Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/swap.c
   4 *
   5 * This file provides functions for reading the suspend image from
   6 * and writing it to a swap partition.
   7 *
   8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
   9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
  11 */
  12
  13#define pr_fmt(fmt) "PM: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/file.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/device.h>
  20#include <linux/bio.h>
  21#include <linux/blkdev.h>
  22#include <linux/swap.h>
  23#include <linux/swapops.h>
  24#include <linux/pm.h>
  25#include <linux/slab.h>
  26#include <linux/lzo.h>
  27#include <linux/vmalloc.h>
  28#include <linux/cpumask.h>
  29#include <linux/atomic.h>
  30#include <linux/kthread.h>
  31#include <linux/crc32.h>
  32#include <linux/ktime.h>
  33
  34#include "power.h"
  35
  36#define HIBERNATE_SIG	"S1SUSPEND"
  37
  38u32 swsusp_hardware_signature;
  39
  40/*
  41 * When reading an {un,}compressed image, we may restore pages in place,
  42 * in which case some architectures need these pages cleaning before they
  43 * can be executed. We don't know which pages these may be, so clean the lot.
  44 */
  45static bool clean_pages_on_read;
  46static bool clean_pages_on_decompress;
  47
  48/*
  49 *	The swap map is a data structure used for keeping track of each page
  50 *	written to a swap partition.  It consists of many swap_map_page
  51 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
  52 *	These structures are stored on the swap and linked together with the
  53 *	help of the .next_swap member.
  54 *
  55 *	The swap map is created during suspend.  The swap map pages are
  56 *	allocated and populated one at a time, so we only need one memory
  57 *	page to set up the entire structure.
  58 *
  59 *	During resume we pick up all swap_map_page structures into a list.
  60 */
  61
  62#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
  63
  64/*
  65 * Number of free pages that are not high.
  66 */
  67static inline unsigned long low_free_pages(void)
  68{
  69	return nr_free_pages() - nr_free_highpages();
  70}
  71
  72/*
  73 * Number of pages required to be kept free while writing the image. Always
  74 * half of all available low pages before the writing starts.
  75 */
  76static inline unsigned long reqd_free_pages(void)
  77{
  78	return low_free_pages() / 2;
  79}
  80
  81struct swap_map_page {
  82	sector_t entries[MAP_PAGE_ENTRIES];
  83	sector_t next_swap;
  84};
  85
  86struct swap_map_page_list {
  87	struct swap_map_page *map;
  88	struct swap_map_page_list *next;
  89};
  90
  91/*
  92 *	The swap_map_handle structure is used for handling swap in
  93 *	a file-alike way
  94 */
  95
  96struct swap_map_handle {
  97	struct swap_map_page *cur;
  98	struct swap_map_page_list *maps;
  99	sector_t cur_swap;
 100	sector_t first_sector;
 101	unsigned int k;
 102	unsigned long reqd_free_pages;
 103	u32 crc32;
 104};
 105
 106struct swsusp_header {
 107	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
 108	              sizeof(u32) - sizeof(u32)];
 109	u32	hw_sig;
 110	u32	crc32;
 111	sector_t image;
 112	unsigned int flags;	/* Flags to pass to the "boot" kernel */
 113	char	orig_sig[10];
 114	char	sig[10];
 115} __packed;
 116
 117static struct swsusp_header *swsusp_header;
 118
 119/*
 120 *	The following functions are used for tracing the allocated
 121 *	swap pages, so that they can be freed in case of an error.
 122 */
 123
 124struct swsusp_extent {
 125	struct rb_node node;
 126	unsigned long start;
 127	unsigned long end;
 128};
 129
 130static struct rb_root swsusp_extents = RB_ROOT;
 131
 132static int swsusp_extents_insert(unsigned long swap_offset)
 133{
 134	struct rb_node **new = &(swsusp_extents.rb_node);
 135	struct rb_node *parent = NULL;
 136	struct swsusp_extent *ext;
 137
 138	/* Figure out where to put the new node */
 139	while (*new) {
 140		ext = rb_entry(*new, struct swsusp_extent, node);
 141		parent = *new;
 142		if (swap_offset < ext->start) {
 143			/* Try to merge */
 144			if (swap_offset == ext->start - 1) {
 145				ext->start--;
 146				return 0;
 147			}
 148			new = &((*new)->rb_left);
 149		} else if (swap_offset > ext->end) {
 150			/* Try to merge */
 151			if (swap_offset == ext->end + 1) {
 152				ext->end++;
 153				return 0;
 154			}
 155			new = &((*new)->rb_right);
 156		} else {
 157			/* It already is in the tree */
 158			return -EINVAL;
 159		}
 160	}
 161	/* Add the new node and rebalance the tree. */
 162	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
 163	if (!ext)
 164		return -ENOMEM;
 165
 166	ext->start = swap_offset;
 167	ext->end = swap_offset;
 168	rb_link_node(&ext->node, parent, new);
 169	rb_insert_color(&ext->node, &swsusp_extents);
 170	return 0;
 171}
 172
 173/*
 174 *	alloc_swapdev_block - allocate a swap page and register that it has
 175 *	been allocated, so that it can be freed in case of an error.
 176 */
 177
 178sector_t alloc_swapdev_block(int swap)
 179{
 180	unsigned long offset;
 181
 182	offset = swp_offset(get_swap_page_of_type(swap));
 183	if (offset) {
 184		if (swsusp_extents_insert(offset))
 185			swap_free(swp_entry(swap, offset));
 186		else
 187			return swapdev_block(swap, offset);
 188	}
 189	return 0;
 190}
 191
 192/*
 193 *	free_all_swap_pages - free swap pages allocated for saving image data.
 194 *	It also frees the extents used to register which swap entries had been
 195 *	allocated.
 196 */
 197
 198void free_all_swap_pages(int swap)
 199{
 200	struct rb_node *node;
 201
 202	while ((node = swsusp_extents.rb_node)) {
 203		struct swsusp_extent *ext;
 204		unsigned long offset;
 205
 206		ext = rb_entry(node, struct swsusp_extent, node);
 207		rb_erase(node, &swsusp_extents);
 208		for (offset = ext->start; offset <= ext->end; offset++)
 209			swap_free(swp_entry(swap, offset));
 210
 211		kfree(ext);
 212	}
 213}
 214
 215int swsusp_swap_in_use(void)
 216{
 217	return (swsusp_extents.rb_node != NULL);
 218}
 219
 220/*
 221 * General things
 222 */
 223
 224static unsigned short root_swap = 0xffff;
 225static struct block_device *hib_resume_bdev;
 226
 227struct hib_bio_batch {
 228	atomic_t		count;
 229	wait_queue_head_t	wait;
 230	blk_status_t		error;
 231	struct blk_plug		plug;
 232};
 233
 234static void hib_init_batch(struct hib_bio_batch *hb)
 235{
 236	atomic_set(&hb->count, 0);
 237	init_waitqueue_head(&hb->wait);
 238	hb->error = BLK_STS_OK;
 239	blk_start_plug(&hb->plug);
 240}
 241
 242static void hib_finish_batch(struct hib_bio_batch *hb)
 243{
 244	blk_finish_plug(&hb->plug);
 245}
 246
 247static void hib_end_io(struct bio *bio)
 248{
 249	struct hib_bio_batch *hb = bio->bi_private;
 250	struct page *page = bio_first_page_all(bio);
 251
 252	if (bio->bi_status) {
 253		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
 254			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 255			 (unsigned long long)bio->bi_iter.bi_sector);
 256	}
 257
 258	if (bio_data_dir(bio) == WRITE)
 259		put_page(page);
 260	else if (clean_pages_on_read)
 261		flush_icache_range((unsigned long)page_address(page),
 262				   (unsigned long)page_address(page) + PAGE_SIZE);
 263
 264	if (bio->bi_status && !hb->error)
 265		hb->error = bio->bi_status;
 266	if (atomic_dec_and_test(&hb->count))
 267		wake_up(&hb->wait);
 268
 269	bio_put(bio);
 270}
 271
 272static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
 273			 struct hib_bio_batch *hb)
 274{
 275	struct page *page = virt_to_page(addr);
 276	struct bio *bio;
 277	int error = 0;
 278
 279	bio = bio_alloc(hib_resume_bdev, 1, opf, GFP_NOIO | __GFP_HIGH);
 
 280	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
 281
 282	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 283		pr_err("Adding page to bio failed at %llu\n",
 284		       (unsigned long long)bio->bi_iter.bi_sector);
 285		bio_put(bio);
 286		return -EFAULT;
 287	}
 288
 289	if (hb) {
 290		bio->bi_end_io = hib_end_io;
 291		bio->bi_private = hb;
 292		atomic_inc(&hb->count);
 293		submit_bio(bio);
 294	} else {
 295		error = submit_bio_wait(bio);
 296		bio_put(bio);
 297	}
 298
 299	return error;
 300}
 301
 302static int hib_wait_io(struct hib_bio_batch *hb)
 303{
 304	/*
 305	 * We are relying on the behavior of blk_plug that a thread with
 306	 * a plug will flush the plug list before sleeping.
 307	 */
 308	wait_event(hb->wait, atomic_read(&hb->count) == 0);
 309	return blk_status_to_errno(hb->error);
 310}
 311
 312/*
 313 * Saving part
 314 */
 315static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
 316{
 317	int error;
 318
 319	hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
 320	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
 321	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
 322		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
 323		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
 324		swsusp_header->image = handle->first_sector;
 325		if (swsusp_hardware_signature) {
 326			swsusp_header->hw_sig = swsusp_hardware_signature;
 327			flags |= SF_HW_SIG;
 328		}
 329		swsusp_header->flags = flags;
 330		if (flags & SF_CRC32_MODE)
 331			swsusp_header->crc32 = handle->crc32;
 332		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
 333				      swsusp_resume_block, swsusp_header, NULL);
 334	} else {
 335		pr_err("Swap header not found!\n");
 336		error = -ENODEV;
 337	}
 338	return error;
 339}
 340
 
 
 
 
 
 
 
 341/**
 342 *	swsusp_swap_check - check if the resume device is a swap device
 343 *	and get its index (if so)
 344 *
 345 *	This is called before saving image
 346 */
 347static int swsusp_swap_check(void)
 348{
 349	int res;
 350
 351	if (swsusp_resume_device)
 352		res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
 353	else
 354		res = find_first_swap(&swsusp_resume_device);
 355	if (res < 0)
 356		return res;
 357	root_swap = res;
 358
 359	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, FMODE_WRITE,
 360			NULL);
 361	if (IS_ERR(hib_resume_bdev))
 362		return PTR_ERR(hib_resume_bdev);
 363
 364	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
 365	if (res < 0)
 366		blkdev_put(hib_resume_bdev, FMODE_WRITE);
 367
 368	return res;
 369}
 370
 371/**
 372 *	write_page - Write one page to given swap location.
 373 *	@buf:		Address we're writing.
 374 *	@offset:	Offset of the swap page we're writing to.
 375 *	@hb:		bio completion batch
 376 */
 377
 378static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
 379{
 380	void *src;
 381	int ret;
 382
 383	if (!offset)
 384		return -ENOSPC;
 385
 386	if (hb) {
 387		src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
 388		                              __GFP_NORETRY);
 389		if (src) {
 390			copy_page(src, buf);
 391		} else {
 392			ret = hib_wait_io(hb); /* Free pages */
 393			if (ret)
 394				return ret;
 395			src = (void *)__get_free_page(GFP_NOIO |
 396			                              __GFP_NOWARN |
 397			                              __GFP_NORETRY);
 398			if (src) {
 399				copy_page(src, buf);
 400			} else {
 401				WARN_ON_ONCE(1);
 402				hb = NULL;	/* Go synchronous */
 403				src = buf;
 404			}
 405		}
 406	} else {
 407		src = buf;
 408	}
 409	return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
 410}
 411
 412static void release_swap_writer(struct swap_map_handle *handle)
 413{
 414	if (handle->cur)
 415		free_page((unsigned long)handle->cur);
 416	handle->cur = NULL;
 417}
 418
 419static int get_swap_writer(struct swap_map_handle *handle)
 420{
 421	int ret;
 422
 423	ret = swsusp_swap_check();
 424	if (ret) {
 425		if (ret != -ENOSPC)
 426			pr_err("Cannot find swap device, try swapon -a\n");
 427		return ret;
 428	}
 429	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
 430	if (!handle->cur) {
 431		ret = -ENOMEM;
 432		goto err_close;
 433	}
 434	handle->cur_swap = alloc_swapdev_block(root_swap);
 435	if (!handle->cur_swap) {
 436		ret = -ENOSPC;
 437		goto err_rel;
 438	}
 439	handle->k = 0;
 440	handle->reqd_free_pages = reqd_free_pages();
 441	handle->first_sector = handle->cur_swap;
 442	return 0;
 443err_rel:
 444	release_swap_writer(handle);
 445err_close:
 446	swsusp_close(FMODE_WRITE);
 447	return ret;
 448}
 449
 450static int swap_write_page(struct swap_map_handle *handle, void *buf,
 451		struct hib_bio_batch *hb)
 452{
 453	int error = 0;
 454	sector_t offset;
 455
 456	if (!handle->cur)
 457		return -EINVAL;
 458	offset = alloc_swapdev_block(root_swap);
 459	error = write_page(buf, offset, hb);
 460	if (error)
 461		return error;
 462	handle->cur->entries[handle->k++] = offset;
 463	if (handle->k >= MAP_PAGE_ENTRIES) {
 464		offset = alloc_swapdev_block(root_swap);
 465		if (!offset)
 466			return -ENOSPC;
 467		handle->cur->next_swap = offset;
 468		error = write_page(handle->cur, handle->cur_swap, hb);
 469		if (error)
 470			goto out;
 471		clear_page(handle->cur);
 472		handle->cur_swap = offset;
 473		handle->k = 0;
 474
 475		if (hb && low_free_pages() <= handle->reqd_free_pages) {
 476			error = hib_wait_io(hb);
 477			if (error)
 478				goto out;
 479			/*
 480			 * Recalculate the number of required free pages, to
 481			 * make sure we never take more than half.
 482			 */
 483			handle->reqd_free_pages = reqd_free_pages();
 484		}
 485	}
 486 out:
 487	return error;
 488}
 489
 490static int flush_swap_writer(struct swap_map_handle *handle)
 491{
 492	if (handle->cur && handle->cur_swap)
 493		return write_page(handle->cur, handle->cur_swap, NULL);
 494	else
 495		return -EINVAL;
 496}
 497
 498static int swap_writer_finish(struct swap_map_handle *handle,
 499		unsigned int flags, int error)
 500{
 501	if (!error) {
 502		pr_info("S");
 503		error = mark_swapfiles(handle, flags);
 504		pr_cont("|\n");
 505		flush_swap_writer(handle);
 506	}
 507
 508	if (error)
 509		free_all_swap_pages(root_swap);
 510	release_swap_writer(handle);
 511	swsusp_close(FMODE_WRITE);
 512
 513	return error;
 514}
 515
 
