20 **/
  21static void i40e_fdir(struct i40e_ring *tx_ring,
  22		      struct i40e_fdir_filter *fdata, bool add)
  23{
  24	struct i40e_filter_program_desc *fdir_desc;
  25	struct i40e_pf *pf = tx_ring->vsi->back;
  26	u32 flex_ptype, dtype_cmd;
  27	u16 i;
  28
  29	/* grab the next descriptor */
  30	i = tx_ring->next_to_use;
  31	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  32
  33	i++;
  34	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  35
  36	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
  37
  38	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
  39				 fdata->flex_off);
  40
  41	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
  42
  43	/* Use LAN VSI Id if not programmed by user */
  44	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK,
  45				 fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id);
  46
  47	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  48
  49	dtype_cmd |= add ?
  50		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  51		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  52		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  53		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  54
  55	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
  56
  57	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
  58				fdata->fd_status);
  59
  60	if (fdata->cnt_index) {
  61		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  62		dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
  63					fdata->cnt_index);
  64	}
  65
  66	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  67	fdir_desc->rsvd = cpu_to_le32(0);
  68	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  69	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
 
 
 
 
  70}
  71
  72#define I40E_FD_CLEAN_DELAY 10
  73/**
  74 * i40e_program_fdir_filter - Program a Flow Director filter
  75 * @fdir_data: Packet data that will be filter parameters
  76 * @raw_packet: the pre-allocated packet buffer for FDir
  77 * @pf: The PF pointer
  78 * @add: True for add/update, False for remove
  79 **/
  80static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  81				    u8 *raw_packet, struct i40e_pf *pf,
  82				    bool add)
  83{
  84	struct i40e_tx_buffer *tx_buf, *first;
 
  85	struct i40e_tx_desc *tx_desc;
  86	struct i40e_ring *tx_ring;
 
  87	struct i40e_vsi *vsi;
  88	struct device *dev;
  89	dma_addr_t dma;
  90	u32 td_cmd = 0;
  91	u16 i;
  92
  93	/* find existing FDIR VSI */
  94	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 
 
 
  95	if (!vsi)
  96		return -ENOENT;
  97
  98	tx_ring = vsi->tx_rings[0];
  99	dev = tx_ring->dev;
 100
 101	/* we need two descriptors to add/del a filter and we can wait */
 102	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 103		if (!i)
 104			return -EAGAIN;
 105		msleep_interruptible(1);
 106	}
 107
 108	dma = dma_map_single(dev, raw_packet,
 109			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 110	if (dma_mapping_error(dev, dma))
 111		goto dma_fail;
 112
 113	/* grab the next descriptor */
 114	i = tx_ring->next_to_use;
 115	first = &tx_ring->tx_bi[i];
 116	i40e_fdir(tx_ring, fdir_data, add);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117
 118	/* Now program a dummy descriptor */
 119	i = tx_ring->next_to_use;
 120	tx_desc = I40E_TX_DESC(tx_ring, i);
 121	tx_buf = &tx_ring->tx_bi[i];
 122
 123	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 124
 125	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 126
 127	/* record length, and DMA address */
 128	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 129	dma_unmap_addr_set(tx_buf, dma, dma);
 130
 131	tx_desc->buffer_addr = cpu_to_le64(dma);
 132	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 133
 134	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 135	tx_buf->raw_buf = (void *)raw_packet;
 136
 137	tx_desc->cmd_type_offset_bsz =
 138		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 139
 
 
 
 140	/* Force memory writes to complete before letting h/w
 141	 * know there are new descriptors to fetch.
 
 
 142	 */
 143	wmb();
 144
 145	/* Mark the data descriptor to be watched */
 146	first->next_to_watch = tx_desc;
 147
 148	writel(tx_ring->next_to_use, tx_ring->tail);
 149	return 0;
 150
 151dma_fail:
 152	return -1;
 153}
 154
 
 
 155/**
 156 * i40e_create_dummy_packet - Constructs dummy packet for HW
 157 * @dummy_packet: preallocated space for dummy packet
 158 * @ipv4: is layer 3 packet of version 4 or 6
 159 * @l4proto: next level protocol used in data portion of l3
 160 * @data: filter data
 161 *
 162 * Returns address of layer 4 protocol dummy packet.
 163 **/
 164static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
 165				      struct i40e_fdir_filter *data)
 166{
 167	bool is_vlan = !!data->vlan_tag;
 168	struct vlan_hdr vlan = {};
 169	struct ipv6hdr ipv6 = {};
 170	struct ethhdr eth = {};
 171	struct iphdr ip = {};
 172	u8 *tmp;
 173
 174	if (ipv4) {
 175		eth.h_proto = cpu_to_be16(ETH_P_IP);
 176		ip.protocol = l4proto;
 177		ip.version = 0x4;
 178		ip.ihl = 0x5;
 179
 180		ip.daddr = data->dst_ip;
 181		ip.saddr = data->src_ip;
 182	} else {
 183		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
 184		ipv6.nexthdr = l4proto;
 185		ipv6.version = 0x6;
 186
 187		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
 188		       sizeof(__be32) * 4);
 189		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
 190		       sizeof(__be32) * 4);
 191	}
 192
 193	if (is_vlan) {
 194		vlan.h_vlan_TCI = data->vlan_tag;
 195		vlan.h_vlan_encapsulated_proto = eth.h_proto;
 196		eth.h_proto = data->vlan_etype;
 197	}
 198
 199	tmp = dummy_packet;
 200	memcpy(tmp, &eth, sizeof(eth));
 201	tmp += sizeof(eth);
 202
 203	if (is_vlan) {
 204		memcpy(tmp, &vlan, sizeof(vlan));
 205		tmp += sizeof(vlan);
 206	}
 207
 208	if (ipv4) {
 209		memcpy(tmp, &ip, sizeof(ip));
 210		tmp += sizeof(ip);
 211	} else {
 212		memcpy(tmp, &ipv6, sizeof(ipv6));
 213		tmp += sizeof(ipv6);
 214	}
 215
 216	return tmp;
 217}
 218
 219/**
 220 * i40e_create_dummy_udp_packet - helper function to create UDP packet
 221 * @raw_packet: preallocated space for dummy packet
 222 * @ipv4: is layer 3 packet of version 4 or 6
 223 * @l4proto: next level protocol used in data portion of l3
 224 * @data: filter data
 225 *
 226 * Helper function to populate udp fields.
 227 **/
 228static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 229					 struct i40e_fdir_filter *data)
 230{
 231	struct udphdr *udp;
 232	u8 *tmp;
 233
 234	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
 235	udp = (struct udphdr *)(tmp);
 236	udp->dest = data->dst_port;
 237	udp->source = data->src_port;
 238}
 239
 240/**
 241 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
 242 * @raw_packet: preallocated space for dummy packet
 243 * @ipv4: is layer 3 packet of version 4 or 6
 244 * @l4proto: next level protocol used in data portion of l3
 245 * @data: filter data
 246 *
 247 * Helper function to populate tcp fields.
 248 **/
 249static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 250					 struct i40e_fdir_filter *data)
 251{
 252	struct tcphdr *tcp;
 253	u8 *tmp;
 254	/* Dummy tcp packet */
 255	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 256		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
 257
 258	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
 259
 260	tcp = (struct tcphdr *)tmp;
 261	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
 262	tcp->dest = data->dst_port;
 263	tcp->source = data->src_port;
 264}
 265
 266/**
 267 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
 268 * @raw_packet: preallocated space for dummy packet
 269 * @ipv4: is layer 3 packet of version 4 or 6
 270 * @l4proto: next level protocol used in data portion of l3
 271 * @data: filter data
 272 *
 273 * Helper function to populate sctp fields.
 274 **/
 275static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
 276					  u8 l4proto,
 277					  struct i40e_fdir_filter *data)
 278{
 279	struct sctphdr *sctp;
 280	u8 *tmp;
 281
 282	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
 283
 284	sctp = (struct sctphdr *)tmp;
 285	sctp->dest = data->dst_port;
 286	sctp->source = data->src_port;
 287}
 288
 289/**
 290 * i40e_prepare_fdir_filter - Prepare and program fdir filter
 291 * @pf: physical function to attach filter to
 292 * @fd_data: filter data
 293 * @add: add or delete filter
 294 * @packet_addr: address of dummy packet, used in filtering
 295 * @payload_offset: offset from dummy packet address to user defined data
 296 * @pctype: Packet type for which filter is used
 297 *
 298 * Helper function to offset data of dummy packet, program it and
 299 * handle errors.
 300 **/
 301static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
 302				    struct i40e_fdir_filter *fd_data,
 303				    bool add, char *packet_addr,
 304				    int payload_offset, u8 pctype)
 305{
 306	int ret;
 307
 308	if (fd_data->flex_filter) {
 309		u8 *payload;
 310		__be16 pattern = fd_data->flex_word;
 311		u16 off = fd_data->flex_offset;
 312
 313		payload = packet_addr + payload_offset;
 314
 315		/* If user provided vlan, offset payload by vlan header length */
 316		if (!!fd_data->vlan_tag)
 317			payload += VLAN_HLEN;
 318
 319		*((__force __be16 *)(payload + off)) = pattern;
 320	}
 321
 322	fd_data->pctype = pctype;
 323	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
 324	if (ret) {
 325		dev_info(&pf->pdev->dev,
 326			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 327			 fd_data->pctype, fd_data->fd_id, ret);
 328		/* Free the packet buffer since it wasn't added to the ring */
 329		return -EOPNOTSUPP;
 330	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 331		if (add)
 332			dev_info(&pf->pdev->dev,
 333				 "Filter OK for PCTYPE %d loc = %d\n",
 334				 fd_data->pctype, fd_data->fd_id);
 335		else
 336			dev_info(&pf->pdev->dev,
 337				 "Filter deleted for PCTYPE %d loc = %d\n",
 338				 fd_data->pctype, fd_data->fd_id);
 339	}
 340
 341	return ret;
 342}
 343
 344/**
 345 * i40e_change_filter_num - Prepare and program fdir filter
 346 * @ipv4: is layer 3 packet of version 4 or 6
 347 * @add: add or delete filter
 348 * @ipv4_filter_num: field to update
 349 * @ipv6_filter_num: field to update
 350 *
 351 * Update filter number field for pf.
 352 **/
 353static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
 354				   u16 *ipv6_filter_num)
 355{
 356	if (add) {
 357		if (ipv4)
 358			(*ipv4_filter_num)++;
 359		else
 360			(*ipv6_filter_num)++;
 361	} else {
 362		if (ipv4)
 363			(*ipv4_filter_num)--;
 364		else
 365			(*ipv6_filter_num)--;
 366	}
 367}
 368
 369#define I40E_UDPIP_DUMMY_PACKET_LEN	42
 370#define I40E_UDPIP6_DUMMY_PACKET_LEN	62
 371/**
 372 * i40e_add_del_fdir_udp - Add/Remove UDP filters
 373 * @vsi: pointer to the targeted VSI
 374 * @fd_data: the flow director data required for the FDir descriptor
 
 375 * @add: true adds a filter, false removes it
 376 * @ipv4: true is v4, false is v6
 377 *
 378 * Returns 0 if the filters were successfully added or removed
 379 **/
 380static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
 381				 struct i40e_fdir_filter *fd_data,
 382				 bool add,
 383				 bool ipv4)
 384{
 385	struct i40e_pf *pf = vsi->back;
 386	u8 *raw_packet;
 
 
 387	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 388
 389	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 390	if (!raw_packet)
 391		return -ENOMEM;
 392
 393	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
 394
 395	if (ipv4)
 396		ret = i40e_prepare_fdir_filter
 397			(pf, fd_data, add, raw_packet,
 398			 I40E_UDPIP_DUMMY_PACKET_LEN,
 399			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
 400	else
 401		ret = i40e_prepare_fdir_filter
 402			(pf, fd_data, add, raw_packet,
 403			 I40E_UDPIP6_DUMMY_PACKET_LEN,
 404			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
 405
 406	if (ret) {
 407		kfree(raw_packet);
 408		return ret;
 409	}
 410
 411	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
 412			       &pf->fd_udp6_filter_cnt);
 413
 414	return 0;
 415}
 416
 417#define I40E_TCPIP_DUMMY_PACKET_LEN	54
 418#define I40E_TCPIP6_DUMMY_PACKET_LEN	74
 419/**
 420 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
 421 * @vsi: pointer to the targeted VSI
 422 * @fd_data: the flow director data required for the FDir descriptor
 
 423 * @add: true adds a filter, false removes it
 424 * @ipv4: true is v4, false is v6
 425 *
 426 * Returns 0 if the filters were successfully added or removed
 427 **/
 428static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
 429				 struct i40e_fdir_filter *fd_data,
 430				 bool add,
 431				 bool ipv4)
 432{
 433	struct i40e_pf *pf = vsi->back;
 434	u8 *raw_packet;
 
 
 435	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436
 437	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 438	if (!raw_packet)
 439		return -ENOMEM;
 
 
 
 440
 441	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
 442	if (ipv4)
 443		ret = i40e_prepare_fdir_filter
 444			(pf, fd_data, add, raw_packet,
 445			 I40E_TCPIP_DUMMY_PACKET_LEN,
 446			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
 447	else
 448		ret = i40e_prepare_fdir_filter
 449			(pf, fd_data, add, raw_packet,
 450			 I40E_TCPIP6_DUMMY_PACKET_LEN,
 451			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
 452
 453	if (ret) {
 454		kfree(raw_packet);
 455		return ret;
 
 
 
 
 
 456	}
 457
 458	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
 459			       &pf->fd_tcp6_filter_cnt);
 460
 461	if (add) {
 462		if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
 463		    I40E_DEBUG_FD & pf->hw.debug_mask)
 464			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 465		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 
 
 
 
 466	}
 467	return 0;
 
 468}
 469
 470#define I40E_SCTPIP_DUMMY_PACKET_LEN	46
 471#define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
 472/**
 473 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
 474 * a specific flow spec
 475 * @vsi: pointer to the targeted VSI
 476 * @fd_data: the flow director data required for the FDir descriptor
 
 477 * @add: true adds a filter, false removes it
 478 * @ipv4: true is v4, false is v6
 479 *
 480 * Returns 0 if the filters were successfully added or removed
 481 **/
 482static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
 483				  struct i40e_fdir_filter *fd_data,
 484				  bool add,
 485				  bool ipv4)
 486{
 487	struct i40e_pf *pf = vsi->back;
 488	u8 *raw_packet;
 489	int ret;
 490
 491	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 492	if (!raw_packet)
 493		return -ENOMEM;
 494
 495	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
 496
 497	if (ipv4)
 498		ret = i40e_prepare_fdir_filter
 499			(pf, fd_data, add, raw_packet,
 500			 I40E_SCTPIP_DUMMY_PACKET_LEN,
 501			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
 502	else
 503		ret = i40e_prepare_fdir_filter
 504			(pf, fd_data, add, raw_packet,
 505			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
 506			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
 507
 508	if (ret) {
 509		kfree(raw_packet);
 510		return ret;
 511	}
 512
 513	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
 514			       &pf->fd_sctp6_filter_cnt);
 515
 516	return 0;
 517}
 518
 519#define I40E_IP_DUMMY_PACKET_LEN	34
 520#define I40E_IP6_DUMMY_PACKET_LEN	54
 521/**
 522 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
 523 * a specific flow spec
 524 * @vsi: pointer to the targeted VSI
 525 * @fd_data: the flow director data required for the FDir descriptor
 
 526 * @add: true adds a filter, false removes it
 527 * @ipv4: true is v4, false is v6
 528 *
 529 * Returns 0 if the filters were successfully added or removed
 530 **/
 531static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
 532				struct i40e_fdir_filter *fd_data,
 533				bool add,
 534				bool ipv4)
 535{
 536	struct i40e_pf *pf = vsi->back;
 537	int payload_offset;
 538	u8 *raw_packet;
 539	int iter_start;
 540	int iter_end;
 541	int ret;
 542	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543
 544	if (ipv4) {
 545		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 546		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
 547	} else {
 548		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
 549		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
 550	}
 551
 552	for (i = iter_start; i <= iter_end; i++) {
 553		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 554		if (!raw_packet)
 555			return -ENOMEM;
 556
 557		/* IPv6 no header option differs from IPv4 */
 558		(void)i40e_create_dummy_packet
 559			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
 560			 fd_data);
 561
 562		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
 563			I40E_IP6_DUMMY_PACKET_LEN;
 564		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
 565					       payload_offset, i);
 566		if (ret)
 567			goto err;
 568	}
 569
 570	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
 571			       &pf->fd_ip6_filter_cnt);
 572
 573	return 0;
 574err:
 575	kfree(raw_packet);
 576	return ret;
 577}
 578
 579/**
 580 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 581 * @vsi: pointer to the targeted VSI
 582 * @input: filter to add or delete
 583 * @add: true adds a filter, false removes it
 584 *
 585 **/
 586int i40e_add_del_fdir(struct i40e_vsi *vsi,
 587		      struct i40e_fdir_filter *input, bool add)
 588{
 589	enum ip_ver { ipv6 = 0, ipv4 = 1 };
 590	struct i40e_pf *pf = vsi->back;
 
 591	int ret;
 592
 
 
 
 
 
 
 
 593	switch (input->flow_type & ~FLOW_EXT) {
 594	case TCP_V4_FLOW:
 595		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 
 596		break;
 597	case UDP_V4_FLOW:
 598		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 
 599		break;
 600	case SCTP_V4_FLOW:
 601		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 
 602		break;
 603	case TCP_V6_FLOW:
 604		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 605		break;
 606	case UDP_V6_FLOW:
 607		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 608		break;
 609	case SCTP_V6_FLOW:
 610		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 611		break;
 612	case IP_USER_FLOW:
 613		switch (input->ipl4_proto) {
 614		case IPPROTO_TCP:
 615			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 
 616			break;
 617		case IPPROTO_UDP:
 618			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 
 619			break;
 620		case IPPROTO_SCTP:
 621			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 622			break;
 623		case IPPROTO_IP:
 624			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
 625			break;
 626		default:
 627			/* We cannot support masking based on protocol */
 628			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 629				 input->ipl4_proto);
 630			return -EINVAL;
 631		}
 632		break;
 633	case IPV6_USER_FLOW:
 634		switch (input->ipl4_proto) {
 635		case IPPROTO_TCP:
 636			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 637			break;
 638		case IPPROTO_UDP:
 639			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 640			break;
 641		case IPPROTO_SCTP:
 642			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 643			break;
 644		case IPPROTO_IP:
 645			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
 646			break;
 647		default:
 648			/* We cannot support masking based on protocol */
 649			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
 650				 input->ipl4_proto);
 651			return -EINVAL;
 652		}
 653		break;
 654	default:
 655		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 656			 input->flow_type);
 657		return -EINVAL;
 658	}
 659
 660	/* The buffer allocated here will be normally be freed by
 661	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 662	 * completion. In the event of an error adding the buffer to the FDIR
 663	 * ring, it will immediately be freed. It may also be freed by
 664	 * i40e_clean_tx_ring() when closing the VSI.
 665	 */
 666	return ret;
 667}
 668
 669/**
 670 * i40e_fd_handle_status - check the Programming Status for FD
 671 * @rx_ring: the Rx ring for this descriptor
 672 * @qword0_raw: qword0
 673 * @qword1: qword1 after le_to_cpu
 674 * @prog_id: the id originally used for programming
 675 *
 676 * This is used to verify if the FD programming or invalidation
 677 * requested by SW to the HW is successful or not and take actions accordingly.
 678 **/
 679static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
 680				  u64 qword1, u8 prog_id)
 681{
 682	struct i40e_pf *pf = rx_ring->vsi->back;
 683	struct pci_dev *pdev = pf->pdev;
 684	struct i40e_16b_rx_wb_qw0 *qw0;
 685	u32 fcnt_prog, fcnt_avail;
 686	u32 error;
 
 687
 688	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
 689	error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
 690
 691	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 692		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
 693		if (qw0->hi_dword.fd_id != 0 ||
 694		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 695			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 696				 pf->fd_inv);
 697
 698		/* Check if the programming error is for ATR.
 699		 * If so, auto disable ATR and set a state for
 700		 * flush in progress. Next time we come here if flush is in
 701		 * progress do nothing, once flush is complete the state will
 702		 * be cleared.
 703		 */
 704		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 705			return;
 706
 707		pf->fd_add_err++;
 708		/* store the current atr filter count */
 709		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 710
 711		if (qw0->hi_dword.fd_id == 0 &&
 712		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 713			/* These set_bit() calls aren't atomic with the
 714			 * test_bit() here, but worse case we potentially
 715			 * disable ATR and queue a flush right after SB
 716			 * support is re-enabled. That shouldn't cause an
 717			 * issue in practice
 718			 */
 719			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 720			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 721		}
 722
 723		/* filter programming failed most likely due to table full */
 724		fcnt_prog = i40e_get_global_fd_count(pf);
 725		fcnt_avail = pf->fdir_pf_filter_count;
 
 
 726		/* If ATR is running fcnt_prog can quickly change,
 727		 * if we are very close to full, it makes sense to disable
 728		 * FD ATR/SB and then re-enable it when there is room.
 729		 */
 730		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 731			if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
 732			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 733					      pf->state))
 734				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 735					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 
 
 
 
 
 
 
 
 
 
 
 736		}
 737	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 
 738		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 739			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 740				 qw0->hi_dword.fd_id);
 741	}
 742}
 743
 744/**
 745 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 746 * @ring:      the ring that owns the buffer
 747 * @tx_buffer: the buffer to free
 748 **/
 749static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 750					    struct i40e_tx_buffer *tx_buffer)
 751{
 752	if (tx_buffer->skb) {
 753		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 754			kfree(tx_buffer->raw_buf);
 755		else if (ring_is_xdp(ring))
 756			xdp_return_frame(tx_buffer->xdpf);
 757		else
 758			dev_kfree_skb_any(tx_buffer->skb);
 759		if (dma_unmap_len(tx_buffer, len))
 760			dma_unmap_single(ring->dev,
 761					 dma_unmap_addr(tx_buffer, dma),
 762					 dma_unmap_len(tx_buffer, len),
 763					 DMA_TO_DEVICE);
 764	} else if (dma_unmap_len(tx_buffer, len)) {
 765		dma_unmap_page(ring->dev,
 766			       dma_unmap_addr(tx_buffer, dma),
 767			       dma_unmap_len(tx_buffer, len),
 768			       DMA_TO_DEVICE);
 769	}
 770
 771	tx_buffer->next_to_watch = NULL;
 772	tx_buffer->skb = NULL;
 773	dma_unmap_len_set(tx_buffer, len, 0);
 774	/* tx_buffer must be completely set up in the transmit path */
 775}
 776
 777/**
 778 * i40e_clean_tx_ring - Free any empty Tx buffers
 779 * @tx_ring: ring to be cleaned
 780 **/
 781void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 782{
 783	unsigned long bi_size;
 784	u16 i;
 785
 786	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
 787		i40e_xsk_clean_tx_ring(tx_ring);
 788	} else {
 789		/* ring already cleared, nothing to do */
 790		if (!tx_ring->tx_bi)
 791			return;
 792
 793		/* Free all the Tx ring sk_buffs */
 794		for (i = 0; i < tx_ring->count; i++)
 795			i40e_unmap_and_free_tx_resource(tx_ring,
 796							&tx_ring->tx_bi[i]);
 797	}
 798
 799	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 800	memset(tx_ring->tx_bi, 0, bi_size);
 801
 802	/* Zero out the descriptor ring */
 803	memset(tx_ring->desc, 0, tx_ring->size);
 804
 805	tx_ring->next_to_use = 0;
 806	tx_ring->next_to_clean = 0;
 807
 808	if (!tx_ring->netdev)
 809		return;
 810
 811	/* cleanup Tx queue statistics */
 812	netdev_tx_reset_queue(txring_txq(tx_ring));
 
 813}
 814
 815/**
 816 * i40e_free_tx_resources - Free Tx resources per queue
 817 * @tx_ring: Tx descriptor ring for a specific queue
 818 *
 819 * Free all transmit software resources
 820 **/
 821void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 822{
 823	i40e_clean_tx_ring(tx_ring);
 824	kfree(tx_ring->tx_bi);
 825	tx_ring->tx_bi = NULL;
 826
 827	if (tx_ring->desc) {
 828		dma_free_coherent(tx_ring->dev, tx_ring->size,
 829				  tx_ring->desc, tx_ring->dma);
 830		tx_ring->desc = NULL;
 831	}
 832}
 833
 834/**
 835 * i40e_get_tx_pending - how many tx descriptors not processed
 836 * @ring: the ring of descriptors
 837 * @in_sw: use SW variables
 838 *
 839 * Since there is no access to the ring head register
 840 * in XL710, we need to use our local copies
 841 **/
 842u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 843{
 844	u32 head, tail;
 
