Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/swap.c
   4 *
   5 * This file provides functions for reading the suspend image from
   6 * and writing it to a swap partition.
   7 *
   8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
   9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
 
 
 
  11 */
  12
  13#define pr_fmt(fmt) "PM: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/file.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
 
  19#include <linux/device.h>
  20#include <linux/bio.h>
  21#include <linux/blkdev.h>
  22#include <linux/swap.h>
  23#include <linux/swapops.h>
  24#include <linux/pm.h>
  25#include <linux/slab.h>
  26#include <linux/lzo.h>
  27#include <linux/vmalloc.h>
  28#include <linux/cpumask.h>
  29#include <linux/atomic.h>
  30#include <linux/kthread.h>
  31#include <linux/crc32.h>
  32#include <linux/ktime.h>
  33
  34#include "power.h"
  35
  36#define HIBERNATE_SIG	"S1SUSPEND"
  37
  38u32 swsusp_hardware_signature;
  39
  40/*
  41 * When reading an {un,}compressed image, we may restore pages in place,
  42 * in which case some architectures need these pages cleaning before they
  43 * can be executed. We don't know which pages these may be, so clean the lot.
  44 */
  45static bool clean_pages_on_read;
  46static bool clean_pages_on_decompress;
  47
  48/*
  49 *	The swap map is a data structure used for keeping track of each page
  50 *	written to a swap partition.  It consists of many swap_map_page
  51 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
  52 *	These structures are stored on the swap and linked together with the
  53 *	help of the .next_swap member.
  54 *
  55 *	The swap map is created during suspend.  The swap map pages are
  56 *	allocated and populated one at a time, so we only need one memory
  57 *	page to set up the entire structure.
  58 *
  59 *	During resume we pick up all swap_map_page structures into a list.
  60 */
  61
  62#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
  63
  64/*
  65 * Number of free pages that are not high.
  66 */
  67static inline unsigned long low_free_pages(void)
  68{
  69	return nr_free_pages() - nr_free_highpages();
  70}
  71
  72/*
  73 * Number of pages required to be kept free while writing the image. Always
  74 * half of all available low pages before the writing starts.
  75 */
  76static inline unsigned long reqd_free_pages(void)
  77{
  78	return low_free_pages() / 2;
  79}
  80
  81struct swap_map_page {
  82	sector_t entries[MAP_PAGE_ENTRIES];
  83	sector_t next_swap;
  84};
  85
  86struct swap_map_page_list {
  87	struct swap_map_page *map;
  88	struct swap_map_page_list *next;
  89};
  90
  91/*
  92 *	The swap_map_handle structure is used for handling swap in
  93 *	a file-alike way
  94 */
  95
  96struct swap_map_handle {
  97	struct swap_map_page *cur;
  98	struct swap_map_page_list *maps;
  99	sector_t cur_swap;
 100	sector_t first_sector;
 101	unsigned int k;
 102	unsigned long reqd_free_pages;
 103	u32 crc32;
 104};
 105
 106struct swsusp_header {
 107	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
 108	              sizeof(u32) - sizeof(u32)];
 109	u32	hw_sig;
 110	u32	crc32;
 111	sector_t image;
 112	unsigned int flags;	/* Flags to pass to the "boot" kernel */
 113	char	orig_sig[10];
 114	char	sig[10];
 115} __packed;
 116
 117static struct swsusp_header *swsusp_header;
 118
 119/*
 120 *	The following functions are used for tracing the allocated
 121 *	swap pages, so that they can be freed in case of an error.
 122 */
 123
 124struct swsusp_extent {
 125	struct rb_node node;
 126	unsigned long start;
 127	unsigned long end;
 128};
 129
 130static struct rb_root swsusp_extents = RB_ROOT;
 131
 132static int swsusp_extents_insert(unsigned long swap_offset)
 133{
 134	struct rb_node **new = &(swsusp_extents.rb_node);
 135	struct rb_node *parent = NULL;
 136	struct swsusp_extent *ext;
 137
 138	/* Figure out where to put the new node */
 139	while (*new) {
 140		ext = rb_entry(*new, struct swsusp_extent, node);
 141		parent = *new;
 142		if (swap_offset < ext->start) {
 143			/* Try to merge */
 144			if (swap_offset == ext->start - 1) {
 145				ext->start--;
 146				return 0;
 147			}
 148			new = &((*new)->rb_left);
 149		} else if (swap_offset > ext->end) {
 150			/* Try to merge */
 151			if (swap_offset == ext->end + 1) {
 152				ext->end++;
 153				return 0;
 154			}
 155			new = &((*new)->rb_right);
 156		} else {
 157			/* It already is in the tree */
 158			return -EINVAL;
 159		}
 160	}
 161	/* Add the new node and rebalance the tree. */
 162	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
 163	if (!ext)
 164		return -ENOMEM;
 165
 166	ext->start = swap_offset;
 167	ext->end = swap_offset;
 168	rb_link_node(&ext->node, parent, new);
 169	rb_insert_color(&ext->node, &swsusp_extents);
 170	return 0;
 171}
 172
 173/*
 174 *	alloc_swapdev_block - allocate a swap page and register that it has
 175 *	been allocated, so that it can be freed in case of an error.
 176 */
 177
 178sector_t alloc_swapdev_block(int swap)
 179{
 180	unsigned long offset;
 181
 182	offset = swp_offset(get_swap_page_of_type(swap));
 183	if (offset) {
 184		if (swsusp_extents_insert(offset))
 185			swap_free(swp_entry(swap, offset));
 186		else
 187			return swapdev_block(swap, offset);
 188	}
 189	return 0;
 190}
 191
 192/*
 193 *	free_all_swap_pages - free swap pages allocated for saving image data.
 194 *	It also frees the extents used to register which swap entries had been
 195 *	allocated.
 196 */
 197
 198void free_all_swap_pages(int swap)
 199{
 200	struct rb_node *node;
 201
 202	while ((node = swsusp_extents.rb_node)) {
 203		struct swsusp_extent *ext;
 204		unsigned long offset;
 205
 206		ext = rb_entry(node, struct swsusp_extent, node);
 207		rb_erase(node, &swsusp_extents);
 208		for (offset = ext->start; offset <= ext->end; offset++)
 209			swap_free(swp_entry(swap, offset));
 210
 211		kfree(ext);
 212	}
 213}
 214
 215int swsusp_swap_in_use(void)
 216{
 217	return (swsusp_extents.rb_node != NULL);
 218}
 219
 220/*
 221 * General things
 222 */
 223
 224static unsigned short root_swap = 0xffff;
 225static struct block_device *hib_resume_bdev;
 226
 227struct hib_bio_batch {
 228	atomic_t		count;
 229	wait_queue_head_t	wait;
 230	blk_status_t		error;
 231	struct blk_plug		plug;
 232};
 233
 234static void hib_init_batch(struct hib_bio_batch *hb)
 235{
 236	atomic_set(&hb->count, 0);
 237	init_waitqueue_head(&hb->wait);
 238	hb->error = BLK_STS_OK;
 239	blk_start_plug(&hb->plug);
 240}
 241
 242static void hib_finish_batch(struct hib_bio_batch *hb)
 243{
 244	blk_finish_plug(&hb->plug);
 245}
 246
 247static void hib_end_io(struct bio *bio)
 248{
 249	struct hib_bio_batch *hb = bio->bi_private;
 250	struct page *page = bio_first_page_all(bio);
 251
 252	if (bio->bi_status) {
 253		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
 254			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 255			 (unsigned long long)bio->bi_iter.bi_sector);
 
 256	}
 257
 258	if (bio_data_dir(bio) == WRITE)
 259		put_page(page);
 260	else if (clean_pages_on_read)
 261		flush_icache_range((unsigned long)page_address(page),
 262				   (unsigned long)page_address(page) + PAGE_SIZE);
 263
 264	if (bio->bi_status && !hb->error)
 265		hb->error = bio->bi_status;
 266	if (atomic_dec_and_test(&hb->count))
 267		wake_up(&hb->wait);
 268
 269	bio_put(bio);
 270}
 271
 272static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
 273			 struct hib_bio_batch *hb)
 274{
 275	struct page *page = virt_to_page(addr);
 276	struct bio *bio;
 277	int error = 0;
 278
 279	bio = bio_alloc(hib_resume_bdev, 1, opf, GFP_NOIO | __GFP_HIGH);
 280	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
 
 
 281
 282	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 283		pr_err("Adding page to bio failed at %llu\n",
 284		       (unsigned long long)bio->bi_iter.bi_sector);
 285		bio_put(bio);
 286		return -EFAULT;
 287	}
 288
 289	if (hb) {
 290		bio->bi_end_io = hib_end_io;
 291		bio->bi_private = hb;
 292		atomic_inc(&hb->count);
 293		submit_bio(bio);
 294	} else {
 295		error = submit_bio_wait(bio);
 296		bio_put(bio);
 297	}
 298
 299	return error;
 300}
 301
 302static int hib_wait_io(struct hib_bio_batch *hb)
 303{
 304	/*
 305	 * We are relying on the behavior of blk_plug that a thread with
 306	 * a plug will flush the plug list before sleeping.
 307	 */
 308	wait_event(hb->wait, atomic_read(&hb->count) == 0);
 309	return blk_status_to_errno(hb->error);
 310}
 311
 312/*
 313 * Saving part
 314 */
 
 315static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
 316{
 317	int error;
 318
 319	hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
 
 320	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
 321	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
 322		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
 323		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
 324		swsusp_header->image = handle->first_sector;
 325		if (swsusp_hardware_signature) {
 326			swsusp_header->hw_sig = swsusp_hardware_signature;
 327			flags |= SF_HW_SIG;
 328		}
 329		swsusp_header->flags = flags;
 330		if (flags & SF_CRC32_MODE)
 331			swsusp_header->crc32 = handle->crc32;
 332		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
 333				      swsusp_resume_block, swsusp_header, NULL);
 334	} else {
 335		pr_err("Swap header not found!\n");
 336		error = -ENODEV;
 337	}
 338	return error;
 339}
 340
 341/**
 342 *	swsusp_swap_check - check if the resume device is a swap device
 343 *	and get its index (if so)
 344 *
 345 *	This is called before saving image
 346 */
 347static int swsusp_swap_check(void)
 348{
 349	int res;
 350
 351	if (swsusp_resume_device)
 352		res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
 353	else
 354		res = find_first_swap(&swsusp_resume_device);
 355	if (res < 0)
 356		return res;
 357	root_swap = res;
 358
 359	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, FMODE_WRITE,
 360			NULL);
 361	if (IS_ERR(hib_resume_bdev))
 362		return PTR_ERR(hib_resume_bdev);
 363
 364	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
 365	if (res < 0)
 366		blkdev_put(hib_resume_bdev, FMODE_WRITE);
 367
 
 
 
 
 
 
 368	return res;
 369}
 370
 371/**
 372 *	write_page - Write one page to given swap location.
 373 *	@buf:		Address we're writing.
 374 *	@offset:	Offset of the swap page we're writing to.
 375 *	@hb:		bio completion batch
 376 */
 377
 378static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
 379{
 380	void *src;
 381	int ret;
 382
 383	if (!offset)
 384		return -ENOSPC;
 385
 386	if (hb) {
 387		src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
 388		                              __GFP_NORETRY);
 389		if (src) {
 390			copy_page(src, buf);
 391		} else {
 392			ret = hib_wait_io(hb); /* Free pages */
 393			if (ret)
 394				return ret;
 395			src = (void *)__get_free_page(GFP_NOIO |
 396			                              __GFP_NOWARN |
 397			                              __GFP_NORETRY);
 398			if (src) {
 399				copy_page(src, buf);
 400			} else {
 401				WARN_ON_ONCE(1);
 402				hb = NULL;	/* Go synchronous */
 403				src = buf;
 404			}
 405		}
 406	} else {
 407		src = buf;
 408	}
 409	return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
 410}
 411
 412static void release_swap_writer(struct swap_map_handle *handle)
 413{
 414	if (handle->cur)
 415		free_page((unsigned long)handle->cur);
 416	handle->cur = NULL;
 417}
 418
 419static int get_swap_writer(struct swap_map_handle *handle)
 420{
 421	int ret;
 422
 423	ret = swsusp_swap_check();
 424	if (ret) {
 425		if (ret != -ENOSPC)
 426			pr_err("Cannot find swap device, try swapon -a\n");
 
