Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11#include <linux/pci.h>
12#include <linux/iopoll.h>
13#include <linux/irq.h>
14#include <linux/log2.h>
15#include <linux/module.h>
16#include <linux/moduleparam.h>
17#include <linux/slab.h>
18#include <linux/dmi.h>
19#include <linux/dma-mapping.h>
20
21#include "xhci.h"
22#include "xhci-trace.h"
23#include "xhci-debugfs.h"
24#include "xhci-dbgcap.h"
25
26#define DRIVER_AUTHOR "Sarah Sharp"
27#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29#define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32static int link_quirk;
33module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36static unsigned long long quirks;
37module_param(quirks, ullong, S_IRUGO);
38MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41{
42 struct xhci_segment *seg = ring->first_seg;
43
44 if (!td || !td->start_seg)
45 return false;
46 do {
47 if (seg == td->start_seg)
48 return true;
49 seg = seg->next;
50 } while (seg && seg != ring->first_seg);
51
52 return false;
53}
54
55/*
56 * xhci_handshake - spin reading hc until handshake completes or fails
57 * @ptr: address of hc register to be read
58 * @mask: bits to look at in result of read
59 * @done: value of those bits when handshake succeeds
60 * @usec: timeout in microseconds
61 *
62 * Returns negative errno, or zero on success
63 *
64 * Success happens when the "mask" bits have the specified value (hardware
65 * handshake done). There are two failure modes: "usec" have passed (major
66 * hardware flakeout), or the register reads as all-ones (hardware removed).
67 */
68int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69{
70 u32 result;
71 int ret;
72
73 ret = readl_poll_timeout_atomic(ptr, result,
74 (result & mask) == done ||
75 result == U32_MAX,
76 1, timeout_us);
77 if (result == U32_MAX) /* card removed */
78 return -ENODEV;
79
80 return ret;
81}
82
83/*
84 * Disable interrupts and begin the xHCI halting process.
85 */
86void xhci_quiesce(struct xhci_hcd *xhci)
87{
88 u32 halted;
89 u32 cmd;
90 u32 mask;
91
92 mask = ~(XHCI_IRQS);
93 halted = readl(&xhci->op_regs->status) & STS_HALT;
94 if (!halted)
95 mask &= ~CMD_RUN;
96
97 cmd = readl(&xhci->op_regs->command);
98 cmd &= mask;
99 writel(cmd, &xhci->op_regs->command);
100}
101
102/*
103 * Force HC into halt state.
104 *
105 * Disable any IRQs and clear the run/stop bit.
106 * HC will complete any current and actively pipelined transactions, and
107 * should halt within 16 ms of the run/stop bit being cleared.
108 * Read HC Halted bit in the status register to see when the HC is finished.
109 */
110int xhci_halt(struct xhci_hcd *xhci)
111{
112 int ret;
113
114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 xhci_quiesce(xhci);
116
117 ret = xhci_handshake(&xhci->op_regs->status,
118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 if (ret) {
120 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 return ret;
122 }
123
124 xhci->xhc_state |= XHCI_STATE_HALTED;
125 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
126
127 return ret;
128}
129
130/*
131 * Set the run bit and wait for the host to be running.
132 */
133int xhci_start(struct xhci_hcd *xhci)
134{
135 u32 temp;
136 int ret;
137
138 temp = readl(&xhci->op_regs->command);
139 temp |= (CMD_RUN);
140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141 temp);
142 writel(temp, &xhci->op_regs->command);
143
144 /*
145 * Wait for the HCHalted Status bit to be 0 to indicate the host is
146 * running.
147 */
148 ret = xhci_handshake(&xhci->op_regs->status,
149 STS_HALT, 0, XHCI_MAX_HALT_USEC);
150 if (ret == -ETIMEDOUT)
151 xhci_err(xhci, "Host took too long to start, "
152 "waited %u microseconds.\n",
153 XHCI_MAX_HALT_USEC);
154 if (!ret) {
155 /* clear state flags. Including dying, halted or removing */
156 xhci->xhc_state = 0;
157 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
158 }
159
160 return ret;
161}
162
163/*
164 * Reset a halted HC.
165 *
166 * This resets pipelines, timers, counters, state machines, etc.
167 * Transactions will be terminated immediately, and operational registers
168 * will be set to their defaults.
169 */
170int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
171{
172 u32 command;
173 u32 state;
174 int ret;
175
176 state = readl(&xhci->op_regs->status);
177
178 if (state == ~(u32)0) {
179 xhci_warn(xhci, "Host not accessible, reset failed.\n");
180 return -ENODEV;
181 }
182
183 if ((state & STS_HALT) == 0) {
184 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
185 return 0;
186 }
187
188 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
189 command = readl(&xhci->op_regs->command);
190 command |= CMD_RESET;
191 writel(command, &xhci->op_regs->command);
192
193 /* Existing Intel xHCI controllers require a delay of 1 mS,
194 * after setting the CMD_RESET bit, and before accessing any
195 * HC registers. This allows the HC to complete the
196 * reset operation and be ready for HC register access.
197 * Without this delay, the subsequent HC register access,
198 * may result in a system hang very rarely.
199 */
200 if (xhci->quirks & XHCI_INTEL_HOST)
201 udelay(1000);
202
203 ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
204 if (ret)
205 return ret;
206
207 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
208 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
209
210 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
211 "Wait for controller to be ready for doorbell rings");
212 /*
213 * xHCI cannot write to any doorbells or operational registers other
214 * than status until the "Controller Not Ready" flag is cleared.
215 */
216 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
217
218 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
219 xhci->usb2_rhub.bus_state.suspended_ports = 0;
220 xhci->usb2_rhub.bus_state.resuming_ports = 0;
221 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
222 xhci->usb3_rhub.bus_state.suspended_ports = 0;
223 xhci->usb3_rhub.bus_state.resuming_ports = 0;
224
225 return ret;
226}
227
228static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
229{
230 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
231 int err, i;
232 u64 val;
233 u32 intrs;
234
235 /*
236 * Some Renesas controllers get into a weird state if they are
237 * reset while programmed with 64bit addresses (they will preserve
238 * the top half of the address in internal, non visible
239 * registers). You end up with half the address coming from the
240 * kernel, and the other half coming from the firmware. Also,
241 * changing the programming leads to extra accesses even if the
242 * controller is supposed to be halted. The controller ends up with
243 * a fatal fault, and is then ripe for being properly reset.
244 *
245 * Special care is taken to only apply this if the device is behind
246 * an iommu. Doing anything when there is no iommu is definitely
247 * unsafe...
248 */
249 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
250 return;
251
252 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
253
254 /* Clear HSEIE so that faults do not get signaled */
255 val = readl(&xhci->op_regs->command);
256 val &= ~CMD_HSEIE;
257 writel(val, &xhci->op_regs->command);
258
259 /* Clear HSE (aka FATAL) */
260 val = readl(&xhci->op_regs->status);
261 val |= STS_FATAL;
262 writel(val, &xhci->op_regs->status);
263
264 /* Now zero the registers, and brace for impact */
265 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
266 if (upper_32_bits(val))
267 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
268 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
269 if (upper_32_bits(val))
270 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
271
272 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
273 ARRAY_SIZE(xhci->run_regs->ir_set));
274
275 for (i = 0; i < intrs; i++) {
276 struct xhci_intr_reg __iomem *ir;
277
278 ir = &xhci->run_regs->ir_set[i];
279 val = xhci_read_64(xhci, &ir->erst_base);
280 if (upper_32_bits(val))
281 xhci_write_64(xhci, 0, &ir->erst_base);
282 val= xhci_read_64(xhci, &ir->erst_dequeue);
283 if (upper_32_bits(val))
284 xhci_write_64(xhci, 0, &ir->erst_dequeue);
285 }
286
287 /* Wait for the fault to appear. It will be cleared on reset */
288 err = xhci_handshake(&xhci->op_regs->status,
289 STS_FATAL, STS_FATAL,
290 XHCI_MAX_HALT_USEC);
291 if (!err)
292 xhci_info(xhci, "Fault detected\n");
293}
294
295#ifdef CONFIG_USB_PCI
296/*
297 * Set up MSI
298 */
299static int xhci_setup_msi(struct xhci_hcd *xhci)
300{
301 int ret;
302 /*
303 * TODO:Check with MSI Soc for sysdev
304 */
305 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
306
307 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
308 if (ret < 0) {
309 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310 "failed to allocate MSI entry");
311 return ret;
312 }
313
314 ret = request_irq(pdev->irq, xhci_msi_irq,
315 0, "xhci_hcd", xhci_to_hcd(xhci));
316 if (ret) {
317 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
318 "disable MSI interrupt");
319 pci_free_irq_vectors(pdev);
320 }
321
322 return ret;
323}
324
325/*
326 * Set up MSI-X
327 */
328static int xhci_setup_msix(struct xhci_hcd *xhci)
329{
330 int i, ret;
331 struct usb_hcd *hcd = xhci_to_hcd(xhci);
332 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
333
334 /*
335 * calculate number of msi-x vectors supported.
336 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
337 * with max number of interrupters based on the xhci HCSPARAMS1.
338 * - num_online_cpus: maximum msi-x vectors per CPUs core.
339 * Add additional 1 vector to ensure always available interrupt.
340 */
341 xhci->msix_count = min(num_online_cpus() + 1,
342 HCS_MAX_INTRS(xhci->hcs_params1));
343
344 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
345 PCI_IRQ_MSIX);
346 if (ret < 0) {
347 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
348 "Failed to enable MSI-X");
349 return ret;
350 }
351
352 for (i = 0; i < xhci->msix_count; i++) {
353 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
354 "xhci_hcd", xhci_to_hcd(xhci));
355 if (ret)
356 goto disable_msix;
357 }
358
359 hcd->msix_enabled = 1;
360 return ret;
361
362disable_msix:
363 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
364 while (--i >= 0)
365 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
366 pci_free_irq_vectors(pdev);
367 return ret;
368}
369
370/* Free any IRQs and disable MSI-X */
371static void xhci_cleanup_msix(struct xhci_hcd *xhci)
372{
373 struct usb_hcd *hcd = xhci_to_hcd(xhci);
374 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
375
376 if (xhci->quirks & XHCI_PLAT)
377 return;
378
379 /* return if using legacy interrupt */
380 if (hcd->irq > 0)
381 return;
382
383 if (hcd->msix_enabled) {
384 int i;
385
386 for (i = 0; i < xhci->msix_count; i++)
387 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
388 } else {
389 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
390 }
391
392 pci_free_irq_vectors(pdev);
393 hcd->msix_enabled = 0;
394}
395
396static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
397{
398 struct usb_hcd *hcd = xhci_to_hcd(xhci);
399
400 if (hcd->msix_enabled) {
401 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
402 int i;
403
404 for (i = 0; i < xhci->msix_count; i++)
405 synchronize_irq(pci_irq_vector(pdev, i));
406 }
407}
408
409static int xhci_try_enable_msi(struct usb_hcd *hcd)
410{
411 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
412 struct pci_dev *pdev;
413 int ret;
414
415 /* The xhci platform device has set up IRQs through usb_add_hcd. */
416 if (xhci->quirks & XHCI_PLAT)
417 return 0;
418
419 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
420 /*
421 * Some Fresco Logic host controllers advertise MSI, but fail to
422 * generate interrupts. Don't even try to enable MSI.
423 */
424 if (xhci->quirks & XHCI_BROKEN_MSI)
425 goto legacy_irq;
426
427 /* unregister the legacy interrupt */
428 if (hcd->irq)
429 free_irq(hcd->irq, hcd);
430 hcd->irq = 0;
431
432 ret = xhci_setup_msix(xhci);
433 if (ret)
434 /* fall back to msi*/
435 ret = xhci_setup_msi(xhci);
436
437 if (!ret) {
438 hcd->msi_enabled = 1;
439 return 0;
440 }
441
442 if (!pdev->irq) {
443 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
444 return -EINVAL;
445 }
446
447 legacy_irq:
448 if (!strlen(hcd->irq_descr))
449 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
450 hcd->driver->description, hcd->self.busnum);
451
452 /* fall back to legacy interrupt*/
453 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
454 hcd->irq_descr, hcd);
455 if (ret) {
456 xhci_err(xhci, "request interrupt %d failed\n",
457 pdev->irq);
458 return ret;
459 }
460 hcd->irq = pdev->irq;
461 return 0;
462}
463
464#else
465
466static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
467{
468 return 0;
469}
470
471static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
472{
473}
474
475static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
476{
477}
478
479#endif
480
481static void compliance_mode_recovery(struct timer_list *t)
482{
483 struct xhci_hcd *xhci;
484 struct usb_hcd *hcd;
485 struct xhci_hub *rhub;
486 u32 temp;
487 int i;
488
489 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
490 rhub = &xhci->usb3_rhub;
491 hcd = rhub->hcd;
492
493 if (!hcd)
494 return;
495
496 for (i = 0; i < rhub->num_ports; i++) {
497 temp = readl(rhub->ports[i]->addr);
498 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
499 /*
500 * Compliance Mode Detected. Letting USB Core
501 * handle the Warm Reset
502 */
503 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
504 "Compliance mode detected->port %d",
505 i + 1);
506 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
507 "Attempting compliance mode recovery");
508
509 if (hcd->state == HC_STATE_SUSPENDED)
510 usb_hcd_resume_root_hub(hcd);
511
512 usb_hcd_poll_rh_status(hcd);
513 }
514 }
515
516 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
517 mod_timer(&xhci->comp_mode_recovery_timer,
518 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
519}
520
521/*
522 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
523 * that causes ports behind that hardware to enter compliance mode sometimes.
524 * The quirk creates a timer that polls every 2 seconds the link state of
525 * each host controller's port and recovers it by issuing a Warm reset
526 * if Compliance mode is detected, otherwise the port will become "dead" (no
527 * device connections or disconnections will be detected anymore). Becasue no
528 * status event is generated when entering compliance mode (per xhci spec),
529 * this quirk is needed on systems that have the failing hardware installed.
530 */
531static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
532{
533 xhci->port_status_u0 = 0;
534 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
535 0);
536 xhci->comp_mode_recovery_timer.expires = jiffies +
537 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
538
539 add_timer(&xhci->comp_mode_recovery_timer);
540 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
541 "Compliance mode recovery timer initialized");
542}
543
544/*
545 * This function identifies the systems that have installed the SN65LVPE502CP
546 * USB3.0 re-driver and that need the Compliance Mode Quirk.
547 * Systems:
548 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
549 */
550static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
551{
552 const char *dmi_product_name, *dmi_sys_vendor;
553
554 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
555 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
556 if (!dmi_product_name || !dmi_sys_vendor)
557 return false;
558
559 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
560 return false;
561
562 if (strstr(dmi_product_name, "Z420") ||
563 strstr(dmi_product_name, "Z620") ||
564 strstr(dmi_product_name, "Z820") ||
565 strstr(dmi_product_name, "Z1 Workstation"))
566 return true;
567
568 return false;
569}
570
571static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
572{
573 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
574}
575
576
577/*
578 * Initialize memory for HCD and xHC (one-time init).
579 *
580 * Program the PAGESIZE register, initialize the device context array, create
581 * device contexts (?), set up a command ring segment (or two?), create event
582 * ring (one for now).
583 */
584static int xhci_init(struct usb_hcd *hcd)
585{
586 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
587 int retval;
588
589 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
590 spin_lock_init(&xhci->lock);
591 if (xhci->hci_version == 0x95 && link_quirk) {
592 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
593 "QUIRK: Not clearing Link TRB chain bits.");
594 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
595 } else {
596 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
597 "xHCI doesn't need link TRB QUIRK");
598 }
599 retval = xhci_mem_init(xhci, GFP_KERNEL);
600 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
601
602 /* Initializing Compliance Mode Recovery Data If Needed */
603 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
604 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
605 compliance_mode_recovery_timer_init(xhci);
606 }
607
608 return retval;
609}
610
611/*-------------------------------------------------------------------------*/
612
613
614static int xhci_run_finished(struct xhci_hcd *xhci)
615{
616 unsigned long flags;
617 u32 temp;
618
619 /*
620 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
621 * Protect the short window before host is running with a lock
622 */
623 spin_lock_irqsave(&xhci->lock, flags);
624
625 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
626 temp = readl(&xhci->op_regs->command);
627 temp |= (CMD_EIE);
628 writel(temp, &xhci->op_regs->command);
629
630 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
631 temp = readl(&xhci->ir_set->irq_pending);
632 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
633
634 if (xhci_start(xhci)) {
635 xhci_halt(xhci);
636 spin_unlock_irqrestore(&xhci->lock, flags);
637 return -ENODEV;
638 }
639
640 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
641
642 if (xhci->quirks & XHCI_NEC_HOST)
643 xhci_ring_cmd_db(xhci);
644
645 spin_unlock_irqrestore(&xhci->lock, flags);
646
647 return 0;
648}
649
650/*
651 * Start the HC after it was halted.
652 *
653 * This function is called by the USB core when the HC driver is added.
654 * Its opposite is xhci_stop().
655 *
656 * xhci_init() must be called once before this function can be called.
657 * Reset the HC, enable device slot contexts, program DCBAAP, and
658 * set command ring pointer and event ring pointer.
659 *
660 * Setup MSI-X vectors and enable interrupts.
661 */
662int xhci_run(struct usb_hcd *hcd)
663{
664 u32 temp;
665 u64 temp_64;
666 int ret;
667 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
668
669 /* Start the xHCI host controller running only after the USB 2.0 roothub
670 * is setup.
671 */
672
673 hcd->uses_new_polling = 1;
674 if (!usb_hcd_is_primary_hcd(hcd))
675 return xhci_run_finished(xhci);
676
677 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
678
679 ret = xhci_try_enable_msi(hcd);
680 if (ret)
681 return ret;
682
683 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
684 temp_64 &= ~ERST_PTR_MASK;
685 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
686 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
687
688 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
689 "// Set the interrupt modulation register");
690 temp = readl(&xhci->ir_set->irq_control);
691 temp &= ~ER_IRQ_INTERVAL_MASK;
692 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
693 writel(temp, &xhci->ir_set->irq_control);
694
695 if (xhci->quirks & XHCI_NEC_HOST) {
696 struct xhci_command *command;
697
698 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
699 if (!command)
700 return -ENOMEM;
701
702 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
703 TRB_TYPE(TRB_NEC_GET_FW));
704 if (ret)
705 xhci_free_command(xhci, command);
706 }
707 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
708 "Finished %s for main hcd", __func__);
709
710 xhci_create_dbc_dev(xhci);
711
712 xhci_debugfs_init(xhci);
713
714 if (xhci_has_one_roothub(xhci))
715 return xhci_run_finished(xhci);
716
717 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
718
719 return 0;
720}
721EXPORT_SYMBOL_GPL(xhci_run);
722
723/*
724 * Stop xHCI driver.
725 *
726 * This function is called by the USB core when the HC driver is removed.
727 * Its opposite is xhci_run().
728 *
729 * Disable device contexts, disable IRQs, and quiesce the HC.
730 * Reset the HC, finish any completed transactions, and cleanup memory.
731 */
732static void xhci_stop(struct usb_hcd *hcd)
733{
734 u32 temp;
735 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
736
737 mutex_lock(&xhci->mutex);
738
739 /* Only halt host and free memory after both hcds are removed */
740 if (!usb_hcd_is_primary_hcd(hcd)) {
741 mutex_unlock(&xhci->mutex);
742 return;
743 }
744
745 xhci_remove_dbc_dev(xhci);
746
747 spin_lock_irq(&xhci->lock);
748 xhci->xhc_state |= XHCI_STATE_HALTED;
749 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
750 xhci_halt(xhci);
751 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
752 spin_unlock_irq(&xhci->lock);
753
754 xhci_cleanup_msix(xhci);
755
756 /* Deleting Compliance Mode Recovery Timer */
757 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
758 (!(xhci_all_ports_seen_u0(xhci)))) {
759 del_timer_sync(&xhci->comp_mode_recovery_timer);
760 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
761 "%s: compliance mode recovery timer deleted",
762 __func__);
763 }
764
765 if (xhci->quirks & XHCI_AMD_PLL_FIX)
766 usb_amd_dev_put();
767
768 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
769 "// Disabling event ring interrupts");
770 temp = readl(&xhci->op_regs->status);
771 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
772 temp = readl(&xhci->ir_set->irq_pending);
773 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
774
775 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
776 xhci_mem_cleanup(xhci);
777 xhci_debugfs_exit(xhci);
778 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
779 "xhci_stop completed - status = %x",
780 readl(&xhci->op_regs->status));
781 mutex_unlock(&xhci->mutex);
782}
783
784/*
785 * Shutdown HC (not bus-specific)
786 *
787 * This is called when the machine is rebooting or halting. We assume that the
788 * machine will be powered off, and the HC's internal state will be reset.
789 * Don't bother to free memory.
790 *
791 * This will only ever be called with the main usb_hcd (the USB3 roothub).
792 */
793void xhci_shutdown(struct usb_hcd *hcd)
794{
795 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
796
797 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
798 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
799
800 /* Don't poll the roothubs after shutdown. */
801 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
802 __func__, hcd->self.busnum);
803 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
804 del_timer_sync(&hcd->rh_timer);
805
806 if (xhci->shared_hcd) {
807 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
808 del_timer_sync(&xhci->shared_hcd->rh_timer);
809 }
810
811 spin_lock_irq(&xhci->lock);
812 xhci_halt(xhci);
813
814 /*
815 * Workaround for spurious wakeps at shutdown with HSW, and for boot
816 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
817 */
818 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
819 xhci->quirks & XHCI_RESET_TO_DEFAULT)
820 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
821
822 spin_unlock_irq(&xhci->lock);
823
824 xhci_cleanup_msix(xhci);
825
826 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
827 "xhci_shutdown completed - status = %x",
828 readl(&xhci->op_regs->status));
829}
830EXPORT_SYMBOL_GPL(xhci_shutdown);
831
832#ifdef CONFIG_PM
833static void xhci_save_registers(struct xhci_hcd *xhci)
834{
835 xhci->s3.command = readl(&xhci->op_regs->command);
836 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
837 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
838 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
839 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
840 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
841 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
842 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
843 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
844}
845
846static void xhci_restore_registers(struct xhci_hcd *xhci)
847{
848 writel(xhci->s3.command, &xhci->op_regs->command);
849 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
850 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
851 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
852 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
853 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
854 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
855 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
856 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
857}
858
859static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
860{
861 u64 val_64;
862
863 /* step 2: initialize command ring buffer */
864 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
865 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
866 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
867 xhci->cmd_ring->dequeue) &
868 (u64) ~CMD_RING_RSVD_BITS) |
869 xhci->cmd_ring->cycle_state;
870 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
871 "// Setting command ring address to 0x%llx",
872 (long unsigned long) val_64);
873 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
874}
875
876/*
877 * The whole command ring must be cleared to zero when we suspend the host.
878 *
879 * The host doesn't save the command ring pointer in the suspend well, so we
880 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
881 * aligned, because of the reserved bits in the command ring dequeue pointer
882 * register. Therefore, we can't just set the dequeue pointer back in the
883 * middle of the ring (TRBs are 16-byte aligned).
884 */
885static void xhci_clear_command_ring(struct xhci_hcd *xhci)
886{
887 struct xhci_ring *ring;
888 struct xhci_segment *seg;
889
890 ring = xhci->cmd_ring;
891 seg = ring->deq_seg;
892 do {
893 memset(seg->trbs, 0,
894 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
895 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
896 cpu_to_le32(~TRB_CYCLE);
897 seg = seg->next;
898 } while (seg != ring->deq_seg);
899
900 /* Reset the software enqueue and dequeue pointers */
901 ring->deq_seg = ring->first_seg;
902 ring->dequeue = ring->first_seg->trbs;
903 ring->enq_seg = ring->deq_seg;
904 ring->enqueue = ring->dequeue;
905
906 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
907 /*
908 * Ring is now zeroed, so the HW should look for change of ownership
909 * when the cycle bit is set to 1.
910 */
911 ring->cycle_state = 1;
912
913 /*
914 * Reset the hardware dequeue pointer.
915 * Yes, this will need to be re-written after resume, but we're paranoid
916 * and want to make sure the hardware doesn't access bogus memory
917 * because, say, the BIOS or an SMI started the host without changing
918 * the command ring pointers.
919 */
920 xhci_set_cmd_ring_deq(xhci);
921}
922
923/*
924 * Disable port wake bits if do_wakeup is not set.
925 *
926 * Also clear a possible internal port wake state left hanging for ports that
927 * detected termination but never successfully enumerated (trained to 0U).
