Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * lib/bitmap.c
  4 * Helper functions for bitmap.h.
 
 
 
  5 */
  6
 
 
  7#include <linux/bitmap.h>
  8#include <linux/bitops.h>
  9#include <linux/ctype.h>
 10#include <linux/device.h>
 11#include <linux/export.h>
 12#include <linux/slab.h>
 13
 14/**
 15 * DOC: bitmap introduction
 16 *
 17 * bitmaps provide an array of bits, implemented using an
 18 * array of unsigned longs.  The number of valid bits in a
 19 * given bitmap does _not_ need to be an exact multiple of
 20 * BITS_PER_LONG.
 21 *
 22 * The possible unused bits in the last, partially used word
 23 * of a bitmap are 'don't care'.  The implementation makes
 24 * no particular effort to keep them zero.  It ensures that
 25 * their value will not affect the results of any operation.
 26 * The bitmap operations that return Boolean (bitmap_empty,
 27 * for example) or scalar (bitmap_weight, for example) results
 28 * carefully filter out these unused bits from impacting their
 29 * results.
 30 *
 
 
 
 
 
 31 * The byte ordering of bitmaps is more natural on little
 32 * endian architectures.  See the big-endian headers
 33 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
 34 * for the best explanations of this ordering.
 35 */
 36
 37bool __bitmap_equal(const unsigned long *bitmap1,
 38		    const unsigned long *bitmap2, unsigned int bits)
 39{
 40	unsigned int k, lim = bits/BITS_PER_LONG;
 41	for (k = 0; k < lim; ++k)
 42		if (bitmap1[k] != bitmap2[k])
 43			return false;
 44
 45	if (bits % BITS_PER_LONG)
 46		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 47			return false;
 48
 49	return true;
 50}
 51EXPORT_SYMBOL(__bitmap_equal);
 52
 53bool __bitmap_or_equal(const unsigned long *bitmap1,
 54		       const unsigned long *bitmap2,
 55		       const unsigned long *bitmap3,
 56		       unsigned int bits)
 57{
 58	unsigned int k, lim = bits / BITS_PER_LONG;
 59	unsigned long tmp;
 
 
 60
 61	for (k = 0; k < lim; ++k) {
 62		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
 63			return false;
 64	}
 
 
 
 
 
 
 
 
 
 
 
 65
 66	if (!(bits % BITS_PER_LONG))
 67		return true;
 
 68
 69	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
 70	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
 71}
 
 72
 73void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
 74{
 75	unsigned int k, lim = BITS_TO_LONGS(bits);
 76	for (k = 0; k < lim; ++k)
 77		dst[k] = ~src[k];
 
 
 
 78}
 79EXPORT_SYMBOL(__bitmap_complement);
 80
 81/**
 82 * __bitmap_shift_right - logical right shift of the bits in a bitmap
 83 *   @dst : destination bitmap
 84 *   @src : source bitmap
 85 *   @shift : shift by this many bits
 86 *   @nbits : bitmap size, in bits
 87 *
 88 * Shifting right (dividing) means moving bits in the MS -> LS bit
 89 * direction.  Zeros are fed into the vacated MS positions and the
 90 * LS bits shifted off the bottom are lost.
 91 */
 92void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
 93			unsigned shift, unsigned nbits)
 94{
 95	unsigned k, lim = BITS_TO_LONGS(nbits);
 96	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 97	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
 98	for (k = 0; off + k < lim; ++k) {
 99		unsigned long upper, lower;
100
101		/*
102		 * If shift is not word aligned, take lower rem bits of
103		 * word above and make them the top rem bits of result.
104		 */
105		if (!rem || off + k + 1 >= lim)
106			upper = 0;
107		else {
108			upper = src[off + k + 1];
109			if (off + k + 1 == lim - 1)
110				upper &= mask;
111			upper <<= (BITS_PER_LONG - rem);
112		}
113		lower = src[off + k];
114		if (off + k == lim - 1)
115			lower &= mask;
116		lower >>= rem;
117		dst[k] = lower | upper;
 
118	}
119	if (off)
120		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
121}
122EXPORT_SYMBOL(__bitmap_shift_right);
123
124
125/**
126 * __bitmap_shift_left - logical left shift of the bits in a bitmap
127 *   @dst : destination bitmap
128 *   @src : source bitmap
129 *   @shift : shift by this many bits
130 *   @nbits : bitmap size, in bits
131 *
132 * Shifting left (multiplying) means moving bits in the LS -> MS
133 * direction.  Zeros are fed into the vacated LS bit positions
134 * and those MS bits shifted off the top are lost.
135 */
136
137void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
138			unsigned int shift, unsigned int nbits)
139{
140	int k;
141	unsigned int lim = BITS_TO_LONGS(nbits);
142	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
143	for (k = lim - off - 1; k >= 0; --k) {
144		unsigned long upper, lower;
145
146		/*
147		 * If shift is not word aligned, take upper rem bits of
148		 * word below and make them the bottom rem bits of result.
149		 */
150		if (rem && k > 0)
151			lower = src[k - 1] >> (BITS_PER_LONG - rem);
152		else
153			lower = 0;
154		upper = src[k] << rem;
155		dst[k + off] = lower | upper;
 
 
 
 
156	}
157	if (off)
158		memset(dst, 0, off*sizeof(unsigned long));
159}
160EXPORT_SYMBOL(__bitmap_shift_left);
161
162/**
163 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
164 * @dst: destination bitmap, might overlap with src
165 * @src: source bitmap
166 * @first: start bit of region to be removed
167 * @cut: number of bits to remove
168 * @nbits: bitmap size, in bits
169 *
170 * Set the n-th bit of @dst iff the n-th bit of @src is set and
171 * n is less than @first, or the m-th bit of @src is set for any
172 * m such that @first <= n < nbits, and m = n + @cut.
173 *
174 * In pictures, example for a big-endian 32-bit architecture:
175 *
176 * The @src bitmap is::
177 *
178 *   31                                   63
179 *   |                                    |
180 *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
181 *                   |  |              |                                    |
182 *                  16  14             0                                   32
183 *
184 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
185 *
186 *   31                                   63
187 *   |                                    |
188 *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
189 *                      |              |                                    |
190 *                      14 (bit 17     0                                   32
191 *                          from @src)
192 *
193 * Note that @dst and @src might overlap partially or entirely.
194 *
195 * This is implemented in the obvious way, with a shift and carry
196 * step for each moved bit. Optimisation is left as an exercise
197 * for the compiler.
198 */
199void bitmap_cut(unsigned long *dst, const unsigned long *src,
200		unsigned int first, unsigned int cut, unsigned int nbits)
201{
202	unsigned int len = BITS_TO_LONGS(nbits);
203	unsigned long keep = 0, carry;
204	int i;
205
206	if (first % BITS_PER_LONG) {
207		keep = src[first / BITS_PER_LONG] &
208		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
209	}
210
211	memmove(dst, src, len * sizeof(*dst));
212
213	while (cut--) {
214		for (i = first / BITS_PER_LONG; i < len; i++) {
215			if (i < len - 1)
216				carry = dst[i + 1] & 1UL;
217			else
218				carry = 0;
219
220			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
221		}
222	}
223
224	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
225	dst[first / BITS_PER_LONG] |= keep;
226}
227EXPORT_SYMBOL(bitmap_cut);
228
229bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
230				const unsigned long *bitmap2, unsigned int bits)
231{
232	unsigned int k;
233	unsigned int lim = bits/BITS_PER_LONG;
234	unsigned long result = 0;
235
236	for (k = 0; k < lim; k++)
237		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
238	if (bits % BITS_PER_LONG)
239		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
240			   BITMAP_LAST_WORD_MASK(bits));
241	return result != 0;
242}
243EXPORT_SYMBOL(__bitmap_and);
244
245void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
246				const unsigned long *bitmap2, unsigned int bits)
247{
248	unsigned int k;
249	unsigned int nr = BITS_TO_LONGS(bits);
250
251	for (k = 0; k < nr; k++)
252		dst[k] = bitmap1[k] | bitmap2[k];
253}
254EXPORT_SYMBOL(__bitmap_or);
255
256void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
257				const unsigned long *bitmap2, unsigned int bits)
258{
259	unsigned int k;
260	unsigned int nr = BITS_TO_LONGS(bits);
261
262	for (k = 0; k < nr; k++)
263		dst[k] = bitmap1[k] ^ bitmap2[k];
264}
265EXPORT_SYMBOL(__bitmap_xor);
266
267bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
268				const unsigned long *bitmap2, unsigned int bits)
269{
270	unsigned int k;
271	unsigned int lim = bits/BITS_PER_LONG;
272	unsigned long result = 0;
273
274	for (k = 0; k < lim; k++)
275		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
276	if (bits % BITS_PER_LONG)
277		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
278			   BITMAP_LAST_WORD_MASK(bits));
279	return result != 0;
280}
281EXPORT_SYMBOL(__bitmap_andnot);
282
283void __bitmap_replace(unsigned long *dst,
284		      const unsigned long *old, const unsigned long *new,
285		      const unsigned long *mask, unsigned int nbits)
286{
287	unsigned int k;
288	unsigned int nr = BITS_TO_LONGS(nbits);
289
290	for (k = 0; k < nr; k++)
291		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
292}
293EXPORT_SYMBOL(__bitmap_replace);
294
295bool __bitmap_intersects(const unsigned long *bitmap1,
296			 const unsigned long *bitmap2, unsigned int bits)
297{
298	unsigned int k, lim = bits/BITS_PER_LONG;
299	for (k = 0; k < lim; ++k)
300		if (bitmap1[k] & bitmap2[k])
301			return true;
302
303	if (bits % BITS_PER_LONG)
304		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
305			return true;
306	return false;
307}
308EXPORT_SYMBOL(__bitmap_intersects);
309
310bool __bitmap_subset(const unsigned long *bitmap1,
311		     const unsigned long *bitmap2, unsigned int bits)
312{
313	unsigned int k, lim = bits/BITS_PER_LONG;
314	for (k = 0; k < lim; ++k)
315		if (bitmap1[k] & ~bitmap2[k])
316			return false;
317
318	if (bits % BITS_PER_LONG)
319		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
320			return false;
321	return true;
322}
323EXPORT_SYMBOL(__bitmap_subset);
324
325#define BITMAP_WEIGHT(FETCH, bits)	\
326({										\
327	unsigned int __bits = (bits), idx, w = 0;				\
328										\
329	for (idx = 0; idx < __bits / BITS_PER_LONG; idx++)			\
330		w += hweight_long(FETCH);					\
331										\
332	if (__bits % BITS_PER_LONG)						\
333		w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits));	\
334										\
335	w;									\
336})
337
338unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
339{
340	return BITMAP_WEIGHT(bitmap[idx], bits);
341}
342EXPORT_SYMBOL(__bitmap_weight);
343
344unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
345				const unsigned long *bitmap2, unsigned int bits)
346{
347	return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits);
 