 427		return ret;
 428	}
 429	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
 430	if (!handle->cur) {
 431		ret = -ENOMEM;
 432		goto err_close;
 433	}
 434	handle->cur_swap = alloc_swapdev_block(root_swap);
 435	if (!handle->cur_swap) {
 436		ret = -ENOSPC;
 437		goto err_rel;
 438	}
 439	handle->k = 0;
 440	handle->reqd_free_pages = reqd_free_pages();
 441	handle->first_sector = handle->cur_swap;
 442	return 0;
 443err_rel:
 444	release_swap_writer(handle);
 445err_close:
 446	swsusp_close(FMODE_WRITE);
 447	return ret;
 448}
 449
 450static int swap_write_page(struct swap_map_handle *handle, void *buf,
 451		struct hib_bio_batch *hb)
 452{
 453	int error = 0;
 454	sector_t offset;
 455
 456	if (!handle->cur)
 457		return -EINVAL;
 458	offset = alloc_swapdev_block(root_swap);
 459	error = write_page(buf, offset, hb);
 460	if (error)
 461		return error;
 462	handle->cur->entries[handle->k++] = offset;
 463	if (handle->k >= MAP_PAGE_ENTRIES) {
 464		offset = alloc_swapdev_block(root_swap);
 465		if (!offset)
 466			return -ENOSPC;
 467		handle->cur->next_swap = offset;
 468		error = write_page(handle->cur, handle->cur_swap, hb);
 469		if (error)
 470			goto out;
 471		clear_page(handle->cur);
 472		handle->cur_swap = offset;
 473		handle->k = 0;
 474
 475		if (hb && low_free_pages() <= handle->reqd_free_pages) {
 476			error = hib_wait_io(hb);
 477			if (error)
 478				goto out;
 479			/*
 480			 * Recalculate the number of required free pages, to
 481			 * make sure we never take more than half.
 482			 */
 483			handle->reqd_free_pages = reqd_free_pages();
 484		}
 485	}
 486 out:
 487	return error;
 488}
 489
 490static int flush_swap_writer(struct swap_map_handle *handle)
 491{
 492	if (handle->cur && handle->cur_swap)
 493		return write_page(handle->cur, handle->cur_swap, NULL);
 494	else
 495		return -EINVAL;
 496}
 497
 498static int swap_writer_finish(struct swap_map_handle *handle,
 499		unsigned int flags, int error)
 500{
 501	if (!error) {
 502		pr_info("S");
 503		error = mark_swapfiles(handle, flags);
 504		pr_cont("|\n");
 505		flush_swap_writer(handle);
 
 
 
 506	}
 507
 508	if (error)
 509		free_all_swap_pages(root_swap);
 510	release_swap_writer(handle);
 511	swsusp_close(FMODE_WRITE);
 512
 513	return error;
 514}
 515
 516/* We need to remember how much compressed data we need to read. */
 517#define LZO_HEADER	sizeof(size_t)
 518
 519/* Number of pages/bytes we'll compress at one time. */
 520#define LZO_UNC_PAGES	32
 521#define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
 522
 523/* Number of pages/bytes we need for compressed data (worst case). */
 524#define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
 525			             LZO_HEADER, PAGE_SIZE)
 526#define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
 527
 528/* Maximum number of threads for compression/decompression. */
 529#define LZO_THREADS	3
 530
 531/* Minimum/maximum number of pages for read buffering. */
 532#define LZO_MIN_RD_PAGES	1024
 533#define LZO_MAX_RD_PAGES	8192
 534
 535
 536/**
 537 *	save_image - save the suspend image data
 538 */
 539
 540static int save_image(struct swap_map_handle *handle,
 541                      struct snapshot_handle *snapshot,
 542                      unsigned int nr_to_write)
 543{
 544	unsigned int m;
 545	int ret;
 546	int nr_pages;
 547	int err2;
 548	struct hib_bio_batch hb;
 549	ktime_t start;
 550	ktime_t stop;
 551
 552	hib_init_batch(&hb);
 553
 554	pr_info("Saving image data pages (%u pages)...\n",
 555		nr_to_write);
 556	m = nr_to_write / 10;
 557	if (!m)
 558		m = 1;
 559	nr_pages = 0;
 560	start = ktime_get();
 561	while (1) {
 562		ret = snapshot_read_next(snapshot);
 563		if (ret <= 0)
 564			break;
 565		ret = swap_write_page(handle, data_of(*snapshot), &hb);
 566		if (ret)
 567			break;
 568		if (!(nr_pages % m))
 569			pr_info("Image saving progress: %3d%%\n",
 570				nr_pages / m * 10);
 571		nr_pages++;
 572	}
 573	err2 = hib_wait_io(&hb);
 574	hib_finish_batch(&hb);
 575	stop = ktime_get();
 576	if (!ret)
 577		ret = err2;
 578	if (!ret)
 579		pr_info("Image saving done\n");
 580	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 581	return ret;
 582}
 583
 584/**
 585 * Structure used for CRC32.
 586 */
 587struct crc_data {
 588	struct task_struct *thr;                  /* thread */
 589	atomic_t ready;                           /* ready to start flag */
 590	atomic_t stop;                            /* ready to stop flag */
 591	unsigned run_threads;                     /* nr current threads */
 592	wait_queue_head_t go;                     /* start crc update */
 593	wait_queue_head_t done;                   /* crc update done */
 594	u32 *crc32;                               /* points to handle's crc32 */
 595	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
 596	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
 597};
 598
 599/**
 600 * CRC32 update function that runs in its own thread.
 601 */
 602static int crc32_threadfn(void *data)
 603{
 604	struct crc_data *d = data;
 605	unsigned i;
 606
 607	while (1) {
 608		wait_event(d->go, atomic_read(&d->ready) ||
 609		                  kthread_should_stop());
 610		if (kthread_should_stop()) {
 611			d->thr = NULL;
 612			atomic_set(&d->stop, 1);
 613			wake_up(&d->done);
 614			break;
 615		}
 616		atomic_set(&d->ready, 0);
 617
 618		for (i = 0; i < d->run_threads; i++)
 619			*d->crc32 = crc32_le(*d->crc32,
 620			                     d->unc[i], *d->unc_len[i]);
 621		atomic_set(&d->stop, 1);
 622		wake_up(&d->done);
 623	}
 624	return 0;
 625}
 626/**
 627 * Structure used for LZO data compression.
 628 */
 629struct cmp_data {
 630	struct task_struct *thr;                  /* thread */
 631	atomic_t ready;                           /* ready to start flag */
 632	atomic_t stop;                            /* ready to stop flag */
 633	int ret;                                  /* return code */
 634	wait_queue_head_t go;                     /* start compression */
 635	wait_queue_head_t done;                   /* compression done */
 636	size_t unc_len;                           /* uncompressed length */
 637	size_t cmp_len;                           /* compressed length */
 638	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
 639	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
 640	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
 641};
 642
 643/**
 644 * Compression function that runs in its own thread.
 645 */
 646static int lzo_compress_threadfn(void *data)
 647{
 648	struct cmp_data *d = data;
 649
 650	while (1) {
 651		wait_event(d->go, atomic_read(&d->ready) ||
 652		                  kthread_should_stop());
 653		if (kthread_should_stop()) {
 654			d->thr = NULL;
 655			d->ret = -1;
 656			atomic_set(&d->stop, 1);
 657			wake_up(&d->done);
 658			break;
 659		}
 660		atomic_set(&d->ready, 0);
 661
 662		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
 663		                          d->cmp + LZO_HEADER, &d->cmp_len,
 664		                          d->wrk);
 665		atomic_set(&d->stop, 1);
 666		wake_up(&d->done);
 667	}
 668	return 0;
 669}
 670
 671/**
 672 * save_image_lzo - Save the suspend image data compressed with LZO.
 673 * @handle: Swap map handle to use for saving the image.
 674 * @snapshot: Image to read data from.
 675 * @nr_to_write: Number of pages to save.
 676 */
 677static int save_image_lzo(struct swap_map_handle *handle,
 678                          struct snapshot_handle *snapshot,
 679                          unsigned int nr_to_write)
 680{
 681	unsigned int m;
 682	int ret = 0;
 683	int nr_pages;
 684	int err2;
 685	struct hib_bio_batch hb;
 686	ktime_t start;
 687	ktime_t stop;
 688	size_t off;
 689	unsigned thr, run_threads, nr_threads;
 690	unsigned char *page = NULL;
 691	struct cmp_data *data = NULL;
 692	struct crc_data *crc = NULL;
 693
 694	hib_init_batch(&hb);
 695
 696	/*
 697	 * We'll limit the number of threads for compression to limit memory
 698	 * footprint.
 699	 */
 700	nr_threads = num_online_cpus() - 1;
 701	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
 702
 703	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
 704	if (!page) {
 705		pr_err("Failed to allocate LZO page\n");
 706		ret = -ENOMEM;
 707		goto out_clean;
 708	}
 709
 710	data = vzalloc(array_size(nr_threads, sizeof(*data)));
 711	if (!data) {
 712		pr_err("Failed to allocate LZO data\n");
 713		ret = -ENOMEM;
 714		goto out_clean;
 715	}
 
 
 716
 717	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
 718	if (!crc) {
 719		pr_err("Failed to allocate crc\n");
 720		ret = -ENOMEM;
 721		goto out_clean;
 722	}
 
 723
 724	/*
 725	 * Start the compression threads.
 726	 */
 727	for (thr = 0; thr < nr_threads; thr++) {
 728		init_waitqueue_head(&data[thr].go);
 729		init_waitqueue_head(&data[thr].done);
 730
 731		data[thr].thr = kthread_run(lzo_compress_threadfn,
 732		                            &data[thr],
 733		                            "image_compress/%u", thr);
 734		if (IS_ERR(data[thr].thr)) {
 735			data[thr].thr = NULL;
 736			pr_err("Cannot start compression threads\n");
 
 737			ret = -ENOMEM;
 738			goto out_clean;
 739		}
 740	}
 741
 742	/*
 743	 * Start the CRC32 thread.
 744	 */
 745	init_waitqueue_head(&crc->go);
 746	init_waitqueue_head(&crc->done);
 747
 748	handle->crc32 = 0;
 749	crc->crc32 = &handle->crc32;
 750	for (thr = 0; thr < nr_threads; thr++) {
 751		crc->unc[thr] = data[thr].unc;
 752		crc->unc_len[thr] = &data[thr].unc_len;
 753	}
 754
 755	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
 756	if (IS_ERR(crc->thr)) {
 757		crc->thr = NULL;
 758		pr_err("Cannot start CRC32 thread\n");
 759		ret = -ENOMEM;
 760		goto out_clean;
 761	}
 762
 763	/*
 764	 * Adjust the number of required free pages after all allocations have
 765	 * been done. We don't want to run out of pages when writing.
 766	 */
 767	handle->reqd_free_pages = reqd_free_pages();
 768
 769	pr_info("Using %u thread(s) for compression\n", nr_threads);
 770	pr_info("Compressing and saving image data (%u pages)...\n",
 771		nr_to_write);
 
 772	m = nr_to_write / 10;
 773	if (!m)
 774		m = 1;
 775	nr_pages = 0;
 776	start = ktime_get();
 777	for (;;) {
 778		for (thr = 0; thr < nr_threads; thr++) {
 779			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
 780				ret = snapshot_read_next(snapshot);
 781				if (ret < 0)
 782					goto out_finish;
 783
 784				if (!ret)
 785					break;
 786
 787				memcpy(data[thr].unc + off,
 788				       data_of(*snapshot), PAGE_SIZE);
 789
 790				if (!(nr_pages % m))
 791					pr_info("Image saving progress: %3d%%\n",
 792						nr_pages / m * 10);
 
 
 793				nr_pages++;
 794			}
 795			if (!off)
 796				break;
 797
 798			data[thr].unc_len = off;
 799
 800			atomic_set(&data[thr].ready, 1);
 801			wake_up(&data[thr].go);
 802		}
 803
 804		if (!thr)
 805			break;
 806
 807		crc->run_threads = thr;
 808		atomic_set(&crc->ready, 1);
 809		wake_up(&crc->go);
 810
 811		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
 812			wait_event(data[thr].done,
 813			           atomic_read(&data[thr].stop));
 814			atomic_set(&data[thr].stop, 0);
 815
 816			ret = data[thr].ret;
 817
 818			if (ret < 0) {
 819				pr_err("LZO compression failed\n");
 820				goto out_finish;
 821			}
 822
 823			if (unlikely(!data[thr].cmp_len ||
 824			             data[thr].cmp_len >
 825			             lzo1x_worst_compress(data[thr].unc_len))) {
 826				pr_err("Invalid LZO compressed length\n");
 
