Linux Audio

Check our new training course

Loading...
v6.8
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
 
  29#include <linux/rfkill.h>
  30#include <linux/debugfs.h>
  31#include <linux/crypto.h>
  32#include <linux/kcov.h>
  33#include <linux/property.h>
  34#include <linux/suspend.h>
  35#include <linux/wait.h>
  36#include <asm/unaligned.h>
  37
  38#include <net/bluetooth/bluetooth.h>
  39#include <net/bluetooth/hci_core.h>
  40#include <net/bluetooth/l2cap.h>
  41#include <net/bluetooth/mgmt.h>
  42
  43#include "hci_request.h"
  44#include "hci_debugfs.h"
  45#include "smp.h"
  46#include "leds.h"
  47#include "msft.h"
  48#include "aosp.h"
  49#include "hci_codec.h"
  50
  51static void hci_rx_work(struct work_struct *work);
  52static void hci_cmd_work(struct work_struct *work);
  53static void hci_tx_work(struct work_struct *work);
  54
  55/* HCI device list */
  56LIST_HEAD(hci_dev_list);
  57DEFINE_RWLOCK(hci_dev_list_lock);
  58
  59/* HCI callback list */
  60LIST_HEAD(hci_cb_list);
  61DEFINE_MUTEX(hci_cb_list_lock);
  62
  63/* HCI ID Numbering */
  64static DEFINE_IDA(hci_index_ida);
  65
  66static int hci_scan_req(struct hci_request *req, unsigned long opt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67{
  68	__u8 scan = opt;
  69
  70	BT_DBG("%s %x", req->hdev->name, scan);
  71
  72	/* Inquiry and Page scans */
  73	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
  74	return 0;
  75}
  76
  77static int hci_auth_req(struct hci_request *req, unsigned long opt)
  78{
  79	__u8 auth = opt;
  80
  81	BT_DBG("%s %x", req->hdev->name, auth);
  82
  83	/* Authentication */
  84	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
  85	return 0;
  86}
  87
  88static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
  89{
  90	__u8 encrypt = opt;
  91
  92	BT_DBG("%s %x", req->hdev->name, encrypt);
  93
  94	/* Encryption */
  95	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
  96	return 0;
  97}
  98
  99static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
 100{
 101	__le16 policy = cpu_to_le16(opt);
 102
 103	BT_DBG("%s %x", req->hdev->name, policy);
 104
 105	/* Default link policy */
 106	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 107	return 0;
 108}
 109
 110/* Get HCI device by index.
 111 * Device is held on return. */
 112struct hci_dev *hci_dev_get(int index)
 113{
 114	struct hci_dev *hdev = NULL, *d;
 115
 116	BT_DBG("%d", index);
 117
 118	if (index < 0)
 119		return NULL;
 120
 121	read_lock(&hci_dev_list_lock);
 122	list_for_each_entry(d, &hci_dev_list, list) {
 123		if (d->id == index) {
 124			hdev = hci_dev_hold(d);
 125			break;
 126		}
 127	}
 128	read_unlock(&hci_dev_list_lock);
 129	return hdev;
 130}
 131
 132/* ---- Inquiry support ---- */
 133
 134bool hci_discovery_active(struct hci_dev *hdev)
 135{
 136	struct discovery_state *discov = &hdev->discovery;
 137
 138	switch (discov->state) {
 139	case DISCOVERY_FINDING:
 140	case DISCOVERY_RESOLVING:
 141		return true;
 142
 143	default:
 144		return false;
 145	}
 146}
 147
 148void hci_discovery_set_state(struct hci_dev *hdev, int state)
 149{
 150	int old_state = hdev->discovery.state;
 151
 152	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
 153
 154	if (old_state == state)
 155		return;
 156
 157	hdev->discovery.state = state;
 158
 159	switch (state) {
 160	case DISCOVERY_STOPPED:
 161		hci_update_passive_scan(hdev);
 162
 163		if (old_state != DISCOVERY_STARTING)
 164			mgmt_discovering(hdev, 0);
 165		break;
 166	case DISCOVERY_STARTING:
 167		break;
 168	case DISCOVERY_FINDING:
 169		mgmt_discovering(hdev, 1);
 170		break;
 171	case DISCOVERY_RESOLVING:
 172		break;
 173	case DISCOVERY_STOPPING:
 174		break;
 175	}
 
 
 176}
 177
 178void hci_inquiry_cache_flush(struct hci_dev *hdev)
 179{
 180	struct discovery_state *cache = &hdev->discovery;
 181	struct inquiry_entry *p, *n;
 182
 183	list_for_each_entry_safe(p, n, &cache->all, all) {
 184		list_del(&p->all);
 185		kfree(p);
 186	}
 187
 188	INIT_LIST_HEAD(&cache->unknown);
 189	INIT_LIST_HEAD(&cache->resolve);
 190}
 191
 192struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
 193					       bdaddr_t *bdaddr)
 194{
 195	struct discovery_state *cache = &hdev->discovery;
 196	struct inquiry_entry *e;
 197
 198	BT_DBG("cache %p, %pMR", cache, bdaddr);
 199
 200	list_for_each_entry(e, &cache->all, all) {
 201		if (!bacmp(&e->data.bdaddr, bdaddr))
 202			return e;
 203	}
 204
 205	return NULL;
 206}
 207
 208struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
 209						       bdaddr_t *bdaddr)
 210{
 211	struct discovery_state *cache = &hdev->discovery;
 212	struct inquiry_entry *e;
 213
 214	BT_DBG("cache %p, %pMR", cache, bdaddr);
 215
 216	list_for_each_entry(e, &cache->unknown, list) {
 217		if (!bacmp(&e->data.bdaddr, bdaddr))
 218			return e;
 219	}
 220
 221	return NULL;
 222}
 223
 224struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
 225						       bdaddr_t *bdaddr,
 226						       int state)
 227{
 228	struct discovery_state *cache = &hdev->discovery;
 229	struct inquiry_entry *e;
 230
 231	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
 232
 233	list_for_each_entry(e, &cache->resolve, list) {
 234		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
 235			return e;
 236		if (!bacmp(&e->data.bdaddr, bdaddr))
 237			return e;
 238	}
 239
 240	return NULL;
 241}
 242
 243void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
 244				      struct inquiry_entry *ie)
 245{
 246	struct discovery_state *cache = &hdev->discovery;
 247	struct list_head *pos = &cache->resolve;
 248	struct inquiry_entry *p;
 249
 250	list_del(&ie->list);
 251
 252	list_for_each_entry(p, &cache->resolve, list) {
 253		if (p->name_state != NAME_PENDING &&
 254		    abs(p->data.rssi) >= abs(ie->data.rssi))
 255			break;
 256		pos = &p->list;
 257	}
 258
 259	list_add(&ie->list, pos);
 260}
 261
 262u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
 263			     bool name_known)
 264{
 265	struct discovery_state *cache = &hdev->discovery;
 266	struct inquiry_entry *ie;
 267	u32 flags = 0;
 268
 269	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
 270
 271	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
 272
 273	if (!data->ssp_mode)
 274		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 275
 276	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
 277	if (ie) {
 278		if (!ie->data.ssp_mode)
 279			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
 280
 281		if (ie->name_state == NAME_NEEDED &&
 282		    data->rssi != ie->data.rssi) {
 283			ie->data.rssi = data->rssi;
 284			hci_inquiry_cache_update_resolve(hdev, ie);
 285		}
 286
 287		goto update;
 288	}
 289
 290	/* Entry not in the cache. Add new one. */
 291	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
 292	if (!ie) {
 293		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 294		goto done;
 295	}
 296
 297	list_add(&ie->all, &cache->all);
 298
 299	if (name_known) {
 300		ie->name_state = NAME_KNOWN;
 301	} else {
 302		ie->name_state = NAME_NOT_KNOWN;
 303		list_add(&ie->list, &cache->unknown);
 304	}
 305
 306update:
 307	if (name_known && ie->name_state != NAME_KNOWN &&
 308	    ie->name_state != NAME_PENDING) {
 309		ie->name_state = NAME_KNOWN;
 310		list_del(&ie->list);
 311	}
 312
 313	memcpy(&ie->data, data, sizeof(*data));
 314	ie->timestamp = jiffies;
 315	cache->timestamp = jiffies;
 316
 317	if (ie->name_state == NAME_NOT_KNOWN)
 318		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
 319
 320done:
 321	return flags;
 322}
 323
 324static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
 325{
 326	struct discovery_state *cache = &hdev->discovery;
 327	struct inquiry_info *info = (struct inquiry_info *) buf;
 328	struct inquiry_entry *e;
 329	int copied = 0;
 330
 331	list_for_each_entry(e, &cache->all, all) {
 332		struct inquiry_data *data = &e->data;
 333
 334		if (copied >= num)
 335			break;
 336
 337		bacpy(&info->bdaddr, &data->bdaddr);
 338		info->pscan_rep_mode	= data->pscan_rep_mode;
 339		info->pscan_period_mode	= data->pscan_period_mode;
 340		info->pscan_mode	= data->pscan_mode;
 341		memcpy(info->dev_class, data->dev_class, 3);
 342		info->clock_offset	= data->clock_offset;
 343
 344		info++;
 345		copied++;
 346	}
 347
 348	BT_DBG("cache %p, copied %d", cache, copied);
 349	return copied;
 350}
 351
 352static int hci_inq_req(struct hci_request *req, unsigned long opt)
 353{
 354	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
 355	struct hci_dev *hdev = req->hdev;
 356	struct hci_cp_inquiry cp;
 357
 358	BT_DBG("%s", hdev->name);
 359
 360	if (test_bit(HCI_INQUIRY, &hdev->flags))
 361		return 0;
 362
 363	/* Start Inquiry */
 364	memcpy(&cp.lap, &ir->lap, 3);
 365	cp.length  = ir->length;
 366	cp.num_rsp = ir->num_rsp;
 367	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
 
 368
 369	return 0;
 
 
 
 370}
 371
 372int hci_inquiry(void __user *arg)
 373{
 374	__u8 __user *ptr = arg;
 375	struct hci_inquiry_req ir;
 376	struct hci_dev *hdev;
 377	int err = 0, do_inquiry = 0, max_rsp;
 378	long timeo;
 379	__u8 *buf;
 380
 381	if (copy_from_user(&ir, ptr, sizeof(ir)))
 382		return -EFAULT;
 383
 384	hdev = hci_dev_get(ir.dev_id);
 385	if (!hdev)
 386		return -ENODEV;
 387
 388	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 389		err = -EBUSY;
 390		goto done;
 391	}
 392
 393	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 394		err = -EOPNOTSUPP;
 395		goto done;
 396	}
 397
 398	if (hdev->dev_type != HCI_PRIMARY) {
 399		err = -EOPNOTSUPP;
 400		goto done;
 401	}
 402
 403	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 404		err = -EOPNOTSUPP;
 405		goto done;
 406	}
 407
 408	/* Restrict maximum inquiry length to 60 seconds */
 409	if (ir.length > 60) {
 410		err = -EINVAL;
 411		goto done;
 412	}
 413
 414	hci_dev_lock(hdev);
 415	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
 416	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
 417		hci_inquiry_cache_flush(hdev);
 418		do_inquiry = 1;
 419	}
 420	hci_dev_unlock(hdev);
 421
 422	timeo = ir.length * msecs_to_jiffies(2000);
 423
 424	if (do_inquiry) {
 425		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
 426				   timeo, NULL);
 427		if (err < 0)
 428			goto done;
 429
 430		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
 431		 * cleared). If it is interrupted by a signal, return -EINTR.
 432		 */
 433		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
 434				TASK_INTERRUPTIBLE)) {
 435			err = -EINTR;
 436			goto done;
 437		}
 438	}
 439
 440	/* for unlimited number of responses we will use buffer with
 441	 * 255 entries
 442	 */
 443	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
 444
 445	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
 446	 * copy it to the user space.
 447	 */
 448	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
 449	if (!buf) {
 450		err = -ENOMEM;
 451		goto done;
 452	}
 453
 454	hci_dev_lock(hdev);
 455	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
 456	hci_dev_unlock(hdev);
 457
 458	BT_DBG("num_rsp %d", ir.num_rsp);
 459
 460	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
 461		ptr += sizeof(ir);
 462		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
 463				 ir.num_rsp))
 464			err = -EFAULT;
 465	} else
 466		err = -EFAULT;
 467
 468	kfree(buf);
 469
 470done:
 471	hci_dev_put(hdev);
 472	return err;
 473}
 474
 475static int hci_dev_do_open(struct hci_dev *hdev)
 476{
 477	int ret = 0;
 478
 479	BT_DBG("%s %p", hdev->name, hdev);
 480
 481	hci_req_sync_lock(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482
 483	ret = hci_dev_open_sync(hdev);
 
 
 
 
 
 
 
 484
 485	hci_req_sync_unlock(hdev);
 
 486	return ret;
 487}
 488
 489/* ---- HCI ioctl helpers ---- */
 490
 491int hci_dev_open(__u16 dev)
 492{
 493	struct hci_dev *hdev;
 494	int err;
 495
 496	hdev = hci_dev_get(dev);
 497	if (!hdev)
 498		return -ENODEV;
 499
 500	/* Devices that are marked as unconfigured can only be powered
 501	 * up as user channel. Trying to bring them up as normal devices
 502	 * will result into a failure. Only user channel operation is
 503	 * possible.
 504	 *
 505	 * When this function is called for a user channel, the flag
 506	 * HCI_USER_CHANNEL will be set first before attempting to
 507	 * open the device.
 508	 */
 509	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
 510	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 511		err = -EOPNOTSUPP;
 512		goto done;
 513	}
 514
 515	/* We need to ensure that no other power on/off work is pending
 516	 * before proceeding to call hci_dev_do_open. This is
 517	 * particularly important if the setup procedure has not yet
 518	 * completed.
 519	 */
 520	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 521		cancel_delayed_work(&hdev->power_off);
 522
 523	/* After this call it is guaranteed that the setup procedure
 524	 * has finished. This means that error conditions like RFKILL
 525	 * or no valid public or static random address apply.
 526	 */
 527	flush_workqueue(hdev->req_workqueue);
 528
 529	/* For controllers not using the management interface and that
 530	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
 531	 * so that pairing works for them. Once the management interface
 532	 * is in use this bit will be cleared again and userspace has
 533	 * to explicitly enable it.
 534	 */
 535	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
 536	    !hci_dev_test_flag(hdev, HCI_MGMT))
 537		hci_dev_set_flag(hdev, HCI_BONDABLE);
 538
 539	err = hci_dev_do_open(hdev);
 540
 541done:
 542	hci_dev_put(hdev);
 
 543	return err;
 544}
 545
 546int hci_dev_do_close(struct hci_dev *hdev)
 547{
 548	int err;
 549
 550	BT_DBG("%s %p", hdev->name, hdev);
 551
 552	hci_req_sync_lock(hdev);
 553
 554	err = hci_dev_close_sync(hdev);
 
 555
 556	hci_req_sync_unlock(hdev);
 
 
 
 
 557
 558	return err;
 559}
 
 560
 561int hci_dev_close(__u16 dev)
 562{
 563	struct hci_dev *hdev;
 564	int err;
 
 
 565
 566	hdev = hci_dev_get(dev);
 567	if (!hdev)
 568		return -ENODEV;
 569
 570	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 571		err = -EBUSY;
 572		goto done;
 573	}
 574
 575	cancel_work_sync(&hdev->power_on);
 576	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
 577		cancel_delayed_work(&hdev->power_off);
 578
 579	err = hci_dev_do_close(hdev);
 
 
 
 
 580
 581done:
 582	hci_dev_put(hdev);
 583	return err;
 584}
 585
 586static int hci_dev_do_reset(struct hci_dev *hdev)
 587{
 588	int ret;
 589
 590	BT_DBG("%s %p", hdev->name, hdev);
 
 
 
 
 
 
 
 
 
 591
 592	hci_req_sync_lock(hdev);
 
 593
 594	/* Drop queues */
 595	skb_queue_purge(&hdev->rx_q);
 596	skb_queue_purge(&hdev->cmd_q);
 
 597
 598	/* Cancel these to avoid queueing non-chained pending work */
 599	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 600	/* Wait for
 601	 *
 602	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
 603	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
 604	 *
 605	 * inside RCU section to see the flag or complete scheduling.
 606	 */
 607	synchronize_rcu();
 608	/* Explicitly cancel works in case scheduled after setting the flag. */
 609	cancel_delayed_work(&hdev->cmd_timer);
 610	cancel_delayed_work(&hdev->ncmd_timer);
 611
 612	/* Avoid potential lockdep warnings from the *_flush() calls by
 613	 * ensuring the workqueue is empty up front.
 614	 */
 615	drain_workqueue(hdev->workqueue);
 616
 617	hci_dev_lock(hdev);
 618	hci_inquiry_cache_flush(hdev);
 619	hci_conn_hash_flush(hdev);
 620	hci_dev_unlock(hdev);
 621
 622	if (hdev->flush)
 623		hdev->flush(hdev);
 
 624
 625	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
 
 
 
 
 
 
 626
 627	atomic_set(&hdev->cmd_cnt, 1);
 628	hdev->acl_cnt = 0;
 629	hdev->sco_cnt = 0;
 630	hdev->le_cnt = 0;
 631	hdev->iso_cnt = 0;
 632
 633	ret = hci_reset_sync(hdev);
 
 
 634
 635	hci_req_sync_unlock(hdev);
 636	return ret;
 
 
 637}
 638
 639int hci_dev_reset(__u16 dev)
 640{
 641	struct hci_dev *hdev;
 642	int err;
 643
 644	hdev = hci_dev_get(dev);
 645	if (!hdev)
 646		return -ENODEV;
 647
 648	if (!test_bit(HCI_UP, &hdev->flags)) {
 649		err = -ENETDOWN;
 650		goto done;
 651	}
 652
 653	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 654		err = -EBUSY;
 655		goto done;
 656	}
 657
 658	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 659		err = -EOPNOTSUPP;
 660		goto done;
 661	}
 662
 663	err = hci_dev_do_reset(hdev);
 664
 665done:
 666	hci_dev_put(hdev);
 667	return err;
 668}
 669
 670int hci_dev_reset_stat(__u16 dev)
 671{
 672	struct hci_dev *hdev;
 673	int ret = 0;
 674
 675	hdev = hci_dev_get(dev);
 676	if (!hdev)
 677		return -ENODEV;
 678
 679	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 680		ret = -EBUSY;
 
 
 681		goto done;
 682	}
 683
 684	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 685		ret = -EOPNOTSUPP;
 686		goto done;
 687	}
 688
 689	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690
 691done:
 
 692	hci_dev_put(hdev);
 693	return ret;
 694}
 695
 696static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
 697{
 698	bool conn_changed, discov_changed;
 699
 700	BT_DBG("%s scan 0x%02x", hdev->name, scan);
 701
 702	if ((scan & SCAN_PAGE))
 703		conn_changed = !hci_dev_test_and_set_flag(hdev,
 704							  HCI_CONNECTABLE);
 705	else
 706		conn_changed = hci_dev_test_and_clear_flag(hdev,
 707							   HCI_CONNECTABLE);
 708
 709	if ((scan & SCAN_INQUIRY)) {
 710		discov_changed = !hci_dev_test_and_set_flag(hdev,
 711							    HCI_DISCOVERABLE);
 712	} else {
 713		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
 714		discov_changed = hci_dev_test_and_clear_flag(hdev,
 715							     HCI_DISCOVERABLE);
 716	}
 717
 718	if (!hci_dev_test_flag(hdev, HCI_MGMT))
 719		return;
 720
 721	if (conn_changed || discov_changed) {
 722		/* In case this was disabled through mgmt */
 723		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
 724
 725		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
 726			hci_update_adv_data(hdev, hdev->cur_adv_instance);
 727
 728		mgmt_new_settings(hdev);
 729	}
 
 730}
 731
 732int hci_dev_cmd(unsigned int cmd, void __user *arg)
 733{
 734	struct hci_dev *hdev;
 735	struct hci_dev_req dr;
 736	int err = 0;
 737
 738	if (copy_from_user(&dr, arg, sizeof(dr)))
 739		return -EFAULT;
 740
 741	hdev = hci_dev_get(dr.dev_id);
 742	if (!hdev)
 743		return -ENODEV;
 744
 745	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
 746		err = -EBUSY;
 747		goto done;
 748	}
 749
 750	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
 751		err = -EOPNOTSUPP;
 752		goto done;
 753	}
 754
 755	if (hdev->dev_type != HCI_PRIMARY) {
 756		err = -EOPNOTSUPP;
 757		goto done;
 758	}
 759
 760	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
 761		err = -EOPNOTSUPP;
 762		goto done;
 763	}
 764
 765	switch (cmd) {
 766	case HCISETAUTH:
 767		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 768				   HCI_INIT_TIMEOUT, NULL);
 769		break;
 770
 771	case HCISETENCRYPT:
 772		if (!lmp_encrypt_capable(hdev)) {
 773			err = -EOPNOTSUPP;
 774			break;
 775		}
 776
 777		if (!test_bit(HCI_AUTH, &hdev->flags)) {
 778			/* Auth must be enabled first */
 779			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
 780					   HCI_INIT_TIMEOUT, NULL);
 781			if (err)
 782				break;
 783		}
 784
 785		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
 786				   HCI_INIT_TIMEOUT, NULL);
 787		break;
 788
 789	case HCISETSCAN:
 790		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
 791				   HCI_INIT_TIMEOUT, NULL);
 792
 793		/* Ensure that the connectable and discoverable states
 794		 * get correctly modified as this was a non-mgmt change.
 795		 */
 796		if (!err)
 797			hci_update_passive_scan_state(hdev, dr.dev_opt);
 798		break;
 799
 800	case HCISETLINKPOL:
 801		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
 802				   HCI_INIT_TIMEOUT, NULL);
 803		break;
 804
 805	case HCISETLINKMODE:
 806		hdev->link_mode = ((__u16) dr.dev_opt) &
 807					(HCI_LM_MASTER | HCI_LM_ACCEPT);
 808		break;
 809
 810	case HCISETPTYPE:
 811		if (hdev->pkt_type == (__u16) dr.dev_opt)
 812			break;
 813
 814		hdev->pkt_type = (__u16) dr.dev_opt;
 815		mgmt_phy_configuration_changed(hdev, NULL);
 816		break;
 817
 818	case HCISETACLMTU:
 819		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
 820		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
 821		break;
 822
 823	case HCISETSCOMTU:
 824		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
 825		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
 826		break;
 827
 828	default:
 829		err = -EINVAL;
 830		break;
 831	}
 832
 833done:
 834	hci_dev_put(hdev);
 835	return err;
 836}
 837
 838int hci_get_dev_list(void __user *arg)
 839{
 840	struct hci_dev *hdev;
 841	struct hci_dev_list_req *dl;
 842	struct hci_dev_req *dr;
 843	int n = 0, size, err;
 844	__u16 dev_num;
 845
 846	if (get_user(dev_num, (__u16 __user *) arg))
 847		return -EFAULT;
 848
 849	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
 850		return -EINVAL;
 851
 852	size = sizeof(*dl) + dev_num * sizeof(*dr);
 853
 854	dl = kzalloc(size, GFP_KERNEL);
 855	if (!dl)
 856		return -ENOMEM;
 857
 858	dr = dl->dev_req;
 859
 860	read_lock(&hci_dev_list_lock);
 861	list_for_each_entry(hdev, &hci_dev_list, list) {
 862		unsigned long flags = hdev->flags;
 
 863
 864		/* When the auto-off is configured it means the transport
 865		 * is running, but in that case still indicate that the
 866		 * device is actually down.
 867		 */
 868		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 869			flags &= ~BIT(HCI_UP);
 870
 871		(dr + n)->dev_id  = hdev->id;
 872		(dr + n)->dev_opt = flags;
 873
 874		if (++n >= dev_num)
 875			break;
 876	}
 877	read_unlock(&hci_dev_list_lock);
 878
 879	dl->dev_num = n;
 880	size = sizeof(*dl) + n * sizeof(*dr);
 881
 882	err = copy_to_user(arg, dl, size);
 883	kfree(dl);
 884
 885	return err ? -EFAULT : 0;
 886}
 887
 888int hci_get_dev_info(void __user *arg)
 889{
 890	struct hci_dev *hdev;
 891	struct hci_dev_info di;
 892	unsigned long flags;
 893	int err = 0;
 894
 895	if (copy_from_user(&di, arg, sizeof(di)))
 896		return -EFAULT;
 897
 898	hdev = hci_dev_get(di.dev_id);
 899	if (!hdev)
 900		return -ENODEV;
 901
 902	/* When the auto-off is configured it means the transport
 903	 * is running, but in that case still indicate that the
 904	 * device is actually down.
 905	 */
 906	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
 907		flags = hdev->flags & ~BIT(HCI_UP);
 908	else
 909		flags = hdev->flags;
 910
 911	strcpy(di.name, hdev->name);
 912	di.bdaddr   = hdev->bdaddr;
 913	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
 914	di.flags    = flags;
 915	di.pkt_type = hdev->pkt_type;
 916	if (lmp_bredr_capable(hdev)) {
 917		di.acl_mtu  = hdev->acl_mtu;
 918		di.acl_pkts = hdev->acl_pkts;
 919		di.sco_mtu  = hdev->sco_mtu;
 920		di.sco_pkts = hdev->sco_pkts;
 921	} else {
 922		di.acl_mtu  = hdev->le_mtu;
 923		di.acl_pkts = hdev->le_pkts;
 924		di.sco_mtu  = 0;
 925		di.sco_pkts = 0;
 926	}
 927	di.link_policy = hdev->link_policy;
 928	di.link_mode   = hdev->link_mode;
 929
 930	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
 931	memcpy(&di.features, &hdev->features, sizeof(di.features));
 932
 933	if (copy_to_user(arg, &di, sizeof(di)))
 934		err = -EFAULT;
 935
 936	hci_dev_put(hdev);
 937
 938	return err;
 939}
 940
 941/* ---- Interface to HCI drivers ---- */
 942
 943static int hci_rfkill_set_block(void *data, bool blocked)
 944{
 945	struct hci_dev *hdev = data;
 946
 947	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
 948
 949	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
 950		return -EBUSY;
 951
 952	if (blocked) {
 953		hci_dev_set_flag(hdev, HCI_RFKILLED);
 954		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
 955		    !hci_dev_test_flag(hdev, HCI_CONFIG))
 956			hci_dev_do_close(hdev);
 957	} else {
 958		hci_dev_clear_flag(hdev, HCI_RFKILLED);
 959	}
 960
 961	return 0;
 962}
 963
 964static const struct rfkill_ops hci_rfkill_ops = {
 965	.set_block = hci_rfkill_set_block,
 966};
 967
 968static void hci_power_on(struct work_struct *work)
 969{
 970	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
 971	int err;
 972
 973	BT_DBG("%s", hdev->name);
 974
 975	if (test_bit(HCI_UP, &hdev->flags) &&
 976	    hci_dev_test_flag(hdev, HCI_MGMT) &&
 977	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
 978		cancel_delayed_work(&hdev->power_off);
 979		err = hci_powered_update_sync(hdev);
 980		mgmt_power_on(hdev, err);
 981		return;
 982	}
 983
 984	err = hci_dev_do_open(hdev);
 985	if (err < 0) {
 986		hci_dev_lock(hdev);
 987		mgmt_set_powered_failed(hdev, err);
 988		hci_dev_unlock(hdev);
 989		return;
 990	}
 991
 992	/* During the HCI setup phase, a few error conditions are
 993	 * ignored and they need to be checked now. If they are still
 994	 * valid, it is important to turn the device back off.
 995	 */
 996	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
 997	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
 998	    (hdev->dev_type == HCI_PRIMARY &&
 999	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1000	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1001		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1002		hci_dev_do_close(hdev);
1003	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1004		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1005				   HCI_AUTO_OFF_TIMEOUT);
1006	}
1007
1008	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1009		/* For unconfigured devices, set the HCI_RAW flag
1010		 * so that userspace can easily identify them.
1011		 */
1012		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1013			set_bit(HCI_RAW, &hdev->flags);
1014
1015		/* For fully configured devices, this will send
1016		 * the Index Added event. For unconfigured devices,
1017		 * it will send Unconfigued Index Added event.
1018		 *
1019		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1020		 * and no event will be send.
1021		 */
1022		mgmt_index_added(hdev);
1023	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1024		/* When the controller is now configured, then it
1025		 * is important to clear the HCI_RAW flag.
1026		 */
1027		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1028			clear_bit(HCI_RAW, &hdev->flags);
1029
1030		/* Powering on the controller with HCI_CONFIG set only
1031		 * happens with the transition from unconfigured to
1032		 * configured. This will send the Index Added event.
1033		 */
1034		mgmt_index_added(hdev);
1035	}
1036}
1037
1038static void hci_power_off(struct work_struct *work)
1039{
1040	struct hci_dev *hdev = container_of(work, struct hci_dev,
1041					    power_off.work);
1042
1043	BT_DBG("%s", hdev->name);
1044
1045	hci_dev_do_close(hdev);
1046}
1047
1048static void hci_error_reset(struct work_struct *work)
1049{
1050	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1051
1052	hci_dev_hold(hdev);
1053	BT_DBG("%s", hdev->name);
1054
1055	if (hdev->hw_error)
1056		hdev->hw_error(hdev, hdev->hw_error_code);
1057	else
1058		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1059
1060	if (!hci_dev_do_close(hdev))
1061		hci_dev_do_open(hdev);
1062
1063	hci_dev_put(hdev);
1064}
1065
1066void hci_uuids_clear(struct hci_dev *hdev)
1067{
1068	struct bt_uuid *uuid, *tmp;
1069
1070	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1071		list_del(&uuid->list);
1072		kfree(uuid);
1073	}
1074}
1075
1076void hci_link_keys_clear(struct hci_dev *hdev)
1077{
1078	struct link_key *key, *tmp;
 
 
 
 
 
1079
1080	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1081		list_del_rcu(&key->list);
1082		kfree_rcu(key, rcu);
1083	}
1084}
1085
1086void hci_smp_ltks_clear(struct hci_dev *hdev)
1087{
1088	struct smp_ltk *k, *tmp;
1089
1090	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1091		list_del_rcu(&k->list);
1092		kfree_rcu(k, rcu);
1093	}
1094}
1095
1096void hci_smp_irks_clear(struct hci_dev *hdev)
1097{
1098	struct smp_irk *k, *tmp;
1099
1100	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1101		list_del_rcu(&k->list);
1102		kfree_rcu(k, rcu);
1103	}
1104}
1105
1106void hci_blocked_keys_clear(struct hci_dev *hdev)
1107{
1108	struct blocked_key *b, *tmp;
1109
1110	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1111		list_del_rcu(&b->list);
1112		kfree_rcu(b, rcu);
1113	}
1114}
1115
1116bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1117{
1118	bool blocked = false;
1119	struct blocked_key *b;
1120
1121	rcu_read_lock();
1122	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1123		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1124			blocked = true;
1125			break;
1126		}
1127	}
1128
1129	rcu_read_unlock();
1130	return blocked;
1131}
1132
1133struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1134{
1135	struct link_key *k;
1136
1137	rcu_read_lock();
1138	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1139		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1140			rcu_read_unlock();
1141
1142			if (hci_is_blocked_key(hdev,
1143					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1144					       k->val)) {
1145				bt_dev_warn_ratelimited(hdev,
1146							"Link key blocked for %pMR",
1147							&k->bdaddr);
1148				return NULL;
1149			}
1150
1151			return k;
1152		}
1153	}
1154	rcu_read_unlock();
1155
1156	return NULL;
1157}
1158
1159static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1160			       u8 key_type, u8 old_key_type)
1161{
1162	/* Legacy key */
1163	if (key_type < 0x03)
1164		return true;
1165
1166	/* Debug keys are insecure so don't store them persistently */
1167	if (key_type == HCI_LK_DEBUG_COMBINATION)
1168		return false;
1169
1170	/* Changed combination key and there's no previous one */
1171	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1172		return false;
1173
1174	/* Security mode 3 case */
1175	if (!conn)
1176		return true;
1177
1178	/* BR/EDR key derived using SC from an LE link */
1179	if (conn->type == LE_LINK)
1180		return true;
1181
1182	/* Neither local nor remote side had no-bonding as requirement */
1183	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1184		return true;
1185
1186	/* Local side had dedicated bonding as requirement */
1187	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1188		return true;
1189
1190	/* Remote side had dedicated bonding as requirement */
1191	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1192		return true;
1193
1194	/* If none of the above criteria match, then don't store the key
1195	 * persistently */
1196	return false;
1197}
1198
1199static u8 ltk_role(u8 type)
1200{
1201	if (type == SMP_LTK)
1202		return HCI_ROLE_MASTER;
1203
1204	return HCI_ROLE_SLAVE;
1205}
1206
1207struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1208			     u8 addr_type, u8 role)
1209{
1210	struct smp_ltk *k;
1211
1212	rcu_read_lock();
1213	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1214		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1215			continue;
1216
1217		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1218			rcu_read_unlock();
1219
1220			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1221					       k->val)) {
1222				bt_dev_warn_ratelimited(hdev,
1223							"LTK blocked for %pMR",
1224							&k->bdaddr);
1225				return NULL;
1226			}
1227
 
 
 
 
 
 
 
 
 
1228			return k;
1229		}
1230	}
1231	rcu_read_unlock();
1232
1233	return NULL;
1234}
1235
1236struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1237{
1238	struct smp_irk *irk_to_return = NULL;
1239	struct smp_irk *irk;
1240
1241	rcu_read_lock();
1242	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1243		if (!bacmp(&irk->rpa, rpa)) {
1244			irk_to_return = irk;
1245			goto done;
1246		}
1247	}
1248
1249	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1250		if (smp_irk_matches(hdev, irk->val, rpa)) {
1251			bacpy(&irk->rpa, rpa);
1252			irk_to_return = irk;
1253			goto done;
1254		}
1255	}
1256
1257done:
1258	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1259						irk_to_return->val)) {
1260		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1261					&irk_to_return->bdaddr);
1262		irk_to_return = NULL;
1263	}
1264
1265	rcu_read_unlock();
1266
1267	return irk_to_return;
1268}
1269
1270struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1271				     u8 addr_type)
1272{
1273	struct smp_irk *irk_to_return = NULL;
1274	struct smp_irk *irk;
1275
1276	/* Identity Address must be public or static random */
1277	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1278		return NULL;
1279
1280	rcu_read_lock();
1281	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1282		if (addr_type == irk->addr_type &&
1283		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1284			irk_to_return = irk;
1285			goto done;
1286		}
1287	}
1288
1289done:
1290
1291	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1292						irk_to_return->val)) {
1293		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1294					&irk_to_return->bdaddr);
1295		irk_to_return = NULL;
1296	}
1297
1298	rcu_read_unlock();
1299
1300	return irk_to_return;
1301}
1302
1303struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1304				  bdaddr_t *bdaddr, u8 *val, u8 type,
1305				  u8 pin_len, bool *persistent)
1306{
1307	struct link_key *key, *old_key;
1308	u8 old_key_type;
 