 
 
348}
349EXPORT_SYMBOL(__bitmap_weight_and);
350
351void __bitmap_set(unsigned long *map, unsigned int start, int len)
352{
353	unsigned long *p = map + BIT_WORD(start);
354	const unsigned int size = start + len;
355	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
356	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
357
358	while (len - bits_to_set >= 0) {
359		*p |= mask_to_set;
360		len -= bits_to_set;
361		bits_to_set = BITS_PER_LONG;
362		mask_to_set = ~0UL;
363		p++;
364	}
365	if (len) {
366		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
367		*p |= mask_to_set;
368	}
369}
370EXPORT_SYMBOL(__bitmap_set);
371
372void __bitmap_clear(unsigned long *map, unsigned int start, int len)
373{
374	unsigned long *p = map + BIT_WORD(start);
375	const unsigned int size = start + len;
376	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
377	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
378
379	while (len - bits_to_clear >= 0) {
380		*p &= ~mask_to_clear;
381		len -= bits_to_clear;
382		bits_to_clear = BITS_PER_LONG;
383		mask_to_clear = ~0UL;
384		p++;
385	}
386	if (len) {
387		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
388		*p &= ~mask_to_clear;
389	}
390}
391EXPORT_SYMBOL(__bitmap_clear);
392
393/**
394 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
395 * @map: The address to base the search on
396 * @size: The bitmap size in bits
397 * @start: The bitnumber to start searching at
398 * @nr: The number of zeroed bits we're looking for
399 * @align_mask: Alignment mask for zero area
400 * @align_offset: Alignment offset for zero area.
401 *
402 * The @align_mask should be one less than a power of 2; the effect is that
403 * the bit offset of all zero areas this function finds plus @align_offset
404 * is multiple of that power of 2.
405 */
406unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
407					     unsigned long size,
408					     unsigned long start,
409					     unsigned int nr,
410					     unsigned long align_mask,
411					     unsigned long align_offset)
412{
413	unsigned long index, end, i;
414again:
415	index = find_next_zero_bit(map, size, start);
416
417	/* Align allocation */
418	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
419
420	end = index + nr;
421	if (end > size)
422		return end;
423	i = find_next_bit(map, end, index);
424	if (i < end) {
425		start = i + 1;
426		goto again;
427	}
428	return index;
429}
430EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431
432/**
433 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
434 *	@buf: pointer to a bitmap
435 *	@pos: a bit position in @buf (0 <= @pos < @nbits)
436 *	@nbits: number of valid bit positions in @buf
437 *
438 * Map the bit at position @pos in @buf (of length @nbits) to the
439 * ordinal of which set bit it is.  If it is not set or if @pos
440 * is not a valid bit position, map to -1.
441 *
442 * If for example, just bits 4 through 7 are set in @buf, then @pos
443 * values 4 through 7 will get mapped to 0 through 3, respectively,
444 * and other @pos values will get mapped to -1.  When @pos value 7
445 * gets mapped to (returns) @ord value 3 in this example, that means
446 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
447 *
448 * The bit positions 0 through @bits are valid positions in @buf.
449 */
450static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
451{
452	if (pos >= nbits || !test_bit(pos, buf))
 