928 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
929 * at enumeration clears this wake, force one here as well for unconnected ports
930 */
931
932static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
933 struct xhci_hub *rhub,
934 bool do_wakeup)
935{
936 unsigned long flags;
937 u32 t1, t2, portsc;
938 int i;
939
940 spin_lock_irqsave(&xhci->lock, flags);
941
942 for (i = 0; i < rhub->num_ports; i++) {
943 portsc = readl(rhub->ports[i]->addr);
944 t1 = xhci_port_state_to_neutral(portsc);
945 t2 = t1;
946
947 /* clear wake bits if do_wake is not set */
948 if (!do_wakeup)
949 t2 &= ~PORT_WAKE_BITS;
950
951 /* Don't touch csc bit if connected or connect change is set */
952 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
953 t2 |= PORT_CSC;
954
955 if (t1 != t2) {
956 writel(t2, rhub->ports[i]->addr);
957 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
958 rhub->hcd->self.busnum, i + 1, portsc, t2);
959 }
960 }
961 spin_unlock_irqrestore(&xhci->lock, flags);
962}
963
964static bool xhci_pending_portevent(struct xhci_hcd *xhci)
965{
966 struct xhci_port **ports;
967 int port_index;
968 u32 status;
969 u32 portsc;
970
971 status = readl(&xhci->op_regs->status);
972 if (status & STS_EINT)
973 return true;
974 /*
975 * Checking STS_EINT is not enough as there is a lag between a change
976 * bit being set and the Port Status Change Event that it generated
977 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
978 */
979
980 port_index = xhci->usb2_rhub.num_ports;
981 ports = xhci->usb2_rhub.ports;
982 while (port_index--) {
983 portsc = readl(ports[port_index]->addr);
984 if (portsc & PORT_CHANGE_MASK ||
985 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
986 return true;
987 }
988 port_index = xhci->usb3_rhub.num_ports;
989 ports = xhci->usb3_rhub.ports;
990 while (port_index--) {
991 portsc = readl(ports[port_index]->addr);
992 if (portsc & PORT_CHANGE_MASK ||
993 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
994 return true;
995 }
996 return false;
997}
998
999/*
1000 * Stop HC (not bus-specific)
1001 *
1002 * This is called when the machine transition into S3/S4 mode.
1003 *
1004 */
1005int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
1006{
1007 int rc = 0;
1008 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
1009 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1010 u32 command;
1011 u32 res;
1012
1013 if (!hcd->state)
1014 return 0;
1015
1016 if (hcd->state != HC_STATE_SUSPENDED ||
1017 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1018 return -EINVAL;
1019
1020 /* Clear root port wake on bits if wakeup not allowed. */
1021 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1022 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1023
1024 if (!HCD_HW_ACCESSIBLE(hcd))
1025 return 0;
1026
1027 xhci_dbc_suspend(xhci);
1028
1029 /* Don't poll the roothubs on bus suspend. */
1030 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1031 __func__, hcd->self.busnum);
1032 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1033 del_timer_sync(&hcd->rh_timer);
1034 if (xhci->shared_hcd) {
1035 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1036 del_timer_sync(&xhci->shared_hcd->rh_timer);
1037 }
1038
1039 if (xhci->quirks & XHCI_SUSPEND_DELAY)
1040 usleep_range(1000, 1500);
1041
1042 spin_lock_irq(&xhci->lock);
1043 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1044 if (xhci->shared_hcd)
1045 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1046 /* step 1: stop endpoint */
1047 /* skipped assuming that port suspend has done */
1048
1049 /* step 2: clear Run/Stop bit */
1050 command = readl(&xhci->op_regs->command);
1051 command &= ~CMD_RUN;
1052 writel(command, &xhci->op_regs->command);
1053
1054 /* Some chips from Fresco Logic need an extraordinary delay */
1055 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1056
1057 if (xhci_handshake(&xhci->op_regs->status,
1058 STS_HALT, STS_HALT, delay)) {
1059 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1060 spin_unlock_irq(&xhci->lock);
1061 return -ETIMEDOUT;
1062 }
1063 xhci_clear_command_ring(xhci);
1064
1065 /* step 3: save registers */
1066 xhci_save_registers(xhci);
1067
1068 /* step 4: set CSS flag */
1069 command = readl(&xhci->op_regs->command);
1070 command |= CMD_CSS;
1071 writel(command, &xhci->op_regs->command);
1072 xhci->broken_suspend = 0;
1073 if (xhci_handshake(&xhci->op_regs->status,
1074 STS_SAVE, 0, 20 * 1000)) {
1075 /*
1076 * AMD SNPS xHC 3.0 occasionally does not clear the
1077 * SSS bit of USBSTS and when driver tries to poll
1078 * to see if the xHC clears BIT(8) which never happens
1079 * and driver assumes that controller is not responding
1080 * and times out. To workaround this, its good to check
1081 * if SRE and HCE bits are not set (as per xhci
1082 * Section 5.4.2) and bypass the timeout.
1083 */
1084 res = readl(&xhci->op_regs->status);
1085 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1086 (((res & STS_SRE) == 0) &&
1087 ((res & STS_HCE) == 0))) {
1088 xhci->broken_suspend = 1;
1089 } else {
1090 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1091 spin_unlock_irq(&xhci->lock);
1092 return -ETIMEDOUT;
1093 }
1094 }
1095 spin_unlock_irq(&xhci->lock);
1096
1097 /*
1098 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1099 * is about to be suspended.
1100 */
1101 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1102 (!(xhci_all_ports_seen_u0(xhci)))) {
1103 del_timer_sync(&xhci->comp_mode_recovery_timer);
1104 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1105 "%s: compliance mode recovery timer deleted",
1106 __func__);
1107 }
1108
1109 /* step 5: remove core well power */
1110 /* synchronize irq when using MSI-X */
1111 xhci_msix_sync_irqs(xhci);
1112
1113 return rc;
1114}
1115EXPORT_SYMBOL_GPL(xhci_suspend);
1116
1117/*
1118 * start xHC (not bus-specific)
1119 *
1120 * This is called when the machine transition from S3/S4 mode.
1121 *
1122 */
1123int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1124{
1125 u32 command, temp = 0;
1126 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1127 int retval = 0;
1128 bool comp_timer_running = false;
1129 bool pending_portevent = false;
1130 bool reinit_xhc = false;
1131
1132 if (!hcd->state)
1133 return 0;
1134
1135 /* Wait a bit if either of the roothubs need to settle from the
1136 * transition into bus suspend.
1137 */
1138
1139 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1140 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1141 msleep(100);
1142
1143 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1144 if (xhci->shared_hcd)
1145 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1146
1147 spin_lock_irq(&xhci->lock);
1148
1149 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1150 reinit_xhc = true;
1151
1152 if (!reinit_xhc) {
1153 /*
1154 * Some controllers might lose power during suspend, so wait
1155 * for controller not ready bit to clear, just as in xHC init.
1156 */
1157 retval = xhci_handshake(&xhci->op_regs->status,
1158 STS_CNR, 0, 10 * 1000 * 1000);
1159 if (retval) {
1160 xhci_warn(xhci, "Controller not ready at resume %d\n",
1161 retval);
1162 spin_unlock_irq(&xhci->lock);
1163 return retval;
1164 }
1165 /* step 1: restore register */
1166 xhci_restore_registers(xhci);
1167 /* step 2: initialize command ring buffer */
1168 xhci_set_cmd_ring_deq(xhci);
1169 /* step 3: restore state and start state*/
1170 /* step 3: set CRS flag */
1171 command = readl(&xhci->op_regs->command);
1172 command |= CMD_CRS;
1173 writel(command, &xhci->op_regs->command);
1174 /*
1175 * Some controllers take up to 55+ ms to complete the controller
1176 * restore so setting the timeout to 100ms. Xhci specification
1177 * doesn't mention any timeout value.
1178 */
1179 if (xhci_handshake(&xhci->op_regs->status,
1180 STS_RESTORE, 0, 100 * 1000)) {
1181 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1182 spin_unlock_irq(&xhci->lock);
1183 return -ETIMEDOUT;
1184 }
1185 }
1186
1187 temp = readl(&xhci->op_regs->status);
1188
1189 /* re-initialize the HC on Restore Error, or Host Controller Error */
1190 if (temp & (STS_SRE | STS_HCE)) {
1191 reinit_xhc = true;
1192 if (!xhci->broken_suspend)
1193 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1194 }
1195
1196 if (reinit_xhc) {
1197 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1198 !(xhci_all_ports_seen_u0(xhci))) {
1199 del_timer_sync(&xhci->comp_mode_recovery_timer);
1200 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1201 "Compliance Mode Recovery Timer deleted!");
1202 }
1203
1204 /* Let the USB core know _both_ roothubs lost power. */
1205 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1206 if (xhci->shared_hcd)
1207 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1208
1209 xhci_dbg(xhci, "Stop HCD\n");
1210 xhci_halt(xhci);
1211 xhci_zero_64b_regs(xhci);
1212 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1213 spin_unlock_irq(&xhci->lock);
1214 if (retval)
1215 return retval;
1216 xhci_cleanup_msix(xhci);
1217
1218 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1219 temp = readl(&xhci->op_regs->status);
1220 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1221 temp = readl(&xhci->ir_set->irq_pending);
1222 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1223
1224 xhci_dbg(xhci, "cleaning up memory\n");
1225 xhci_mem_cleanup(xhci);
1226 xhci_debugfs_exit(xhci);
1227 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1228 readl(&xhci->op_regs->status));
1229
1230 /* USB core calls the PCI reinit and start functions twice:
1231 * first with the primary HCD, and then with the secondary HCD.
1232 * If we don't do the same, the host will never be started.
1233 */
1234 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1235 retval = xhci_init(hcd);
1236 if (retval)
1237 return retval;
1238 comp_timer_running = true;
1239
1240 xhci_dbg(xhci, "Start the primary HCD\n");
1241 retval = xhci_run(hcd);
1242 if (!retval && xhci->shared_hcd) {
1243 xhci_dbg(xhci, "Start the secondary HCD\n");
1244 retval = xhci_run(xhci->shared_hcd);
1245 }
1246
1247 hcd->state = HC_STATE_SUSPENDED;
1248 if (xhci->shared_hcd)
1249 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1250 goto done;
1251 }
1252
1253 /* step 4: set Run/Stop bit */
1254 command = readl(&xhci->op_regs->command);
1255 command |= CMD_RUN;
1256 writel(command, &xhci->op_regs->command);
1257 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1258 0, 250 * 1000);
1259
1260 /* step 5: walk topology and initialize portsc,
1261 * portpmsc and portli
1262 */
1263 /* this is done in bus_resume */
1264
1265 /* step 6: restart each of the previously
1266 * Running endpoints by ringing their doorbells
1267 */
1268
1269 spin_unlock_irq(&xhci->lock);
1270
1271 xhci_dbc_resume(xhci);
1272
1273 done:
1274 if (retval == 0) {
1275 /*
1276 * Resume roothubs only if there are pending events.
1277 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1278 * the first wake signalling failed, give it that chance.
1279 */
1280 pending_portevent = xhci_pending_portevent(xhci);
1281 if (!pending_portevent) {
1282 msleep(120);
1283 pending_portevent = xhci_pending_portevent(xhci);
1284 }
1285
1286 if (pending_portevent) {
1287 if (xhci->shared_hcd)
1288 usb_hcd_resume_root_hub(xhci->shared_hcd);
1289 usb_hcd_resume_root_hub(hcd);
1290 }
1291 }
1292 /*
1293 * If system is subject to the Quirk, Compliance Mode Timer needs to
1294 * be re-initialized Always after a system resume. Ports are subject
1295 * to suffer the Compliance Mode issue again. It doesn't matter if
1296 * ports have entered previously to U0 before system's suspension.
1297 */
1298 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1299 compliance_mode_recovery_timer_init(xhci);
1300
1301 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1302 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1303
1304 /* Re-enable port polling. */
1305 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1306 __func__, hcd->self.busnum);
1307 if (xhci->shared_hcd) {
1308 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1309 usb_hcd_poll_rh_status(xhci->shared_hcd);
1310 }
1311 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1312 usb_hcd_poll_rh_status(hcd);
1313
1314 return retval;
1315}
1316EXPORT_SYMBOL_GPL(xhci_resume);
1317#endif /* CONFIG_PM */
1318
1319/*-------------------------------------------------------------------------*/
1320
1321static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1322{
1323 void *temp;
1324 int ret = 0;
1325 unsigned int buf_len;
1326 enum dma_data_direction dir;
1327
1328 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1329 buf_len = urb->transfer_buffer_length;
1330
1331 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1332 dev_to_node(hcd->self.sysdev));
1333
1334 if (usb_urb_dir_out(urb))
1335 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1336 temp, buf_len, 0);
1337
1338 urb->transfer_buffer = temp;
1339 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1340 urb->transfer_buffer,
1341 urb->transfer_buffer_length,
1342 dir);
1343
1344 if (dma_mapping_error(hcd->self.sysdev,
1345 urb->transfer_dma)) {
1346 ret = -EAGAIN;
1347 kfree(temp);
1348 } else {
1349 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1350 }
1351
1352 return ret;
1353}
1354
1355static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1356 struct urb *urb)
1357{
1358 bool ret = false;
1359 unsigned int i;
1360 unsigned int len = 0;
1361 unsigned int trb_size;
1362 unsigned int max_pkt;
1363 struct scatterlist *sg;
1364 struct scatterlist *tail_sg;
1365
1366 tail_sg = urb->sg;
1367 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1368
1369 if (!urb->num_sgs)
1370 return ret;
1371
1372 if (urb->dev->speed >= USB_SPEED_SUPER)
1373 trb_size = TRB_CACHE_SIZE_SS;
1374 else
1375 trb_size = TRB_CACHE_SIZE_HS;
1376
1377 if (urb->transfer_buffer_length != 0 &&
1378 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1379 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1380 len = len + sg->length;
1381 if (i > trb_size - 2) {
1382 len = len - tail_sg->length;
1383 if (len < max_pkt) {
1384 ret = true;
1385 break;
1386 }
1387
1388 tail_sg = sg_next(tail_sg);
1389 }
1390 }
1391 }
1392 return ret;
1393}
1394
1395static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1396{
1397 unsigned int len;
1398 unsigned int buf_len;
1399 enum dma_data_direction dir;
1400
1401 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1402
1403 buf_len = urb->transfer_buffer_length;
1404
1405 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1406 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1407 dma_unmap_single(hcd->self.sysdev,
1408 urb->transfer_dma,
1409 urb->transfer_buffer_length,
1410 dir);
1411
1412 if (usb_urb_dir_in(urb)) {
1413 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1414 urb->transfer_buffer,
1415 buf_len,
1416 0);
1417 if (len != buf_len) {
1418 xhci_dbg(hcd_to_xhci(hcd),
1419 "Copy from tmp buf to urb sg list failed\n");
1420 urb->actual_length = len;
1421 }
1422 }
1423 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1424 kfree(urb->transfer_buffer);
1425 urb->transfer_buffer = NULL;
1426}
1427
1428/*
1429 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1430 * we'll copy the actual data into the TRB address register. This is limited to
1431 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1432 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1433 */
1434static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1435 gfp_t mem_flags)
1436{
1437 struct xhci_hcd *xhci;
1438
1439 xhci = hcd_to_xhci(hcd);
1440
1441 if (xhci_urb_suitable_for_idt(urb))
1442 return 0;
1443
1444 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1445 if (xhci_urb_temp_buffer_required(hcd, urb))
1446 return xhci_map_temp_buffer(hcd, urb);
1447 }
1448 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1449}
1450
1451static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1452{
1453 struct xhci_hcd *xhci;
1454 bool unmap_temp_buf = false;
1455
1456 xhci = hcd_to_xhci(hcd);
1457
1458 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1459 unmap_temp_buf = true;
1460
1461 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1462 xhci_unmap_temp_buf(hcd, urb);
1463 else
1464 usb_hcd_unmap_urb_for_dma(hcd, urb);
1465}
1466
1467/**
1468 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1469 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1470 * value to right shift 1 for the bitmask.
1471 *
1472 * Index = (epnum * 2) + direction - 1,
1473 * where direction = 0 for OUT, 1 for IN.
1474 * For control endpoints, the IN index is used (OUT index is unused), so
1475 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1476 */
1477unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1478{
1479 unsigned int index;
1480 if (usb_endpoint_xfer_control(desc))
1481 index = (unsigned int) (usb_endpoint_num(desc)*2);
1482 else
1483 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1484 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1485 return index;
1486}
1487EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1488
1489/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1490 * address from the XHCI endpoint index.
1491 */
1492static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1493{
1494 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1495 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1496 return direction | number;
1497}
1498
1499/* Find the flag for this endpoint (for use in the control context). Use the
1500 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1501 * bit 1, etc.
1502 */
1503static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1504{
1505 return 1 << (xhci_get_endpoint_index(desc) + 1);
1506}
1507
1508/* Compute the last valid endpoint context index. Basically, this is the
1509 * endpoint index plus one. For slot contexts with more than valid endpoint,
1510 * we find the most significant bit set in the added contexts flags.
1511 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1512 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1513 */
1514unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1515{
1516 return fls(added_ctxs) - 1;
1517}
1518
1519/* Returns 1 if the arguments are OK;
1520 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1521 */
1522static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1523 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1524 const char *func) {
1525 struct xhci_hcd *xhci;
1526 struct xhci_virt_device *virt_dev;
1527
1528 if (!hcd || (check_ep && !ep) || !udev) {
1529 pr_debug("xHCI %s called with invalid args\n", func);
1530 return -EINVAL;
1531 }
1532 if (!udev->parent) {
1533 pr_debug("xHCI %s called for root hub\n", func);
1534 return 0;
1535 }
1536
1537 xhci = hcd_to_xhci(hcd);
1538 if (check_virt_dev) {
1539 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1540 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1541 func);
1542 return -EINVAL;
1543 }
1544
1545 virt_dev = xhci->devs[udev->slot_id];
1546 if (virt_dev->udev != udev) {
1547 xhci_dbg(xhci, "xHCI %s called with udev and "
1548 "virt_dev does not match\n", func);
1549 return -EINVAL;
1550 }
1551 }
1552
1553 if (xhci->xhc_state & XHCI_STATE_HALTED)
1554 return -ENODEV;
1555
1556 return 1;
1557}
1558
1559static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1560 struct usb_device *udev, struct xhci_command *command,
1561 bool ctx_change, bool must_succeed);
1562
1563/*
1564 * Full speed devices may have a max packet size greater than 8 bytes, but the
1565 * USB core doesn't know that until it reads the first 8 bytes of the
1566 * descriptor. If the usb_device's max packet size changes after that point,
1567 * we need to issue an evaluate context command and wait on it.
1568 */
1569static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1570 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1571{
1572 struct xhci_container_ctx *out_ctx;
1573 struct xhci_input_control_ctx *ctrl_ctx;
1574 struct xhci_ep_ctx *ep_ctx;
1575 struct xhci_command *command;
1576 int max_packet_size;
1577 int hw_max_packet_size;
1578 int ret = 0;
1579
1580 out_ctx = xhci->devs[slot_id]->out_ctx;
1581 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1582 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1583 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1584 if (hw_max_packet_size != max_packet_size) {
1585 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1586 "Max Packet Size for ep 0 changed.");
1587 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1588 "Max packet size in usb_device = %d",
1589 max_packet_size);
1590 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1591 "Max packet size in xHCI HW = %d",
1592 hw_max_packet_size);
1593 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1594 "Issuing evaluate context command.");
1595
1596 /* Set up the input context flags for the command */
1597 /* FIXME: This won't work if a non-default control endpoint
1598 * changes max packet sizes.
1599 */
1600
1601 command = xhci_alloc_command(xhci, true, mem_flags);
1602 if (!command)
1603 return -ENOMEM;
1604
1605 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1606 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1607 if (!ctrl_ctx) {
1608 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1609 __func__);
1610 ret = -ENOMEM;
1611 goto command_cleanup;
1612 }
1613 /* Set up the modified control endpoint 0 */
1614 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1615 xhci->devs[slot_id]->out_ctx, ep_index);
1616
1617 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1618 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1619 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1620 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1621
1622 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1623 ctrl_ctx->drop_flags = 0;
1624
1625 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1626 true, false);
1627
1628 /* Clean up the input context for later use by bandwidth
1629 * functions.
1630 */
1631 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1632command_cleanup:
1633 kfree(command->completion);
1634 kfree(command);
1635 }
1636 return ret;
1637}
1638
1639/*
1640 * non-error returns are a promise to giveback() the urb later
1641 * we drop ownership so next owner (or urb unlink) can get it
1642 */
1643static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1644{
1645 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1646 unsigned long flags;
1647 int ret = 0;
1648 unsigned int slot_id, ep_index;
1649 unsigned int *ep_state;
1650 struct urb_priv *urb_priv;
1651 int num_tds;
1652
1653 if (!urb)
1654 return -EINVAL;
1655 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1656 true, true, __func__);
1657 if (ret <= 0)
1658 return ret ? ret : -EINVAL;
1659
1660 slot_id = urb->dev->slot_id;
1661 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1662 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1663
1664 if (!HCD_HW_ACCESSIBLE(hcd))
1665 return -ESHUTDOWN;
1666
1667 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1668 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1669 return -ENODEV;
1670 }
1671
1672 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1673 num_tds = urb->number_of_packets;
1674 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1675 urb->transfer_buffer_length > 0 &&
1676 urb->transfer_flags & URB_ZERO_PACKET &&
1677 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1678 num_tds = 2;
1679 else
1680 num_tds = 1;
1681
1682 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1683 if (!urb_priv)
1684 return -ENOMEM;
1685
1686 urb_priv->num_tds = num_tds;
1687 urb_priv->num_tds_done = 0;
1688 urb->hcpriv = urb_priv;
1689
1690 trace_xhci_urb_enqueue(urb);
1691
1692 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1693 /* Check to see if the max packet size for the default control
1694 * endpoint changed during FS device enumeration
1695 */
1696 if (urb->dev->speed == USB_SPEED_FULL) {
1697 ret = xhci_check_maxpacket(xhci, slot_id,
1698 ep_index, urb, mem_flags);
1699 if (ret < 0) {
1700 xhci_urb_free_priv(urb_priv);
1701 urb->hcpriv = NULL;
1702 return ret;
1703 }
1704 }
1705 }
1706
1707 spin_lock_irqsave(&xhci->lock, flags);
1708
1709 if (xhci->xhc_state & XHCI_STATE_DYING) {
1710 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1711 urb->ep->desc.bEndpointAddress, urb);
1712 ret = -ESHUTDOWN;
1713 goto free_priv;
1714 }
1715 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1716 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1717 *ep_state);
1718 ret = -EINVAL;
1719 goto free_priv;
1720 }
1721 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1722 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1723 ret = -EINVAL;
1724 goto free_priv;
1725 }
1726
1727 switch (usb_endpoint_type(&urb->ep->desc)) {
1728
1729 case USB_ENDPOINT_XFER_CONTROL:
1730 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1731 slot_id, ep_index);
1732 break;
1733 case USB_ENDPOINT_XFER_BULK:
1734 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1735 slot_id, ep_index);
1736 break;
1737 case USB_ENDPOINT_XFER_INT:
1738 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1739 slot_id, ep_index);
1740 break;
1741 case USB_ENDPOINT_XFER_ISOC:
1742 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1743 slot_id, ep_index);
1744 }
1745
1746 if (ret) {
1747free_priv:
1748 xhci_urb_free_priv(urb_priv);
1749 urb->hcpriv = NULL;
1750 }
1751 spin_unlock_irqrestore(&xhci->lock, flags);
1752 return ret;
1753}
1754
1755/*
1756 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1757 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1758 * should pick up where it left off in the TD, unless a Set Transfer Ring
1759 * Dequeue Pointer is issued.
1760 *
1761 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1762 * the ring. Since the ring is a contiguous structure, they can't be physically
1763 * removed. Instead, there are two options:
1764 *
1765 * 1) If the HC is in the middle of processing the URB to be canceled, we
1766 * simply move the ring's dequeue pointer past those TRBs using the Set
1767 * Transfer Ring Dequeue Pointer command. This will be the common case,
1768 * when drivers timeout on the last submitted URB and attempt to cancel.
1769 *
1770 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1771 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1772 * HC will need to invalidate the any TRBs it has cached after the stop
1773 * endpoint command, as noted in the xHCI 0.95 errata.
1774 *
1775 * 3) The TD may have completed by the time the Stop Endpoint Command
1776 * completes, so software needs to handle that case too.
1777 *
1778 * This function should protect against the TD enqueueing code ringing the
1779 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1780 * It also needs to account for multiple cancellations on happening at the same
1781 * time for the same endpoint.