1309
1310	old_key = hci_find_link_key(hdev, bdaddr);
1311	if (old_key) {
1312		old_key_type = old_key->type;
1313		key = old_key;
1314	} else {
1315		old_key_type = conn ? conn->key_type : 0xff;
1316		key = kzalloc(sizeof(*key), GFP_KERNEL);
1317		if (!key)
1318			return NULL;
1319		list_add_rcu(&key->list, &hdev->link_keys);
1320	}
1321
1322	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1323
1324	/* Some buggy controller combinations generate a changed
1325	 * combination key for legacy pairing even when there's no
1326	 * previous key */
1327	if (type == HCI_LK_CHANGED_COMBINATION &&
1328	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1329		type = HCI_LK_COMBINATION;
1330		if (conn)
1331			conn->key_type = type;
1332	}
1333
1334	bacpy(&key->bdaddr, bdaddr);
1335	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1336	key->pin_len = pin_len;
1337
1338	if (type == HCI_LK_CHANGED_COMBINATION)
1339		key->type = old_key_type;
1340	else
1341		key->type = type;
1342
1343	if (persistent)
1344		*persistent = hci_persistent_key(hdev, conn, type,
1345						 old_key_type);
 
1346
1347	return key;
 
 
 
 
 
1348}
1349
1350struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1351			    u8 addr_type, u8 type, u8 authenticated,
1352			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1353{
1354	struct smp_ltk *key, *old_key;
1355	u8 role = ltk_role(type);
1356
1357	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1358	if (old_key)
1359		key = old_key;
1360	else {
1361		key = kzalloc(sizeof(*key), GFP_KERNEL);
1362		if (!key)
1363			return NULL;
1364		list_add_rcu(&key->list, &hdev->long_term_keys);
1365	}
1366
1367	bacpy(&key->bdaddr, bdaddr);
1368	key->bdaddr_type = addr_type;
1369	memcpy(key->val, tk, sizeof(key->val));
1370	key->authenticated = authenticated;
1371	key->ediv = ediv;
1372	key->rand = rand;
1373	key->enc_size = enc_size;
1374	key->type = type;
1375
1376	return key;
1377}
1378
1379struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1380			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1381{
1382	struct smp_irk *irk;
1383
1384	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1385	if (!irk) {
1386		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1387		if (!irk)
1388			return NULL;
1389
1390		bacpy(&irk->bdaddr, bdaddr);
1391		irk->addr_type = addr_type;
1392
1393		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1394	}
1395
1396	memcpy(irk->val, val, 16);
1397	bacpy(&irk->rpa, rpa);
1398
1399	return irk;
1400}
1401
1402int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1403{
1404	struct link_key *key;
1405
1406	key = hci_find_link_key(hdev, bdaddr);
1407	if (!key)
1408		return -ENOENT;
1409
1410	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1411
1412	list_del_rcu(&key->list);
1413	kfree_rcu(key, rcu);
1414
1415	return 0;
1416}
1417
1418int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1419{
1420	struct smp_ltk *k, *tmp;
1421	int removed = 0;
1422
1423	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1424		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1425			continue;
1426
1427		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1428
1429		list_del_rcu(&k->list);
1430		kfree_rcu(k, rcu);
1431		removed++;
1432	}
1433
1434	return removed ? 0 : -ENOENT;
1435}
1436
1437void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1438{
1439	struct smp_irk *k, *tmp;
1440
1441	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1442		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1443			continue;
1444
1445		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1446
1447		list_del_rcu(&k->list);
1448		kfree_rcu(k, rcu);
1449	}
1450}
1451
1452bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1453{
1454	struct smp_ltk *k;
1455	struct smp_irk *irk;
1456	u8 addr_type;
1457
1458	if (type == BDADDR_BREDR) {
1459		if (hci_find_link_key(hdev, bdaddr))
1460			return true;
1461		return false;
1462	}
1463
1464	/* Convert to HCI addr type which struct smp_ltk uses */
1465	if (type == BDADDR_LE_PUBLIC)
1466		addr_type = ADDR_LE_DEV_PUBLIC;
1467	else
1468		addr_type = ADDR_LE_DEV_RANDOM;
1469
1470	irk = hci_get_irk(hdev, bdaddr, addr_type);
1471	if (irk) {
1472		bdaddr = &irk->bdaddr;
1473		addr_type = irk->addr_type;
1474	}
1475
1476	rcu_read_lock();
1477	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1478		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1479			rcu_read_unlock();
1480			return true;
1481		}
1482	}
1483	rcu_read_unlock();
1484
1485	return false;
1486}
1487
1488/* HCI command timer function */
1489static void hci_cmd_timeout(struct work_struct *work)
1490{
1491	struct hci_dev *hdev = container_of(work, struct hci_dev,
1492					    cmd_timer.work);
1493
1494	if (hdev->sent_cmd) {
1495		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1496		u16 opcode = __le16_to_cpu(sent->opcode);
1497
1498		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1499	} else {
1500		bt_dev_err(hdev, "command tx timeout");
1501	}
1502
1503	if (hdev->cmd_timeout)
1504		hdev->cmd_timeout(hdev);
1505
1506	atomic_set(&hdev->cmd_cnt, 1);
1507	queue_work(hdev->workqueue, &hdev->cmd_work);
1508}
1509
1510/* HCI ncmd timer function */
1511static void hci_ncmd_timeout(struct work_struct *work)
1512{
1513	struct hci_dev *hdev = container_of(work, struct hci_dev,
1514					    ncmd_timer.work);
1515
1516	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1517
1518	/* During HCI_INIT phase no events can be injected if the ncmd timer
1519	 * triggers since the procedure has its own timeout handling.
1520	 */
1521	if (test_bit(HCI_INIT, &hdev->flags))
1522		return;
1523
1524	/* This is an irrecoverable state, inject hardware error event */
1525	hci_reset_dev(hdev);
1526}
1527
1528struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1529					  bdaddr_t *bdaddr, u8 bdaddr_type)
1530{
1531	struct oob_data *data;
1532
1533	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1534		if (bacmp(bdaddr, &data->bdaddr) != 0)
1535			continue;
1536		if (data->bdaddr_type != bdaddr_type)
1537			continue;
1538		return data;
1539	}
1540
1541	return NULL;
1542}
1543
1544int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1545			       u8 bdaddr_type)
1546{
1547	struct oob_data *data;
1548
1549	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1550	if (!data)
1551		return -ENOENT;
1552
1553	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1554
1555	list_del(&data->list);
1556	kfree(data);
1557
1558	return 0;
1559}
1560
1561void hci_remote_oob_data_clear(struct hci_dev *hdev)
1562{
1563	struct oob_data *data, *n;
1564
1565	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1566		list_del(&data->list);
1567		kfree(data);
1568	}
1569}
1570
1571int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1572			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1573			    u8 *hash256, u8 *rand256)
1574{
1575	struct oob_data *data;
1576
1577	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1578	if (!data) {
1579		data = kmalloc(sizeof(*data), GFP_KERNEL);
1580		if (!data)
1581			return -ENOMEM;
1582
1583		bacpy(&data->bdaddr, bdaddr);
1584		data->bdaddr_type = bdaddr_type;
1585		list_add(&data->list, &hdev->remote_oob_data);
1586	}
1587
1588	if (hash192 && rand192) {
1589		memcpy(data->hash192, hash192, sizeof(data->hash192));
1590		memcpy(data->rand192, rand192, sizeof(data->rand192));
1591		if (hash256 && rand256)
1592			data->present = 0x03;
1593	} else {
1594		memset(data->hash192, 0, sizeof(data->hash192));
1595		memset(data->rand192, 0, sizeof(data->rand192));
1596		if (hash256 && rand256)
1597			data->present = 0x02;
1598		else
1599			data->present = 0x00;
1600	}
1601
1602	if (hash256 && rand256) {
1603		memcpy(data->hash256, hash256, sizeof(data->hash256));
1604		memcpy(data->rand256, rand256, sizeof(data->rand256));
1605	} else {
1606		memset(data->hash256, 0, sizeof(data->hash256));
1607		memset(data->rand256, 0, sizeof(data->rand256));
1608		if (hash192 && rand192)
1609			data->present = 0x01;
1610	}
1611
1612	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1613
1614	return 0;
1615}
1616
1617/* This function requires the caller holds hdev->lock */
1618struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
 
1619{
1620	struct adv_info *adv_instance;
1621
1622	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1623		if (adv_instance->instance == instance)
1624			return adv_instance;
1625	}
1626
1627	return NULL;
1628}
1629
1630/* This function requires the caller holds hdev->lock */
1631struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1632{
1633	struct adv_info *cur_instance;
1634
1635	cur_instance = hci_find_adv_instance(hdev, instance);
1636	if (!cur_instance)
1637		return NULL;
1638
1639	if (cur_instance == list_last_entry(&hdev->adv_instances,
1640					    struct adv_info, list))
1641		return list_first_entry(&hdev->adv_instances,
1642						 struct adv_info, list);
1643	else
1644		return list_next_entry(cur_instance, list);
1645}
1646
1647/* This function requires the caller holds hdev->lock */
1648int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1649{
1650	struct adv_info *adv_instance;
1651
1652	adv_instance = hci_find_adv_instance(hdev, instance);
1653	if (!adv_instance)
1654		return -ENOENT;
1655
1656	BT_DBG("%s removing %dMR", hdev->name, instance);
 
 
 
 
1657
1658	if (hdev->cur_adv_instance == instance) {
1659		if (hdev->adv_instance_timeout) {
1660			cancel_delayed_work(&hdev->adv_instance_expire);
1661			hdev->adv_instance_timeout = 0;
1662		}
1663		hdev->cur_adv_instance = 0x00;
1664	}
1665
1666	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
 
1667
1668	list_del(&adv_instance->list);
1669	kfree(adv_instance);
1670
1671	hdev->adv_instance_cnt--;
1672
1673	return 0;
1674}
1675
1676void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1677{
1678	struct adv_info *adv_instance, *n;
1679
1680	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1681		adv_instance->rpa_expired = rpa_expired;
1682}
1683
1684/* This function requires the caller holds hdev->lock */
1685void hci_adv_instances_clear(struct hci_dev *hdev)
1686{
1687	struct adv_info *adv_instance, *n;
1688
1689	if (hdev->adv_instance_timeout) {
1690		cancel_delayed_work(&hdev->adv_instance_expire);
1691		hdev->adv_instance_timeout = 0;
1692	}
1693
1694	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1695		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1696		list_del(&adv_instance->list);
1697		kfree(adv_instance);
1698	}
1699
1700	hdev->adv_instance_cnt = 0;
1701	hdev->cur_adv_instance = 0x00;
1702}
1703
1704static void adv_instance_rpa_expired(struct work_struct *work)
1705{
1706	struct adv_info *adv_instance = container_of(work, struct adv_info,
1707						     rpa_expired_cb.work);
1708
1709	BT_DBG("");
 
1710
1711	adv_instance->rpa_expired = true;
 
 
1712}
1713
1714/* This function requires the caller holds hdev->lock */
1715struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1716				      u32 flags, u16 adv_data_len, u8 *adv_data,
1717				      u16 scan_rsp_len, u8 *scan_rsp_data,
1718				      u16 timeout, u16 duration, s8 tx_power,
1719				      u32 min_interval, u32 max_interval,
1720				      u8 mesh_handle)
1721{
1722	struct adv_info *adv;
1723
1724	adv = hci_find_adv_instance(hdev, instance);
1725	if (adv) {
1726		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1727		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1728		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1729	} else {
1730		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1731		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1732			return ERR_PTR(-EOVERFLOW);
1733
1734		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1735		if (!adv)
1736			return ERR_PTR(-ENOMEM);
1737
1738		adv->pending = true;
1739		adv->instance = instance;
1740		list_add(&adv->list, &hdev->adv_instances);
1741		hdev->adv_instance_cnt++;
1742	}
1743
1744	adv->flags = flags;
1745	adv->min_interval = min_interval;
1746	adv->max_interval = max_interval;
1747	adv->tx_power = tx_power;
1748	/* Defining a mesh_handle changes the timing units to ms,
1749	 * rather than seconds, and ties the instance to the requested
1750	 * mesh_tx queue.
1751	 */
1752	adv->mesh = mesh_handle;
1753
1754	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1755				  scan_rsp_len, scan_rsp_data);
1756
1757	adv->timeout = timeout;
1758	adv->remaining_time = timeout;
1759
1760	if (duration == 0)
1761		adv->duration = hdev->def_multi_adv_rotation_duration;
1762	else
1763		adv->duration = duration;
1764
1765	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
 
1766
1767	BT_DBG("%s for %dMR", hdev->name, instance);
1768
1769	return adv;
1770}
1771
1772/* This function requires the caller holds hdev->lock */
1773struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1774				      u32 flags, u8 data_len, u8 *data,
1775				      u32 min_interval, u32 max_interval)
1776{
1777	struct adv_info *adv;
1778
1779	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1780				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1781				   min_interval, max_interval, 0);
1782	if (IS_ERR(adv))
1783		return adv;
1784
1785	adv->periodic = true;
1786	adv->per_adv_data_len = data_len;
 
1787
1788	if (data)
1789		memcpy(adv->per_adv_data, data, data_len);
1790
1791	return adv;
1792}
1793
1794/* This function requires the caller holds hdev->lock */
1795int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1796			      u16 adv_data_len, u8 *adv_data,
1797			      u16 scan_rsp_len, u8 *scan_rsp_data)
1798{
1799	struct adv_info *adv;
1800
1801	adv = hci_find_adv_instance(hdev, instance);
1802
1803	/* If advertisement doesn't exist, we can't modify its data */
1804	if (!adv)
1805		return -ENOENT;
1806
1807	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1808		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1809		memcpy(adv->adv_data, adv_data, adv_data_len);
1810		adv->adv_data_len = adv_data_len;
1811		adv->adv_data_changed = true;
1812	}
1813
1814	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1815		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1816		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1817		adv->scan_rsp_len = scan_rsp_len;
1818		adv->scan_rsp_changed = true;
1819	}
1820
1821	/* Mark as changed if there are flags which would affect it */
1822	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1823	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1824		adv->scan_rsp_changed = true;
1825
1826	return 0;
1827}
1828
1829/* This function requires the caller holds hdev->lock */
1830u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1831{
1832	u32 flags;
1833	struct adv_info *adv;
1834
1835	if (instance == 0x00) {
1836		/* Instance 0 always manages the "Tx Power" and "Flags"
1837		 * fields
1838		 */
1839		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1840
1841		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1842		 * corresponds to the "connectable" instance flag.
1843		 */
1844		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1845			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1846
1847		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1848			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1849		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1850			flags |= MGMT_ADV_FLAG_DISCOV;
1851
1852		return flags;
1853	}
1854
1855	adv = hci_find_adv_instance(hdev, instance);
1856
1857	/* Return 0 when we got an invalid instance identifier. */
1858	if (!adv)
1859		return 0;
1860
1861	return adv->flags;
1862}
1863
1864bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1865{
1866	struct adv_info *adv;
1867
1868	/* Instance 0x00 always set local name */
1869	if (instance == 0x00)
1870		return true;
1871
1872	adv = hci_find_adv_instance(hdev, instance);
1873	if (!adv)
1874		return false;
1875
1876	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1877	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1878		return true;
1879
1880	return adv->scan_rsp_len ? true : false;
1881}
 
1882
1883/* This function requires the caller holds hdev->lock */
1884void hci_adv_monitors_clear(struct hci_dev *hdev)
1885{
1886	struct adv_monitor *monitor;
1887	int handle;
1888
1889	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1890		hci_free_adv_monitor(hdev, monitor);
1891
1892	idr_destroy(&hdev->adv_monitors_idr);
1893}
1894
1895/* Frees the monitor structure and do some bookkeepings.
1896 * This function requires the caller holds hdev->lock.
1897 */
1898void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1899{
1900	struct adv_pattern *pattern;
1901	struct adv_pattern *tmp;
1902
1903	if (!monitor)
1904		return;
1905
1906	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1907		list_del(&pattern->list);
1908		kfree(pattern);
1909	}
1910
1911	if (monitor->handle)
1912		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
 
1913
1914	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1915		hdev->adv_monitors_cnt--;
1916		mgmt_adv_monitor_removed(hdev, monitor->handle);
1917	}
1918
1919	kfree(monitor);
1920}
1921
1922/* Assigns handle to a monitor, and if offloading is supported and power is on,
1923 * also attempts to forward the request to the controller.
1924 * This function requires the caller holds hci_req_sync_lock.
1925 */
1926int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1927{
1928	int min, max, handle;
1929	int status = 0;
1930
1931	if (!monitor)
1932		return -EINVAL;
1933
1934	hci_dev_lock(hdev);
1935
1936	min = HCI_MIN_ADV_MONITOR_HANDLE;
1937	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1938	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1939			   GFP_KERNEL);
1940
1941	hci_dev_unlock(hdev);
 
 
 
 
 
1942
1943	if (handle < 0)
1944		return handle;
1945
1946	monitor->handle = handle;
 
 
1947
1948	if (!hdev_is_powered(hdev))
1949		return status;
 
1950
1951	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1952	case HCI_ADV_MONITOR_EXT_NONE:
1953		bt_dev_dbg(hdev, "add monitor %d status %d",
1954			   monitor->handle, status);
1955		/* Message was not forwarded to controller - not an error */
1956		break;
1957
1958	case HCI_ADV_MONITOR_EXT_MSFT:
1959		status = msft_add_monitor_pattern(hdev, monitor);
1960		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1961			   handle, status);
1962		break;
1963	}
1964
1965	return status;
1966}
1967
1968/* Attempts to tell the controller and free the monitor. If somehow the
1969 * controller doesn't have a corresponding handle, remove anyway.
1970 * This function requires the caller holds hci_req_sync_lock.
1971 */
1972static int hci_remove_adv_monitor(struct hci_dev *hdev,
1973				  struct adv_monitor *monitor)
1974{
1975	int status = 0;
1976	int handle;
1977
1978	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1979	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1980		bt_dev_dbg(hdev, "remove monitor %d status %d",
1981			   monitor->handle, status);
1982		goto free_monitor;
1983
1984	case HCI_ADV_MONITOR_EXT_MSFT:
1985		handle = monitor->handle;
1986		status = msft_remove_monitor(hdev, monitor);
1987		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1988			   handle, status);
1989		break;
1990	}
1991
1992	/* In case no matching handle registered, just free the monitor */
1993	if (status == -ENOENT)
1994		goto free_monitor;
1995
1996	return status;
1997
1998free_monitor:
1999	if (status == -ENOENT)
2000		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
2001			    monitor->handle);
2002	hci_free_adv_monitor(hdev, monitor);
2003
2004	return status;
2005}
2006
2007/* This function requires the caller holds hci_req_sync_lock */
2008int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
 
 
2009{
2010	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2011
2012	if (!monitor)
2013		return -EINVAL;
2014
2015	return hci_remove_adv_monitor(hdev, monitor);
2016}
 
2017
2018/* This function requires the caller holds hci_req_sync_lock */
2019int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2020{
2021	struct adv_monitor *monitor;
2022	int idr_next_id = 0;
2023	int status = 0;
2024
2025	while (1) {
2026		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2027		if (!monitor)
2028			break;
2029
2030		status = hci_remove_adv_monitor(hdev, monitor);
2031		if (status)
2032			return status;
2033
2034		idr_next_id++;
 
 
 
 
 
 
 
 
 
 
 
 
 
2035	}
2036
2037	return status;
2038}
 
2039
2040/* This function requires the caller holds hdev->lock */
2041bool hci_is_adv_monitoring(struct hci_dev *hdev)
2042{
2043	return !idr_is_empty(&hdev->adv_monitors_idr);
2044}
2045
2046int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
 
2047{
2048	if (msft_monitor_supported(hdev))
2049		return HCI_ADV_MONITOR_EXT_MSFT;
2050
2051	return HCI_ADV_MONITOR_EXT_NONE;
2052}
 
2053
2054struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2055					 bdaddr_t *bdaddr, u8 type)
2056{
2057	struct bdaddr_list *b;
2058
2059	list_for_each_entry(b, bdaddr_list, list) {
2060		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2061			return b;
2062	}
2063
2064	return NULL;
2065}
2066
2067struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2068				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2069				u8 type)
2070{
2071	struct bdaddr_list_with_irk *b;
2072
2073	list_for_each_entry(b, bdaddr_list, list) {
2074		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2075			return b;
2076	}
2077
2078	return NULL;
2079}
2080
2081struct bdaddr_list_with_flags *
2082hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2083				  bdaddr_t *bdaddr, u8 type)
2084{
2085	struct bdaddr_list_with_flags *b;
2086
2087	list_for_each_entry(b, bdaddr_list, list) {
2088		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2089			return b;
 
2090	}
2091
2092	return NULL;
2093}
2094
2095void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2096{
2097	struct bdaddr_list *b, *n;
2098
2099	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2100		list_del(&b->list);
2101		kfree(b);
2102	}
2103}
2104
2105int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2106{
2107	struct bdaddr_list *entry;
2108
2109	if (!bacmp(bdaddr, BDADDR_ANY))
2110		return -EBADF;
2111
2112	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2113		return -EEXIST;
2114
2115	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2116	if (!entry)
2117		return -ENOMEM;
2118
2119	bacpy(&entry->bdaddr, bdaddr);
2120	entry->bdaddr_type = type;
2121
2122	list_add(&entry->list, list);
2123
2124	return 0;
2125}
2126
2127int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2128					u8 type, u8 *peer_irk, u8 *local_irk)
2129{
2130	struct bdaddr_list_with_irk *entry;
2131
2132	if (!bacmp(bdaddr, BDADDR_ANY))
2133		return -EBADF;
2134
2135	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2136		return -EEXIST;
2137
2138	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2139	if (!entry)
2140		return -ENOMEM;
2141
2142	bacpy(&entry->bdaddr, bdaddr);
2143	entry->bdaddr_type = type;
2144
2145	if (peer_irk)
2146		memcpy(entry->peer_irk, peer_irk, 16);
2147
2148	if (local_irk)
2149		memcpy(entry->local_irk, local_irk, 16);
2150
2151	list_add(&entry->list, list);
2152
2153	return 0;
2154}
2155
2156int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2157				   u8 type, u32 flags)
2158{
2159	struct bdaddr_list_with_flags *entry;
2160
2161	if (!bacmp(bdaddr, BDADDR_ANY))
2162		return -EBADF;
2163
2164	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2165		return -EEXIST;
2166
2167	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2168	if (!entry)
2169		return -ENOMEM;
2170
2171	bacpy(&entry->bdaddr, bdaddr);
2172	entry->bdaddr_type = type;
2173	entry->flags = flags;
2174
2175	list_add(&entry->list, list);
2176
2177	return 0;
 
2178}
2179
2180int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
 
2181{
2182	struct bdaddr_list *entry;
2183
2184	if (!bacmp(bdaddr, BDADDR_ANY)) {
2185		hci_bdaddr_list_clear(list);
2186		return 0;
2187	}
2188
2189	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2190	if (!entry)
2191		return -ENOENT;
2192
2193	list_del(&entry->list);
2194	kfree(entry);
2195
2196	return 0;
2197}
2198
2199int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2200							u8 type)
2201{
2202	struct bdaddr_list_with_irk *entry;
2203
2204	if (!bacmp(bdaddr, BDADDR_ANY)) {
2205		hci_bdaddr_list_clear(list);
2206		return 0;
2207	}
2208
2209	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2210	if (!entry)
2211		return -ENOENT;
2212
2213	list_del(&entry->list);
2214	kfree(entry);
2215
2216	return 0;
 
2217}
2218
2219int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2220				   u8 type)
2221{
2222	struct bdaddr_list_with_flags *entry;
2223
2224	if (!bacmp(bdaddr, BDADDR_ANY)) {
2225		hci_bdaddr_list_clear(list);
2226		return 0;
2227	}
2228
2229	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2230	if (!entry)
2231		return -ENOENT;
2232
2233	list_del(&entry->list);
2234	kfree(entry);
2235
2236	return 0;
2237}
2238
2239/* This function requires the caller holds hdev->lock */
2240struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2241					       bdaddr_t *addr, u8 addr_type)
2242{
2243	struct hci_conn_params *params;
 
2244
2245	list_for_each_entry(params, &hdev->le_conn_params, list) {
2246		if (bacmp(&params->addr, addr) == 0 &&
2247		    params->addr_type == addr_type) {
2248			return params;
2249		}
2250	}
2251
2252	return NULL;
2253}
2254
2255/* This function requires the caller holds hdev->lock or rcu_read_lock */
2256struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2257						  bdaddr_t *addr, u8 addr_type)
2258{
2259	struct hci_conn_params *param;
2260
2261	rcu_read_lock();
 
 
2262
2263	list_for_each_entry_rcu(param, list, action) {
2264		if (bacmp(&param->addr, addr) == 0 &&
2265		    param->addr_type == addr_type) {
2266			rcu_read_unlock();
2267			return param;
2268		}
2269	}
2270
2271	rcu_read_unlock();
2272
2273	return NULL;
2274}
 
 
2275
2276/* This function requires the caller holds hdev->lock */
2277void hci_pend_le_list_del_init(struct hci_conn_params *param)
2278{
2279	if (list_empty(&param->action))
2280		return;
2281
2282	list_del_rcu(&param->action);
2283	synchronize_rcu();
2284	INIT_LIST_HEAD(&param->action);
2285}
2286
2287/* This function requires the caller holds hdev->lock */
2288void hci_pend_le_list_add(struct hci_conn_params *param,
2289			  struct list_head *list)
2290{
2291	list_add_rcu(&param->action, list);
2292}
2293
2294/* This function requires the caller holds hdev->lock */
2295struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2296					    bdaddr_t *addr, u8 addr_type)
2297{
2298	struct hci_conn_params *params;
2299
2300	params = hci_conn_params_lookup(hdev, addr, addr_type);
2301	if (params)
2302		return params;
 
 
2303
2304	params = kzalloc(sizeof(*params), GFP_KERNEL);
2305	if (!params) {
2306		bt_dev_err(hdev, "out of memory");
2307		return NULL;
2308	}
 
2309
2310	bacpy(&params->addr, addr);
2311	params->addr_type = addr_type;
 
 
 
 
2312
2313	list_add(&params->list, &hdev->le_conn_params);
2314	INIT_LIST_HEAD(&params->action);
2315
2316	params->conn_min_interval = hdev->le_conn_min_interval;
2317	params->conn_max_interval = hdev->le_conn_max_interval;
2318	params->conn_latency = hdev->le_conn_latency;
2319	params->supervision_timeout = hdev->le_supv_timeout;
2320	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2321
2322	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2323
2324	return params;
 
 
2325}
2326
2327void hci_conn_params_free(struct hci_conn_params *params)
2328{
2329	hci_pend_le_list_del_init(params);
2330
2331	if (params->conn) {
2332		hci_conn_drop(params->conn);
2333		hci_conn_put(params->conn);
 
 
 
 
 
 
 
 
 
 
 
2334	}
2335
2336	list_del(&params->list);
2337	kfree(params);
2338}
2339
2340/* This function requires the caller holds hdev->lock */
2341void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2342{
2343	struct hci_conn_params *params;
 
2344
2345	params = hci_conn_params_lookup(hdev, addr, addr_type);
2346	if (!params)
2347		return;
 
 
 
2348
2349	hci_conn_params_free(params);
2350
2351	hci_update_passive_scan(hdev);
 
 
 
 
 
 
 
 
2352
2353	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2354}
2355
2356/* This function requires the caller holds hdev->lock */
2357void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2358{
2359	struct hci_conn_params *params, *tmp;
2360
2361	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2362		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2363			continue;
2364
2365		/* If trying to establish one time connection to disabled
2366		 * device, leave the params, but mark them as just once.
2367		 */
2368		if (params->explicit_connect) {
2369			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2370			continue;
2371		}
2372
2373		hci_conn_params_free(params);
2374	}
2375
2376	BT_DBG("All LE disabled connection parameters were removed");
2377}
 
 
2378
2379/* This function requires the caller holds hdev->lock */
2380static void hci_conn_params_clear_all(struct hci_dev *hdev)
2381{
2382	struct hci_conn_params *params, *tmp;
 
 
 
 
 
 
 
 
 
2383
2384	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2385		hci_conn_params_free(params);
 
 
2386
2387	BT_DBG("All LE connection parameters were removed");
2388}
2389
2390/* Copy the Identity Address of the controller.
2391 *
2392 * If the controller has a public BD_ADDR, then by default use that one.
2393 * If this is a LE only controller without a public address, default to
2394 * the static random address.
2395 *
2396 * For debugging purposes it is possible to force controllers with a
2397 * public address to use the static random address instead.
2398 *
2399 * In case BR/EDR has been disabled on a dual-mode controller and
2400 * userspace has configured a static address, then that address
2401 * becomes the identity address instead of the public BR/EDR address.
2402 */
2403void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2404			       u8 *bdaddr_type)
2405{
2406	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2407	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2408	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2409	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2410		bacpy(bdaddr, &hdev->static_addr);
2411		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2412	} else {
2413		bacpy(bdaddr, &hdev->bdaddr);
2414		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2415	}
2416}
2417
2418static void hci_clear_wake_reason(struct hci_dev *hdev)
2419{
2420	hci_dev_lock(hdev);
2421
2422	hdev->wake_reason = 0;
2423	bacpy(&hdev->wake_addr, BDADDR_ANY);
2424	hdev->wake_addr_type = 0;
2425
2426	hci_dev_unlock(hdev);
2427}
2428
2429static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2430				void *data)
2431{
2432	struct hci_dev *hdev =
2433		container_of(nb, struct hci_dev, suspend_notifier);
2434	int ret = 0;
2435
2436	/* Userspace has full control of this device. Do nothing. */
2437	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2438		return NOTIFY_DONE;
2439
2440	/* To avoid a potential race with hci_unregister_dev. */
2441	hci_dev_hold(hdev);
2442
2443	if (action == PM_SUSPEND_PREPARE)
2444		ret = hci_suspend_dev(hdev);
2445	else if (action == PM_POST_SUSPEND)
2446		ret = hci_resume_dev(hdev);
2447
2448	if (ret)
2449		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2450			   action, ret);
2451
2452	hci_dev_put(hdev);
2453	return NOTIFY_DONE;
2454}
2455
2456/* Alloc HCI device */
2457struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2458{
2459	struct hci_dev *hdev;
2460	unsigned int alloc_size;
2461
2462	alloc_size = sizeof(*hdev);
2463	if (sizeof_priv) {
2464		/* Fixme: May need ALIGN-ment? */
2465		alloc_size += sizeof_priv;
2466	}
2467
2468	hdev = kzalloc(alloc_size, GFP_KERNEL);
2469	if (!hdev)
2470		return NULL;
2471
2472	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2473	hdev->esco_type = (ESCO_HV1);
2474	hdev->link_mode = (HCI_LM_ACCEPT);
2475	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2476	hdev->io_capability = 0x03;	/* No Input No Output */
2477	hdev->manufacturer = 0xffff;	/* Default to internal use */
2478	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2479	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2480	hdev->adv_instance_cnt = 0;
2481	hdev->cur_adv_instance = 0x00;
2482	hdev->adv_instance_timeout = 0;
2483
2484	hdev->advmon_allowlist_duration = 300;
2485	hdev->advmon_no_filter_duration = 500;
2486	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2487
2488	hdev->sniff_max_interval = 800;
2489	hdev->sniff_min_interval = 80;
2490
2491	hdev->le_adv_channel_map = 0x07;
2492	hdev->le_adv_min_interval = 0x0800;
2493	hdev->le_adv_max_interval = 0x0800;
2494	hdev->le_scan_interval = 0x0060;
2495	hdev->le_scan_window = 0x0030;
2496	hdev->le_scan_int_suspend = 0x0400;
2497	hdev->le_scan_window_suspend = 0x0012;
2498	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2499	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2500	hdev->le_scan_int_adv_monitor = 0x0060;
2501	hdev->le_scan_window_adv_monitor = 0x0030;
2502	hdev->le_scan_int_connect = 0x0060;
2503	hdev->le_scan_window_connect = 0x0060;
2504	hdev->le_conn_min_interval = 0x0018;
2505	hdev->le_conn_max_interval = 0x0028;
2506	hdev->le_conn_latency = 0x0000;
2507	hdev->le_supv_timeout = 0x002a;
2508	hdev->le_def_tx_len = 0x001b;
2509	hdev->le_def_tx_time = 0x0148;
2510	hdev->le_max_tx_len = 0x001b;
2511	hdev->le_max_tx_time = 0x0148;
2512	hdev->le_max_rx_len = 0x001b;
2513	hdev->le_max_rx_time = 0x0148;
2514	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2515	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2516	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2517	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2518	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2519	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2520	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2521	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2522	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2523
2524	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2525	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2526	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2527	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2528	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2529	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2530
2531	/* default 1.28 sec page scan */
2532	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2533	hdev->def_page_scan_int = 0x0800;
2534	hdev->def_page_scan_window = 0x0012;
2535
2536	mutex_init(&hdev->lock);
2537	mutex_init(&hdev->req_lock);
2538
2539	ida_init(&hdev->unset_handle_ida);
2540
2541	INIT_LIST_HEAD(&hdev->mesh_pending);
2542	INIT_LIST_HEAD(&hdev->mgmt_pending);
2543	INIT_LIST_HEAD(&hdev->reject_list);
2544	INIT_LIST_HEAD(&hdev->accept_list);
2545	INIT_LIST_HEAD(&hdev->uuids);
2546	INIT_LIST_HEAD(&hdev->link_keys);
2547	INIT_LIST_HEAD(&hdev->long_term_keys);
2548	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2549	INIT_LIST_HEAD(&hdev->remote_oob_data);
2550	INIT_LIST_HEAD(&hdev->le_accept_list);
2551	INIT_LIST_HEAD(&hdev->le_resolv_list);
2552	INIT_LIST_HEAD(&hdev->le_conn_params);
2553	INIT_LIST_HEAD(&hdev->pend_le_conns);
2554	INIT_LIST_HEAD(&hdev->pend_le_reports);
2555	INIT_LIST_HEAD(&hdev->conn_hash.list);
2556	INIT_LIST_HEAD(&hdev->adv_instances);
2557	INIT_LIST_HEAD(&hdev->blocked_keys);
2558	INIT_LIST_HEAD(&hdev->monitored_devices);
2559
2560	INIT_LIST_HEAD(&hdev->local_codecs);
2561	INIT_WORK(&hdev->rx_work, hci_rx_work);
2562	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2563	INIT_WORK(&hdev->tx_work, hci_tx_work);
2564	INIT_WORK(&hdev->power_on, hci_power_on);
2565	INIT_WORK(&hdev->error_reset, hci_error_reset);
2566
2567	hci_cmd_sync_init(hdev);
2568
2569	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
 