 827				ret = -1;
 828				goto out_finish;
 829			}
 830
 831			*(size_t *)data[thr].cmp = data[thr].cmp_len;
 832
 833			/*
 834			 * Given we are writing one page at a time to disk, we
 835			 * copy that much from the buffer, although the last
 836			 * bit will likely be smaller than full page. This is
 837			 * OK - we saved the length of the compressed data, so
 838			 * any garbage at the end will be discarded when we
 839			 * read it.
 840			 */
 841			for (off = 0;
 842			     off < LZO_HEADER + data[thr].cmp_len;
 843			     off += PAGE_SIZE) {
 844				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
 845
 846				ret = swap_write_page(handle, page, &hb);
 847				if (ret)
 848					goto out_finish;
 849			}
 850		}
 851
 852		wait_event(crc->done, atomic_read(&crc->stop));
 853		atomic_set(&crc->stop, 0);
 854	}
 855
 856out_finish:
 857	err2 = hib_wait_io(&hb);
 858	stop = ktime_get();
 859	if (!ret)
 860		ret = err2;
 861	if (!ret)
 862		pr_info("Image saving done\n");
 863	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 864out_clean:
 865	hib_finish_batch(&hb);
 866	if (crc) {
 867		if (crc->thr)
 868			kthread_stop(crc->thr);
 869		kfree(crc);
 870	}
 871	if (data) {
 872		for (thr = 0; thr < nr_threads; thr++)
 873			if (data[thr].thr)
 874				kthread_stop(data[thr].thr);
 875		vfree(data);
 876	}
 877	if (page) free_page((unsigned long)page);
 878
 879	return ret;
 880}
 881
 882/**
 883 *	enough_swap - Make sure we have enough swap to save the image.
 884 *
 885 *	Returns TRUE or FALSE after checking the total amount of swap
 886 *	space available from the resume partition.
 887 */
 888
 889static int enough_swap(unsigned int nr_pages)
 890{
 891	unsigned int free_swap = count_swap_pages(root_swap, 1);
 892	unsigned int required;
 893
 894	pr_debug("Free swap pages: %u\n", free_swap);
 895
 896	required = PAGES_FOR_IO + nr_pages;
 897	return free_swap > required;
 898}
 899
 900/**
 901 *	swsusp_write - Write entire image and metadata.
 902 *	@flags: flags to pass to the "boot" kernel in the image header
 903 *
 904 *	It is important _NOT_ to umount filesystems at this point. We want
 905 *	them synced (in case something goes wrong) but we DO not want to mark
 906 *	filesystem clean: it is not. (And it does not matter, if we resume
 907 *	correctly, we'll mark system clean, anyway.)
 908 */
 909
 910int swsusp_write(unsigned int flags)
 911{
 912	struct swap_map_handle handle;
 913	struct snapshot_handle snapshot;
 914	struct swsusp_info *header;
 915	unsigned long pages;
 916	int error;
 917
 918	pages = snapshot_get_image_size();
 919	error = get_swap_writer(&handle);
 920	if (error) {
 921		pr_err("Cannot get swap writer\n");
 922		return error;
 923	}
 924	if (flags & SF_NOCOMPRESS_MODE) {
 925		if (!enough_swap(pages)) {
 926			pr_err("Not enough free swap\n");
 927			error = -ENOSPC;
 928			goto out_finish;
 929		}
 930	}
 931	memset(&snapshot, 0, sizeof(struct snapshot_handle));
 932	error = snapshot_read_next(&snapshot);
 933	if (error < (int)PAGE_SIZE) {
 934		if (error >= 0)
 935			error = -EFAULT;
 936
 937		goto out_finish;
 938	}
 939	header = (struct swsusp_info *)data_of(snapshot);
 940	error = swap_write_page(&handle, header, NULL);
 941	if (!error) {
 942		error = (flags & SF_NOCOMPRESS_MODE) ?
 943			save_image(&handle, &snapshot, pages - 1) :
 944			save_image_lzo(&handle, &snapshot, pages - 1);
 945	}
 946out_finish:
 947	error = swap_writer_finish(&handle, flags, error);
 948	return error;
 949}
 950
 951/**
 952 *	The following functions allow us to read data using a swap map
 953 *	in a file-alike way
 954 */
 955
 956static void release_swap_reader(struct swap_map_handle *handle)
 957{
 958	struct swap_map_page_list *tmp;
 959
 960	while (handle->maps) {
 961		if (handle->maps->map)
 962			free_page((unsigned long)handle->maps->map);
 963		tmp = handle->maps;
 964		handle->maps = handle->maps->next;
 965		kfree(tmp);
 966	}
 967	handle->cur = NULL;
 968}
 969
 970static int get_swap_reader(struct swap_map_handle *handle,
 971		unsigned int *flags_p)
 972{
 973	int error;
 974	struct swap_map_page_list *tmp, *last;
 975	sector_t offset;
 976
 977	*flags_p = swsusp_header->flags;
 978
 979	if (!swsusp_header->image) /* how can this happen? */
 980		return -EINVAL;
 981
 982	handle->cur = NULL;
 983	last = handle->maps = NULL;
 984	offset = swsusp_header->image;
 985	while (offset) {
 986		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
 987		if (!tmp) {
 988			release_swap_reader(handle);
 989			return -ENOMEM;
 990		}
 
 991		if (!handle->maps)
 992			handle->maps = tmp;
 993		if (last)
 994			last->next = tmp;
 995		last = tmp;
 996
 997		tmp->map = (struct swap_map_page *)
 998			   __get_free_page(GFP_NOIO | __GFP_HIGH);
 999		if (!tmp->map) {
1000			release_swap_reader(handle);
1001			return -ENOMEM;
1002		}
1003
1004		error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1005		if (error) {
1006			release_swap_reader(handle);
1007			return error;
1008		}
1009		offset = tmp->map->next_swap;
1010	}
1011	handle->k = 0;
1012	handle->cur = handle->maps->map;
1013	return 0;
1014}
1015
1016static int swap_read_page(struct swap_map_handle *handle, void *buf,
1017		struct hib_bio_batch *hb)
1018{
1019	sector_t offset;
1020	int error;
1021	struct swap_map_page_list *tmp;
1022
1023	if (!handle->cur)
1024		return -EINVAL;
1025	offset = handle->cur->entries[handle->k];
1026	if (!offset)
1027		return -EFAULT;
1028	error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1029	if (error)
1030		return error;
1031	if (++handle->k >= MAP_PAGE_ENTRIES) {
1032		handle->k = 0;
1033		free_page((unsigned long)handle->maps->map);
1034		tmp = handle->maps;
1035		handle->maps = handle->maps->next;
1036		kfree(tmp);
1037		if (!handle->maps)
1038			release_swap_reader(handle);
1039		else
1040			handle->cur = handle->maps->map;
1041	}
1042	return error;
1043}
1044
1045static int swap_reader_finish(struct swap_map_handle *handle)
1046{
1047	release_swap_reader(handle);
1048
1049	return 0;
1050}
1051
1052/**
1053 *	load_image - load the image using the swap map handle
1054 *	@handle and the snapshot handle @snapshot
1055 *	(assume there are @nr_pages pages to load)
1056 */
1057
1058static int load_image(struct swap_map_handle *handle,
1059                      struct snapshot_handle *snapshot,
1060                      unsigned int nr_to_read)
1061{
1062	unsigned int m;
1063	int ret = 0;
1064	ktime_t start;
1065	ktime_t stop;
1066	struct hib_bio_batch hb;
1067	int err2;
1068	unsigned nr_pages;
1069
1070	hib_init_batch(&hb);
1071
1072	clean_pages_on_read = true;
1073	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
 
1074	m = nr_to_read / 10;
1075	if (!m)
1076		m = 1;
1077	nr_pages = 0;
1078	start = ktime_get();
1079	for ( ; ; ) {
1080		ret = snapshot_write_next(snapshot);
1081		if (ret <= 0)
1082			break;
1083		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1084		if (ret)
1085			break;
1086		if (snapshot->sync_read)
1087			ret = hib_wait_io(&hb);
1088		if (ret)
1089			break;
1090		if (!(nr_pages % m))
1091			pr_info("Image loading progress: %3d%%\n",
1092				nr_pages / m * 10);
1093		nr_pages++;
1094	}
1095	err2 = hib_wait_io(&hb);
1096	hib_finish_batch(&hb);
1097	stop = ktime_get();
1098	if (!ret)
1099		ret = err2;
1100	if (!ret) {
1101		pr_info("Image loading done\n");
1102		snapshot_write_finalize(snapshot);
1103		if (!snapshot_image_loaded(snapshot))
1104			ret = -ENODATA;
1105	}
1106	swsusp_show_speed(start, stop, nr_to_read, "Read");
1107	return ret;
1108}
1109
1110/**
1111 * Structure used for LZO data decompression.
1112 */
1113struct dec_data {
1114	struct task_struct *thr;                  /* thread */
1115	atomic_t ready;                           /* ready to start flag */
1116	atomic_t stop;                            /* ready to stop flag */
1117	int ret;                                  /* return code */
1118	wait_queue_head_t go;                     /* start decompression */
1119	wait_queue_head_t done;                   /* decompression done */
1120	size_t unc_len;                           /* uncompressed length */
1121	size_t cmp_len;                           /* compressed length */
1122	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1123	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1124};
1125
1126/**
1127 * Decompression function that runs in its own thread.
1128 */
1129static int lzo_decompress_threadfn(void *data)
1130{
1131	struct dec_data *d = data;
1132
1133	while (1) {
1134		wait_event(d->go, atomic_read(&d->ready) ||
1135		                  kthread_should_stop());
1136		if (kthread_should_stop()) {
1137			d->thr = NULL;
1138			d->ret = -1;
1139			atomic_set(&d->stop, 1);
1140			wake_up(&d->done);
1141			break;
1142		}
1143		atomic_set(&d->ready, 0);
1144
1145		d->unc_len = LZO_UNC_SIZE;
1146		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1147		                               d->unc, &d->unc_len);
1148		if (clean_pages_on_decompress)
1149			flush_icache_range((unsigned long)d->unc,
1150					   (unsigned long)d->unc + d->unc_len);
1151
1152		atomic_set(&d->stop, 1);
1153		wake_up(&d->done);
1154	}
1155	return 0;
1156}
1157
1158/**
1159 * load_image_lzo - Load compressed image data and decompress them with LZO.
1160 * @handle: Swap map handle to use for loading data.
1161 * @snapshot: Image to copy uncompressed data into.
1162 * @nr_to_read: Number of pages to load.
1163 */
1164static int load_image_lzo(struct swap_map_handle *handle,
1165                          struct snapshot_handle *snapshot,
1166                          unsigned int nr_to_read)
1167{
1168	unsigned int m;
1169	int ret = 0;
1170	int eof = 0;
1171	struct hib_bio_batch hb;
1172	ktime_t start;
1173	ktime_t stop;
1174	unsigned nr_pages;
1175	size_t off;
1176	unsigned i, thr, run_threads, nr_threads;
1177	unsigned ring = 0, pg = 0, ring_size = 0,
1178	         have = 0, want, need, asked = 0;
1179	unsigned long read_pages = 0;
1180	unsigned char **page = NULL;
1181	struct dec_data *data = NULL;
1182	struct crc_data *crc = NULL;
1183
1184	hib_init_batch(&hb);
1185
1186	/*
1187	 * We'll limit the number of threads for decompression to limit memory
1188	 * footprint.
1189	 */
1190	nr_threads = num_online_cpus() - 1;
1191	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1192
1193	page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1194	if (!page) {
1195		pr_err("Failed to allocate LZO page\n");
1196		ret = -ENOMEM;
1197		goto out_clean;
1198	}
1199
1200	data = vzalloc(array_size(nr_threads, sizeof(*data)));
1201	if (!data) {
1202		pr_err("Failed to allocate LZO data\n");
1203		ret = -ENOMEM;
1204		goto out_clean;
1205	}
 
