Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/swap.c
   4 *
   5 * This file provides functions for reading the suspend image from
   6 * and writing it to a swap partition.
   7 *
   8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
   9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
  10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
 
 
 
  11 */
  12
  13#define pr_fmt(fmt) "PM: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/file.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
 
  19#include <linux/device.h>
  20#include <linux/bio.h>
  21#include <linux/blkdev.h>
  22#include <linux/swap.h>
  23#include <linux/swapops.h>
  24#include <linux/pm.h>
  25#include <linux/slab.h>
  26#include <linux/lzo.h>
  27#include <linux/vmalloc.h>
  28#include <linux/cpumask.h>
  29#include <linux/atomic.h>
  30#include <linux/kthread.h>
  31#include <linux/crc32.h>
  32#include <linux/ktime.h>
  33
  34#include "power.h"
  35
  36#define HIBERNATE_SIG	"S1SUSPEND"
  37
  38u32 swsusp_hardware_signature;
  39
  40/*
  41 * When reading an {un,}compressed image, we may restore pages in place,
  42 * in which case some architectures need these pages cleaning before they
  43 * can be executed. We don't know which pages these may be, so clean the lot.
  44 */
  45static bool clean_pages_on_read;
  46static bool clean_pages_on_decompress;
  47
  48/*
  49 *	The swap map is a data structure used for keeping track of each page
  50 *	written to a swap partition.  It consists of many swap_map_page
  51 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
  52 *	These structures are stored on the swap and linked together with the
  53 *	help of the .next_swap member.
  54 *
  55 *	The swap map is created during suspend.  The swap map pages are
  56 *	allocated and populated one at a time, so we only need one memory
  57 *	page to set up the entire structure.
  58 *
  59 *	During resume we pick up all swap_map_page structures into a list.
  60 */
  61
  62#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
  63
  64/*
  65 * Number of free pages that are not high.
  66 */
  67static inline unsigned long low_free_pages(void)
  68{
  69	return nr_free_pages() - nr_free_highpages();
  70}
  71
  72/*
  73 * Number of pages required to be kept free while writing the image. Always
  74 * half of all available low pages before the writing starts.
  75 */
  76static inline unsigned long reqd_free_pages(void)
  77{
  78	return low_free_pages() / 2;
  79}
  80
  81struct swap_map_page {
  82	sector_t entries[MAP_PAGE_ENTRIES];
  83	sector_t next_swap;
  84};
  85
  86struct swap_map_page_list {
  87	struct swap_map_page *map;
  88	struct swap_map_page_list *next;
  89};
  90
  91/*
  92 *	The swap_map_handle structure is used for handling swap in
  93 *	a file-alike way
  94 */
  95
  96struct swap_map_handle {
  97	struct swap_map_page *cur;
  98	struct swap_map_page_list *maps;
  99	sector_t cur_swap;
 100	sector_t first_sector;
 101	unsigned int k;
 102	unsigned long reqd_free_pages;
 103	u32 crc32;
 104};
 105
 106struct swsusp_header {
 107	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
 108	              sizeof(u32) - sizeof(u32)];
 109	u32	hw_sig;
 110	u32	crc32;
 111	sector_t image;
 112	unsigned int flags;	/* Flags to pass to the "boot" kernel */
 113	char	orig_sig[10];
 114	char	sig[10];
 115} __packed;
 116
 117static struct swsusp_header *swsusp_header;
 118
 119/*
 120 *	The following functions are used for tracing the allocated
 121 *	swap pages, so that they can be freed in case of an error.
 122 */
 123
 124struct swsusp_extent {
 125	struct rb_node node;
 126	unsigned long start;
 127	unsigned long end;
 128};
 129
 130static struct rb_root swsusp_extents = RB_ROOT;
 131
 132static int swsusp_extents_insert(unsigned long swap_offset)
 133{
 134	struct rb_node **new = &(swsusp_extents.rb_node);
 135	struct rb_node *parent = NULL;
 136	struct swsusp_extent *ext;
 137
 138	/* Figure out where to put the new node */
 139	while (*new) {
 140		ext = rb_entry(*new, struct swsusp_extent, node);
 141		parent = *new;
 142		if (swap_offset < ext->start) {
 143			/* Try to merge */
 144			if (swap_offset == ext->start - 1) {
 145				ext->start--;
 146				return 0;
 147			}
 148			new = &((*new)->rb_left);
 149		} else if (swap_offset > ext->end) {
 150			/* Try to merge */
 151			if (swap_offset == ext->end + 1) {
 152				ext->end++;
 153				return 0;
 154			}
 155			new = &((*new)->rb_right);
 156		} else {
 157			/* It already is in the tree */
 158			return -EINVAL;
 159		}
 160	}
 161	/* Add the new node and rebalance the tree. */
 162	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
 163	if (!ext)
 164		return -ENOMEM;
 165
 166	ext->start = swap_offset;
 167	ext->end = swap_offset;
 168	rb_link_node(&ext->node, parent, new);
 169	rb_insert_color(&ext->node, &swsusp_extents);
 170	return 0;
 171}
 172
 173/*
 174 *	alloc_swapdev_block - allocate a swap page and register that it has
 175 *	been allocated, so that it can be freed in case of an error.
 176 */
 177
 178sector_t alloc_swapdev_block(int swap)
 179{
 180	unsigned long offset;
 181
 182	offset = swp_offset(get_swap_page_of_type(swap));
 183	if (offset) {
 184		if (swsusp_extents_insert(offset))
 185			swap_free(swp_entry(swap, offset));
 186		else
 187			return swapdev_block(swap, offset);
 188	}
 189	return 0;
 190}
 191
 192/*
 193 *	free_all_swap_pages - free swap pages allocated for saving image data.
 194 *	It also frees the extents used to register which swap entries had been
 195 *	allocated.
 196 */
 197
 198void free_all_swap_pages(int swap)
 199{
 200	struct rb_node *node;
 201
 202	while ((node = swsusp_extents.rb_node)) {
 203		struct swsusp_extent *ext;
 204		unsigned long offset;
 205
 206		ext = rb_entry(node, struct swsusp_extent, node);
 207		rb_erase(node, &swsusp_extents);
 208		for (offset = ext->start; offset <= ext->end; offset++)
 209			swap_free(swp_entry(swap, offset));
 210
 211		kfree(ext);
 212	}
 213}
 214
 215int swsusp_swap_in_use(void)
 216{
 217	return (swsusp_extents.rb_node != NULL);
 218}
 219
 220/*
 221 * General things
 222 */
 223
 224static unsigned short root_swap = 0xffff;
 225static struct block_device *hib_resume_bdev;
 226
 227struct hib_bio_batch {
 228	atomic_t		count;
 229	wait_queue_head_t	wait;
 230	blk_status_t		error;
 231	struct blk_plug		plug;
 232};
 233
 234static void hib_init_batch(struct hib_bio_batch *hb)
 235{
 236	atomic_set(&hb->count, 0);
 237	init_waitqueue_head(&hb->wait);
 238	hb->error = BLK_STS_OK;
 239	blk_start_plug(&hb->plug);
 240}
 241
 242static void hib_finish_batch(struct hib_bio_batch *hb)
 243{
 244	blk_finish_plug(&hb->plug);
 245}
 246
 247static void hib_end_io(struct bio *bio)
 248{
 249	struct hib_bio_batch *hb = bio->bi_private;
 250	struct page *page = bio_first_page_all(bio);
 251
 252	if (bio->bi_status) {
 253		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
 254			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
 255			 (unsigned long long)bio->bi_iter.bi_sector);
 
 256	}
 257
 258	if (bio_data_dir(bio) == WRITE)
 259		put_page(page);
 260	else if (clean_pages_on_read)
 261		flush_icache_range((unsigned long)page_address(page),
 262				   (unsigned long)page_address(page) + PAGE_SIZE);
 263
 264	if (bio->bi_status && !hb->error)
 265		hb->error = bio->bi_status;
 266	if (atomic_dec_and_test(&hb->count))
 267		wake_up(&hb->wait);
 268
 269	bio_put(bio);
 270}
 271
 272static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
 273			 struct hib_bio_batch *hb)
 274{
 275	struct page *page = virt_to_page(addr);
 276	struct bio *bio;
 277	int error = 0;
 278
 279	bio = bio_alloc(hib_resume_bdev, 1, opf, GFP_NOIO | __GFP_HIGH);
 280	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
 
 281
 282	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 283		pr_err("Adding page to bio failed at %llu\n",
 284		       (unsigned long long)bio->bi_iter.bi_sector);
 285		bio_put(bio);
 286		return -EFAULT;
 287	}
 288
 289	if (hb) {
 290		bio->bi_end_io = hib_end_io;
 291		bio->bi_private = hb;
 292		atomic_inc(&hb->count);
 293		submit_bio(bio);
 294	} else {
 295		error = submit_bio_wait(bio);
 296		bio_put(bio);
 297	}
 298
 299	return error;
 300}
 301
 302static int hib_wait_io(struct hib_bio_batch *hb)
 303{
 304	/*
 305	 * We are relying on the behavior of blk_plug that a thread with
 306	 * a plug will flush the plug list before sleeping.
 307	 */
 308	wait_event(hb->wait, atomic_read(&hb->count) == 0);
 309	return blk_status_to_errno(hb->error);
 310}
 311
 312/*
 313 * Saving part
 314 */
 
 315static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
 316{
 317	int error;
 318
 319	hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
 320	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
 321	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
 322		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
 323		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
 324		swsusp_header->image = handle->first_sector;
 325		if (swsusp_hardware_signature) {
 326			swsusp_header->hw_sig = swsusp_hardware_signature;
 327			flags |= SF_HW_SIG;
 328		}
 329		swsusp_header->flags = flags;
 330		if (flags & SF_CRC32_MODE)
 331			swsusp_header->crc32 = handle->crc32;
 332		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
 333				      swsusp_resume_block, swsusp_header, NULL);
 334	} else {
 335		pr_err("Swap header not found!\n");
 336		error = -ENODEV;
 337	}
 338	return error;
 339}
 340
 341/**
 342 *	swsusp_swap_check - check if the resume device is a swap device
 343 *	and get its index (if so)
 344 *
 345 *	This is called before saving image
 346 */
 347static int swsusp_swap_check(void)
 348{
 349	int res;
 350
 351	if (swsusp_resume_device)
 352		res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
 353	else
 354		res = find_first_swap(&swsusp_resume_device);
 355	if (res < 0)
 356		return res;
 357	root_swap = res;
 358
 359	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, FMODE_WRITE,
 360			NULL);
 361	if (IS_ERR(hib_resume_bdev))
 362		return PTR_ERR(hib_resume_bdev);
 363
 364	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
 365	if (res < 0)
 366		blkdev_put(hib_resume_bdev, FMODE_WRITE);
 367
 368	return res;
 369}
 370
 371/**
 372 *	write_page - Write one page to given swap location.
 373 *	@buf:		Address we're writing.
 374 *	@offset:	Offset of the swap page we're writing to.
 375 *	@hb:		bio completion batch
 376 */
 377
 378static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
 379{
 380	void *src;
 381	int ret;
 382
 383	if (!offset)
 384		return -ENOSPC;
 385
 386	if (hb) {
 387		src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
 388		                              __GFP_NORETRY);
 389		if (src) {
 390			copy_page(src, buf);
 391		} else {
 392			ret = hib_wait_io(hb); /* Free pages */
 393			if (ret)
 394				return ret;
 395			src = (void *)__get_free_page(GFP_NOIO |
 396			                              __GFP_NOWARN |
 397			                              __GFP_NORETRY);
 398			if (src) {
 399				copy_page(src, buf);
 400			} else {
 401				WARN_ON_ONCE(1);
 402				hb = NULL;	/* Go synchronous */
 403				src = buf;
 404			}
 405		}
 406	} else {
 407		src = buf;
 408	}
 409	return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
 410}
 411
 412static void release_swap_writer(struct swap_map_handle *handle)
 413{
 414	if (handle->cur)
 415		free_page((unsigned long)handle->cur);
 416	handle->cur = NULL;
 417}
 418
 419static int get_swap_writer(struct swap_map_handle *handle)
 420{
 421	int ret;
 422
 423	ret = swsusp_swap_check();
 424	if (ret) {
 425		if (ret != -ENOSPC)
 426			pr_err("Cannot find swap device, try swapon -a\n");
 
