Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/pci.h>
 
  12#include <linux/iopoll.h>
  13#include <linux/irq.h>
  14#include <linux/log2.h>
  15#include <linux/module.h>
  16#include <linux/moduleparam.h>
  17#include <linux/slab.h>
  18#include <linux/dmi.h>
  19#include <linux/dma-mapping.h>
  20
  21#include "xhci.h"
  22#include "xhci-trace.h"
  23#include "xhci-debugfs.h"
  24#include "xhci-dbgcap.h"
  25
  26#define DRIVER_AUTHOR "Sarah Sharp"
  27#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  28
  29#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  30
  31/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  32static int link_quirk;
  33module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  34MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  35
  36static unsigned long long quirks;
  37module_param(quirks, ullong, S_IRUGO);
  38MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  39
  40static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
  41{
  42	struct xhci_segment *seg = ring->first_seg;
  43
  44	if (!td || !td->start_seg)
  45		return false;
  46	do {
  47		if (seg == td->start_seg)
  48			return true;
  49		seg = seg->next;
  50	} while (seg && seg != ring->first_seg);
  51
  52	return false;
  53}
  54
  55/*
  56 * xhci_handshake - spin reading hc until handshake completes or fails
  57 * @ptr: address of hc register to be read
  58 * @mask: bits to look at in result of read
  59 * @done: value of those bits when handshake succeeds
  60 * @usec: timeout in microseconds
  61 *
  62 * Returns negative errno, or zero on success
  63 *
  64 * Success happens when the "mask" bits have the specified value (hardware
  65 * handshake done).  There are two failure modes:  "usec" have passed (major
  66 * hardware flakeout), or the register reads as all-ones (hardware removed).
  67 */
  68int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
  69{
  70	u32	result;
  71	int	ret;
  72
  73	ret = readl_poll_timeout_atomic(ptr, result,
  74					(result & mask) == done ||
  75					result == U32_MAX,
  76					1, timeout_us);
  77	if (result == U32_MAX)		/* card removed */
  78		return -ENODEV;
  79
  80	return ret;
  81}
  82
  83/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84 * Disable interrupts and begin the xHCI halting process.
  85 */
  86void xhci_quiesce(struct xhci_hcd *xhci)
  87{
  88	u32 halted;
  89	u32 cmd;
  90	u32 mask;
  91
  92	mask = ~(XHCI_IRQS);
  93	halted = readl(&xhci->op_regs->status) & STS_HALT;
  94	if (!halted)
  95		mask &= ~CMD_RUN;
  96
  97	cmd = readl(&xhci->op_regs->command);
  98	cmd &= mask;
  99	writel(cmd, &xhci->op_regs->command);
 100}
 101
 102/*
 103 * Force HC into halt state.
 104 *
 105 * Disable any IRQs and clear the run/stop bit.
 106 * HC will complete any current and actively pipelined transactions, and
 107 * should halt within 16 ms of the run/stop bit being cleared.
 108 * Read HC Halted bit in the status register to see when the HC is finished.
 109 */
 110int xhci_halt(struct xhci_hcd *xhci)
 111{
 112	int ret;
 113
 114	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 115	xhci_quiesce(xhci);
 116
 117	ret = xhci_handshake(&xhci->op_regs->status,
 118			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 119	if (ret) {
 120		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 121		return ret;
 122	}
 123
 124	xhci->xhc_state |= XHCI_STATE_HALTED;
 125	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 126
 127	return ret;
 128}
 129
 130/*
 131 * Set the run bit and wait for the host to be running.
 132 */
 133int xhci_start(struct xhci_hcd *xhci)
 134{
 135	u32 temp;
 136	int ret;
 137
 138	temp = readl(&xhci->op_regs->command);
 139	temp |= (CMD_RUN);
 140	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 141			temp);
 142	writel(temp, &xhci->op_regs->command);
 143
 144	/*
 145	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 146	 * running.
 147	 */
 148	ret = xhci_handshake(&xhci->op_regs->status,
 149			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 150	if (ret == -ETIMEDOUT)
 151		xhci_err(xhci, "Host took too long to start, "
 152				"waited %u microseconds.\n",
 153				XHCI_MAX_HALT_USEC);
 154	if (!ret) {
 155		/* clear state flags. Including dying, halted or removing */
 156		xhci->xhc_state = 0;
 157		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
 158	}
 159
 160	return ret;
 161}
 162
 163/*
 164 * Reset a halted HC.
 165 *
 166 * This resets pipelines, timers, counters, state machines, etc.
 167 * Transactions will be terminated immediately, and operational registers
 168 * will be set to their defaults.
 169 */
 170int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
 171{
 172	u32 command;
 173	u32 state;
 174	int ret;
 175
 176	state = readl(&xhci->op_regs->status);
 177
 178	if (state == ~(u32)0) {
 179		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 180		return -ENODEV;
 181	}
 182
 183	if ((state & STS_HALT) == 0) {
 184		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 185		return 0;
 186	}
 187
 188	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 189	command = readl(&xhci->op_regs->command);
 190	command |= CMD_RESET;
 191	writel(command, &xhci->op_regs->command);
 192
 193	/* Existing Intel xHCI controllers require a delay of 1 mS,
 194	 * after setting the CMD_RESET bit, and before accessing any
 195	 * HC registers. This allows the HC to complete the
 196	 * reset operation and be ready for HC register access.
 197	 * Without this delay, the subsequent HC register access,
 198	 * may result in a system hang very rarely.
 199	 */
 200	if (xhci->quirks & XHCI_INTEL_HOST)
 201		udelay(1000);
 202
 203	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
 
 204	if (ret)
 205		return ret;
 206
 207	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
 208		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
 209
 210	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 211			 "Wait for controller to be ready for doorbell rings");
 212	/*
 213	 * xHCI cannot write to any doorbells or operational registers other
 214	 * than status until the "Controller Not Ready" flag is cleared.
 215	 */
 216	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
 217
 218	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
 219	xhci->usb2_rhub.bus_state.suspended_ports = 0;
 220	xhci->usb2_rhub.bus_state.resuming_ports = 0;
 221	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
 222	xhci->usb3_rhub.bus_state.suspended_ports = 0;
 223	xhci->usb3_rhub.bus_state.resuming_ports = 0;
 224
 225	return ret;
 226}
 227
 228static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
 229{
 230	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 
 231	int err, i;
 232	u64 val;
 233	u32 intrs;
 234
 235	/*
 236	 * Some Renesas controllers get into a weird state if they are
 237	 * reset while programmed with 64bit addresses (they will preserve
 238	 * the top half of the address in internal, non visible
 239	 * registers). You end up with half the address coming from the
 240	 * kernel, and the other half coming from the firmware. Also,
 241	 * changing the programming leads to extra accesses even if the
 242	 * controller is supposed to be halted. The controller ends up with
 243	 * a fatal fault, and is then ripe for being properly reset.
 244	 *
 245	 * Special care is taken to only apply this if the device is behind
 246	 * an iommu. Doing anything when there is no iommu is definitely
 247	 * unsafe...
 248	 */
 249	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
 
 
 250		return;
 251
 252	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
 253
 254	/* Clear HSEIE so that faults do not get signaled */
 255	val = readl(&xhci->op_regs->command);
 256	val &= ~CMD_HSEIE;
 257	writel(val, &xhci->op_regs->command);
 258
 259	/* Clear HSE (aka FATAL) */
 260	val = readl(&xhci->op_regs->status);
 261	val |= STS_FATAL;
 262	writel(val, &xhci->op_regs->status);
 263
 264	/* Now zero the registers, and brace for impact */
 265	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 266	if (upper_32_bits(val))
 267		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
 268	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 269	if (upper_32_bits(val))
 270		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 271
 272	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
 273		      ARRAY_SIZE(xhci->run_regs->ir_set));
 274
 275	for (i = 0; i < intrs; i++) {
 276		struct xhci_intr_reg __iomem *ir;
 277
 278		ir = &xhci->run_regs->ir_set[i];
 279		val = xhci_read_64(xhci, &ir->erst_base);
 280		if (upper_32_bits(val))
 281			xhci_write_64(xhci, 0, &ir->erst_base);
 282		val= xhci_read_64(xhci, &ir->erst_dequeue);
 283		if (upper_32_bits(val))
 284			xhci_write_64(xhci, 0, &ir->erst_dequeue);
 285	}
 286
 287	/* Wait for the fault to appear. It will be cleared on reset */
 288	err = xhci_handshake(&xhci->op_regs->status,
 289			     STS_FATAL, STS_FATAL,
 290			     XHCI_MAX_HALT_USEC);
 291	if (!err)
 292		xhci_info(xhci, "Fault detected\n");
 293}
 294
 295#ifdef CONFIG_USB_PCI
 296/*
 297 * Set up MSI
 298 */
 299static int xhci_setup_msi(struct xhci_hcd *xhci)
 300{
 301	int ret;
 302	/*
 303	 * TODO:Check with MSI Soc for sysdev
 304	 */
 305	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 306
 307	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
 308	if (ret < 0) {
 309		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 310				"failed to allocate MSI entry");
 311		return ret;
 312	}
 313
 314	ret = request_irq(pdev->irq, xhci_msi_irq,
 315				0, "xhci_hcd", xhci_to_hcd(xhci));
 316	if (ret) {
 317		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 318				"disable MSI interrupt");
 319		pci_free_irq_vectors(pdev);
 320	}
 321
 322	return ret;
 323}
 324
 325/*
 326 * Set up MSI-X
 327 */
 328static int xhci_setup_msix(struct xhci_hcd *xhci)
 329{
 330	int i, ret;
 331	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 332	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 333
 334	/*
 335	 * calculate number of msi-x vectors supported.
 336	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 337	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 338	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 339	 *   Add additional 1 vector to ensure always available interrupt.
 340	 */
 341	xhci->msix_count = min(num_online_cpus() + 1,
 342				HCS_MAX_INTRS(xhci->hcs_params1));
 343
 344	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
 345			PCI_IRQ_MSIX);
 346	if (ret < 0) {
 347		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 348				"Failed to enable MSI-X");
 349		return ret;
 350	}
 351
 352	for (i = 0; i < xhci->msix_count; i++) {
 353		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
 354				"xhci_hcd", xhci_to_hcd(xhci));
 355		if (ret)
 356			goto disable_msix;
 357	}
 358
 359	hcd->msix_enabled = 1;
 360	return ret;
 361
 362disable_msix:
 363	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 364	while (--i >= 0)
 365		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 366	pci_free_irq_vectors(pdev);
 367	return ret;
 368}
 369
 370/* Free any IRQs and disable MSI-X */
 371static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 372{
 373	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 374	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 375
 376	if (xhci->quirks & XHCI_PLAT)
 377		return;
 378
 379	/* return if using legacy interrupt */
 380	if (hcd->irq > 0)
 381		return;
 382
 383	if (hcd->msix_enabled) {
 384		int i;
 385
 386		for (i = 0; i < xhci->msix_count; i++)
 387			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 388	} else {
 389		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
 390	}
 391
 392	pci_free_irq_vectors(pdev);
 393	hcd->msix_enabled = 0;
 394}
 395
 396static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 397{
 398	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 399
 400	if (hcd->msix_enabled) {
 401		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 402		int i;
 403
 404		for (i = 0; i < xhci->msix_count; i++)
 405			synchronize_irq(pci_irq_vector(pdev, i));
 406	}
 407}
 408
 409static int xhci_try_enable_msi(struct usb_hcd *hcd)
 
 
 410{
 411	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 412	struct pci_dev  *pdev;
 413	int ret;
 414
 415	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 416	if (xhci->quirks & XHCI_PLAT)
 417		return 0;
 418
 419	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 420	/*
 421	 * Some Fresco Logic host controllers advertise MSI, but fail to
 422	 * generate interrupts.  Don't even try to enable MSI.
 423	 */
 424	if (xhci->quirks & XHCI_BROKEN_MSI)
 425		goto legacy_irq;
 426
 427	/* unregister the legacy interrupt */
 428	if (hcd->irq)
 429		free_irq(hcd->irq, hcd);
 430	hcd->irq = 0;
 431
 432	ret = xhci_setup_msix(xhci);
 433	if (ret)
 434		/* fall back to msi*/
 435		ret = xhci_setup_msi(xhci);
 436
 437	if (!ret) {
 438		hcd->msi_enabled = 1;
 439		return 0;
 440	}
 441
 442	if (!pdev->irq) {
 443		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 444		return -EINVAL;
 445	}
 446
 447 legacy_irq:
 448	if (!strlen(hcd->irq_descr))
 449		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 450			 hcd->driver->description, hcd->self.busnum);
 451
 452	/* fall back to legacy interrupt*/
 453	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 454			hcd->irq_descr, hcd);
 455	if (ret) {
 456		xhci_err(xhci, "request interrupt %d failed\n",
 457				pdev->irq);
 458		return ret;
 459	}
 460	hcd->irq = pdev->irq;
 461	return 0;
 462}
 463
 464#else
 
 
 
 465
 466static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 467{
 468	return 0;
 469}
 470
 471static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 472{
 473}
 474
 475static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 476{
 477}
 478
 479#endif
 480
 481static void compliance_mode_recovery(struct timer_list *t)
 482{
 483	struct xhci_hcd *xhci;
 484	struct usb_hcd *hcd;
 485	struct xhci_hub *rhub;
 486	u32 temp;
 487	int i;
 488
 489	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
 490	rhub = &xhci->usb3_rhub;
 491	hcd = rhub->hcd;
 492
 493	if (!hcd)
 494		return;
 495
 496	for (i = 0; i < rhub->num_ports; i++) {
 497		temp = readl(rhub->ports[i]->addr);
 498		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 499			/*
 500			 * Compliance Mode Detected. Letting USB Core
 501			 * handle the Warm Reset
 502			 */
 503			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 504					"Compliance mode detected->port %d",
 505					i + 1);
 506			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 507					"Attempting compliance mode recovery");
 508
 509			if (hcd->state == HC_STATE_SUSPENDED)
 510				usb_hcd_resume_root_hub(hcd);
 511
 512			usb_hcd_poll_rh_status(hcd);
 513		}
 514	}
 515
 516	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
 517		mod_timer(&xhci->comp_mode_recovery_timer,
 518			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 519}
 520
 521/*
 522 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 523 * that causes ports behind that hardware to enter compliance mode sometimes.
 524 * The quirk creates a timer that polls every 2 seconds the link state of
 525 * each host controller's port and recovers it by issuing a Warm reset
 526 * if Compliance mode is detected, otherwise the port will become "dead" (no
 527 * device connections or disconnections will be detected anymore). Becasue no
 528 * status event is generated when entering compliance mode (per xhci spec),
 529 * this quirk is needed on systems that have the failing hardware installed.
 530 */
 531static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 532{
 533	xhci->port_status_u0 = 0;
 534	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
 535		    0);
 536	xhci->comp_mode_recovery_timer.expires = jiffies +
 537			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 538
 539	add_timer(&xhci->comp_mode_recovery_timer);
 540	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 541			"Compliance mode recovery timer initialized");
 542}
 543
 544/*
 545 * This function identifies the systems that have installed the SN65LVPE502CP
 546 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 547 * Systems:
 548 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 549 */
 550static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 551{
 552	const char *dmi_product_name, *dmi_sys_vendor;
 553
 554	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 555	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 556	if (!dmi_product_name || !dmi_sys_vendor)
 557		return false;
 558
 559	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 560		return false;
 561
 562	if (strstr(dmi_product_name, "Z420") ||
 563			strstr(dmi_product_name, "Z620") ||
 564			strstr(dmi_product_name, "Z820") ||
 565			strstr(dmi_product_name, "Z1 Workstation"))
 566		return true;
 567
 568	return false;
 569}
 570
 571static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 572{
 573	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
 574}
 575
 576
 577/*
 578 * Initialize memory for HCD and xHC (one-time init).
 579 *
 580 * Program the PAGESIZE register, initialize the device context array, create
 581 * device contexts (?), set up a command ring segment (or two?), create event
 582 * ring (one for now).
 583 */
 584static int xhci_init(struct usb_hcd *hcd)
 585{
 586	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 587	int retval;
 588
 589	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 590	spin_lock_init(&xhci->lock);
 591	if (xhci->hci_version == 0x95 && link_quirk) {
 592		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 593				"QUIRK: Not clearing Link TRB chain bits.");
 594		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 595	} else {
 596		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 597				"xHCI doesn't need link TRB QUIRK");
 598	}
 599	retval = xhci_mem_init(xhci, GFP_KERNEL);
 600	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 601
 602	/* Initializing Compliance Mode Recovery Data If Needed */
 603	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 604		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 605		compliance_mode_recovery_timer_init(xhci);
 606	}
 607
 608	return retval;
 609}
 610
 611/*-------------------------------------------------------------------------*/
 612
 613
 614static int xhci_run_finished(struct xhci_hcd *xhci)
 615{
 
 616	unsigned long	flags;
 617	u32		temp;
 618
 619	/*
 620	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
 621	 * Protect the short window before host is running with a lock
 622	 */
 623	spin_lock_irqsave(&xhci->lock, flags);
 624
 625	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
 626	temp = readl(&xhci->op_regs->command);
 627	temp |= (CMD_EIE);
 628	writel(temp, &xhci->op_regs->command);
 629
 630	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
 631	temp = readl(&xhci->ir_set->irq_pending);
 632	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 633
 634	if (xhci_start(xhci)) {
 635		xhci_halt(xhci);
 636		spin_unlock_irqrestore(&xhci->lock, flags);
 637		return -ENODEV;
 638	}
 639
 640	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 641
 642	if (xhci->quirks & XHCI_NEC_HOST)
 643		xhci_ring_cmd_db(xhci);
 644
 645	spin_unlock_irqrestore(&xhci->lock, flags);
 646
 647	return 0;
 648}
 649
 650/*
 651 * Start the HC after it was halted.
 652 *
 653 * This function is called by the USB core when the HC driver is added.
 654 * Its opposite is xhci_stop().
 655 *
 656 * xhci_init() must be called once before this function can be called.
 657 * Reset the HC, enable device slot contexts, program DCBAAP, and
 658 * set command ring pointer and event ring pointer.
 659 *
 660 * Setup MSI-X vectors and enable interrupts.
 661 */
 662int xhci_run(struct usb_hcd *hcd)
 663{
 664	u32 temp;
 665	u64 temp_64;
 666	int ret;
 667	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 668
 669	/* Start the xHCI host controller running only after the USB 2.0 roothub
 670	 * is setup.
 671	 */
 672
 673	hcd->uses_new_polling = 1;
 
 
 
 674	if (!usb_hcd_is_primary_hcd(hcd))
 675		return xhci_run_finished(xhci);
 676
 677	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 678
 679	ret = xhci_try_enable_msi(hcd);
 680	if (ret)
 681		return ret;
 682
 683	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 684	temp_64 &= ~ERST_PTR_MASK;
 685	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 686			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 687
 688	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 689			"// Set the interrupt modulation register");
 690	temp = readl(&xhci->ir_set->irq_control);
 691	temp &= ~ER_IRQ_INTERVAL_MASK;
 692	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
 693	writel(temp, &xhci->ir_set->irq_control);
 694
 695	if (xhci->quirks & XHCI_NEC_HOST) {
 696		struct xhci_command *command;
 697
 698		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
 699		if (!command)
 700			return -ENOMEM;
 701
 702		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 703				TRB_TYPE(TRB_NEC_GET_FW));
 704		if (ret)
 705			xhci_free_command(xhci, command);
 706	}
 707	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 708			"Finished %s for main hcd", __func__);
 709
 710	xhci_create_dbc_dev(xhci);
 711
 712	xhci_debugfs_init(xhci);
 713
 714	if (xhci_has_one_roothub(xhci))
 715		return xhci_run_finished(xhci);
 716
 717	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
 718
 719	return 0;
 720}
 721EXPORT_SYMBOL_GPL(xhci_run);
 722
 723/*
 724 * Stop xHCI driver.
 725 *
 726 * This function is called by the USB core when the HC driver is removed.
 727 * Its opposite is xhci_run().
 728 *
 729 * Disable device contexts, disable IRQs, and quiesce the HC.
 730 * Reset the HC, finish any completed transactions, and cleanup memory.
 731 */
 732static void xhci_stop(struct usb_hcd *hcd)
 733{
 734	u32 temp;
 735	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
 736
 737	mutex_lock(&xhci->mutex);
 738
 739	/* Only halt host and free memory after both hcds are removed */
 740	if (!usb_hcd_is_primary_hcd(hcd)) {
 741		mutex_unlock(&xhci->mutex);
 742		return;
 743	}
 744
 745	xhci_remove_dbc_dev(xhci);
 746
 747	spin_lock_irq(&xhci->lock);
 748	xhci->xhc_state |= XHCI_STATE_HALTED;
 749	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 750	xhci_halt(xhci);
 751	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
 752	spin_unlock_irq(&xhci->lock);
 753
 754	xhci_cleanup_msix(xhci);
 755
 756	/* Deleting Compliance Mode Recovery Timer */
 757	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 758			(!(xhci_all_ports_seen_u0(xhci)))) {
 759		del_timer_sync(&xhci->comp_mode_recovery_timer);
 760		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 761				"%s: compliance mode recovery timer deleted",
 762				__func__);
 763	}
 764
 765	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 766		usb_amd_dev_put();
 767
 768	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 769			"// Disabling event ring interrupts");
 770	temp = readl(&xhci->op_regs->status);
 771	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
 772	temp = readl(&xhci->ir_set->irq_pending);
 773	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 774
 775	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 776	xhci_mem_cleanup(xhci);
 777	xhci_debugfs_exit(xhci);
 778	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 779			"xhci_stop completed - status = %x",
 780			readl(&xhci->op_regs->status));
 781	mutex_unlock(&xhci->mutex);
 782}
 
 783
 784/*
 785 * Shutdown HC (not bus-specific)
 786 *
 787 * This is called when the machine is rebooting or halting.  We assume that the
 788 * machine will be powered off, and the HC's internal state will be reset.
 789 * Don't bother to free memory.
 790 *
 791 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 792 */
 793void xhci_shutdown(struct usb_hcd *hcd)
 794{
 795	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 796
 797	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 798		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
 799
 800	/* Don't poll the roothubs after shutdown. */
 801	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
 802			__func__, hcd->self.busnum);
 803	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 804	del_timer_sync(&hcd->rh_timer);
 805
 806	if (xhci->shared_hcd) {
 807		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 808		del_timer_sync(&xhci->shared_hcd->rh_timer);
 809	}
 810
 811	spin_lock_irq(&xhci->lock);
 812	xhci_halt(xhci);
 813
 814	/*
 815	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
 816	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
 817	 */
 818	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
 819	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
 820		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
 821
 822	spin_unlock_irq(&xhci->lock);
 823
 824	xhci_cleanup_msix(xhci);
 825
 826	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 827			"xhci_shutdown completed - status = %x",
 828			readl(&xhci->op_regs->status));
 829}
 830EXPORT_SYMBOL_GPL(xhci_shutdown);
 831
 832#ifdef CONFIG_PM
 833static void xhci_save_registers(struct xhci_hcd *xhci)
 834{
 
 
 
 835	xhci->s3.command = readl(&xhci->op_regs->command);
 836	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 837	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 838	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 839	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 840	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 841	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 842	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 843	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 
 
 
 
 
 
 
 
 
 844}
 845
 846static void xhci_restore_registers(struct xhci_hcd *xhci)
 847{
 
 
 
 848	writel(xhci->s3.command, &xhci->op_regs->command);
 849	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 850	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 851	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 852	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 853	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 854	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 855	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 856	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 
 
 
 
 
 
 
 
 857}
 858
 859static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 860{
 861	u64	val_64;
 862
 863	/* step 2: initialize command ring buffer */
 864	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 865	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 866		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 867				      xhci->cmd_ring->dequeue) &
 868		 (u64) ~CMD_RING_RSVD_BITS) |
 869		xhci->cmd_ring->cycle_state;
 870	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 871			"// Setting command ring address to 0x%llx",
 872			(long unsigned long) val_64);
 873	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 874}
 875
 876/*
 877 * The whole command ring must be cleared to zero when we suspend the host.
 878 *
 879 * The host doesn't save the command ring pointer in the suspend well, so we
 880 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 881 * aligned, because of the reserved bits in the command ring dequeue pointer
 882 * register.  Therefore, we can't just set the dequeue pointer back in the
 883 * middle of the ring (TRBs are 16-byte aligned).
 884 */
 885static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 886{
 887	struct xhci_ring *ring;
 888	struct xhci_segment *seg;
 889
 890	ring = xhci->cmd_ring;
 891	seg = ring->deq_seg;
 892	do {
 893		memset(seg->trbs, 0,
 894			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 895		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 896			cpu_to_le32(~TRB_CYCLE);
 897		seg = seg->next;
 898	} while (seg != ring->deq_seg);
 899
 900	/* Reset the software enqueue and dequeue pointers */
 901	ring->deq_seg = ring->first_seg;
 902	ring->dequeue = ring->first_seg->trbs;
 903	ring->enq_seg = ring->deq_seg;
 904	ring->enqueue = ring->dequeue;
 905
 906	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 907	/*
 908	 * Ring is now zeroed, so the HW should look for change of ownership
 909	 * when the cycle bit is set to 1.
 910	 */
 911	ring->cycle_state = 1;
 912
 913	/*
 914	 * Reset the hardware dequeue pointer.
 915	 * Yes, this will need to be re-written after resume, but we're paranoid
 916	 * and want to make sure the hardware doesn't access bogus memory
 917	 * because, say, the BIOS or an SMI started the host without changing
 918	 * the command ring pointers.
 919	 */
 920	xhci_set_cmd_ring_deq(xhci);
 921}
 922
 923/*
 924 * Disable port wake bits if do_wakeup is not set.
 925 *
 926 * Also clear a possible internal port wake state left hanging for ports that
 927 * detected termination but never successfully enumerated (trained to 0U).
 928 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
 929 * at enumeration clears this wake, force one here as well for unconnected ports
 930 */
 931
 932static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
 933				       struct xhci_hub *rhub,
 934				       bool do_wakeup)
 935{
 936	unsigned long flags;
 937	u32 t1, t2, portsc;
 938	int i;
 939
 940	spin_lock_irqsave(&xhci->lock, flags);
 941
 942	for (i = 0; i < rhub->num_ports; i++) {
 943		portsc = readl(rhub->ports[i]->addr);
 944		t1 = xhci_port_state_to_neutral(portsc);
 945		t2 = t1;
 946
 947		/* clear wake bits if do_wake is not set */
 948		if (!do_wakeup)
 949			t2 &= ~PORT_WAKE_BITS;
 950
 951		/* Don't touch csc bit if connected or connect change is set */
 952		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
 953			t2 |= PORT_CSC;
 954
 955		if (t1 != t2) {
 956			writel(t2, rhub->ports[i]->addr);
 957			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
 958				 rhub->hcd->self.busnum, i + 1, portsc, t2);
 959		}
 960	}
 961	spin_unlock_irqrestore(&xhci->lock, flags);
 962}
 963
 964static bool xhci_pending_portevent(struct xhci_hcd *xhci)
 965{
 966	struct xhci_port	**ports;
 967	int			port_index;
 968	u32			status;
 969	u32			portsc;
 970
 971	status = readl(&xhci->op_regs->status);
 972	if (status & STS_EINT)
 973		return true;
 974	/*
 975	 * Checking STS_EINT is not enough as there is a lag between a change
 976	 * bit being set and the Port Status Change Event that it generated
 977	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
 978	 */
 979
 980	port_index = xhci->usb2_rhub.num_ports;
 981	ports = xhci->usb2_rhub.ports;
 982	while (port_index--) {
 983		portsc = readl(ports[port_index]->addr);
 984		if (portsc & PORT_CHANGE_MASK ||
 985		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 986			return true;
 987	}
 988	port_index = xhci->usb3_rhub.num_ports;
 989	ports = xhci->usb3_rhub.ports;
 990	while (port_index--) {
 991		portsc = readl(ports[port_index]->addr);
 992		if (portsc & PORT_CHANGE_MASK ||
 993		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 994			return true;
 995	}
 996	return false;
 997}
 998
 999/*
1000 * Stop HC (not bus-specific)
1001 *
1002 * This is called when the machine transition into S3/S4 mode.
1003 *
1004 */
1005int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
1006{
1007	int			rc = 0;
1008	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
1009	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1010	u32			command;
1011	u32			res;
1012
1013	if (!hcd->state)
1014		return 0;
1015
1016	if (hcd->state != HC_STATE_SUSPENDED ||
1017	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1018		return -EINVAL;
1019
1020	/* Clear root port wake on bits if wakeup not allowed. */
1021	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1022	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1023
1024	if (!HCD_HW_ACCESSIBLE(hcd))
1025		return 0;
1026
1027	xhci_dbc_suspend(xhci);
1028
1029	/* Don't poll the roothubs on bus suspend. */
1030	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1031		 __func__, hcd->self.busnum);
1032	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1033	del_timer_sync(&hcd->rh_timer);
1034	if (xhci->shared_hcd) {
1035		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1036		del_timer_sync(&xhci->shared_hcd->rh_timer);
1037	}
1038
1039	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1040		usleep_range(1000, 1500);
1041
1042	spin_lock_irq(&xhci->lock);
1043	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1044	if (xhci->shared_hcd)
1045		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1046	/* step 1: stop endpoint */
1047	/* skipped assuming that port suspend has done */
1048
1049	/* step 2: clear Run/Stop bit */
1050	command = readl(&xhci->op_regs->command);
1051	command &= ~CMD_RUN;
1052	writel(command, &xhci->op_regs->command);
1053
1054	/* Some chips from Fresco Logic need an extraordinary delay */
1055	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1056
1057	if (xhci_handshake(&xhci->op_regs->status,
1058		      STS_HALT, STS_HALT, delay)) {
1059		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1060		spin_unlock_irq(&xhci->lock);
1061		return -ETIMEDOUT;
1062	}
1063	xhci_clear_command_ring(xhci);
1064
1065	/* step 3: save registers */
1066	xhci_save_registers(xhci);
1067
1068	/* step 4: set CSS flag */
1069	command = readl(&xhci->op_regs->command);
1070	command |= CMD_CSS;
1071	writel(command, &xhci->op_regs->command);
1072	xhci->broken_suspend = 0;
1073	if (xhci_handshake(&xhci->op_regs->status,
1074				STS_SAVE, 0, 20 * 1000)) {
1075	/*
1076	 * AMD SNPS xHC 3.0 occasionally does not clear the
1077	 * SSS bit of USBSTS and when driver tries to poll
1078	 * to see if the xHC clears BIT(8) which never happens
1079	 * and driver assumes that controller is not responding
1080	 * and times out. To workaround this, its good to check
1081	 * if SRE and HCE bits are not set (as per xhci
1082	 * Section 5.4.2) and bypass the timeout.
1083	 */
1084		res = readl(&xhci->op_regs->status);
1085		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1086		    (((res & STS_SRE) == 0) &&
1087				((res & STS_HCE) == 0))) {
1088			xhci->broken_suspend = 1;
1089		} else {
1090			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1091			spin_unlock_irq(&xhci->lock);
1092			return -ETIMEDOUT;
1093		}
1094	}
1095	spin_unlock_irq(&xhci->lock);
1096
1097	/*
1098	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1099	 * is about to be suspended.
1100	 */
1101	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1102			(!(xhci_all_ports_seen_u0(xhci)))) {
1103		del_timer_sync(&xhci->comp_mode_recovery_timer);
1104		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1105				"%s: compliance mode recovery timer deleted",
1106				__func__);
1107	}
1108
1109	/* step 5: remove core well power */
1110	/* synchronize irq when using MSI-X */
1111	xhci_msix_sync_irqs(xhci);
1112
1113	return rc;
1114}
1115EXPORT_SYMBOL_GPL(xhci_suspend);
1116
1117/*
1118 * start xHC (not bus-specific)
1119 *
1120 * This is called when the machine transition from S3/S4 mode.
1121 *
1122 */
1123int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1124{
 
1125	u32			command, temp = 0;
1126	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1127	int			retval = 0;
1128	bool			comp_timer_running = false;
1129	bool			pending_portevent = false;
 
1130	bool			reinit_xhc = false;
1131
1132	if (!hcd->state)
1133		return 0;
1134
1135	/* Wait a bit if either of the roothubs need to settle from the
1136	 * transition into bus suspend.
1137	 */
1138
1139	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1140	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1141		msleep(100);
1142
1143	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1144	if (xhci->shared_hcd)
1145		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1146
1147	spin_lock_irq(&xhci->lock);
1148
1149	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1150		reinit_xhc = true;
1151
1152	if (!reinit_xhc) {
1153		/*
1154		 * Some controllers might lose power during suspend, so wait
1155		 * for controller not ready bit to clear, just as in xHC init.
1156		 */
1157		retval = xhci_handshake(&xhci->op_regs->status,
1158					STS_CNR, 0, 10 * 1000 * 1000);
1159		if (retval) {
1160			xhci_warn(xhci, "Controller not ready at resume %d\n",
1161				  retval);
1162			spin_unlock_irq(&xhci->lock);
1163			return retval;
1164		}
1165		/* step 1: restore register */
1166		xhci_restore_registers(xhci);
1167		/* step 2: initialize command ring buffer */
1168		xhci_set_cmd_ring_deq(xhci);
1169		/* step 3: restore state and start state*/
1170		/* step 3: set CRS flag */
1171		command = readl(&xhci->op_regs->command);
1172		command |= CMD_CRS;
1173		writel(command, &xhci->op_regs->command);
1174		/*
1175		 * Some controllers take up to 55+ ms to complete the controller
1176		 * restore so setting the timeout to 100ms. Xhci specification
1177		 * doesn't mention any timeout value.
1178		 */
1179		if (xhci_handshake(&xhci->op_regs->status,
1180			      STS_RESTORE, 0, 100 * 1000)) {
1181			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1182			spin_unlock_irq(&xhci->lock);
1183			return -ETIMEDOUT;
1184		}
1185	}
1186
1187	temp = readl(&xhci->op_regs->status);
1188
1189	/* re-initialize the HC on Restore Error, or Host Controller Error */
1190	if (temp & (STS_SRE | STS_HCE)) {
 
1191		reinit_xhc = true;
1192		if (!xhci->broken_suspend)
1193			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1194	}
1195
1196	if (reinit_xhc) {
1197		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1198				!(xhci_all_ports_seen_u0(xhci))) {
1199			del_timer_sync(&xhci->comp_mode_recovery_timer);
1200			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1201				"Compliance Mode Recovery Timer deleted!");
1202		}
1203
1204		/* Let the USB core know _both_ roothubs lost power. */
1205		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1206		if (xhci->shared_hcd)
1207			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1208
1209		xhci_dbg(xhci, "Stop HCD\n");
1210		xhci_halt(xhci);
1211		xhci_zero_64b_regs(xhci);
1212		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1213		spin_unlock_irq(&xhci->lock);
1214		if (retval)
1215			return retval;
1216		xhci_cleanup_msix(xhci);
1217
1218		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1219		temp = readl(&xhci->op_regs->status);
1220		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1221		temp = readl(&xhci->ir_set->irq_pending);
1222		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1223
1224		xhci_dbg(xhci, "cleaning up memory\n");
1225		xhci_mem_cleanup(xhci);
1226		xhci_debugfs_exit(xhci);
1227		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1228			    readl(&xhci->op_regs->status));
1229
1230		/* USB core calls the PCI reinit and start functions twice:
1231		 * first with the primary HCD, and then with the secondary HCD.
1232		 * If we don't do the same, the host will never be started.
1233		 */
1234		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1235		retval = xhci_init(hcd);
1236		if (retval)
1237			return retval;
1238		comp_timer_running = true;
1239
1240		xhci_dbg(xhci, "Start the primary HCD\n");
1241		retval = xhci_run(hcd);
1242		if (!retval && xhci->shared_hcd) {
1243			xhci_dbg(xhci, "Start the secondary HCD\n");
1244			retval = xhci_run(xhci->shared_hcd);
1245		}
1246
1247		hcd->state = HC_STATE_SUSPENDED;
1248		if (xhci->shared_hcd)
1249			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1250		goto done;
1251	}
1252
1253	/* step 4: set Run/Stop bit */
1254	command = readl(&xhci->op_regs->command);
1255	command |= CMD_RUN;
1256	writel(command, &xhci->op_regs->command);
1257	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1258		  0, 250 * 1000);
1259
1260	/* step 5: walk topology and initialize portsc,
1261	 * portpmsc and portli
1262	 */
1263	/* this is done in bus_resume */
1264
1265	/* step 6: restart each of the previously
1266	 * Running endpoints by ringing their doorbells
1267	 */
1268
1269	spin_unlock_irq(&xhci->lock);
1270
1271	xhci_dbc_resume(xhci);
1272
1273 done:
1274	if (retval == 0) {
1275		/*
1276		 * Resume roothubs only if there are pending events.
1277		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1278		 * the first wake signalling failed, give it that chance.
 