 
 
 
 845
 846	if (!in_sw) {
 847		head = i40e_get_head(ring);
 848		tail = readl(ring->tail);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849	} else {
 850		head = ring->next_to_clean;
 851		tail = ring->next_to_use;
 
 852	}
 853
 854	if (head != tail)
 855		return (head < tail) ?
 856			tail - head : (tail + ring->count - head);
 857
 858	return 0;
 859}
 860
 861/**
 862 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 863 * @vsi:  pointer to vsi struct with tx queues
 864 *
 865 * VSI has netdev and netdev has TX queues. This function is to check each of
 866 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 867 **/
 868void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 869{
 870	struct i40e_ring *tx_ring = NULL;
 871	struct net_device *netdev;
 872	unsigned int i;
 873	int packets;
 874
 875	if (!vsi)
 876		return;
 877
 878	if (test_bit(__I40E_VSI_DOWN, vsi->state))
 879		return;
 880
 881	netdev = vsi->netdev;
 882	if (!netdev)
 883		return;
 884
 885	if (!netif_carrier_ok(netdev))
 886		return;
 887
 888	for (i = 0; i < vsi->num_queue_pairs; i++) {
 889		tx_ring = vsi->tx_rings[i];
 890		if (tx_ring && tx_ring->desc) {
 891			/* If packet counter has not changed the queue is
 892			 * likely stalled, so force an interrupt for this
 893			 * queue.
 894			 *
 895			 * prev_pkt_ctr would be negative if there was no
 896			 * pending work.
 897			 */
 898			packets = tx_ring->stats.packets & INT_MAX;
 899			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 900				i40e_force_wb(vsi, tx_ring->q_vector);
 901				continue;
 902			}
 903
 904			/* Memory barrier between read of packet count and call
 905			 * to i40e_get_tx_pending()
 906			 */
 907			smp_rmb();
 908			tx_ring->tx_stats.prev_pkt_ctr =
 909			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 910		}
 911	}
 912}
 913
 914/**
 915 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 916 * @vsi: the VSI we care about
 917 * @tx_ring: Tx ring to clean
 918 * @napi_budget: Used to determine if we are in netpoll
 919 * @tx_cleaned: Out parameter set to the number of TXes cleaned
 920 *
 921 * Returns true if there's any budget left (e.g. the clean is finished)
 922 **/
 923static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 924			      struct i40e_ring *tx_ring, int napi_budget,
 925			      unsigned int *tx_cleaned)
 926{
 927	int i = tx_ring->next_to_clean;
 928	struct i40e_tx_buffer *tx_buf;
 929	struct i40e_tx_desc *tx_head;
 930	struct i40e_tx_desc *tx_desc;
 931	unsigned int total_bytes = 0, total_packets = 0;
 932	unsigned int budget = vsi->work_limit;
 933
 934	tx_buf = &tx_ring->tx_bi[i];
 935	tx_desc = I40E_TX_DESC(tx_ring, i);
 936	i -= tx_ring->count;
 937
 938	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 939
 940	do {
 941		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 942
 943		/* if next_to_watch is not set then there is no work pending */
 944		if (!eop_desc)
 945			break;
 946
 947		/* prevent any other reads prior to eop_desc */
 948		smp_rmb();
 949
 950		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 951		/* we have caught up to head, no work left to do */
 952		if (tx_head == tx_desc)
 953			break;
 954
 955		/* clear next_to_watch to prevent false hangs */
 956		tx_buf->next_to_watch = NULL;
 957
 958		/* update the statistics for this packet */
 959		total_bytes += tx_buf->bytecount;
 960		total_packets += tx_buf->gso_segs;
 961
 962		/* free the skb/XDP data */
 963		if (ring_is_xdp(tx_ring))
 964			xdp_return_frame(tx_buf->xdpf);
 965		else
 966			napi_consume_skb(tx_buf->skb, napi_budget);
 967
 968		/* unmap skb header data */
 969		dma_unmap_single(tx_ring->dev,
 970				 dma_unmap_addr(tx_buf, dma),
 971				 dma_unmap_len(tx_buf, len),
 972				 DMA_TO_DEVICE);
 973
 974		/* clear tx_buffer data */
 975		tx_buf->skb = NULL;
 976		dma_unmap_len_set(tx_buf, len, 0);
 977
 978		/* unmap remaining buffers */
 979		while (tx_desc != eop_desc) {
 980			i40e_trace(clean_tx_irq_unmap,
 981				   tx_ring, tx_desc, tx_buf);
 982
 983			tx_buf++;
 984			tx_desc++;
 985			i++;
 986			if (unlikely(!i)) {
 987				i -= tx_ring->count;
 988				tx_buf = tx_ring->tx_bi;
 989				tx_desc = I40E_TX_DESC(tx_ring, 0);
 990			}
 991
 992			/* unmap any remaining paged data */
 993			if (dma_unmap_len(tx_buf, len)) {
 994				dma_unmap_page(tx_ring->dev,
 995					       dma_unmap_addr(tx_buf, dma),
 996					       dma_unmap_len(tx_buf, len),
 997					       DMA_TO_DEVICE);
 998				dma_unmap_len_set(tx_buf, len, 0);
 999			}
1000		}
1001
1002		/* move us one more past the eop_desc for start of next pkt */
1003		tx_buf++;
1004		tx_desc++;
1005		i++;
1006		if (unlikely(!i)) {
1007			i -= tx_ring->count;
1008			tx_buf = tx_ring->tx_bi;
1009			tx_desc = I40E_TX_DESC(tx_ring, 0);
1010		}
1011
1012		prefetch(tx_desc);
1013
1014		/* update budget accounting */
1015		budget--;
1016	} while (likely(budget));
1017
1018	i += tx_ring->count;
1019	tx_ring->next_to_clean = i;
1020	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1021	i40e_arm_wb(tx_ring, vsi, budget);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022
1023	if (ring_is_xdp(tx_ring))
1024		return !!budget;
1025
1026	/* notify netdev of completed buffers */
1027	netdev_tx_completed_queue(txring_txq(tx_ring),
 
 
 
 
1028				  total_packets, total_bytes);
1029
1030#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1031	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1032		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1033		/* Make sure that anybody stopping the queue after this
1034		 * sees the new next_to_clean.
1035		 */
1036		smp_mb();
1037		if (__netif_subqueue_stopped(tx_ring->netdev,
1038					     tx_ring->queue_index) &&
1039		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1040			netif_wake_subqueue(tx_ring->netdev,
1041					    tx_ring->queue_index);
1042			++tx_ring->tx_stats.restart_queue;
1043		}
1044	}
1045
1046	*tx_cleaned = total_packets;
1047	return !!budget;
1048}
1049
1050/**
1051 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1052 * @vsi: the VSI we care about
1053 * @q_vector: the vector on which to enable writeback
1054 *
 
 
 
 
 
 
 
1055 **/
1056static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1057				  struct i40e_q_vector *q_vector)
1058{
1059	u16 flags = q_vector->tx.ring[0].flags;
1060	u32 val;
1061
1062	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1063		return;
1064
1065	if (q_vector->arm_wb_state)
1066		return;
1067
1068	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1069		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1070		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1071
1072		wr32(&vsi->back->hw,
1073		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1074		     val);
1075	} else {
1076		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1077		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1078
1079		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1080	}
1081	q_vector->arm_wb_state = true;
1082}
1083
1084/**
1085 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1086 * @vsi: the VSI we care about
1087 * @q_vector: the vector  on which to force writeback
1088 *
1089 **/
1090void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1091{
1092	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1093		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1094			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1095			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1096			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1097			  /* allow 00 to be written to the index */
1098
1099		wr32(&vsi->back->hw,
1100		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1101	} else {
1102		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1103			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1104			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1105			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1106			/* allow 00 to be written to the index */
1107
1108		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1109	}
1110}
1111
1112static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1113					struct i40e_ring_container *rc)
1114{
1115	return &q_vector->rx == rc;
1116}
1117
1118static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1119{
1120	unsigned int divisor;
1121
1122	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1123	case I40E_LINK_SPEED_40GB:
1124		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1125		break;
1126	case I40E_LINK_SPEED_25GB:
1127	case I40E_LINK_SPEED_20GB:
1128		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1129		break;
1130	default:
1131	case I40E_LINK_SPEED_10GB:
1132		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1133		break;
1134	case I40E_LINK_SPEED_1GB:
1135	case I40E_LINK_SPEED_100MB:
1136		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1137		break;
1138	}
1139
1140	return divisor;
1141}
1142
1143/**
1144 * i40e_update_itr - update the dynamic ITR value based on statistics
1145 * @q_vector: structure containing interrupt and ring information
1146 * @rc: structure containing ring performance data
1147 *
1148 * Stores a new ITR value based on packets and byte
1149 * counts during the last interrupt.  The advantage of per interrupt
1150 * computation is faster updates and more accurate ITR for the current
1151 * traffic pattern.  Constants in this function were computed
1152 * based on theoretical maximum wire speed and thresholds were set based
1153 * on testing data as well as attempting to minimize response time
1154 * while increasing bulk throughput.
1155 **/
1156static void i40e_update_itr(struct i40e_q_vector *q_vector,
1157			    struct i40e_ring_container *rc)
1158{
1159	unsigned int avg_wire_size, packets, bytes, itr;
1160	unsigned long next_update = jiffies;
1161
1162	/* If we don't have any rings just leave ourselves set for maximum
1163	 * possible latency so we take ourselves out of the equation.
1164	 */
1165	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1166		return;
1167
1168	/* For Rx we want to push the delay up and default to low latency.
1169	 * for Tx we want to pull the delay down and default to high latency.
1170	 */
1171	itr = i40e_container_is_rx(q_vector, rc) ?
1172	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1173	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1174
1175	/* If we didn't update within up to 1 - 2 jiffies we can assume
1176	 * that either packets are coming in so slow there hasn't been
1177	 * any work, or that there is so much work that NAPI is dealing
1178	 * with interrupt moderation and we don't need to do anything.
1179	 */
1180	if (time_after(next_update, rc->next_update))
1181		goto clear_counts;
1182
1183	/* If itr_countdown is set it means we programmed an ITR within
1184	 * the last 4 interrupt cycles. This has a side effect of us
1185	 * potentially firing an early interrupt. In order to work around
1186	 * this we need to throw out any data received for a few
1187	 * interrupts following the update.
1188	 */
1189	if (q_vector->itr_countdown) {
1190		itr = rc->target_itr;
1191		goto clear_counts;
1192	}
1193
1194	packets = rc->total_packets;
1195	bytes = rc->total_bytes;
1196
1197	if (i40e_container_is_rx(q_vector, rc)) {
1198		/* If Rx there are 1 to 4 packets and bytes are less than
1199		 * 9000 assume insufficient data to use bulk rate limiting
1200		 * approach unless Tx is already in bulk rate limiting. We
1201		 * are likely latency driven.
1202		 */
1203		if (packets && packets < 4 && bytes < 9000 &&
1204		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1205			itr = I40E_ITR_ADAPTIVE_LATENCY;
1206			goto adjust_by_size;
1207		}
1208	} else if (packets < 4) {
1209		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1210		 * bulk mode and we are receiving 4 or fewer packets just
1211		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1212		 * that the Rx can relax.
1213		 */
1214		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1215		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1216		     I40E_ITR_ADAPTIVE_MAX_USECS)
1217			goto clear_counts;
1218	} else if (packets > 32) {
1219		/* If we have processed over 32 packets in a single interrupt
1220		 * for Tx assume we need to switch over to "bulk" mode.
1221		 */
1222		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1223	}
1224
1225	/* We have no packets to actually measure against. This means
1226	 * either one of the other queues on this vector is active or
1227	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1228	 *
1229	 * Between 4 and 56 we can assume that our current interrupt delay
1230	 * is only slightly too low. As such we should increase it by a small
1231	 * fixed amount.
1232	 */
1233	if (packets < 56) {
1234		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1235		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1236			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1237			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1238		}
1239		goto clear_counts;
1240	}
1241
1242	if (packets <= 256) {
1243		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1244		itr &= I40E_ITR_MASK;
1245
1246		/* Between 56 and 112 is our "goldilocks" zone where we are
1247		 * working out "just right". Just report that our current
1248		 * ITR is good for us.
1249		 */
1250		if (packets <= 112)
1251			goto clear_counts;
1252
1253		/* If packet count is 128 or greater we are likely looking
1254		 * at a slight overrun of the delay we want. Try halving
1255		 * our delay to see if that will cut the number of packets
1256		 * in half per interrupt.
1257		 */
1258		itr /= 2;
1259		itr &= I40E_ITR_MASK;
1260		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1261			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1262
1263		goto clear_counts;
1264	}
1265
1266	/* The paths below assume we are dealing with a bulk ITR since
1267	 * number of packets is greater than 256. We are just going to have
1268	 * to compute a value and try to bring the count under control,
1269	 * though for smaller packet sizes there isn't much we can do as
1270	 * NAPI polling will likely be kicking in sooner rather than later.
1271	 */
1272	itr = I40E_ITR_ADAPTIVE_BULK;
1273
1274adjust_by_size:
1275	/* If packet counts are 256 or greater we can assume we have a gross
1276	 * overestimation of what the rate should be. Instead of trying to fine
1277	 * tune it just use the formula below to try and dial in an exact value
1278	 * give the current packet size of the frame.
1279	 */
1280	avg_wire_size = bytes / packets;
1281
1282	/* The following is a crude approximation of:
1283	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1284	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1285	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1286	 *
1287	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1288	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1289	 * formula down to
1290	 *
1291	 *  (170 * (size + 24)) / (size + 640) = ITR
1292	 *
1293	 * We first do some math on the packet size and then finally bitshift
1294	 * by 8 after rounding up. We also have to account for PCIe link speed
1295	 * difference as ITR scales based on this.
1296	 */
1297	if (avg_wire_size <= 60) {
1298		/* Start at 250k ints/sec */
1299		avg_wire_size = 4096;
1300	} else if (avg_wire_size <= 380) {
1301		/* 250K ints/sec to 60K ints/sec */
1302		avg_wire_size *= 40;
1303		avg_wire_size += 1696;
1304	} else if (avg_wire_size <= 1084) {
1305		/* 60K ints/sec to 36K ints/sec */
1306		avg_wire_size *= 15;
1307		avg_wire_size += 11452;
1308	} else if (avg_wire_size <= 1980) {
1309		/* 36K ints/sec to 30K ints/sec */
1310		avg_wire_size *= 5;
1311		avg_wire_size += 22420;
1312	} else {
1313		/* plateau at a limit of 30K ints/sec */
1314		avg_wire_size = 32256;
1315	}
1316
1317	/* If we are in low latency mode halve our delay which doubles the
1318	 * rate to somewhere between 100K to 16K ints/sec
1319	 */
1320	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1321		avg_wire_size /= 2;
1322
1323	/* Resultant value is 256 times larger than it needs to be. This
1324	 * gives us room to adjust the value as needed to either increase
1325	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1326	 *
1327	 * Use addition as we have already recorded the new latency flag
1328	 * for the ITR value.
1329	 */
1330	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1331	       I40E_ITR_ADAPTIVE_MIN_INC;
1332
1333	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1334		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1335		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1336	}
1337
1338clear_counts:
1339	/* write back value */
1340	rc->target_itr = itr;
1341
1342	/* next update should occur within next jiffy */
1343	rc->next_update = next_update + 1;
1344
1345	rc->total_bytes = 0;
1346	rc->total_packets = 0;
1347}
1348
1349static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1350{
1351	return &rx_ring->rx_bi[idx];
1352}
1353
1354/**
1355 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1356 * @rx_ring: rx descriptor ring to store buffers on
1357 * @old_buff: donor buffer to have page reused
1358 *
1359 * Synchronizes page for reuse by the adapter
1360 **/
1361static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1362			       struct i40e_rx_buffer *old_buff)
1363{
1364	struct i40e_rx_buffer *new_buff;
1365	u16 nta = rx_ring->next_to_alloc;
1366
1367	new_buff = i40e_rx_bi(rx_ring, nta);
1368
1369	/* update, and store next to alloc */
1370	nta++;
1371	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1372
1373	/* transfer page from old buffer to new buffer */
1374	new_buff->dma		= old_buff->dma;
1375	new_buff->page		= old_buff->page;
1376	new_buff->page_offset	= old_buff->page_offset;
1377	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1378
1379	/* clear contents of buffer_info */
1380	old_buff->page = NULL;
1381}
1382
1383/**
1384 * i40e_clean_programming_status - clean the programming status descriptor
1385 * @rx_ring: the rx ring that has this descriptor
1386 * @qword0_raw: qword0
1387 * @qword1: qword1 representing status_error_len in CPU ordering
1388 *
1389 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1390 * status being successful or not and take actions accordingly. FCoE should
1391 * handle its context/filter programming/invalidation status and take actions.
1392 *
1393 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1394 **/
1395void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1396				   u64 qword1)
1397{
 
1398	u8 id;
1399
1400	id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
 
 
1401
1402	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1403		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1404}
1405
1406/**
1407 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1408 * @tx_ring: the tx ring to set up
1409 *
1410 * Return 0 on success, negative on error
1411 **/
1412int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1413{
1414	struct device *dev = tx_ring->dev;
1415	int bi_size;
1416
1417	if (!dev)
1418		return -ENOMEM;
1419
1420	/* warn if we are about to overwrite the pointer */
1421	WARN_ON(tx_ring->tx_bi);
1422	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1423	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1424	if (!tx_ring->tx_bi)
1425		goto err;
1426
1427	u64_stats_init(&tx_ring->syncp);
1428
1429	/* round up to nearest 4K */
1430	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1431	/* add u32 for head writeback, align after this takes care of
1432	 * guaranteeing this is at least one cache line in size
1433	 */
1434	tx_ring->size += sizeof(u32);
1435	tx_ring->size = ALIGN(tx_ring->size, 4096);
1436	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1437					   &tx_ring->dma, GFP_KERNEL);
1438	if (!tx_ring->desc) {
1439		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1440			 tx_ring->size);
1441		goto err;
1442	}
1443
1444	tx_ring->next_to_use = 0;
1445	tx_ring->next_to_clean = 0;
1446	tx_ring->tx_stats.prev_pkt_ctr = -1;
1447	return 0;
1448
1449err:
1450	kfree(tx_ring->tx_bi);
1451	tx_ring->tx_bi = NULL;
1452	return -ENOMEM;
1453}
1454
1455static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1456{
1457	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1458}
1459
1460/**
1461 * i40e_clean_rx_ring - Free Rx buffers
1462 * @rx_ring: ring to be cleaned
1463 **/
1464void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1465{
 
 
 
1466	u16 i;
1467
1468	/* ring already cleared, nothing to do */
1469	if (!rx_ring->rx_bi)
1470		return;
1471
1472	if (rx_ring->xsk_pool) {
1473		i40e_xsk_clean_rx_ring(rx_ring);
1474		goto skip_free;
1475	}
1476
1477	/* Free all the Rx ring sk_buffs */
1478	for (i = 0; i < rx_ring->count; i++) {
1479		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1480
1481		if (!rx_bi->page)
1482			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1483
1484		/* Invalidate cache lines that may have been written to by
1485		 * device so that we avoid corrupting memory.
1486		 */
1487		dma_sync_single_range_for_cpu(rx_ring->dev,
1488					      rx_bi->dma,
1489					      rx_bi->page_offset,
1490					      rx_ring->rx_buf_len,
1491					      DMA_FROM_DEVICE);
1492
1493		/* free resources associated with mapping */
1494		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1495				     i40e_rx_pg_size(rx_ring),
1496				     DMA_FROM_DEVICE,
1497				     I40E_RX_DMA_ATTR);
1498
1499		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1500
1501		rx_bi->page = NULL;
1502		rx_bi->page_offset = 0;
1503	}
1504
1505skip_free:
1506	if (rx_ring->xsk_pool)
1507		i40e_clear_rx_bi_zc(rx_ring);
1508	else
1509		i40e_clear_rx_bi(rx_ring);
1510
1511	/* Zero out the descriptor ring */
1512	memset(rx_ring->desc, 0, rx_ring->size);
1513
1514	rx_ring->next_to_alloc = 0;
1515	rx_ring->next_to_clean = 0;
1516	rx_ring->next_to_process = 0;
1517	rx_ring->next_to_use = 0;
1518}
1519
1520/**
1521 * i40e_free_rx_resources - Free Rx resources
1522 * @rx_ring: ring to clean the resources from
1523 *
1524 * Free all receive software resources
1525 **/
1526void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1527{
1528	i40e_clean_rx_ring(rx_ring);
1529	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1530		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1531	rx_ring->xdp_prog = NULL;
1532	kfree(rx_ring->rx_bi);
1533	rx_ring->rx_bi = NULL;
1534
1535	if (rx_ring->desc) {
1536		dma_free_coherent(rx_ring->dev, rx_ring->size,
1537				  rx_ring->desc, rx_ring->dma);
1538		rx_ring->desc = NULL;
1539	}
1540}
1541
1542/**
1543 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1544 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1545 *
1546 * Returns 0 on success, negative on failure
1547 **/
1548int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1549{
1550	struct device *dev = rx_ring->dev;
 
1551
1552	u64_stats_init(&rx_ring->syncp);
 
 
 
1553
1554	/* Round up to nearest 4K */
1555	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
 
 
1556	rx_ring->size = ALIGN(rx_ring->size, 4096);
1557	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1558					   &rx_ring->dma, GFP_KERNEL);
1559
1560	if (!rx_ring->desc) {
1561		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1562			 rx_ring->size);
1563		return -ENOMEM;
1564	}
1565
1566	rx_ring->next_to_alloc = 0;
1567	rx_ring->next_to_clean = 0;
1568	rx_ring->next_to_process = 0;
1569	rx_ring->next_to_use = 0;
1570
1571	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1572
1573	rx_ring->rx_bi =
1574		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1575	if (!rx_ring->rx_bi)
1576		return -ENOMEM;
1577
1578	return 0;
 
 
 
 
1579}
1580
1581/**
1582 * i40e_release_rx_desc - Store the new tail and head values
1583 * @rx_ring: ring to bump
1584 * @val: new head index
1585 **/
1586void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1587{
1588	rx_ring->next_to_use = val;
1589
1590	/* update next to alloc since we have filled the ring */
1591	rx_ring->next_to_alloc = val;
1592
1593	/* Force memory writes to complete before letting h/w
1594	 * know there are new descriptors to fetch.  (Only
1595	 * applicable for weak-ordered memory model archs,
1596	 * such as IA-64).
1597	 */
1598	wmb();
1599	writel(val, rx_ring->tail);
1600}
1601
1602#if (PAGE_SIZE >= 8192)
1603static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1604					   unsigned int size)
1605{
1606	unsigned int truesize;
1607
1608	truesize = rx_ring->rx_offset ?
1609		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1610		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1611		SKB_DATA_ALIGN(size);
1612	return truesize;
1613}
1614#endif
1615
1616/**
1617 * i40e_alloc_mapped_page - recycle or make a new page
1618 * @rx_ring: ring to use
1619 * @bi: rx_buffer struct to modify
1620 *
1621 * Returns true if the page was successfully allocated or
1622 * reused.
1623 **/
1624static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1625				   struct i40e_rx_buffer *bi)
1626{
1627	struct page *page = bi->page;
1628	dma_addr_t dma;
1629
1630	/* since we are recycling buffers we should seldom need to alloc */
1631	if (likely(page)) {
1632		rx_ring->rx_stats.page_reuse_count++;
1633		return true;
1634	}
1635
1636	/* alloc new page for storage */
1637	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1638	if (unlikely(!page)) {
1639		rx_ring->rx_stats.alloc_page_failed++;
1640		return false;
1641	}
1642
1643	rx_ring->rx_stats.page_alloc_count++;
1644
1645	/* map page for use */
1646	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1647				 i40e_rx_pg_size(rx_ring),
1648				 DMA_FROM_DEVICE,
1649				 I40E_RX_DMA_ATTR);
1650
1651	/* if mapping failed free memory back to system since
1652	 * there isn't much point in holding memory we can't use
1653	 */
1654	if (dma_mapping_error(rx_ring->dev, dma)) {
1655		__free_pages(page, i40e_rx_pg_order(rx_ring));
1656		rx_ring->rx_stats.alloc_page_failed++;
1657		return false;
1658	}
1659
1660	bi->dma = dma;
1661	bi->page = page;
1662	bi->page_offset = rx_ring->rx_offset;
1663	page_ref_add(page, USHRT_MAX - 1);
1664	bi->pagecnt_bias = USHRT_MAX;
1665
1666	return true;
1667}
1668
1669/**
1670 * i40e_alloc_rx_buffers - Replace used receive buffers
1671 * @rx_ring: ring to place buffers on
1672 * @cleaned_count: number of buffers to replace
1673 *
1674 * Returns false if all allocations were successful, true if any fail
1675 **/
1676bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1677{
1678	u16 ntu = rx_ring->next_to_use;
1679	union i40e_rx_desc *rx_desc;
1680	struct i40e_rx_buffer *bi;
 