 427		return ret;
 428	}
 429	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
 430	if (!handle->cur) {
 431		ret = -ENOMEM;
 432		goto err_close;
 433	}
 434	handle->cur_swap = alloc_swapdev_block(root_swap);
 435	if (!handle->cur_swap) {
 436		ret = -ENOSPC;
 437		goto err_rel;
 438	}
 439	handle->k = 0;
 440	handle->reqd_free_pages = reqd_free_pages();
 441	handle->first_sector = handle->cur_swap;
 442	return 0;
 443err_rel:
 444	release_swap_writer(handle);
 445err_close:
 446	swsusp_close(FMODE_WRITE);
 447	return ret;
 448}
 449
 450static int swap_write_page(struct swap_map_handle *handle, void *buf,
 451		struct hib_bio_batch *hb)
 452{
 453	int error = 0;
 454	sector_t offset;
 455
 456	if (!handle->cur)
 457		return -EINVAL;
 458	offset = alloc_swapdev_block(root_swap);
 459	error = write_page(buf, offset, hb);
 460	if (error)
 461		return error;
 462	handle->cur->entries[handle->k++] = offset;
 463	if (handle->k >= MAP_PAGE_ENTRIES) {
 464		offset = alloc_swapdev_block(root_swap);
 465		if (!offset)
 466			return -ENOSPC;
 467		handle->cur->next_swap = offset;
 468		error = write_page(handle->cur, handle->cur_swap, hb);
 469		if (error)
 470			goto out;
 471		clear_page(handle->cur);
 472		handle->cur_swap = offset;
 473		handle->k = 0;
 474
 475		if (hb && low_free_pages() <= handle->reqd_free_pages) {
 476			error = hib_wait_io(hb);
 477			if (error)
 478				goto out;
 479			/*
 480			 * Recalculate the number of required free pages, to
 481			 * make sure we never take more than half.
 482			 */
 483			handle->reqd_free_pages = reqd_free_pages();
 484		}
 485	}
 486 out:
 487	return error;
 488}
 489
 490static int flush_swap_writer(struct swap_map_handle *handle)
 491{
 492	if (handle->cur && handle->cur_swap)
 493		return write_page(handle->cur, handle->cur_swap, NULL);
 494	else
 495		return -EINVAL;
 496}
 497
 498static int swap_writer_finish(struct swap_map_handle *handle,
 499		unsigned int flags, int error)
 500{
 501	if (!error) {
 502		pr_info("S");
 503		error = mark_swapfiles(handle, flags);
 504		pr_cont("|\n");
 505		flush_swap_writer(handle);
 
 
 
 506	}
 507
 508	if (error)
 509		free_all_swap_pages(root_swap);
 510	release_swap_writer(handle);
 511	swsusp_close(FMODE_WRITE);
 512
 513	return error;
 514}
 515
 516/* We need to remember how much compressed data we need to read. */
 517#define LZO_HEADER	sizeof(size_t)
 518
 519/* Number of pages/bytes we'll compress at one time. */
 520#define LZO_UNC_PAGES	32
 521#define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
 522
 523/* Number of pages/bytes we need for compressed data (worst case). */
 524#define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
 525			             LZO_HEADER, PAGE_SIZE)
 526#define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
 527
 528/* Maximum number of threads for compression/decompression. */
 529#define LZO_THREADS	3
 530
 531/* Minimum/maximum number of pages for read buffering. */
 532#define LZO_MIN_RD_PAGES	1024
 533#define LZO_MAX_RD_PAGES	8192
 534
 535
 536/**
 537 *	save_image - save the suspend image data
 538 */
 539
 540static int save_image(struct swap_map_handle *handle,
 541                      struct snapshot_handle *snapshot,
 542                      unsigned int nr_to_write)
 543{
 544	unsigned int m;
 545	int ret;
 546	int nr_pages;
 547	int err2;
 548	struct hib_bio_batch hb;
 549	ktime_t start;
 550	ktime_t stop;
 551
 552	hib_init_batch(&hb);
 553
 554	pr_info("Saving image data pages (%u pages)...\n",
 555		nr_to_write);
 556	m = nr_to_write / 10;
 557	if (!m)
 558		m = 1;
 559	nr_pages = 0;
 560	start = ktime_get();
 561	while (1) {
 562		ret = snapshot_read_next(snapshot);
 563		if (ret <= 0)
 564			break;
 565		ret = swap_write_page(handle, data_of(*snapshot), &hb);
 566		if (ret)
 567			break;
 568		if (!(nr_pages % m))
 569			pr_info("Image saving progress: %3d%%\n",
 570				nr_pages / m * 10);
 571		nr_pages++;
 572	}
 573	err2 = hib_wait_io(&hb);
 574	hib_finish_batch(&hb);
 575	stop = ktime_get();
 576	if (!ret)
 577		ret = err2;
 578	if (!ret)
 579		pr_info("Image saving done\n");
 580	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 581	return ret;
 582}
 583
 584/**
 585 * Structure used for CRC32.
 586 */
 587struct crc_data {
 588	struct task_struct *thr;                  /* thread */
 589	atomic_t ready;                           /* ready to start flag */
 590	atomic_t stop;                            /* ready to stop flag */
 591	unsigned run_threads;                     /* nr current threads */
 592	wait_queue_head_t go;                     /* start crc update */
 593	wait_queue_head_t done;                   /* crc update done */
 594	u32 *crc32;                               /* points to handle's crc32 */
 595	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
 596	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
 597};
 598
 599/**
 600 * CRC32 update function that runs in its own thread.
 601 */
 602static int crc32_threadfn(void *data)
 603{
 604	struct crc_data *d = data;
 605	unsigned i;
 606
 607	while (1) {
 608		wait_event(d->go, atomic_read(&d->ready) ||
 609		                  kthread_should_stop());
 610		if (kthread_should_stop()) {
 611			d->thr = NULL;
 612			atomic_set(&d->stop, 1);
 613			wake_up(&d->done);
 614			break;
 615		}
 616		atomic_set(&d->ready, 0);
 617
 618		for (i = 0; i < d->run_threads; i++)
 619			*d->crc32 = crc32_le(*d->crc32,
 620			                     d->unc[i], *d->unc_len[i]);
 621		atomic_set(&d->stop, 1);
 622		wake_up(&d->done);
 623	}
 624	return 0;
 625}
 626/**
 627 * Structure used for LZO data compression.
 628 */
 629struct cmp_data {
 630	struct task_struct *thr;                  /* thread */
 631	atomic_t ready;                           /* ready to start flag */
 632	atomic_t stop;                            /* ready to stop flag */
 633	int ret;                                  /* return code */
 634	wait_queue_head_t go;                     /* start compression */
 635	wait_queue_head_t done;                   /* compression done */
 636	size_t unc_len;                           /* uncompressed length */
 637	size_t cmp_len;                           /* compressed length */
 638	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
 639	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
 640	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
 641};
 642
 643/**
 644 * Compression function that runs in its own thread.
 645 */
 646static int lzo_compress_threadfn(void *data)
 647{
 648	struct cmp_data *d = data;
 649
 650	while (1) {
 651		wait_event(d->go, atomic_read(&d->ready) ||
 652		                  kthread_should_stop());
 653		if (kthread_should_stop()) {
 654			d->thr = NULL;
 655			d->ret = -1;
 656			atomic_set(&d->stop, 1);
 657			wake_up(&d->done);
 658			break;
 659		}
 660		atomic_set(&d->ready, 0);
 661
 662		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
 663		                          d->cmp + LZO_HEADER, &d->cmp_len,
 664		                          d->wrk);
 665		atomic_set(&d->stop, 1);
 666		wake_up(&d->done);
 667	}
 668	return 0;
 669}
 670
 671/**
 672 * save_image_lzo - Save the suspend image data compressed with LZO.
 673 * @handle: Swap map handle to use for saving the image.
 674 * @snapshot: Image to read data from.
 675 * @nr_to_write: Number of pages to save.
 676 */
 677static int save_image_lzo(struct swap_map_handle *handle,
 678                          struct snapshot_handle *snapshot,
 679                          unsigned int nr_to_write)
 680{
 681	unsigned int m;
 682	int ret = 0;
 683	int nr_pages;
 684	int err2;
 685	struct hib_bio_batch hb;
 686	ktime_t start;
 687	ktime_t stop;
 688	size_t off;
 689	unsigned thr, run_threads, nr_threads;
 690	unsigned char *page = NULL;
 691	struct cmp_data *data = NULL;
 692	struct crc_data *crc = NULL;
 693
 694	hib_init_batch(&hb);
 695
 696	/*
 697	 * We'll limit the number of threads for compression to limit memory
 698	 * footprint.
 699	 */
 700	nr_threads = num_online_cpus() - 1;
 701	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
 702
 703	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
 704	if (!page) {
 705		pr_err("Failed to allocate LZO page\n");
 706		ret = -ENOMEM;
 707		goto out_clean;
 708	}
 709
 710	data = vzalloc(array_size(nr_threads, sizeof(*data)));
 711	if (!data) {
 712		pr_err("Failed to allocate LZO data\n");
 713		ret = -ENOMEM;
 714		goto out_clean;
 715	}
 
 
 716
 717	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
 718	if (!crc) {
 719		pr_err("Failed to allocate crc\n");
 720		ret = -ENOMEM;
 721		goto out_clean;
 722	}
 
 723
 724	/*
 725	 * Start the compression threads.
 726	 */
 727	for (thr = 0; thr < nr_threads; thr++) {
 728		init_waitqueue_head(&data[thr].go);
 729		init_waitqueue_head(&data[thr].done);
 730
 731		data[thr].thr = kthread_run(lzo_compress_threadfn,
 732		                            &data[thr],
 733		                            "image_compress/%u", thr);
 734		if (IS_ERR(data[thr].thr)) {
 735			data[thr].thr = NULL;
 736			pr_err("Cannot start compression threads\n");
 
 737			ret = -ENOMEM;
 738			goto out_clean;
 739		}
 740	}
 741
 742	/*
 743	 * Start the CRC32 thread.
 744	 */
 745	init_waitqueue_head(&crc->go);
 746	init_waitqueue_head(&crc->done);
 747
 748	handle->crc32 = 0;
 749	crc->crc32 = &handle->crc32;
 750	for (thr = 0; thr < nr_threads; thr++) {
 751		crc->unc[thr] = data[thr].unc;
 752		crc->unc_len[thr] = &data[thr].unc_len;
 753	}
 754
 755	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
 756	if (IS_ERR(crc->thr)) {
 757		crc->thr = NULL;
 758		pr_err("Cannot start CRC32 thread\n");
 759		ret = -ENOMEM;
 760		goto out_clean;
 761	}
 762
 763	/*
 764	 * Adjust the number of required free pages after all allocations have
 765	 * been done. We don't want to run out of pages when writing.
 766	 */
 767	handle->reqd_free_pages = reqd_free_pages();
 768
 769	pr_info("Using %u thread(s) for compression\n", nr_threads);
 770	pr_info("Compressing and saving image data (%u pages)...\n",
 771		nr_to_write);
 
 772	m = nr_to_write / 10;
 773	if (!m)
 774		m = 1;
 775	nr_pages = 0;
 776	start = ktime_get();
 777	for (;;) {
 778		for (thr = 0; thr < nr_threads; thr++) {
 779			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
 780				ret = snapshot_read_next(snapshot);
 781				if (ret < 0)
 782					goto out_finish;
 783
 784				if (!ret)
 785					break;
 786
 787				memcpy(data[thr].unc + off,
 788				       data_of(*snapshot), PAGE_SIZE);
 789
 790				if (!(nr_pages % m))
 791					pr_info("Image saving progress: %3d%%\n",
 792						nr_pages / m * 10);
 