1782 *
1783 * Note that this function can be called in any context, or so says
1784 * usb_hcd_unlink_urb()
1785 */
1786static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1787{
1788 unsigned long flags;
1789 int ret, i;
1790 u32 temp;
1791 struct xhci_hcd *xhci;
1792 struct urb_priv *urb_priv;
1793 struct xhci_td *td;
1794 unsigned int ep_index;
1795 struct xhci_ring *ep_ring;
1796 struct xhci_virt_ep *ep;
1797 struct xhci_command *command;
1798 struct xhci_virt_device *vdev;
1799
1800 xhci = hcd_to_xhci(hcd);
1801 spin_lock_irqsave(&xhci->lock, flags);
1802
1803 trace_xhci_urb_dequeue(urb);
1804
1805 /* Make sure the URB hasn't completed or been unlinked already */
1806 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1807 if (ret)
1808 goto done;
1809
1810 /* give back URB now if we can't queue it for cancel */
1811 vdev = xhci->devs[urb->dev->slot_id];
1812 urb_priv = urb->hcpriv;
1813 if (!vdev || !urb_priv)
1814 goto err_giveback;
1815
1816 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1817 ep = &vdev->eps[ep_index];
1818 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1819 if (!ep || !ep_ring)
1820 goto err_giveback;
1821
1822 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1823 temp = readl(&xhci->op_regs->status);
1824 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1825 xhci_hc_died(xhci);
1826 goto done;
1827 }
1828
1829 /*
1830 * check ring is not re-allocated since URB was enqueued. If it is, then
1831 * make sure none of the ring related pointers in this URB private data
1832 * are touched, such as td_list, otherwise we overwrite freed data
1833 */
1834 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1835 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1836 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1837 td = &urb_priv->td[i];
1838 if (!list_empty(&td->cancelled_td_list))
1839 list_del_init(&td->cancelled_td_list);
1840 }
1841 goto err_giveback;
1842 }
1843
1844 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1845 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1846 "HC halted, freeing TD manually.");
1847 for (i = urb_priv->num_tds_done;
1848 i < urb_priv->num_tds;
1849 i++) {
1850 td = &urb_priv->td[i];
1851 if (!list_empty(&td->td_list))
1852 list_del_init(&td->td_list);
1853 if (!list_empty(&td->cancelled_td_list))
1854 list_del_init(&td->cancelled_td_list);
1855 }
1856 goto err_giveback;
1857 }
1858
1859 i = urb_priv->num_tds_done;
1860 if (i < urb_priv->num_tds)
1861 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1862 "Cancel URB %p, dev %s, ep 0x%x, "
1863 "starting at offset 0x%llx",
1864 urb, urb->dev->devpath,
1865 urb->ep->desc.bEndpointAddress,
1866 (unsigned long long) xhci_trb_virt_to_dma(
1867 urb_priv->td[i].start_seg,
1868 urb_priv->td[i].first_trb));
1869
1870 for (; i < urb_priv->num_tds; i++) {
1871 td = &urb_priv->td[i];
1872 /* TD can already be on cancelled list if ep halted on it */
1873 if (list_empty(&td->cancelled_td_list)) {
1874 td->cancel_status = TD_DIRTY;
1875 list_add_tail(&td->cancelled_td_list,
1876 &ep->cancelled_td_list);
1877 }
1878 }
1879
1880 /* Queue a stop endpoint command, but only if this is
1881 * the first cancellation to be handled.
1882 */
1883 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1884 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1885 if (!command) {
1886 ret = -ENOMEM;
1887 goto done;
1888 }
1889 ep->ep_state |= EP_STOP_CMD_PENDING;
1890 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1891 ep_index, 0);
1892 xhci_ring_cmd_db(xhci);
1893 }
1894done:
1895 spin_unlock_irqrestore(&xhci->lock, flags);
1896 return ret;
1897
1898err_giveback:
1899 if (urb_priv)
1900 xhci_urb_free_priv(urb_priv);
1901 usb_hcd_unlink_urb_from_ep(hcd, urb);
1902 spin_unlock_irqrestore(&xhci->lock, flags);
1903 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1904 return ret;
1905}
1906
1907/* Drop an endpoint from a new bandwidth configuration for this device.
1908 * Only one call to this function is allowed per endpoint before
1909 * check_bandwidth() or reset_bandwidth() must be called.
1910 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1911 * add the endpoint to the schedule with possibly new parameters denoted by a
1912 * different endpoint descriptor in usb_host_endpoint.
1913 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1914 * not allowed.
1915 *
1916 * The USB core will not allow URBs to be queued to an endpoint that is being
1917 * disabled, so there's no need for mutual exclusion to protect
1918 * the xhci->devs[slot_id] structure.
1919 */
1920int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1921 struct usb_host_endpoint *ep)
1922{
1923 struct xhci_hcd *xhci;
1924 struct xhci_container_ctx *in_ctx, *out_ctx;
1925 struct xhci_input_control_ctx *ctrl_ctx;
1926 unsigned int ep_index;
1927 struct xhci_ep_ctx *ep_ctx;
1928 u32 drop_flag;
1929 u32 new_add_flags, new_drop_flags;
1930 int ret;
1931
1932 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1933 if (ret <= 0)
1934 return ret;
1935 xhci = hcd_to_xhci(hcd);
1936 if (xhci->xhc_state & XHCI_STATE_DYING)
1937 return -ENODEV;
1938
1939 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1940 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1941 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1942 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1943 __func__, drop_flag);
1944 return 0;
1945 }
1946
1947 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1948 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1949 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1950 if (!ctrl_ctx) {
1951 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1952 __func__);
1953 return 0;
1954 }
1955
1956 ep_index = xhci_get_endpoint_index(&ep->desc);
1957 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1958 /* If the HC already knows the endpoint is disabled,
1959 * or the HCD has noted it is disabled, ignore this request
1960 */
1961 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1962 le32_to_cpu(ctrl_ctx->drop_flags) &
1963 xhci_get_endpoint_flag(&ep->desc)) {
1964 /* Do not warn when called after a usb_device_reset */
1965 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1966 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1967 __func__, ep);
1968 return 0;
1969 }
1970
1971 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1972 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1973
1974 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1975 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1976
1977 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1978
1979 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1980
1981 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1982 (unsigned int) ep->desc.bEndpointAddress,
1983 udev->slot_id,
1984 (unsigned int) new_drop_flags,
1985 (unsigned int) new_add_flags);
1986 return 0;
1987}
1988EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1989
1990/* Add an endpoint to a new possible bandwidth configuration for this device.
1991 * Only one call to this function is allowed per endpoint before
1992 * check_bandwidth() or reset_bandwidth() must be called.
1993 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1994 * add the endpoint to the schedule with possibly new parameters denoted by a
1995 * different endpoint descriptor in usb_host_endpoint.
1996 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1997 * not allowed.
1998 *
1999 * The USB core will not allow URBs to be queued to an endpoint until the
2000 * configuration or alt setting is installed in the device, so there's no need
2001 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
2002 */
2003int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
2004 struct usb_host_endpoint *ep)
2005{
2006 struct xhci_hcd *xhci;
2007 struct xhci_container_ctx *in_ctx;
2008 unsigned int ep_index;
2009 struct xhci_input_control_ctx *ctrl_ctx;
2010 struct xhci_ep_ctx *ep_ctx;
2011 u32 added_ctxs;
2012 u32 new_add_flags, new_drop_flags;
2013 struct xhci_virt_device *virt_dev;
2014 int ret = 0;
2015
2016 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2017 if (ret <= 0) {
2018 /* So we won't queue a reset ep command for a root hub */
2019 ep->hcpriv = NULL;
2020 return ret;
2021 }
2022 xhci = hcd_to_xhci(hcd);
2023 if (xhci->xhc_state & XHCI_STATE_DYING)
2024 return -ENODEV;
2025
2026 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
2027 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2028 /* FIXME when we have to issue an evaluate endpoint command to
2029 * deal with ep0 max packet size changing once we get the
2030 * descriptors
2031 */
2032 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2033 __func__, added_ctxs);
2034 return 0;
2035 }
2036
2037 virt_dev = xhci->devs[udev->slot_id];
2038 in_ctx = virt_dev->in_ctx;
2039 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2040 if (!ctrl_ctx) {
2041 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2042 __func__);
2043 return 0;
2044 }
2045
2046 ep_index = xhci_get_endpoint_index(&ep->desc);
2047 /* If this endpoint is already in use, and the upper layers are trying
2048 * to add it again without dropping it, reject the addition.
2049 */
2050 if (virt_dev->eps[ep_index].ring &&
2051 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2052 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2053 "without dropping it.\n",
2054 (unsigned int) ep->desc.bEndpointAddress);
2055 return -EINVAL;
2056 }
2057
2058 /* If the HCD has already noted the endpoint is enabled,
2059 * ignore this request.
2060 */
2061 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2062 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2063 __func__, ep);
2064 return 0;
2065 }
2066
2067 /*
2068 * Configuration and alternate setting changes must be done in
2069 * process context, not interrupt context (or so documenation
2070 * for usb_set_interface() and usb_set_configuration() claim).
2071 */
2072 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2073 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2074 __func__, ep->desc.bEndpointAddress);
2075 return -ENOMEM;
2076 }
2077
2078 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2079 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2080
2081 /* If xhci_endpoint_disable() was called for this endpoint, but the
2082 * xHC hasn't been notified yet through the check_bandwidth() call,
2083 * this re-adds a new state for the endpoint from the new endpoint
2084 * descriptors. We must drop and re-add this endpoint, so we leave the
2085 * drop flags alone.
2086 */
2087 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2088
2089 /* Store the usb_device pointer for later use */
2090 ep->hcpriv = udev;
2091
2092 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2093 trace_xhci_add_endpoint(ep_ctx);
2094
2095 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2096 (unsigned int) ep->desc.bEndpointAddress,
2097 udev->slot_id,
2098 (unsigned int) new_drop_flags,
2099 (unsigned int) new_add_flags);
2100 return 0;
2101}
2102EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2103
2104static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2105{
2106 struct xhci_input_control_ctx *ctrl_ctx;
2107 struct xhci_ep_ctx *ep_ctx;
2108 struct xhci_slot_ctx *slot_ctx;
2109 int i;
2110
2111 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2112 if (!ctrl_ctx) {
2113 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2114 __func__);
2115 return;
2116 }
2117
2118 /* When a device's add flag and drop flag are zero, any subsequent
2119 * configure endpoint command will leave that endpoint's state
2120 * untouched. Make sure we don't leave any old state in the input
2121 * endpoint contexts.
2122 */
2123 ctrl_ctx->drop_flags = 0;
2124 ctrl_ctx->add_flags = 0;
2125 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2126 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2127 /* Endpoint 0 is always valid */
2128 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2129 for (i = 1; i < 31; i++) {
2130 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2131 ep_ctx->ep_info = 0;
2132 ep_ctx->ep_info2 = 0;
2133 ep_ctx->deq = 0;
2134 ep_ctx->tx_info = 0;
2135 }
2136}
2137
2138static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2139 struct usb_device *udev, u32 *cmd_status)
2140{
2141 int ret;
2142
2143 switch (*cmd_status) {
2144 case COMP_COMMAND_ABORTED:
2145 case COMP_COMMAND_RING_STOPPED:
2146 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2147 ret = -ETIME;
2148 break;
2149 case COMP_RESOURCE_ERROR:
2150 dev_warn(&udev->dev,
2151 "Not enough host controller resources for new device state.\n");
2152 ret = -ENOMEM;
2153 /* FIXME: can we allocate more resources for the HC? */
2154 break;
2155 case COMP_BANDWIDTH_ERROR:
2156 case COMP_SECONDARY_BANDWIDTH_ERROR:
2157 dev_warn(&udev->dev,
2158 "Not enough bandwidth for new device state.\n");
2159 ret = -ENOSPC;
2160 /* FIXME: can we go back to the old state? */
2161 break;
2162 case COMP_TRB_ERROR:
2163 /* the HCD set up something wrong */
2164 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2165 "add flag = 1, "
2166 "and endpoint is not disabled.\n");
2167 ret = -EINVAL;
2168 break;
2169 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2170 dev_warn(&udev->dev,
2171 "ERROR: Incompatible device for endpoint configure command.\n");
2172 ret = -ENODEV;
2173 break;
2174 case COMP_SUCCESS:
2175 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2176 "Successful Endpoint Configure command");
2177 ret = 0;
2178 break;
2179 default:
2180 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2181 *cmd_status);
2182 ret = -EINVAL;
2183 break;
2184 }
2185 return ret;
2186}
2187
2188static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2189 struct usb_device *udev, u32 *cmd_status)
2190{
2191 int ret;
2192
2193 switch (*cmd_status) {
2194 case COMP_COMMAND_ABORTED:
2195 case COMP_COMMAND_RING_STOPPED:
2196 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2197 ret = -ETIME;
2198 break;
2199 case COMP_PARAMETER_ERROR:
2200 dev_warn(&udev->dev,
2201 "WARN: xHCI driver setup invalid evaluate context command.\n");
2202 ret = -EINVAL;
2203 break;
2204 case COMP_SLOT_NOT_ENABLED_ERROR:
2205 dev_warn(&udev->dev,
2206 "WARN: slot not enabled for evaluate context command.\n");
2207 ret = -EINVAL;
2208 break;
2209 case COMP_CONTEXT_STATE_ERROR:
2210 dev_warn(&udev->dev,
2211 "WARN: invalid context state for evaluate context command.\n");
2212 ret = -EINVAL;
2213 break;
2214 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2215 dev_warn(&udev->dev,
2216 "ERROR: Incompatible device for evaluate context command.\n");
2217 ret = -ENODEV;
2218 break;
2219 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2220 /* Max Exit Latency too large error */
2221 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2222 ret = -EINVAL;
2223 break;
2224 case COMP_SUCCESS:
2225 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2226 "Successful evaluate context command");
2227 ret = 0;
2228 break;
2229 default:
2230 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2231 *cmd_status);
2232 ret = -EINVAL;
2233 break;
2234 }
2235 return ret;
2236}
2237
2238static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2239 struct xhci_input_control_ctx *ctrl_ctx)
2240{
2241 u32 valid_add_flags;
2242 u32 valid_drop_flags;
2243
2244 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2245 * (bit 1). The default control endpoint is added during the Address
2246 * Device command and is never removed until the slot is disabled.
2247 */
2248 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2249 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2250
2251 /* Use hweight32 to count the number of ones in the add flags, or
2252 * number of endpoints added. Don't count endpoints that are changed
2253 * (both added and dropped).
2254 */
2255 return hweight32(valid_add_flags) -
2256 hweight32(valid_add_flags & valid_drop_flags);
2257}
2258
2259static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2260 struct xhci_input_control_ctx *ctrl_ctx)
2261{
2262 u32 valid_add_flags;
2263 u32 valid_drop_flags;
2264
2265 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2266 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2267
2268 return hweight32(valid_drop_flags) -
2269 hweight32(valid_add_flags & valid_drop_flags);
2270}
2271
2272/*
2273 * We need to reserve the new number of endpoints before the configure endpoint
2274 * command completes. We can't subtract the dropped endpoints from the number
2275 * of active endpoints until the command completes because we can oversubscribe
2276 * the host in this case:
2277 *
2278 * - the first configure endpoint command drops more endpoints than it adds
2279 * - a second configure endpoint command that adds more endpoints is queued
2280 * - the first configure endpoint command fails, so the config is unchanged
2281 * - the second command may succeed, even though there isn't enough resources
2282 *
2283 * Must be called with xhci->lock held.
2284 */
2285static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2286 struct xhci_input_control_ctx *ctrl_ctx)
2287{
2288 u32 added_eps;
2289
2290 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2291 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2292 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2293 "Not enough ep ctxs: "
2294 "%u active, need to add %u, limit is %u.",
2295 xhci->num_active_eps, added_eps,
2296 xhci->limit_active_eps);
2297 return -ENOMEM;
2298 }
2299 xhci->num_active_eps += added_eps;
2300 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2301 "Adding %u ep ctxs, %u now active.", added_eps,
2302 xhci->num_active_eps);
2303 return 0;
2304}
2305
2306/*
2307 * The configure endpoint was failed by the xHC for some other reason, so we
2308 * need to revert the resources that failed configuration would have used.
2309 *
2310 * Must be called with xhci->lock held.
2311 */
2312static void xhci_free_host_resources(struct xhci_hcd *xhci,
2313 struct xhci_input_control_ctx *ctrl_ctx)
2314{
2315 u32 num_failed_eps;
2316
2317 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2318 xhci->num_active_eps -= num_failed_eps;
2319 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2320 "Removing %u failed ep ctxs, %u now active.",
2321 num_failed_eps,
2322 xhci->num_active_eps);
2323}
2324
2325/*
2326 * Now that the command has completed, clean up the active endpoint count by
2327 * subtracting out the endpoints that were dropped (but not changed).
2328 *
2329 * Must be called with xhci->lock held.
2330 */
2331static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2332 struct xhci_input_control_ctx *ctrl_ctx)
2333{
2334 u32 num_dropped_eps;
2335
2336 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2337 xhci->num_active_eps -= num_dropped_eps;
2338 if (num_dropped_eps)
2339 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2340 "Removing %u dropped ep ctxs, %u now active.",
2341 num_dropped_eps,
2342 xhci->num_active_eps);
2343}
2344
2345static unsigned int xhci_get_block_size(struct usb_device *udev)
2346{
2347 switch (udev->speed) {
2348 case USB_SPEED_LOW:
2349 case USB_SPEED_FULL:
2350 return FS_BLOCK;
2351 case USB_SPEED_HIGH:
2352 return HS_BLOCK;
2353 case USB_SPEED_SUPER:
2354 case USB_SPEED_SUPER_PLUS:
2355 return SS_BLOCK;
2356 case USB_SPEED_UNKNOWN:
2357 case USB_SPEED_WIRELESS:
2358 default:
2359 /* Should never happen */
2360 return 1;
2361 }
2362}
2363
2364static unsigned int
2365xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2366{
2367 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2368 return LS_OVERHEAD;
2369 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2370 return FS_OVERHEAD;
2371 return HS_OVERHEAD;
2372}
2373
2374/* If we are changing a LS/FS device under a HS hub,
2375 * make sure (if we are activating a new TT) that the HS bus has enough
2376 * bandwidth for this new TT.
2377 */
2378static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2379 struct xhci_virt_device *virt_dev,
2380 int old_active_eps)
2381{
2382 struct xhci_interval_bw_table *bw_table;
2383 struct xhci_tt_bw_info *tt_info;
2384
2385 /* Find the bandwidth table for the root port this TT is attached to. */
2386 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2387 tt_info = virt_dev->tt_info;
2388 /* If this TT already had active endpoints, the bandwidth for this TT
2389 * has already been added. Removing all periodic endpoints (and thus
2390 * making the TT enactive) will only decrease the bandwidth used.
2391 */
2392 if (old_active_eps)
2393 return 0;
2394 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2395 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2396 return -ENOMEM;
2397 return 0;
2398 }
2399 /* Not sure why we would have no new active endpoints...
2400 *
2401 * Maybe because of an Evaluate Context change for a hub update or a
2402 * control endpoint 0 max packet size change?
2403 * FIXME: skip the bandwidth calculation in that case.
2404 */
2405 return 0;
2406}
2407
2408static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2409 struct xhci_virt_device *virt_dev)
2410{
2411 unsigned int bw_reserved;
2412
2413 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2414 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2415 return -ENOMEM;
2416
2417 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2418 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2419 return -ENOMEM;
2420
2421 return 0;
2422}
2423
2424/*
2425 * This algorithm is a very conservative estimate of the worst-case scheduling
2426 * scenario for any one interval. The hardware dynamically schedules the
2427 * packets, so we can't tell which microframe could be the limiting factor in
2428 * the bandwidth scheduling. This only takes into account periodic endpoints.
2429 *
2430 * Obviously, we can't solve an NP complete problem to find the minimum worst
2431 * case scenario. Instead, we come up with an estimate that is no less than
2432 * the worst case bandwidth used for any one microframe, but may be an
2433 * over-estimate.
2434 *
2435 * We walk the requirements for each endpoint by interval, starting with the
2436 * smallest interval, and place packets in the schedule where there is only one
2437 * possible way to schedule packets for that interval. In order to simplify
2438 * this algorithm, we record the largest max packet size for each interval, and
2439 * assume all packets will be that size.
2440 *
2441 * For interval 0, we obviously must schedule all packets for each interval.
2442 * The bandwidth for interval 0 is just the amount of data to be transmitted
2443 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2444 * the number of packets).
2445 *
2446 * For interval 1, we have two possible microframes to schedule those packets
2447 * in. For this algorithm, if we can schedule the same number of packets for
2448 * each possible scheduling opportunity (each microframe), we will do so. The
2449 * remaining number of packets will be saved to be transmitted in the gaps in
2450 * the next interval's scheduling sequence.
2451 *
2452 * As we move those remaining packets to be scheduled with interval 2 packets,
2453 * we have to double the number of remaining packets to transmit. This is
2454 * because the intervals are actually powers of 2, and we would be transmitting
2455 * the previous interval's packets twice in this interval. We also have to be
2456 * sure that when we look at the largest max packet size for this interval, we
2457 * also look at the largest max packet size for the remaining packets and take
2458 * the greater of the two.
2459 *
2460 * The algorithm continues to evenly distribute packets in each scheduling
2461 * opportunity, and push the remaining packets out, until we get to the last
2462 * interval. Then those packets and their associated overhead are just added
2463 * to the bandwidth used.
2464 */
2465static int xhci_check_bw_table(struct xhci_hcd *xhci,
2466 struct xhci_virt_device *virt_dev,
2467 int old_active_eps)
2468{
2469 unsigned int bw_reserved;
2470 unsigned int max_bandwidth;
2471 unsigned int bw_used;
2472 unsigned int block_size;
2473 struct xhci_interval_bw_table *bw_table;
2474 unsigned int packet_size = 0;
2475 unsigned int overhead = 0;
2476 unsigned int packets_transmitted = 0;
2477 unsigned int packets_remaining = 0;
2478 unsigned int i;
2479
2480 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2481 return xhci_check_ss_bw(xhci, virt_dev);
2482
2483 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2484 max_bandwidth = HS_BW_LIMIT;
2485 /* Convert percent of bus BW reserved to blocks reserved */
2486 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2487 } else {
2488 max_bandwidth = FS_BW_LIMIT;
2489 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2490 }
2491
2492 bw_table = virt_dev->bw_table;
2493 /* We need to translate the max packet size and max ESIT payloads into
2494 * the units the hardware uses.
2495 */
2496 block_size = xhci_get_block_size(virt_dev->udev);
2497
2498 /* If we are manipulating a LS/FS device under a HS hub, double check
2499 * that the HS bus has enough bandwidth if we are activing a new TT.
2500 */
2501 if (virt_dev->tt_info) {
2502 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2503 "Recalculating BW for rootport %u",
2504 virt_dev->real_port);
2505 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2506 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2507 "newly activated TT.\n");
2508 return -ENOMEM;
2509 }
2510 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2511 "Recalculating BW for TT slot %u port %u",
2512 virt_dev->tt_info->slot_id,
2513 virt_dev->tt_info->ttport);
2514 } else {
2515 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2516 "Recalculating BW for rootport %u",
2517 virt_dev->real_port);
2518 }
2519
2520 /* Add in how much bandwidth will be used for interval zero, or the
2521 * rounded max ESIT payload + number of packets * largest overhead.
2522 */
2523 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2524 bw_table->interval_bw[0].num_packets *
2525 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2526
2527 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2528 unsigned int bw_added;
2529 unsigned int largest_mps;
2530 unsigned int interval_overhead;
2531
2532 /*
2533 * How many packets could we transmit in this interval?
2534 * If packets didn't fit in the previous interval, we will need
2535 * to transmit that many packets twice within this interval.
2536 */
2537 packets_remaining = 2 * packets_remaining +
2538 bw_table->interval_bw[i].num_packets;
2539
2540 /* Find the largest max packet size of this or the previous
2541 * interval.
2542 */
2543 if (list_empty(&bw_table->interval_bw[i].endpoints))
2544 largest_mps = 0;
2545 else {
2546 struct xhci_virt_ep *virt_ep;
2547 struct list_head *ep_entry;
2548
2549 ep_entry = bw_table->interval_bw[i].endpoints.next;
2550 virt_ep = list_entry(ep_entry,
2551 struct xhci_virt_ep, bw_endpoint_list);
2552 /* Convert to blocks, rounding up */
2553 largest_mps = DIV_ROUND_UP(
2554 virt_ep->bw_info.max_packet_size,
2555 block_size);
2556 }
2557 if (largest_mps > packet_size)
2558 packet_size = largest_mps;
2559
2560 /* Use the larger overhead of this or the previous interval. */
2561 interval_overhead = xhci_get_largest_overhead(
2562 &bw_table->interval_bw[i]);
2563 if (interval_overhead > overhead)
2564 overhead = interval_overhead;
2565
2566 /* How many packets can we evenly distribute across
2567 * (1 << (i + 1)) possible scheduling opportunities?
2568 */
2569 packets_transmitted = packets_remaining >> (i + 1);
2570
2571 /* Add in the bandwidth used for those scheduled packets */
2572 bw_added = packets_transmitted * (overhead + packet_size);
2573
2574 /* How many packets do we have remaining to transmit? */
2575 packets_remaining = packets_remaining % (1 << (i + 1));
2576
2577 /* What largest max packet size should those packets have? */
2578 /* If we've transmitted all packets, don't carry over the
2579 * largest packet size.
2580 */
2581 if (packets_remaining == 0) {
2582 packet_size = 0;
2583 overhead = 0;
2584 } else if (packets_transmitted > 0) {
2585 /* Otherwise if we do have remaining packets, and we've
2586 * scheduled some packets in this interval, take the
2587 * largest max packet size from endpoints with this
2588 * interval.
2589 */
2590 packet_size = largest_mps;
2591 overhead = interval_overhead;
2592 }
2593 /* Otherwise carry over packet_size and overhead from the last
2594 * time we had a remainder.