 
 
 
 
 
 516/* We need to remember how much compressed data we need to read. */
 517#define LZO_HEADER	sizeof(size_t)
 518
 519/* Number of pages/bytes we'll compress at one time. */
 520#define LZO_UNC_PAGES	32
 521#define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
 522
 523/* Number of pages/bytes we need for compressed data (worst case). */
 524#define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
 525			             LZO_HEADER, PAGE_SIZE)
 526#define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
 527
 528/* Maximum number of threads for compression/decompression. */
 529#define LZO_THREADS	3
 530
 531/* Minimum/maximum number of pages for read buffering. */
 532#define LZO_MIN_RD_PAGES	1024
 533#define LZO_MAX_RD_PAGES	8192
 534
 535
 536/**
 537 *	save_image - save the suspend image data
 538 */
 539
 540static int save_image(struct swap_map_handle *handle,
 541                      struct snapshot_handle *snapshot,
 542                      unsigned int nr_to_write)
 543{
 544	unsigned int m;
 545	int ret;
 546	int nr_pages;
 547	int err2;
 548	struct hib_bio_batch hb;
 549	ktime_t start;
 550	ktime_t stop;
 551
 552	hib_init_batch(&hb);
 553
 554	pr_info("Saving image data pages (%u pages)...\n",
 555		nr_to_write);
 556	m = nr_to_write / 10;
 557	if (!m)
 558		m = 1;
 559	nr_pages = 0;
 560	start = ktime_get();
 561	while (1) {
 562		ret = snapshot_read_next(snapshot);
 563		if (ret <= 0)
 564			break;
 565		ret = swap_write_page(handle, data_of(*snapshot), &hb);
 566		if (ret)
 567			break;
 568		if (!(nr_pages % m))
 569			pr_info("Image saving progress: %3d%%\n",
 570				nr_pages / m * 10);
 571		nr_pages++;
 572	}
 573	err2 = hib_wait_io(&hb);
 574	hib_finish_batch(&hb);
 575	stop = ktime_get();
 576	if (!ret)
 577		ret = err2;
 578	if (!ret)
 579		pr_info("Image saving done\n");
 580	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 581	return ret;
 582}
 583
 584/**
 585 * Structure used for CRC32.
 586 */
 587struct crc_data {
 588	struct task_struct *thr;                  /* thread */
 589	atomic_t ready;                           /* ready to start flag */
 590	atomic_t stop;                            /* ready to stop flag */
 591	unsigned run_threads;                     /* nr current threads */
 592	wait_queue_head_t go;                     /* start crc update */
 593	wait_queue_head_t done;                   /* crc update done */
 594	u32 *crc32;                               /* points to handle's crc32 */
 595	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
 596	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
 597};
 598
 599/**
 600 * CRC32 update function that runs in its own thread.
 601 */
 602static int crc32_threadfn(void *data)
 603{
 604	struct crc_data *d = data;
 605	unsigned i;
 606
 607	while (1) {
 608		wait_event(d->go, atomic_read(&d->ready) ||
 609		                  kthread_should_stop());
 610		if (kthread_should_stop()) {
 611			d->thr = NULL;
 612			atomic_set(&d->stop, 1);
 613			wake_up(&d->done);
 614			break;
 615		}
 616		atomic_set(&d->ready, 0);
 617
 618		for (i = 0; i < d->run_threads; i++)
 619			*d->crc32 = crc32_le(*d->crc32,
 620			                     d->unc[i], *d->unc_len[i]);
 621		atomic_set(&d->stop, 1);
 622		wake_up(&d->done);
 623	}
 624	return 0;
 625}
 626/**
 627 * Structure used for LZO data compression.
 628 */
 629struct cmp_data {
 630	struct task_struct *thr;                  /* thread */
 
 631	atomic_t ready;                           /* ready to start flag */
 632	atomic_t stop;                            /* ready to stop flag */
 633	int ret;                                  /* return code */
 634	wait_queue_head_t go;                     /* start compression */
 635	wait_queue_head_t done;                   /* compression done */
 636	size_t unc_len;                           /* uncompressed length */
 637	size_t cmp_len;                           /* compressed length */
 638	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
 639	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
 640	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
 641};
 642
 643/**
 
 
 
 644 * Compression function that runs in its own thread.
 645 */
 646static int lzo_compress_threadfn(void *data)
 647{
 648	struct cmp_data *d = data;
 
 649
 650	while (1) {
 651		wait_event(d->go, atomic_read(&d->ready) ||
 652		                  kthread_should_stop());
 653		if (kthread_should_stop()) {
 654			d->thr = NULL;
 655			d->ret = -1;
 656			atomic_set(&d->stop, 1);
 657			wake_up(&d->done);
 658			break;
 659		}
 660		atomic_set(&d->ready, 0);
 661
 662		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
 663		                          d->cmp + LZO_HEADER, &d->cmp_len,
 664		                          d->wrk);
 665		atomic_set(&d->stop, 1);
 
 
 
 
 666		wake_up(&d->done);
 667	}
 668	return 0;
 669}
 670
 671/**
 672 * save_image_lzo - Save the suspend image data compressed with LZO.
 673 * @handle: Swap map handle to use for saving the image.
 674 * @snapshot: Image to read data from.
 675 * @nr_to_write: Number of pages to save.
 676 */
 677static int save_image_lzo(struct swap_map_handle *handle,
 678                          struct snapshot_handle *snapshot,
 679                          unsigned int nr_to_write)
 680{
 681	unsigned int m;
 682	int ret = 0;
 683	int nr_pages;
 684	int err2;
 685	struct hib_bio_batch hb;
 686	ktime_t start;
 687	ktime_t stop;
 688	size_t off;
 689	unsigned thr, run_threads, nr_threads;
 690	unsigned char *page = NULL;
 691	struct cmp_data *data = NULL;
 692	struct crc_data *crc = NULL;
 693
 694	hib_init_batch(&hb);
 695
 
 
 696	/*
 697	 * We'll limit the number of threads for compression to limit memory
 698	 * footprint.
 699	 */
 700	nr_threads = num_online_cpus() - 1;
 701	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
 702
 703	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
 704	if (!page) {
 705		pr_err("Failed to allocate LZO page\n");
 706		ret = -ENOMEM;
 707		goto out_clean;
 708	}
 709
 710	data = vzalloc(array_size(nr_threads, sizeof(*data)));
 711	if (!data) {
 712		pr_err("Failed to allocate LZO data\n");
 713		ret = -ENOMEM;
 714		goto out_clean;
 715	}
 716
 717	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
 718	if (!crc) {
 719		pr_err("Failed to allocate crc\n");
 720		ret = -ENOMEM;
 721		goto out_clean;
 722	}
 723
 724	/*
 725	 * Start the compression threads.
 726	 */
 727	for (thr = 0; thr < nr_threads; thr++) {
 728		init_waitqueue_head(&data[thr].go);
 729		init_waitqueue_head(&data[thr].done);
 730
 731		data[thr].thr = kthread_run(lzo_compress_threadfn,
 
 
 
 
 
 
 
 732		                            &data[thr],
 733		                            "image_compress/%u", thr);
 734		if (IS_ERR(data[thr].thr)) {
 735			data[thr].thr = NULL;
 736			pr_err("Cannot start compression threads\n");
 737			ret = -ENOMEM;
 738			goto out_clean;
 739		}
 740	}
 741
 742	/*
 743	 * Start the CRC32 thread.
 744	 */
 745	init_waitqueue_head(&crc->go);
 746	init_waitqueue_head(&crc->done);
 747
 748	handle->crc32 = 0;
 749	crc->crc32 = &handle->crc32;
 750	for (thr = 0; thr < nr_threads; thr++) {
 751		crc->unc[thr] = data[thr].unc;
 752		crc->unc_len[thr] = &data[thr].unc_len;
 753	}
 754
 755	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
 756	if (IS_ERR(crc->thr)) {
 757		crc->thr = NULL;
 758		pr_err("Cannot start CRC32 thread\n");
 759		ret = -ENOMEM;
 760		goto out_clean;
 761	}
 762
 763	/*
 764	 * Adjust the number of required free pages after all allocations have
 765	 * been done. We don't want to run out of pages when writing.
 766	 */
 767	handle->reqd_free_pages = reqd_free_pages();
 768
 769	pr_info("Using %u thread(s) for compression\n", nr_threads);
 770	pr_info("Compressing and saving image data (%u pages)...\n",
 771		nr_to_write);
 772	m = nr_to_write / 10;
 773	if (!m)
 774		m = 1;
 775	nr_pages = 0;
 776	start = ktime_get();
 777	for (;;) {
 778		for (thr = 0; thr < nr_threads; thr++) {
 779			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
 780				ret = snapshot_read_next(snapshot);
 781				if (ret < 0)
 782					goto out_finish;
 783
 784				if (!ret)
 785					break;
 786
 787				memcpy(data[thr].unc + off,
 788				       data_of(*snapshot), PAGE_SIZE);
 789
 790				if (!(nr_pages % m))
 791					pr_info("Image saving progress: %3d%%\n",
 792						nr_pages / m * 10);
 793				nr_pages++;
 794			}
 795			if (!off)
 796				break;
 797
 798			data[thr].unc_len = off;
 799
 800			atomic_set(&data[thr].ready, 1);
 801			wake_up(&data[thr].go);
 802		}
 803
 804		if (!thr)
 805			break;
 806
 807		crc->run_threads = thr;
 808		atomic_set(&crc->ready, 1);
 809		wake_up(&crc->go);
 810
 811		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
 812			wait_event(data[thr].done,
 813			           atomic_read(&data[thr].stop));
 814			atomic_set(&data[thr].stop, 0);
 815
 816			ret = data[thr].ret;
 817
 818			if (ret < 0) {
 819				pr_err("LZO compression failed\n");
 820				goto out_finish;
 821			}
 822
 823			if (unlikely(!data[thr].cmp_len ||
 824			             data[thr].cmp_len >
 825			             lzo1x_worst_compress(data[thr].unc_len))) {
 826				pr_err("Invalid LZO compressed length\n");
 827				ret = -1;
 828				goto out_finish;
 829			}
 830
 831			*(size_t *)data[thr].cmp = data[thr].cmp_len;
 832
 833			/*
 834			 * Given we are writing one page at a time to disk, we
 835			 * copy that much from the buffer, although the last
 836			 * bit will likely be smaller than full page. This is
 837			 * OK - we saved the length of the compressed data, so
 838			 * any garbage at the end will be discarded when we
 839			 * read it.
 840			 */
 841			for (off = 0;
 842			     off < LZO_HEADER + data[thr].cmp_len;
 843			     off += PAGE_SIZE) {
 844				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
 845
 846				ret = swap_write_page(handle, page, &hb);
 847				if (ret)
 848					goto out_finish;
 849			}
 850		}
 851
 852		wait_event(crc->done, atomic_read(&crc->stop));
 853		atomic_set(&crc->stop, 0);
 854	}
 855
 856out_finish:
 857	err2 = hib_wait_io(&hb);
 858	stop = ktime_get();
 859	if (!ret)
 860		ret = err2;
 861	if (!ret)
 862		pr_info("Image saving done\n");
 863	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 
 