 
2570
2571	skb_queue_head_init(&hdev->rx_q);
2572	skb_queue_head_init(&hdev->cmd_q);
2573	skb_queue_head_init(&hdev->raw_q);
2574
2575	init_waitqueue_head(&hdev->req_wait_q);
2576
2577	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2578	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2579
2580	hci_devcd_setup(hdev);
2581	hci_request_setup(hdev);
2582
2583	hci_init_sysfs(hdev);
2584	discovery_init(hdev);
2585
2586	return hdev;
2587}
2588EXPORT_SYMBOL(hci_alloc_dev_priv);
2589
2590/* Free HCI device */
2591void hci_free_dev(struct hci_dev *hdev)
2592{
2593	/* will free via device release */
2594	put_device(&hdev->dev);
2595}
2596EXPORT_SYMBOL(hci_free_dev);
2597
2598/* Register HCI device */
2599int hci_register_dev(struct hci_dev *hdev)
2600{
2601	int id, error;
2602
2603	if (!hdev->open || !hdev->close || !hdev->send)
2604		return -EINVAL;
2605
2606	/* Do not allow HCI_AMP devices to register at index 0,
2607	 * so the index can be used as the AMP controller ID.
2608	 */
2609	switch (hdev->dev_type) {
2610	case HCI_PRIMARY:
2611		id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
2612		break;
2613	case HCI_AMP:
2614		id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
2615		break;
2616	default:
2617		return -EINVAL;
2618	}
2619
2620	if (id < 0)
2621		return id;
2622
2623	error = dev_set_name(&hdev->dev, "hci%u", id);
2624	if (error)
2625		return error;
2626
2627	hdev->name = dev_name(&hdev->dev);
2628	hdev->id = id;
2629
2630	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2631
2632	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
 
2633	if (!hdev->workqueue) {
2634		error = -ENOMEM;
2635		goto err;
2636	}
2637
2638	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2639						      hdev->name);
2640	if (!hdev->req_workqueue) {
2641		destroy_workqueue(hdev->workqueue);
2642		error = -ENOMEM;
2643		goto err;
2644	}
2645
2646	if (!IS_ERR_OR_NULL(bt_debugfs))
2647		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2648
2649	error = device_add(&hdev->dev);
2650	if (error < 0)
 
 
 
 
 
 
2651		goto err_wqueue;
 
2652
2653	hci_leds_init(hdev);
 
 
2654
2655	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2656				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2657				    hdev);
2658	if (hdev->rfkill) {
2659		if (rfkill_register(hdev->rfkill) < 0) {
2660			rfkill_destroy(hdev->rfkill);
2661			hdev->rfkill = NULL;
2662		}
2663	}
2664
2665	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2666		hci_dev_set_flag(hdev, HCI_RFKILLED);
2667
2668	hci_dev_set_flag(hdev, HCI_SETUP);
2669	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2670
2671	if (hdev->dev_type == HCI_PRIMARY) {
2672		/* Assume BR/EDR support until proven otherwise (such as
2673		 * through reading supported features during init.
2674		 */
2675		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2676	}
2677
2678	write_lock(&hci_dev_list_lock);
2679	list_add(&hdev->list, &hci_dev_list);
2680	write_unlock(&hci_dev_list_lock);
2681
2682	/* Devices that are marked for raw-only usage are unconfigured
2683	 * and should not be included in normal operation.
2684	 */
2685	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2686		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2687
2688	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2689	 * callback.
2690	 */
2691	if (hdev->wakeup)
2692		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2693
2694	hci_sock_dev_event(hdev, HCI_DEV_REG);
2695	hci_dev_hold(hdev);
2696
2697	error = hci_register_suspend_notifier(hdev);
2698	if (error)
2699		BT_WARN("register suspend notifier failed error:%d\n", error);
2700
2701	queue_work(hdev->req_workqueue, &hdev->power_on);
2702
2703	idr_init(&hdev->adv_monitors_idr);
2704	msft_register(hdev);
2705
2706	return id;
2707
 
 
2708err_wqueue:
2709	debugfs_remove_recursive(hdev->debugfs);
2710	destroy_workqueue(hdev->workqueue);
2711	destroy_workqueue(hdev->req_workqueue);
2712err:
2713	ida_simple_remove(&hci_index_ida, hdev->id);
2714
2715	return error;
2716}
2717EXPORT_SYMBOL(hci_register_dev);
2718
2719/* Unregister HCI device */
2720void hci_unregister_dev(struct hci_dev *hdev)
2721{
 
 
2722	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2723
2724	mutex_lock(&hdev->unregister_lock);
2725	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2726	mutex_unlock(&hdev->unregister_lock);
2727
2728	write_lock(&hci_dev_list_lock);
2729	list_del(&hdev->list);
2730	write_unlock(&hci_dev_list_lock);
2731
2732	cancel_work_sync(&hdev->power_on);
2733
2734	hci_cmd_sync_clear(hdev);
2735
2736	hci_unregister_suspend_notifier(hdev);
2737
2738	msft_unregister(hdev);
 
2739
2740	hci_dev_do_close(hdev);
2741
2742	if (!test_bit(HCI_INIT, &hdev->flags) &&
2743	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2744	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2745		hci_dev_lock(hdev);
2746		mgmt_index_removed(hdev);
2747		hci_dev_unlock(hdev);
2748	}
2749
2750	/* mgmt_index_removed should take care of emptying the
2751	 * pending list */
2752	BUG_ON(!list_empty(&hdev->mgmt_pending));
2753
2754	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2755
2756	if (hdev->rfkill) {
2757		rfkill_unregister(hdev->rfkill);
2758		rfkill_destroy(hdev->rfkill);
2759	}
2760
 
 
 
2761	device_del(&hdev->dev);
2762	/* Actual cleanup is deferred until hci_release_dev(). */
2763	hci_dev_put(hdev);
2764}
2765EXPORT_SYMBOL(hci_unregister_dev);
2766
2767/* Release HCI device */
2768void hci_release_dev(struct hci_dev *hdev)
2769{
2770	debugfs_remove_recursive(hdev->debugfs);
2771	kfree_const(hdev->hw_info);
2772	kfree_const(hdev->fw_info);
2773
2774	destroy_workqueue(hdev->workqueue);
2775	destroy_workqueue(hdev->req_workqueue);
2776
2777	hci_dev_lock(hdev);
2778	hci_bdaddr_list_clear(&hdev->reject_list);
2779	hci_bdaddr_list_clear(&hdev->accept_list);
2780	hci_uuids_clear(hdev);
2781	hci_link_keys_clear(hdev);
2782	hci_smp_ltks_clear(hdev);
2783	hci_smp_irks_clear(hdev);
2784	hci_remote_oob_data_clear(hdev);
2785	hci_adv_instances_clear(hdev);
2786	hci_adv_monitors_clear(hdev);
2787	hci_bdaddr_list_clear(&hdev->le_accept_list);
2788	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2789	hci_conn_params_clear_all(hdev);
2790	hci_discovery_filter_clear(hdev);
2791	hci_blocked_keys_clear(hdev);
2792	hci_codec_list_clear(&hdev->local_codecs);
2793	hci_dev_unlock(hdev);
2794
2795	ida_destroy(&hdev->unset_handle_ida);
2796	ida_simple_remove(&hci_index_ida, hdev->id);
2797	kfree_skb(hdev->sent_cmd);
2798	kfree_skb(hdev->recv_event);
2799	kfree(hdev);
2800}
2801EXPORT_SYMBOL(hci_release_dev);
2802
2803int hci_register_suspend_notifier(struct hci_dev *hdev)
2804{
2805	int ret = 0;
2806
2807	if (!hdev->suspend_notifier.notifier_call &&
2808	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2809		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2810		ret = register_pm_notifier(&hdev->suspend_notifier);
2811	}
2812
2813	return ret;
2814}
2815
2816int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2817{
2818	int ret = 0;
2819
2820	if (hdev->suspend_notifier.notifier_call) {
2821		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2822		if (!ret)
2823			hdev->suspend_notifier.notifier_call = NULL;
2824	}
2825
2826	return ret;
2827}
 
2828
2829/* Suspend HCI device */
2830int hci_suspend_dev(struct hci_dev *hdev)
2831{
2832	int ret;
2833
2834	bt_dev_dbg(hdev, "");
2835
2836	/* Suspend should only act on when powered. */
2837	if (!hdev_is_powered(hdev) ||
2838	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2839		return 0;
2840
2841	/* If powering down don't attempt to suspend */
2842	if (mgmt_powering_down(hdev))
2843		return 0;
2844
2845	/* Cancel potentially blocking sync operation before suspend */
2846	__hci_cmd_sync_cancel(hdev, -EHOSTDOWN);
2847
2848	hci_req_sync_lock(hdev);
2849	ret = hci_suspend_sync(hdev);
2850	hci_req_sync_unlock(hdev);
2851
2852	hci_clear_wake_reason(hdev);
2853	mgmt_suspending(hdev, hdev->suspend_state);
2854
2855	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2856	return ret;
2857}
2858EXPORT_SYMBOL(hci_suspend_dev);
2859
2860/* Resume HCI device */
2861int hci_resume_dev(struct hci_dev *hdev)
2862{
2863	int ret;
2864
2865	bt_dev_dbg(hdev, "");
2866
2867	/* Resume should only act on when powered. */
2868	if (!hdev_is_powered(hdev) ||
2869	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2870		return 0;
2871
2872	/* If powering down don't attempt to resume */
2873	if (mgmt_powering_down(hdev))
2874		return 0;
2875
2876	hci_req_sync_lock(hdev);
2877	ret = hci_resume_sync(hdev);
2878	hci_req_sync_unlock(hdev);
2879
2880	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2881		      hdev->wake_addr_type);
2882
2883	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2884	return ret;
2885}
2886EXPORT_SYMBOL(hci_resume_dev);
2887
2888/* Reset HCI device */
2889int hci_reset_dev(struct hci_dev *hdev)
2890{
2891	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2892	struct sk_buff *skb;
2893
2894	skb = bt_skb_alloc(3, GFP_ATOMIC);
2895	if (!skb)
2896		return -ENOMEM;
2897
2898	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2899	skb_put_data(skb, hw_err, 3);
2900
2901	bt_dev_err(hdev, "Injecting HCI hardware error event");
2902
2903	/* Send Hardware Error to upper stack */
2904	return hci_recv_frame(hdev, skb);
2905}
2906EXPORT_SYMBOL(hci_reset_dev);
2907
2908/* Receive frame from HCI drivers */
2909int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2910{
2911	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2912		      && !test_bit(HCI_INIT, &hdev->flags))) {
2913		kfree_skb(skb);
2914		return -ENXIO;
2915	}
2916
2917	switch (hci_skb_pkt_type(skb)) {
2918	case HCI_EVENT_PKT:
2919		break;
2920	case HCI_ACLDATA_PKT:
2921		/* Detect if ISO packet has been sent as ACL */
2922		if (hci_conn_num(hdev, ISO_LINK)) {
2923			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2924			__u8 type;
2925
2926			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2927			if (type == ISO_LINK)
2928				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2929		}
2930		break;
2931	case HCI_SCODATA_PKT:
2932		break;
2933	case HCI_ISODATA_PKT:
2934		break;
2935	default:
2936		kfree_skb(skb);
2937		return -EINVAL;
2938	}
2939
2940	/* Incoming skb */
2941	bt_cb(skb)->incoming = 1;
2942
2943	/* Time stamp */
2944	__net_timestamp(skb);
2945
2946	skb_queue_tail(&hdev->rx_q, skb);
2947	queue_work(hdev->workqueue, &hdev->rx_work);
2948
2949	return 0;
2950}
2951EXPORT_SYMBOL(hci_recv_frame);
2952
2953/* Receive diagnostic message from HCI drivers */
2954int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2955{
2956	/* Mark as diagnostic packet */
2957	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
 
 
 
2958
2959	/* Time stamp */
2960	__net_timestamp(skb);
 
2961
2962	skb_queue_tail(&hdev->rx_q, skb);
2963	queue_work(hdev->workqueue, &hdev->rx_work);
2964
2965	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2966}
2967EXPORT_SYMBOL(hci_recv_diag);
2968
2969void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2970{
2971	va_list vargs;
 
 
 
 
 
 
 
 
2972
2973	va_start(vargs, fmt);
2974	kfree_const(hdev->hw_info);
2975	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2976	va_end(vargs);
 
2977}
2978EXPORT_SYMBOL(hci_set_hw_info);
2979
2980void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
 
 
2981{
2982	va_list vargs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2983
2984	va_start(vargs, fmt);
2985	kfree_const(hdev->fw_info);
2986	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2987	va_end(vargs);
 
2988}
2989EXPORT_SYMBOL(hci_set_fw_info);
2990
2991/* ---- Interface to upper protocols ---- */
2992
2993int hci_register_cb(struct hci_cb *cb)
2994{
2995	BT_DBG("%p name %s", cb, cb->name);
2996
2997	mutex_lock(&hci_cb_list_lock);
2998	list_add_tail(&cb->list, &hci_cb_list);
2999	mutex_unlock(&hci_cb_list_lock);
3000
3001	return 0;
3002}
3003EXPORT_SYMBOL(hci_register_cb);
3004
3005int hci_unregister_cb(struct hci_cb *cb)
3006{
3007	BT_DBG("%p name %s", cb, cb->name);
3008
3009	mutex_lock(&hci_cb_list_lock);
3010	list_del(&cb->list);
3011	mutex_unlock(&hci_cb_list_lock);
3012
3013	return 0;
3014}
3015EXPORT_SYMBOL(hci_unregister_cb);
3016
3017static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3018{
3019	int err;
3020
3021	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3022	       skb->len);
3023
3024	/* Time stamp */
3025	__net_timestamp(skb);
3026
3027	/* Send copy to monitor */
3028	hci_send_to_monitor(hdev, skb);
3029
3030	if (atomic_read(&hdev->promisc)) {
3031		/* Send copy to the sockets */
3032		hci_send_to_sock(hdev, skb);
3033	}
3034
3035	/* Get rid of skb owner, prior to sending to the driver. */
3036	skb_orphan(skb);
3037
3038	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3039		kfree_skb(skb);
3040		return -EINVAL;
3041	}
3042
3043	err = hdev->send(hdev, skb);
3044	if (err < 0) {
3045		bt_dev_err(hdev, "sending frame failed (%d)", err);
3046		kfree_skb(skb);
3047		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3048	}
3049
 
 
 
 
 
 
 
 
 
 
 
 
 
3050	return 0;
3051}
3052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3053/* Send HCI command */
3054int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3055		 const void *param)
3056{
3057	struct sk_buff *skb;
3058
3059	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3060
3061	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3062	if (!skb) {
3063		bt_dev_err(hdev, "no memory for command");
3064		return -ENOMEM;
3065	}
3066
3067	/* Stand-alone HCI commands must be flagged as
3068	 * single-command requests.
3069	 */
3070	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3071
3072	skb_queue_tail(&hdev->cmd_q, skb);
3073	queue_work(hdev->workqueue, &hdev->cmd_work);
3074
3075	return 0;
3076}
3077
3078int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3079		   const void *param)
 
3080{
 
3081	struct sk_buff *skb;
3082
3083	if (hci_opcode_ogf(opcode) != 0x3f) {
3084		/* A controller receiving a command shall respond with either
3085		 * a Command Status Event or a Command Complete Event.
3086		 * Therefore, all standard HCI commands must be sent via the
3087		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3088		 * Some vendors do not comply with this rule for vendor-specific
3089		 * commands and do not return any event. We want to support
3090		 * unresponded commands for such cases only.
3091		 */
3092		bt_dev_err(hdev, "unresponded command not supported");
3093		return -EINVAL;
3094	}
3095
3096	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3097	if (!skb) {
3098		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3099			   opcode);
3100		return -ENOMEM;
 
3101	}
3102
3103	hci_send_frame(hdev, skb);
 
3104
3105	return 0;
 
 
 
 
 
 
 
 
3106}
3107EXPORT_SYMBOL(__hci_cmd_send);
3108
3109/* Get data from the previously sent command */
3110void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3111{
3112	struct hci_command_hdr *hdr;
3113
3114	if (!hdev->sent_cmd)
3115		return NULL;
3116
3117	hdr = (void *) hdev->sent_cmd->data;
3118
3119	if (hdr->opcode != cpu_to_le16(opcode))
3120		return NULL;
3121
3122	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3123
3124	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3125}
3126
3127/* Get data from last received event */
3128void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3129{
3130	struct hci_event_hdr *hdr;
3131	int offset;
3132
3133	if (!hdev->recv_event)
3134		return NULL;
3135
3136	hdr = (void *)hdev->recv_event->data;
3137	offset = sizeof(*hdr);
3138
3139	if (hdr->evt != event) {
3140		/* In case of LE metaevent check the subevent match */
3141		if (hdr->evt == HCI_EV_LE_META) {
3142			struct hci_ev_le_meta *ev;
3143
3144			ev = (void *)hdev->recv_event->data + offset;
3145			offset += sizeof(*ev);
3146			if (ev->subevent == event)
3147				goto found;
3148		}
3149		return NULL;
3150	}
3151
3152found:
3153	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3154
3155	return hdev->recv_event->data + offset;
3156}
3157
3158/* Send ACL data */
3159static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3160{
3161	struct hci_acl_hdr *hdr;
3162	int len = skb->len;
3163
3164	skb_push(skb, HCI_ACL_HDR_SIZE);
3165	skb_reset_transport_header(skb);
3166	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3167	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3168	hdr->dlen   = cpu_to_le16(len);
3169}
3170
3171static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3172			  struct sk_buff *skb, __u16 flags)
3173{
3174	struct hci_conn *conn = chan->conn;
3175	struct hci_dev *hdev = conn->hdev;
3176	struct sk_buff *list;
3177
3178	skb->len = skb_headlen(skb);
3179	skb->data_len = 0;
3180
3181	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3182
3183	switch (hdev->dev_type) {
3184	case HCI_PRIMARY:
3185		hci_add_acl_hdr(skb, conn->handle, flags);
3186		break;
3187	case HCI_AMP:
3188		hci_add_acl_hdr(skb, chan->handle, flags);
3189		break;
3190	default:
3191		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3192		return;
3193	}
3194
3195	list = skb_shinfo(skb)->frag_list;
3196	if (!list) {
3197		/* Non fragmented */
3198		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3199
3200		skb_queue_tail(queue, skb);
3201	} else {
3202		/* Fragmented */
3203		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3204
3205		skb_shinfo(skb)->frag_list = NULL;
3206
3207		/* Queue all fragments atomically. We need to use spin_lock_bh
3208		 * here because of 6LoWPAN links, as there this function is
3209		 * called from softirq and using normal spin lock could cause
3210		 * deadlocks.
3211		 */
3212		spin_lock_bh(&queue->lock);
3213
3214		__skb_queue_tail(queue, skb);
3215
3216		flags &= ~ACL_START;
3217		flags |= ACL_CONT;
3218		do {
3219			skb = list; list = list->next;
3220
3221			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3222			hci_add_acl_hdr(skb, conn->handle, flags);
3223
3224			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3225
3226			__skb_queue_tail(queue, skb);
3227		} while (list);
3228
3229		spin_unlock_bh(&queue->lock);
3230	}
3231}
3232
3233void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3234{
3235	struct hci_dev *hdev = chan->conn->hdev;
3236
3237	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3238
3239	hci_queue_acl(chan, &chan->data_q, skb, flags);
3240
3241	queue_work(hdev->workqueue, &hdev->tx_work);
3242}
3243
3244/* Send SCO data */
3245void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3246{
3247	struct hci_dev *hdev = conn->hdev;
3248	struct hci_sco_hdr hdr;
3249
3250	BT_DBG("%s len %d", hdev->name, skb->len);
3251
3252	hdr.handle = cpu_to_le16(conn->handle);
3253	hdr.dlen   = skb->len;
3254
3255	skb_push(skb, HCI_SCO_HDR_SIZE);
3256	skb_reset_transport_header(skb);
3257	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3258
3259	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3260
3261	skb_queue_tail(&conn->data_q, skb);
3262	queue_work(hdev->workqueue, &hdev->tx_work);
3263}
3264
3265/* Send ISO data */
3266static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3267{
3268	struct hci_iso_hdr *hdr;
3269	int len = skb->len;
3270
3271	skb_push(skb, HCI_ISO_HDR_SIZE);
3272	skb_reset_transport_header(skb);
3273	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3274	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3275	hdr->dlen   = cpu_to_le16(len);
3276}
3277
3278static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3279			  struct sk_buff *skb)
3280{
3281	struct hci_dev *hdev = conn->hdev;
3282	struct sk_buff *list;
3283	__u16 flags;
3284
3285	skb->len = skb_headlen(skb);
3286	skb->data_len = 0;
3287
3288	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3289
3290	list = skb_shinfo(skb)->frag_list;
3291
3292	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3293	hci_add_iso_hdr(skb, conn->handle, flags);
3294
3295	if (!list) {
3296		/* Non fragmented */
3297		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3298
3299		skb_queue_tail(queue, skb);
3300	} else {
3301		/* Fragmented */
3302		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3303
3304		skb_shinfo(skb)->frag_list = NULL;
3305
3306		__skb_queue_tail(queue, skb);
3307
3308		do {
3309			skb = list; list = list->next;
3310
3311			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3312			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3313						   0x00);
3314			hci_add_iso_hdr(skb, conn->handle, flags);
3315
3316			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3317
3318			__skb_queue_tail(queue, skb);
3319		} while (list);
3320	}
3321}
3322
3323void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3324{
3325	struct hci_dev *hdev = conn->hdev;
3326
3327	BT_DBG("%s len %d", hdev->name, skb->len);
3328
3329	hci_queue_iso(conn, &conn->data_q, skb);
3330
3331	queue_work(hdev->workqueue, &hdev->tx_work);
3332}
3333
3334/* ---- HCI TX task (outgoing data) ---- */
3335
3336/* HCI Connection scheduler */
3337static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3338{
3339	struct hci_dev *hdev;
3340	int cnt, q;
3341
3342	if (!conn) {
3343		*quote = 0;
3344		return;
3345	}
3346
3347	hdev = conn->hdev;
3348
3349	switch (conn->type) {
3350	case ACL_LINK:
3351		cnt = hdev->acl_cnt;
3352		break;
3353	case AMP_LINK:
3354		cnt = hdev->block_cnt;
3355		break;
3356	case SCO_LINK:
3357	case ESCO_LINK:
3358		cnt = hdev->sco_cnt;
3359		break;
3360	case LE_LINK:
3361		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3362		break;
3363	case ISO_LINK:
3364		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3365			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3366		break;
3367	default:
3368		cnt = 0;
3369		bt_dev_err(hdev, "unknown link type %d", conn->type);
3370	}
3371
3372	q = cnt / num;
3373	*quote = q ? q : 1;
3374}
3375
3376static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3377				     int *quote)
3378{
3379	struct hci_conn_hash *h = &hdev->conn_hash;
3380	struct hci_conn *conn = NULL, *c;
3381	unsigned int num = 0, min = ~0;
3382
3383	/* We don't have to lock device here. Connections are always
3384	 * added and removed with TX task disabled. */
3385
3386	rcu_read_lock();
3387
3388	list_for_each_entry_rcu(c, &h->list, list) {
3389		if (c->type != type || skb_queue_empty(&c->data_q))
3390			continue;
3391
3392		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3393			continue;
3394
3395		num++;
3396
3397		if (c->sent < min) {
3398			min  = c->sent;
3399			conn = c;
3400		}
3401
3402		if (hci_conn_num(hdev, type) == num)
3403			break;
3404	}
3405
3406	rcu_read_unlock();
3407
3408	hci_quote_sent(conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3409
3410	BT_DBG("conn %p quote %d", conn, *quote);
3411	return conn;
3412}
3413
3414static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3415{
3416	struct hci_conn_hash *h = &hdev->conn_hash;
3417	struct hci_conn *c;
3418
3419	bt_dev_err(hdev, "link tx timeout");
3420
3421	rcu_read_lock();
3422
3423	/* Kill stalled connections */
3424	list_for_each_entry_rcu(c, &h->list, list) {
3425		if (c->type == type && c->sent) {
3426			bt_dev_err(hdev, "killing stalled connection %pMR",
3427				   &c->dst);
3428			/* hci_disconnect might sleep, so, we have to release
3429			 * the RCU read lock before calling it.
3430			 */
3431			rcu_read_unlock();
3432			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3433			rcu_read_lock();
3434		}
3435	}
3436
3437	rcu_read_unlock();
3438}
3439
3440static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3441				      int *quote)
3442{
3443	struct hci_conn_hash *h = &hdev->conn_hash;
3444	struct hci_chan *chan = NULL;
3445	unsigned int num = 0, min = ~0, cur_prio = 0;
3446	struct hci_conn *conn;
3447	int conn_num = 0;
3448
3449	BT_DBG("%s", hdev->name);
3450
3451	rcu_read_lock();
3452
3453	list_for_each_entry_rcu(conn, &h->list, list) {
3454		struct hci_chan *tmp;
3455
3456		if (conn->type != type)
3457			continue;
3458
3459		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3460			continue;
3461
3462		conn_num++;
3463
3464		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3465			struct sk_buff *skb;
3466
3467			if (skb_queue_empty(&tmp->data_q))
3468				continue;
3469
3470			skb = skb_peek(&tmp->data_q);
3471			if (skb->priority < cur_prio)
3472				continue;
3473
3474			if (skb->priority > cur_prio) {
3475				num = 0;
3476				min = ~0;
3477				cur_prio = skb->priority;
3478			}
3479
3480			num++;
3481
3482			if (conn->sent < min) {
3483				min  = conn->sent;
3484				chan = tmp;
3485			}
3486		}
3487
3488		if (hci_conn_num(hdev, type) == conn_num)
3489			break;
3490	}
3491
3492	rcu_read_unlock();
3493
3494	if (!chan)
3495		return NULL;
3496
3497	hci_quote_sent(chan->conn, num, quote);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3498
 
 
3499	BT_DBG("chan %p quote %d", chan, *quote);
3500	return chan;
3501}
3502
3503static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3504{
3505	struct hci_conn_hash *h = &hdev->conn_hash;
3506	struct hci_conn *conn;
3507	int num = 0;
3508
3509	BT_DBG("%s", hdev->name);
3510
3511	rcu_read_lock();
3512
3513	list_for_each_entry_rcu(conn, &h->list, list) {
3514		struct hci_chan *chan;
3515
3516		if (conn->type != type)
3517			continue;
3518
3519		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3520			continue;
3521
3522		num++;
3523
3524		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3525			struct sk_buff *skb;
3526
3527			if (chan->sent) {
3528				chan->sent = 0;
3529				continue;
3530			}
3531
3532			if (skb_queue_empty(&chan->data_q))
3533				continue;
3534
3535			skb = skb_peek(&chan->data_q);
3536			if (skb->priority >= HCI_PRIO_MAX - 1)
3537				continue;
3538
3539			skb->priority = HCI_PRIO_MAX - 1;
3540
3541			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3542			       skb->priority);
3543		}
3544
3545		if (hci_conn_num(hdev, type) == num)
3546			break;
3547	}
3548
3549	rcu_read_unlock();
3550
3551}
3552
3553static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3554{
3555	/* Calculate count of blocks used by this packet */
3556	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3557}
3558
3559static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3560{
3561	unsigned long last_tx;
3562
3563	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3564		return;
3565
3566	switch (type) {
3567	case LE_LINK:
3568		last_tx = hdev->le_last_tx;
3569		break;
3570	default:
3571		last_tx = hdev->acl_last_tx;
3572		break;
3573	}
3574
3575	/* tx timeout must be longer than maximum link supervision timeout
3576	 * (40.9 seconds)
3577	 */
3578	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3579		hci_link_tx_to(hdev, type);
3580}
3581
3582/* Schedule SCO */
3583static void hci_sched_sco(struct hci_dev *hdev)
3584{
3585	struct hci_conn *conn;
3586	struct sk_buff *skb;
3587	int quote;
3588
3589	BT_DBG("%s", hdev->name);
3590
3591	if (!hci_conn_num(hdev, SCO_LINK))
3592		return;
3593
3594	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3595		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3596			BT_DBG("skb %p len %d", skb, skb->len);
3597			hci_send_frame(hdev, skb);
3598
3599			conn->sent++;
3600			if (conn->sent == ~0)
3601				conn->sent = 0;
3602		}
3603	}
3604}
3605
3606static void hci_sched_esco(struct hci_dev *hdev)
3607{
3608	struct hci_conn *conn;
3609	struct sk_buff *skb;
3610	int quote;
3611
3612	BT_DBG("%s", hdev->name);
3613
3614	if (!hci_conn_num(hdev, ESCO_LINK))
3615		return;
3616
3617	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3618						     &quote))) {
3619		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3620			BT_DBG("skb %p len %d", skb, skb->len);
3621			hci_send_frame(hdev, skb);
3622
3623			conn->sent++;
3624			if (conn->sent == ~0)
3625				conn->sent = 0;
3626		}
3627	}
3628}
3629
3630static void hci_sched_acl_pkt(struct hci_dev *hdev)
3631{
3632	unsigned int cnt = hdev->acl_cnt;
3633	struct hci_chan *chan;
3634	struct sk_buff *skb;
3635	int quote;
3636
3637	__check_timeout(hdev, cnt, ACL_LINK);
3638
3639	while (hdev->acl_cnt &&
3640	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3641		u32 priority = (skb_peek(&chan->data_q))->priority;
3642		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3643			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3644			       skb->len, skb->priority);
3645
3646			/* Stop if priority has changed */
3647			if (skb->priority < priority)
3648				break;
3649
3650			skb = skb_dequeue(&chan->data_q);
3651
3652			hci_conn_enter_active_mode(chan->conn,
3653						   bt_cb(skb)->force_active);
3654
3655			hci_send_frame(hdev, skb);
3656			hdev->acl_last_tx = jiffies;
3657
3658			hdev->acl_cnt--;
3659			chan->sent++;
3660			chan->conn->sent++;
3661
3662			/* Send pending SCO packets right away */
3663			hci_sched_sco(hdev);
3664			hci_sched_esco(hdev);
3665		}
3666	}
3667
3668	if (cnt != hdev->acl_cnt)
3669		hci_prio_recalculate(hdev, ACL_LINK);
3670}
3671
3672static void hci_sched_acl_blk(struct hci_dev *hdev)
3673{
3674	unsigned int cnt = hdev->block_cnt;
3675	struct hci_chan *chan;
3676	struct sk_buff *skb;
3677	int quote;
3678	u8 type;
3679
 
 
3680	BT_DBG("%s", hdev->name);
3681
3682	if (hdev->dev_type == HCI_AMP)
3683		type = AMP_LINK;
3684	else
3685		type = ACL_LINK;
3686
3687	__check_timeout(hdev, cnt, type);
3688
3689	while (hdev->block_cnt > 0 &&
3690	       (chan = hci_chan_sent(hdev, type, &quote))) {
3691		u32 priority = (skb_peek(&chan->data_q))->priority;
3692		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3693			int blocks;
3694
3695			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3696			       skb->len, skb->priority);
3697
3698			/* Stop if priority has changed */
3699			if (skb->priority < priority)
3700				break;
3701
3702			skb = skb_dequeue(&chan->data_q);
3703
3704			blocks = __get_blocks(hdev, skb);
3705			if (blocks > hdev->block_cnt)
3706				return;
3707
3708			hci_conn_enter_active_mode(chan->conn,
3709						   bt_cb(skb)->force_active);
3710
3711			hci_send_frame(hdev, skb);
3712			hdev->acl_last_tx = jiffies;
3713
3714			hdev->block_cnt -= blocks;
3715			quote -= blocks;
3716
3717			chan->sent += blocks;
3718			chan->conn->sent += blocks;
3719		}
3720	}
3721
3722	if (cnt != hdev->block_cnt)
3723		hci_prio_recalculate(hdev, type);
3724}
3725
3726static void hci_sched_acl(struct hci_dev *hdev)
3727{
3728	BT_DBG("%s", hdev->name);
3729
3730	/* No ACL link over BR/EDR controller */
3731	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3732		return;
3733
3734	/* No AMP link over AMP controller */
3735	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3736		return;
3737
3738	switch (hdev->flow_ctl_mode) {
3739	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3740		hci_sched_acl_pkt(hdev);
3741		break;
3742
3743	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3744		hci_sched_acl_blk(hdev);
3745		break;
3746	}
3747}
3748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3749static void hci_sched_le(struct hci_dev *hdev)
3750{
3751	struct hci_chan *chan;
3752	struct sk_buff *skb;
3753	int quote, cnt, tmp;
3754
3755	BT_DBG("%s", hdev->name);
3756
3757	if (!hci_conn_num(hdev, LE_LINK))
3758		return;
3759
3760	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3761
3762	__check_timeout(hdev, cnt, LE_LINK);
 
 
 
 
3763
 
3764	tmp = cnt;
3765	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3766		u32 priority = (skb_peek(&chan->data_q))->priority;
3767		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3768			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3769			       skb->len, skb->priority);
3770
3771			/* Stop if priority has changed */
3772			if (skb->priority < priority)
3773				break;
3774
3775			skb = skb_dequeue(&chan->data_q);
3776
3777			hci_send_frame(hdev, skb);
3778			hdev->le_last_tx = jiffies;
3779
3780			cnt--;
3781			chan->sent++;
3782			chan->conn->sent++;
3783
3784			/* Send pending SCO packets right away */
3785			hci_sched_sco(hdev);
3786			hci_sched_esco(hdev);
3787		}
3788	}
3789
3790	if (hdev->le_pkts)
3791		hdev->le_cnt = cnt;
3792	else
3793		hdev->acl_cnt = cnt;
3794
3795	if (cnt != tmp)
3796		hci_prio_recalculate(hdev, LE_LINK);
3797}
3798
3799/* Schedule CIS */
3800static void hci_sched_iso(struct hci_dev *hdev)
3801{
3802	struct hci_conn *conn;
3803	struct sk_buff *skb;
3804	int quote, *cnt;
3805
3806	BT_DBG("%s", hdev->name);
3807
3808	if (!hci_conn_num(hdev, ISO_LINK))
3809		return;
3810
3811	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3812		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3813	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3814		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3815			BT_DBG("skb %p len %d", skb, skb->len);
3816			hci_send_frame(hdev, skb);
3817
3818			conn->sent++;
3819			if (conn->sent == ~0)
3820				conn->sent = 0;
3821			(*cnt)--;
3822		}
3823	}
3824}
3825
3826static void hci_tx_work(struct work_struct *work)
3827{
3828	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3829	struct sk_buff *skb;
3830
3831	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3832	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3833
3834	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3835		/* Schedule queues and send stuff to HCI driver */
 