2595 */
2596 bw_used += bw_added;
2597 if (bw_used > max_bandwidth) {
2598 xhci_warn(xhci, "Not enough bandwidth. "
2599 "Proposed: %u, Max: %u\n",
2600 bw_used, max_bandwidth);
2601 return -ENOMEM;
2602 }
2603 }
2604 /*
2605 * Ok, we know we have some packets left over after even-handedly
2606 * scheduling interval 15. We don't know which microframes they will
2607 * fit into, so we over-schedule and say they will be scheduled every
2608 * microframe.
2609 */
2610 if (packets_remaining > 0)
2611 bw_used += overhead + packet_size;
2612
2613 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2614 unsigned int port_index = virt_dev->real_port - 1;
2615
2616 /* OK, we're manipulating a HS device attached to a
2617 * root port bandwidth domain. Include the number of active TTs
2618 * in the bandwidth used.
2619 */
2620 bw_used += TT_HS_OVERHEAD *
2621 xhci->rh_bw[port_index].num_active_tts;
2622 }
2623
2624 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2625 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2626 "Available: %u " "percent",
2627 bw_used, max_bandwidth, bw_reserved,
2628 (max_bandwidth - bw_used - bw_reserved) * 100 /
2629 max_bandwidth);
2630
2631 bw_used += bw_reserved;
2632 if (bw_used > max_bandwidth) {
2633 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2634 bw_used, max_bandwidth);
2635 return -ENOMEM;
2636 }
2637
2638 bw_table->bw_used = bw_used;
2639 return 0;
2640}
2641
2642static bool xhci_is_async_ep(unsigned int ep_type)
2643{
2644 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2645 ep_type != ISOC_IN_EP &&
2646 ep_type != INT_IN_EP);
2647}
2648
2649static bool xhci_is_sync_in_ep(unsigned int ep_type)
2650{
2651 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2652}
2653
2654static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2655{
2656 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2657
2658 if (ep_bw->ep_interval == 0)
2659 return SS_OVERHEAD_BURST +
2660 (ep_bw->mult * ep_bw->num_packets *
2661 (SS_OVERHEAD + mps));
2662 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2663 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2664 1 << ep_bw->ep_interval);
2665
2666}
2667
2668static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2669 struct xhci_bw_info *ep_bw,
2670 struct xhci_interval_bw_table *bw_table,
2671 struct usb_device *udev,
2672 struct xhci_virt_ep *virt_ep,
2673 struct xhci_tt_bw_info *tt_info)
2674{
2675 struct xhci_interval_bw *interval_bw;
2676 int normalized_interval;
2677
2678 if (xhci_is_async_ep(ep_bw->type))
2679 return;
2680
2681 if (udev->speed >= USB_SPEED_SUPER) {
2682 if (xhci_is_sync_in_ep(ep_bw->type))
2683 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2684 xhci_get_ss_bw_consumed(ep_bw);
2685 else
2686 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2687 xhci_get_ss_bw_consumed(ep_bw);
2688 return;
2689 }
2690
2691 /* SuperSpeed endpoints never get added to intervals in the table, so
2692 * this check is only valid for HS/FS/LS devices.
2693 */
2694 if (list_empty(&virt_ep->bw_endpoint_list))
2695 return;
2696 /* For LS/FS devices, we need to translate the interval expressed in
2697 * microframes to frames.
2698 */
2699 if (udev->speed == USB_SPEED_HIGH)
2700 normalized_interval = ep_bw->ep_interval;
2701 else
2702 normalized_interval = ep_bw->ep_interval - 3;
2703
2704 if (normalized_interval == 0)
2705 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2706 interval_bw = &bw_table->interval_bw[normalized_interval];
2707 interval_bw->num_packets -= ep_bw->num_packets;
2708 switch (udev->speed) {
2709 case USB_SPEED_LOW:
2710 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2711 break;
2712 case USB_SPEED_FULL:
2713 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2714 break;
2715 case USB_SPEED_HIGH:
2716 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2717 break;
2718 case USB_SPEED_SUPER:
2719 case USB_SPEED_SUPER_PLUS:
2720 case USB_SPEED_UNKNOWN:
2721 case USB_SPEED_WIRELESS:
2722 /* Should never happen because only LS/FS/HS endpoints will get
2723 * added to the endpoint list.
2724 */
2725 return;
2726 }
2727 if (tt_info)
2728 tt_info->active_eps -= 1;
2729 list_del_init(&virt_ep->bw_endpoint_list);
2730}
2731
2732static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2733 struct xhci_bw_info *ep_bw,
2734 struct xhci_interval_bw_table *bw_table,
2735 struct usb_device *udev,
2736 struct xhci_virt_ep *virt_ep,
2737 struct xhci_tt_bw_info *tt_info)
2738{
2739 struct xhci_interval_bw *interval_bw;
2740 struct xhci_virt_ep *smaller_ep;
2741 int normalized_interval;
2742
2743 if (xhci_is_async_ep(ep_bw->type))
2744 return;
2745
2746 if (udev->speed == USB_SPEED_SUPER) {
2747 if (xhci_is_sync_in_ep(ep_bw->type))
2748 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2749 xhci_get_ss_bw_consumed(ep_bw);
2750 else
2751 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2752 xhci_get_ss_bw_consumed(ep_bw);
2753 return;
2754 }
2755
2756 /* For LS/FS devices, we need to translate the interval expressed in
2757 * microframes to frames.
2758 */
2759 if (udev->speed == USB_SPEED_HIGH)
2760 normalized_interval = ep_bw->ep_interval;
2761 else
2762 normalized_interval = ep_bw->ep_interval - 3;
2763
2764 if (normalized_interval == 0)
2765 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2766 interval_bw = &bw_table->interval_bw[normalized_interval];
2767 interval_bw->num_packets += ep_bw->num_packets;
2768 switch (udev->speed) {
2769 case USB_SPEED_LOW:
2770 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2771 break;
2772 case USB_SPEED_FULL:
2773 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2774 break;
2775 case USB_SPEED_HIGH:
2776 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2777 break;
2778 case USB_SPEED_SUPER:
2779 case USB_SPEED_SUPER_PLUS:
2780 case USB_SPEED_UNKNOWN:
2781 case USB_SPEED_WIRELESS:
2782 /* Should never happen because only LS/FS/HS endpoints will get
2783 * added to the endpoint list.
2784 */
2785 return;
2786 }
2787
2788 if (tt_info)
2789 tt_info->active_eps += 1;
2790 /* Insert the endpoint into the list, largest max packet size first. */
2791 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2792 bw_endpoint_list) {
2793 if (ep_bw->max_packet_size >=
2794 smaller_ep->bw_info.max_packet_size) {
2795 /* Add the new ep before the smaller endpoint */
2796 list_add_tail(&virt_ep->bw_endpoint_list,
2797 &smaller_ep->bw_endpoint_list);
2798 return;
2799 }
2800 }
2801 /* Add the new endpoint at the end of the list. */
2802 list_add_tail(&virt_ep->bw_endpoint_list,
2803 &interval_bw->endpoints);
2804}
2805
2806void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2807 struct xhci_virt_device *virt_dev,
2808 int old_active_eps)
2809{
2810 struct xhci_root_port_bw_info *rh_bw_info;
2811 if (!virt_dev->tt_info)
2812 return;
2813
2814 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2815 if (old_active_eps == 0 &&
2816 virt_dev->tt_info->active_eps != 0) {
2817 rh_bw_info->num_active_tts += 1;
2818 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2819 } else if (old_active_eps != 0 &&
2820 virt_dev->tt_info->active_eps == 0) {
2821 rh_bw_info->num_active_tts -= 1;
2822 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2823 }
2824}
2825
2826static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2827 struct xhci_virt_device *virt_dev,
2828 struct xhci_container_ctx *in_ctx)
2829{
2830 struct xhci_bw_info ep_bw_info[31];
2831 int i;
2832 struct xhci_input_control_ctx *ctrl_ctx;
2833 int old_active_eps = 0;
2834
2835 if (virt_dev->tt_info)
2836 old_active_eps = virt_dev->tt_info->active_eps;
2837
2838 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2839 if (!ctrl_ctx) {
2840 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2841 __func__);
2842 return -ENOMEM;
2843 }
2844
2845 for (i = 0; i < 31; i++) {
2846 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2847 continue;
2848
2849 /* Make a copy of the BW info in case we need to revert this */
2850 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2851 sizeof(ep_bw_info[i]));
2852 /* Drop the endpoint from the interval table if the endpoint is
2853 * being dropped or changed.
2854 */
2855 if (EP_IS_DROPPED(ctrl_ctx, i))
2856 xhci_drop_ep_from_interval_table(xhci,
2857 &virt_dev->eps[i].bw_info,
2858 virt_dev->bw_table,
2859 virt_dev->udev,
2860 &virt_dev->eps[i],
2861 virt_dev->tt_info);
2862 }
2863 /* Overwrite the information stored in the endpoints' bw_info */
2864 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2865 for (i = 0; i < 31; i++) {
2866 /* Add any changed or added endpoints to the interval table */
2867 if (EP_IS_ADDED(ctrl_ctx, i))
2868 xhci_add_ep_to_interval_table(xhci,
2869 &virt_dev->eps[i].bw_info,
2870 virt_dev->bw_table,
2871 virt_dev->udev,
2872 &virt_dev->eps[i],
2873 virt_dev->tt_info);
2874 }
2875
2876 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2877 /* Ok, this fits in the bandwidth we have.
2878 * Update the number of active TTs.
2879 */
2880 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2881 return 0;
2882 }
2883
2884 /* We don't have enough bandwidth for this, revert the stored info. */
2885 for (i = 0; i < 31; i++) {
2886 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2887 continue;
2888
2889 /* Drop the new copies of any added or changed endpoints from
2890 * the interval table.
2891 */
2892 if (EP_IS_ADDED(ctrl_ctx, i)) {
2893 xhci_drop_ep_from_interval_table(xhci,
2894 &virt_dev->eps[i].bw_info,
2895 virt_dev->bw_table,
2896 virt_dev->udev,
2897 &virt_dev->eps[i],
2898 virt_dev->tt_info);
2899 }
2900 /* Revert the endpoint back to its old information */
2901 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2902 sizeof(ep_bw_info[i]));
2903 /* Add any changed or dropped endpoints back into the table */
2904 if (EP_IS_DROPPED(ctrl_ctx, i))
2905 xhci_add_ep_to_interval_table(xhci,
2906 &virt_dev->eps[i].bw_info,
2907 virt_dev->bw_table,
2908 virt_dev->udev,
2909 &virt_dev->eps[i],
2910 virt_dev->tt_info);
2911 }
2912 return -ENOMEM;
2913}
2914
2915
2916/* Issue a configure endpoint command or evaluate context command
2917 * and wait for it to finish.
2918 */
2919static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2920 struct usb_device *udev,
2921 struct xhci_command *command,
2922 bool ctx_change, bool must_succeed)
2923{
2924 int ret;
2925 unsigned long flags;
2926 struct xhci_input_control_ctx *ctrl_ctx;
2927 struct xhci_virt_device *virt_dev;
2928 struct xhci_slot_ctx *slot_ctx;
2929
2930 if (!command)
2931 return -EINVAL;
2932
2933 spin_lock_irqsave(&xhci->lock, flags);
2934
2935 if (xhci->xhc_state & XHCI_STATE_DYING) {
2936 spin_unlock_irqrestore(&xhci->lock, flags);
2937 return -ESHUTDOWN;
2938 }
2939
2940 virt_dev = xhci->devs[udev->slot_id];
2941
2942 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2943 if (!ctrl_ctx) {
2944 spin_unlock_irqrestore(&xhci->lock, flags);
2945 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2946 __func__);
2947 return -ENOMEM;
2948 }
2949
2950 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2951 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2952 spin_unlock_irqrestore(&xhci->lock, flags);
2953 xhci_warn(xhci, "Not enough host resources, "
2954 "active endpoint contexts = %u\n",
2955 xhci->num_active_eps);
2956 return -ENOMEM;
2957 }
2958 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2959 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2960 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2961 xhci_free_host_resources(xhci, ctrl_ctx);
2962 spin_unlock_irqrestore(&xhci->lock, flags);
2963 xhci_warn(xhci, "Not enough bandwidth\n");
2964 return -ENOMEM;
2965 }
2966
2967 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2968
2969 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2970 trace_xhci_configure_endpoint(slot_ctx);
2971
2972 if (!ctx_change)
2973 ret = xhci_queue_configure_endpoint(xhci, command,
2974 command->in_ctx->dma,
2975 udev->slot_id, must_succeed);
2976 else
2977 ret = xhci_queue_evaluate_context(xhci, command,
2978 command->in_ctx->dma,
2979 udev->slot_id, must_succeed);
2980 if (ret < 0) {
2981 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2982 xhci_free_host_resources(xhci, ctrl_ctx);
2983 spin_unlock_irqrestore(&xhci->lock, flags);
2984 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2985 "FIXME allocate a new ring segment");
2986 return -ENOMEM;
2987 }
2988 xhci_ring_cmd_db(xhci);
2989 spin_unlock_irqrestore(&xhci->lock, flags);
2990
2991 /* Wait for the configure endpoint command to complete */
2992 wait_for_completion(command->completion);
2993
2994 if (!ctx_change)
2995 ret = xhci_configure_endpoint_result(xhci, udev,
2996 &command->status);
2997 else
2998 ret = xhci_evaluate_context_result(xhci, udev,
2999 &command->status);
3000
3001 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3002 spin_lock_irqsave(&xhci->lock, flags);
3003 /* If the command failed, remove the reserved resources.
3004 * Otherwise, clean up the estimate to include dropped eps.
3005 */
3006 if (ret)
3007 xhci_free_host_resources(xhci, ctrl_ctx);
3008 else
3009 xhci_finish_resource_reservation(xhci, ctrl_ctx);
3010 spin_unlock_irqrestore(&xhci->lock, flags);
3011 }
3012 return ret;
3013}
3014
3015static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3016 struct xhci_virt_device *vdev, int i)
3017{
3018 struct xhci_virt_ep *ep = &vdev->eps[i];
3019
3020 if (ep->ep_state & EP_HAS_STREAMS) {
3021 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3022 xhci_get_endpoint_address(i));
3023 xhci_free_stream_info(xhci, ep->stream_info);
3024 ep->stream_info = NULL;
3025 ep->ep_state &= ~EP_HAS_STREAMS;
3026 }
3027}
3028
3029/* Called after one or more calls to xhci_add_endpoint() or
3030 * xhci_drop_endpoint(). If this call fails, the USB core is expected
3031 * to call xhci_reset_bandwidth().
3032 *
3033 * Since we are in the middle of changing either configuration or
3034 * installing a new alt setting, the USB core won't allow URBs to be
3035 * enqueued for any endpoint on the old config or interface. Nothing
3036 * else should be touching the xhci->devs[slot_id] structure, so we
3037 * don't need to take the xhci->lock for manipulating that.
3038 */
3039int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3040{
3041 int i;
3042 int ret = 0;
3043 struct xhci_hcd *xhci;
3044 struct xhci_virt_device *virt_dev;
3045 struct xhci_input_control_ctx *ctrl_ctx;
3046 struct xhci_slot_ctx *slot_ctx;
3047 struct xhci_command *command;
3048
3049 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3050 if (ret <= 0)
3051 return ret;
3052 xhci = hcd_to_xhci(hcd);
3053 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3054 (xhci->xhc_state & XHCI_STATE_REMOVING))
3055 return -ENODEV;
3056
3057 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3058 virt_dev = xhci->devs[udev->slot_id];
3059
3060 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3061 if (!command)
3062 return -ENOMEM;
3063
3064 command->in_ctx = virt_dev->in_ctx;
3065
3066 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3067 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3068 if (!ctrl_ctx) {
3069 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3070 __func__);
3071 ret = -ENOMEM;
3072 goto command_cleanup;
3073 }
3074 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3075 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3076 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3077
3078 /* Don't issue the command if there's no endpoints to update. */
3079 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3080 ctrl_ctx->drop_flags == 0) {
3081 ret = 0;
3082 goto command_cleanup;
3083 }
3084 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3085 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3086 for (i = 31; i >= 1; i--) {
3087 __le32 le32 = cpu_to_le32(BIT(i));
3088
3089 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3090 || (ctrl_ctx->add_flags & le32) || i == 1) {
3091 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3092 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3093 break;
3094 }
3095 }
3096
3097 ret = xhci_configure_endpoint(xhci, udev, command,
3098 false, false);
3099 if (ret)
3100 /* Callee should call reset_bandwidth() */
3101 goto command_cleanup;
3102
3103 /* Free any rings that were dropped, but not changed. */
3104 for (i = 1; i < 31; i++) {
3105 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3106 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3107 xhci_free_endpoint_ring(xhci, virt_dev, i);
3108 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3109 }
3110 }
3111 xhci_zero_in_ctx(xhci, virt_dev);
3112 /*
3113 * Install any rings for completely new endpoints or changed endpoints,
3114 * and free any old rings from changed endpoints.
3115 */
3116 for (i = 1; i < 31; i++) {
3117 if (!virt_dev->eps[i].new_ring)
3118 continue;
3119 /* Only free the old ring if it exists.
3120 * It may not if this is the first add of an endpoint.
3121 */
3122 if (virt_dev->eps[i].ring) {
3123 xhci_free_endpoint_ring(xhci, virt_dev, i);
3124 }
3125 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3126 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3127 virt_dev->eps[i].new_ring = NULL;
3128 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3129 }
3130command_cleanup:
3131 kfree(command->completion);
3132 kfree(command);
3133
3134 return ret;
3135}
3136EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3137
3138void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3139{
3140 struct xhci_hcd *xhci;
3141 struct xhci_virt_device *virt_dev;
3142 int i, ret;
3143
3144 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3145 if (ret <= 0)
3146 return;
3147 xhci = hcd_to_xhci(hcd);
3148
3149 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3150 virt_dev = xhci->devs[udev->slot_id];
3151 /* Free any rings allocated for added endpoints */
3152 for (i = 0; i < 31; i++) {
3153 if (virt_dev->eps[i].new_ring) {
3154 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3155 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3156 virt_dev->eps[i].new_ring = NULL;
3157 }
3158 }
3159 xhci_zero_in_ctx(xhci, virt_dev);
3160}
3161EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3162
3163static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3164 struct xhci_container_ctx *in_ctx,
3165 struct xhci_container_ctx *out_ctx,
3166 struct xhci_input_control_ctx *ctrl_ctx,
3167 u32 add_flags, u32 drop_flags)
3168{
3169 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3170 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3171 xhci_slot_copy(xhci, in_ctx, out_ctx);
3172 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3173}
3174
3175static void xhci_endpoint_disable(struct usb_hcd *hcd,
3176 struct usb_host_endpoint *host_ep)
3177{
3178 struct xhci_hcd *xhci;
3179 struct xhci_virt_device *vdev;
3180 struct xhci_virt_ep *ep;
3181 struct usb_device *udev;
3182 unsigned long flags;
3183 unsigned int ep_index;
3184
3185 xhci = hcd_to_xhci(hcd);
3186rescan:
3187 spin_lock_irqsave(&xhci->lock, flags);
3188
3189 udev = (struct usb_device *)host_ep->hcpriv;
3190 if (!udev || !udev->slot_id)
3191 goto done;
3192
3193 vdev = xhci->devs[udev->slot_id];
3194 if (!vdev)
3195 goto done;
3196
3197 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3198 ep = &vdev->eps[ep_index];
3199
3200 /* wait for hub_tt_work to finish clearing hub TT */
3201 if (ep->ep_state & EP_CLEARING_TT) {
3202 spin_unlock_irqrestore(&xhci->lock, flags);
3203 schedule_timeout_uninterruptible(1);
3204 goto rescan;
3205 }
3206
3207 if (ep->ep_state)
3208 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3209 ep->ep_state);
3210done:
3211 host_ep->hcpriv = NULL;
3212 spin_unlock_irqrestore(&xhci->lock, flags);
3213}
3214
3215/*
3216 * Called after usb core issues a clear halt control message.
3217 * The host side of the halt should already be cleared by a reset endpoint
3218 * command issued when the STALL event was received.
3219 *
3220 * The reset endpoint command may only be issued to endpoints in the halted
3221 * state. For software that wishes to reset the data toggle or sequence number
3222 * of an endpoint that isn't in the halted state this function will issue a
3223 * configure endpoint command with the Drop and Add bits set for the target
3224 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3225 */
3226
3227static void xhci_endpoint_reset(struct usb_hcd *hcd,
3228 struct usb_host_endpoint *host_ep)
3229{
3230 struct xhci_hcd *xhci;
3231 struct usb_device *udev;
3232 struct xhci_virt_device *vdev;
3233 struct xhci_virt_ep *ep;
3234 struct xhci_input_control_ctx *ctrl_ctx;
3235 struct xhci_command *stop_cmd, *cfg_cmd;
3236 unsigned int ep_index;
3237 unsigned long flags;
3238 u32 ep_flag;
3239 int err;
3240
3241 xhci = hcd_to_xhci(hcd);
3242 if (!host_ep->hcpriv)
3243 return;
3244 udev = (struct usb_device *) host_ep->hcpriv;
3245 vdev = xhci->devs[udev->slot_id];
3246
3247 /*
3248 * vdev may be lost due to xHC restore error and re-initialization
3249 * during S3/S4 resume. A new vdev will be allocated later by
3250 * xhci_discover_or_reset_device()
3251 */
3252 if (!udev->slot_id || !vdev)
3253 return;
3254 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3255 ep = &vdev->eps[ep_index];
3256
3257 /* Bail out if toggle is already being cleared by a endpoint reset */
3258 spin_lock_irqsave(&xhci->lock, flags);
3259 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3260 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3261 spin_unlock_irqrestore(&xhci->lock, flags);
3262 return;
3263 }
3264 spin_unlock_irqrestore(&xhci->lock, flags);
3265 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3266 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3267 usb_endpoint_xfer_isoc(&host_ep->desc))
3268 return;
3269
3270 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3271
3272 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3273 return;
3274
3275 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3276 if (!stop_cmd)
3277 return;
3278
3279 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3280 if (!cfg_cmd)
3281 goto cleanup;
3282
3283 spin_lock_irqsave(&xhci->lock, flags);
3284
3285 /* block queuing new trbs and ringing ep doorbell */
3286 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3287
3288 /*
3289 * Make sure endpoint ring is empty before resetting the toggle/seq.
3290 * Driver is required to synchronously cancel all transfer request.
3291 * Stop the endpoint to force xHC to update the output context
3292 */
3293
3294 if (!list_empty(&ep->ring->td_list)) {
3295 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3296 spin_unlock_irqrestore(&xhci->lock, flags);
3297 xhci_free_command(xhci, cfg_cmd);
3298 goto cleanup;
3299 }
3300
3301 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3302 ep_index, 0);
3303 if (err < 0) {
3304 spin_unlock_irqrestore(&xhci->lock, flags);
3305 xhci_free_command(xhci, cfg_cmd);
3306 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3307 __func__, err);
3308 goto cleanup;
3309 }
3310
3311 xhci_ring_cmd_db(xhci);
3312 spin_unlock_irqrestore(&xhci->lock, flags);
3313
3314 wait_for_completion(stop_cmd->completion);
3315
3316 spin_lock_irqsave(&xhci->lock, flags);
3317
3318 /* config ep command clears toggle if add and drop ep flags are set */
3319 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3320 if (!ctrl_ctx) {
3321 spin_unlock_irqrestore(&xhci->lock, flags);
3322 xhci_free_command(xhci, cfg_cmd);
3323 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3324 __func__);
3325 goto cleanup;
3326 }
3327
3328 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3329 ctrl_ctx, ep_flag, ep_flag);
3330 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3331
3332 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3333 udev->slot_id, false);
3334 if (err < 0) {
3335 spin_unlock_irqrestore(&xhci->lock, flags);
3336 xhci_free_command(xhci, cfg_cmd);
3337 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3338 __func__, err);
3339 goto cleanup;
3340 }
3341
3342 xhci_ring_cmd_db(xhci);
3343 spin_unlock_irqrestore(&xhci->lock, flags);
3344
3345 wait_for_completion(cfg_cmd->completion);
3346
3347 xhci_free_command(xhci, cfg_cmd);
3348cleanup:
3349 xhci_free_command(xhci, stop_cmd);
3350 spin_lock_irqsave(&xhci->lock, flags);
3351 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3352 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3353 spin_unlock_irqrestore(&xhci->lock, flags);
3354}
3355
3356static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3357 struct usb_device *udev, struct usb_host_endpoint *ep,
3358 unsigned int slot_id)
3359{
3360 int ret;
3361 unsigned int ep_index;
3362 unsigned int ep_state;
3363
3364 if (!ep)
3365 return -EINVAL;
3366 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3367 if (ret <= 0)
3368 return ret ? ret : -EINVAL;
3369 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3370 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3371 " descriptor for ep 0x%x does not support streams\n",
3372 ep->desc.bEndpointAddress);
3373 return -EINVAL;
3374 }
3375
3376 ep_index = xhci_get_endpoint_index(&ep->desc);
3377 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3378 if (ep_state & EP_HAS_STREAMS ||
3379 ep_state & EP_GETTING_STREAMS) {
3380 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3381 "already has streams set up.\n",
3382 ep->desc.bEndpointAddress);
3383 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3384 "dynamic stream context array reallocation.\n");
3385 return -EINVAL;
3386 }
3387 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3388 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3389 "endpoint 0x%x; URBs are pending.\n",
3390 ep->desc.bEndpointAddress);
3391 return -EINVAL;
3392 }
3393 return 0;
3394}
3395
3396static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3397 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3398{
3399 unsigned int max_streams;
3400
3401 /* The stream context array size must be a power of two */
3402 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3403 /*
3404 * Find out how many primary stream array entries the host controller
3405 * supports. Later we may use secondary stream arrays (similar to 2nd
3406 * level page entries), but that's an optional feature for xHCI host
3407 * controllers. xHCs must support at least 4 stream IDs.