1279		 */
 
 
 
 
1280		pending_portevent = xhci_pending_portevent(xhci);
1281		if (!pending_portevent) {
 
 
1282			msleep(120);
1283			pending_portevent = xhci_pending_portevent(xhci);
1284		}
1285
1286		if (pending_portevent) {
1287			if (xhci->shared_hcd)
1288				usb_hcd_resume_root_hub(xhci->shared_hcd);
1289			usb_hcd_resume_root_hub(hcd);
1290		}
1291	}
1292	/*
1293	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1294	 * be re-initialized Always after a system resume. Ports are subject
1295	 * to suffer the Compliance Mode issue again. It doesn't matter if
1296	 * ports have entered previously to U0 before system's suspension.
1297	 */
1298	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1299		compliance_mode_recovery_timer_init(xhci);
1300
1301	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1302		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1303
1304	/* Re-enable port polling. */
1305	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1306		 __func__, hcd->self.busnum);
1307	if (xhci->shared_hcd) {
1308		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1309		usb_hcd_poll_rh_status(xhci->shared_hcd);
1310	}
1311	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1312	usb_hcd_poll_rh_status(hcd);
1313
1314	return retval;
1315}
1316EXPORT_SYMBOL_GPL(xhci_resume);
1317#endif	/* CONFIG_PM */
1318
1319/*-------------------------------------------------------------------------*/
1320
1321static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1322{
1323	void *temp;
1324	int ret = 0;
1325	unsigned int buf_len;
1326	enum dma_data_direction dir;
1327
1328	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1329	buf_len = urb->transfer_buffer_length;
1330
1331	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1332			    dev_to_node(hcd->self.sysdev));
 
 
1333
1334	if (usb_urb_dir_out(urb))
1335		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1336				   temp, buf_len, 0);
1337
1338	urb->transfer_buffer = temp;
1339	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1340					   urb->transfer_buffer,
1341					   urb->transfer_buffer_length,
1342					   dir);
1343
1344	if (dma_mapping_error(hcd->self.sysdev,
1345			      urb->transfer_dma)) {
1346		ret = -EAGAIN;
1347		kfree(temp);
1348	} else {
1349		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1350	}
1351
1352	return ret;
1353}
1354
1355static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1356					  struct urb *urb)
1357{
1358	bool ret = false;
1359	unsigned int i;
1360	unsigned int len = 0;
1361	unsigned int trb_size;
1362	unsigned int max_pkt;
1363	struct scatterlist *sg;
1364	struct scatterlist *tail_sg;
1365
1366	tail_sg = urb->sg;
1367	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1368
1369	if (!urb->num_sgs)
1370		return ret;
1371
1372	if (urb->dev->speed >= USB_SPEED_SUPER)
1373		trb_size = TRB_CACHE_SIZE_SS;
1374	else
1375		trb_size = TRB_CACHE_SIZE_HS;
1376
1377	if (urb->transfer_buffer_length != 0 &&
1378	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1379		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1380			len = len + sg->length;
1381			if (i > trb_size - 2) {
1382				len = len - tail_sg->length;
1383				if (len < max_pkt) {
1384					ret = true;
1385					break;
1386				}
1387
1388				tail_sg = sg_next(tail_sg);
1389			}
1390		}
1391	}
1392	return ret;
1393}
1394
1395static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1396{
1397	unsigned int len;
1398	unsigned int buf_len;
1399	enum dma_data_direction dir;
1400
1401	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1402
1403	buf_len = urb->transfer_buffer_length;
1404
1405	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1406	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1407		dma_unmap_single(hcd->self.sysdev,
1408				 urb->transfer_dma,
1409				 urb->transfer_buffer_length,
1410				 dir);
1411
1412	if (usb_urb_dir_in(urb)) {
1413		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1414					   urb->transfer_buffer,
1415					   buf_len,
1416					   0);
1417		if (len != buf_len) {
1418			xhci_dbg(hcd_to_xhci(hcd),
1419				 "Copy from tmp buf to urb sg list failed\n");
1420			urb->actual_length = len;
1421		}
1422	}
1423	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1424	kfree(urb->transfer_buffer);
1425	urb->transfer_buffer = NULL;
1426}
1427
1428/*
1429 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1430 * we'll copy the actual data into the TRB address register. This is limited to
1431 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1432 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1433 */
1434static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1435				gfp_t mem_flags)
1436{
1437	struct xhci_hcd *xhci;
1438
1439	xhci = hcd_to_xhci(hcd);
1440
1441	if (xhci_urb_suitable_for_idt(urb))
1442		return 0;
1443
1444	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1445		if (xhci_urb_temp_buffer_required(hcd, urb))
1446			return xhci_map_temp_buffer(hcd, urb);
1447	}
1448	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1449}
1450
1451static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1452{
1453	struct xhci_hcd *xhci;
1454	bool unmap_temp_buf = false;
1455
1456	xhci = hcd_to_xhci(hcd);
1457
1458	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1459		unmap_temp_buf = true;
1460
1461	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1462		xhci_unmap_temp_buf(hcd, urb);
1463	else
1464		usb_hcd_unmap_urb_for_dma(hcd, urb);
1465}
1466
1467/**
1468 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1469 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1470 * value to right shift 1 for the bitmask.
1471 *
1472 * Index  = (epnum * 2) + direction - 1,
1473 * where direction = 0 for OUT, 1 for IN.
1474 * For control endpoints, the IN index is used (OUT index is unused), so
1475 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1476 */
1477unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1478{
1479	unsigned int index;
1480	if (usb_endpoint_xfer_control(desc))
1481		index = (unsigned int) (usb_endpoint_num(desc)*2);
1482	else
1483		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1484			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1485	return index;
1486}
1487EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1488
1489/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1490 * address from the XHCI endpoint index.
1491 */
1492static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1493{
1494	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1495	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1496	return direction | number;
1497}
1498
1499/* Find the flag for this endpoint (for use in the control context).  Use the
1500 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1501 * bit 1, etc.
1502 */
1503static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1504{
1505	return 1 << (xhci_get_endpoint_index(desc) + 1);
1506}
1507
1508/* Compute the last valid endpoint context index.  Basically, this is the
1509 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1510 * we find the most significant bit set in the added contexts flags.
1511 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1512 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1513 */
1514unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1515{
1516	return fls(added_ctxs) - 1;
1517}
1518
1519/* Returns 1 if the arguments are OK;
1520 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1521 */
1522static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1523		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1524		const char *func) {
1525	struct xhci_hcd	*xhci;
1526	struct xhci_virt_device	*virt_dev;
1527
1528	if (!hcd || (check_ep && !ep) || !udev) {
1529		pr_debug("xHCI %s called with invalid args\n", func);
1530		return -EINVAL;
1531	}
1532	if (!udev->parent) {
1533		pr_debug("xHCI %s called for root hub\n", func);
1534		return 0;
1535	}
1536
1537	xhci = hcd_to_xhci(hcd);
1538	if (check_virt_dev) {
1539		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1540			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1541					func);
1542			return -EINVAL;
1543		}
1544
1545		virt_dev = xhci->devs[udev->slot_id];
1546		if (virt_dev->udev != udev) {
1547			xhci_dbg(xhci, "xHCI %s called with udev and "
1548					  "virt_dev does not match\n", func);
1549			return -EINVAL;
1550		}
1551	}
1552
1553	if (xhci->xhc_state & XHCI_STATE_HALTED)
1554		return -ENODEV;
1555
1556	return 1;
1557}
1558
1559static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1560		struct usb_device *udev, struct xhci_command *command,
1561		bool ctx_change, bool must_succeed);
1562
1563/*
1564 * Full speed devices may have a max packet size greater than 8 bytes, but the
1565 * USB core doesn't know that until it reads the first 8 bytes of the
1566 * descriptor.  If the usb_device's max packet size changes after that point,
1567 * we need to issue an evaluate context command and wait on it.
1568 */
1569static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1570		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1571{
1572	struct xhci_container_ctx *out_ctx;
1573	struct xhci_input_control_ctx *ctrl_ctx;
1574	struct xhci_ep_ctx *ep_ctx;
1575	struct xhci_command *command;
1576	int max_packet_size;
1577	int hw_max_packet_size;
1578	int ret = 0;
1579
1580	out_ctx = xhci->devs[slot_id]->out_ctx;
1581	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1582	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1583	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1584	if (hw_max_packet_size != max_packet_size) {
 
 
 
 
 
1585		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1586				"Max Packet Size for ep 0 changed.");
1587		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1588				"Max packet size in usb_device = %d",
1589				max_packet_size);
1590		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1591				"Max packet size in xHCI HW = %d",
1592				hw_max_packet_size);
1593		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1594				"Issuing evaluate context command.");
1595
1596		/* Set up the input context flags for the command */
1597		/* FIXME: This won't work if a non-default control endpoint
1598		 * changes max packet sizes.
1599		 */
1600
1601		command = xhci_alloc_command(xhci, true, mem_flags);
1602		if (!command)
1603			return -ENOMEM;
1604
1605		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1606		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1607		if (!ctrl_ctx) {
1608			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1609					__func__);
1610			ret = -ENOMEM;
1611			goto command_cleanup;
1612		}
1613		/* Set up the modified control endpoint 0 */
1614		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1615				xhci->devs[slot_id]->out_ctx, ep_index);
1616
1617		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1618		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1619		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1620		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1621
1622		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1623		ctrl_ctx->drop_flags = 0;
1624
1625		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1626				true, false);
1627
1628		/* Clean up the input context for later use by bandwidth
1629		 * functions.
1630		 */
1631		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1632command_cleanup:
1633		kfree(command->completion);
1634		kfree(command);
 
 
1635	}
 
 
 
 
1636	return ret;
1637}
1638
1639/*
1640 * non-error returns are a promise to giveback() the urb later
1641 * we drop ownership so next owner (or urb unlink) can get it
1642 */
1643static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1644{
1645	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1646	unsigned long flags;
1647	int ret = 0;
1648	unsigned int slot_id, ep_index;
1649	unsigned int *ep_state;
1650	struct urb_priv	*urb_priv;
1651	int num_tds;
1652
1653	if (!urb)
1654		return -EINVAL;
1655	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1656					true, true, __func__);
1657	if (ret <= 0)
1658		return ret ? ret : -EINVAL;
1659
1660	slot_id = urb->dev->slot_id;
1661	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1662	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1663
1664	if (!HCD_HW_ACCESSIBLE(hcd))
1665		return -ESHUTDOWN;
1666
1667	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1668		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1669		return -ENODEV;
1670	}
1671
1672	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1673		num_tds = urb->number_of_packets;
1674	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1675	    urb->transfer_buffer_length > 0 &&
1676	    urb->transfer_flags & URB_ZERO_PACKET &&
1677	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1678		num_tds = 2;
1679	else
1680		num_tds = 1;
1681
1682	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1683	if (!urb_priv)
1684		return -ENOMEM;
1685
1686	urb_priv->num_tds = num_tds;
1687	urb_priv->num_tds_done = 0;
1688	urb->hcpriv = urb_priv;
1689
1690	trace_xhci_urb_enqueue(urb);
1691
1692	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1693		/* Check to see if the max packet size for the default control
1694		 * endpoint changed during FS device enumeration
1695		 */
1696		if (urb->dev->speed == USB_SPEED_FULL) {
1697			ret = xhci_check_maxpacket(xhci, slot_id,
1698					ep_index, urb, mem_flags);
1699			if (ret < 0) {
1700				xhci_urb_free_priv(urb_priv);
1701				urb->hcpriv = NULL;
1702				return ret;
1703			}
1704		}
1705	}
1706
1707	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
1708
1709	if (xhci->xhc_state & XHCI_STATE_DYING) {
1710		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1711			 urb->ep->desc.bEndpointAddress, urb);
1712		ret = -ESHUTDOWN;
1713		goto free_priv;
1714	}
 
 
 
1715	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1716		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1717			  *ep_state);
1718		ret = -EINVAL;
1719		goto free_priv;
1720	}
1721	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1722		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1723		ret = -EINVAL;
1724		goto free_priv;
1725	}
1726
1727	switch (usb_endpoint_type(&urb->ep->desc)) {
1728
1729	case USB_ENDPOINT_XFER_CONTROL:
1730		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1731					 slot_id, ep_index);
1732		break;
1733	case USB_ENDPOINT_XFER_BULK:
1734		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1735					 slot_id, ep_index);
1736		break;
1737	case USB_ENDPOINT_XFER_INT:
1738		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1739				slot_id, ep_index);
1740		break;
1741	case USB_ENDPOINT_XFER_ISOC:
1742		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1743				slot_id, ep_index);
1744	}
1745
1746	if (ret) {
1747free_priv:
1748		xhci_urb_free_priv(urb_priv);
1749		urb->hcpriv = NULL;
1750	}
1751	spin_unlock_irqrestore(&xhci->lock, flags);
1752	return ret;
1753}
1754
1755/*
1756 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1757 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1758 * should pick up where it left off in the TD, unless a Set Transfer Ring
1759 * Dequeue Pointer is issued.
1760 *
1761 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1762 * the ring.  Since the ring is a contiguous structure, they can't be physically
1763 * removed.  Instead, there are two options:
1764 *
1765 *  1) If the HC is in the middle of processing the URB to be canceled, we
1766 *     simply move the ring's dequeue pointer past those TRBs using the Set
1767 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1768 *     when drivers timeout on the last submitted URB and attempt to cancel.
1769 *
1770 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1771 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1772 *     HC will need to invalidate the any TRBs it has cached after the stop
1773 *     endpoint command, as noted in the xHCI 0.95 errata.
1774 *
1775 *  3) The TD may have completed by the time the Stop Endpoint Command
1776 *     completes, so software needs to handle that case too.
1777 *
1778 * This function should protect against the TD enqueueing code ringing the
1779 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1780 * It also needs to account for multiple cancellations on happening at the same
1781 * time for the same endpoint.
1782 *
1783 * Note that this function can be called in any context, or so says
1784 * usb_hcd_unlink_urb()
1785 */
1786static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1787{
1788	unsigned long flags;
1789	int ret, i;
1790	u32 temp;
1791	struct xhci_hcd *xhci;
1792	struct urb_priv	*urb_priv;
1793	struct xhci_td *td;
1794	unsigned int ep_index;
1795	struct xhci_ring *ep_ring;
1796	struct xhci_virt_ep *ep;
1797	struct xhci_command *command;
1798	struct xhci_virt_device *vdev;
1799
1800	xhci = hcd_to_xhci(hcd);
1801	spin_lock_irqsave(&xhci->lock, flags);
1802
1803	trace_xhci_urb_dequeue(urb);
1804
1805	/* Make sure the URB hasn't completed or been unlinked already */
1806	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1807	if (ret)
1808		goto done;
1809
1810	/* give back URB now if we can't queue it for cancel */
1811	vdev = xhci->devs[urb->dev->slot_id];
1812	urb_priv = urb->hcpriv;
1813	if (!vdev || !urb_priv)
1814		goto err_giveback;
1815
1816	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1817	ep = &vdev->eps[ep_index];
1818	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1819	if (!ep || !ep_ring)
1820		goto err_giveback;
1821
1822	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1823	temp = readl(&xhci->op_regs->status);
1824	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1825		xhci_hc_died(xhci);
1826		goto done;
1827	}
1828
1829	/*
1830	 * check ring is not re-allocated since URB was enqueued. If it is, then
1831	 * make sure none of the ring related pointers in this URB private data
1832	 * are touched, such as td_list, otherwise we overwrite freed data
1833	 */
1834	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1835		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1836		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1837			td = &urb_priv->td[i];
1838			if (!list_empty(&td->cancelled_td_list))
1839				list_del_init(&td->cancelled_td_list);
1840		}
1841		goto err_giveback;
1842	}
1843
1844	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1845		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1846				"HC halted, freeing TD manually.");
1847		for (i = urb_priv->num_tds_done;
1848		     i < urb_priv->num_tds;
1849		     i++) {
1850			td = &urb_priv->td[i];
1851			if (!list_empty(&td->td_list))
1852				list_del_init(&td->td_list);
1853			if (!list_empty(&td->cancelled_td_list))
1854				list_del_init(&td->cancelled_td_list);
1855		}
1856		goto err_giveback;
1857	}
1858
1859	i = urb_priv->num_tds_done;
1860	if (i < urb_priv->num_tds)
1861		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1862				"Cancel URB %p, dev %s, ep 0x%x, "
1863				"starting at offset 0x%llx",
1864				urb, urb->dev->devpath,
1865				urb->ep->desc.bEndpointAddress,
1866				(unsigned long long) xhci_trb_virt_to_dma(
1867					urb_priv->td[i].start_seg,
1868					urb_priv->td[i].first_trb));
1869
1870	for (; i < urb_priv->num_tds; i++) {
1871		td = &urb_priv->td[i];
1872		/* TD can already be on cancelled list if ep halted on it */
1873		if (list_empty(&td->cancelled_td_list)) {
1874			td->cancel_status = TD_DIRTY;
1875			list_add_tail(&td->cancelled_td_list,
1876				      &ep->cancelled_td_list);
1877		}
1878	}
1879
1880	/* Queue a stop endpoint command, but only if this is
1881	 * the first cancellation to be handled.
1882	 */
1883	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1884		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1885		if (!command) {
1886			ret = -ENOMEM;
1887			goto done;
1888		}
1889		ep->ep_state |= EP_STOP_CMD_PENDING;
1890		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1891					 ep_index, 0);
1892		xhci_ring_cmd_db(xhci);
1893	}
1894done:
1895	spin_unlock_irqrestore(&xhci->lock, flags);
1896	return ret;
1897
1898err_giveback:
1899	if (urb_priv)
1900		xhci_urb_free_priv(urb_priv);
1901	usb_hcd_unlink_urb_from_ep(hcd, urb);
1902	spin_unlock_irqrestore(&xhci->lock, flags);
1903	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1904	return ret;
1905}
1906
1907/* Drop an endpoint from a new bandwidth configuration for this device.
1908 * Only one call to this function is allowed per endpoint before
1909 * check_bandwidth() or reset_bandwidth() must be called.
1910 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1911 * add the endpoint to the schedule with possibly new parameters denoted by a
1912 * different endpoint descriptor in usb_host_endpoint.
1913 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1914 * not allowed.
1915 *
1916 * The USB core will not allow URBs to be queued to an endpoint that is being
1917 * disabled, so there's no need for mutual exclusion to protect
1918 * the xhci->devs[slot_id] structure.
1919 */
1920int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1921		       struct usb_host_endpoint *ep)
1922{
1923	struct xhci_hcd *xhci;
1924	struct xhci_container_ctx *in_ctx, *out_ctx;
1925	struct xhci_input_control_ctx *ctrl_ctx;
1926	unsigned int ep_index;
1927	struct xhci_ep_ctx *ep_ctx;
1928	u32 drop_flag;
1929	u32 new_add_flags, new_drop_flags;
1930	int ret;
1931
1932	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1933	if (ret <= 0)
1934		return ret;
1935	xhci = hcd_to_xhci(hcd);
1936	if (xhci->xhc_state & XHCI_STATE_DYING)
1937		return -ENODEV;
1938
1939	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1940	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1941	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1942		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1943				__func__, drop_flag);
1944		return 0;
1945	}
1946
1947	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1948	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1949	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1950	if (!ctrl_ctx) {
1951		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1952				__func__);
1953		return 0;
1954	}
1955
1956	ep_index = xhci_get_endpoint_index(&ep->desc);
1957	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1958	/* If the HC already knows the endpoint is disabled,
1959	 * or the HCD has noted it is disabled, ignore this request
1960	 */
1961	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1962	    le32_to_cpu(ctrl_ctx->drop_flags) &
1963	    xhci_get_endpoint_flag(&ep->desc)) {
1964		/* Do not warn when called after a usb_device_reset */
1965		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1966			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1967				  __func__, ep);
1968		return 0;
1969	}
1970
1971	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1972	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1973
1974	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1975	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1976
1977	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1978
1979	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1980
1981	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1982			(unsigned int) ep->desc.bEndpointAddress,
1983			udev->slot_id,
1984			(unsigned int) new_drop_flags,
1985			(unsigned int) new_add_flags);
1986	return 0;
1987}
1988EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1989
1990/* Add an endpoint to a new possible bandwidth configuration for this device.
1991 * Only one call to this function is allowed per endpoint before
1992 * check_bandwidth() or reset_bandwidth() must be called.
1993 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1994 * add the endpoint to the schedule with possibly new parameters denoted by a
1995 * different endpoint descriptor in usb_host_endpoint.
1996 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1997 * not allowed.
1998 *
1999 * The USB core will not allow URBs to be queued to an endpoint until the
2000 * configuration or alt setting is installed in the device, so there's no need
2001 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
2002 */
2003int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
2004		      struct usb_host_endpoint *ep)
2005{
2006	struct xhci_hcd *xhci;
2007	struct xhci_container_ctx *in_ctx;
2008	unsigned int ep_index;
2009	struct xhci_input_control_ctx *ctrl_ctx;
2010	struct xhci_ep_ctx *ep_ctx;
2011	u32 added_ctxs;
2012	u32 new_add_flags, new_drop_flags;
2013	struct xhci_virt_device *virt_dev;
2014	int ret = 0;
2015
2016	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2017	if (ret <= 0) {
2018		/* So we won't queue a reset ep command for a root hub */
2019		ep->hcpriv = NULL;
2020		return ret;
2021	}
2022	xhci = hcd_to_xhci(hcd);
2023	if (xhci->xhc_state & XHCI_STATE_DYING)
2024		return -ENODEV;
2025
2026	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2027	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2028		/* FIXME when we have to issue an evaluate endpoint command to
2029		 * deal with ep0 max packet size changing once we get the
2030		 * descriptors
2031		 */
2032		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2033				__func__, added_ctxs);
2034		return 0;
2035	}
2036
2037	virt_dev = xhci->devs[udev->slot_id];
2038	in_ctx = virt_dev->in_ctx;
2039	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2040	if (!ctrl_ctx) {
2041		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2042				__func__);
2043		return 0;
2044	}
2045
2046	ep_index = xhci_get_endpoint_index(&ep->desc);
2047	/* If this endpoint is already in use, and the upper layers are trying
2048	 * to add it again without dropping it, reject the addition.
2049	 */
2050	if (virt_dev->eps[ep_index].ring &&
2051			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2052		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2053				"without dropping it.\n",
2054				(unsigned int) ep->desc.bEndpointAddress);
2055		return -EINVAL;
2056	}
2057
2058	/* If the HCD has already noted the endpoint is enabled,
2059	 * ignore this request.
2060	 */
2061	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2062		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2063				__func__, ep);
2064		return 0;
2065	}
2066
2067	/*
2068	 * Configuration and alternate setting changes must be done in
2069	 * process context, not interrupt context (or so documenation
2070	 * for usb_set_interface() and usb_set_configuration() claim).
2071	 */
2072	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2073		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2074				__func__, ep->desc.bEndpointAddress);
2075		return -ENOMEM;
2076	}
2077
2078	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2079	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2080
2081	/* If xhci_endpoint_disable() was called for this endpoint, but the
2082	 * xHC hasn't been notified yet through the check_bandwidth() call,
2083	 * this re-adds a new state for the endpoint from the new endpoint
2084	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2085	 * drop flags alone.
2086	 */
2087	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2088
2089	/* Store the usb_device pointer for later use */
2090	ep->hcpriv = udev;
2091
2092	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2093	trace_xhci_add_endpoint(ep_ctx);
2094
2095	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2096			(unsigned int) ep->desc.bEndpointAddress,
2097			udev->slot_id,
2098			(unsigned int) new_drop_flags,
2099			(unsigned int) new_add_flags);
2100	return 0;
2101}
2102EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2103
2104static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2105{
2106	struct xhci_input_control_ctx *ctrl_ctx;
2107	struct xhci_ep_ctx *ep_ctx;
2108	struct xhci_slot_ctx *slot_ctx;
2109	int i;
2110
2111	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2112	if (!ctrl_ctx) {
2113		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2114				__func__);
2115		return;
2116	}
2117
2118	/* When a device's add flag and drop flag are zero, any subsequent
2119	 * configure endpoint command will leave that endpoint's state
2120	 * untouched.  Make sure we don't leave any old state in the input
2121	 * endpoint contexts.
2122	 */
2123	ctrl_ctx->drop_flags = 0;
2124	ctrl_ctx->add_flags = 0;
2125	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2126	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2127	/* Endpoint 0 is always valid */
2128	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2129	for (i = 1; i < 31; i++) {
2130		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2131		ep_ctx->ep_info = 0;
2132		ep_ctx->ep_info2 = 0;
2133		ep_ctx->deq = 0;
2134		ep_ctx->tx_info = 0;
2135	}
2136}
2137
2138static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2139		struct usb_device *udev, u32 *cmd_status)
2140{
2141	int ret;
2142
2143	switch (*cmd_status) {
2144	case COMP_COMMAND_ABORTED:
2145	case COMP_COMMAND_RING_STOPPED:
2146		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2147		ret = -ETIME;
2148		break;
2149	case COMP_RESOURCE_ERROR:
2150		dev_warn(&udev->dev,
2151			 "Not enough host controller resources for new device state.\n");
2152		ret = -ENOMEM;
2153		/* FIXME: can we allocate more resources for the HC? */
2154		break;
2155	case COMP_BANDWIDTH_ERROR:
2156	case COMP_SECONDARY_BANDWIDTH_ERROR:
2157		dev_warn(&udev->dev,
2158			 "Not enough bandwidth for new device state.\n");
2159		ret = -ENOSPC;
2160		/* FIXME: can we go back to the old state? */
2161		break;
2162	case COMP_TRB_ERROR:
2163		/* the HCD set up something wrong */
2164		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2165				"add flag = 1, "
2166				"and endpoint is not disabled.\n");
2167		ret = -EINVAL;
2168		break;
2169	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2170		dev_warn(&udev->dev,
2171			 "ERROR: Incompatible device for endpoint configure command.\n");
2172		ret = -ENODEV;
2173		break;
2174	case COMP_SUCCESS:
2175		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2176				"Successful Endpoint Configure command");
2177		ret = 0;
2178		break;
2179	default:
2180		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2181				*cmd_status);
2182		ret = -EINVAL;
2183		break;
2184	}
2185	return ret;
2186}
2187
2188static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2189		struct usb_device *udev, u32 *cmd_status)
2190{
2191	int ret;
2192
2193	switch (*cmd_status) {
2194	case COMP_COMMAND_ABORTED:
2195	case COMP_COMMAND_RING_STOPPED:
2196		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2197		ret = -ETIME;
2198		break;
2199	case COMP_PARAMETER_ERROR:
2200		dev_warn(&udev->dev,
2201			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2202		ret = -EINVAL;
2203		break;
2204	case COMP_SLOT_NOT_ENABLED_ERROR:
2205		dev_warn(&udev->dev,
2206			"WARN: slot not enabled for evaluate context command.\n");
2207		ret = -EINVAL;
2208		break;
2209	case COMP_CONTEXT_STATE_ERROR:
2210		dev_warn(&udev->dev,
2211			"WARN: invalid context state for evaluate context command.\n");
2212		ret = -EINVAL;
2213		break;
2214	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2215		dev_warn(&udev->dev,
2216			"ERROR: Incompatible device for evaluate context command.\n");
2217		ret = -ENODEV;
2218		break;
2219	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2220		/* Max Exit Latency too large error */
2221		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2222		ret = -EINVAL;
2223		break;
2224	case COMP_SUCCESS:
2225		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2226				"Successful evaluate context command");
2227		ret = 0;
2228		break;
2229	default:
2230		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2231			*cmd_status);
2232		ret = -EINVAL;
2233		break;
2234	}
2235	return ret;
2236}
2237
2238static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2239		struct xhci_input_control_ctx *ctrl_ctx)
2240{
2241	u32 valid_add_flags;
2242	u32 valid_drop_flags;
2243
2244	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2245	 * (bit 1).  The default control endpoint is added during the Address
2246	 * Device command and is never removed until the slot is disabled.
2247	 */
2248	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2249	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2250
2251	/* Use hweight32 to count the number of ones in the add flags, or
2252	 * number of endpoints added.  Don't count endpoints that are changed
2253	 * (both added and dropped).
2254	 */
2255	return hweight32(valid_add_flags) -
2256		hweight32(valid_add_flags & valid_drop_flags);
2257}
2258
2259static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2260		struct xhci_input_control_ctx *ctrl_ctx)
2261{
2262	u32 valid_add_flags;
2263	u32 valid_drop_flags;
2264
2265	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2266	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2267
2268	return hweight32(valid_drop_flags) -
2269		hweight32(valid_add_flags & valid_drop_flags);
2270}
2271
2272/*
2273 * We need to reserve the new number of endpoints before the configure endpoint
2274 * command completes.  We can't subtract the dropped endpoints from the number
2275 * of active endpoints until the command completes because we can oversubscribe
2276 * the host in this case:
2277 *
2278 *  - the first configure endpoint command drops more endpoints than it adds
2279 *  - a second configure endpoint command that adds more endpoints is queued
2280 *  - the first configure endpoint command fails, so the config is unchanged
2281 *  - the second command may succeed, even though there isn't enough resources
2282 *
2283 * Must be called with xhci->lock held.
2284 */
2285static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2286		struct xhci_input_control_ctx *ctrl_ctx)
2287{
2288	u32 added_eps;
2289
2290	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2291	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2292		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2293				"Not enough ep ctxs: "
2294				"%u active, need to add %u, limit is %u.",
2295				xhci->num_active_eps, added_eps,
2296				xhci->limit_active_eps);
2297		return -ENOMEM;
2298	}
2299	xhci->num_active_eps += added_eps;
2300	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2301			"Adding %u ep ctxs, %u now active.", added_eps,
2302			xhci->num_active_eps);
2303	return 0;
2304}
2305
2306/*
2307 * The configure endpoint was failed by the xHC for some other reason, so we
2308 * need to revert the resources that failed configuration would have used.
2309 *
2310 * Must be called with xhci->lock held.
2311 */
2312static void xhci_free_host_resources(struct xhci_hcd *xhci,
2313		struct xhci_input_control_ctx *ctrl_ctx)
2314{
2315	u32 num_failed_eps;
2316
2317	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2318	xhci->num_active_eps -= num_failed_eps;
2319	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2320			"Removing %u failed ep ctxs, %u now active.",
2321			num_failed_eps,
2322			xhci->num_active_eps);
2323}
2324
2325/*
2326 * Now that the command has completed, clean up the active endpoint count by
2327 * subtracting out the endpoints that were dropped (but not changed).
2328 *
2329 * Must be called with xhci->lock held.
2330 */
2331static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2332		struct xhci_input_control_ctx *ctrl_ctx)
2333{
2334	u32 num_dropped_eps;
2335
2336	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2337	xhci->num_active_eps -= num_dropped_eps;
2338	if (num_dropped_eps)
2339		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2340				"Removing %u dropped ep ctxs, %u now active.",
2341				num_dropped_eps,
2342				xhci->num_active_eps);
2343}
2344
2345static unsigned int xhci_get_block_size(struct usb_device *udev)
2346{
2347	switch (udev->speed) {
2348	case USB_SPEED_LOW:
2349	case USB_SPEED_FULL:
2350		return FS_BLOCK;
2351	case USB_SPEED_HIGH:
2352		return HS_BLOCK;
2353	case USB_SPEED_SUPER:
2354	case USB_SPEED_SUPER_PLUS:
2355		return SS_BLOCK;
2356	case USB_SPEED_UNKNOWN:
2357	case USB_SPEED_WIRELESS:
2358	default:
2359		/* Should never happen */
2360		return 1;
2361	}
2362}
2363
2364static unsigned int
2365xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2366{
2367	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2368		return LS_OVERHEAD;
2369	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2370		return FS_OVERHEAD;
2371	return HS_OVERHEAD;
2372}
2373
2374/* If we are changing a LS/FS device under a HS hub,
2375 * make sure (if we are activating a new TT) that the HS bus has enough
2376 * bandwidth for this new TT.
2377 */
2378static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2379		struct xhci_virt_device *virt_dev,
2380		int old_active_eps)
2381{
2382	struct xhci_interval_bw_table *bw_table;
2383	struct xhci_tt_bw_info *tt_info;
2384
2385	/* Find the bandwidth table for the root port this TT is attached to. */
2386	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2387	tt_info = virt_dev->tt_info;
2388	/* If this TT already had active endpoints, the bandwidth for this TT
2389	 * has already been added.  Removing all periodic endpoints (and thus
2390	 * making the TT enactive) will only decrease the bandwidth used.
2391	 */
2392	if (old_active_eps)
2393		return 0;
2394	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2395		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2396			return -ENOMEM;
2397		return 0;
2398	}
2399	/* Not sure why we would have no new active endpoints...
2400	 *
2401	 * Maybe because of an Evaluate Context change for a hub update or a
2402	 * control endpoint 0 max packet size change?
2403	 * FIXME: skip the bandwidth calculation in that case.
2404	 */
2405	return 0;
2406}
2407
2408static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2409		struct xhci_virt_device *virt_dev)
2410{
2411	unsigned int bw_reserved;
2412
2413	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2414	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2415		return -ENOMEM;
2416
2417	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2418	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2419		return -ENOMEM;
2420
2421	return 0;
2422}
2423
2424/*
2425 * This algorithm is a very conservative estimate of the worst-case scheduling
2426 * scenario for any one interval.  The hardware dynamically schedules the
2427 * packets, so we can't tell which microframe could be the limiting factor in
2428 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2429 *
2430 * Obviously, we can't solve an NP complete problem to find the minimum worst
2431 * case scenario.  Instead, we come up with an estimate that is no less than
2432 * the worst case bandwidth used for any one microframe, but may be an
2433 * over-estimate.
2434 *
2435 * We walk the requirements for each endpoint by interval, starting with the
2436 * smallest interval, and place packets in the schedule where there is only one
2437 * possible way to schedule packets for that interval.  In order to simplify
2438 * this algorithm, we record the largest max packet size for each interval, and
2439 * assume all packets will be that size.
2440 *
2441 * For interval 0, we obviously must schedule all packets for each interval.
2442 * The bandwidth for interval 0 is just the amount of data to be transmitted
2443 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2444 * the number of packets).
2445 *
2446 * For interval 1, we have two possible microframes to schedule those packets
2447 * in.  For this algorithm, if we can schedule the same number of packets for
2448 * each possible scheduling opportunity (each microframe), we will do so.  The
2449 * remaining number of packets will be saved to be transmitted in the gaps in
2450 * the next interval's scheduling sequence.
2451 *
2452 * As we move those remaining packets to be scheduled with interval 2 packets,
2453 * we have to double the number of remaining packets to transmit.  This is
2454 * because the intervals are actually powers of 2, and we would be transmitting
2455 * the previous interval's packets twice in this interval.  We also have to be
2456 * sure that when we look at the largest max packet size for this interval, we
2457 * also look at the largest max packet size for the remaining packets and take
2458 * the greater of the two.
2459 *
2460 * The algorithm continues to evenly distribute packets in each scheduling
2461 * opportunity, and push the remaining packets out, until we get to the last
2462 * interval.  Then those packets and their associated overhead are just added
2463 * to the bandwidth used.
2464 */
2465static int xhci_check_bw_table(struct xhci_hcd *xhci,
2466		struct xhci_virt_device *virt_dev,
2467		int old_active_eps)
2468{
2469	unsigned int bw_reserved;
2470	unsigned int max_bandwidth;
2471	unsigned int bw_used;
2472	unsigned int block_size;
2473	struct xhci_interval_bw_table *bw_table;
2474	unsigned int packet_size = 0;
2475	unsigned int overhead = 0;
2476	unsigned int packets_transmitted = 0;
2477	unsigned int packets_remaining = 0;
2478	unsigned int i;
2479
2480	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2481		return xhci_check_ss_bw(xhci, virt_dev);
2482
2483	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2484		max_bandwidth = HS_BW_LIMIT;
2485		/* Convert percent of bus BW reserved to blocks reserved */
2486		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2487	} else {
2488		max_bandwidth = FS_BW_LIMIT;
2489		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2490	}
2491
2492	bw_table = virt_dev->bw_table;
2493	/* We need to translate the max packet size and max ESIT payloads into
2494	 * the units the hardware uses.
2495	 */
2496	block_size = xhci_get_block_size(virt_dev->udev);
2497
2498	/* If we are manipulating a LS/FS device under a HS hub, double check
2499	 * that the HS bus has enough bandwidth if we are activing a new TT.
2500	 */
2501	if (virt_dev->tt_info) {
2502		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2503				"Recalculating BW for rootport %u",
2504				virt_dev->real_port);
2505		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2506			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2507					"newly activated TT.\n");
2508			return -ENOMEM;
2509		}
2510		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2511				"Recalculating BW for TT slot %u port %u",
2512				virt_dev->tt_info->slot_id,
2513				virt_dev->tt_info->ttport);
2514	} else {
2515		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2516				"Recalculating BW for rootport %u",
2517				virt_dev->real_port);
2518	}
2519
2520	/* Add in how much bandwidth will be used for interval zero, or the
2521	 * rounded max ESIT payload + number of packets * largest overhead.
2522	 */
2523	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2524		bw_table->interval_bw[0].num_packets *
2525		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2526
2527	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2528		unsigned int bw_added;
2529		unsigned int largest_mps;
2530		unsigned int interval_overhead;
2531
2532		/*
2533		 * How many packets could we transmit in this interval?
2534		 * If packets didn't fit in the previous interval, we will need
2535		 * to transmit that many packets twice within this interval.
2536		 */
2537		packets_remaining = 2 * packets_remaining +
2538			bw_table->interval_bw[i].num_packets;
2539
2540		/* Find the largest max packet size of this or the previous
2541		 * interval.
2542		 */
2543		if (list_empty(&bw_table->interval_bw[i].endpoints))
2544			largest_mps = 0;
2545		else {
2546			struct xhci_virt_ep *virt_ep;
2547			struct list_head *ep_entry;
2548
2549			ep_entry = bw_table->interval_bw[i].endpoints.next;
2550			virt_ep = list_entry(ep_entry,
2551					struct xhci_virt_ep, bw_endpoint_list);
2552			/* Convert to blocks, rounding up */
2553			largest_mps = DIV_ROUND_UP(
2554					virt_ep->bw_info.max_packet_size,
2555					block_size);
2556		}
2557		if (largest_mps > packet_size)
2558			packet_size = largest_mps;
2559
2560		/* Use the larger overhead of this or the previous interval. */
2561		interval_overhead = xhci_get_largest_overhead(
2562				&bw_table->interval_bw[i]);
2563		if (interval_overhead > overhead)
2564			overhead = interval_overhead;
2565
2566		/* How many packets can we evenly distribute across
2567		 * (1 << (i + 1)) possible scheduling opportunities?
2568		 */
2569		packets_transmitted = packets_remaining >> (i + 1);
2570
2571		/* Add in the bandwidth used for those scheduled packets */
2572		bw_added = packets_transmitted * (overhead + packet_size);
2573
2574		/* How many packets do we have remaining to transmit? */
2575		packets_remaining = packets_remaining % (1 << (i + 1));
2576
2577		/* What largest max packet size should those packets have? */
2578		/* If we've transmitted all packets, don't carry over the
2579		 * largest packet size.
2580		 */
2581		if (packets_remaining == 0) {
2582			packet_size = 0;
2583			overhead = 0;
2584		} else if (packets_transmitted > 0) {
2585			/* Otherwise if we do have remaining packets, and we've
2586			 * scheduled some packets in this interval, take the
2587			 * largest max packet size from endpoints with this
2588			 * interval.
2589			 */
2590			packet_size = largest_mps;
2591			overhead = interval_overhead;
2592		}
2593		/* Otherwise carry over packet_size and overhead from the last
2594		 * time we had a remainder.
2595		 */
2596		bw_used += bw_added;
2597		if (bw_used > max_bandwidth) {
2598			xhci_warn(xhci, "Not enough bandwidth. "
2599					"Proposed: %u, Max: %u\n",
2600				bw_used, max_bandwidth);
2601			return -ENOMEM;
2602		}
2603	}
2604	/*
2605	 * Ok, we know we have some packets left over after even-handedly
2606	 * scheduling interval 15.  We don't know which microframes they will
2607	 * fit into, so we over-schedule and say they will be scheduled every
2608	 * microframe.
2609	 */
2610	if (packets_remaining > 0)
2611		bw_used += overhead + packet_size;
2612
2613	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2614		unsigned int port_index = virt_dev->real_port - 1;
2615
2616		/* OK, we're manipulating a HS device attached to a
2617		 * root port bandwidth domain.  Include the number of active TTs
2618		 * in the bandwidth used.
2619		 */
2620		bw_used += TT_HS_OVERHEAD *
2621			xhci->rh_bw[port_index].num_active_tts;
2622	}
2623
2624	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2625		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2626		"Available: %u " "percent",
2627		bw_used, max_bandwidth, bw_reserved,
2628		(max_bandwidth - bw_used - bw_reserved) * 100 /
2629		max_bandwidth);
2630
2631	bw_used += bw_reserved;
2632	if (bw_used > max_bandwidth) {
2633		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2634				bw_used, max_bandwidth);
2635		return -ENOMEM;
2636	}
2637
2638	bw_table->bw_used = bw_used;
2639	return 0;
2640}
2641
2642static bool xhci_is_async_ep(unsigned int ep_type)
2643{
2644	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2645					ep_type != ISOC_IN_EP &&
2646					ep_type != INT_IN_EP);
2647}
2648
2649static bool xhci_is_sync_in_ep(unsigned int ep_type)
2650{
2651	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2652}
2653
2654static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2655{
2656	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2657
2658	if (ep_bw->ep_interval == 0)
2659		return SS_OVERHEAD_BURST +
2660			(ep_bw->mult * ep_bw->num_packets *
2661					(SS_OVERHEAD + mps));
2662	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2663				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2664				1 << ep_bw->ep_interval);
2665
2666}
2667
2668static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2669		struct xhci_bw_info *ep_bw,
2670		struct xhci_interval_bw_table *bw_table,
2671		struct usb_device *udev,
2672		struct xhci_virt_ep *virt_ep,
2673		struct xhci_tt_bw_info *tt_info)
2674{
2675	struct xhci_interval_bw	*interval_bw;
2676	int normalized_interval;
2677
2678	if (xhci_is_async_ep(ep_bw->type))
2679		return;
2680
2681	if (udev->speed >= USB_SPEED_SUPER) {
2682		if (xhci_is_sync_in_ep(ep_bw->type))
2683			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2684				xhci_get_ss_bw_consumed(ep_bw);
2685		else
2686			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2687				xhci_get_ss_bw_consumed(ep_bw);
2688		return;
2689	}
2690
2691	/* SuperSpeed endpoints never get added to intervals in the table, so
2692	 * this check is only valid for HS/FS/LS devices.
2693	 */
2694	if (list_empty(&virt_ep->bw_endpoint_list))
2695		return;
2696	/* For LS/FS devices, we need to translate the interval expressed in
2697	 * microframes to frames.
2698	 */
2699	if (udev->speed == USB_SPEED_HIGH)
2700		normalized_interval = ep_bw->ep_interval;
2701	else
2702		normalized_interval = ep_bw->ep_interval - 3;
2703
2704	if (normalized_interval == 0)
2705		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2706	interval_bw = &bw_table->interval_bw[normalized_interval];
2707	interval_bw->num_packets -= ep_bw->num_packets;
2708	switch (udev->speed) {
2709	case USB_SPEED_LOW:
2710		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2711		break;
2712	case USB_SPEED_FULL:
2713		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2714		break;
2715	case USB_SPEED_HIGH:
2716		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2717		break;
2718	case USB_SPEED_SUPER:
2719	case USB_SPEED_SUPER_PLUS:
2720	case USB_SPEED_UNKNOWN:
2721	case USB_SPEED_WIRELESS:
2722		/* Should never happen because only LS/FS/HS endpoints will get
2723		 * added to the endpoint list.
2724		 */
2725		return;
2726	}
2727	if (tt_info)
2728		tt_info->active_eps -= 1;
2729	list_del_init(&virt_ep->bw_endpoint_list);
2730}
2731
2732static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2733		struct xhci_bw_info *ep_bw,
2734		struct xhci_interval_bw_table *bw_table,
2735		struct usb_device *udev,
2736		struct xhci_virt_ep *virt_ep,
2737		struct xhci_tt_bw_info *tt_info)
2738{
2739	struct xhci_interval_bw	*interval_bw;
2740	struct xhci_virt_ep *smaller_ep;
2741	int normalized_interval;
2742
2743	if (xhci_is_async_ep(ep_bw->type))
2744		return;
2745
2746	if (udev->speed == USB_SPEED_SUPER) {
2747		if (xhci_is_sync_in_ep(ep_bw->type))
2748			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2749				xhci_get_ss_bw_consumed(ep_bw);
2750		else
2751			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2752				xhci_get_ss_bw_consumed(ep_bw);
2753		return;
2754	}
2755
2756	/* For LS/FS devices, we need to translate the interval expressed in
2757	 * microframes to frames.
2758	 */
2759	if (udev->speed == USB_SPEED_HIGH)
2760		normalized_interval = ep_bw->ep_interval;
2761	else
2762		normalized_interval = ep_bw->ep_interval - 3;
2763
2764	if (normalized_interval == 0)
2765		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2766	interval_bw = &bw_table->interval_bw[normalized_interval];
2767	interval_bw->num_packets += ep_bw->num_packets;
2768	switch (udev->speed) {
2769	case USB_SPEED_LOW:
2770		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2771		break;
2772	case USB_SPEED_FULL:
2773		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2774		break;
2775	case USB_SPEED_HIGH:
2776		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2777		break;
2778	case USB_SPEED_SUPER:
2779	case USB_SPEED_SUPER_PLUS:
2780	case USB_SPEED_UNKNOWN:
2781	case USB_SPEED_WIRELESS:
2782		/* Should never happen because only LS/FS/HS endpoints will get
2783		 * added to the endpoint list.
2784		 */
2785		return;
2786	}
2787
2788	if (tt_info)
2789		tt_info->active_eps += 1;
2790	/* Insert the endpoint into the list, largest max packet size first. */
2791	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2792			bw_endpoint_list) {
2793		if (ep_bw->max_packet_size >=
2794				smaller_ep->bw_info.max_packet_size) {
2795			/* Add the new ep before the smaller endpoint */
2796			list_add_tail(&virt_ep->bw_endpoint_list,
2797					&smaller_ep->bw_endpoint_list);
2798			return;
2799		}
2800	}
2801	/* Add the new endpoint at the end of the list. */
2802	list_add_tail(&virt_ep->bw_endpoint_list,
2803			&interval_bw->endpoints);
2804}
2805
2806void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2807		struct xhci_virt_device *virt_dev,
2808		int old_active_eps)
2809{
2810	struct xhci_root_port_bw_info *rh_bw_info;
2811	if (!virt_dev->tt_info)
2812		return;
2813
2814	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2815	if (old_active_eps == 0 &&
2816				virt_dev->tt_info->active_eps != 0) {
2817		rh_bw_info->num_active_tts += 1;
2818		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2819	} else if (old_active_eps != 0 &&
2820				virt_dev->tt_info->active_eps == 0) {
2821		rh_bw_info->num_active_tts -= 1;
2822		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2823	}
2824}
2825
2826static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2827		struct xhci_virt_device *virt_dev,
2828		struct xhci_container_ctx *in_ctx)
2829{
2830	struct xhci_bw_info ep_bw_info[31];
2831	int i;
2832	struct xhci_input_control_ctx *ctrl_ctx;
2833	int old_active_eps = 0;
2834
2835	if (virt_dev->tt_info)
2836		old_active_eps = virt_dev->tt_info->active_eps;
2837
2838	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2839	if (!ctrl_ctx) {
2840		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2841				__func__);
2842		return -ENOMEM;
2843	}
2844
2845	for (i = 0; i < 31; i++) {
2846		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2847			continue;
2848
2849		/* Make a copy of the BW info in case we need to revert this */
2850		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2851				sizeof(ep_bw_info[i]));
2852		/* Drop the endpoint from the interval table if the endpoint is
2853		 * being dropped or changed.
2854		 */
2855		if (EP_IS_DROPPED(ctrl_ctx, i))
2856			xhci_drop_ep_from_interval_table(xhci,
2857					&virt_dev->eps[i].bw_info,
2858					virt_dev->bw_table,
2859					virt_dev->udev,
2860					&virt_dev->eps[i],
2861					virt_dev->tt_info);
2862	}
2863	/* Overwrite the information stored in the endpoints' bw_info */
2864	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2865	for (i = 0; i < 31; i++) {
2866		/* Add any changed or added endpoints to the interval table */
2867		if (EP_IS_ADDED(ctrl_ctx, i))
2868			xhci_add_ep_to_interval_table(xhci,
2869					&virt_dev->eps[i].bw_info,
2870					virt_dev->bw_table,
2871					virt_dev->udev,
2872					&virt_dev->eps[i],
2873					virt_dev->tt_info);
2874	}
2875
2876	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2877		/* Ok, this fits in the bandwidth we have.
2878		 * Update the number of active TTs.
2879		 */
2880		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2881		return 0;
2882	}
2883
2884	/* We don't have enough bandwidth for this, revert the stored info. */
2885	for (i = 0; i < 31; i++) {
2886		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2887			continue;
2888
2889		/* Drop the new copies of any added or changed endpoints from
2890		 * the interval table.
2891		 */
2892		if (EP_IS_ADDED(ctrl_ctx, i)) {
2893			xhci_drop_ep_from_interval_table(xhci,
2894					&virt_dev->eps[i].bw_info,
2895					virt_dev->bw_table,
2896					virt_dev->udev,
2897					&virt_dev->eps[i],
2898					virt_dev->tt_info);
2899		}
2900		/* Revert the endpoint back to its old information */
2901		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2902				sizeof(ep_bw_info[i]));
2903		/* Add any changed or dropped endpoints back into the table */
2904		if (EP_IS_DROPPED(ctrl_ctx, i))
2905			xhci_add_ep_to_interval_table(xhci,
2906					&virt_dev->eps[i].bw_info,
2907					virt_dev->bw_table,
2908					virt_dev->udev,
2909					&virt_dev->eps[i],
2910					virt_dev->tt_info);
2911	}
2912	return -ENOMEM;
2913}
2914
2915
2916/* Issue a configure endpoint command or evaluate context command
2917 * and wait for it to finish.
2918 */
2919static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2920		struct usb_device *udev,
2921		struct xhci_command *command,
2922		bool ctx_change, bool must_succeed)
2923{
2924	int ret;
2925	unsigned long flags;
2926	struct xhci_input_control_ctx *ctrl_ctx;
2927	struct xhci_virt_device *virt_dev;
2928	struct xhci_slot_ctx *slot_ctx;
2929
2930	if (!command)
2931		return -EINVAL;
2932
2933	spin_lock_irqsave(&xhci->lock, flags);
2934
2935	if (xhci->xhc_state & XHCI_STATE_DYING) {
2936		spin_unlock_irqrestore(&xhci->lock, flags);
2937		return -ESHUTDOWN;
2938	}
2939
2940	virt_dev = xhci->devs[udev->slot_id];
2941
2942	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2943	if (!ctrl_ctx) {
2944		spin_unlock_irqrestore(&xhci->lock, flags);
2945		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2946				__func__);
2947		return -ENOMEM;
2948	}
2949
2950	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2951			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2952		spin_unlock_irqrestore(&xhci->lock, flags);
2953		xhci_warn(xhci, "Not enough host resources, "
2954				"active endpoint contexts = %u\n",
2955				xhci->num_active_eps);
2956		return -ENOMEM;
2957	}
2958	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2959	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2960		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2961			xhci_free_host_resources(xhci, ctrl_ctx);
2962		spin_unlock_irqrestore(&xhci->lock, flags);
2963		xhci_warn(xhci, "Not enough bandwidth\n");
2964		return -ENOMEM;
2965	}
2966
2967	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2968
2969	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2970	trace_xhci_configure_endpoint(slot_ctx);
2971
2972	if (!ctx_change)
2973		ret = xhci_queue_configure_endpoint(xhci, command,
2974				command->in_ctx->dma,
2975				udev->slot_id, must_succeed);
2976	else
2977		ret = xhci_queue_evaluate_context(xhci, command,
2978				command->in_ctx->dma,
2979				udev->slot_id, must_succeed);
2980	if (ret < 0) {
2981		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2982			xhci_free_host_resources(xhci, ctrl_ctx);
2983		spin_unlock_irqrestore(&xhci->lock, flags);
2984		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2985				"FIXME allocate a new ring segment");
2986		return -ENOMEM;
2987	}
2988	xhci_ring_cmd_db(xhci);
2989	spin_unlock_irqrestore(&xhci->lock, flags);
2990
2991	/* Wait for the configure endpoint command to complete */
2992	wait_for_completion(command->completion);
2993
2994	if (!ctx_change)
2995		ret = xhci_configure_endpoint_result(xhci, udev,
2996						     &command->status);
2997	else
2998		ret = xhci_evaluate_context_result(xhci, udev,
2999						   &command->status);
3000
3001	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3002		spin_lock_irqsave(&xhci->lock, flags);
3003		/* If the command failed, remove the reserved resources.
3004		 * Otherwise, clean up the estimate to include dropped eps.
3005		 */
3006		if (ret)
3007			xhci_free_host_resources(xhci, ctrl_ctx);
3008		else
3009			xhci_finish_resource_reservation(xhci, ctrl_ctx);
3010		spin_unlock_irqrestore(&xhci->lock, flags);
3011	}
3012	return ret;
3013}
3014
3015static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3016	struct xhci_virt_device *vdev, int i)
3017{
3018	struct xhci_virt_ep *ep = &vdev->eps[i];
3019
3020	if (ep->ep_state & EP_HAS_STREAMS) {
3021		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3022				xhci_get_endpoint_address(i));
3023		xhci_free_stream_info(xhci, ep->stream_info);
3024		ep->stream_info = NULL;
3025		ep->ep_state &= ~EP_HAS_STREAMS;
3026	}
3027}
3028
3029/* Called after one or more calls to xhci_add_endpoint() or
3030 * xhci_drop_endpoint().  If this call fails, the USB core is expected
3031 * to call xhci_reset_bandwidth().
3032 *
3033 * Since we are in the middle of changing either configuration or
3034 * installing a new alt setting, the USB core won't allow URBs to be
3035 * enqueued for any endpoint on the old config or interface.  Nothing
3036 * else should be touching the xhci->devs[slot_id] structure, so we
3037 * don't need to take the xhci->lock for manipulating that.
3038 */
3039int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3040{
3041	int i;
3042	int ret = 0;
3043	struct xhci_hcd *xhci;
3044	struct xhci_virt_device	*virt_dev;
3045	struct xhci_input_control_ctx *ctrl_ctx;
3046	struct xhci_slot_ctx *slot_ctx;
3047	struct xhci_command *command;
3048
3049	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3050	if (ret <= 0)
3051		return ret;
3052	xhci = hcd_to_xhci(hcd);
3053	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3054		(xhci->xhc_state & XHCI_STATE_REMOVING))
3055		return -ENODEV;
3056
3057	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3058	virt_dev = xhci->devs[udev->slot_id];
3059
3060	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3061	if (!command)
3062		return -ENOMEM;
3063
3064	command->in_ctx = virt_dev->in_ctx;
3065
3066	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3067	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3068	if (!ctrl_ctx) {
3069		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3070				__func__);
3071		ret = -ENOMEM;
3072		goto command_cleanup;
3073	}
3074	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3075	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3076	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3077
3078	/* Don't issue the command if there's no endpoints to update. */
3079	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3080	    ctrl_ctx->drop_flags == 0) {
3081		ret = 0;
3082		goto command_cleanup;
3083	}
3084	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3085	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3086	for (i = 31; i >= 1; i--) {
3087		__le32 le32 = cpu_to_le32(BIT(i));
3088
3089		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3090		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3091			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3092			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3093			break;
3094		}
3095	}
3096
3097	ret = xhci_configure_endpoint(xhci, udev, command,
3098			false, false);
3099	if (ret)
3100		/* Callee should call reset_bandwidth() */
3101		goto command_cleanup;
3102
3103	/* Free any rings that were dropped, but not changed. */
3104	for (i = 1; i < 31; i++) {
3105		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3106		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3107			xhci_free_endpoint_ring(xhci, virt_dev, i);
3108			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3109		}
3110	}
3111	xhci_zero_in_ctx(xhci, virt_dev);
3112	/*
3113	 * Install any rings for completely new endpoints or changed endpoints,
3114	 * and free any old rings from changed endpoints.
3115	 */
3116	for (i = 1; i < 31; i++) {
3117		if (!virt_dev->eps[i].new_ring)
3118			continue;
3119		/* Only free the old ring if it exists.
3120		 * It may not if this is the first add of an endpoint.
3121		 */
3122		if (virt_dev->eps[i].ring) {
3123			xhci_free_endpoint_ring(xhci, virt_dev, i);
3124		}
3125		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3126		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3127		virt_dev->eps[i].new_ring = NULL;
3128		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3129	}
3130command_cleanup:
3131	kfree(command->completion);
3132	kfree(command);
3133
3134	return ret;
3135}
3136EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3137
3138void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3139{
3140	struct xhci_hcd *xhci;
3141	struct xhci_virt_device	*virt_dev;
3142	int i, ret;
3143
3144	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3145	if (ret <= 0)
3146		return;
3147	xhci = hcd_to_xhci(hcd);
3148
3149	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3150	virt_dev = xhci->devs[udev->slot_id];
3151	/* Free any rings allocated for added endpoints */
3152	for (i = 0; i < 31; i++) {
3153		if (virt_dev->eps[i].new_ring) {
3154			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3155			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3156			virt_dev->eps[i].new_ring = NULL;
3157		}
3158	}
3159	xhci_zero_in_ctx(xhci, virt_dev);
3160}
3161EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3162
3163static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3164		struct xhci_container_ctx *in_ctx,
3165		struct xhci_container_ctx *out_ctx,
3166		struct xhci_input_control_ctx *ctrl_ctx,
3167		u32 add_flags, u32 drop_flags)
3168{
3169	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3170	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3171	xhci_slot_copy(xhci, in_ctx, out_ctx);
3172	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3173}
3174
3175static void xhci_endpoint_disable(struct usb_hcd *hcd,
3176				  struct usb_host_endpoint *host_ep)
3177{
3178	struct xhci_hcd		*xhci;
3179	struct xhci_virt_device	*vdev;
3180	struct xhci_virt_ep	*ep;
3181	struct usb_device	*udev;
3182	unsigned long		flags;
3183	unsigned int		ep_index;
3184
3185	xhci = hcd_to_xhci(hcd);
3186rescan:
3187	spin_lock_irqsave(&xhci->lock, flags);
3188
3189	udev = (struct usb_device *)host_ep->hcpriv;
3190	if (!udev || !udev->slot_id)
3191		goto done;
3192
3193	vdev = xhci->devs[udev->slot_id];
3194	if (!vdev)
3195		goto done;
3196
3197	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3198	ep = &vdev->eps[ep_index];
3199
3200	/* wait for hub_tt_work to finish clearing hub TT */
3201	if (ep->ep_state & EP_CLEARING_TT) {
3202		spin_unlock_irqrestore(&xhci->lock, flags);
3203		schedule_timeout_uninterruptible(1);
3204		goto rescan;
3205	}
3206
3207	if (ep->ep_state)
3208		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3209			 ep->ep_state);
3210done:
3211	host_ep->hcpriv = NULL;
3212	spin_unlock_irqrestore(&xhci->lock, flags);
3213}
3214
3215/*
3216 * Called after usb core issues a clear halt control message.
3217 * The host side of the halt should already be cleared by a reset endpoint
3218 * command issued when the STALL event was received.
3219 *
3220 * The reset endpoint command may only be issued to endpoints in the halted
3221 * state. For software that wishes to reset the data toggle or sequence number
3222 * of an endpoint that isn't in the halted state this function will issue a
3223 * configure endpoint command with the Drop and Add bits set for the target
3224 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
 