 
 864out_clean:
 865	hib_finish_batch(&hb);
 866	if (crc) {
 867		if (crc->thr)
 868			kthread_stop(crc->thr);
 869		kfree(crc);
 870	}
 871	if (data) {
 872		for (thr = 0; thr < nr_threads; thr++)
 873			if (data[thr].thr)
 874				kthread_stop(data[thr].thr);
 
 
 
 875		vfree(data);
 876	}
 877	if (page) free_page((unsigned long)page);
 878
 879	return ret;
 880}
 881
 882/**
 883 *	enough_swap - Make sure we have enough swap to save the image.
 884 *
 885 *	Returns TRUE or FALSE after checking the total amount of swap
 886 *	space available from the resume partition.
 887 */
 888
 889static int enough_swap(unsigned int nr_pages)
 890{
 891	unsigned int free_swap = count_swap_pages(root_swap, 1);
 892	unsigned int required;
 893
 894	pr_debug("Free swap pages: %u\n", free_swap);
 895
 896	required = PAGES_FOR_IO + nr_pages;
 897	return free_swap > required;
 898}
 899
 900/**
 901 *	swsusp_write - Write entire image and metadata.
 902 *	@flags: flags to pass to the "boot" kernel in the image header
 903 *
 904 *	It is important _NOT_ to umount filesystems at this point. We want
 905 *	them synced (in case something goes wrong) but we DO not want to mark
 906 *	filesystem clean: it is not. (And it does not matter, if we resume
 907 *	correctly, we'll mark system clean, anyway.)
 908 */
 909
 910int swsusp_write(unsigned int flags)
 911{
 912	struct swap_map_handle handle;
 913	struct snapshot_handle snapshot;
 914	struct swsusp_info *header;
 915	unsigned long pages;
 916	int error;
 917
 918	pages = snapshot_get_image_size();
 919	error = get_swap_writer(&handle);
 920	if (error) {
 921		pr_err("Cannot get swap writer\n");
 922		return error;
 923	}
 924	if (flags & SF_NOCOMPRESS_MODE) {
 925		if (!enough_swap(pages)) {
 926			pr_err("Not enough free swap\n");
 927			error = -ENOSPC;
 928			goto out_finish;
 929		}
 930	}
 931	memset(&snapshot, 0, sizeof(struct snapshot_handle));
 932	error = snapshot_read_next(&snapshot);
 933	if (error < (int)PAGE_SIZE) {
 934		if (error >= 0)
 935			error = -EFAULT;
 936
 937		goto out_finish;
 938	}
 939	header = (struct swsusp_info *)data_of(snapshot);
 940	error = swap_write_page(&handle, header, NULL);
 941	if (!error) {
 942		error = (flags & SF_NOCOMPRESS_MODE) ?
 943			save_image(&handle, &snapshot, pages - 1) :
 944			save_image_lzo(&handle, &snapshot, pages - 1);
 945	}
 946out_finish:
 947	error = swap_writer_finish(&handle, flags, error);
 948	return error;
 949}
 950
 951/**
 952 *	The following functions allow us to read data using a swap map
 953 *	in a file-alike way
 954 */
 955
 956static void release_swap_reader(struct swap_map_handle *handle)
 957{
 958	struct swap_map_page_list *tmp;
 959
 960	while (handle->maps) {
 961		if (handle->maps->map)
 962			free_page((unsigned long)handle->maps->map);
 963		tmp = handle->maps;
 964		handle->maps = handle->maps->next;
 965		kfree(tmp);
 966	}
 967	handle->cur = NULL;
 968}
 969
 970static int get_swap_reader(struct swap_map_handle *handle,
 971		unsigned int *flags_p)
 972{
 973	int error;
 974	struct swap_map_page_list *tmp, *last;
 975	sector_t offset;
 976
 977	*flags_p = swsusp_header->flags;
 978
 979	if (!swsusp_header->image) /* how can this happen? */
 980		return -EINVAL;
 981
 982	handle->cur = NULL;
 983	last = handle->maps = NULL;
 984	offset = swsusp_header->image;
 985	while (offset) {
 986		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
 987		if (!tmp) {
 988			release_swap_reader(handle);
 989			return -ENOMEM;
 990		}
 991		if (!handle->maps)
 992			handle->maps = tmp;
 993		if (last)
 994			last->next = tmp;
 995		last = tmp;
 996
 997		tmp->map = (struct swap_map_page *)
 998			   __get_free_page(GFP_NOIO | __GFP_HIGH);
 999		if (!tmp->map) {
1000			release_swap_reader(handle);
1001			return -ENOMEM;
1002		}
1003
1004		error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1005		if (error) {
1006			release_swap_reader(handle);
1007			return error;
1008		}
1009		offset = tmp->map->next_swap;
1010	}
1011	handle->k = 0;
1012	handle->cur = handle->maps->map;
1013	return 0;
1014}
1015
1016static int swap_read_page(struct swap_map_handle *handle, void *buf,
1017		struct hib_bio_batch *hb)
1018{
1019	sector_t offset;
1020	int error;
1021	struct swap_map_page_list *tmp;
1022
1023	if (!handle->cur)
1024		return -EINVAL;
1025	offset = handle->cur->entries[handle->k];
1026	if (!offset)
1027		return -EFAULT;
1028	error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1029	if (error)
1030		return error;
1031	if (++handle->k >= MAP_PAGE_ENTRIES) {
1032		handle->k = 0;
1033		free_page((unsigned long)handle->maps->map);
1034		tmp = handle->maps;
1035		handle->maps = handle->maps->next;
1036		kfree(tmp);
1037		if (!handle->maps)
1038			release_swap_reader(handle);
1039		else
1040			handle->cur = handle->maps->map;
1041	}
1042	return error;
1043}
1044
1045static int swap_reader_finish(struct swap_map_handle *handle)
1046{
1047	release_swap_reader(handle);
1048
1049	return 0;
1050}
1051
1052/**
1053 *	load_image - load the image using the swap map handle
1054 *	@handle and the snapshot handle @snapshot
1055 *	(assume there are @nr_pages pages to load)
1056 */
1057
1058static int load_image(struct swap_map_handle *handle,
1059                      struct snapshot_handle *snapshot,
1060                      unsigned int nr_to_read)
1061{
1062	unsigned int m;
1063	int ret = 0;
1064	ktime_t start;
1065	ktime_t stop;
1066	struct hib_bio_batch hb;
1067	int err2;
1068	unsigned nr_pages;
1069
1070	hib_init_batch(&hb);
1071
1072	clean_pages_on_read = true;
1073	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1074	m = nr_to_read / 10;
1075	if (!m)
1076		m = 1;
1077	nr_pages = 0;
1078	start = ktime_get();
1079	for ( ; ; ) {
1080		ret = snapshot_write_next(snapshot);
1081		if (ret <= 0)
1082			break;
1083		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1084		if (ret)
1085			break;
1086		if (snapshot->sync_read)
1087			ret = hib_wait_io(&hb);
1088		if (ret)
1089			break;
1090		if (!(nr_pages % m))
1091			pr_info("Image loading progress: %3d%%\n",
1092				nr_pages / m * 10);
1093		nr_pages++;
1094	}
1095	err2 = hib_wait_io(&hb);
1096	hib_finish_batch(&hb);
1097	stop = ktime_get();
1098	if (!ret)
1099		ret = err2;
1100	if (!ret) {
1101		pr_info("Image loading done\n");
1102		snapshot_write_finalize(snapshot);
1103		if (!snapshot_image_loaded(snapshot))
1104			ret = -ENODATA;
1105	}
1106	swsusp_show_speed(start, stop, nr_to_read, "Read");
1107	return ret;
1108}
1109
1110/**
1111 * Structure used for LZO data decompression.
1112 */
1113struct dec_data {
1114	struct task_struct *thr;                  /* thread */
 
1115	atomic_t ready;                           /* ready to start flag */
1116	atomic_t stop;                            /* ready to stop flag */
1117	int ret;                                  /* return code */
1118	wait_queue_head_t go;                     /* start decompression */
1119	wait_queue_head_t done;                   /* decompression done */
1120	size_t unc_len;                           /* uncompressed length */
1121	size_t cmp_len;                           /* compressed length */
1122	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1123	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1124};
1125
1126/**
1127 * Decompression function that runs in its own thread.
1128 */
1129static int lzo_decompress_threadfn(void *data)
1130{
1131	struct dec_data *d = data;
 
1132
1133	while (1) {
1134		wait_event(d->go, atomic_read(&d->ready) ||
1135		                  kthread_should_stop());
1136		if (kthread_should_stop()) {
1137			d->thr = NULL;
1138			d->ret = -1;
1139			atomic_set(&d->stop, 1);
1140			wake_up(&d->done);
1141			break;
1142		}
1143		atomic_set(&d->ready, 0);
1144
1145		d->unc_len = LZO_UNC_SIZE;
1146		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1147		                               d->unc, &d->unc_len);
 
 
1148		if (clean_pages_on_decompress)
1149			flush_icache_range((unsigned long)d->unc,
1150					   (unsigned long)d->unc + d->unc_len);
1151
1152		atomic_set(&d->stop, 1);
1153		wake_up(&d->done);
1154	}
1155	return 0;
1156}
1157
1158/**
1159 * load_image_lzo - Load compressed image data and decompress them with LZO.
1160 * @handle: Swap map handle to use for loading data.
1161 * @snapshot: Image to copy uncompressed data into.
1162 * @nr_to_read: Number of pages to load.
1163 */
1164static int load_image_lzo(struct swap_map_handle *handle,
1165                          struct snapshot_handle *snapshot,
1166                          unsigned int nr_to_read)
1167{
1168	unsigned int m;
1169	int ret = 0;
1170	int eof = 0;
1171	struct hib_bio_batch hb;
1172	ktime_t start;
1173	ktime_t stop;
1174	unsigned nr_pages;
1175	size_t off;
1176	unsigned i, thr, run_threads, nr_threads;
1177	unsigned ring = 0, pg = 0, ring_size = 0,
1178	         have = 0, want, need, asked = 0;
1179	unsigned long read_pages = 0;
1180	unsigned char **page = NULL;
1181	struct dec_data *data = NULL;
1182	struct crc_data *crc = NULL;
1183
1184	hib_init_batch(&hb);
1185
1186	/*
1187	 * We'll limit the number of threads for decompression to limit memory
1188	 * footprint.
1189	 */
1190	nr_threads = num_online_cpus() - 1;
1191	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1192
1193	page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1194	if (!page) {
1195		pr_err("Failed to allocate LZO page\n");
1196		ret = -ENOMEM;
1197		goto out_clean;
1198	}
1199
1200	data = vzalloc(array_size(nr_threads, sizeof(*data)));
1201	if (!data) {
1202		pr_err("Failed to allocate LZO data\n");
1203		ret = -ENOMEM;
1204		goto out_clean;
1205	}
1206
1207	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1208	if (!crc) {
1209		pr_err("Failed to allocate crc\n");
1210		ret = -ENOMEM;
1211		goto out_clean;
1212	}
1213
1214	clean_pages_on_decompress = true;
1215
1216	/*
1217	 * Start the decompression threads.
1218	 */
1219	for (thr = 0; thr < nr_threads; thr++) {
1220		init_waitqueue_head(&data[thr].go);
1221		init_waitqueue_head(&data[thr].done);
1222
1223		data[thr].thr = kthread_run(lzo_decompress_threadfn,
 
 
 
 
 
 
 