 
453		return -1;
454
455	return bitmap_weight(buf, pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456}
457
458/**
459 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
460 *	@dst: remapped result
461 *	@src: subset to be remapped
462 *	@old: defines domain of map
463 *	@new: defines range of map
464 *	@nbits: number of bits in each of these bitmaps
465 *
466 * Let @old and @new define a mapping of bit positions, such that
467 * whatever position is held by the n-th set bit in @old is mapped
468 * to the n-th set bit in @new.  In the more general case, allowing
469 * for the possibility that the weight 'w' of @new is less than the
470 * weight of @old, map the position of the n-th set bit in @old to
471 * the position of the m-th set bit in @new, where m == n % w.
472 *
473 * If either of the @old and @new bitmaps are empty, or if @src and
474 * @dst point to the same location, then this routine copies @src
475 * to @dst.
476 *
477 * The positions of unset bits in @old are mapped to themselves
478 * (the identity map).
479 *
480 * Apply the above specified mapping to @src, placing the result in
481 * @dst, clearing any bits previously set in @dst.
482 *
483 * For example, lets say that @old has bits 4 through 7 set, and
484 * @new has bits 12 through 15 set.  This defines the mapping of bit
485 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
486 * bit positions unchanged.  So if say @src comes into this routine
487 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
488 * 13 and 15 set.
489 */
490void bitmap_remap(unsigned long *dst, const unsigned long *src,
491		const unsigned long *old, const unsigned long *new,
492		unsigned int nbits)
493{
494	unsigned int oldbit, w;
495
496	if (dst == src)		/* following doesn't handle inplace remaps */
497		return;
498	bitmap_zero(dst, nbits);
499
500	w = bitmap_weight(new, nbits);
501	for_each_set_bit(oldbit, src, nbits) {
502		int n = bitmap_pos_to_ord(old, oldbit, nbits);
503
504		if (n < 0 || w == 0)
505			set_bit(oldbit, dst);	/* identity map */
506		else
507			set_bit(find_nth_bit(new, nbits, n % w), dst);
508	}
509}
510EXPORT_SYMBOL(bitmap_remap);
511
512/**
513 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
514 *	@oldbit: bit position to be mapped
515 *	@old: defines domain of map
516 *	@new: defines range of map
517 *	@bits: number of bits in each of these bitmaps
518 *
519 * Let @old and @new define a mapping of bit positions, such that
520 * whatever position is held by the n-th set bit in @old is mapped
521 * to the n-th set bit in @new.  In the more general case, allowing
522 * for the possibility that the weight 'w' of @new is less than the
523 * weight of @old, map the position of the n-th set bit in @old to
524 * the position of the m-th set bit in @new, where m == n % w.
525 *
526 * The positions of unset bits in @old are mapped to themselves
527 * (the identity map).
528 *
529 * Apply the above specified mapping to bit position @oldbit, returning
530 * the new bit position.
531 *
532 * For example, lets say that @old has bits 4 through 7 set, and
533 * @new has bits 12 through 15 set.  This defines the mapping of bit
534 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
535 * bit positions unchanged.  So if say @oldbit is 5, then this routine
536 * returns 13.
537 */
538int bitmap_bitremap(int oldbit, const unsigned long *old,
539				const unsigned long *new, int bits)
540{
541	int w = bitmap_weight(new, bits);
542	int n = bitmap_pos_to_ord(old, oldbit, bits);
543	if (n < 0 || w == 0)
544		return oldbit;
545	else
546		return find_nth_bit(new, bits, n % w);
547}
548EXPORT_SYMBOL(bitmap_bitremap);
549
550#ifdef CONFIG_NUMA
551/**
552 * bitmap_onto - translate one bitmap relative to another
553 *	@dst: resulting translated bitmap
554 * 	@orig: original untranslated bitmap
555 * 	@relmap: bitmap relative to which translated
556 *	@bits: number of bits in each of these bitmaps
557 *
558 * Set the n-th bit of @dst iff there exists some m such that the
559 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
560 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
561 * (If you understood the previous sentence the first time your
562 * read it, you're overqualified for your current job.)
563 *
564 * In other words, @orig is mapped onto (surjectively) @dst,
565 * using the map { <n, m> | the n-th bit of @relmap is the
566 * m-th set bit of @relmap }.
567 *
568 * Any set bits in @orig above bit number W, where W is the
569 * weight of (number of set bits in) @relmap are mapped nowhere.
570 * In particular, if for all bits m set in @orig, m >= W, then
571 * @dst will end up empty.  In situations where the possibility
572 * of such an empty result is not desired, one way to avoid it is
573 * to use the bitmap_fold() operator, below, to first fold the
574 * @orig bitmap over itself so that all its set bits x are in the
575 * range 0 <= x < W.  The bitmap_fold() operator does this by
576 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
577 *
578 * Example [1] for bitmap_onto():
579 *  Let's say @relmap has bits 30-39 set, and @orig has bits
580 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
581 *  @dst will have bits 31, 33, 35, 37 and 39 set.
582 *
583 *  When bit 0 is set in @orig, it means turn on the bit in
584 *  @dst corresponding to whatever is the first bit (if any)
585 *  that is turned on in @relmap.  Since bit 0 was off in the
586 *  above example, we leave off that bit (bit 30) in @dst.
587 *
588 *  When bit 1 is set in @orig (as in the above example), it
589 *  means turn on the bit in @dst corresponding to whatever
590 *  is the second bit that is turned on in @relmap.  The second
591 *  bit in @relmap that was turned on in the above example was
592 *  bit 31, so we turned on bit 31 in @dst.
593 *
594 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
595 *  because they were the 4th, 6th, 8th and 10th set bits
596 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
597 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
598 *
599 *  When bit 11 is set in @orig, it means turn on the bit in
600 *  @dst corresponding to whatever is the twelfth bit that is
601 *  turned on in @relmap.  In the above example, there were
602 *  only ten bits turned on in @relmap (30..39), so that bit
603 *  11 was set in @orig had no affect on @dst.
604 *
605 * Example [2] for bitmap_fold() + bitmap_onto():
606 *  Let's say @relmap has these ten bits set::
607 *
608 *		40 41 42 43 45 48 53 61 74 95
609 *
610 *  (for the curious, that's 40 plus the first ten terms of the
611 *  Fibonacci sequence.)
612 *
613 *  Further lets say we use the following code, invoking
614 *  bitmap_fold() then bitmap_onto, as suggested above to
615 *  avoid the possibility of an empty @dst result::
616 *
617 *	unsigned long *tmp;	// a temporary bitmap's bits
618 *
619 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
620 *	bitmap_onto(dst, tmp, relmap, bits);
621 *
622 *  Then this table shows what various values of @dst would be, for
623 *  various @orig's.  I list the zero-based positions of each set bit.
624 *  The tmp column shows the intermediate result, as computed by
625 *  using bitmap_fold() to fold the @orig bitmap modulo ten
626 *  (the weight of @relmap):
627 *
628 *      =============== ============== =================
629 *      @orig           tmp            @dst
630 *      0                0             40
631 *      1                1             41
632 *      9                9             95
633 *      10               0             40 [#f1]_
634 *      1 3 5 7          1 3 5 7       41 43 48 61
635 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
636 *      0 9 18 27        0 9 8 7       40 61 74 95
637 *      0 10 20 30       0             40
638 *      0 11 22 33       0 1 2 3       40 41 42 43
639 *      0 12 24 36       0 2 4 6       40 42 45 53
640 *      78 102 211       1 2 8         41 42 74 [#f1]_
641 *      =============== ============== =================
642 *
643 * .. [#f1]
644 *
645 *     For these marked lines, if we hadn't first done bitmap_fold()
646 *     into tmp, then the @dst result would have been empty.
647 *
648 * If either of @orig or @relmap is empty (no set bits), then @dst
649 * will be returned empty.
650 *
651 * If (as explained above) the only set bits in @orig are in positions
652 * m where m >= W, (where W is the weight of @relmap) then @dst will
653 * once again be returned empty.
654 *
655 * All bits in @dst not set by the above rule are cleared.
656 */
657void bitmap_onto(unsigned long *dst, const unsigned long *orig,
658			const unsigned long *relmap, unsigned int bits)
659{
660	unsigned int n, m;	/* same meaning as in above comment */
661
662	if (dst == orig)	/* following doesn't handle inplace mappings */
663		return;
664	bitmap_zero(dst, bits);
665
666	/*
667	 * The following code is a more efficient, but less
668	 * obvious, equivalent to the loop:
669	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
670	 *		n = find_nth_bit(orig, bits, m);
671	 *		if (test_bit(m, orig))
672	 *			set_bit(n, dst);
673	 *	}
674	 */
675
676	m = 0;
677	for_each_set_bit(n, relmap, bits) {
678		/* m == bitmap_pos_to_ord(relmap, n, bits) */
679		if (test_bit(m, orig))
680			set_bit(n, dst);
681		m++;
682	}
683}
 
684
685/**
686 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
687 *	@dst: resulting smaller bitmap
688 *	@orig: original larger bitmap
689 *	@sz: specified size
690 *	@nbits: number of bits in each of these bitmaps
691 *
692 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
693 * Clear all other bits in @dst.  See further the comment and
694 * Example [2] for bitmap_onto() for why and how to use this.
695 */
696void bitmap_fold(unsigned long *dst, const unsigned long *orig,
697			unsigned int sz, unsigned int nbits)
698{
699	unsigned int oldbit;
700
701	if (dst == orig)	/* following doesn't handle inplace mappings */
702		return;
703	bitmap_zero(dst, nbits);
704
705	for_each_set_bit(oldbit, orig, nbits)
706		set_bit(oldbit % sz, dst);
707}
708#endif /* CONFIG_NUMA */
709
710unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
711{
712	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
713			     flags);
714}
715EXPORT_SYMBOL(bitmap_alloc);
716
717unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
718{
719	return bitmap_alloc(nbits, flags | __GFP_ZERO);
720}
721EXPORT_SYMBOL(bitmap_zalloc);
722
723unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
724{
725	return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
726				  flags, node);
727}
728EXPORT_SYMBOL(bitmap_alloc_node);
729
730unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
731{
732	return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
733}
734EXPORT_SYMBOL(bitmap_zalloc_node);
735
736void bitmap_free(const unsigned long *bitmap)
737{
738	kfree(bitmap);
739}
740EXPORT_SYMBOL(bitmap_free);
741
742static void devm_bitmap_free(void *data)
743{
744	unsigned long *bitmap = data;
745
746	bitmap_free(bitmap);
747}
748
749unsigned long *devm_bitmap_alloc(struct device *dev,
750				 unsigned int nbits, gfp_t flags)
751{
752	unsigned long *bitmap;
753	int ret;
754
755	bitmap = bitmap_alloc(nbits, flags);
756	if (!bitmap)
757		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
758
759	ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
760	if (ret)
761		return NULL;
 
 
 
 
 
 
762
763	return bitmap;
764}
765EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
 
 
 
 
 
 
 
 
 
 
 
 
 
766
767unsigned long *devm_bitmap_zalloc(struct device *dev,
768				  unsigned int nbits, gfp_t flags)
769{
770	return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
 
 
 
 
 
 
 
 
771}
772EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
773
774#if BITS_PER_LONG == 64
775/**
776 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
777 *	@bitmap: array of unsigned longs, the destination bitmap
778 *	@buf: array of u32 (in host byte order), the source bitmap
779 *	@nbits: number of bits in @bitmap
 
 
 
 
 
 
 
 
780 */
781void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
782{
783	unsigned int i, halfwords;
784
785	halfwords = DIV_ROUND_UP(nbits, 32);
786	for (i = 0; i < halfwords; i++) {
787		bitmap[i/2] = (unsigned long) buf[i];
788		if (++i < halfwords)
789			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
790	}
791
792	/* Clear tail bits in last word beyond nbits. */
793	if (nbits % BITS_PER_LONG)
794		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
795}
796EXPORT_SYMBOL(bitmap_from_arr32);
797
798/**
799 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
800 *	@buf: array of u32 (in host byte order), the dest bitmap
801 *	@bitmap: array of unsigned longs, the source bitmap
802 *	@nbits: number of bits in @bitmap
 