 
 
3225 */
3226
3227static void xhci_endpoint_reset(struct usb_hcd *hcd,
3228		struct usb_host_endpoint *host_ep)
3229{
3230	struct xhci_hcd *xhci;
3231	struct usb_device *udev;
3232	struct xhci_virt_device *vdev;
3233	struct xhci_virt_ep *ep;
3234	struct xhci_input_control_ctx *ctrl_ctx;
3235	struct xhci_command *stop_cmd, *cfg_cmd;
3236	unsigned int ep_index;
3237	unsigned long flags;
3238	u32 ep_flag;
3239	int err;
3240
3241	xhci = hcd_to_xhci(hcd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3242	if (!host_ep->hcpriv)
3243		return;
3244	udev = (struct usb_device *) host_ep->hcpriv;
3245	vdev = xhci->devs[udev->slot_id];
3246
3247	/*
3248	 * vdev may be lost due to xHC restore error and re-initialization
3249	 * during S3/S4 resume. A new vdev will be allocated later by
3250	 * xhci_discover_or_reset_device()
3251	 */
3252	if (!udev->slot_id || !vdev)
3253		return;
3254	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3255	ep = &vdev->eps[ep_index];
3256
3257	/* Bail out if toggle is already being cleared by a endpoint reset */
3258	spin_lock_irqsave(&xhci->lock, flags);
3259	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3260		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3261		spin_unlock_irqrestore(&xhci->lock, flags);
3262		return;
3263	}
3264	spin_unlock_irqrestore(&xhci->lock, flags);
3265	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3266	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3267	    usb_endpoint_xfer_isoc(&host_ep->desc))
3268		return;
3269
3270	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3271
3272	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3273		return;
3274
3275	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3276	if (!stop_cmd)
3277		return;
3278
3279	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3280	if (!cfg_cmd)
3281		goto cleanup;
3282
3283	spin_lock_irqsave(&xhci->lock, flags);
3284
3285	/* block queuing new trbs and ringing ep doorbell */
3286	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3287
3288	/*
3289	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3290	 * Driver is required to synchronously cancel all transfer request.
3291	 * Stop the endpoint to force xHC to update the output context
3292	 */
3293
3294	if (!list_empty(&ep->ring->td_list)) {
3295		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3296		spin_unlock_irqrestore(&xhci->lock, flags);
3297		xhci_free_command(xhci, cfg_cmd);
3298		goto cleanup;
3299	}
3300
3301	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3302					ep_index, 0);
3303	if (err < 0) {
3304		spin_unlock_irqrestore(&xhci->lock, flags);
3305		xhci_free_command(xhci, cfg_cmd);
3306		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3307				__func__, err);
3308		goto cleanup;
3309	}
3310
3311	xhci_ring_cmd_db(xhci);
3312	spin_unlock_irqrestore(&xhci->lock, flags);
3313
3314	wait_for_completion(stop_cmd->completion);
3315
3316	spin_lock_irqsave(&xhci->lock, flags);
3317
3318	/* config ep command clears toggle if add and drop ep flags are set */
3319	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3320	if (!ctrl_ctx) {
3321		spin_unlock_irqrestore(&xhci->lock, flags);
3322		xhci_free_command(xhci, cfg_cmd);
3323		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3324				__func__);
3325		goto cleanup;
3326	}
3327
3328	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3329					   ctrl_ctx, ep_flag, ep_flag);
3330	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3331
3332	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3333				      udev->slot_id, false);
3334	if (err < 0) {
3335		spin_unlock_irqrestore(&xhci->lock, flags);
3336		xhci_free_command(xhci, cfg_cmd);
3337		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3338				__func__, err);
3339		goto cleanup;
3340	}
3341
3342	xhci_ring_cmd_db(xhci);
3343	spin_unlock_irqrestore(&xhci->lock, flags);
3344
3345	wait_for_completion(cfg_cmd->completion);
3346
3347	xhci_free_command(xhci, cfg_cmd);
3348cleanup:
3349	xhci_free_command(xhci, stop_cmd);
3350	spin_lock_irqsave(&xhci->lock, flags);
3351	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3352		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3353	spin_unlock_irqrestore(&xhci->lock, flags);
3354}
3355
3356static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3357		struct usb_device *udev, struct usb_host_endpoint *ep,
3358		unsigned int slot_id)
3359{
3360	int ret;
3361	unsigned int ep_index;
3362	unsigned int ep_state;
3363
3364	if (!ep)
3365		return -EINVAL;
3366	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3367	if (ret <= 0)
3368		return ret ? ret : -EINVAL;
3369	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3370		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3371				" descriptor for ep 0x%x does not support streams\n",
3372				ep->desc.bEndpointAddress);
3373		return -EINVAL;
3374	}
3375
3376	ep_index = xhci_get_endpoint_index(&ep->desc);
3377	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3378	if (ep_state & EP_HAS_STREAMS ||
3379			ep_state & EP_GETTING_STREAMS) {
3380		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3381				"already has streams set up.\n",
3382				ep->desc.bEndpointAddress);
3383		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3384				"dynamic stream context array reallocation.\n");
3385		return -EINVAL;
3386	}
3387	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3388		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3389				"endpoint 0x%x; URBs are pending.\n",
3390				ep->desc.bEndpointAddress);
3391		return -EINVAL;
3392	}
3393	return 0;
3394}
3395
3396static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3397		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3398{
3399	unsigned int max_streams;
3400
3401	/* The stream context array size must be a power of two */
3402	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3403	/*
3404	 * Find out how many primary stream array entries the host controller
3405	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3406	 * level page entries), but that's an optional feature for xHCI host
3407	 * controllers. xHCs must support at least 4 stream IDs.
3408	 */
3409	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3410	if (*num_stream_ctxs > max_streams) {
3411		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3412				max_streams);
3413		*num_stream_ctxs = max_streams;
3414		*num_streams = max_streams;
3415	}
3416}
3417
3418/* Returns an error code if one of the endpoint already has streams.
3419 * This does not change any data structures, it only checks and gathers
3420 * information.
3421 */
3422static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3423		struct usb_device *udev,
3424		struct usb_host_endpoint **eps, unsigned int num_eps,
3425		unsigned int *num_streams, u32 *changed_ep_bitmask)
3426{
3427	unsigned int max_streams;
3428	unsigned int endpoint_flag;
3429	int i;
3430	int ret;
3431
3432	for (i = 0; i < num_eps; i++) {
3433		ret = xhci_check_streams_endpoint(xhci, udev,
3434				eps[i], udev->slot_id);
3435		if (ret < 0)
3436			return ret;
3437
3438		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3439		if (max_streams < (*num_streams - 1)) {
3440			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3441					eps[i]->desc.bEndpointAddress,
3442					max_streams);
3443			*num_streams = max_streams+1;
3444		}
3445
3446		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3447		if (*changed_ep_bitmask & endpoint_flag)
3448			return -EINVAL;
3449		*changed_ep_bitmask |= endpoint_flag;
3450	}
3451	return 0;
3452}
3453
3454static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3455		struct usb_device *udev,
3456		struct usb_host_endpoint **eps, unsigned int num_eps)
3457{
3458	u32 changed_ep_bitmask = 0;
3459	unsigned int slot_id;
3460	unsigned int ep_index;
3461	unsigned int ep_state;
3462	int i;
3463
3464	slot_id = udev->slot_id;
3465	if (!xhci->devs[slot_id])
3466		return 0;
3467
3468	for (i = 0; i < num_eps; i++) {
3469		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3470		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3471		/* Are streams already being freed for the endpoint? */
3472		if (ep_state & EP_GETTING_NO_STREAMS) {
3473			xhci_warn(xhci, "WARN Can't disable streams for "
3474					"endpoint 0x%x, "
3475					"streams are being disabled already\n",
3476					eps[i]->desc.bEndpointAddress);
3477			return 0;
3478		}
3479		/* Are there actually any streams to free? */
3480		if (!(ep_state & EP_HAS_STREAMS) &&
3481				!(ep_state & EP_GETTING_STREAMS)) {
3482			xhci_warn(xhci, "WARN Can't disable streams for "
3483					"endpoint 0x%x, "
3484					"streams are already disabled!\n",
3485					eps[i]->desc.bEndpointAddress);
3486			xhci_warn(xhci, "WARN xhci_free_streams() called "
3487					"with non-streams endpoint\n");
3488			return 0;
3489		}
3490		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3491	}
3492	return changed_ep_bitmask;
3493}
3494
3495/*
3496 * The USB device drivers use this function (through the HCD interface in USB
3497 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3498 * coordinate mass storage command queueing across multiple endpoints (basically
3499 * a stream ID == a task ID).
3500 *
3501 * Setting up streams involves allocating the same size stream context array
3502 * for each endpoint and issuing a configure endpoint command for all endpoints.
3503 *
3504 * Don't allow the call to succeed if one endpoint only supports one stream
3505 * (which means it doesn't support streams at all).
3506 *
3507 * Drivers may get less stream IDs than they asked for, if the host controller
3508 * hardware or endpoints claim they can't support the number of requested
3509 * stream IDs.
3510 */
3511static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3512		struct usb_host_endpoint **eps, unsigned int num_eps,
3513		unsigned int num_streams, gfp_t mem_flags)
3514{
3515	int i, ret;
3516	struct xhci_hcd *xhci;
3517	struct xhci_virt_device *vdev;
3518	struct xhci_command *config_cmd;
3519	struct xhci_input_control_ctx *ctrl_ctx;
3520	unsigned int ep_index;
3521	unsigned int num_stream_ctxs;
3522	unsigned int max_packet;
3523	unsigned long flags;
3524	u32 changed_ep_bitmask = 0;
3525
3526	if (!eps)
3527		return -EINVAL;
3528
3529	/* Add one to the number of streams requested to account for
3530	 * stream 0 that is reserved for xHCI usage.
3531	 */
3532	num_streams += 1;
3533	xhci = hcd_to_xhci(hcd);
3534	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3535			num_streams);
3536
3537	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3538	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3539			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3540		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3541		return -ENOSYS;
3542	}
3543
3544	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3545	if (!config_cmd)
3546		return -ENOMEM;
3547
3548	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3549	if (!ctrl_ctx) {
3550		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3551				__func__);
3552		xhci_free_command(xhci, config_cmd);
3553		return -ENOMEM;
3554	}
3555
3556	/* Check to make sure all endpoints are not already configured for
3557	 * streams.  While we're at it, find the maximum number of streams that
3558	 * all the endpoints will support and check for duplicate endpoints.
3559	 */
3560	spin_lock_irqsave(&xhci->lock, flags);
3561	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3562			num_eps, &num_streams, &changed_ep_bitmask);
3563	if (ret < 0) {
3564		xhci_free_command(xhci, config_cmd);
3565		spin_unlock_irqrestore(&xhci->lock, flags);
3566		return ret;
3567	}
3568	if (num_streams <= 1) {
3569		xhci_warn(xhci, "WARN: endpoints can't handle "
3570				"more than one stream.\n");
3571		xhci_free_command(xhci, config_cmd);
3572		spin_unlock_irqrestore(&xhci->lock, flags);
3573		return -EINVAL;
3574	}
3575	vdev = xhci->devs[udev->slot_id];
3576	/* Mark each endpoint as being in transition, so
3577	 * xhci_urb_enqueue() will reject all URBs.
3578	 */
3579	for (i = 0; i < num_eps; i++) {
3580		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3581		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3582	}
3583	spin_unlock_irqrestore(&xhci->lock, flags);
3584
3585	/* Setup internal data structures and allocate HW data structures for
3586	 * streams (but don't install the HW structures in the input context
3587	 * until we're sure all memory allocation succeeded).
3588	 */
3589	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3590	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3591			num_stream_ctxs, num_streams);
3592
3593	for (i = 0; i < num_eps; i++) {
3594		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3595		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3596		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3597				num_stream_ctxs,
3598				num_streams,
3599				max_packet, mem_flags);
3600		if (!vdev->eps[ep_index].stream_info)
3601			goto cleanup;
3602		/* Set maxPstreams in endpoint context and update deq ptr to
3603		 * point to stream context array. FIXME
3604		 */
3605	}
3606
3607	/* Set up the input context for a configure endpoint command. */
3608	for (i = 0; i < num_eps; i++) {
3609		struct xhci_ep_ctx *ep_ctx;
3610
3611		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3612		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3613
3614		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3615				vdev->out_ctx, ep_index);
3616		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3617				vdev->eps[ep_index].stream_info);
3618	}
3619	/* Tell the HW to drop its old copy of the endpoint context info
3620	 * and add the updated copy from the input context.
3621	 */
3622	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3623			vdev->out_ctx, ctrl_ctx,
3624			changed_ep_bitmask, changed_ep_bitmask);
3625
3626	/* Issue and wait for the configure endpoint command */
3627	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3628			false, false);
3629
3630	/* xHC rejected the configure endpoint command for some reason, so we
3631	 * leave the old ring intact and free our internal streams data
3632	 * structure.
3633	 */
3634	if (ret < 0)
3635		goto cleanup;
3636
3637	spin_lock_irqsave(&xhci->lock, flags);
3638	for (i = 0; i < num_eps; i++) {
3639		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3640		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3641		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3642			 udev->slot_id, ep_index);
3643		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3644	}
3645	xhci_free_command(xhci, config_cmd);
3646	spin_unlock_irqrestore(&xhci->lock, flags);
3647
3648	for (i = 0; i < num_eps; i++) {
3649		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3650		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3651	}
3652	/* Subtract 1 for stream 0, which drivers can't use */
3653	return num_streams - 1;
3654
3655cleanup:
3656	/* If it didn't work, free the streams! */
3657	for (i = 0; i < num_eps; i++) {
3658		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3659		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3660		vdev->eps[ep_index].stream_info = NULL;
3661		/* FIXME Unset maxPstreams in endpoint context and
3662		 * update deq ptr to point to normal string ring.
3663		 */
3664		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3665		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3666		xhci_endpoint_zero(xhci, vdev, eps[i]);
3667	}
3668	xhci_free_command(xhci, config_cmd);
3669	return -ENOMEM;
3670}
3671
3672/* Transition the endpoint from using streams to being a "normal" endpoint
3673 * without streams.
3674 *
3675 * Modify the endpoint context state, submit a configure endpoint command,
3676 * and free all endpoint rings for streams if that completes successfully.
3677 */
3678static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3679		struct usb_host_endpoint **eps, unsigned int num_eps,
3680		gfp_t mem_flags)
3681{
3682	int i, ret;
3683	struct xhci_hcd *xhci;
3684	struct xhci_virt_device *vdev;
3685	struct xhci_command *command;
3686	struct xhci_input_control_ctx *ctrl_ctx;
3687	unsigned int ep_index;
3688	unsigned long flags;
3689	u32 changed_ep_bitmask;
3690
3691	xhci = hcd_to_xhci(hcd);
3692	vdev = xhci->devs[udev->slot_id];
3693
3694	/* Set up a configure endpoint command to remove the streams rings */
3695	spin_lock_irqsave(&xhci->lock, flags);
3696	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3697			udev, eps, num_eps);
3698	if (changed_ep_bitmask == 0) {
3699		spin_unlock_irqrestore(&xhci->lock, flags);
3700		return -EINVAL;
3701	}
3702
3703	/* Use the xhci_command structure from the first endpoint.  We may have
3704	 * allocated too many, but the driver may call xhci_free_streams() for
3705	 * each endpoint it grouped into one call to xhci_alloc_streams().
3706	 */
3707	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3708	command = vdev->eps[ep_index].stream_info->free_streams_command;
3709	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3710	if (!ctrl_ctx) {
3711		spin_unlock_irqrestore(&xhci->lock, flags);
3712		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3713				__func__);
3714		return -EINVAL;
3715	}
3716
3717	for (i = 0; i < num_eps; i++) {
3718		struct xhci_ep_ctx *ep_ctx;
3719
3720		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3721		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3722		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3723			EP_GETTING_NO_STREAMS;
3724
3725		xhci_endpoint_copy(xhci, command->in_ctx,
3726				vdev->out_ctx, ep_index);
3727		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3728				&vdev->eps[ep_index]);
3729	}
3730	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3731			vdev->out_ctx, ctrl_ctx,
3732			changed_ep_bitmask, changed_ep_bitmask);
3733	spin_unlock_irqrestore(&xhci->lock, flags);
3734
3735	/* Issue and wait for the configure endpoint command,
3736	 * which must succeed.
3737	 */
3738	ret = xhci_configure_endpoint(xhci, udev, command,
3739			false, true);
3740
3741	/* xHC rejected the configure endpoint command for some reason, so we
3742	 * leave the streams rings intact.
3743	 */
3744	if (ret < 0)
3745		return ret;
3746
3747	spin_lock_irqsave(&xhci->lock, flags);
3748	for (i = 0; i < num_eps; i++) {
3749		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3750		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3751		vdev->eps[ep_index].stream_info = NULL;
3752		/* FIXME Unset maxPstreams in endpoint context and
3753		 * update deq ptr to point to normal string ring.
3754		 */
3755		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3756		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3757	}
3758	spin_unlock_irqrestore(&xhci->lock, flags);
3759
3760	return 0;
3761}
3762
3763/*
3764 * Deletes endpoint resources for endpoints that were active before a Reset
3765 * Device command, or a Disable Slot command.  The Reset Device command leaves
3766 * the control endpoint intact, whereas the Disable Slot command deletes it.
3767 *
3768 * Must be called with xhci->lock held.
3769 */
3770void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3771	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3772{
3773	int i;
3774	unsigned int num_dropped_eps = 0;
3775	unsigned int drop_flags = 0;
3776
3777	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3778		if (virt_dev->eps[i].ring) {
3779			drop_flags |= 1 << i;
3780			num_dropped_eps++;
3781		}
3782	}
3783	xhci->num_active_eps -= num_dropped_eps;
3784	if (num_dropped_eps)
3785		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3786				"Dropped %u ep ctxs, flags = 0x%x, "
3787				"%u now active.",
3788				num_dropped_eps, drop_flags,
3789				xhci->num_active_eps);
3790}
3791
3792/*
3793 * This submits a Reset Device Command, which will set the device state to 0,
3794 * set the device address to 0, and disable all the endpoints except the default
3795 * control endpoint.  The USB core should come back and call
3796 * xhci_address_device(), and then re-set up the configuration.  If this is
3797 * called because of a usb_reset_and_verify_device(), then the old alternate
3798 * settings will be re-installed through the normal bandwidth allocation
3799 * functions.
3800 *
3801 * Wait for the Reset Device command to finish.  Remove all structures
3802 * associated with the endpoints that were disabled.  Clear the input device
3803 * structure? Reset the control endpoint 0 max packet size?
3804 *
3805 * If the virt_dev to be reset does not exist or does not match the udev,
3806 * it means the device is lost, possibly due to the xHC restore error and
3807 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3808 * re-allocate the device.
3809 */
3810static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3811		struct usb_device *udev)
3812{
3813	int ret, i;
3814	unsigned long flags;
3815	struct xhci_hcd *xhci;
3816	unsigned int slot_id;
3817	struct xhci_virt_device *virt_dev;
3818	struct xhci_command *reset_device_cmd;
3819	struct xhci_slot_ctx *slot_ctx;
3820	int old_active_eps = 0;
3821
3822	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3823	if (ret <= 0)
3824		return ret;
3825	xhci = hcd_to_xhci(hcd);
3826	slot_id = udev->slot_id;
3827	virt_dev = xhci->devs[slot_id];
3828	if (!virt_dev) {
3829		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3830				"not exist. Re-allocate the device\n", slot_id);
3831		ret = xhci_alloc_dev(hcd, udev);
3832		if (ret == 1)
3833			return 0;
3834		else
3835			return -EINVAL;
3836	}
3837
3838	if (virt_dev->tt_info)
3839		old_active_eps = virt_dev->tt_info->active_eps;
3840
3841	if (virt_dev->udev != udev) {
3842		/* If the virt_dev and the udev does not match, this virt_dev
3843		 * may belong to another udev.
3844		 * Re-allocate the device.
3845		 */
3846		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3847				"not match the udev. Re-allocate the device\n",
3848				slot_id);
3849		ret = xhci_alloc_dev(hcd, udev);
3850		if (ret == 1)
3851			return 0;
3852		else
3853			return -EINVAL;
3854	}
3855
3856	/* If device is not setup, there is no point in resetting it */
3857	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3858	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3859						SLOT_STATE_DISABLED)
3860		return 0;
3861
3862	trace_xhci_discover_or_reset_device(slot_ctx);
3863
3864	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3865	/* Allocate the command structure that holds the struct completion.
3866	 * Assume we're in process context, since the normal device reset
3867	 * process has to wait for the device anyway.  Storage devices are
3868	 * reset as part of error handling, so use GFP_NOIO instead of
3869	 * GFP_KERNEL.
3870	 */
3871	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3872	if (!reset_device_cmd) {
3873		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3874		return -ENOMEM;
3875	}
3876
3877	/* Attempt to submit the Reset Device command to the command ring */
3878	spin_lock_irqsave(&xhci->lock, flags);
3879
3880	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3881	if (ret) {
3882		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3883		spin_unlock_irqrestore(&xhci->lock, flags);
3884		goto command_cleanup;
3885	}
3886	xhci_ring_cmd_db(xhci);
3887	spin_unlock_irqrestore(&xhci->lock, flags);
3888
3889	/* Wait for the Reset Device command to finish */
3890	wait_for_completion(reset_device_cmd->completion);
3891
3892	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3893	 * unless we tried to reset a slot ID that wasn't enabled,
3894	 * or the device wasn't in the addressed or configured state.
3895	 */
3896	ret = reset_device_cmd->status;
3897	switch (ret) {
3898	case COMP_COMMAND_ABORTED:
3899	case COMP_COMMAND_RING_STOPPED:
3900		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3901		ret = -ETIME;
3902		goto command_cleanup;
3903	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3904	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3905		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3906				slot_id,
3907				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3908		xhci_dbg(xhci, "Not freeing device rings.\n");
3909		/* Don't treat this as an error.  May change my mind later. */
3910		ret = 0;
3911		goto command_cleanup;
3912	case COMP_SUCCESS:
3913		xhci_dbg(xhci, "Successful reset device command.\n");
3914		break;
3915	default:
3916		if (xhci_is_vendor_info_code(xhci, ret))
3917			break;
3918		xhci_warn(xhci, "Unknown completion code %u for "
3919				"reset device command.\n", ret);
3920		ret = -EINVAL;
3921		goto command_cleanup;
3922	}
3923
3924	/* Free up host controller endpoint resources */
3925	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3926		spin_lock_irqsave(&xhci->lock, flags);
3927		/* Don't delete the default control endpoint resources */
3928		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3929		spin_unlock_irqrestore(&xhci->lock, flags);
3930	}
3931
3932	/* Everything but endpoint 0 is disabled, so free the rings. */
3933	for (i = 1; i < 31; i++) {
3934		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3935
3936		if (ep->ep_state & EP_HAS_STREAMS) {
3937			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3938					xhci_get_endpoint_address(i));
3939			xhci_free_stream_info(xhci, ep->stream_info);
3940			ep->stream_info = NULL;
3941			ep->ep_state &= ~EP_HAS_STREAMS;
3942		}
3943
3944		if (ep->ring) {
3945			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3946			xhci_free_endpoint_ring(xhci, virt_dev, i);
3947		}
3948		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3949			xhci_drop_ep_from_interval_table(xhci,
3950					&virt_dev->eps[i].bw_info,
3951					virt_dev->bw_table,
3952					udev,
3953					&virt_dev->eps[i],
3954					virt_dev->tt_info);
3955		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3956	}
3957	/* If necessary, update the number of active TTs on this root port */
3958	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3959	virt_dev->flags = 0;
3960	ret = 0;
3961
3962command_cleanup:
3963	xhci_free_command(xhci, reset_device_cmd);
3964	return ret;
3965}
3966
3967/*
3968 * At this point, the struct usb_device is about to go away, the device has
3969 * disconnected, and all traffic has been stopped and the endpoints have been
3970 * disabled.  Free any HC data structures associated with that device.
3971 */
3972static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3973{
3974	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3975	struct xhci_virt_device *virt_dev;
3976	struct xhci_slot_ctx *slot_ctx;
3977	unsigned long flags;
3978	int i, ret;
3979
3980	/*
3981	 * We called pm_runtime_get_noresume when the device was attached.
3982	 * Decrement the counter here to allow controller to runtime suspend
3983	 * if no devices remain.
3984	 */
3985	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3986		pm_runtime_put_noidle(hcd->self.controller);
3987
3988	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3989	/* If the host is halted due to driver unload, we still need to free the
3990	 * device.
3991	 */
3992	if (ret <= 0 && ret != -ENODEV)
3993		return;
3994
3995	virt_dev = xhci->devs[udev->slot_id];
3996	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3997	trace_xhci_free_dev(slot_ctx);
3998
3999	/* Stop any wayward timer functions (which may grab the lock) */
4000	for (i = 0; i < 31; i++)
4001		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4002	virt_dev->udev = NULL;
4003	xhci_disable_slot(xhci, udev->slot_id);
4004
4005	spin_lock_irqsave(&xhci->lock, flags);
4006	xhci_free_virt_device(xhci, udev->slot_id);
4007	spin_unlock_irqrestore(&xhci->lock, flags);
4008
4009}
4010
4011int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4012{
4013	struct xhci_command *command;
4014	unsigned long flags;
4015	u32 state;
4016	int ret;
4017
4018	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4019	if (!command)
4020		return -ENOMEM;
4021
4022	xhci_debugfs_remove_slot(xhci, slot_id);
4023
4024	spin_lock_irqsave(&xhci->lock, flags);
4025	/* Don't disable the slot if the host controller is dead. */
4026	state = readl(&xhci->op_regs->status);
4027	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4028			(xhci->xhc_state & XHCI_STATE_HALTED)) {
4029		spin_unlock_irqrestore(&xhci->lock, flags);
4030		kfree(command);
4031		return -ENODEV;
4032	}
4033
4034	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4035				slot_id);
4036	if (ret) {
4037		spin_unlock_irqrestore(&xhci->lock, flags);
4038		kfree(command);
4039		return ret;
4040	}
4041	xhci_ring_cmd_db(xhci);
4042	spin_unlock_irqrestore(&xhci->lock, flags);
4043
4044	wait_for_completion(command->completion);
4045
4046	if (command->status != COMP_SUCCESS)
4047		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4048			  slot_id, command->status);
4049
4050	xhci_free_command(xhci, command);
4051
4052	return 0;
4053}
4054
4055/*
4056 * Checks if we have enough host controller resources for the default control
4057 * endpoint.
4058 *
4059 * Must be called with xhci->lock held.
4060 */
4061static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4062{
4063	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4064		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4065				"Not enough ep ctxs: "
4066				"%u active, need to add 1, limit is %u.",
4067				xhci->num_active_eps, xhci->limit_active_eps);
4068		return -ENOMEM;
4069	}
4070	xhci->num_active_eps += 1;
4071	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4072			"Adding 1 ep ctx, %u now active.",
4073			xhci->num_active_eps);
4074	return 0;
4075}
4076
4077
4078/*
4079 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4080 * timed out, or allocating memory failed.  Returns 1 on success.
4081 */
4082int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4083{
4084	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4085	struct xhci_virt_device *vdev;
4086	struct xhci_slot_ctx *slot_ctx;
4087	unsigned long flags;
4088	int ret, slot_id;
4089	struct xhci_command *command;
4090
4091	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4092	if (!command)
4093		return 0;
4094
4095	spin_lock_irqsave(&xhci->lock, flags);
4096	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4097	if (ret) {
4098		spin_unlock_irqrestore(&xhci->lock, flags);
4099		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4100		xhci_free_command(xhci, command);
4101		return 0;
4102	}
4103	xhci_ring_cmd_db(xhci);
4104	spin_unlock_irqrestore(&xhci->lock, flags);
4105
4106	wait_for_completion(command->completion);
4107	slot_id = command->slot_id;
4108
4109	if (!slot_id || command->status != COMP_SUCCESS) {
4110		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4111			 xhci_trb_comp_code_string(command->status));
4112		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4113				HCS_MAX_SLOTS(
4114					readl(&xhci->cap_regs->hcs_params1)));
4115		xhci_free_command(xhci, command);
4116		return 0;
4117	}
4118
4119	xhci_free_command(xhci, command);
4120
4121	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4122		spin_lock_irqsave(&xhci->lock, flags);
4123		ret = xhci_reserve_host_control_ep_resources(xhci);
4124		if (ret) {
4125			spin_unlock_irqrestore(&xhci->lock, flags);
4126			xhci_warn(xhci, "Not enough host resources, "
4127					"active endpoint contexts = %u\n",
4128					xhci->num_active_eps);
4129			goto disable_slot;
4130		}
4131		spin_unlock_irqrestore(&xhci->lock, flags);
4132	}
4133	/* Use GFP_NOIO, since this function can be called from
4134	 * xhci_discover_or_reset_device(), which may be called as part of
4135	 * mass storage driver error handling.
4136	 */
4137	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4138		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4139		goto disable_slot;
4140	}
4141	vdev = xhci->devs[slot_id];
4142	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4143	trace_xhci_alloc_dev(slot_ctx);
4144
4145	udev->slot_id = slot_id;
4146
4147	xhci_debugfs_create_slot(xhci, slot_id);
4148
4149	/*
4150	 * If resetting upon resume, we can't put the controller into runtime
4151	 * suspend if there is a device attached.
4152	 */
4153	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4154		pm_runtime_get_noresume(hcd->self.controller);
4155
4156	/* Is this a LS or FS device under a HS hub? */
4157	/* Hub or peripherial? */
4158	return 1;
4159
4160disable_slot:
4161	xhci_disable_slot(xhci, udev->slot_id);
4162	xhci_free_virt_device(xhci, udev->slot_id);
4163
4164	return 0;
4165}
4166
4167/*
4168 * Issue an Address Device command and optionally send a corresponding
4169 * SetAddress request to the device.
 