 
 793				nr_pages++;
 794			}
 795			if (!off)
 796				break;
 797
 798			data[thr].unc_len = off;
 799
 800			atomic_set(&data[thr].ready, 1);
 801			wake_up(&data[thr].go);
 802		}
 803
 804		if (!thr)
 805			break;
 806
 807		crc->run_threads = thr;
 808		atomic_set(&crc->ready, 1);
 809		wake_up(&crc->go);
 810
 811		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
 812			wait_event(data[thr].done,
 813			           atomic_read(&data[thr].stop));
 814			atomic_set(&data[thr].stop, 0);
 815
 816			ret = data[thr].ret;
 817
 818			if (ret < 0) {
 819				pr_err("LZO compression failed\n");
 820				goto out_finish;
 821			}
 822
 823			if (unlikely(!data[thr].cmp_len ||
 824			             data[thr].cmp_len >
 825			             lzo1x_worst_compress(data[thr].unc_len))) {
 826				pr_err("Invalid LZO compressed length\n");
 
 827				ret = -1;
 828				goto out_finish;
 829			}
 830
 831			*(size_t *)data[thr].cmp = data[thr].cmp_len;
 832
 833			/*
 834			 * Given we are writing one page at a time to disk, we
 835			 * copy that much from the buffer, although the last
 836			 * bit will likely be smaller than full page. This is
 837			 * OK - we saved the length of the compressed data, so
 838			 * any garbage at the end will be discarded when we
 839			 * read it.
 840			 */
 841			for (off = 0;
 842			     off < LZO_HEADER + data[thr].cmp_len;
 843			     off += PAGE_SIZE) {
 844				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
 845
 846				ret = swap_write_page(handle, page, &hb);
 847				if (ret)
 848					goto out_finish;
 849			}
 850		}
 851
 852		wait_event(crc->done, atomic_read(&crc->stop));
 853		atomic_set(&crc->stop, 0);
 854	}
 855
 856out_finish:
 857	err2 = hib_wait_io(&hb);
 858	stop = ktime_get();
 859	if (!ret)
 860		ret = err2;
 861	if (!ret)
 862		pr_info("Image saving done\n");
 863	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 864out_clean:
 865	hib_finish_batch(&hb);
 866	if (crc) {
 867		if (crc->thr)
 868			kthread_stop(crc->thr);
 869		kfree(crc);
 870	}
 871	if (data) {
 872		for (thr = 0; thr < nr_threads; thr++)
 873			if (data[thr].thr)
 874				kthread_stop(data[thr].thr);
 875		vfree(data);
 876	}
 877	if (page) free_page((unsigned long)page);
 878
 879	return ret;
 880}
 881
 882/**
 883 *	enough_swap - Make sure we have enough swap to save the image.
 884 *
 885 *	Returns TRUE or FALSE after checking the total amount of swap
 886 *	space available from the resume partition.
 887 */
 888
 889static int enough_swap(unsigned int nr_pages)
 890{
 891	unsigned int free_swap = count_swap_pages(root_swap, 1);
 892	unsigned int required;
 893
 894	pr_debug("Free swap pages: %u\n", free_swap);
 895
 896	required = PAGES_FOR_IO + nr_pages;
 897	return free_swap > required;
 898}
 899
 900/**
 901 *	swsusp_write - Write entire image and metadata.
 902 *	@flags: flags to pass to the "boot" kernel in the image header
 903 *
 904 *	It is important _NOT_ to umount filesystems at this point. We want
 905 *	them synced (in case something goes wrong) but we DO not want to mark
 906 *	filesystem clean: it is not. (And it does not matter, if we resume
 907 *	correctly, we'll mark system clean, anyway.)
 908 */
 909
 910int swsusp_write(unsigned int flags)
 911{
 912	struct swap_map_handle handle;
 913	struct snapshot_handle snapshot;
 914	struct swsusp_info *header;
 915	unsigned long pages;
 916	int error;
 917
 918	pages = snapshot_get_image_size();
 919	error = get_swap_writer(&handle);
 920	if (error) {
 921		pr_err("Cannot get swap writer\n");
 922		return error;
 923	}
 924	if (flags & SF_NOCOMPRESS_MODE) {
 925		if (!enough_swap(pages)) {
 926			pr_err("Not enough free swap\n");
 927			error = -ENOSPC;
 928			goto out_finish;
 929		}
 930	}
 931	memset(&snapshot, 0, sizeof(struct snapshot_handle));
 932	error = snapshot_read_next(&snapshot);
 933	if (error < (int)PAGE_SIZE) {
 934		if (error >= 0)
 935			error = -EFAULT;
 936
 937		goto out_finish;
 938	}
 939	header = (struct swsusp_info *)data_of(snapshot);
 940	error = swap_write_page(&handle, header, NULL);
 941	if (!error) {
 942		error = (flags & SF_NOCOMPRESS_MODE) ?
 943			save_image(&handle, &snapshot, pages - 1) :
 944			save_image_lzo(&handle, &snapshot, pages - 1);
 945	}
 946out_finish:
 947	error = swap_writer_finish(&handle, flags, error);
 948	return error;
 949}
 950
 951/**
 952 *	The following functions allow us to read data using a swap map
 953 *	in a file-alike way
 954 */
 955
 956static void release_swap_reader(struct swap_map_handle *handle)
 957{
 958	struct swap_map_page_list *tmp;
 959
 960	while (handle->maps) {
 961		if (handle->maps->map)
 962			free_page((unsigned long)handle->maps->map);
 963		tmp = handle->maps;
 964		handle->maps = handle->maps->next;
 965		kfree(tmp);
 966	}
 967	handle->cur = NULL;
 968}
 969
 970static int get_swap_reader(struct swap_map_handle *handle,
 971		unsigned int *flags_p)
 972{
 973	int error;
 974	struct swap_map_page_list *tmp, *last;
 975	sector_t offset;
 976
 977	*flags_p = swsusp_header->flags;
 978
 979	if (!swsusp_header->image) /* how can this happen? */
 980		return -EINVAL;
 981
 982	handle->cur = NULL;
 983	last = handle->maps = NULL;
 984	offset = swsusp_header->image;
 985	while (offset) {
 986		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
 987		if (!tmp) {
 988			release_swap_reader(handle);
 989			return -ENOMEM;
 990		}
 
 991		if (!handle->maps)
 992			handle->maps = tmp;
 993		if (last)
 994			last->next = tmp;
 995		last = tmp;
 996
 997		tmp->map = (struct swap_map_page *)
 998			   __get_free_page(GFP_NOIO | __GFP_HIGH);
 999		if (!tmp->map) {
1000			release_swap_reader(handle);
1001			return -ENOMEM;
1002		}
1003
1004		error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1005		if (error) {
1006			release_swap_reader(handle);
1007			return error;
1008		}
1009		offset = tmp->map->next_swap;
1010	}
1011	handle->k = 0;
1012	handle->cur = handle->maps->map;
1013	return 0;
1014}
1015
1016static int swap_read_page(struct swap_map_handle *handle, void *buf,
1017		struct hib_bio_batch *hb)
1018{
1019	sector_t offset;
1020	int error;
1021	struct swap_map_page_list *tmp;
1022
1023	if (!handle->cur)
1024		return -EINVAL;
1025	offset = handle->cur->entries[handle->k];
1026	if (!offset)
1027		return -EFAULT;
1028	error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1029	if (error)
1030		return error;
1031	if (++handle->k >= MAP_PAGE_ENTRIES) {
1032		handle->k = 0;
1033		free_page((unsigned long)handle->maps->map);
1034		tmp = handle->maps;
1035		handle->maps = handle->maps->next;
1036		kfree(tmp);
1037		if (!handle->maps)
1038			release_swap_reader(handle);
1039		else
1040			handle->cur = handle->maps->map;
1041	}
1042	return error;
1043}
1044
1045static int swap_reader_finish(struct swap_map_handle *handle)
1046{
1047	release_swap_reader(handle);
1048
1049	return 0;
1050}
1051
1052/**
1053 *	load_image - load the image using the swap map handle
1054 *	@handle and the snapshot handle @snapshot
1055 *	(assume there are @nr_pages pages to load)
1056 */
1057
1058static int load_image(struct swap_map_handle *handle,
1059                      struct snapshot_handle *snapshot,
1060                      unsigned int nr_to_read)
1061{
1062	unsigned int m;
1063	int ret = 0;
1064	ktime_t start;
1065	ktime_t stop;
1066	struct hib_bio_batch hb;
1067	int err2;
1068	unsigned nr_pages;
1069
1070	hib_init_batch(&hb);
1071
1072	clean_pages_on_read = true;
1073	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1074	m = nr_to_read / 10;
1075	if (!m)
1076		m = 1;
1077	nr_pages = 0;
1078	start = ktime_get();
1079	for ( ; ; ) {
1080		ret = snapshot_write_next(snapshot);
1081		if (ret <= 0)
1082			break;
1083		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1084		if (ret)
1085			break;
1086		if (snapshot->sync_read)
1087			ret = hib_wait_io(&hb);
1088		if (ret)
1089			break;
1090		if (!(nr_pages % m))
1091			pr_info("Image loading progress: %3d%%\n",
1092				nr_pages / m * 10);
1093		nr_pages++;
1094	}
1095	err2 = hib_wait_io(&hb);
1096	hib_finish_batch(&hb);
1097	stop = ktime_get();
1098	if (!ret)
1099		ret = err2;
1100	if (!ret) {
1101		pr_info("Image loading done\n");
1102		snapshot_write_finalize(snapshot);
1103		if (!snapshot_image_loaded(snapshot))
1104			ret = -ENODATA;
1105	}
1106	swsusp_show_speed(start, stop, nr_to_read, "Read");
1107	return ret;
1108}
1109
1110/**
1111 * Structure used for LZO data decompression.
1112 */
1113struct dec_data {
1114	struct task_struct *thr;                  /* thread */
1115	atomic_t ready;                           /* ready to start flag */
1116	atomic_t stop;                            /* ready to stop flag */
1117	int ret;                                  /* return code */
1118	wait_queue_head_t go;                     /* start decompression */
1119	wait_queue_head_t done;                   /* decompression done */
1120	size_t unc_len;                           /* uncompressed length */
1121	size_t cmp_len;                           /* compressed length */
1122	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1123	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1124};
1125
1126/**
1127 * Decompression function that runs in its own thread.
1128 */
1129static int lzo_decompress_threadfn(void *data)
1130{
1131	struct dec_data *d = data;
1132
1133	while (1) {
1134		wait_event(d->go, atomic_read(&d->ready) ||
1135		                  kthread_should_stop());
1136		if (kthread_should_stop()) {
1137			d->thr = NULL;
1138			d->ret = -1;
1139			atomic_set(&d->stop, 1);
1140			wake_up(&d->done);
1141			break;
1142		}
1143		atomic_set(&d->ready, 0);
1144
1145		d->unc_len = LZO_UNC_SIZE;
1146		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1147		                               d->unc, &d->unc_len);
1148		if (clean_pages_on_decompress)
1149			flush_icache_range((unsigned long)d->unc,
1150					   (unsigned long)d->unc + d->unc_len);
1151
1152		atomic_set(&d->stop, 1);
1153		wake_up(&d->done);
1154	}
1155	return 0;
1156}
1157
1158/**
1159 * load_image_lzo - Load compressed image data and decompress them with LZO.
1160 * @handle: Swap map handle to use for loading data.
1161 * @snapshot: Image to copy uncompressed data into.
1162 * @nr_to_read: Number of pages to load.
1163 */
1164static int load_image_lzo(struct swap_map_handle *handle,
1165                          struct snapshot_handle *snapshot,
1166                          unsigned int nr_to_read)
1167{
1168	unsigned int m;
1169	int ret = 0;
1170	int eof = 0;
1171	struct hib_bio_batch hb;
1172	ktime_t start;
1173	ktime_t stop;
1174	unsigned nr_pages;
1175	size_t off;
1176	unsigned i, thr, run_threads, nr_threads;
1177	unsigned ring = 0, pg = 0, ring_size = 0,
1178	         have = 0, want, need, asked = 0;
1179	unsigned long read_pages = 0;
1180	unsigned char **page = NULL;
1181	struct dec_data *data = NULL;
1182	struct crc_data *crc = NULL;
1183
1184	hib_init_batch(&hb);
1185
1186	/*
1187	 * We'll limit the number of threads for decompression to limit memory
1188	 * footprint.
1189	 */
1190	nr_threads = num_online_cpus() - 1;
1191	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1192
1193	page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1194	if (!page) {
1195		pr_err("Failed to allocate LZO page\n");
1196		ret = -ENOMEM;
1197		goto out_clean;
1198	}
1199
1200	data = vzalloc(array_size(nr_threads, sizeof(*data)));
1201	if (!data) {
1202		pr_err("Failed to allocate LZO data\n");
1203		ret = -ENOMEM;
1204		goto out_clean;
1205	}
 