3408 */
3409 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3410 if (*num_stream_ctxs > max_streams) {
3411 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3412 max_streams);
3413 *num_stream_ctxs = max_streams;
3414 *num_streams = max_streams;
3415 }
3416}
3417
3418/* Returns an error code if one of the endpoint already has streams.
3419 * This does not change any data structures, it only checks and gathers
3420 * information.
3421 */
3422static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3423 struct usb_device *udev,
3424 struct usb_host_endpoint **eps, unsigned int num_eps,
3425 unsigned int *num_streams, u32 *changed_ep_bitmask)
3426{
3427 unsigned int max_streams;
3428 unsigned int endpoint_flag;
3429 int i;
3430 int ret;
3431
3432 for (i = 0; i < num_eps; i++) {
3433 ret = xhci_check_streams_endpoint(xhci, udev,
3434 eps[i], udev->slot_id);
3435 if (ret < 0)
3436 return ret;
3437
3438 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3439 if (max_streams < (*num_streams - 1)) {
3440 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3441 eps[i]->desc.bEndpointAddress,
3442 max_streams);
3443 *num_streams = max_streams+1;
3444 }
3445
3446 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3447 if (*changed_ep_bitmask & endpoint_flag)
3448 return -EINVAL;
3449 *changed_ep_bitmask |= endpoint_flag;
3450 }
3451 return 0;
3452}
3453
3454static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3455 struct usb_device *udev,
3456 struct usb_host_endpoint **eps, unsigned int num_eps)
3457{
3458 u32 changed_ep_bitmask = 0;
3459 unsigned int slot_id;
3460 unsigned int ep_index;
3461 unsigned int ep_state;
3462 int i;
3463
3464 slot_id = udev->slot_id;
3465 if (!xhci->devs[slot_id])
3466 return 0;
3467
3468 for (i = 0; i < num_eps; i++) {
3469 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3470 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3471 /* Are streams already being freed for the endpoint? */
3472 if (ep_state & EP_GETTING_NO_STREAMS) {
3473 xhci_warn(xhci, "WARN Can't disable streams for "
3474 "endpoint 0x%x, "
3475 "streams are being disabled already\n",
3476 eps[i]->desc.bEndpointAddress);
3477 return 0;
3478 }
3479 /* Are there actually any streams to free? */
3480 if (!(ep_state & EP_HAS_STREAMS) &&
3481 !(ep_state & EP_GETTING_STREAMS)) {
3482 xhci_warn(xhci, "WARN Can't disable streams for "
3483 "endpoint 0x%x, "
3484 "streams are already disabled!\n",
3485 eps[i]->desc.bEndpointAddress);
3486 xhci_warn(xhci, "WARN xhci_free_streams() called "
3487 "with non-streams endpoint\n");
3488 return 0;
3489 }
3490 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3491 }
3492 return changed_ep_bitmask;
3493}
3494
3495/*
3496 * The USB device drivers use this function (through the HCD interface in USB
3497 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3498 * coordinate mass storage command queueing across multiple endpoints (basically
3499 * a stream ID == a task ID).
3500 *
3501 * Setting up streams involves allocating the same size stream context array
3502 * for each endpoint and issuing a configure endpoint command for all endpoints.
3503 *
3504 * Don't allow the call to succeed if one endpoint only supports one stream
3505 * (which means it doesn't support streams at all).
3506 *
3507 * Drivers may get less stream IDs than they asked for, if the host controller
3508 * hardware or endpoints claim they can't support the number of requested
3509 * stream IDs.
3510 */
3511static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3512 struct usb_host_endpoint **eps, unsigned int num_eps,
3513 unsigned int num_streams, gfp_t mem_flags)
3514{
3515 int i, ret;
3516 struct xhci_hcd *xhci;
3517 struct xhci_virt_device *vdev;
3518 struct xhci_command *config_cmd;
3519 struct xhci_input_control_ctx *ctrl_ctx;
3520 unsigned int ep_index;
3521 unsigned int num_stream_ctxs;
3522 unsigned int max_packet;
3523 unsigned long flags;
3524 u32 changed_ep_bitmask = 0;
3525
3526 if (!eps)
3527 return -EINVAL;
3528
3529 /* Add one to the number of streams requested to account for
3530 * stream 0 that is reserved for xHCI usage.
3531 */
3532 num_streams += 1;
3533 xhci = hcd_to_xhci(hcd);
3534 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3535 num_streams);
3536
3537 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3538 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3539 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3540 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3541 return -ENOSYS;
3542 }
3543
3544 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3545 if (!config_cmd)
3546 return -ENOMEM;
3547
3548 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3549 if (!ctrl_ctx) {
3550 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3551 __func__);
3552 xhci_free_command(xhci, config_cmd);
3553 return -ENOMEM;
3554 }
3555
3556 /* Check to make sure all endpoints are not already configured for
3557 * streams. While we're at it, find the maximum number of streams that
3558 * all the endpoints will support and check for duplicate endpoints.
3559 */
3560 spin_lock_irqsave(&xhci->lock, flags);
3561 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3562 num_eps, &num_streams, &changed_ep_bitmask);
3563 if (ret < 0) {
3564 xhci_free_command(xhci, config_cmd);
3565 spin_unlock_irqrestore(&xhci->lock, flags);
3566 return ret;
3567 }
3568 if (num_streams <= 1) {
3569 xhci_warn(xhci, "WARN: endpoints can't handle "
3570 "more than one stream.\n");
3571 xhci_free_command(xhci, config_cmd);
3572 spin_unlock_irqrestore(&xhci->lock, flags);
3573 return -EINVAL;
3574 }
3575 vdev = xhci->devs[udev->slot_id];
3576 /* Mark each endpoint as being in transition, so
3577 * xhci_urb_enqueue() will reject all URBs.
3578 */
3579 for (i = 0; i < num_eps; i++) {
3580 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3581 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3582 }
3583 spin_unlock_irqrestore(&xhci->lock, flags);
3584
3585 /* Setup internal data structures and allocate HW data structures for
3586 * streams (but don't install the HW structures in the input context
3587 * until we're sure all memory allocation succeeded).
3588 */
3589 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3590 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3591 num_stream_ctxs, num_streams);
3592
3593 for (i = 0; i < num_eps; i++) {
3594 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3595 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3596 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3597 num_stream_ctxs,
3598 num_streams,
3599 max_packet, mem_flags);
3600 if (!vdev->eps[ep_index].stream_info)
3601 goto cleanup;
3602 /* Set maxPstreams in endpoint context and update deq ptr to
3603 * point to stream context array. FIXME
3604 */
3605 }
3606
3607 /* Set up the input context for a configure endpoint command. */
3608 for (i = 0; i < num_eps; i++) {
3609 struct xhci_ep_ctx *ep_ctx;
3610
3611 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3612 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3613
3614 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3615 vdev->out_ctx, ep_index);
3616 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3617 vdev->eps[ep_index].stream_info);
3618 }
3619 /* Tell the HW to drop its old copy of the endpoint context info
3620 * and add the updated copy from the input context.
3621 */
3622 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3623 vdev->out_ctx, ctrl_ctx,
3624 changed_ep_bitmask, changed_ep_bitmask);
3625
3626 /* Issue and wait for the configure endpoint command */
3627 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3628 false, false);
3629
3630 /* xHC rejected the configure endpoint command for some reason, so we
3631 * leave the old ring intact and free our internal streams data
3632 * structure.
3633 */
3634 if (ret < 0)
3635 goto cleanup;
3636
3637 spin_lock_irqsave(&xhci->lock, flags);
3638 for (i = 0; i < num_eps; i++) {
3639 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3640 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3641 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3642 udev->slot_id, ep_index);
3643 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3644 }
3645 xhci_free_command(xhci, config_cmd);
3646 spin_unlock_irqrestore(&xhci->lock, flags);
3647
3648 for (i = 0; i < num_eps; i++) {
3649 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3650 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3651 }
3652 /* Subtract 1 for stream 0, which drivers can't use */
3653 return num_streams - 1;
3654
3655cleanup:
3656 /* If it didn't work, free the streams! */
3657 for (i = 0; i < num_eps; i++) {
3658 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3659 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3660 vdev->eps[ep_index].stream_info = NULL;
3661 /* FIXME Unset maxPstreams in endpoint context and
3662 * update deq ptr to point to normal string ring.
3663 */
3664 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3665 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3666 xhci_endpoint_zero(xhci, vdev, eps[i]);
3667 }
3668 xhci_free_command(xhci, config_cmd);
3669 return -ENOMEM;
3670}
3671
3672/* Transition the endpoint from using streams to being a "normal" endpoint
3673 * without streams.
3674 *
3675 * Modify the endpoint context state, submit a configure endpoint command,
3676 * and free all endpoint rings for streams if that completes successfully.
3677 */
3678static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3679 struct usb_host_endpoint **eps, unsigned int num_eps,
3680 gfp_t mem_flags)
3681{
3682 int i, ret;
3683 struct xhci_hcd *xhci;
3684 struct xhci_virt_device *vdev;
3685 struct xhci_command *command;
3686 struct xhci_input_control_ctx *ctrl_ctx;
3687 unsigned int ep_index;
3688 unsigned long flags;
3689 u32 changed_ep_bitmask;
3690
3691 xhci = hcd_to_xhci(hcd);
3692 vdev = xhci->devs[udev->slot_id];
3693
3694 /* Set up a configure endpoint command to remove the streams rings */
3695 spin_lock_irqsave(&xhci->lock, flags);
3696 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3697 udev, eps, num_eps);
3698 if (changed_ep_bitmask == 0) {
3699 spin_unlock_irqrestore(&xhci->lock, flags);
3700 return -EINVAL;
3701 }
3702
3703 /* Use the xhci_command structure from the first endpoint. We may have
3704 * allocated too many, but the driver may call xhci_free_streams() for
3705 * each endpoint it grouped into one call to xhci_alloc_streams().
3706 */
3707 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3708 command = vdev->eps[ep_index].stream_info->free_streams_command;
3709 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3710 if (!ctrl_ctx) {
3711 spin_unlock_irqrestore(&xhci->lock, flags);
3712 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3713 __func__);
3714 return -EINVAL;
3715 }
3716
3717 for (i = 0; i < num_eps; i++) {
3718 struct xhci_ep_ctx *ep_ctx;
3719
3720 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3721 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3722 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3723 EP_GETTING_NO_STREAMS;
3724
3725 xhci_endpoint_copy(xhci, command->in_ctx,
3726 vdev->out_ctx, ep_index);
3727 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3728 &vdev->eps[ep_index]);
3729 }
3730 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3731 vdev->out_ctx, ctrl_ctx,
3732 changed_ep_bitmask, changed_ep_bitmask);
3733 spin_unlock_irqrestore(&xhci->lock, flags);
3734
3735 /* Issue and wait for the configure endpoint command,
3736 * which must succeed.
3737 */
3738 ret = xhci_configure_endpoint(xhci, udev, command,
3739 false, true);
3740
3741 /* xHC rejected the configure endpoint command for some reason, so we
3742 * leave the streams rings intact.
3743 */
3744 if (ret < 0)
3745 return ret;
3746
3747 spin_lock_irqsave(&xhci->lock, flags);
3748 for (i = 0; i < num_eps; i++) {
3749 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3750 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3751 vdev->eps[ep_index].stream_info = NULL;
3752 /* FIXME Unset maxPstreams in endpoint context and
3753 * update deq ptr to point to normal string ring.
3754 */
3755 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3756 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3757 }
3758 spin_unlock_irqrestore(&xhci->lock, flags);
3759
3760 return 0;
3761}
3762
3763/*
3764 * Deletes endpoint resources for endpoints that were active before a Reset
3765 * Device command, or a Disable Slot command. The Reset Device command leaves
3766 * the control endpoint intact, whereas the Disable Slot command deletes it.
3767 *
3768 * Must be called with xhci->lock held.
3769 */
3770void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3771 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3772{
3773 int i;
3774 unsigned int num_dropped_eps = 0;
3775 unsigned int drop_flags = 0;
3776
3777 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3778 if (virt_dev->eps[i].ring) {
3779 drop_flags |= 1 << i;
3780 num_dropped_eps++;
3781 }
3782 }
3783 xhci->num_active_eps -= num_dropped_eps;
3784 if (num_dropped_eps)
3785 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3786 "Dropped %u ep ctxs, flags = 0x%x, "
3787 "%u now active.",
3788 num_dropped_eps, drop_flags,
3789 xhci->num_active_eps);
3790}
3791
3792/*
3793 * This submits a Reset Device Command, which will set the device state to 0,
3794 * set the device address to 0, and disable all the endpoints except the default
3795 * control endpoint. The USB core should come back and call
3796 * xhci_address_device(), and then re-set up the configuration. If this is
3797 * called because of a usb_reset_and_verify_device(), then the old alternate
3798 * settings will be re-installed through the normal bandwidth allocation
3799 * functions.
3800 *
3801 * Wait for the Reset Device command to finish. Remove all structures
3802 * associated with the endpoints that were disabled. Clear the input device
3803 * structure? Reset the control endpoint 0 max packet size?
3804 *
3805 * If the virt_dev to be reset does not exist or does not match the udev,
3806 * it means the device is lost, possibly due to the xHC restore error and
3807 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3808 * re-allocate the device.
3809 */
3810static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3811 struct usb_device *udev)
3812{
3813 int ret, i;
3814 unsigned long flags;
3815 struct xhci_hcd *xhci;
3816 unsigned int slot_id;
3817 struct xhci_virt_device *virt_dev;
3818 struct xhci_command *reset_device_cmd;
3819 struct xhci_slot_ctx *slot_ctx;
3820 int old_active_eps = 0;
3821
3822 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3823 if (ret <= 0)
3824 return ret;
3825 xhci = hcd_to_xhci(hcd);
3826 slot_id = udev->slot_id;
3827 virt_dev = xhci->devs[slot_id];
3828 if (!virt_dev) {
3829 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3830 "not exist. Re-allocate the device\n", slot_id);
3831 ret = xhci_alloc_dev(hcd, udev);
3832 if (ret == 1)
3833 return 0;
3834 else
3835 return -EINVAL;
3836 }
3837
3838 if (virt_dev->tt_info)
3839 old_active_eps = virt_dev->tt_info->active_eps;
3840
3841 if (virt_dev->udev != udev) {
3842 /* If the virt_dev and the udev does not match, this virt_dev
3843 * may belong to another udev.
3844 * Re-allocate the device.
3845 */
3846 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3847 "not match the udev. Re-allocate the device\n",
3848 slot_id);
3849 ret = xhci_alloc_dev(hcd, udev);
3850 if (ret == 1)
3851 return 0;
3852 else
3853 return -EINVAL;
3854 }
3855
3856 /* If device is not setup, there is no point in resetting it */
3857 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3858 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3859 SLOT_STATE_DISABLED)
3860 return 0;
3861
3862 trace_xhci_discover_or_reset_device(slot_ctx);
3863
3864 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3865 /* Allocate the command structure that holds the struct completion.
3866 * Assume we're in process context, since the normal device reset
3867 * process has to wait for the device anyway. Storage devices are
3868 * reset as part of error handling, so use GFP_NOIO instead of
3869 * GFP_KERNEL.
3870 */
3871 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3872 if (!reset_device_cmd) {
3873 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3874 return -ENOMEM;
3875 }
3876
3877 /* Attempt to submit the Reset Device command to the command ring */
3878 spin_lock_irqsave(&xhci->lock, flags);
3879
3880 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3881 if (ret) {
3882 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3883 spin_unlock_irqrestore(&xhci->lock, flags);
3884 goto command_cleanup;
3885 }
3886 xhci_ring_cmd_db(xhci);
3887 spin_unlock_irqrestore(&xhci->lock, flags);
3888
3889 /* Wait for the Reset Device command to finish */
3890 wait_for_completion(reset_device_cmd->completion);
3891
3892 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3893 * unless we tried to reset a slot ID that wasn't enabled,
3894 * or the device wasn't in the addressed or configured state.
3895 */
3896 ret = reset_device_cmd->status;
3897 switch (ret) {
3898 case COMP_COMMAND_ABORTED:
3899 case COMP_COMMAND_RING_STOPPED:
3900 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3901 ret = -ETIME;
3902 goto command_cleanup;
3903 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3904 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3905 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3906 slot_id,
3907 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3908 xhci_dbg(xhci, "Not freeing device rings.\n");
3909 /* Don't treat this as an error. May change my mind later. */
3910 ret = 0;
3911 goto command_cleanup;
3912 case COMP_SUCCESS:
3913 xhci_dbg(xhci, "Successful reset device command.\n");
3914 break;
3915 default:
3916 if (xhci_is_vendor_info_code(xhci, ret))
3917 break;
3918 xhci_warn(xhci, "Unknown completion code %u for "
3919 "reset device command.\n", ret);
3920 ret = -EINVAL;
3921 goto command_cleanup;
3922 }
3923
3924 /* Free up host controller endpoint resources */
3925 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3926 spin_lock_irqsave(&xhci->lock, flags);
3927 /* Don't delete the default control endpoint resources */
3928 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3929 spin_unlock_irqrestore(&xhci->lock, flags);
3930 }
3931
3932 /* Everything but endpoint 0 is disabled, so free the rings. */
3933 for (i = 1; i < 31; i++) {
3934 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3935
3936 if (ep->ep_state & EP_HAS_STREAMS) {
3937 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3938 xhci_get_endpoint_address(i));
3939 xhci_free_stream_info(xhci, ep->stream_info);
3940 ep->stream_info = NULL;
3941 ep->ep_state &= ~EP_HAS_STREAMS;
3942 }
3943
3944 if (ep->ring) {
3945 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3946 xhci_free_endpoint_ring(xhci, virt_dev, i);
3947 }
3948 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3949 xhci_drop_ep_from_interval_table(xhci,
3950 &virt_dev->eps[i].bw_info,
3951 virt_dev->bw_table,
3952 udev,
3953 &virt_dev->eps[i],
3954 virt_dev->tt_info);
3955 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3956 }
3957 /* If necessary, update the number of active TTs on this root port */
3958 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3959 virt_dev->flags = 0;
3960 ret = 0;
3961
3962command_cleanup:
3963 xhci_free_command(xhci, reset_device_cmd);
3964 return ret;
3965}
3966
3967/*
3968 * At this point, the struct usb_device is about to go away, the device has
3969 * disconnected, and all traffic has been stopped and the endpoints have been
3970 * disabled. Free any HC data structures associated with that device.
3971 */
3972static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3973{
3974 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3975 struct xhci_virt_device *virt_dev;
3976 struct xhci_slot_ctx *slot_ctx;
3977 unsigned long flags;
3978 int i, ret;
3979
3980 /*
3981 * We called pm_runtime_get_noresume when the device was attached.
3982 * Decrement the counter here to allow controller to runtime suspend
3983 * if no devices remain.
3984 */
3985 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3986 pm_runtime_put_noidle(hcd->self.controller);
3987
3988 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3989 /* If the host is halted due to driver unload, we still need to free the
3990 * device.
3991 */
3992 if (ret <= 0 && ret != -ENODEV)
3993 return;
3994
3995 virt_dev = xhci->devs[udev->slot_id];
3996 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3997 trace_xhci_free_dev(slot_ctx);
3998
3999 /* Stop any wayward timer functions (which may grab the lock) */
4000 for (i = 0; i < 31; i++)
4001 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4002 virt_dev->udev = NULL;
4003 xhci_disable_slot(xhci, udev->slot_id);
4004
4005 spin_lock_irqsave(&xhci->lock, flags);
4006 xhci_free_virt_device(xhci, udev->slot_id);
4007 spin_unlock_irqrestore(&xhci->lock, flags);
4008
4009}
4010
4011int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4012{
4013 struct xhci_command *command;
4014 unsigned long flags;
4015 u32 state;
4016 int ret;
4017
4018 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4019 if (!command)
4020 return -ENOMEM;
4021
4022 xhci_debugfs_remove_slot(xhci, slot_id);
4023
4024 spin_lock_irqsave(&xhci->lock, flags);
4025 /* Don't disable the slot if the host controller is dead. */
4026 state = readl(&xhci->op_regs->status);
4027 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4028 (xhci->xhc_state & XHCI_STATE_HALTED)) {
4029 spin_unlock_irqrestore(&xhci->lock, flags);
4030 kfree(command);
4031 return -ENODEV;
4032 }
4033
4034 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4035 slot_id);
4036 if (ret) {
4037 spin_unlock_irqrestore(&xhci->lock, flags);
4038 kfree(command);
4039 return ret;
4040 }
4041 xhci_ring_cmd_db(xhci);
4042 spin_unlock_irqrestore(&xhci->lock, flags);
4043
4044 wait_for_completion(command->completion);
4045
4046 if (command->status != COMP_SUCCESS)
4047 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4048 slot_id, command->status);
4049
4050 xhci_free_command(xhci, command);
4051
4052 return 0;
4053}
4054
4055/*
4056 * Checks if we have enough host controller resources for the default control
4057 * endpoint.
4058 *
4059 * Must be called with xhci->lock held.
4060 */
4061static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4062{
4063 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4064 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4065 "Not enough ep ctxs: "
4066 "%u active, need to add 1, limit is %u.",
4067 xhci->num_active_eps, xhci->limit_active_eps);
4068 return -ENOMEM;
4069 }
4070 xhci->num_active_eps += 1;
4071 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4072 "Adding 1 ep ctx, %u now active.",
4073 xhci->num_active_eps);
4074 return 0;
4075}
4076
4077
4078/*
4079 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4080 * timed out, or allocating memory failed. Returns 1 on success.
4081 */
4082int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4083{
4084 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4085 struct xhci_virt_device *vdev;
4086 struct xhci_slot_ctx *slot_ctx;
4087 unsigned long flags;
4088 int ret, slot_id;
4089 struct xhci_command *command;
4090
4091 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4092 if (!command)
4093 return 0;
4094
4095 spin_lock_irqsave(&xhci->lock, flags);
4096 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4097 if (ret) {
4098 spin_unlock_irqrestore(&xhci->lock, flags);
4099 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4100 xhci_free_command(xhci, command);
4101 return 0;
4102 }
4103 xhci_ring_cmd_db(xhci);
4104 spin_unlock_irqrestore(&xhci->lock, flags);
4105
4106 wait_for_completion(command->completion);
4107 slot_id = command->slot_id;
4108
4109 if (!slot_id || command->status != COMP_SUCCESS) {
4110 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4111 xhci_trb_comp_code_string(command->status));
4112 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4113 HCS_MAX_SLOTS(
4114 readl(&xhci->cap_regs->hcs_params1)));
4115 xhci_free_command(xhci, command);
4116 return 0;
4117 }
4118
4119 xhci_free_command(xhci, command);
4120
4121 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4122 spin_lock_irqsave(&xhci->lock, flags);
4123 ret = xhci_reserve_host_control_ep_resources(xhci);
4124 if (ret) {
4125 spin_unlock_irqrestore(&xhci->lock, flags);
4126 xhci_warn(xhci, "Not enough host resources, "
4127 "active endpoint contexts = %u\n",
4128 xhci->num_active_eps);
4129 goto disable_slot;
4130 }
4131 spin_unlock_irqrestore(&xhci->lock, flags);
4132 }
4133 /* Use GFP_NOIO, since this function can be called from
4134 * xhci_discover_or_reset_device(), which may be called as part of
4135 * mass storage driver error handling.
4136 */
4137 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4138 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4139 goto disable_slot;
4140 }
4141 vdev = xhci->devs[slot_id];
4142 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4143 trace_xhci_alloc_dev(slot_ctx);
4144
4145 udev->slot_id = slot_id;
4146
4147 xhci_debugfs_create_slot(xhci, slot_id);
4148
4149 /*
4150 * If resetting upon resume, we can't put the controller into runtime
4151 * suspend if there is a device attached.
4152 */
4153 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4154 pm_runtime_get_noresume(hcd->self.controller);
4155
4156 /* Is this a LS or FS device under a HS hub? */
4157 /* Hub or peripherial? */
4158 return 1;
4159
4160disable_slot:
4161 xhci_disable_slot(xhci, udev->slot_id);
4162 xhci_free_virt_device(xhci, udev->slot_id);
4163
4164 return 0;
4165}
4166
4167/*
4168 * Issue an Address Device command and optionally send a corresponding
4169 * SetAddress request to the device.