1224		                            &data[thr],
1225		                            "image_decompress/%u", thr);
1226		if (IS_ERR(data[thr].thr)) {
1227			data[thr].thr = NULL;
1228			pr_err("Cannot start decompression threads\n");
1229			ret = -ENOMEM;
1230			goto out_clean;
1231		}
1232	}
1233
1234	/*
1235	 * Start the CRC32 thread.
1236	 */
1237	init_waitqueue_head(&crc->go);
1238	init_waitqueue_head(&crc->done);
1239
1240	handle->crc32 = 0;
1241	crc->crc32 = &handle->crc32;
1242	for (thr = 0; thr < nr_threads; thr++) {
1243		crc->unc[thr] = data[thr].unc;
1244		crc->unc_len[thr] = &data[thr].unc_len;
1245	}
1246
1247	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1248	if (IS_ERR(crc->thr)) {
1249		crc->thr = NULL;
1250		pr_err("Cannot start CRC32 thread\n");
1251		ret = -ENOMEM;
1252		goto out_clean;
1253	}
1254
1255	/*
1256	 * Set the number of pages for read buffering.
1257	 * This is complete guesswork, because we'll only know the real
1258	 * picture once prepare_image() is called, which is much later on
1259	 * during the image load phase. We'll assume the worst case and
1260	 * say that none of the image pages are from high memory.
1261	 */
1262	if (low_free_pages() > snapshot_get_image_size())
1263		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1264	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1265
1266	for (i = 0; i < read_pages; i++) {
1267		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1268						  GFP_NOIO | __GFP_HIGH :
1269						  GFP_NOIO | __GFP_NOWARN |
1270						  __GFP_NORETRY);
1271
1272		if (!page[i]) {
1273			if (i < LZO_CMP_PAGES) {
1274				ring_size = i;
1275				pr_err("Failed to allocate LZO pages\n");
1276				ret = -ENOMEM;
1277				goto out_clean;
1278			} else {
1279				break;
1280			}
1281		}
1282	}
1283	want = ring_size = i;
1284
1285	pr_info("Using %u thread(s) for decompression\n", nr_threads);
1286	pr_info("Loading and decompressing image data (%u pages)...\n",
1287		nr_to_read);
1288	m = nr_to_read / 10;
1289	if (!m)
1290		m = 1;
1291	nr_pages = 0;
1292	start = ktime_get();
1293
1294	ret = snapshot_write_next(snapshot);
1295	if (ret <= 0)
1296		goto out_finish;
1297
1298	for(;;) {
1299		for (i = 0; !eof && i < want; i++) {
1300			ret = swap_read_page(handle, page[ring], &hb);
1301			if (ret) {
1302				/*
1303				 * On real read error, finish. On end of data,
1304				 * set EOF flag and just exit the read loop.
1305				 */
1306				if (handle->cur &&
1307				    handle->cur->entries[handle->k]) {
1308					goto out_finish;
1309				} else {
1310					eof = 1;
1311					break;
1312				}
1313			}
1314			if (++ring >= ring_size)
1315				ring = 0;
1316		}
1317		asked += i;
1318		want -= i;
1319
1320		/*
1321		 * We are out of data, wait for some more.
1322		 */
1323		if (!have) {
1324			if (!asked)
1325				break;
1326
1327			ret = hib_wait_io(&hb);
1328			if (ret)
1329				goto out_finish;
1330			have += asked;
1331			asked = 0;
1332			if (eof)
1333				eof = 2;
1334		}
1335
1336		if (crc->run_threads) {
1337			wait_event(crc->done, atomic_read(&crc->stop));
1338			atomic_set(&crc->stop, 0);
1339			crc->run_threads = 0;
1340		}
1341
1342		for (thr = 0; have && thr < nr_threads; thr++) {
1343			data[thr].cmp_len = *(size_t *)page[pg];
1344			if (unlikely(!data[thr].cmp_len ||
1345			             data[thr].cmp_len >
1346			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1347				pr_err("Invalid LZO compressed length\n");
1348				ret = -1;
1349				goto out_finish;
1350			}
1351
1352			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1353			                    PAGE_SIZE);
1354			if (need > have) {
1355				if (eof > 1) {
1356					ret = -1;
1357					goto out_finish;
1358				}
1359				break;
1360			}
1361
1362			for (off = 0;
1363			     off < LZO_HEADER + data[thr].cmp_len;
1364			     off += PAGE_SIZE) {
1365				memcpy(data[thr].cmp + off,
1366				       page[pg], PAGE_SIZE);
1367				have--;
1368				want++;
1369				if (++pg >= ring_size)
1370					pg = 0;
1371			}
1372
1373			atomic_set(&data[thr].ready, 1);
1374			wake_up(&data[thr].go);
1375		}
1376
1377		/*
1378		 * Wait for more data while we are decompressing.
1379		 */
1380		if (have < LZO_CMP_PAGES && asked) {
1381			ret = hib_wait_io(&hb);
1382			if (ret)
1383				goto out_finish;
1384			have += asked;
1385			asked = 0;
1386			if (eof)
1387				eof = 2;
1388		}
1389
1390		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1391			wait_event(data[thr].done,
1392			           atomic_read(&data[thr].stop));
1393			atomic_set(&data[thr].stop, 0);
1394
1395			ret = data[thr].ret;
1396
1397			if (ret < 0) {
1398				pr_err("LZO decompression failed\n");
1399				goto out_finish;
1400			}
1401
1402			if (unlikely(!data[thr].unc_len ||
1403			             data[thr].unc_len > LZO_UNC_SIZE ||
1404			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1405				pr_err("Invalid LZO uncompressed length\n");
1406				ret = -1;
1407				goto out_finish;
1408			}
1409
1410			for (off = 0;
1411			     off < data[thr].unc_len; off += PAGE_SIZE) {
1412				memcpy(data_of(*snapshot),
1413				       data[thr].unc + off, PAGE_SIZE);
1414
1415				if (!(nr_pages % m))
1416					pr_info("Image loading progress: %3d%%\n",
1417						nr_pages / m * 10);
1418				nr_pages++;
1419
1420				ret = snapshot_write_next(snapshot);
1421				if (ret <= 0) {
1422					crc->run_threads = thr + 1;
1423					atomic_set(&crc->ready, 1);
1424					wake_up(&crc->go);
1425					goto out_finish;
1426				}
1427			}
1428		}
1429
1430		crc->run_threads = thr;
1431		atomic_set(&crc->ready, 1);
1432		wake_up(&crc->go);
1433	}
1434
1435out_finish:
1436	if (crc->run_threads) {
1437		wait_event(crc->done, atomic_read(&crc->stop));
1438		atomic_set(&crc->stop, 0);
1439	}
1440	stop = ktime_get();
1441	if (!ret) {
1442		pr_info("Image loading done\n");
1443		snapshot_write_finalize(snapshot);
1444		if (!snapshot_image_loaded(snapshot))
1445			ret = -ENODATA;
1446		if (!ret) {
1447			if (swsusp_header->flags & SF_CRC32_MODE) {
1448				if(handle->crc32 != swsusp_header->crc32) {
1449					pr_err("Invalid image CRC32!\n");
1450					ret = -ENODATA;
1451				}
1452			}
1453		}
1454	}
1455	swsusp_show_speed(start, stop, nr_to_read, "Read");
1456out_clean:
1457	hib_finish_batch(&hb);
1458	for (i = 0; i < ring_size; i++)
1459		free_page((unsigned long)page[i]);
1460	if (crc) {
1461		if (crc->thr)
1462			kthread_stop(crc->thr);
1463		kfree(crc);
1464	}
1465	if (data) {
1466		for (thr = 0; thr < nr_threads; thr++)
1467			if (data[thr].thr)
1468				kthread_stop(data[thr].thr);
 
 
 
1469		vfree(data);
1470	}
1471	vfree(page);
1472
1473	return ret;
1474}
1475
1476/**
1477 *	swsusp_read - read the hibernation image.
1478 *	@flags_p: flags passed by the "frozen" kernel in the image header should
1479 *		  be written into this memory location
1480 */
1481
1482int swsusp_read(unsigned int *flags_p)
1483{
1484	int error;
1485	struct swap_map_handle handle;
1486	struct snapshot_handle snapshot;
1487	struct swsusp_info *header;
1488
1489	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1490	error = snapshot_write_next(&snapshot);
1491	if (error < (int)PAGE_SIZE)
1492		return error < 0 ? error : -EFAULT;
1493	header = (struct swsusp_info *)data_of(snapshot);
1494	error = get_swap_reader(&handle, flags_p);
1495	if (error)
1496		goto end;
1497	if (!error)
1498		error = swap_read_page(&handle, header, NULL);
1499	if (!error) {
1500		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1501			load_image(&handle, &snapshot, header->pages - 1) :
1502			load_image_lzo(&handle, &snapshot, header->pages - 1);
1503	}
1504	swap_reader_finish(&handle);
1505end:
1506	if (!error)
1507		pr_debug("Image successfully loaded\n");
1508	else
1509		pr_debug("Error %d resuming\n", error);
1510	return error;
1511}
1512
 
 
1513/**
1514 *      swsusp_check - Check for swsusp signature in the resume device
 
1515 */
1516
1517int swsusp_check(void)
1518{
 
1519	int error;
1520	void *holder;
1521
1522	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1523					    FMODE_READ | FMODE_EXCL, &holder);
1524	if (!IS_ERR(hib_resume_bdev)) {
1525		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1526		clear_page(swsusp_header);
1527		error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1528					swsusp_header, NULL);
1529		if (error)
1530			goto put;
1531
1532		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1533			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
 
1534			/* Reset swap signature now */
1535			error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1536						swsusp_resume_block,
1537						swsusp_header, NULL);
1538		} else {
1539			error = -EINVAL;
1540		}
1541		if (!error && swsusp_header->flags & SF_HW_SIG &&
1542		    swsusp_header->hw_sig != swsusp_hardware_signature) {
1543			pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1544				swsusp_header->hw_sig, swsusp_hardware_signature);
1545			error = -EINVAL;
1546		}
1547
1548put:
1549		if (error)
1550			blkdev_put(hib_resume_bdev, FMODE_READ | FMODE_EXCL);
1551		else
1552			pr_debug("Image signature found, resuming\n");
1553	} else {
1554		error = PTR_ERR(hib_resume_bdev);
1555	}
1556
1557	if (error)
1558		pr_debug("Image not found (code %d)\n", error);
1559
1560	return error;
1561}
1562
1563/**
1564 *	swsusp_close - close swap device.
1565 */
1566
1567void swsusp_close(fmode_t mode)
1568{
1569	if (IS_ERR(hib_resume_bdev)) {
1570		pr_debug("Image device not initialised\n");
1571		return;
1572	}
1573
1574	blkdev_put(hib_resume_bdev, mode);
1575}
1576
1577/**
1578 *      swsusp_unmark - Unmark swsusp signature in the resume device
1579 */
1580
1581#ifdef CONFIG_SUSPEND
1582int swsusp_unmark(void)
1583{
1584	int error;
1585
1586	hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1587			swsusp_header, NULL);
1588	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1589		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1590		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1591					swsusp_resume_block,
1592					swsusp_header, NULL);
1593	} else {
1594		pr_err("Cannot find swsusp signature!\n");
1595		error = -ENODEV;
1596	}
1597
1598	/*
1599	 * We just returned from suspend, we don't need the image any more.
1600	 */
1601	free_all_swap_pages(root_swap);
1602
1603	return error;
1604}
1605#endif
1606
1607static int __init swsusp_header_init(void)
1608{
1609	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1610	if (!swsusp_header)
1611		panic("Could not allocate memory for swsusp_header\n");
1612	return 0;
1613}
1614
1615core_initcall(swsusp_header_init);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/swap.c
   4 *
   5 * This file provides functions for reading the suspend image from
   6 * and writing it to a swap partition.
   7 *
   8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
   9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
  11 */
  12
  13#define pr_fmt(fmt) "PM: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/file.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/device.h>
  20#include <linux/bio.h>
  21#include <linux/blkdev.h>
  22#include <linux/swap.h>
  23#include <linux/swapops.h>
  24#include <linux/pm.h>
  25#include <linux/slab.h>
 