1681
1682	/* do nothing if no valid netdev defined */
1683	if (!rx_ring->netdev || !cleaned_count)
1684		return false;
1685
1686	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1687	bi = i40e_rx_bi(rx_ring, ntu);
1688
1689	do {
1690		if (!i40e_alloc_mapped_page(rx_ring, bi))
1691			goto no_buffers;
 
 
 
 
 
 
 
 
 
 
 
 
 
1692
1693		/* sync the buffer for use by the device */
1694		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1695						 bi->page_offset,
1696						 rx_ring->rx_buf_len,
1697						 DMA_FROM_DEVICE);
1698
1699		/* Refresh the desc even if buffer_addrs didn't change
1700		 * because each write-back erases this info.
1701		 */
1702		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1703
1704		rx_desc++;
1705		bi++;
1706		ntu++;
1707		if (unlikely(ntu == rx_ring->count)) {
1708			rx_desc = I40E_RX_DESC(rx_ring, 0);
1709			bi = i40e_rx_bi(rx_ring, 0);
1710			ntu = 0;
1711		}
1712
1713		/* clear the status bits for the next_to_use descriptor */
1714		rx_desc->wb.qword1.status_error_len = 0;
1715
1716		cleaned_count--;
1717	} while (cleaned_count);
 
 
 
1718
1719	if (rx_ring->next_to_use != ntu)
1720		i40e_release_rx_desc(rx_ring, ntu);
 
 
 
 
 
 
 
 
 
 
 
 
 
1721
1722	return false;
 
 
 
 
 
 
 
 
 
 
 
 
1723
1724no_buffers:
1725	if (rx_ring->next_to_use != ntu)
1726		i40e_release_rx_desc(rx_ring, ntu);
 
1727
1728	/* make sure to come back via polling to try again after
1729	 * allocation failure
1730	 */
1731	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1732}
1733
1734/**
1735 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1736 * @vsi: the VSI we care about
1737 * @skb: skb currently being received and modified
1738 * @rx_desc: the receive descriptor
 
 
1739 **/
1740static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1741				    struct sk_buff *skb,
1742				    union i40e_rx_desc *rx_desc)
1743{
1744	struct i40e_rx_ptype_decoded decoded;
1745	u32 rx_error, rx_status;
1746	bool ipv4, ipv6;
1747	u8 ptype;
1748	u64 qword;
1749
1750	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1751	ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1752	rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1753	rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1754	decoded = decode_rx_desc_ptype(ptype);
1755
 
1756	skb->ip_summed = CHECKSUM_NONE;
1757
1758	skb_checksum_none_assert(skb);
1759
1760	/* Rx csum enabled and ip headers found? */
1761	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1762		return;
1763
1764	/* did the hardware decode the packet and checksum? */
1765	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1766		return;
1767
1768	/* both known and outer_ip must be set for the below code to work */
1769	if (!(decoded.known && decoded.outer_ip))
1770		return;
1771
1772	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1773	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1774	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1775	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1776
1777	if (ipv4 &&
1778	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1779			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1780		goto checksum_fail;
1781
1782	/* likely incorrect csum if alternate IP extension headers found */
1783	if (ipv6 &&
1784	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1785		/* don't increment checksum err here, non-fatal err */
1786		return;
1787
1788	/* there was some L4 error, count error and punt packet to the stack */
1789	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1790		goto checksum_fail;
1791
1792	/* handle packets that were not able to be checksummed due
1793	 * to arrival speed, in this case the stack can compute
1794	 * the csum.
1795	 */
1796	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1797		return;
 
1798
1799	/* If there is an outer header present that might contain a checksum
1800	 * we need to bump the checksum level by 1 to reflect the fact that
1801	 * we are indicating we validated the inner checksum.
1802	 */
1803	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1804		skb->csum_level = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1805
1806	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1807	switch (decoded.inner_prot) {
1808	case I40E_RX_PTYPE_INNER_PROT_TCP:
1809	case I40E_RX_PTYPE_INNER_PROT_UDP:
1810	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1811		skb->ip_summed = CHECKSUM_UNNECESSARY;
1812		fallthrough;
1813	default:
1814		break;
1815	}
1816
1817	return;
 
1818
1819checksum_fail:
1820	vsi->back->hw_csum_rx_error++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1821}
1822
1823/**
1824 * i40e_ptype_to_htype - get a hash type
1825 * @ptype: the ptype value from the descriptor
1826 *
1827 * Returns a hash type to be used by skb_set_hash
1828 **/
1829static inline int i40e_ptype_to_htype(u8 ptype)
1830{
1831	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1832
1833	if (!decoded.known)
1834		return PKT_HASH_TYPE_NONE;
1835
1836	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1837	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1838		return PKT_HASH_TYPE_L4;
1839	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1840		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1841		return PKT_HASH_TYPE_L3;
1842	else
1843		return PKT_HASH_TYPE_L2;
1844}
1845
1846/**
1847 * i40e_rx_hash - set the hash value in the skb
1848 * @ring: descriptor ring
1849 * @rx_desc: specific descriptor
1850 * @skb: skb currently being received and modified
1851 * @rx_ptype: Rx packet type
1852 **/
1853static inline void i40e_rx_hash(struct i40e_ring *ring,
1854				union i40e_rx_desc *rx_desc,
1855				struct sk_buff *skb,
1856				u8 rx_ptype)
1857{
1858	u32 hash;
1859	const __le64 rss_mask =
1860		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1861			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1862
1863	if (!(ring->netdev->features & NETIF_F_RXHASH))
1864		return;
1865
1866	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1867		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1868		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1869	}
1870}
1871
1872/**
1873 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1874 * @rx_ring: rx descriptor ring packet is being transacted on
1875 * @rx_desc: pointer to the EOP Rx descriptor
1876 * @skb: pointer to current skb being populated
1877 *
1878 * This function checks the ring, descriptor, and packet information in
1879 * order to populate the hash, checksum, VLAN, protocol, and
1880 * other fields within the skb.
1881 **/
1882void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1883			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1884{
1885	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1886	u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
1887	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1888	u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1889	u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1890
1891	if (unlikely(tsynvalid))
1892		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1893
1894	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1895
1896	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1897
1898	skb_record_rx_queue(skb, rx_ring->queue_index);
1899
1900	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1901		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1902
1903		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1904				       le16_to_cpu(vlan_tag));
1905	}
1906
1907	/* modifies the skb - consumes the enet header */
1908	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1909}
1910
1911/**
1912 * i40e_cleanup_headers - Correct empty headers
1913 * @rx_ring: rx descriptor ring packet is being transacted on
1914 * @skb: pointer to current skb being fixed
1915 * @rx_desc: pointer to the EOP Rx descriptor
1916 *
1917 * In addition if skb is not at least 60 bytes we need to pad it so that
1918 * it is large enough to qualify as a valid Ethernet frame.
1919 *
1920 * Returns true if an error was encountered and skb was freed.
1921 **/
1922static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1923				 union i40e_rx_desc *rx_desc)
1924
1925{
1926	/* ERR_MASK will only have valid bits if EOP set, and
1927	 * what we are doing here is actually checking
1928	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1929	 * the error field
1930	 */
1931	if (unlikely(i40e_test_staterr(rx_desc,
1932				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1933		dev_kfree_skb_any(skb);
1934		return true;
1935	}
1936
1937	/* if eth_skb_pad returns an error the skb was freed */
1938	if (eth_skb_pad(skb))
1939		return true;
1940
1941	return false;
1942}
1943
1944/**
1945 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1946 * @rx_buffer: buffer containing the page
1947 * @rx_stats: rx stats structure for the rx ring
1948 *
1949 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1950 * which will assign the current buffer to the buffer that next_to_alloc is
1951 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1952 * page freed.
1953 *
1954 * rx_stats will be updated to indicate whether the page was waived
1955 * or busy if it could not be reused.
1956 */
1957static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1958				   struct i40e_rx_queue_stats *rx_stats)
1959{
1960	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1961	struct page *page = rx_buffer->page;
1962
1963	/* Is any reuse possible? */
1964	if (!dev_page_is_reusable(page)) {
1965		rx_stats->page_waive_count++;
1966		return false;
1967	}
1968
1969#if (PAGE_SIZE < 8192)
1970	/* if we are only owner of page we can reuse it */
1971	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1972		rx_stats->page_busy_count++;
1973		return false;
1974	}
1975#else
1976#define I40E_LAST_OFFSET \
1977	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1978	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1979		rx_stats->page_busy_count++;
1980		return false;
1981	}
1982#endif
1983
1984	/* If we have drained the page fragment pool we need to update
1985	 * the pagecnt_bias and page count so that we fully restock the
1986	 * number of references the driver holds.
1987	 */
1988	if (unlikely(pagecnt_bias == 1)) {
1989		page_ref_add(page, USHRT_MAX - 1);
1990		rx_buffer->pagecnt_bias = USHRT_MAX;
1991	}
1992
1993	return true;
1994}
1995
1996/**
1997 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1998 * @rx_buffer: Rx buffer to adjust
1999 * @truesize: Size of adjustment
2000 **/
2001static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
2002				unsigned int truesize)
2003{
2004#if (PAGE_SIZE < 8192)
2005	rx_buffer->page_offset ^= truesize;
2006#else
2007	rx_buffer->page_offset += truesize;
2008#endif
2009}
2010
2011/**
2012 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2013 * @rx_ring: rx descriptor ring to transact packets on
2014 * @size: size of buffer to add to skb
2015 *
2016 * This function will pull an Rx buffer from the ring and synchronize it
2017 * for use by the CPU.
2018 */
2019static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2020						 const unsigned int size)
2021{
2022	struct i40e_rx_buffer *rx_buffer;
2023
2024	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
2025	rx_buffer->page_count =
2026#if (PAGE_SIZE < 8192)
2027		page_count(rx_buffer->page);
2028#else
2029		0;
2030#endif
2031	prefetch_page_address(rx_buffer->page);
2032
2033	/* we are reusing so sync this buffer for CPU use */
2034	dma_sync_single_range_for_cpu(rx_ring->dev,
2035				      rx_buffer->dma,
2036				      rx_buffer->page_offset,
2037				      size,
2038				      DMA_FROM_DEVICE);
2039
2040	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2041	rx_buffer->pagecnt_bias--;
2042
2043	return rx_buffer;
2044}
2045
2046/**
2047 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2048 * @rx_ring: rx descriptor ring to transact packets on
2049 * @rx_buffer: rx buffer to pull data from
2050 *
2051 * This function will clean up the contents of the rx_buffer.  It will
2052 * either recycle the buffer or unmap it and free the associated resources.
2053 */
2054static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2055			       struct i40e_rx_buffer *rx_buffer)
2056{
2057	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2058		/* hand second half of page back to the ring */
2059		i40e_reuse_rx_page(rx_ring, rx_buffer);
2060	} else {
2061		/* we are not reusing the buffer so unmap it */
2062		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2063				     i40e_rx_pg_size(rx_ring),
2064				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2065		__page_frag_cache_drain(rx_buffer->page,
2066					rx_buffer->pagecnt_bias);
2067		/* clear contents of buffer_info */
2068		rx_buffer->page = NULL;
2069	}
2070}
2071
2072/**
2073 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2074 * @rx_ring: Rx descriptor ring to transact packets on
2075 * @xdp_res: Result of the XDP program
2076 * @xdp: xdp_buff pointing to the data
2077 **/
2078static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2079				  struct xdp_buff *xdp)
2080{
2081	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2082	u32 next = rx_ring->next_to_clean, i = 0;
2083	struct i40e_rx_buffer *rx_buffer;
2084
2085	xdp->flags = 0;
2086
2087	while (1) {
2088		rx_buffer = i40e_rx_bi(rx_ring, next);
2089		if (++next == rx_ring->count)
2090			next = 0;
2091
2092		if (!rx_buffer->page)
2093			continue;
2094
2095		if (xdp_res != I40E_XDP_CONSUMED)
2096			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2097		else if (i++ <= nr_frags)
2098			rx_buffer->pagecnt_bias++;
2099
2100		/* EOP buffer will be put in i40e_clean_rx_irq() */
2101		if (next == rx_ring->next_to_process)
2102			return;
2103
2104		i40e_put_rx_buffer(rx_ring, rx_buffer);
2105	}
2106}
2107
2108/**
2109 * i40e_construct_skb - Allocate skb and populate it
2110 * @rx_ring: rx descriptor ring to transact packets on
2111 * @xdp: xdp_buff pointing to the data
2112 *
2113 * This function allocates an skb.  It then populates it with the page
2114 * data from the current receive descriptor, taking care to set up the
2115 * skb correctly.
2116 */
2117static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2118					  struct xdp_buff *xdp)
2119{
2120	unsigned int size = xdp->data_end - xdp->data;
2121	struct i40e_rx_buffer *rx_buffer;
2122	struct skb_shared_info *sinfo;
2123	unsigned int headlen;
2124	struct sk_buff *skb;
2125	u32 nr_frags = 0;
2126
2127	/* prefetch first cache line of first page */
2128	net_prefetch(xdp->data);
2129
2130	/* Note, we get here by enabling legacy-rx via:
2131	 *
2132	 *    ethtool --set-priv-flags <dev> legacy-rx on
2133	 *
2134	 * In this mode, we currently get 0 extra XDP headroom as
2135	 * opposed to having legacy-rx off, where we process XDP
2136	 * packets going to stack via i40e_build_skb(). The latter
2137	 * provides us currently with 192 bytes of headroom.
2138	 *
2139	 * For i40e_construct_skb() mode it means that the
2140	 * xdp->data_meta will always point to xdp->data, since
2141	 * the helper cannot expand the head. Should this ever
2142	 * change in future for legacy-rx mode on, then lets also
2143	 * add xdp->data_meta handling here.
2144	 */
2145
2146	/* allocate a skb to store the frags */
2147	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2148			       I40E_RX_HDR_SIZE,
2149			       GFP_ATOMIC | __GFP_NOWARN);
2150	if (unlikely(!skb))
2151		return NULL;
2152
2153	/* Determine available headroom for copy */
2154	headlen = size;
2155	if (headlen > I40E_RX_HDR_SIZE)
2156		headlen = eth_get_headlen(skb->dev, xdp->data,
2157					  I40E_RX_HDR_SIZE);
2158
2159	/* align pull length to size of long to optimize memcpy performance */
2160	memcpy(__skb_put(skb, headlen), xdp->data,
2161	       ALIGN(headlen, sizeof(long)));
2162
2163	if (unlikely(xdp_buff_has_frags(xdp))) {
2164		sinfo = xdp_get_shared_info_from_buff(xdp);
2165		nr_frags = sinfo->nr_frags;
2166	}
2167	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2168	/* update all of the pointers */
2169	size -= headlen;
2170	if (size) {
2171		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2172			dev_kfree_skb(skb);
2173			return NULL;
2174		}
2175		skb_add_rx_frag(skb, 0, rx_buffer->page,
2176				rx_buffer->page_offset + headlen,
2177				size, xdp->frame_sz);
2178		/* buffer is used by skb, update page_offset */
2179		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2180	} else {
2181		/* buffer is unused, reset bias back to rx_buffer */
2182		rx_buffer->pagecnt_bias++;
2183	}
2184
2185	if (unlikely(xdp_buff_has_frags(xdp))) {
2186		struct skb_shared_info *skinfo = skb_shinfo(skb);
2187
2188		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2189		       sizeof(skb_frag_t) * nr_frags);
2190
2191		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2192					   sinfo->xdp_frags_size,
2193					   nr_frags * xdp->frame_sz,
2194					   xdp_buff_is_frag_pfmemalloc(xdp));
2195
2196		/* First buffer has already been processed, so bump ntc */
2197		if (++rx_ring->next_to_clean == rx_ring->count)
2198			rx_ring->next_to_clean = 0;
2199
2200		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2201	}
2202
2203	return skb;
2204}
2205
2206/**
2207 * i40e_build_skb - Build skb around an existing buffer
2208 * @rx_ring: Rx descriptor ring to transact packets on
2209 * @xdp: xdp_buff pointing to the data
2210 *
2211 * This function builds an skb around an existing Rx buffer, taking care
2212 * to set up the skb correctly and avoid any memcpy overhead.
2213 */
2214static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2215				      struct xdp_buff *xdp)
2216{
2217	unsigned int metasize = xdp->data - xdp->data_meta;
2218	struct skb_shared_info *sinfo;
2219	struct sk_buff *skb;
2220	u32 nr_frags;
2221
2222	/* Prefetch first cache line of first page. If xdp->data_meta
2223	 * is unused, this points exactly as xdp->data, otherwise we
2224	 * likely have a consumer accessing first few bytes of meta
2225	 * data, and then actual data.
2226	 */
2227	net_prefetch(xdp->data_meta);
2228
2229	if (unlikely(xdp_buff_has_frags(xdp))) {
2230		sinfo = xdp_get_shared_info_from_buff(xdp);
2231		nr_frags = sinfo->nr_frags;
2232	}
2233
2234	/* build an skb around the page buffer */
2235	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2236	if (unlikely(!skb))
2237		return NULL;
2238
2239	/* update pointers within the skb to store the data */
2240	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2241	__skb_put(skb, xdp->data_end - xdp->data);
2242	if (metasize)
2243		skb_metadata_set(skb, metasize);
2244
2245	if (unlikely(xdp_buff_has_frags(xdp))) {
2246		xdp_update_skb_shared_info(skb, nr_frags,
2247					   sinfo->xdp_frags_size,
2248					   nr_frags * xdp->frame_sz,
2249					   xdp_buff_is_frag_pfmemalloc(xdp));
2250
2251		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2252	} else {
2253		struct i40e_rx_buffer *rx_buffer;
2254
2255		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2256		/* buffer is used by skb, update page_offset */
2257		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2258	}
2259
2260	return skb;
2261}
2262
2263/**
2264 * i40e_is_non_eop - process handling of non-EOP buffers
2265 * @rx_ring: Rx ring being processed
2266 * @rx_desc: Rx descriptor for current buffer
2267 *
2268 * If the buffer is an EOP buffer, this function exits returning false,
2269 * otherwise return true indicating that this is in fact a non-EOP buffer.
2270 */
2271bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2272		     union i40e_rx_desc *rx_desc)
2273{
2274	/* if we are the last buffer then there is nothing else to do */
2275#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2276	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2277		return false;
2278
2279	rx_ring->rx_stats.non_eop_descs++;
2280
2281	return true;
2282}
2283
2284static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2285			      struct i40e_ring *xdp_ring);
2286
2287int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2288{
2289	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2290
2291	if (unlikely(!xdpf))
2292		return I40E_XDP_CONSUMED;
2293
2294	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2295}
2296
2297/**
2298 * i40e_run_xdp - run an XDP program
2299 * @rx_ring: Rx ring being processed
2300 * @xdp: XDP buffer containing the frame
2301 * @xdp_prog: XDP program to run
2302 **/
2303static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2304{
2305	int err, result = I40E_XDP_PASS;
2306	struct i40e_ring *xdp_ring;
2307	u32 act;
2308
2309	if (!xdp_prog)
2310		goto xdp_out;
2311
2312	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2313
2314	act = bpf_prog_run_xdp(xdp_prog, xdp);
2315	switch (act) {
2316	case XDP_PASS:
2317		break;
2318	case XDP_TX:
2319		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2320		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2321		if (result == I40E_XDP_CONSUMED)
2322			goto out_failure;
2323		break;
2324	case XDP_REDIRECT:
2325		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2326		if (err)
2327			goto out_failure;
2328		result = I40E_XDP_REDIR;
2329		break;
2330	default:
2331		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2332		fallthrough;
2333	case XDP_ABORTED:
2334out_failure:
2335		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2336		fallthrough; /* handle aborts by dropping packet */
2337	case XDP_DROP:
2338		result = I40E_XDP_CONSUMED;
2339		break;
2340	}
2341xdp_out:
2342	return result;
2343}
2344
2345/**
2346 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2347 * @xdp_ring: XDP Tx ring
2348 *
2349 * This function updates the XDP Tx ring tail register.
2350 **/
2351void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2352{
2353	/* Force memory writes to complete before letting h/w
2354	 * know there are new descriptors to fetch.
2355	 */
2356	wmb();
2357	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2358}
2359
2360/**
2361 * i40e_update_rx_stats - Update Rx ring statistics
2362 * @rx_ring: rx descriptor ring
2363 * @total_rx_bytes: number of bytes received
2364 * @total_rx_packets: number of packets received
2365 *
2366 * This function updates the Rx ring statistics.
2367 **/
2368void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2369			  unsigned int total_rx_bytes,
2370			  unsigned int total_rx_packets)
2371{
2372	u64_stats_update_begin(&rx_ring->syncp);
2373	rx_ring->stats.packets += total_rx_packets;
2374	rx_ring->stats.bytes += total_rx_bytes;
2375	u64_stats_update_end(&rx_ring->syncp);
2376	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2377	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2378}
2379
2380/**
2381 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2382 * @rx_ring: Rx ring
2383 * @xdp_res: Result of the receive batch
2384 *
2385 * This function bumps XDP Tx tail and/or flush redirect map, and
2386 * should be called when a batch of packets has been processed in the
2387 * napi loop.
2388 **/
2389void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2390{
2391	if (xdp_res & I40E_XDP_REDIR)
2392		xdp_do_flush();
2393
2394	if (xdp_res & I40E_XDP_TX) {
2395		struct i40e_ring *xdp_ring =
2396			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2397
2398		i40e_xdp_ring_update_tail(xdp_ring);
2399	}
2400}
2401
2402/**
2403 * i40e_inc_ntp: Advance the next_to_process index
2404 * @rx_ring: Rx ring
2405 **/
2406static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2407{
2408	u32 ntp = rx_ring->next_to_process + 1;
2409
2410	ntp = (ntp < rx_ring->count) ? ntp : 0;
2411	rx_ring->next_to_process = ntp;
2412	prefetch(I40E_RX_DESC(rx_ring, ntp));
2413}
2414
2415/**
2416 * i40e_add_xdp_frag: Add a frag to xdp_buff
2417 * @xdp: xdp_buff pointing to the data
2418 * @nr_frags: return number of buffers for the packet
2419 * @rx_buffer: rx_buffer holding data of the current frag
2420 * @size: size of data of current frag
2421 */
2422static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2423			     struct i40e_rx_buffer *rx_buffer, u32 size)
2424{
2425	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2426
2427	if (!xdp_buff_has_frags(xdp)) {
2428		sinfo->nr_frags = 0;
2429		sinfo->xdp_frags_size = 0;
2430		xdp_buff_set_frags_flag(xdp);
2431	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2432		/* Overflowing packet: All frags need to be dropped */
2433		return -ENOMEM;
2434	}
2435
2436	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2437				   rx_buffer->page_offset, size);
2438
2439	sinfo->xdp_frags_size += size;
2440
2441	if (page_is_pfmemalloc(rx_buffer->page))
2442		xdp_buff_set_frag_pfmemalloc(xdp);
2443	*nr_frags = sinfo->nr_frags;
2444
2445	return 0;
2446}
2447
2448/**
2449 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2450 * @rx_ring: rx descriptor ring to transact packets on
2451 * @xdp: xdp_buff pointing to the data
2452 * @rx_buffer: rx_buffer of eop desc
2453 */
2454static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2455				  struct xdp_buff *xdp,
2456				  struct i40e_rx_buffer *rx_buffer)
2457{
2458	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2459	i40e_put_rx_buffer(rx_ring, rx_buffer);
2460	rx_ring->next_to_clean = rx_ring->next_to_process;
2461	xdp->data = NULL;
2462}
2463
2464/**
2465 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2466 * @rx_ring: rx descriptor ring to transact packets on
2467 * @budget: Total limit on number of packets to process
2468 * @rx_cleaned: Out parameter of the number of packets processed
2469 *
2470 * This function provides a "bounce buffer" approach to Rx interrupt
2471 * processing.  The advantage to this is that on systems that have
2472 * expensive overhead for IOMMU access this provides a means of avoiding
2473 * it by maintaining the mapping of the page to the system.
2474 *
2475 * Returns amount of work completed
2476 **/
2477static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2478			     unsigned int *rx_cleaned)
2479{
2480	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 
2481	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2482	u16 clean_threshold = rx_ring->count / 2;
2483	unsigned int offset = rx_ring->rx_offset;
2484	struct xdp_buff *xdp = &rx_ring->xdp;
2485	unsigned int xdp_xmit = 0;
2486	struct bpf_prog *xdp_prog;
2487	bool failure = false;
2488	int xdp_res = 0;
2489
2490	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2491
2492	while (likely(total_rx_packets < (unsigned int)budget)) {
2493		u16 ntp = rx_ring->next_to_process;
2494		struct i40e_rx_buffer *rx_buffer;
2495		union i40e_rx_desc *rx_desc;
2496		struct sk_buff *skb;
2497		unsigned int size;
2498		u32 nfrags = 0;
2499		bool neop;
2500		u64 qword;
2501
2502		/* return some buffers to hardware, one at a time is too slow */
2503		if (cleaned_count >= clean_threshold) {
2504			failure = failure ||
2505				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2506			cleaned_count = 0;
2507		}
2508
2509		rx_desc = I40E_RX_DESC(rx_ring, ntp);
 