 
 
 
 
 
4170 */
4171static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4172			     enum xhci_setup_dev setup)
4173{
4174	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4175	unsigned long flags;
4176	struct xhci_virt_device *virt_dev;
4177	int ret = 0;
4178	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4179	struct xhci_slot_ctx *slot_ctx;
4180	struct xhci_input_control_ctx *ctrl_ctx;
4181	u64 temp_64;
4182	struct xhci_command *command = NULL;
4183
4184	mutex_lock(&xhci->mutex);
4185
4186	if (xhci->xhc_state) {	/* dying, removing or halted */
4187		ret = -ESHUTDOWN;
4188		goto out;
4189	}
4190
4191	if (!udev->slot_id) {
4192		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4193				"Bad Slot ID %d", udev->slot_id);
4194		ret = -EINVAL;
4195		goto out;
4196	}
4197
4198	virt_dev = xhci->devs[udev->slot_id];
4199
4200	if (WARN_ON(!virt_dev)) {
4201		/*
4202		 * In plug/unplug torture test with an NEC controller,
4203		 * a zero-dereference was observed once due to virt_dev = 0.
4204		 * Print useful debug rather than crash if it is observed again!
4205		 */
4206		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4207			udev->slot_id);
4208		ret = -EINVAL;
4209		goto out;
4210	}
4211	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4212	trace_xhci_setup_device_slot(slot_ctx);
4213
4214	if (setup == SETUP_CONTEXT_ONLY) {
4215		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4216		    SLOT_STATE_DEFAULT) {
4217			xhci_dbg(xhci, "Slot already in default state\n");
4218			goto out;
4219		}
4220	}
4221
4222	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4223	if (!command) {
4224		ret = -ENOMEM;
4225		goto out;
4226	}
4227
4228	command->in_ctx = virt_dev->in_ctx;
 
4229
4230	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4231	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4232	if (!ctrl_ctx) {
4233		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4234				__func__);
4235		ret = -EINVAL;
4236		goto out;
4237	}
4238	/*
4239	 * If this is the first Set Address since device plug-in or
4240	 * virt_device realloaction after a resume with an xHCI power loss,
4241	 * then set up the slot context.
4242	 */
4243	if (!slot_ctx->dev_info)
4244		xhci_setup_addressable_virt_dev(xhci, udev);
4245	/* Otherwise, update the control endpoint ring enqueue pointer. */
4246	else
4247		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4248	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4249	ctrl_ctx->drop_flags = 0;
4250
4251	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4252				le32_to_cpu(slot_ctx->dev_info) >> 27);
4253
4254	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4255	spin_lock_irqsave(&xhci->lock, flags);
4256	trace_xhci_setup_device(virt_dev);
4257	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4258					udev->slot_id, setup);
4259	if (ret) {
4260		spin_unlock_irqrestore(&xhci->lock, flags);
4261		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4262				"FIXME: allocate a command ring segment");
4263		goto out;
4264	}
4265	xhci_ring_cmd_db(xhci);
4266	spin_unlock_irqrestore(&xhci->lock, flags);
4267
4268	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4269	wait_for_completion(command->completion);
4270
4271	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4272	 * the SetAddress() "recovery interval" required by USB and aborting the
4273	 * command on a timeout.
4274	 */
4275	switch (command->status) {
4276	case COMP_COMMAND_ABORTED:
4277	case COMP_COMMAND_RING_STOPPED:
4278		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4279		ret = -ETIME;
4280		break;
4281	case COMP_CONTEXT_STATE_ERROR:
4282	case COMP_SLOT_NOT_ENABLED_ERROR:
4283		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4284			 act, udev->slot_id);
4285		ret = -EINVAL;
4286		break;
4287	case COMP_USB_TRANSACTION_ERROR:
4288		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4289
4290		mutex_unlock(&xhci->mutex);
4291		ret = xhci_disable_slot(xhci, udev->slot_id);
4292		xhci_free_virt_device(xhci, udev->slot_id);
4293		if (!ret)
4294			xhci_alloc_dev(hcd, udev);
4295		kfree(command->completion);
4296		kfree(command);
4297		return -EPROTO;
4298	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4299		dev_warn(&udev->dev,
4300			 "ERROR: Incompatible device for setup %s command\n", act);
4301		ret = -ENODEV;
4302		break;
4303	case COMP_SUCCESS:
4304		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4305			       "Successful setup %s command", act);
4306		break;
4307	default:
4308		xhci_err(xhci,
4309			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4310			 act, command->status);
4311		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4312		ret = -EINVAL;
4313		break;
4314	}
4315	if (ret)
4316		goto out;
4317	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4318	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4319			"Op regs DCBAA ptr = %#016llx", temp_64);
4320	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4321		"Slot ID %d dcbaa entry @%p = %#016llx",
4322		udev->slot_id,
4323		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4324		(unsigned long long)
4325		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4326	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4327			"Output Context DMA address = %#08llx",
4328			(unsigned long long)virt_dev->out_ctx->dma);
4329	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4330				le32_to_cpu(slot_ctx->dev_info) >> 27);
4331	/*
4332	 * USB core uses address 1 for the roothubs, so we add one to the
4333	 * address given back to us by the HC.
4334	 */
4335	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4336				le32_to_cpu(slot_ctx->dev_info) >> 27);
4337	/* Zero the input context control for later use */
4338	ctrl_ctx->add_flags = 0;
4339	ctrl_ctx->drop_flags = 0;
4340	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4341	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4342
4343	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4344		       "Internal device address = %d",
4345		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4346out:
4347	mutex_unlock(&xhci->mutex);
4348	if (command) {
4349		kfree(command->completion);
4350		kfree(command);
4351	}
4352	return ret;
4353}
4354
4355static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
 
4356{
4357	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4358}
4359
4360static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4361{
4362	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
 
4363}
4364
4365/*
4366 * Transfer the port index into real index in the HW port status
4367 * registers. Caculate offset between the port's PORTSC register
4368 * and port status base. Divide the number of per port register
4369 * to get the real index. The raw port number bases 1.
4370 */
4371int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4372{
4373	struct xhci_hub *rhub;
4374
4375	rhub = xhci_get_rhub(hcd);
4376	return rhub->ports[port1 - 1]->hw_portnum + 1;
4377}
4378
4379/*
4380 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4381 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4382 */
4383static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4384			struct usb_device *udev, u16 max_exit_latency)
4385{
4386	struct xhci_virt_device *virt_dev;
4387	struct xhci_command *command;
4388	struct xhci_input_control_ctx *ctrl_ctx;
4389	struct xhci_slot_ctx *slot_ctx;
4390	unsigned long flags;
4391	int ret;
4392
4393	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4394	if (!command)
4395		return -ENOMEM;
4396
4397	spin_lock_irqsave(&xhci->lock, flags);
4398
4399	virt_dev = xhci->devs[udev->slot_id];
4400
4401	/*
4402	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4403	 * xHC was re-initialized. Exit latency will be set later after
4404	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4405	 */
4406
4407	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4408		spin_unlock_irqrestore(&xhci->lock, flags);
 
4409		return 0;
4410	}
4411
4412	/* Attempt to issue an Evaluate Context command to change the MEL. */
4413	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4414	if (!ctrl_ctx) {
4415		spin_unlock_irqrestore(&xhci->lock, flags);
4416		xhci_free_command(xhci, command);
4417		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4418				__func__);
4419		return -ENOMEM;
4420	}
4421
4422	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4423	spin_unlock_irqrestore(&xhci->lock, flags);
4424
4425	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4426	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4427	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4428	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4429	slot_ctx->dev_state = 0;
4430
4431	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4432			"Set up evaluate context for LPM MEL change.");
4433
4434	/* Issue and wait for the evaluate context command. */
4435	ret = xhci_configure_endpoint(xhci, udev, command,
4436			true, true);
4437
4438	if (!ret) {
4439		spin_lock_irqsave(&xhci->lock, flags);
4440		virt_dev->current_mel = max_exit_latency;
4441		spin_unlock_irqrestore(&xhci->lock, flags);
4442	}
4443
4444	xhci_free_command(xhci, command);
4445
4446	return ret;
4447}
4448
4449#ifdef CONFIG_PM
4450
4451/* BESL to HIRD Encoding array for USB2 LPM */
4452static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4453	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4454
4455/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4456static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4457					struct usb_device *udev)
4458{
4459	int u2del, besl, besl_host;
4460	int besl_device = 0;
4461	u32 field;
4462
4463	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4464	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4465
4466	if (field & USB_BESL_SUPPORT) {
4467		for (besl_host = 0; besl_host < 16; besl_host++) {
4468			if (xhci_besl_encoding[besl_host] >= u2del)
4469				break;
4470		}
4471		/* Use baseline BESL value as default */
4472		if (field & USB_BESL_BASELINE_VALID)
4473			besl_device = USB_GET_BESL_BASELINE(field);
4474		else if (field & USB_BESL_DEEP_VALID)
4475			besl_device = USB_GET_BESL_DEEP(field);
4476	} else {
4477		if (u2del <= 50)
4478			besl_host = 0;
4479		else
4480			besl_host = (u2del - 51) / 75 + 1;
4481	}
4482
4483	besl = besl_host + besl_device;
4484	if (besl > 15)
4485		besl = 15;
4486
4487	return besl;
4488}
4489
4490/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4491static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4492{
4493	u32 field;
4494	int l1;
4495	int besld = 0;
4496	int hirdm = 0;
4497
4498	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4499
4500	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4501	l1 = udev->l1_params.timeout / 256;
4502
4503	/* device has preferred BESLD */
4504	if (field & USB_BESL_DEEP_VALID) {
4505		besld = USB_GET_BESL_DEEP(field);
4506		hirdm = 1;
4507	}
4508
4509	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4510}
4511
4512static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4513			struct usb_device *udev, int enable)
4514{
4515	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4516	struct xhci_port **ports;
4517	__le32 __iomem	*pm_addr, *hlpm_addr;
4518	u32		pm_val, hlpm_val, field;
4519	unsigned int	port_num;
4520	unsigned long	flags;
4521	int		hird, exit_latency;
4522	int		ret;
4523
4524	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4525		return -EPERM;
4526
4527	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4528			!udev->lpm_capable)
4529		return -EPERM;
4530
4531	if (!udev->parent || udev->parent->parent ||
4532			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4533		return -EPERM;
4534
4535	if (udev->usb2_hw_lpm_capable != 1)
4536		return -EPERM;
4537
4538	spin_lock_irqsave(&xhci->lock, flags);
4539
4540	ports = xhci->usb2_rhub.ports;
4541	port_num = udev->portnum - 1;
4542	pm_addr = ports[port_num]->addr + PORTPMSC;
4543	pm_val = readl(pm_addr);
4544	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4545
4546	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4547			enable ? "enable" : "disable", port_num + 1);
4548
4549	if (enable) {
4550		/* Host supports BESL timeout instead of HIRD */
4551		if (udev->usb2_hw_lpm_besl_capable) {
4552			/* if device doesn't have a preferred BESL value use a
4553			 * default one which works with mixed HIRD and BESL
4554			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4555			 */
4556			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4557			if ((field & USB_BESL_SUPPORT) &&
4558			    (field & USB_BESL_BASELINE_VALID))
4559				hird = USB_GET_BESL_BASELINE(field);
4560			else
4561				hird = udev->l1_params.besl;
4562
4563			exit_latency = xhci_besl_encoding[hird];
4564			spin_unlock_irqrestore(&xhci->lock, flags);
4565
4566			ret = xhci_change_max_exit_latency(xhci, udev,
4567							   exit_latency);
4568			if (ret < 0)
4569				return ret;
4570			spin_lock_irqsave(&xhci->lock, flags);
4571
4572			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4573			writel(hlpm_val, hlpm_addr);
4574			/* flush write */
4575			readl(hlpm_addr);
4576		} else {
4577			hird = xhci_calculate_hird_besl(xhci, udev);
4578		}
4579
4580		pm_val &= ~PORT_HIRD_MASK;
4581		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4582		writel(pm_val, pm_addr);
4583		pm_val = readl(pm_addr);
4584		pm_val |= PORT_HLE;
4585		writel(pm_val, pm_addr);
4586		/* flush write */
4587		readl(pm_addr);
4588	} else {
4589		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4590		writel(pm_val, pm_addr);
4591		/* flush write */
4592		readl(pm_addr);
4593		if (udev->usb2_hw_lpm_besl_capable) {
4594			spin_unlock_irqrestore(&xhci->lock, flags);
4595			xhci_change_max_exit_latency(xhci, udev, 0);
4596			readl_poll_timeout(ports[port_num]->addr, pm_val,
4597					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4598					   100, 10000);
4599			return 0;
4600		}
4601	}
4602
4603	spin_unlock_irqrestore(&xhci->lock, flags);
4604	return 0;
4605}
4606
4607/* check if a usb2 port supports a given extened capability protocol
4608 * only USB2 ports extended protocol capability values are cached.
4609 * Return 1 if capability is supported
4610 */
4611static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4612					   unsigned capability)
4613{
4614	u32 port_offset, port_count;
4615	int i;
4616
4617	for (i = 0; i < xhci->num_ext_caps; i++) {
4618		if (xhci->ext_caps[i] & capability) {
4619			/* port offsets starts at 1 */
4620			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4621			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4622			if (port >= port_offset &&
4623			    port < port_offset + port_count)
4624				return 1;
4625		}
4626	}
4627	return 0;
4628}
4629
4630static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4631{
4632	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4633	int		portnum = udev->portnum - 1;
4634
4635	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4636		return 0;
4637
4638	/* we only support lpm for non-hub device connected to root hub yet */
4639	if (!udev->parent || udev->parent->parent ||
4640			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4641		return 0;
4642
4643	if (xhci->hw_lpm_support == 1 &&
4644			xhci_check_usb2_port_capability(
4645				xhci, portnum, XHCI_HLC)) {
4646		udev->usb2_hw_lpm_capable = 1;
4647		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4648		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4649		if (xhci_check_usb2_port_capability(xhci, portnum,
4650					XHCI_BLC))
4651			udev->usb2_hw_lpm_besl_capable = 1;
4652	}
4653
4654	return 0;
4655}
4656
4657/*---------------------- USB 3.0 Link PM functions ------------------------*/
4658
4659/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4660static unsigned long long xhci_service_interval_to_ns(
4661		struct usb_endpoint_descriptor *desc)
4662{
4663	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4664}
4665
4666static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4667		enum usb3_link_state state)
4668{
4669	unsigned long long sel;
4670	unsigned long long pel;
4671	unsigned int max_sel_pel;
4672	char *state_name;
4673
4674	switch (state) {
4675	case USB3_LPM_U1:
4676		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4677		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4678		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4679		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4680		state_name = "U1";
4681		break;
4682	case USB3_LPM_U2:
4683		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4684		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4685		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4686		state_name = "U2";
4687		break;
4688	default:
4689		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4690				__func__);
4691		return USB3_LPM_DISABLED;
4692	}
4693
4694	if (sel <= max_sel_pel && pel <= max_sel_pel)
4695		return USB3_LPM_DEVICE_INITIATED;
4696
4697	if (sel > max_sel_pel)
4698		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4699				"due to long SEL %llu ms\n",
4700				state_name, sel);
4701	else
4702		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4703				"due to long PEL %llu ms\n",
4704				state_name, pel);
4705	return USB3_LPM_DISABLED;
4706}
4707
4708/* The U1 timeout should be the maximum of the following values:
4709 *  - For control endpoints, U1 system exit latency (SEL) * 3
4710 *  - For bulk endpoints, U1 SEL * 5
4711 *  - For interrupt endpoints:
4712 *    - Notification EPs, U1 SEL * 3
4713 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4714 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4715 */
4716static unsigned long long xhci_calculate_intel_u1_timeout(
4717		struct usb_device *udev,
4718		struct usb_endpoint_descriptor *desc)
4719{
4720	unsigned long long timeout_ns;
4721	int ep_type;
4722	int intr_type;
4723
4724	ep_type = usb_endpoint_type(desc);
4725	switch (ep_type) {
4726	case USB_ENDPOINT_XFER_CONTROL:
4727		timeout_ns = udev->u1_params.sel * 3;
4728		break;
4729	case USB_ENDPOINT_XFER_BULK:
4730		timeout_ns = udev->u1_params.sel * 5;
4731		break;
4732	case USB_ENDPOINT_XFER_INT:
4733		intr_type = usb_endpoint_interrupt_type(desc);
4734		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4735			timeout_ns = udev->u1_params.sel * 3;
4736			break;
4737		}
4738		/* Otherwise the calculation is the same as isoc eps */
4739		fallthrough;
4740	case USB_ENDPOINT_XFER_ISOC:
4741		timeout_ns = xhci_service_interval_to_ns(desc);
4742		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4743		if (timeout_ns < udev->u1_params.sel * 2)
4744			timeout_ns = udev->u1_params.sel * 2;
4745		break;
4746	default:
4747		return 0;
4748	}
4749
4750	return timeout_ns;
4751}
4752
4753/* Returns the hub-encoded U1 timeout value. */
4754static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4755		struct usb_device *udev,
4756		struct usb_endpoint_descriptor *desc)
4757{
4758	unsigned long long timeout_ns;
4759
4760	/* Prevent U1 if service interval is shorter than U1 exit latency */
4761	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4762		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4763			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4764			return USB3_LPM_DISABLED;
4765		}
4766	}
4767
4768	if (xhci->quirks & XHCI_INTEL_HOST)
4769		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4770	else
4771		timeout_ns = udev->u1_params.sel;
4772
4773	/* The U1 timeout is encoded in 1us intervals.
4774	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4775	 */
4776	if (timeout_ns == USB3_LPM_DISABLED)
4777		timeout_ns = 1;
4778	else
4779		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4780
4781	/* If the necessary timeout value is bigger than what we can set in the
4782	 * USB 3.0 hub, we have to disable hub-initiated U1.
4783	 */
4784	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4785		return timeout_ns;
4786	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4787			"due to long timeout %llu ms\n", timeout_ns);
4788	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4789}
4790
4791/* The U2 timeout should be the maximum of:
4792 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4793 *  - largest bInterval of any active periodic endpoint (to avoid going
4794 *    into lower power link states between intervals).
4795 *  - the U2 Exit Latency of the device
4796 */
4797static unsigned long long xhci_calculate_intel_u2_timeout(
4798		struct usb_device *udev,
4799		struct usb_endpoint_descriptor *desc)
4800{
4801	unsigned long long timeout_ns;
4802	unsigned long long u2_del_ns;
4803
4804	timeout_ns = 10 * 1000 * 1000;
4805
4806	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4807			(xhci_service_interval_to_ns(desc) > timeout_ns))
4808		timeout_ns = xhci_service_interval_to_ns(desc);
4809
4810	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4811	if (u2_del_ns > timeout_ns)
4812		timeout_ns = u2_del_ns;
4813
4814	return timeout_ns;
4815}
4816
4817/* Returns the hub-encoded U2 timeout value. */
4818static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4819		struct usb_device *udev,
4820		struct usb_endpoint_descriptor *desc)
4821{
4822	unsigned long long timeout_ns;
4823
4824	/* Prevent U2 if service interval is shorter than U2 exit latency */
4825	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4826		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4827			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4828			return USB3_LPM_DISABLED;
4829		}
4830	}
4831
4832	if (xhci->quirks & XHCI_INTEL_HOST)
4833		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4834	else
4835		timeout_ns = udev->u2_params.sel;
4836
4837	/* The U2 timeout is encoded in 256us intervals */
4838	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4839	/* If the necessary timeout value is bigger than what we can set in the
4840	 * USB 3.0 hub, we have to disable hub-initiated U2.
4841	 */
4842	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4843		return timeout_ns;
4844	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4845			"due to long timeout %llu ms\n", timeout_ns);
4846	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4847}
4848
4849static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4850		struct usb_device *udev,
4851		struct usb_endpoint_descriptor *desc,
4852		enum usb3_link_state state,
4853		u16 *timeout)
4854{
4855	if (state == USB3_LPM_U1)
4856		return xhci_calculate_u1_timeout(xhci, udev, desc);
4857	else if (state == USB3_LPM_U2)
4858		return xhci_calculate_u2_timeout(xhci, udev, desc);
4859
4860	return USB3_LPM_DISABLED;
4861}
4862
4863static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4864		struct usb_device *udev,
4865		struct usb_endpoint_descriptor *desc,
4866		enum usb3_link_state state,
4867		u16 *timeout)
4868{
4869	u16 alt_timeout;
4870
4871	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4872		desc, state, timeout);
4873
4874	/* If we found we can't enable hub-initiated LPM, and
4875	 * the U1 or U2 exit latency was too high to allow
4876	 * device-initiated LPM as well, then we will disable LPM
4877	 * for this device, so stop searching any further.
4878	 */
4879	if (alt_timeout == USB3_LPM_DISABLED) {
4880		*timeout = alt_timeout;
4881		return -E2BIG;
4882	}
4883	if (alt_timeout > *timeout)
4884		*timeout = alt_timeout;
4885	return 0;
4886}
4887
4888static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4889		struct usb_device *udev,
4890		struct usb_host_interface *alt,
4891		enum usb3_link_state state,
4892		u16 *timeout)
4893{
4894	int j;
4895
4896	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4897		if (xhci_update_timeout_for_endpoint(xhci, udev,
4898					&alt->endpoint[j].desc, state, timeout))
4899			return -E2BIG;
4900	}
4901	return 0;
4902}
4903
4904static int xhci_check_intel_tier_policy(struct usb_device *udev,
 
4905		enum usb3_link_state state)
4906{
4907	struct usb_device *parent;
4908	unsigned int num_hubs;
4909
4910	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4911	for (parent = udev->parent, num_hubs = 0; parent->parent;
4912			parent = parent->parent)
4913		num_hubs++;
4914
4915	if (num_hubs < 2)
4916		return 0;
 
 
4917
4918	dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4919			" below second-tier hub.\n");
4920	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4921			"to decrease power consumption.\n");
4922	return -E2BIG;
4923}
4924
4925static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4926		struct usb_device *udev,
4927		enum usb3_link_state state)
4928{
4929	if (xhci->quirks & XHCI_INTEL_HOST)
4930		return xhci_check_intel_tier_policy(udev, state);
4931	else
4932		return 0;
4933}
4934
4935/* Returns the U1 or U2 timeout that should be enabled.
4936 * If the tier check or timeout setting functions return with a non-zero exit
4937 * code, that means the timeout value has been finalized and we shouldn't look
4938 * at any more endpoints.
4939 */
4940static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4941			struct usb_device *udev, enum usb3_link_state state)
4942{
4943	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4944	struct usb_host_config *config;
4945	char *state_name;
4946	int i;
4947	u16 timeout = USB3_LPM_DISABLED;
4948
4949	if (state == USB3_LPM_U1)
4950		state_name = "U1";
4951	else if (state == USB3_LPM_U2)
4952		state_name = "U2";
4953	else {
4954		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4955				state);
4956		return timeout;
4957	}
4958
4959	/* Gather some information about the currently installed configuration
4960	 * and alternate interface settings.
4961	 */
4962	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4963			state, &timeout))
4964		return timeout;
4965
4966	config = udev->actconfig;
4967	if (!config)
4968		return timeout;
4969
4970	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4971		struct usb_driver *driver;
4972		struct usb_interface *intf = config->interface[i];
4973
4974		if (!intf)
4975			continue;
4976
4977		/* Check if any currently bound drivers want hub-initiated LPM
4978		 * disabled.
4979		 */
4980		if (intf->dev.driver) {
4981			driver = to_usb_driver(intf->dev.driver);
4982			if (driver && driver->disable_hub_initiated_lpm) {
4983				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4984					state_name, driver->name);
4985				timeout = xhci_get_timeout_no_hub_lpm(udev,
4986								      state);
4987				if (timeout == USB3_LPM_DISABLED)
4988					return timeout;
4989			}
4990		}
4991
4992		/* Not sure how this could happen... */
4993		if (!intf->cur_altsetting)
4994			continue;
4995
4996		if (xhci_update_timeout_for_interface(xhci, udev,
4997					intf->cur_altsetting,
4998					state, &timeout))
4999			return timeout;
5000	}
5001	return timeout;
5002}
5003
5004static int calculate_max_exit_latency(struct usb_device *udev,
5005		enum usb3_link_state state_changed,
5006		u16 hub_encoded_timeout)
5007{
5008	unsigned long long u1_mel_us = 0;
5009	unsigned long long u2_mel_us = 0;
5010	unsigned long long mel_us = 0;
5011	bool disabling_u1;
5012	bool disabling_u2;
5013	bool enabling_u1;
5014	bool enabling_u2;
5015
5016	disabling_u1 = (state_changed == USB3_LPM_U1 &&
5017			hub_encoded_timeout == USB3_LPM_DISABLED);
5018	disabling_u2 = (state_changed == USB3_LPM_U2 &&
5019			hub_encoded_timeout == USB3_LPM_DISABLED);
5020
5021	enabling_u1 = (state_changed == USB3_LPM_U1 &&
5022			hub_encoded_timeout != USB3_LPM_DISABLED);
5023	enabling_u2 = (state_changed == USB3_LPM_U2 &&
5024			hub_encoded_timeout != USB3_LPM_DISABLED);
5025
5026	/* If U1 was already enabled and we're not disabling it,
5027	 * or we're going to enable U1, account for the U1 max exit latency.
5028	 */
5029	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5030			enabling_u1)
5031		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5032	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5033			enabling_u2)
5034		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5035
5036	mel_us = max(u1_mel_us, u2_mel_us);
5037
5038	/* xHCI host controller max exit latency field is only 16 bits wide. */
5039	if (mel_us > MAX_EXIT) {
5040		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5041				"is too big.\n", mel_us);
5042		return -E2BIG;
5043	}
5044	return mel_us;
5045}
5046
5047/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5048static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5049			struct usb_device *udev, enum usb3_link_state state)
5050{
5051	struct xhci_hcd	*xhci;
5052	struct xhci_port *port;
5053	u16 hub_encoded_timeout;
5054	int mel;
5055	int ret;
5056
5057	xhci = hcd_to_xhci(hcd);
5058	/* The LPM timeout values are pretty host-controller specific, so don't
5059	 * enable hub-initiated timeouts unless the vendor has provided
5060	 * information about their timeout algorithm.
5061	 */
5062	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5063			!xhci->devs[udev->slot_id])
5064		return USB3_LPM_DISABLED;
5065
5066	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5067		return USB3_LPM_DISABLED;
5068
5069	/* If connected to root port then check port can handle lpm */
5070	if (udev->parent && !udev->parent->parent) {
5071		port = xhci->usb3_rhub.ports[udev->portnum - 1];
5072		if (port->lpm_incapable)
5073			return USB3_LPM_DISABLED;
5074	}
5075
5076	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5077	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5078	if (mel < 0) {
5079		/* Max Exit Latency is too big, disable LPM. */
5080		hub_encoded_timeout = USB3_LPM_DISABLED;
5081		mel = 0;
5082	}
5083
5084	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5085	if (ret)
5086		return ret;
5087	return hub_encoded_timeout;
5088}
5089
5090static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5091			struct usb_device *udev, enum usb3_link_state state)
5092{
5093	struct xhci_hcd	*xhci;
5094	u16 mel;
5095
5096	xhci = hcd_to_xhci(hcd);
5097	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5098			!xhci->devs[udev->slot_id])
5099		return 0;
5100
5101	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5102	return xhci_change_max_exit_latency(xhci, udev, mel);
5103}
5104#else /* CONFIG_PM */
5105
5106static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5107				struct usb_device *udev, int enable)
5108{
5109	return 0;
5110}
5111
5112static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5113{
5114	return 0;
5115}
5116
5117static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5118			struct usb_device *udev, enum usb3_link_state state)
5119{
5120	return USB3_LPM_DISABLED;
5121}
5122
5123static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5124			struct usb_device *udev, enum usb3_link_state state)
5125{
5126	return 0;
5127}
5128#endif	/* CONFIG_PM */
5129
5130/*-------------------------------------------------------------------------*/
5131
5132/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5133 * internal data structures for the device.
5134 */
5135int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5136			struct usb_tt *tt, gfp_t mem_flags)
5137{
5138	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5139	struct xhci_virt_device *vdev;
5140	struct xhci_command *config_cmd;
5141	struct xhci_input_control_ctx *ctrl_ctx;
5142	struct xhci_slot_ctx *slot_ctx;
5143	unsigned long flags;
5144	unsigned think_time;
5145	int ret;
5146
5147	/* Ignore root hubs */
5148	if (!hdev->parent)
5149		return 0;
5150
5151	vdev = xhci->devs[hdev->slot_id];
5152	if (!vdev) {
5153		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5154		return -EINVAL;
5155	}
5156
5157	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5158	if (!config_cmd)
5159		return -ENOMEM;
5160
5161	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5162	if (!ctrl_ctx) {
5163		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5164				__func__);
5165		xhci_free_command(xhci, config_cmd);
5166		return -ENOMEM;
5167	}
5168
5169	spin_lock_irqsave(&xhci->lock, flags);
5170	if (hdev->speed == USB_SPEED_HIGH &&
5171			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5172		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5173		xhci_free_command(xhci, config_cmd);
5174		spin_unlock_irqrestore(&xhci->lock, flags);
5175		return -ENOMEM;
5176	}
5177
5178	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5179	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5180	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5181	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5182	/*
5183	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5184	 * but it may be already set to 1 when setup an xHCI virtual
5185	 * device, so clear it anyway.
5186	 */
5187	if (tt->multi)
5188		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5189	else if (hdev->speed == USB_SPEED_FULL)
5190		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5191
5192	if (xhci->hci_version > 0x95) {
5193		xhci_dbg(xhci, "xHCI version %x needs hub "
5194				"TT think time and number of ports\n",
5195				(unsigned int) xhci->hci_version);
5196		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5197		/* Set TT think time - convert from ns to FS bit times.
5198		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5199		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5200		 *
5201		 * xHCI 1.0: this field shall be 0 if the device is not a
5202		 * High-spped hub.
5203		 */
5204		think_time = tt->think_time;
5205		if (think_time != 0)
5206			think_time = (think_time / 666) - 1;
5207		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5208			slot_ctx->tt_info |=
5209				cpu_to_le32(TT_THINK_TIME(think_time));
5210	} else {
5211		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5212				"TT think time or number of ports\n",
5213				(unsigned int) xhci->hci_version);
5214	}
5215	slot_ctx->dev_state = 0;
5216	spin_unlock_irqrestore(&xhci->lock, flags);
5217
5218	xhci_dbg(xhci, "Set up %s for hub device.\n",
5219			(xhci->hci_version > 0x95) ?
5220			"configure endpoint" : "evaluate context");
5221
5222	/* Issue and wait for the configure endpoint or
5223	 * evaluate context command.
5224	 */
5225	if (xhci->hci_version > 0x95)
5226		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5227				false, false);
5228	else
5229		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5230				true, false);
5231
5232	xhci_free_command(xhci, config_cmd);
5233	return ret;
5234}
5235EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5236
5237static int xhci_get_frame(struct usb_hcd *hcd)
5238{
5239	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5240	/* EHCI mods by the periodic size.  Why? */
5241	return readl(&xhci->run_regs->microframe_index) >> 3;
5242}
5243
5244static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5245{
5246	xhci->usb2_rhub.hcd = hcd;
5247	hcd->speed = HCD_USB2;
5248	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5249	/*
5250	 * USB 2.0 roothub under xHCI has an integrated TT,
5251	 * (rate matching hub) as opposed to having an OHCI/UHCI
5252	 * companion controller.
5253	 */
5254	hcd->has_tt = 1;
5255}
5256
5257static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5258{
5259	unsigned int minor_rev;
5260
5261	/*
5262	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5263	 * should return 0x31 for sbrn, or that the minor revision
5264	 * is a two digit BCD containig minor and sub-minor numbers.
5265	 * This was later clarified in xHCI 1.2.
5266	 *
5267	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5268	 * minor revision set to 0x1 instead of 0x10.
5269	 */
5270	if (xhci->usb3_rhub.min_rev == 0x1)
5271		minor_rev = 1;
5272	else
5273		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5274
5275	switch (minor_rev) {
5276	case 2:
5277		hcd->speed = HCD_USB32;
5278		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5279		hcd->self.root_hub->rx_lanes = 2;
5280		hcd->self.root_hub->tx_lanes = 2;
5281		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5282		break;
5283	case 1:
5284		hcd->speed = HCD_USB31;
5285		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5286		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5287		break;
5288	}
5289	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5290		  minor_rev, minor_rev ? "Enhanced " : "");
5291
5292	xhci->usb3_rhub.hcd = hcd;
5293}
5294
5295int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5296{
5297	struct xhci_hcd		*xhci;
5298	/*
5299	 * TODO: Check with DWC3 clients for sysdev according to
5300	 * quirks
5301	 */
5302	struct device		*dev = hcd->self.sysdev;
5303	int			retval;
5304
5305	/* Accept arbitrarily long scatter-gather lists */
5306	hcd->self.sg_tablesize = ~0;
5307
5308	/* support to build packet from discontinuous buffers */
5309	hcd->self.no_sg_constraint = 1;
5310
5311	/* XHCI controllers don't stop the ep queue on short packets :| */
5312	hcd->self.no_stop_on_short = 1;
5313
5314	xhci = hcd_to_xhci(hcd);
5315
5316	if (!usb_hcd_is_primary_hcd(hcd)) {
5317		xhci_hcd_init_usb3_data(xhci, hcd);
5318		return 0;
5319	}
5320
5321	mutex_init(&xhci->mutex);
5322	xhci->main_hcd = hcd;
5323	xhci->cap_regs = hcd->regs;
5324	xhci->op_regs = hcd->regs +
5325		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5326	xhci->run_regs = hcd->regs +
5327		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5328	/* Cache read-only capability registers */
5329	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5330	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5331	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5332	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5333	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5334	if (xhci->hci_version > 0x100)
5335		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5336
 
 
 
 
 
5337	xhci->quirks |= quirks;
5338
5339	get_quirks(dev, xhci);
 
5340
5341	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5342	 * success event after a short transfer. This quirk will ignore such
5343	 * spurious event.
5344	 */
5345	if (xhci->hci_version > 0x96)
5346		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5347
5348	/* Make sure the HC is halted. */
5349	retval = xhci_halt(xhci);
5350	if (retval)
5351		return retval;
5352
5353	xhci_zero_64b_regs(xhci);
5354
5355	xhci_dbg(xhci, "Resetting HCD\n");
5356	/* Reset the internal HC memory state and registers. */
5357	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5358	if (retval)
5359		return retval;
5360	xhci_dbg(xhci, "Reset complete\n");
5361
5362	/*
5363	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5364	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5365	 * address memory pointers actually. So, this driver clears the AC64
5366	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5367	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5368	 */
5369	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5370		xhci->hcc_params &= ~BIT(0);
5371
5372	/* Set dma_mask and coherent_dma_mask to 64-bits,
5373	 * if xHC supports 64-bit addressing */
5374	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5375			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5376		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5377		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5378	} else {
5379		/*
5380		 * This is to avoid error in cases where a 32-bit USB
5381		 * controller is used on a 64-bit capable system.
5382		 */
5383		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5384		if (retval)
5385			return retval;
5386		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5387		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5388	}
5389
5390	xhci_dbg(xhci, "Calling HCD init\n");
5391	/* Initialize HCD and host controller data structures. */
5392	retval = xhci_init(hcd);
5393	if (retval)
5394		return retval;
5395	xhci_dbg(xhci, "Called HCD init\n");
5396
5397	if (xhci_hcd_is_usb3(hcd))
5398		xhci_hcd_init_usb3_data(xhci, hcd);
5399	else
5400		xhci_hcd_init_usb2_data(xhci, hcd);
5401
5402	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5403		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5404
5405	return 0;
5406}
5407EXPORT_SYMBOL_GPL(xhci_gen_setup);
5408
5409static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5410		struct usb_host_endpoint *ep)
5411{
5412	struct xhci_hcd *xhci;
5413	struct usb_device *udev;
5414	unsigned int slot_id;
5415	unsigned int ep_index;
5416	unsigned long flags;
5417
5418	xhci = hcd_to_xhci(hcd);
5419
5420	spin_lock_irqsave(&xhci->lock, flags);
5421	udev = (struct usb_device *)ep->hcpriv;
5422	slot_id = udev->slot_id;
5423	ep_index = xhci_get_endpoint_index(&ep->desc);
5424
5425	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5426	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5427	spin_unlock_irqrestore(&xhci->lock, flags);
5428}
5429
5430static const struct hc_driver xhci_hc_driver = {
5431	.description =		"xhci-hcd",
5432	.product_desc =		"xHCI Host Controller",
5433	.hcd_priv_size =	sizeof(struct xhci_hcd),
5434
5435	/*
5436	 * generic hardware linkage
5437	 */
5438	.irq =			xhci_irq,
5439	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5440				HCD_BH,
5441
5442	/*
5443	 * basic lifecycle operations
5444	 */
5445	.reset =		NULL, /* set in xhci_init_driver() */
5446	.start =		xhci_run,
5447	.stop =			xhci_stop,
5448	.shutdown =		xhci_shutdown,
5449
5450	/*
5451	 * managing i/o requests and associated device resources
5452	 */
5453	.map_urb_for_dma =      xhci_map_urb_for_dma,
5454	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5455	.urb_enqueue =		xhci_urb_enqueue,
5456	.urb_dequeue =		xhci_urb_dequeue,
5457	.alloc_dev =		xhci_alloc_dev,
5458	.free_dev =		xhci_free_dev,
5459	.alloc_streams =	xhci_alloc_streams,
5460	.free_streams =		xhci_free_streams,
5461	.add_endpoint =		xhci_add_endpoint,
5462	.drop_endpoint =	xhci_drop_endpoint,
5463	.endpoint_disable =	xhci_endpoint_disable,
5464	.endpoint_reset =	xhci_endpoint_reset,
5465	.check_bandwidth =	xhci_check_bandwidth,
5466	.reset_bandwidth =	xhci_reset_bandwidth,
5467	.address_device =	xhci_address_device,
5468	.enable_device =	xhci_enable_device,
5469	.update_hub_device =	xhci_update_hub_device,
5470	.reset_device =		xhci_discover_or_reset_device,
5471
5472	/*
5473	 * scheduling support
5474	 */
5475	.get_frame_number =	xhci_get_frame,
5476
5477	/*
5478	 * root hub support
5479	 */
5480	.hub_control =		xhci_hub_control,
5481	.hub_status_data =	xhci_hub_status_data,
5482	.bus_suspend =		xhci_bus_suspend,
5483	.bus_resume =		xhci_bus_resume,
5484	.get_resuming_ports =	xhci_get_resuming_ports,
5485
5486	/*
5487	 * call back when device connected and addressed
5488	 */
5489	.update_device =        xhci_update_device,
5490	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5491	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5492	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5493	.find_raw_port_number =	xhci_find_raw_port_number,
5494	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5495};
5496
5497void xhci_init_driver(struct hc_driver *drv,
5498		      const struct xhci_driver_overrides *over)
5499{
5500	BUG_ON(!over);
5501
5502	/* Copy the generic table to drv then apply the overrides */
5503	*drv = xhci_hc_driver;
5504
5505	if (over) {
5506		drv->hcd_priv_size += over->extra_priv_size;
5507		if (over->reset)
5508			drv->reset = over->reset;
5509		if (over->start)
5510			drv->start = over->start;
5511		if (over->add_endpoint)
5512			drv->add_endpoint = over->add_endpoint;
5513		if (over->drop_endpoint)
5514			drv->drop_endpoint = over->drop_endpoint;
5515		if (over->check_bandwidth)
5516			drv->check_bandwidth = over->check_bandwidth;
5517		if (over->reset_bandwidth)
5518			drv->reset_bandwidth = over->reset_bandwidth;
5519		if (over->update_hub_device)
5520			drv->update_hub_device = over->update_hub_device;
 