 
 
 
 
803 */
804void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
805{
806	unsigned int i, halfwords;
807
808	halfwords = DIV_ROUND_UP(nbits, 32);
809	for (i = 0; i < halfwords; i++) {
810		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
811		if (++i < halfwords)
812			buf[i] = (u32) (bitmap[i/2] >> 32);
813	}
814
815	/* Clear tail bits in last element of array beyond nbits. */
816	if (nbits % BITS_PER_LONG)
817		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
818}
819EXPORT_SYMBOL(bitmap_to_arr32);
820#endif
821
822#if BITS_PER_LONG == 32
823/**
824 * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
825 *	@bitmap: array of unsigned longs, the destination bitmap
826 *	@buf: array of u64 (in host byte order), the source bitmap
827 *	@nbits: number of bits in @bitmap
 
 
 
 
 
828 */
829void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
830{
831	int n;
832
833	for (n = nbits; n > 0; n -= 64) {
834		u64 val = *buf++;
835
836		*bitmap++ = val;
837		if (n > 32)
838			*bitmap++ = val >> 32;
839	}
840
841	/*
842	 * Clear tail bits in the last word beyond nbits.
843	 *
844	 * Negative index is OK because here we point to the word next
845	 * to the last word of the bitmap, except for nbits == 0, which
846	 * is tested implicitly.
847	 */
848	if (nbits % BITS_PER_LONG)
849		bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
850}
851EXPORT_SYMBOL(bitmap_from_arr64);
852
853/**
854 * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
855 *	@buf: array of u64 (in host byte order), the dest bitmap
856 *	@bitmap: array of unsigned longs, the source bitmap
857 *	@nbits: number of bits in @bitmap
 
 
858 */
859void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
860{
861	const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
 
862
863	while (bitmap < end) {
864		*buf = *bitmap++;
865		if (bitmap < end)
866			*buf |= (u64)(*bitmap++) << 32;
867		buf++;
868	}
869
870	/* Clear tail bits in the last element of array beyond nbits. */
871	if (nbits % 64)
872		buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
873}
874EXPORT_SYMBOL(bitmap_to_arr64);
875#endif
v3.1
 
   1/*
   2 * lib/bitmap.c
   3 * Helper functions for bitmap.h.
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8#include <linux/module.h>
   9#include <linux/ctype.h>
  10#include <linux/errno.h>
  11#include <linux/bitmap.h>
  12#include <linux/bitops.h>
  13#include <asm/uaccess.h>
 
 
 
  14
  15/*
  16 * bitmaps provide an array of bits, implemented using an an
 
 
  17 * array of unsigned longs.  The number of valid bits in a
  18 * given bitmap does _not_ need to be an exact multiple of
  19 * BITS_PER_LONG.
  20 *
  21 * The possible unused bits in the last, partially used word
  22 * of a bitmap are 'don't care'.  The implementation makes
  23 * no particular effort to keep them zero.  It ensures that
  24 * their value will not affect the results of any operation.
  25 * The bitmap operations that return Boolean (bitmap_empty,
  26 * for example) or scalar (bitmap_weight, for example) results
  27 * carefully filter out these unused bits from impacting their
  28 * results.
  29 *
  30 * These operations actually hold to a slightly stronger rule:
  31 * if you don't input any bitmaps to these ops that have some
  32 * unused bits set, then they won't output any set unused bits
  33 * in output bitmaps.
  34 *
  35 * The byte ordering of bitmaps is more natural on little
  36 * endian architectures.  See the big-endian headers
  37 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  38 * for the best explanations of this ordering.
  39 */
  40
  41int __bitmap_empty(const unsigned long *bitmap, int bits)
 
  42{
  43	int k, lim = bits/BITS_PER_LONG;
  44	for (k = 0; k < lim; ++k)
  45		if (bitmap[k])
  46			return 0;
  47
  48	if (bits % BITS_PER_LONG)
  49		if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  50			return 0;
  51
  52	return 1;
  53}
  54EXPORT_SYMBOL(__bitmap_empty);
  55
  56int __bitmap_full(const unsigned long *bitmap, int bits)
 
 
 
  57{
  58	int k, lim = bits/BITS_PER_LONG;
  59	for (k = 0; k < lim; ++k)
  60		if (~bitmap[k])
  61			return 0;
  62
  63	if (bits % BITS_PER_LONG)
  64		if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  65			return 0;
  66
  67	return 1;
  68}
  69EXPORT_SYMBOL(__bitmap_full);
  70
  71int __bitmap_equal(const unsigned long *bitmap1,
  72		const unsigned long *bitmap2, int bits)
  73{
  74	int k, lim = bits/BITS_PER_LONG;
  75	for (k = 0; k < lim; ++k)
  76		if (bitmap1[k] != bitmap2[k])
  77			return 0;
  78
  79	if (bits % BITS_PER_LONG)
  80		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  81			return 0;
  82
  83	return 1;
 
  84}
  85EXPORT_SYMBOL(__bitmap_equal);
  86
  87void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
  88{
  89	int k, lim = bits/BITS_PER_LONG;
  90	for (k = 0; k < lim; ++k)
  91		dst[k] = ~src[k];
  92
  93	if (bits % BITS_PER_LONG)
  94		dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
  95}
  96EXPORT_SYMBOL(__bitmap_complement);
  97
  98/**
  99 * __bitmap_shift_right - logical right shift of the bits in a bitmap
 100 *   @dst : destination bitmap
 101 *   @src : source bitmap
 102 *   @shift : shift by this many bits
 103 *   @bits : bitmap size, in bits
 104 *
 105 * Shifting right (dividing) means moving bits in the MS -> LS bit
 106 * direction.  Zeros are fed into the vacated MS positions and the
 107 * LS bits shifted off the bottom are lost.
 108 */
 109void __bitmap_shift_right(unsigned long *dst,
 110			const unsigned long *src, int shift, int bits)
 111{
 112	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
 113	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 114	unsigned long mask = (1UL << left) - 1;
 115	for (k = 0; off + k < lim; ++k) {
 116		unsigned long upper, lower;
 117
 118		/*
 119		 * If shift is not word aligned, take lower rem bits of
 120		 * word above and make them the top rem bits of result.
 121		 */
 122		if (!rem || off + k + 1 >= lim)
 123			upper = 0;
 124		else {
 125			upper = src[off + k + 1];
 126			if (off + k + 1 == lim - 1 && left)
 127				upper &= mask;
 
 128		}
 129		lower = src[off + k];
 130		if (left && off + k == lim - 1)
 131			lower &= mask;
 132		dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
 133		if (left && k == lim - 1)
 134			dst[k] &= mask;
 135	}
 136	if (off)
 137		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
 138}
 139EXPORT_SYMBOL(__bitmap_shift_right);
 140
 141
 142/**
 143 * __bitmap_shift_left - logical left shift of the bits in a bitmap
 144 *   @dst : destination bitmap
 145 *   @src : source bitmap
 146 *   @shift : shift by this many bits
 147 *   @bits : bitmap size, in bits
 148 *
 149 * Shifting left (multiplying) means moving bits in the LS -> MS
 150 * direction.  Zeros are fed into the vacated LS bit positions
 151 * and those MS bits shifted off the top are lost.
 152 */
 153
 154void __bitmap_shift_left(unsigned long *dst,
 155			const unsigned long *src, int shift, int bits)
 156{
 157	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
 158	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 
 159	for (k = lim - off - 1; k >= 0; --k) {
 160		unsigned long upper, lower;
 161
 162		/*
 163		 * If shift is not word aligned, take upper rem bits of
 164		 * word below and make them the bottom rem bits of result.
 165		 */
 166		if (rem && k > 0)
 167			lower = src[k - 1];
 168		else
 169			lower = 0;
 170		upper = src[k];
 171		if (left && k == lim - 1)
 172			upper &= (1UL << left) - 1;
 173		dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
 174		if (left && k + off == lim - 1)
 175			dst[k + off] &= (1UL << left) - 1;
 176	}
 177	if (off)
 178		memset(dst, 0, off*sizeof(unsigned long));
 179}
 180EXPORT_SYMBOL(__bitmap_shift_left);
 181
 182int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
 183				const unsigned long *bitmap2, int bits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184{
 185	int k;
 186	int nr = BITS_TO_LONGS(bits);
 187	unsigned long result = 0;
 188
 189	for (k = 0; k < nr; k++)
 190		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
 
 
 