 
1206
1207	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1208	if (!crc) {
1209		pr_err("Failed to allocate crc\n");
1210		ret = -ENOMEM;
1211		goto out_clean;
1212	}
1213
1214	clean_pages_on_decompress = true;
1215
1216	/*
1217	 * Start the decompression threads.
1218	 */
1219	for (thr = 0; thr < nr_threads; thr++) {
1220		init_waitqueue_head(&data[thr].go);
1221		init_waitqueue_head(&data[thr].done);
1222
1223		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1224		                            &data[thr],
1225		                            "image_decompress/%u", thr);
1226		if (IS_ERR(data[thr].thr)) {
1227			data[thr].thr = NULL;
1228			pr_err("Cannot start decompression threads\n");
 
1229			ret = -ENOMEM;
1230			goto out_clean;
1231		}
1232	}
1233
1234	/*
1235	 * Start the CRC32 thread.
1236	 */
1237	init_waitqueue_head(&crc->go);
1238	init_waitqueue_head(&crc->done);
1239
1240	handle->crc32 = 0;
1241	crc->crc32 = &handle->crc32;
1242	for (thr = 0; thr < nr_threads; thr++) {
1243		crc->unc[thr] = data[thr].unc;
1244		crc->unc_len[thr] = &data[thr].unc_len;
1245	}
1246
1247	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1248	if (IS_ERR(crc->thr)) {
1249		crc->thr = NULL;
1250		pr_err("Cannot start CRC32 thread\n");
1251		ret = -ENOMEM;
1252		goto out_clean;
1253	}
1254
1255	/*
1256	 * Set the number of pages for read buffering.
1257	 * This is complete guesswork, because we'll only know the real
1258	 * picture once prepare_image() is called, which is much later on
1259	 * during the image load phase. We'll assume the worst case and
1260	 * say that none of the image pages are from high memory.
1261	 */
1262	if (low_free_pages() > snapshot_get_image_size())
1263		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1264	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1265
1266	for (i = 0; i < read_pages; i++) {
1267		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1268						  GFP_NOIO | __GFP_HIGH :
1269						  GFP_NOIO | __GFP_NOWARN |
1270						  __GFP_NORETRY);
1271
1272		if (!page[i]) {
1273			if (i < LZO_CMP_PAGES) {
1274				ring_size = i;
1275				pr_err("Failed to allocate LZO pages\n");
 
1276				ret = -ENOMEM;
1277				goto out_clean;
1278			} else {
1279				break;
1280			}
1281		}
1282	}
1283	want = ring_size = i;
1284
1285	pr_info("Using %u thread(s) for decompression\n", nr_threads);
1286	pr_info("Loading and decompressing image data (%u pages)...\n",
1287		nr_to_read);
 
1288	m = nr_to_read / 10;
1289	if (!m)
1290		m = 1;
1291	nr_pages = 0;
1292	start = ktime_get();
1293
1294	ret = snapshot_write_next(snapshot);
1295	if (ret <= 0)
1296		goto out_finish;
1297
1298	for(;;) {
1299		for (i = 0; !eof && i < want; i++) {
1300			ret = swap_read_page(handle, page[ring], &hb);
1301			if (ret) {
1302				/*
1303				 * On real read error, finish. On end of data,
1304				 * set EOF flag and just exit the read loop.
1305				 */
1306				if (handle->cur &&
1307				    handle->cur->entries[handle->k]) {
1308					goto out_finish;
1309				} else {
1310					eof = 1;
1311					break;
1312				}
1313			}
1314			if (++ring >= ring_size)
1315				ring = 0;
1316		}
1317		asked += i;
1318		want -= i;
1319
1320		/*
1321		 * We are out of data, wait for some more.
1322		 */
1323		if (!have) {
1324			if (!asked)
1325				break;
1326
1327			ret = hib_wait_io(&hb);
1328			if (ret)
1329				goto out_finish;
1330			have += asked;
1331			asked = 0;
1332			if (eof)
1333				eof = 2;
1334		}
1335
1336		if (crc->run_threads) {
1337			wait_event(crc->done, atomic_read(&crc->stop));
1338			atomic_set(&crc->stop, 0);
1339			crc->run_threads = 0;
1340		}
1341
1342		for (thr = 0; have && thr < nr_threads; thr++) {
1343			data[thr].cmp_len = *(size_t *)page[pg];
1344			if (unlikely(!data[thr].cmp_len ||
1345			             data[thr].cmp_len >
1346			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1347				pr_err("Invalid LZO compressed length\n");
 
1348				ret = -1;
1349				goto out_finish;
1350			}
1351
1352			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1353			                    PAGE_SIZE);
1354			if (need > have) {
1355				if (eof > 1) {
1356					ret = -1;
1357					goto out_finish;
1358				}
1359				break;
1360			}
1361
1362			for (off = 0;
1363			     off < LZO_HEADER + data[thr].cmp_len;
1364			     off += PAGE_SIZE) {
1365				memcpy(data[thr].cmp + off,
1366				       page[pg], PAGE_SIZE);
1367				have--;
1368				want++;
1369				if (++pg >= ring_size)
1370					pg = 0;
1371			}
1372
1373			atomic_set(&data[thr].ready, 1);
1374			wake_up(&data[thr].go);
1375		}
1376
1377		/*
1378		 * Wait for more data while we are decompressing.
1379		 */
1380		if (have < LZO_CMP_PAGES && asked) {
1381			ret = hib_wait_io(&hb);
1382			if (ret)
1383				goto out_finish;
1384			have += asked;
1385			asked = 0;
1386			if (eof)
1387				eof = 2;
1388		}
1389
1390		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1391			wait_event(data[thr].done,
1392			           atomic_read(&data[thr].stop));
1393			atomic_set(&data[thr].stop, 0);
1394
1395			ret = data[thr].ret;
1396
1397			if (ret < 0) {
1398				pr_err("LZO decompression failed\n");
 
1399				goto out_finish;
1400			}
1401
1402			if (unlikely(!data[thr].unc_len ||
1403			             data[thr].unc_len > LZO_UNC_SIZE ||
1404			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1405				pr_err("Invalid LZO uncompressed length\n");
 
1406				ret = -1;
1407				goto out_finish;
1408			}
1409
1410			for (off = 0;
1411			     off < data[thr].unc_len; off += PAGE_SIZE) {
1412				memcpy(data_of(*snapshot),
1413				       data[thr].unc + off, PAGE_SIZE);
1414
1415				if (!(nr_pages % m))
1416					pr_info("Image loading progress: %3d%%\n",
1417						nr_pages / m * 10);
 
 
1418				nr_pages++;
1419
1420				ret = snapshot_write_next(snapshot);
1421				if (ret <= 0) {
1422					crc->run_threads = thr + 1;
1423					atomic_set(&crc->ready, 1);
1424					wake_up(&crc->go);
1425					goto out_finish;
1426				}
1427			}
1428		}
1429
1430		crc->run_threads = thr;
1431		atomic_set(&crc->ready, 1);
1432		wake_up(&crc->go);
1433	}
1434
1435out_finish:
1436	if (crc->run_threads) {
1437		wait_event(crc->done, atomic_read(&crc->stop));
1438		atomic_set(&crc->stop, 0);
1439	}
1440	stop = ktime_get();
1441	if (!ret) {
1442		pr_info("Image loading done\n");
1443		snapshot_write_finalize(snapshot);
1444		if (!snapshot_image_loaded(snapshot))
1445			ret = -ENODATA;
1446		if (!ret) {
1447			if (swsusp_header->flags & SF_CRC32_MODE) {
1448				if(handle->crc32 != swsusp_header->crc32) {
1449					pr_err("Invalid image CRC32!\n");
 
1450					ret = -ENODATA;
1451				}
1452			}
1453		}
1454	}
1455	swsusp_show_speed(start, stop, nr_to_read, "Read");
1456out_clean:
1457	hib_finish_batch(&hb);
1458	for (i = 0; i < ring_size; i++)
1459		free_page((unsigned long)page[i]);
1460	if (crc) {
1461		if (crc->thr)
1462			kthread_stop(crc->thr);
1463		kfree(crc);
1464	}
1465	if (data) {
1466		for (thr = 0; thr < nr_threads; thr++)
1467			if (data[thr].thr)
1468				kthread_stop(data[thr].thr);
1469		vfree(data);
1470	}
1471	vfree(page);
1472
1473	return ret;
1474}
1475
1476/**
1477 *	swsusp_read - read the hibernation image.
1478 *	@flags_p: flags passed by the "frozen" kernel in the image header should
1479 *		  be written into this memory location
1480 */
1481
1482int swsusp_read(unsigned int *flags_p)
1483{
1484	int error;
1485	struct swap_map_handle handle;
1486	struct snapshot_handle snapshot;
1487	struct swsusp_info *header;
1488
1489	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1490	error = snapshot_write_next(&snapshot);
1491	if (error < (int)PAGE_SIZE)
1492		return error < 0 ? error : -EFAULT;
1493	header = (struct swsusp_info *)data_of(snapshot);
1494	error = get_swap_reader(&handle, flags_p);
1495	if (error)
1496		goto end;
1497	if (!error)
1498		error = swap_read_page(&handle, header, NULL);
1499	if (!error) {
1500		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1501			load_image(&handle, &snapshot, header->pages - 1) :
1502			load_image_lzo(&handle, &snapshot, header->pages - 1);
1503	}
1504	swap_reader_finish(&handle);
1505end:
1506	if (!error)
1507		pr_debug("Image successfully loaded\n");
1508	else
1509		pr_debug("Error %d resuming\n", error);
1510	return error;
1511}
1512
1513/**
1514 *      swsusp_check - Check for swsusp signature in the resume device
1515 */
1516
1517int swsusp_check(void)
1518{
1519	int error;
1520	void *holder;
1521
1522	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1523					    FMODE_READ | FMODE_EXCL, &holder);
1524	if (!IS_ERR(hib_resume_bdev)) {
1525		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1526		clear_page(swsusp_header);
1527		error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1528					swsusp_header, NULL);
1529		if (error)
1530			goto put;
1531
1532		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1533			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1534			/* Reset swap signature now */
1535			error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1536						swsusp_resume_block,
1537						swsusp_header, NULL);
1538		} else {
1539			error = -EINVAL;
1540		}
1541		if (!error && swsusp_header->flags & SF_HW_SIG &&
1542		    swsusp_header->hw_sig != swsusp_hardware_signature) {
1543			pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1544				swsusp_header->hw_sig, swsusp_hardware_signature);
1545			error = -EINVAL;
1546		}
1547
1548put:
1549		if (error)
1550			blkdev_put(hib_resume_bdev, FMODE_READ | FMODE_EXCL);
1551		else
1552			pr_debug("Image signature found, resuming\n");
1553	} else {
1554		error = PTR_ERR(hib_resume_bdev);
1555	}
1556
1557	if (error)
1558		pr_debug("Image not found (code %d)\n", error);
1559
1560	return error;
1561}
1562
1563/**
1564 *	swsusp_close - close swap device.
1565 */
1566
1567void swsusp_close(fmode_t mode)
1568{
1569	if (IS_ERR(hib_resume_bdev)) {
1570		pr_debug("Image device not initialised\n");
1571		return;
1572	}
1573
1574	blkdev_put(hib_resume_bdev, mode);
1575}
1576
1577/**
1578 *      swsusp_unmark - Unmark swsusp signature in the resume device
1579 */
1580
1581#ifdef CONFIG_SUSPEND
1582int swsusp_unmark(void)
1583{
1584	int error;
1585
1586	hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1587			swsusp_header, NULL);
1588	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1589		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1590		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1591					swsusp_resume_block,
1592					swsusp_header, NULL);
1593	} else {
1594		pr_err("Cannot find swsusp signature!\n");
1595		error = -ENODEV;
1596	}
1597
1598	/*
1599	 * We just returned from suspend, we don't need the image any more.
1600	 */
1601	free_all_swap_pages(root_swap);
1602
1603	return error;
1604}
1605#endif
1606
1607static int __init swsusp_header_init(void)
1608{
1609	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1610	if (!swsusp_header)
1611		panic("Could not allocate memory for swsusp_header\n");
1612	return 0;
1613}
1614
1615core_initcall(swsusp_header_init);
v4.6
 