4170 */
4171static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4172 enum xhci_setup_dev setup)
4173{
4174 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4175 unsigned long flags;
4176 struct xhci_virt_device *virt_dev;
4177 int ret = 0;
4178 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4179 struct xhci_slot_ctx *slot_ctx;
4180 struct xhci_input_control_ctx *ctrl_ctx;
4181 u64 temp_64;
4182 struct xhci_command *command = NULL;
4183
4184 mutex_lock(&xhci->mutex);
4185
4186 if (xhci->xhc_state) { /* dying, removing or halted */
4187 ret = -ESHUTDOWN;
4188 goto out;
4189 }
4190
4191 if (!udev->slot_id) {
4192 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4193 "Bad Slot ID %d", udev->slot_id);
4194 ret = -EINVAL;
4195 goto out;
4196 }
4197
4198 virt_dev = xhci->devs[udev->slot_id];
4199
4200 if (WARN_ON(!virt_dev)) {
4201 /*
4202 * In plug/unplug torture test with an NEC controller,
4203 * a zero-dereference was observed once due to virt_dev = 0.
4204 * Print useful debug rather than crash if it is observed again!
4205 */
4206 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4207 udev->slot_id);
4208 ret = -EINVAL;
4209 goto out;
4210 }
4211 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4212 trace_xhci_setup_device_slot(slot_ctx);
4213
4214 if (setup == SETUP_CONTEXT_ONLY) {
4215 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4216 SLOT_STATE_DEFAULT) {
4217 xhci_dbg(xhci, "Slot already in default state\n");
4218 goto out;
4219 }
4220 }
4221
4222 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4223 if (!command) {
4224 ret = -ENOMEM;
4225 goto out;
4226 }
4227
4228 command->in_ctx = virt_dev->in_ctx;
4229
4230 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4231 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4232 if (!ctrl_ctx) {
4233 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4234 __func__);
4235 ret = -EINVAL;
4236 goto out;
4237 }
4238 /*
4239 * If this is the first Set Address since device plug-in or
4240 * virt_device realloaction after a resume with an xHCI power loss,
4241 * then set up the slot context.
4242 */
4243 if (!slot_ctx->dev_info)
4244 xhci_setup_addressable_virt_dev(xhci, udev);
4245 /* Otherwise, update the control endpoint ring enqueue pointer. */
4246 else
4247 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4248 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4249 ctrl_ctx->drop_flags = 0;
4250
4251 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4252 le32_to_cpu(slot_ctx->dev_info) >> 27);
4253
4254 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4255 spin_lock_irqsave(&xhci->lock, flags);
4256 trace_xhci_setup_device(virt_dev);
4257 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4258 udev->slot_id, setup);
4259 if (ret) {
4260 spin_unlock_irqrestore(&xhci->lock, flags);
4261 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4262 "FIXME: allocate a command ring segment");
4263 goto out;
4264 }
4265 xhci_ring_cmd_db(xhci);
4266 spin_unlock_irqrestore(&xhci->lock, flags);
4267
4268 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4269 wait_for_completion(command->completion);
4270
4271 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4272 * the SetAddress() "recovery interval" required by USB and aborting the
4273 * command on a timeout.
4274 */
4275 switch (command->status) {
4276 case COMP_COMMAND_ABORTED:
4277 case COMP_COMMAND_RING_STOPPED:
4278 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4279 ret = -ETIME;
4280 break;
4281 case COMP_CONTEXT_STATE_ERROR:
4282 case COMP_SLOT_NOT_ENABLED_ERROR:
4283 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4284 act, udev->slot_id);
4285 ret = -EINVAL;
4286 break;
4287 case COMP_USB_TRANSACTION_ERROR:
4288 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4289
4290 mutex_unlock(&xhci->mutex);
4291 ret = xhci_disable_slot(xhci, udev->slot_id);
4292 xhci_free_virt_device(xhci, udev->slot_id);
4293 if (!ret)
4294 xhci_alloc_dev(hcd, udev);
4295 kfree(command->completion);
4296 kfree(command);
4297 return -EPROTO;
4298 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4299 dev_warn(&udev->dev,
4300 "ERROR: Incompatible device for setup %s command\n", act);
4301 ret = -ENODEV;
4302 break;
4303 case COMP_SUCCESS:
4304 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4305 "Successful setup %s command", act);
4306 break;
4307 default:
4308 xhci_err(xhci,
4309 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4310 act, command->status);
4311 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4312 ret = -EINVAL;
4313 break;
4314 }
4315 if (ret)
4316 goto out;
4317 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4318 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4319 "Op regs DCBAA ptr = %#016llx", temp_64);
4320 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4321 "Slot ID %d dcbaa entry @%p = %#016llx",
4322 udev->slot_id,
4323 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4324 (unsigned long long)
4325 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4326 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4327 "Output Context DMA address = %#08llx",
4328 (unsigned long long)virt_dev->out_ctx->dma);
4329 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4330 le32_to_cpu(slot_ctx->dev_info) >> 27);
4331 /*
4332 * USB core uses address 1 for the roothubs, so we add one to the
4333 * address given back to us by the HC.
4334 */
4335 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4336 le32_to_cpu(slot_ctx->dev_info) >> 27);
4337 /* Zero the input context control for later use */
4338 ctrl_ctx->add_flags = 0;
4339 ctrl_ctx->drop_flags = 0;
4340 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4341 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4342
4343 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4344 "Internal device address = %d",
4345 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4346out:
4347 mutex_unlock(&xhci->mutex);
4348 if (command) {
4349 kfree(command->completion);
4350 kfree(command);
4351 }
4352 return ret;
4353}
4354
4355static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4356{
4357 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4358}
4359
4360static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4361{
4362 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4363}
4364
4365/*
4366 * Transfer the port index into real index in the HW port status
4367 * registers. Caculate offset between the port's PORTSC register
4368 * and port status base. Divide the number of per port register
4369 * to get the real index. The raw port number bases 1.
4370 */
4371int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4372{
4373 struct xhci_hub *rhub;
4374
4375 rhub = xhci_get_rhub(hcd);
4376 return rhub->ports[port1 - 1]->hw_portnum + 1;
4377}
4378
4379/*
4380 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4381 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4382 */
4383static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4384 struct usb_device *udev, u16 max_exit_latency)
4385{
4386 struct xhci_virt_device *virt_dev;
4387 struct xhci_command *command;
4388 struct xhci_input_control_ctx *ctrl_ctx;
4389 struct xhci_slot_ctx *slot_ctx;
4390 unsigned long flags;
4391 int ret;
4392
4393 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4394 if (!command)
4395 return -ENOMEM;
4396
4397 spin_lock_irqsave(&xhci->lock, flags);
4398
4399 virt_dev = xhci->devs[udev->slot_id];
4400
4401 /*
4402 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4403 * xHC was re-initialized. Exit latency will be set later after
4404 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4405 */
4406
4407 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4408 spin_unlock_irqrestore(&xhci->lock, flags);
4409 return 0;
4410 }
4411
4412 /* Attempt to issue an Evaluate Context command to change the MEL. */
4413 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4414 if (!ctrl_ctx) {
4415 spin_unlock_irqrestore(&xhci->lock, flags);
4416 xhci_free_command(xhci, command);
4417 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4418 __func__);
4419 return -ENOMEM;
4420 }
4421
4422 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4423 spin_unlock_irqrestore(&xhci->lock, flags);
4424
4425 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4426 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4427 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4428 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4429 slot_ctx->dev_state = 0;
4430
4431 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4432 "Set up evaluate context for LPM MEL change.");
4433
4434 /* Issue and wait for the evaluate context command. */
4435 ret = xhci_configure_endpoint(xhci, udev, command,
4436 true, true);
4437
4438 if (!ret) {
4439 spin_lock_irqsave(&xhci->lock, flags);
4440 virt_dev->current_mel = max_exit_latency;
4441 spin_unlock_irqrestore(&xhci->lock, flags);
4442 }
4443
4444 xhci_free_command(xhci, command);
4445
4446 return ret;
4447}
4448
4449#ifdef CONFIG_PM
4450
4451/* BESL to HIRD Encoding array for USB2 LPM */
4452static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4453 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4454
4455/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4456static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4457 struct usb_device *udev)
4458{
4459 int u2del, besl, besl_host;
4460 int besl_device = 0;
4461 u32 field;
4462
4463 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4464 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4465
4466 if (field & USB_BESL_SUPPORT) {
4467 for (besl_host = 0; besl_host < 16; besl_host++) {
4468 if (xhci_besl_encoding[besl_host] >= u2del)
4469 break;
4470 }
4471 /* Use baseline BESL value as default */
4472 if (field & USB_BESL_BASELINE_VALID)
4473 besl_device = USB_GET_BESL_BASELINE(field);
4474 else if (field & USB_BESL_DEEP_VALID)
4475 besl_device = USB_GET_BESL_DEEP(field);
4476 } else {
4477 if (u2del <= 50)
4478 besl_host = 0;
4479 else
4480 besl_host = (u2del - 51) / 75 + 1;
4481 }
4482
4483 besl = besl_host + besl_device;
4484 if (besl > 15)
4485 besl = 15;
4486
4487 return besl;
4488}
4489
4490/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4491static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4492{
4493 u32 field;
4494 int l1;
4495 int besld = 0;
4496 int hirdm = 0;
4497
4498 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4499
4500 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4501 l1 = udev->l1_params.timeout / 256;
4502
4503 /* device has preferred BESLD */
4504 if (field & USB_BESL_DEEP_VALID) {
4505 besld = USB_GET_BESL_DEEP(field);
4506 hirdm = 1;
4507 }
4508
4509 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4510}
4511
4512static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4513 struct usb_device *udev, int enable)
4514{
4515 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4516 struct xhci_port **ports;
4517 __le32 __iomem *pm_addr, *hlpm_addr;
4518 u32 pm_val, hlpm_val, field;
4519 unsigned int port_num;
4520 unsigned long flags;
4521 int hird, exit_latency;
4522 int ret;
4523
4524 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4525 return -EPERM;
4526
4527 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4528 !udev->lpm_capable)
4529 return -EPERM;
4530
4531 if (!udev->parent || udev->parent->parent ||
4532 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4533 return -EPERM;
4534
4535 if (udev->usb2_hw_lpm_capable != 1)
4536 return -EPERM;
4537
4538 spin_lock_irqsave(&xhci->lock, flags);
4539
4540 ports = xhci->usb2_rhub.ports;
4541 port_num = udev->portnum - 1;
4542 pm_addr = ports[port_num]->addr + PORTPMSC;
4543 pm_val = readl(pm_addr);
4544 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4545
4546 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4547 enable ? "enable" : "disable", port_num + 1);
4548
4549 if (enable) {
4550 /* Host supports BESL timeout instead of HIRD */
4551 if (udev->usb2_hw_lpm_besl_capable) {
4552 /* if device doesn't have a preferred BESL value use a
4553 * default one which works with mixed HIRD and BESL
4554 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4555 */
4556 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4557 if ((field & USB_BESL_SUPPORT) &&
4558 (field & USB_BESL_BASELINE_VALID))
4559 hird = USB_GET_BESL_BASELINE(field);
4560 else
4561 hird = udev->l1_params.besl;
4562
4563 exit_latency = xhci_besl_encoding[hird];
4564 spin_unlock_irqrestore(&xhci->lock, flags);
4565
4566 ret = xhci_change_max_exit_latency(xhci, udev,
4567 exit_latency);
4568 if (ret < 0)
4569 return ret;
4570 spin_lock_irqsave(&xhci->lock, flags);
4571
4572 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4573 writel(hlpm_val, hlpm_addr);
4574 /* flush write */
4575 readl(hlpm_addr);
4576 } else {
4577 hird = xhci_calculate_hird_besl(xhci, udev);
4578 }
4579
4580 pm_val &= ~PORT_HIRD_MASK;
4581 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4582 writel(pm_val, pm_addr);
4583 pm_val = readl(pm_addr);
4584 pm_val |= PORT_HLE;
4585 writel(pm_val, pm_addr);
4586 /* flush write */
4587 readl(pm_addr);
4588 } else {
4589 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4590 writel(pm_val, pm_addr);
4591 /* flush write */
4592 readl(pm_addr);
4593 if (udev->usb2_hw_lpm_besl_capable) {
4594 spin_unlock_irqrestore(&xhci->lock, flags);
4595 xhci_change_max_exit_latency(xhci, udev, 0);
4596 readl_poll_timeout(ports[port_num]->addr, pm_val,
4597 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4598 100, 10000);
4599 return 0;
4600 }
4601 }
4602
4603 spin_unlock_irqrestore(&xhci->lock, flags);
4604 return 0;
4605}
4606
4607/* check if a usb2 port supports a given extened capability protocol
4608 * only USB2 ports extended protocol capability values are cached.
4609 * Return 1 if capability is supported
4610 */
4611static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4612 unsigned capability)
4613{
4614 u32 port_offset, port_count;
4615 int i;
4616
4617 for (i = 0; i < xhci->num_ext_caps; i++) {
4618 if (xhci->ext_caps[i] & capability) {
4619 /* port offsets starts at 1 */
4620 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4621 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4622 if (port >= port_offset &&
4623 port < port_offset + port_count)
4624 return 1;
4625 }
4626 }
4627 return 0;
4628}
4629
4630static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4631{
4632 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4633 int portnum = udev->portnum - 1;
4634
4635 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4636 return 0;
4637
4638 /* we only support lpm for non-hub device connected to root hub yet */
4639 if (!udev->parent || udev->parent->parent ||
4640 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4641 return 0;
4642
4643 if (xhci->hw_lpm_support == 1 &&
4644 xhci_check_usb2_port_capability(
4645 xhci, portnum, XHCI_HLC)) {
4646 udev->usb2_hw_lpm_capable = 1;
4647 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4648 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4649 if (xhci_check_usb2_port_capability(xhci, portnum,
4650 XHCI_BLC))
4651 udev->usb2_hw_lpm_besl_capable = 1;
4652 }
4653
4654 return 0;
4655}
4656
4657/*---------------------- USB 3.0 Link PM functions ------------------------*/
4658
4659/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4660static unsigned long long xhci_service_interval_to_ns(
4661 struct usb_endpoint_descriptor *desc)
4662{
4663 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4664}
4665
4666static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4667 enum usb3_link_state state)
4668{
4669 unsigned long long sel;
4670 unsigned long long pel;
4671 unsigned int max_sel_pel;
4672 char *state_name;
4673
4674 switch (state) {
4675 case USB3_LPM_U1:
4676 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4677 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4678 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4679 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4680 state_name = "U1";
4681 break;
4682 case USB3_LPM_U2:
4683 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4684 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4685 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4686 state_name = "U2";
4687 break;
4688 default:
4689 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4690 __func__);
4691 return USB3_LPM_DISABLED;
4692 }
4693
4694 if (sel <= max_sel_pel && pel <= max_sel_pel)
4695 return USB3_LPM_DEVICE_INITIATED;
4696
4697 if (sel > max_sel_pel)
4698 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4699 "due to long SEL %llu ms\n",
4700 state_name, sel);
4701 else
4702 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4703 "due to long PEL %llu ms\n",
4704 state_name, pel);
4705 return USB3_LPM_DISABLED;
4706}
4707
4708/* The U1 timeout should be the maximum of the following values:
4709 * - For control endpoints, U1 system exit latency (SEL) * 3
4710 * - For bulk endpoints, U1 SEL * 5
4711 * - For interrupt endpoints:
4712 * - Notification EPs, U1 SEL * 3
4713 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4714 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4715 */
4716static unsigned long long xhci_calculate_intel_u1_timeout(
4717 struct usb_device *udev,
4718 struct usb_endpoint_descriptor *desc)
4719{
4720 unsigned long long timeout_ns;
4721 int ep_type;
4722 int intr_type;
4723
4724 ep_type = usb_endpoint_type(desc);
4725 switch (ep_type) {
4726 case USB_ENDPOINT_XFER_CONTROL:
4727 timeout_ns = udev->u1_params.sel * 3;
4728 break;
4729 case USB_ENDPOINT_XFER_BULK:
4730 timeout_ns = udev->u1_params.sel * 5;
4731 break;
4732 case USB_ENDPOINT_XFER_INT:
4733 intr_type = usb_endpoint_interrupt_type(desc);
4734 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4735 timeout_ns = udev->u1_params.sel * 3;
4736 break;
4737 }
4738 /* Otherwise the calculation is the same as isoc eps */
4739 fallthrough;
4740 case USB_ENDPOINT_XFER_ISOC:
4741 timeout_ns = xhci_service_interval_to_ns(desc);
4742 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4743 if (timeout_ns < udev->u1_params.sel * 2)
4744 timeout_ns = udev->u1_params.sel * 2;
4745 break;
4746 default:
4747 return 0;
4748 }
4749
4750 return timeout_ns;
4751}
4752
4753/* Returns the hub-encoded U1 timeout value. */
4754static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4755 struct usb_device *udev,
4756 struct usb_endpoint_descriptor *desc)
4757{
4758 unsigned long long timeout_ns;
4759
4760 /* Prevent U1 if service interval is shorter than U1 exit latency */
4761 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4762 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4763 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4764 return USB3_LPM_DISABLED;
4765 }
4766 }
4767
4768 if (xhci->quirks & XHCI_INTEL_HOST)
4769 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4770 else
4771 timeout_ns = udev->u1_params.sel;
4772
4773 /* The U1 timeout is encoded in 1us intervals.
4774 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4775 */
4776 if (timeout_ns == USB3_LPM_DISABLED)
4777 timeout_ns = 1;
4778 else
4779 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4780
4781 /* If the necessary timeout value is bigger than what we can set in the
4782 * USB 3.0 hub, we have to disable hub-initiated U1.
4783 */
4784 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4785 return timeout_ns;
4786 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4787 "due to long timeout %llu ms\n", timeout_ns);
4788 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4789}
4790
4791/* The U2 timeout should be the maximum of:
4792 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4793 * - largest bInterval of any active periodic endpoint (to avoid going
4794 * into lower power link states between intervals).
4795 * - the U2 Exit Latency of the device
4796 */
4797static unsigned long long xhci_calculate_intel_u2_timeout(
4798 struct usb_device *udev,
4799 struct usb_endpoint_descriptor *desc)
4800{
4801 unsigned long long timeout_ns;
4802 unsigned long long u2_del_ns;
4803
4804 timeout_ns = 10 * 1000 * 1000;
4805
4806 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4807 (xhci_service_interval_to_ns(desc) > timeout_ns))
4808 timeout_ns = xhci_service_interval_to_ns(desc);
4809
4810 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4811 if (u2_del_ns > timeout_ns)
4812 timeout_ns = u2_del_ns;
4813
4814 return timeout_ns;
4815}
4816
4817/* Returns the hub-encoded U2 timeout value. */
4818static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4819 struct usb_device *udev,
4820 struct usb_endpoint_descriptor *desc)
4821{
4822 unsigned long long timeout_ns;
4823
4824 /* Prevent U2 if service interval is shorter than U2 exit latency */
4825 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4826 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4827 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4828 return USB3_LPM_DISABLED;
4829 }
4830 }
4831
4832 if (xhci->quirks & XHCI_INTEL_HOST)
4833 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4834 else
4835 timeout_ns = udev->u2_params.sel;
4836
4837 /* The U2 timeout is encoded in 256us intervals */
4838 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4839 /* If the necessary timeout value is bigger than what we can set in the
4840 * USB 3.0 hub, we have to disable hub-initiated U2.
4841 */
4842 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4843 return timeout_ns;
4844 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4845 "due to long timeout %llu ms\n", timeout_ns);
4846 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4847}
4848
4849static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4850 struct usb_device *udev,
4851 struct usb_endpoint_descriptor *desc,
4852 enum usb3_link_state state,
4853 u16 *timeout)
4854{
4855 if (state == USB3_LPM_U1)
4856 return xhci_calculate_u1_timeout(xhci, udev, desc);
4857 else if (state == USB3_LPM_U2)
4858 return xhci_calculate_u2_timeout(xhci, udev, desc);
4859
4860 return USB3_LPM_DISABLED;
4861}
4862
4863static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4864 struct usb_device *udev,
4865 struct usb_endpoint_descriptor *desc,
4866 enum usb3_link_state state,
4867 u16 *timeout)
4868{
4869 u16 alt_timeout;
4870
4871 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4872 desc, state, timeout);
4873
4874 /* If we found we can't enable hub-initiated LPM, and
4875 * the U1 or U2 exit latency was too high to allow
4876 * device-initiated LPM as well, then we will disable LPM
4877 * for this device, so stop searching any further.
4878 */
4879 if (alt_timeout == USB3_LPM_DISABLED) {
4880 *timeout = alt_timeout;
4881 return -E2BIG;
4882 }
4883 if (alt_timeout > *timeout)
4884 *timeout = alt_timeout;
4885 return 0;
4886}
4887
4888static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4889 struct usb_device *udev,
4890 struct usb_host_interface *alt,
4891 enum usb3_link_state state,
4892 u16 *timeout)
4893{
4894 int j;
4895
4896 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4897 if (xhci_update_timeout_for_endpoint(xhci, udev,
4898 &alt->endpoint[j].desc, state, timeout))
4899 return -E2BIG;
4900 }
4901 return 0;
4902}
4903
4904static int xhci_check_intel_tier_policy(struct usb_device *udev,
4905 enum usb3_link_state state)
4906{
4907 struct usb_device *parent;
4908 unsigned int num_hubs;
4909
4910 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4911 for (parent = udev->parent, num_hubs = 0; parent->parent;
4912 parent = parent->parent)
4913 num_hubs++;
4914
4915 if (num_hubs < 2)
4916 return 0;
4917
4918 dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4919 " below second-tier hub.\n");
4920 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4921 "to decrease power consumption.\n");
4922 return -E2BIG;
4923}
4924
4925static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4926 struct usb_device *udev,
4927 enum usb3_link_state state)
4928{
4929 if (xhci->quirks & XHCI_INTEL_HOST)
4930 return xhci_check_intel_tier_policy(udev, state);
4931 else
4932 return 0;
4933}
4934
4935/* Returns the U1 or U2 timeout that should be enabled.
4936 * If the tier check or timeout setting functions return with a non-zero exit
4937 * code, that means the timeout value has been finalized and we shouldn't look
4938 * at any more endpoints.
4939 */
4940static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4941 struct usb_device *udev, enum usb3_link_state state)
4942{
4943 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4944 struct usb_host_config *config;
4945 char *state_name;
4946 int i;
4947 u16 timeout = USB3_LPM_DISABLED;
4948
4949 if (state == USB3_LPM_U1)
4950 state_name = "U1";
4951 else if (state == USB3_LPM_U2)
4952 state_name = "U2";
4953 else {
4954 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4955 state);
4956 return timeout;
4957 }
4958
4959 /* Gather some information about the currently installed configuration
4960 * and alternate interface settings.
4961 */
4962 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4963 state, &timeout))
4964 return timeout;
4965
4966 config = udev->actconfig;
4967 if (!config)
4968 return timeout;
4969
4970 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4971 struct usb_driver *driver;
4972 struct usb_interface *intf = config->interface[i];
4973
4974 if (!intf)
4975 continue;
4976
4977 /* Check if any currently bound drivers want hub-initiated LPM
4978 * disabled.
4979 */
4980 if (intf->dev.driver) {
4981 driver = to_usb_driver(intf->dev.driver);
4982 if (driver && driver->disable_hub_initiated_lpm) {
4983 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4984 state_name, driver->name);
4985 timeout = xhci_get_timeout_no_hub_lpm(udev,
4986 state);
4987 if (timeout == USB3_LPM_DISABLED)
4988 return timeout;
4989 }
4990 }
4991
4992 /* Not sure how this could happen... */
4993 if (!intf->cur_altsetting)
4994 continue;
4995
4996 if (xhci_update_timeout_for_interface(xhci, udev,
4997 intf->cur_altsetting,
4998 state, &timeout))
4999 return timeout;
5000 }
5001 return timeout;
5002}
5003
5004static int calculate_max_exit_latency(struct usb_device *udev,
5005 enum usb3_link_state state_changed,
5006 u16 hub_encoded_timeout)
5007{
5008 unsigned long long u1_mel_us = 0;
5009 unsigned long long u2_mel_us = 0;
5010 unsigned long long mel_us = 0;
5011 bool disabling_u1;
5012 bool disabling_u2;
5013 bool enabling_u1;
5014 bool enabling_u2;
5015
5016 disabling_u1 = (state_changed == USB3_LPM_U1 &&
5017 hub_encoded_timeout == USB3_LPM_DISABLED);
5018 disabling_u2 = (state_changed == USB3_LPM_U2 &&
5019 hub_encoded_timeout == USB3_LPM_DISABLED);
5020
5021 enabling_u1 = (state_changed == USB3_LPM_U1 &&
5022 hub_encoded_timeout != USB3_LPM_DISABLED);
5023 enabling_u2 = (state_changed == USB3_LPM_U2 &&
5024 hub_encoded_timeout != USB3_LPM_DISABLED);
5025
5026 /* If U1 was already enabled and we're not disabling it,
5027 * or we're going to enable U1, account for the U1 max exit latency.