 
 
2510
2511		/* status_error_len will always be zero for unused descriptors
2512		 * because it's cleared in cleanup, and overlaps with hdr_addr
2513		 * which is always zero because packet split isn't used, if the
2514		 * hardware wrote DD then the length will be non-zero
2515		 */
2516		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2517
2518		/* This memory barrier is needed to keep us from reading
2519		 * any other fields out of the rx_desc until we have
2520		 * verified the descriptor has been written back.
2521		 */
2522		dma_rmb();
2523
2524		if (i40e_rx_is_programming_status(qword)) {
2525			i40e_clean_programming_status(rx_ring,
2526						      rx_desc->raw.qword[0],
2527						      qword);
2528			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2529			i40e_inc_ntp(rx_ring);
2530			i40e_reuse_rx_page(rx_ring, rx_buffer);
2531			/* Update ntc and bump cleaned count if not in the
2532			 * middle of mb packet.
2533			 */
2534			if (rx_ring->next_to_clean == ntp) {
2535				rx_ring->next_to_clean =
2536					rx_ring->next_to_process;
2537				cleaned_count++;
2538			}
2539			continue;
2540		}
2541
2542		size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2543		if (!size)
2544			break;
2545
2546		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2547		/* retrieve a buffer from the ring */
2548		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2549
2550		neop = i40e_is_non_eop(rx_ring, rx_desc);
2551		i40e_inc_ntp(rx_ring);
2552
2553		if (!xdp->data) {
2554			unsigned char *hard_start;
2555
2556			hard_start = page_address(rx_buffer->page) +
2557				     rx_buffer->page_offset - offset;
2558			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2559#if (PAGE_SIZE > 4096)
2560			/* At larger PAGE_SIZE, frame_sz depend on len size */
2561			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2562#endif
2563		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2564			   !neop) {
2565			/* Overflowing packet: Drop all frags on EOP */
2566			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2567			break;
2568		}
2569
2570		if (neop)
2571			continue;
2572
2573		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2574
2575		if (xdp_res) {
2576			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
 
 
 
 
 
 
2577
2578			if (unlikely(xdp_buff_has_frags(xdp))) {
2579				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2580				size = xdp_get_buff_len(xdp);
2581			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2582				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2583			} else {
2584				rx_buffer->pagecnt_bias++;
2585			}
2586			total_rx_bytes += size;
2587		} else {
2588			if (ring_uses_build_skb(rx_ring))
2589				skb = i40e_build_skb(rx_ring, xdp);
 
 
 
 
 
 
 
 
 
 
 
2590			else
2591				skb = i40e_construct_skb(rx_ring, xdp);
2592
2593			/* drop if we failed to retrieve a buffer */
2594			if (!skb) {
2595				rx_ring->rx_stats.alloc_buff_failed++;
2596				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2597				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2598			}
 
 
 
2599
2600			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2601				goto process_next;
2602
2603			/* probably a little skewed due to removing CRC */
2604			total_rx_bytes += skb->len;
2605
2606			/* populate checksum, VLAN, and protocol */
2607			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2608
2609			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2610			napi_gro_receive(&rx_ring->q_vector->napi, skb);
 
 
 
 
 
2611		}
2612
2613		/* update budget accounting */
 
2614		total_rx_packets++;
2615process_next:
2616		cleaned_count += nfrags + 1;
2617		i40e_put_rx_buffer(rx_ring, rx_buffer);
2618		rx_ring->next_to_clean = rx_ring->next_to_process;
2619
2620		xdp->data = NULL;
2621	}
2622
2623	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2624
2625	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2626
2627	*rx_cleaned = total_rx_packets;
2628
2629	/* guarantee a trip back through this routine if there was a failure */
2630	return failure ? budget : (int)total_rx_packets;
2631}
2632
2633static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2634{
2635	u32 val;
2636
2637	/* We don't bother with setting the CLEARPBA bit as the data sheet
2638	 * points out doing so is "meaningless since it was already
2639	 * auto-cleared". The auto-clearing happens when the interrupt is
2640	 * asserted.
2641	 *
2642	 * Hardware errata 28 for also indicates that writing to a
2643	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2644	 * an event in the PBA anyway so we need to rely on the automask
2645	 * to hold pending events for us until the interrupt is re-enabled
2646	 *
2647	 * The itr value is reported in microseconds, and the register
2648	 * value is recorded in 2 microsecond units. For this reason we
2649	 * only need to shift by the interval shift - 1 instead of the
2650	 * full value.
2651	 */
2652	itr &= I40E_ITR_MASK;
2653
2654	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2655	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2656	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2657
2658	return val;
2659}
2660
2661/* a small macro to shorten up some long lines */
2662#define INTREG I40E_PFINT_DYN_CTLN
 
 
2663
2664/* The act of updating the ITR will cause it to immediately trigger. In order
2665 * to prevent this from throwing off adaptive update statistics we defer the
2666 * update so that it can only happen so often. So after either Tx or Rx are
2667 * updated we make the adaptive scheme wait until either the ITR completely
2668 * expires via the next_update expiration or we have been through at least
2669 * 3 interrupts.
2670 */
2671#define ITR_COUNTDOWN_START 3
2672
2673/**
2674 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2675 * @vsi: the VSI we care about
2676 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2677 *
2678 **/
2679static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2680					  struct i40e_q_vector *q_vector)
2681{
2682	struct i40e_hw *hw = &vsi->back->hw;
2683	u32 intval;
2684
2685	/* If we don't have MSIX, then we only need to re-enable icr0 */
2686	if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2687		i40e_irq_dynamic_enable_icr0(vsi->back);
2688		return;
 
2689	}
2690
2691	/* These will do nothing if dynamic updates are not enabled */
2692	i40e_update_itr(q_vector, &q_vector->tx);
2693	i40e_update_itr(q_vector, &q_vector->rx);
2694
2695	/* This block of logic allows us to get away with only updating
2696	 * one ITR value with each interrupt. The idea is to perform a
2697	 * pseudo-lazy update with the following criteria.
2698	 *
2699	 * 1. Rx is given higher priority than Tx if both are in same state
2700	 * 2. If we must reduce an ITR that is given highest priority.
2701	 * 3. We then give priority to increasing ITR based on amount.
2702	 */
2703	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2704		/* Rx ITR needs to be reduced, this is highest priority */
2705		intval = i40e_buildreg_itr(I40E_RX_ITR,
2706					   q_vector->rx.target_itr);
2707		q_vector->rx.current_itr = q_vector->rx.target_itr;
2708		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2709	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2710		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2711		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2712		/* Tx ITR needs to be reduced, this is second priority
2713		 * Tx ITR needs to be increased more than Rx, fourth priority
2714		 */
2715		intval = i40e_buildreg_itr(I40E_TX_ITR,
2716					   q_vector->tx.target_itr);
2717		q_vector->tx.current_itr = q_vector->tx.target_itr;
2718		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2719	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2720		/* Rx ITR needs to be increased, third priority */
2721		intval = i40e_buildreg_itr(I40E_RX_ITR,
2722					   q_vector->rx.target_itr);
2723		q_vector->rx.current_itr = q_vector->rx.target_itr;
2724		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2725	} else {
2726		/* No ITR update, lowest priority */
2727		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2728		if (q_vector->itr_countdown)
2729			q_vector->itr_countdown--;
2730	}
2731
2732	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2733		wr32(hw, INTREG(q_vector->reg_idx), intval);
2734}
2735
2736/**
2737 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2738 * @napi: napi struct with our devices info in it
2739 * @budget: amount of work driver is allowed to do this pass, in packets
2740 *
2741 * This function will clean all queues associated with a q_vector.
2742 *
2743 * Returns the amount of work done
2744 **/
2745int i40e_napi_poll(struct napi_struct *napi, int budget)
2746{
2747	struct i40e_q_vector *q_vector =
2748			       container_of(napi, struct i40e_q_vector, napi);
2749	struct i40e_vsi *vsi = q_vector->vsi;
2750	struct i40e_ring *ring;
2751	bool tx_clean_complete = true;
2752	bool rx_clean_complete = true;
2753	unsigned int tx_cleaned = 0;
2754	unsigned int rx_cleaned = 0;
2755	bool clean_complete = true;
2756	bool arm_wb = false;
2757	int budget_per_ring;
2758	int work_done = 0;
2759
2760	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2761		napi_complete(napi);
2762		return 0;
2763	}
2764
2765	/* Since the actual Tx work is minimal, we can give the Tx a larger
2766	 * budget and be more aggressive about cleaning up the Tx descriptors.
2767	 */
2768	i40e_for_each_ring(ring, q_vector->tx) {
2769		bool wd = ring->xsk_pool ?
2770			  i40e_clean_xdp_tx_irq(vsi, ring) :
2771			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2772
2773		if (!wd) {
2774			clean_complete = tx_clean_complete = false;
2775			continue;
2776		}
2777		arm_wb |= ring->arm_wb;
2778		ring->arm_wb = false;
2779	}
2780
2781	/* Handle case where we are called by netpoll with a budget of 0 */
2782	if (budget <= 0)
2783		goto tx_only;
2784
2785	/* normally we have 1 Rx ring per q_vector */
2786	if (unlikely(q_vector->num_ringpairs > 1))
2787		/* We attempt to distribute budget to each Rx queue fairly, but
2788		 * don't allow the budget to go below 1 because that would exit
2789		 * polling early.
2790		 */
2791		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2792	else
2793		/* Max of 1 Rx ring in this q_vector so give it the budget */
2794		budget_per_ring = budget;
2795
2796	i40e_for_each_ring(ring, q_vector->rx) {
2797		int cleaned = ring->xsk_pool ?
2798			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2799			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2800
2801		work_done += cleaned;
2802		/* if we clean as many as budgeted, we must not be done */
2803		if (cleaned >= budget_per_ring)
2804			clean_complete = rx_clean_complete = false;
2805	}
2806
2807	if (!i40e_enabled_xdp_vsi(vsi))
2808		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2809				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2810
2811	/* If work not completed, return budget and polling will return */
2812	if (!clean_complete) {
2813		int cpu_id = smp_processor_id();
2814
2815		/* It is possible that the interrupt affinity has changed but,
2816		 * if the cpu is pegged at 100%, polling will never exit while
2817		 * traffic continues and the interrupt will be stuck on this
2818		 * cpu.  We check to make sure affinity is correct before we
2819		 * continue to poll, otherwise we must stop polling so the
2820		 * interrupt can move to the correct cpu.
2821		 */
2822		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2823			/* Tell napi that we are done polling */
2824			napi_complete_done(napi, work_done);
2825
2826			/* Force an interrupt */
2827			i40e_force_wb(vsi, q_vector);
2828
2829			/* Return budget-1 so that polling stops */
2830			return budget - 1;
2831		}
2832tx_only:
2833		if (arm_wb) {
2834			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2835			i40e_enable_wb_on_itr(vsi, q_vector);
2836		}
2837		return budget;
2838	}
2839
2840	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2841		q_vector->arm_wb_state = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2842
2843	/* Exit the polling mode, but don't re-enable interrupts if stack might
2844	 * poll us due to busy-polling
2845	 */
2846	if (likely(napi_complete_done(napi, work_done)))
2847		i40e_update_enable_itr(vsi, q_vector);
2848
2849	return min(work_done, budget - 1);
2850}
2851
2852/**
2853 * i40e_atr - Add a Flow Director ATR filter
2854 * @tx_ring:  ring to add programming descriptor to
2855 * @skb:      send buffer
2856 * @tx_flags: send tx flags
 
2857 **/
2858static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2859		     u32 tx_flags)
2860{
2861	struct i40e_filter_program_desc *fdir_desc;
2862	struct i40e_pf *pf = tx_ring->vsi->back;
2863	union {
2864		unsigned char *network;
2865		struct iphdr *ipv4;
2866		struct ipv6hdr *ipv6;
2867	} hdr;
2868	struct tcphdr *th;
2869	unsigned int hlen;
2870	u32 flex_ptype, dtype_cmd;
2871	int l4_proto;
2872	u16 i;
2873
2874	/* make sure ATR is enabled */
2875	if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2876		return;
2877
2878	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2879		return;
2880
2881	/* if sampling is disabled do nothing */
2882	if (!tx_ring->atr_sample_rate)
2883		return;
2884
2885	/* Currently only IPv4/IPv6 with TCP is supported */
2886	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2887		return;
2888
2889	/* snag network header to get L4 type and address */
2890	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2891		      skb_inner_network_header(skb) : skb_network_header(skb);
2892
2893	/* Note: tx_flags gets modified to reflect inner protocols in
2894	 * tx_enable_csum function if encap is enabled.
2895	 */
2896	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2897		/* access ihl as u8 to avoid unaligned access on ia64 */
 
2898		hlen = (hdr.network[0] & 0x0F) << 2;
2899		l4_proto = hdr.ipv4->protocol;
2900	} else {
2901		/* find the start of the innermost ipv6 header */
2902		unsigned int inner_hlen = hdr.network - skb->data;
2903		unsigned int h_offset = inner_hlen;
2904
2905		/* this function updates h_offset to the end of the header */
2906		l4_proto =
2907		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2908		/* hlen will contain our best estimate of the tcp header */
2909		hlen = h_offset - inner_hlen;
2910	}
2911
2912	if (l4_proto != IPPROTO_TCP)
 
2913		return;
 
2914
2915	th = (struct tcphdr *)(hdr.network + hlen);
2916
2917	/* Due to lack of space, no more new filters can be programmed */
2918	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2919		return;
2920	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2921		/* HW ATR eviction will take care of removing filters on FIN
2922		 * and RST packets.
2923		 */
2924		if (th->fin || th->rst)
2925			return;
2926	}
2927
2928	tx_ring->atr_count++;
2929
2930	/* sample on all syn/fin/rst packets or once every atr sample rate */
2931	if (!th->fin &&
2932	    !th->syn &&
2933	    !th->rst &&
2934	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2935		return;
2936
2937	tx_ring->atr_count = 0;
2938
2939	/* grab the next descriptor */
2940	i = tx_ring->next_to_use;
2941	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2942
2943	i++;
2944	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2945
2946	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2947				tx_ring->queue_index);
2948	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2949		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2950		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2951		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2952		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2953
2954	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2955
2956	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2957
2958	dtype_cmd |= (th->fin || th->rst) ?
2959		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2960		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2961		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2962		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2963
2964	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2965		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2966
2967	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2968		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2969
2970	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2971	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2972		dtype_cmd |=
2973			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2974				   I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
2975	else
2976		dtype_cmd |=
2977			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
2978				   I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
2979
2980	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
2981		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2982
2983	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2984	fdir_desc->rsvd = cpu_to_le32(0);
2985	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2986	fdir_desc->fd_id = cpu_to_le32(0);
2987}
2988
2989/**
2990 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2991 * @skb:     send buffer
2992 * @tx_ring: ring to send buffer on
2993 * @flags:   the tx flags to be set
2994 *
2995 * Checks the skb and set up correspondingly several generic transmit flags
2996 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2997 *
2998 * Returns error code indicate the frame should be dropped upon error and the
2999 * otherwise  returns 0 to indicate the flags has been set properly.
3000 **/
3001static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3002					     struct i40e_ring *tx_ring,
3003					     u32 *flags)
3004{
3005	__be16 protocol = skb->protocol;
3006	u32  tx_flags = 0;
3007
3008	if (protocol == htons(ETH_P_8021Q) &&
3009	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3010		/* When HW VLAN acceleration is turned off by the user the
3011		 * stack sets the protocol to 8021q so that the driver
3012		 * can take any steps required to support the SW only
3013		 * VLAN handling.  In our case the driver doesn't need
3014		 * to take any further steps so just set the protocol
3015		 * to the encapsulated ethertype.
3016		 */
3017		skb->protocol = vlan_get_protocol(skb);
3018		goto out;
3019	}
3020
3021	/* if we have a HW VLAN tag being added, default to the HW one */
3022	if (skb_vlan_tag_present(skb)) {
3023		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3024		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3025	/* else if it is a SW VLAN, check the next protocol and store the tag */
3026	} else if (protocol == htons(ETH_P_8021Q)) {
3027		struct vlan_hdr *vhdr, _vhdr;
3028
3029		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3030		if (!vhdr)
3031			return -EINVAL;
3032
3033		protocol = vhdr->h_vlan_encapsulated_proto;
3034		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3035		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3036	}
3037
3038	if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3039		goto out;
3040
3041	/* Insert 802.1p priority into VLAN header */
3042	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3043	    (skb->priority != TC_PRIO_CONTROL)) {
 
3044		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3045		tx_flags |= (skb->priority & 0x7) <<
3046				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3047		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3048			struct vlan_ethhdr *vhdr;
3049			int rc;
3050
3051			rc = skb_cow_head(skb, 0);
3052			if (rc < 0)
3053				return rc;
3054			vhdr = skb_vlan_eth_hdr(skb);
3055			vhdr->h_vlan_TCI = htons(tx_flags >>
3056						 I40E_TX_FLAGS_VLAN_SHIFT);
3057		} else {
3058			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3059		}
3060	}
3061
3062out:
3063	*flags = tx_flags;
3064	return 0;
3065}
3066
3067/**
3068 * i40e_tso - set up the tso context descriptor
3069 * @first:    pointer to first Tx buffer for xmit
 
 
 
3070 * @hdr_len:  ptr to the size of the packet header
3071 * @cd_type_cmd_tso_mss: Quad Word 1
3072 *
3073 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3074 **/
3075static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3076		    u64 *cd_type_cmd_tso_mss)
3077{
3078	struct sk_buff *skb = first->skb;
3079	u64 cd_cmd, cd_tso_len, cd_mss;
3080	__be16 protocol;
3081	union {
3082		struct iphdr *v4;
3083		struct ipv6hdr *v6;
3084		unsigned char *hdr;
3085	} ip;
3086	union {
3087		struct tcphdr *tcp;
3088		struct udphdr *udp;
3089		unsigned char *hdr;
3090	} l4;
3091	u32 paylen, l4_offset;
3092	u16 gso_size;
3093	int err;
3094
3095	if (skb->ip_summed != CHECKSUM_PARTIAL)
3096		return 0;
3097
3098	if (!skb_is_gso(skb))
3099		return 0;
3100
3101	err = skb_cow_head(skb, 0);
3102	if (err < 0)
3103		return err;
3104
3105	protocol = vlan_get_protocol(skb);
3106
3107	if (eth_p_mpls(protocol))
3108		ip.hdr = skb_inner_network_header(skb);
3109	else
3110		ip.hdr = skb_network_header(skb);
3111	l4.hdr = skb_checksum_start(skb);
3112
3113	/* initialize outer IP header fields */
3114	if (ip.v4->version == 4) {
3115		ip.v4->tot_len = 0;
3116		ip.v4->check = 0;
3117
3118		first->tx_flags |= I40E_TX_FLAGS_TSO;
3119	} else {
3120		ip.v6->payload_len = 0;
3121		first->tx_flags |= I40E_TX_FLAGS_TSO;
3122	}
3123
3124	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3125					 SKB_GSO_GRE_CSUM |
3126					 SKB_GSO_IPXIP4 |
3127					 SKB_GSO_IPXIP6 |
3128					 SKB_GSO_UDP_TUNNEL |
3129					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3130		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3131		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3132			l4.udp->len = 0;
3133
3134			/* determine offset of outer transport header */
3135			l4_offset = l4.hdr - skb->data;
3136
3137			/* remove payload length from outer checksum */
3138			paylen = skb->len - l4_offset;
3139			csum_replace_by_diff(&l4.udp->check,
3140					     (__force __wsum)htonl(paylen));
3141		}
3142
3143		/* reset pointers to inner headers */
3144		ip.hdr = skb_inner_network_header(skb);
3145		l4.hdr = skb_inner_transport_header(skb);
3146
3147		/* initialize inner IP header fields */
3148		if (ip.v4->version == 4) {
3149			ip.v4->tot_len = 0;
3150			ip.v4->check = 0;
3151		} else {
3152			ip.v6->payload_len = 0;
3153		}
3154	}
3155
3156	/* determine offset of inner transport header */
3157	l4_offset = l4.hdr - skb->data;
3158
3159	/* remove payload length from inner checksum */
3160	paylen = skb->len - l4_offset;
3161
3162	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3163		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3164		/* compute length of segmentation header */
3165		*hdr_len = sizeof(*l4.udp) + l4_offset;
3166	} else {
3167		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3168		/* compute length of segmentation header */
3169		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3170	}
3171
3172	/* pull values out of skb_shinfo */
3173	gso_size = skb_shinfo(skb)->gso_size;
3174
3175	/* update GSO size and bytecount with header size */
3176	first->gso_segs = skb_shinfo(skb)->gso_segs;
3177	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3178
3179	/* find the field values */
3180	cd_cmd = I40E_TX_CTX_DESC_TSO;
3181	cd_tso_len = skb->len - *hdr_len;
3182	cd_mss = gso_size;
3183	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3184				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3185				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
 
3186	return 1;
3187}
3188
3189/**
3190 * i40e_tsyn - set up the tsyn context descriptor
3191 * @tx_ring:  ptr to the ring to send
3192 * @skb:      ptr to the skb we're sending
3193 * @tx_flags: the collected send information
3194 * @cd_type_cmd_tso_mss: Quad Word 1
3195 *
3196 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3197 **/
3198static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3199		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3200{
3201	struct i40e_pf *pf;
3202
3203	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3204		return 0;
3205
3206	/* Tx timestamps cannot be sampled when doing TSO */
3207	if (tx_flags & I40E_TX_FLAGS_TSO)
3208		return 0;
3209
3210	/* only timestamp the outbound packet if the user has requested it and
3211	 * we are not already transmitting a packet to be timestamped
3212	 */
3213	pf = i40e_netdev_to_pf(tx_ring->netdev);
3214	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3215		return 0;
3216
3217	if (pf->ptp_tx &&
3218	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3219		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3220		pf->ptp_tx_start = jiffies;
3221		pf->ptp_tx_skb = skb_get(skb);
3222	} else {
3223		pf->tx_hwtstamp_skipped++;
3224		return 0;
3225	}
3226
3227	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3228				I40E_TXD_CTX_QW1_CMD_SHIFT;
3229
 
 
 