3836		hci_sched_sco(hdev);
3837		hci_sched_esco(hdev);
3838		hci_sched_iso(hdev);
3839		hci_sched_acl(hdev);
3840		hci_sched_le(hdev);
3841	}
3842
3843	/* Send next queued raw (unknown type) packet */
3844	while ((skb = skb_dequeue(&hdev->raw_q)))
3845		hci_send_frame(hdev, skb);
3846}
3847
3848/* ----- HCI RX task (incoming data processing) ----- */
3849
3850/* ACL data packet */
3851static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3852{
3853	struct hci_acl_hdr *hdr = (void *) skb->data;
3854	struct hci_conn *conn;
3855	__u16 handle, flags;
3856
3857	skb_pull(skb, HCI_ACL_HDR_SIZE);
3858
3859	handle = __le16_to_cpu(hdr->handle);
3860	flags  = hci_flags(handle);
3861	handle = hci_handle(handle);
3862
3863	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3864	       handle, flags);
3865
3866	hdev->stat.acl_rx++;
3867
3868	hci_dev_lock(hdev);
3869	conn = hci_conn_hash_lookup_handle(hdev, handle);
3870	hci_dev_unlock(hdev);
3871
3872	if (conn) {
3873		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3874
3875		/* Send to upper protocol */
3876		l2cap_recv_acldata(conn, skb, flags);
3877		return;
3878	} else {
3879		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3880			   handle);
3881	}
3882
3883	kfree_skb(skb);
3884}
3885
3886/* SCO data packet */
3887static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3888{
3889	struct hci_sco_hdr *hdr = (void *) skb->data;
3890	struct hci_conn *conn;
3891	__u16 handle, flags;
3892
3893	skb_pull(skb, HCI_SCO_HDR_SIZE);
3894
3895	handle = __le16_to_cpu(hdr->handle);
3896	flags  = hci_flags(handle);
3897	handle = hci_handle(handle);
3898
3899	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3900	       handle, flags);
3901
3902	hdev->stat.sco_rx++;
3903
3904	hci_dev_lock(hdev);
3905	conn = hci_conn_hash_lookup_handle(hdev, handle);
3906	hci_dev_unlock(hdev);
3907
3908	if (conn) {
3909		/* Send to upper protocol */
3910		hci_skb_pkt_status(skb) = flags & 0x03;
3911		sco_recv_scodata(conn, skb);
3912		return;
3913	} else {
3914		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3915				       handle);
3916	}
3917
3918	kfree_skb(skb);
3919}
3920
3921static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3922{
3923	struct hci_iso_hdr *hdr;
3924	struct hci_conn *conn;
3925	__u16 handle, flags;
3926
3927	hdr = skb_pull_data(skb, sizeof(*hdr));
3928	if (!hdr) {
3929		bt_dev_err(hdev, "ISO packet too small");
3930		goto drop;
3931	}
3932
3933	handle = __le16_to_cpu(hdr->handle);
3934	flags  = hci_flags(handle);
3935	handle = hci_handle(handle);
3936
3937	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3938		   handle, flags);
3939
3940	hci_dev_lock(hdev);
3941	conn = hci_conn_hash_lookup_handle(hdev, handle);
3942	hci_dev_unlock(hdev);
3943
3944	if (!conn) {
3945		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3946			   handle);
3947		goto drop;
3948	}
3949
3950	/* Send to upper protocol */
3951	iso_recv(conn, skb, flags);
3952	return;
3953
3954drop:
3955	kfree_skb(skb);
3956}
3957
3958static bool hci_req_is_complete(struct hci_dev *hdev)
3959{
3960	struct sk_buff *skb;
3961
3962	skb = skb_peek(&hdev->cmd_q);
3963	if (!skb)
3964		return true;
3965
3966	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3967}
3968
3969static void hci_resend_last(struct hci_dev *hdev)
3970{
3971	struct hci_command_hdr *sent;
3972	struct sk_buff *skb;
3973	u16 opcode;
3974
3975	if (!hdev->sent_cmd)
3976		return;
3977
3978	sent = (void *) hdev->sent_cmd->data;
3979	opcode = __le16_to_cpu(sent->opcode);
3980	if (opcode == HCI_OP_RESET)
3981		return;
3982
3983	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3984	if (!skb)
3985		return;
3986
3987	skb_queue_head(&hdev->cmd_q, skb);
3988	queue_work(hdev->workqueue, &hdev->cmd_work);
3989}
3990
3991void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3992			  hci_req_complete_t *req_complete,
3993			  hci_req_complete_skb_t *req_complete_skb)
3994{
 
3995	struct sk_buff *skb;
3996	unsigned long flags;
3997
3998	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3999
4000	/* If the completed command doesn't match the last one that was
4001	 * sent we need to do special handling of it.
4002	 */
4003	if (!hci_sent_cmd_data(hdev, opcode)) {
4004		/* Some CSR based controllers generate a spontaneous
4005		 * reset complete event during init and any pending
4006		 * command will never be completed. In such a case we
4007		 * need to resend whatever was the last sent
4008		 * command.
4009		 */
4010		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4011			hci_resend_last(hdev);
4012
4013		return;
4014	}
4015
4016	/* If we reach this point this event matches the last command sent */
4017	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4018
4019	/* If the command succeeded and there's still more commands in
4020	 * this request the request is not yet complete.
4021	 */
4022	if (!status && !hci_req_is_complete(hdev))
4023		return;
4024
4025	/* If this was the last command in a request the complete
4026	 * callback would be found in hdev->sent_cmd instead of the
4027	 * command queue (hdev->cmd_q).
4028	 */
4029	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4030		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4031		return;
4032	}
4033
4034	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4035		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4036		return;
 
 
 
 
 
 
4037	}
4038
4039	/* Remove all pending commands belonging to this request */
4040	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4041	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4042		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4043			__skb_queue_head(&hdev->cmd_q, skb);
4044			break;
4045		}
4046
4047		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4048			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4049		else
4050			*req_complete = bt_cb(skb)->hci.req_complete;
4051		dev_kfree_skb_irq(skb);
4052	}
4053	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
 
 
 
 
4054}
4055
4056static void hci_rx_work(struct work_struct *work)
4057{
4058	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4059	struct sk_buff *skb;
4060
4061	BT_DBG("%s", hdev->name);
4062
4063	/* The kcov_remote functions used for collecting packet parsing
4064	 * coverage information from this background thread and associate
4065	 * the coverage with the syscall's thread which originally injected
4066	 * the packet. This helps fuzzing the kernel.
4067	 */
4068	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4069		kcov_remote_start_common(skb_get_kcov_handle(skb));
4070
4071		/* Send copy to monitor */
4072		hci_send_to_monitor(hdev, skb);
4073
4074		if (atomic_read(&hdev->promisc)) {
4075			/* Send copy to the sockets */
4076			hci_send_to_sock(hdev, skb);
4077		}
4078
4079		/* If the device has been opened in HCI_USER_CHANNEL,
4080		 * the userspace has exclusive access to device.
4081		 * When device is HCI_INIT, we still need to process
4082		 * the data packets to the driver in order
4083		 * to complete its setup().
4084		 */
4085		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4086		    !test_bit(HCI_INIT, &hdev->flags)) {
4087			kfree_skb(skb);
4088			continue;
4089		}
4090
4091		if (test_bit(HCI_INIT, &hdev->flags)) {
4092			/* Don't process data packets in this states. */
4093			switch (hci_skb_pkt_type(skb)) {
4094			case HCI_ACLDATA_PKT:
4095			case HCI_SCODATA_PKT:
4096			case HCI_ISODATA_PKT:
4097				kfree_skb(skb);
4098				continue;
4099			}
4100		}
4101
4102		/* Process frame */
4103		switch (hci_skb_pkt_type(skb)) {
4104		case HCI_EVENT_PKT:
4105			BT_DBG("%s Event packet", hdev->name);
4106			hci_event_packet(hdev, skb);
4107			break;
4108
4109		case HCI_ACLDATA_PKT:
4110			BT_DBG("%s ACL data packet", hdev->name);
4111			hci_acldata_packet(hdev, skb);
4112			break;
4113
4114		case HCI_SCODATA_PKT:
4115			BT_DBG("%s SCO data packet", hdev->name);
4116			hci_scodata_packet(hdev, skb);
4117			break;
4118
4119		case HCI_ISODATA_PKT:
4120			BT_DBG("%s ISO data packet", hdev->name);
4121			hci_isodata_packet(hdev, skb);
4122			break;
4123
4124		default:
4125			kfree_skb(skb);
4126			break;
4127		}
4128	}
4129}
4130
4131static void hci_cmd_work(struct work_struct *work)
4132{
4133	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4134	struct sk_buff *skb;
4135
4136	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4137	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4138
4139	/* Send queued commands */
4140	if (atomic_read(&hdev->cmd_cnt)) {
4141		skb = skb_dequeue(&hdev->cmd_q);
4142		if (!skb)
4143			return;
4144
4145		kfree_skb(hdev->sent_cmd);
4146
4147		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4148		if (hdev->sent_cmd) {
4149			int res;
4150			if (hci_req_status_pend(hdev))
4151				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4152			atomic_dec(&hdev->cmd_cnt);
4153
4154			res = hci_send_frame(hdev, skb);
4155			if (res < 0)
4156				__hci_cmd_sync_cancel(hdev, -res);
4157
4158			rcu_read_lock();
4159			if (test_bit(HCI_RESET, &hdev->flags) ||
4160			    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4161				cancel_delayed_work(&hdev->cmd_timer);
4162			else
4163				queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4164						   HCI_CMD_TIMEOUT);
4165			rcu_read_unlock();
4166		} else {
4167			skb_queue_head(&hdev->cmd_q, skb);
4168			queue_work(hdev->workqueue, &hdev->cmd_work);
4169		}
4170	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4171}
v3.15
   1/*
   2   BlueZ - Bluetooth protocol stack for Linux
   3   Copyright (C) 2000-2001 Qualcomm Incorporated
   4   Copyright (C) 2011 ProFUSION Embedded Systems
   5
   6   Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
   7
   8   This program is free software; you can redistribute it and/or modify
   9   it under the terms of the GNU General Public License version 2 as
  10   published by the Free Software Foundation;
  11
  12   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  13   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  14   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
  15   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
  16   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
  17   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20
  21   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
  22   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
  23   SOFTWARE IS DISCLAIMED.
  24*/
  25
  26/* Bluetooth HCI core. */
  27
  28#include <linux/export.h>
  29#include <linux/idr.h>
  30#include <linux/rfkill.h>
  31#include <linux/debugfs.h>
  32#include <linux/crypto.h>
 
 
 
 
  33#include <asm/unaligned.h>
  34
  35#include <net/bluetooth/bluetooth.h>
  36#include <net/bluetooth/hci_core.h>
 
 
  37
 
 
  38#include "smp.h"
 
 
 