 
5521	}
5522}
5523EXPORT_SYMBOL_GPL(xhci_init_driver);
5524
5525MODULE_DESCRIPTION(DRIVER_DESC);
5526MODULE_AUTHOR(DRIVER_AUTHOR);
5527MODULE_LICENSE("GPL");
5528
5529static int __init xhci_hcd_init(void)
5530{
5531	/*
5532	 * Check the compiler generated sizes of structures that must be laid
5533	 * out in specific ways for hardware access.
5534	 */
5535	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5536	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5537	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5538	/* xhci_device_control has eight fields, and also
5539	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5540	 */
5541	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5542	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5543	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5544	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5545	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5546	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5547	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5548
5549	if (usb_disabled())
5550		return -ENODEV;
5551
5552	xhci_debugfs_create_root();
5553	xhci_dbc_init();
5554
5555	return 0;
5556}
5557
5558/*
5559 * If an init function is provided, an exit function must also be provided
5560 * to allow module unload.
5561 */
5562static void __exit xhci_hcd_fini(void)
5563{
5564	xhci_debugfs_remove_root();
5565	xhci_dbc_exit();
5566}
5567
5568module_init(xhci_hcd_init);
5569module_exit(xhci_hcd_fini);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
   9 */
  10
  11#include <linux/pci.h>
  12#include <linux/iommu.h>
  13#include <linux/iopoll.h>
  14#include <linux/irq.h>
  15#include <linux/log2.h>
  16#include <linux/module.h>
  17#include <linux/moduleparam.h>
  18#include <linux/slab.h>
  19#include <linux/dmi.h>
  20#include <linux/dma-mapping.h>
  21
  22#include "xhci.h"
  23#include "xhci-trace.h"
  24#include "xhci-debugfs.h"
  25#include "xhci-dbgcap.h"
  26
  27#define DRIVER_AUTHOR "Sarah Sharp"
  28#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  29
  30#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  31
  32/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  33static int link_quirk;
  34module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  35MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  36
  37static unsigned long long quirks;
  38module_param(quirks, ullong, S_IRUGO);
  39MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  40
  41static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
  42{
  43	struct xhci_segment *seg = ring->first_seg;
  44
  45	if (!td || !td->start_seg)
  46		return false;
  47	do {
  48		if (seg == td->start_seg)
  49			return true;
  50		seg = seg->next;
  51	} while (seg && seg != ring->first_seg);
  52
  53	return false;
  54}
  55
  56/*
  57 * xhci_handshake - spin reading hc until handshake completes or fails
  58 * @ptr: address of hc register to be read
  59 * @mask: bits to look at in result of read
  60 * @done: value of those bits when handshake succeeds
  61 * @usec: timeout in microseconds
  62 *
  63 * Returns negative errno, or zero on success
  64 *
  65 * Success happens when the "mask" bits have the specified value (hardware
  66 * handshake done).  There are two failure modes:  "usec" have passed (major
  67 * hardware flakeout), or the register reads as all-ones (hardware removed).
  68 */
  69int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
  70{
  71	u32	result;
  72	int	ret;
  73
  74	ret = readl_poll_timeout_atomic(ptr, result,
  75					(result & mask) == done ||
  76					result == U32_MAX,
  77					1, timeout_us);
  78	if (result == U32_MAX)		/* card removed */
  79		return -ENODEV;
  80
  81	return ret;
  82}
  83
  84/*
  85 * xhci_handshake_check_state - same as xhci_handshake but takes an additional
  86 * exit_state parameter, and bails out with an error immediately when xhc_state
  87 * has exit_state flag set.
  88 */
  89int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
  90		u32 mask, u32 done, int usec, unsigned int exit_state)
  91{
  92	u32	result;
  93	int	ret;
  94
  95	ret = readl_poll_timeout_atomic(ptr, result,
  96				(result & mask) == done ||
  97				result == U32_MAX ||
  98				xhci->xhc_state & exit_state,
  99				1, usec);
 100
 101	if (result == U32_MAX || xhci->xhc_state & exit_state)
 102		return -ENODEV;
 103
 104	return ret;
 105}
 106
 107/*
 108 * Disable interrupts and begin the xHCI halting process.
 109 */
 110void xhci_quiesce(struct xhci_hcd *xhci)
 111{
 112	u32 halted;
 113	u32 cmd;
 114	u32 mask;
 115
 116	mask = ~(XHCI_IRQS);
 117	halted = readl(&xhci->op_regs->status) & STS_HALT;
 118	if (!halted)
 119		mask &= ~CMD_RUN;
 120
 121	cmd = readl(&xhci->op_regs->command);
 122	cmd &= mask;
 123	writel(cmd, &xhci->op_regs->command);
 124}
 125
 126/*
 127 * Force HC into halt state.
 128 *
 129 * Disable any IRQs and clear the run/stop bit.
 130 * HC will complete any current and actively pipelined transactions, and
 131 * should halt within 16 ms of the run/stop bit being cleared.
 132 * Read HC Halted bit in the status register to see when the HC is finished.
 133 */
 134int xhci_halt(struct xhci_hcd *xhci)
 135{
 136	int ret;
 137
 138	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 139	xhci_quiesce(xhci);
 140
 141	ret = xhci_handshake(&xhci->op_regs->status,
 142			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 143	if (ret) {
 144		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 145		return ret;
 146	}
 147
 148	xhci->xhc_state |= XHCI_STATE_HALTED;
 149	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 150
 151	return ret;
 152}
 153
 154/*
 155 * Set the run bit and wait for the host to be running.
 156 */
 157int xhci_start(struct xhci_hcd *xhci)
 158{
 159	u32 temp;
 160	int ret;
 161
 162	temp = readl(&xhci->op_regs->command);
 163	temp |= (CMD_RUN);
 164	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 165			temp);
 166	writel(temp, &xhci->op_regs->command);
 167
 168	/*
 169	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 170	 * running.
 171	 */
 172	ret = xhci_handshake(&xhci->op_regs->status,
 173			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 174	if (ret == -ETIMEDOUT)
 175		xhci_err(xhci, "Host took too long to start, "
 176				"waited %u microseconds.\n",
 177				XHCI_MAX_HALT_USEC);
 178	if (!ret) {
 179		/* clear state flags. Including dying, halted or removing */
 180		xhci->xhc_state = 0;
 181		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
 182	}
 183
 184	return ret;
 185}
 186
 187/*
 188 * Reset a halted HC.
 189 *
 190 * This resets pipelines, timers, counters, state machines, etc.
 191 * Transactions will be terminated immediately, and operational registers
 192 * will be set to their defaults.
 193 */
 194int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
 195{
 196	u32 command;
 197	u32 state;
 198	int ret;
 199
 200	state = readl(&xhci->op_regs->status);
 201
 202	if (state == ~(u32)0) {
 203		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 204		return -ENODEV;
 205	}
 206
 207	if ((state & STS_HALT) == 0) {
 208		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 209		return 0;
 210	}
 211
 212	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 213	command = readl(&xhci->op_regs->command);
 214	command |= CMD_RESET;
 215	writel(command, &xhci->op_regs->command);
 216
 217	/* Existing Intel xHCI controllers require a delay of 1 mS,
 218	 * after setting the CMD_RESET bit, and before accessing any
 219	 * HC registers. This allows the HC to complete the
 220	 * reset operation and be ready for HC register access.
 221	 * Without this delay, the subsequent HC register access,
 222	 * may result in a system hang very rarely.
 223	 */
 224	if (xhci->quirks & XHCI_INTEL_HOST)
 225		udelay(1000);
 226
 227	ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
 228				CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
 229	if (ret)
 230		return ret;
 231
 232	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
 233		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
 234
 235	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 236			 "Wait for controller to be ready for doorbell rings");
 237	/*
 238	 * xHCI cannot write to any doorbells or operational registers other
 239	 * than status until the "Controller Not Ready" flag is cleared.
 240	 */
 241	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
 242
 243	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
 244	xhci->usb2_rhub.bus_state.suspended_ports = 0;
 245	xhci->usb2_rhub.bus_state.resuming_ports = 0;
 246	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
 247	xhci->usb3_rhub.bus_state.suspended_ports = 0;
 248	xhci->usb3_rhub.bus_state.resuming_ports = 0;
 249
 250	return ret;
 251}
 252
 253static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
 254{
 255	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 256	struct iommu_domain *domain;
 257	int err, i;
 258	u64 val;
 259	u32 intrs;
 260
 261	/*
 262	 * Some Renesas controllers get into a weird state if they are
 263	 * reset while programmed with 64bit addresses (they will preserve
 264	 * the top half of the address in internal, non visible
 265	 * registers). You end up with half the address coming from the
 266	 * kernel, and the other half coming from the firmware. Also,
 267	 * changing the programming leads to extra accesses even if the
 268	 * controller is supposed to be halted. The controller ends up with
 269	 * a fatal fault, and is then ripe for being properly reset.
 270	 *
 271	 * Special care is taken to only apply this if the device is behind
 272	 * an iommu. Doing anything when there is no iommu is definitely
 273	 * unsafe...
 274	 */
 275	domain = iommu_get_domain_for_dev(dev);
 276	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
 277	    domain->type == IOMMU_DOMAIN_IDENTITY)
 278		return;
 279
 280	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
 281
 282	/* Clear HSEIE so that faults do not get signaled */
 283	val = readl(&xhci->op_regs->command);
 284	val &= ~CMD_HSEIE;
 285	writel(val, &xhci->op_regs->command);
 286
 287	/* Clear HSE (aka FATAL) */
 288	val = readl(&xhci->op_regs->status);
 289	val |= STS_FATAL;
 290	writel(val, &xhci->op_regs->status);
 291
 292	/* Now zero the registers, and brace for impact */
 293	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 294	if (upper_32_bits(val))
 295		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
 296	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 297	if (upper_32_bits(val))
 298		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 299
 300	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
 301		      ARRAY_SIZE(xhci->run_regs->ir_set));
 302
 303	for (i = 0; i < intrs; i++) {
 304		struct xhci_intr_reg __iomem *ir;
 305
 306		ir = &xhci->run_regs->ir_set[i];
 307		val = xhci_read_64(xhci, &ir->erst_base);
 308		if (upper_32_bits(val))
 309			xhci_write_64(xhci, 0, &ir->erst_base);
 310		val= xhci_read_64(xhci, &ir->erst_dequeue);
 311		if (upper_32_bits(val))
 312			xhci_write_64(xhci, 0, &ir->erst_dequeue);
 313	}
 314
 315	/* Wait for the fault to appear. It will be cleared on reset */
 316	err = xhci_handshake(&xhci->op_regs->status,
 317			     STS_FATAL, STS_FATAL,
 318			     XHCI_MAX_HALT_USEC);
 319	if (!err)
 320		xhci_info(xhci, "Fault detected\n");
 321}
 322
 323static int xhci_enable_interrupter(struct xhci_interrupter *ir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324{
 325	u32 iman;
 
 
 326
 327	if (!ir || !ir->ir_set)
 328		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329
 330	iman = readl(&ir->ir_set->irq_pending);
 331	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
 332
 333	return 0;
 
 
 
 
 
 334}
 335
 336static int xhci_disable_interrupter(struct xhci_interrupter *ir)
 
 337{
 338	u32 iman;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 339
 340	if (!ir || !ir->ir_set)
 341		return -EINVAL;
 
 342
 343	iman = readl(&ir->ir_set->irq_pending);
 344	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
 
 345
 346	return 0;
 
 
 347}
 348
 349/* interrupt moderation interval imod_interval in nanoseconds */
 350static int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
 351					   u32 imod_interval)
 352{
 353	u32 imod;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 354
 355	if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
 
 
 
 
 
 
 356		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357
 358	imod = readl(&ir->ir_set->irq_control);
 359	imod &= ~ER_IRQ_INTERVAL_MASK;
 360	imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
 361	writel(imod, &ir->ir_set->irq_control);
 362
 
 
 363	return 0;
 364}
 365
 
 
 
 
 
 
 
 
 
 
 366static void compliance_mode_recovery(struct timer_list *t)
 367{
 368	struct xhci_hcd *xhci;
 369	struct usb_hcd *hcd;
 370	struct xhci_hub *rhub;
 371	u32 temp;
 372	int i;
 373
 374	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
 375	rhub = &xhci->usb3_rhub;
 376	hcd = rhub->hcd;
 377
 378	if (!hcd)
 379		return;
 380
 381	for (i = 0; i < rhub->num_ports; i++) {
 382		temp = readl(rhub->ports[i]->addr);
 383		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 384			/*
 385			 * Compliance Mode Detected. Letting USB Core
 386			 * handle the Warm Reset
 387			 */
 388			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 389					"Compliance mode detected->port %d",
 390					i + 1);
 391			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 392					"Attempting compliance mode recovery");
 393
 394			if (hcd->state == HC_STATE_SUSPENDED)
 395				usb_hcd_resume_root_hub(hcd);
 396
 397			usb_hcd_poll_rh_status(hcd);
 398		}
 399	}
 400
 401	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
 402		mod_timer(&xhci->comp_mode_recovery_timer,
 403			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 404}
 405
 406/*
 407 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 408 * that causes ports behind that hardware to enter compliance mode sometimes.
 409 * The quirk creates a timer that polls every 2 seconds the link state of
 410 * each host controller's port and recovers it by issuing a Warm reset
 411 * if Compliance mode is detected, otherwise the port will become "dead" (no
 412 * device connections or disconnections will be detected anymore). Becasue no
 413 * status event is generated when entering compliance mode (per xhci spec),
 414 * this quirk is needed on systems that have the failing hardware installed.
 415 */
 416static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 417{
 418	xhci->port_status_u0 = 0;
 419	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
 420		    0);
 421	xhci->comp_mode_recovery_timer.expires = jiffies +
 422			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 423
 424	add_timer(&xhci->comp_mode_recovery_timer);
 425	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 426			"Compliance mode recovery timer initialized");
 427}
 428
 429/*
 430 * This function identifies the systems that have installed the SN65LVPE502CP
 431 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 432 * Systems:
 433 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 434 */
 435static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 436{
 437	const char *dmi_product_name, *dmi_sys_vendor;
 438
 439	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 440	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 441	if (!dmi_product_name || !dmi_sys_vendor)
 442		return false;
 443
 444	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 445		return false;
 446
 447	if (strstr(dmi_product_name, "Z420") ||
 448			strstr(dmi_product_name, "Z620") ||
 449			strstr(dmi_product_name, "Z820") ||
 450			strstr(dmi_product_name, "Z1 Workstation"))
 451		return true;
 452
 453	return false;
 454}
 455
 456static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 457{
 458	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
 459}
 460
 461
 462/*
 463 * Initialize memory for HCD and xHC (one-time init).
 464 *
 465 * Program the PAGESIZE register, initialize the device context array, create
 466 * device contexts (?), set up a command ring segment (or two?), create event
 467 * ring (one for now).
 468 */
 469static int xhci_init(struct usb_hcd *hcd)
 470{
 471	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 472	int retval;
 473
 474	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 475	spin_lock_init(&xhci->lock);
 476	if (xhci->hci_version == 0x95 && link_quirk) {
 477		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 478				"QUIRK: Not clearing Link TRB chain bits.");
 479		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 480	} else {
 481		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 482				"xHCI doesn't need link TRB QUIRK");
 483	}
 484	retval = xhci_mem_init(xhci, GFP_KERNEL);
 485	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 486
 487	/* Initializing Compliance Mode Recovery Data If Needed */
 488	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 489		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 490		compliance_mode_recovery_timer_init(xhci);
 491	}
 492
 493	return retval;
 494}
 495
 496/*-------------------------------------------------------------------------*/
 497
 
 498static int xhci_run_finished(struct xhci_hcd *xhci)
 499{
 500	struct xhci_interrupter *ir = xhci->interrupters[0];
 501	unsigned long	flags;
 502	u32		temp;
 503
 504	/*
 505	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
 506	 * Protect the short window before host is running with a lock
 507	 */
 508	spin_lock_irqsave(&xhci->lock, flags);
 509
 510	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
 511	temp = readl(&xhci->op_regs->command);
 512	temp |= (CMD_EIE);
 513	writel(temp, &xhci->op_regs->command);
 514
 515	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
 516	xhci_enable_interrupter(ir);
 
 517
 518	if (xhci_start(xhci)) {
 519		xhci_halt(xhci);
 520		spin_unlock_irqrestore(&xhci->lock, flags);
 521		return -ENODEV;
 522	}
 523
 524	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 525
 526	if (xhci->quirks & XHCI_NEC_HOST)
 527		xhci_ring_cmd_db(xhci);
 528
 529	spin_unlock_irqrestore(&xhci->lock, flags);
 530
 531	return 0;
 532}
 533
 534/*
 535 * Start the HC after it was halted.
 536 *
 537 * This function is called by the USB core when the HC driver is added.
 538 * Its opposite is xhci_stop().
 539 *
 540 * xhci_init() must be called once before this function can be called.
 541 * Reset the HC, enable device slot contexts, program DCBAAP, and
 542 * set command ring pointer and event ring pointer.
 543 *
 544 * Setup MSI-X vectors and enable interrupts.
 545 */
 546int xhci_run(struct usb_hcd *hcd)
 547{
 
 548	u64 temp_64;
 549	int ret;
 550	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 551	struct xhci_interrupter *ir = xhci->interrupters[0];
 552	/* Start the xHCI host controller running only after the USB 2.0 roothub
 553	 * is setup.
 554	 */
 555
 556	hcd->uses_new_polling = 1;
 557	if (hcd->msi_enabled)
 558		ir->ip_autoclear = true;
 559
 560	if (!usb_hcd_is_primary_hcd(hcd))
 561		return xhci_run_finished(xhci);
 562
 563	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 564
 565	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
 566	temp_64 &= ERST_PTR_MASK;
 
 
 
 
 567	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 568			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 569
 570	xhci_set_interrupter_moderation(ir, xhci->imod_interval);
 
 
 
 
 
 571
 572	if (xhci->quirks & XHCI_NEC_HOST) {
 573		struct xhci_command *command;
 574
 575		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
 576		if (!command)
 577			return -ENOMEM;
 578
 579		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 580				TRB_TYPE(TRB_NEC_GET_FW));
 581		if (ret)
 582			xhci_free_command(xhci, command);
 583	}
 584	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 585			"Finished %s for main hcd", __func__);
 586
 587	xhci_create_dbc_dev(xhci);
 588
 589	xhci_debugfs_init(xhci);
 590
 591	if (xhci_has_one_roothub(xhci))
 592		return xhci_run_finished(xhci);
 593
 594	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
 595
 596	return 0;
 597}
 598EXPORT_SYMBOL_GPL(xhci_run);
 599
 600/*
 601 * Stop xHCI driver.
 602 *
 603 * This function is called by the USB core when the HC driver is removed.
 604 * Its opposite is xhci_run().
 605 *
 606 * Disable device contexts, disable IRQs, and quiesce the HC.
 607 * Reset the HC, finish any completed transactions, and cleanup memory.
 608 */
 609void xhci_stop(struct usb_hcd *hcd)
 610{
 611	u32 temp;
 612	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 613	struct xhci_interrupter *ir = xhci->interrupters[0];
 614
 615	mutex_lock(&xhci->mutex);
 616
 617	/* Only halt host and free memory after both hcds are removed */
 618	if (!usb_hcd_is_primary_hcd(hcd)) {
 619		mutex_unlock(&xhci->mutex);
 620		return;
 621	}
 622
 623	xhci_remove_dbc_dev(xhci);
 624
 625	spin_lock_irq(&xhci->lock);
 626	xhci->xhc_state |= XHCI_STATE_HALTED;
 627	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 628	xhci_halt(xhci);
 629	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
 630	spin_unlock_irq(&xhci->lock);
 631
 
 
 632	/* Deleting Compliance Mode Recovery Timer */
 633	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 634			(!(xhci_all_ports_seen_u0(xhci)))) {
 635		del_timer_sync(&xhci->comp_mode_recovery_timer);
 636		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 637				"%s: compliance mode recovery timer deleted",
 638				__func__);
 639	}
 640
 641	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 642		usb_amd_dev_put();
 643
 644	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 645			"// Disabling event ring interrupts");
 646	temp = readl(&xhci->op_regs->status);
 647	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
 648	xhci_disable_interrupter(ir);
 
 649
 650	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 651	xhci_mem_cleanup(xhci);
 652	xhci_debugfs_exit(xhci);
 653	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 654			"xhci_stop completed - status = %x",
 655			readl(&xhci->op_regs->status));
 656	mutex_unlock(&xhci->mutex);
 657}
 658EXPORT_SYMBOL_GPL(xhci_stop);
 659
 660/*
 661 * Shutdown HC (not bus-specific)
 662 *
 663 * This is called when the machine is rebooting or halting.  We assume that the
 664 * machine will be powered off, and the HC's internal state will be reset.
 665 * Don't bother to free memory.
 666 *
 667 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 668 */
 669void xhci_shutdown(struct usb_hcd *hcd)
 670{
 671	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 672
 673	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 674		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
 675
 676	/* Don't poll the roothubs after shutdown. */
 677	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
 678			__func__, hcd->self.busnum);
 679	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 680	del_timer_sync(&hcd->rh_timer);
 681
 682	if (xhci->shared_hcd) {
 683		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 684		del_timer_sync(&xhci->shared_hcd->rh_timer);
 685	}
 686
 687	spin_lock_irq(&xhci->lock);
 688	xhci_halt(xhci);
 689
 690	/*
 691	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
 692	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
 693	 */
 694	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
 695	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
 696		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
 697
 698	spin_unlock_irq(&xhci->lock);
 699
 
 
 700	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 701			"xhci_shutdown completed - status = %x",
 702			readl(&xhci->op_regs->status));
 703}
 704EXPORT_SYMBOL_GPL(xhci_shutdown);
 705
 706#ifdef CONFIG_PM
 707static void xhci_save_registers(struct xhci_hcd *xhci)
 708{
 709	struct xhci_interrupter *ir;
 710	unsigned int i;
 711
 712	xhci->s3.command = readl(&xhci->op_regs->command);
 713	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 714	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 715	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 716
 717	/* save both primary and all secondary interrupters */
 718	/* fixme, shold we lock  to prevent race with remove secondary interrupter? */
 719	for (i = 0; i < xhci->max_interrupters; i++) {
 720		ir = xhci->interrupters[i];
 721		if (!ir)
 722			continue;
 723
 724		ir->s3_erst_size = readl(&ir->ir_set->erst_size);
 725		ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
 726		ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
 727		ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
 728		ir->s3_irq_control = readl(&ir->ir_set->irq_control);
 729	}
 730}
 731
 732static void xhci_restore_registers(struct xhci_hcd *xhci)
 733{
 734	struct xhci_interrupter *ir;
 735	unsigned int i;
 736
 737	writel(xhci->s3.command, &xhci->op_regs->command);
 738	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 739	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 740	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 741
 742	/* FIXME should we lock to protect against freeing of interrupters */
 743	for (i = 0; i < xhci->max_interrupters; i++) {
 744		ir = xhci->interrupters[i];
 745		if (!ir)
 746			continue;
 747
 748		writel(ir->s3_erst_size, &ir->ir_set->erst_size);
 749		xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
 750		xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
 751		writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
 752		writel(ir->s3_irq_control, &ir->ir_set->irq_control);
 753	}
 754}
 755
 756static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 757{
 758	u64	val_64;
 759
 760	/* step 2: initialize command ring buffer */
 761	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 762	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 763		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 764				      xhci->cmd_ring->dequeue) &
 765		 (u64) ~CMD_RING_RSVD_BITS) |
 766		xhci->cmd_ring->cycle_state;
 767	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 768			"// Setting command ring address to 0x%llx",
 769			(long unsigned long) val_64);
 770	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 771}
 772
 773/*
 774 * The whole command ring must be cleared to zero when we suspend the host.
 775 *
 776 * The host doesn't save the command ring pointer in the suspend well, so we
 777 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 778 * aligned, because of the reserved bits in the command ring dequeue pointer
 779 * register.  Therefore, we can't just set the dequeue pointer back in the
 780 * middle of the ring (TRBs are 16-byte aligned).
 781 */
 782static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 783{
 784	struct xhci_ring *ring;
 785	struct xhci_segment *seg;
 786
 787	ring = xhci->cmd_ring;
 788	seg = ring->deq_seg;
 789	do {
 790		memset(seg->trbs, 0,
 791			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 792		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 793			cpu_to_le32(~TRB_CYCLE);
 794		seg = seg->next;
 795	} while (seg != ring->deq_seg);
 796
 797	xhci_initialize_ring_info(ring, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 798	/*
 799	 * Reset the hardware dequeue pointer.
 800	 * Yes, this will need to be re-written after resume, but we're paranoid
 801	 * and want to make sure the hardware doesn't access bogus memory
 802	 * because, say, the BIOS or an SMI started the host without changing
 803	 * the command ring pointers.
 804	 */
 805	xhci_set_cmd_ring_deq(xhci);
 806}
 807
 808/*
 809 * Disable port wake bits if do_wakeup is not set.
 810 *
 811 * Also clear a possible internal port wake state left hanging for ports that
 812 * detected termination but never successfully enumerated (trained to 0U).
 813 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
 814 * at enumeration clears this wake, force one here as well for unconnected ports
 815 */
 816
 817static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
 818				       struct xhci_hub *rhub,
 819				       bool do_wakeup)
 820{
 821	unsigned long flags;
 822	u32 t1, t2, portsc;
 823	int i;
 824
 825	spin_lock_irqsave(&xhci->lock, flags);
 826
 827	for (i = 0; i < rhub->num_ports; i++) {
 828		portsc = readl(rhub->ports[i]->addr);
 829		t1 = xhci_port_state_to_neutral(portsc);
 830		t2 = t1;
 831
 832		/* clear wake bits if do_wake is not set */
 833		if (!do_wakeup)
 834			t2 &= ~PORT_WAKE_BITS;
 835
 836		/* Don't touch csc bit if connected or connect change is set */
 837		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
 838			t2 |= PORT_CSC;
 839
 840		if (t1 != t2) {
 841			writel(t2, rhub->ports[i]->addr);
 842			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
 843				 rhub->hcd->self.busnum, i + 1, portsc, t2);
 844		}
 845	}
 846	spin_unlock_irqrestore(&xhci->lock, flags);
 847}
 848
 849static bool xhci_pending_portevent(struct xhci_hcd *xhci)
 850{
 851	struct xhci_port	**ports;
 852	int			port_index;
 853	u32			status;
 854	u32			portsc;
 855
 856	status = readl(&xhci->op_regs->status);
 857	if (status & STS_EINT)
 858		return true;
 859	/*
 860	 * Checking STS_EINT is not enough as there is a lag between a change
 861	 * bit being set and the Port Status Change Event that it generated
 862	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
 863	 */
 864
 865	port_index = xhci->usb2_rhub.num_ports;
 866	ports = xhci->usb2_rhub.ports;
 867	while (port_index--) {
 868		portsc = readl(ports[port_index]->addr);
 869		if (portsc & PORT_CHANGE_MASK ||
 870		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 871			return true;
 872	}
 873	port_index = xhci->usb3_rhub.num_ports;
 874	ports = xhci->usb3_rhub.ports;
 875	while (port_index--) {
 876		portsc = readl(ports[port_index]->addr);
 877		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
 878		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 879			return true;
 880	}
 881	return false;
 882}
 883
 884/*
 885 * Stop HC (not bus-specific)
 886 *
 887 * This is called when the machine transition into S3/S4 mode.
 888 *
 889 */
 890int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 891{
 892	int			rc = 0;
 893	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
 894	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 895	u32			command;
 896	u32			res;
 897
 898	if (!hcd->state)
 899		return 0;
 900
 901	if (hcd->state != HC_STATE_SUSPENDED ||
 902	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
 903		return -EINVAL;
 904
 905	/* Clear root port wake on bits if wakeup not allowed. */
 906	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
 907	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
 908
 909	if (!HCD_HW_ACCESSIBLE(hcd))
 910		return 0;
 911
 912	xhci_dbc_suspend(xhci);
 913
 914	/* Don't poll the roothubs on bus suspend. */
 915	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
 916		 __func__, hcd->self.busnum);
 917	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 918	del_timer_sync(&hcd->rh_timer);
 919	if (xhci->shared_hcd) {
 920		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 921		del_timer_sync(&xhci->shared_hcd->rh_timer);
 922	}
 923
 924	if (xhci->quirks & XHCI_SUSPEND_DELAY)
 925		usleep_range(1000, 1500);
 926
 927	spin_lock_irq(&xhci->lock);
 928	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 929	if (xhci->shared_hcd)
 930		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 931	/* step 1: stop endpoint */
 932	/* skipped assuming that port suspend has done */
 933
 934	/* step 2: clear Run/Stop bit */
 935	command = readl(&xhci->op_regs->command);
 936	command &= ~CMD_RUN;
 937	writel(command, &xhci->op_regs->command);
 938
 939	/* Some chips from Fresco Logic need an extraordinary delay */
 940	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
 941
 942	if (xhci_handshake(&xhci->op_regs->status,
 943		      STS_HALT, STS_HALT, delay)) {
 944		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 945		spin_unlock_irq(&xhci->lock);
 946		return -ETIMEDOUT;
 947	}
 948	xhci_clear_command_ring(xhci);
 949
 950	/* step 3: save registers */
 951	xhci_save_registers(xhci);
 952
 953	/* step 4: set CSS flag */
 954	command = readl(&xhci->op_regs->command);
 955	command |= CMD_CSS;
 956	writel(command, &xhci->op_regs->command);
 957	xhci->broken_suspend = 0;
 958	if (xhci_handshake(&xhci->op_regs->status,
 959				STS_SAVE, 0, 20 * 1000)) {
 960	/*
 961	 * AMD SNPS xHC 3.0 occasionally does not clear the
 962	 * SSS bit of USBSTS and when driver tries to poll
 963	 * to see if the xHC clears BIT(8) which never happens
 964	 * and driver assumes that controller is not responding
 965	 * and times out. To workaround this, its good to check
 966	 * if SRE and HCE bits are not set (as per xhci
 967	 * Section 5.4.2) and bypass the timeout.
 968	 */
 969		res = readl(&xhci->op_regs->status);
 970		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
 971		    (((res & STS_SRE) == 0) &&
 972				((res & STS_HCE) == 0))) {
 973			xhci->broken_suspend = 1;
 974		} else {
 975			xhci_warn(xhci, "WARN: xHC save state timeout\n");
 976			spin_unlock_irq(&xhci->lock);
 977			return -ETIMEDOUT;
 978		}
 979	}
 980	spin_unlock_irq(&xhci->lock);
 981
 982	/*
 983	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 984	 * is about to be suspended.
 985	 */
 986	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 987			(!(xhci_all_ports_seen_u0(xhci)))) {
 988		del_timer_sync(&xhci->comp_mode_recovery_timer);
 989		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 990				"%s: compliance mode recovery timer deleted",
 991				__func__);
 992	}
 993
 
 
 
 
 994	return rc;
 995}
 996EXPORT_SYMBOL_GPL(xhci_suspend);
 997
 998/*
 999 * start xHC (not bus-specific)
1000 *
1001 * This is called when the machine transition from S3/S4 mode.
1002 *
1003 */
1004int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
1005{
1006	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
1007	u32			command, temp = 0;
1008	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1009	int			retval = 0;
1010	bool			comp_timer_running = false;
1011	bool			pending_portevent = false;
1012	bool			suspended_usb3_devs = false;
1013	bool			reinit_xhc = false;
1014
1015	if (!hcd->state)
1016		return 0;
1017
1018	/* Wait a bit if either of the roothubs need to settle from the
1019	 * transition into bus suspend.
1020	 */
1021
1022	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1023	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1024		msleep(100);
1025
1026	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1027	if (xhci->shared_hcd)
1028		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1029
1030	spin_lock_irq(&xhci->lock);
1031
1032	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1033		reinit_xhc = true;
1034
1035	if (!reinit_xhc) {
1036		/*
1037		 * Some controllers might lose power during suspend, so wait
1038		 * for controller not ready bit to clear, just as in xHC init.
1039		 */
1040		retval = xhci_handshake(&xhci->op_regs->status,
1041					STS_CNR, 0, 10 * 1000 * 1000);
1042		if (retval) {
1043			xhci_warn(xhci, "Controller not ready at resume %d\n",
1044				  retval);
1045			spin_unlock_irq(&xhci->lock);
1046			return retval;
1047		}
1048		/* step 1: restore register */
1049		xhci_restore_registers(xhci);
1050		/* step 2: initialize command ring buffer */
1051		xhci_set_cmd_ring_deq(xhci);
1052		/* step 3: restore state and start state*/
1053		/* step 3: set CRS flag */
1054		command = readl(&xhci->op_regs->command);
1055		command |= CMD_CRS;
1056		writel(command, &xhci->op_regs->command);
1057		/*
1058		 * Some controllers take up to 55+ ms to complete the controller
1059		 * restore so setting the timeout to 100ms. Xhci specification
1060		 * doesn't mention any timeout value.
1061		 */
1062		if (xhci_handshake(&xhci->op_regs->status,
1063			      STS_RESTORE, 0, 100 * 1000)) {
1064			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1065			spin_unlock_irq(&xhci->lock);
1066			return -ETIMEDOUT;
1067		}
1068	}
1069
1070	temp = readl(&xhci->op_regs->status);
1071
1072	/* re-initialize the HC on Restore Error, or Host Controller Error */
1073	if ((temp & (STS_SRE | STS_HCE)) &&
1074	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1075		reinit_xhc = true;
1076		if (!xhci->broken_suspend)
1077			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1078	}
1079
1080	if (reinit_xhc) {
1081		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1082				!(xhci_all_ports_seen_u0(xhci))) {
1083			del_timer_sync(&xhci->comp_mode_recovery_timer);
1084			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1085				"Compliance Mode Recovery Timer deleted!");
1086		}
1087
1088		/* Let the USB core know _both_ roothubs lost power. */
1089		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1090		if (xhci->shared_hcd)
1091			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1092
1093		xhci_dbg(xhci, "Stop HCD\n");
1094		xhci_halt(xhci);
1095		xhci_zero_64b_regs(xhci);
1096		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1097		spin_unlock_irq(&xhci->lock);
1098		if (retval)
1099			return retval;
 
1100
1101		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1102		temp = readl(&xhci->op_regs->status);
1103		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1104		xhci_disable_interrupter(xhci->interrupters[0]);
 
1105
1106		xhci_dbg(xhci, "cleaning up memory\n");
1107		xhci_mem_cleanup(xhci);
1108		xhci_debugfs_exit(xhci);
1109		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1110			    readl(&xhci->op_regs->status));
1111
1112		/* USB core calls the PCI reinit and start functions twice:
1113		 * first with the primary HCD, and then with the secondary HCD.
1114		 * If we don't do the same, the host will never be started.
1115		 */
1116		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1117		retval = xhci_init(hcd);
1118		if (retval)
1119			return retval;
1120		comp_timer_running = true;
1121
1122		xhci_dbg(xhci, "Start the primary HCD\n");
1123		retval = xhci_run(hcd);
1124		if (!retval && xhci->shared_hcd) {
1125			xhci_dbg(xhci, "Start the secondary HCD\n");
1126			retval = xhci_run(xhci->shared_hcd);
1127		}
1128
1129		hcd->state = HC_STATE_SUSPENDED;
1130		if (xhci->shared_hcd)
1131			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1132		goto done;
1133	}
1134
1135	/* step 4: set Run/Stop bit */
1136	command = readl(&xhci->op_regs->command);
1137	command |= CMD_RUN;
1138	writel(command, &xhci->op_regs->command);
1139	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1140		  0, 250 * 1000);
1141
1142	/* step 5: walk topology and initialize portsc,
1143	 * portpmsc and portli
1144	 */
1145	/* this is done in bus_resume */
1146
1147	/* step 6: restart each of the previously
1148	 * Running endpoints by ringing their doorbells
1149	 */
1150
1151	spin_unlock_irq(&xhci->lock);
1152
1153	xhci_dbc_resume(xhci);
1154
1155 done:
1156	if (retval == 0) {
1157		/*
1158		 * Resume roothubs only if there are pending events.
1159		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1160		 * the first wake signalling failed, give it that chance if
1161		 * there are suspended USB 3 devices.
1162		 */
1163		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1164		    xhci->usb3_rhub.bus_state.bus_suspended)
1165			suspended_usb3_devs = true;
1166
1167		pending_portevent = xhci_pending_portevent(xhci);
1168
1169		if (suspended_usb3_devs && !pending_portevent &&
1170		    msg.event == PM_EVENT_AUTO_RESUME) {
1171			msleep(120);
1172			pending_portevent = xhci_pending_portevent(xhci);
1173		}
1174
1175		if (pending_portevent) {
1176			if (xhci->shared_hcd)
1177				usb_hcd_resume_root_hub(xhci->shared_hcd);
1178			usb_hcd_resume_root_hub(hcd);
1179		}
1180	}
1181	/*
1182	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1183	 * be re-initialized Always after a system resume. Ports are subject
1184	 * to suffer the Compliance Mode issue again. It doesn't matter if
1185	 * ports have entered previously to U0 before system's suspension.
1186	 */
1187	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1188		compliance_mode_recovery_timer_init(xhci);
1189
1190	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1191		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1192
1193	/* Re-enable port polling. */
1194	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1195		 __func__, hcd->self.busnum);
1196	if (xhci->shared_hcd) {
1197		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1198		usb_hcd_poll_rh_status(xhci->shared_hcd);
1199	}
1200	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1201	usb_hcd_poll_rh_status(hcd);
1202
1203	return retval;
1204}
1205EXPORT_SYMBOL_GPL(xhci_resume);
1206#endif	/* CONFIG_PM */
1207
1208/*-------------------------------------------------------------------------*/
1209
1210static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1211{
1212	void *temp;
1213	int ret = 0;
1214	unsigned int buf_len;
1215	enum dma_data_direction dir;
1216
1217	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1218	buf_len = urb->transfer_buffer_length;
1219
1220	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1221			    dev_to_node(hcd->self.sysdev));
1222	if (!temp)
1223		return -ENOMEM;
1224
1225	if (usb_urb_dir_out(urb))
1226		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1227				   temp, buf_len, 0);
1228
1229	urb->transfer_buffer = temp;
1230	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1231					   urb->transfer_buffer,
1232					   urb->transfer_buffer_length,
1233					   dir);
1234
1235	if (dma_mapping_error(hcd->self.sysdev,
1236			      urb->transfer_dma)) {
1237		ret = -EAGAIN;
1238		kfree(temp);
1239	} else {
1240		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1241	}
1242
1243	return ret;
1244}
1245
1246static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1247					  struct urb *urb)
1248{
1249	bool ret = false;
1250	unsigned int i;
1251	unsigned int len = 0;
1252	unsigned int trb_size;
1253	unsigned int max_pkt;
1254	struct scatterlist *sg;
1255	struct scatterlist *tail_sg;
1256
1257	tail_sg = urb->sg;
1258	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1259
1260	if (!urb->num_sgs)
1261		return ret;
1262
1263	if (urb->dev->speed >= USB_SPEED_SUPER)
1264		trb_size = TRB_CACHE_SIZE_SS;
1265	else
1266		trb_size = TRB_CACHE_SIZE_HS;
1267
1268	if (urb->transfer_buffer_length != 0 &&
1269	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1270		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1271			len = len + sg->length;
1272			if (i > trb_size - 2) {
1273				len = len - tail_sg->length;
1274				if (len < max_pkt) {
1275					ret = true;
1276					break;
1277				}
1278
1279				tail_sg = sg_next(tail_sg);
1280			}
1281		}
1282	}
1283	return ret;
1284}
1285
1286static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1287{
1288	unsigned int len;
1289	unsigned int buf_len;
1290	enum dma_data_direction dir;
1291
1292	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1293
1294	buf_len = urb->transfer_buffer_length;
1295
1296	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1297	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1298		dma_unmap_single(hcd->self.sysdev,
1299				 urb->transfer_dma,
1300				 urb->transfer_buffer_length,
1301				 dir);
1302
1303	if (usb_urb_dir_in(urb)) {
1304		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1305					   urb->transfer_buffer,
1306					   buf_len,
1307					   0);
1308		if (len != buf_len) {
1309			xhci_dbg(hcd_to_xhci(hcd),
1310				 "Copy from tmp buf to urb sg list failed\n");
1311			urb->actual_length = len;
1312		}
1313	}
1314	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1315	kfree(urb->transfer_buffer);
1316	urb->transfer_buffer = NULL;
1317}
1318
1319/*
1320 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1321 * we'll copy the actual data into the TRB address register. This is limited to
1322 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1323 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1324 */
1325static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1326				gfp_t mem_flags)
1327{
1328	struct xhci_hcd *xhci;
1329
1330	xhci = hcd_to_xhci(hcd);
1331
1332	if (xhci_urb_suitable_for_idt(urb))
1333		return 0;
1334
1335	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1336		if (xhci_urb_temp_buffer_required(hcd, urb))
1337			return xhci_map_temp_buffer(hcd, urb);
1338	}
1339	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1340}
1341
1342static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1343{
1344	struct xhci_hcd *xhci;
1345	bool unmap_temp_buf = false;
1346
1347	xhci = hcd_to_xhci(hcd);
1348
1349	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1350		unmap_temp_buf = true;
1351
1352	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1353		xhci_unmap_temp_buf(hcd, urb);
1354	else
1355		usb_hcd_unmap_urb_for_dma(hcd, urb);
1356}
1357
1358/**
1359 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1360 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1361 * value to right shift 1 for the bitmask.
1362 *
1363 * Index  = (epnum * 2) + direction - 1,
1364 * where direction = 0 for OUT, 1 for IN.
1365 * For control endpoints, the IN index is used (OUT index is unused), so
1366 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1367 */
1368unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1369{
1370	unsigned int index;
1371	if (usb_endpoint_xfer_control(desc))
1372		index = (unsigned int) (usb_endpoint_num(desc)*2);
1373	else
1374		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1375			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1376	return index;
1377}
1378EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1379
1380/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1381 * address from the XHCI endpoint index.
1382 */
1383static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1384{
1385	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1386	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1387	return direction | number;
1388}
1389
1390/* Find the flag for this endpoint (for use in the control context).  Use the
1391 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1392 * bit 1, etc.
1393 */
1394static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1395{
1396	return 1 << (xhci_get_endpoint_index(desc) + 1);
1397}
1398
1399/* Compute the last valid endpoint context index.  Basically, this is the
1400 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1401 * we find the most significant bit set in the added contexts flags.
1402 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1403 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1404 */
1405unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1406{
1407	return fls(added_ctxs) - 1;
1408}
1409
1410/* Returns 1 if the arguments are OK;
1411 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1412 */
1413static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1414		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1415		const char *func) {
1416	struct xhci_hcd	*xhci;
1417	struct xhci_virt_device	*virt_dev;
1418
1419	if (!hcd || (check_ep && !ep) || !udev) {
1420		pr_debug("xHCI %s called with invalid args\n", func);
1421		return -EINVAL;
1422	}
1423	if (!udev->parent) {
1424		pr_debug("xHCI %s called for root hub\n", func);
1425		return 0;
1426	}
1427
1428	xhci = hcd_to_xhci(hcd);
1429	if (check_virt_dev) {
1430		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1431			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1432					func);
1433			return -EINVAL;
1434		}
1435
1436		virt_dev = xhci->devs[udev->slot_id];
1437		if (virt_dev->udev != udev) {
1438			xhci_dbg(xhci, "xHCI %s called with udev and "
1439					  "virt_dev does not match\n", func);
1440			return -EINVAL;
1441		}
1442	}
1443
1444	if (xhci->xhc_state & XHCI_STATE_HALTED)
1445		return -ENODEV;
1446
1447	return 1;
1448}
1449
1450static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1451		struct usb_device *udev, struct xhci_command *command,
1452		bool ctx_change, bool must_succeed);
1453
1454/*
1455 * Full speed devices may have a max packet size greater than 8 bytes, but the
1456 * USB core doesn't know that until it reads the first 8 bytes of the
1457 * descriptor.  If the usb_device's max packet size changes after that point,
1458 * we need to issue an evaluate context command and wait on it.
1459 */
1460static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
 