5028 */
5029 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5030 enabling_u1)
5031 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5032 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5033 enabling_u2)
5034 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5035
5036 mel_us = max(u1_mel_us, u2_mel_us);
5037
5038 /* xHCI host controller max exit latency field is only 16 bits wide. */
5039 if (mel_us > MAX_EXIT) {
5040 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5041 "is too big.\n", mel_us);
5042 return -E2BIG;
5043 }
5044 return mel_us;
5045}
5046
5047/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5048static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5049 struct usb_device *udev, enum usb3_link_state state)
5050{
5051 struct xhci_hcd *xhci;
5052 struct xhci_port *port;
5053 u16 hub_encoded_timeout;
5054 int mel;
5055 int ret;
5056
5057 xhci = hcd_to_xhci(hcd);
5058 /* The LPM timeout values are pretty host-controller specific, so don't
5059 * enable hub-initiated timeouts unless the vendor has provided
5060 * information about their timeout algorithm.
5061 */
5062 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5063 !xhci->devs[udev->slot_id])
5064 return USB3_LPM_DISABLED;
5065
5066 if (xhci_check_tier_policy(xhci, udev, state) < 0)
5067 return USB3_LPM_DISABLED;
5068
5069 /* If connected to root port then check port can handle lpm */
5070 if (udev->parent && !udev->parent->parent) {
5071 port = xhci->usb3_rhub.ports[udev->portnum - 1];
5072 if (port->lpm_incapable)
5073 return USB3_LPM_DISABLED;
5074 }
5075
5076 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5077 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5078 if (mel < 0) {
5079 /* Max Exit Latency is too big, disable LPM. */
5080 hub_encoded_timeout = USB3_LPM_DISABLED;
5081 mel = 0;
5082 }
5083
5084 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5085 if (ret)
5086 return ret;
5087 return hub_encoded_timeout;
5088}
5089
5090static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5091 struct usb_device *udev, enum usb3_link_state state)
5092{
5093 struct xhci_hcd *xhci;
5094 u16 mel;
5095
5096 xhci = hcd_to_xhci(hcd);
5097 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5098 !xhci->devs[udev->slot_id])
5099 return 0;
5100
5101 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5102 return xhci_change_max_exit_latency(xhci, udev, mel);
5103}
5104#else /* CONFIG_PM */
5105
5106static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5107 struct usb_device *udev, int enable)
5108{
5109 return 0;
5110}
5111
5112static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5113{
5114 return 0;
5115}
5116
5117static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5118 struct usb_device *udev, enum usb3_link_state state)
5119{
5120 return USB3_LPM_DISABLED;
5121}
5122
5123static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5124 struct usb_device *udev, enum usb3_link_state state)
5125{
5126 return 0;
5127}
5128#endif /* CONFIG_PM */
5129
5130/*-------------------------------------------------------------------------*/
5131
5132/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5133 * internal data structures for the device.
5134 */
5135int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5136 struct usb_tt *tt, gfp_t mem_flags)
5137{
5138 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5139 struct xhci_virt_device *vdev;
5140 struct xhci_command *config_cmd;
5141 struct xhci_input_control_ctx *ctrl_ctx;
5142 struct xhci_slot_ctx *slot_ctx;
5143 unsigned long flags;
5144 unsigned think_time;
5145 int ret;
5146
5147 /* Ignore root hubs */
5148 if (!hdev->parent)
5149 return 0;
5150
5151 vdev = xhci->devs[hdev->slot_id];
5152 if (!vdev) {
5153 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5154 return -EINVAL;
5155 }
5156
5157 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5158 if (!config_cmd)
5159 return -ENOMEM;
5160
5161 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5162 if (!ctrl_ctx) {
5163 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5164 __func__);
5165 xhci_free_command(xhci, config_cmd);
5166 return -ENOMEM;
5167 }
5168
5169 spin_lock_irqsave(&xhci->lock, flags);
5170 if (hdev->speed == USB_SPEED_HIGH &&
5171 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5172 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5173 xhci_free_command(xhci, config_cmd);
5174 spin_unlock_irqrestore(&xhci->lock, flags);
5175 return -ENOMEM;
5176 }
5177
5178 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5179 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5180 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5181 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5182 /*
5183 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5184 * but it may be already set to 1 when setup an xHCI virtual
5185 * device, so clear it anyway.
5186 */
5187 if (tt->multi)
5188 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5189 else if (hdev->speed == USB_SPEED_FULL)
5190 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5191
5192 if (xhci->hci_version > 0x95) {
5193 xhci_dbg(xhci, "xHCI version %x needs hub "
5194 "TT think time and number of ports\n",
5195 (unsigned int) xhci->hci_version);
5196 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5197 /* Set TT think time - convert from ns to FS bit times.
5198 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5199 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5200 *
5201 * xHCI 1.0: this field shall be 0 if the device is not a
5202 * High-spped hub.
5203 */
5204 think_time = tt->think_time;
5205 if (think_time != 0)
5206 think_time = (think_time / 666) - 1;
5207 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5208 slot_ctx->tt_info |=
5209 cpu_to_le32(TT_THINK_TIME(think_time));
5210 } else {
5211 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5212 "TT think time or number of ports\n",
5213 (unsigned int) xhci->hci_version);
5214 }
5215 slot_ctx->dev_state = 0;
5216 spin_unlock_irqrestore(&xhci->lock, flags);
5217
5218 xhci_dbg(xhci, "Set up %s for hub device.\n",
5219 (xhci->hci_version > 0x95) ?
5220 "configure endpoint" : "evaluate context");
5221
5222 /* Issue and wait for the configure endpoint or
5223 * evaluate context command.
5224 */
5225 if (xhci->hci_version > 0x95)
5226 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5227 false, false);
5228 else
5229 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5230 true, false);
5231
5232 xhci_free_command(xhci, config_cmd);
5233 return ret;
5234}
5235EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5236
5237static int xhci_get_frame(struct usb_hcd *hcd)
5238{
5239 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5240 /* EHCI mods by the periodic size. Why? */
5241 return readl(&xhci->run_regs->microframe_index) >> 3;
5242}
5243
5244static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5245{
5246 xhci->usb2_rhub.hcd = hcd;
5247 hcd->speed = HCD_USB2;
5248 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5249 /*
5250 * USB 2.0 roothub under xHCI has an integrated TT,
5251 * (rate matching hub) as opposed to having an OHCI/UHCI
5252 * companion controller.
5253 */
5254 hcd->has_tt = 1;
5255}
5256
5257static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5258{
5259 unsigned int minor_rev;
5260
5261 /*
5262 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5263 * should return 0x31 for sbrn, or that the minor revision
5264 * is a two digit BCD containig minor and sub-minor numbers.
5265 * This was later clarified in xHCI 1.2.
5266 *
5267 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5268 * minor revision set to 0x1 instead of 0x10.
5269 */
5270 if (xhci->usb3_rhub.min_rev == 0x1)
5271 minor_rev = 1;
5272 else
5273 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5274
5275 switch (minor_rev) {
5276 case 2:
5277 hcd->speed = HCD_USB32;
5278 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5279 hcd->self.root_hub->rx_lanes = 2;
5280 hcd->self.root_hub->tx_lanes = 2;
5281 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5282 break;
5283 case 1:
5284 hcd->speed = HCD_USB31;
5285 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5286 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5287 break;
5288 }
5289 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5290 minor_rev, minor_rev ? "Enhanced " : "");
5291
5292 xhci->usb3_rhub.hcd = hcd;
5293}
5294
5295int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5296{
5297 struct xhci_hcd *xhci;
5298 /*
5299 * TODO: Check with DWC3 clients for sysdev according to
5300 * quirks
5301 */
5302 struct device *dev = hcd->self.sysdev;
5303 int retval;
5304
5305 /* Accept arbitrarily long scatter-gather lists */
5306 hcd->self.sg_tablesize = ~0;
5307
5308 /* support to build packet from discontinuous buffers */
5309 hcd->self.no_sg_constraint = 1;
5310
5311 /* XHCI controllers don't stop the ep queue on short packets :| */
5312 hcd->self.no_stop_on_short = 1;
5313
5314 xhci = hcd_to_xhci(hcd);
5315
5316 if (!usb_hcd_is_primary_hcd(hcd)) {
5317 xhci_hcd_init_usb3_data(xhci, hcd);
5318 return 0;
5319 }
5320
5321 mutex_init(&xhci->mutex);
5322 xhci->main_hcd = hcd;
5323 xhci->cap_regs = hcd->regs;
5324 xhci->op_regs = hcd->regs +
5325 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5326 xhci->run_regs = hcd->regs +
5327 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5328 /* Cache read-only capability registers */
5329 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5330 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5331 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5332 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5333 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5334 if (xhci->hci_version > 0x100)
5335 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5336
5337 xhci->quirks |= quirks;
5338
5339 get_quirks(dev, xhci);
5340
5341 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5342 * success event after a short transfer. This quirk will ignore such
5343 * spurious event.
5344 */
5345 if (xhci->hci_version > 0x96)
5346 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5347
5348 /* Make sure the HC is halted. */
5349 retval = xhci_halt(xhci);
5350 if (retval)
5351 return retval;
5352
5353 xhci_zero_64b_regs(xhci);
5354
5355 xhci_dbg(xhci, "Resetting HCD\n");
5356 /* Reset the internal HC memory state and registers. */
5357 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5358 if (retval)
5359 return retval;
5360 xhci_dbg(xhci, "Reset complete\n");
5361
5362 /*
5363 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5364 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5365 * address memory pointers actually. So, this driver clears the AC64
5366 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5367 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5368 */
5369 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5370 xhci->hcc_params &= ~BIT(0);
5371
5372 /* Set dma_mask and coherent_dma_mask to 64-bits,
5373 * if xHC supports 64-bit addressing */
5374 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5375 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5376 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5377 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5378 } else {
5379 /*
5380 * This is to avoid error in cases where a 32-bit USB
5381 * controller is used on a 64-bit capable system.
5382 */
5383 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5384 if (retval)
5385 return retval;
5386 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5387 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5388 }
5389
5390 xhci_dbg(xhci, "Calling HCD init\n");
5391 /* Initialize HCD and host controller data structures. */
5392 retval = xhci_init(hcd);
5393 if (retval)
5394 return retval;
5395 xhci_dbg(xhci, "Called HCD init\n");
5396
5397 if (xhci_hcd_is_usb3(hcd))
5398 xhci_hcd_init_usb3_data(xhci, hcd);
5399 else
5400 xhci_hcd_init_usb2_data(xhci, hcd);
5401
5402 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5403 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5404
5405 return 0;
5406}
5407EXPORT_SYMBOL_GPL(xhci_gen_setup);
5408
5409static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5410 struct usb_host_endpoint *ep)
5411{
5412 struct xhci_hcd *xhci;
5413 struct usb_device *udev;
5414 unsigned int slot_id;
5415 unsigned int ep_index;
5416 unsigned long flags;
5417
5418 xhci = hcd_to_xhci(hcd);
5419
5420 spin_lock_irqsave(&xhci->lock, flags);
5421 udev = (struct usb_device *)ep->hcpriv;
5422 slot_id = udev->slot_id;
5423 ep_index = xhci_get_endpoint_index(&ep->desc);
5424
5425 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5426 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5427 spin_unlock_irqrestore(&xhci->lock, flags);
5428}
5429
5430static const struct hc_driver xhci_hc_driver = {
5431 .description = "xhci-hcd",
5432 .product_desc = "xHCI Host Controller",
5433 .hcd_priv_size = sizeof(struct xhci_hcd),
5434
5435 /*
5436 * generic hardware linkage
5437 */
5438 .irq = xhci_irq,
5439 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5440 HCD_BH,
5441
5442 /*
5443 * basic lifecycle operations
5444 */
5445 .reset = NULL, /* set in xhci_init_driver() */
5446 .start = xhci_run,
5447 .stop = xhci_stop,
5448 .shutdown = xhci_shutdown,
5449
5450 /*
5451 * managing i/o requests and associated device resources
5452 */
5453 .map_urb_for_dma = xhci_map_urb_for_dma,
5454 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5455 .urb_enqueue = xhci_urb_enqueue,
5456 .urb_dequeue = xhci_urb_dequeue,
5457 .alloc_dev = xhci_alloc_dev,
5458 .free_dev = xhci_free_dev,
5459 .alloc_streams = xhci_alloc_streams,
5460 .free_streams = xhci_free_streams,
5461 .add_endpoint = xhci_add_endpoint,
5462 .drop_endpoint = xhci_drop_endpoint,
5463 .endpoint_disable = xhci_endpoint_disable,
5464 .endpoint_reset = xhci_endpoint_reset,
5465 .check_bandwidth = xhci_check_bandwidth,
5466 .reset_bandwidth = xhci_reset_bandwidth,
5467 .address_device = xhci_address_device,
5468 .enable_device = xhci_enable_device,
5469 .update_hub_device = xhci_update_hub_device,
5470 .reset_device = xhci_discover_or_reset_device,
5471
5472 /*
5473 * scheduling support
5474 */
5475 .get_frame_number = xhci_get_frame,
5476
5477 /*
5478 * root hub support
5479 */
5480 .hub_control = xhci_hub_control,
5481 .hub_status_data = xhci_hub_status_data,
5482 .bus_suspend = xhci_bus_suspend,
5483 .bus_resume = xhci_bus_resume,
5484 .get_resuming_ports = xhci_get_resuming_ports,
5485
5486 /*
5487 * call back when device connected and addressed
5488 */
5489 .update_device = xhci_update_device,
5490 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5491 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5492 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5493 .find_raw_port_number = xhci_find_raw_port_number,
5494 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5495};
5496
5497void xhci_init_driver(struct hc_driver *drv,
5498 const struct xhci_driver_overrides *over)
5499{
5500 BUG_ON(!over);
5501
5502 /* Copy the generic table to drv then apply the overrides */
5503 *drv = xhci_hc_driver;
5504
5505 if (over) {
5506 drv->hcd_priv_size += over->extra_priv_size;
5507 if (over->reset)
5508 drv->reset = over->reset;
5509 if (over->start)
5510 drv->start = over->start;
5511 if (over->add_endpoint)
5512 drv->add_endpoint = over->add_endpoint;
5513 if (over->drop_endpoint)
5514 drv->drop_endpoint = over->drop_endpoint;
5515 if (over->check_bandwidth)
5516 drv->check_bandwidth = over->check_bandwidth;
5517 if (over->reset_bandwidth)
5518 drv->reset_bandwidth = over->reset_bandwidth;
5519 if (over->update_hub_device)
5520 drv->update_hub_device = over->update_hub_device;
5521 }
5522}
5523EXPORT_SYMBOL_GPL(xhci_init_driver);
5524
5525MODULE_DESCRIPTION(DRIVER_DESC);
5526MODULE_AUTHOR(DRIVER_AUTHOR);
5527MODULE_LICENSE("GPL");
5528
5529static int __init xhci_hcd_init(void)
5530{
5531 /*
5532 * Check the compiler generated sizes of structures that must be laid
5533 * out in specific ways for hardware access.
5534 */
5535 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5536 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5537 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5538 /* xhci_device_control has eight fields, and also
5539 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5540 */
5541 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5542 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5543 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5544 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5545 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5546 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5547 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5548
5549 if (usb_disabled())
5550 return -ENODEV;
5551
5552 xhci_debugfs_create_root();
5553 xhci_dbc_init();
5554
5555 return 0;
5556}
5557
5558/*
5559 * If an init function is provided, an exit function must also be provided
5560 * to allow module unload.
5561 */
5562static void __exit xhci_hcd_fini(void)
5563{
5564 xhci_debugfs_remove_root();
5565 xhci_dbc_exit();
5566}
5567
5568module_init(xhci_hcd_init);
5569module_exit(xhci_hcd_fini);
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/pci.h>
24#include <linux/irq.h>
25#include <linux/log2.h>
26#include <linux/module.h>
27#include <linux/moduleparam.h>
28#include <linux/slab.h>
29#include <linux/dmi.h>
30#include <linux/dma-mapping.h>
31
32#include "xhci.h"
33#include "xhci-trace.h"
34
35#define DRIVER_AUTHOR "Sarah Sharp"
36#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39static int link_quirk;
40module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42
43static unsigned int quirks;
44module_param(quirks, uint, S_IRUGO);
45MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
46
47/* TODO: copied from ehci-hcd.c - can this be refactored? */
48/*
49 * xhci_handshake - spin reading hc until handshake completes or fails
50 * @ptr: address of hc register to be read
51 * @mask: bits to look at in result of read
52 * @done: value of those bits when handshake succeeds
53 * @usec: timeout in microseconds
54 *
55 * Returns negative errno, or zero on success
56 *
57 * Success happens when the "mask" bits have the specified value (hardware
58 * handshake done). There are two failure modes: "usec" have passed (major
59 * hardware flakeout), or the register reads as all-ones (hardware removed).
60 */
61int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
62 u32 mask, u32 done, int usec)
63{
64 u32 result;
65
66 do {
67 result = readl(ptr);
68 if (result == ~(u32)0) /* card removed */
69 return -ENODEV;
70 result &= mask;
71 if (result == done)
72 return 0;
73 udelay(1);
74 usec--;
75 } while (usec > 0);
76 return -ETIMEDOUT;
77}
78
79/*
80 * Disable interrupts and begin the xHCI halting process.
81 */
82void xhci_quiesce(struct xhci_hcd *xhci)
83{
84 u32 halted;
85 u32 cmd;
86 u32 mask;
87
88 mask = ~(XHCI_IRQS);
89 halted = readl(&xhci->op_regs->status) & STS_HALT;
90 if (!halted)
91 mask &= ~CMD_RUN;
92
93 cmd = readl(&xhci->op_regs->command);
94 cmd &= mask;
95 writel(cmd, &xhci->op_regs->command);
96}
97
98/*
99 * Force HC into halt state.
100 *
101 * Disable any IRQs and clear the run/stop bit.
102 * HC will complete any current and actively pipelined transactions, and
103 * should halt within 16 ms of the run/stop bit being cleared.
104 * Read HC Halted bit in the status register to see when the HC is finished.
105 */
106int xhci_halt(struct xhci_hcd *xhci)
107{
108 int ret;
109 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110 xhci_quiesce(xhci);
111
112 ret = xhci_handshake(xhci, &xhci->op_regs->status,
113 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114 if (!ret) {
115 xhci->xhc_state |= XHCI_STATE_HALTED;
116 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117 } else
118 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119 XHCI_MAX_HALT_USEC);
120 return ret;
121}
122
123/*
124 * Set the run bit and wait for the host to be running.
125 */
126static int xhci_start(struct xhci_hcd *xhci)
127{
128 u32 temp;
129 int ret;
130
131 temp = readl(&xhci->op_regs->command);
132 temp |= (CMD_RUN);
133 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134 temp);
135 writel(temp, &xhci->op_regs->command);
136
137 /*
138 * Wait for the HCHalted Status bit to be 0 to indicate the host is
139 * running.
140 */
141 ret = xhci_handshake(xhci, &xhci->op_regs->status,
142 STS_HALT, 0, XHCI_MAX_HALT_USEC);
143 if (ret == -ETIMEDOUT)
144 xhci_err(xhci, "Host took too long to start, "
145 "waited %u microseconds.\n",
146 XHCI_MAX_HALT_USEC);
147 if (!ret)
148 xhci->xhc_state &= ~XHCI_STATE_HALTED;
149 return ret;
150}
151
152/*
153 * Reset a halted HC.
154 *
155 * This resets pipelines, timers, counters, state machines, etc.
156 * Transactions will be terminated immediately, and operational registers
157 * will be set to their defaults.
158 */
159int xhci_reset(struct xhci_hcd *xhci)
160{
161 u32 command;
162 u32 state;
163 int ret, i;
164
165 state = readl(&xhci->op_regs->status);
166 if ((state & STS_HALT) == 0) {
167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 return 0;
169 }
170
171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 command = readl(&xhci->op_regs->command);
173 command |= CMD_RESET;
174 writel(command, &xhci->op_regs->command);
175
176 ret = xhci_handshake(xhci, &xhci->op_regs->command,
177 CMD_RESET, 0, 10 * 1000 * 1000);
178 if (ret)
179 return ret;
180
181 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
182 "Wait for controller to be ready for doorbell rings");
183 /*
184 * xHCI cannot write to any doorbells or operational registers other
185 * than status until the "Controller Not Ready" flag is cleared.
186 */
187 ret = xhci_handshake(xhci, &xhci->op_regs->status,
188 STS_CNR, 0, 10 * 1000 * 1000);
189
190 for (i = 0; i < 2; ++i) {
191 xhci->bus_state[i].port_c_suspend = 0;
192 xhci->bus_state[i].suspended_ports = 0;
193 xhci->bus_state[i].resuming_ports = 0;
194 }
195
196 return ret;
197}
198
199#ifdef CONFIG_PCI
200static int xhci_free_msi(struct xhci_hcd *xhci)
201{
202 int i;
203
204 if (!xhci->msix_entries)
205 return -EINVAL;
206
207 for (i = 0; i < xhci->msix_count; i++)
208 if (xhci->msix_entries[i].vector)
209 free_irq(xhci->msix_entries[i].vector,
210 xhci_to_hcd(xhci));
211 return 0;
212}
213
214/*
215 * Set up MSI
216 */
217static int xhci_setup_msi(struct xhci_hcd *xhci)
218{
219 int ret;
220 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
221
222 ret = pci_enable_msi(pdev);
223 if (ret) {
224 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
225 "failed to allocate MSI entry");
226 return ret;
227 }
228
229 ret = request_irq(pdev->irq, xhci_msi_irq,
230 0, "xhci_hcd", xhci_to_hcd(xhci));
231 if (ret) {
232 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
233 "disable MSI interrupt");
234 pci_disable_msi(pdev);
235 }
236
237 return ret;
238}
239
240/*
241 * Free IRQs
242 * free all IRQs request
243 */
244static void xhci_free_irq(struct xhci_hcd *xhci)
245{
246 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
247 int ret;
248
249 /* return if using legacy interrupt */
250 if (xhci_to_hcd(xhci)->irq > 0)
251 return;
252
253 ret = xhci_free_msi(xhci);
254 if (!ret)
255 return;
256 if (pdev->irq > 0)
257 free_irq(pdev->irq, xhci_to_hcd(xhci));
258
259 return;
260}
261
262/*
263 * Set up MSI-X
264 */
265static int xhci_setup_msix(struct xhci_hcd *xhci)
266{
267 int i, ret = 0;
268 struct usb_hcd *hcd = xhci_to_hcd(xhci);
269 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
270
271 /*
272 * calculate number of msi-x vectors supported.
273 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
274 * with max number of interrupters based on the xhci HCSPARAMS1.
275 * - num_online_cpus: maximum msi-x vectors per CPUs core.
276 * Add additional 1 vector to ensure always available interrupt.
277 */
278 xhci->msix_count = min(num_online_cpus() + 1,
279 HCS_MAX_INTRS(xhci->hcs_params1));
280
281 xhci->msix_entries =
282 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
283 GFP_KERNEL);
284 if (!xhci->msix_entries) {
285 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
286 return -ENOMEM;
287 }
288
289 for (i = 0; i < xhci->msix_count; i++) {
290 xhci->msix_entries[i].entry = i;
291 xhci->msix_entries[i].vector = 0;
292 }
293
294 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
295 if (ret) {
296 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
297 "Failed to enable MSI-X");
298 goto free_entries;
299 }
300
301 for (i = 0; i < xhci->msix_count; i++) {
302 ret = request_irq(xhci->msix_entries[i].vector,
303 xhci_msi_irq,
304 0, "xhci_hcd", xhci_to_hcd(xhci));
305 if (ret)
306 goto disable_msix;
307 }
308
309 hcd->msix_enabled = 1;
310 return ret;
311
312disable_msix:
313 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
314 xhci_free_irq(xhci);
315 pci_disable_msix(pdev);
316free_entries:
317 kfree(xhci->msix_entries);
318 xhci->msix_entries = NULL;
319 return ret;
320}
321
322/* Free any IRQs and disable MSI-X */
323static void xhci_cleanup_msix(struct xhci_hcd *xhci)
324{
325 struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328 if (xhci->quirks & XHCI_PLAT)
329 return;
330
331 xhci_free_irq(xhci);
332
333 if (xhci->msix_entries) {
334 pci_disable_msix(pdev);
335 kfree(xhci->msix_entries);
336 xhci->msix_entries = NULL;
337 } else {
338 pci_disable_msi(pdev);
339 }
340
341 hcd->msix_enabled = 0;
342 return;
343}
344
345static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
346{
347 int i;
348
349 if (xhci->msix_entries) {
350 for (i = 0; i < xhci->msix_count; i++)
351 synchronize_irq(xhci->msix_entries[i].vector);
352 }
353}
354
355static int xhci_try_enable_msi(struct usb_hcd *hcd)
356{
357 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
358 struct pci_dev *pdev;
359 int ret;
360
361 /* The xhci platform device has set up IRQs through usb_add_hcd. */
362 if (xhci->quirks & XHCI_PLAT)
363 return 0;
364
365 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
366 /*
367 * Some Fresco Logic host controllers advertise MSI, but fail to
368 * generate interrupts. Don't even try to enable MSI.