3230	return 1;
3231}
3232
3233/**
3234 * i40e_tx_enable_csum - Enable Tx checksum offloads
3235 * @skb: send buffer
3236 * @tx_flags: pointer to Tx flags currently set
3237 * @td_cmd: Tx descriptor command bits to set
3238 * @td_offset: Tx descriptor header offsets to set
3239 * @tx_ring: Tx descriptor ring
3240 * @cd_tunneling: ptr to context desc bits
3241 **/
3242static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3243			       u32 *td_cmd, u32 *td_offset,
3244			       struct i40e_ring *tx_ring,
3245			       u32 *cd_tunneling)
3246{
3247	union {
3248		struct iphdr *v4;
3249		struct ipv6hdr *v6;
3250		unsigned char *hdr;
3251	} ip;
3252	union {
3253		struct tcphdr *tcp;
3254		struct udphdr *udp;
3255		unsigned char *hdr;
3256	} l4;
3257	unsigned char *exthdr;
3258	u32 offset, cmd = 0;
3259	__be16 frag_off;
3260	__be16 protocol;
3261	u8 l4_proto = 0;
3262
3263	if (skb->ip_summed != CHECKSUM_PARTIAL)
3264		return 0;
3265
3266	protocol = vlan_get_protocol(skb);
3267
3268	if (eth_p_mpls(protocol)) {
3269		ip.hdr = skb_inner_network_header(skb);
3270		l4.hdr = skb_checksum_start(skb);
3271	} else {
3272		ip.hdr = skb_network_header(skb);
3273		l4.hdr = skb_transport_header(skb);
3274	}
3275
3276	/* set the tx_flags to indicate the IP protocol type. this is
3277	 * required so that checksum header computation below is accurate.
3278	 */
3279	if (ip.v4->version == 4)
3280		*tx_flags |= I40E_TX_FLAGS_IPV4;
3281	else
3282		*tx_flags |= I40E_TX_FLAGS_IPV6;
3283
3284	/* compute outer L2 header size */
3285	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3286
3287	if (skb->encapsulation) {
3288		u32 tunnel = 0;
3289		/* define outer network header type */
3290		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3291			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3292				  I40E_TX_CTX_EXT_IP_IPV4 :
3293				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3294
3295			l4_proto = ip.v4->protocol;
3296		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3297			int ret;
3298
3299			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3300
3301			exthdr = ip.hdr + sizeof(*ip.v6);
3302			l4_proto = ip.v6->nexthdr;
3303			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3304					       &l4_proto, &frag_off);
3305			if (ret < 0)
3306				return -1;
 
 
 
3307		}
3308
3309		/* define outer transport */
3310		switch (l4_proto) {
3311		case IPPROTO_UDP:
3312			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3313			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3314			break;
3315		case IPPROTO_GRE:
3316			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3317			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3318			break;
3319		case IPPROTO_IPIP:
3320		case IPPROTO_IPV6:
3321			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3322			l4.hdr = skb_inner_network_header(skb);
3323			break;
3324		default:
3325			if (*tx_flags & I40E_TX_FLAGS_TSO)
3326				return -1;
3327
3328			skb_checksum_help(skb);
3329			return 0;
3330		}
3331
3332		/* compute outer L3 header size */
3333		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3334			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3335
3336		/* switch IP header pointer from outer to inner header */
3337		ip.hdr = skb_inner_network_header(skb);
3338
3339		/* compute tunnel header size */
3340		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3341			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3342
3343		/* indicate if we need to offload outer UDP header */
3344		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3345		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3346		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3347			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3348
3349		/* record tunnel offload values */
3350		*cd_tunneling |= tunnel;
3351
3352		/* switch L4 header pointer from outer to inner */
3353		l4.hdr = skb_inner_transport_header(skb);
3354		l4_proto = 0;
3355
3356		/* reset type as we transition from outer to inner headers */
3357		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3358		if (ip.v4->version == 4)
3359			*tx_flags |= I40E_TX_FLAGS_IPV4;
3360		if (ip.v6->version == 6)
3361			*tx_flags |= I40E_TX_FLAGS_IPV6;
3362	}
3363
3364	/* Enable IP checksum offloads */
3365	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3366		l4_proto = ip.v4->protocol;
3367		/* the stack computes the IP header already, the only time we
3368		 * need the hardware to recompute it is in the case of TSO.
3369		 */
3370		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3371		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3372		       I40E_TX_DESC_CMD_IIPT_IPV4;
3373	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3374		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3375
3376		exthdr = ip.hdr + sizeof(*ip.v6);
3377		l4_proto = ip.v6->nexthdr;
3378		if (l4.hdr != exthdr)
3379			ipv6_skip_exthdr(skb, exthdr - skb->data,
3380					 &l4_proto, &frag_off);
3381	}
3382
3383	/* compute inner L3 header size */
3384	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
 
 
 
 
3385
3386	/* Enable L4 checksum offloads */
3387	switch (l4_proto) {
3388	case IPPROTO_TCP:
3389		/* enable checksum offloads */
3390		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3391		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
 
3392		break;
3393	case IPPROTO_SCTP:
3394		/* enable SCTP checksum offload */
3395		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3396		offset |= (sizeof(struct sctphdr) >> 2) <<
3397			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3398		break;
3399	case IPPROTO_UDP:
3400		/* enable UDP checksum offload */
3401		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3402		offset |= (sizeof(struct udphdr) >> 2) <<
3403			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3404		break;
3405	default:
3406		if (*tx_flags & I40E_TX_FLAGS_TSO)
3407			return -1;
3408		skb_checksum_help(skb);
3409		return 0;
3410	}
3411
3412	*td_cmd |= cmd;
3413	*td_offset |= offset;
3414
3415	return 1;
3416}
3417
3418/**
3419 * i40e_create_tx_ctx - Build the Tx context descriptor
3420 * @tx_ring:  ring to create the descriptor on
3421 * @cd_type_cmd_tso_mss: Quad Word 1
3422 * @cd_tunneling: Quad Word 0 - bits 0-31
3423 * @cd_l2tag2: Quad Word 0 - bits 32-63
3424 **/
3425static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3426			       const u64 cd_type_cmd_tso_mss,
3427			       const u32 cd_tunneling, const u32 cd_l2tag2)
3428{
3429	struct i40e_tx_context_desc *context_desc;
3430	int i = tx_ring->next_to_use;
3431
3432	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3433	    !cd_tunneling && !cd_l2tag2)
3434		return;
3435
3436	/* grab the next descriptor */
3437	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3438
3439	i++;
3440	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3441
3442	/* cpu_to_le32 and assign to struct fields */
3443	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3444	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3445	context_desc->rsvd = cpu_to_le16(0);
3446	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3447}
3448
3449/**
3450 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3451 * @tx_ring: the ring to be checked
3452 * @size:    the size buffer we want to assure is available
3453 *
3454 * Returns -EBUSY if a stop is needed, else 0
3455 **/
3456int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3457{
3458	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3459	/* Memory barrier before checking head and tail */
3460	smp_mb();
3461
3462	++tx_ring->tx_stats.tx_stopped;
3463
3464	/* Check again in a case another CPU has just made room available. */
3465	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3466		return -EBUSY;
3467
3468	/* A reprieve! - use start_queue because it doesn't call schedule */
3469	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3470	++tx_ring->tx_stats.restart_queue;
3471	return 0;
3472}
3473
3474/**
3475 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3476 * @skb:      send buffer
3477 *
3478 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3479 * and so we need to figure out the cases where we need to linearize the skb.
3480 *
3481 * For TSO we need to count the TSO header and segment payload separately.
3482 * As such we need to check cases where we have 7 fragments or more as we
3483 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3484 * the segment payload in the first descriptor, and another 7 for the
3485 * fragments.
3486 **/
3487bool __i40e_chk_linearize(struct sk_buff *skb)
3488{
3489	const skb_frag_t *frag, *stale;
3490	int nr_frags, sum;
3491
3492	/* no need to check if number of frags is less than 7 */
3493	nr_frags = skb_shinfo(skb)->nr_frags;
3494	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3495		return false;
3496
3497	/* We need to walk through the list and validate that each group
3498	 * of 6 fragments totals at least gso_size.
3499	 */
3500	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3501	frag = &skb_shinfo(skb)->frags[0];
3502
3503	/* Initialize size to the negative value of gso_size minus 1.  We
3504	 * use this as the worst case scenerio in which the frag ahead
3505	 * of us only provides one byte which is why we are limited to 6
3506	 * descriptors for a single transmit as the header and previous
3507	 * fragment are already consuming 2 descriptors.
3508	 */
3509	sum = 1 - skb_shinfo(skb)->gso_size;
3510
3511	/* Add size of frags 0 through 4 to create our initial sum */
3512	sum += skb_frag_size(frag++);
3513	sum += skb_frag_size(frag++);
3514	sum += skb_frag_size(frag++);
3515	sum += skb_frag_size(frag++);
3516	sum += skb_frag_size(frag++);
3517
3518	/* Walk through fragments adding latest fragment, testing it, and
3519	 * then removing stale fragments from the sum.
3520	 */
3521	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3522		int stale_size = skb_frag_size(stale);
3523
3524		sum += skb_frag_size(frag++);
3525
3526		/* The stale fragment may present us with a smaller
3527		 * descriptor than the actual fragment size. To account
3528		 * for that we need to remove all the data on the front and
3529		 * figure out what the remainder would be in the last
3530		 * descriptor associated with the fragment.
3531		 */
3532		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3533			int align_pad = -(skb_frag_off(stale)) &
3534					(I40E_MAX_READ_REQ_SIZE - 1);
3535
3536			sum -= align_pad;
3537			stale_size -= align_pad;
3538
3539			do {
3540				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3541				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3542			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3543		}
3544
3545		/* if sum is negative we failed to make sufficient progress */
3546		if (sum < 0)
3547			return true;
3548
3549		if (!nr_frags--)
3550			break;
3551
3552		sum -= stale_size;
3553	}
3554
3555	return false;
3556}
3557
3558/**
3559 * i40e_tx_map - Build the Tx descriptor
3560 * @tx_ring:  ring to send buffer on
3561 * @skb:      send buffer
3562 * @first:    first buffer info buffer to use
3563 * @tx_flags: collected send information
3564 * @hdr_len:  size of the packet header
3565 * @td_cmd:   the command field in the descriptor
3566 * @td_offset: offset for checksum or crc
3567 *
3568 * Returns 0 on success, -1 on failure to DMA
3569 **/
3570static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3571			      struct i40e_tx_buffer *first, u32 tx_flags,
3572			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3573{
3574	unsigned int data_len = skb->data_len;
3575	unsigned int size = skb_headlen(skb);
3576	skb_frag_t *frag;
3577	struct i40e_tx_buffer *tx_bi;
3578	struct i40e_tx_desc *tx_desc;
3579	u16 i = tx_ring->next_to_use;
3580	u32 td_tag = 0;
3581	dma_addr_t dma;
3582	u16 desc_count = 1;
3583
3584	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3585		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3586		td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
 
3587	}
3588
 
 
 
 
 
 
 
 
 
3589	first->tx_flags = tx_flags;
3590
3591	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3592
3593	tx_desc = I40E_TX_DESC(tx_ring, i);
3594	tx_bi = first;
3595
3596	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3597		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3598
3599		if (dma_mapping_error(tx_ring->dev, dma))
3600			goto dma_error;
3601
3602		/* record length, and DMA address */
3603		dma_unmap_len_set(tx_bi, len, size);
3604		dma_unmap_addr_set(tx_bi, dma, dma);
3605
3606		/* align size to end of page */
3607		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3608		tx_desc->buffer_addr = cpu_to_le64(dma);
3609
3610		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3611			tx_desc->cmd_type_offset_bsz =
3612				build_ctob(td_cmd, td_offset,
3613					   max_data, td_tag);
3614
3615			tx_desc++;
3616			i++;
3617			desc_count++;
3618
3619			if (i == tx_ring->count) {
3620				tx_desc = I40E_TX_DESC(tx_ring, 0);
3621				i = 0;
3622			}
3623
3624			dma += max_data;
3625			size -= max_data;
3626
3627			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3628			tx_desc->buffer_addr = cpu_to_le64(dma);
3629		}
3630
3631		if (likely(!data_len))
3632			break;
3633
3634		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3635							  size, td_tag);
3636
3637		tx_desc++;
3638		i++;
3639		desc_count++;
3640
3641		if (i == tx_ring->count) {
3642			tx_desc = I40E_TX_DESC(tx_ring, 0);
3643			i = 0;
3644		}
3645
3646		size = skb_frag_size(frag);
3647		data_len -= size;
3648
3649		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3650				       DMA_TO_DEVICE);
3651
3652		tx_bi = &tx_ring->tx_bi[i];
3653	}
3654
3655	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3656
3657	i++;
3658	if (i == tx_ring->count)
3659		i = 0;
3660
3661	tx_ring->next_to_use = i;
3662
3663	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3664
3665	/* write last descriptor with EOP bit */
3666	td_cmd |= I40E_TX_DESC_CMD_EOP;
3667
3668	/* We OR these values together to check both against 4 (WB_STRIDE)
3669	 * below. This is safe since we don't re-use desc_count afterwards.
3670	 */
3671	desc_count |= ++tx_ring->packet_stride;
3672
3673	if (desc_count >= WB_STRIDE) {
3674		/* write last descriptor with RS bit set */
3675		td_cmd |= I40E_TX_DESC_CMD_RS;
3676		tx_ring->packet_stride = 0;
 
 
 
 
 
 
 
3677	}
3678
3679	tx_desc->cmd_type_offset_bsz =
3680			build_ctob(td_cmd, td_offset, size, td_tag);
 
3681
3682	skb_tx_timestamp(skb);
 
3683
3684	/* Force memory writes to complete before letting h/w know there
3685	 * are new descriptors to fetch.
3686	 *
3687	 * We also use this memory barrier to make certain all of the
3688	 * status bits have been updated before next_to_watch is written.
3689	 */
3690	wmb();
3691
3692	/* set next_to_watch value indicating a packet is present */
3693	first->next_to_watch = tx_desc;
3694
 
 
 
 
 
 
3695	/* notify HW of packet */
3696	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3697		writel(i, tx_ring->tail);
3698	}
3699
3700	return 0;
3701
3702dma_error:
3703	dev_info(tx_ring->dev, "TX DMA map failed\n");
3704
3705	/* clear dma mappings for failed tx_bi map */
3706	for (;;) {
3707		tx_bi = &tx_ring->tx_bi[i];
3708		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3709		if (tx_bi == first)
3710			break;
3711		if (i == 0)
3712			i = tx_ring->count;
3713		i--;
3714	}
3715
3716	tx_ring->next_to_use = i;
3717
3718	return -1;
3719}
3720
3721static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3722				  const struct sk_buff *skb,
3723				  u16 num_tx_queues)
 
 
 
 
 
3724{
3725	u32 jhash_initval_salt = 0xd631614b;
3726	u32 hash;
3727
3728	if (skb->sk && skb->sk->sk_hash)
3729		hash = skb->sk->sk_hash;
3730	else
3731		hash = (__force u16)skb->protocol ^ skb->hash;
3732
3733	hash = jhash_1word(hash, jhash_initval_salt);
 
 
3734
3735	return (u16)(((u64)hash * num_tx_queues) >> 32);
 
 
 
3736}
3737
3738u16 i40e_lan_select_queue(struct net_device *netdev,
3739			  struct sk_buff *skb,
3740			  struct net_device __always_unused *sb_dev)
 
 
 
 
 
3741{
3742	struct i40e_netdev_priv *np = netdev_priv(netdev);
3743	struct i40e_vsi *vsi = np->vsi;
3744	struct i40e_hw *hw;
3745	u16 qoffset;
3746	u16 qcount;
3747	u8 tclass;
3748	u16 hash;
3749	u8 prio;
3750
3751	/* is DCB enabled at all? */
3752	if (vsi->tc_config.numtc == 1 ||
3753	    i40e_is_tc_mqprio_enabled(vsi->back))
3754		return netdev_pick_tx(netdev, skb, sb_dev);
3755
3756	prio = skb->priority;
3757	hw = &vsi->back->hw;
3758	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3759	/* sanity check */
3760	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3761		tclass = 0;
3762
3763	/* select a queue assigned for the given TC */
3764	qcount = vsi->tc_config.tc_info[tclass].qcount;
3765	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3766
3767	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3768	return qoffset + hash;
3769}
3770
3771/**
3772 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3773 * @xdpf: data to transmit
3774 * @xdp_ring: XDP Tx ring
3775 **/
3776static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3777			      struct i40e_ring *xdp_ring)
3778{
3779	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3780	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3781	u16 i = 0, index = xdp_ring->next_to_use;
3782	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3783	struct i40e_tx_buffer *tx_bi = tx_head;
3784	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3785	void *data = xdpf->data;
3786	u32 size = xdpf->len;
3787
3788	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3789		xdp_ring->tx_stats.tx_busy++;
3790		return I40E_XDP_CONSUMED;
3791	}
3792
3793	tx_head->bytecount = xdp_get_frame_len(xdpf);
3794	tx_head->gso_segs = 1;
3795	tx_head->xdpf = xdpf;
3796
3797	for (;;) {
3798		dma_addr_t dma;
3799
3800		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3801		if (dma_mapping_error(xdp_ring->dev, dma))
3802			goto unmap;
3803
3804		/* record length, and DMA address */
3805		dma_unmap_len_set(tx_bi, len, size);
3806		dma_unmap_addr_set(tx_bi, dma, dma);
3807
3808		tx_desc->buffer_addr = cpu_to_le64(dma);
3809		tx_desc->cmd_type_offset_bsz =
3810			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3811
3812		if (++index == xdp_ring->count)
3813			index = 0;
3814
3815		if (i == nr_frags)
3816			break;
3817
3818		tx_bi = &xdp_ring->tx_bi[index];
3819		tx_desc = I40E_TX_DESC(xdp_ring, index);
3820
3821		data = skb_frag_address(&sinfo->frags[i]);
3822		size = skb_frag_size(&sinfo->frags[i]);
3823		i++;
3824	}
3825
3826	tx_desc->cmd_type_offset_bsz |=
3827		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3828
3829	/* Make certain all of the status bits have been updated
3830	 * before next_to_watch is written.
 
 
 
3831	 */
3832	smp_wmb();
3833
3834	xdp_ring->xdp_tx_active++;
3835
3836	tx_head->next_to_watch = tx_desc;
3837	xdp_ring->next_to_use = index;
3838
3839	return I40E_XDP_TX;
3840
3841unmap:
3842	for (;;) {
3843		tx_bi = &xdp_ring->tx_bi[index];
3844		if (dma_unmap_len(tx_bi, len))
3845			dma_unmap_page(xdp_ring->dev,
3846				       dma_unmap_addr(tx_bi, dma),
3847				       dma_unmap_len(tx_bi, len),
3848				       DMA_TO_DEVICE);
3849		dma_unmap_len_set(tx_bi, len, 0);
3850		if (tx_bi == tx_head)
3851			break;
3852
3853		if (!index)
3854			index += xdp_ring->count;
3855		index--;
3856	}
3857
3858	return I40E_XDP_CONSUMED;
3859}
3860
3861/**
3862 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3863 * @skb:     send buffer
3864 * @tx_ring: ring to send buffer on
3865 *
3866 * Returns NETDEV_TX_OK if sent, else an error code
3867 **/
3868static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3869					struct i40e_ring *tx_ring)
3870{
3871	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3872	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3873	struct i40e_tx_buffer *first;
3874	u32 td_offset = 0;
3875	u32 tx_flags = 0;
 
3876	u32 td_cmd = 0;
3877	u8 hdr_len = 0;
3878	int tso, count;
3879	int tsyn;
 
 
 
3880
3881	/* prefetch the data, we'll need it later */
3882	prefetch(skb->data);
3883
3884	i40e_trace(xmit_frame_ring, skb, tx_ring);
3885
3886	count = i40e_xmit_descriptor_count(skb);
3887	if (i40e_chk_linearize(skb, count)) {
3888		if (__skb_linearize(skb)) {
3889			dev_kfree_skb_any(skb);
3890			return NETDEV_TX_OK;
3891		}
3892		count = i40e_txd_use_count(skb->len);
3893		tx_ring->tx_stats.tx_linearize++;
3894	}
3895
3896	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3897	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3898	 *       + 4 desc gap to avoid the cache line where head is,
3899	 *       + 1 desc for context descriptor,
3900	 * otherwise try next time
3901	 */
3902	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3903		tx_ring->tx_stats.tx_busy++;
3904		return NETDEV_TX_BUSY;
3905	}
3906
3907	/* record the location of the first descriptor for this packet */
3908	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3909	first->skb = skb;
3910	first->bytecount = skb->len;
3911	first->gso_segs = 1;
3912
3913	/* prepare the xmit flags */
3914	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3915		goto out_drop;
 
 
3916
3917	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
 
3918
3919	if (tso < 0)
3920		goto out_drop;
3921	else if (tso)
3922		tx_flags |= I40E_TX_FLAGS_TSO;
3923
3924	/* Always offload the checksum, since it's in the data descriptor */
3925	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3926				  tx_ring, &cd_tunneling);
3927	if (tso < 0)
3928		goto out_drop;
3929
3930	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3931
3932	if (tsyn)
3933		tx_flags |= I40E_TX_FLAGS_TSYN;
3934
3935	/* always enable CRC insertion offload */
3936	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3937
 
 
 
 
 
 
 
 
3938	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3939			   cd_tunneling, cd_l2tag2);
3940
3941	/* Add Flow Director ATR if it's enabled.
3942	 *
3943	 * NOTE: this must always be directly before the data descriptor.
3944	 */
3945	i40e_atr(tx_ring, skb, tx_flags);
3946
3947	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3948			td_cmd, td_offset))
3949		goto cleanup_tx_tstamp;
 
3950
3951	return NETDEV_TX_OK;
3952
3953out_drop:
3954	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3955	dev_kfree_skb_any(first->skb);
3956	first->skb = NULL;
3957cleanup_tx_tstamp:
3958	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3959		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3960
3961		dev_kfree_skb_any(pf->ptp_tx_skb);
3962		pf->ptp_tx_skb = NULL;
3963		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3964	}
3965
3966	return NETDEV_TX_OK;
3967}
3968
3969/**
3970 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3971 * @skb:    send buffer
3972 * @netdev: network interface device structure
3973 *
3974 * Returns NETDEV_TX_OK if sent, else an error code
3975 **/
3976netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3977{
3978	struct i40e_netdev_priv *np = netdev_priv(netdev);
3979	struct i40e_vsi *vsi = np->vsi;
3980	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3981
3982	/* hardware can't handle really short frames, hardware padding works
3983	 * beyond this point
3984	 */
3985	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3986		return NETDEV_TX_OK;
3987
3988	return i40e_xmit_frame_ring(skb, tx_ring);
3989}
3990
3991/**
3992 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3993 * @dev: netdev
3994 * @n: number of frames
3995 * @frames: array of XDP buffer pointers
3996 * @flags: XDP extra info
3997 *
3998 * Returns number of frames successfully sent. Failed frames
3999 * will be free'ed by XDP core.
4000 *
4001 * For error cases, a negative errno code is returned and no-frames
4002 * are transmitted (caller must handle freeing frames).
4003 **/
4004int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4005		  u32 flags)
4006{
4007	struct i40e_netdev_priv *np = netdev_priv(dev);
4008	unsigned int queue_index = smp_processor_id();
4009	struct i40e_vsi *vsi = np->vsi;
4010	struct i40e_pf *pf = vsi->back;
4011	struct i40e_ring *xdp_ring;
4012	int nxmit = 0;
4013	int i;
4014
4015	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4016		return -ENETDOWN;
4017
4018	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4019	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4020		return -ENXIO;
4021
4022	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4023		return -EINVAL;
4024
4025	xdp_ring = vsi->xdp_rings[queue_index];
4026
4027	for (i = 0; i < n; i++) {
4028		struct xdp_frame *xdpf = frames[i];
4029		int err;
4030
4031		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4032		if (err != I40E_XDP_TX)
4033			break;
4034		nxmit++;
4035	}
4036
4037	if (unlikely(flags & XDP_XMIT_FLUSH))
4038		i40e_xdp_ring_update_tail(xdp_ring);
4039
4040	return nxmit;
4041}
v3.15
   1/*******************************************************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   2 *
   3 * Intel Ethernet Controller XL710 Family Linux Driver
   4 * Copyright(c) 2013 - 2014 Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * The full GNU General Public License is included in this distribution in
  19 * the file called "COPYING".
  20 *
  21 * Contact Information:
  22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24 *
  25 ******************************************************************************/
 
 
 
 
 
  26
  27#include "i40e.h"
  28#include "i40e_prototype.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  29
  30static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  31				u32 td_tag)
  32{
  33	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  34			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
  35			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  36			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  37			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
  38}
  39
  40#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  41/**
  42 * i40e_program_fdir_filter - Program a Flow Director filter
  43 * @fdir_data: Packet data that will be filter parameters
  44 * @raw_packet: the pre-allocated packet buffer for FDir
  45 * @pf: The pf pointer
  46 * @add: True for add/update, False for remove
  47 **/
  48int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
  49			     struct i40e_pf *pf, bool add)
 