1461{
 
1462	struct xhci_input_control_ctx *ctrl_ctx;
1463	struct xhci_ep_ctx *ep_ctx;
1464	struct xhci_command *command;
1465	int max_packet_size;
1466	int hw_max_packet_size;
1467	int ret = 0;
1468
1469	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
 
1470	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1471	max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1472
1473	if (hw_max_packet_size == max_packet_size)
1474		return 0;
1475
1476	switch (max_packet_size) {
1477	case 8: case 16: case 32: case 64: case 9:
1478		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1479				"Max Packet Size for ep 0 changed.");
1480		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1481				"Max packet size in usb_device = %d",
1482				max_packet_size);
1483		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1484				"Max packet size in xHCI HW = %d",
1485				hw_max_packet_size);
1486		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1487				"Issuing evaluate context command.");
1488
1489		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
 
 
 
 
 
1490		if (!command)
1491			return -ENOMEM;
1492
1493		command->in_ctx = vdev->in_ctx;
1494		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1495		if (!ctrl_ctx) {
1496			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1497					__func__);
1498			ret = -ENOMEM;
1499			break;
1500		}
1501		/* Set up the modified control endpoint 0 */
1502		xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
 
1503
1504		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1505		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1506		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1507		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1508
1509		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1510		ctrl_ctx->drop_flags = 0;
1511
1512		ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1513					      true, false);
1514		/* Clean up the input context for later use by bandwidth functions */
 
 
 
1515		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1516		break;
1517	default:
1518		dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1519			max_packet_size);
1520		return -EINVAL;
1521	}
1522
1523	kfree(command->completion);
1524	kfree(command);
1525
1526	return ret;
1527}
1528
1529/*
1530 * non-error returns are a promise to giveback() the urb later
1531 * we drop ownership so next owner (or urb unlink) can get it
1532 */
1533static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1534{
1535	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1536	unsigned long flags;
1537	int ret = 0;
1538	unsigned int slot_id, ep_index;
1539	unsigned int *ep_state;
1540	struct urb_priv	*urb_priv;
1541	int num_tds;
1542
 
 
 
 
 
 
 
 
1543	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
 
 
 
 
 
 
 
 
 
1544
1545	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1546		num_tds = urb->number_of_packets;
1547	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1548	    urb->transfer_buffer_length > 0 &&
1549	    urb->transfer_flags & URB_ZERO_PACKET &&
1550	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1551		num_tds = 2;
1552	else
1553		num_tds = 1;
1554
1555	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1556	if (!urb_priv)
1557		return -ENOMEM;
1558
1559	urb_priv->num_tds = num_tds;
1560	urb_priv->num_tds_done = 0;
1561	urb->hcpriv = urb_priv;
1562
1563	trace_xhci_urb_enqueue(urb);
1564
1565	spin_lock_irqsave(&xhci->lock, flags);
1566
1567	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1568			      true, true, __func__);
1569	if (ret <= 0) {
1570		ret = ret ? ret : -EINVAL;
1571		goto free_priv;
 
 
 
 
 
 
1572	}
1573
1574	slot_id = urb->dev->slot_id;
1575
1576	if (!HCD_HW_ACCESSIBLE(hcd)) {
1577		ret = -ESHUTDOWN;
1578		goto free_priv;
1579	}
1580
1581	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1582		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1583		ret = -ENODEV;
1584		goto free_priv;
1585	}
1586
1587	if (xhci->xhc_state & XHCI_STATE_DYING) {
1588		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1589			 urb->ep->desc.bEndpointAddress, urb);
1590		ret = -ESHUTDOWN;
1591		goto free_priv;
1592	}
1593
1594	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1595
1596	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1597		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1598			  *ep_state);
1599		ret = -EINVAL;
1600		goto free_priv;
1601	}
1602	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1603		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1604		ret = -EINVAL;
1605		goto free_priv;
1606	}
1607
1608	switch (usb_endpoint_type(&urb->ep->desc)) {
1609
1610	case USB_ENDPOINT_XFER_CONTROL:
1611		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1612					 slot_id, ep_index);
1613		break;
1614	case USB_ENDPOINT_XFER_BULK:
1615		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1616					 slot_id, ep_index);
1617		break;
1618	case USB_ENDPOINT_XFER_INT:
1619		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1620				slot_id, ep_index);
1621		break;
1622	case USB_ENDPOINT_XFER_ISOC:
1623		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1624				slot_id, ep_index);
1625	}
1626
1627	if (ret) {
1628free_priv:
1629		xhci_urb_free_priv(urb_priv);
1630		urb->hcpriv = NULL;
1631	}
1632	spin_unlock_irqrestore(&xhci->lock, flags);
1633	return ret;
1634}
1635
1636/*
1637 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1638 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1639 * should pick up where it left off in the TD, unless a Set Transfer Ring
1640 * Dequeue Pointer is issued.
1641 *
1642 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1643 * the ring.  Since the ring is a contiguous structure, they can't be physically
1644 * removed.  Instead, there are two options:
1645 *
1646 *  1) If the HC is in the middle of processing the URB to be canceled, we
1647 *     simply move the ring's dequeue pointer past those TRBs using the Set
1648 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1649 *     when drivers timeout on the last submitted URB and attempt to cancel.
1650 *
1651 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1652 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1653 *     HC will need to invalidate the any TRBs it has cached after the stop
1654 *     endpoint command, as noted in the xHCI 0.95 errata.
1655 *
1656 *  3) The TD may have completed by the time the Stop Endpoint Command
1657 *     completes, so software needs to handle that case too.
1658 *
1659 * This function should protect against the TD enqueueing code ringing the
1660 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1661 * It also needs to account for multiple cancellations on happening at the same
1662 * time for the same endpoint.
1663 *
1664 * Note that this function can be called in any context, or so says
1665 * usb_hcd_unlink_urb()
1666 */
1667static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1668{
1669	unsigned long flags;
1670	int ret, i;
1671	u32 temp;
1672	struct xhci_hcd *xhci;
1673	struct urb_priv	*urb_priv;
1674	struct xhci_td *td;
1675	unsigned int ep_index;
1676	struct xhci_ring *ep_ring;
1677	struct xhci_virt_ep *ep;
1678	struct xhci_command *command;
1679	struct xhci_virt_device *vdev;
1680
1681	xhci = hcd_to_xhci(hcd);
1682	spin_lock_irqsave(&xhci->lock, flags);
1683
1684	trace_xhci_urb_dequeue(urb);
1685
1686	/* Make sure the URB hasn't completed or been unlinked already */
1687	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1688	if (ret)
1689		goto done;
1690
1691	/* give back URB now if we can't queue it for cancel */
1692	vdev = xhci->devs[urb->dev->slot_id];
1693	urb_priv = urb->hcpriv;
1694	if (!vdev || !urb_priv)
1695		goto err_giveback;
1696
1697	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1698	ep = &vdev->eps[ep_index];
1699	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1700	if (!ep || !ep_ring)
1701		goto err_giveback;
1702
1703	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1704	temp = readl(&xhci->op_regs->status);
1705	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1706		xhci_hc_died(xhci);
1707		goto done;
1708	}
1709
1710	/*
1711	 * check ring is not re-allocated since URB was enqueued. If it is, then
1712	 * make sure none of the ring related pointers in this URB private data
1713	 * are touched, such as td_list, otherwise we overwrite freed data
1714	 */
1715	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1716		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1717		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1718			td = &urb_priv->td[i];
1719			if (!list_empty(&td->cancelled_td_list))
1720				list_del_init(&td->cancelled_td_list);
1721		}
1722		goto err_giveback;
1723	}
1724
1725	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1726		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1727				"HC halted, freeing TD manually.");
1728		for (i = urb_priv->num_tds_done;
1729		     i < urb_priv->num_tds;
1730		     i++) {
1731			td = &urb_priv->td[i];
1732			if (!list_empty(&td->td_list))
1733				list_del_init(&td->td_list);
1734			if (!list_empty(&td->cancelled_td_list))
1735				list_del_init(&td->cancelled_td_list);
1736		}
1737		goto err_giveback;
1738	}
1739
1740	i = urb_priv->num_tds_done;
1741	if (i < urb_priv->num_tds)
1742		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1743				"Cancel URB %p, dev %s, ep 0x%x, "
1744				"starting at offset 0x%llx",
1745				urb, urb->dev->devpath,
1746				urb->ep->desc.bEndpointAddress,
1747				(unsigned long long) xhci_trb_virt_to_dma(
1748					urb_priv->td[i].start_seg,
1749					urb_priv->td[i].first_trb));
1750
1751	for (; i < urb_priv->num_tds; i++) {
1752		td = &urb_priv->td[i];
1753		/* TD can already be on cancelled list if ep halted on it */
1754		if (list_empty(&td->cancelled_td_list)) {
1755			td->cancel_status = TD_DIRTY;
1756			list_add_tail(&td->cancelled_td_list,
1757				      &ep->cancelled_td_list);
1758		}
1759	}
1760
1761	/* Queue a stop endpoint command, but only if this is
1762	 * the first cancellation to be handled.
1763	 */
1764	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1765		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1766		if (!command) {
1767			ret = -ENOMEM;
1768			goto done;
1769		}
1770		ep->ep_state |= EP_STOP_CMD_PENDING;
1771		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1772					 ep_index, 0);
1773		xhci_ring_cmd_db(xhci);
1774	}
1775done:
1776	spin_unlock_irqrestore(&xhci->lock, flags);
1777	return ret;
1778
1779err_giveback:
1780	if (urb_priv)
1781		xhci_urb_free_priv(urb_priv);
1782	usb_hcd_unlink_urb_from_ep(hcd, urb);
1783	spin_unlock_irqrestore(&xhci->lock, flags);
1784	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1785	return ret;
1786}
1787
1788/* Drop an endpoint from a new bandwidth configuration for this device.
1789 * Only one call to this function is allowed per endpoint before
1790 * check_bandwidth() or reset_bandwidth() must be called.
1791 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1792 * add the endpoint to the schedule with possibly new parameters denoted by a
1793 * different endpoint descriptor in usb_host_endpoint.
1794 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1795 * not allowed.
1796 *
1797 * The USB core will not allow URBs to be queued to an endpoint that is being
1798 * disabled, so there's no need for mutual exclusion to protect
1799 * the xhci->devs[slot_id] structure.
1800 */
1801int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1802		       struct usb_host_endpoint *ep)
1803{
1804	struct xhci_hcd *xhci;
1805	struct xhci_container_ctx *in_ctx, *out_ctx;
1806	struct xhci_input_control_ctx *ctrl_ctx;
1807	unsigned int ep_index;
1808	struct xhci_ep_ctx *ep_ctx;
1809	u32 drop_flag;
1810	u32 new_add_flags, new_drop_flags;
1811	int ret;
1812
1813	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1814	if (ret <= 0)
1815		return ret;
1816	xhci = hcd_to_xhci(hcd);
1817	if (xhci->xhc_state & XHCI_STATE_DYING)
1818		return -ENODEV;
1819
1820	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1821	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1822	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1823		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1824				__func__, drop_flag);
1825		return 0;
1826	}
1827
1828	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1829	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1830	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1831	if (!ctrl_ctx) {
1832		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1833				__func__);
1834		return 0;
1835	}
1836
1837	ep_index = xhci_get_endpoint_index(&ep->desc);
1838	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1839	/* If the HC already knows the endpoint is disabled,
1840	 * or the HCD has noted it is disabled, ignore this request
1841	 */
1842	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1843	    le32_to_cpu(ctrl_ctx->drop_flags) &
1844	    xhci_get_endpoint_flag(&ep->desc)) {
1845		/* Do not warn when called after a usb_device_reset */
1846		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1847			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1848				  __func__, ep);
1849		return 0;
1850	}
1851
1852	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1853	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1854
1855	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1856	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1857
1858	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1859
1860	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1861
1862	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1863			(unsigned int) ep->desc.bEndpointAddress,
1864			udev->slot_id,
1865			(unsigned int) new_drop_flags,
1866			(unsigned int) new_add_flags);
1867	return 0;
1868}
1869EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1870
1871/* Add an endpoint to a new possible bandwidth configuration for this device.
1872 * Only one call to this function is allowed per endpoint before
1873 * check_bandwidth() or reset_bandwidth() must be called.
1874 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1875 * add the endpoint to the schedule with possibly new parameters denoted by a
1876 * different endpoint descriptor in usb_host_endpoint.
1877 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1878 * not allowed.
1879 *
1880 * The USB core will not allow URBs to be queued to an endpoint until the
1881 * configuration or alt setting is installed in the device, so there's no need
1882 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1883 */
1884int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1885		      struct usb_host_endpoint *ep)
1886{
1887	struct xhci_hcd *xhci;
1888	struct xhci_container_ctx *in_ctx;
1889	unsigned int ep_index;
1890	struct xhci_input_control_ctx *ctrl_ctx;
1891	struct xhci_ep_ctx *ep_ctx;
1892	u32 added_ctxs;
1893	u32 new_add_flags, new_drop_flags;
1894	struct xhci_virt_device *virt_dev;
1895	int ret = 0;
1896
1897	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1898	if (ret <= 0) {
1899		/* So we won't queue a reset ep command for a root hub */
1900		ep->hcpriv = NULL;
1901		return ret;
1902	}
1903	xhci = hcd_to_xhci(hcd);
1904	if (xhci->xhc_state & XHCI_STATE_DYING)
1905		return -ENODEV;
1906
1907	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1908	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1909		/* FIXME when we have to issue an evaluate endpoint command to
1910		 * deal with ep0 max packet size changing once we get the
1911		 * descriptors
1912		 */
1913		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1914				__func__, added_ctxs);
1915		return 0;
1916	}
1917
1918	virt_dev = xhci->devs[udev->slot_id];
1919	in_ctx = virt_dev->in_ctx;
1920	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1921	if (!ctrl_ctx) {
1922		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1923				__func__);
1924		return 0;
1925	}
1926
1927	ep_index = xhci_get_endpoint_index(&ep->desc);
1928	/* If this endpoint is already in use, and the upper layers are trying
1929	 * to add it again without dropping it, reject the addition.
1930	 */
1931	if (virt_dev->eps[ep_index].ring &&
1932			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1933		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1934				"without dropping it.\n",
1935				(unsigned int) ep->desc.bEndpointAddress);
1936		return -EINVAL;
1937	}
1938
1939	/* If the HCD has already noted the endpoint is enabled,
1940	 * ignore this request.
1941	 */
1942	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1943		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1944				__func__, ep);
1945		return 0;
1946	}
1947
1948	/*
1949	 * Configuration and alternate setting changes must be done in
1950	 * process context, not interrupt context (or so documenation
1951	 * for usb_set_interface() and usb_set_configuration() claim).
1952	 */
1953	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1954		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1955				__func__, ep->desc.bEndpointAddress);
1956		return -ENOMEM;
1957	}
1958
1959	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1960	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1961
1962	/* If xhci_endpoint_disable() was called for this endpoint, but the
1963	 * xHC hasn't been notified yet through the check_bandwidth() call,
1964	 * this re-adds a new state for the endpoint from the new endpoint
1965	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1966	 * drop flags alone.
1967	 */
1968	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1969
1970	/* Store the usb_device pointer for later use */
1971	ep->hcpriv = udev;
1972
1973	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1974	trace_xhci_add_endpoint(ep_ctx);
1975
1976	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1977			(unsigned int) ep->desc.bEndpointAddress,
1978			udev->slot_id,
1979			(unsigned int) new_drop_flags,
1980			(unsigned int) new_add_flags);
1981	return 0;
1982}
1983EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1984
1985static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1986{
1987	struct xhci_input_control_ctx *ctrl_ctx;
1988	struct xhci_ep_ctx *ep_ctx;
1989	struct xhci_slot_ctx *slot_ctx;
1990	int i;
1991
1992	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1993	if (!ctrl_ctx) {
1994		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1995				__func__);
1996		return;
1997	}
1998
1999	/* When a device's add flag and drop flag are zero, any subsequent
2000	 * configure endpoint command will leave that endpoint's state
2001	 * untouched.  Make sure we don't leave any old state in the input
2002	 * endpoint contexts.
2003	 */
2004	ctrl_ctx->drop_flags = 0;
2005	ctrl_ctx->add_flags = 0;
2006	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2007	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2008	/* Endpoint 0 is always valid */
2009	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2010	for (i = 1; i < 31; i++) {
2011		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2012		ep_ctx->ep_info = 0;
2013		ep_ctx->ep_info2 = 0;
2014		ep_ctx->deq = 0;
2015		ep_ctx->tx_info = 0;
2016	}
2017}
2018
2019static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2020		struct usb_device *udev, u32 *cmd_status)
2021{
2022	int ret;
2023
2024	switch (*cmd_status) {
2025	case COMP_COMMAND_ABORTED:
2026	case COMP_COMMAND_RING_STOPPED:
2027		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2028		ret = -ETIME;
2029		break;
2030	case COMP_RESOURCE_ERROR:
2031		dev_warn(&udev->dev,
2032			 "Not enough host controller resources for new device state.\n");
2033		ret = -ENOMEM;
2034		/* FIXME: can we allocate more resources for the HC? */
2035		break;
2036	case COMP_BANDWIDTH_ERROR:
2037	case COMP_SECONDARY_BANDWIDTH_ERROR:
2038		dev_warn(&udev->dev,
2039			 "Not enough bandwidth for new device state.\n");
2040		ret = -ENOSPC;
2041		/* FIXME: can we go back to the old state? */
2042		break;
2043	case COMP_TRB_ERROR:
2044		/* the HCD set up something wrong */
2045		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2046				"add flag = 1, "
2047				"and endpoint is not disabled.\n");
2048		ret = -EINVAL;
2049		break;
2050	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2051		dev_warn(&udev->dev,
2052			 "ERROR: Incompatible device for endpoint configure command.\n");
2053		ret = -ENODEV;
2054		break;
2055	case COMP_SUCCESS:
2056		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2057				"Successful Endpoint Configure command");
2058		ret = 0;
2059		break;
2060	default:
2061		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2062				*cmd_status);
2063		ret = -EINVAL;
2064		break;
2065	}
2066	return ret;
2067}
2068
2069static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2070		struct usb_device *udev, u32 *cmd_status)
2071{
2072	int ret;
2073
2074	switch (*cmd_status) {
2075	case COMP_COMMAND_ABORTED:
2076	case COMP_COMMAND_RING_STOPPED:
2077		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2078		ret = -ETIME;
2079		break;
2080	case COMP_PARAMETER_ERROR:
2081		dev_warn(&udev->dev,
2082			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2083		ret = -EINVAL;
2084		break;
2085	case COMP_SLOT_NOT_ENABLED_ERROR:
2086		dev_warn(&udev->dev,
2087			"WARN: slot not enabled for evaluate context command.\n");
2088		ret = -EINVAL;
2089		break;
2090	case COMP_CONTEXT_STATE_ERROR:
2091		dev_warn(&udev->dev,
2092			"WARN: invalid context state for evaluate context command.\n");
2093		ret = -EINVAL;
2094		break;
2095	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2096		dev_warn(&udev->dev,
2097			"ERROR: Incompatible device for evaluate context command.\n");
2098		ret = -ENODEV;
2099		break;
2100	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2101		/* Max Exit Latency too large error */
2102		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2103		ret = -EINVAL;
2104		break;
2105	case COMP_SUCCESS:
2106		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2107				"Successful evaluate context command");
2108		ret = 0;
2109		break;
2110	default:
2111		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2112			*cmd_status);
2113		ret = -EINVAL;
2114		break;
2115	}
2116	return ret;
2117}
2118
2119static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2120		struct xhci_input_control_ctx *ctrl_ctx)
2121{
2122	u32 valid_add_flags;
2123	u32 valid_drop_flags;
2124
2125	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2126	 * (bit 1).  The default control endpoint is added during the Address
2127	 * Device command and is never removed until the slot is disabled.
2128	 */
2129	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2130	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2131
2132	/* Use hweight32 to count the number of ones in the add flags, or
2133	 * number of endpoints added.  Don't count endpoints that are changed
2134	 * (both added and dropped).
2135	 */
2136	return hweight32(valid_add_flags) -
2137		hweight32(valid_add_flags & valid_drop_flags);
2138}
2139
2140static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2141		struct xhci_input_control_ctx *ctrl_ctx)
2142{
2143	u32 valid_add_flags;
2144	u32 valid_drop_flags;
2145
2146	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2147	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2148
2149	return hweight32(valid_drop_flags) -
2150		hweight32(valid_add_flags & valid_drop_flags);
2151}
2152
2153/*
2154 * We need to reserve the new number of endpoints before the configure endpoint
2155 * command completes.  We can't subtract the dropped endpoints from the number
2156 * of active endpoints until the command completes because we can oversubscribe
2157 * the host in this case:
2158 *
2159 *  - the first configure endpoint command drops more endpoints than it adds
2160 *  - a second configure endpoint command that adds more endpoints is queued
2161 *  - the first configure endpoint command fails, so the config is unchanged
2162 *  - the second command may succeed, even though there isn't enough resources
2163 *
2164 * Must be called with xhci->lock held.
2165 */
2166static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2167		struct xhci_input_control_ctx *ctrl_ctx)
2168{
2169	u32 added_eps;
2170
2171	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2172	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2173		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2174				"Not enough ep ctxs: "
2175				"%u active, need to add %u, limit is %u.",
2176				xhci->num_active_eps, added_eps,
2177				xhci->limit_active_eps);
2178		return -ENOMEM;
2179	}
2180	xhci->num_active_eps += added_eps;
2181	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2182			"Adding %u ep ctxs, %u now active.", added_eps,
2183			xhci->num_active_eps);
2184	return 0;
2185}
2186
2187/*
2188 * The configure endpoint was failed by the xHC for some other reason, so we
2189 * need to revert the resources that failed configuration would have used.
2190 *
2191 * Must be called with xhci->lock held.
2192 */
2193static void xhci_free_host_resources(struct xhci_hcd *xhci,
2194		struct xhci_input_control_ctx *ctrl_ctx)
2195{
2196	u32 num_failed_eps;
2197
2198	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2199	xhci->num_active_eps -= num_failed_eps;
2200	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2201			"Removing %u failed ep ctxs, %u now active.",
2202			num_failed_eps,
2203			xhci->num_active_eps);
2204}
2205
2206/*
2207 * Now that the command has completed, clean up the active endpoint count by
2208 * subtracting out the endpoints that were dropped (but not changed).
2209 *
2210 * Must be called with xhci->lock held.
2211 */
2212static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2213		struct xhci_input_control_ctx *ctrl_ctx)
2214{
2215	u32 num_dropped_eps;
2216
2217	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2218	xhci->num_active_eps -= num_dropped_eps;
2219	if (num_dropped_eps)
2220		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2221				"Removing %u dropped ep ctxs, %u now active.",
2222				num_dropped_eps,
2223				xhci->num_active_eps);
2224}
2225
2226static unsigned int xhci_get_block_size(struct usb_device *udev)
2227{
2228	switch (udev->speed) {
2229	case USB_SPEED_LOW:
2230	case USB_SPEED_FULL:
2231		return FS_BLOCK;
2232	case USB_SPEED_HIGH:
2233		return HS_BLOCK;
2234	case USB_SPEED_SUPER:
2235	case USB_SPEED_SUPER_PLUS:
2236		return SS_BLOCK;
2237	case USB_SPEED_UNKNOWN:
 
2238	default:
2239		/* Should never happen */
2240		return 1;
2241	}
2242}
2243
2244static unsigned int
2245xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2246{
2247	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2248		return LS_OVERHEAD;
2249	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2250		return FS_OVERHEAD;
2251	return HS_OVERHEAD;
2252}
2253
2254/* If we are changing a LS/FS device under a HS hub,
2255 * make sure (if we are activating a new TT) that the HS bus has enough
2256 * bandwidth for this new TT.
2257 */
2258static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2259		struct xhci_virt_device *virt_dev,
2260		int old_active_eps)
2261{
2262	struct xhci_interval_bw_table *bw_table;
2263	struct xhci_tt_bw_info *tt_info;
2264
2265	/* Find the bandwidth table for the root port this TT is attached to. */
2266	bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2267	tt_info = virt_dev->tt_info;
2268	/* If this TT already had active endpoints, the bandwidth for this TT
2269	 * has already been added.  Removing all periodic endpoints (and thus
2270	 * making the TT enactive) will only decrease the bandwidth used.
2271	 */
2272	if (old_active_eps)
2273		return 0;
2274	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2275		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2276			return -ENOMEM;
2277		return 0;
2278	}
2279	/* Not sure why we would have no new active endpoints...
2280	 *
2281	 * Maybe because of an Evaluate Context change for a hub update or a
2282	 * control endpoint 0 max packet size change?
2283	 * FIXME: skip the bandwidth calculation in that case.
2284	 */
2285	return 0;
2286}
2287
2288static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2289		struct xhci_virt_device *virt_dev)
2290{
2291	unsigned int bw_reserved;
2292
2293	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2294	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2295		return -ENOMEM;
2296
2297	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2298	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2299		return -ENOMEM;
2300
2301	return 0;
2302}
2303
2304/*
2305 * This algorithm is a very conservative estimate of the worst-case scheduling
2306 * scenario for any one interval.  The hardware dynamically schedules the
2307 * packets, so we can't tell which microframe could be the limiting factor in
2308 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2309 *
2310 * Obviously, we can't solve an NP complete problem to find the minimum worst
2311 * case scenario.  Instead, we come up with an estimate that is no less than
2312 * the worst case bandwidth used for any one microframe, but may be an
2313 * over-estimate.
2314 *
2315 * We walk the requirements for each endpoint by interval, starting with the
2316 * smallest interval, and place packets in the schedule where there is only one
2317 * possible way to schedule packets for that interval.  In order to simplify
2318 * this algorithm, we record the largest max packet size for each interval, and
2319 * assume all packets will be that size.
2320 *
2321 * For interval 0, we obviously must schedule all packets for each interval.
2322 * The bandwidth for interval 0 is just the amount of data to be transmitted
2323 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2324 * the number of packets).
2325 *
2326 * For interval 1, we have two possible microframes to schedule those packets
2327 * in.  For this algorithm, if we can schedule the same number of packets for
2328 * each possible scheduling opportunity (each microframe), we will do so.  The
2329 * remaining number of packets will be saved to be transmitted in the gaps in
2330 * the next interval's scheduling sequence.
2331 *
2332 * As we move those remaining packets to be scheduled with interval 2 packets,
2333 * we have to double the number of remaining packets to transmit.  This is
2334 * because the intervals are actually powers of 2, and we would be transmitting
2335 * the previous interval's packets twice in this interval.  We also have to be
2336 * sure that when we look at the largest max packet size for this interval, we
2337 * also look at the largest max packet size for the remaining packets and take
2338 * the greater of the two.
2339 *
2340 * The algorithm continues to evenly distribute packets in each scheduling
2341 * opportunity, and push the remaining packets out, until we get to the last
2342 * interval.  Then those packets and their associated overhead are just added
2343 * to the bandwidth used.
2344 */
2345static int xhci_check_bw_table(struct xhci_hcd *xhci,
2346		struct xhci_virt_device *virt_dev,
2347		int old_active_eps)
2348{
2349	unsigned int bw_reserved;
2350	unsigned int max_bandwidth;
2351	unsigned int bw_used;
2352	unsigned int block_size;
2353	struct xhci_interval_bw_table *bw_table;
2354	unsigned int packet_size = 0;
2355	unsigned int overhead = 0;
2356	unsigned int packets_transmitted = 0;
2357	unsigned int packets_remaining = 0;
2358	unsigned int i;
2359
2360	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2361		return xhci_check_ss_bw(xhci, virt_dev);
2362
2363	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2364		max_bandwidth = HS_BW_LIMIT;
2365		/* Convert percent of bus BW reserved to blocks reserved */
2366		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2367	} else {
2368		max_bandwidth = FS_BW_LIMIT;
2369		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2370	}
2371
2372	bw_table = virt_dev->bw_table;
2373	/* We need to translate the max packet size and max ESIT payloads into
2374	 * the units the hardware uses.
2375	 */
2376	block_size = xhci_get_block_size(virt_dev->udev);
2377
2378	/* If we are manipulating a LS/FS device under a HS hub, double check
2379	 * that the HS bus has enough bandwidth if we are activing a new TT.
2380	 */
2381	if (virt_dev->tt_info) {
2382		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2383				"Recalculating BW for rootport %u",
2384				virt_dev->rhub_port->hw_portnum + 1);
2385		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2386			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2387					"newly activated TT.\n");
2388			return -ENOMEM;
2389		}
2390		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2391				"Recalculating BW for TT slot %u port %u",
2392				virt_dev->tt_info->slot_id,
2393				virt_dev->tt_info->ttport);
2394	} else {
2395		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2396				"Recalculating BW for rootport %u",
2397				virt_dev->rhub_port->hw_portnum + 1);
2398	}
2399
2400	/* Add in how much bandwidth will be used for interval zero, or the
2401	 * rounded max ESIT payload + number of packets * largest overhead.
2402	 */
2403	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2404		bw_table->interval_bw[0].num_packets *
2405		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2406
2407	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2408		unsigned int bw_added;
2409		unsigned int largest_mps;
2410		unsigned int interval_overhead;
2411
2412		/*
2413		 * How many packets could we transmit in this interval?
2414		 * If packets didn't fit in the previous interval, we will need
2415		 * to transmit that many packets twice within this interval.
2416		 */
2417		packets_remaining = 2 * packets_remaining +
2418			bw_table->interval_bw[i].num_packets;
2419
2420		/* Find the largest max packet size of this or the previous
2421		 * interval.
2422		 */
2423		if (list_empty(&bw_table->interval_bw[i].endpoints))
2424			largest_mps = 0;
2425		else {
2426			struct xhci_virt_ep *virt_ep;
2427			struct list_head *ep_entry;
2428
2429			ep_entry = bw_table->interval_bw[i].endpoints.next;
2430			virt_ep = list_entry(ep_entry,
2431					struct xhci_virt_ep, bw_endpoint_list);
2432			/* Convert to blocks, rounding up */
2433			largest_mps = DIV_ROUND_UP(
2434					virt_ep->bw_info.max_packet_size,
2435					block_size);
2436		}
2437		if (largest_mps > packet_size)
2438			packet_size = largest_mps;
2439
2440		/* Use the larger overhead of this or the previous interval. */
2441		interval_overhead = xhci_get_largest_overhead(
2442				&bw_table->interval_bw[i]);
2443		if (interval_overhead > overhead)
2444			overhead = interval_overhead;
2445
2446		/* How many packets can we evenly distribute across
2447		 * (1 << (i + 1)) possible scheduling opportunities?
2448		 */
2449		packets_transmitted = packets_remaining >> (i + 1);
2450
2451		/* Add in the bandwidth used for those scheduled packets */
2452		bw_added = packets_transmitted * (overhead + packet_size);
2453
2454		/* How many packets do we have remaining to transmit? */
2455		packets_remaining = packets_remaining % (1 << (i + 1));
2456
2457		/* What largest max packet size should those packets have? */
2458		/* If we've transmitted all packets, don't carry over the
2459		 * largest packet size.
2460		 */
2461		if (packets_remaining == 0) {
2462			packet_size = 0;
2463			overhead = 0;
2464		} else if (packets_transmitted > 0) {
2465			/* Otherwise if we do have remaining packets, and we've
2466			 * scheduled some packets in this interval, take the
2467			 * largest max packet size from endpoints with this
2468			 * interval.
2469			 */
2470			packet_size = largest_mps;
2471			overhead = interval_overhead;
2472		}
2473		/* Otherwise carry over packet_size and overhead from the last
2474		 * time we had a remainder.
2475		 */
2476		bw_used += bw_added;
2477		if (bw_used > max_bandwidth) {
2478			xhci_warn(xhci, "Not enough bandwidth. "
2479					"Proposed: %u, Max: %u\n",
2480				bw_used, max_bandwidth);
2481			return -ENOMEM;
2482		}
2483	}
2484	/*
2485	 * Ok, we know we have some packets left over after even-handedly
2486	 * scheduling interval 15.  We don't know which microframes they will
2487	 * fit into, so we over-schedule and say they will be scheduled every
2488	 * microframe.
2489	 */
2490	if (packets_remaining > 0)
2491		bw_used += overhead + packet_size;
2492
2493	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
 
 
2494		/* OK, we're manipulating a HS device attached to a
2495		 * root port bandwidth domain.  Include the number of active TTs
2496		 * in the bandwidth used.
2497		 */
2498		bw_used += TT_HS_OVERHEAD *
2499			xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2500	}
2501
2502	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2503		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2504		"Available: %u " "percent",
2505		bw_used, max_bandwidth, bw_reserved,
2506		(max_bandwidth - bw_used - bw_reserved) * 100 /
2507		max_bandwidth);
2508
2509	bw_used += bw_reserved;
2510	if (bw_used > max_bandwidth) {
2511		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2512				bw_used, max_bandwidth);
2513		return -ENOMEM;
2514	}
2515
2516	bw_table->bw_used = bw_used;
2517	return 0;
2518}
2519
2520static bool xhci_is_async_ep(unsigned int ep_type)
2521{
2522	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2523					ep_type != ISOC_IN_EP &&
2524					ep_type != INT_IN_EP);
2525}
2526
2527static bool xhci_is_sync_in_ep(unsigned int ep_type)
2528{
2529	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2530}
2531
2532static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2533{
2534	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2535
2536	if (ep_bw->ep_interval == 0)
2537		return SS_OVERHEAD_BURST +
2538			(ep_bw->mult * ep_bw->num_packets *
2539					(SS_OVERHEAD + mps));
2540	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2541				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2542				1 << ep_bw->ep_interval);
2543
2544}
2545
2546static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2547		struct xhci_bw_info *ep_bw,
2548		struct xhci_interval_bw_table *bw_table,
2549		struct usb_device *udev,
2550		struct xhci_virt_ep *virt_ep,
2551		struct xhci_tt_bw_info *tt_info)
2552{
2553	struct xhci_interval_bw	*interval_bw;
2554	int normalized_interval;
2555
2556	if (xhci_is_async_ep(ep_bw->type))
2557		return;
2558
2559	if (udev->speed >= USB_SPEED_SUPER) {
2560		if (xhci_is_sync_in_ep(ep_bw->type))
2561			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2562				xhci_get_ss_bw_consumed(ep_bw);
2563		else
2564			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2565				xhci_get_ss_bw_consumed(ep_bw);
2566		return;
2567	}
2568
2569	/* SuperSpeed endpoints never get added to intervals in the table, so
2570	 * this check is only valid for HS/FS/LS devices.
2571	 */
2572	if (list_empty(&virt_ep->bw_endpoint_list))
2573		return;
2574	/* For LS/FS devices, we need to translate the interval expressed in
2575	 * microframes to frames.
2576	 */
2577	if (udev->speed == USB_SPEED_HIGH)
2578		normalized_interval = ep_bw->ep_interval;
2579	else
2580		normalized_interval = ep_bw->ep_interval - 3;
2581
2582	if (normalized_interval == 0)
2583		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2584	interval_bw = &bw_table->interval_bw[normalized_interval];
2585	interval_bw->num_packets -= ep_bw->num_packets;
2586	switch (udev->speed) {
2587	case USB_SPEED_LOW:
2588		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2589		break;
2590	case USB_SPEED_FULL:
2591		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2592		break;
2593	case USB_SPEED_HIGH:
2594		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2595		break;
2596	default:
 
 
 
2597		/* Should never happen because only LS/FS/HS endpoints will get
2598		 * added to the endpoint list.
2599		 */
2600		return;
2601	}
2602	if (tt_info)
2603		tt_info->active_eps -= 1;
2604	list_del_init(&virt_ep->bw_endpoint_list);
2605}
2606
2607static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2608		struct xhci_bw_info *ep_bw,
2609		struct xhci_interval_bw_table *bw_table,
2610		struct usb_device *udev,
2611		struct xhci_virt_ep *virt_ep,
2612		struct xhci_tt_bw_info *tt_info)
2613{
2614	struct xhci_interval_bw	*interval_bw;
2615	struct xhci_virt_ep *smaller_ep;
2616	int normalized_interval;
2617
2618	if (xhci_is_async_ep(ep_bw->type))
2619		return;
2620
2621	if (udev->speed == USB_SPEED_SUPER) {
2622		if (xhci_is_sync_in_ep(ep_bw->type))
2623			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2624				xhci_get_ss_bw_consumed(ep_bw);
2625		else
2626			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2627				xhci_get_ss_bw_consumed(ep_bw);
2628		return;
2629	}
2630
2631	/* For LS/FS devices, we need to translate the interval expressed in
2632	 * microframes to frames.
2633	 */
2634	if (udev->speed == USB_SPEED_HIGH)
2635		normalized_interval = ep_bw->ep_interval;
2636	else
2637		normalized_interval = ep_bw->ep_interval - 3;
2638
2639	if (normalized_interval == 0)
2640		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2641	interval_bw = &bw_table->interval_bw[normalized_interval];
2642	interval_bw->num_packets += ep_bw->num_packets;
2643	switch (udev->speed) {
2644	case USB_SPEED_LOW:
2645		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2646		break;
2647	case USB_SPEED_FULL:
2648		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2649		break;
2650	case USB_SPEED_HIGH:
2651		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2652		break;
2653	default:
 
 
 