 
  39
  40static void hci_rx_work(struct work_struct *work);
  41static void hci_cmd_work(struct work_struct *work);
  42static void hci_tx_work(struct work_struct *work);
  43
  44/* HCI device list */
  45LIST_HEAD(hci_dev_list);
  46DEFINE_RWLOCK(hci_dev_list_lock);
  47
  48/* HCI callback list */
  49LIST_HEAD(hci_cb_list);
  50DEFINE_RWLOCK(hci_cb_list_lock);
  51
  52/* HCI ID Numbering */
  53static DEFINE_IDA(hci_index_ida);
  54
  55/* ---- HCI notifications ---- */
  56
  57static void hci_notify(struct hci_dev *hdev, int event)
  58{
  59	hci_sock_dev_event(hdev, event);
  60}
  61
  62/* ---- HCI debugfs entries ---- */
  63
  64static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
  65			     size_t count, loff_t *ppos)
  66{
  67	struct hci_dev *hdev = file->private_data;
  68	char buf[3];
  69
  70	buf[0] = test_bit(HCI_DUT_MODE, &hdev->dev_flags) ? 'Y': 'N';
  71	buf[1] = '\n';
  72	buf[2] = '\0';
  73	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
  74}
  75
  76static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
  77			      size_t count, loff_t *ppos)
  78{
  79	struct hci_dev *hdev = file->private_data;
  80	struct sk_buff *skb;
  81	char buf[32];
  82	size_t buf_size = min(count, (sizeof(buf)-1));
  83	bool enable;
  84	int err;
  85
  86	if (!test_bit(HCI_UP, &hdev->flags))
  87		return -ENETDOWN;
  88
  89	if (copy_from_user(buf, user_buf, buf_size))
  90		return -EFAULT;
  91
  92	buf[buf_size] = '\0';
  93	if (strtobool(buf, &enable))
  94		return -EINVAL;
  95
  96	if (enable == test_bit(HCI_DUT_MODE, &hdev->dev_flags))
  97		return -EALREADY;
  98
  99	hci_req_lock(hdev);
 100	if (enable)
 101		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
 102				     HCI_CMD_TIMEOUT);
 103	else
 104		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
 105				     HCI_CMD_TIMEOUT);
 106	hci_req_unlock(hdev);
 107
 108	if (IS_ERR(skb))
 109		return PTR_ERR(skb);
 110
 111	err = -bt_to_errno(skb->data[0]);
 112	kfree_skb(skb);
 113
 114	if (err < 0)
 115		return err;
 116
 117	change_bit(HCI_DUT_MODE, &hdev->dev_flags);
 118
 119	return count;
 120}
 121
 122static const struct file_operations dut_mode_fops = {
 123	.open		= simple_open,
 124	.read		= dut_mode_read,
 125	.write		= dut_mode_write,
 126	.llseek		= default_llseek,
 127};
 128
 129static int features_show(struct seq_file *f, void *ptr)
 130{
 131	struct hci_dev *hdev = f->private;
 132	u8 p;
 133
 134	hci_dev_lock(hdev);
 135	for (p = 0; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
 136		seq_printf(f, "%2u: 0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x "
 137			   "0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x\n", p,
 138			   hdev->features[p][0], hdev->features[p][1],
 139			   hdev->features[p][2], hdev->features[p][3],
 140			   hdev->features[p][4], hdev->features[p][5],
 141			   hdev->features[p][6], hdev->features[p][7]);
 142	}
 143	if (lmp_le_capable(hdev))
 144		seq_printf(f, "LE: 0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x "
 145			   "0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x\n",
 146			   hdev->le_features[0], hdev->le_features[1],
 147			   hdev->le_features[2], hdev->le_features[3],
 148			   hdev->le_features[4], hdev->le_features[5],
 149			   hdev->le_features[6], hdev->le_features[7]);
 150	hci_dev_unlock(hdev);
 151
 152	return 0;
 153}
 154
 155static int features_open(struct inode *inode, struct file *file)
 156{
 157	return single_open(file, features_show, inode->i_private);
 158}
 159
 160static const struct file_operations features_fops = {
 161	.open		= features_open,
 162	.read		= seq_read,
 163	.llseek		= seq_lseek,
 164	.release	= single_release,
 165};
 166
 167static int blacklist_show(struct seq_file *f, void *p)
 168{
 169	struct hci_dev *hdev = f->private;
 170	struct bdaddr_list *b;
 171
 172	hci_dev_lock(hdev);
 173	list_for_each_entry(b, &hdev->blacklist, list)
 174		seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type);
 175	hci_dev_unlock(hdev);
 176
 177	return 0;
 178}
 179
 180static int blacklist_open(struct inode *inode, struct file *file)
 181{
 182	return single_open(file, blacklist_show, inode->i_private);
 183}
 184
 185static const struct file_operations blacklist_fops = {
 186	.open		= blacklist_open,
 187	.read		= seq_read,
 188	.llseek		= seq_lseek,
 189	.release	= single_release,
 190};
 191
 192static int uuids_show(struct seq_file *f, void *p)
 193{
 194	struct hci_dev *hdev = f->private;
 195	struct bt_uuid *uuid;
 196
 197	hci_dev_lock(hdev);
 198	list_for_each_entry(uuid, &hdev->uuids, list) {
 199		u8 i, val[16];
 200
 201		/* The Bluetooth UUID values are stored in big endian,
 202		 * but with reversed byte order. So convert them into
 203		 * the right order for the %pUb modifier.
 204		 */
 205		for (i = 0; i < 16; i++)
 206			val[i] = uuid->uuid[15 - i];
 207
 208		seq_printf(f, "%pUb\n", val);
 209	}
 210	hci_dev_unlock(hdev);
 211
 212	return 0;
 213}
 214
 215static int uuids_open(struct inode *inode, struct file *file)
 216{
 217	return single_open(file, uuids_show, inode->i_private);
 218}
 219
 220static const struct file_operations uuids_fops = {
 221	.open		= uuids_open,
 222	.read		= seq_read,
 223	.llseek		= seq_lseek,
 224	.release	= single_release,
 225};
 226
 227static int inquiry_cache_show(struct seq_file *f, void *p)
 228{
 229	struct hci_dev *hdev = f->private;
 230	struct discovery_state *cache = &hdev->discovery;
 231	struct inquiry_entry *e;
 232
 233	hci_dev_lock(hdev);
 234
 235	list_for_each_entry(e, &cache->all, all) {
 236		struct inquiry_data *data = &e->data;
 237		seq_printf(f, "%pMR %d %d %d 0x%.2x%.2x%.2x 0x%.4x %d %d %u\n",
 238			   &data->bdaddr,
 239			   data->pscan_rep_mode, data->pscan_period_mode,
 240			   data->pscan_mode, data->dev_class[2],
 241			   data->dev_class[1], data->dev_class[0],
 242			   __le16_to_cpu(data->clock_offset),
 243			   data->rssi, data->ssp_mode, e->timestamp);
 244	}
 245
 246	hci_dev_unlock(hdev);
 247
 248	return 0;
 249}
 250
 251static int inquiry_cache_open(struct inode *inode, struct file *file)
 252{
 253	return single_open(file, inquiry_cache_show, inode->i_private);
 254}
 255
 256static const struct file_operations inquiry_cache_fops = {
 257	.open		= inquiry_cache_open,
 258	.read		= seq_read,
 259	.llseek		= seq_lseek,
 260	.release	= single_release,
 261};
 262
 263static int link_keys_show(struct seq_file *f, void *ptr)
 264{
 265	struct hci_dev *hdev = f->private;
 266	struct list_head *p, *n;
 267
 268	hci_dev_lock(hdev);
 269	list_for_each_safe(p, n, &hdev->link_keys) {
 270		struct link_key *key = list_entry(p, struct link_key, list);
 271		seq_printf(f, "%pMR %u %*phN %u\n", &key->bdaddr, key->type,
 272			   HCI_LINK_KEY_SIZE, key->val, key->pin_len);
 273	}
 274	hci_dev_unlock(hdev);
 275
 276	return 0;
 277}
 278
 279static int link_keys_open(struct inode *inode, struct file *file)
 280{
 281	return single_open(file, link_keys_show, inode->i_private);
 282}
 283
 284static const struct file_operations link_keys_fops = {
 285	.open		= link_keys_open,
 286	.read		= seq_read,
 287	.llseek		= seq_lseek,
 288	.release	= single_release,
 289};
 290
 291static int dev_class_show(struct seq_file *f, void *ptr)
 292{
 293	struct hci_dev *hdev = f->private;
 294
 295	hci_dev_lock(hdev);
 296	seq_printf(f, "0x%.2x%.2x%.2x\n", hdev->dev_class[2],
 297		   hdev->dev_class[1], hdev->dev_class[0]);
 298	hci_dev_unlock(hdev);
 299
 300	return 0;
 301}
 302
 303static int dev_class_open(struct inode *inode, struct file *file)
 304{
 305	return single_open(file, dev_class_show, inode->i_private);
 306}
 307
 308static const struct file_operations dev_class_fops = {
 309	.open		= dev_class_open,
 310	.read		= seq_read,
 311	.llseek		= seq_lseek,
 312	.release	= single_release,
 313};
 314
 315static int voice_setting_get(void *data, u64 *val)
 316{
 317	struct hci_dev *hdev = data;
 318
 319	hci_dev_lock(hdev);
 320	*val = hdev->voice_setting;
 321	hci_dev_unlock(hdev);
 322
 323	return 0;
 324}
 325
 326DEFINE_SIMPLE_ATTRIBUTE(voice_setting_fops, voice_setting_get,
 327			NULL, "0x%4.4llx\n");
 328
 329static int auto_accept_delay_set(void *data, u64 val)
 330{
 331	struct hci_dev *hdev = data;
 332
 333	hci_dev_lock(hdev);
 334	hdev->auto_accept_delay = val;
 335	hci_dev_unlock(hdev);
 336
 337	return 0;
 338}
 339
 340static int auto_accept_delay_get(void *data, u64 *val)
 341{
 342	struct hci_dev *hdev = data;
 343
 344	hci_dev_lock(hdev);
 345	*val = hdev->auto_accept_delay;
 346	hci_dev_unlock(hdev);
 347
 348	return 0;
 349}
 350
 351DEFINE_SIMPLE_ATTRIBUTE(auto_accept_delay_fops, auto_accept_delay_get,
 352			auto_accept_delay_set, "%llu\n");
 353
 354static int ssp_debug_mode_set(void *data, u64 val)
 355{
 356	struct hci_dev *hdev = data;
 357	struct sk_buff *skb;
 358	__u8 mode;
 359	int err;
 360
 361	if (val != 0 && val != 1)
 362		return -EINVAL;
 363
 364	if (!test_bit(HCI_UP, &hdev->flags))
 365		return -ENETDOWN;
 366
 367	hci_req_lock(hdev);
 368	mode = val;
 369	skb = __hci_cmd_sync(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, sizeof(mode),
 370			     &mode, HCI_CMD_TIMEOUT);
 371	hci_req_unlock(hdev);
 372
 373	if (IS_ERR(skb))
 374		return PTR_ERR(skb);
 375
 376	err = -bt_to_errno(skb->data[0]);
 377	kfree_skb(skb);
 378
 379	if (err < 0)
 380		return err;
 381
 382	hci_dev_lock(hdev);
 383	hdev->ssp_debug_mode = val;
 384	hci_dev_unlock(hdev);
 385
 386	return 0;
 387}
 388
 389static int ssp_debug_mode_get(void *data, u64 *val)
 390{
 391	struct hci_dev *hdev = data;
 392
 393	hci_dev_lock(hdev);
 394	*val = hdev->ssp_debug_mode;
 395	hci_dev_unlock(hdev);
 396
 397	return 0;
 398}
 399
 400DEFINE_SIMPLE_ATTRIBUTE(ssp_debug_mode_fops, ssp_debug_mode_get,
 401			ssp_debug_mode_set, "%llu\n");
 402
 403static ssize_t force_sc_support_read(struct file *file, char __user *user_buf,
 404				     size_t count, loff_t *ppos)
 405{
 406	struct hci_dev *hdev = file->private_data;
 407	char buf[3];
 408
 409	buf[0] = test_bit(HCI_FORCE_SC, &hdev->dev_flags) ? 'Y': 'N';
 410	buf[1] = '\n';
 411	buf[2] = '\0';
 412	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 413}
 414
 415static ssize_t force_sc_support_write(struct file *file,
 416				      const char __user *user_buf,
 417				      size_t count, loff_t *ppos)
 418{
 419	struct hci_dev *hdev = file->private_data;
 420	char buf[32];
 421	size_t buf_size = min(count, (sizeof(buf)-1));
 422	bool enable;
 423
 424	if (test_bit(HCI_UP, &hdev->flags))
 425		return -EBUSY;
 426
 427	if (copy_from_user(buf, user_buf, buf_size))
 428		return -EFAULT;
 429
 430	buf[buf_size] = '\0';
 431	if (strtobool(buf, &enable))
 432		return -EINVAL;
 433
 434	if (enable == test_bit(HCI_FORCE_SC, &hdev->dev_flags))
 435		return -EALREADY;
 436
 437	change_bit(HCI_FORCE_SC, &hdev->dev_flags);
 438
 439	return count;
 440}
 441
 442static const struct file_operations force_sc_support_fops = {
 443	.open		= simple_open,
 444	.read		= force_sc_support_read,
 445	.write		= force_sc_support_write,
 446	.llseek		= default_llseek,
 447};
 448
 449static ssize_t sc_only_mode_read(struct file *file, char __user *user_buf,
 450				 size_t count, loff_t *ppos)
 451{
 452	struct hci_dev *hdev = file->private_data;
 453	char buf[3];
 454
 455	buf[0] = test_bit(HCI_SC_ONLY, &hdev->dev_flags) ? 'Y': 'N';
 456	buf[1] = '\n';
 457	buf[2] = '\0';
 458	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 459}
 460
 461static const struct file_operations sc_only_mode_fops = {
 462	.open		= simple_open,
 463	.read		= sc_only_mode_read,
 464	.llseek		= default_llseek,
 465};
 466
 467static int idle_timeout_set(void *data, u64 val)
 468{
 469	struct hci_dev *hdev = data;
 470
 471	if (val != 0 && (val < 500 || val > 3600000))
 472		return -EINVAL;
 473
 474	hci_dev_lock(hdev);
 475	hdev->idle_timeout = val;
 476	hci_dev_unlock(hdev);
 477
 478	return 0;
 479}
 480
 481static int idle_timeout_get(void *data, u64 *val)
 482{
 483	struct hci_dev *hdev = data;
 484
 485	hci_dev_lock(hdev);
 486	*val = hdev->idle_timeout;
 487	hci_dev_unlock(hdev);
 488
 489	return 0;
 490}
 491
 492DEFINE_SIMPLE_ATTRIBUTE(idle_timeout_fops, idle_timeout_get,
 493			idle_timeout_set, "%llu\n");
 494
 495static int rpa_timeout_set(void *data, u64 val)
 496{
 497	struct hci_dev *hdev = data;
 498
 499	/* Require the RPA timeout to be at least 30 seconds and at most
 500	 * 24 hours.
 501	 */
 502	if (val < 30 || val > (60 * 60 * 24))
 503		return -EINVAL;
 504
 505	hci_dev_lock(hdev);
 506	hdev->rpa_timeout = val;
 507	hci_dev_unlock(hdev);
 508
 509	return 0;
 510}
 511
 512static int rpa_timeout_get(void *data, u64 *val)
 513{
 514	struct hci_dev *hdev = data;
 515
 516	hci_dev_lock(hdev);
 517	*val = hdev->rpa_timeout;
 518	hci_dev_unlock(hdev);
 519
 520	return 0;
 521}
 522
 523DEFINE_SIMPLE_ATTRIBUTE(rpa_timeout_fops, rpa_timeout_get,
 524			rpa_timeout_set, "%llu\n");
 525
 526static int sniff_min_interval_set(void *data, u64 val)
 527{
 528	struct hci_dev *hdev = data;
 529
 530	if (val == 0 || val % 2 || val > hdev->sniff_max_interval)
 531		return -EINVAL;
 532
 533	hci_dev_lock(hdev);
 534	hdev->sniff_min_interval = val;
 535	hci_dev_unlock(hdev);
 536
 537	return 0;
 538}
 539
 540static int sniff_min_interval_get(void *data, u64 *val)
 541{
 542	struct hci_dev *hdev = data;
 543
 544	hci_dev_lock(hdev);
 545	*val = hdev->sniff_min_interval;
 546	hci_dev_unlock(hdev);
 547
 548	return 0;
 549}
 550
 551DEFINE_SIMPLE_ATTRIBUTE(sniff_min_interval_fops, sniff_min_interval_get,
 552			sniff_min_interval_set, "%llu\n");
 553
 554static int sniff_max_interval_set(void *data, u64 val)
 555{
 556	struct hci_dev *hdev = data;
 557
 558	if (val == 0 || val % 2 || val < hdev->sniff_min_interval)
 559		return -EINVAL;
 560
 561	hci_dev_lock(hdev);
 562	hdev->sniff_max_interval = val;
 563	hci_dev_unlock(hdev);
 564
 565	return 0;
 566}
 567
 568static int sniff_max_interval_get(void *data, u64 *val)
 569{
 570	struct hci_dev *hdev = data;
 571
 572	hci_dev_lock(hdev);
 573	*val = hdev->sniff_max_interval;
 574	hci_dev_unlock(hdev);
 575
 576	return 0;
 577}
 578
 579DEFINE_SIMPLE_ATTRIBUTE(sniff_max_interval_fops, sniff_max_interval_get,
 580			sniff_max_interval_set, "%llu\n");
 581
 582static int identity_show(struct seq_file *f, void *p)
 583{
 584	struct hci_dev *hdev = f->private;
 585	bdaddr_t addr;
 586	u8 addr_type;
 587
 588	hci_dev_lock(hdev);
 589
 590	hci_copy_identity_address(hdev, &addr, &addr_type);
 591
 592	seq_printf(f, "%pMR (type %u) %*phN %pMR\n", &addr, addr_type,
 593		   16, hdev->irk, &hdev->rpa);
 594
 595	hci_dev_unlock(hdev);
 596
 597	return 0;
 598}
 599
 600static int identity_open(struct inode *inode, struct file *file)
 601{
 602	return single_open(file, identity_show, inode->i_private);
 603}
 604
 605static const struct file_operations identity_fops = {
 606	.open		= identity_open,
 607	.read		= seq_read,
 608	.llseek		= seq_lseek,
 609	.release	= single_release,
 610};
 611
 612static int random_address_show(struct seq_file *f, void *p)
 613{
 614	struct hci_dev *hdev = f->private;
 615
 616	hci_dev_lock(hdev);
 617	seq_printf(f, "%pMR\n", &hdev->random_addr);
 618	hci_dev_unlock(hdev);
 619
 620	return 0;
 621}
 622
 623static int random_address_open(struct inode *inode, struct file *file)
 624{
 625	return single_open(file, random_address_show, inode->i_private);
 626}
 627
 628static const struct file_operations random_address_fops = {
 629	.open		= random_address_open,
 630	.read		= seq_read,
 631	.llseek		= seq_lseek,
 632	.release	= single_release,
 633};
 634
 635static int static_address_show(struct seq_file *f, void *p)
 636{
 637	struct hci_dev *hdev = f->private;
 638
 639	hci_dev_lock(hdev);
 640	seq_printf(f, "%pMR\n", &hdev->static_addr);
 641	hci_dev_unlock(hdev);
 642
 643	return 0;
 644}
 645
 646static int static_address_open(struct inode *inode, struct file *file)
 647{
 648	return single_open(file, static_address_show, inode->i_private);
 649}
 650
 651static const struct file_operations static_address_fops = {
 652	.open		= static_address_open,
 653	.read		= seq_read,
 654	.llseek		= seq_lseek,
 655	.release	= single_release,
 656};
 657
 658static ssize_t force_static_address_read(struct file *file,
 659					 char __user *user_buf,
 660					 size_t count, loff_t *ppos)
 661{
 662	struct hci_dev *hdev = file->private_data;
 663	char buf[3];
 664
 665	buf[0] = test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dev_flags) ? 'Y': 'N';
 666	buf[1] = '\n';
 667	buf[2] = '\0';
 668	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 669}
 670
 671static ssize_t force_static_address_write(struct file *file,
 672					  const char __user *user_buf,
 673					  size_t count, loff_t *ppos)
 674{
 675	struct hci_dev *hdev = file->private_data;
 676	char buf[32];
 677	size_t buf_size = min(count, (sizeof(buf)-1));
 678	bool enable;
 679
 680	if (test_bit(HCI_UP, &hdev->flags))
 681		return -EBUSY;
 682
 683	if (copy_from_user(buf, user_buf, buf_size))
 684		return -EFAULT;
 685
 686	buf[buf_size] = '\0';
 687	if (strtobool(buf, &enable))
 688		return -EINVAL;
 689
 690	if (enable == test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dev_flags))
 691		return -EALREADY;
 692
 693	change_bit(HCI_FORCE_STATIC_ADDR, &hdev->dev_flags);
 694
 695	return count;
 696}
 697
 698static const struct file_operations force_static_address_fops = {
 699	.open		= simple_open,
 700	.read		= force_static_address_read,
 701	.write		= force_static_address_write,
 702	.llseek		= default_llseek,
 703};
 704
 705static int white_list_show(struct seq_file *f, void *ptr)
 706{
 707	struct hci_dev *hdev = f->private;
 708	struct bdaddr_list *b;
 709
 710	hci_dev_lock(hdev);
 711	list_for_each_entry(b, &hdev->le_white_list, list)
 712		seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type);
 713	hci_dev_unlock(hdev);
 714
 715	return 0;
 716}
 717
 718static int white_list_open(struct inode *inode, struct file *file)
 719{
 720	return single_open(file, white_list_show, inode->i_private);
 721}
 722
 723static const struct file_operations white_list_fops = {
 724	.open		= white_list_open,
 725	.read		= seq_read,
 726	.llseek		= seq_lseek,
 727	.release	= single_release,
 728};
 729
 730static int identity_resolving_keys_show(struct seq_file *f, void *ptr)
 731{
 732	struct hci_dev *hdev = f->private;
 733	struct list_head *p, *n;
 734
 735	hci_dev_lock(hdev);
 736	list_for_each_safe(p, n, &hdev->identity_resolving_keys) {
 737		struct smp_irk *irk = list_entry(p, struct smp_irk, list);
 738		seq_printf(f, "%pMR (type %u) %*phN %pMR\n",
 739			   &irk->bdaddr, irk->addr_type,
 740			   16, irk->val, &irk->rpa);
 741	}
 742	hci_dev_unlock(hdev);
 743
 744	return 0;
 745}
 746
 747static int identity_resolving_keys_open(struct inode *inode, struct file *file)
 748{
 749	return single_open(file, identity_resolving_keys_show,
 750			   inode->i_private);
 751}
 752
 753static const struct file_operations identity_resolving_keys_fops = {
 754	.open		= identity_resolving_keys_open,
 755	.read		= seq_read,
 756	.llseek		= seq_lseek,
 757	.release	= single_release,
 758};
 759
 760static int long_term_keys_show(struct seq_file *f, void *ptr)
 761{
 762	struct hci_dev *hdev = f->private;
 763	struct list_head *p, *n;
 764
 765	hci_dev_lock(hdev);
 766	list_for_each_safe(p, n, &hdev->long_term_keys) {
 767		struct smp_ltk *ltk = list_entry(p, struct smp_ltk, list);
 768		seq_printf(f, "%pMR (type %u) %u 0x%02x %u %.4x %.16llx %*phN\n",
 769			   &ltk->bdaddr, ltk->bdaddr_type, ltk->authenticated,
 770			   ltk->type, ltk->enc_size, __le16_to_cpu(ltk->ediv),
 771			   __le64_to_cpu(ltk->rand), 16, ltk->val);
 772	}
 773	hci_dev_unlock(hdev);
 774
 775	return 0;
 776}
 777
 778static int long_term_keys_open(struct inode *inode, struct file *file)
 779{
 780	return single_open(file, long_term_keys_show, inode->i_private);
 781}
 782
 783static const struct file_operations long_term_keys_fops = {
 784	.open		= long_term_keys_open,
 785	.read		= seq_read,
 786	.llseek		= seq_lseek,
 787	.release	= single_release,
 788};
 789
 790static int conn_min_interval_set(void *data, u64 val)
 791{
 792	struct hci_dev *hdev = data;
 793
 794	if (val < 0x0006 || val > 0x0c80 || val > hdev->le_conn_max_interval)
 795		return -EINVAL;
 796
 797	hci_dev_lock(hdev);
 798	hdev->le_conn_min_interval = val;
 799	hci_dev_unlock(hdev);
 800
 801	return 0;
 802}
 803
 804static int conn_min_interval_get(void *data, u64 *val)
 805{
 806	struct hci_dev *hdev = data;
 807
 808	hci_dev_lock(hdev);
 809	*val = hdev->le_conn_min_interval;
 810	hci_dev_unlock(hdev);
 811
 812	return 0;
 813}
 814
 815DEFINE_SIMPLE_ATTRIBUTE(conn_min_interval_fops, conn_min_interval_get,
 816			conn_min_interval_set, "%llu\n");
 817
 818static int conn_max_interval_set(void *data, u64 val)
 819{
 820	struct hci_dev *hdev = data;
 821
 822	if (val < 0x0006 || val > 0x0c80 || val < hdev->le_conn_min_interval)
 823		return -EINVAL;
 824
 825	hci_dev_lock(hdev);
 826	hdev->le_conn_max_interval = val;
 827	hci_dev_unlock(hdev);
 828
 829	return 0;
 830}
 831
 832static int conn_max_interval_get(void *data, u64 *val)
 833{
 834	struct hci_dev *hdev = data;
 835
 836	hci_dev_lock(hdev);
 837	*val = hdev->le_conn_max_interval;
 838	hci_dev_unlock(hdev);
 839
 840	return 0;
 841}
 842
 843DEFINE_SIMPLE_ATTRIBUTE(conn_max_interval_fops, conn_max_interval_get,
 844			conn_max_interval_set, "%llu\n");
 845
 846static int adv_channel_map_set(void *data, u64 val)
 847{
 848	struct hci_dev *hdev = data;
 849
 850	if (val < 0x01 || val > 0x07)
 851		return -EINVAL;
 852
 853	hci_dev_lock(hdev);
 854	hdev->le_adv_channel_map = val;
 855	hci_dev_unlock(hdev);
 856
 857	return 0;
 858}
 859
 860static int adv_channel_map_get(void *data, u64 *val)
 861{
 862	struct hci_dev *hdev = data;
 863
 864	hci_dev_lock(hdev);
 865	*val = hdev->le_adv_channel_map;
 866	hci_dev_unlock(hdev);
 867
 868	return 0;
 869}
 870
 871DEFINE_SIMPLE_ATTRIBUTE(adv_channel_map_fops, adv_channel_map_get,
 872			adv_channel_map_set, "%llu\n");
 873
 874static ssize_t lowpan_read(struct file *file, char __user *user_buf,
 875			   size_t count, loff_t *ppos)
 876{
 877	struct hci_dev *hdev = file->private_data;
 878	char buf[3];
 879
 880	buf[0] = test_bit(HCI_6LOWPAN_ENABLED, &hdev->dev_flags) ? 'Y' : 'N';
 881	buf[1] = '\n';
 882	buf[2] = '\0';
 883	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
 884}
 885
 886static ssize_t lowpan_write(struct file *fp, const char __user *user_buffer,
 887			    size_t count, loff_t *position)
 888{
 889	struct hci_dev *hdev = fp->private_data;
 890	bool enable;
 891	char buf[32];
 892	size_t buf_size = min(count, (sizeof(buf)-1));
 893
 894	if (copy_from_user(buf, user_buffer, buf_size))
 895		return -EFAULT;
 896
 897	buf[buf_size] = '\0';
 898
 899	if (strtobool(buf, &enable) < 0)
 900		return -EINVAL;
 901
 902	if (enable == test_bit(HCI_6LOWPAN_ENABLED, &hdev->dev_flags))
 903		return -EALREADY;
 904
 905	change_bit(HCI_6LOWPAN_ENABLED, &hdev->dev_flags);
 906
 907	return count;
 908}
 909
 910static const struct file_operations lowpan_debugfs_fops = {
 911	.open		= simple_open,
 912	.read		= lowpan_read,
 913	.write		= lowpan_write,
 914	.llseek		= default_llseek,
 915};
 916
 917static int le_auto_conn_show(struct seq_file *sf, void *ptr)
 918{
 919	struct hci_dev *hdev = sf->private;
 920	struct hci_conn_params *p;
 921
 922	hci_dev_lock(hdev);
 923
 924	list_for_each_entry(p, &hdev->le_conn_params, list) {
 925		seq_printf(sf, "%pMR %u %u\n", &p->addr, p->addr_type,
 926			   p->auto_connect);
 927	}
 928
 929	hci_dev_unlock(hdev);
 930
 931	return 0;
 932}
 933
 934static int le_auto_conn_open(struct inode *inode, struct file *file)
 935{
 936	return single_open(file, le_auto_conn_show, inode->i_private);
 937}
 938
 939static ssize_t le_auto_conn_write(struct file *file, const char __user *data,
 940				  size_t count, loff_t *offset)
 941{
 942	struct seq_file *sf = file->private_data;
 943	struct hci_dev *hdev = sf->private;
 944	u8 auto_connect = 0;
 945	bdaddr_t addr;
 946	u8 addr_type;
 947	char *buf;
 948	int err = 0;
 949	int n;
 950
 951	/* Don't allow partial write */
 952	if (*offset != 0)
 953		return -EINVAL;
 954
 955	if (count < 3)
 956		return -EINVAL;
 957
 958	buf = kzalloc(count, GFP_KERNEL);
 959	if (!buf)
 960		return -ENOMEM;
 961
 962	if (copy_from_user(buf, data, count)) {
 963		err = -EFAULT;
 964		goto done;
 965	}
 966
 967	if (memcmp(buf, "add", 3) == 0) {
 968		n = sscanf(&buf[4], "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx %hhu %hhu",
 969			   &addr.b[5], &addr.b[4], &addr.b[3], &addr.b[2],
 970			   &addr.b[1], &addr.b[0], &addr_type,
 971			   &auto_connect);
 972
 973		if (n < 7) {
 974			err = -EINVAL;
 975			goto done;
 976		}
 977
 978		hci_dev_lock(hdev);
 979		err = hci_conn_params_add(hdev, &addr, addr_type, auto_connect,
 980					  hdev->le_conn_min_interval,
 981					  hdev->le_conn_max_interval);
 982		hci_dev_unlock(hdev);
 983
 984		if (err)
 985			goto done;
 986	} else if (memcmp(buf, "del", 3) == 0) {
 987		n = sscanf(&buf[4], "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx %hhu",
 988			   &addr.b[5], &addr.b[4], &addr.b[3], &addr.b[2],
 989			   &addr.b[1], &addr.b[0], &addr_type);
 990
 991		if (n < 7) {
 992			err = -EINVAL;
 993			goto done;
 994		}
 995
 996		hci_dev_lock(hdev);
 997		hci_conn_params_del(hdev, &addr, addr_type);
 998		hci_dev_unlock(hdev);
 999	} else if (memcmp(buf, "clr", 3) == 0) {
1000		hci_dev_lock(hdev);
1001		hci_conn_params_clear(hdev);
1002		hci_pend_le_conns_clear(hdev);
1003		hci_update_background_scan(hdev);
1004		hci_dev_unlock(hdev);
1005	} else {
1006		err = -EINVAL;
1007	}
1008
1009done:
1010	kfree(buf);
1011
1012	if (err)
1013		return err;
1014	else
1015		return count;
1016}
1017
1018static const struct file_operations le_auto_conn_fops = {
1019	.open		= le_auto_conn_open,
1020	.read		= seq_read,
1021	.write		= le_auto_conn_write,
1022	.llseek		= seq_lseek,
1023	.release	= single_release,
1024};
1025
1026/* ---- HCI requests ---- */
1027
1028static void hci_req_sync_complete(struct hci_dev *hdev, u8 result)
1029{
1030	BT_DBG("%s result 0x%2.2x", hdev->name, result);
1031
1032	if (hdev->req_status == HCI_REQ_PEND) {
1033		hdev->req_result = result;
1034		hdev->req_status = HCI_REQ_DONE;
1035		wake_up_interruptible(&hdev->req_wait_q);
1036	}
1037}
1038
1039static void hci_req_cancel(struct hci_dev *hdev, int err)
1040{
1041	BT_DBG("%s err 0x%2.2x", hdev->name, err);
1042
1043	if (hdev->req_status == HCI_REQ_PEND) {
1044		hdev->req_result = err;
1045		hdev->req_status = HCI_REQ_CANCELED;
1046		wake_up_interruptible(&hdev->req_wait_q);
1047	}
1048}
1049
1050static struct sk_buff *hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode,
1051					    u8 event)
1052{
1053	struct hci_ev_cmd_complete *ev;
1054	struct hci_event_hdr *hdr;
1055	struct sk_buff *skb;
1056
1057	hci_dev_lock(hdev);
1058
1059	skb = hdev->recv_evt;
1060	hdev->recv_evt = NULL;
1061
1062	hci_dev_unlock(hdev);
1063
1064	if (!skb)
1065		return ERR_PTR(-ENODATA);
1066
1067	if (skb->len < sizeof(*hdr)) {
1068		BT_ERR("Too short HCI event");
1069		goto failed;
1070	}
1071
1072	hdr = (void *) skb->data;
1073	skb_pull(skb, HCI_EVENT_HDR_SIZE);
1074
1075	if (event) {
1076		if (hdr->evt != event)
1077			goto failed;
1078		return skb;
1079	}
1080
1081	if (hdr->evt != HCI_EV_CMD_COMPLETE) {
1082		BT_DBG("Last event is not cmd complete (0x%2.2x)", hdr->evt);
1083		goto failed;
1084	}
1085
1086	if (skb->len < sizeof(*ev)) {
1087		BT_ERR("Too short cmd_complete event");
1088		goto failed;
1089	}
1090
1091	ev = (void *) skb->data;
1092	skb_pull(skb, sizeof(*ev));
1093
1094	if (opcode == __le16_to_cpu(ev->opcode))
1095		return skb;
1096
1097	BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode,
1098	       __le16_to_cpu(ev->opcode));
1099
1100failed:
1101	kfree_skb(skb);
1102	return ERR_PTR(-ENODATA);
1103}
1104
1105struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1106				  const void *param, u8 event, u32 timeout)
1107{
1108	DECLARE_WAITQUEUE(wait, current);
1109	struct hci_request req;
1110	int err = 0;
1111
1112	BT_DBG("%s", hdev->name);
1113
1114	hci_req_init(&req, hdev);
1115
1116	hci_req_add_ev(&req, opcode, plen, param, event);
1117
1118	hdev->req_status = HCI_REQ_PEND;
1119
1120	err = hci_req_run(&req, hci_req_sync_complete);
1121	if (err < 0)
1122		return ERR_PTR(err);
1123
1124	add_wait_queue(&hdev->req_wait_q, &wait);
1125	set_current_state(TASK_INTERRUPTIBLE);
1126
1127	schedule_timeout(timeout);
1128
1129	remove_wait_queue(&hdev->req_wait_q, &wait);
1130
1131	if (signal_pending(current))
1132		return ERR_PTR(-EINTR);
1133
1134	switch (hdev->req_status) {
1135	case HCI_REQ_DONE:
1136		err = -bt_to_errno(hdev->req_result);
1137		break;
1138
1139	case HCI_REQ_CANCELED:
1140		err = -hdev->req_result;
1141		break;
1142
1143	default:
1144		err = -ETIMEDOUT;
1145		break;
1146	}
1147
1148	hdev->req_status = hdev->req_result = 0;
1149
1150	BT_DBG("%s end: err %d", hdev->name, err);
1151
1152	if (err < 0)
1153		return ERR_PTR(err);
1154
1155	return hci_get_cmd_complete(hdev, opcode, event);
1156}
1157EXPORT_SYMBOL(__hci_cmd_sync_ev);
1158
1159struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1160			       const void *param, u32 timeout)
1161{
1162	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
1163}
1164EXPORT_SYMBOL(__hci_cmd_sync);
1165
1166/* Execute request and wait for completion. */
1167static int __hci_req_sync(struct hci_dev *hdev,
1168			  void (*func)(struct hci_request *req,
1169				      unsigned long opt),
1170			  unsigned long opt, __u32 timeout)
1171{
1172	struct hci_request req;
1173	DECLARE_WAITQUEUE(wait, current);
1174	int err = 0;
1175
1176	BT_DBG("%s start", hdev->name);
1177
1178	hci_req_init(&req, hdev);
1179
1180	hdev->req_status = HCI_REQ_PEND;
1181
1182	func(&req, opt);
1183
1184	err = hci_req_run(&req, hci_req_sync_complete);
1185	if (err < 0) {
1186		hdev->req_status = 0;
1187
1188		/* ENODATA means the HCI request command queue is empty.
1189		 * This can happen when a request with conditionals doesn't
1190		 * trigger any commands to be sent. This is normal behavior
1191		 * and should not trigger an error return.
1192		 */
1193		if (err == -ENODATA)
1194			return 0;
1195
1196		return err;
1197	}
1198
1199	add_wait_queue(&hdev->req_wait_q, &wait);
1200	set_current_state(TASK_INTERRUPTIBLE);
1201
1202	schedule_timeout(timeout);
1203
1204	remove_wait_queue(&hdev->req_wait_q, &wait);
1205
1206	if (signal_pending(current))
1207		return -EINTR;
1208
1209	switch (hdev->req_status) {
1210	case HCI_REQ_DONE:
1211		err = -bt_to_errno(hdev->req_result);
1212		break;
1213
1214	case HCI_REQ_CANCELED:
1215		err = -hdev->req_result;
1216		break;
1217
1218	default:
1219		err = -ETIMEDOUT;
1220		break;
1221	}
1222
1223	hdev->req_status = hdev->req_result = 0;
1224
1225	BT_DBG("%s end: err %d", hdev->name, err);
1226
1227	return err;
1228}
1229
1230static int hci_req_sync(struct hci_dev *hdev,
1231			void (*req)(struct hci_request *req,
1232				    unsigned long opt),
1233			unsigned long opt, __u32 timeout)
1234{
1235	int ret;
1236
1237	if (!test_bit(HCI_UP, &hdev->flags))
1238		return -ENETDOWN;
1239
1240	/* Serialize all requests */
1241	hci_req_lock(hdev);
1242	ret = __hci_req_sync(hdev, req, opt, timeout);
1243	hci_req_unlock(hdev);
1244
1245	return ret;
1246}
1247
1248static void hci_reset_req(struct hci_request *req, unsigned long opt)
1249{
1250	BT_DBG("%s %ld", req->hdev->name, opt);
1251
1252	/* Reset device */
1253	set_bit(HCI_RESET, &req->hdev->flags);
1254	hci_req_add(req, HCI_OP_RESET, 0, NULL);
1255}
1256
1257static void bredr_init(struct hci_request *req)
1258{
1259	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
1260
1261	/* Read Local Supported Features */
1262	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
1263
1264	/* Read Local Version */
1265	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
1266
1267	/* Read BD Address */
1268	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
1269}
1270
1271static void amp_init(struct hci_request *req)
1272{
1273	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
1274
1275	/* Read Local Version */
1276	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
1277
1278	/* Read Local Supported Commands */
1279	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
1280
1281	/* Read Local Supported Features */
1282	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
1283
1284	/* Read Local AMP Info */
1285	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
1286
1287	/* Read Data Blk size */
1288	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
1289
1290	/* Read Flow Control Mode */
1291	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
1292
1293	/* Read Location Data */
1294	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
1295}
1296
1297static void hci_init1_req(struct hci_request *req, unsigned long opt)
1298{
1299	struct hci_dev *hdev = req->hdev;
1300
1301	BT_DBG("%s %ld", hdev->name, opt);
1302
1303	/* Reset */
1304	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
1305		hci_reset_req(req, 0);
1306
1307	switch (hdev->dev_type) {
1308	case HCI_BREDR:
1309		bredr_init(req);
1310		break;
1311
1312	case HCI_AMP:
1313		amp_init(req);
1314		break;
1315
1316	default:
1317		BT_ERR("Unknown device type %d", hdev->dev_type);
1318		break;
1319	}
1320}
1321
1322static void bredr_setup(struct hci_request *req)
1323{
1324	struct hci_dev *hdev = req->hdev;
1325
1326	__le16 param;
1327	__u8 flt_type;
1328
1329	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
1330	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
1331
1332	/* Read Class of Device */
1333	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
1334
1335	/* Read Local Name */
1336	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
1337
1338	/* Read Voice Setting */
1339	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
1340
1341	/* Read Number of Supported IAC */
1342	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
1343
1344	/* Read Current IAC LAP */
1345	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
1346
1347	/* Clear Event Filters */
1348	flt_type = HCI_FLT_CLEAR_ALL;
1349	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
1350
1351	/* Connection accept timeout ~20 secs */
1352	param = cpu_to_le16(0x7d00);
1353	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
1354
1355	/* AVM Berlin (31), aka "BlueFRITZ!", reports version 1.2,
1356	 * but it does not support page scan related HCI commands.
1357	 */
1358	if (hdev->manufacturer != 31 && hdev->hci_ver > BLUETOOTH_VER_1_1) {
1359		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
1360		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
1361	}
1362}
1363
1364static void le_setup(struct hci_request *req)
1365{
1366	struct hci_dev *hdev = req->hdev;
1367
1368	/* Read LE Buffer Size */
1369	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
1370
1371	/* Read LE Local Supported Features */
1372	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
1373
1374	/* Read LE Supported States */
1375	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
1376
1377	/* Read LE Advertising Channel TX Power */
1378	hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
1379
1380	/* Read LE White List Size */
1381	hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL);
1382
1383	/* Clear LE White List */
1384	hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
1385
1386	/* LE-only controllers have LE implicitly enabled */
1387	if (!lmp_bredr_capable(hdev))
1388		set_bit(HCI_LE_ENABLED, &hdev->dev_flags);
1389}
1390
1391static u8 hci_get_inquiry_mode(struct hci_dev *hdev)
1392{
1393	if (lmp_ext_inq_capable(hdev))
1394		return 0x02;
1395
1396	if (lmp_inq_rssi_capable(hdev))
1397		return 0x01;
1398
1399	if (hdev->manufacturer == 11 && hdev->hci_rev == 0x00 &&
1400	    hdev->lmp_subver == 0x0757)
1401		return 0x01;
1402
1403	if (hdev->manufacturer == 15) {
1404		if (hdev->hci_rev == 0x03 && hdev->lmp_subver == 0x6963)
1405			return 0x01;
1406		if (hdev->hci_rev == 0x09 && hdev->lmp_subver == 0x6963)
1407			return 0x01;
1408		if (hdev->hci_rev == 0x00 && hdev->lmp_subver == 0x6965)
1409			return 0x01;
1410	}
1411
1412	if (hdev->manufacturer == 31 && hdev->hci_rev == 0x2005 &&
1413	    hdev->lmp_subver == 0x1805)
1414		return 0x01;
1415
1416	return 0x00;
1417}
1418
1419static void hci_setup_inquiry_mode(struct hci_request *req)
1420{
1421	u8 mode;
1422
1423	mode = hci_get_inquiry_mode(req->hdev);
1424
1425	hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
1426}
1427
1428static void hci_setup_event_mask(struct hci_request *req)
1429{
1430	struct hci_dev *hdev = req->hdev;
1431
1432	/* The second byte is 0xff instead of 0x9f (two reserved bits
1433	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
1434	 * command otherwise.
1435	 */
1436	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
1437
1438	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
1439	 * any event mask for pre 1.2 devices.
1440	 */
1441	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
1442		return;
1443
1444	if (lmp_bredr_capable(hdev)) {
1445		events[4] |= 0x01; /* Flow Specification Complete */
1446		events[4] |= 0x02; /* Inquiry Result with RSSI */
1447		events[4] |= 0x04; /* Read Remote Extended Features Complete */
1448		events[5] |= 0x08; /* Synchronous Connection Complete */
1449		events[5] |= 0x10; /* Synchronous Connection Changed */
1450	} else {
1451		/* Use a different default for LE-only devices */
1452		memset(events, 0, sizeof(events));
1453		events[0] |= 0x10; /* Disconnection Complete */
1454		events[0] |= 0x80; /* Encryption Change */
1455		events[1] |= 0x08; /* Read Remote Version Information Complete */
1456		events[1] |= 0x20; /* Command Complete */
1457		events[1] |= 0x40; /* Command Status */
1458		events[1] |= 0x80; /* Hardware Error */
1459		events[2] |= 0x04; /* Number of Completed Packets */
1460		events[3] |= 0x02; /* Data Buffer Overflow */
1461		events[5] |= 0x80; /* Encryption Key Refresh Complete */
1462	}
1463
1464	if (lmp_inq_rssi_capable(hdev))
1465		events[4] |= 0x02; /* Inquiry Result with RSSI */
1466
1467	if (lmp_sniffsubr_capable(hdev))
1468		events[5] |= 0x20; /* Sniff Subrating */
1469
1470	if (lmp_pause_enc_capable(hdev))
1471		events[5] |= 0x80; /* Encryption Key Refresh Complete */
1472
1473	if (lmp_ext_inq_capable(hdev))
1474		events[5] |= 0x40; /* Extended Inquiry Result */
1475
1476	if (lmp_no_flush_capable(hdev))
1477		events[7] |= 0x01; /* Enhanced Flush Complete */
1478
1479	if (lmp_lsto_capable(hdev))
1480		events[6] |= 0x80; /* Link Supervision Timeout Changed */
1481
1482	if (lmp_ssp_capable(hdev)) {
1483		events[6] |= 0x01;	/* IO Capability Request */
1484		events[6] |= 0x02;	/* IO Capability Response */
1485		events[6] |= 0x04;	/* User Confirmation Request */
1486		events[6] |= 0x08;	/* User Passkey Request */
1487		events[6] |= 0x10;	/* Remote OOB Data Request */
1488		events[6] |= 0x20;	/* Simple Pairing Complete */
1489		events[7] |= 0x04;	/* User Passkey Notification */
1490		events[7] |= 0x08;	/* Keypress Notification */
1491		events[7] |= 0x10;	/* Remote Host Supported
1492					 * Features Notification
1493					 */
1494	}
1495
1496	if (lmp_le_capable(hdev))
1497		events[7] |= 0x20;	/* LE Meta-Event */
1498
1499	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
1500
1501	if (lmp_le_capable(hdev)) {
1502		memset(events, 0, sizeof(events));
1503		events[0] = 0x1f;
1504		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK,
1505			    sizeof(events), events);
1506	}
1507}
1508
1509static void hci_init2_req(struct hci_request *req, unsigned long opt)
1510{
1511	struct hci_dev *hdev = req->hdev;
1512
1513	if (lmp_bredr_capable(hdev))
1514		bredr_setup(req);
1515	else
1516		clear_bit(HCI_BREDR_ENABLED, &hdev->dev_flags);
1517
1518	if (lmp_le_capable(hdev))
1519		le_setup(req);
1520
1521	hci_setup_event_mask(req);
1522
1523	/* AVM Berlin (31), aka "BlueFRITZ!", doesn't support the read
1524	 * local supported commands HCI command.
1525	 */
1526	if (hdev->manufacturer != 31 && hdev->hci_ver > BLUETOOTH_VER_1_1)
1527		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
1528
1529	if (lmp_ssp_capable(hdev)) {
1530		/* When SSP is available, then the host features page
1531		 * should also be available as well. However some
1532		 * controllers list the max_page as 0 as long as SSP
1533		 * has not been enabled. To achieve proper debugging
1534		 * output, force the minimum max_page to 1 at least.
1535		 */
1536		hdev->max_page = 0x01;
1537
1538		if (test_bit(HCI_SSP_ENABLED, &hdev->dev_flags)) {
1539			u8 mode = 0x01;
1540			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
1541				    sizeof(mode), &mode);
1542		} else {
1543			struct hci_cp_write_eir cp;
1544
1545			memset(hdev->eir, 0, sizeof(hdev->eir));
1546			memset(&cp, 0, sizeof(cp));
1547
1548			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
1549		}
1550	}
1551
1552	if (lmp_inq_rssi_capable(hdev))
1553		hci_setup_inquiry_mode(req);
1554
1555	if (lmp_inq_tx_pwr_capable(hdev))
1556		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
1557
1558	if (lmp_ext_feat_capable(hdev)) {
1559		struct hci_cp_read_local_ext_features cp;
1560
1561		cp.page = 0x01;
1562		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
1563			    sizeof(cp), &cp);
1564	}
1565
1566	if (test_bit(HCI_LINK_SECURITY, &hdev->dev_flags)) {
1567		u8 enable = 1;
1568		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
1569			    &enable);
1570	}
1571}
1572
1573static void hci_setup_link_policy(struct hci_request *req)
1574{
1575	struct hci_dev *hdev = req->hdev;
1576	struct hci_cp_write_def_link_policy cp;
1577	u16 link_policy = 0;
1578
1579	if (lmp_rswitch_capable(hdev))
1580		link_policy |= HCI_LP_RSWITCH;
1581	if (lmp_hold_capable(hdev))
1582		link_policy |= HCI_LP_HOLD;
1583	if (lmp_sniff_capable(hdev))
1584		link_policy |= HCI_LP_SNIFF;
1585	if (lmp_park_capable(hdev))
1586		link_policy |= HCI_LP_PARK;
1587
1588	cp.policy = cpu_to_le16(link_policy);
1589	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
1590}
1591
1592static void hci_set_le_support(struct hci_request *req)
1593{
1594	struct hci_dev *hdev = req->hdev;
1595	struct hci_cp_write_le_host_supported cp;
1596
1597	/* LE-only devices do not support explicit enablement */
1598	if (!lmp_bredr_capable(hdev))
1599		return;
1600
1601	memset(&cp, 0, sizeof(cp));
1602
1603	if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) {
1604		cp.le = 0x01;
1605		cp.simul = lmp_le_br_capable(hdev);
1606	}
1607
1608	if (cp.le != lmp_host_le_capable(hdev))
1609		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
1610			    &cp);
1611}
1612
1613static void hci_set_event_mask_page_2(struct hci_request *req)
1614{
1615	struct hci_dev *hdev = req->hdev;
1616	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1617
1618	/* If Connectionless Slave Broadcast master role is supported
1619	 * enable all necessary events for it.
1620	 */
1621	if (lmp_csb_master_capable(hdev)) {
1622		events[1] |= 0x40;	/* Triggered Clock Capture */
1623		events[1] |= 0x80;	/* Synchronization Train Complete */
1624		events[2] |= 0x10;	/* Slave Page Response Timeout */
1625		events[2] |= 0x20;	/* CSB Channel Map Change */
1626	}
1627
1628	/* If Connectionless Slave Broadcast slave role is supported
1629	 * enable all necessary events for it.
1630	 */
1631	if (lmp_csb_slave_capable(hdev)) {
1632		events[2] |= 0x01;	/* Synchronization Train Received */
1633		events[2] |= 0x02;	/* CSB Receive */
1634		events[2] |= 0x04;	/* CSB Timeout */
1635		events[2] |= 0x08;	/* Truncated Page Complete */
1636	}
1637
1638	/* Enable Authenticated Payload Timeout Expired event if supported */
1639	if (lmp_ping_capable(hdev))
1640		events[2] |= 0x80;
1641
1642	hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
1643}
1644
1645static void hci_init3_req(struct hci_request *req, unsigned long opt)
1646{
1647	struct hci_dev *hdev = req->hdev;
1648	u8 p;
1649
1650	/* Some Broadcom based Bluetooth controllers do not support the
1651	 * Delete Stored Link Key command. They are clearly indicating its
1652	 * absence in the bit mask of supported commands.
1653	 *
1654	 * Check the supported commands and only if the the command is marked
1655	 * as supported send it. If not supported assume that the controller
1656	 * does not have actual support for stored link keys which makes this
1657	 * command redundant anyway.
1658	 *
1659	 * Some controllers indicate that they support handling deleting
1660	 * stored link keys, but they don't. The quirk lets a driver
1661	 * just disable this command.
1662	 */
1663	if (hdev->commands[6] & 0x80 &&
1664	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
1665		struct hci_cp_delete_stored_link_key cp;
1666
1667		bacpy(&cp.bdaddr, BDADDR_ANY);
1668		cp.delete_all = 0x01;
1669		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
1670			    sizeof(cp), &cp);
1671	}
1672
1673	if (hdev->commands[5] & 0x10)
1674		hci_setup_link_policy(req);
1675
1676	if (lmp_le_capable(hdev))
1677		hci_set_le_support(req);
1678
1679	/* Read features beyond page 1 if available */
1680	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
1681		struct hci_cp_read_local_ext_features cp;
1682
1683		cp.page = p;
1684		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
1685			    sizeof(cp), &cp);
1686	}
1687}
1688
1689static void hci_init4_req(struct hci_request *req, unsigned long opt)
1690{
1691	struct hci_dev *hdev = req->hdev;
1692
1693	/* Set event mask page 2 if the HCI command for it is supported */
1694	if (hdev->commands[22] & 0x04)
1695		hci_set_event_mask_page_2(req);
1696
1697	/* Check for Synchronization Train support */
1698	if (lmp_sync_train_capable(hdev))
1699		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
1700
1701	/* Enable Secure Connections if supported and configured */
1702	if ((lmp_sc_capable(hdev) ||
1703	     test_bit(HCI_FORCE_SC, &hdev->dev_flags)) &&
1704	    test_bit(HCI_SC_ENABLED, &hdev->dev_flags)) {
1705		u8 support = 0x01;
1706		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
1707			    sizeof(support), &support);
1708	}
1709}
1710
1711static int __hci_init(struct hci_dev *hdev)
1712{
1713	int err;
1714
1715	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT);
1716	if (err < 0)
1717		return err;
1718
1719	/* The Device Under Test (DUT) mode is special and available for
1720	 * all controller types. So just create it early on.
1721	 */
1722	if (test_bit(HCI_SETUP, &hdev->dev_flags)) {
1723		debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
1724				    &dut_mode_fops);
1725	}
1726
1727	/* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
1728	 * BR/EDR/LE type controllers. AMP controllers only need the
1729	 * first stage init.
1730	 */
1731	if (hdev->dev_type != HCI_BREDR)
1732		return 0;
1733
1734	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT);
1735	if (err < 0)
1736		return err;
1737
1738	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT);
1739	if (err < 0)
1740		return err;
1741
1742	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT);
1743	if (err < 0)
1744		return err;
1745
1746	/* Only create debugfs entries during the initial setup
1747	 * phase and not every time the controller gets powered on.
1748	 */
1749	if (!test_bit(HCI_SETUP, &hdev->dev_flags))
1750		return 0;
1751
1752	debugfs_create_file("features", 0444, hdev->debugfs, hdev,
1753			    &features_fops);
1754	debugfs_create_u16("manufacturer", 0444, hdev->debugfs,
1755			   &hdev->manufacturer);
1756	debugfs_create_u8("hci_version", 0444, hdev->debugfs, &hdev->hci_ver);
1757	debugfs_create_u16("hci_revision", 0444, hdev->debugfs, &hdev->hci_rev);
1758	debugfs_create_file("blacklist", 0444, hdev->debugfs, hdev,
1759			    &blacklist_fops);
1760	debugfs_create_file("uuids", 0444, hdev->debugfs, hdev, &uuids_fops);
1761
1762	if (lmp_bredr_capable(hdev)) {
1763		debugfs_create_file("inquiry_cache", 0444, hdev->debugfs,
1764				    hdev, &inquiry_cache_fops);
1765		debugfs_create_file("link_keys", 0400, hdev->debugfs,
1766				    hdev, &link_keys_fops);
1767		debugfs_create_file("dev_class", 0444, hdev->debugfs,
1768				    hdev, &dev_class_fops);
1769		debugfs_create_file("voice_setting", 0444, hdev->debugfs,
1770				    hdev, &voice_setting_fops);
1771	}
1772
1773	if (lmp_ssp_capable(hdev)) {
1774		debugfs_create_file("auto_accept_delay", 0644, hdev->debugfs,
1775				    hdev, &auto_accept_delay_fops);
1776		debugfs_create_file("ssp_debug_mode", 0644, hdev->debugfs,
1777				    hdev, &ssp_debug_mode_fops);
1778		debugfs_create_file("force_sc_support", 0644, hdev->debugfs,
1779				    hdev, &force_sc_support_fops);
1780		debugfs_create_file("sc_only_mode", 0444, hdev->debugfs,
1781				    hdev, &sc_only_mode_fops);
1782	}
1783
1784	if (lmp_sniff_capable(hdev)) {
1785		debugfs_create_file("idle_timeout", 0644, hdev->debugfs,
1786				    hdev, &idle_timeout_fops);
1787		debugfs_create_file("sniff_min_interval", 0644, hdev->debugfs,
1788				    hdev, &sniff_min_interval_fops);
1789		debugfs_create_file("sniff_max_interval", 0644, hdev->debugfs,
1790				    hdev, &sniff_max_interval_fops);
1791	}
1792
1793	if (lmp_le_capable(hdev)) {
1794		debugfs_create_file("identity", 0400, hdev->debugfs,
1795				    hdev, &identity_fops);
1796		debugfs_create_file("rpa_timeout", 0644, hdev->debugfs,
1797				    hdev, &rpa_timeout_fops);
1798		debugfs_create_file("random_address", 0444, hdev->debugfs,
1799				    hdev, &random_address_fops);
1800		debugfs_create_file("static_address", 0444, hdev->debugfs,
1801				    hdev, &static_address_fops);
1802
1803		/* For controllers with a public address, provide a debug
1804		 * option to force the usage of the configured static
1805		 * address. By default the public address is used.
1806		 */
1807		if (bacmp(&hdev->bdaddr, BDADDR_ANY))
1808			debugfs_create_file("force_static_address", 0644,
1809					    hdev->debugfs, hdev,
1810					    &force_static_address_fops);
1811
1812		debugfs_create_u8("white_list_size", 0444, hdev->debugfs,
1813				  &hdev->le_white_list_size);
1814		debugfs_create_file("white_list", 0444, hdev->debugfs, hdev,
1815				    &white_list_fops);
1816		debugfs_create_file("identity_resolving_keys", 0400,
1817				    hdev->debugfs, hdev,
1818				    &identity_resolving_keys_fops);
1819		debugfs_create_file("long_term_keys", 0400, hdev->debugfs,
1820				    hdev, &long_term_keys_fops);
1821		debugfs_create_file("conn_min_interval", 0644, hdev->debugfs,
1822				    hdev, &conn_min_interval_fops);
1823		debugfs_create_file("conn_max_interval", 0644, hdev->debugfs,
1824				    hdev, &conn_max_interval_fops);
1825		debugfs_create_file("adv_channel_map", 0644, hdev->debugfs,
1826				    hdev, &adv_channel_map_fops);
1827		debugfs_create_file("6lowpan", 0644, hdev->debugfs, hdev,
1828				    &lowpan_debugfs_fops);
1829		debugfs_create_file("le_auto_conn", 0644, hdev->debugfs, hdev,
1830				    &le_auto_conn_fops);
1831	}
1832
1833	return 0;
1834}
1835
1836static void hci_scan_req(struct hci_request *req, unsigned long opt)
1837{
1838	__u8 scan = opt;
1839
1840	BT_DBG("%s %x", req->hdev->name, scan);
1841
1842	/* Inquiry and Page scans */
1843	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
 