  50{
  51	struct i40e_filter_program_desc *fdir_desc;
  52	struct i40e_tx_buffer *tx_buf;
  53	struct i40e_tx_desc *tx_desc;
  54	struct i40e_ring *tx_ring;
  55	unsigned int fpt, dcc;
  56	struct i40e_vsi *vsi;
  57	struct device *dev;
  58	dma_addr_t dma;
  59	u32 td_cmd = 0;
  60	u16 i;
  61
  62	/* find existing FDIR VSI */
  63	vsi = NULL;
  64	for (i = 0; i < pf->hw.func_caps.num_vsis; i++)
  65		if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
  66			vsi = pf->vsi[i];
  67	if (!vsi)
  68		return -ENOENT;
  69
  70	tx_ring = vsi->tx_rings[0];
  71	dev = tx_ring->dev;
  72
 
 
 
 
 
 
 
  73	dma = dma_map_single(dev, raw_packet,
  74			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
  75	if (dma_mapping_error(dev, dma))
  76		goto dma_fail;
  77
  78	/* grab the next descriptor */
  79	i = tx_ring->next_to_use;
  80	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  81
  82	tx_ring->next_to_use = (i + 1 < tx_ring->count) ? i + 1 : 0;
  83
  84	fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
  85	      I40E_TXD_FLTR_QW0_QINDEX_MASK;
  86
  87	fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
  88	       I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
  89
  90	fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
  91	       I40E_TXD_FLTR_QW0_PCTYPE_MASK;
  92
  93	/* Use LAN VSI Id if not programmed by user */
  94	if (fdir_data->dest_vsi == 0)
  95		fpt |= (pf->vsi[pf->lan_vsi]->id) <<
  96		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
  97	else
  98		fpt |= ((u32)fdir_data->dest_vsi <<
  99			I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
 100		       I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
 101
 102	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
 103
 104	dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
 105
 106	if (add)
 107		dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
 108		       I40E_TXD_FLTR_QW1_PCMD_SHIFT;
 109	else
 110		dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
 111		       I40E_TXD_FLTR_QW1_PCMD_SHIFT;
 112
 113	dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
 114	       I40E_TXD_FLTR_QW1_DEST_MASK;
 115
 116	dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
 117	       I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
 118
 119	if (fdir_data->cnt_index != 0) {
 120		dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
 121		dcc |= ((u32)fdir_data->cnt_index <<
 122			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
 123		       I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
 124	}
 125
 126	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
 127	fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
 128
 129	/* Now program a dummy descriptor */
 130	i = tx_ring->next_to_use;
 131	tx_desc = I40E_TX_DESC(tx_ring, i);
 132	tx_buf = &tx_ring->tx_bi[i];
 133
 134	tx_ring->next_to_use = (i + 1 < tx_ring->count) ? i + 1 : 0;
 
 
 135
 136	/* record length, and DMA address */
 137	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 138	dma_unmap_addr_set(tx_buf, dma, dma);
 139
 140	tx_desc->buffer_addr = cpu_to_le64(dma);
 141	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 142
 
 
 
 143	tx_desc->cmd_type_offset_bsz =
 144		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 145
 146	/* set the timestamp */
 147	tx_buf->time_stamp = jiffies;
 148
 149	/* Force memory writes to complete before letting h/w
 150	 * know there are new descriptors to fetch.  (Only
 151	 * applicable for weak-ordered memory model archs,
 152	 * such as IA-64).
 153	 */
 154	wmb();
 155
 156	/* Mark the data descriptor to be watched */
 157	tx_buf->next_to_watch = tx_desc;
 158
 159	writel(tx_ring->next_to_use, tx_ring->tail);
 160	return 0;
 161
 162dma_fail:
 163	return -1;
 164}
 165
 166#define IP_HEADER_OFFSET 14
 167#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 168/**
 169 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170 * @vsi: pointer to the targeted VSI
 171 * @fd_data: the flow director data required for the FDir descriptor
 172 * @raw_packet: the pre-allocated packet buffer for FDir
 173 * @add: true adds a filter, false removes it
 
 174 *
 175 * Returns 0 if the filters were successfully added or removed
 176 **/
 177static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 178				   struct i40e_fdir_filter *fd_data,
 179				   u8 *raw_packet, bool add)
 
 180{
 181	struct i40e_pf *pf = vsi->back;
 182	struct udphdr *udp;
 183	struct iphdr *ip;
 184	bool err = false;
 185	int ret;
 186	int i;
 187	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 188		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 189		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 190
 191	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 192
 193	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 194	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 195	      + sizeof(struct iphdr));
 196
 197	ip->daddr = fd_data->dst_ip[0];
 198	udp->dest = fd_data->dst_port;
 199	ip->saddr = fd_data->src_ip[0];
 200	udp->source = fd_data->src_port;
 201
 202	for (i = I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP;
 203	     i <= I40E_FILTER_PCTYPE_NONF_IPV4_UDP; i++) {
 204		fd_data->pctype = i;
 205		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 206
 207		if (ret) {
 208			dev_info(&pf->pdev->dev,
 209				 "Filter command send failed for PCTYPE %d (ret = %d)\n",
 210				 fd_data->pctype, ret);
 211			err = true;
 212		} else {
 213			dev_info(&pf->pdev->dev,
 214				 "Filter OK for PCTYPE %d (ret = %d)\n",
 215				 fd_data->pctype, ret);
 216		}
 
 
 
 
 
 
 
 
 
 
 217	}
 218
 219	return err ? -EOPNOTSUPP : 0;
 
 
 
 220}
 221
 222#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 
 223/**
 224 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 225 * @vsi: pointer to the targeted VSI
 226 * @fd_data: the flow director data required for the FDir descriptor
 227 * @raw_packet: the pre-allocated packet buffer for FDir
 228 * @add: true adds a filter, false removes it
 
 229 *
 230 * Returns 0 if the filters were successfully added or removed
 231 **/
 232static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 233				   struct i40e_fdir_filter *fd_data,
 234				   u8 *raw_packet, bool add)
 
 235{
 236	struct i40e_pf *pf = vsi->back;
 237	struct tcphdr *tcp;
 238	struct iphdr *ip;
 239	bool err = false;
 240	int ret;
 241	/* Dummy packet */
 242	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 243		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 244		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 245		0x0, 0x72, 0, 0, 0, 0};
 246
 247	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 248
 249	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 250	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 251	      + sizeof(struct iphdr));
 252
 253	ip->daddr = fd_data->dst_ip[0];
 254	tcp->dest = fd_data->dst_port;
 255	ip->saddr = fd_data->src_ip[0];
 256	tcp->source = fd_data->src_port;
 257
 258	if (add) {
 259		if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
 260			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 261			pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
 262		}
 263	}
 264
 265	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN;
 266	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 
 
 
 
 
 
 
 
 
 267
 268	if (ret) {
 269		dev_info(&pf->pdev->dev,
 270			 "Filter command send failed for PCTYPE %d (ret = %d)\n",
 271			 fd_data->pctype, ret);
 272		err = true;
 273	} else {
 274		dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d (ret = %d)\n",
 275			 fd_data->pctype, ret);
 276	}
 277
 278	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 
 279
 280	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 281	if (ret) {
 282		dev_info(&pf->pdev->dev,
 283			 "Filter command send failed for PCTYPE %d (ret = %d)\n",
 284			 fd_data->pctype, ret);
 285		err = true;
 286	} else {
 287		dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d (ret = %d)\n",
 288			  fd_data->pctype, ret);
 289	}
 290
 291	return err ? -EOPNOTSUPP : 0;
 292}
 293
 
 
 294/**
 295 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 296 * a specific flow spec
 297 * @vsi: pointer to the targeted VSI
 298 * @fd_data: the flow director data required for the FDir descriptor
 299 * @raw_packet: the pre-allocated packet buffer for FDir
 300 * @add: true adds a filter, false removes it
 
 301 *
 302 * Always returns -EOPNOTSUPP
 303 **/
 304static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
 305				    struct i40e_fdir_filter *fd_data,
 306				    u8 *raw_packet, bool add)
 
 307{
 308	return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309}
 310
 311#define I40E_IP_DUMMY_PACKET_LEN 34
 
 312/**
 313 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 314 * a specific flow spec
 315 * @vsi: pointer to the targeted VSI
 316 * @fd_data: the flow director data required for the FDir descriptor
 317 * @raw_packet: the pre-allocated packet buffer for FDir
 318 * @add: true adds a filter, false removes it
 
 319 *
 320 * Returns 0 if the filters were successfully added or removed
 321 **/
 322static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 323				  struct i40e_fdir_filter *fd_data,
 324				  u8 *raw_packet, bool add)
 
 325{
 326	struct i40e_pf *pf = vsi->back;
 327	struct iphdr *ip;
 328	bool err = false;
 
 
 329	int ret;
 330	int i;
 331	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 332		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 333		0, 0, 0, 0};
 334
 335	memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 336	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 337
 338	ip->saddr = fd_data->src_ip[0];
 339	ip->daddr = fd_data->dst_ip[0];
 340	ip->protocol = 0;
 341
 342	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 343	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
 344		fd_data->pctype = i;
 345		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 346
 347		if (ret) {
 348			dev_info(&pf->pdev->dev,
 349				 "Filter command send failed for PCTYPE %d (ret = %d)\n",
 350				 fd_data->pctype, ret);
 351			err = true;
 352		} else {
 353			dev_info(&pf->pdev->dev,
 354				 "Filter OK for PCTYPE %d (ret = %d)\n",
 355				 fd_data->pctype, ret);
 356		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357	}
 358
 359	return err ? -EOPNOTSUPP : 0;
 
 
 
 
 
 
 360}
 361
 362/**
 363 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 364 * @vsi: pointer to the targeted VSI
 365 * @cmd: command to get or set RX flow classification rules
 366 * @add: true adds a filter, false removes it
 367 *
 368 **/
 369int i40e_add_del_fdir(struct i40e_vsi *vsi,
 370		      struct i40e_fdir_filter *input, bool add)
 371{
 
 372	struct i40e_pf *pf = vsi->back;
 373	u8 *raw_packet;
 374	int ret;
 375
 376	/* Populate the Flow Director that we have at the moment
 377	 * and allocate the raw packet buffer for the calling functions
 378	 */
 379	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 380	if (!raw_packet)
 381		return -ENOMEM;
 382
 383	switch (input->flow_type & ~FLOW_EXT) {
 384	case TCP_V4_FLOW:
 385		ret = i40e_add_del_fdir_tcpv4(vsi, input, raw_packet,
 386					      add);
 387		break;
 388	case UDP_V4_FLOW:
 389		ret = i40e_add_del_fdir_udpv4(vsi, input, raw_packet,
 390					      add);
 391		break;
 392	case SCTP_V4_FLOW:
 393		ret = i40e_add_del_fdir_sctpv4(vsi, input, raw_packet,
 394					       add);
 395		break;
 396	case IPV4_FLOW:
 397		ret = i40e_add_del_fdir_ipv4(vsi, input, raw_packet,
 398					     add);
 
 
 
 
 
 399		break;
 400	case IP_USER_FLOW:
 401		switch (input->ip4_proto) {
 402		case IPPROTO_TCP:
 403			ret = i40e_add_del_fdir_tcpv4(vsi, input,
 404						      raw_packet, add);
 405			break;
 406		case IPPROTO_UDP:
 407			ret = i40e_add_del_fdir_udpv4(vsi, input,
 408						      raw_packet, add);
 409			break;
 410		case IPPROTO_SCTP:
 411			ret = i40e_add_del_fdir_sctpv4(vsi, input,
 412						       raw_packet, add);
 
 
 413			break;
 414		default:
 415			ret = i40e_add_del_fdir_ipv4(vsi, input,
 416						     raw_packet, add);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417			break;
 
 
 
 
 
 
 
 
 418		}
 419		break;
 420	default:
 421		dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
 422			 input->flow_type);
 423		ret = -EINVAL;
 424	}
 425
 426	kfree(raw_packet);
 
 
 
 
 
 427	return ret;
 428}
 429
 430/**
 431 * i40e_fd_handle_status - check the Programming Status for FD
 432 * @rx_ring: the Rx ring for this descriptor
 433 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 
 434 * @prog_id: the id originally used for programming
 435 *
 436 * This is used to verify if the FD programming or invalidation
 437 * requested by SW to the HW is successful or not and take actions accordingly.
 438 **/
 439static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 440				  union i40e_rx_desc *rx_desc, u8 prog_id)
 441{
 442	struct i40e_pf *pf = rx_ring->vsi->back;
 443	struct pci_dev *pdev = pf->pdev;
 
 444	u32 fcnt_prog, fcnt_avail;
 445	u32 error;
 446	u64 qw;
 447
 448	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 449	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 450		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 451
 452	if (error == (0x1 << I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 453		dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 454			 rx_desc->wb.qword0.hi_dword.fd_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455
 456		/* filter programming failed most likely due to table full */
 457		fcnt_prog = i40e_get_current_fd_count(pf);
 458		fcnt_avail = pf->hw.fdir_shared_filter_count +
 459						       pf->fdir_pf_filter_count;
 460
 461		/* If ATR is running fcnt_prog can quickly change,
 462		 * if we are very close to full, it makes sense to disable
 463		 * FD ATR/SB and then re-enable it when there is room.
 464		 */
 465		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 466			/* Turn off ATR first */
 467			if (pf->flags | I40E_FLAG_FD_ATR_ENABLED) {
 468				pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
 469				dev_warn(&pdev->dev, "FD filter space full, ATR for further flows will be turned off\n");
 470				pf->auto_disable_flags |=
 471						       I40E_FLAG_FD_ATR_ENABLED;
 472				pf->flags |= I40E_FLAG_FDIR_REQUIRES_REINIT;
 473			} else if (pf->flags | I40E_FLAG_FD_SB_ENABLED) {
 474				pf->flags &= ~I40E_FLAG_FD_SB_ENABLED;
 475				dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 476				pf->auto_disable_flags |=
 477							I40E_FLAG_FD_SB_ENABLED;
 478				pf->flags |= I40E_FLAG_FDIR_REQUIRES_REINIT;
 479			}
 480		} else {
 481			dev_info(&pdev->dev, "FD filter programming error\n");
 482		}
 483	} else if (error ==
 484			  (0x1 << I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 485		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 486			dev_info(&pdev->dev, "ntuple filter loc = %d, could not be removed\n",
 487				 rx_desc->wb.qword0.hi_dword.fd_id);
 488	}
 489}
 490
 491/**
 492 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 493 * @ring:      the ring that owns the buffer
 494 * @tx_buffer: the buffer to free
 495 **/
 496static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 497					    struct i40e_tx_buffer *tx_buffer)
 498{
 499	if (tx_buffer->skb) {
 500		dev_kfree_skb_any(tx_buffer->skb);
 
 
 
 
 
 501		if (dma_unmap_len(tx_buffer, len))
 502			dma_unmap_single(ring->dev,
 503					 dma_unmap_addr(tx_buffer, dma),
 504					 dma_unmap_len(tx_buffer, len),
 505					 DMA_TO_DEVICE);
 506	} else if (dma_unmap_len(tx_buffer, len)) {
 507		dma_unmap_page(ring->dev,
 508			       dma_unmap_addr(tx_buffer, dma),
 509			       dma_unmap_len(tx_buffer, len),
 510			       DMA_TO_DEVICE);
 511	}
 
 512	tx_buffer->next_to_watch = NULL;
 513	tx_buffer->skb = NULL;
 514	dma_unmap_len_set(tx_buffer, len, 0);
 515	/* tx_buffer must be completely set up in the transmit path */
 516}
 517
 518/**
 519 * i40e_clean_tx_ring - Free any empty Tx buffers
 520 * @tx_ring: ring to be cleaned
 521 **/
 522void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 523{
 524	unsigned long bi_size;
 525	u16 i;
 526
 527	/* ring already cleared, nothing to do */
 528	if (!tx_ring->tx_bi)
 529		return;
 
 
 
 530
 531	/* Free all the Tx ring sk_buffs */
 532	for (i = 0; i < tx_ring->count; i++)
 533		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
 
 
 534
 535	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 536	memset(tx_ring->tx_bi, 0, bi_size);
 537
 538	/* Zero out the descriptor ring */
 539	memset(tx_ring->desc, 0, tx_ring->size);
 540
 541	tx_ring->next_to_use = 0;
 542	tx_ring->next_to_clean = 0;
 543
 544	if (!tx_ring->netdev)
 545		return;
 546
 547	/* cleanup Tx queue statistics */
 548	netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
 549						  tx_ring->queue_index));
 550}
 551
 552/**
 553 * i40e_free_tx_resources - Free Tx resources per queue
 554 * @tx_ring: Tx descriptor ring for a specific queue
 555 *
 556 * Free all transmit software resources
 557 **/
 558void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 559{
 560	i40e_clean_tx_ring(tx_ring);
 561	kfree(tx_ring->tx_bi);
 562	tx_ring->tx_bi = NULL;
 563
 564	if (tx_ring->desc) {
 565		dma_free_coherent(tx_ring->dev, tx_ring->size,
 566				  tx_ring->desc, tx_ring->dma);
 567		tx_ring->desc = NULL;
 568	}
 569}
 570
 571/**
 572 * i40e_get_tx_pending - how many tx descriptors not processed
 573 * @tx_ring: the ring of descriptors
 
 574 *
 575 * Since there is no access to the ring head register
 576 * in XL710, we need to use our local copies
 577 **/
 578static u32 i40e_get_tx_pending(struct i40e_ring *ring)
 579{
 580	u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
 581			? ring->next_to_use
 582			: ring->next_to_use + ring->count);
 583	return ntu - ring->next_to_clean;
 584}
 585
 586/**
 587 * i40e_check_tx_hang - Is there a hang in the Tx queue
 588 * @tx_ring: the ring of descriptors
 589 **/
 590static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
 591{
 592	u32 tx_pending = i40e_get_tx_pending(tx_ring);
 593	bool ret = false;
 594
 595	clear_check_for_tx_hang(tx_ring);
 596
 597	/* Check for a hung queue, but be thorough. This verifies
 598	 * that a transmit has been completed since the previous
 599	 * check AND there is at least one packet pending. The
 600	 * ARMED bit is set to indicate a potential hang. The
 601	 * bit is cleared if a pause frame is received to remove
 602	 * false hang detection due to PFC or 802.3x frames. By
 603	 * requiring this to fail twice we avoid races with
 604	 * PFC clearing the ARMED bit and conditions where we
 605	 * run the check_tx_hang logic with a transmit completion
 606	 * pending but without time to complete it yet.
 607	 */
 608	if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
 609	    tx_pending) {
 610		/* make sure it is true for two checks in a row */
 611		ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
 612				       &tx_ring->state);
 613	} else {
 614		/* update completed stats and disarm the hang check */
 615		tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets;
 616		clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
 617	}
 618
 619	return ret;
 
 
 
 
 620}
 621
 622/**
 623 * i40e_get_head - Retrieve head from head writeback
 624 * @tx_ring:  tx ring to fetch head of
 625 *
 626 * Returns value of Tx ring head based on value stored
 627 * in head write-back location
 628 **/
 629static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
 630{
 631	void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
 
 
 
 632
 633	return le32_to_cpu(*(volatile __le32 *)head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634}
 635
 636/**
 637 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 638 * @tx_ring:  tx ring to clean
 639 * @budget:   how many cleans we're allowed
 
 
 640 *
 641 * Returns true if there's any budget left (e.g. the clean is finished)
 642 **/
 643static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
 
 
 644{
 645	u16 i = tx_ring->next_to_clean;
 646	struct i40e_tx_buffer *tx_buf;
 647	struct i40e_tx_desc *tx_head;
 648	struct i40e_tx_desc *tx_desc;
 649	unsigned int total_packets = 0;
 650	unsigned int total_bytes = 0;
 651
 652	tx_buf = &tx_ring->tx_bi[i];
 653	tx_desc = I40E_TX_DESC(tx_ring, i);
 654	i -= tx_ring->count;
 655
 656	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 657
 658	do {
 659		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 660
 661		/* if next_to_watch is not set then there is no work pending */
 662		if (!eop_desc)
 663			break;
 664
 665		/* prevent any other reads prior to eop_desc */
 666		read_barrier_depends();
 667
 
 668		/* we have caught up to head, no work left to do */
 669		if (tx_head == tx_desc)
 670			break;
 671
 672		/* clear next_to_watch to prevent false hangs */
 673		tx_buf->next_to_watch = NULL;
 674
 675		/* update the statistics for this packet */
 676		total_bytes += tx_buf->bytecount;
 677		total_packets += tx_buf->gso_segs;
 678
 679		/* free the skb */
 680		dev_kfree_skb_any(tx_buf->skb);
 
 
 
 681
 682		/* unmap skb header data */
 683		dma_unmap_single(tx_ring->dev,
 684				 dma_unmap_addr(tx_buf, dma),
 685				 dma_unmap_len(tx_buf, len),
 686				 DMA_TO_DEVICE);
 687
 688		/* clear tx_buffer data */
 689		tx_buf->skb = NULL;
 690		dma_unmap_len_set(tx_buf, len, 0);
 691
 692		/* unmap remaining buffers */
 693		while (tx_desc != eop_desc) {
 
 
 694
 695			tx_buf++;
 696			tx_desc++;
 697			i++;
 698			if (unlikely(!i)) {
 699				i -= tx_ring->count;
 700				tx_buf = tx_ring->tx_bi;
 701				tx_desc = I40E_TX_DESC(tx_ring, 0);
 702			}
 703
 704			/* unmap any remaining paged data */
 705			if (dma_unmap_len(tx_buf, len)) {
 706				dma_unmap_page(tx_ring->dev,
 707					       dma_unmap_addr(tx_buf, dma),
 708					       dma_unmap_len(tx_buf, len),
 709					       DMA_TO_DEVICE);
 710				dma_unmap_len_set(tx_buf, len, 0);
 711			}
 712		}
 713
 714		/* move us one more past the eop_desc for start of next pkt */
 715		tx_buf++;
 716		tx_desc++;
 717		i++;
 718		if (unlikely(!i)) {
 719			i -= tx_ring->count;
 720			tx_buf = tx_ring->tx_bi;
 721			tx_desc = I40E_TX_DESC(tx_ring, 0);
 722		}
 723
 
 
 724		/* update budget accounting */
 725		budget--;
 726	} while (likely(budget));
 727
 728	i += tx_ring->count;
 729	tx_ring->next_to_clean = i;
 730	u64_stats_update_begin(&tx_ring->syncp);
 731	tx_ring->stats.bytes += total_bytes;
 732	tx_ring->stats.packets += total_packets;
 733	u64_stats_update_end(&tx_ring->syncp);
 734	tx_ring->q_vector->tx.total_bytes += total_bytes;
 735	tx_ring->q_vector->tx.total_packets += total_packets;
 736
 737	if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
 738		/* schedule immediate reset if we believe we hung */
 739		dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
 740			 "  VSI                  <%d>\n"
 741			 "  Tx Queue             <%d>\n"
 742			 "  next_to_use          <%x>\n"
 743			 "  next_to_clean        <%x>\n",
 744			 tx_ring->vsi->seid,
 745			 tx_ring->queue_index,
 746			 tx_ring->next_to_use, i);
 747		dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
 748			 "  time_stamp           <%lx>\n"
 749			 "  jiffies              <%lx>\n",
 750			 tx_ring->tx_bi[i].time_stamp, jiffies);
 751
 752		netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 753
 754		dev_info(tx_ring->dev,
 755			 "tx hang detected on queue %d, resetting adapter\n",
 756			 tx_ring->queue_index);
 757
 758		tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
 
 759
 760		/* the adapter is about to reset, no point in enabling stuff */
 761		return true;
 762	}
 763
 764	netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
 765						      tx_ring->queue_index),
 766				  total_packets, total_bytes);
 767
 768#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
 769	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 770		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 771		/* Make sure that anybody stopping the queue after this
 772		 * sees the new next_to_clean.
 773		 */
 774		smp_mb();
 775		if (__netif_subqueue_stopped(tx_ring->netdev,
 776					     tx_ring->queue_index) &&
 777		   !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
 778			netif_wake_subqueue(tx_ring->netdev,
 779					    tx_ring->queue_index);
 780			++tx_ring->tx_stats.restart_queue;
 781		}
 782	}
 783
 784	return budget > 0;
 