2654		/* Should never happen because only LS/FS/HS endpoints will get
2655		 * added to the endpoint list.
2656		 */
2657		return;
2658	}
2659
2660	if (tt_info)
2661		tt_info->active_eps += 1;
2662	/* Insert the endpoint into the list, largest max packet size first. */
2663	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2664			bw_endpoint_list) {
2665		if (ep_bw->max_packet_size >=
2666				smaller_ep->bw_info.max_packet_size) {
2667			/* Add the new ep before the smaller endpoint */
2668			list_add_tail(&virt_ep->bw_endpoint_list,
2669					&smaller_ep->bw_endpoint_list);
2670			return;
2671		}
2672	}
2673	/* Add the new endpoint at the end of the list. */
2674	list_add_tail(&virt_ep->bw_endpoint_list,
2675			&interval_bw->endpoints);
2676}
2677
2678void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2679		struct xhci_virt_device *virt_dev,
2680		int old_active_eps)
2681{
2682	struct xhci_root_port_bw_info *rh_bw_info;
2683	if (!virt_dev->tt_info)
2684		return;
2685
2686	rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2687	if (old_active_eps == 0 &&
2688				virt_dev->tt_info->active_eps != 0) {
2689		rh_bw_info->num_active_tts += 1;
2690		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2691	} else if (old_active_eps != 0 &&
2692				virt_dev->tt_info->active_eps == 0) {
2693		rh_bw_info->num_active_tts -= 1;
2694		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2695	}
2696}
2697
2698static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2699		struct xhci_virt_device *virt_dev,
2700		struct xhci_container_ctx *in_ctx)
2701{
2702	struct xhci_bw_info ep_bw_info[31];
2703	int i;
2704	struct xhci_input_control_ctx *ctrl_ctx;
2705	int old_active_eps = 0;
2706
2707	if (virt_dev->tt_info)
2708		old_active_eps = virt_dev->tt_info->active_eps;
2709
2710	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2711	if (!ctrl_ctx) {
2712		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2713				__func__);
2714		return -ENOMEM;
2715	}
2716
2717	for (i = 0; i < 31; i++) {
2718		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2719			continue;
2720
2721		/* Make a copy of the BW info in case we need to revert this */
2722		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2723				sizeof(ep_bw_info[i]));
2724		/* Drop the endpoint from the interval table if the endpoint is
2725		 * being dropped or changed.
2726		 */
2727		if (EP_IS_DROPPED(ctrl_ctx, i))
2728			xhci_drop_ep_from_interval_table(xhci,
2729					&virt_dev->eps[i].bw_info,
2730					virt_dev->bw_table,
2731					virt_dev->udev,
2732					&virt_dev->eps[i],
2733					virt_dev->tt_info);
2734	}
2735	/* Overwrite the information stored in the endpoints' bw_info */
2736	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2737	for (i = 0; i < 31; i++) {
2738		/* Add any changed or added endpoints to the interval table */
2739		if (EP_IS_ADDED(ctrl_ctx, i))
2740			xhci_add_ep_to_interval_table(xhci,
2741					&virt_dev->eps[i].bw_info,
2742					virt_dev->bw_table,
2743					virt_dev->udev,
2744					&virt_dev->eps[i],
2745					virt_dev->tt_info);
2746	}
2747
2748	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2749		/* Ok, this fits in the bandwidth we have.
2750		 * Update the number of active TTs.
2751		 */
2752		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2753		return 0;
2754	}
2755
2756	/* We don't have enough bandwidth for this, revert the stored info. */
2757	for (i = 0; i < 31; i++) {
2758		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2759			continue;
2760
2761		/* Drop the new copies of any added or changed endpoints from
2762		 * the interval table.
2763		 */
2764		if (EP_IS_ADDED(ctrl_ctx, i)) {
2765			xhci_drop_ep_from_interval_table(xhci,
2766					&virt_dev->eps[i].bw_info,
2767					virt_dev->bw_table,
2768					virt_dev->udev,
2769					&virt_dev->eps[i],
2770					virt_dev->tt_info);
2771		}
2772		/* Revert the endpoint back to its old information */
2773		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2774				sizeof(ep_bw_info[i]));
2775		/* Add any changed or dropped endpoints back into the table */
2776		if (EP_IS_DROPPED(ctrl_ctx, i))
2777			xhci_add_ep_to_interval_table(xhci,
2778					&virt_dev->eps[i].bw_info,
2779					virt_dev->bw_table,
2780					virt_dev->udev,
2781					&virt_dev->eps[i],
2782					virt_dev->tt_info);
2783	}
2784	return -ENOMEM;
2785}
2786
2787
2788/* Issue a configure endpoint command or evaluate context command
2789 * and wait for it to finish.
2790 */
2791static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2792		struct usb_device *udev,
2793		struct xhci_command *command,
2794		bool ctx_change, bool must_succeed)
2795{
2796	int ret;
2797	unsigned long flags;
2798	struct xhci_input_control_ctx *ctrl_ctx;
2799	struct xhci_virt_device *virt_dev;
2800	struct xhci_slot_ctx *slot_ctx;
2801
2802	if (!command)
2803		return -EINVAL;
2804
2805	spin_lock_irqsave(&xhci->lock, flags);
2806
2807	if (xhci->xhc_state & XHCI_STATE_DYING) {
2808		spin_unlock_irqrestore(&xhci->lock, flags);
2809		return -ESHUTDOWN;
2810	}
2811
2812	virt_dev = xhci->devs[udev->slot_id];
2813
2814	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2815	if (!ctrl_ctx) {
2816		spin_unlock_irqrestore(&xhci->lock, flags);
2817		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2818				__func__);
2819		return -ENOMEM;
2820	}
2821
2822	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2823			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2824		spin_unlock_irqrestore(&xhci->lock, flags);
2825		xhci_warn(xhci, "Not enough host resources, "
2826				"active endpoint contexts = %u\n",
2827				xhci->num_active_eps);
2828		return -ENOMEM;
2829	}
2830	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2831	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2832		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2833			xhci_free_host_resources(xhci, ctrl_ctx);
2834		spin_unlock_irqrestore(&xhci->lock, flags);
2835		xhci_warn(xhci, "Not enough bandwidth\n");
2836		return -ENOMEM;
2837	}
2838
2839	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2840
2841	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2842	trace_xhci_configure_endpoint(slot_ctx);
2843
2844	if (!ctx_change)
2845		ret = xhci_queue_configure_endpoint(xhci, command,
2846				command->in_ctx->dma,
2847				udev->slot_id, must_succeed);
2848	else
2849		ret = xhci_queue_evaluate_context(xhci, command,
2850				command->in_ctx->dma,
2851				udev->slot_id, must_succeed);
2852	if (ret < 0) {
2853		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2854			xhci_free_host_resources(xhci, ctrl_ctx);
2855		spin_unlock_irqrestore(&xhci->lock, flags);
2856		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2857				"FIXME allocate a new ring segment");
2858		return -ENOMEM;
2859	}
2860	xhci_ring_cmd_db(xhci);
2861	spin_unlock_irqrestore(&xhci->lock, flags);
2862
2863	/* Wait for the configure endpoint command to complete */
2864	wait_for_completion(command->completion);
2865
2866	if (!ctx_change)
2867		ret = xhci_configure_endpoint_result(xhci, udev,
2868						     &command->status);
2869	else
2870		ret = xhci_evaluate_context_result(xhci, udev,
2871						   &command->status);
2872
2873	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2874		spin_lock_irqsave(&xhci->lock, flags);
2875		/* If the command failed, remove the reserved resources.
2876		 * Otherwise, clean up the estimate to include dropped eps.
2877		 */
2878		if (ret)
2879			xhci_free_host_resources(xhci, ctrl_ctx);
2880		else
2881			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2882		spin_unlock_irqrestore(&xhci->lock, flags);
2883	}
2884	return ret;
2885}
2886
2887static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2888	struct xhci_virt_device *vdev, int i)
2889{
2890	struct xhci_virt_ep *ep = &vdev->eps[i];
2891
2892	if (ep->ep_state & EP_HAS_STREAMS) {
2893		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2894				xhci_get_endpoint_address(i));
2895		xhci_free_stream_info(xhci, ep->stream_info);
2896		ep->stream_info = NULL;
2897		ep->ep_state &= ~EP_HAS_STREAMS;
2898	}
2899}
2900
2901/* Called after one or more calls to xhci_add_endpoint() or
2902 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2903 * to call xhci_reset_bandwidth().
2904 *
2905 * Since we are in the middle of changing either configuration or
2906 * installing a new alt setting, the USB core won't allow URBs to be
2907 * enqueued for any endpoint on the old config or interface.  Nothing
2908 * else should be touching the xhci->devs[slot_id] structure, so we
2909 * don't need to take the xhci->lock for manipulating that.
2910 */
2911int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2912{
2913	int i;
2914	int ret = 0;
2915	struct xhci_hcd *xhci;
2916	struct xhci_virt_device	*virt_dev;
2917	struct xhci_input_control_ctx *ctrl_ctx;
2918	struct xhci_slot_ctx *slot_ctx;
2919	struct xhci_command *command;
2920
2921	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2922	if (ret <= 0)
2923		return ret;
2924	xhci = hcd_to_xhci(hcd);
2925	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2926		(xhci->xhc_state & XHCI_STATE_REMOVING))
2927		return -ENODEV;
2928
2929	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2930	virt_dev = xhci->devs[udev->slot_id];
2931
2932	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2933	if (!command)
2934		return -ENOMEM;
2935
2936	command->in_ctx = virt_dev->in_ctx;
2937
2938	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2939	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2940	if (!ctrl_ctx) {
2941		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2942				__func__);
2943		ret = -ENOMEM;
2944		goto command_cleanup;
2945	}
2946	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2947	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2948	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2949
2950	/* Don't issue the command if there's no endpoints to update. */
2951	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2952	    ctrl_ctx->drop_flags == 0) {
2953		ret = 0;
2954		goto command_cleanup;
2955	}
2956	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2957	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2958	for (i = 31; i >= 1; i--) {
2959		__le32 le32 = cpu_to_le32(BIT(i));
2960
2961		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2962		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2963			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2964			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2965			break;
2966		}
2967	}
2968
2969	ret = xhci_configure_endpoint(xhci, udev, command,
2970			false, false);
2971	if (ret)
2972		/* Callee should call reset_bandwidth() */
2973		goto command_cleanup;
2974
2975	/* Free any rings that were dropped, but not changed. */
2976	for (i = 1; i < 31; i++) {
2977		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2978		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2979			xhci_free_endpoint_ring(xhci, virt_dev, i);
2980			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2981		}
2982	}
2983	xhci_zero_in_ctx(xhci, virt_dev);
2984	/*
2985	 * Install any rings for completely new endpoints or changed endpoints,
2986	 * and free any old rings from changed endpoints.
2987	 */
2988	for (i = 1; i < 31; i++) {
2989		if (!virt_dev->eps[i].new_ring)
2990			continue;
2991		/* Only free the old ring if it exists.
2992		 * It may not if this is the first add of an endpoint.
2993		 */
2994		if (virt_dev->eps[i].ring) {
2995			xhci_free_endpoint_ring(xhci, virt_dev, i);
2996		}
2997		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2998		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2999		virt_dev->eps[i].new_ring = NULL;
3000		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3001	}
3002command_cleanup:
3003	kfree(command->completion);
3004	kfree(command);
3005
3006	return ret;
3007}
3008EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3009
3010void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3011{
3012	struct xhci_hcd *xhci;
3013	struct xhci_virt_device	*virt_dev;
3014	int i, ret;
3015
3016	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3017	if (ret <= 0)
3018		return;
3019	xhci = hcd_to_xhci(hcd);
3020
3021	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3022	virt_dev = xhci->devs[udev->slot_id];
3023	/* Free any rings allocated for added endpoints */
3024	for (i = 0; i < 31; i++) {
3025		if (virt_dev->eps[i].new_ring) {
3026			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3027			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3028			virt_dev->eps[i].new_ring = NULL;
3029		}
3030	}
3031	xhci_zero_in_ctx(xhci, virt_dev);
3032}
3033EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3034
3035static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3036		struct xhci_container_ctx *in_ctx,
3037		struct xhci_container_ctx *out_ctx,
3038		struct xhci_input_control_ctx *ctrl_ctx,
3039		u32 add_flags, u32 drop_flags)
3040{
3041	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3042	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3043	xhci_slot_copy(xhci, in_ctx, out_ctx);
3044	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3045}
3046
3047static void xhci_endpoint_disable(struct usb_hcd *hcd,
3048				  struct usb_host_endpoint *host_ep)
3049{
3050	struct xhci_hcd		*xhci;
3051	struct xhci_virt_device	*vdev;
3052	struct xhci_virt_ep	*ep;
3053	struct usb_device	*udev;
3054	unsigned long		flags;
3055	unsigned int		ep_index;
3056
3057	xhci = hcd_to_xhci(hcd);
3058rescan:
3059	spin_lock_irqsave(&xhci->lock, flags);
3060
3061	udev = (struct usb_device *)host_ep->hcpriv;
3062	if (!udev || !udev->slot_id)
3063		goto done;
3064
3065	vdev = xhci->devs[udev->slot_id];
3066	if (!vdev)
3067		goto done;
3068
3069	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3070	ep = &vdev->eps[ep_index];
3071
3072	/* wait for hub_tt_work to finish clearing hub TT */
3073	if (ep->ep_state & EP_CLEARING_TT) {
3074		spin_unlock_irqrestore(&xhci->lock, flags);
3075		schedule_timeout_uninterruptible(1);
3076		goto rescan;
3077	}
3078
3079	if (ep->ep_state)
3080		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3081			 ep->ep_state);
3082done:
3083	host_ep->hcpriv = NULL;
3084	spin_unlock_irqrestore(&xhci->lock, flags);
3085}
3086
3087/*
3088 * Called after usb core issues a clear halt control message.
3089 * The host side of the halt should already be cleared by a reset endpoint
3090 * command issued when the STALL event was received.
3091 *
3092 * The reset endpoint command may only be issued to endpoints in the halted
3093 * state. For software that wishes to reset the data toggle or sequence number
3094 * of an endpoint that isn't in the halted state this function will issue a
3095 * configure endpoint command with the Drop and Add bits set for the target
3096 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3097 *
3098 * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3099 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3100 */
3101
3102static void xhci_endpoint_reset(struct usb_hcd *hcd,
3103		struct usb_host_endpoint *host_ep)
3104{
3105	struct xhci_hcd *xhci;
3106	struct usb_device *udev;
3107	struct xhci_virt_device *vdev;
3108	struct xhci_virt_ep *ep;
3109	struct xhci_input_control_ctx *ctrl_ctx;
3110	struct xhci_command *stop_cmd, *cfg_cmd;
3111	unsigned int ep_index;
3112	unsigned long flags;
3113	u32 ep_flag;
3114	int err;
3115
3116	xhci = hcd_to_xhci(hcd);
3117	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3118
3119	/*
3120	 * Usb core assumes a max packet value for ep0 on FS devices until the
3121	 * real value is read from the descriptor. Core resets Ep0 if values
3122	 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3123	 */
3124	if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3125
3126		udev = container_of(host_ep, struct usb_device, ep0);
3127		if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3128			return;
3129
3130		vdev = xhci->devs[udev->slot_id];
3131		if (!vdev || vdev->udev != udev)
3132			return;
3133
3134		xhci_check_ep0_maxpacket(xhci, vdev);
3135
3136		/* Nothing else should be done here for ep0 during ep reset */
3137		return;
3138	}
3139
3140	if (!host_ep->hcpriv)
3141		return;
3142	udev = (struct usb_device *) host_ep->hcpriv;
3143	vdev = xhci->devs[udev->slot_id];
3144
 
 
 
 
 
3145	if (!udev->slot_id || !vdev)
3146		return;
3147
3148	ep = &vdev->eps[ep_index];
3149
3150	/* Bail out if toggle is already being cleared by a endpoint reset */
3151	spin_lock_irqsave(&xhci->lock, flags);
3152	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3153		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3154		spin_unlock_irqrestore(&xhci->lock, flags);
3155		return;
3156	}
3157	spin_unlock_irqrestore(&xhci->lock, flags);
3158	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3159	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3160	    usb_endpoint_xfer_isoc(&host_ep->desc))
3161		return;
3162
3163	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3164
3165	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3166		return;
3167
3168	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3169	if (!stop_cmd)
3170		return;
3171
3172	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3173	if (!cfg_cmd)
3174		goto cleanup;
3175
3176	spin_lock_irqsave(&xhci->lock, flags);
3177
3178	/* block queuing new trbs and ringing ep doorbell */
3179	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3180
3181	/*
3182	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3183	 * Driver is required to synchronously cancel all transfer request.
3184	 * Stop the endpoint to force xHC to update the output context
3185	 */
3186
3187	if (!list_empty(&ep->ring->td_list)) {
3188		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3189		spin_unlock_irqrestore(&xhci->lock, flags);
3190		xhci_free_command(xhci, cfg_cmd);
3191		goto cleanup;
3192	}
3193
3194	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3195					ep_index, 0);
3196	if (err < 0) {
3197		spin_unlock_irqrestore(&xhci->lock, flags);
3198		xhci_free_command(xhci, cfg_cmd);
3199		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3200				__func__, err);
3201		goto cleanup;
3202	}
3203
3204	xhci_ring_cmd_db(xhci);
3205	spin_unlock_irqrestore(&xhci->lock, flags);
3206
3207	wait_for_completion(stop_cmd->completion);
3208
3209	spin_lock_irqsave(&xhci->lock, flags);
3210
3211	/* config ep command clears toggle if add and drop ep flags are set */
3212	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3213	if (!ctrl_ctx) {
3214		spin_unlock_irqrestore(&xhci->lock, flags);
3215		xhci_free_command(xhci, cfg_cmd);
3216		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3217				__func__);
3218		goto cleanup;
3219	}
3220
3221	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3222					   ctrl_ctx, ep_flag, ep_flag);
3223	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3224
3225	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3226				      udev->slot_id, false);
3227	if (err < 0) {
3228		spin_unlock_irqrestore(&xhci->lock, flags);
3229		xhci_free_command(xhci, cfg_cmd);
3230		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3231				__func__, err);
3232		goto cleanup;
3233	}
3234
3235	xhci_ring_cmd_db(xhci);
3236	spin_unlock_irqrestore(&xhci->lock, flags);
3237
3238	wait_for_completion(cfg_cmd->completion);
3239
3240	xhci_free_command(xhci, cfg_cmd);
3241cleanup:
3242	xhci_free_command(xhci, stop_cmd);
3243	spin_lock_irqsave(&xhci->lock, flags);
3244	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3245		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3246	spin_unlock_irqrestore(&xhci->lock, flags);
3247}
3248
3249static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3250		struct usb_device *udev, struct usb_host_endpoint *ep,
3251		unsigned int slot_id)
3252{
3253	int ret;
3254	unsigned int ep_index;
3255	unsigned int ep_state;
3256
3257	if (!ep)
3258		return -EINVAL;
3259	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3260	if (ret <= 0)
3261		return ret ? ret : -EINVAL;
3262	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3263		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3264				" descriptor for ep 0x%x does not support streams\n",
3265				ep->desc.bEndpointAddress);
3266		return -EINVAL;
3267	}
3268
3269	ep_index = xhci_get_endpoint_index(&ep->desc);
3270	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3271	if (ep_state & EP_HAS_STREAMS ||
3272			ep_state & EP_GETTING_STREAMS) {
3273		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3274				"already has streams set up.\n",
3275				ep->desc.bEndpointAddress);
3276		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3277				"dynamic stream context array reallocation.\n");
3278		return -EINVAL;
3279	}
3280	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3281		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3282				"endpoint 0x%x; URBs are pending.\n",
3283				ep->desc.bEndpointAddress);
3284		return -EINVAL;
3285	}
3286	return 0;
3287}
3288
3289static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3290		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3291{
3292	unsigned int max_streams;
3293
3294	/* The stream context array size must be a power of two */
3295	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3296	/*
3297	 * Find out how many primary stream array entries the host controller
3298	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3299	 * level page entries), but that's an optional feature for xHCI host
3300	 * controllers. xHCs must support at least 4 stream IDs.
3301	 */
3302	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3303	if (*num_stream_ctxs > max_streams) {
3304		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3305				max_streams);
3306		*num_stream_ctxs = max_streams;
3307		*num_streams = max_streams;
3308	}
3309}
3310
3311/* Returns an error code if one of the endpoint already has streams.
3312 * This does not change any data structures, it only checks and gathers
3313 * information.
3314 */
3315static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3316		struct usb_device *udev,
3317		struct usb_host_endpoint **eps, unsigned int num_eps,
3318		unsigned int *num_streams, u32 *changed_ep_bitmask)
3319{
3320	unsigned int max_streams;
3321	unsigned int endpoint_flag;
3322	int i;
3323	int ret;
3324
3325	for (i = 0; i < num_eps; i++) {
3326		ret = xhci_check_streams_endpoint(xhci, udev,
3327				eps[i], udev->slot_id);
3328		if (ret < 0)
3329			return ret;
3330
3331		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3332		if (max_streams < (*num_streams - 1)) {
3333			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3334					eps[i]->desc.bEndpointAddress,
3335					max_streams);
3336			*num_streams = max_streams+1;
3337		}
3338
3339		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3340		if (*changed_ep_bitmask & endpoint_flag)
3341			return -EINVAL;
3342		*changed_ep_bitmask |= endpoint_flag;
3343	}
3344	return 0;
3345}
3346
3347static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3348		struct usb_device *udev,
3349		struct usb_host_endpoint **eps, unsigned int num_eps)
3350{
3351	u32 changed_ep_bitmask = 0;
3352	unsigned int slot_id;
3353	unsigned int ep_index;
3354	unsigned int ep_state;
3355	int i;
3356
3357	slot_id = udev->slot_id;
3358	if (!xhci->devs[slot_id])
3359		return 0;
3360
3361	for (i = 0; i < num_eps; i++) {
3362		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3363		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3364		/* Are streams already being freed for the endpoint? */
3365		if (ep_state & EP_GETTING_NO_STREAMS) {
3366			xhci_warn(xhci, "WARN Can't disable streams for "
3367					"endpoint 0x%x, "
3368					"streams are being disabled already\n",
3369					eps[i]->desc.bEndpointAddress);
3370			return 0;
3371		}
3372		/* Are there actually any streams to free? */
3373		if (!(ep_state & EP_HAS_STREAMS) &&
3374				!(ep_state & EP_GETTING_STREAMS)) {
3375			xhci_warn(xhci, "WARN Can't disable streams for "
3376					"endpoint 0x%x, "
3377					"streams are already disabled!\n",
3378					eps[i]->desc.bEndpointAddress);
3379			xhci_warn(xhci, "WARN xhci_free_streams() called "
3380					"with non-streams endpoint\n");
3381			return 0;
3382		}
3383		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3384	}
3385	return changed_ep_bitmask;
3386}
3387
3388/*
3389 * The USB device drivers use this function (through the HCD interface in USB
3390 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3391 * coordinate mass storage command queueing across multiple endpoints (basically
3392 * a stream ID == a task ID).
3393 *
3394 * Setting up streams involves allocating the same size stream context array
3395 * for each endpoint and issuing a configure endpoint command for all endpoints.
3396 *
3397 * Don't allow the call to succeed if one endpoint only supports one stream
3398 * (which means it doesn't support streams at all).
3399 *
3400 * Drivers may get less stream IDs than they asked for, if the host controller
3401 * hardware or endpoints claim they can't support the number of requested
3402 * stream IDs.
3403 */
3404static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3405		struct usb_host_endpoint **eps, unsigned int num_eps,
3406		unsigned int num_streams, gfp_t mem_flags)
3407{
3408	int i, ret;
3409	struct xhci_hcd *xhci;
3410	struct xhci_virt_device *vdev;
3411	struct xhci_command *config_cmd;
3412	struct xhci_input_control_ctx *ctrl_ctx;
3413	unsigned int ep_index;
3414	unsigned int num_stream_ctxs;
3415	unsigned int max_packet;
3416	unsigned long flags;
3417	u32 changed_ep_bitmask = 0;
3418
3419	if (!eps)
3420		return -EINVAL;
3421
3422	/* Add one to the number of streams requested to account for
3423	 * stream 0 that is reserved for xHCI usage.
3424	 */
3425	num_streams += 1;
3426	xhci = hcd_to_xhci(hcd);
3427	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3428			num_streams);
3429
3430	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3431	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3432			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3433		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3434		return -ENOSYS;
3435	}
3436
3437	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3438	if (!config_cmd)
3439		return -ENOMEM;
3440
3441	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3442	if (!ctrl_ctx) {
3443		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3444				__func__);
3445		xhci_free_command(xhci, config_cmd);
3446		return -ENOMEM;
3447	}
3448
3449	/* Check to make sure all endpoints are not already configured for
3450	 * streams.  While we're at it, find the maximum number of streams that
3451	 * all the endpoints will support and check for duplicate endpoints.
3452	 */
3453	spin_lock_irqsave(&xhci->lock, flags);
3454	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3455			num_eps, &num_streams, &changed_ep_bitmask);
3456	if (ret < 0) {
3457		xhci_free_command(xhci, config_cmd);
3458		spin_unlock_irqrestore(&xhci->lock, flags);
3459		return ret;
3460	}
3461	if (num_streams <= 1) {
3462		xhci_warn(xhci, "WARN: endpoints can't handle "
3463				"more than one stream.\n");
3464		xhci_free_command(xhci, config_cmd);
3465		spin_unlock_irqrestore(&xhci->lock, flags);
3466		return -EINVAL;
3467	}
3468	vdev = xhci->devs[udev->slot_id];
3469	/* Mark each endpoint as being in transition, so
3470	 * xhci_urb_enqueue() will reject all URBs.
3471	 */
3472	for (i = 0; i < num_eps; i++) {
3473		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3474		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3475	}
3476	spin_unlock_irqrestore(&xhci->lock, flags);
3477
3478	/* Setup internal data structures and allocate HW data structures for
3479	 * streams (but don't install the HW structures in the input context
3480	 * until we're sure all memory allocation succeeded).
3481	 */
3482	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3483	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3484			num_stream_ctxs, num_streams);
3485
3486	for (i = 0; i < num_eps; i++) {
3487		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3488		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3489		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3490				num_stream_ctxs,
3491				num_streams,
3492				max_packet, mem_flags);
3493		if (!vdev->eps[ep_index].stream_info)
3494			goto cleanup;
3495		/* Set maxPstreams in endpoint context and update deq ptr to
3496		 * point to stream context array. FIXME
3497		 */
3498	}
3499
3500	/* Set up the input context for a configure endpoint command. */
3501	for (i = 0; i < num_eps; i++) {
3502		struct xhci_ep_ctx *ep_ctx;
3503
3504		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3505		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3506
3507		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3508				vdev->out_ctx, ep_index);
3509		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3510				vdev->eps[ep_index].stream_info);
3511	}
3512	/* Tell the HW to drop its old copy of the endpoint context info
3513	 * and add the updated copy from the input context.
3514	 */
3515	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3516			vdev->out_ctx, ctrl_ctx,
3517			changed_ep_bitmask, changed_ep_bitmask);
3518
3519	/* Issue and wait for the configure endpoint command */
3520	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3521			false, false);
3522
3523	/* xHC rejected the configure endpoint command for some reason, so we
3524	 * leave the old ring intact and free our internal streams data
3525	 * structure.
3526	 */
3527	if (ret < 0)
3528		goto cleanup;
3529
3530	spin_lock_irqsave(&xhci->lock, flags);
3531	for (i = 0; i < num_eps; i++) {
3532		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3533		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3534		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3535			 udev->slot_id, ep_index);
3536		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3537	}
3538	xhci_free_command(xhci, config_cmd);
3539	spin_unlock_irqrestore(&xhci->lock, flags);
3540
3541	for (i = 0; i < num_eps; i++) {
3542		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3543		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3544	}
3545	/* Subtract 1 for stream 0, which drivers can't use */
3546	return num_streams - 1;
3547
3548cleanup:
3549	/* If it didn't work, free the streams! */
3550	for (i = 0; i < num_eps; i++) {
3551		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3552		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3553		vdev->eps[ep_index].stream_info = NULL;
3554		/* FIXME Unset maxPstreams in endpoint context and
3555		 * update deq ptr to point to normal string ring.
3556		 */
3557		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3558		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3559		xhci_endpoint_zero(xhci, vdev, eps[i]);
3560	}
3561	xhci_free_command(xhci, config_cmd);
3562	return -ENOMEM;
3563}
3564
3565/* Transition the endpoint from using streams to being a "normal" endpoint
3566 * without streams.
3567 *
3568 * Modify the endpoint context state, submit a configure endpoint command,
3569 * and free all endpoint rings for streams if that completes successfully.
3570 */
3571static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3572		struct usb_host_endpoint **eps, unsigned int num_eps,
3573		gfp_t mem_flags)
3574{
3575	int i, ret;
3576	struct xhci_hcd *xhci;
3577	struct xhci_virt_device *vdev;
3578	struct xhci_command *command;
3579	struct xhci_input_control_ctx *ctrl_ctx;
3580	unsigned int ep_index;
3581	unsigned long flags;
3582	u32 changed_ep_bitmask;
3583
3584	xhci = hcd_to_xhci(hcd);
3585	vdev = xhci->devs[udev->slot_id];
3586
3587	/* Set up a configure endpoint command to remove the streams rings */
3588	spin_lock_irqsave(&xhci->lock, flags);
3589	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3590			udev, eps, num_eps);
3591	if (changed_ep_bitmask == 0) {
3592		spin_unlock_irqrestore(&xhci->lock, flags);
3593		return -EINVAL;
3594	}
3595
3596	/* Use the xhci_command structure from the first endpoint.  We may have
3597	 * allocated too many, but the driver may call xhci_free_streams() for
3598	 * each endpoint it grouped into one call to xhci_alloc_streams().
3599	 */
3600	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3601	command = vdev->eps[ep_index].stream_info->free_streams_command;
3602	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3603	if (!ctrl_ctx) {
3604		spin_unlock_irqrestore(&xhci->lock, flags);
3605		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3606				__func__);
3607		return -EINVAL;
3608	}
3609
3610	for (i = 0; i < num_eps; i++) {
3611		struct xhci_ep_ctx *ep_ctx;
3612
3613		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3614		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3615		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3616			EP_GETTING_NO_STREAMS;
3617
3618		xhci_endpoint_copy(xhci, command->in_ctx,
3619				vdev->out_ctx, ep_index);
3620		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3621				&vdev->eps[ep_index]);
3622	}
3623	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3624			vdev->out_ctx, ctrl_ctx,
3625			changed_ep_bitmask, changed_ep_bitmask);
3626	spin_unlock_irqrestore(&xhci->lock, flags);
3627
3628	/* Issue and wait for the configure endpoint command,
3629	 * which must succeed.
3630	 */
3631	ret = xhci_configure_endpoint(xhci, udev, command,
3632			false, true);
3633
3634	/* xHC rejected the configure endpoint command for some reason, so we
3635	 * leave the streams rings intact.
3636	 */
3637	if (ret < 0)
3638		return ret;
3639
3640	spin_lock_irqsave(&xhci->lock, flags);
3641	for (i = 0; i < num_eps; i++) {
3642		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3643		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3644		vdev->eps[ep_index].stream_info = NULL;
3645		/* FIXME Unset maxPstreams in endpoint context and
3646		 * update deq ptr to point to normal string ring.
3647		 */
3648		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3649		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3650	}
3651	spin_unlock_irqrestore(&xhci->lock, flags);
3652
3653	return 0;
3654}
3655
3656/*
3657 * Deletes endpoint resources for endpoints that were active before a Reset
3658 * Device command, or a Disable Slot command.  The Reset Device command leaves
3659 * the control endpoint intact, whereas the Disable Slot command deletes it.
3660 *
3661 * Must be called with xhci->lock held.
3662 */
3663void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3664	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3665{
3666	int i;
3667	unsigned int num_dropped_eps = 0;
3668	unsigned int drop_flags = 0;
3669
3670	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3671		if (virt_dev->eps[i].ring) {
3672			drop_flags |= 1 << i;
3673			num_dropped_eps++;
3674		}
3675	}
3676	xhci->num_active_eps -= num_dropped_eps;
3677	if (num_dropped_eps)
3678		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3679				"Dropped %u ep ctxs, flags = 0x%x, "
3680				"%u now active.",
3681				num_dropped_eps, drop_flags,
3682				xhci->num_active_eps);
3683}
3684
3685/*
3686 * This submits a Reset Device Command, which will set the device state to 0,
3687 * set the device address to 0, and disable all the endpoints except the default
3688 * control endpoint.  The USB core should come back and call
3689 * xhci_address_device(), and then re-set up the configuration.  If this is
3690 * called because of a usb_reset_and_verify_device(), then the old alternate
3691 * settings will be re-installed through the normal bandwidth allocation
3692 * functions.
3693 *
3694 * Wait for the Reset Device command to finish.  Remove all structures
3695 * associated with the endpoints that were disabled.  Clear the input device
3696 * structure? Reset the control endpoint 0 max packet size?
3697 *
3698 * If the virt_dev to be reset does not exist or does not match the udev,
3699 * it means the device is lost, possibly due to the xHC restore error and
3700 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3701 * re-allocate the device.
3702 */
3703static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3704		struct usb_device *udev)
3705{
3706	int ret, i;
3707	unsigned long flags;
3708	struct xhci_hcd *xhci;
3709	unsigned int slot_id;
3710	struct xhci_virt_device *virt_dev;
3711	struct xhci_command *reset_device_cmd;
3712	struct xhci_slot_ctx *slot_ctx;
3713	int old_active_eps = 0;
3714
3715	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3716	if (ret <= 0)
3717		return ret;
3718	xhci = hcd_to_xhci(hcd);
3719	slot_id = udev->slot_id;
3720	virt_dev = xhci->devs[slot_id];
3721	if (!virt_dev) {
3722		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3723				"not exist. Re-allocate the device\n", slot_id);
3724		ret = xhci_alloc_dev(hcd, udev);
3725		if (ret == 1)
3726			return 0;
3727		else
3728			return -EINVAL;
3729	}
3730
3731	if (virt_dev->tt_info)
3732		old_active_eps = virt_dev->tt_info->active_eps;
3733
3734	if (virt_dev->udev != udev) {
3735		/* If the virt_dev and the udev does not match, this virt_dev
3736		 * may belong to another udev.
3737		 * Re-allocate the device.
3738		 */
3739		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3740				"not match the udev. Re-allocate the device\n",
3741				slot_id);
3742		ret = xhci_alloc_dev(hcd, udev);
3743		if (ret == 1)
3744			return 0;
3745		else
3746			return -EINVAL;
3747	}
3748
3749	/* If device is not setup, there is no point in resetting it */
3750	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3751	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3752						SLOT_STATE_DISABLED)
3753		return 0;
3754
3755	trace_xhci_discover_or_reset_device(slot_ctx);
3756
3757	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3758	/* Allocate the command structure that holds the struct completion.
3759	 * Assume we're in process context, since the normal device reset
3760	 * process has to wait for the device anyway.  Storage devices are
3761	 * reset as part of error handling, so use GFP_NOIO instead of
3762	 * GFP_KERNEL.
3763	 */
3764	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3765	if (!reset_device_cmd) {
3766		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3767		return -ENOMEM;
3768	}
3769
3770	/* Attempt to submit the Reset Device command to the command ring */
3771	spin_lock_irqsave(&xhci->lock, flags);
3772
3773	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3774	if (ret) {
3775		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3776		spin_unlock_irqrestore(&xhci->lock, flags);
3777		goto command_cleanup;
3778	}
3779	xhci_ring_cmd_db(xhci);
3780	spin_unlock_irqrestore(&xhci->lock, flags);
3781
3782	/* Wait for the Reset Device command to finish */
3783	wait_for_completion(reset_device_cmd->completion);
3784
3785	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3786	 * unless we tried to reset a slot ID that wasn't enabled,
3787	 * or the device wasn't in the addressed or configured state.
3788	 */
3789	ret = reset_device_cmd->status;
3790	switch (ret) {
3791	case COMP_COMMAND_ABORTED:
3792	case COMP_COMMAND_RING_STOPPED:
3793		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3794		ret = -ETIME;
3795		goto command_cleanup;
3796	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3797	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3798		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3799				slot_id,
3800				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3801		xhci_dbg(xhci, "Not freeing device rings.\n");
3802		/* Don't treat this as an error.  May change my mind later. */
3803		ret = 0;
3804		goto command_cleanup;
3805	case COMP_SUCCESS:
3806		xhci_dbg(xhci, "Successful reset device command.\n");
3807		break;
3808	default:
3809		if (xhci_is_vendor_info_code(xhci, ret))
3810			break;
3811		xhci_warn(xhci, "Unknown completion code %u for "
3812				"reset device command.\n", ret);
3813		ret = -EINVAL;
3814		goto command_cleanup;
3815	}
3816
3817	/* Free up host controller endpoint resources */
3818	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3819		spin_lock_irqsave(&xhci->lock, flags);
3820		/* Don't delete the default control endpoint resources */
3821		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3822		spin_unlock_irqrestore(&xhci->lock, flags);
3823	}
3824
3825	/* Everything but endpoint 0 is disabled, so free the rings. */
3826	for (i = 1; i < 31; i++) {
3827		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3828
3829		if (ep->ep_state & EP_HAS_STREAMS) {
3830			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3831					xhci_get_endpoint_address(i));
3832			xhci_free_stream_info(xhci, ep->stream_info);
3833			ep->stream_info = NULL;
3834			ep->ep_state &= ~EP_HAS_STREAMS;
3835		}
3836
3837		if (ep->ring) {
3838			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3839			xhci_free_endpoint_ring(xhci, virt_dev, i);
3840		}
3841		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3842			xhci_drop_ep_from_interval_table(xhci,
3843					&virt_dev->eps[i].bw_info,
3844					virt_dev->bw_table,
3845					udev,
3846					&virt_dev->eps[i],
3847					virt_dev->tt_info);
3848		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3849	}
3850	/* If necessary, update the number of active TTs on this root port */
3851	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3852	virt_dev->flags = 0;
3853	ret = 0;
3854
3855command_cleanup:
3856	xhci_free_command(xhci, reset_device_cmd);
3857	return ret;
3858}
3859
3860/*
3861 * At this point, the struct usb_device is about to go away, the device has
3862 * disconnected, and all traffic has been stopped and the endpoints have been
3863 * disabled.  Free any HC data structures associated with that device.
3864 */
3865static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3866{
3867	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3868	struct xhci_virt_device *virt_dev;
3869	struct xhci_slot_ctx *slot_ctx;
3870	unsigned long flags;
3871	int i, ret;
3872
3873	/*
3874	 * We called pm_runtime_get_noresume when the device was attached.
3875	 * Decrement the counter here to allow controller to runtime suspend
3876	 * if no devices remain.
3877	 */
3878	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3879		pm_runtime_put_noidle(hcd->self.controller);
3880
3881	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3882	/* If the host is halted due to driver unload, we still need to free the
3883	 * device.
3884	 */
3885	if (ret <= 0 && ret != -ENODEV)
3886		return;
3887
3888	virt_dev = xhci->devs[udev->slot_id];
3889	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3890	trace_xhci_free_dev(slot_ctx);
3891
3892	/* Stop any wayward timer functions (which may grab the lock) */
3893	for (i = 0; i < 31; i++)
3894		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3895	virt_dev->udev = NULL;
3896	xhci_disable_slot(xhci, udev->slot_id);
3897
3898	spin_lock_irqsave(&xhci->lock, flags);
3899	xhci_free_virt_device(xhci, udev->slot_id);
3900	spin_unlock_irqrestore(&xhci->lock, flags);
3901
3902}
3903
3904int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3905{
3906	struct xhci_command *command;
3907	unsigned long flags;
3908	u32 state;
3909	int ret;
3910
3911	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3912	if (!command)
3913		return -ENOMEM;
3914
3915	xhci_debugfs_remove_slot(xhci, slot_id);
3916
3917	spin_lock_irqsave(&xhci->lock, flags);
3918	/* Don't disable the slot if the host controller is dead. */
3919	state = readl(&xhci->op_regs->status);
3920	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3921			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3922		spin_unlock_irqrestore(&xhci->lock, flags);
3923		kfree(command);
3924		return -ENODEV;
3925	}
3926
3927	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3928				slot_id);
3929	if (ret) {
3930		spin_unlock_irqrestore(&xhci->lock, flags);
3931		kfree(command);
3932		return ret;
3933	}
3934	xhci_ring_cmd_db(xhci);
3935	spin_unlock_irqrestore(&xhci->lock, flags);
3936
3937	wait_for_completion(command->completion);
3938
3939	if (command->status != COMP_SUCCESS)
3940		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3941			  slot_id, command->status);
3942
3943	xhci_free_command(xhci, command);
3944
3945	return 0;
3946}
3947
3948/*
3949 * Checks if we have enough host controller resources for the default control
3950 * endpoint.
3951 *
3952 * Must be called with xhci->lock held.
3953 */
3954static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3955{
3956	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3957		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3958				"Not enough ep ctxs: "
3959				"%u active, need to add 1, limit is %u.",
3960				xhci->num_active_eps, xhci->limit_active_eps);
3961		return -ENOMEM;
3962	}
3963	xhci->num_active_eps += 1;
3964	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3965			"Adding 1 ep ctx, %u now active.",
3966			xhci->num_active_eps);
3967	return 0;
3968}
3969
3970
3971/*
3972 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3973 * timed out, or allocating memory failed.  Returns 1 on success.
3974 */
3975int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3976{
3977	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3978	struct xhci_virt_device *vdev;
3979	struct xhci_slot_ctx *slot_ctx;
3980	unsigned long flags;
3981	int ret, slot_id;
3982	struct xhci_command *command;
3983
3984	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3985	if (!command)
3986		return 0;
3987
3988	spin_lock_irqsave(&xhci->lock, flags);
3989	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3990	if (ret) {
3991		spin_unlock_irqrestore(&xhci->lock, flags);
3992		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3993		xhci_free_command(xhci, command);
3994		return 0;
3995	}
3996	xhci_ring_cmd_db(xhci);
3997	spin_unlock_irqrestore(&xhci->lock, flags);
3998
3999	wait_for_completion(command->completion);
4000	slot_id = command->slot_id;
4001
4002	if (!slot_id || command->status != COMP_SUCCESS) {
4003		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4004			 xhci_trb_comp_code_string(command->status));
4005		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4006				HCS_MAX_SLOTS(
4007					readl(&xhci->cap_regs->hcs_params1)));
4008		xhci_free_command(xhci, command);
4009		return 0;
4010	}
4011
4012	xhci_free_command(xhci, command);
4013
4014	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4015		spin_lock_irqsave(&xhci->lock, flags);
4016		ret = xhci_reserve_host_control_ep_resources(xhci);
4017		if (ret) {
4018			spin_unlock_irqrestore(&xhci->lock, flags);
4019			xhci_warn(xhci, "Not enough host resources, "
4020					"active endpoint contexts = %u\n",
4021					xhci->num_active_eps);
4022			goto disable_slot;
4023		}
4024		spin_unlock_irqrestore(&xhci->lock, flags);
4025	}
4026	/* Use GFP_NOIO, since this function can be called from
4027	 * xhci_discover_or_reset_device(), which may be called as part of
4028	 * mass storage driver error handling.
4029	 */
4030	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4031		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4032		goto disable_slot;
4033	}
4034	vdev = xhci->devs[slot_id];
4035	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4036	trace_xhci_alloc_dev(slot_ctx);
4037
4038	udev->slot_id = slot_id;
4039
4040	xhci_debugfs_create_slot(xhci, slot_id);
4041
4042	/*
4043	 * If resetting upon resume, we can't put the controller into runtime
4044	 * suspend if there is a device attached.
4045	 */
4046	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4047		pm_runtime_get_noresume(hcd->self.controller);
4048
4049	/* Is this a LS or FS device under a HS hub? */
4050	/* Hub or peripherial? */
4051	return 1;
4052
4053disable_slot:
4054	xhci_disable_slot(xhci, udev->slot_id);
4055	xhci_free_virt_device(xhci, udev->slot_id);
4056
4057	return 0;
4058}
4059
4060/**
4061 * xhci_setup_device - issues an Address Device command to assign a unique
4062 *			USB bus address.
4063 * @hcd: USB host controller data structure.
4064 * @udev: USB dev structure representing the connected device.
4065 * @setup: Enum specifying setup mode: address only or with context.
4066 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4067 *
4068 * Return: 0 if successful; otherwise, negative error code.
4069 */
4070static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4071			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4072{
4073	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4074	unsigned long flags;
4075	struct xhci_virt_device *virt_dev;
4076	int ret = 0;
4077	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4078	struct xhci_slot_ctx *slot_ctx;
4079	struct xhci_input_control_ctx *ctrl_ctx;
4080	u64 temp_64;
4081	struct xhci_command *command = NULL;
4082
4083	mutex_lock(&xhci->mutex);
4084
4085	if (xhci->xhc_state) {	/* dying, removing or halted */
4086		ret = -ESHUTDOWN;
4087		goto out;
4088	}
4089
4090	if (!udev->slot_id) {
4091		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4092				"Bad Slot ID %d", udev->slot_id);
4093		ret = -EINVAL;
4094		goto out;
4095	}
4096
4097	virt_dev = xhci->devs[udev->slot_id];
4098
4099	if (WARN_ON(!virt_dev)) {
4100		/*
4101		 * In plug/unplug torture test with an NEC controller,
4102		 * a zero-dereference was observed once due to virt_dev = 0.
4103		 * Print useful debug rather than crash if it is observed again!
4104		 */
4105		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4106			udev->slot_id);
4107		ret = -EINVAL;
4108		goto out;
4109	}
4110	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4111	trace_xhci_setup_device_slot(slot_ctx);
4112
4113	if (setup == SETUP_CONTEXT_ONLY) {
4114		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4115		    SLOT_STATE_DEFAULT) {
4116			xhci_dbg(xhci, "Slot already in default state\n");
4117			goto out;
4118		}
4119	}
4120
4121	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4122	if (!command) {
4123		ret = -ENOMEM;
4124		goto out;
4125	}
4126
4127	command->in_ctx = virt_dev->in_ctx;
4128	command->timeout_ms = timeout_ms;
4129
4130	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4131	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4132	if (!ctrl_ctx) {
4133		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4134				__func__);
4135		ret = -EINVAL;
4136		goto out;
4137	}
4138	/*
4139	 * If this is the first Set Address since device plug-in or
4140	 * virt_device realloaction after a resume with an xHCI power loss,
4141	 * then set up the slot context.
4142	 */
4143	if (!slot_ctx->dev_info)
4144		xhci_setup_addressable_virt_dev(xhci, udev);
4145	/* Otherwise, update the control endpoint ring enqueue pointer. */
4146	else
4147		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4148	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4149	ctrl_ctx->drop_flags = 0;
4150
4151	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4152				le32_to_cpu(slot_ctx->dev_info) >> 27);
4153
4154	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4155	spin_lock_irqsave(&xhci->lock, flags);
4156	trace_xhci_setup_device(virt_dev);
4157	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4158					udev->slot_id, setup);
4159	if (ret) {
4160		spin_unlock_irqrestore(&xhci->lock, flags);
4161		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4162				"FIXME: allocate a command ring segment");
4163		goto out;
4164	}
4165	xhci_ring_cmd_db(xhci);
4166	spin_unlock_irqrestore(&xhci->lock, flags);
4167
4168	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4169	wait_for_completion(command->completion);
4170
4171	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4172	 * the SetAddress() "recovery interval" required by USB and aborting the
4173	 * command on a timeout.
4174	 */
4175	switch (command->status) {
4176	case COMP_COMMAND_ABORTED:
4177	case COMP_COMMAND_RING_STOPPED:
4178		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4179		ret = -ETIME;
4180		break;
4181	case COMP_CONTEXT_STATE_ERROR:
4182	case COMP_SLOT_NOT_ENABLED_ERROR:
4183		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4184			 act, udev->slot_id);
4185		ret = -EINVAL;
4186		break;
4187	case COMP_USB_TRANSACTION_ERROR:
4188		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4189
4190		mutex_unlock(&xhci->mutex);
4191		ret = xhci_disable_slot(xhci, udev->slot_id);
4192		xhci_free_virt_device(xhci, udev->slot_id);
4193		if (!ret)
4194			xhci_alloc_dev(hcd, udev);
4195		kfree(command->completion);
4196		kfree(command);
4197		return -EPROTO;
4198	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4199		dev_warn(&udev->dev,
4200			 "ERROR: Incompatible device for setup %s command\n", act);
4201		ret = -ENODEV;
4202		break;
4203	case COMP_SUCCESS:
4204		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4205			       "Successful setup %s command", act);
4206		break;
4207	default:
4208		xhci_err(xhci,
4209			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4210			 act, command->status);
4211		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4212		ret = -EINVAL;
4213		break;
4214	}
4215	if (ret)
4216		goto out;
4217	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4218	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4219			"Op regs DCBAA ptr = %#016llx", temp_64);
4220	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4221		"Slot ID %d dcbaa entry @%p = %#016llx",
4222		udev->slot_id,
4223		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4224		(unsigned long long)
4225		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4226	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4227			"Output Context DMA address = %#08llx",
4228			(unsigned long long)virt_dev->out_ctx->dma);
4229	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4230				le32_to_cpu(slot_ctx->dev_info) >> 27);
4231	/*
4232	 * USB core uses address 1 for the roothubs, so we add one to the
4233	 * address given back to us by the HC.
4234	 */
4235	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4236				le32_to_cpu(slot_ctx->dev_info) >> 27);
4237	/* Zero the input context control for later use */
4238	ctrl_ctx->add_flags = 0;
4239	ctrl_ctx->drop_flags = 0;
4240	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4241	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4242
4243	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4244		       "Internal device address = %d",
4245		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4246out:
4247	mutex_unlock(&xhci->mutex);
4248	if (command) {
4249		kfree(command->completion);
4250		kfree(command);
4251	}
4252	return ret;
4253}
4254
4255static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4256			       unsigned int timeout_ms)
4257{
4258	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4259}
4260
4261static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4262{
4263	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4264				 XHCI_CMD_DEFAULT_TIMEOUT);
4265}
4266
4267/*
4268 * Transfer the port index into real index in the HW port status
4269 * registers. Caculate offset between the port's PORTSC register
4270 * and port status base. Divide the number of per port register
4271 * to get the real index. The raw port number bases 1.
4272 */
4273int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4274{
4275	struct xhci_hub *rhub;
4276
4277	rhub = xhci_get_rhub(hcd);
4278	return rhub->ports[port1 - 1]->hw_portnum + 1;
4279}
4280
4281/*
4282 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4283 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4284 */
4285static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4286			struct usb_device *udev, u16 max_exit_latency)
4287{
4288	struct xhci_virt_device *virt_dev;
4289	struct xhci_command *command;
4290	struct xhci_input_control_ctx *ctrl_ctx;
4291	struct xhci_slot_ctx *slot_ctx;
4292	unsigned long flags;
4293	int ret;
4294
4295	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4296	if (!command)
4297		return -ENOMEM;
4298
4299	spin_lock_irqsave(&xhci->lock, flags);
4300
4301	virt_dev = xhci->devs[udev->slot_id];
4302
4303	/*
4304	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4305	 * xHC was re-initialized. Exit latency will be set later after
4306	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4307	 */
4308
4309	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4310		spin_unlock_irqrestore(&xhci->lock, flags);
4311		xhci_free_command(xhci, command);
4312		return 0;
4313	}
4314
4315	/* Attempt to issue an Evaluate Context command to change the MEL. */
4316	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4317	if (!ctrl_ctx) {
4318		spin_unlock_irqrestore(&xhci->lock, flags);
4319		xhci_free_command(xhci, command);
4320		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4321				__func__);
4322		return -ENOMEM;
4323	}
4324
4325	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4326	spin_unlock_irqrestore(&xhci->lock, flags);
4327
4328	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4329	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4330	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4331	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4332	slot_ctx->dev_state = 0;
4333
4334	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4335			"Set up evaluate context for LPM MEL change.");
4336
4337	/* Issue and wait for the evaluate context command. */
4338	ret = xhci_configure_endpoint(xhci, udev, command,
4339			true, true);
4340
4341	if (!ret) {
4342		spin_lock_irqsave(&xhci->lock, flags);
4343		virt_dev->current_mel = max_exit_latency;
4344		spin_unlock_irqrestore(&xhci->lock, flags);
4345	}
4346
4347	xhci_free_command(xhci, command);
4348
4349	return ret;
4350}
4351
4352#ifdef CONFIG_PM
4353
4354/* BESL to HIRD Encoding array for USB2 LPM */
4355static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4356	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4357
4358/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4359static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4360					struct usb_device *udev)
4361{
4362	int u2del, besl, besl_host;
4363	int besl_device = 0;
4364	u32 field;
4365
4366	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4367	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4368
4369	if (field & USB_BESL_SUPPORT) {
4370		for (besl_host = 0; besl_host < 16; besl_host++) {
4371			if (xhci_besl_encoding[besl_host] >= u2del)
4372				break;
4373		}
4374		/* Use baseline BESL value as default */
4375		if (field & USB_BESL_BASELINE_VALID)
4376			besl_device = USB_GET_BESL_BASELINE(field);
4377		else if (field & USB_BESL_DEEP_VALID)
4378			besl_device = USB_GET_BESL_DEEP(field);
4379	} else {
4380		if (u2del <= 50)
4381			besl_host = 0;
4382		else
4383			besl_host = (u2del - 51) / 75 + 1;
4384	}
4385
4386	besl = besl_host + besl_device;
4387	if (besl > 15)
4388		besl = 15;
4389
4390	return besl;
4391}
4392
4393/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4394static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4395{
4396	u32 field;
4397	int l1;
4398	int besld = 0;
4399	int hirdm = 0;
4400
4401	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4402
4403	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4404	l1 = udev->l1_params.timeout / 256;
4405
4406	/* device has preferred BESLD */
4407	if (field & USB_BESL_DEEP_VALID) {
4408		besld = USB_GET_BESL_DEEP(field);
4409		hirdm = 1;
4410	}
4411
4412	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4413}
4414
4415static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4416			struct usb_device *udev, int enable)
4417{
4418	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4419	struct xhci_port **ports;
4420	__le32 __iomem	*pm_addr, *hlpm_addr;
4421	u32		pm_val, hlpm_val, field;
4422	unsigned int	port_num;
4423	unsigned long	flags;
4424	int		hird, exit_latency;
4425	int		ret;
4426
4427	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4428		return -EPERM;
4429
4430	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4431			!udev->lpm_capable)
4432		return -EPERM;
4433
4434	if (!udev->parent || udev->parent->parent ||
4435			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4436		return -EPERM;
4437
4438	if (udev->usb2_hw_lpm_capable != 1)
4439		return -EPERM;
4440
4441	spin_lock_irqsave(&xhci->lock, flags);
4442
4443	ports = xhci->usb2_rhub.ports;
4444	port_num = udev->portnum - 1;
4445	pm_addr = ports[port_num]->addr + PORTPMSC;
4446	pm_val = readl(pm_addr);
4447	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4448
4449	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4450			enable ? "enable" : "disable", port_num + 1);
4451
4452	if (enable) {
4453		/* Host supports BESL timeout instead of HIRD */
4454		if (udev->usb2_hw_lpm_besl_capable) {
4455			/* if device doesn't have a preferred BESL value use a
4456			 * default one which works with mixed HIRD and BESL
4457			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4458			 */
4459			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4460			if ((field & USB_BESL_SUPPORT) &&
4461			    (field & USB_BESL_BASELINE_VALID))
4462				hird = USB_GET_BESL_BASELINE(field);
4463			else
4464				hird = udev->l1_params.besl;
4465
4466			exit_latency = xhci_besl_encoding[hird];
4467			spin_unlock_irqrestore(&xhci->lock, flags);
4468
4469			ret = xhci_change_max_exit_latency(xhci, udev,
4470							   exit_latency);
4471			if (ret < 0)
4472				return ret;
4473			spin_lock_irqsave(&xhci->lock, flags);
4474
4475			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4476			writel(hlpm_val, hlpm_addr);
4477			/* flush write */
4478			readl(hlpm_addr);
4479		} else {
4480			hird = xhci_calculate_hird_besl(xhci, udev);
4481		}
4482
4483		pm_val &= ~PORT_HIRD_MASK;
4484		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4485		writel(pm_val, pm_addr);
4486		pm_val = readl(pm_addr);
4487		pm_val |= PORT_HLE;
4488		writel(pm_val, pm_addr);
4489		/* flush write */
4490		readl(pm_addr);
4491	} else {
4492		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4493		writel(pm_val, pm_addr);
4494		/* flush write */
4495		readl(pm_addr);
4496		if (udev->usb2_hw_lpm_besl_capable) {
4497			spin_unlock_irqrestore(&xhci->lock, flags);
4498			xhci_change_max_exit_latency(xhci, udev, 0);
4499			readl_poll_timeout(ports[port_num]->addr, pm_val,
4500					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4501					   100, 10000);
4502			return 0;
4503		}
4504	}
4505
4506	spin_unlock_irqrestore(&xhci->lock, flags);
4507	return 0;
4508}
4509
4510/* check if a usb2 port supports a given extened capability protocol
4511 * only USB2 ports extended protocol capability values are cached.
4512 * Return 1 if capability is supported
4513 */
4514static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4515					   unsigned capability)
4516{
4517	u32 port_offset, port_count;
4518	int i;
4519
4520	for (i = 0; i < xhci->num_ext_caps; i++) {
4521		if (xhci->ext_caps[i] & capability) {
4522			/* port offsets starts at 1 */
4523			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4524			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4525			if (port >= port_offset &&
4526			    port < port_offset + port_count)
4527				return 1;
4528		}
4529	}
4530	return 0;
4531}
4532
4533static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4534{
4535	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4536	int		portnum = udev->portnum - 1;
4537
4538	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4539		return 0;
4540
4541	/* we only support lpm for non-hub device connected to root hub yet */
4542	if (!udev->parent || udev->parent->parent ||
4543			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4544		return 0;
4545
4546	if (xhci->hw_lpm_support == 1 &&
4547			xhci_check_usb2_port_capability(
4548				xhci, portnum, XHCI_HLC)) {
4549		udev->usb2_hw_lpm_capable = 1;
4550		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4551		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4552		if (xhci_check_usb2_port_capability(xhci, portnum,
4553					XHCI_BLC))
4554			udev->usb2_hw_lpm_besl_capable = 1;
4555	}
4556
4557	return 0;
4558}
4559
4560/*---------------------- USB 3.0 Link PM functions ------------------------*/
4561
4562/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4563static unsigned long long xhci_service_interval_to_ns(
4564		struct usb_endpoint_descriptor *desc)
4565{
4566	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4567}
4568
4569static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4570		enum usb3_link_state state)
4571{
4572	unsigned long long sel;
4573	unsigned long long pel;
4574	unsigned int max_sel_pel;
4575	char *state_name;
4576
4577	switch (state) {
4578	case USB3_LPM_U1:
4579		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4580		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4581		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4582		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4583		state_name = "U1";
4584		break;
4585	case USB3_LPM_U2:
4586		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4587		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4588		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4589		state_name = "U2";
4590		break;
4591	default:
4592		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4593				__func__);
4594		return USB3_LPM_DISABLED;
4595	}
4596
4597	if (sel <= max_sel_pel && pel <= max_sel_pel)
4598		return USB3_LPM_DEVICE_INITIATED;
4599
4600	if (sel > max_sel_pel)
4601		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4602				"due to long SEL %llu ms\n",
4603				state_name, sel);
4604	else
4605		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4606				"due to long PEL %llu ms\n",
4607				state_name, pel);
4608	return USB3_LPM_DISABLED;
4609}
4610
4611/* The U1 timeout should be the maximum of the following values:
4612 *  - For control endpoints, U1 system exit latency (SEL) * 3
4613 *  - For bulk endpoints, U1 SEL * 5
4614 *  - For interrupt endpoints:
4615 *    - Notification EPs, U1 SEL * 3
4616 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4617 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4618 */
4619static unsigned long long xhci_calculate_intel_u1_timeout(
4620		struct usb_device *udev,
4621		struct usb_endpoint_descriptor *desc)
4622{
4623	unsigned long long timeout_ns;
4624	int ep_type;
4625	int intr_type;
4626
4627	ep_type = usb_endpoint_type(desc);
4628	switch (ep_type) {
4629	case USB_ENDPOINT_XFER_CONTROL:
4630		timeout_ns = udev->u1_params.sel * 3;
4631		break;
4632	case USB_ENDPOINT_XFER_BULK:
4633		timeout_ns = udev->u1_params.sel * 5;
4634		break;
4635	case USB_ENDPOINT_XFER_INT:
4636		intr_type = usb_endpoint_interrupt_type(desc);
4637		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4638			timeout_ns = udev->u1_params.sel * 3;
4639			break;
4640		}
4641		/* Otherwise the calculation is the same as isoc eps */
4642		fallthrough;
4643	case USB_ENDPOINT_XFER_ISOC:
4644		timeout_ns = xhci_service_interval_to_ns(desc);
4645		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4646		if (timeout_ns < udev->u1_params.sel * 2)
4647			timeout_ns = udev->u1_params.sel * 2;
4648		break;
4649	default:
4650		return 0;
4651	}
4652
4653	return timeout_ns;
4654}
4655
4656/* Returns the hub-encoded U1 timeout value. */
4657static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4658		struct usb_device *udev,
4659		struct usb_endpoint_descriptor *desc)
4660{
4661	unsigned long long timeout_ns;
4662
4663	/* Prevent U1 if service interval is shorter than U1 exit latency */
4664	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4665		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4666			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4667			return USB3_LPM_DISABLED;
4668		}
4669	}
4670
4671	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4672		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4673	else
4674		timeout_ns = udev->u1_params.sel;
4675
4676	/* The U1 timeout is encoded in 1us intervals.
4677	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4678	 */
4679	if (timeout_ns == USB3_LPM_DISABLED)
4680		timeout_ns = 1;
4681	else
4682		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4683
4684	/* If the necessary timeout value is bigger than what we can set in the
4685	 * USB 3.0 hub, we have to disable hub-initiated U1.
4686	 */
4687	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4688		return timeout_ns;
4689	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4690			"due to long timeout %llu ms\n", timeout_ns);
4691	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4692}
4693
4694/* The U2 timeout should be the maximum of:
4695 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4696 *  - largest bInterval of any active periodic endpoint (to avoid going
4697 *    into lower power link states between intervals).
4698 *  - the U2 Exit Latency of the device
4699 */
4700static unsigned long long xhci_calculate_intel_u2_timeout(
4701		struct usb_device *udev,
4702		struct usb_endpoint_descriptor *desc)
4703{
4704	unsigned long long timeout_ns;
4705	unsigned long long u2_del_ns;
4706
4707	timeout_ns = 10 * 1000 * 1000;
4708
4709	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4710			(xhci_service_interval_to_ns(desc) > timeout_ns))
4711		timeout_ns = xhci_service_interval_to_ns(desc);
4712
4713	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4714	if (u2_del_ns > timeout_ns)
4715		timeout_ns = u2_del_ns;
4716
4717	return timeout_ns;
4718}
4719
4720/* Returns the hub-encoded U2 timeout value. */
4721static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4722		struct usb_device *udev,
4723		struct usb_endpoint_descriptor *desc)
4724{
4725	unsigned long long timeout_ns;
4726
4727	/* Prevent U2 if service interval is shorter than U2 exit latency */
4728	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4729		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4730			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4731			return USB3_LPM_DISABLED;
4732		}
4733	}
4734
4735	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4736		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4737	else
4738		timeout_ns = udev->u2_params.sel;
4739
4740	/* The U2 timeout is encoded in 256us intervals */
4741	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4742	/* If the necessary timeout value is bigger than what we can set in the
4743	 * USB 3.0 hub, we have to disable hub-initiated U2.
4744	 */
4745	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4746		return timeout_ns;
4747	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4748			"due to long timeout %llu ms\n", timeout_ns);
4749	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4750}
4751
4752static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4753		struct usb_device *udev,
4754		struct usb_endpoint_descriptor *desc,
4755		enum usb3_link_state state,
4756		u16 *timeout)
4757{
4758	if (state == USB3_LPM_U1)
4759		return xhci_calculate_u1_timeout(xhci, udev, desc);
4760	else if (state == USB3_LPM_U2)
4761		return xhci_calculate_u2_timeout(xhci, udev, desc);
4762
4763	return USB3_LPM_DISABLED;
4764}
4765
4766static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4767		struct usb_device *udev,
4768		struct usb_endpoint_descriptor *desc,
4769		enum usb3_link_state state,
4770		u16 *timeout)
4771{
4772	u16 alt_timeout;
4773
4774	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4775		desc, state, timeout);
4776
4777	/* If we found we can't enable hub-initiated LPM, and
4778	 * the U1 or U2 exit latency was too high to allow
4779	 * device-initiated LPM as well, then we will disable LPM
4780	 * for this device, so stop searching any further.
4781	 */
4782	if (alt_timeout == USB3_LPM_DISABLED) {
4783		*timeout = alt_timeout;
4784		return -E2BIG;
4785	}
4786	if (alt_timeout > *timeout)
4787		*timeout = alt_timeout;
4788	return 0;
4789}
4790
4791static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4792		struct usb_device *udev,
4793		struct usb_host_interface *alt,
4794		enum usb3_link_state state,
4795		u16 *timeout)
4796{
4797	int j;
4798
4799	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4800		if (xhci_update_timeout_for_endpoint(xhci, udev,
4801					&alt->endpoint[j].desc, state, timeout))
4802			return -E2BIG;
4803	}
4804	return 0;
4805}
4806
4807static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4808		struct usb_device *udev,
4809		enum usb3_link_state state)
4810{
4811	struct usb_device *parent = udev->parent;
4812	int tier = 1; /* roothub is tier1 */
4813
4814	while (parent) {
4815		parent = parent->parent;
4816		tier++;
4817	}
4818
4819	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4820		goto fail;
4821	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4822		goto fail;
4823
4824	return 0;
4825fail:
4826	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4827			tier);
4828	return -E2BIG;
4829}
4830
 