 191	return result != 0;
 192}
 193EXPORT_SYMBOL(__bitmap_and);
 194
 195void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
 196				const unsigned long *bitmap2, int bits)
 197{
 198	int k;
 199	int nr = BITS_TO_LONGS(bits);
 200
 201	for (k = 0; k < nr; k++)
 202		dst[k] = bitmap1[k] | bitmap2[k];
 203}
 204EXPORT_SYMBOL(__bitmap_or);
 205
 206void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
 207				const unsigned long *bitmap2, int bits)
 208{
 209	int k;
 210	int nr = BITS_TO_LONGS(bits);
 211
 212	for (k = 0; k < nr; k++)
 213		dst[k] = bitmap1[k] ^ bitmap2[k];
 214}
 215EXPORT_SYMBOL(__bitmap_xor);
 216
 217int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
 218				const unsigned long *bitmap2, int bits)
 219{
 220	int k;
 221	int nr = BITS_TO_LONGS(bits);
 222	unsigned long result = 0;
 223
 224	for (k = 0; k < nr; k++)
 225		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
 
 
 
 226	return result != 0;
 227}
 228EXPORT_SYMBOL(__bitmap_andnot);
 229
 230int __bitmap_intersects(const unsigned long *bitmap1,
 231				const unsigned long *bitmap2, int bits)
 
 
 
 
 
 
 
 
 
 
 
 
 232{
 233	int k, lim = bits/BITS_PER_LONG;
 234	for (k = 0; k < lim; ++k)
 235		if (bitmap1[k] & bitmap2[k])
 236			return 1;
 237
 238	if (bits % BITS_PER_LONG)
 239		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 240			return 1;
 241	return 0;
 242}
 243EXPORT_SYMBOL(__bitmap_intersects);
 244
 245int __bitmap_subset(const unsigned long *bitmap1,
 246				const unsigned long *bitmap2, int bits)
 247{
 248	int k, lim = bits/BITS_PER_LONG;
 249	for (k = 0; k < lim; ++k)
 250		if (bitmap1[k] & ~bitmap2[k])
 251			return 0;
 252
 253	if (bits % BITS_PER_LONG)
 254		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 255			return 0;
 256	return 1;
 257}
 258EXPORT_SYMBOL(__bitmap_subset);
 259
 260int __bitmap_weight(const unsigned long *bitmap, int bits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 261{
 262	int k, w = 0, lim = bits/BITS_PER_LONG;
 
 
 263
 264	for (k = 0; k < lim; k++)
 265		w += hweight_long(bitmap[k]);
 266
 267	if (bits % BITS_PER_LONG)
 268		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
 269
 270	return w;
 271}
 272EXPORT_SYMBOL(__bitmap_weight);
 273
 274void bitmap_set(unsigned long *map, int start, int nr)
 275{
 276	unsigned long *p = map + BIT_WORD(start);
 277	const int size = start + nr;
 278	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 279	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 280
 281	while (nr - bits_to_set >= 0) {
 282		*p |= mask_to_set;
 283		nr -= bits_to_set;
 284		bits_to_set = BITS_PER_LONG;
 285		mask_to_set = ~0UL;
 286		p++;
 287	}
 288	if (nr) {
 289		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
 290		*p |= mask_to_set;
 291	}
 292}
 293EXPORT_SYMBOL(bitmap_set);
 294
 295void bitmap_clear(unsigned long *map, int start, int nr)
 296{
 297	unsigned long *p = map + BIT_WORD(start);
 298	const int size = start + nr;
 299	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
 300	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
 301
 302	while (nr - bits_to_clear >= 0) {
 303		*p &= ~mask_to_clear;
 304		nr -= bits_to_clear;
 305		bits_to_clear = BITS_PER_LONG;
 306		mask_to_clear = ~0UL;
 307		p++;
 308	}
 309	if (nr) {
 310		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
 311		*p &= ~mask_to_clear;
 312	}
 313}
 314EXPORT_SYMBOL(bitmap_clear);
 315
 316/*
 317 * bitmap_find_next_zero_area - find a contiguous aligned zero area
 318 * @map: The address to base the search on
 319 * @size: The bitmap size in bits
 320 * @start: The bitnumber to start searching at
 321 * @nr: The number of zeroed bits we're looking for
 322 * @align_mask: Alignment mask for zero area
 
 323 *
 324 * The @align_mask should be one less than a power of 2; the effect is that
 325 * the bit offset of all zero areas this function finds is multiples of that
 326 * power of 2. A @align_mask of 0 means no alignment is required.
 327 */
 328unsigned long bitmap_find_next_zero_area(unsigned long *map,
 329					 unsigned long size,
 330					 unsigned long start,
 331					 unsigned int nr,
 332					 unsigned long align_mask)
 