 785}
 786
 787/**
 788 * i40e_set_new_dynamic_itr - Find new ITR level
 789 * @rc: structure containing ring performance data
 
 790 *
 791 * Stores a new ITR value based on packets and byte counts during
 792 * the last interrupt.  The advantage of per interrupt computation
 793 * is faster updates and more accurate ITR for the current traffic
 794 * pattern.  Constants in this function were computed based on
 795 * theoretical maximum wire speed and thresholds were set based on
 796 * testing data as well as attempting to minimize response time
 797 * while increasing bulk throughput.
 798 **/
 799static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
 
 800{
 801	enum i40e_latency_range new_latency_range = rc->latency_range;
 802	u32 new_itr = rc->itr;
 803	int bytes_per_int;
 
 
 804
 805	if (rc->total_packets == 0 || !rc->itr)
 806		return;
 807
 808	/* simple throttlerate management
 809	 *   0-10MB/s   lowest (100000 ints/s)
 810	 *  10-20MB/s   low    (20000 ints/s)
 811	 *  20-1249MB/s bulk   (8000 ints/s)
 812	 */
 813	bytes_per_int = rc->total_bytes / rc->itr;
 814	switch (rc->itr) {
 815	case I40E_LOWEST_LATENCY:
 816		if (bytes_per_int > 10)
 817			new_latency_range = I40E_LOW_LATENCY;
 818		break;
 819	case I40E_LOW_LATENCY:
 820		if (bytes_per_int > 20)
 821			new_latency_range = I40E_BULK_LATENCY;
 822		else if (bytes_per_int <= 10)
 823			new_latency_range = I40E_LOWEST_LATENCY;
 824		break;
 825	case I40E_BULK_LATENCY:
 826		if (bytes_per_int <= 20)
 827			rc->latency_range = I40E_LOW_LATENCY;
 828		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 829	}
 
 830
 831	switch (new_latency_range) {
 832	case I40E_LOWEST_LATENCY:
 833		new_itr = I40E_ITR_100K;
 
 
 
 
 
 
 
 
 
 
 834		break;
 835	case I40E_LOW_LATENCY:
 836		new_itr = I40E_ITR_20K;
 
 837		break;
 838	case I40E_BULK_LATENCY:
 839		new_itr = I40E_ITR_8K;
 
 840		break;
 841	default:
 
 
 842		break;
 843	}
 844
 845	if (new_itr != rc->itr) {
 846		/* do an exponential smoothing */
 847		new_itr = (10 * new_itr * rc->itr) /
 848			  ((9 * new_itr) + rc->itr);
 849		rc->itr = new_itr & I40E_MAX_ITR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850	}
 851
 
 
 
 
 
 
 
 852	rc->total_bytes = 0;
 853	rc->total_packets = 0;
 854}
 855
 
 
 
 
 
 856/**
 857 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
 858 * @q_vector: the vector to adjust
 
 
 
 859 **/
 860static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
 
 861{
 862	u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
 863	struct i40e_hw *hw = &q_vector->vsi->back->hw;
 864	u32 reg_addr;
 865	u16 old_itr;
 866
 867	reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
 868	old_itr = q_vector->rx.itr;
 869	i40e_set_new_dynamic_itr(&q_vector->rx);
 870	if (old_itr != q_vector->rx.itr)
 871		wr32(hw, reg_addr, q_vector->rx.itr);
 872
 873	reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
 874	old_itr = q_vector->tx.itr;
 875	i40e_set_new_dynamic_itr(&q_vector->tx);
 876	if (old_itr != q_vector->tx.itr)
 877		wr32(hw, reg_addr, q_vector->tx.itr);
 
 878}
 879
 880/**
 881 * i40e_clean_programming_status - clean the programming status descriptor
 882 * @rx_ring: the rx ring that has this descriptor
 883 * @rx_desc: the rx descriptor written back by HW
 
 884 *
 885 * Flow director should handle FD_FILTER_STATUS to check its filter programming
 886 * status being successful or not and take actions accordingly. FCoE should
 887 * handle its context/filter programming/invalidation status and take actions.
 888 *
 
 889 **/
 890static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
 891					  union i40e_rx_desc *rx_desc)
 892{
 893	u64 qw;
 894	u8 id;
 895
 896	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 897	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
 898		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
 899
 900	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
 901		i40e_fd_handle_status(rx_ring, rx_desc, id);
 902}
 903
 904/**
 905 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
 906 * @tx_ring: the tx ring to set up
 907 *
 908 * Return 0 on success, negative on error
 909 **/
 910int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
 911{
 912	struct device *dev = tx_ring->dev;
 913	int bi_size;
 914
 915	if (!dev)
 916		return -ENOMEM;
 917
 
 
 918	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 919	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 920	if (!tx_ring->tx_bi)
 921		goto err;
 922
 
 
 923	/* round up to nearest 4K */
 924	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
 925	/* add u32 for head writeback, align after this takes care of
 926	 * guaranteeing this is at least one cache line in size
 927	 */
 928	tx_ring->size += sizeof(u32);
 929	tx_ring->size = ALIGN(tx_ring->size, 4096);
 930	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 931					   &tx_ring->dma, GFP_KERNEL);
 932	if (!tx_ring->desc) {
 933		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 934			 tx_ring->size);
 935		goto err;
 936	}
 937
 938	tx_ring->next_to_use = 0;
 939	tx_ring->next_to_clean = 0;
 
 940	return 0;
 941
 942err:
 943	kfree(tx_ring->tx_bi);
 944	tx_ring->tx_bi = NULL;
 945	return -ENOMEM;
 946}
 947
 
 
 
 
 
 948/**
 949 * i40e_clean_rx_ring - Free Rx buffers
 950 * @rx_ring: ring to be cleaned
 951 **/
 952void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
 953{
 954	struct device *dev = rx_ring->dev;
 955	struct i40e_rx_buffer *rx_bi;
 956	unsigned long bi_size;
 957	u16 i;
 958
 959	/* ring already cleared, nothing to do */
 960	if (!rx_ring->rx_bi)
 961		return;
 962
 
 
 
 
 
 963	/* Free all the Rx ring sk_buffs */
 964	for (i = 0; i < rx_ring->count; i++) {
 965		rx_bi = &rx_ring->rx_bi[i];
 966		if (rx_bi->dma) {
 967			dma_unmap_single(dev,
 968					 rx_bi->dma,
 969					 rx_ring->rx_buf_len,
 970					 DMA_FROM_DEVICE);
 971			rx_bi->dma = 0;
 972		}
 973		if (rx_bi->skb) {
 974			dev_kfree_skb(rx_bi->skb);
 975			rx_bi->skb = NULL;
 976		}
 977		if (rx_bi->page) {
 978			if (rx_bi->page_dma) {
 979				dma_unmap_page(dev,
 980					       rx_bi->page_dma,
 981					       PAGE_SIZE / 2,
 982					       DMA_FROM_DEVICE);
 983				rx_bi->page_dma = 0;
 984			}
 985			__free_page(rx_bi->page);
 986			rx_bi->page = NULL;
 987			rx_bi->page_offset = 0;
 988		}
 989	}
 990
 991	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
 992	memset(rx_ring->rx_bi, 0, bi_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993
 994	/* Zero out the descriptor ring */
 995	memset(rx_ring->desc, 0, rx_ring->size);
 996
 
 997	rx_ring->next_to_clean = 0;
 
 998	rx_ring->next_to_use = 0;
 999}
1000
1001/**
1002 * i40e_free_rx_resources - Free Rx resources
1003 * @rx_ring: ring to clean the resources from
1004 *
1005 * Free all receive software resources
1006 **/
1007void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1008{
1009	i40e_clean_rx_ring(rx_ring);
 
 
 
1010	kfree(rx_ring->rx_bi);
1011	rx_ring->rx_bi = NULL;
1012
1013	if (rx_ring->desc) {
1014		dma_free_coherent(rx_ring->dev, rx_ring->size,
1015				  rx_ring->desc, rx_ring->dma);
1016		rx_ring->desc = NULL;
1017	}
1018}
1019
1020/**
1021 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1022 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1023 *
1024 * Returns 0 on success, negative on failure
1025 **/
1026int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1027{
1028	struct device *dev = rx_ring->dev;
1029	int bi_size;
1030
1031	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1032	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1033	if (!rx_ring->rx_bi)
1034		goto err;
1035
1036	/* Round up to nearest 4K */
1037	rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1038		? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1039		: rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1040	rx_ring->size = ALIGN(rx_ring->size, 4096);
1041	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1042					   &rx_ring->dma, GFP_KERNEL);
1043
1044	if (!rx_ring->desc) {
1045		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1046			 rx_ring->size);
1047		goto err;
1048	}
1049
 
1050	rx_ring->next_to_clean = 0;
 
1051	rx_ring->next_to_use = 0;
1052
 
 
 
 
 
 
 
1053	return 0;
1054err:
1055	kfree(rx_ring->rx_bi);
1056	rx_ring->rx_bi = NULL;
1057	return -ENOMEM;
1058}
1059
1060/**
1061 * i40e_release_rx_desc - Store the new tail and head values
1062 * @rx_ring: ring to bump
1063 * @val: new head index
1064 **/
1065static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1066{
1067	rx_ring->next_to_use = val;
 
 
 
 
1068	/* Force memory writes to complete before letting h/w
1069	 * know there are new descriptors to fetch.  (Only
1070	 * applicable for weak-ordered memory model archs,
1071	 * such as IA-64).
1072	 */
1073	wmb();
1074	writel(val, rx_ring->tail);
1075}
1076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077/**
1078 * i40e_alloc_rx_buffers - Replace used receive buffers; packet split
1079 * @rx_ring: ring to place buffers on
1080 * @cleaned_count: number of buffers to replace
 
 
1081 **/
1082void i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1083{
1084	u16 i = rx_ring->next_to_use;
1085	union i40e_rx_desc *rx_desc;
1086	struct i40e_rx_buffer *bi;
1087	struct sk_buff *skb;
1088
1089	/* do nothing if no valid netdev defined */
1090	if (!rx_ring->netdev || !cleaned_count)
1091		return;
 
 
 
1092
1093	while (cleaned_count--) {
1094		rx_desc = I40E_RX_DESC(rx_ring, i);
1095		bi = &rx_ring->rx_bi[i];
1096		skb = bi->skb;
1097
1098		if (!skb) {
1099			skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1100							rx_ring->rx_buf_len);
1101			if (!skb) {
1102				rx_ring->rx_stats.alloc_buff_failed++;
1103				goto no_buffers;
1104			}
1105			/* initialize queue mapping */
1106			skb_record_rx_queue(skb, rx_ring->queue_index);
1107			bi->skb = skb;
1108		}
1109
1110		if (!bi->dma) {
1111			bi->dma = dma_map_single(rx_ring->dev,
1112						 skb->data,
1113						 rx_ring->rx_buf_len,
1114						 DMA_FROM_DEVICE);
1115			if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1116				rx_ring->rx_stats.alloc_buff_failed++;
1117				bi->dma = 0;
1118				goto no_buffers;
1119			}
 
 
 
 
 
 
 
 
1120		}
1121
1122		if (ring_is_ps_enabled(rx_ring)) {
1123			if (!bi->page) {
1124				bi->page = alloc_page(GFP_ATOMIC);
1125				if (!bi->page) {
1126					rx_ring->rx_stats.alloc_page_failed++;
1127					goto no_buffers;
1128				}
1129			}
1130
1131			if (!bi->page_dma) {
1132				/* use a half page if we're re-using */
1133				bi->page_offset ^= PAGE_SIZE / 2;
1134				bi->page_dma = dma_map_page(rx_ring->dev,
1135							    bi->page,
1136							    bi->page_offset,
1137							    PAGE_SIZE / 2,
1138							    DMA_FROM_DEVICE);
1139				if (dma_mapping_error(rx_ring->dev,
1140						      bi->page_dma)) {
1141					rx_ring->rx_stats.alloc_page_failed++;
1142					bi->page_dma = 0;
1143					goto no_buffers;
1144				}
1145			}
1146
1147			/* Refresh the desc even if buffer_addrs didn't change
1148			 * because each write-back erases this info.
1149			 */
1150			rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1151			rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1152		} else {
1153			rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1154			rx_desc->read.hdr_addr = 0;
1155		}
1156		i++;
1157		if (i == rx_ring->count)
1158			i = 0;
1159	}
1160
1161no_buffers:
1162	if (rx_ring->next_to_use != i)
1163		i40e_release_rx_desc(rx_ring, i);
1164}
1165
1166/**
1167 * i40e_receive_skb - Send a completed packet up the stack
1168 * @rx_ring:  rx ring in play
1169 * @skb: packet to send up
1170 * @vlan_tag: vlan tag for packet
1171 **/
1172static void i40e_receive_skb(struct i40e_ring *rx_ring,
1173			     struct sk_buff *skb, u16 vlan_tag)
1174{
1175	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1176	struct i40e_vsi *vsi = rx_ring->vsi;
1177	u64 flags = vsi->back->flags;
1178
1179	if (vlan_tag & VLAN_VID_MASK)
1180		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1181
1182	if (flags & I40E_FLAG_IN_NETPOLL)
1183		netif_rx(skb);
1184	else
1185		napi_gro_receive(&q_vector->napi, skb);
1186}
1187
1188/**
1189 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1190 * @vsi: the VSI we care about
1191 * @skb: skb currently being received and modified
1192 * @rx_status: status value of last descriptor in packet
1193 * @rx_error: error value of last descriptor in packet
1194 * @rx_ptype: ptype value of last descriptor in packet
1195 **/
1196static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1197				    struct sk_buff *skb,
1198				    u32 rx_status,
1199				    u32 rx_error,
1200				    u16 rx_ptype)
1201{
1202	bool ipv4_tunnel, ipv6_tunnel;
1203	__wsum rx_udp_csum;
1204	__sum16 csum;
1205	struct iphdr *iph;
1206
1207	ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1208		      (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1209	ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1210		      (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1211
1212	skb->encapsulation = ipv4_tunnel || ipv6_tunnel;
1213	skb->ip_summed = CHECKSUM_NONE;
1214
 
 
1215	/* Rx csum enabled and ip headers found? */
1216	if (!(vsi->netdev->features & NETIF_F_RXCSUM &&
1217	      rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
 
 
 
 
 
 
 
1218		return;
1219
 
 
 
 
 
 
 
 
 
 
1220	/* likely incorrect csum if alternate IP extension headers found */
1221	if (rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
 
 
1222		return;
1223
1224	/* IP or L4 or outmost IP checksum error */
1225	if (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
1226			(1 << I40E_RX_DESC_ERROR_L4E_SHIFT) |
1227			(1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))) {
1228		vsi->back->hw_csum_rx_error++;
 
 
 
 
1229		return;
1230	}
1231
1232	if (ipv4_tunnel &&
1233	    !(rx_status & (1 << I40E_RX_DESC_STATUS_UDP_0_SHIFT))) {
1234		/* If VXLAN traffic has an outer UDPv4 checksum we need to check
1235		 * it in the driver, hardware does not do it for us.
1236		 * Since L3L4P bit was set we assume a valid IHL value (>=5)
1237		 * so the total length of IPv4 header is IHL*4 bytes
1238		 */
1239		skb->transport_header = skb->mac_header +
1240					sizeof(struct ethhdr) +
1241					(ip_hdr(skb)->ihl * 4);
1242
1243		/* Add 4 bytes for VLAN tagged packets */
1244		skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1245					  skb->protocol == htons(ETH_P_8021AD))
1246					  ? VLAN_HLEN : 0;
1247
1248		rx_udp_csum = udp_csum(skb);
1249		iph = ip_hdr(skb);
1250		csum = csum_tcpudp_magic(
1251				iph->saddr, iph->daddr,
1252				(skb->len - skb_transport_offset(skb)),
1253				IPPROTO_UDP, rx_udp_csum);
1254
1255		if (udp_hdr(skb)->check != csum) {
1256			vsi->back->hw_csum_rx_error++;
1257			return;
1258		}
 
 
 
 
 
1259	}
1260
1261	skb->ip_summed = CHECKSUM_UNNECESSARY;
1262}
1263
1264/**
1265 * i40e_rx_hash - returns the hash value from the Rx descriptor
1266 * @ring: descriptor ring
1267 * @rx_desc: specific descriptor
1268 **/
1269static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1270			       union i40e_rx_desc *rx_desc)
1271{
1272	const __le64 rss_mask =
1273		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1274			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1275
1276	if ((ring->netdev->features & NETIF_F_RXHASH) &&
1277	    (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1278		return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1279	else
1280		return 0;
1281}
1282
1283/**
1284 * i40e_ptype_to_hash - get a hash type
1285 * @ptype: the ptype value from the descriptor
1286 *
1287 * Returns a hash type to be used by skb_set_hash
1288 **/
1289static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1290{
1291	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1292
1293	if (!decoded.known)
1294		return PKT_HASH_TYPE_NONE;
1295
1296	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1297	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1298		return PKT_HASH_TYPE_L4;
1299	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1300		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1301		return PKT_HASH_TYPE_L3;
1302	else
1303		return PKT_HASH_TYPE_L2;
1304}
1305
1306/**
1307 * i40e_clean_rx_irq - Reclaim resources after receive completes
1308 * @rx_ring:  rx ring to clean
1309 * @budget:   how many cleans we're allowed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310 *
1311 * Returns true if there's any budget left (e.g. the clean is finished)
1312 **/
1313static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
 
1314{
1315	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1316	u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1317	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1318	const int current_node = numa_node_id();
1319	struct i40e_vsi *vsi = rx_ring->vsi;
1320	u16 i = rx_ring->next_to_clean;
1321	union i40e_rx_desc *rx_desc;
1322	u32 rx_error, rx_status;
1323	u8 rx_ptype;
1324	u64 qword;
 
 
 
 
 
 
 
 
 
 
 
 
1325
1326	if (budget <= 0)
1327		return 0;
 
 
 
 
1328
1329	rx_desc = I40E_RX_DESC(rx_ring, i);
1330	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1331	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1332		    I40E_RXD_QW1_STATUS_SHIFT;
1333
1334	while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1335		union i40e_rx_desc *next_rxd;
1336		struct i40e_rx_buffer *rx_bi;
1337		struct sk_buff *skb;
1338		u16 vlan_tag;
1339		if (i40e_rx_is_programming_status(qword)) {
1340			i40e_clean_programming_status(rx_ring, rx_desc);
1341			I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1342			goto next_desc;
1343		}
1344		rx_bi = &rx_ring->rx_bi[i];
1345		skb = rx_bi->skb;
1346		prefetch(skb->data);
1347
1348		rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1349				I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1350		rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1351				I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1352		rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1353			 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1354
1355		rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1356			   I40E_RXD_QW1_ERROR_SHIFT;
1357		rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1358		rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1359
1360		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1361			   I40E_RXD_QW1_PTYPE_SHIFT;
1362		rx_bi->skb = NULL;
1363
1364		/* This memory barrier is needed to keep us from reading
1365		 * any other fields out of the rx_desc until we know the
1366		 * STATUS_DD bit is set
1367		 */
1368		rmb();
1369
1370		/* Get the header and possibly the whole packet
1371		 * If this is an skb from previous receive dma will be 0
1372		 */
1373		if (rx_bi->dma) {
1374			u16 len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1375
1376			if (rx_hbo)
1377				len = I40E_RX_HDR_SIZE;
1378			else if (rx_sph)
1379				len = rx_header_len;
1380			else if (rx_packet_len)
1381				len = rx_packet_len;   /* 1buf/no split found */
1382			else
1383				len = rx_header_len;   /* split always mode */
1384
1385			skb_put(skb, len);
1386			dma_unmap_single(rx_ring->dev,
1387					 rx_bi->dma,
1388					 rx_ring->rx_buf_len,
1389					 DMA_FROM_DEVICE);
1390			rx_bi->dma = 0;
1391		}
1392
1393		/* Get the rest of the data if this was a header split */
1394		if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
1395
1396			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1397					   rx_bi->page,
1398					   rx_bi->page_offset,
1399					   rx_packet_len);
1400
1401			skb->len += rx_packet_len;
1402			skb->data_len += rx_packet_len;
1403			skb->truesize += rx_packet_len;
1404
1405			if ((page_count(rx_bi->page) == 1) &&
1406			    (page_to_nid(rx_bi->page) == current_node))
1407				get_page(rx_bi->page);
1408			else
1409				rx_bi->page = NULL;
1410
1411			dma_unmap_page(rx_ring->dev,
1412				       rx_bi->page_dma,
1413				       PAGE_SIZE / 2,
1414				       DMA_FROM_DEVICE);
1415			rx_bi->page_dma = 0;
1416		}
1417		I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1418
1419		if (unlikely(
1420		    !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1421			struct i40e_rx_buffer *next_buffer;
1422
1423			next_buffer = &rx_ring->rx_bi[i];
1424
1425			if (ring_is_ps_enabled(rx_ring)) {
1426				rx_bi->skb = next_buffer->skb;
1427				rx_bi->dma = next_buffer->dma;
1428				next_buffer->skb = skb;
1429				next_buffer->dma = 0;
1430			}
1431			rx_ring->rx_stats.non_eop_descs++;
1432			goto next_desc;
1433		}
1434
1435		/* ERR_MASK will only have valid bits if EOP set */
1436		if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1437			dev_kfree_skb_any(skb);
1438			goto next_desc;
1439		}
 
 
 
1440
1441		skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1442			     i40e_ptype_to_hash(rx_ptype));
1443		if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1444			i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1445					   I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1446					   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1447			rx_ring->last_rx_timestamp = jiffies;
1448		}
1449
1450		/* probably a little skewed due to removing CRC */
1451		total_rx_bytes += skb->len;
1452		total_rx_packets++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453
1454		skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1455
1456		i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
 
 
 
 
 
1457
1458		vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1459			 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1460			 : 0;
1461		i40e_receive_skb(rx_ring, skb, vlan_tag);
1462
1463		rx_ring->netdev->last_rx = jiffies;
1464		budget--;
1465next_desc:
1466		rx_desc->wb.qword1.status_error_len = 0;
1467		if (!budget)
1468			break;
 
 
1469
1470		cleaned_count++;
1471		/* return some buffers to hardware, one at a time is too slow */
1472		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1473			i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1474			cleaned_count = 0;
1475		}
 
 
 
 
 
1476
1477		/* use prefetched values */
1478		rx_desc = next_rxd;
1479		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1480		rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1481			    I40E_RXD_QW1_STATUS_SHIFT;
1482	}
1483
1484	rx_ring->next_to_clean = i;
1485	u64_stats_update_begin(&rx_ring->syncp);
1486	rx_ring->stats.packets += total_rx_packets;
1487	rx_ring->stats.bytes += total_rx_bytes;
1488	u64_stats_update_end(&rx_ring->syncp);
1489	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1490	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1491
1492	if (cleaned_count)
1493		i40e_alloc_rx_buffers(rx_ring, cleaned_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1494
1495	return budget > 0;
 
1496}
1497
1498/**
1499 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1500 * @napi: napi struct with our devices info in it
1501 * @budget: amount of work driver is allowed to do this pass, in packets
1502 *
1503 * This function will clean all queues associated with a q_vector.
1504 *
1505 * Returns the amount of work done
1506 **/
1507int i40e_napi_poll(struct napi_struct *napi, int budget)
1508{
1509	struct i40e_q_vector *q_vector =
1510			       container_of(napi, struct i40e_q_vector, napi);
1511	struct i40e_vsi *vsi = q_vector->vsi;
1512	struct i40e_ring *ring;
 
 
 
 
1513	bool clean_complete = true;
 
1514	int budget_per_ring;
 
1515
1516	if (test_bit(__I40E_DOWN, &vsi->state)) {
1517		napi_complete(napi);
1518		return 0;
1519	}
1520
1521	/* Since the actual Tx work is minimal, we can give the Tx a larger
1522	 * budget and be more aggressive about cleaning up the Tx descriptors.
1523	 */
1524	i40e_for_each_ring(ring, q_vector->tx)
1525		clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1526
1527	/* We attempt to distribute budget to each Rx queue fairly, but don't
1528	 * allow the budget to go below 1 because that would exit polling early.
1529	 */
1530	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
 
 
 
 
 
 
1531
1532	i40e_for_each_ring(ring, q_vector->rx)
1533		clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
 
 
 
 
 
 
 
 
 
 
 
 
1534
1535	/* If work not completed, return budget and polling will return */
1536	if (!clean_complete)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537		return budget;
 