 
 
 
 
 
 
 
 
 
4831/* Returns the U1 or U2 timeout that should be enabled.
4832 * If the tier check or timeout setting functions return with a non-zero exit
4833 * code, that means the timeout value has been finalized and we shouldn't look
4834 * at any more endpoints.
4835 */
4836static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4837			struct usb_device *udev, enum usb3_link_state state)
4838{
4839	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4840	struct usb_host_config *config;
4841	char *state_name;
4842	int i;
4843	u16 timeout = USB3_LPM_DISABLED;
4844
4845	if (state == USB3_LPM_U1)
4846		state_name = "U1";
4847	else if (state == USB3_LPM_U2)
4848		state_name = "U2";
4849	else {
4850		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4851				state);
4852		return timeout;
4853	}
4854
4855	/* Gather some information about the currently installed configuration
4856	 * and alternate interface settings.
4857	 */
4858	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4859			state, &timeout))
4860		return timeout;
4861
4862	config = udev->actconfig;
4863	if (!config)
4864		return timeout;
4865
4866	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4867		struct usb_driver *driver;
4868		struct usb_interface *intf = config->interface[i];
4869
4870		if (!intf)
4871			continue;
4872
4873		/* Check if any currently bound drivers want hub-initiated LPM
4874		 * disabled.
4875		 */
4876		if (intf->dev.driver) {
4877			driver = to_usb_driver(intf->dev.driver);
4878			if (driver && driver->disable_hub_initiated_lpm) {
4879				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4880					state_name, driver->name);
4881				timeout = xhci_get_timeout_no_hub_lpm(udev,
4882								      state);
4883				if (timeout == USB3_LPM_DISABLED)
4884					return timeout;
4885			}
4886		}
4887
4888		/* Not sure how this could happen... */
4889		if (!intf->cur_altsetting)
4890			continue;
4891
4892		if (xhci_update_timeout_for_interface(xhci, udev,
4893					intf->cur_altsetting,
4894					state, &timeout))
4895			return timeout;
4896	}
4897	return timeout;
4898}
4899
4900static int calculate_max_exit_latency(struct usb_device *udev,
4901		enum usb3_link_state state_changed,
4902		u16 hub_encoded_timeout)
4903{
4904	unsigned long long u1_mel_us = 0;
4905	unsigned long long u2_mel_us = 0;
4906	unsigned long long mel_us = 0;
4907	bool disabling_u1;
4908	bool disabling_u2;
4909	bool enabling_u1;
4910	bool enabling_u2;
4911
4912	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4913			hub_encoded_timeout == USB3_LPM_DISABLED);
4914	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4915			hub_encoded_timeout == USB3_LPM_DISABLED);
4916
4917	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4918			hub_encoded_timeout != USB3_LPM_DISABLED);
4919	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4920			hub_encoded_timeout != USB3_LPM_DISABLED);
4921
4922	/* If U1 was already enabled and we're not disabling it,
4923	 * or we're going to enable U1, account for the U1 max exit latency.
4924	 */
4925	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4926			enabling_u1)
4927		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4928	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4929			enabling_u2)
4930		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4931
4932	mel_us = max(u1_mel_us, u2_mel_us);
4933
4934	/* xHCI host controller max exit latency field is only 16 bits wide. */
4935	if (mel_us > MAX_EXIT) {
4936		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4937				"is too big.\n", mel_us);
4938		return -E2BIG;
4939	}
4940	return mel_us;
4941}
4942
4943/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4944static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4945			struct usb_device *udev, enum usb3_link_state state)
4946{
4947	struct xhci_hcd	*xhci;
4948	struct xhci_port *port;
4949	u16 hub_encoded_timeout;
4950	int mel;
4951	int ret;
4952
4953	xhci = hcd_to_xhci(hcd);
4954	/* The LPM timeout values are pretty host-controller specific, so don't
4955	 * enable hub-initiated timeouts unless the vendor has provided
4956	 * information about their timeout algorithm.
4957	 */
4958	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4959			!xhci->devs[udev->slot_id])
4960		return USB3_LPM_DISABLED;
4961
4962	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4963		return USB3_LPM_DISABLED;
4964
4965	/* If connected to root port then check port can handle lpm */
4966	if (udev->parent && !udev->parent->parent) {
4967		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4968		if (port->lpm_incapable)
4969			return USB3_LPM_DISABLED;
4970	}
4971
4972	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4973	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4974	if (mel < 0) {
4975		/* Max Exit Latency is too big, disable LPM. */
4976		hub_encoded_timeout = USB3_LPM_DISABLED;
4977		mel = 0;
4978	}
4979
4980	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4981	if (ret)
4982		return ret;
4983	return hub_encoded_timeout;
4984}
4985
4986static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4987			struct usb_device *udev, enum usb3_link_state state)
4988{
4989	struct xhci_hcd	*xhci;
4990	u16 mel;
4991
4992	xhci = hcd_to_xhci(hcd);
4993	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4994			!xhci->devs[udev->slot_id])
4995		return 0;
4996
4997	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4998	return xhci_change_max_exit_latency(xhci, udev, mel);
4999}
5000#else /* CONFIG_PM */
5001
5002static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5003				struct usb_device *udev, int enable)
5004{
5005	return 0;
5006}
5007
5008static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5009{
5010	return 0;
5011}
5012
5013static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5014			struct usb_device *udev, enum usb3_link_state state)
5015{
5016	return USB3_LPM_DISABLED;
5017}
5018
5019static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5020			struct usb_device *udev, enum usb3_link_state state)
5021{
5022	return 0;
5023}
5024#endif	/* CONFIG_PM */
5025
5026/*-------------------------------------------------------------------------*/
5027
5028/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5029 * internal data structures for the device.
5030 */
5031int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5032			struct usb_tt *tt, gfp_t mem_flags)
5033{
5034	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5035	struct xhci_virt_device *vdev;
5036	struct xhci_command *config_cmd;
5037	struct xhci_input_control_ctx *ctrl_ctx;
5038	struct xhci_slot_ctx *slot_ctx;
5039	unsigned long flags;
5040	unsigned think_time;
5041	int ret;
5042
5043	/* Ignore root hubs */
5044	if (!hdev->parent)
5045		return 0;
5046
5047	vdev = xhci->devs[hdev->slot_id];
5048	if (!vdev) {
5049		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5050		return -EINVAL;
5051	}
5052
5053	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5054	if (!config_cmd)
5055		return -ENOMEM;
5056
5057	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5058	if (!ctrl_ctx) {
5059		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5060				__func__);
5061		xhci_free_command(xhci, config_cmd);
5062		return -ENOMEM;
5063	}
5064
5065	spin_lock_irqsave(&xhci->lock, flags);
5066	if (hdev->speed == USB_SPEED_HIGH &&
5067			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5068		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5069		xhci_free_command(xhci, config_cmd);
5070		spin_unlock_irqrestore(&xhci->lock, flags);
5071		return -ENOMEM;
5072	}
5073
5074	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5075	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5076	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5077	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5078	/*
5079	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5080	 * but it may be already set to 1 when setup an xHCI virtual
5081	 * device, so clear it anyway.
5082	 */
5083	if (tt->multi)
5084		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5085	else if (hdev->speed == USB_SPEED_FULL)
5086		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5087
5088	if (xhci->hci_version > 0x95) {
5089		xhci_dbg(xhci, "xHCI version %x needs hub "
5090				"TT think time and number of ports\n",
5091				(unsigned int) xhci->hci_version);
5092		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5093		/* Set TT think time - convert from ns to FS bit times.
5094		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5095		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5096		 *
5097		 * xHCI 1.0: this field shall be 0 if the device is not a
5098		 * High-spped hub.
5099		 */
5100		think_time = tt->think_time;
5101		if (think_time != 0)
5102			think_time = (think_time / 666) - 1;
5103		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5104			slot_ctx->tt_info |=
5105				cpu_to_le32(TT_THINK_TIME(think_time));
5106	} else {
5107		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5108				"TT think time or number of ports\n",
5109				(unsigned int) xhci->hci_version);
5110	}
5111	slot_ctx->dev_state = 0;
5112	spin_unlock_irqrestore(&xhci->lock, flags);
5113
5114	xhci_dbg(xhci, "Set up %s for hub device.\n",
5115			(xhci->hci_version > 0x95) ?
5116			"configure endpoint" : "evaluate context");
5117
5118	/* Issue and wait for the configure endpoint or
5119	 * evaluate context command.
5120	 */
5121	if (xhci->hci_version > 0x95)
5122		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5123				false, false);
5124	else
5125		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5126				true, false);
5127
5128	xhci_free_command(xhci, config_cmd);
5129	return ret;
5130}
5131EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5132
5133static int xhci_get_frame(struct usb_hcd *hcd)
5134{
5135	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5136	/* EHCI mods by the periodic size.  Why? */
5137	return readl(&xhci->run_regs->microframe_index) >> 3;
5138}
5139
5140static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5141{
5142	xhci->usb2_rhub.hcd = hcd;
5143	hcd->speed = HCD_USB2;
5144	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5145	/*
5146	 * USB 2.0 roothub under xHCI has an integrated TT,
5147	 * (rate matching hub) as opposed to having an OHCI/UHCI
5148	 * companion controller.
5149	 */
5150	hcd->has_tt = 1;
5151}
5152
5153static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5154{
5155	unsigned int minor_rev;
5156
5157	/*
5158	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5159	 * should return 0x31 for sbrn, or that the minor revision
5160	 * is a two digit BCD containig minor and sub-minor numbers.
5161	 * This was later clarified in xHCI 1.2.
5162	 *
5163	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5164	 * minor revision set to 0x1 instead of 0x10.
5165	 */
5166	if (xhci->usb3_rhub.min_rev == 0x1)
5167		minor_rev = 1;
5168	else
5169		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5170
5171	switch (minor_rev) {
5172	case 2:
5173		hcd->speed = HCD_USB32;
5174		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5175		hcd->self.root_hub->rx_lanes = 2;
5176		hcd->self.root_hub->tx_lanes = 2;
5177		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5178		break;
5179	case 1:
5180		hcd->speed = HCD_USB31;
5181		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5182		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5183		break;
5184	}
5185	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5186		  minor_rev, minor_rev ? "Enhanced " : "");
5187
5188	xhci->usb3_rhub.hcd = hcd;
5189}
5190
5191int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5192{
5193	struct xhci_hcd		*xhci;
5194	/*
5195	 * TODO: Check with DWC3 clients for sysdev according to
5196	 * quirks
5197	 */
5198	struct device		*dev = hcd->self.sysdev;
5199	int			retval;
5200
5201	/* Accept arbitrarily long scatter-gather lists */
5202	hcd->self.sg_tablesize = ~0;
5203
5204	/* support to build packet from discontinuous buffers */
5205	hcd->self.no_sg_constraint = 1;
5206
5207	/* XHCI controllers don't stop the ep queue on short packets :| */
5208	hcd->self.no_stop_on_short = 1;
5209
5210	xhci = hcd_to_xhci(hcd);
5211
5212	if (!usb_hcd_is_primary_hcd(hcd)) {
5213		xhci_hcd_init_usb3_data(xhci, hcd);
5214		return 0;
5215	}
5216
5217	mutex_init(&xhci->mutex);
5218	xhci->main_hcd = hcd;
5219	xhci->cap_regs = hcd->regs;
5220	xhci->op_regs = hcd->regs +
5221		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5222	xhci->run_regs = hcd->regs +
5223		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5224	/* Cache read-only capability registers */
5225	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5226	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5227	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5228	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5229	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5230	if (xhci->hci_version > 0x100)
5231		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5232
5233	/* xhci-plat or xhci-pci might have set max_interrupters already */
5234	if ((!xhci->max_interrupters) ||
5235	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5236		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5237
5238	xhci->quirks |= quirks;
5239
5240	if (get_quirks)
5241		get_quirks(dev, xhci);
5242
5243	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5244	 * success event after a short transfer. This quirk will ignore such
5245	 * spurious event.
5246	 */
5247	if (xhci->hci_version > 0x96)
5248		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5249
5250	/* Make sure the HC is halted. */
5251	retval = xhci_halt(xhci);
5252	if (retval)
5253		return retval;
5254
5255	xhci_zero_64b_regs(xhci);
5256
5257	xhci_dbg(xhci, "Resetting HCD\n");
5258	/* Reset the internal HC memory state and registers. */
5259	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5260	if (retval)
5261		return retval;
5262	xhci_dbg(xhci, "Reset complete\n");
5263
5264	/*
5265	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5266	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5267	 * address memory pointers actually. So, this driver clears the AC64
5268	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5269	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5270	 */
5271	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5272		xhci->hcc_params &= ~BIT(0);
5273
5274	/* Set dma_mask and coherent_dma_mask to 64-bits,
5275	 * if xHC supports 64-bit addressing */
5276	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5277			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5278		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5279		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5280	} else {
5281		/*
5282		 * This is to avoid error in cases where a 32-bit USB
5283		 * controller is used on a 64-bit capable system.
5284		 */
5285		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5286		if (retval)
5287			return retval;
5288		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5289		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5290	}
5291
5292	xhci_dbg(xhci, "Calling HCD init\n");
5293	/* Initialize HCD and host controller data structures. */
5294	retval = xhci_init(hcd);
5295	if (retval)
5296		return retval;
5297	xhci_dbg(xhci, "Called HCD init\n");
5298
5299	if (xhci_hcd_is_usb3(hcd))
5300		xhci_hcd_init_usb3_data(xhci, hcd);
5301	else
5302		xhci_hcd_init_usb2_data(xhci, hcd);
5303
5304	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5305		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5306
5307	return 0;
5308}
5309EXPORT_SYMBOL_GPL(xhci_gen_setup);
5310
5311static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5312		struct usb_host_endpoint *ep)
5313{
5314	struct xhci_hcd *xhci;
5315	struct usb_device *udev;
5316	unsigned int slot_id;
5317	unsigned int ep_index;
5318	unsigned long flags;
5319
5320	xhci = hcd_to_xhci(hcd);
5321
5322	spin_lock_irqsave(&xhci->lock, flags);
5323	udev = (struct usb_device *)ep->hcpriv;
5324	slot_id = udev->slot_id;
5325	ep_index = xhci_get_endpoint_index(&ep->desc);
5326
5327	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5328	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5329	spin_unlock_irqrestore(&xhci->lock, flags);
5330}
5331
5332static const struct hc_driver xhci_hc_driver = {
5333	.description =		"xhci-hcd",
5334	.product_desc =		"xHCI Host Controller",
5335	.hcd_priv_size =	sizeof(struct xhci_hcd),
5336
5337	/*
5338	 * generic hardware linkage
5339	 */
5340	.irq =			xhci_irq,
5341	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5342				HCD_BH,
5343
5344	/*
5345	 * basic lifecycle operations
5346	 */
5347	.reset =		NULL, /* set in xhci_init_driver() */
5348	.start =		xhci_run,
5349	.stop =			xhci_stop,
5350	.shutdown =		xhci_shutdown,
5351
5352	/*
5353	 * managing i/o requests and associated device resources
5354	 */
5355	.map_urb_for_dma =      xhci_map_urb_for_dma,
5356	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5357	.urb_enqueue =		xhci_urb_enqueue,
5358	.urb_dequeue =		xhci_urb_dequeue,
5359	.alloc_dev =		xhci_alloc_dev,
5360	.free_dev =		xhci_free_dev,
5361	.alloc_streams =	xhci_alloc_streams,
5362	.free_streams =		xhci_free_streams,
5363	.add_endpoint =		xhci_add_endpoint,
5364	.drop_endpoint =	xhci_drop_endpoint,
5365	.endpoint_disable =	xhci_endpoint_disable,
5366	.endpoint_reset =	xhci_endpoint_reset,
5367	.check_bandwidth =	xhci_check_bandwidth,
5368	.reset_bandwidth =	xhci_reset_bandwidth,
5369	.address_device =	xhci_address_device,
5370	.enable_device =	xhci_enable_device,
5371	.update_hub_device =	xhci_update_hub_device,
5372	.reset_device =		xhci_discover_or_reset_device,
5373
5374	/*
5375	 * scheduling support
5376	 */
5377	.get_frame_number =	xhci_get_frame,
5378
5379	/*
5380	 * root hub support
5381	 */
5382	.hub_control =		xhci_hub_control,
5383	.hub_status_data =	xhci_hub_status_data,
5384	.bus_suspend =		xhci_bus_suspend,
5385	.bus_resume =		xhci_bus_resume,
5386	.get_resuming_ports =	xhci_get_resuming_ports,
5387
5388	/*
5389	 * call back when device connected and addressed
5390	 */
5391	.update_device =        xhci_update_device,
5392	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5393	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5394	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5395	.find_raw_port_number =	xhci_find_raw_port_number,
5396	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5397};
5398
5399void xhci_init_driver(struct hc_driver *drv,
5400		      const struct xhci_driver_overrides *over)
5401{
5402	BUG_ON(!over);
5403
5404	/* Copy the generic table to drv then apply the overrides */
5405	*drv = xhci_hc_driver;
5406
5407	if (over) {
5408		drv->hcd_priv_size += over->extra_priv_size;
5409		if (over->reset)
5410			drv->reset = over->reset;
5411		if (over->start)
5412			drv->start = over->start;
5413		if (over->add_endpoint)
5414			drv->add_endpoint = over->add_endpoint;
5415		if (over->drop_endpoint)
5416			drv->drop_endpoint = over->drop_endpoint;
5417		if (over->check_bandwidth)
5418			drv->check_bandwidth = over->check_bandwidth;
5419		if (over->reset_bandwidth)
5420			drv->reset_bandwidth = over->reset_bandwidth;
5421		if (over->update_hub_device)
5422			drv->update_hub_device = over->update_hub_device;
5423		if (over->hub_control)
5424			drv->hub_control = over->hub_control;
5425	}
5426}
5427EXPORT_SYMBOL_GPL(xhci_init_driver);
5428
5429MODULE_DESCRIPTION(DRIVER_DESC);
5430MODULE_AUTHOR(DRIVER_AUTHOR);
5431MODULE_LICENSE("GPL");
5432
5433static int __init xhci_hcd_init(void)
5434{
5435	/*
5436	 * Check the compiler generated sizes of structures that must be laid
5437	 * out in specific ways for hardware access.
5438	 */
5439	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5440	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5441	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5442	/* xhci_device_control has eight fields, and also
5443	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5444	 */
5445	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5446	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5447	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5448	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5449	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5450	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5451	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5452
5453	if (usb_disabled())
5454		return -ENODEV;
5455
5456	xhci_debugfs_create_root();
5457	xhci_dbc_init();
5458
5459	return 0;
5460}
5461
5462/*
5463 * If an init function is provided, an exit function must also be provided
5464 * to allow module unload.
5465 */
5466static void __exit xhci_hcd_fini(void)
5467{
5468	xhci_debugfs_remove_root();
5469	xhci_dbc_exit();
5470}
5471
5472module_init(xhci_hcd_init);
5473module_exit(xhci_hcd_fini);