  26#include <linux/vmalloc.h>
  27#include <linux/cpumask.h>
  28#include <linux/atomic.h>
  29#include <linux/kthread.h>
  30#include <linux/crc32.h>
  31#include <linux/ktime.h>
  32
  33#include "power.h"
  34
  35#define HIBERNATE_SIG	"S1SUSPEND"
  36
  37u32 swsusp_hardware_signature;
  38
  39/*
  40 * When reading an {un,}compressed image, we may restore pages in place,
  41 * in which case some architectures need these pages cleaning before they
  42 * can be executed. We don't know which pages these may be, so clean the lot.
  43 */
  44static bool clean_pages_on_read;
  45static bool clean_pages_on_decompress;
  46
  47/*
  48 *	The swap map is a data structure used for keeping track of each page
  49 *	written to a swap partition.  It consists of many swap_map_page
  50 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
  51 *	These structures are stored on the swap and linked together with the
  52 *	help of the .next_swap member.
  53 *
  54 *	The swap map is created during suspend.  The swap map pages are
  55 *	allocated and populated one at a time, so we only need one memory
  56 *	page to set up the entire structure.
  57 *
  58 *	During resume we pick up all swap_map_page structures into a list.
  59 */
  60
  61#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
  62
  63/*
  64 * Number of free pages that are not high.
  65 */
  66static inline unsigned long low_free_pages(void)
  67{
  68	return nr_free_pages() - nr_free_highpages();
  69}
  70
  71/*
  72 * Number of pages required to be kept free while writing the image. Always
  73 * half of all available low pages before the writing starts.
  74 */
  75static inline unsigned long reqd_free_pages(void)
  76{
  77	return low_free_pages() / 2;
  78}
  79
  80struct swap_map_page {
  81	sector_t entries[MAP_PAGE_ENTRIES];
  82	sector_t next_swap;
  83};
  84
  85struct swap_map_page_list {
  86	struct swap_map_page *map;
  87	struct swap_map_page_list *next;
  88};
  89
  90/*
  91 *	The swap_map_handle structure is used for handling swap in
  92 *	a file-alike way
  93 */
  94
  95struct swap_map_handle {
  96	struct swap_map_page *cur;
  97	struct swap_map_page_list *maps;
  98	sector_t cur_swap;
  99	sector_t first_sector;
 100	unsigned int k;
 101	unsigned long reqd_free_pages;
 102	u32 crc32;
 103};
 104
 105struct swsusp_header {
 106	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
 107	              sizeof(u32) - sizeof(u32)];
 108	u32	hw_sig;
 109	u32	crc32;
 110	sector_t image;
 111	unsigned int flags;	/* Flags to pass to the "boot" kernel */
 112	char	orig_sig[10];
 113	char	sig[10];
 114} __packed;
 115
 116static struct swsusp_header *swsusp_header;
 117
 118/*
 119 *	The following functions are used for tracing the allocated
 120 *	swap pages, so that they can be freed in case of an error.
 121 */
 122
 123struct swsusp_extent {
 124	struct rb_node node;
 125	unsigned long start;
 126	unsigned long end;
 127};
 128
 129static struct rb_root swsusp_extents = RB_ROOT;
 130
 131static int swsusp_extents_insert(unsigned long swap_offset)
 132{
 133	struct rb_node **new = &(swsusp_extents.rb_node);
 134	struct rb_node *parent = NULL;
 135	struct swsusp_extent *ext;
 136
 137	/* Figure out where to put the new node */
 138	while (*new) {
 139		ext = rb_entry(*new, struct swsusp_extent, node);
 140		parent = *new;
 141		if (swap_offset < ext->start) {
 142			/* Try to merge */
 143			if (swap_offset == ext->start - 1) {
 144				ext->start--;
 145				return 0;
 146			}
 147			new = &((*new)->rb_left);
 148		} else if (swap_offset > ext->end) {
 149			/* Try to merge */
 150			if (swap_offset == ext->end + 1) {
 151				ext->end++;
 152				return 0;
 153			}
 154			new = &((*new)->rb_right);
 155		} else {
 156			/* It already is in the tree */
 157			return -EINVAL;
 158		}
 159	}
 160	/* Add the new node and rebalance the tree. */
 161	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
 162	if (!ext)
 163		return -ENOMEM;
 164
 165	ext->start = swap_offset;
 166	ext->end = swap_offset;
 167	rb_link_node(&ext->node, parent, new);
 168	rb_insert_color(&ext->node, &swsusp_extents);
 169	return 0;
 170}
 171
 172/*
 173 *	alloc_swapdev_block - allocate a swap page and register that it has
 174 *	been allocated, so that it can be freed in case of an error.
 175 */
 176
 177sector_t alloc_swapdev_block(int swap)
 178{
 179	unsigned long offset;
 180
 181	offset = swp_offset(get_swap_page_of_type(swap));
 182	if (offset) {
 183		if (swsusp_extents_insert(offset))
 184			swap_free(swp_entry(swap, offset));
 185		else
 186			return swapdev_block(swap, offset);
 187	}
 188	return 0;
 189}
 190
 191/*
 192 *	free_all_swap_pages - free swap pages allocated for saving image data.
 193 *	It also frees the extents used to register which swap entries had been
 194 *	allocated.
 195 */
 196
 197void free_all_swap_pages(int swap)
 198{
 199	struct rb_node *node;
 200
 201	while ((node = swsusp_extents.rb_node)) {
 202		struct swsusp_extent *ext;
 203		unsigned long offset;
 204
 205		ext = rb_entry(node, struct swsusp_extent, node);
 206		rb_erase(node, &swsusp_extents);
 207		for (offset = ext->start; offset <= ext->end; offset++)
 208			swap_free(swp_entry(swap, offset));
 209
 210		kfree(ext);
 211	}
 212}
 213
 214int swsusp_swap_in_use(void)
 215{
 216	return (swsusp_extents.rb_node != NULL);
 217}
 218
 219/*
 220 * General things
 221 */
 222
 223static unsigned short root_swap = 0xffff;
 224static struct file *hib_resume_bdev_file;
 225
 226struct hib_bio_batch {
 227	atomic_t		count;
 228	wait_queue_head_t	wait;
 229	blk_status_t		error;
 230	struct blk_plug		plug;
 231};
 232
 233static void hib_init_batch(struct hib_bio_batch *hb)
 234{
 235	atomic_set(&hb->count, 0);
 236	init_waitqueue_head(&hb->wait);
 237	hb->error = BLK_STS_OK;
 238	blk_start_plug(&hb->plug);
 239}
 240
 241static void hib_finish_batch(struct hib_bio_batch *hb)
 242{
 243	blk_finish_plug(&hb->plug);
 244}
 245
 246static void hib_end_io(struct bio *bio)
 247{
 248	struct hib_bio_batch *hb = bio->bi_private;
 249	struct page *page = bio_first_page_all(bio);
 250
 251	if (bio->bi_status) {
 252		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
 253			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 254			 (unsigned long long)bio->bi_iter.bi_sector);
 255	}
 256
 257	if (bio_data_dir(bio) == WRITE)
 258		put_page(page);
 259	else if (clean_pages_on_read)
 260		flush_icache_range((unsigned long)page_address(page),
 261				   (unsigned long)page_address(page) + PAGE_SIZE);
 262
 263	if (bio->bi_status && !hb->error)
 264		hb->error = bio->bi_status;
 265	if (atomic_dec_and_test(&hb->count))
 266		wake_up(&hb->wait);
 267
 268	bio_put(bio);
 269}
 270
 271static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
 272			 struct hib_bio_batch *hb)
 273{
 274	struct page *page = virt_to_page(addr);
 275	struct bio *bio;
 276	int error = 0;
 277
 278	bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf,
 279			GFP_NOIO | __GFP_HIGH);
 280	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
 281
 282	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 283		pr_err("Adding page to bio failed at %llu\n",
 284		       (unsigned long long)bio->bi_iter.bi_sector);
 285		bio_put(bio);
 286		return -EFAULT;
 287	}
 288
 289	if (hb) {
 290		bio->bi_end_io = hib_end_io;
 291		bio->bi_private = hb;
 292		atomic_inc(&hb->count);
 293		submit_bio(bio);
 294	} else {
 295		error = submit_bio_wait(bio);
 296		bio_put(bio);
 297	}
 298
 299	return error;
 300}
 301
 302static int hib_wait_io(struct hib_bio_batch *hb)
 303{
 304	/*
 305	 * We are relying on the behavior of blk_plug that a thread with
 306	 * a plug will flush the plug list before sleeping.
 307	 */
 308	wait_event(hb->wait, atomic_read(&hb->count) == 0);
 309	return blk_status_to_errno(hb->error);
 310}
 311
 312/*
 313 * Saving part
 314 */
 315static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
 316{
 317	int error;
 318
 319	hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
 320	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
 321	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
 322		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
 323		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
 324		swsusp_header->image = handle->first_sector;
 325		if (swsusp_hardware_signature) {
 326			swsusp_header->hw_sig = swsusp_hardware_signature;
 327			flags |= SF_HW_SIG;
 328		}
 329		swsusp_header->flags = flags;
 330		if (flags & SF_CRC32_MODE)
 331			swsusp_header->crc32 = handle->crc32;
 332		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
 333				      swsusp_resume_block, swsusp_header, NULL);
 334	} else {
 335		pr_err("Swap header not found!\n");
 336		error = -ENODEV;
 337	}
 338	return error;
 339}
 340
 341/*
 342 * Hold the swsusp_header flag. This is used in software_resume() in
 343 * 'kernel/power/hibernate' to check if the image is compressed and query
 344 * for the compression algorithm support(if so).
 345 */
 346unsigned int swsusp_header_flags;
 347
 348/**
 349 *	swsusp_swap_check - check if the resume device is a swap device
 350 *	and get its index (if so)
 351 *
 352 *	This is called before saving image
 353 */
 354static int swsusp_swap_check(void)
 355{
 356	int res;
 357
 358	if (swsusp_resume_device)
 359		res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
 360	else
 361		res = find_first_swap(&swsusp_resume_device);
 362	if (res < 0)
 363		return res;
 364	root_swap = res;
 365
 366	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
 367			BLK_OPEN_WRITE, NULL, NULL);
 368	if (IS_ERR(hib_resume_bdev_file))
 369		return PTR_ERR(hib_resume_bdev_file);
 370
 371	res = set_blocksize(file_bdev(hib_resume_bdev_file), PAGE_SIZE);
 372	if (res < 0)
 373		fput(hib_resume_bdev_file);
 374
 375	return res;
 376}
 377
 378/**
 379 *	write_page - Write one page to given swap location.
 380 *	@buf:		Address we're writing.
 381 *	@offset:	Offset of the swap page we're writing to.
 382 *	@hb:		bio completion batch
 383 */
 384
 385static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
 386{
 387	void *src;
 388	int ret;
 389
 390	if (!offset)
 391		return -ENOSPC;
 392
 393	if (hb) {
 394		src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
 395		                              __GFP_NORETRY);
 396		if (src) {
 397			copy_page(src, buf);
 398		} else {
 399			ret = hib_wait_io(hb); /* Free pages */
 400			if (ret)
 401				return ret;
 402			src = (void *)__get_free_page(GFP_NOIO |
 403			                              __GFP_NOWARN |
 404			                              __GFP_NORETRY);
 405			if (src) {
 406				copy_page(src, buf);
 407			} else {
 408				WARN_ON_ONCE(1);
 409				hb = NULL;	/* Go synchronous */
 410				src = buf;
 411			}
 412		}
 413	} else {
 414		src = buf;
 415	}
 416	return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
 417}
 418
 419static void release_swap_writer(struct swap_map_handle *handle)
 420{
 421	if (handle->cur)
 422		free_page((unsigned long)handle->cur);
 423	handle->cur = NULL;
 424}
 425
 426static int get_swap_writer(struct swap_map_handle *handle)
 427{
 428	int ret;
 429
 430	ret = swsusp_swap_check();
 431	if (ret) {
 432		if (ret != -ENOSPC)
 433			pr_err("Cannot find swap device, try swapon -a\n");
 434		return ret;
 435	}
 436	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
 437	if (!handle->cur) {
 438		ret = -ENOMEM;
 439		goto err_close;
 440	}
 441	handle->cur_swap = alloc_swapdev_block(root_swap);
 442	if (!handle->cur_swap) {
 443		ret = -ENOSPC;
 444		goto err_rel;
 445	}
 446	handle->k = 0;
 447	handle->reqd_free_pages = reqd_free_pages();
 448	handle->first_sector = handle->cur_swap;
 449	return 0;
 450err_rel:
 451	release_swap_writer(handle);
 452err_close:
 453	swsusp_close();
 454	return ret;
 455}
 456
 457static int swap_write_page(struct swap_map_handle *handle, void *buf,
 458		struct hib_bio_batch *hb)
 459{
 460	int error;
 461	sector_t offset;
 462
 463	if (!handle->cur)
 464		return -EINVAL;
 465	offset = alloc_swapdev_block(root_swap);
 466	error = write_page(buf, offset, hb);
 467	if (error)
 468		return error;
 469	handle->cur->entries[handle->k++] = offset;
 470	if (handle->k >= MAP_PAGE_ENTRIES) {
 471		offset = alloc_swapdev_block(root_swap);
 472		if (!offset)
 473			return -ENOSPC;
 474		handle->cur->next_swap = offset;
 475		error = write_page(handle->cur, handle->cur_swap, hb);
 476		if (error)
 477			goto out;
 478		clear_page(handle->cur);
 479		handle->cur_swap = offset;
 480		handle->k = 0;
 481
 482		if (hb && low_free_pages() <= handle->reqd_free_pages) {
 483			error = hib_wait_io(hb);
 484			if (error)
 485				goto out;
 486			/*
 487			 * Recalculate the number of required free pages, to
 488			 * make sure we never take more than half.
 489			 */
 490			handle->reqd_free_pages = reqd_free_pages();
 491		}
 492	}
 493 out:
 494	return error;
 495}
 496
 497static int flush_swap_writer(struct swap_map_handle *handle)
 498{
 499	if (handle->cur && handle->cur_swap)
 500		return write_page(handle->cur, handle->cur_swap, NULL);
 501	else
 502		return -EINVAL;
 503}
 504
 505static int swap_writer_finish(struct swap_map_handle *handle,
 506		unsigned int flags, int error)
 507{
 508	if (!error) {
 509		pr_info("S");
 510		error = mark_swapfiles(handle, flags);
 511		pr_cont("|\n");
 512		flush_swap_writer(handle);
 513	}
 514
 515	if (error)
 516		free_all_swap_pages(root_swap);
 517	release_swap_writer(handle);
 518	swsusp_close();
 519
 520	return error;
 521}
 522
 523/*
 524 * Bytes we need for compressed data in worst case. We assume(limitation)
 525 * this is the worst of all the compression algorithms.
 526 */
 527#define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2)
 528
 529/* We need to remember how much compressed data we need to read. */
 530#define CMP_HEADER	sizeof(size_t)
 531
 532/* Number of pages/bytes we'll compress at one time. */
 533#define UNC_PAGES	32
 534#define UNC_SIZE	(UNC_PAGES * PAGE_SIZE)
 535
 536/* Number of pages we need for compressed data (worst case). */
 537#define CMP_PAGES	DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \
 538				CMP_HEADER, PAGE_SIZE)
 539#define CMP_SIZE	(CMP_PAGES * PAGE_SIZE)
 540
 541/* Maximum number of threads for compression/decompression. */
 542#define CMP_THREADS	3
 543
 544/* Minimum/maximum number of pages for read buffering. */
 545#define CMP_MIN_RD_PAGES	1024
 546#define CMP_MAX_RD_PAGES	8192
 