1538
1539	/* Work is done so exit the polling mode and re-enable the interrupt */
1540	napi_complete(napi);
1541	if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1542	    ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1543		i40e_update_dynamic_itr(q_vector);
1544
1545	if (!test_bit(__I40E_DOWN, &vsi->state)) {
1546		if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1547			i40e_irq_dynamic_enable(vsi,
1548					q_vector->v_idx + vsi->base_vector);
1549		} else {
1550			struct i40e_hw *hw = &vsi->back->hw;
1551			/* We re-enable the queue 0 cause, but
1552			 * don't worry about dynamic_enable
1553			 * because we left it on for the other
1554			 * possible interrupts during napi
1555			 */
1556			u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
1557			qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1558			wr32(hw, I40E_QINT_RQCTL(0), qval);
1559
1560			qval = rd32(hw, I40E_QINT_TQCTL(0));
1561			qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1562			wr32(hw, I40E_QINT_TQCTL(0), qval);
1563
1564			i40e_irq_dynamic_enable_icr0(vsi->back);
1565		}
1566	}
 
 
1567
1568	return 0;
1569}
1570
1571/**
1572 * i40e_atr - Add a Flow Director ATR filter
1573 * @tx_ring:  ring to add programming descriptor to
1574 * @skb:      send buffer
1575 * @flags:    send flags
1576 * @protocol: wire protocol
1577 **/
1578static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1579		     u32 flags, __be16 protocol)
1580{
1581	struct i40e_filter_program_desc *fdir_desc;
1582	struct i40e_pf *pf = tx_ring->vsi->back;
1583	union {
1584		unsigned char *network;
1585		struct iphdr *ipv4;
1586		struct ipv6hdr *ipv6;
1587	} hdr;
1588	struct tcphdr *th;
1589	unsigned int hlen;
1590	u32 flex_ptype, dtype_cmd;
 
1591	u16 i;
1592
1593	/* make sure ATR is enabled */
1594	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
 
 
 
1595		return;
1596
1597	/* if sampling is disabled do nothing */
1598	if (!tx_ring->atr_sample_rate)
1599		return;
1600
 
 
 
 
1601	/* snag network header to get L4 type and address */
1602	hdr.network = skb_network_header(skb);
 
1603
1604	/* Currently only IPv4/IPv6 with TCP is supported */
1605	if (protocol == htons(ETH_P_IP)) {
1606		if (hdr.ipv4->protocol != IPPROTO_TCP)
1607			return;
1608
1609		/* access ihl as a u8 to avoid unaligned access on ia64 */
1610		hlen = (hdr.network[0] & 0x0F) << 2;
1611	} else if (protocol == htons(ETH_P_IPV6)) {
1612		if (hdr.ipv6->nexthdr != IPPROTO_TCP)
1613			return;
 
 
 
 
 
 
 
 
 
1614
1615		hlen = sizeof(struct ipv6hdr);
1616	} else {
1617		return;
1618	}
1619
1620	th = (struct tcphdr *)(hdr.network + hlen);
1621
1622	/* Due to lack of space, no more new filters can be programmed */
1623	if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1624		return;
 
 
 
 
 
 
 
1625
1626	tx_ring->atr_count++;
1627
1628	/* sample on all syn/fin/rst packets or once every atr sample rate */
1629	if (!th->fin &&
1630	    !th->syn &&
1631	    !th->rst &&
1632	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
1633		return;
1634
1635	tx_ring->atr_count = 0;
1636
1637	/* grab the next descriptor */
1638	i = tx_ring->next_to_use;
1639	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
1640
1641	i++;
1642	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1643
1644	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
1645		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
1646	flex_ptype |= (protocol == htons(ETH_P_IP)) ?
1647		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
1648		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
1649		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
1650		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
1651
1652	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
1653
1654	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
1655
1656	dtype_cmd |= (th->fin || th->rst) ?
1657		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
1658		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
1659		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
1660		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
1661
1662	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
1663		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
1664
1665	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
1666		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
1667
 
 
 
 
 
 
 
 
 
 
 
 
 
1668	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
 
1669	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
 
1670}
1671
1672/**
1673 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1674 * @skb:     send buffer
1675 * @tx_ring: ring to send buffer on
1676 * @flags:   the tx flags to be set
1677 *
1678 * Checks the skb and set up correspondingly several generic transmit flags
1679 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1680 *
1681 * Returns error code indicate the frame should be dropped upon error and the
1682 * otherwise  returns 0 to indicate the flags has been set properly.
1683 **/
1684static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1685				      struct i40e_ring *tx_ring,
1686				      u32 *flags)
1687{
1688	__be16 protocol = skb->protocol;
1689	u32  tx_flags = 0;
1690
 
 
 
 
 
 
 
 
 
 
 
 
 
1691	/* if we have a HW VLAN tag being added, default to the HW one */
1692	if (vlan_tx_tag_present(skb)) {
1693		tx_flags |= vlan_tx_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1694		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1695	/* else if it is a SW VLAN, check the next protocol and store the tag */
1696	} else if (protocol == htons(ETH_P_8021Q)) {
1697		struct vlan_hdr *vhdr, _vhdr;
 
1698		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1699		if (!vhdr)
1700			return -EINVAL;
1701
1702		protocol = vhdr->h_vlan_encapsulated_proto;
1703		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1704		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1705	}
1706
 
 
 
1707	/* Insert 802.1p priority into VLAN header */
1708	if ((tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED) &&
1709	    ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
1710	     (skb->priority != TC_PRIO_CONTROL))) {
1711		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
1712		tx_flags |= (skb->priority & 0x7) <<
1713				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
1714		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
1715			struct vlan_ethhdr *vhdr;
1716			int rc;
1717
1718			rc = skb_cow_head(skb, 0);
1719			if (rc < 0)
1720				return rc;
1721			vhdr = (struct vlan_ethhdr *)skb->data;
1722			vhdr->h_vlan_TCI = htons(tx_flags >>
1723						 I40E_TX_FLAGS_VLAN_SHIFT);
1724		} else {
1725			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1726		}
1727	}
 
 
1728	*flags = tx_flags;
1729	return 0;
1730}
1731
1732/**
1733 * i40e_tso - set up the tso context descriptor
1734 * @tx_ring:  ptr to the ring to send
1735 * @skb:      ptr to the skb we're sending
1736 * @tx_flags: the collected send information
1737 * @protocol: the send protocol
1738 * @hdr_len:  ptr to the size of the packet header
1739 * @cd_tunneling: ptr to context descriptor bits
1740 *
1741 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1742 **/
1743static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1744		    u32 tx_flags, __be16 protocol, u8 *hdr_len,
1745		    u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1746{
1747	u32 cd_cmd, cd_tso_len, cd_mss;
1748	struct ipv6hdr *ipv6h;
1749	struct tcphdr *tcph;
1750	struct iphdr *iph;
1751	u32 l4len;
 
 
 
 
 
 
 
 
 
1752	int err;
1753
 
 
 
1754	if (!skb_is_gso(skb))
1755		return 0;
1756
1757	err = skb_cow_head(skb, 0);
1758	if (err < 0)
1759		return err;
1760
1761	if (protocol == htons(ETH_P_IP)) {
1762		iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1763		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1764		iph->tot_len = 0;
1765		iph->check = 0;
1766		tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1767						 0, IPPROTO_TCP, 0);
1768	} else if (skb_is_gso_v6(skb)) {
1769
1770		ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb)
1771					   : ipv6_hdr(skb);
1772		tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1773		ipv6h->payload_len = 0;
1774		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1775					       0, IPPROTO_TCP, 0);
1776	}
1777
1778	l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1779	*hdr_len = (skb->encapsulation
1780		    ? (skb_inner_transport_header(skb) - skb->data)
1781		    : skb_transport_offset(skb)) + l4len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782
1783	/* find the field values */
1784	cd_cmd = I40E_TX_CTX_DESC_TSO;
1785	cd_tso_len = skb->len - *hdr_len;
1786	cd_mss = skb_shinfo(skb)->gso_size;
1787	*cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1788				((u64)cd_tso_len <<
1789				 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1790				((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1791	return 1;
1792}
1793
1794/**
1795 * i40e_tsyn - set up the tsyn context descriptor
1796 * @tx_ring:  ptr to the ring to send
1797 * @skb:      ptr to the skb we're sending
1798 * @tx_flags: the collected send information
 
1799 *
1800 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
1801 **/
1802static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
1803		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
1804{
1805	struct i40e_pf *pf;
1806
1807	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
1808		return 0;
1809
1810	/* Tx timestamps cannot be sampled when doing TSO */
1811	if (tx_flags & I40E_TX_FLAGS_TSO)
1812		return 0;
1813
1814	/* only timestamp the outbound packet if the user has requested it and
1815	 * we are not already transmitting a packet to be timestamped
1816	 */
1817	pf = i40e_netdev_to_pf(tx_ring->netdev);
1818	if (pf->ptp_tx && !pf->ptp_tx_skb) {
 
 
 
 
1819		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 
1820		pf->ptp_tx_skb = skb_get(skb);
1821	} else {
 
1822		return 0;
1823	}
1824
1825	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
1826				I40E_TXD_CTX_QW1_CMD_SHIFT;
1827
1828	pf->ptp_tx_start = jiffies;
1829	schedule_work(&pf->ptp_tx_work);
1830
1831	return 1;
1832}
1833
1834/**
1835 * i40e_tx_enable_csum - Enable Tx checksum offloads
1836 * @skb: send buffer
1837 * @tx_flags: Tx flags currently set
1838 * @td_cmd: Tx descriptor command bits to set
1839 * @td_offset: Tx descriptor header offsets to set
 
1840 * @cd_tunneling: ptr to context desc bits
1841 **/
1842static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1843				u32 *td_cmd, u32 *td_offset,
1844				struct i40e_ring *tx_ring,
1845				u32 *cd_tunneling)
1846{
1847	struct ipv6hdr *this_ipv6_hdr;
1848	unsigned int this_tcp_hdrlen;
1849	struct iphdr *this_ip_hdr;
1850	u32 network_hdr_len;
1851	u8 l4_hdr = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852
1853	if (skb->encapsulation) {
1854		network_hdr_len = skb_inner_network_header_len(skb);
1855		this_ip_hdr = inner_ip_hdr(skb);
1856		this_ipv6_hdr = inner_ipv6_hdr(skb);
1857		this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1858
1859		if (tx_flags & I40E_TX_FLAGS_IPV4) {
1860
1861			if (tx_flags & I40E_TX_FLAGS_TSO) {
1862				*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1863				ip_hdr(skb)->check = 0;
1864			} else {
1865				*cd_tunneling |=
1866					 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1867			}
1868		} else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1869			if (tx_flags & I40E_TX_FLAGS_TSO) {
1870				*cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1871				ip_hdr(skb)->check = 0;
1872			} else {
1873				*cd_tunneling |=
1874					 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1875			}
1876		}
1877
1878		/* Now set the ctx descriptor fields */
1879		*cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1880					I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1881				   I40E_TXD_CTX_UDP_TUNNELING            |
1882				   ((skb_inner_network_offset(skb) -
1883					skb_transport_offset(skb)) >> 1) <<
1884				   I40E_TXD_CTX_QW0_NATLEN_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1885
1886	} else {
1887		network_hdr_len = skb_network_header_len(skb);
1888		this_ip_hdr = ip_hdr(skb);
1889		this_ipv6_hdr = ipv6_hdr(skb);
1890		this_tcp_hdrlen = tcp_hdrlen(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1891	}
1892
1893	/* Enable IP checksum offloads */
1894	if (tx_flags & I40E_TX_FLAGS_IPV4) {
1895		l4_hdr = this_ip_hdr->protocol;
1896		/* the stack computes the IP header already, the only time we
1897		 * need the hardware to recompute it is in the case of TSO.
1898		 */
1899		if (tx_flags & I40E_TX_FLAGS_TSO) {
1900			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1901			this_ip_hdr->check = 0;
1902		} else {
1903			*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1904		}
1905		/* Now set the td_offset for IP header length */
1906		*td_offset = (network_hdr_len >> 2) <<
1907			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1908	} else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1909		l4_hdr = this_ipv6_hdr->nexthdr;
1910		*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1911		/* Now set the td_offset for IP header length */
1912		*td_offset = (network_hdr_len >> 2) <<
1913			      I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1914	}
1915	/* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1916	*td_offset |= (skb_network_offset(skb) >> 1) <<
1917		       I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1918
1919	/* Enable L4 checksum offloads */
1920	switch (l4_hdr) {
1921	case IPPROTO_TCP:
1922		/* enable checksum offloads */
1923		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1924		*td_offset |= (this_tcp_hdrlen >> 2) <<
1925			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1926		break;
1927	case IPPROTO_SCTP:
1928		/* enable SCTP checksum offload */
1929		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1930		*td_offset |= (sizeof(struct sctphdr) >> 2) <<
1931			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1932		break;
1933	case IPPROTO_UDP:
1934		/* enable UDP checksum offload */
1935		*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1936		*td_offset |= (sizeof(struct udphdr) >> 2) <<
1937			       I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1938		break;
1939	default:
1940		break;
 
 
 
1941	}
 
 
 
 
 
1942}
1943
1944/**
1945 * i40e_create_tx_ctx Build the Tx context descriptor
1946 * @tx_ring:  ring to create the descriptor on
1947 * @cd_type_cmd_tso_mss: Quad Word 1
1948 * @cd_tunneling: Quad Word 0 - bits 0-31
1949 * @cd_l2tag2: Quad Word 0 - bits 32-63
1950 **/
1951static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1952			       const u64 cd_type_cmd_tso_mss,
1953			       const u32 cd_tunneling, const u32 cd_l2tag2)
1954{
1955	struct i40e_tx_context_desc *context_desc;
1956	int i = tx_ring->next_to_use;
1957
1958	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1959	    !cd_tunneling && !cd_l2tag2)
1960		return;
1961
1962	/* grab the next descriptor */
1963	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1964
1965	i++;
1966	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1967
1968	/* cpu_to_le32 and assign to struct fields */
1969	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1970	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
 
1971	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1972}
1973
1974/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1975 * i40e_tx_map - Build the Tx descriptor
1976 * @tx_ring:  ring to send buffer on
1977 * @skb:      send buffer
1978 * @first:    first buffer info buffer to use
1979 * @tx_flags: collected send information
1980 * @hdr_len:  size of the packet header
1981 * @td_cmd:   the command field in the descriptor
1982 * @td_offset: offset for checksum or crc
 
 
1983 **/
1984static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1985			struct i40e_tx_buffer *first, u32 tx_flags,
1986			const u8 hdr_len, u32 td_cmd, u32 td_offset)
1987{
1988	unsigned int data_len = skb->data_len;
1989	unsigned int size = skb_headlen(skb);
1990	struct skb_frag_struct *frag;
1991	struct i40e_tx_buffer *tx_bi;
1992	struct i40e_tx_desc *tx_desc;
1993	u16 i = tx_ring->next_to_use;
1994	u32 td_tag = 0;
1995	dma_addr_t dma;
1996	u16 gso_segs;
1997
1998	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1999		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2000		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2001			 I40E_TX_FLAGS_VLAN_SHIFT;
2002	}
2003
2004	if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2005		gso_segs = skb_shinfo(skb)->gso_segs;
2006	else
2007		gso_segs = 1;
2008
2009	/* multiply data chunks by size of headers */
2010	first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2011	first->gso_segs = gso_segs;
2012	first->skb = skb;
2013	first->tx_flags = tx_flags;
2014
2015	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2016
2017	tx_desc = I40E_TX_DESC(tx_ring, i);
2018	tx_bi = first;
2019
2020	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 
 
2021		if (dma_mapping_error(tx_ring->dev, dma))
2022			goto dma_error;
2023
2024		/* record length, and DMA address */
2025		dma_unmap_len_set(tx_bi, len, size);
2026		dma_unmap_addr_set(tx_bi, dma, dma);
2027
 
 
2028		tx_desc->buffer_addr = cpu_to_le64(dma);
2029
2030		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2031			tx_desc->cmd_type_offset_bsz =
2032				build_ctob(td_cmd, td_offset,
2033					   I40E_MAX_DATA_PER_TXD, td_tag);
2034
2035			tx_desc++;
2036			i++;
 
 
2037			if (i == tx_ring->count) {
2038				tx_desc = I40E_TX_DESC(tx_ring, 0);
2039				i = 0;
2040			}
2041
2042			dma += I40E_MAX_DATA_PER_TXD;
2043			size -= I40E_MAX_DATA_PER_TXD;
2044
 
2045			tx_desc->buffer_addr = cpu_to_le64(dma);
2046		}
2047
2048		if (likely(!data_len))
2049			break;
2050
2051		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2052							  size, td_tag);
2053
2054		tx_desc++;
2055		i++;
 
 
2056		if (i == tx_ring->count) {
2057			tx_desc = I40E_TX_DESC(tx_ring, 0);
2058			i = 0;
2059		}
2060
2061		size = skb_frag_size(frag);
2062		data_len -= size;
2063
2064		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2065				       DMA_TO_DEVICE);
2066
2067		tx_bi = &tx_ring->tx_bi[i];
2068	}
2069
2070	/* Place RS bit on last descriptor of any packet that spans across the
2071	 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
 
 
 
 
 
 
 
 
 
 
 
 
 
2072	 */
2073#define WB_STRIDE 0x3
2074	if (((i & WB_STRIDE) != WB_STRIDE) &&
2075	    (first <= &tx_ring->tx_bi[i]) &&
2076	    (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
2077		tx_desc->cmd_type_offset_bsz =
2078			build_ctob(td_cmd, td_offset, size, td_tag) |
2079			cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
2080					 I40E_TXD_QW1_CMD_SHIFT);
2081	} else {
2082		tx_desc->cmd_type_offset_bsz =
2083			build_ctob(td_cmd, td_offset, size, td_tag) |
2084			cpu_to_le64((u64)I40E_TXD_CMD <<
2085					 I40E_TXD_QW1_CMD_SHIFT);
2086	}
2087
2088	netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2089						 tx_ring->queue_index),
2090			     first->bytecount);
2091
2092	/* set the timestamp */
2093	first->time_stamp = jiffies;
2094
2095	/* Force memory writes to complete before letting h/w
2096	 * know there are new descriptors to fetch.  (Only
2097	 * applicable for weak-ordered memory model archs,
2098	 * such as IA-64).
 
2099	 */
2100	wmb();
2101
2102	/* set next_to_watch value indicating a packet is present */
2103	first->next_to_watch = tx_desc;
2104
2105	i++;
2106	if (i == tx_ring->count)
2107		i = 0;
2108
2109	tx_ring->next_to_use = i;
2110
2111	/* notify HW of packet */
2112	writel(i, tx_ring->tail);
 
 
2113
2114	return;
2115
2116dma_error:
2117	dev_info(tx_ring->dev, "TX DMA map failed\n");
2118
2119	/* clear dma mappings for failed tx_bi map */
2120	for (;;) {
2121		tx_bi = &tx_ring->tx_bi[i];
2122		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2123		if (tx_bi == first)
2124			break;
2125		if (i == 0)
2126			i = tx_ring->count;
2127		i--;
2128	}
2129
2130	tx_ring->next_to_use = i;
 
 
2131}
2132
2133/**
2134 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2135 * @tx_ring: the ring to be checked
2136 * @size:    the size buffer we want to assure is available
2137 *
2138 * Returns -EBUSY if a stop is needed, else 0
2139 **/
2140static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2141{
2142	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2143	/* Memory barrier before checking head and tail */
2144	smp_mb();
 
 
 
 
2145
2146	/* Check again in a case another CPU has just made room available. */
2147	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2148		return -EBUSY;
2149
2150	/* A reprieve! - use start_queue because it doesn't call schedule */
2151	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2152	++tx_ring->tx_stats.restart_queue;
2153	return 0;
2154}
2155
2156/**
2157 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2158 * @tx_ring: the ring to be checked
2159 * @size:    the size buffer we want to assure is available
2160 *
2161 * Returns 0 if stop is not needed
2162 **/
2163static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2164{
2165	if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2166		return 0;
2167	return __i40e_maybe_stop_tx(tx_ring, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168}
2169
2170/**
2171 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2172 * @skb:     send buffer
2173 * @tx_ring: ring to send buffer on
2174 *
2175 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2176 * there is not enough descriptors available in this ring since we need at least
2177 * one descriptor.
2178 **/
2179static int i40e_xmit_descriptor_count(struct sk_buff *skb,
2180				      struct i40e_ring *tx_ring)
2181{
2182#if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
2183	unsigned int f;
2184#endif
2185	int count = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186
2187	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2188	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2189	 *       + 4 desc gap to avoid the cache line where head is,
2190	 *       + 1 desc for context descriptor,
2191	 * otherwise try next time
2192	 */
2193#if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
2194	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2195		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2196#else
2197	count += skb_shinfo(skb)->nr_frags;
2198#endif
2199	count += TXD_USE_COUNT(skb_headlen(skb));
2200	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2201		tx_ring->tx_stats.tx_busy++;
2202		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203	}
2204	return count;
 
2205}
2206
2207/**
2208 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2209 * @skb:     send buffer
2210 * @tx_ring: ring to send buffer on
2211 *
2212 * Returns NETDEV_TX_OK if sent, else an error code
2213 **/
2214static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2215					struct i40e_ring *tx_ring)
2216{
2217	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2218	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2219	struct i40e_tx_buffer *first;
2220	u32 td_offset = 0;
2221	u32 tx_flags = 0;
2222	__be16 protocol;
2223	u32 td_cmd = 0;
2224	u8 hdr_len = 0;
 
2225	int tsyn;
2226	int tso;
2227	if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2228		return NETDEV_TX_BUSY;
2229
2230	/* prepare the xmit flags */
2231	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2232		goto out_drop;
 
 
 
 
 
 
 
 
 
 
 
2233
2234	/* obtain protocol of skb */
2235	protocol = skb->protocol;
 
 
 
 
 
 
 
 
2236
2237	/* record the location of the first descriptor for this packet */
2238	first = &tx_ring->tx_bi[tx_ring->next_to_use];
 
 
 
2239
2240	/* setup IPv4/IPv6 offloads */
2241	if (protocol == htons(ETH_P_IP))
2242		tx_flags |= I40E_TX_FLAGS_IPV4;
2243	else if (protocol == htons(ETH_P_IPV6))
2244		tx_flags |= I40E_TX_FLAGS_IPV6;
2245
2246	tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
2247		       &cd_type_cmd_tso_mss, &cd_tunneling);
2248
2249	if (tso < 0)
2250		goto out_drop;
2251	else if (tso)
2252		tx_flags |= I40E_TX_FLAGS_TSO;
2253
2254	skb_tx_timestamp(skb);
 
 
 
 
2255
2256	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2257
2258	if (tsyn)
2259		tx_flags |= I40E_TX_FLAGS_TSYN;
2260
2261	/* always enable CRC insertion offload */
2262	td_cmd |= I40E_TX_DESC_CMD_ICRC;
2263
2264	/* Always offload the checksum, since it's in the data descriptor */
2265	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2266		tx_flags |= I40E_TX_FLAGS_CSUM;
2267
2268		i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
2269				    tx_ring, &cd_tunneling);
2270	}
2271
2272	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2273			   cd_tunneling, cd_l2tag2);
2274
2275	/* Add Flow Director ATR if it's enabled.
2276	 *
2277	 * NOTE: this must always be directly before the data descriptor.
2278	 */
2279	i40e_atr(tx_ring, skb, tx_flags, protocol);
2280
2281	i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2282		    td_cmd, td_offset);
2283
2284	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2285
2286	return NETDEV_TX_OK;
2287
2288out_drop:
2289	dev_kfree_skb_any(skb);
 
 
 
 
 
 
 
 
 
 
 
2290	return NETDEV_TX_OK;
2291}
2292
2293/**
2294 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2295 * @skb:    send buffer
2296 * @netdev: network interface device structure
2297 *
2298 * Returns NETDEV_TX_OK if sent, else an error code
2299 **/
2300netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2301{
2302	struct i40e_netdev_priv *np = netdev_priv(netdev);
2303	struct i40e_vsi *vsi = np->vsi;
2304	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2305
2306	/* hardware can't handle really short frames, hardware padding works
2307	 * beyond this point
2308	 */
2309	if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2310		if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2311			return NETDEV_TX_OK;
2312		skb->len = I40E_MIN_TX_LEN;
2313		skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2314	}
2315
2316	return i40e_xmit_frame_ring(skb, tx_ring);
 
 
 
2317}