   1/*
   2 * linux/kernel/power/swap.c
   3 *
   4 * This file provides functions for reading the suspend image from
   5 * and writing it to a swap partition.
   6 *
   7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
  10 *
  11 * This file is released under the GPLv2.
  12 *
  13 */
  14
 
 
  15#include <linux/module.h>
  16#include <linux/file.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/genhd.h>
  20#include <linux/device.h>
  21#include <linux/bio.h>
  22#include <linux/blkdev.h>
  23#include <linux/swap.h>
  24#include <linux/swapops.h>
  25#include <linux/pm.h>
  26#include <linux/slab.h>
  27#include <linux/lzo.h>
  28#include <linux/vmalloc.h>
  29#include <linux/cpumask.h>
  30#include <linux/atomic.h>
  31#include <linux/kthread.h>
  32#include <linux/crc32.h>
  33#include <linux/ktime.h>
  34
  35#include "power.h"
  36
  37#define HIBERNATE_SIG	"S1SUSPEND"
  38
 
 
 
 
 
 
 
 
 
 
  39/*
  40 *	The swap map is a data structure used for keeping track of each page
  41 *	written to a swap partition.  It consists of many swap_map_page
  42 *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
  43 *	These structures are stored on the swap and linked together with the
  44 *	help of the .next_swap member.
  45 *
  46 *	The swap map is created during suspend.  The swap map pages are
  47 *	allocated and populated one at a time, so we only need one memory
  48 *	page to set up the entire structure.
  49 *
  50 *	During resume we pick up all swap_map_page structures into a list.
  51 */
  52
  53#define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
  54
  55/*
  56 * Number of free pages that are not high.
  57 */
  58static inline unsigned long low_free_pages(void)
  59{
  60	return nr_free_pages() - nr_free_highpages();
  61}
  62
  63/*
  64 * Number of pages required to be kept free while writing the image. Always
  65 * half of all available low pages before the writing starts.
  66 */
  67static inline unsigned long reqd_free_pages(void)
  68{
  69	return low_free_pages() / 2;
  70}
  71
  72struct swap_map_page {
  73	sector_t entries[MAP_PAGE_ENTRIES];
  74	sector_t next_swap;
  75};
  76
  77struct swap_map_page_list {
  78	struct swap_map_page *map;
  79	struct swap_map_page_list *next;
  80};
  81
  82/**
  83 *	The swap_map_handle structure is used for handling swap in
  84 *	a file-alike way
  85 */
  86
  87struct swap_map_handle {
  88	struct swap_map_page *cur;
  89	struct swap_map_page_list *maps;
  90	sector_t cur_swap;
  91	sector_t first_sector;
  92	unsigned int k;
  93	unsigned long reqd_free_pages;
  94	u32 crc32;
  95};
  96
  97struct swsusp_header {
  98	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
  99	              sizeof(u32)];
 
 100	u32	crc32;
 101	sector_t image;
 102	unsigned int flags;	/* Flags to pass to the "boot" kernel */
 103	char	orig_sig[10];
 104	char	sig[10];
 105} __packed;
 106
 107static struct swsusp_header *swsusp_header;
 108
 109/**
 110 *	The following functions are used for tracing the allocated
 111 *	swap pages, so that they can be freed in case of an error.
 112 */
 113
 114struct swsusp_extent {
 115	struct rb_node node;
 116	unsigned long start;
 117	unsigned long end;
 118};
 119
 120static struct rb_root swsusp_extents = RB_ROOT;
 121
 122static int swsusp_extents_insert(unsigned long swap_offset)
 123{
 124	struct rb_node **new = &(swsusp_extents.rb_node);
 125	struct rb_node *parent = NULL;
 126	struct swsusp_extent *ext;
 127
 128	/* Figure out where to put the new node */
 129	while (*new) {
 130		ext = rb_entry(*new, struct swsusp_extent, node);
 131		parent = *new;
 132		if (swap_offset < ext->start) {
 133			/* Try to merge */
 134			if (swap_offset == ext->start - 1) {
 135				ext->start--;
 136				return 0;
 137			}
 138			new = &((*new)->rb_left);
 139		} else if (swap_offset > ext->end) {
 140			/* Try to merge */
 141			if (swap_offset == ext->end + 1) {
 142				ext->end++;
 143				return 0;
 144			}
 145			new = &((*new)->rb_right);
 146		} else {
 147			/* It already is in the tree */
 148			return -EINVAL;
 149		}
 150	}
 151	/* Add the new node and rebalance the tree. */
 152	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
 153	if (!ext)
 154		return -ENOMEM;
 155
 156	ext->start = swap_offset;
 157	ext->end = swap_offset;
 158	rb_link_node(&ext->node, parent, new);
 159	rb_insert_color(&ext->node, &swsusp_extents);
 160	return 0;
 161}
 162
 163/**
 164 *	alloc_swapdev_block - allocate a swap page and register that it has
 165 *	been allocated, so that it can be freed in case of an error.
 166 */
 167
 168sector_t alloc_swapdev_block(int swap)
 169{
 170	unsigned long offset;
 171
 172	offset = swp_offset(get_swap_page_of_type(swap));
 173	if (offset) {
 174		if (swsusp_extents_insert(offset))
 175			swap_free(swp_entry(swap, offset));
 176		else
 177			return swapdev_block(swap, offset);
 178	}
 179	return 0;
 180}
 181
 182/**
 183 *	free_all_swap_pages - free swap pages allocated for saving image data.
 184 *	It also frees the extents used to register which swap entries had been
 185 *	allocated.
 186 */
 187
 188void free_all_swap_pages(int swap)
 189{
 190	struct rb_node *node;
 191
 192	while ((node = swsusp_extents.rb_node)) {
 193		struct swsusp_extent *ext;
 194		unsigned long offset;
 195
 196		ext = container_of(node, struct swsusp_extent, node);
 197		rb_erase(node, &swsusp_extents);
 198		for (offset = ext->start; offset <= ext->end; offset++)
 199			swap_free(swp_entry(swap, offset));
 200
 201		kfree(ext);
 202	}
 203}
 204
 205int swsusp_swap_in_use(void)
 206{
 207	return (swsusp_extents.rb_node != NULL);
 208}
 209
 210/*
 211 * General things
 212 */
 213
 214static unsigned short root_swap = 0xffff;
 215static struct block_device *hib_resume_bdev;
 216
 217struct hib_bio_batch {
 218	atomic_t		count;
 219	wait_queue_head_t	wait;
 220	int			error;
 
 221};
 222
 223static void hib_init_batch(struct hib_bio_batch *hb)
 224{
 225	atomic_set(&hb->count, 0);
 226	init_waitqueue_head(&hb->wait);
 227	hb->error = 0;
 
 
 
 
 
 
 228}
 229
 230static void hib_end_io(struct bio *bio)
 231{
 232	struct hib_bio_batch *hb = bio->bi_private;
 233	struct page *page = bio->bi_io_vec[0].bv_page;
 234
 235	if (bio->bi_error) {
 236		printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
 237				imajor(bio->bi_bdev->bd_inode),
 238				iminor(bio->bi_bdev->bd_inode),
 239				(unsigned long long)bio->bi_iter.bi_sector);
 240	}
 241
 242	if (bio_data_dir(bio) == WRITE)
 243		put_page(page);
 
 
 
 244
 245	if (bio->bi_error && !hb->error)
 246		hb->error = bio->bi_error;
 247	if (atomic_dec_and_test(&hb->count))
 248		wake_up(&hb->wait);
 249
 250	bio_put(bio);
 251}
 252
 253static int hib_submit_io(int rw, pgoff_t page_off, void *addr,
 254		struct hib_bio_batch *hb)
 255{
 256	struct page *page = virt_to_page(addr);
 257	struct bio *bio;
 258	int error = 0;
 259
 260	bio = bio_alloc(__GFP_RECLAIM | __GFP_HIGH, 1);
 261	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
 262	bio->bi_bdev = hib_resume_bdev;
 263
 264	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 265		printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
 266			(unsigned long long)bio->bi_iter.bi_sector);
 267		bio_put(bio);
 268		return -EFAULT;
 269	}
 270
 271	if (hb) {
 272		bio->bi_end_io = hib_end_io;
 273		bio->bi_private = hb;
 274		atomic_inc(&hb->count);
 275		submit_bio(rw, bio);
 276	} else {
 277		error = submit_bio_wait(rw, bio);
 278		bio_put(bio);
 279	}
 280
 281	return error;
 282}
 283
 284static int hib_wait_io(struct hib_bio_batch *hb)
 285{
 
 
 
 
 286	wait_event(hb->wait, atomic_read(&hb->count) == 0);
 287	return hb->error;
 288}
 289
 290/*
 291 * Saving part
 292 */
 293
 294static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
 295{
 296	int error;
 297
 298	hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
 299	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
 300	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
 301		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
 302		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
 303		swsusp_header->image = handle->first_sector;
 
 
 
 
 304		swsusp_header->flags = flags;
 305		if (flags & SF_CRC32_MODE)
 306			swsusp_header->crc32 = handle->crc32;
 307		error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
 308					swsusp_header, NULL);
 309	} else {
 310		printk(KERN_ERR "PM: Swap header not found!\n");
 311		error = -ENODEV;
 312	}
 313	return error;
 314}
 315
 316/**
 317 *	swsusp_swap_check - check if the resume device is a swap device
 318 *	and get its index (if so)
 319 *
 320 *	This is called before saving image
 321 */
 322static int swsusp_swap_check(void)
 323{
 324	int res;
 325
 326	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
 327			&hib_resume_bdev);
 
 
 328	if (res < 0)
 329		return res;
 
 330
 331	root_swap = res;
 332	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
 333	if (res)
 334		return res;
 335
 336	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
 337	if (res < 0)
 338		blkdev_put(hib_resume_bdev, FMODE_WRITE);
 339
 340	return res;
 341}
 342
 343/**
 344 *	write_page - Write one page to given swap location.
 345 *	@buf:		Address we're writing.
 346 *	@offset:	Offset of the swap page we're writing to.
 347 *	@hb:		bio completion batch
 348 */
 349
 350static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
 351{
 352	void *src;
 353	int ret;
 354
 355	if (!offset)
 356		return -ENOSPC;
 357
 358	if (hb) {
 359		src = (void *)__get_free_page(__GFP_RECLAIM | __GFP_NOWARN |
 360		                              __GFP_NORETRY);
 361		if (src) {
 362			copy_page(src, buf);
 363		} else {
 364			ret = hib_wait_io(hb); /* Free pages */
 365			if (ret)
 366				return ret;
 367			src = (void *)__get_free_page(__GFP_RECLAIM |
 368			                              __GFP_NOWARN |
 369			                              __GFP_NORETRY);
 370			if (src) {
 371				copy_page(src, buf);
 372			} else {
 373				WARN_ON_ONCE(1);
 374				hb = NULL;	/* Go synchronous */
 375				src = buf;
 376			}
 377		}
 378	} else {
 379		src = buf;
 380	}
 381	return hib_submit_io(WRITE_SYNC, offset, src, hb);
 382}
 383
 384static void release_swap_writer(struct swap_map_handle *handle)
 385{
 386	if (handle->cur)
 387		free_page((unsigned long)handle->cur);
 388	handle->cur = NULL;
 389}
 390
 391static int get_swap_writer(struct swap_map_handle *handle)
 392{
 393	int ret;
 394
 395	ret = swsusp_swap_check();
 396	if (ret) {
 397		if (ret != -ENOSPC)
 398			printk(KERN_ERR "PM: Cannot find swap device, try "
 399					"swapon -a.\n");
 400		return ret;
 401	}
 402	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
 403	if (!handle->cur) {
 404		ret = -ENOMEM;
 405		goto err_close;
 406	}
 407	handle->cur_swap = alloc_swapdev_block(root_swap);
 408	if (!handle->cur_swap) {
 409		ret = -ENOSPC;
 410		goto err_rel;
 411	}
 412	handle->k = 0;
 413	handle->reqd_free_pages = reqd_free_pages();
 414	handle->first_sector = handle->cur_swap;
 415	return 0;
 416err_rel:
 417	release_swap_writer(handle);
 418err_close:
 419	swsusp_close(FMODE_WRITE);
 420	return ret;
 421}
 422
 423static int swap_write_page(struct swap_map_handle *handle, void *buf,
 424		struct hib_bio_batch *hb)
 425{
 426	int error = 0;
 427	sector_t offset;
 428
 429	if (!handle->cur)
 430		return -EINVAL;
 431	offset = alloc_swapdev_block(root_swap);
 432	error = write_page(buf, offset, hb);
 433	if (error)
 434		return error;
 435	handle->cur->entries[handle->k++] = offset;
 436	if (handle->k >= MAP_PAGE_ENTRIES) {
 437		offset = alloc_swapdev_block(root_swap);
 438		if (!offset)
 439			return -ENOSPC;
 440		handle->cur->next_swap = offset;
 441		error = write_page(handle->cur, handle->cur_swap, hb);
 442		if (error)
 443			goto out;
 444		clear_page(handle->cur);
 445		handle->cur_swap = offset;
 446		handle->k = 0;
 447
 448		if (hb && low_free_pages() <= handle->reqd_free_pages) {
 449			error = hib_wait_io(hb);
 450			if (error)
 451				goto out;
 452			/*
 453			 * Recalculate the number of required free pages, to
 454			 * make sure we never take more than half.
 455			 */
 456			handle->reqd_free_pages = reqd_free_pages();
 457		}
 458	}
 459 out:
 460	return error;
 461}
 462
 463static int flush_swap_writer(struct swap_map_handle *handle)
 464{
 465	if (handle->cur && handle->cur_swap)
 466		return write_page(handle->cur, handle->cur_swap, NULL);
 467	else
 468		return -EINVAL;
 469}
 470
 471static int swap_writer_finish(struct swap_map_handle *handle,
 472		unsigned int flags, int error)
 473{
 474	if (!error) {
 