 547
 548/**
 549 *	save_image - save the suspend image data
 550 */
 551
 552static int save_image(struct swap_map_handle *handle,
 553                      struct snapshot_handle *snapshot,
 554                      unsigned int nr_to_write)
 555{
 556	unsigned int m;
 557	int ret;
 558	int nr_pages;
 559	int err2;
 560	struct hib_bio_batch hb;
 561	ktime_t start;
 562	ktime_t stop;
 563
 564	hib_init_batch(&hb);
 565
 566	pr_info("Saving image data pages (%u pages)...\n",
 567		nr_to_write);
 568	m = nr_to_write / 10;
 569	if (!m)
 570		m = 1;
 571	nr_pages = 0;
 572	start = ktime_get();
 573	while (1) {
 574		ret = snapshot_read_next(snapshot);
 575		if (ret <= 0)
 576			break;
 577		ret = swap_write_page(handle, data_of(*snapshot), &hb);
 578		if (ret)
 579			break;
 580		if (!(nr_pages % m))
 581			pr_info("Image saving progress: %3d%%\n",
 582				nr_pages / m * 10);
 583		nr_pages++;
 584	}
 585	err2 = hib_wait_io(&hb);
 586	hib_finish_batch(&hb);
 587	stop = ktime_get();
 588	if (!ret)
 589		ret = err2;
 590	if (!ret)
 591		pr_info("Image saving done\n");
 592	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 593	return ret;
 594}
 595
 596/*
 597 * Structure used for CRC32.
 598 */
 599struct crc_data {
 600	struct task_struct *thr;                  /* thread */
 601	atomic_t ready;                           /* ready to start flag */
 602	atomic_t stop;                            /* ready to stop flag */
 603	unsigned run_threads;                     /* nr current threads */
 604	wait_queue_head_t go;                     /* start crc update */
 605	wait_queue_head_t done;                   /* crc update done */
 606	u32 *crc32;                               /* points to handle's crc32 */
 607	size_t *unc_len[CMP_THREADS];             /* uncompressed lengths */
 608	unsigned char *unc[CMP_THREADS];          /* uncompressed data */
 609};
 610
 611/*
 612 * CRC32 update function that runs in its own thread.
 613 */
 614static int crc32_threadfn(void *data)
 615{
 616	struct crc_data *d = data;
 617	unsigned i;
 618
 619	while (1) {
 620		wait_event(d->go, atomic_read_acquire(&d->ready) ||
 621		                  kthread_should_stop());
 622		if (kthread_should_stop()) {
 623			d->thr = NULL;
 624			atomic_set_release(&d->stop, 1);
 625			wake_up(&d->done);
 626			break;
 627		}
 628		atomic_set(&d->ready, 0);
 629
 630		for (i = 0; i < d->run_threads; i++)
 631			*d->crc32 = crc32_le(*d->crc32,
 632			                     d->unc[i], *d->unc_len[i]);
 633		atomic_set_release(&d->stop, 1);
 634		wake_up(&d->done);
 635	}
 636	return 0;
 637}
 638/*
 639 * Structure used for data compression.
 640 */
 641struct cmp_data {
 642	struct task_struct *thr;                  /* thread */
 643	struct crypto_comp *cc;                   /* crypto compressor stream */
 644	atomic_t ready;                           /* ready to start flag */
 645	atomic_t stop;                            /* ready to stop flag */
 646	int ret;                                  /* return code */
 647	wait_queue_head_t go;                     /* start compression */
 648	wait_queue_head_t done;                   /* compression done */
 649	size_t unc_len;                           /* uncompressed length */
 650	size_t cmp_len;                           /* compressed length */
 651	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
 652	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
 