 
1206
1207	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1208	if (!crc) {
1209		pr_err("Failed to allocate crc\n");
1210		ret = -ENOMEM;
1211		goto out_clean;
1212	}
 
1213
1214	clean_pages_on_decompress = true;
1215
1216	/*
1217	 * Start the decompression threads.
1218	 */
1219	for (thr = 0; thr < nr_threads; thr++) {
1220		init_waitqueue_head(&data[thr].go);
1221		init_waitqueue_head(&data[thr].done);
1222
1223		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1224		                            &data[thr],
1225		                            "image_decompress/%u", thr);
1226		if (IS_ERR(data[thr].thr)) {
1227			data[thr].thr = NULL;
1228			pr_err("Cannot start decompression threads\n");
 
1229			ret = -ENOMEM;
1230			goto out_clean;
1231		}
1232	}
1233
1234	/*
1235	 * Start the CRC32 thread.
1236	 */
1237	init_waitqueue_head(&crc->go);
1238	init_waitqueue_head(&crc->done);
1239
1240	handle->crc32 = 0;
1241	crc->crc32 = &handle->crc32;
1242	for (thr = 0; thr < nr_threads; thr++) {
1243		crc->unc[thr] = data[thr].unc;
1244		crc->unc_len[thr] = &data[thr].unc_len;
1245	}
1246
1247	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1248	if (IS_ERR(crc->thr)) {
1249		crc->thr = NULL;
1250		pr_err("Cannot start CRC32 thread\n");
1251		ret = -ENOMEM;
1252		goto out_clean;
1253	}
1254
1255	/*
1256	 * Set the number of pages for read buffering.
1257	 * This is complete guesswork, because we'll only know the real
1258	 * picture once prepare_image() is called, which is much later on
1259	 * during the image load phase. We'll assume the worst case and
1260	 * say that none of the image pages are from high memory.
1261	 */
1262	if (low_free_pages() > snapshot_get_image_size())
1263		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1264	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1265
1266	for (i = 0; i < read_pages; i++) {
1267		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1268						  GFP_NOIO | __GFP_HIGH :
1269						  GFP_NOIO | __GFP_NOWARN |
1270						  __GFP_NORETRY);
1271
1272		if (!page[i]) {
1273			if (i < LZO_CMP_PAGES) {
1274				ring_size = i;
1275				pr_err("Failed to allocate LZO pages\n");
 
1276				ret = -ENOMEM;
1277				goto out_clean;
1278			} else {
1279				break;
1280			}
1281		}
1282	}
1283	want = ring_size = i;
1284
1285	pr_info("Using %u thread(s) for decompression\n", nr_threads);
1286	pr_info("Loading and decompressing image data (%u pages)...\n",
1287		nr_to_read);
 
1288	m = nr_to_read / 10;
1289	if (!m)
1290		m = 1;
1291	nr_pages = 0;
1292	start = ktime_get();
1293
1294	ret = snapshot_write_next(snapshot);
1295	if (ret <= 0)
1296		goto out_finish;
1297
1298	for(;;) {
1299		for (i = 0; !eof && i < want; i++) {
1300			ret = swap_read_page(handle, page[ring], &hb);
1301			if (ret) {
1302				/*
1303				 * On real read error, finish. On end of data,
1304				 * set EOF flag and just exit the read loop.
1305				 */
1306				if (handle->cur &&
1307				    handle->cur->entries[handle->k]) {
1308					goto out_finish;
1309				} else {
1310					eof = 1;
1311					break;
1312				}
1313			}
1314			if (++ring >= ring_size)
1315				ring = 0;
1316		}
1317		asked += i;
1318		want -= i;
1319
1320		/*
1321		 * We are out of data, wait for some more.
1322		 */
1323		if (!have) {
1324			if (!asked)
1325				break;
1326
1327			ret = hib_wait_io(&hb);
1328			if (ret)
1329				goto out_finish;
1330			have += asked;
1331			asked = 0;
1332			if (eof)
1333				eof = 2;
1334		}
1335
1336		if (crc->run_threads) {
1337			wait_event(crc->done, atomic_read(&crc->stop));
1338			atomic_set(&crc->stop, 0);
1339			crc->run_threads = 0;
1340		}
1341
1342		for (thr = 0; have && thr < nr_threads; thr++) {
1343			data[thr].cmp_len = *(size_t *)page[pg];
1344			if (unlikely(!data[thr].cmp_len ||
1345			             data[thr].cmp_len >
1346			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1347				pr_err("Invalid LZO compressed length\n");
 
1348				ret = -1;
1349				goto out_finish;
1350			}
1351
1352			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1353			                    PAGE_SIZE);
1354			if (need > have) {
1355				if (eof > 1) {
1356					ret = -1;
1357					goto out_finish;
1358				}
1359				break;
1360			}
1361
1362			for (off = 0;
1363			     off < LZO_HEADER + data[thr].cmp_len;
1364			     off += PAGE_SIZE) {
1365				memcpy(data[thr].cmp + off,
1366				       page[pg], PAGE_SIZE);
1367				have--;
1368				want++;
1369				if (++pg >= ring_size)
1370					pg = 0;
1371			}
1372
1373			atomic_set(&data[thr].ready, 1);
1374			wake_up(&data[thr].go);
1375		}
1376
1377		/*
1378		 * Wait for more data while we are decompressing.
1379		 */
1380		if (have < LZO_CMP_PAGES && asked) {
1381			ret = hib_wait_io(&hb);
1382			if (ret)
1383				goto out_finish;
1384			have += asked;
1385			asked = 0;
1386			if (eof)
1387				eof = 2;
1388		}
1389
1390		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1391			wait_event(data[thr].done,
1392			           atomic_read(&data[thr].stop));
1393			atomic_set(&data[thr].stop, 0);
1394
1395			ret = data[thr].ret;
1396
1397			if (ret < 0) {
1398				pr_err("LZO decompression failed\n");
 
1399				goto out_finish;
1400			}
1401
1402			if (unlikely(!data[thr].unc_len ||
1403			             data[thr].unc_len > LZO_UNC_SIZE ||
1404			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1405				pr_err("Invalid LZO uncompressed length\n");
 
1406				ret = -1;
1407				goto out_finish;
1408			}
1409
1410			for (off = 0;
1411			     off < data[thr].unc_len; off += PAGE_SIZE) {
1412				memcpy(data_of(*snapshot),
1413				       data[thr].unc + off, PAGE_SIZE);
1414
1415				if (!(nr_pages % m))
1416					pr_info("Image loading progress: %3d%%\n",
1417						nr_pages / m * 10);
 
 
1418				nr_pages++;
1419
1420				ret = snapshot_write_next(snapshot);
1421				if (ret <= 0) {
1422					crc->run_threads = thr + 1;
1423					atomic_set(&crc->ready, 1);
1424					wake_up(&crc->go);
1425					goto out_finish;
1426				}
1427			}
1428		}
1429
1430		crc->run_threads = thr;
1431		atomic_set(&crc->ready, 1);
1432		wake_up(&crc->go);
1433	}
1434
1435out_finish:
1436	if (crc->run_threads) {
1437		wait_event(crc->done, atomic_read(&crc->stop));
1438		atomic_set(&crc->stop, 0);
1439	}
1440	stop = ktime_get();
1441	if (!ret) {
1442		pr_info("Image loading done\n");
1443		snapshot_write_finalize(snapshot);
1444		if (!snapshot_image_loaded(snapshot))
1445			ret = -ENODATA;
1446		if (!ret) {
1447			if (swsusp_header->flags & SF_CRC32_MODE) {
1448				if(handle->crc32 != swsusp_header->crc32) {
1449					pr_err("Invalid image CRC32!\n");
 
1450					ret = -ENODATA;
1451				}
1452			}
1453		}
1454	}
1455	swsusp_show_speed(start, stop, nr_to_read, "Read");
1456out_clean:
1457	hib_finish_batch(&hb);
1458	for (i = 0; i < ring_size; i++)
1459		free_page((unsigned long)page[i]);
1460	if (crc) {
1461		if (crc->thr)
1462			kthread_stop(crc->thr);
1463		kfree(crc);
1464	}
1465	if (data) {
1466		for (thr = 0; thr < nr_threads; thr++)
1467			if (data[thr].thr)
1468				kthread_stop(data[thr].thr);
1469		vfree(data);
1470	}
1471	vfree(page);
1472
1473	return ret;
1474}
1475
1476/**
1477 *	swsusp_read - read the hibernation image.
1478 *	@flags_p: flags passed by the "frozen" kernel in the image header should
1479 *		  be written into this memory location
1480 */
1481
1482int swsusp_read(unsigned int *flags_p)
1483{
1484	int error;
1485	struct swap_map_handle handle;
1486	struct snapshot_handle snapshot;
1487	struct swsusp_info *header;
1488
1489	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1490	error = snapshot_write_next(&snapshot);
1491	if (error < (int)PAGE_SIZE)
1492		return error < 0 ? error : -EFAULT;
1493	header = (struct swsusp_info *)data_of(snapshot);
1494	error = get_swap_reader(&handle, flags_p);
1495	if (error)
1496		goto end;
1497	if (!error)
1498		error = swap_read_page(&handle, header, NULL);
1499	if (!error) {
1500		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1501			load_image(&handle, &snapshot, header->pages - 1) :
1502			load_image_lzo(&handle, &snapshot, header->pages - 1);
1503	}
1504	swap_reader_finish(&handle);
1505end:
1506	if (!error)
1507		pr_debug("Image successfully loaded\n");
1508	else
1509		pr_debug("Error %d resuming\n", error);
1510	return error;
1511}
1512
1513/**
1514 *      swsusp_check - Check for swsusp signature in the resume device
1515 */
1516
1517int swsusp_check(void)
1518{
1519	int error;
1520	void *holder;
1521
1522	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1523					    FMODE_READ | FMODE_EXCL, &holder);
1524	if (!IS_ERR(hib_resume_bdev)) {
1525		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1526		clear_page(swsusp_header);
1527		error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
 
1528					swsusp_header, NULL);
1529		if (error)
1530			goto put;
1531
1532		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1533			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1534			/* Reset swap signature now */
1535			error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1536						swsusp_resume_block,
1537						swsusp_header, NULL);
1538		} else {
1539			error = -EINVAL;
1540		}
1541		if (!error && swsusp_header->flags & SF_HW_SIG &&
1542		    swsusp_header->hw_sig != swsusp_hardware_signature) {
1543			pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1544				swsusp_header->hw_sig, swsusp_hardware_signature);
1545			error = -EINVAL;
1546		}
1547
1548put:
1549		if (error)
1550			blkdev_put(hib_resume_bdev, FMODE_READ | FMODE_EXCL);
1551		else
1552			pr_debug("Image signature found, resuming\n");
1553	} else {
1554		error = PTR_ERR(hib_resume_bdev);
1555	}
1556
1557	if (error)
1558		pr_debug("Image not found (code %d)\n", error);
1559
1560	return error;
1561}
1562
1563/**
1564 *	swsusp_close - close swap device.
1565 */
1566
1567void swsusp_close(fmode_t mode)
1568{
1569	if (IS_ERR(hib_resume_bdev)) {
1570		pr_debug("Image device not initialised\n");
1571		return;
1572	}
1573
1574	blkdev_put(hib_resume_bdev, mode);
1575}
1576
1577/**
1578 *      swsusp_unmark - Unmark swsusp signature in the resume device
1579 */
1580
1581#ifdef CONFIG_SUSPEND
1582int swsusp_unmark(void)
1583{
1584	int error;
1585
1586	hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1587			swsusp_header, NULL);
1588	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1589		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1590		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1591					swsusp_resume_block,
1592					swsusp_header, NULL);
1593	} else {
1594		pr_err("Cannot find swsusp signature!\n");
1595		error = -ENODEV;
1596	}
1597
1598	/*
1599	 * We just returned from suspend, we don't need the image any more.
1600	 */
1601	free_all_swap_pages(root_swap);
1602
1603	return error;
1604}
1605#endif
1606
1607static int __init swsusp_header_init(void)
1608{
1609	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1610	if (!swsusp_header)
1611		panic("Could not allocate memory for swsusp_header\n");
1612	return 0;
1613}
1614
1615core_initcall(swsusp_header_init);
v4.10.11
 