1844}
1845
1846static void hci_auth_req(struct hci_request *req, unsigned long opt)
1847{
1848	__u8 auth = opt;
1849
1850	BT_DBG("%s %x", req->hdev->name, auth);
1851
1852	/* Authentication */
1853	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
 
1854}
1855
1856static void hci_encrypt_req(struct hci_request *req, unsigned long opt)
1857{
1858	__u8 encrypt = opt;
1859
1860	BT_DBG("%s %x", req->hdev->name, encrypt);
1861
1862	/* Encryption */
1863	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
 
1864}
1865
1866static void hci_linkpol_req(struct hci_request *req, unsigned long opt)
1867{
1868	__le16 policy = cpu_to_le16(opt);
1869
1870	BT_DBG("%s %x", req->hdev->name, policy);
1871
1872	/* Default link policy */
1873	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
 
1874}
1875
1876/* Get HCI device by index.
1877 * Device is held on return. */
1878struct hci_dev *hci_dev_get(int index)
1879{
1880	struct hci_dev *hdev = NULL, *d;
1881
1882	BT_DBG("%d", index);
1883
1884	if (index < 0)
1885		return NULL;
1886
1887	read_lock(&hci_dev_list_lock);
1888	list_for_each_entry(d, &hci_dev_list, list) {
1889		if (d->id == index) {
1890			hdev = hci_dev_hold(d);
1891			break;
1892		}
1893	}
1894	read_unlock(&hci_dev_list_lock);
1895	return hdev;
1896}
1897
1898/* ---- Inquiry support ---- */
1899
1900bool hci_discovery_active(struct hci_dev *hdev)
1901{
1902	struct discovery_state *discov = &hdev->discovery;
1903
1904	switch (discov->state) {
1905	case DISCOVERY_FINDING:
1906	case DISCOVERY_RESOLVING:
1907		return true;
1908
1909	default:
1910		return false;
1911	}
1912}
1913
1914void hci_discovery_set_state(struct hci_dev *hdev, int state)
1915{
 
 
1916	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1917
1918	if (hdev->discovery.state == state)
1919		return;
1920
 
 
1921	switch (state) {
1922	case DISCOVERY_STOPPED:
1923		hci_update_background_scan(hdev);
1924
1925		if (hdev->discovery.state != DISCOVERY_STARTING)
1926			mgmt_discovering(hdev, 0);
1927		break;
1928	case DISCOVERY_STARTING:
1929		break;
1930	case DISCOVERY_FINDING:
1931		mgmt_discovering(hdev, 1);
1932		break;
1933	case DISCOVERY_RESOLVING:
1934		break;
1935	case DISCOVERY_STOPPING:
1936		break;
1937	}
1938
1939	hdev->discovery.state = state;
1940}
1941
1942void hci_inquiry_cache_flush(struct hci_dev *hdev)
1943{
1944	struct discovery_state *cache = &hdev->discovery;
1945	struct inquiry_entry *p, *n;
1946
1947	list_for_each_entry_safe(p, n, &cache->all, all) {
1948		list_del(&p->all);
1949		kfree(p);
1950	}
1951
1952	INIT_LIST_HEAD(&cache->unknown);
1953	INIT_LIST_HEAD(&cache->resolve);
1954}
1955
1956struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1957					       bdaddr_t *bdaddr)
1958{
1959	struct discovery_state *cache = &hdev->discovery;
1960	struct inquiry_entry *e;
1961
1962	BT_DBG("cache %p, %pMR", cache, bdaddr);
1963
1964	list_for_each_entry(e, &cache->all, all) {
1965		if (!bacmp(&e->data.bdaddr, bdaddr))
1966			return e;
1967	}
1968
1969	return NULL;
1970}
1971
1972struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1973						       bdaddr_t *bdaddr)
1974{
1975	struct discovery_state *cache = &hdev->discovery;
1976	struct inquiry_entry *e;
1977
1978	BT_DBG("cache %p, %pMR", cache, bdaddr);
1979
1980	list_for_each_entry(e, &cache->unknown, list) {
1981		if (!bacmp(&e->data.bdaddr, bdaddr))
1982			return e;
1983	}
1984
1985	return NULL;
1986}
1987
1988struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1989						       bdaddr_t *bdaddr,
1990						       int state)
1991{
1992	struct discovery_state *cache = &hdev->discovery;
1993	struct inquiry_entry *e;
1994
1995	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1996
1997	list_for_each_entry(e, &cache->resolve, list) {
1998		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1999			return e;
2000		if (!bacmp(&e->data.bdaddr, bdaddr))
2001			return e;
2002	}
2003
2004	return NULL;
2005}
2006
2007void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
2008				      struct inquiry_entry *ie)
2009{
2010	struct discovery_state *cache = &hdev->discovery;
2011	struct list_head *pos = &cache->resolve;
2012	struct inquiry_entry *p;
2013
2014	list_del(&ie->list);
2015
2016	list_for_each_entry(p, &cache->resolve, list) {
2017		if (p->name_state != NAME_PENDING &&
2018		    abs(p->data.rssi) >= abs(ie->data.rssi))
2019			break;
2020		pos = &p->list;
2021	}
2022
2023	list_add(&ie->list, pos);
2024}
2025
2026bool hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
2027			      bool name_known, bool *ssp)
2028{
2029	struct discovery_state *cache = &hdev->discovery;
2030	struct inquiry_entry *ie;
 
2031
2032	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
2033
2034	hci_remove_remote_oob_data(hdev, &data->bdaddr);
2035
2036	if (ssp)
2037		*ssp = data->ssp_mode;
2038
2039	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
2040	if (ie) {
2041		if (ie->data.ssp_mode && ssp)
2042			*ssp = true;
2043
2044		if (ie->name_state == NAME_NEEDED &&
2045		    data->rssi != ie->data.rssi) {
2046			ie->data.rssi = data->rssi;
2047			hci_inquiry_cache_update_resolve(hdev, ie);
2048		}
2049
2050		goto update;
2051	}
2052
2053	/* Entry not in the cache. Add new one. */
2054	ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
2055	if (!ie)
2056		return false;
 
 
2057
2058	list_add(&ie->all, &cache->all);
2059
2060	if (name_known) {
2061		ie->name_state = NAME_KNOWN;
2062	} else {
2063		ie->name_state = NAME_NOT_KNOWN;
2064		list_add(&ie->list, &cache->unknown);
2065	}
2066
2067update:
2068	if (name_known && ie->name_state != NAME_KNOWN &&
2069	    ie->name_state != NAME_PENDING) {
2070		ie->name_state = NAME_KNOWN;
2071		list_del(&ie->list);
2072	}
2073
2074	memcpy(&ie->data, data, sizeof(*data));
2075	ie->timestamp = jiffies;
2076	cache->timestamp = jiffies;
2077
2078	if (ie->name_state == NAME_NOT_KNOWN)
2079		return false;
2080
2081	return true;
 
2082}
2083
2084static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
2085{
2086	struct discovery_state *cache = &hdev->discovery;
2087	struct inquiry_info *info = (struct inquiry_info *) buf;
2088	struct inquiry_entry *e;
2089	int copied = 0;
2090
2091	list_for_each_entry(e, &cache->all, all) {
2092		struct inquiry_data *data = &e->data;
2093
2094		if (copied >= num)
2095			break;
2096
2097		bacpy(&info->bdaddr, &data->bdaddr);
2098		info->pscan_rep_mode	= data->pscan_rep_mode;
2099		info->pscan_period_mode	= data->pscan_period_mode;
2100		info->pscan_mode	= data->pscan_mode;
2101		memcpy(info->dev_class, data->dev_class, 3);
2102		info->clock_offset	= data->clock_offset;
2103
2104		info++;
2105		copied++;
2106	}
2107
2108	BT_DBG("cache %p, copied %d", cache, copied);
2109	return copied;
2110}
2111
2112static void hci_inq_req(struct hci_request *req, unsigned long opt)
2113{
2114	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
2115	struct hci_dev *hdev = req->hdev;
2116	struct hci_cp_inquiry cp;
2117
2118	BT_DBG("%s", hdev->name);
2119
2120	if (test_bit(HCI_INQUIRY, &hdev->flags))
2121		return;
2122
2123	/* Start Inquiry */
2124	memcpy(&cp.lap, &ir->lap, 3);
2125	cp.length  = ir->length;
2126	cp.num_rsp = ir->num_rsp;
2127	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2128}
2129
2130static int wait_inquiry(void *word)
2131{
2132	schedule();
2133	return signal_pending(current);
2134}
2135
2136int hci_inquiry(void __user *arg)
2137{
2138	__u8 __user *ptr = arg;
2139	struct hci_inquiry_req ir;
2140	struct hci_dev *hdev;
2141	int err = 0, do_inquiry = 0, max_rsp;
2142	long timeo;
2143	__u8 *buf;
2144
2145	if (copy_from_user(&ir, ptr, sizeof(ir)))
2146		return -EFAULT;
2147
2148	hdev = hci_dev_get(ir.dev_id);
2149	if (!hdev)
2150		return -ENODEV;
2151
2152	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2153		err = -EBUSY;
2154		goto done;
2155	}
2156
2157	if (hdev->dev_type != HCI_BREDR) {
 
 
 
 
 
2158		err = -EOPNOTSUPP;
2159		goto done;
2160	}
2161
2162	if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) {
2163		err = -EOPNOTSUPP;
2164		goto done;
2165	}
2166
 
 
 
 
 
 
2167	hci_dev_lock(hdev);
2168	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
2169	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
2170		hci_inquiry_cache_flush(hdev);
2171		do_inquiry = 1;
2172	}
2173	hci_dev_unlock(hdev);
2174
2175	timeo = ir.length * msecs_to_jiffies(2000);
2176
2177	if (do_inquiry) {
2178		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
2179				   timeo);
2180		if (err < 0)
2181			goto done;
2182
2183		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
2184		 * cleared). If it is interrupted by a signal, return -EINTR.
2185		 */
2186		if (wait_on_bit(&hdev->flags, HCI_INQUIRY, wait_inquiry,
2187				TASK_INTERRUPTIBLE))
2188			return -EINTR;
 
 
2189	}
2190
2191	/* for unlimited number of responses we will use buffer with
2192	 * 255 entries
2193	 */
2194	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
2195
2196	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
2197	 * copy it to the user space.
2198	 */
2199	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
2200	if (!buf) {
2201		err = -ENOMEM;
2202		goto done;
2203	}
2204
2205	hci_dev_lock(hdev);
2206	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
2207	hci_dev_unlock(hdev);
2208
2209	BT_DBG("num_rsp %d", ir.num_rsp);
2210
2211	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
2212		ptr += sizeof(ir);
2213		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
2214				 ir.num_rsp))
2215			err = -EFAULT;
2216	} else
2217		err = -EFAULT;
2218
2219	kfree(buf);
2220
2221done:
2222	hci_dev_put(hdev);
2223	return err;
2224}
2225
2226static int hci_dev_do_open(struct hci_dev *hdev)
2227{
2228	int ret = 0;
2229
2230	BT_DBG("%s %p", hdev->name, hdev);
2231
2232	hci_req_lock(hdev);
2233
2234	if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) {
2235		ret = -ENODEV;
2236		goto done;
2237	}
2238
2239	if (!test_bit(HCI_SETUP, &hdev->dev_flags)) {
2240		/* Check for rfkill but allow the HCI setup stage to
2241		 * proceed (which in itself doesn't cause any RF activity).
2242		 */
2243		if (test_bit(HCI_RFKILLED, &hdev->dev_flags)) {
2244			ret = -ERFKILL;
2245			goto done;
2246		}
2247
2248		/* Check for valid public address or a configured static
2249		 * random adddress, but let the HCI setup proceed to
2250		 * be able to determine if there is a public address
2251		 * or not.
2252		 *
2253		 * In case of user channel usage, it is not important
2254		 * if a public address or static random address is
2255		 * available.
2256		 *
2257		 * This check is only valid for BR/EDR controllers
2258		 * since AMP controllers do not have an address.
2259		 */
2260		if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) &&
2261		    hdev->dev_type == HCI_BREDR &&
2262		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2263		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
2264			ret = -EADDRNOTAVAIL;
2265			goto done;
2266		}
2267	}
2268
2269	if (test_bit(HCI_UP, &hdev->flags)) {
2270		ret = -EALREADY;
2271		goto done;
2272	}
2273
2274	if (hdev->open(hdev)) {
2275		ret = -EIO;
2276		goto done;
2277	}
2278
2279	atomic_set(&hdev->cmd_cnt, 1);
2280	set_bit(HCI_INIT, &hdev->flags);
2281
2282	if (hdev->setup && test_bit(HCI_SETUP, &hdev->dev_flags))
2283		ret = hdev->setup(hdev);
2284
2285	if (!ret) {
2286		if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2287			set_bit(HCI_RAW, &hdev->flags);
2288
2289		if (!test_bit(HCI_RAW, &hdev->flags) &&
2290		    !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags))
2291			ret = __hci_init(hdev);
2292	}
2293
2294	clear_bit(HCI_INIT, &hdev->flags);
2295
2296	if (!ret) {
2297		hci_dev_hold(hdev);
2298		set_bit(HCI_RPA_EXPIRED, &hdev->dev_flags);
2299		set_bit(HCI_UP, &hdev->flags);
2300		hci_notify(hdev, HCI_DEV_UP);
2301		if (!test_bit(HCI_SETUP, &hdev->dev_flags) &&
2302		    !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) &&
2303		    hdev->dev_type == HCI_BREDR) {
2304			hci_dev_lock(hdev);
2305			mgmt_powered(hdev, 1);
2306			hci_dev_unlock(hdev);
2307		}
2308	} else {
2309		/* Init failed, cleanup */
2310		flush_work(&hdev->tx_work);
2311		flush_work(&hdev->cmd_work);
2312		flush_work(&hdev->rx_work);
2313
2314		skb_queue_purge(&hdev->cmd_q);
2315		skb_queue_purge(&hdev->rx_q);
2316
2317		if (hdev->flush)
2318			hdev->flush(hdev);
2319
2320		if (hdev->sent_cmd) {
2321			kfree_skb(hdev->sent_cmd);
2322			hdev->sent_cmd = NULL;
2323		}
2324
2325		hdev->close(hdev);
2326		hdev->flags = 0;
2327	}
2328
2329done:
2330	hci_req_unlock(hdev);
2331	return ret;
2332}
2333
2334/* ---- HCI ioctl helpers ---- */
2335
2336int hci_dev_open(__u16 dev)
2337{
2338	struct hci_dev *hdev;
2339	int err;
2340
2341	hdev = hci_dev_get(dev);
2342	if (!hdev)
2343		return -ENODEV;
2344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345	/* We need to ensure that no other power on/off work is pending
2346	 * before proceeding to call hci_dev_do_open. This is
2347	 * particularly important if the setup procedure has not yet
2348	 * completed.
2349	 */
2350	if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2351		cancel_delayed_work(&hdev->power_off);
2352
2353	/* After this call it is guaranteed that the setup procedure
2354	 * has finished. This means that error conditions like RFKILL
2355	 * or no valid public or static random address apply.
2356	 */
2357	flush_workqueue(hdev->req_workqueue);
2358
 
 
 
 
 
 
 
 
 
 
2359	err = hci_dev_do_open(hdev);
2360
 
2361	hci_dev_put(hdev);
2362
2363	return err;
2364}
2365
2366static int hci_dev_do_close(struct hci_dev *hdev)
2367{
 
 
2368	BT_DBG("%s %p", hdev->name, hdev);
2369
2370	cancel_delayed_work(&hdev->power_off);
2371
2372	hci_req_cancel(hdev, ENODEV);
2373	hci_req_lock(hdev);
2374
2375	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
2376		del_timer_sync(&hdev->cmd_timer);
2377		hci_req_unlock(hdev);
2378		return 0;
2379	}
2380
2381	/* Flush RX and TX works */
2382	flush_work(&hdev->tx_work);
2383	flush_work(&hdev->rx_work);
2384
2385	if (hdev->discov_timeout > 0) {
2386		cancel_delayed_work(&hdev->discov_off);
2387		hdev->discov_timeout = 0;
2388		clear_bit(HCI_DISCOVERABLE, &hdev->dev_flags);
2389		clear_bit(HCI_LIMITED_DISCOVERABLE, &hdev->dev_flags);
2390	}
2391
2392	if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags))
2393		cancel_delayed_work(&hdev->service_cache);
 
2394
2395	cancel_delayed_work_sync(&hdev->le_scan_disable);
 
 
 
2396
2397	if (test_bit(HCI_MGMT, &hdev->dev_flags))
2398		cancel_delayed_work_sync(&hdev->rpa_expired);
 
2399
2400	hci_dev_lock(hdev);
2401	hci_inquiry_cache_flush(hdev);
2402	hci_conn_hash_flush(hdev);
2403	hci_pend_le_conns_clear(hdev);
2404	hci_dev_unlock(hdev);
2405
2406	hci_notify(hdev, HCI_DEV_DOWN);
 
 
 
2407
2408	if (hdev->flush)
2409		hdev->flush(hdev);
 
2410
2411	/* Reset device */
2412	skb_queue_purge(&hdev->cmd_q);
2413	atomic_set(&hdev->cmd_cnt, 1);
2414	if (!test_bit(HCI_RAW, &hdev->flags) &&
2415	    !test_bit(HCI_AUTO_OFF, &hdev->dev_flags) &&
2416	    test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2417		set_bit(HCI_INIT, &hdev->flags);
2418		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT);
2419		clear_bit(HCI_INIT, &hdev->flags);
2420	}
2421
2422	/* flush cmd  work */
2423	flush_work(&hdev->cmd_work);
2424
2425	/* Drop queues */
2426	skb_queue_purge(&hdev->rx_q);
2427	skb_queue_purge(&hdev->cmd_q);
2428	skb_queue_purge(&hdev->raw_q);
2429
2430	/* Drop last sent command */
2431	if (hdev->sent_cmd) {
2432		del_timer_sync(&hdev->cmd_timer);
2433		kfree_skb(hdev->sent_cmd);
2434		hdev->sent_cmd = NULL;
2435	}
 
 
 
 
 
 
 
2436
2437	kfree_skb(hdev->recv_evt);
2438	hdev->recv_evt = NULL;
 
 
2439
2440	/* After this point our queues are empty
2441	 * and no tasks are scheduled. */
2442	hdev->close(hdev);
 
2443
2444	/* Clear flags */
2445	hdev->flags = 0;
2446	hdev->dev_flags &= ~HCI_PERSISTENT_MASK;
2447
2448	if (!test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags)) {
2449		if (hdev->dev_type == HCI_BREDR) {
2450			hci_dev_lock(hdev);
2451			mgmt_powered(hdev, 0);
2452			hci_dev_unlock(hdev);
2453		}
2454	}
2455
2456	/* Controller radio is available but is currently powered down */
2457	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
 
 
 
2458
2459	memset(hdev->eir, 0, sizeof(hdev->eir));
2460	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
2461	bacpy(&hdev->random_addr, BDADDR_ANY);
2462
2463	hci_req_unlock(hdev);
2464
2465	hci_dev_put(hdev);
2466	return 0;
2467}
2468
2469int hci_dev_close(__u16 dev)
2470{
2471	struct hci_dev *hdev;
2472	int err;
2473
2474	hdev = hci_dev_get(dev);
2475	if (!hdev)
2476		return -ENODEV;
2477
2478	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
 
 
 
 
 
2479		err = -EBUSY;
2480		goto done;
2481	}
2482
2483	if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2484		cancel_delayed_work(&hdev->power_off);
 
 
2485
2486	err = hci_dev_do_close(hdev);
2487
2488done:
2489	hci_dev_put(hdev);
2490	return err;
2491}
2492
2493int hci_dev_reset(__u16 dev)
2494{
2495	struct hci_dev *hdev;
2496	int ret = 0;
2497
2498	hdev = hci_dev_get(dev);
2499	if (!hdev)
2500		return -ENODEV;
2501
2502	hci_req_lock(hdev);
2503
2504	if (!test_bit(HCI_UP, &hdev->flags)) {
2505		ret = -ENETDOWN;
2506		goto done;
2507	}
2508
2509	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2510		ret = -EBUSY;
2511		goto done;
2512	}
2513
2514	/* Drop queues */
2515	skb_queue_purge(&hdev->rx_q);
2516	skb_queue_purge(&hdev->cmd_q);
2517
2518	hci_dev_lock(hdev);
2519	hci_inquiry_cache_flush(hdev);
2520	hci_conn_hash_flush(hdev);
2521	hci_dev_unlock(hdev);
2522
2523	if (hdev->flush)
2524		hdev->flush(hdev);
2525
2526	atomic_set(&hdev->cmd_cnt, 1);
2527	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
2528
2529	if (!test_bit(HCI_RAW, &hdev->flags))
2530		ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT);
2531
2532done:
2533	hci_req_unlock(hdev);
2534	hci_dev_put(hdev);
2535	return ret;
2536}
2537
2538int hci_dev_reset_stat(__u16 dev)
2539{
2540	struct hci_dev *hdev;
2541	int ret = 0;
 
2542
2543	hdev = hci_dev_get(dev);
2544	if (!hdev)
2545		return -ENODEV;
 
 
 
2546
2547	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2548		ret = -EBUSY;
2549		goto done;
 
 
 
 
2550	}
2551
2552	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
 
 
 
 
 
 
 
 
2553
2554done:
2555	hci_dev_put(hdev);
2556	return ret;
2557}
2558
2559int hci_dev_cmd(unsigned int cmd, void __user *arg)
2560{
2561	struct hci_dev *hdev;
2562	struct hci_dev_req dr;
2563	int err = 0;
2564
2565	if (copy_from_user(&dr, arg, sizeof(dr)))
2566		return -EFAULT;
2567
2568	hdev = hci_dev_get(dr.dev_id);
2569	if (!hdev)
2570		return -ENODEV;
2571
2572	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
2573		err = -EBUSY;
2574		goto done;
2575	}
2576
2577	if (hdev->dev_type != HCI_BREDR) {
 
 
 
 
 
2578		err = -EOPNOTSUPP;
2579		goto done;
2580	}
2581
2582	if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) {
2583		err = -EOPNOTSUPP;
2584		goto done;
2585	}
2586
2587	switch (cmd) {
2588	case HCISETAUTH:
2589		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2590				   HCI_INIT_TIMEOUT);
2591		break;
2592
2593	case HCISETENCRYPT:
2594		if (!lmp_encrypt_capable(hdev)) {
2595			err = -EOPNOTSUPP;
2596			break;
2597		}
2598
2599		if (!test_bit(HCI_AUTH, &hdev->flags)) {
2600			/* Auth must be enabled first */
2601			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2602					   HCI_INIT_TIMEOUT);
2603			if (err)
2604				break;
2605		}
2606
2607		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2608				   HCI_INIT_TIMEOUT);
2609		break;
2610
2611	case HCISETSCAN:
2612		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2613				   HCI_INIT_TIMEOUT);
 
 
 
 
 
 
2614		break;
2615
2616	case HCISETLINKPOL:
2617		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2618				   HCI_INIT_TIMEOUT);
2619		break;
2620
2621	case HCISETLINKMODE:
2622		hdev->link_mode = ((__u16) dr.dev_opt) &
2623					(HCI_LM_MASTER | HCI_LM_ACCEPT);
2624		break;
2625
2626	case HCISETPTYPE:
 
 
 
2627		hdev->pkt_type = (__u16) dr.dev_opt;
 
2628		break;
2629
2630	case HCISETACLMTU:
2631		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2632		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2633		break;
2634
2635	case HCISETSCOMTU:
2636		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2637		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2638		break;
2639
2640	default:
2641		err = -EINVAL;
2642		break;
2643	}
2644
2645done:
2646	hci_dev_put(hdev);
2647	return err;
2648}
2649
2650int hci_get_dev_list(void __user *arg)
2651{
2652	struct hci_dev *hdev;
2653	struct hci_dev_list_req *dl;
2654	struct hci_dev_req *dr;
2655	int n = 0, size, err;
2656	__u16 dev_num;
2657
2658	if (get_user(dev_num, (__u16 __user *) arg))
2659		return -EFAULT;
2660
2661	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2662		return -EINVAL;
2663
2664	size = sizeof(*dl) + dev_num * sizeof(*dr);
2665
2666	dl = kzalloc(size, GFP_KERNEL);
2667	if (!dl)
2668		return -ENOMEM;
2669
2670	dr = dl->dev_req;
2671
2672	read_lock(&hci_dev_list_lock);
2673	list_for_each_entry(hdev, &hci_dev_list, list) {
2674		if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2675			cancel_delayed_work(&hdev->power_off);
2676
2677		if (!test_bit(HCI_MGMT, &hdev->dev_flags))
2678			set_bit(HCI_PAIRABLE, &hdev->dev_flags);
 
 
 
 
2679
2680		(dr + n)->dev_id  = hdev->id;
2681		(dr + n)->dev_opt = hdev->flags;
2682
2683		if (++n >= dev_num)
2684			break;
2685	}
2686	read_unlock(&hci_dev_list_lock);
2687
2688	dl->dev_num = n;
2689	size = sizeof(*dl) + n * sizeof(*dr);
2690
2691	err = copy_to_user(arg, dl, size);
2692	kfree(dl);
2693
2694	return err ? -EFAULT : 0;
2695}
2696
2697int hci_get_dev_info(void __user *arg)
2698{
2699	struct hci_dev *hdev;
2700	struct hci_dev_info di;
 
2701	int err = 0;
2702
2703	if (copy_from_user(&di, arg, sizeof(di)))
2704		return -EFAULT;
2705
2706	hdev = hci_dev_get(di.dev_id);
2707	if (!hdev)
2708		return -ENODEV;
2709
2710	if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags))
2711		cancel_delayed_work_sync(&hdev->power_off);
2712
2713	if (!test_bit(HCI_MGMT, &hdev->dev_flags))
2714		set_bit(HCI_PAIRABLE, &hdev->dev_flags);
 
 
 
2715
2716	strcpy(di.name, hdev->name);
2717	di.bdaddr   = hdev->bdaddr;
2718	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2719	di.flags    = hdev->flags;
2720	di.pkt_type = hdev->pkt_type;
2721	if (lmp_bredr_capable(hdev)) {
2722		di.acl_mtu  = hdev->acl_mtu;
2723		di.acl_pkts = hdev->acl_pkts;
2724		di.sco_mtu  = hdev->sco_mtu;
2725		di.sco_pkts = hdev->sco_pkts;
2726	} else {
2727		di.acl_mtu  = hdev->le_mtu;
2728		di.acl_pkts = hdev->le_pkts;
2729		di.sco_mtu  = 0;
2730		di.sco_pkts = 0;
2731	}
2732	di.link_policy = hdev->link_policy;
2733	di.link_mode   = hdev->link_mode;
2734
2735	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2736	memcpy(&di.features, &hdev->features, sizeof(di.features));
2737
2738	if (copy_to_user(arg, &di, sizeof(di)))
2739		err = -EFAULT;
2740
2741	hci_dev_put(hdev);
2742
2743	return err;
2744}
2745
2746/* ---- Interface to HCI drivers ---- */
2747
2748static int hci_rfkill_set_block(void *data, bool blocked)
2749{
2750	struct hci_dev *hdev = data;
2751
2752	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2753
2754	if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags))
2755		return -EBUSY;
2756
2757	if (blocked) {
2758		set_bit(HCI_RFKILLED, &hdev->dev_flags);
2759		if (!test_bit(HCI_SETUP, &hdev->dev_flags))
 
2760			hci_dev_do_close(hdev);
2761	} else {
2762		clear_bit(HCI_RFKILLED, &hdev->dev_flags);
2763	}
2764
2765	return 0;
2766}
2767
2768static const struct rfkill_ops hci_rfkill_ops = {
2769	.set_block = hci_rfkill_set_block,
2770};
2771
2772static void hci_power_on(struct work_struct *work)
2773{
2774	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2775	int err;
2776
2777	BT_DBG("%s", hdev->name);
2778
 
 
 
 
 
 
 
 
 
2779	err = hci_dev_do_open(hdev);
2780	if (err < 0) {
 
2781		mgmt_set_powered_failed(hdev, err);
 
2782		return;
2783	}
2784
2785	/* During the HCI setup phase, a few error conditions are
2786	 * ignored and they need to be checked now. If they are still
2787	 * valid, it is important to turn the device back off.
2788	 */
2789	if (test_bit(HCI_RFKILLED, &hdev->dev_flags) ||
2790	    (hdev->dev_type == HCI_BREDR &&
 
2791	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2792	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2793		clear_bit(HCI_AUTO_OFF, &hdev->dev_flags);
2794		hci_dev_do_close(hdev);
2795	} else if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags)) {
2796		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2797				   HCI_AUTO_OFF_TIMEOUT);
2798	}
2799
2800	if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2801		mgmt_index_added(hdev);
 
2802}
2803
2804static void hci_power_off(struct work_struct *work)
2805{
2806	struct hci_dev *hdev = container_of(work, struct hci_dev,
2807					    power_off.work);
2808
2809	BT_DBG("%s", hdev->name);
2810
2811	hci_dev_do_close(hdev);
2812}
2813
2814static void hci_discov_off(struct work_struct *work)
2815{
2816	struct hci_dev *hdev;
 
 
 
2817
2818	hdev = container_of(work, struct hci_dev, discov_off.work);
 
 
 
2819
2820	BT_DBG("%s", hdev->name);
 
2821
2822	mgmt_discoverable_timeout(hdev);
2823}
2824
2825void hci_uuids_clear(struct hci_dev *hdev)
2826{
2827	struct bt_uuid *uuid, *tmp;
2828
2829	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2830		list_del(&uuid->list);
2831		kfree(uuid);
2832	}
2833}
2834
2835void hci_link_keys_clear(struct hci_dev *hdev)
2836{
2837	struct list_head *p, *n;
2838
2839	list_for_each_safe(p, n, &hdev->link_keys) {
2840		struct link_key *key;
2841
2842		key = list_entry(p, struct link_key, list);
2843
2844		list_del(p);
2845		kfree(key);
 
2846	}
2847}
2848
2849void hci_smp_ltks_clear(struct hci_dev *hdev)
2850{
2851	struct smp_ltk *k, *tmp;
2852
2853	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
2854		list_del(&k->list);
2855		kfree(k);
2856	}
2857}
2858
2859void hci_smp_irks_clear(struct hci_dev *hdev)
2860{
2861	struct smp_irk *k, *tmp;
2862
2863	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
2864		list_del(&k->list);
2865		kfree(k);
2866	}
2867}
2868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2869struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2870{
2871	struct link_key *k;
2872
2873	list_for_each_entry(k, &hdev->link_keys, list)
2874		if (bacmp(bdaddr, &k->bdaddr) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
2875			return k;
 
 
 
2876
2877	return NULL;
2878}
2879
2880static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2881			       u8 key_type, u8 old_key_type)
2882{
2883	/* Legacy key */
2884	if (key_type < 0x03)
2885		return true;
2886
2887	/* Debug keys are insecure so don't store them persistently */
2888	if (key_type == HCI_LK_DEBUG_COMBINATION)
2889		return false;
2890
2891	/* Changed combination key and there's no previous one */
2892	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2893		return false;
2894
2895	/* Security mode 3 case */
2896	if (!conn)
2897		return true;
2898
 
 
 
 
2899	/* Neither local nor remote side had no-bonding as requirement */
2900	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2901		return true;
2902
2903	/* Local side had dedicated bonding as requirement */
2904	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2905		return true;
2906
2907	/* Remote side had dedicated bonding as requirement */
2908	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2909		return true;
2910
2911	/* If none of the above criteria match, then don't store the key
2912	 * persistently */
2913	return false;
2914}
2915
2916static bool ltk_type_master(u8 type)
2917{
2918	if (type == HCI_SMP_STK || type == HCI_SMP_LTK)
2919		return true;
2920
2921	return false;
2922}
2923
2924struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, __le64 rand,
2925			     bool master)
2926{
2927	struct smp_ltk *k;
2928
2929	list_for_each_entry(k, &hdev->long_term_keys, list) {
2930		if (k->ediv != ediv || k->rand != rand)
 
2931			continue;
2932
2933		if (ltk_type_master(k->type) != master)
2934			continue;
2935
2936		return k;
2937	}
2938
2939	return NULL;
2940}
 
 
2941
2942struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2943				     u8 addr_type, bool master)
2944{
2945	struct smp_ltk *k;
2946
2947	list_for_each_entry(k, &hdev->long_term_keys, list)
2948		if (addr_type == k->bdaddr_type &&
2949		    bacmp(bdaddr, &k->bdaddr) == 0 &&
2950		    ltk_type_master(k->type) == master)
2951			return k;
 
 
 
2952
2953	return NULL;
2954}
2955
2956struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2957{
 
2958	struct smp_irk *irk;
2959
2960	list_for_each_entry(irk, &hdev->identity_resolving_keys, list) {
2961		if (!bacmp(&irk->rpa, rpa))
2962			return irk;
 
 
 
2963	}
2964
2965	list_for_each_entry(irk, &hdev->identity_resolving_keys, list) {
2966		if (smp_irk_matches(hdev->tfm_aes, irk->val, rpa)) {
2967			bacpy(&irk->rpa, rpa);
2968			return irk;
 
2969		}
2970	}
2971
2972	return NULL;
 
 
 
 
 
 
 
 
 
 
2973}
2974
2975struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2976				     u8 addr_type)
2977{
 
2978	struct smp_irk *irk;
2979
2980	/* Identity Address must be public or static random */
2981	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2982		return NULL;
2983
2984	list_for_each_entry(irk, &hdev->identity_resolving_keys, list) {
 
2985		if (addr_type == irk->addr_type &&
2986		    bacmp(bdaddr, &irk->bdaddr) == 0)
2987			return irk;
 
 
2988	}
2989
2990	return NULL;
 
 
 
 
 
 
 
 
 
 
 
2991}
2992
2993int hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, int new_key,
2994		     bdaddr_t *bdaddr, u8 *val, u8 type, u8 pin_len)
 