 653};
 654
 655/* Indicates the image size after compression */
 656static atomic_t compressed_size = ATOMIC_INIT(0);
 657
 658/*
 659 * Compression function that runs in its own thread.
 660 */
 661static int compress_threadfn(void *data)
 662{
 663	struct cmp_data *d = data;
 664	unsigned int cmp_len = 0;
 665
 666	while (1) {
 667		wait_event(d->go, atomic_read_acquire(&d->ready) ||
 668		                  kthread_should_stop());
 669		if (kthread_should_stop()) {
 670			d->thr = NULL;
 671			d->ret = -1;
 672			atomic_set_release(&d->stop, 1);
 673			wake_up(&d->done);
 674			break;
 675		}
 676		atomic_set(&d->ready, 0);
 677
 678		cmp_len = CMP_SIZE - CMP_HEADER;
 679		d->ret = crypto_comp_compress(d->cc, d->unc, d->unc_len,
 680					      d->cmp + CMP_HEADER,
 681					      &cmp_len);
 682		d->cmp_len = cmp_len;
 683
 684		atomic_set(&compressed_size, atomic_read(&compressed_size) + d->cmp_len);
 685		atomic_set_release(&d->stop, 1);
 686		wake_up(&d->done);
 687	}
 688	return 0;
 689}
 690
 691/**
 692 * save_compressed_image - Save the suspend image data after compression.
 693 * @handle: Swap map handle to use for saving the image.
 694 * @snapshot: Image to read data from.
 695 * @nr_to_write: Number of pages to save.
 696 */
 697static int save_compressed_image(struct swap_map_handle *handle,
 698				 struct snapshot_handle *snapshot,
 699				 unsigned int nr_to_write)
 700{
 701	unsigned int m;
 702	int ret = 0;
 703	int nr_pages;
 704	int err2;
 705	struct hib_bio_batch hb;
 706	ktime_t start;
 707	ktime_t stop;
 708	size_t off;
 709	unsigned thr, run_threads, nr_threads;
 710	unsigned char *page = NULL;
 711	struct cmp_data *data = NULL;
 712	struct crc_data *crc = NULL;
 713
 714	hib_init_batch(&hb);
 715
 716	atomic_set(&compressed_size, 0);
 717
 718	/*
 719	 * We'll limit the number of threads for compression to limit memory
 720	 * footprint.
 721	 */
 722	nr_threads = num_online_cpus() - 1;
 723	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
 724
 725	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
 726	if (!page) {
 727		pr_err("Failed to allocate %s page\n", hib_comp_algo);
 728		ret = -ENOMEM;
 729		goto out_clean;
 730	}
 731
 732	data = vzalloc(array_size(nr_threads, sizeof(*data)));
 733	if (!data) {
 734		pr_err("Failed to allocate %s data\n", hib_comp_algo);
 735		ret = -ENOMEM;
 736		goto out_clean;
 737	}
 738
 739	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
 740	if (!crc) {
 741		pr_err("Failed to allocate crc\n");
 742		ret = -ENOMEM;
 743		goto out_clean;
 744	}
 745
 746	/*
 747	 * Start the compression threads.
 748	 */
 749	for (thr = 0; thr < nr_threads; thr++) {
 750		init_waitqueue_head(&data[thr].go);
 751		init_waitqueue_head(&data[thr].done);
 752
 753		data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
 754		if (IS_ERR_OR_NULL(data[thr].cc)) {
 755			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
 756			ret = -EFAULT;
 757			goto out_clean;
 758		}
 759
 760		data[thr].thr = kthread_run(compress_threadfn,
 761		                            &data[thr],
 762		                            "image_compress/%u", thr);
 763		if (IS_ERR(data[thr].thr)) {
 764			data[thr].thr = NULL;
 765			pr_err("Cannot start compression threads\n");
 766			ret = -ENOMEM;
 767			goto out_clean;
 768		}
 769	}
 770
 771	/*
 772	 * Start the CRC32 thread.
 773	 */
 774	init_waitqueue_head(&crc->go);
 775	init_waitqueue_head(&crc->done);
 776
 777	handle->crc32 = 0;
 778	crc->crc32 = &handle->crc32;
 779	for (thr = 0; thr < nr_threads; thr++) {
 780		crc->unc[thr] = data[thr].unc;
 781		crc->unc_len[thr] = &data[thr].unc_len;
 782	}
 783
 784	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
 785	if (IS_ERR(crc->thr)) {
 786		crc->thr = NULL;
 787		pr_err("Cannot start CRC32 thread\n");
 788		ret = -ENOMEM;
 789		goto out_clean;
 790	}
 791
 792	/*
 793	 * Adjust the number of required free pages after all allocations have
 794	 * been done. We don't want to run out of pages when writing.
 795	 */
 796	handle->reqd_free_pages = reqd_free_pages();
 797
 798	pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo);
 799	pr_info("Compressing and saving image data (%u pages)...\n",
 800		nr_to_write);
 801	m = nr_to_write / 10;
 802	if (!m)
 803		m = 1;
 804	nr_pages = 0;
 805	start = ktime_get();
 806	for (;;) {
 807		for (thr = 0; thr < nr_threads; thr++) {
 808			for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) {
 809				ret = snapshot_read_next(snapshot);
 810				if (ret < 0)
 811					goto out_finish;
 812
 813				if (!ret)
 814					break;
 815
 816				memcpy(data[thr].unc + off,
 817				       data_of(*snapshot), PAGE_SIZE);
 818
 819				if (!(nr_pages % m))
 820					pr_info("Image saving progress: %3d%%\n",
 821						nr_pages / m * 10);
 822				nr_pages++;
 823			}
 824			if (!off)
 825				break;
 826
 827			data[thr].unc_len = off;
 828
 829			atomic_set_release(&data[thr].ready, 1);
 830			wake_up(&data[thr].go);
 831		}
 832
 833		if (!thr)
 834			break;
 835
 836		crc->run_threads = thr;
 837		atomic_set_release(&crc->ready, 1);
 838		wake_up(&crc->go);
 839
 840		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
 841			wait_event(data[thr].done,
 842				atomic_read_acquire(&data[thr].stop));
 843			atomic_set(&data[thr].stop, 0);
 844
 845			ret = data[thr].ret;
 846
 847			if (ret < 0) {
 848				pr_err("%s compression failed\n", hib_comp_algo);
 849				goto out_finish;
 850			}
 851
 852			if (unlikely(!data[thr].cmp_len ||
 853			             data[thr].cmp_len >
 854				     bytes_worst_compress(data[thr].unc_len))) {
 855				pr_err("Invalid %s compressed length\n", hib_comp_algo);
 856				ret = -1;
 857				goto out_finish;
 858			}
 859
 860			*(size_t *)data[thr].cmp = data[thr].cmp_len;
 861
 862			/*
 863			 * Given we are writing one page at a time to disk, we
 864			 * copy that much from the buffer, although the last
 865			 * bit will likely be smaller than full page. This is
 866			 * OK - we saved the length of the compressed data, so
 867			 * any garbage at the end will be discarded when we
 868			 * read it.
 869			 */
 870			for (off = 0;
 871			     off < CMP_HEADER + data[thr].cmp_len;
 872			     off += PAGE_SIZE) {
 873				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
 874
 875				ret = swap_write_page(handle, page, &hb);
 876				if (ret)
 877					goto out_finish;
 878			}
 879		}
 880
 881		wait_event(crc->done, atomic_read_acquire(&crc->stop));
 882		atomic_set(&crc->stop, 0);
 883	}
 884
 885out_finish:
 886	err2 = hib_wait_io(&hb);
 887	stop = ktime_get();
 888	if (!ret)
 889		ret = err2;
 890	if (!ret)
 891		pr_info("Image saving done\n");
 892	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 893	pr_info("Image size after compression: %d kbytes\n",
 894		(atomic_read(&compressed_size) / 1024));
 895
 896out_clean:
 897	hib_finish_batch(&hb);
 898	if (crc) {
 899		if (crc->thr)
 900			kthread_stop(crc->thr);
 901		kfree(crc);
 902	}
 903	if (data) {
 904		for (thr = 0; thr < nr_threads; thr++) {
 905			if (data[thr].thr)
 906				kthread_stop(data[thr].thr);
 907			if (data[thr].cc)
 908				crypto_free_comp(data[thr].cc);
 909		}
 910		vfree(data);
 911	}
 912	if (page) free_page((unsigned long)page);
 913
 914	return ret;
 915}
 916
 917/**
 918 *	enough_swap - Make sure we have enough swap to save the image.
 919 *
 920 *	Returns TRUE or FALSE after checking the total amount of swap
 921 *	space available from the resume partition.
 922 */
 923
 924static int enough_swap(unsigned int nr_pages)
 925{
 926	unsigned int free_swap = count_swap_pages(root_swap, 1);
 927	unsigned int required;
 928
 929	pr_debug("Free swap pages: %u\n", free_swap);
 930
 931	required = PAGES_FOR_IO + nr_pages;
 932	return free_swap > required;
 933}
 934
 935/**
 936 *	swsusp_write - Write entire image and metadata.
 937 *	@flags: flags to pass to the "boot" kernel in the image header
 938 *
 939 *	It is important _NOT_ to umount filesystems at this point. We want
 940 *	them synced (in case something goes wrong) but we DO not want to mark
 941 *	filesystem clean: it is not. (And it does not matter, if we resume
 942 *	correctly, we'll mark system clean, anyway.)
 943 */
 944
 945int swsusp_write(unsigned int flags)
 946{
 947	struct swap_map_handle handle;
 948	struct snapshot_handle snapshot;
 949	struct swsusp_info *header;
 950	unsigned long pages;
 951	int error;
 952
 953	pages = snapshot_get_image_size();
 954	error = get_swap_writer(&handle);
 955	if (error) {
 956		pr_err("Cannot get swap writer\n");
 957		return error;
 958	}
 959	if (flags & SF_NOCOMPRESS_MODE) {
 960		if (!enough_swap(pages)) {
 961			pr_err("Not enough free swap\n");
 962			error = -ENOSPC;
 963			goto out_finish;
 964		}
 965	}
 966	memset(&snapshot, 0, sizeof(struct snapshot_handle));
 967	error = snapshot_read_next(&snapshot);
 968	if (error < (int)PAGE_SIZE) {
 969		if (error >= 0)
 970			error = -EFAULT;
 971
 972		goto out_finish;
 973	}
 974	header = (struct swsusp_info *)data_of(snapshot);
 975	error = swap_write_page(&handle, header, NULL);
 976	if (!error) {
 977		error = (flags & SF_NOCOMPRESS_MODE) ?
 978			save_image(&handle, &snapshot, pages - 1) :
 979			save_compressed_image(&handle, &snapshot, pages - 1);
 980	}
 981out_finish:
 982	error = swap_writer_finish(&handle, flags, error);
 983	return error;
 984}
 985
 986/*
 987 *	The following functions allow us to read data using a swap map
 988 *	in a file-like way.
 989 */
 990
 991static void release_swap_reader(struct swap_map_handle *handle)
 992{
 993	struct swap_map_page_list *tmp;
 994
 995	while (handle->maps) {
 996		if (handle->maps->map)
 997			free_page((unsigned long)handle->maps->map);
 998		tmp = handle->maps;
 999		handle->maps = handle->maps->next;
1000		kfree(tmp);
1001	}
1002	handle->cur = NULL;
1003}
1004
1005static int get_swap_reader(struct swap_map_handle *handle,
1006		unsigned int *flags_p)
1007{
1008	int error;
1009	struct swap_map_page_list *tmp, *last;
1010	sector_t offset;
1011
1012	*flags_p = swsusp_header->flags;
1013
1014	if (!swsusp_header->image) /* how can this happen? */
1015		return -EINVAL;
1016
1017	handle->cur = NULL;
1018	last = handle->maps = NULL;
1019	offset = swsusp_header->image;
1020	while (offset) {
1021		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
1022		if (!tmp) {
1023			release_swap_reader(handle);
1024			return -ENOMEM;
1025		}
1026		if (!handle->maps)
1027			handle->maps = tmp;
1028		if (last)
1029			last->next = tmp;
1030		last = tmp;
1031
1032		tmp->map = (struct swap_map_page *)
1033			   __get_free_page(GFP_NOIO | __GFP_HIGH);
1034		if (!tmp->map) {
1035			release_swap_reader(handle);
1036			return -ENOMEM;
1037		}
1038
1039		error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1040		if (error) {
1041			release_swap_reader(handle);
1042			return error;
1043		}
1044		offset = tmp->map->next_swap;
1045	}
1046	handle->k = 0;
1047	handle->cur = handle->maps->map;
1048	return 0;
1049}
1050
1051static int swap_read_page(struct swap_map_handle *handle, void *buf,
1052		struct hib_bio_batch *hb)
1053{
1054	sector_t offset;
1055	int error;
1056	struct swap_map_page_list *tmp;
1057
1058	if (!handle->cur)
1059		return -EINVAL;
1060	offset = handle->cur->entries[handle->k];
1061	if (!offset)
1062		return -EFAULT;
1063	error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1064	if (error)
1065		return error;
1066	if (++handle->k >= MAP_PAGE_ENTRIES) {
1067		handle->k = 0;
1068		free_page((unsigned long)handle->maps->map);
1069		tmp = handle->maps;
1070		handle->maps = handle->maps->next;
1071		kfree(tmp);
1072		if (!handle->maps)
1073			release_swap_reader(handle);
1074		else
1075			handle->cur = handle->maps->map;
1076	}
1077	return error;
1078}
1079
1080static int swap_reader_finish(struct swap_map_handle *handle)
1081{
1082	release_swap_reader(handle);
1083
1084	return 0;
1085}
1086
1087/**
1088 *	load_image - load the image using the swap map handle
1089 *	@handle and the snapshot handle @snapshot
1090 *	(assume there are @nr_pages pages to load)
1091 */
1092
1093static int load_image(struct swap_map_handle *handle,
1094                      struct snapshot_handle *snapshot,
1095                      unsigned int nr_to_read)
1096{
1097	unsigned int m;
1098	int ret = 0;
1099	ktime_t start;
1100	ktime_t stop;
1101	struct hib_bio_batch hb;
1102	int err2;
1103	unsigned nr_pages;
1104
1105	hib_init_batch(&hb);
1106
1107	clean_pages_on_read = true;
1108	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1109	m = nr_to_read / 10;
1110	if (!m)
1111		m = 1;
1112	nr_pages = 0;
1113	start = ktime_get();
1114	for ( ; ; ) {
1115		ret = snapshot_write_next(snapshot);
1116		if (ret <= 0)
1117			break;
1118		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1119		if (ret)
1120			break;
1121		if (snapshot->sync_read)
1122			ret = hib_wait_io(&hb);
1123		if (ret)
1124			break;
1125		if (!(nr_pages % m))
1126			pr_info("Image loading progress: %3d%%\n",
1127				nr_pages / m * 10);
1128		nr_pages++;
1129	}
1130	err2 = hib_wait_io(&hb);
1131	hib_finish_batch(&hb);
1132	stop = ktime_get();
1133	if (!ret)
1134		ret = err2;
1135	if (!ret) {
1136		pr_info("Image loading done\n");
1137		ret = snapshot_write_finalize(snapshot);
1138		if (!ret && !snapshot_image_loaded(snapshot))
1139			ret = -ENODATA;
1140	}
1141	swsusp_show_speed(start, stop, nr_to_read, "Read");
1142	return ret;
1143}
1144
1145/*
1146 * Structure used for data decompression.
1147 */
1148struct dec_data {
1149	struct task_struct *thr;                  /* thread */
1150	struct crypto_comp *cc;                   /* crypto compressor stream */
1151	atomic_t ready;                           /* ready to start flag */
1152	atomic_t stop;                            /* ready to stop flag */
1153	int ret;                                  /* return code */
1154	wait_queue_head_t go;                     /* start decompression */
1155	wait_queue_head_t done;                   /* decompression done */
1156	size_t unc_len;                           /* uncompressed length */
1157	size_t cmp_len;                           /* compressed length */
1158	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
1159	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
1160};
1161
1162/*
1163 * Decompression function that runs in its own thread.
1164 */
1165static int decompress_threadfn(void *data)
1166{
1167	struct dec_data *d = data;
1168	unsigned int unc_len = 0;
1169
1170	while (1) {
1171		wait_event(d->go, atomic_read_acquire(&d->ready) ||
1172		                  kthread_should_stop());
1173		if (kthread_should_stop()) {
1174			d->thr = NULL;
1175			d->ret = -1;
1176			atomic_set_release(&d->stop, 1);
1177			wake_up(&d->done);
1178			break;
1179		}
1180		atomic_set(&d->ready, 0);
1181
1182		unc_len = UNC_SIZE;
1183		d->ret = crypto_comp_decompress(d->cc, d->cmp + CMP_HEADER, d->cmp_len,
1184						d->unc, &unc_len);
1185		d->unc_len = unc_len;
1186
1187		if (clean_pages_on_decompress)
1188			flush_icache_range((unsigned long)d->unc,
1189					   (unsigned long)d->unc + d->unc_len);
1190
1191		atomic_set_release(&d->stop, 1);
1192		wake_up(&d->done);
1193	}
1194	return 0;
1195}
1196
1197/**
1198 * load_compressed_image - Load compressed image data and decompress it.
1199 * @handle: Swap map handle to use for loading data.
1200 * @snapshot: Image to copy uncompressed data into.
1201 * @nr_to_read: Number of pages to load.
1202 */
1203static int load_compressed_image(struct swap_map_handle *handle,
1204				 struct snapshot_handle *snapshot,
1205				 unsigned int nr_to_read)
1206{
1207	unsigned int m;
1208	int ret = 0;
1209	int eof = 0;
1210	struct hib_bio_batch hb;
1211	ktime_t start;
1212	ktime_t stop;
1213	unsigned nr_pages;
1214	size_t off;
1215	unsigned i, thr, run_threads, nr_threads;
1216	unsigned ring = 0, pg = 0, ring_size = 0,
1217	         have = 0, want, need, asked = 0;
1218	unsigned long read_pages = 0;
1219	unsigned char **page = NULL;
1220	struct dec_data *data = NULL;
1221	struct crc_data *crc = NULL;
1222
1223	hib_init_batch(&hb);
1224
1225	/*
1226	 * We'll limit the number of threads for decompression to limit memory
1227	 * footprint.
1228	 */
1229	nr_threads = num_online_cpus() - 1;
1230	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
1231
1232	page = vmalloc(array_size(CMP_MAX_RD_PAGES, sizeof(*page)));
1233	if (!page) {
1234		pr_err("Failed to allocate %s page\n", hib_comp_algo);
1235		ret = -ENOMEM;
1236		goto out_clean;
1237	}
1238
1239	data = vzalloc(array_size(nr_threads, sizeof(*data)));
1240	if (!data) {
1241		pr_err("Failed to allocate %s data\n", hib_comp_algo);
1242		ret = -ENOMEM;
1243		goto out_clean;
1244	}
1245
1246	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1247	if (!crc) {
1248		pr_err("Failed to allocate crc\n");
1249		ret = -ENOMEM;
1250		goto out_clean;
1251	}
1252
1253	clean_pages_on_decompress = true;
1254
1255	/*
1256	 * Start the decompression threads.
1257	 */
1258	for (thr = 0; thr < nr_threads; thr++) {
1259		init_waitqueue_head(&data[thr].go);
1260		init_waitqueue_head(&data[thr].done);
1261
1262		data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
1263		if (IS_ERR_OR_NULL(data[thr].cc)) {
1264			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
1265			ret = -EFAULT;
1266			goto out_clean;
1267		}
1268
1269		data[thr].thr = kthread_run(decompress_threadfn,
1270		                            &data[thr],
1271		                            "image_decompress/%u", thr);
1272		if (IS_ERR(data[thr].thr)) {
1273			data[thr].thr = NULL;
1274			pr_err("Cannot start decompression threads\n");
1275			ret = -ENOMEM;
1276			goto out_clean;
1277		}
1278	}
1279
1280	/*
1281	 * Start the CRC32 thread.
1282	 */
1283	init_waitqueue_head(&crc->go);
1284	init_waitqueue_head(&crc->done);
1285
1286	handle->crc32 = 0;
1287	crc->crc32 = &handle->crc32;
1288	for (thr = 0; thr < nr_threads; thr++) {
1289		crc->unc[thr] = data[thr].unc;
1290		crc->unc_len[thr] = &data[thr].unc_len;
1291	}
1292
1293	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1294	if (IS_ERR(crc->thr)) {
1295		crc->thr = NULL;
1296		pr_err("Cannot start CRC32 thread\n");
1297		ret = -ENOMEM;
1298		goto out_clean;
1299	}
1300
1301	/*
1302	 * Set the number of pages for read buffering.
1303	 * This is complete guesswork, because we'll only know the real
1304	 * picture once prepare_image() is called, which is much later on
1305	 * during the image load phase. We'll assume the worst case and
1306	 * say that none of the image pages are from high memory.
1307	 */
1308	if (low_free_pages() > snapshot_get_image_size())
1309		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1310	read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES);
1311
1312	for (i = 0; i < read_pages; i++) {
1313		page[i] = (void *)__get_free_page(i < CMP_PAGES ?
1314						  GFP_NOIO | __GFP_HIGH :
1315						  GFP_NOIO | __GFP_NOWARN |
1316						  __GFP_NORETRY);
1317
1318		if (!page[i]) {
1319			if (i < CMP_PAGES) {
1320				ring_size = i;
1321				pr_err("Failed to allocate %s pages\n", hib_comp_algo);
1322				ret = -ENOMEM;
1323				goto out_clean;
1324			} else {
1325				break;
1326			}
1327		}
1328	}
1329	want = ring_size = i;
1330
1331	pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo);
1332	pr_info("Loading and decompressing image data (%u pages)...\n",
1333		nr_to_read);
1334	m = nr_to_read / 10;
1335	if (!m)
1336		m = 1;
1337	nr_pages = 0;
1338	start = ktime_get();
1339
1340	ret = snapshot_write_next(snapshot);
1341	if (ret <= 0)
1342		goto out_finish;
1343
1344	for(;;) {
1345		for (i = 0; !eof && i < want; i++) {
1346			ret = swap_read_page(handle, page[ring], &hb);
1347			if (ret) {
1348				/*
1349				 * On real read error, finish. On end of data,
1350				 * set EOF flag and just exit the read loop.
1351				 */
1352				if (handle->cur &&
1353				    handle->cur->entries[handle->k]) {
1354					goto out_finish;
1355				} else {
1356					eof = 1;
1357					break;
1358				}
1359			}
1360			if (++ring >= ring_size)
1361				ring = 0;
1362		}
1363		asked += i;
1364		want -= i;
1365
1366		/*
1367		 * We are out of data, wait for some more.
1368		 */
1369		if (!have) {
1370			if (!asked)
1371				break;
1372
1373			ret = hib_wait_io(&hb);
1374			if (ret)
1375				goto out_finish;
1376			have += asked;
1377			asked = 0;
1378			if (eof)
1379				eof = 2;
1380		}
1381
1382		if (crc->run_threads) {
1383			wait_event(crc->done, atomic_read_acquire(&crc->stop));
1384			atomic_set(&crc->stop, 0);
1385			crc->run_threads = 0;
1386		}
1387
1388		for (thr = 0; have && thr < nr_threads; thr++) {
1389			data[thr].cmp_len = *(size_t *)page[pg];
1390			if (unlikely(!data[thr].cmp_len ||
1391			             data[thr].cmp_len >
1392					bytes_worst_compress(UNC_SIZE))) {
1393				pr_err("Invalid %s compressed length\n", hib_comp_algo);
1394				ret = -1;
1395				goto out_finish;
1396			}
1397
1398			need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER,
1399			                    PAGE_SIZE);
1400			if (need > have) {
1401				if (eof > 1) {
1402					ret = -1;
1403					goto out_finish;
1404				}
1405				break;
1406			}
1407
1408			for (off = 0;
1409			     off < CMP_HEADER + data[thr].cmp_len;
1410			     off += PAGE_SIZE) {
1411				memcpy(data[thr].cmp + off,
1412				       page[pg], PAGE_SIZE);
1413				have--;
1414				want++;
1415				if (++pg >= ring_size)
1416					pg = 0;
1417			}
1418
1419			atomic_set_release(&data[thr].ready, 1);
1420			wake_up(&data[thr].go);
1421		}
1422
1423		/*
1424		 * Wait for more data while we are decompressing.
1425		 */
1426		if (have < CMP_PAGES && asked) {
1427			ret = hib_wait_io(&hb);
1428			if (ret)
1429				goto out_finish;
1430			have += asked;
1431			asked = 0;
1432			if (eof)
1433				eof = 2;
1434		}
1435
1436		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1437			wait_event(data[thr].done,
1438				atomic_read_acquire(&data[thr].stop));
1439			atomic_set(&data[thr].stop, 0);
1440
1441			ret = data[thr].ret;
1442
1443			if (ret < 0) {
1444				pr_err("%s decompression failed\n", hib_comp_algo);
1445				goto out_finish;
1446			}
1447
1448			if (unlikely(!data[thr].unc_len ||
1449				data[thr].unc_len > UNC_SIZE ||
1450				data[thr].unc_len & (PAGE_SIZE - 1))) {
1451				pr_err("Invalid %s uncompressed length\n", hib_comp_algo);
1452				ret = -1;
1453				goto out_finish;
1454			}
1455
1456			for (off = 0;
1457			     off < data[thr].unc_len; off += PAGE_SIZE) {
1458				memcpy(data_of(*snapshot),
1459				       data[thr].unc + off, PAGE_SIZE);
1460
1461				if (!(nr_pages % m))
1462					pr_info("Image loading progress: %3d%%\n",
1463						nr_pages / m * 10);
1464				nr_pages++;
1465
1466				ret = snapshot_write_next(snapshot);
1467				if (ret <= 0) {
1468					crc->run_threads = thr + 1;
1469					atomic_set_release(&crc->ready, 1);
1470					wake_up(&crc->go);
1471					goto out_finish;
1472				}
1473			}
1474		}
1475
1476		crc->run_threads = thr;
1477		atomic_set_release(&crc->ready, 1);
1478		wake_up(&crc->go);
1479	}
1480
1481out_finish:
1482	if (crc->run_threads) {
1483		wait_event(crc->done, atomic_read_acquire(&crc->stop));
1484		atomic_set(&crc->stop, 0);
1485	}
1486	stop = ktime_get();
1487	if (!ret) {
1488		pr_info("Image loading done\n");
1489		ret = snapshot_write_finalize(snapshot);
1490		if (!ret && !snapshot_image_loaded(snapshot))
1491			ret = -ENODATA;
1492		if (!ret) {
1493			if (swsusp_header->flags & SF_CRC32_MODE) {
1494				if(handle->crc32 != swsusp_header->crc32) {
1495					pr_err("Invalid image CRC32!\n");
1496					ret = -ENODATA;
1497				}
1498			}
1499		}
1500	}
1501	swsusp_show_speed(start, stop, nr_to_read, "Read");
1502out_clean:
1503	hib_finish_batch(&hb);
1504	for (i = 0; i < ring_size; i++)
1505		free_page((unsigned long)page[i]);
1506	if (crc) {
1507		if (crc->thr)
1508			kthread_stop(crc->thr);
1509		kfree(crc);
1510	}
1511	if (data) {
1512		for (thr = 0; thr < nr_threads; thr++) {
1513			if (data[thr].thr)
1514				kthread_stop(data[thr].thr);
1515			if (data[thr].cc)
1516				crypto_free_comp(data[thr].cc);
1517		}
1518		vfree(data);
1519	}
1520	vfree(page);
1521
1522	return ret;
1523}
1524
1525/**
1526 *	swsusp_read - read the hibernation image.
1527 *	@flags_p: flags passed by the "frozen" kernel in the image header should
1528 *		  be written into this memory location
1529 */
1530
1531int swsusp_read(unsigned int *flags_p)
1532{
1533	int error;
1534	struct swap_map_handle handle;
1535	struct snapshot_handle snapshot;
1536	struct swsusp_info *header;
1537
1538	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1539	error = snapshot_write_next(&snapshot);
1540	if (error < (int)PAGE_SIZE)
1541		return error < 0 ? error : -EFAULT;
1542	header = (struct swsusp_info *)data_of(snapshot);
1543	error = get_swap_reader(&handle, flags_p);
1544	if (error)
1545		goto end;
1546	if (!error)
1547		error = swap_read_page(&handle, header, NULL);
1548	if (!error) {
1549		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1550			load_image(&handle, &snapshot, header->pages - 1) :
1551			load_compressed_image(&handle, &snapshot, header->pages - 1);
1552	}
1553	swap_reader_finish(&handle);
1554end:
1555	if (!error)
1556		pr_debug("Image successfully loaded\n");
1557	else
1558		pr_debug("Error %d resuming\n", error);
1559	return error;
1560}
1561
1562static void *swsusp_holder;
1563
1564/**
1565 * swsusp_check - Open the resume device and check for the swsusp signature.
1566 * @exclusive: Open the resume device exclusively.
1567 */
1568
1569int swsusp_check(bool exclusive)
1570{
1571	void *holder = exclusive ? &swsusp_holder : NULL;
1572	int error;
 