 333{
 334	unsigned long index, end, i;
 335again:
 336	index = find_next_zero_bit(map, size, start);
 337
 338	/* Align allocation */
 339	index = __ALIGN_MASK(index, align_mask);
 340
 341	end = index + nr;
 342	if (end > size)
 343		return end;
 344	i = find_next_bit(map, end, index);
 345	if (i < end) {
 346		start = i + 1;
 347		goto again;
 348	}
 349	return index;
 350}
 351EXPORT_SYMBOL(bitmap_find_next_zero_area);
 352
 353/*
 354 * Bitmap printing & parsing functions: first version by Bill Irwin,
 355 * second version by Paul Jackson, third by Joe Korty.
 356 */
 357
 358#define CHUNKSZ				32
 359#define nbits_to_hold_value(val)	fls(val)
 360#define BASEDEC 10		/* fancier cpuset lists input in decimal */
 361
 362/**
 363 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
 364 * @buf: byte buffer into which string is placed
 365 * @buflen: reserved size of @buf, in bytes
 366 * @maskp: pointer to bitmap to convert
 367 * @nmaskbits: size of bitmap, in bits
 368 *
 369 * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
 370 * comma-separated sets of eight digits per set.
 371 */
 372int bitmap_scnprintf(char *buf, unsigned int buflen,
 373	const unsigned long *maskp, int nmaskbits)
 374{
 375	int i, word, bit, len = 0;
 376	unsigned long val;
 377	const char *sep = "";
 378	int chunksz;
 379	u32 chunkmask;
 380
 381	chunksz = nmaskbits & (CHUNKSZ - 1);
 382	if (chunksz == 0)
 383		chunksz = CHUNKSZ;
 384
 385	i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
 386	for (; i >= 0; i -= CHUNKSZ) {
 387		chunkmask = ((1ULL << chunksz) - 1);
 388		word = i / BITS_PER_LONG;
 389		bit = i % BITS_PER_LONG;
 390		val = (maskp[word] >> bit) & chunkmask;
 391		len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
 392			(chunksz+3)/4, val);
 393		chunksz = CHUNKSZ;
 394		sep = ",";
 395	}
 396	return len;
 397}
 398EXPORT_SYMBOL(bitmap_scnprintf);
 399
 400/**
 401 * __bitmap_parse - convert an ASCII hex string into a bitmap.
 402 * @buf: pointer to buffer containing string.
 403 * @buflen: buffer size in bytes.  If string is smaller than this
 404 *    then it must be terminated with a \0.
 405 * @is_user: location of buffer, 0 indicates kernel space
 406 * @maskp: pointer to bitmap array that will contain result.
 407 * @nmaskbits: size of bitmap, in bits.
 408 *
 409 * Commas group hex digits into chunks.  Each chunk defines exactly 32
 410 * bits of the resultant bitmask.  No chunk may specify a value larger
 411 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 412 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
 413 * characters and for grouping errors such as "1,,5", ",44", "," and "".
 414 * Leading and trailing whitespace accepted, but not embedded whitespace.
 415 */
 416int __bitmap_parse(const char *buf, unsigned int buflen,
 417		int is_user, unsigned long *maskp,
 418		int nmaskbits)
 419{
 420	int c, old_c, totaldigits, ndigits, nchunks, nbits;
 421	u32 chunk;
 422	const char __user *ubuf = buf;
 423
 424	bitmap_zero(maskp, nmaskbits);
 425
 426	nchunks = nbits = totaldigits = c = 0;
 427	do {
 428		chunk = ndigits = 0;
 429
 430		/* Get the next chunk of the bitmap */
 431		while (buflen) {
 432			old_c = c;
 433			if (is_user) {
 434				if (__get_user(c, ubuf++))
 435					return -EFAULT;
 436			}
 437			else
 438				c = *buf++;
 439			buflen--;
 440			if (isspace(c))
 441				continue;
 442
 443			/*
 444			 * If the last character was a space and the current
 445			 * character isn't '\0', we've got embedded whitespace.
 446			 * This is a no-no, so throw an error.
 447			 */
 448			if (totaldigits && c && isspace(old_c))
 449				return -EINVAL;
 450
 451			/* A '\0' or a ',' signal the end of the chunk */
 452			if (c == '\0' || c == ',')
 453				break;
 454
 455			if (!isxdigit(c))
 456				return -EINVAL;
 457
 458			/*
 459			 * Make sure there are at least 4 free bits in 'chunk'.
 460			 * If not, this hexdigit will overflow 'chunk', so
 461			 * throw an error.
 462			 */
 463			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
 464				return -EOVERFLOW;
 465
 466			chunk = (chunk << 4) | hex_to_bin(c);
 467			ndigits++; totaldigits++;
 468		}
 469		if (ndigits == 0)
 470			return -EINVAL;
 471		if (nchunks == 0 && chunk == 0)
 472			continue;
 473
 474		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
 475		*maskp |= chunk;
 476		nchunks++;
 477		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
 478		if (nbits > nmaskbits)
 479			return -EOVERFLOW;
 480	} while (buflen && c == ',');
 481
 482	return 0;
 483}
 484EXPORT_SYMBOL(__bitmap_parse);
 485
 486/**
 487 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
 488 *
 489 * @ubuf: pointer to user buffer containing string.
 490 * @ulen: buffer size in bytes.  If string is smaller than this
 491 *    then it must be terminated with a \0.
 492 * @maskp: pointer to bitmap array that will contain result.
 493 * @nmaskbits: size of bitmap, in bits.
 494 *
 495 * Wrapper for __bitmap_parse(), providing it with user buffer.
 496 *
 497 * We cannot have this as an inline function in bitmap.h because it needs
 498 * linux/uaccess.h to get the access_ok() declaration and this causes
 499 * cyclic dependencies.
 500 */
 501int bitmap_parse_user(const char __user *ubuf,
 502			unsigned int ulen, unsigned long *maskp,
 503			int nmaskbits)
 504{
 505	if (!access_ok(VERIFY_READ, ubuf, ulen))
 506		return -EFAULT;
 507	return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
 508}
 509EXPORT_SYMBOL(bitmap_parse_user);
 510
 511/*
 512 * bscnl_emit(buf, buflen, rbot, rtop, bp)
 513 *
 514 * Helper routine for bitmap_scnlistprintf().  Write decimal number
 515 * or range to buf, suppressing output past buf+buflen, with optional
 516 * comma-prefix.  Return len of what would be written to buf, if it
 517 * all fit.
 518 */
 519static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
 520{
 521	if (len > 0)
 522		len += scnprintf(buf + len, buflen - len, ",");
 523	if (rbot == rtop)
 524		len += scnprintf(buf + len, buflen - len, "%d", rbot);
 525	else
 526		len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
 527	return len;
 528}
 529
 530/**
 531 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
 532 * @buf: byte buffer into which string is placed
 533 * @buflen: reserved size of @buf, in bytes
 534 * @maskp: pointer to bitmap to convert
 535 * @nmaskbits: size of bitmap, in bits
 536 *
 537 * Output format is a comma-separated list of decimal numbers and
 538 * ranges.  Consecutively set bits are shown as two hyphen-separated
 539 * decimal numbers, the smallest and largest bit numbers set in
 540 * the range.  Output format is compatible with the format
 541 * accepted as input by bitmap_parselist().
 542 *
 543 * The return value is the number of characters which would be
 544 * generated for the given input, excluding the trailing '\0', as
 545 * per ISO C99.
 546 */
 547int bitmap_scnlistprintf(char *buf, unsigned int buflen,
 548	const unsigned long *maskp, int nmaskbits)
 549{
 550	int len = 0;
 551	/* current bit is 'cur', most recently seen range is [rbot, rtop] */
 552	int cur, rbot, rtop;
 553
 554	if (buflen == 0)
 555		return 0;
 556	buf[0] = 0;
 557
 558	rbot = cur = find_first_bit(maskp, nmaskbits);
 559	while (cur < nmaskbits) {
 560		rtop = cur;
 561		cur = find_next_bit(maskp, nmaskbits, cur+1);
 562		if (cur >= nmaskbits || cur > rtop + 1) {
 563			len = bscnl_emit(buf, buflen, rbot, rtop, len);
 564			rbot = cur;
 565		}
 566	}
 567	return len;
 568}
 569EXPORT_SYMBOL(bitmap_scnlistprintf);
 570
 571/**
 572 * __bitmap_parselist - convert list format ASCII string to bitmap
 573 * @buf: read nul-terminated user string from this buffer
 574 * @buflen: buffer size in bytes.  If string is smaller than this
 575 *    then it must be terminated with a \0.
 576 * @is_user: location of buffer, 0 indicates kernel space
 577 * @maskp: write resulting mask here
 578 * @nmaskbits: number of bits in mask to be written
 579 *
 580 * Input format is a comma-separated list of decimal numbers and
 581 * ranges.  Consecutively set bits are shown as two hyphen-separated
 582 * decimal numbers, the smallest and largest bit numbers set in
 583 * the range.
 584 *
 585 * Returns 0 on success, -errno on invalid input strings.
 586 * Error values:
 587 *    %-EINVAL: second number in range smaller than first
 588 *    %-EINVAL: invalid character in string
 589 *    %-ERANGE: bit number specified too large for mask
 590 */
 591static int __bitmap_parselist(const char *buf, unsigned int buflen,
 592		int is_user, unsigned long *maskp,
 593		int nmaskbits)
 594{
 595	unsigned a, b;
 596	int c, old_c, totaldigits;
 597	const char __user *ubuf = buf;
 598	int exp_digit, in_range;
 599
 600	totaldigits = c = 0;
 601	bitmap_zero(maskp, nmaskbits);
 602	do {
 603		exp_digit = 1;
 604		in_range = 0;
 605		a = b = 0;
 606
 607		/* Get the next cpu# or a range of cpu#'s */
 608		while (buflen) {
 609			old_c = c;
 610			if (is_user) {
 611				if (__get_user(c, ubuf++))
 612					return -EFAULT;
 613			} else
 614				c = *buf++;
 615			buflen--;
 616			if (isspace(c))
 617				continue;
 618
 619			/*
 620			 * If the last character was a space and the current
 621			 * character isn't '\0', we've got embedded whitespace.
 622			 * This is a no-no, so throw an error.
 623			 */
 624			if (totaldigits && c && isspace(old_c))
 625				return -EINVAL;
 626
 627			/* A '\0' or a ',' signal the end of a cpu# or range */
 628			if (c == '\0' || c == ',')
 629				break;
 630
 631			if (c == '-') {
 632				if (exp_digit || in_range)
 633					return -EINVAL;
 634				b = 0;
 635				in_range = 1;
 636				exp_digit = 1;
 637				continue;
 638			}
 639
 640			if (!isdigit(c))
 641				return -EINVAL;
 642
 643			b = b * 10 + (c - '0');
 644			if (!in_range)
 645				a = b;
 646			exp_digit = 0;
 647			totaldigits++;
 648		}
 649		if (!(a <= b))
 650			return -EINVAL;
 651		if (b >= nmaskbits)
 652			return -ERANGE;
 653		while (a <= b) {
 654			set_bit(a, maskp);
 655			a++;
 656		}
 657	} while (buflen && c == ',');
 658	return 0;
 659}
 660
 661int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
 662{
 663	char *nl  = strchr(bp, '\n');
 664	int len;
 665
 666	if (nl)
 667		len = nl - bp;
 668	else
 669		len = strlen(bp);
 670
 671	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
 672}
 673EXPORT_SYMBOL(bitmap_parselist);
 674
 675
 676/**
 677 * bitmap_parselist_user()
 678 *
 679 * @ubuf: pointer to user buffer containing string.
 680 * @ulen: buffer size in bytes.  If string is smaller than this
 681 *    then it must be terminated with a \0.
 682 * @maskp: pointer to bitmap array that will contain result.
 683 * @nmaskbits: size of bitmap, in bits.
 684 *
 685 * Wrapper for bitmap_parselist(), providing it with user buffer.
 686 *
 687 * We cannot have this as an inline function in bitmap.h because it needs
 688 * linux/uaccess.h to get the access_ok() declaration and this causes
 689 * cyclic dependencies.
 690 */
 691int bitmap_parselist_user(const char __user *ubuf,
 692			unsigned int ulen, unsigned long *maskp,
 693			int nmaskbits)
 694{
 695	if (!access_ok(VERIFY_READ, ubuf, ulen))
 696		return -EFAULT;
 697	return __bitmap_parselist((const char *)ubuf,
 698					ulen, 1, maskp, nmaskbits);
 699}
 700EXPORT_SYMBOL(bitmap_parselist_user);
 701
 702
 703/**
 704 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
 705 *	@buf: pointer to a bitmap
 706 *	@pos: a bit position in @buf (0 <= @pos < @bits)
 707 *	@bits: number of valid bit positions in @buf
 708 *
 709 * Map the bit at position @pos in @buf (of length @bits) to the
 710 * ordinal of which set bit it is.  If it is not set or if @pos
 711 * is not a valid bit position, map to -1.
 712 *
 713 * If for example, just bits 4 through 7 are set in @buf, then @pos
 714 * values 4 through 7 will get mapped to 0 through 3, respectively,
 715 * and other @pos values will get mapped to 0.  When @pos value 7
 716 * gets mapped to (returns) @ord value 3 in this example, that means
 717 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 718 *
 719 * The bit positions 0 through @bits are valid positions in @buf.
 720 */
 721static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
 722{
 723	int i, ord;
 724
 725	if (pos < 0 || pos >= bits || !test_bit(pos, buf))
 726		return -1;
 727
 728	i = find_first_bit(buf, bits);
 729	ord = 0;
 730	while (i < pos) {
 731		i = find_next_bit(buf, bits, i + 1);
 732	     	ord++;
 733	}
 734	BUG_ON(i != pos);
 735
 736	return ord;
 737}
 738
 739/**
 740 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
 741 *	@buf: pointer to bitmap
 742 *	@ord: ordinal bit position (n-th set bit, n >= 0)
 743 *	@bits: number of valid bit positions in @buf
 744 *
 745 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
 746 * Value of @ord should be in range 0 <= @ord < weight(buf), else
 747 * results are undefined.
 748 *
 749 * If for example, just bits 4 through 7 are set in @buf, then @ord
 750 * values 0 through 3 will get mapped to 4 through 7, respectively,
 751 * and all other @ord values return undefined values.  When @ord value 3
 752 * gets mapped to (returns) @pos value 7 in this example, that means
 753 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
 754 *
 755 * The bit positions 0 through @bits are valid positions in @buf.
 756 */
 757int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
 758{
 759	int pos = 0;
 760
 761	if (ord >= 0 && ord < bits) {
 762		int i;
 763
 764		for (i = find_first_bit(buf, bits);
 765		     i < bits && ord > 0;
 766		     i = find_next_bit(buf, bits, i + 1))
 767	     		ord--;
 768		if (i < bits && ord == 0)
 769			pos = i;
 770	}
 771
 772	return pos;
 773}
 774
 775/**
 776 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 777 *	@dst: remapped result
 778 *	@src: subset to be remapped
 779 *	@old: defines domain of map
 780 *	@new: defines range of map
 781 *	@bits: number of bits in each of these bitmaps
 782 *
 783 * Let @old and @new define a mapping of bit positions, such that
 784 * whatever position is held by the n-th set bit in @old is mapped
 785 * to the n-th set bit in @new.  In the more general case, allowing
 786 * for the possibility that the weight 'w' of @new is less than the
 787 * weight of @old, map the position of the n-th set bit in @old to
 788 * the position of the m-th set bit in @new, where m == n % w.
 789 *
 790 * If either of the @old and @new bitmaps are empty, or if @src and
 791 * @dst point to the same location, then this routine copies @src
 792 * to @dst.
 793 *
 794 * The positions of unset bits in @old are mapped to themselves
 795 * (the identify map).
 796 *
 797 * Apply the above specified mapping to @src, placing the result in
 798 * @dst, clearing any bits previously set in @dst.
 799 *
 800 * For example, lets say that @old has bits 4 through 7 set, and
 801 * @new has bits 12 through 15 set.  This defines the mapping of bit
 802 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 803 * bit positions unchanged.  So if say @src comes into this routine
 804 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 805 * 13 and 15 set.
 806 */
 807void bitmap_remap(unsigned long *dst, const unsigned long *src,
 808		const unsigned long *old, const unsigned long *new,
 809		int bits)
 810{
 811	int oldbit, w;
 812
 813	if (dst == src)		/* following doesn't handle inplace remaps */
 814		return;
 815	bitmap_zero(dst, bits);
 816
 817	w = bitmap_weight(new, bits);
 818	for_each_set_bit(oldbit, src, bits) {
 819	     	int n = bitmap_pos_to_ord(old, oldbit, bits);
 820
 821		if (n < 0 || w == 0)
 822			set_bit(oldbit, dst);	/* identity map */
 823		else
 824			set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
 825	}
 826}
 827EXPORT_SYMBOL(bitmap_remap);
 828
 829/**
 830 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
 831 *	@oldbit: bit position to be mapped
 832 *	@old: defines domain of map
 833 *	@new: defines range of map
 834 *	@bits: number of bits in each of these bitmaps
 835 *
 836 * Let @old and @new define a mapping of bit positions, such that
 837 * whatever position is held by the n-th set bit in @old is mapped
 838 * to the n-th set bit in @new.  In the more general case, allowing
 839 * for the possibility that the weight 'w' of @new is less than the
 840 * weight of @old, map the position of the n-th set bit in @old to
 841 * the position of the m-th set bit in @new, where m == n % w.
 842 *
 843 * The positions of unset bits in @old are mapped to themselves
 844 * (the identify map).
 845 *
 846 * Apply the above specified mapping to bit position @oldbit, returning
 847 * the new bit position.
 848 *
 849 * For example, lets say that @old has bits 4 through 7 set, and
 850 * @new has bits 12 through 15 set.  This defines the mapping of bit
 851 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 852 * bit positions unchanged.  So if say @oldbit is 5, then this routine
 853 * returns 13.
 854 */
 855int bitmap_bitremap(int oldbit, const unsigned long *old,
 856				const unsigned long *new, int bits)
 857{
 858	int w = bitmap_weight(new, bits);
 859	int n = bitmap_pos_to_ord(old, oldbit, bits);
 860	if (n < 0 || w == 0)
 861		return oldbit;
 862	else
 863		return bitmap_ord_to_pos(new, n % w, bits);
 864}
 865EXPORT_SYMBOL(bitmap_bitremap);
 866
 