   1/*
   2 * linux/kernel/power/swap.c
   3 *
   4 * This file provides functions for reading the suspend image from
   5 * and writing it to a swap partition.
   6 *
   7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
  10 *
  11 * This file is released under the GPLv2.
  12 *
  13 */
  14
 
 
  15#include <linux/module.h>
  16#include <linux/file.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/genhd.h>
  20#include <linux/device.h>
  21#include <linux/bio.h>
  22#include <linux/blkdev.h>
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/pm.h>
  26#include <linux/slab.h>
  27#include <linux/lzo.h>
  28#include <linux/vmalloc.h>
  29#include <linux/cpumask.h>
  30#include <linux/atomic.h>
  31#include <linux/kthread.h>
  32#include <linux/crc32.h>
  33#include <linux/ktime.h>
  34
  35#include "power.h"
  36
  37#define HIBERNATE_SIG	"S1SUSPEND"
  38
 
 
  39/*
  40 * When reading an {un,}compressed image, we may restore pages in place,
  41 * in which case some architectures need these pages cleaning before they
  42 * can be executed. We don't know which pages these may be, so clean the lot.
  43 */
  44static bool clean_pages_on_read;
  45static bool clean_pages_on_decompress;
  46
  47/*
  48 *	The swap map is a data structure used for keeping track of each page
  49 *	written to a swap partition.  It consists of many swap_map_page
  50 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
  51 *	These structures are stored on the swap and linked together with the
  52 *	help of the .next_swap member.
  53 *
  54 *	The swap map is created during suspend.  The swap map pages are
  55 *	allocated and populated one at a time, so we only need one memory
  56 *	page to set up the entire structure.
  57 *
  58 *	During resume we pick up all swap_map_page structures into a list.
  59 */
  60
  61#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
  62
  63/*
  64 * Number of free pages that are not high.
  65 */
  66static inline unsigned long low_free_pages(void)
  67{
  68	return nr_free_pages() - nr_free_highpages();
  69}
  70
  71/*
  72 * Number of pages required to be kept free while writing the image. Always
  73 * half of all available low pages before the writing starts.
  74 */
  75static inline unsigned long reqd_free_pages(void)
  76{
  77	return low_free_pages() / 2;
  78}
  79
  80struct swap_map_page {
  81	sector_t entries[MAP_PAGE_ENTRIES];
  82	sector_t next_swap;
  83};
  84
  85struct swap_map_page_list {
  86	struct swap_map_page *map;
  87	struct swap_map_page_list *next;
  88};
  89
  90/**
  91 *	The swap_map_handle structure is used for handling swap in
  92 *	a file-alike way
  93 */
  94
  95struct swap_map_handle {
  96	struct swap_map_page *cur;
  97	struct swap_map_page_list *maps;
  98	sector_t cur_swap;
  99	sector_t first_sector;
 100	unsigned int k;
 101	unsigned long reqd_free_pages;
 102	u32 crc32;
 103};
 104
 105struct swsusp_header {
 106	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
 107	              sizeof(u32)];
 
 108	u32	crc32;
 109	sector_t image;
 110	unsigned int flags;	/* Flags to pass to the "boot" kernel */
 111	char	orig_sig[10];
 112	char	sig[10];
 113} __packed;
 114
 115static struct swsusp_header *swsusp_header;
 116
 117/**
 118 *	The following functions are used for tracing the allocated
 119 *	swap pages, so that they can be freed in case of an error.
 120 */
 121
 122struct swsusp_extent {
 123	struct rb_node node;
 124	unsigned long start;
 125	unsigned long end;
 126};
 127
 128static struct rb_root swsusp_extents = RB_ROOT;
 129
 130static int swsusp_extents_insert(unsigned long swap_offset)
 131{
 132	struct rb_node **new = &(swsusp_extents.rb_node);
 133	struct rb_node *parent = NULL;
 134	struct swsusp_extent *ext;
 135
 136	/* Figure out where to put the new node */
 137	while (*new) {
 138		ext = rb_entry(*new, struct swsusp_extent, node);
 139		parent = *new;
 140		if (swap_offset < ext->start) {
 141			/* Try to merge */
 142			if (swap_offset == ext->start - 1) {
 143				ext->start--;
 144				return 0;
 145			}
 146			new = &((*new)->rb_left);
 147		} else if (swap_offset > ext->end) {
 148			/* Try to merge */
 149			if (swap_offset == ext->end + 1) {
 150				ext->end++;
 151				return 0;
 152			}
 153			new = &((*new)->rb_right);
 154		} else {
 155			/* It already is in the tree */
 156			return -EINVAL;
 157		}
 158	}
 159	/* Add the new node and rebalance the tree. */
 160	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
 161	if (!ext)
 162		return -ENOMEM;
 163
 164	ext->start = swap_offset;
 165	ext->end = swap_offset;
 166	rb_link_node(&ext->node, parent, new);
 167	rb_insert_color(&ext->node, &swsusp_extents);
 168	return 0;
 169}
 170
 171/**
 172 *	alloc_swapdev_block - allocate a swap page and register that it has
 173 *	been allocated, so that it can be freed in case of an error.
 174 */
 175
 176sector_t alloc_swapdev_block(int swap)
 177{
 178	unsigned long offset;
 179
 180	offset = swp_offset(get_swap_page_of_type(swap));
 181	if (offset) {
 182		if (swsusp_extents_insert(offset))
 183			swap_free(swp_entry(swap, offset));
 184		else
 185			return swapdev_block(swap, offset);
 186	}
 187	return 0;
 188}
 189
 190/**
 191 *	free_all_swap_pages - free swap pages allocated for saving image data.
 192 *	It also frees the extents used to register which swap entries had been
 193 *	allocated.
 194 */
 195
 196void free_all_swap_pages(int swap)
 197{
 198	struct rb_node *node;
 199
 200	while ((node = swsusp_extents.rb_node)) {
 201		struct swsusp_extent *ext;
 202		unsigned long offset;
 203
 204		ext = container_of(node, struct swsusp_extent, node);
 205		rb_erase(node, &swsusp_extents);
 206		for (offset = ext->start; offset <= ext->end; offset++)
 207			swap_free(swp_entry(swap, offset));
 208
 209		kfree(ext);
 210	}
 211}
 212
 213int swsusp_swap_in_use(void)
 214{
 215	return (swsusp_extents.rb_node != NULL);
 216}
 217
 218/*
 219 * General things
 220 */
 221
 222static unsigned short root_swap = 0xffff;
 223static struct block_device *hib_resume_bdev;
 224
 225struct hib_bio_batch {
 226	atomic_t		count;
 227	wait_queue_head_t	wait;
 228	int			error;
 
 229};
 230
 231static void hib_init_batch(struct hib_bio_batch *hb)
 232{
 233	atomic_set(&hb->count, 0);
 234	init_waitqueue_head(&hb->wait);
 235	hb->error = 0;
 
 
 
 
 
 
 236}
 237
 238static void hib_end_io(struct bio *bio)
 239{
 240	struct hib_bio_batch *hb = bio->bi_private;
 241	struct page *page = bio->bi_io_vec[0].bv_page;
 242
 243	if (bio->bi_error) {
 244		printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
 245				imajor(bio->bi_bdev->bd_inode),
 246				iminor(bio->bi_bdev->bd_inode),
 247				(unsigned long long)bio->bi_iter.bi_sector);
 248	}
 249
 250	if (bio_data_dir(bio) == WRITE)
 251		put_page(page);
 252	else if (clean_pages_on_read)
 253		flush_icache_range((unsigned long)page_address(page),
 254				   (unsigned long)page_address(page) + PAGE_SIZE);
 255
 256	if (bio->bi_error && !hb->error)
 257		hb->error = bio->bi_error;
 258	if (atomic_dec_and_test(&hb->count))
 259		wake_up(&hb->wait);
 260
 261	bio_put(bio);
 262}
 263
 264static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
 265		struct hib_bio_batch *hb)
 266{
 267	struct page *page = virt_to_page(addr);
 268	struct bio *bio;
 269	int error = 0;
 270
 271	bio = bio_alloc(__GFP_RECLAIM | __GFP_HIGH, 1);
 272	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
 273	bio->bi_bdev = hib_resume_bdev;
 274	bio_set_op_attrs(bio, op, op_flags);
 275
 276	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 277		printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
 278			(unsigned long long)bio->bi_iter.bi_sector);
 279		bio_put(bio);
 280		return -EFAULT;
 281	}
 282
 283	if (hb) {
 284		bio->bi_end_io = hib_end_io;
 285		bio->bi_private = hb;
 286		atomic_inc(&hb->count);
 287		submit_bio(bio);
 288	} else {
 289		error = submit_bio_wait(bio);
 290		bio_put(bio);
 291	}
 292
 293	return error;
 294}
 295
 296static int hib_wait_io(struct hib_bio_batch *hb)
 297{
 
 
 
 
 298	wait_event(hb->wait, atomic_read(&hb->count) == 0);
 299	return hb->error;
 300}
 301
 302/*
 303 * Saving part
 304 */
 305
 306static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
 307{
 308	int error;
 309
 310	hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
 311		      swsusp_header, NULL);
 312	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
 313	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
 314		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
 315		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
 316		swsusp_header->image = handle->first_sector;
 
 
 
 
 317		swsusp_header->flags = flags;
 318		if (flags & SF_CRC32_MODE)
 319			swsusp_header->crc32 = handle->crc32;
 320		error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
 321				      swsusp_resume_block, swsusp_header, NULL);
 322	} else {
 323		printk(KERN_ERR "PM: Swap header not found!\n");
 324		error = -ENODEV;
 325	}
 326	return error;
 327}
 328
 329/**
 330 *	swsusp_swap_check - check if the resume device is a swap device
 331 *	and get its index (if so)
 332 *
 333 *	This is called before saving image
 334 */
 335static int swsusp_swap_check(void)
 336{
 337	int res;
 338
 339	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
 340			&hib_resume_bdev);
 
 
 341	if (res < 0)
 342		return res;
 
 343
 344	root_swap = res;
 345	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
 346	if (res)
 347		return res;
 348
 349	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
 350	if (res < 0)
 351		blkdev_put(hib_resume_bdev, FMODE_WRITE);
 352
 353	/*
 354	 * Update the resume device to the one actually used,
 355	 * so the test_resume mode can use it in case it is
 356	 * invoked from hibernate() to test the snapshot.
 357	 */
 358	swsusp_resume_device = hib_resume_bdev->bd_dev;
 359	return res;
 360}
 361
 362/**
 363 *	write_page - Write one page to given swap location.
 364 *	@buf:		Address we're writing.
 365 *	@offset:	Offset of the swap page we're writing to.
 366 *	@hb:		bio completion batch
 367 */
 368
 369static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
 370{
 371	void *src;
 372	int ret;
 373
 374	if (!offset)
 375		return -ENOSPC;
 376
 377	if (hb) {
 378		src = (void *)__get_free_page(__GFP_RECLAIM | __GFP_NOWARN |
 379		                              __GFP_NORETRY);
 380		if (src) {
 381			copy_page(src, buf);
 382		} else {
 383			ret = hib_wait_io(hb); /* Free pages */
 384			if (ret)
 385				return ret;
 386			src = (void *)__get_free_page(__GFP_RECLAIM |
 387			                              __GFP_NOWARN |
 388			                              __GFP_NORETRY);
 389			if (src) {
 390				copy_page(src, buf);
 391			} else {
 392				WARN_ON_ONCE(1);
 393				hb = NULL;	/* Go synchronous */
 394				src = buf;
 395			}
 396		}
 397	} else {
 398		src = buf;
 399	}
 400	return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
 401}
 402
 403static void release_swap_writer(struct swap_map_handle *handle)
 404{
 405	if (handle->cur)
 406		free_page((unsigned long)handle->cur);
 407	handle->cur = NULL;
 408}
 409
 410static int get_swap_writer(struct swap_map_handle *handle)
 411{
 412	int ret;
 413
 414	ret = swsusp_swap_check();
 415	if (ret) {
 416		if (ret != -ENOSPC)
 417			printk(KERN_ERR "PM: Cannot find swap device, try "
 418					"swapon -a.\n");
 419		return ret;
 420	}
 421	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
 422	if (!handle->cur) {
 423		ret = -ENOMEM;
 424		goto err_close;
 425	}
 426	handle->cur_swap = alloc_swapdev_block(root_swap);
 427	if (!handle->cur_swap) {
 428		ret = -ENOSPC;
 429		goto err_rel;
 430	}
 431	handle->k = 0;
 432	handle->reqd_free_pages = reqd_free_pages();
 433	handle->first_sector = handle->cur_swap;
 434	return 0;
 435err_rel:
 436	release_swap_writer(handle);
 437err_close:
 438	swsusp_close(FMODE_WRITE);
 439	return ret;
 440}
 441
 442static int swap_write_page(struct swap_map_handle *handle, void *buf,
 443		struct hib_bio_batch *hb)
 444{
 445	int error = 0;
 446	sector_t offset;
 447
 448	if (!handle->cur)
 449		return -EINVAL;
 450	offset = alloc_swapdev_block(root_swap);
 451	error = write_page(buf, offset, hb);
 452	if (error)
 453		return error;
 454	handle->cur->entries[handle->k++] = offset;
 455	if (handle->k >= MAP_PAGE_ENTRIES) {
 456		offset = alloc_swapdev_block(root_swap);
 457		if (!offset)
 458			return -ENOSPC;
 459		handle->cur->next_swap = offset;
 460		error = write_page(handle->cur, handle->cur_swap, hb);
 461		if (error)
 462			goto out;
 463		clear_page(handle->cur);
 464		handle->cur_swap = offset;
 465		handle->k = 0;
 466
 467		if (hb && low_free_pages() <= handle->reqd_free_pages) {
 468			error = hib_wait_io(hb);
 469			if (error)
 470				goto out;
 471			/*
 472			 * Recalculate the number of required free pages, to
 473			 * make sure we never take more than half.
 474			 */
 475			handle->reqd_free_pages = reqd_free_pages();
 476		}
 477	}
 478 out:
 479	return error;
 480}
 481
 482static int flush_swap_writer(struct swap_map_handle *handle)
 483{
 484	if (handle->cur && handle->cur_swap)
 485		return write_page(handle->cur, handle->cur_swap, NULL);
 486	else
 487		return -EINVAL;
 488}
 489
 490static int swap_writer_finish(struct swap_map_handle *handle,
 491		unsigned int flags, int error)
 492{
 493	if (!error) {
 