 
 
 475		flush_swap_writer(handle);
 476		printk(KERN_INFO "PM: S");
 477		error = mark_swapfiles(handle, flags);
 478		printk("|\n");
 479	}
 480
 481	if (error)
 482		free_all_swap_pages(root_swap);
 483	release_swap_writer(handle);
 484	swsusp_close(FMODE_WRITE);
 485
 486	return error;
 487}
 488
 489/* We need to remember how much compressed data we need to read. */
 490#define LZO_HEADER	sizeof(size_t)
 491
 492/* Number of pages/bytes we'll compress at one time. */
 493#define LZO_UNC_PAGES	32
 494#define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
 495
 496/* Number of pages/bytes we need for compressed data (worst case). */
 497#define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
 498			             LZO_HEADER, PAGE_SIZE)
 499#define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
 500
 501/* Maximum number of threads for compression/decompression. */
 502#define LZO_THREADS	3
 503
 504/* Minimum/maximum number of pages for read buffering. */
 505#define LZO_MIN_RD_PAGES	1024
 506#define LZO_MAX_RD_PAGES	8192
 507
 508
 509/**
 510 *	save_image - save the suspend image data
 511 */
 512
 513static int save_image(struct swap_map_handle *handle,
 514                      struct snapshot_handle *snapshot,
 515                      unsigned int nr_to_write)
 516{
 517	unsigned int m;
 518	int ret;
 519	int nr_pages;
 520	int err2;
 521	struct hib_bio_batch hb;
 522	ktime_t start;
 523	ktime_t stop;
 524
 525	hib_init_batch(&hb);
 526
 527	printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
 528		nr_to_write);
 529	m = nr_to_write / 10;
 530	if (!m)
 531		m = 1;
 532	nr_pages = 0;
 533	start = ktime_get();
 534	while (1) {
 535		ret = snapshot_read_next(snapshot);
 536		if (ret <= 0)
 537			break;
 538		ret = swap_write_page(handle, data_of(*snapshot), &hb);
 539		if (ret)
 540			break;
 541		if (!(nr_pages % m))
 542			printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
 543			       nr_pages / m * 10);
 544		nr_pages++;
 545	}
 546	err2 = hib_wait_io(&hb);
 
 547	stop = ktime_get();
 548	if (!ret)
 549		ret = err2;
 550	if (!ret)
 551		printk(KERN_INFO "PM: Image saving done.\n");
 552	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 553	return ret;
 554}
 555
 556/**
 557 * Structure used for CRC32.
 558 */
 559struct crc_data {
 560	struct task_struct *thr;                  /* thread */
 561	atomic_t ready;                           /* ready to start flag */
 562	atomic_t stop;                            /* ready to stop flag */
 563	unsigned run_threads;                     /* nr current threads */
 564	wait_queue_head_t go;                     /* start crc update */
 565	wait_queue_head_t done;                   /* crc update done */
 566	u32 *crc32;                               /* points to handle's crc32 */
 567	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
 568	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
 569};
 570
 571/**
 572 * CRC32 update function that runs in its own thread.
 573 */
 574static int crc32_threadfn(void *data)
 575{
 576	struct crc_data *d = data;
 577	unsigned i;
 578
 579	while (1) {
 580		wait_event(d->go, atomic_read(&d->ready) ||
 581		                  kthread_should_stop());
 582		if (kthread_should_stop()) {
 583			d->thr = NULL;
 584			atomic_set(&d->stop, 1);
 585			wake_up(&d->done);
 586			break;
 587		}
 588		atomic_set(&d->ready, 0);
 589
 590		for (i = 0; i < d->run_threads; i++)
 591			*d->crc32 = crc32_le(*d->crc32,
 592			                     d->unc[i], *d->unc_len[i]);
 593		atomic_set(&d->stop, 1);
 594		wake_up(&d->done);
 595	}
 596	return 0;
 597}
 598/**
 599 * Structure used for LZO data compression.
 600 */
 601struct cmp_data {
 602	struct task_struct *thr;                  /* thread */
 603	atomic_t ready;                           /* ready to start flag */
 604	atomic_t stop;                            /* ready to stop flag */
 605	int ret;                                  /* return code */
 606	wait_queue_head_t go;                     /* start compression */
 607	wait_queue_head_t done;                   /* compression done */
 608	size_t unc_len;                           /* uncompressed length */
 609	size_t cmp_len;                           /* compressed length */
 610	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
 611	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
 612	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
 613};
 614
 615/**
 616 * Compression function that runs in its own thread.
 617 */
 618static int lzo_compress_threadfn(void *data)
 619{
 620	struct cmp_data *d = data;
 621
 622	while (1) {
 623		wait_event(d->go, atomic_read(&d->ready) ||
 624		                  kthread_should_stop());
 625		if (kthread_should_stop()) {
 626			d->thr = NULL;
 627			d->ret = -1;
 628			atomic_set(&d->stop, 1);
 629			wake_up(&d->done);
 630			break;
 631		}
 632		atomic_set(&d->ready, 0);
 633
 634		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
 635		                          d->cmp + LZO_HEADER, &d->cmp_len,
 636		                          d->wrk);
 637		atomic_set(&d->stop, 1);
 638		wake_up(&d->done);
 639	}
 640	return 0;
 641}
 642
 643/**
 644 * save_image_lzo - Save the suspend image data compressed with LZO.
 645 * @handle: Swap map handle to use for saving the image.
 646 * @snapshot: Image to read data from.
 647 * @nr_to_write: Number of pages to save.
 648 */
 649static int save_image_lzo(struct swap_map_handle *handle,
 650                          struct snapshot_handle *snapshot,
 651                          unsigned int nr_to_write)
 652{
 653	unsigned int m;
 654	int ret = 0;
 655	int nr_pages;
 656	int err2;
 657	struct hib_bio_batch hb;
 658	ktime_t start;
 659	ktime_t stop;
 660	size_t off;
 661	unsigned thr, run_threads, nr_threads;
 662	unsigned char *page = NULL;
 663	struct cmp_data *data = NULL;
 664	struct crc_data *crc = NULL;
 665
 666	hib_init_batch(&hb);
 667
 668	/*
 669	 * We'll limit the number of threads for compression to limit memory
 670	 * footprint.
 671	 */
 672	nr_threads = num_online_cpus() - 1;
 673	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
 674
 675	page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
 676	if (!page) {
 677		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
 678		ret = -ENOMEM;
 679		goto out_clean;
 680	}
 681
 682	data = vmalloc(sizeof(*data) * nr_threads);
 683	if (!data) {
 684		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
 685		ret = -ENOMEM;
 686		goto out_clean;
 687	}
 688	for (thr = 0; thr < nr_threads; thr++)
 689		memset(&data[thr], 0, offsetof(struct cmp_data, go));
 690
 691	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
 692	if (!crc) {
 693		printk(KERN_ERR "PM: Failed to allocate crc\n");
 694		ret = -ENOMEM;
 695		goto out_clean;
 696	}
 697	memset(crc, 0, offsetof(struct crc_data, go));
 698
 699	/*
 700	 * Start the compression threads.
 701	 */
 702	for (thr = 0; thr < nr_threads; thr++) {
 703		init_waitqueue_head(&data[thr].go);
 704		init_waitqueue_head(&data[thr].done);
 705
 706		data[thr].thr = kthread_run(lzo_compress_threadfn,
 707		                            &data[thr],
 708		                            "image_compress/%u", thr);
 709		if (IS_ERR(data[thr].thr)) {
 710			data[thr].thr = NULL;
 711			printk(KERN_ERR
 712			       "PM: Cannot start compression threads\n");
 713			ret = -ENOMEM;
 714			goto out_clean;
 715		}
 716	}
 717
 718	/*
 719	 * Start the CRC32 thread.
 720	 */
 721	init_waitqueue_head(&crc->go);
 722	init_waitqueue_head(&crc->done);
 723
 724	handle->crc32 = 0;
 725	crc->crc32 = &handle->crc32;
 726	for (thr = 0; thr < nr_threads; thr++) {
 727		crc->unc[thr] = data[thr].unc;
 728		crc->unc_len[thr] = &data[thr].unc_len;
 729	}
 730
 731	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
 732	if (IS_ERR(crc->thr)) {
 733		crc->thr = NULL;
 734		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
 735		ret = -ENOMEM;
 736		goto out_clean;
 737	}
 738
 739	/*
 740	 * Adjust the number of required free pages after all allocations have
 741	 * been done. We don't want to run out of pages when writing.
 742	 */
 743	handle->reqd_free_pages = reqd_free_pages();
 744
 745	printk(KERN_INFO
 746		"PM: Using %u thread(s) for compression.\n"
 747		"PM: Compressing and saving image data (%u pages)...\n",
 748		nr_threads, nr_to_write);
 749	m = nr_to_write / 10;
 750	if (!m)
 751		m = 1;
 752	nr_pages = 0;
 753	start = ktime_get();
 754	for (;;) {
 755		for (thr = 0; thr < nr_threads; thr++) {
 756			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
 757				ret = snapshot_read_next(snapshot);
 758				if (ret < 0)
 759					goto out_finish;
 760
 761				if (!ret)
 762					break;
 763
 764				memcpy(data[thr].unc + off,
 765				       data_of(*snapshot), PAGE_SIZE);
 766
 767				if (!(nr_pages % m))
 768					printk(KERN_INFO
 769					       "PM: Image saving progress: "
 770					       "%3d%%\n",
 771				               nr_pages / m * 10);
 772				nr_pages++;
 773			}
 774			if (!off)
 775				break;
 776
 777			data[thr].unc_len = off;
 778
 779			atomic_set(&data[thr].ready, 1);
 780			wake_up(&data[thr].go);
 781		}
 782
 783		if (!thr)
 784			break;
 785
 786		crc->run_threads = thr;
 787		atomic_set(&crc->ready, 1);
 788		wake_up(&crc->go);
 789
 790		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
 791			wait_event(data[thr].done,
 792			           atomic_read(&data[thr].stop));
 793			atomic_set(&data[thr].stop, 0);
 794
 795			ret = data[thr].ret;
 796
 797			if (ret < 0) {
 798				printk(KERN_ERR "PM: LZO compression failed\n");
 799				goto out_finish;
 800			}
 801
 802			if (unlikely(!data[thr].cmp_len ||
 803			             data[thr].cmp_len >
 804			             lzo1x_worst_compress(data[thr].unc_len))) {
 805				printk(KERN_ERR
 806				       "PM: Invalid LZO compressed length\n");
 807				ret = -1;
 808				goto out_finish;
 809			}
 810
 811			*(size_t *)data[thr].cmp = data[thr].cmp_len;
 812
 813			/*
 814			 * Given we are writing one page at a time to disk, we
 815			 * copy that much from the buffer, although the last
 816			 * bit will likely be smaller than full page. This is
 817			 * OK - we saved the length of the compressed data, so
 818			 * any garbage at the end will be discarded when we
 819			 * read it.
 820			 */
 821			for (off = 0;
 822			     off < LZO_HEADER + data[thr].cmp_len;
 823			     off += PAGE_SIZE) {
 824				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
 825
 826				ret = swap_write_page(handle, page, &hb);
 827				if (ret)
 828					goto out_finish;
 829			}
 830		}
 831
 832		wait_event(crc->done, atomic_read(&crc->stop));
 833		atomic_set(&crc->stop, 0);
 834	}
 835
 836out_finish:
 837	err2 = hib_wait_io(&hb);
 838	stop = ktime_get();
 839	if (!ret)
 840		ret = err2;
 841	if (!ret)
 842		printk(KERN_INFO "PM: Image saving done.\n");
 843	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
 844out_clean:
 