 867/**
 868 * bitmap_onto - translate one bitmap relative to another
 869 *	@dst: resulting translated bitmap
 870 * 	@orig: original untranslated bitmap
 871 * 	@relmap: bitmap relative to which translated
 872 *	@bits: number of bits in each of these bitmaps
 873 *
 874 * Set the n-th bit of @dst iff there exists some m such that the
 875 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
 876 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
 877 * (If you understood the previous sentence the first time your
 878 * read it, you're overqualified for your current job.)
 879 *
 880 * In other words, @orig is mapped onto (surjectively) @dst,
 881 * using the the map { <n, m> | the n-th bit of @relmap is the
 882 * m-th set bit of @relmap }.
 883 *
 884 * Any set bits in @orig above bit number W, where W is the
 885 * weight of (number of set bits in) @relmap are mapped nowhere.
 886 * In particular, if for all bits m set in @orig, m >= W, then
 887 * @dst will end up empty.  In situations where the possibility
 888 * of such an empty result is not desired, one way to avoid it is
 889 * to use the bitmap_fold() operator, below, to first fold the
 890 * @orig bitmap over itself so that all its set bits x are in the
 891 * range 0 <= x < W.  The bitmap_fold() operator does this by
 892 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
 893 *
 894 * Example [1] for bitmap_onto():
 895 *  Let's say @relmap has bits 30-39 set, and @orig has bits
 896 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
 897 *  @dst will have bits 31, 33, 35, 37 and 39 set.
 898 *
 899 *  When bit 0 is set in @orig, it means turn on the bit in
 900 *  @dst corresponding to whatever is the first bit (if any)
 901 *  that is turned on in @relmap.  Since bit 0 was off in the
 902 *  above example, we leave off that bit (bit 30) in @dst.
 903 *
 904 *  When bit 1 is set in @orig (as in the above example), it
 905 *  means turn on the bit in @dst corresponding to whatever
 906 *  is the second bit that is turned on in @relmap.  The second
 907 *  bit in @relmap that was turned on in the above example was
 908 *  bit 31, so we turned on bit 31 in @dst.
 909 *
 910 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
 911 *  because they were the 4th, 6th, 8th and 10th set bits
 912 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
 913 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
 914 *
 915 *  When bit 11 is set in @orig, it means turn on the bit in
 916 *  @dst corresponding to whatever is the twelfth bit that is
 917 *  turned on in @relmap.  In the above example, there were
 918 *  only ten bits turned on in @relmap (30..39), so that bit
 919 *  11 was set in @orig had no affect on @dst.
 920 *
 921 * Example [2] for bitmap_fold() + bitmap_onto():
 922 *  Let's say @relmap has these ten bits set:
 
 923 *		40 41 42 43 45 48 53 61 74 95
 
 924 *  (for the curious, that's 40 plus the first ten terms of the
 925 *  Fibonacci sequence.)
 926 *
 927 *  Further lets say we use the following code, invoking
 928 *  bitmap_fold() then bitmap_onto, as suggested above to
 929 *  avoid the possitility of an empty @dst result:
 930 *
 931 *	unsigned long *tmp;	// a temporary bitmap's bits
 932 *
 933 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
 934 *	bitmap_onto(dst, tmp, relmap, bits);
 935 *
 936 *  Then this table shows what various values of @dst would be, for
 937 *  various @orig's.  I list the zero-based positions of each set bit.
 938 *  The tmp column shows the intermediate result, as computed by
 939 *  using bitmap_fold() to fold the @orig bitmap modulo ten
 940 *  (the weight of @relmap).
 941 *
 