1573
1574	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
1575				BLK_OPEN_READ, holder, NULL);
1576	if (!IS_ERR(hib_resume_bdev_file)) {
1577		set_blocksize(file_bdev(hib_resume_bdev_file), PAGE_SIZE);
1578		clear_page(swsusp_header);
1579		error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1580					swsusp_header, NULL);
1581		if (error)
1582			goto put;
1583
1584		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1585			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1586			swsusp_header_flags = swsusp_header->flags;
1587			/* Reset swap signature now */
1588			error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1589						swsusp_resume_block,
1590						swsusp_header, NULL);
1591		} else {
1592			error = -EINVAL;
1593		}
1594		if (!error && swsusp_header->flags & SF_HW_SIG &&
1595		    swsusp_header->hw_sig != swsusp_hardware_signature) {
1596			pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1597				swsusp_header->hw_sig, swsusp_hardware_signature);
1598			error = -EINVAL;
1599		}
1600
1601put:
1602		if (error)
1603			fput(hib_resume_bdev_file);
1604		else
1605			pr_debug("Image signature found, resuming\n");
1606	} else {
1607		error = PTR_ERR(hib_resume_bdev_file);
1608	}
1609
1610	if (error)
1611		pr_debug("Image not found (code %d)\n", error);
1612
1613	return error;
1614}
1615
1616/**
1617 * swsusp_close - close resume device.
1618 */
1619
1620void swsusp_close(void)
1621{
1622	if (IS_ERR(hib_resume_bdev_file)) {
1623		pr_debug("Image device not initialised\n");
1624		return;
1625	}
1626
1627	fput(hib_resume_bdev_file);
1628}
1629
1630/**
1631 *      swsusp_unmark - Unmark swsusp signature in the resume device
1632 */
1633
1634#ifdef CONFIG_SUSPEND
1635int swsusp_unmark(void)
1636{
1637	int error;
1638
1639	hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1640			swsusp_header, NULL);
1641	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1642		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1643		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1644					swsusp_resume_block,
1645					swsusp_header, NULL);
1646	} else {
1647		pr_err("Cannot find swsusp signature!\n");
1648		error = -ENODEV;
1649	}
1650
1651	/*
1652	 * We just returned from suspend, we don't need the image any more.
1653	 */
1654	free_all_swap_pages(root_swap);
1655
1656	return error;
1657}
1658#endif
1659
1660static int __init swsusp_header_init(void)
1661{
1662	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1663	if (!swsusp_header)
1664		panic("Could not allocate memory for swsusp_header\n");
1665	return 0;
1666}
1667
1668core_initcall(swsusp_header_init);