 845	if (crc) {
 846		if (crc->thr)
 847			kthread_stop(crc->thr);
 848		kfree(crc);
 849	}
 850	if (data) {
 851		for (thr = 0; thr < nr_threads; thr++)
 852			if (data[thr].thr)
 853				kthread_stop(data[thr].thr);
 854		vfree(data);
 855	}
 856	if (page) free_page((unsigned long)page);
 857
 858	return ret;
 859}
 860
 861/**
 862 *	enough_swap - Make sure we have enough swap to save the image.
 863 *
 864 *	Returns TRUE or FALSE after checking the total amount of swap
 865 *	space avaiable from the resume partition.
 866 */
 867
 868static int enough_swap(unsigned int nr_pages, unsigned int flags)
 869{
 870	unsigned int free_swap = count_swap_pages(root_swap, 1);
 871	unsigned int required;
 872
 873	pr_debug("PM: Free swap pages: %u\n", free_swap);
 874
 875	required = PAGES_FOR_IO + nr_pages;
 876	return free_swap > required;
 877}
 878
 879/**
 880 *	swsusp_write - Write entire image and metadata.
 881 *	@flags: flags to pass to the "boot" kernel in the image header
 882 *
 883 *	It is important _NOT_ to umount filesystems at this point. We want
 884 *	them synced (in case something goes wrong) but we DO not want to mark
 885 *	filesystem clean: it is not. (And it does not matter, if we resume
 886 *	correctly, we'll mark system clean, anyway.)
 887 */
 888
 889int swsusp_write(unsigned int flags)
 890{
 891	struct swap_map_handle handle;
 892	struct snapshot_handle snapshot;
 893	struct swsusp_info *header;
 894	unsigned long pages;
 895	int error;
 896
 897	pages = snapshot_get_image_size();
 898	error = get_swap_writer(&handle);
 899	if (error) {
 900		printk(KERN_ERR "PM: Cannot get swap writer\n");
 901		return error;
 902	}
 903	if (flags & SF_NOCOMPRESS_MODE) {
 904		if (!enough_swap(pages, flags)) {
 905			printk(KERN_ERR "PM: Not enough free swap\n");
 906			error = -ENOSPC;
 907			goto out_finish;
 908		}
 909	}
 910	memset(&snapshot, 0, sizeof(struct snapshot_handle));
 911	error = snapshot_read_next(&snapshot);
 912	if (error < PAGE_SIZE) {
 913		if (error >= 0)
 914			error = -EFAULT;
 915
 916		goto out_finish;
 917	}
 918	header = (struct swsusp_info *)data_of(snapshot);
 919	error = swap_write_page(&handle, header, NULL);
 920	if (!error) {
 921		error = (flags & SF_NOCOMPRESS_MODE) ?
 922			save_image(&handle, &snapshot, pages - 1) :
 923			save_image_lzo(&handle, &snapshot, pages - 1);
 924	}
 925out_finish:
 926	error = swap_writer_finish(&handle, flags, error);
 927	return error;
 928}
 929
 930/**
 931 *	The following functions allow us to read data using a swap map
 932 *	in a file-alike way
 933 */
 934
 935static void release_swap_reader(struct swap_map_handle *handle)
 936{
 937	struct swap_map_page_list *tmp;
 938
 939	while (handle->maps) {
 940		if (handle->maps->map)
 941			free_page((unsigned long)handle->maps->map);
 942		tmp = handle->maps;
 943		handle->maps = handle->maps->next;
 944		kfree(tmp);
 945	}
 946	handle->cur = NULL;
 947}
 948
 949static int get_swap_reader(struct swap_map_handle *handle,
 950		unsigned int *flags_p)
 951{
 952	int error;
 953	struct swap_map_page_list *tmp, *last;
 954	sector_t offset;
 955
 956	*flags_p = swsusp_header->flags;
 957
 958	if (!swsusp_header->image) /* how can this happen? */
 959		return -EINVAL;
 960
 961	handle->cur = NULL;
 962	last = handle->maps = NULL;
 963	offset = swsusp_header->image;
 964	while (offset) {
 965		tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
 966		if (!tmp) {
 967			release_swap_reader(handle);
 968			return -ENOMEM;
 969		}
 970		memset(tmp, 0, sizeof(*tmp));
 971		if (!handle->maps)
 972			handle->maps = tmp;
 973		if (last)
 974			last->next = tmp;
 975		last = tmp;
 976
 977		tmp->map = (struct swap_map_page *)
 978			   __get_free_page(__GFP_RECLAIM | __GFP_HIGH);
 979		if (!tmp->map) {
 980			release_swap_reader(handle);
 981			return -ENOMEM;
 982		}
 983
 984		error = hib_submit_io(READ_SYNC, offset, tmp->map, NULL);
 985		if (error) {
 986			release_swap_reader(handle);
 987			return error;
 988		}
 989		offset = tmp->map->next_swap;
 990	}
 991	handle->k = 0;
 992	handle->cur = handle->maps->map;
 993	return 0;
 994}
 995
 996static int swap_read_page(struct swap_map_handle *handle, void *buf,
 997		struct hib_bio_batch *hb)
 998{
 999	sector_t offset;
1000	int error;
1001	struct swap_map_page_list *tmp;
1002
1003	if (!handle->cur)
1004		return -EINVAL;
1005	offset = handle->cur->entries[handle->k];
1006	if (!offset)
1007		return -EFAULT;
1008	error = hib_submit_io(READ_SYNC, offset, buf, hb);
1009	if (error)
1010		return error;
1011	if (++handle->k >= MAP_PAGE_ENTRIES) {
1012		handle->k = 0;
1013		free_page((unsigned long)handle->maps->map);
1014		tmp = handle->maps;
1015		handle->maps = handle->maps->next;
1016		kfree(tmp);
1017		if (!handle->maps)
1018			release_swap_reader(handle);
1019		else
1020			handle->cur = handle->maps->map;
1021	}
1022	return error;
1023}
1024
1025static int swap_reader_finish(struct swap_map_handle *handle)
1026{
1027	release_swap_reader(handle);
1028
1029	return 0;
1030}
1031
1032/**
1033 *	load_image - load the image using the swap map handle
1034 *	@handle and the snapshot handle @snapshot
1035 *	(assume there are @nr_pages pages to load)
1036 */
1037
1038static int load_image(struct swap_map_handle *handle,
1039                      struct snapshot_handle *snapshot,
1040                      unsigned int nr_to_read)
1041{
1042	unsigned int m;
1043	int ret = 0;
1044	ktime_t start;
1045	ktime_t stop;
1046	struct hib_bio_batch hb;
1047	int err2;
1048	unsigned nr_pages;
1049
1050	hib_init_batch(&hb);
1051
1052	printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
1053		nr_to_read);
1054	m = nr_to_read / 10;
1055	if (!m)
1056		m = 1;
1057	nr_pages = 0;
1058	start = ktime_get();
1059	for ( ; ; ) {
1060		ret = snapshot_write_next(snapshot);
1061		if (ret <= 0)
1062			break;
1063		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1064		if (ret)
1065			break;
1066		if (snapshot->sync_read)
1067			ret = hib_wait_io(&hb);
1068		if (ret)
1069			break;
1070		if (!(nr_pages % m))
1071			printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
1072			       nr_pages / m * 10);
1073		nr_pages++;
1074	}
1075	err2 = hib_wait_io(&hb);
 
1076	stop = ktime_get();
1077	if (!ret)
1078		ret = err2;
1079	if (!ret) {
1080		printk(KERN_INFO "PM: Image loading done.\n");
1081		snapshot_write_finalize(snapshot);
1082		if (!snapshot_image_loaded(snapshot))
1083			ret = -ENODATA;
1084	}
1085	swsusp_show_speed(start, stop, nr_to_read, "Read");
1086	return ret;
1087}
1088
1089/**
1090 * Structure used for LZO data decompression.
1091 */
1092struct dec_data {
1093	struct task_struct *thr;                  /* thread */
1094	atomic_t ready;                           /* ready to start flag */
1095	atomic_t stop;                            /* ready to stop flag */
1096	int ret;                                  /* return code */
1097	wait_queue_head_t go;                     /* start decompression */
1098	wait_queue_head_t done;                   /* decompression done */
1099	size_t unc_len;                           /* uncompressed length */
1100	size_t cmp_len;                           /* compressed length */
1101	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1102	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1103};
1104
1105/**
1106 * Deompression function that runs in its own thread.
1107 */
1108static int lzo_decompress_threadfn(void *data)
1109{
1110	struct dec_data *d = data;
1111
1112	while (1) {
1113		wait_event(d->go, atomic_read(&d->ready) ||
1114		                  kthread_should_stop());
1115		if (kthread_should_stop()) {
1116			d->thr = NULL;
1117			d->ret = -1;
1118			atomic_set(&d->stop, 1);
1119			wake_up(&d->done);
1120			break;
1121		}
1122		atomic_set(&d->ready, 0);
1123
1124		d->unc_len = LZO_UNC_SIZE;
1125		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1126		                               d->unc, &d->unc_len);
 
 
 
 
1127		atomic_set(&d->stop, 1);
1128		wake_up(&d->done);
1129	}
1130	return 0;
1131}
1132
1133/**
1134 * load_image_lzo - Load compressed image data and decompress them with LZO.
1135 * @handle: Swap map handle to use for loading data.
1136 * @snapshot: Image to copy uncompressed data into.
1137 * @nr_to_read: Number of pages to load.
1138 */
1139static int load_image_lzo(struct swap_map_handle *handle,
1140                          struct snapshot_handle *snapshot,
1141                          unsigned int nr_to_read)
1142{
1143	unsigned int m;
1144	int ret = 0;
1145	int eof = 0;
1146	struct hib_bio_batch hb;
1147	ktime_t start;
1148	ktime_t stop;
1149	unsigned nr_pages;
1150	size_t off;
1151	unsigned i, thr, run_threads, nr_threads;
1152	unsigned ring = 0, pg = 0, ring_size = 0,
1153	         have = 0, want, need, asked = 0;
1154	unsigned long read_pages = 0;
1155	unsigned char **page = NULL;
1156	struct dec_data *data = NULL;
1157	struct crc_data *crc = NULL;
1158
1159	hib_init_batch(&hb);
1160
1161	/*
1162	 * We'll limit the number of threads for decompression to limit memory
1163	 * footprint.
1164	 */
1165	nr_threads = num_online_cpus() - 1;
1166	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1167
1168	page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1169	if (!page) {
1170		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1171		ret = -ENOMEM;
1172		goto out_clean;
1173	}
1174
1175	data = vmalloc(sizeof(*data) * nr_threads);
1176	if (!data) {
1177		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1178		ret = -ENOMEM;
1179		goto out_clean;
1180	}
1181	for (thr = 0; thr < nr_threads; thr++)
1182		memset(&data[thr], 0, offsetof(struct dec_data, go));
1183
1184	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1185	if (!crc) {
1186		printk(KERN_ERR "PM: Failed to allocate crc\n");
1187		ret = -ENOMEM;
1188		goto out_clean;
1189	}
1190	memset(crc, 0, offsetof(struct crc_data, go));
 