2995{
2996	struct link_key *key, *old_key;
2997	u8 old_key_type;
2998	bool persistent;
2999
3000	old_key = hci_find_link_key(hdev, bdaddr);
3001	if (old_key) {
3002		old_key_type = old_key->type;
3003		key = old_key;
3004	} else {
3005		old_key_type = conn ? conn->key_type : 0xff;
3006		key = kzalloc(sizeof(*key), GFP_KERNEL);
3007		if (!key)
3008			return -ENOMEM;
3009		list_add(&key->list, &hdev->link_keys);
3010	}
3011
3012	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
3013
3014	/* Some buggy controller combinations generate a changed
3015	 * combination key for legacy pairing even when there's no
3016	 * previous key */
3017	if (type == HCI_LK_CHANGED_COMBINATION &&
3018	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
3019		type = HCI_LK_COMBINATION;
3020		if (conn)
3021			conn->key_type = type;
3022	}
3023
3024	bacpy(&key->bdaddr, bdaddr);
3025	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
3026	key->pin_len = pin_len;
3027
3028	if (type == HCI_LK_CHANGED_COMBINATION)
3029		key->type = old_key_type;
3030	else
3031		key->type = type;
3032
3033	if (!new_key)
3034		return 0;
3035
3036	persistent = hci_persistent_key(hdev, conn, type, old_key_type);
3037
3038	mgmt_new_link_key(hdev, key, persistent);
3039
3040	if (conn)
3041		conn->flush_key = !persistent;
3042
3043	return 0;
3044}
3045
3046struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
3047			    u8 addr_type, u8 type, u8 authenticated,
3048			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
3049{
3050	struct smp_ltk *key, *old_key;
3051	bool master = ltk_type_master(type);
3052
3053	old_key = hci_find_ltk_by_addr(hdev, bdaddr, addr_type, master);
3054	if (old_key)
3055		key = old_key;
3056	else {
3057		key = kzalloc(sizeof(*key), GFP_KERNEL);
3058		if (!key)
3059			return NULL;
3060		list_add(&key->list, &hdev->long_term_keys);
3061	}
3062
3063	bacpy(&key->bdaddr, bdaddr);
3064	key->bdaddr_type = addr_type;
3065	memcpy(key->val, tk, sizeof(key->val));
3066	key->authenticated = authenticated;
3067	key->ediv = ediv;
3068	key->rand = rand;
3069	key->enc_size = enc_size;
3070	key->type = type;
3071
3072	return key;
3073}
3074
3075struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
3076			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
3077{
3078	struct smp_irk *irk;
3079
3080	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
3081	if (!irk) {
3082		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
3083		if (!irk)
3084			return NULL;
3085
3086		bacpy(&irk->bdaddr, bdaddr);
3087		irk->addr_type = addr_type;
3088
3089		list_add(&irk->list, &hdev->identity_resolving_keys);
3090	}
3091
3092	memcpy(irk->val, val, 16);
3093	bacpy(&irk->rpa, rpa);
3094
3095	return irk;
3096}
3097
3098int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
3099{
3100	struct link_key *key;
3101
3102	key = hci_find_link_key(hdev, bdaddr);
3103	if (!key)
3104		return -ENOENT;
3105
3106	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3107
3108	list_del(&key->list);
3109	kfree(key);
3110
3111	return 0;
3112}
3113
3114int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
3115{
3116	struct smp_ltk *k, *tmp;
3117	int removed = 0;
3118
3119	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
3120		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
3121			continue;
3122
3123		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3124
3125		list_del(&k->list);
3126		kfree(k);
3127		removed++;
3128	}
3129
3130	return removed ? 0 : -ENOENT;
3131}
3132
3133void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
3134{
3135	struct smp_irk *k, *tmp;
3136
3137	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
3138		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
3139			continue;
3140
3141		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3142
3143		list_del(&k->list);
3144		kfree(k);
3145	}
3146}
3147
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3148/* HCI command timer function */
3149static void hci_cmd_timeout(unsigned long arg)
3150{
3151	struct hci_dev *hdev = (void *) arg;
 
3152
3153	if (hdev->sent_cmd) {
3154		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
3155		u16 opcode = __le16_to_cpu(sent->opcode);
3156
3157		BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
3158	} else {
3159		BT_ERR("%s command tx timeout", hdev->name);
3160	}
3161
 
 
 
3162	atomic_set(&hdev->cmd_cnt, 1);
3163	queue_work(hdev->workqueue, &hdev->cmd_work);
3164}
3165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3166struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
3167					  bdaddr_t *bdaddr)
3168{
3169	struct oob_data *data;
3170
3171	list_for_each_entry(data, &hdev->remote_oob_data, list)
3172		if (bacmp(bdaddr, &data->bdaddr) == 0)
3173			return data;
 
 
 
 
3174
3175	return NULL;
3176}
3177
3178int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr)
 
3179{
3180	struct oob_data *data;
3181
3182	data = hci_find_remote_oob_data(hdev, bdaddr);
3183	if (!data)
3184		return -ENOENT;
3185
3186	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
3187
3188	list_del(&data->list);
3189	kfree(data);
3190
3191	return 0;
3192}
3193
3194void hci_remote_oob_data_clear(struct hci_dev *hdev)
3195{
3196	struct oob_data *data, *n;
3197
3198	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
3199		list_del(&data->list);
3200		kfree(data);
3201	}
3202}
3203
3204int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
3205			    u8 *hash, u8 *randomizer)
 
3206{
3207	struct oob_data *data;
3208
3209	data = hci_find_remote_oob_data(hdev, bdaddr);
3210	if (!data) {
3211		data = kmalloc(sizeof(*data), GFP_KERNEL);
3212		if (!data)
3213			return -ENOMEM;
3214
3215		bacpy(&data->bdaddr, bdaddr);
 
3216		list_add(&data->list, &hdev->remote_oob_data);
3217	}
3218
3219	memcpy(data->hash192, hash, sizeof(data->hash192));
3220	memcpy(data->randomizer192, randomizer, sizeof(data->randomizer192));
 
 
 
 
 
 
 
 
 
 
 
3221
3222	memset(data->hash256, 0, sizeof(data->hash256));
3223	memset(data->randomizer256, 0, sizeof(data->randomizer256));
 
 
 
 
 
 
 
3224
3225	BT_DBG("%s for %pMR", hdev->name, bdaddr);
3226
3227	return 0;
3228}
3229
3230int hci_add_remote_oob_ext_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
3231				u8 *hash192, u8 *randomizer192,
3232				u8 *hash256, u8 *randomizer256)
3233{
3234	struct oob_data *data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3235
3236	data = hci_find_remote_oob_data(hdev, bdaddr);
3237	if (!data) {
3238		data = kmalloc(sizeof(*data), GFP_KERNEL);
3239		if (!data)
3240			return -ENOMEM;
3241
3242		bacpy(&data->bdaddr, bdaddr);
3243		list_add(&data->list, &hdev->remote_oob_data);
 
 
 
 
3244	}
3245
3246	memcpy(data->hash192, hash192, sizeof(data->hash192));
3247	memcpy(data->randomizer192, randomizer192, sizeof(data->randomizer192));
3248
3249	memcpy(data->hash256, hash256, sizeof(data->hash256));
3250	memcpy(data->randomizer256, randomizer256, sizeof(data->randomizer256));
3251
3252	BT_DBG("%s for %pMR", hdev->name, bdaddr);
3253
3254	return 0;
3255}
3256
3257struct bdaddr_list *hci_blacklist_lookup(struct hci_dev *hdev,
3258					 bdaddr_t *bdaddr, u8 type)
 
 
 
 
 
 
 
 
3259{
3260	struct bdaddr_list *b;
 
 
 
 
 
3261
3262	list_for_each_entry(b, &hdev->blacklist, list) {
3263		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3264			return b;
 
3265	}
3266
3267	return NULL;
 
3268}
3269
3270static void hci_blacklist_clear(struct hci_dev *hdev)
3271{
3272	struct list_head *p, *n;
 
3273
3274	list_for_each_safe(p, n, &hdev->blacklist) {
3275		struct bdaddr_list *b = list_entry(p, struct bdaddr_list, list);
3276
3277		list_del(p);
3278		kfree(b);
3279	}
3280}
3281
3282int hci_blacklist_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
3283{
3284	struct bdaddr_list *entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3285
3286	if (!bacmp(bdaddr, BDADDR_ANY))
3287		return -EBADF;
3288
3289	if (hci_blacklist_lookup(hdev, bdaddr, type))
3290		return -EEXIST;
3291
3292	entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
3293	if (!entry)
3294		return -ENOMEM;
 
3295
3296	bacpy(&entry->bdaddr, bdaddr);
3297	entry->bdaddr_type = type;
3298
3299	list_add(&entry->list, &hdev->blacklist);
3300
3301	return mgmt_device_blocked(hdev, bdaddr, type);
3302}
3303
3304int hci_blacklist_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
 
 
 
3305{
3306	struct bdaddr_list *entry;
3307
3308	if (!bacmp(bdaddr, BDADDR_ANY)) {
3309		hci_blacklist_clear(hdev);
3310		return 0;
3311	}
 
3312
3313	entry = hci_blacklist_lookup(hdev, bdaddr, type);
3314	if (!entry)
3315		return -ENOENT;
3316
3317	list_del(&entry->list);
3318	kfree(entry);
3319
3320	return mgmt_device_unblocked(hdev, bdaddr, type);
3321}
3322
3323struct bdaddr_list *hci_white_list_lookup(struct hci_dev *hdev,
3324					  bdaddr_t *bdaddr, u8 type)
 
 
3325{
3326	struct bdaddr_list *b;
 
 
 
 
 
 
3327
3328	list_for_each_entry(b, &hdev->le_white_list, list) {
3329		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3330			return b;
3331	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3332
3333	return NULL;
3334}
3335
3336void hci_white_list_clear(struct hci_dev *hdev)
 
3337{
3338	struct list_head *p, *n;
 
 
 
 
 
 
 
3339
3340	list_for_each_safe(p, n, &hdev->le_white_list) {
3341		struct bdaddr_list *b = list_entry(p, struct bdaddr_list, list);
 
 
 
3342
3343		list_del(p);
3344		kfree(b);
 
 
 
 
3345	}
 
 
 
 
 
 
 
 
3346}
3347
3348int hci_white_list_add(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
3349{
3350	struct bdaddr_list *entry;
 
 
 
 
 
 
 
 
3351
3352	if (!bacmp(bdaddr, BDADDR_ANY))
3353		return -EBADF;
 
3354
3355	entry = kzalloc(sizeof(struct bdaddr_list), GFP_KERNEL);
3356	if (!entry)
3357		return -ENOMEM;
3358
3359	bacpy(&entry->bdaddr, bdaddr);
3360	entry->bdaddr_type = type;
 
 
 
3361
3362	list_add(&entry->list, &hdev->le_white_list);
 
3363
3364	return 0;
3365}
3366
3367int hci_white_list_del(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
 
 
 
3368{
3369	struct bdaddr_list *entry;
 
 
 
 
3370
3371	if (!bacmp(bdaddr, BDADDR_ANY))
3372		return -EBADF;
 
 
3373
3374	entry = hci_white_list_lookup(hdev, bdaddr, type);
3375	if (!entry)
3376		return -ENOENT;
3377
3378	list_del(&entry->list);
3379	kfree(entry);
 
 
3380
3381	return 0;
3382}
3383
3384/* This function requires the caller holds hdev->lock */
3385struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3386					       bdaddr_t *addr, u8 addr_type)
 
 
3387{
3388	struct hci_conn_params *params;
 
 
 
 
 
 
 
 
 
 
 
3389
3390	list_for_each_entry(params, &hdev->le_conn_params, list) {
3391		if (bacmp(&params->addr, addr) == 0 &&
3392		    params->addr_type == addr_type) {
3393			return params;
3394		}
3395	}
3396
3397	return NULL;
3398}
3399
3400static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
3401{
3402	struct hci_conn *conn;
3403
3404	conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, addr);
3405	if (!conn)
3406		return false;
3407
3408	if (conn->dst_type != type)
3409		return false;
 
 
 
 
3410
3411	if (conn->state != BT_CONNECTED)
3412		return false;
 
 
 
 
3413
3414	return true;
3415}
3416
3417static bool is_identity_address(bdaddr_t *addr, u8 addr_type)
 
 
 
 
 
3418{
3419	if (addr_type == ADDR_LE_DEV_PUBLIC)
3420		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3421
3422	/* Check for Random Static address type */
3423	if ((addr->b[5] & 0xc0) == 0xc0)
3424		return true;
 
 
3425
3426	return false;
3427}
3428
3429/* This function requires the caller holds hdev->lock */
3430int hci_conn_params_add(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type,
3431			u8 auto_connect, u16 conn_min_interval,
3432			u16 conn_max_interval)
3433{
3434	struct hci_conn_params *params;
3435
3436	if (!is_identity_address(addr, addr_type))
3437		return -EINVAL;
3438
3439	params = hci_conn_params_lookup(hdev, addr, addr_type);
3440	if (params)
3441		goto update;
3442
3443	params = kzalloc(sizeof(*params), GFP_KERNEL);
3444	if (!params) {
3445		BT_ERR("Out of memory");
3446		return -ENOMEM;
3447	}
 
3448
3449	bacpy(&params->addr, addr);
3450	params->addr_type = addr_type;
 
 
3451
3452	list_add(&params->list, &hdev->le_conn_params);
 
 
3453
3454update:
3455	params->conn_min_interval = conn_min_interval;
3456	params->conn_max_interval = conn_max_interval;
3457	params->auto_connect = auto_connect;
3458
3459	switch (auto_connect) {
3460	case HCI_AUTO_CONN_DISABLED:
3461	case HCI_AUTO_CONN_LINK_LOSS:
3462		hci_pend_le_conn_del(hdev, addr, addr_type);
3463		break;
3464	case HCI_AUTO_CONN_ALWAYS:
3465		if (!is_connected(hdev, addr, addr_type))
3466			hci_pend_le_conn_add(hdev, addr, addr_type);
3467		break;
3468	}
3469
3470	BT_DBG("addr %pMR (type %u) auto_connect %u conn_min_interval 0x%.4x "
3471	       "conn_max_interval 0x%.4x", addr, addr_type, auto_connect,
3472	       conn_min_interval, conn_max_interval);
3473
3474	return 0;
 
 
 
3475}
3476
3477/* This function requires the caller holds hdev->lock */
3478void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3479{
3480	struct hci_conn_params *params;
 
3481
3482	params = hci_conn_params_lookup(hdev, addr, addr_type);
3483	if (!params)
3484		return;
3485
3486	hci_pend_le_conn_del(hdev, addr, addr_type);
 
 
 
3487
3488	list_del(&params->list);
3489	kfree(params);
 
 
3490
3491	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3492}
3493
3494/* This function requires the caller holds hdev->lock */
3495void hci_conn_params_clear(struct hci_dev *hdev)
 
3496{
3497	struct hci_conn_params *params, *tmp;
3498
3499	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3500		list_del(&params->list);
3501		kfree(params);
3502	}
3503
3504	BT_DBG("All LE connection parameters were removed");
3505}
3506
3507/* This function requires the caller holds hdev->lock */
3508struct bdaddr_list *hci_pend_le_conn_lookup(struct hci_dev *hdev,
3509					    bdaddr_t *addr, u8 addr_type)
3510{
3511	struct bdaddr_list *entry;
3512
3513	list_for_each_entry(entry, &hdev->pend_le_conns, list) {
3514		if (bacmp(&entry->bdaddr, addr) == 0 &&
3515		    entry->bdaddr_type == addr_type)
3516			return entry;
3517	}
3518
3519	return NULL;
3520}
3521
3522/* This function requires the caller holds hdev->lock */
3523void hci_pend_le_conn_add(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
 
 
 
 
 
 
 
 
 
3524{
3525	struct bdaddr_list *entry;
3526
3527	entry = hci_pend_le_conn_lookup(hdev, addr, addr_type);
3528	if (entry)
3529		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3530
3531	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3532	if (!entry) {
3533		BT_ERR("Out of memory");
3534		return;
3535	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3536
3537	bacpy(&entry->bdaddr, addr);
3538	entry->bdaddr_type = addr_type;
 
3539
3540	list_add(&entry->list, &hdev->pend_le_conns);
 
 
3541
3542	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3543
3544done:
3545	hci_update_background_scan(hdev);
3546}
3547
3548/* This function requires the caller holds hdev->lock */
3549void hci_pend_le_conn_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3550{
3551	struct bdaddr_list *entry;
3552
3553	entry = hci_pend_le_conn_lookup(hdev, addr, addr_type);
 
 
 
 
 
3554	if (!entry)
3555		goto done;
3556
3557	list_del(&entry->list);
3558	kfree(entry);
3559
3560	BT_DBG("addr %pMR (type %u)", addr, addr_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3561
3562done:
3563	hci_update_background_scan(hdev);
3564}
3565
3566/* This function requires the caller holds hdev->lock */
3567void hci_pend_le_conns_clear(struct hci_dev *hdev)
3568{
3569	struct bdaddr_list *entry, *tmp;
3570
3571	list_for_each_entry_safe(entry, tmp, &hdev->pend_le_conns, list) {
3572		list_del(&entry->list);
3573		kfree(entry);
3574	}
3575
3576	BT_DBG("All LE pending connections cleared");
 
 
 
 
 
 
 
3577}
3578
3579static void inquiry_complete(struct hci_dev *hdev, u8 status)
 
 
3580{
3581	if (status) {
3582		BT_ERR("Failed to start inquiry: status %d", status);
3583
3584		hci_dev_lock(hdev);
3585		hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3586		hci_dev_unlock(hdev);
3587		return;
 
3588	}
 
 
3589}
3590
3591static void le_scan_disable_work_complete(struct hci_dev *hdev, u8 status)
 
 
3592{
3593	/* General inquiry access code (GIAC) */
3594	u8 lap[3] = { 0x33, 0x8b, 0x9e };
3595	struct hci_request req;
3596	struct hci_cp_inquiry cp;
3597	int err;
3598
3599	if (status) {
3600		BT_ERR("Failed to disable LE scanning: status %d", status);
3601		return;
 
 
 
3602	}
3603
3604	switch (hdev->discovery.type) {
3605	case DISCOV_TYPE_LE:
3606		hci_dev_lock(hdev);
3607		hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3608		hci_dev_unlock(hdev);
3609		break;
3610
3611	case DISCOV_TYPE_INTERLEAVED:
3612		hci_req_init(&req, hdev);
 
 
 
3613
3614		memset(&cp, 0, sizeof(cp));
3615		memcpy(&cp.lap, lap, sizeof(cp.lap));
3616		cp.length = DISCOV_INTERLEAVED_INQUIRY_LEN;
3617		hci_req_add(&req, HCI_OP_INQUIRY, sizeof(cp), &cp);
3618
3619		hci_dev_lock(hdev);
 
 
 
 
 
3620
3621		hci_inquiry_cache_flush(hdev);
 
 
 
 
3622
3623		err = hci_req_run(&req, inquiry_complete);
3624		if (err) {
3625			BT_ERR("Inquiry request failed: err %d", err);
3626			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3627		}
3628
3629		hci_dev_unlock(hdev);
3630		break;
 
 
3631	}
3632}
3633
3634static void le_scan_disable_work(struct work_struct *work)
3635{
3636	struct hci_dev *hdev = container_of(work, struct hci_dev,
3637					    le_scan_disable.work);
3638	struct hci_request req;
3639	int err;
3640
3641	BT_DBG("%s", hdev->name);
 
3642
3643	hci_req_init(&req, hdev);
 
 
 
 
3644
3645	hci_req_add_le_scan_disable(&req);
3646
3647	err = hci_req_run(&req, le_scan_disable_work_complete);
3648	if (err)
3649		BT_ERR("Disable LE scanning request failed: err %d", err);
3650}
3651
3652static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
3653{
3654	struct hci_dev *hdev = req->hdev;
3655
3656	/* If we're advertising or initiating an LE connection we can't
3657	 * go ahead and change the random address at this time. This is
3658	 * because the eventual initiator address used for the
3659	 * subsequently created connection will be undefined (some
3660	 * controllers use the new address and others the one we had
3661	 * when the operation started).
3662	 *
3663	 * In this kind of scenario skip the update and let the random
3664	 * address be updated at the next cycle.
3665	 */
3666	if (test_bit(HCI_ADVERTISING, &hdev->dev_flags) ||
3667	    hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT)) {
3668		BT_DBG("Deferring random address update");
3669		return;
3670	}
3671
3672	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
 
3673}
3674
3675int hci_update_random_address(struct hci_request *req, bool require_privacy,
3676			      u8 *own_addr_type)
3677{
3678	struct hci_dev *hdev = req->hdev;
3679	int err;
3680
3681	/* If privacy is enabled use a resolvable private address. If
3682	 * current RPA has expired or there is something else than
3683	 * the current RPA in use, then generate a new one.
3684	 */
3685	if (test_bit(HCI_PRIVACY, &hdev->dev_flags)) {
3686		int to;
3687
3688		*own_addr_type = ADDR_LE_DEV_RANDOM;
3689
3690		if (!test_and_clear_bit(HCI_RPA_EXPIRED, &hdev->dev_flags) &&
3691		    !bacmp(&hdev->random_addr, &hdev->rpa))
3692			return 0;
3693
3694		err = smp_generate_rpa(hdev->tfm_aes, hdev->irk, &hdev->rpa);
3695		if (err < 0) {
3696			BT_ERR("%s failed to generate new RPA", hdev->name);
3697			return err;
3698		}
3699
3700		set_random_addr(req, &hdev->rpa);
 
3701
3702		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
3703		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
 
 
3704
3705		return 0;
3706	}
 
3707
3708	/* In case of required privacy without resolvable private address,
3709	 * use an unresolvable private address. This is useful for active
3710	 * scanning and non-connectable advertising.
3711	 */
3712	if (require_privacy) {
3713		bdaddr_t urpa;
 
3714
3715		get_random_bytes(&urpa, 6);
3716		urpa.b[5] &= 0x3f;	/* Clear two most significant bits */
3717
3718		*own_addr_type = ADDR_LE_DEV_RANDOM;
3719		set_random_addr(req, &urpa);
3720		return 0;
3721	}
3722
3723	/* If forcing static address is in use or there is no public
3724	 * address use the static address as random address (but skip
3725	 * the HCI command if the current random address is already the
3726	 * static one.
3727	 */
3728	if (test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dev_flags) ||
3729	    !bacmp(&hdev->bdaddr, BDADDR_ANY)) {
3730		*own_addr_type = ADDR_LE_DEV_RANDOM;
3731		if (bacmp(&hdev->static_addr, &hdev->random_addr))
3732			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
3733				    &hdev->static_addr);
3734		return 0;
3735	}
3736
3737	/* Neither privacy nor static address is being used so use a
3738	 * public address.
3739	 */
3740	*own_addr_type = ADDR_LE_DEV_PUBLIC;
3741
3742	return 0;
3743}
3744
3745/* Copy the Identity Address of the controller.
3746 *
3747 * If the controller has a public BD_ADDR, then by default use that one.
3748 * If this is a LE only controller without a public address, default to
3749 * the static random address.
3750 *
3751 * For debugging purposes it is possible to force controllers with a
3752 * public address to use the static random address instead.
 
 
 
 
3753 */
3754void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3755			       u8 *bdaddr_type)
3756{
3757	if (test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dev_flags) ||
3758	    !bacmp(&hdev->bdaddr, BDADDR_ANY)) {
 
 
3759		bacpy(bdaddr, &hdev->static_addr);
3760		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3761	} else {
3762		bacpy(bdaddr, &hdev->bdaddr);
3763		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3764	}
3765}
3766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3767/* Alloc HCI device */
3768struct hci_dev *hci_alloc_dev(void)
3769{
3770	struct hci_dev *hdev;
 
 
 
 
 
 
 
3771
3772	hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
3773	if (!hdev)
3774		return NULL;
3775
3776	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3777	hdev->esco_type = (ESCO_HV1);
3778	hdev->link_mode = (HCI_LM_ACCEPT);
3779	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3780	hdev->io_capability = 0x03;	/* No Input No Output */
 
3781	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3782	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
 
 
 
 
 
 
 
3783
3784	hdev->sniff_max_interval = 800;
3785	hdev->sniff_min_interval = 80;
3786
3787	hdev->le_adv_channel_map = 0x07;
 
 
3788	hdev->le_scan_interval = 0x0060;
3789	hdev->le_scan_window = 0x0030;
3790	hdev->le_conn_min_interval = 0x0028;
3791	hdev->le_conn_max_interval = 0x0038;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3792
3793	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
 
 
 
 
 
 
 
 
 
 
3794
3795	mutex_init(&hdev->lock);
3796	mutex_init(&hdev->req_lock);
3797
 
 
 
3798	INIT_LIST_HEAD(&hdev->mgmt_pending);
3799	INIT_LIST_HEAD(&hdev->blacklist);
 
3800	INIT_LIST_HEAD(&hdev->uuids);
3801	INIT_LIST_HEAD(&hdev->link_keys);
3802	INIT_LIST_HEAD(&hdev->long_term_keys);
3803	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3804	INIT_LIST_HEAD(&hdev->remote_oob_data);
3805	INIT_LIST_HEAD(&hdev->le_white_list);
 
3806	INIT_LIST_HEAD(&hdev->le_conn_params);
3807	INIT_LIST_HEAD(&hdev->pend_le_conns);
 
3808	INIT_LIST_HEAD(&hdev->conn_hash.list);
 
 
 
3809
 
3810	INIT_WORK(&hdev->rx_work, hci_rx_work);
3811	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3812	INIT_WORK(&hdev->tx_work, hci_tx_work);
3813	INIT_WORK(&hdev->power_on, hci_power_on);
 
 
 
3814
3815	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3816	INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
3817	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
3818
3819	skb_queue_head_init(&hdev->rx_q);
3820	skb_queue_head_init(&hdev->cmd_q);
3821	skb_queue_head_init(&hdev->raw_q);
3822
3823	init_waitqueue_head(&hdev->req_wait_q);
3824
3825	setup_timer(&hdev->cmd_timer, hci_cmd_timeout, (unsigned long) hdev);
 
 
 
 
3826
3827	hci_init_sysfs(hdev);
3828	discovery_init(hdev);
3829
3830	return hdev;
3831}
3832EXPORT_SYMBOL(hci_alloc_dev);
3833
3834/* Free HCI device */
3835void hci_free_dev(struct hci_dev *hdev)
3836{
3837	/* will free via device release */
3838	put_device(&hdev->dev);
3839}
3840EXPORT_SYMBOL(hci_free_dev);
3841
3842/* Register HCI device */
3843int hci_register_dev(struct hci_dev *hdev)
3844{
3845	int id, error;
3846
3847	if (!hdev->open || !hdev->close)
3848		return -EINVAL;
3849
3850	/* Do not allow HCI_AMP devices to register at index 0,
3851	 * so the index can be used as the AMP controller ID.
3852	 */
3853	switch (hdev->dev_type) {
3854	case HCI_BREDR:
3855		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3856		break;
3857	case HCI_AMP:
3858		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3859		break;
3860	default:
3861		return -EINVAL;
3862	}
3863
3864	if (id < 0)
3865		return id;
3866
3867	sprintf(hdev->name, "hci%d", id);
 
 
 
 
3868	hdev->id = id;
3869
3870	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3871
3872	hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3873					  WQ_MEM_RECLAIM, 1, hdev->name);
3874	if (!hdev->workqueue) {
3875		error = -ENOMEM;
3876		goto err;
3877	}
3878
3879	hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3880					      WQ_MEM_RECLAIM, 1, hdev->name);
3881	if (!hdev->req_workqueue) {
3882		destroy_workqueue(hdev->workqueue);
3883		error = -ENOMEM;
3884		goto err;
3885	}
3886
3887	if (!IS_ERR_OR_NULL(bt_debugfs))
3888		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3889
3890	dev_set_name(&hdev->dev, "%s", hdev->name);
3891
3892	hdev->tfm_aes = crypto_alloc_blkcipher("ecb(aes)", 0,
3893					       CRYPTO_ALG_ASYNC);
3894	if (IS_ERR(hdev->tfm_aes)) {
3895		BT_ERR("Unable to create crypto context");
3896		error = PTR_ERR(hdev->tfm_aes);
3897		hdev->tfm_aes = NULL;
3898		goto err_wqueue;
3899	}
3900
3901	error = device_add(&hdev->dev);
3902	if (error < 0)
3903		goto err_tfm;
3904
3905	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3906				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3907				    hdev);
3908	if (hdev->rfkill) {
3909		if (rfkill_register(hdev->rfkill) < 0) {
3910			rfkill_destroy(hdev->rfkill);
3911			hdev->rfkill = NULL;
3912		}
3913	}
3914
3915	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3916		set_bit(HCI_RFKILLED, &hdev->dev_flags);
3917
3918	set_bit(HCI_SETUP, &hdev->dev_flags);
3919	set_bit(HCI_AUTO_OFF, &hdev->dev_flags);
3920
3921	if (hdev->dev_type == HCI_BREDR) {
3922		/* Assume BR/EDR support until proven otherwise (such as
3923		 * through reading supported features during init.
3924		 */
3925		set_bit(HCI_BREDR_ENABLED, &hdev->dev_flags);
3926	}
3927
3928	write_lock(&hci_dev_list_lock);
3929	list_add(&hdev->list, &hci_dev_list);
3930	write_unlock(&hci_dev_list_lock);
3931
3932	hci_notify(hdev, HCI_DEV_REG);
 
 
 
 
 
 
 
 
 
 
 
 
3933	hci_dev_hold(hdev);
3934
 
 
 
 
3935	queue_work(hdev->req_workqueue, &hdev->power_on);
3936
 
 
 
3937	return id;
3938
3939err_tfm:
3940	crypto_free_blkcipher(hdev->tfm_aes);
3941err_wqueue:
 
3942	destroy_workqueue(hdev->workqueue);
3943	destroy_workqueue(hdev->req_workqueue);
3944err:
3945	ida_simple_remove(&hci_index_ida, hdev->id);
3946
3947	return error;
3948}
3949EXPORT_SYMBOL(hci_register_dev);
3950
3951/* Unregister HCI device */
3952void hci_unregister_dev(struct hci_dev *hdev)
3953{
3954	int i, id;
3955
3956	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3957
3958	set_bit(HCI_UNREGISTER, &hdev->dev_flags);
3959
3960	id = hdev->id;
3961
3962	write_lock(&hci_dev_list_lock);
3963	list_del(&hdev->list);
3964	write_unlock(&hci_dev_list_lock);
3965
3966	hci_dev_do_close(hdev);
 
 
 
 
3967
3968	for (i = 0; i < NUM_REASSEMBLY; i++)
3969		kfree_skb(hdev->reassembly[i]);
3970
3971	cancel_work_sync(&hdev->power_on);
3972
3973	if (!test_bit(HCI_INIT, &hdev->flags) &&
3974	    !test_bit(HCI_SETUP, &hdev->dev_flags)) {
 
3975		hci_dev_lock(hdev);
3976		mgmt_index_removed(hdev);
3977		hci_dev_unlock(hdev);
3978	}
3979
3980	/* mgmt_index_removed should take care of emptying the
3981	 * pending list */
3982	BUG_ON(!list_empty(&hdev->mgmt_pending));
3983
3984	hci_notify(hdev, HCI_DEV_UNREG);
3985
3986	if (hdev->rfkill) {
3987		rfkill_unregister(hdev->rfkill);
3988		rfkill_destroy(hdev->rfkill);
3989	}
3990
3991	if (hdev->tfm_aes)
3992		crypto_free_blkcipher(hdev->tfm_aes);
3993
3994	device_del(&hdev->dev);
 
 
 
 
3995
 
 
 
3996	debugfs_remove_recursive(hdev->debugfs);
 
 
3997
3998	destroy_workqueue(hdev->workqueue);
3999	destroy_workqueue(hdev->req_workqueue);
4000
4001	hci_dev_lock(hdev);
4002	hci_blacklist_clear(hdev);
 
4003	hci_uuids_clear(hdev);
4004	hci_link_keys_clear(hdev);
4005	hci_smp_ltks_clear(hdev);
4006	hci_smp_irks_clear(hdev);
4007	hci_remote_oob_data_clear(hdev);
4008	hci_white_list_clear(hdev);
4009	hci_conn_params_clear(hdev);
4010	hci_pend_le_conns_clear(hdev);
 
 
 
 
 
4011	hci_dev_unlock(hdev);
4012
4013	hci_dev_put(hdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4014
4015	ida_simple_remove(&hci_index_ida, id);
4016}
4017EXPORT_SYMBOL(hci_unregister_dev);
4018
4019/* Suspend HCI device */
4020int hci_suspend_dev(struct hci_dev *hdev)
4021{
4022	hci_notify(hdev, HCI_DEV_SUSPEND);
4023	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4024}
4025EXPORT_SYMBOL(hci_suspend_dev);
4026
4027/* Resume HCI device */
4028int hci_resume_dev(struct hci_dev *hdev)
4029{
4030	hci_notify(hdev, HCI_DEV_RESUME);
4031	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4032}
4033EXPORT_SYMBOL(hci_resume_dev);
4034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4035/* Receive frame from HCI drivers */
4036int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
4037{
4038	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
4039		      && !test_bit(HCI_INIT, &hdev->flags))) {
4040		kfree_skb(skb);
4041		return -ENXIO;
4042	}
4043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4044	/* Incoming skb */
4045	bt_cb(skb)->incoming = 1;
4046
4047	/* Time stamp */
4048	__net_timestamp(skb);
4049
4050	skb_queue_tail(&hdev->rx_q, skb);
4051	queue_work(hdev->workqueue, &hdev->rx_work);
4052
4053	return 0;
4054}
4055EXPORT_SYMBOL(hci_recv_frame);
4056
4057static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
4058			  int count, __u8 index)
4059{
4060	int len = 0;
4061	int hlen = 0;
4062	int remain = count;
4063	struct sk_buff *skb;
4064	struct bt_skb_cb *scb;
4065
4066	if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
4067	    index >= NUM_REASSEMBLY)
4068		return -EILSEQ;
4069
4070	skb = hdev->reassembly[index];
 