 942 *      @orig           tmp            @dst
 943 *      0                0             40
 944 *      1                1             41
 945 *      9                9             95
 946 *      10               0             40 (*)
 947 *      1 3 5 7          1 3 5 7       41 43 48 61
 948 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
 949 *      0 9 18 27        0 9 8 7       40 61 74 95
 950 *      0 10 20 30       0             40
 951 *      0 11 22 33       0 1 2 3       40 41 42 43
 952 *      0 12 24 36       0 2 4 6       40 42 45 53
 953 *      78 102 211       1 2 8         41 42 74 (*)
 
 
 
 954 *
 955 * (*) For these marked lines, if we hadn't first done bitmap_fold()
 956 *     into tmp, then the @dst result would have been empty.
 957 *
 958 * If either of @orig or @relmap is empty (no set bits), then @dst
 959 * will be returned empty.
 960 *
 961 * If (as explained above) the only set bits in @orig are in positions
 962 * m where m >= W, (where W is the weight of @relmap) then @dst will
 963 * once again be returned empty.
 964 *
 965 * All bits in @dst not set by the above rule are cleared.
 966 */
 967void bitmap_onto(unsigned long *dst, const unsigned long *orig,
 968			const unsigned long *relmap, int bits)
 969{
 970	int n, m;       	/* same meaning as in above comment */
 971
 972	if (dst == orig)	/* following doesn't handle inplace mappings */
 973		return;
 974	bitmap_zero(dst, bits);
 975
 976	/*
 977	 * The following code is a more efficient, but less
 978	 * obvious, equivalent to the loop:
 979	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
 980	 *		n = bitmap_ord_to_pos(orig, m, bits);
 981	 *		if (test_bit(m, orig))
 982	 *			set_bit(n, dst);
 983	 *	}
 984	 */
 985
 986	m = 0;
 987	for_each_set_bit(n, relmap, bits) {
 988		/* m == bitmap_pos_to_ord(relmap, n, bits) */
 989		if (test_bit(m, orig))
 990			set_bit(n, dst);
 991		m++;
 992	}
 993}
 994EXPORT_SYMBOL(bitmap_onto);
 995
 996/**
 997 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
 998 *	@dst: resulting smaller bitmap
 999 *	@orig: original larger bitmap
1000 *	@sz: specified size
1001 *	@bits: number of bits in each of these bitmaps
1002 *
1003 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1004 * Clear all other bits in @dst.  See further the comment and
1005 * Example [2] for bitmap_onto() for why and how to use this.
1006 */
1007void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1008			int sz, int bits)
1009{
1010	int oldbit;
1011
1012	if (dst == orig)	/* following doesn't handle inplace mappings */
1013		return;
1014	bitmap_zero(dst, bits);
1015
1016	for_each_set_bit(oldbit, orig, bits)
1017		set_bit(oldbit % sz, dst);
1018}
1019EXPORT_SYMBOL(bitmap_fold);
1020
1021/*
1022 * Common code for bitmap_*_region() routines.
1023 *	bitmap: array of unsigned longs corresponding to the bitmap
1024 *	pos: the beginning of the region
1025 *	order: region size (log base 2 of number of bits)
1026 *	reg_op: operation(s) to perform on that region of bitmap
1027 *
1028 * Can set, verify and/or release a region of bits in a bitmap,
1029 * depending on which combination of REG_OP_* flag bits is set.
1030 *
1031 * A region of a bitmap is a sequence of bits in the bitmap, of
1032 * some size '1 << order' (a power of two), aligned to that same
1033 * '1 << order' power of two.
1034 *
1035 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1036 * Returns 0 in all other cases and reg_ops.
1037 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1038
1039enum {
1040	REG_OP_ISFREE,		/* true if region is all zero bits */
1041	REG_OP_ALLOC,		/* set all bits in region */
1042	REG_OP_RELEASE,		/* clear all bits in region */
1043};
1044
1045static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
1046{
1047	int nbits_reg;		/* number of bits in region */
1048	int index;		/* index first long of region in bitmap */
1049	int offset;		/* bit offset region in bitmap[index] */
1050	int nlongs_reg;		/* num longs spanned by region in bitmap */
1051	int nbitsinlong;	/* num bits of region in each spanned long */
1052	unsigned long mask;	/* bitmask for one long of region */
1053	int i;			/* scans bitmap by longs */
1054	int ret = 0;		/* return value */
1055
1056	/*
1057	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1058	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1059	 */
1060	nbits_reg = 1 << order;
1061	index = pos / BITS_PER_LONG;
1062	offset = pos - (index * BITS_PER_LONG);
1063	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1064	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1065
1066	/*
1067	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1068	 * overflows if nbitsinlong == BITS_PER_LONG.
1069	 */
1070	mask = (1UL << (nbitsinlong - 1));
1071	mask += mask - 1;
1072	mask <<= offset;
1073
1074	switch (reg_op) {
1075	case REG_OP_ISFREE:
1076		for (i = 0; i < nlongs_reg; i++) {
1077			if (bitmap[index + i] & mask)
1078				goto done;
1079		}
1080		ret = 1;	/* all bits in region free (zero) */
1081		break;
1082
1083	case REG_OP_ALLOC:
1084		for (i = 0; i < nlongs_reg; i++)
1085			bitmap[index + i] |= mask;
1086		break;
1087
1088	case REG_OP_RELEASE:
1089		for (i = 0; i < nlongs_reg; i++)
1090			bitmap[index + i] &= ~mask;
1091		break;
1092	}
1093done:
1094	return ret;
1095}
 
1096
 
1097/**
1098 * bitmap_find_free_region - find a contiguous aligned mem region
1099 *	@bitmap: array of unsigned longs corresponding to the bitmap
1100 *	@bits: number of bits in the bitmap
1101 *	@order: region size (log base 2 of number of bits) to find
1102 *
1103 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1104 * allocate them (set them to one).  Only consider regions of length
1105 * a power (@order) of two, aligned to that power of two, which
1106 * makes the search algorithm much faster.
1107 *
1108 * Return the bit offset in bitmap of the allocated region,
1109 * or -errno on failure.
1110 */
1111int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
1112{
1113	int pos, end;		/* scans bitmap by regions of size order */
1114
1115	for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
1116		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1117			continue;
1118		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1119		return pos;
1120	}
1121	return -ENOMEM;
 
 
 
1122}
1123EXPORT_SYMBOL(bitmap_find_free_region);
1124
1125/**
1126 * bitmap_release_region - release allocated bitmap region
1127 *	@bitmap: array of unsigned longs corresponding to the bitmap
1128 *	@pos: beginning of bit region to release
1129 *	@order: region size (log base 2 of number of bits) to release
1130 *
1131 * This is the complement to __bitmap_find_free_region() and releases
1132 * the found region (by clearing it in the bitmap).
1133 *
1134 * No return value.
1135 */
1136void bitmap_release_region(unsigned long *bitmap, int pos, int order)
1137{
1138	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
 
 
 
 
 
 
 
 
 
 
 
1139}
1140EXPORT_SYMBOL(bitmap_release_region);
 
1141
 
1142/**
1143 * bitmap_allocate_region - allocate bitmap region
1144 *	@bitmap: array of unsigned longs corresponding to the bitmap
1145 *	@pos: beginning of bit region to allocate
1146 *	@order: region size (log base 2 of number of bits) to allocate
1147 *
1148 * Allocate (set bits in) a specified region of a bitmap.
1149 *
1150 * Return 0 on success, or %-EBUSY if specified region wasn't
1151 * free (not all bits were zero).
1152 */
1153int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
1154{
1155	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1156		return -EBUSY;
1157	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1158	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159}
1160EXPORT_SYMBOL(bitmap_allocate_region);
1161
1162/**
1163 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1164 * @dst:   destination buffer
1165 * @src:   bitmap to copy
1166 * @nbits: number of bits in the bitmap
1167 *
1168 * Require nbits % BITS_PER_LONG == 0.
1169 */
1170void bitmap_copy_le(void *dst, const unsigned long *src, int nbits)
1171{
1172	unsigned long *d = dst;
1173	int i;
1174
1175	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1176		if (BITS_PER_LONG == 64)
1177			d[i] = cpu_to_le64(src[i]);
1178		else
1179			d[i] = cpu_to_le32(src[i]);
1180	}
 
 
 
 
1181}
1182EXPORT_SYMBOL(bitmap_copy_le);