1191
1192	/*
1193	 * Start the decompression threads.
1194	 */
1195	for (thr = 0; thr < nr_threads; thr++) {
1196		init_waitqueue_head(&data[thr].go);
1197		init_waitqueue_head(&data[thr].done);
1198
1199		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1200		                            &data[thr],
1201		                            "image_decompress/%u", thr);
1202		if (IS_ERR(data[thr].thr)) {
1203			data[thr].thr = NULL;
1204			printk(KERN_ERR
1205			       "PM: Cannot start decompression threads\n");
1206			ret = -ENOMEM;
1207			goto out_clean;
1208		}
1209	}
1210
1211	/*
1212	 * Start the CRC32 thread.
1213	 */
1214	init_waitqueue_head(&crc->go);
1215	init_waitqueue_head(&crc->done);
1216
1217	handle->crc32 = 0;
1218	crc->crc32 = &handle->crc32;
1219	for (thr = 0; thr < nr_threads; thr++) {
1220		crc->unc[thr] = data[thr].unc;
1221		crc->unc_len[thr] = &data[thr].unc_len;
1222	}
1223
1224	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1225	if (IS_ERR(crc->thr)) {
1226		crc->thr = NULL;
1227		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1228		ret = -ENOMEM;
1229		goto out_clean;
1230	}
1231
1232	/*
1233	 * Set the number of pages for read buffering.
1234	 * This is complete guesswork, because we'll only know the real
1235	 * picture once prepare_image() is called, which is much later on
1236	 * during the image load phase. We'll assume the worst case and
1237	 * say that none of the image pages are from high memory.
1238	 */
1239	if (low_free_pages() > snapshot_get_image_size())
1240		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1241	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1242
1243	for (i = 0; i < read_pages; i++) {
1244		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1245						  __GFP_RECLAIM | __GFP_HIGH :
1246						  __GFP_RECLAIM | __GFP_NOWARN |
1247						  __GFP_NORETRY);
1248
1249		if (!page[i]) {
1250			if (i < LZO_CMP_PAGES) {
1251				ring_size = i;
1252				printk(KERN_ERR
1253				       "PM: Failed to allocate LZO pages\n");
1254				ret = -ENOMEM;
1255				goto out_clean;
1256			} else {
1257				break;
1258			}
1259		}
1260	}
1261	want = ring_size = i;
1262
1263	printk(KERN_INFO
1264		"PM: Using %u thread(s) for decompression.\n"
1265		"PM: Loading and decompressing image data (%u pages)...\n",
1266		nr_threads, nr_to_read);
1267	m = nr_to_read / 10;
1268	if (!m)
1269		m = 1;
1270	nr_pages = 0;
1271	start = ktime_get();
1272
1273	ret = snapshot_write_next(snapshot);
1274	if (ret <= 0)
1275		goto out_finish;
1276
1277	for(;;) {
1278		for (i = 0; !eof && i < want; i++) {
1279			ret = swap_read_page(handle, page[ring], &hb);
1280			if (ret) {
1281				/*
1282				 * On real read error, finish. On end of data,
1283				 * set EOF flag and just exit the read loop.
1284				 */
1285				if (handle->cur &&
1286				    handle->cur->entries[handle->k]) {
1287					goto out_finish;
1288				} else {
1289					eof = 1;
1290					break;
1291				}
1292			}
1293			if (++ring >= ring_size)
1294				ring = 0;
1295		}
1296		asked += i;
1297		want -= i;
1298
1299		/*
1300		 * We are out of data, wait for some more.
1301		 */
1302		if (!have) {
1303			if (!asked)
1304				break;
1305
1306			ret = hib_wait_io(&hb);
1307			if (ret)
1308				goto out_finish;
1309			have += asked;
1310			asked = 0;
1311			if (eof)
1312				eof = 2;
1313		}
1314
1315		if (crc->run_threads) {
1316			wait_event(crc->done, atomic_read(&crc->stop));
1317			atomic_set(&crc->stop, 0);
1318			crc->run_threads = 0;
1319		}
1320
1321		for (thr = 0; have && thr < nr_threads; thr++) {
1322			data[thr].cmp_len = *(size_t *)page[pg];
1323			if (unlikely(!data[thr].cmp_len ||
1324			             data[thr].cmp_len >
1325			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1326				printk(KERN_ERR
1327				       "PM: Invalid LZO compressed length\n");
1328				ret = -1;
1329				goto out_finish;
1330			}
1331
1332			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1333			                    PAGE_SIZE);
1334			if (need > have) {
1335				if (eof > 1) {
1336					ret = -1;
1337					goto out_finish;
1338				}
1339				break;
1340			}
1341
1342			for (off = 0;
1343			     off < LZO_HEADER + data[thr].cmp_len;
1344			     off += PAGE_SIZE) {
1345				memcpy(data[thr].cmp + off,
1346				       page[pg], PAGE_SIZE);
1347				have--;
1348				want++;
1349				if (++pg >= ring_size)
1350					pg = 0;
1351			}
1352
1353			atomic_set(&data[thr].ready, 1);
1354			wake_up(&data[thr].go);
1355		}
1356
1357		/*
1358		 * Wait for more data while we are decompressing.
1359		 */
1360		if (have < LZO_CMP_PAGES && asked) {
1361			ret = hib_wait_io(&hb);
1362			if (ret)
1363				goto out_finish;
1364			have += asked;
1365			asked = 0;
1366			if (eof)
1367				eof = 2;
1368		}
1369
1370		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1371			wait_event(data[thr].done,
1372			           atomic_read(&data[thr].stop));
1373			atomic_set(&data[thr].stop, 0);
1374
1375			ret = data[thr].ret;
1376
1377			if (ret < 0) {
1378				printk(KERN_ERR
1379				       "PM: LZO decompression failed\n");
1380				goto out_finish;
1381			}
1382
1383			if (unlikely(!data[thr].unc_len ||
1384			             data[thr].unc_len > LZO_UNC_SIZE ||
1385			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1386				printk(KERN_ERR
1387				       "PM: Invalid LZO uncompressed length\n");
1388				ret = -1;
1389				goto out_finish;
1390			}
1391
1392			for (off = 0;
1393			     off < data[thr].unc_len; off += PAGE_SIZE) {
1394				memcpy(data_of(*snapshot),
1395				       data[thr].unc + off, PAGE_SIZE);
1396
1397				if (!(nr_pages % m))
1398					printk(KERN_INFO
1399					       "PM: Image loading progress: "
1400					       "%3d%%\n",
1401					       nr_pages / m * 10);
1402				nr_pages++;
1403
1404				ret = snapshot_write_next(snapshot);
1405				if (ret <= 0) {
1406					crc->run_threads = thr + 1;
1407					atomic_set(&crc->ready, 1);
1408					wake_up(&crc->go);
1409					goto out_finish;
1410				}
1411			}
1412		}
1413
1414		crc->run_threads = thr;
1415		atomic_set(&crc->ready, 1);
1416		wake_up(&crc->go);
1417	}
1418
1419out_finish:
1420	if (crc->run_threads) {
1421		wait_event(crc->done, atomic_read(&crc->stop));
1422		atomic_set(&crc->stop, 0);
1423	}
1424	stop = ktime_get();
1425	if (!ret) {
1426		printk(KERN_INFO "PM: Image loading done.\n");
1427		snapshot_write_finalize(snapshot);
1428		if (!snapshot_image_loaded(snapshot))
1429			ret = -ENODATA;
1430		if (!ret) {
1431			if (swsusp_header->flags & SF_CRC32_MODE) {
1432				if(handle->crc32 != swsusp_header->crc32) {
1433					printk(KERN_ERR
1434					       "PM: Invalid image CRC32!\n");
1435					ret = -ENODATA;
1436				}
1437			}
1438		}
1439	}
1440	swsusp_show_speed(start, stop, nr_to_read, "Read");
1441out_clean:
 
1442	for (i = 0; i < ring_size; i++)
1443		free_page((unsigned long)page[i]);
1444	if (crc) {
1445		if (crc->thr)
1446			kthread_stop(crc->thr);
1447		kfree(crc);
1448	}
1449	if (data) {
1450		for (thr = 0; thr < nr_threads; thr++)
1451			if (data[thr].thr)
1452				kthread_stop(data[thr].thr);
1453		vfree(data);
1454	}
1455	vfree(page);
1456
1457	return ret;
1458}
1459
1460/**
1461 *	swsusp_read - read the hibernation image.
1462 *	@flags_p: flags passed by the "frozen" kernel in the image header should
1463 *		  be written into this memory location
1464 */
1465
1466int swsusp_read(unsigned int *flags_p)
1467{
1468	int error;
1469	struct swap_map_handle handle;
1470	struct snapshot_handle snapshot;
1471	struct swsusp_info *header;
1472
1473	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1474	error = snapshot_write_next(&snapshot);
1475	if (error < PAGE_SIZE)
1476		return error < 0 ? error : -EFAULT;
1477	header = (struct swsusp_info *)data_of(snapshot);
1478	error = get_swap_reader(&handle, flags_p);
1479	if (error)
1480		goto end;
1481	if (!error)
1482		error = swap_read_page(&handle, header, NULL);
1483	if (!error) {
1484		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1485			load_image(&handle, &snapshot, header->pages - 1) :
1486			load_image_lzo(&handle, &snapshot, header->pages - 1);
1487	}
1488	swap_reader_finish(&handle);
1489end:
1490	if (!error)
1491		pr_debug("PM: Image successfully loaded\n");
1492	else
1493		pr_debug("PM: Error %d resuming\n", error);
1494	return error;
1495}
1496
1497/**
1498 *      swsusp_check - Check for swsusp signature in the resume device
1499 */
1500
1501int swsusp_check(void)
1502{
1503	int error;
 
1504
1505	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1506					    FMODE_READ, NULL);
1507	if (!IS_ERR(hib_resume_bdev)) {
1508		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1509		clear_page(swsusp_header);
1510		error = hib_submit_io(READ_SYNC, swsusp_resume_block,
1511					swsusp_header, NULL);
1512		if (error)
1513			goto put;
1514
1515		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1516			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1517			/* Reset swap signature now */
1518			error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
 
1519						swsusp_header, NULL);
1520		} else {
1521			error = -EINVAL;
1522		}
 
 
 
 
 
 
1523
1524put:
1525		if (error)
1526			blkdev_put(hib_resume_bdev, FMODE_READ);
1527		else
1528			pr_debug("PM: Image signature found, resuming\n");
1529	} else {
1530		error = PTR_ERR(hib_resume_bdev);
1531	}
1532
1533	if (error)
1534		pr_debug("PM: Image not found (code %d)\n", error);
1535
1536	return error;
1537}
1538
1539/**
1540 *	swsusp_close - close swap device.
1541 */
1542
1543void swsusp_close(fmode_t mode)
1544{
1545	if (IS_ERR(hib_resume_bdev)) {
1546		pr_debug("PM: Image device not initialised\n");
1547		return;
1548	}
1549
1550	blkdev_put(hib_resume_bdev, mode);
1551}
1552
1553/**
1554 *      swsusp_unmark - Unmark swsusp signature in the resume device
1555 */
1556
1557#ifdef CONFIG_SUSPEND
1558int swsusp_unmark(void)
1559{
1560	int error;
1561
1562	hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
 
1563	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1564		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1565		error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
 
1566					swsusp_header, NULL);
1567	} else {
1568		printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1569		error = -ENODEV;
1570	}
1571
1572	/*
1573	 * We just returned from suspend, we don't need the image any more.
1574	 */
1575	free_all_swap_pages(root_swap);
1576
1577	return error;
1578}
1579#endif
1580
1581static int swsusp_header_init(void)
1582{
1583	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1584	if (!swsusp_header)
1585		panic("Could not allocate memory for swsusp_header\n");
1586	return 0;
1587}
1588
1589core_initcall(swsusp_header_init);