4071
4072	if (!skb) {
4073		switch (type) {
4074		case HCI_ACLDATA_PKT:
4075			len = HCI_MAX_FRAME_SIZE;
4076			hlen = HCI_ACL_HDR_SIZE;
4077			break;
4078		case HCI_EVENT_PKT:
4079			len = HCI_MAX_EVENT_SIZE;
4080			hlen = HCI_EVENT_HDR_SIZE;
4081			break;
4082		case HCI_SCODATA_PKT:
4083			len = HCI_MAX_SCO_SIZE;
4084			hlen = HCI_SCO_HDR_SIZE;
4085			break;
4086		}
4087
4088		skb = bt_skb_alloc(len, GFP_ATOMIC);
4089		if (!skb)
4090			return -ENOMEM;
4091
4092		scb = (void *) skb->cb;
4093		scb->expect = hlen;
4094		scb->pkt_type = type;
4095
4096		hdev->reassembly[index] = skb;
4097	}
4098
4099	while (count) {
4100		scb = (void *) skb->cb;
4101		len = min_t(uint, scb->expect, count);
4102
4103		memcpy(skb_put(skb, len), data, len);
4104
4105		count -= len;
4106		data += len;
4107		scb->expect -= len;
4108		remain = count;
4109
4110		switch (type) {
4111		case HCI_EVENT_PKT:
4112			if (skb->len == HCI_EVENT_HDR_SIZE) {
4113				struct hci_event_hdr *h = hci_event_hdr(skb);
4114				scb->expect = h->plen;
4115
4116				if (skb_tailroom(skb) < scb->expect) {
4117					kfree_skb(skb);
4118					hdev->reassembly[index] = NULL;
4119					return -ENOMEM;
4120				}
4121			}
4122			break;
4123
4124		case HCI_ACLDATA_PKT:
4125			if (skb->len  == HCI_ACL_HDR_SIZE) {
4126				struct hci_acl_hdr *h = hci_acl_hdr(skb);
4127				scb->expect = __le16_to_cpu(h->dlen);
4128
4129				if (skb_tailroom(skb) < scb->expect) {
4130					kfree_skb(skb);
4131					hdev->reassembly[index] = NULL;
4132					return -ENOMEM;
4133				}
4134			}
4135			break;
4136
4137		case HCI_SCODATA_PKT:
4138			if (skb->len == HCI_SCO_HDR_SIZE) {
4139				struct hci_sco_hdr *h = hci_sco_hdr(skb);
4140				scb->expect = h->dlen;
4141
4142				if (skb_tailroom(skb) < scb->expect) {
4143					kfree_skb(skb);
4144					hdev->reassembly[index] = NULL;
4145					return -ENOMEM;
4146				}
4147			}
4148			break;
4149		}
4150
4151		if (scb->expect == 0) {
4152			/* Complete frame */
4153
4154			bt_cb(skb)->pkt_type = type;
4155			hci_recv_frame(hdev, skb);
4156
4157			hdev->reassembly[index] = NULL;
4158			return remain;
4159		}
4160	}
4161
4162	return remain;
4163}
 
4164
4165int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
4166{
4167	int rem = 0;
4168
4169	if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
4170		return -EILSEQ;
4171
4172	while (count) {
4173		rem = hci_reassembly(hdev, type, data, count, type - 1);
4174		if (rem < 0)
4175			return rem;
4176
4177		data += (count - rem);
4178		count = rem;
4179	}
4180
4181	return rem;
4182}
4183EXPORT_SYMBOL(hci_recv_fragment);
4184
4185#define STREAM_REASSEMBLY 0
4186
4187int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
4188{
4189	int type;
4190	int rem = 0;
4191
4192	while (count) {
4193		struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
4194
4195		if (!skb) {
4196			struct { char type; } *pkt;
4197
4198			/* Start of the frame */
4199			pkt = data;
4200			type = pkt->type;
4201
4202			data++;
4203			count--;
4204		} else
4205			type = bt_cb(skb)->pkt_type;
4206
4207		rem = hci_reassembly(hdev, type, data, count,
4208				     STREAM_REASSEMBLY);
4209		if (rem < 0)
4210			return rem;
4211
4212		data += (count - rem);
4213		count = rem;
4214	}
4215
4216	return rem;
4217}
4218EXPORT_SYMBOL(hci_recv_stream_fragment);
4219
4220/* ---- Interface to upper protocols ---- */
4221
4222int hci_register_cb(struct hci_cb *cb)
4223{
4224	BT_DBG("%p name %s", cb, cb->name);
4225
4226	write_lock(&hci_cb_list_lock);
4227	list_add(&cb->list, &hci_cb_list);
4228	write_unlock(&hci_cb_list_lock);
4229
4230	return 0;
4231}
4232EXPORT_SYMBOL(hci_register_cb);
4233
4234int hci_unregister_cb(struct hci_cb *cb)
4235{
4236	BT_DBG("%p name %s", cb, cb->name);
4237
4238	write_lock(&hci_cb_list_lock);
4239	list_del(&cb->list);
4240	write_unlock(&hci_cb_list_lock);
4241
4242	return 0;
4243}
4244EXPORT_SYMBOL(hci_unregister_cb);
4245
4246static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
4247{
4248	BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
 
 
 
4249
4250	/* Time stamp */
4251	__net_timestamp(skb);
4252
4253	/* Send copy to monitor */
4254	hci_send_to_monitor(hdev, skb);
4255
4256	if (atomic_read(&hdev->promisc)) {
4257		/* Send copy to the sockets */
4258		hci_send_to_sock(hdev, skb);
4259	}
4260
4261	/* Get rid of skb owner, prior to sending to the driver. */
4262	skb_orphan(skb);
4263
4264	if (hdev->send(hdev, skb) < 0)
4265		BT_ERR("%s sending frame failed", hdev->name);
4266}
 
4267
4268void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
4269{
4270	skb_queue_head_init(&req->cmd_q);
4271	req->hdev = hdev;
4272	req->err = 0;
4273}
4274
4275int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
4276{
4277	struct hci_dev *hdev = req->hdev;
4278	struct sk_buff *skb;
4279	unsigned long flags;
4280
4281	BT_DBG("length %u", skb_queue_len(&req->cmd_q));
4282
4283	/* If an error occured during request building, remove all HCI
4284	 * commands queued on the HCI request queue.
4285	 */
4286	if (req->err) {
4287		skb_queue_purge(&req->cmd_q);
4288		return req->err;
4289	}
4290
4291	/* Do not allow empty requests */
4292	if (skb_queue_empty(&req->cmd_q))
4293		return -ENODATA;
4294
4295	skb = skb_peek_tail(&req->cmd_q);
4296	bt_cb(skb)->req.complete = complete;
4297
4298	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4299	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
4300	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4301
4302	queue_work(hdev->workqueue, &hdev->cmd_work);
4303
4304	return 0;
4305}
4306
4307static struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode,
4308				       u32 plen, const void *param)
4309{
4310	int len = HCI_COMMAND_HDR_SIZE + plen;
4311	struct hci_command_hdr *hdr;
4312	struct sk_buff *skb;
4313
4314	skb = bt_skb_alloc(len, GFP_ATOMIC);
4315	if (!skb)
4316		return NULL;
4317
4318	hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
4319	hdr->opcode = cpu_to_le16(opcode);
4320	hdr->plen   = plen;
4321
4322	if (plen)
4323		memcpy(skb_put(skb, plen), param, plen);
4324
4325	BT_DBG("skb len %d", skb->len);
4326
4327	bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
4328
4329	return skb;
4330}
4331
4332/* Send HCI command */
4333int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4334		 const void *param)
4335{
4336	struct sk_buff *skb;
4337
4338	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4339
4340	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4341	if (!skb) {
4342		BT_ERR("%s no memory for command", hdev->name);
4343		return -ENOMEM;
4344	}
4345
4346	/* Stand-alone HCI commands must be flaged as
4347	 * single-command requests.
4348	 */
4349	bt_cb(skb)->req.start = true;
4350
4351	skb_queue_tail(&hdev->cmd_q, skb);
4352	queue_work(hdev->workqueue, &hdev->cmd_work);
4353
4354	return 0;
4355}
4356
4357/* Queue a command to an asynchronous HCI request */
4358void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
4359		    const void *param, u8 event)
4360{
4361	struct hci_dev *hdev = req->hdev;
4362	struct sk_buff *skb;
4363
4364	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4365
4366	/* If an error occured during request building, there is no point in
4367	 * queueing the HCI command. We can simply return.
4368	 */
4369	if (req->err)
4370		return;
 
 
 
 
 
4371
4372	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4373	if (!skb) {
4374		BT_ERR("%s no memory for command (opcode 0x%4.4x)",
4375		       hdev->name, opcode);
4376		req->err = -ENOMEM;
4377		return;
4378	}
4379
4380	if (skb_queue_empty(&req->cmd_q))
4381		bt_cb(skb)->req.start = true;
4382
4383	bt_cb(skb)->req.event = event;
4384
4385	skb_queue_tail(&req->cmd_q, skb);
4386}
4387
4388void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
4389		 const void *param)
4390{
4391	hci_req_add_ev(req, opcode, plen, param, 0);
4392}
 
4393
4394/* Get data from the previously sent command */
4395void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4396{
4397	struct hci_command_hdr *hdr;
4398
4399	if (!hdev->sent_cmd)
4400		return NULL;
4401
4402	hdr = (void *) hdev->sent_cmd->data;
4403
4404	if (hdr->opcode != cpu_to_le16(opcode))
4405		return NULL;
4406
4407	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4408
4409	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4410}
4411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4412/* Send ACL data */
4413static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4414{
4415	struct hci_acl_hdr *hdr;
4416	int len = skb->len;
4417
4418	skb_push(skb, HCI_ACL_HDR_SIZE);
4419	skb_reset_transport_header(skb);
4420	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4421	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4422	hdr->dlen   = cpu_to_le16(len);
4423}
4424
4425static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4426			  struct sk_buff *skb, __u16 flags)
4427{
4428	struct hci_conn *conn = chan->conn;
4429	struct hci_dev *hdev = conn->hdev;
4430	struct sk_buff *list;
4431
4432	skb->len = skb_headlen(skb);
4433	skb->data_len = 0;
4434
4435	bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
4436
4437	switch (hdev->dev_type) {
4438	case HCI_BREDR:
4439		hci_add_acl_hdr(skb, conn->handle, flags);
4440		break;
4441	case HCI_AMP:
4442		hci_add_acl_hdr(skb, chan->handle, flags);
4443		break;
4444	default:
4445		BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
4446		return;
4447	}
4448
4449	list = skb_shinfo(skb)->frag_list;
4450	if (!list) {
4451		/* Non fragmented */
4452		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4453
4454		skb_queue_tail(queue, skb);
4455	} else {
4456		/* Fragmented */
4457		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4458
4459		skb_shinfo(skb)->frag_list = NULL;
4460
4461		/* Queue all fragments atomically */
4462		spin_lock(&queue->lock);
 
 
 
 
4463
4464		__skb_queue_tail(queue, skb);
4465
4466		flags &= ~ACL_START;
4467		flags |= ACL_CONT;
4468		do {
4469			skb = list; list = list->next;
4470
4471			bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
4472			hci_add_acl_hdr(skb, conn->handle, flags);
4473
4474			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4475
4476			__skb_queue_tail(queue, skb);
4477		} while (list);
4478
4479		spin_unlock(&queue->lock);
4480	}
4481}
4482
4483void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4484{
4485	struct hci_dev *hdev = chan->conn->hdev;
4486
4487	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4488
4489	hci_queue_acl(chan, &chan->data_q, skb, flags);
4490
4491	queue_work(hdev->workqueue, &hdev->tx_work);
4492}
4493
4494/* Send SCO data */
4495void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4496{
4497	struct hci_dev *hdev = conn->hdev;
4498	struct hci_sco_hdr hdr;
4499
4500	BT_DBG("%s len %d", hdev->name, skb->len);
4501
4502	hdr.handle = cpu_to_le16(conn->handle);
4503	hdr.dlen   = skb->len;
4504
4505	skb_push(skb, HCI_SCO_HDR_SIZE);
4506	skb_reset_transport_header(skb);
4507	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4508
4509	bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
4510
4511	skb_queue_tail(&conn->data_q, skb);
4512	queue_work(hdev->workqueue, &hdev->tx_work);
4513}
4514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4515/* ---- HCI TX task (outgoing data) ---- */
4516
4517/* HCI Connection scheduler */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4518static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4519				     int *quote)
4520{
4521	struct hci_conn_hash *h = &hdev->conn_hash;
4522	struct hci_conn *conn = NULL, *c;
4523	unsigned int num = 0, min = ~0;
4524
4525	/* We don't have to lock device here. Connections are always
4526	 * added and removed with TX task disabled. */
4527
4528	rcu_read_lock();
4529
4530	list_for_each_entry_rcu(c, &h->list, list) {
4531		if (c->type != type || skb_queue_empty(&c->data_q))
4532			continue;
4533
4534		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4535			continue;
4536
4537		num++;
4538
4539		if (c->sent < min) {
4540			min  = c->sent;
4541			conn = c;
4542		}
4543
4544		if (hci_conn_num(hdev, type) == num)
4545			break;
4546	}
4547
4548	rcu_read_unlock();
4549
4550	if (conn) {
4551		int cnt, q;
4552
4553		switch (conn->type) {
4554		case ACL_LINK:
4555			cnt = hdev->acl_cnt;
4556			break;
4557		case SCO_LINK:
4558		case ESCO_LINK:
4559			cnt = hdev->sco_cnt;
4560			break;
4561		case LE_LINK:
4562			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4563			break;
4564		default:
4565			cnt = 0;
4566			BT_ERR("Unknown link type");
4567		}
4568
4569		q = cnt / num;
4570		*quote = q ? q : 1;
4571	} else
4572		*quote = 0;
4573
4574	BT_DBG("conn %p quote %d", conn, *quote);
4575	return conn;
4576}
4577
4578static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4579{
4580	struct hci_conn_hash *h = &hdev->conn_hash;
4581	struct hci_conn *c;
4582
4583	BT_ERR("%s link tx timeout", hdev->name);
4584
4585	rcu_read_lock();
4586
4587	/* Kill stalled connections */
4588	list_for_each_entry_rcu(c, &h->list, list) {
4589		if (c->type == type && c->sent) {
4590			BT_ERR("%s killing stalled connection %pMR",
4591			       hdev->name, &c->dst);
 
 
 
 
4592			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
 
4593		}
4594	}
4595
4596	rcu_read_unlock();
4597}
4598
4599static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4600				      int *quote)
4601{
4602	struct hci_conn_hash *h = &hdev->conn_hash;
4603	struct hci_chan *chan = NULL;
4604	unsigned int num = 0, min = ~0, cur_prio = 0;
4605	struct hci_conn *conn;
4606	int cnt, q, conn_num = 0;
4607
4608	BT_DBG("%s", hdev->name);
4609
4610	rcu_read_lock();
4611
4612	list_for_each_entry_rcu(conn, &h->list, list) {
4613		struct hci_chan *tmp;
4614
4615		if (conn->type != type)
4616			continue;
4617
4618		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4619			continue;
4620
4621		conn_num++;
4622
4623		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4624			struct sk_buff *skb;
4625
4626			if (skb_queue_empty(&tmp->data_q))
4627				continue;
4628
4629			skb = skb_peek(&tmp->data_q);
4630			if (skb->priority < cur_prio)
4631				continue;
4632
4633			if (skb->priority > cur_prio) {
4634				num = 0;
4635				min = ~0;
4636				cur_prio = skb->priority;
4637			}
4638
4639			num++;
4640
4641			if (conn->sent < min) {
4642				min  = conn->sent;
4643				chan = tmp;
4644			}
4645		}
4646
4647		if (hci_conn_num(hdev, type) == conn_num)
4648			break;
4649	}
4650
4651	rcu_read_unlock();
4652
4653	if (!chan)
4654		return NULL;
4655
4656	switch (chan->conn->type) {
4657	case ACL_LINK:
4658		cnt = hdev->acl_cnt;
4659		break;
4660	case AMP_LINK:
4661		cnt = hdev->block_cnt;
4662		break;
4663	case SCO_LINK:
4664	case ESCO_LINK:
4665		cnt = hdev->sco_cnt;
4666		break;
4667	case LE_LINK:
4668		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4669		break;
4670	default:
4671		cnt = 0;
4672		BT_ERR("Unknown link type");
4673	}
4674
4675	q = cnt / num;
4676	*quote = q ? q : 1;
4677	BT_DBG("chan %p quote %d", chan, *quote);
4678	return chan;
4679}
4680
4681static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4682{
4683	struct hci_conn_hash *h = &hdev->conn_hash;
4684	struct hci_conn *conn;
4685	int num = 0;
4686
4687	BT_DBG("%s", hdev->name);
4688
4689	rcu_read_lock();
4690
4691	list_for_each_entry_rcu(conn, &h->list, list) {
4692		struct hci_chan *chan;
4693
4694		if (conn->type != type)
4695			continue;
4696
4697		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4698			continue;
4699
4700		num++;
4701
4702		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4703			struct sk_buff *skb;
4704
4705			if (chan->sent) {
4706				chan->sent = 0;
4707				continue;
4708			}
4709
4710			if (skb_queue_empty(&chan->data_q))
4711				continue;
4712
4713			skb = skb_peek(&chan->data_q);
4714			if (skb->priority >= HCI_PRIO_MAX - 1)
4715				continue;
4716
4717			skb->priority = HCI_PRIO_MAX - 1;
4718
4719			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4720			       skb->priority);
4721		}
4722
4723		if (hci_conn_num(hdev, type) == num)
4724			break;
4725	}
4726
4727	rcu_read_unlock();
4728
4729}
4730
4731static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4732{
4733	/* Calculate count of blocks used by this packet */
4734	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4735}
4736
4737static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4738{
4739	if (!test_bit(HCI_RAW, &hdev->flags)) {
4740		/* ACL tx timeout must be longer than maximum
4741		 * link supervision timeout (40.9 seconds) */
4742		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4743				       HCI_ACL_TX_TIMEOUT))
4744			hci_link_tx_to(hdev, ACL_LINK);
 
 
 
 
 
 
 
 
 
 
 
 
 
4745	}
4746}
4747
4748static void hci_sched_acl_pkt(struct hci_dev *hdev)
4749{
4750	unsigned int cnt = hdev->acl_cnt;
4751	struct hci_chan *chan;
4752	struct sk_buff *skb;
4753	int quote;
4754
4755	__check_timeout(hdev, cnt);
4756
4757	while (hdev->acl_cnt &&
4758	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4759		u32 priority = (skb_peek(&chan->data_q))->priority;
4760		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4761			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4762			       skb->len, skb->priority);
4763
4764			/* Stop if priority has changed */
4765			if (skb->priority < priority)
4766				break;
4767
4768			skb = skb_dequeue(&chan->data_q);
4769
4770			hci_conn_enter_active_mode(chan->conn,
4771						   bt_cb(skb)->force_active);
4772
4773			hci_send_frame(hdev, skb);
4774			hdev->acl_last_tx = jiffies;
4775
4776			hdev->acl_cnt--;
4777			chan->sent++;
4778			chan->conn->sent++;
 
 
 
 
4779		}
4780	}
4781
4782	if (cnt != hdev->acl_cnt)
4783		hci_prio_recalculate(hdev, ACL_LINK);
4784}
4785
4786static void hci_sched_acl_blk(struct hci_dev *hdev)
4787{
4788	unsigned int cnt = hdev->block_cnt;
4789	struct hci_chan *chan;
4790	struct sk_buff *skb;
4791	int quote;
4792	u8 type;
4793
4794	__check_timeout(hdev, cnt);
4795
4796	BT_DBG("%s", hdev->name);
4797
4798	if (hdev->dev_type == HCI_AMP)
4799		type = AMP_LINK;
4800	else
4801		type = ACL_LINK;
4802
 
 
4803	while (hdev->block_cnt > 0 &&
4804	       (chan = hci_chan_sent(hdev, type, &quote))) {
4805		u32 priority = (skb_peek(&chan->data_q))->priority;
4806		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4807			int blocks;
4808
4809			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4810			       skb->len, skb->priority);
4811
4812			/* Stop if priority has changed */
4813			if (skb->priority < priority)
4814				break;
4815
4816			skb = skb_dequeue(&chan->data_q);
4817
4818			blocks = __get_blocks(hdev, skb);
4819			if (blocks > hdev->block_cnt)
4820				return;
4821
4822			hci_conn_enter_active_mode(chan->conn,
4823						   bt_cb(skb)->force_active);
4824
4825			hci_send_frame(hdev, skb);
4826			hdev->acl_last_tx = jiffies;
4827
4828			hdev->block_cnt -= blocks;
4829			quote -= blocks;
4830
4831			chan->sent += blocks;
4832			chan->conn->sent += blocks;
4833		}
4834	}
4835
4836	if (cnt != hdev->block_cnt)
4837		hci_prio_recalculate(hdev, type);
4838}
4839
4840static void hci_sched_acl(struct hci_dev *hdev)
4841{
4842	BT_DBG("%s", hdev->name);
4843
4844	/* No ACL link over BR/EDR controller */
4845	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
4846		return;
4847
4848	/* No AMP link over AMP controller */
4849	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4850		return;
4851
4852	switch (hdev->flow_ctl_mode) {
4853	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4854		hci_sched_acl_pkt(hdev);
4855		break;
4856
4857	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4858		hci_sched_acl_blk(hdev);
4859		break;
4860	}
4861}
4862
4863/* Schedule SCO */
4864static void hci_sched_sco(struct hci_dev *hdev)
4865{
4866	struct hci_conn *conn;
4867	struct sk_buff *skb;
4868	int quote;
4869
4870	BT_DBG("%s", hdev->name);
4871
4872	if (!hci_conn_num(hdev, SCO_LINK))
4873		return;
4874
4875	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4876		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4877			BT_DBG("skb %p len %d", skb, skb->len);
4878			hci_send_frame(hdev, skb);
4879
4880			conn->sent++;
4881			if (conn->sent == ~0)
4882				conn->sent = 0;
4883		}
4884	}
4885}
4886
4887static void hci_sched_esco(struct hci_dev *hdev)
4888{
4889	struct hci_conn *conn;
4890	struct sk_buff *skb;
4891	int quote;
4892
4893	BT_DBG("%s", hdev->name);
4894
4895	if (!hci_conn_num(hdev, ESCO_LINK))
4896		return;
4897
4898	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4899						     &quote))) {
4900		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4901			BT_DBG("skb %p len %d", skb, skb->len);
4902			hci_send_frame(hdev, skb);
4903
4904			conn->sent++;
4905			if (conn->sent == ~0)
4906				conn->sent = 0;
4907		}
4908	}
4909}
4910
4911static void hci_sched_le(struct hci_dev *hdev)
4912{
4913	struct hci_chan *chan;
4914	struct sk_buff *skb;
4915	int quote, cnt, tmp;
4916
4917	BT_DBG("%s", hdev->name);
4918
4919	if (!hci_conn_num(hdev, LE_LINK))
4920		return;
4921
4922	if (!test_bit(HCI_RAW, &hdev->flags)) {
4923		/* LE tx timeout must be longer than maximum
4924		 * link supervision timeout (40.9 seconds) */
4925		if (!hdev->le_cnt && hdev->le_pkts &&
4926		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
4927			hci_link_tx_to(hdev, LE_LINK);
4928	}
4929
4930	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4931	tmp = cnt;
4932	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4933		u32 priority = (skb_peek(&chan->data_q))->priority;
4934		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4935			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4936			       skb->len, skb->priority);
4937
4938			/* Stop if priority has changed */
4939			if (skb->priority < priority)
4940				break;
4941
4942			skb = skb_dequeue(&chan->data_q);
4943
4944			hci_send_frame(hdev, skb);
4945			hdev->le_last_tx = jiffies;
4946
4947			cnt--;
4948			chan->sent++;
4949			chan->conn->sent++;
 
 
 
 
4950		}
4951	}
4952
4953	if (hdev->le_pkts)
4954		hdev->le_cnt = cnt;
4955	else
4956		hdev->acl_cnt = cnt;
4957
4958	if (cnt != tmp)
4959		hci_prio_recalculate(hdev, LE_LINK);
4960}
4961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4962static void hci_tx_work(struct work_struct *work)
4963{
4964	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4965	struct sk_buff *skb;
4966
4967	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4968	       hdev->sco_cnt, hdev->le_cnt);
4969
4970	if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
4971		/* Schedule queues and send stuff to HCI driver */
4972		hci_sched_acl(hdev);
4973		hci_sched_sco(hdev);
4974		hci_sched_esco(hdev);
 
 
4975		hci_sched_le(hdev);
4976	}
4977
4978	/* Send next queued raw (unknown type) packet */
4979	while ((skb = skb_dequeue(&hdev->raw_q)))
4980		hci_send_frame(hdev, skb);
4981}
4982
4983/* ----- HCI RX task (incoming data processing) ----- */
4984
4985/* ACL data packet */
4986static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4987{
4988	struct hci_acl_hdr *hdr = (void *) skb->data;
4989	struct hci_conn *conn;
4990	__u16 handle, flags;
4991
4992	skb_pull(skb, HCI_ACL_HDR_SIZE);
4993
4994	handle = __le16_to_cpu(hdr->handle);
4995	flags  = hci_flags(handle);
4996	handle = hci_handle(handle);
4997
4998	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4999	       handle, flags);
5000
5001	hdev->stat.acl_rx++;
5002
5003	hci_dev_lock(hdev);
5004	conn = hci_conn_hash_lookup_handle(hdev, handle);
5005	hci_dev_unlock(hdev);
5006
5007	if (conn) {
5008		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
5009
5010		/* Send to upper protocol */
5011		l2cap_recv_acldata(conn, skb, flags);
5012		return;
5013	} else {
5014		BT_ERR("%s ACL packet for unknown connection handle %d",
5015		       hdev->name, handle);
5016	}
5017
5018	kfree_skb(skb);
5019}
5020
5021/* SCO data packet */
5022static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
5023{
5024	struct hci_sco_hdr *hdr = (void *) skb->data;
5025	struct hci_conn *conn;
5026	__u16 handle;
5027
5028	skb_pull(skb, HCI_SCO_HDR_SIZE);
5029
5030	handle = __le16_to_cpu(hdr->handle);
 
 
5031
5032	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
 
5033
5034	hdev->stat.sco_rx++;
5035
5036	hci_dev_lock(hdev);
5037	conn = hci_conn_hash_lookup_handle(hdev, handle);
5038	hci_dev_unlock(hdev);
5039
5040	if (conn) {
5041		/* Send to upper protocol */
 
5042		sco_recv_scodata(conn, skb);
5043		return;
5044	} else {
5045		BT_ERR("%s SCO packet for unknown connection handle %d",
5046		       hdev->name, handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5047	}
5048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5049	kfree_skb(skb);
5050}
5051
5052static bool hci_req_is_complete(struct hci_dev *hdev)
5053{
5054	struct sk_buff *skb;
5055
5056	skb = skb_peek(&hdev->cmd_q);
5057	if (!skb)
5058		return true;
5059
5060	return bt_cb(skb)->req.start;
5061}
5062
5063static void hci_resend_last(struct hci_dev *hdev)
5064{
5065	struct hci_command_hdr *sent;
5066	struct sk_buff *skb;
5067	u16 opcode;
5068
5069	if (!hdev->sent_cmd)
5070		return;
5071
5072	sent = (void *) hdev->sent_cmd->data;
5073	opcode = __le16_to_cpu(sent->opcode);
5074	if (opcode == HCI_OP_RESET)
5075		return;
5076
5077	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
5078	if (!skb)
5079		return;
5080
5081	skb_queue_head(&hdev->cmd_q, skb);
5082	queue_work(hdev->workqueue, &hdev->cmd_work);
5083}
5084
5085void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status)
 
 
5086{
5087	hci_req_complete_t req_complete = NULL;
5088	struct sk_buff *skb;
5089	unsigned long flags;
5090
5091	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
5092
5093	/* If the completed command doesn't match the last one that was
5094	 * sent we need to do special handling of it.
5095	 */
5096	if (!hci_sent_cmd_data(hdev, opcode)) {
5097		/* Some CSR based controllers generate a spontaneous
5098		 * reset complete event during init and any pending
5099		 * command will never be completed. In such a case we
5100		 * need to resend whatever was the last sent
5101		 * command.
5102		 */
5103		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
5104			hci_resend_last(hdev);
5105
5106		return;
5107	}
5108
 
 
 
5109	/* If the command succeeded and there's still more commands in
5110	 * this request the request is not yet complete.
5111	 */
5112	if (!status && !hci_req_is_complete(hdev))
5113		return;
5114
5115	/* If this was the last command in a request the complete
5116	 * callback would be found in hdev->sent_cmd instead of the
5117	 * command queue (hdev->cmd_q).
5118	 */
5119	if (hdev->sent_cmd) {
5120		req_complete = bt_cb(hdev->sent_cmd)->req.complete;
 
 
5121
5122		if (req_complete) {
5123			/* We must set the complete callback to NULL to
5124			 * avoid calling the callback more than once if
5125			 * this function gets called again.
5126			 */
5127			bt_cb(hdev->sent_cmd)->req.complete = NULL;
5128
5129			goto call_complete;
5130		}
5131	}
5132
5133	/* Remove all pending commands belonging to this request */
5134	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
5135	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
5136		if (bt_cb(skb)->req.start) {
5137			__skb_queue_head(&hdev->cmd_q, skb);
5138			break;
5139		}
5140
5141		req_complete = bt_cb(skb)->req.complete;
5142		kfree_skb(skb);
 
 
 
5143	}
5144	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
5145
5146call_complete:
5147	if (req_complete)
5148		req_complete(hdev, status);
5149}
5150
5151static void hci_rx_work(struct work_struct *work)
5152{
5153	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
5154	struct sk_buff *skb;
5155
5156	BT_DBG("%s", hdev->name);
5157
5158	while ((skb = skb_dequeue(&hdev->rx_q))) {
 
 
 
 
 
 
 
5159		/* Send copy to monitor */
5160		hci_send_to_monitor(hdev, skb);
5161
5162		if (atomic_read(&hdev->promisc)) {
5163			/* Send copy to the sockets */
5164			hci_send_to_sock(hdev, skb);
5165		}
5166
5167		if (test_bit(HCI_RAW, &hdev->flags) ||
5168		    test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) {
 
 
 
 
 
 
5169			kfree_skb(skb);
5170			continue;
5171		}
5172
5173		if (test_bit(HCI_INIT, &hdev->flags)) {
5174			/* Don't process data packets in this states. */
5175			switch (bt_cb(skb)->pkt_type) {
5176			case HCI_ACLDATA_PKT:
5177			case HCI_SCODATA_PKT:
 
5178				kfree_skb(skb);
5179				continue;
5180			}
5181		}
5182
5183		/* Process frame */
5184		switch (bt_cb(skb)->pkt_type) {
5185		case HCI_EVENT_PKT:
5186			BT_DBG("%s Event packet", hdev->name);
5187			hci_event_packet(hdev, skb);
5188			break;
5189
5190		case HCI_ACLDATA_PKT:
5191			BT_DBG("%s ACL data packet", hdev->name);
5192			hci_acldata_packet(hdev, skb);
5193			break;
5194
5195		case HCI_SCODATA_PKT:
5196			BT_DBG("%s SCO data packet", hdev->name);
5197			hci_scodata_packet(hdev, skb);
5198			break;
5199
 
 
 
 
 
5200		default:
5201			kfree_skb(skb);
5202			break;
5203		}
5204	}
5205}
5206
5207static void hci_cmd_work(struct work_struct *work)
5208{
5209	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
5210	struct sk_buff *skb;
5211
5212	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
5213	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
5214
5215	/* Send queued commands */
5216	if (atomic_read(&hdev->cmd_cnt)) {
5217		skb = skb_dequeue(&hdev->cmd_q);
5218		if (!skb)
5219			return;
5220
5221		kfree_skb(hdev->sent_cmd);
5222
5223		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
5224		if (hdev->sent_cmd) {
 
 
 
5225			atomic_dec(&hdev->cmd_cnt);
5226			hci_send_frame(hdev, skb);
5227			if (test_bit(HCI_RESET, &hdev->flags))
5228				del_timer(&hdev->cmd_timer);
 
 
 
 
 
 
5229			else
5230				mod_timer(&hdev->cmd_timer,
5231					  jiffies + HCI_CMD_TIMEOUT);
 
5232		} else {
5233			skb_queue_head(&hdev->cmd_q, skb);
5234			queue_work(hdev->workqueue, &hdev->cmd_work);
5235		}
5236	}
5237}
5238
5239void hci_req_add_le_scan_disable(struct hci_request *req)
5240{
5241	struct hci_cp_le_set_scan_enable cp;
5242
5243	memset(&cp, 0, sizeof(cp));
5244	cp.enable = LE_SCAN_DISABLE;
5245	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
5246}
5247
5248void hci_req_add_le_passive_scan(struct hci_request *req)
5249{
5250	struct hci_cp_le_set_scan_param param_cp;
5251	struct hci_cp_le_set_scan_enable enable_cp;
5252	struct hci_dev *hdev = req->hdev;
5253	u8 own_addr_type;
5254
5255	/* Set require_privacy to true to avoid identification from
5256	 * unknown peer devices. Since this is passive scanning, no
5257	 * SCAN_REQ using the local identity should be sent. Mandating
5258	 * privacy is just an extra precaution.
5259	 */
5260	if (hci_update_random_address(req, true, &own_addr_type))
5261		return;
5262
5263	memset(&param_cp, 0, sizeof(param_cp));
5264	param_cp.type = LE_SCAN_PASSIVE;
5265	param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
5266	param_cp.window = cpu_to_le16(hdev->le_scan_window);
5267	param_cp.own_address_type = own_addr_type;
5268	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
5269		    &param_cp);
5270
5271	memset(&enable_cp, 0, sizeof(enable_cp));
5272	enable_cp.enable = LE_SCAN_ENABLE;
5273	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5274	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
5275		    &enable_cp);
5276}
5277
5278static void update_background_scan_complete(struct hci_dev *hdev, u8 status)
5279{
5280	if (status)
5281		BT_DBG("HCI request failed to update background scanning: "
5282		       "status 0x%2.2x", status);
5283}
5284
5285/* This function controls the background scanning based on hdev->pend_le_conns
5286 * list. If there are pending LE connection we start the background scanning,
5287 * otherwise we stop it.
5288 *
5289 * This function requires the caller holds hdev->lock.
5290 */
5291void hci_update_background_scan(struct hci_dev *hdev)
5292{
5293	struct hci_request req;
5294	struct hci_conn *conn;
5295	int err;
5296
5297	hci_req_init(&req, hdev);
5298
5299	if (list_empty(&hdev->pend_le_conns)) {
5300		/* If there is no pending LE connections, we should stop
5301		 * the background scanning.
5302		 */
5303
5304		/* If controller is not scanning we are done. */
5305		if (!test_bit(HCI_LE_SCAN, &hdev->dev_flags))
5306			return;
5307
5308		hci_req_add_le_scan_disable(&req);
5309
5310		BT_DBG("%s stopping background scanning", hdev->name);
5311	} else {
5312		/* If there is at least one pending LE connection, we should
5313		 * keep the background scan running.
5314		 */
5315
5316		/* If controller is connecting, we should not start scanning
5317		 * since some controllers are not able to scan and connect at
5318		 * the same time.
5319		 */
5320		conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
5321		if (conn)
5322			return;
5323
5324		/* If controller is currently scanning, we stop it to ensure we
5325		 * don't miss any advertising (due to duplicates filter).
5326		 */
5327		if (test_bit(HCI_LE_SCAN, &hdev->dev_flags))
5328			hci_req_add_le_scan_disable(&req);
5329
5330		hci_req_add_le_passive_scan(&req);
5331
5332		BT_DBG("%s starting background scanning", hdev->name);
5333	}
5334
5335	err = hci_req_run(&req, update_background_scan_complete);
5336	if (err)
5337		BT_ERR("Failed to run HCI request: err %d", err);
5338}