 
 
 494		flush_swap_writer(handle);
 495		printk(KERN_INFO "PM: S");
 496		error = mark_swapfiles(handle, flags);
 497		printk("|\n");
 498	}
 499
 500	if (error)
 501		free_all_swap_pages(root_swap);
 502	release_swap_writer(handle);
 503	swsusp_close(FMODE_WRITE);
 504
 505	return error;
 506}
 507
 508/* We need to remember how much compressed data we need to read. */
 509#define LZO_HEADER	sizeof(size_t)
 510
 511/* Number of pages/bytes we'll compress at one time. */
 512#define LZO_UNC_PAGES	32
 513#define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
 514
 515/* Number of pages/bytes we need for compressed data (worst case). */
 516#define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
 517			             LZO_HEADER, PAGE_SIZE)
 518#define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
 519
 520/* Maximum number of threads for compression/decompression. */
 521#define LZO_THREADS	3
 522
 523/* Minimum/maximum number of pages for read buffering. */
 524#define LZO_MIN_RD_PAGES	1024
 525#define LZO_MAX_RD_PAGES	8192
 526
 527
 528/**
 529 *	save_image - save the suspend image data
 530 */
 531
 532static int save_image(struct swap_map_handle *handle,
 533                      struct snapshot_handle *snapshot,
 534                      unsigned int nr_to_write)
 535{
 536	unsigned int m;
 537	int ret;
 538	int nr_pages;
 539	int err2;
 540	struct hib_bio_batch hb;
 541	ktime_t start;
 542	ktime_t stop;
 543
 544	hib_init_batch(&hb);
 545
 546	printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
 547		nr_to_write);
 548	m = nr_to_write / 10;
 549	if (!m)
 550		m = 1;
 551	nr_pages = 0;
 552	start = ktime_get();
 553	while (1) {
 554		ret = snapshot_read_next(snapshot);
 555		if (ret <= 0)
 556			break;
 557		ret = swap_write_page(handle, data_of(*snapshot), &hb);
 558		if (ret)
 559			break;
 560		if (!(nr_pages % m))
 561			printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
 562			       nr_pages / m * 10);
 563		nr_pages++;
 564	}
 565	err2 = hib_wait_io(&hb);
 
 566	stop = ktime_get();
 567	if (!ret)
 568		ret = err2;
 569	if (!ret)
 570		printk(KERN_INFO "PM: Image saving done.\n");
 571	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 572	return ret;
 573}
 574
 575/**
 576 * Structure used for CRC32.
 577 */
 578struct crc_data {
 579	struct task_struct *thr;                  /* thread */
 580	atomic_t ready;                           /* ready to start flag */
 581	atomic_t stop;                            /* ready to stop flag */
 582	unsigned run_threads;                     /* nr current threads */
 583	wait_queue_head_t go;                     /* start crc update */
 584	wait_queue_head_t done;                   /* crc update done */
 585	u32 *crc32;                               /* points to handle's crc32 */
 586	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
 587	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
 588};
 589
 590/**
 591 * CRC32 update function that runs in its own thread.
 592 */
 593static int crc32_threadfn(void *data)
 594{
 595	struct crc_data *d = data;
 596	unsigned i;
 597
 598	while (1) {
 599		wait_event(d->go, atomic_read(&d->ready) ||
 600		                  kthread_should_stop());
 601		if (kthread_should_stop()) {
 602			d->thr = NULL;
 603			atomic_set(&d->stop, 1);
 604			wake_up(&d->done);
 605			break;
 606		}
 607		atomic_set(&d->ready, 0);
 608
 609		for (i = 0; i < d->run_threads; i++)
 610			*d->crc32 = crc32_le(*d->crc32,
 611			                     d->unc[i], *d->unc_len[i]);
 612		atomic_set(&d->stop, 1);
 613		wake_up(&d->done);
 614	}
 615	return 0;
 616}
 617/**
 618 * Structure used for LZO data compression.
 619 */
 620struct cmp_data {
 621	struct task_struct *thr;                  /* thread */
 622	atomic_t ready;                           /* ready to start flag */
 623	atomic_t stop;                            /* ready to stop flag */
 624	int ret;                                  /* return code */
 625	wait_queue_head_t go;                     /* start compression */
 626	wait_queue_head_t done;                   /* compression done */
 627	size_t unc_len;                           /* uncompressed length */
 628	size_t cmp_len;                           /* compressed length */
 629	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
 630	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
 631	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
 632};
 633
 634/**
 635 * Compression function that runs in its own thread.
 636 */
 637static int lzo_compress_threadfn(void *data)
 638{
 639	struct cmp_data *d = data;
 640
 641	while (1) {
 642		wait_event(d->go, atomic_read(&d->ready) ||
 643		                  kthread_should_stop());
 644		if (kthread_should_stop()) {
 645			d->thr = NULL;
 646			d->ret = -1;
 647			atomic_set(&d->stop, 1);
 648			wake_up(&d->done);
 649			break;
 650		}
 651		atomic_set(&d->ready, 0);
 652
 653		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
 654		                          d->cmp + LZO_HEADER, &d->cmp_len,
 655		                          d->wrk);
 656		atomic_set(&d->stop, 1);
 657		wake_up(&d->done);
 658	}
 659	return 0;
 660}
 661
 662/**
 663 * save_image_lzo - Save the suspend image data compressed with LZO.
 664 * @handle: Swap map handle to use for saving the image.
 665 * @snapshot: Image to read data from.
 666 * @nr_to_write: Number of pages to save.
 667 */
 668static int save_image_lzo(struct swap_map_handle *handle,
 669                          struct snapshot_handle *snapshot,
 670                          unsigned int nr_to_write)
 671{
 672	unsigned int m;
 673	int ret = 0;
 674	int nr_pages;
 675	int err2;
 676	struct hib_bio_batch hb;
 677	ktime_t start;
 678	ktime_t stop;
 679	size_t off;
 680	unsigned thr, run_threads, nr_threads;
 681	unsigned char *page = NULL;
 682	struct cmp_data *data = NULL;
 683	struct crc_data *crc = NULL;
 684
 685	hib_init_batch(&hb);
 686
 687	/*
 688	 * We'll limit the number of threads for compression to limit memory
 689	 * footprint.
 690	 */
 691	nr_threads = num_online_cpus() - 1;
 692	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
 693
 694	page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
 695	if (!page) {
 696		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
 697		ret = -ENOMEM;
 698		goto out_clean;
 699	}
 700
 701	data = vmalloc(sizeof(*data) * nr_threads);
 702	if (!data) {
 703		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
 704		ret = -ENOMEM;
 705		goto out_clean;
 706	}
 707	for (thr = 0; thr < nr_threads; thr++)
 708		memset(&data[thr], 0, offsetof(struct cmp_data, go));
 709
 710	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
 711	if (!crc) {
 712		printk(KERN_ERR "PM: Failed to allocate crc\n");
 713		ret = -ENOMEM;
 714		goto out_clean;
 715	}
 716	memset(crc, 0, offsetof(struct crc_data, go));
 717
 718	/*
 719	 * Start the compression threads.
 720	 */
 721	for (thr = 0; thr < nr_threads; thr++) {
 722		init_waitqueue_head(&data[thr].go);
 723		init_waitqueue_head(&data[thr].done);
 724
 725		data[thr].thr = kthread_run(lzo_compress_threadfn,
 726		                            &data[thr],
 727		                            "image_compress/%u", thr);
 728		if (IS_ERR(data[thr].thr)) {
 729			data[thr].thr = NULL;
 730			printk(KERN_ERR
 731			       "PM: Cannot start compression threads\n");
 732			ret = -ENOMEM;
 733			goto out_clean;
 734		}
 735	}
 736
 737	/*
 738	 * Start the CRC32 thread.
 739	 */
 740	init_waitqueue_head(&crc->go);
 741	init_waitqueue_head(&crc->done);
 742
 743	handle->crc32 = 0;
 744	crc->crc32 = &handle->crc32;
 745	for (thr = 0; thr < nr_threads; thr++) {
 746		crc->unc[thr] = data[thr].unc;
 747		crc->unc_len[thr] = &data[thr].unc_len;
 748	}
 749
 750	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
 751	if (IS_ERR(crc->thr)) {
 752		crc->thr = NULL;
 753		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
 754		ret = -ENOMEM;
 755		goto out_clean;
 756	}
 757
 758	/*
 759	 * Adjust the number of required free pages after all allocations have
 760	 * been done. We don't want to run out of pages when writing.
 761	 */
 762	handle->reqd_free_pages = reqd_free_pages();
 763
 764	printk(KERN_INFO
 765		"PM: Using %u thread(s) for compression.\n"
 766		"PM: Compressing and saving image data (%u pages)...\n",
 767		nr_threads, nr_to_write);
 768	m = nr_to_write / 10;
 769	if (!m)
 770		m = 1;
 771	nr_pages = 0;
 772	start = ktime_get();
 773	for (;;) {
 774		for (thr = 0; thr < nr_threads; thr++) {
 775			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
 776				ret = snapshot_read_next(snapshot);
 777				if (ret < 0)
 778					goto out_finish;
 779
 780				if (!ret)
 781					break;
 782
 783				memcpy(data[thr].unc + off,
 784				       data_of(*snapshot), PAGE_SIZE);
 785
 786				if (!(nr_pages % m))
 787					printk(KERN_INFO
 788					       "PM: Image saving progress: "
 789					       "%3d%%\n",
 790				               nr_pages / m * 10);
 791				nr_pages++;
 792			}
 793			if (!off)
 794				break;
 795
 796			data[thr].unc_len = off;
 797
 798			atomic_set(&data[thr].ready, 1);
 799			wake_up(&data[thr].go);
 800		}
 801
 802		if (!thr)
 803			break;
 804
 805		crc->run_threads = thr;
 806		atomic_set(&crc->ready, 1);
 807		wake_up(&crc->go);
 808
 809		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
 810			wait_event(data[thr].done,
 811			           atomic_read(&data[thr].stop));
 812			atomic_set(&data[thr].stop, 0);
 813
 814			ret = data[thr].ret;
 815
 816			if (ret < 0) {
 817				printk(KERN_ERR "PM: LZO compression failed\n");
 818				goto out_finish;
 819			}
 820
 821			if (unlikely(!data[thr].cmp_len ||
 822			             data[thr].cmp_len >
 823			             lzo1x_worst_compress(data[thr].unc_len))) {
 824				printk(KERN_ERR
 825				       "PM: Invalid LZO compressed length\n");
 826				ret = -1;
 827				goto out_finish;
 828			}
 829
 830			*(size_t *)data[thr].cmp = data[thr].cmp_len;
 831
 832			/*
 833			 * Given we are writing one page at a time to disk, we
 834			 * copy that much from the buffer, although the last
 835			 * bit will likely be smaller than full page. This is
 836			 * OK - we saved the length of the compressed data, so
 837			 * any garbage at the end will be discarded when we
 838			 * read it.
 839			 */
 840			for (off = 0;
 841			     off < LZO_HEADER + data[thr].cmp_len;
 842			     off += PAGE_SIZE) {
 843				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
 844
 845				ret = swap_write_page(handle, page, &hb);
 846				if (ret)
 847					goto out_finish;
 848			}
 849		}
 850
 851		wait_event(crc->done, atomic_read(&crc->stop));
 852		atomic_set(&crc->stop, 0);
 853	}
 854
 855out_finish:
 856	err2 = hib_wait_io(&hb);
 857	stop = ktime_get();
 858	if (!ret)
 859		ret = err2;
 860	if (!ret)
 861		printk(KERN_INFO "PM: Image saving done.\n");
 862	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 863out_clean:
 
 864	if (crc) {
 865		if (crc->thr)
 866			kthread_stop(crc->thr);
 867		kfree(crc);
 868	}
 869	if (data) {
 870		for (thr = 0; thr < nr_threads; thr++)
 871			if (data[thr].thr)
 872				kthread_stop(data[thr].thr);
 873		vfree(data);
 874	}
 875	if (page) free_page((unsigned long)page);
 876
 877	return ret;
 878}
 879
 880/**
 881 *	enough_swap - Make sure we have enough swap to save the image.
 882 *
 883 *	Returns TRUE or FALSE after checking the total amount of swap
 884 *	space avaiable from the resume partition.
 885 */
 886
 887static int enough_swap(unsigned int nr_pages, unsigned int flags)
 888{
 889	unsigned int free_swap = count_swap_pages(root_swap, 1);
 890	unsigned int required;
 891
 892	pr_debug("PM: Free swap pages: %u\n", free_swap);
 893
 894	required = PAGES_FOR_IO + nr_pages;
 895	return free_swap > required;
 896}
 897
 898/**
 899 *	swsusp_write - Write entire image and metadata.
 900 *	@flags: flags to pass to the "boot" kernel in the image header
 901 *
 902 *	It is important _NOT_ to umount filesystems at this point. We want
 903 *	them synced (in case something goes wrong) but we DO not want to mark
 904 *	filesystem clean: it is not. (And it does not matter, if we resume
 905 *	correctly, we'll mark system clean, anyway.)
 906 */
 907
 908int swsusp_write(unsigned int flags)
 909{
 910	struct swap_map_handle handle;
 911	struct snapshot_handle snapshot;
 912	struct swsusp_info *header;
 913	unsigned long pages;
 914	int error;
 915
 916	pages = snapshot_get_image_size();
 917	error = get_swap_writer(&handle);
 918	if (error) {
 919		printk(KERN_ERR "PM: Cannot get swap writer\n");
 920		return error;
 921	}
 922	if (flags & SF_NOCOMPRESS_MODE) {
 923		if (!enough_swap(pages, flags)) {
 924			printk(KERN_ERR "PM: Not enough free swap\n");
 925			error = -ENOSPC;
 926			goto out_finish;
 927		}
 928	}
 929	memset(&snapshot, 0, sizeof(struct snapshot_handle));
 930	error = snapshot_read_next(&snapshot);
 931	if (error < PAGE_SIZE) {
 932		if (error >= 0)
 933			error = -EFAULT;
 934
 935		goto out_finish;
 936	}
 937	header = (struct swsusp_info *)data_of(snapshot);
 938	error = swap_write_page(&handle, header, NULL);
 939	if (!error) {
 940		error = (flags & SF_NOCOMPRESS_MODE) ?
 941			save_image(&handle, &snapshot, pages - 1) :
 942			save_image_lzo(&handle, &snapshot, pages - 1);
 943	}
 944out_finish:
 945	error = swap_writer_finish(&handle, flags, error);
 946	return error;
 947}
 948
 949/**
 950 *	The following functions allow us to read data using a swap map
 951 *	in a file-alike way
 952 */
 953
 954static void release_swap_reader(struct swap_map_handle *handle)
 955{
 956	struct swap_map_page_list *tmp;
 957
 958	while (handle->maps) {
 959		if (handle->maps->map)
 960			free_page((unsigned long)handle->maps->map);
 961		tmp = handle->maps;
 962		handle->maps = handle->maps->next;
 963		kfree(tmp);
 964	}
 965	handle->cur = NULL;
 966}
 967
 968static int get_swap_reader(struct swap_map_handle *handle,
 969		unsigned int *flags_p)
 970{
 971	int error;
 972	struct swap_map_page_list *tmp, *last;
 973	sector_t offset;
 974
 975	*flags_p = swsusp_header->flags;
 976
 977	if (!swsusp_header->image) /* how can this happen? */
 978		return -EINVAL;
 979
 980	handle->cur = NULL;
 981	last = handle->maps = NULL;
 982	offset = swsusp_header->image;
 983	while (offset) {
 984		tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
 985		if (!tmp) {
 986			release_swap_reader(handle);
 987			return -ENOMEM;
 988		}
 989		memset(tmp, 0, sizeof(*tmp));
 990		if (!handle->maps)
 991			handle->maps = tmp;
 992		if (last)
 993			last->next = tmp;
 994		last = tmp;
 995
 996		tmp->map = (struct swap_map_page *)
 997			   __get_free_page(__GFP_RECLAIM | __GFP_HIGH);
 998		if (!tmp->map) {
 999			release_swap_reader(handle);
1000			return -ENOMEM;
1001		}
1002
1003		error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
1004		if (error) {
1005			release_swap_reader(handle);
1006			return error;
1007		}
1008		offset = tmp->map->next_swap;
1009	}
1010	handle->k = 0;
1011	handle->cur = handle->maps->map;
1012	return 0;
1013}
1014
1015static int swap_read_page(struct swap_map_handle *handle, void *buf,
1016		struct hib_bio_batch *hb)
1017{
1018	sector_t offset;
1019	int error;
1020	struct swap_map_page_list *tmp;
1021
1022	if (!handle->cur)
1023		return -EINVAL;
1024	offset = handle->cur->entries[handle->k];
1025	if (!offset)
1026		return -EFAULT;
1027	error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1028	if (error)
1029		return error;
1030	if (++handle->k >= MAP_PAGE_ENTRIES) {
1031		handle->k = 0;
1032		free_page((unsigned long)handle->maps->map);
1033		tmp = handle->maps;
1034		handle->maps = handle->maps->next;
1035		kfree(tmp);
1036		if (!handle->maps)
1037			release_swap_reader(handle);
1038		else
1039			handle->cur = handle->maps->map;
1040	}
1041	return error;
1042}
1043
1044static int swap_reader_finish(struct swap_map_handle *handle)
1045{
1046	release_swap_reader(handle);
1047
1048	return 0;
1049}
1050
1051/**
1052 *	load_image - load the image using the swap map handle
1053 *	@handle and the snapshot handle @snapshot
1054 *	(assume there are @nr_pages pages to load)
1055 */
1056
1057static int load_image(struct swap_map_handle *handle,
1058                      struct snapshot_handle *snapshot,
1059                      unsigned int nr_to_read)
1060{
1061	unsigned int m;
1062	int ret = 0;
1063	ktime_t start;
1064	ktime_t stop;
1065	struct hib_bio_batch hb;
1066	int err2;
1067	unsigned nr_pages;
1068
1069	hib_init_batch(&hb);
1070
1071	clean_pages_on_read = true;
1072	printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
1073		nr_to_read);
1074	m = nr_to_read / 10;
1075	if (!m)
1076		m = 1;
1077	nr_pages = 0;
1078	start = ktime_get();
1079	for ( ; ; ) {
1080		ret = snapshot_write_next(snapshot);
1081		if (ret <= 0)
1082			break;
1083		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1084		if (ret)
1085			break;
1086		if (snapshot->sync_read)
1087			ret = hib_wait_io(&hb);
1088		if (ret)
1089			break;
1090		if (!(nr_pages % m))
1091			printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
1092			       nr_pages / m * 10);
1093		nr_pages++;
1094	}
1095	err2 = hib_wait_io(&hb);
 
1096	stop = ktime_get();
1097	if (!ret)
1098		ret = err2;
1099	if (!ret) {
1100		printk(KERN_INFO "PM: Image loading done.\n");
1101		snapshot_write_finalize(snapshot);
1102		if (!snapshot_image_loaded(snapshot))
1103			ret = -ENODATA;
1104	}
1105	swsusp_show_speed(start, stop, nr_to_read, "Read");
1106	return ret;
1107}
1108
1109/**
1110 * Structure used for LZO data decompression.
1111 */
1112struct dec_data {
1113	struct task_struct *thr;                  /* thread */
1114	atomic_t ready;                           /* ready to start flag */
1115	atomic_t stop;                            /* ready to stop flag */
1116	int ret;                                  /* return code */
1117	wait_queue_head_t go;                     /* start decompression */
1118	wait_queue_head_t done;                   /* decompression done */
1119	size_t unc_len;                           /* uncompressed length */
1120	size_t cmp_len;                           /* compressed length */
1121	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1122	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1123};
1124
1125/**
1126 * Deompression function that runs in its own thread.
1127 */
1128static int lzo_decompress_threadfn(void *data)
1129{
1130	struct dec_data *d = data;
1131
1132	while (1) {
1133		wait_event(d->go, atomic_read(&d->ready) ||
1134		                  kthread_should_stop());
1135		if (kthread_should_stop()) {
1136			d->thr = NULL;
1137			d->ret = -1;
1138			atomic_set(&d->stop, 1);
1139			wake_up(&d->done);
1140			break;
1141		}
1142		atomic_set(&d->ready, 0);
1143
1144		d->unc_len = LZO_UNC_SIZE;
1145		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1146		                               d->unc, &d->unc_len);
1147		if (clean_pages_on_decompress)
1148			flush_icache_range((unsigned long)d->unc,
1149					   (unsigned long)d->unc + d->unc_len);
1150
1151		atomic_set(&d->stop, 1);
1152		wake_up(&d->done);
1153	}
1154	return 0;
1155}
1156
1157/**
1158 * load_image_lzo - Load compressed image data and decompress them with LZO.
1159 * @handle: Swap map handle to use for loading data.
1160 * @snapshot: Image to copy uncompressed data into.
1161 * @nr_to_read: Number of pages to load.
1162 */
1163static int load_image_lzo(struct swap_map_handle *handle,
1164                          struct snapshot_handle *snapshot,
1165                          unsigned int nr_to_read)
1166{
1167	unsigned int m;
1168	int ret = 0;
1169	int eof = 0;
1170	struct hib_bio_batch hb;
1171	ktime_t start;
1172	ktime_t stop;
1173	unsigned nr_pages;
1174	size_t off;
1175	unsigned i, thr, run_threads, nr_threads;
1176	unsigned ring = 0, pg = 0, ring_size = 0,
1177	         have = 0, want, need, asked = 0;
1178	unsigned long read_pages = 0;
1179	unsigned char **page = NULL;
1180	struct dec_data *data = NULL;
1181	struct crc_data *crc = NULL;
1182
1183	hib_init_batch(&hb);
1184
1185	/*
1186	 * We'll limit the number of threads for decompression to limit memory
1187	 * footprint.
1188	 */
1189	nr_threads = num_online_cpus() - 1;
1190	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1191
1192	page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1193	if (!page) {
1194		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1195		ret = -ENOMEM;
1196		goto out_clean;
1197	}
1198
1199	data = vmalloc(sizeof(*data) * nr_threads);
1200	if (!data) {
1201		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1202		ret = -ENOMEM;
1203		goto out_clean;
1204	}
1205	for (thr = 0; thr < nr_threads; thr++)
1206		memset(&data[thr], 0, offsetof(struct dec_data, go));
1207
1208	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1209	if (!crc) {
1210		printk(KERN_ERR "PM: Failed to allocate crc\n");
1211		ret = -ENOMEM;
1212		goto out_clean;
1213	}
1214	memset(crc, 0, offsetof(struct crc_data, go));
1215
1216	clean_pages_on_decompress = true;
1217
1218	/*
1219	 * Start the decompression threads.
1220	 */
1221	for (thr = 0; thr < nr_threads; thr++) {
1222		init_waitqueue_head(&data[thr].go);
1223		init_waitqueue_head(&data[thr].done);
1224
1225		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1226		                            &data[thr],
1227		                            "image_decompress/%u", thr);
1228		if (IS_ERR(data[thr].thr)) {
1229			data[thr].thr = NULL;
1230			printk(KERN_ERR
1231			       "PM: Cannot start decompression threads\n");
1232			ret = -ENOMEM;
1233			goto out_clean;
1234		}
1235	}
1236
1237	/*
1238	 * Start the CRC32 thread.
1239	 */
1240	init_waitqueue_head(&crc->go);
1241	init_waitqueue_head(&crc->done);
1242
1243	handle->crc32 = 0;
1244	crc->crc32 = &handle->crc32;
1245	for (thr = 0; thr < nr_threads; thr++) {
1246		crc->unc[thr] = data[thr].unc;
1247		crc->unc_len[thr] = &data[thr].unc_len;
1248	}
1249
1250	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1251	if (IS_ERR(crc->thr)) {
1252		crc->thr = NULL;
1253		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1254		ret = -ENOMEM;
1255		goto out_clean;
1256	}
1257
1258	/*
1259	 * Set the number of pages for read buffering.
1260	 * This is complete guesswork, because we'll only know the real
1261	 * picture once prepare_image() is called, which is much later on
1262	 * during the image load phase. We'll assume the worst case and
1263	 * say that none of the image pages are from high memory.
1264	 */
1265	if (low_free_pages() > snapshot_get_image_size())
1266		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1267	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1268
1269	for (i = 0; i < read_pages; i++) {
1270		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1271						  __GFP_RECLAIM | __GFP_HIGH :
1272						  __GFP_RECLAIM | __GFP_NOWARN |
1273						  __GFP_NORETRY);
1274
1275		if (!page[i]) {
1276			if (i < LZO_CMP_PAGES) {
1277				ring_size = i;
1278				printk(KERN_ERR
1279				       "PM: Failed to allocate LZO pages\n");
1280				ret = -ENOMEM;
1281				goto out_clean;
1282			} else {
1283				break;
1284			}
1285		}
1286	}
1287	want = ring_size = i;
1288
1289	printk(KERN_INFO
1290		"PM: Using %u thread(s) for decompression.\n"
1291		"PM: Loading and decompressing image data (%u pages)...\n",
1292		nr_threads, nr_to_read);
1293	m = nr_to_read / 10;
1294	if (!m)
1295		m = 1;
1296	nr_pages = 0;
1297	start = ktime_get();
1298
1299	ret = snapshot_write_next(snapshot);
1300	if (ret <= 0)
1301		goto out_finish;
1302
1303	for(;;) {
1304		for (i = 0; !eof && i < want; i++) {
1305			ret = swap_read_page(handle, page[ring], &hb);
1306			if (ret) {
1307				/*
1308				 * On real read error, finish. On end of data,
1309				 * set EOF flag and just exit the read loop.
1310				 */
1311				if (handle->cur &&
1312				    handle->cur->entries[handle->k]) {
1313					goto out_finish;
1314				} else {
1315					eof = 1;
1316					break;
1317				}
1318			}
1319			if (++ring >= ring_size)
1320				ring = 0;
1321		}
1322		asked += i;
1323		want -= i;
1324
1325		/*
1326		 * We are out of data, wait for some more.
1327		 */
1328		if (!have) {
1329			if (!asked)
1330				break;
1331
1332			ret = hib_wait_io(&hb);
1333			if (ret)
1334				goto out_finish;
1335			have += asked;
1336			asked = 0;
1337			if (eof)
1338				eof = 2;
1339		}
1340
1341		if (crc->run_threads) {
1342			wait_event(crc->done, atomic_read(&crc->stop));
1343			atomic_set(&crc->stop, 0);
1344			crc->run_threads = 0;
1345		}
1346
1347		for (thr = 0; have && thr < nr_threads; thr++) {
1348			data[thr].cmp_len = *(size_t *)page[pg];
1349			if (unlikely(!data[thr].cmp_len ||
1350			             data[thr].cmp_len >
1351			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1352				printk(KERN_ERR
1353				       "PM: Invalid LZO compressed length\n");
1354				ret = -1;
1355				goto out_finish;
1356			}
1357
1358			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1359			                    PAGE_SIZE);
1360			if (need > have) {
1361				if (eof > 1) {
1362					ret = -1;
1363					goto out_finish;
1364				}
1365				break;
1366			}
1367
1368			for (off = 0;
1369			     off < LZO_HEADER + data[thr].cmp_len;
1370			     off += PAGE_SIZE) {
1371				memcpy(data[thr].cmp + off,
1372				       page[pg], PAGE_SIZE);
1373				have--;
1374				want++;
1375				if (++pg >= ring_size)
1376					pg = 0;
1377			}
1378
1379			atomic_set(&data[thr].ready, 1);
1380			wake_up(&data[thr].go);
1381		}
1382
1383		/*
1384		 * Wait for more data while we are decompressing.
1385		 */
1386		if (have < LZO_CMP_PAGES && asked) {
1387			ret = hib_wait_io(&hb);
1388			if (ret)
1389				goto out_finish;
1390			have += asked;
1391			asked = 0;
1392			if (eof)
1393				eof = 2;
1394		}
1395
1396		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1397			wait_event(data[thr].done,
1398			           atomic_read(&data[thr].stop));
1399			atomic_set(&data[thr].stop, 0);
1400
1401			ret = data[thr].ret;
1402
1403			if (ret < 0) {
1404				printk(KERN_ERR
1405				       "PM: LZO decompression failed\n");
1406				goto out_finish;
1407			}
1408
1409			if (unlikely(!data[thr].unc_len ||
1410			             data[thr].unc_len > LZO_UNC_SIZE ||
1411			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1412				printk(KERN_ERR
1413				       "PM: Invalid LZO uncompressed length\n");
1414				ret = -1;
1415				goto out_finish;
1416			}
1417
1418			for (off = 0;
1419			     off < data[thr].unc_len; off += PAGE_SIZE) {
1420				memcpy(data_of(*snapshot),
1421				       data[thr].unc + off, PAGE_SIZE);
1422
1423				if (!(nr_pages % m))
1424					printk(KERN_INFO
1425					       "PM: Image loading progress: "
1426					       "%3d%%\n",
1427					       nr_pages / m * 10);
1428				nr_pages++;
1429
1430				ret = snapshot_write_next(snapshot);
1431				if (ret <= 0) {
1432					crc->run_threads = thr + 1;
1433					atomic_set(&crc->ready, 1);
1434					wake_up(&crc->go);
1435					goto out_finish;
1436				}
1437			}
1438		}
1439
1440		crc->run_threads = thr;
1441		atomic_set(&crc->ready, 1);
1442		wake_up(&crc->go);
1443	}
1444
1445out_finish:
1446	if (crc->run_threads) {
1447		wait_event(crc->done, atomic_read(&crc->stop));
1448		atomic_set(&crc->stop, 0);
1449	}
1450	stop = ktime_get();
1451	if (!ret) {
1452		printk(KERN_INFO "PM: Image loading done.\n");
1453		snapshot_write_finalize(snapshot);
1454		if (!snapshot_image_loaded(snapshot))
1455			ret = -ENODATA;
1456		if (!ret) {
1457			if (swsusp_header->flags & SF_CRC32_MODE) {
1458				if(handle->crc32 != swsusp_header->crc32) {
1459					printk(KERN_ERR
1460					       "PM: Invalid image CRC32!\n");
1461					ret = -ENODATA;
1462				}
1463			}
1464		}
1465	}
1466	swsusp_show_speed(start, stop, nr_to_read, "Read");
1467out_clean:
 
1468	for (i = 0; i < ring_size; i++)
1469		free_page((unsigned long)page[i]);
1470	if (crc) {
1471		if (crc->thr)
1472			kthread_stop(crc->thr);
1473		kfree(crc);
1474	}
1475	if (data) {
1476		for (thr = 0; thr < nr_threads; thr++)
1477			if (data[thr].thr)
1478				kthread_stop(data[thr].thr);
1479		vfree(data);
1480	}
1481	vfree(page);
1482
1483	return ret;
1484}
1485
1486/**
1487 *	swsusp_read - read the hibernation image.
1488 *	@flags_p: flags passed by the "frozen" kernel in the image header should
1489 *		  be written into this memory location
1490 */
1491
1492int swsusp_read(unsigned int *flags_p)
1493{
1494	int error;
1495	struct swap_map_handle handle;
1496	struct snapshot_handle snapshot;
1497	struct swsusp_info *header;
1498
1499	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1500	error = snapshot_write_next(&snapshot);
1501	if (error < PAGE_SIZE)
1502		return error < 0 ? error : -EFAULT;
1503	header = (struct swsusp_info *)data_of(snapshot);
1504	error = get_swap_reader(&handle, flags_p);
1505	if (error)
1506		goto end;
1507	if (!error)
1508		error = swap_read_page(&handle, header, NULL);
1509	if (!error) {
1510		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1511			load_image(&handle, &snapshot, header->pages - 1) :
1512			load_image_lzo(&handle, &snapshot, header->pages - 1);
1513	}
1514	swap_reader_finish(&handle);
1515end:
1516	if (!error)
1517		pr_debug("PM: Image successfully loaded\n");
1518	else
1519		pr_debug("PM: Error %d resuming\n", error);
1520	return error;
1521}
1522
1523/**
1524 *      swsusp_check - Check for swsusp signature in the resume device
1525 */
1526
1527int swsusp_check(void)
1528{
1529	int error;
 
1530
1531	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1532					    FMODE_READ, NULL);
1533	if (!IS_ERR(hib_resume_bdev)) {
1534		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1535		clear_page(swsusp_header);
1536		error = hib_submit_io(REQ_OP_READ, 0,
1537					swsusp_resume_block,
1538					swsusp_header, NULL);
1539		if (error)
1540			goto put;
1541
1542		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1543			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1544			/* Reset swap signature now */
1545			error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1546						swsusp_resume_block,
1547						swsusp_header, NULL);
1548		} else {
1549			error = -EINVAL;
1550		}
 
 
 
 
 
 
1551
1552put:
1553		if (error)
1554			blkdev_put(hib_resume_bdev, FMODE_READ);
1555		else
1556			pr_debug("PM: Image signature found, resuming\n");
1557	} else {
1558		error = PTR_ERR(hib_resume_bdev);
1559	}
1560
1561	if (error)
1562		pr_debug("PM: Image not found (code %d)\n", error);
1563
1564	return error;
1565}
1566
1567/**
1568 *	swsusp_close - close swap device.
1569 */
1570
1571void swsusp_close(fmode_t mode)
1572{
1573	if (IS_ERR(hib_resume_bdev)) {
1574		pr_debug("PM: Image device not initialised\n");
1575		return;
1576	}
1577
1578	blkdev_put(hib_resume_bdev, mode);
1579}
1580
1581/**
1582 *      swsusp_unmark - Unmark swsusp signature in the resume device
1583 */
1584
1585#ifdef CONFIG_SUSPEND
1586int swsusp_unmark(void)
1587{
1588	int error;
1589
1590	hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1591		      swsusp_header, NULL);
1592	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1593		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1594		error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1595					swsusp_resume_block,
1596					swsusp_header, NULL);
1597	} else {
1598		printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1599		error = -ENODEV;
1600	}
1601
1602	/*
1603	 * We just returned from suspend, we don't need the image any more.
1604	 */
1605	free_all_swap_pages(root_swap);
1606
1607	return error;
1608}
1609#endif
1610
1611static int swsusp_header_init(void)
1612{
1613	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1614	if (!swsusp_header)
1615		panic("Could not allocate memory for swsusp_header\n");
1616	return 0;
1617}
1618
1619core_initcall(swsusp_header_init);