369 */
370 if (xhci->quirks & XHCI_BROKEN_MSI)
371 goto legacy_irq;
372
373 /* unregister the legacy interrupt */
374 if (hcd->irq)
375 free_irq(hcd->irq, hcd);
376 hcd->irq = 0;
377
378 ret = xhci_setup_msix(xhci);
379 if (ret)
380 /* fall back to msi*/
381 ret = xhci_setup_msi(xhci);
382
383 if (!ret)
384 /* hcd->irq is 0, we have MSI */
385 return 0;
386
387 if (!pdev->irq) {
388 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
389 return -EINVAL;
390 }
391
392 legacy_irq:
393 if (!strlen(hcd->irq_descr))
394 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
395 hcd->driver->description, hcd->self.busnum);
396
397 /* fall back to legacy interrupt*/
398 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
399 hcd->irq_descr, hcd);
400 if (ret) {
401 xhci_err(xhci, "request interrupt %d failed\n",
402 pdev->irq);
403 return ret;
404 }
405 hcd->irq = pdev->irq;
406 return 0;
407}
408
409#else
410
411static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
412{
413 return 0;
414}
415
416static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
417{
418}
419
420static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
421{
422}
423
424#endif
425
426static void compliance_mode_recovery(unsigned long arg)
427{
428 struct xhci_hcd *xhci;
429 struct usb_hcd *hcd;
430 u32 temp;
431 int i;
432
433 xhci = (struct xhci_hcd *)arg;
434
435 for (i = 0; i < xhci->num_usb3_ports; i++) {
436 temp = readl(xhci->usb3_ports[i]);
437 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
438 /*
439 * Compliance Mode Detected. Letting USB Core
440 * handle the Warm Reset
441 */
442 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
443 "Compliance mode detected->port %d",
444 i + 1);
445 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
446 "Attempting compliance mode recovery");
447 hcd = xhci->shared_hcd;
448
449 if (hcd->state == HC_STATE_SUSPENDED)
450 usb_hcd_resume_root_hub(hcd);
451
452 usb_hcd_poll_rh_status(hcd);
453 }
454 }
455
456 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
457 mod_timer(&xhci->comp_mode_recovery_timer,
458 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459}
460
461/*
462 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
463 * that causes ports behind that hardware to enter compliance mode sometimes.
464 * The quirk creates a timer that polls every 2 seconds the link state of
465 * each host controller's port and recovers it by issuing a Warm reset
466 * if Compliance mode is detected, otherwise the port will become "dead" (no
467 * device connections or disconnections will be detected anymore). Becasue no
468 * status event is generated when entering compliance mode (per xhci spec),
469 * this quirk is needed on systems that have the failing hardware installed.
470 */
471static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
472{
473 xhci->port_status_u0 = 0;
474 init_timer(&xhci->comp_mode_recovery_timer);
475
476 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
477 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
478 xhci->comp_mode_recovery_timer.expires = jiffies +
479 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
480
481 set_timer_slack(&xhci->comp_mode_recovery_timer,
482 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
483 add_timer(&xhci->comp_mode_recovery_timer);
484 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
485 "Compliance mode recovery timer initialized");
486}
487
488/*
489 * This function identifies the systems that have installed the SN65LVPE502CP
490 * USB3.0 re-driver and that need the Compliance Mode Quirk.
491 * Systems:
492 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
493 */
494bool xhci_compliance_mode_recovery_timer_quirk_check(void)
495{
496 const char *dmi_product_name, *dmi_sys_vendor;
497
498 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
499 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
500 if (!dmi_product_name || !dmi_sys_vendor)
501 return false;
502
503 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
504 return false;
505
506 if (strstr(dmi_product_name, "Z420") ||
507 strstr(dmi_product_name, "Z620") ||
508 strstr(dmi_product_name, "Z820") ||
509 strstr(dmi_product_name, "Z1 Workstation"))
510 return true;
511
512 return false;
513}
514
515static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
516{
517 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
518}
519
520
521/*
522 * Initialize memory for HCD and xHC (one-time init).
523 *
524 * Program the PAGESIZE register, initialize the device context array, create
525 * device contexts (?), set up a command ring segment (or two?), create event
526 * ring (one for now).
527 */
528int xhci_init(struct usb_hcd *hcd)
529{
530 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531 int retval = 0;
532
533 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
534 spin_lock_init(&xhci->lock);
535 if (xhci->hci_version == 0x95 && link_quirk) {
536 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
537 "QUIRK: Not clearing Link TRB chain bits.");
538 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
539 } else {
540 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
541 "xHCI doesn't need link TRB QUIRK");
542 }
543 retval = xhci_mem_init(xhci, GFP_KERNEL);
544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
545
546 /* Initializing Compliance Mode Recovery Data If Needed */
547 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
548 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
549 compliance_mode_recovery_timer_init(xhci);
550 }
551
552 return retval;
553}
554
555/*-------------------------------------------------------------------------*/
556
557
558static int xhci_run_finished(struct xhci_hcd *xhci)
559{
560 if (xhci_start(xhci)) {
561 xhci_halt(xhci);
562 return -ENODEV;
563 }
564 xhci->shared_hcd->state = HC_STATE_RUNNING;
565 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
566
567 if (xhci->quirks & XHCI_NEC_HOST)
568 xhci_ring_cmd_db(xhci);
569
570 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
571 "Finished xhci_run for USB3 roothub");
572 return 0;
573}
574
575/*
576 * Start the HC after it was halted.
577 *
578 * This function is called by the USB core when the HC driver is added.
579 * Its opposite is xhci_stop().
580 *
581 * xhci_init() must be called once before this function can be called.
582 * Reset the HC, enable device slot contexts, program DCBAAP, and
583 * set command ring pointer and event ring pointer.
584 *
585 * Setup MSI-X vectors and enable interrupts.
586 */
587int xhci_run(struct usb_hcd *hcd)
588{
589 u32 temp;
590 u64 temp_64;
591 int ret;
592 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593
594 /* Start the xHCI host controller running only after the USB 2.0 roothub
595 * is setup.
596 */
597
598 hcd->uses_new_polling = 1;
599 if (!usb_hcd_is_primary_hcd(hcd))
600 return xhci_run_finished(xhci);
601
602 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
603
604 ret = xhci_try_enable_msi(hcd);
605 if (ret)
606 return ret;
607
608 xhci_dbg(xhci, "Command ring memory map follows:\n");
609 xhci_debug_ring(xhci, xhci->cmd_ring);
610 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
611 xhci_dbg_cmd_ptrs(xhci);
612
613 xhci_dbg(xhci, "ERST memory map follows:\n");
614 xhci_dbg_erst(xhci, &xhci->erst);
615 xhci_dbg(xhci, "Event ring:\n");
616 xhci_debug_ring(xhci, xhci->event_ring);
617 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
618 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
619 temp_64 &= ~ERST_PTR_MASK;
620 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
622
623 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624 "// Set the interrupt modulation register");
625 temp = readl(&xhci->ir_set->irq_control);
626 temp &= ~ER_IRQ_INTERVAL_MASK;
627 temp |= (u32) 160;
628 writel(temp, &xhci->ir_set->irq_control);
629
630 /* Set the HCD state before we enable the irqs */
631 temp = readl(&xhci->op_regs->command);
632 temp |= (CMD_EIE);
633 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634 "// Enable interrupts, cmd = 0x%x.", temp);
635 writel(temp, &xhci->op_regs->command);
636
637 temp = readl(&xhci->ir_set->irq_pending);
638 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
640 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
641 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
642 xhci_print_ir_set(xhci, 0);
643
644 if (xhci->quirks & XHCI_NEC_HOST)
645 xhci_queue_vendor_command(xhci, 0, 0, 0,
646 TRB_TYPE(TRB_NEC_GET_FW));
647
648 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649 "Finished xhci_run for USB2 roothub");
650 return 0;
651}
652
653static void xhci_only_stop_hcd(struct usb_hcd *hcd)
654{
655 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
656
657 spin_lock_irq(&xhci->lock);
658 xhci_halt(xhci);
659
660 /* The shared_hcd is going to be deallocated shortly (the USB core only
661 * calls this function when allocation fails in usb_add_hcd(), or
662 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
663 */
664 xhci->shared_hcd = NULL;
665 spin_unlock_irq(&xhci->lock);
666}
667
668/*
669 * Stop xHCI driver.
670 *
671 * This function is called by the USB core when the HC driver is removed.
672 * Its opposite is xhci_run().
673 *
674 * Disable device contexts, disable IRQs, and quiesce the HC.
675 * Reset the HC, finish any completed transactions, and cleanup memory.
676 */
677void xhci_stop(struct usb_hcd *hcd)
678{
679 u32 temp;
680 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
681
682 if (!usb_hcd_is_primary_hcd(hcd)) {
683 xhci_only_stop_hcd(xhci->shared_hcd);
684 return;
685 }
686
687 spin_lock_irq(&xhci->lock);
688 /* Make sure the xHC is halted for a USB3 roothub
689 * (xhci_stop() could be called as part of failed init).
690 */
691 xhci_halt(xhci);
692 xhci_reset(xhci);
693 spin_unlock_irq(&xhci->lock);
694
695 xhci_cleanup_msix(xhci);
696
697 /* Deleting Compliance Mode Recovery Timer */
698 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
699 (!(xhci_all_ports_seen_u0(xhci)))) {
700 del_timer_sync(&xhci->comp_mode_recovery_timer);
701 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
702 "%s: compliance mode recovery timer deleted",
703 __func__);
704 }
705
706 if (xhci->quirks & XHCI_AMD_PLL_FIX)
707 usb_amd_dev_put();
708
709 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
710 "// Disabling event ring interrupts");
711 temp = readl(&xhci->op_regs->status);
712 writel(temp & ~STS_EINT, &xhci->op_regs->status);
713 temp = readl(&xhci->ir_set->irq_pending);
714 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
715 xhci_print_ir_set(xhci, 0);
716
717 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
718 xhci_mem_cleanup(xhci);
719 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
720 "xhci_stop completed - status = %x",
721 readl(&xhci->op_regs->status));
722}
723
724/*
725 * Shutdown HC (not bus-specific)
726 *
727 * This is called when the machine is rebooting or halting. We assume that the
728 * machine will be powered off, and the HC's internal state will be reset.
729 * Don't bother to free memory.
730 *
731 * This will only ever be called with the main usb_hcd (the USB3 roothub).
732 */
733void xhci_shutdown(struct usb_hcd *hcd)
734{
735 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
736
737 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
738 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
739
740 spin_lock_irq(&xhci->lock);
741 xhci_halt(xhci);
742 /* Workaround for spurious wakeups at shutdown with HSW */
743 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
744 xhci_reset(xhci);
745 spin_unlock_irq(&xhci->lock);
746
747 xhci_cleanup_msix(xhci);
748
749 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
750 "xhci_shutdown completed - status = %x",
751 readl(&xhci->op_regs->status));
752
753 /* Yet another workaround for spurious wakeups at shutdown with HSW */
754 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
755 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
756}
757
758#ifdef CONFIG_PM
759static void xhci_save_registers(struct xhci_hcd *xhci)
760{
761 xhci->s3.command = readl(&xhci->op_regs->command);
762 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
763 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
764 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
765 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
766 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
767 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
768 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
769 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
770}
771
772static void xhci_restore_registers(struct xhci_hcd *xhci)
773{
774 writel(xhci->s3.command, &xhci->op_regs->command);
775 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
776 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
777 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
778 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
779 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
780 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
781 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
782 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
783}
784
785static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
786{
787 u64 val_64;
788
789 /* step 2: initialize command ring buffer */
790 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
791 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
792 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
793 xhci->cmd_ring->dequeue) &
794 (u64) ~CMD_RING_RSVD_BITS) |
795 xhci->cmd_ring->cycle_state;
796 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
797 "// Setting command ring address to 0x%llx",
798 (long unsigned long) val_64);
799 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
800}
801
802/*
803 * The whole command ring must be cleared to zero when we suspend the host.
804 *
805 * The host doesn't save the command ring pointer in the suspend well, so we
806 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
807 * aligned, because of the reserved bits in the command ring dequeue pointer
808 * register. Therefore, we can't just set the dequeue pointer back in the
809 * middle of the ring (TRBs are 16-byte aligned).
810 */
811static void xhci_clear_command_ring(struct xhci_hcd *xhci)
812{
813 struct xhci_ring *ring;
814 struct xhci_segment *seg;
815
816 ring = xhci->cmd_ring;
817 seg = ring->deq_seg;
818 do {
819 memset(seg->trbs, 0,
820 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
821 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
822 cpu_to_le32(~TRB_CYCLE);
823 seg = seg->next;
824 } while (seg != ring->deq_seg);
825
826 /* Reset the software enqueue and dequeue pointers */
827 ring->deq_seg = ring->first_seg;
828 ring->dequeue = ring->first_seg->trbs;
829 ring->enq_seg = ring->deq_seg;
830 ring->enqueue = ring->dequeue;
831
832 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
833 /*
834 * Ring is now zeroed, so the HW should look for change of ownership
835 * when the cycle bit is set to 1.
836 */
837 ring->cycle_state = 1;
838
839 /*
840 * Reset the hardware dequeue pointer.
841 * Yes, this will need to be re-written after resume, but we're paranoid
842 * and want to make sure the hardware doesn't access bogus memory
843 * because, say, the BIOS or an SMI started the host without changing
844 * the command ring pointers.
845 */
846 xhci_set_cmd_ring_deq(xhci);
847}
848
849/*
850 * Stop HC (not bus-specific)
851 *
852 * This is called when the machine transition into S3/S4 mode.
853 *
854 */
855int xhci_suspend(struct xhci_hcd *xhci)
856{
857 int rc = 0;
858 unsigned int delay = XHCI_MAX_HALT_USEC;
859 struct usb_hcd *hcd = xhci_to_hcd(xhci);
860 u32 command;
861
862 if (hcd->state != HC_STATE_SUSPENDED ||
863 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
864 return -EINVAL;
865
866 /* Don't poll the roothubs on bus suspend. */
867 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
868 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
869 del_timer_sync(&hcd->rh_timer);
870
871 spin_lock_irq(&xhci->lock);
872 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
873 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
874 /* step 1: stop endpoint */
875 /* skipped assuming that port suspend has done */
876
877 /* step 2: clear Run/Stop bit */
878 command = readl(&xhci->op_regs->command);
879 command &= ~CMD_RUN;
880 writel(command, &xhci->op_regs->command);
881
882 /* Some chips from Fresco Logic need an extraordinary delay */
883 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
884
885 if (xhci_handshake(xhci, &xhci->op_regs->status,
886 STS_HALT, STS_HALT, delay)) {
887 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
888 spin_unlock_irq(&xhci->lock);
889 return -ETIMEDOUT;
890 }
891 xhci_clear_command_ring(xhci);
892
893 /* step 3: save registers */
894 xhci_save_registers(xhci);
895
896 /* step 4: set CSS flag */
897 command = readl(&xhci->op_regs->command);
898 command |= CMD_CSS;
899 writel(command, &xhci->op_regs->command);
900 if (xhci_handshake(xhci, &xhci->op_regs->status,
901 STS_SAVE, 0, 10 * 1000)) {
902 xhci_warn(xhci, "WARN: xHC save state timeout\n");
903 spin_unlock_irq(&xhci->lock);
904 return -ETIMEDOUT;
905 }
906 spin_unlock_irq(&xhci->lock);
907
908 /*
909 * Deleting Compliance Mode Recovery Timer because the xHCI Host
910 * is about to be suspended.
911 */
912 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
913 (!(xhci_all_ports_seen_u0(xhci)))) {
914 del_timer_sync(&xhci->comp_mode_recovery_timer);
915 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
916 "%s: compliance mode recovery timer deleted",
917 __func__);
918 }
919
920 /* step 5: remove core well power */
921 /* synchronize irq when using MSI-X */
922 xhci_msix_sync_irqs(xhci);
923
924 return rc;
925}
926
927/*
928 * start xHC (not bus-specific)
929 *
930 * This is called when the machine transition from S3/S4 mode.
931 *
932 */
933int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
934{
935 u32 command, temp = 0;
936 struct usb_hcd *hcd = xhci_to_hcd(xhci);
937 struct usb_hcd *secondary_hcd;
938 int retval = 0;
939 bool comp_timer_running = false;
940
941 /* Wait a bit if either of the roothubs need to settle from the
942 * transition into bus suspend.
943 */
944 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
945 time_before(jiffies,
946 xhci->bus_state[1].next_statechange))
947 msleep(100);
948
949 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
950 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
951
952 spin_lock_irq(&xhci->lock);
953 if (xhci->quirks & XHCI_RESET_ON_RESUME)
954 hibernated = true;
955
956 if (!hibernated) {
957 /* step 1: restore register */
958 xhci_restore_registers(xhci);
959 /* step 2: initialize command ring buffer */
960 xhci_set_cmd_ring_deq(xhci);
961 /* step 3: restore state and start state*/
962 /* step 3: set CRS flag */
963 command = readl(&xhci->op_regs->command);
964 command |= CMD_CRS;
965 writel(command, &xhci->op_regs->command);
966 if (xhci_handshake(xhci, &xhci->op_regs->status,
967 STS_RESTORE, 0, 10 * 1000)) {
968 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
969 spin_unlock_irq(&xhci->lock);
970 return -ETIMEDOUT;
971 }
972 temp = readl(&xhci->op_regs->status);
973 }
974
975 /* If restore operation fails, re-initialize the HC during resume */
976 if ((temp & STS_SRE) || hibernated) {
977
978 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
979 !(xhci_all_ports_seen_u0(xhci))) {
980 del_timer_sync(&xhci->comp_mode_recovery_timer);
981 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
982 "Compliance Mode Recovery Timer deleted!");
983 }
984
985 /* Let the USB core know _both_ roothubs lost power. */
986 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
987 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
988
989 xhci_dbg(xhci, "Stop HCD\n");
990 xhci_halt(xhci);
991 xhci_reset(xhci);
992 spin_unlock_irq(&xhci->lock);
993 xhci_cleanup_msix(xhci);
994
995 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
996 temp = readl(&xhci->op_regs->status);
997 writel(temp & ~STS_EINT, &xhci->op_regs->status);
998 temp = readl(&xhci->ir_set->irq_pending);
999 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1000 xhci_print_ir_set(xhci, 0);
1001
1002 xhci_dbg(xhci, "cleaning up memory\n");
1003 xhci_mem_cleanup(xhci);
1004 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1005 readl(&xhci->op_regs->status));
1006
1007 /* USB core calls the PCI reinit and start functions twice:
1008 * first with the primary HCD, and then with the secondary HCD.
1009 * If we don't do the same, the host will never be started.
1010 */
1011 if (!usb_hcd_is_primary_hcd(hcd))
1012 secondary_hcd = hcd;
1013 else
1014 secondary_hcd = xhci->shared_hcd;
1015
1016 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1017 retval = xhci_init(hcd->primary_hcd);
1018 if (retval)
1019 return retval;
1020 comp_timer_running = true;
1021
1022 xhci_dbg(xhci, "Start the primary HCD\n");
1023 retval = xhci_run(hcd->primary_hcd);
1024 if (!retval) {
1025 xhci_dbg(xhci, "Start the secondary HCD\n");
1026 retval = xhci_run(secondary_hcd);
1027 }
1028 hcd->state = HC_STATE_SUSPENDED;
1029 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1030 goto done;
1031 }
1032
1033 /* step 4: set Run/Stop bit */
1034 command = readl(&xhci->op_regs->command);
1035 command |= CMD_RUN;
1036 writel(command, &xhci->op_regs->command);
1037 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1038 0, 250 * 1000);
1039
1040 /* step 5: walk topology and initialize portsc,
1041 * portpmsc and portli
1042 */
1043 /* this is done in bus_resume */
1044
1045 /* step 6: restart each of the previously
1046 * Running endpoints by ringing their doorbells
1047 */
1048
1049 spin_unlock_irq(&xhci->lock);
1050
1051 done:
1052 if (retval == 0) {
1053 usb_hcd_resume_root_hub(hcd);
1054 usb_hcd_resume_root_hub(xhci->shared_hcd);
1055 }
1056
1057 /*
1058 * If system is subject to the Quirk, Compliance Mode Timer needs to
1059 * be re-initialized Always after a system resume. Ports are subject
1060 * to suffer the Compliance Mode issue again. It doesn't matter if
1061 * ports have entered previously to U0 before system's suspension.
1062 */
1063 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1064 compliance_mode_recovery_timer_init(xhci);
1065
1066 /* Re-enable port polling. */
1067 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1068 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1069 usb_hcd_poll_rh_status(hcd);
1070
1071 return retval;
1072}
1073#endif /* CONFIG_PM */
1074
1075/*-------------------------------------------------------------------------*/
1076
1077/**
1078 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1079 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1080 * value to right shift 1 for the bitmask.
1081 *
1082 * Index = (epnum * 2) + direction - 1,
1083 * where direction = 0 for OUT, 1 for IN.
1084 * For control endpoints, the IN index is used (OUT index is unused), so
1085 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1086 */
1087unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1088{
1089 unsigned int index;
1090 if (usb_endpoint_xfer_control(desc))
1091 index = (unsigned int) (usb_endpoint_num(desc)*2);
1092 else
1093 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1094 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1095 return index;
1096}
1097
1098/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1099 * address from the XHCI endpoint index.
1100 */
1101unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1102{
1103 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1104 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1105 return direction | number;
1106}
1107
1108/* Find the flag for this endpoint (for use in the control context). Use the
1109 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1110 * bit 1, etc.
1111 */
1112unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1113{
1114 return 1 << (xhci_get_endpoint_index(desc) + 1);
1115}
1116
1117/* Find the flag for this endpoint (for use in the control context). Use the
1118 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1119 * bit 1, etc.
1120 */
1121unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1122{
1123 return 1 << (ep_index + 1);
1124}
1125
1126/* Compute the last valid endpoint context index. Basically, this is the
1127 * endpoint index plus one. For slot contexts with more than valid endpoint,
1128 * we find the most significant bit set in the added contexts flags.
1129 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1130 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1131 */
1132unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1133{
1134 return fls(added_ctxs) - 1;
1135}
1136
1137/* Returns 1 if the arguments are OK;
1138 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1139 */
1140static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1141 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1142 const char *func) {
1143 struct xhci_hcd *xhci;
1144 struct xhci_virt_device *virt_dev;
1145
1146 if (!hcd || (check_ep && !ep) || !udev) {
1147 pr_debug("xHCI %s called with invalid args\n", func);
1148 return -EINVAL;
1149 }
1150 if (!udev->parent) {
1151 pr_debug("xHCI %s called for root hub\n", func);
1152 return 0;
1153 }
1154
1155 xhci = hcd_to_xhci(hcd);
1156 if (check_virt_dev) {
1157 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1158 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1159 func);
1160 return -EINVAL;
1161 }
1162
1163 virt_dev = xhci->devs[udev->slot_id];
1164 if (virt_dev->udev != udev) {
1165 xhci_dbg(xhci, "xHCI %s called with udev and "
1166 "virt_dev does not match\n", func);
1167 return -EINVAL;
1168 }
1169 }
1170
1171 if (xhci->xhc_state & XHCI_STATE_HALTED)
1172 return -ENODEV;
1173
1174 return 1;
1175}
1176
1177static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1178 struct usb_device *udev, struct xhci_command *command,
1179 bool ctx_change, bool must_succeed);
1180
1181/*
1182 * Full speed devices may have a max packet size greater than 8 bytes, but the
1183 * USB core doesn't know that until it reads the first 8 bytes of the
1184 * descriptor. If the usb_device's max packet size changes after that point,
1185 * we need to issue an evaluate context command and wait on it.
1186 */
1187static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1188 unsigned int ep_index, struct urb *urb)
1189{
1190 struct xhci_container_ctx *in_ctx;
1191 struct xhci_container_ctx *out_ctx;
1192 struct xhci_input_control_ctx *ctrl_ctx;
1193 struct xhci_ep_ctx *ep_ctx;
1194 int max_packet_size;
1195 int hw_max_packet_size;
1196 int ret = 0;
1197
1198 out_ctx = xhci->devs[slot_id]->out_ctx;
1199 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1200 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1201 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1202 if (hw_max_packet_size != max_packet_size) {
1203 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1204 "Max Packet Size for ep 0 changed.");
1205 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1206 "Max packet size in usb_device = %d",
1207 max_packet_size);
1208 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1209 "Max packet size in xHCI HW = %d",
1210 hw_max_packet_size);
1211 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1212 "Issuing evaluate context command.");
1213
1214 /* Set up the input context flags for the command */
1215 /* FIXME: This won't work if a non-default control endpoint
1216 * changes max packet sizes.
1217 */
1218 in_ctx = xhci->devs[slot_id]->in_ctx;
1219 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1220 if (!ctrl_ctx) {
1221 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1222 __func__);
1223 return -ENOMEM;
1224 }
1225 /* Set up the modified control endpoint 0 */
1226 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1227 xhci->devs[slot_id]->out_ctx, ep_index);
1228
1229 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1230 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1231 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1232
1233 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1234 ctrl_ctx->drop_flags = 0;
1235
1236 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1237 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1238 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1239 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1240
1241 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1242 true, false);
1243
1244 /* Clean up the input context for later use by bandwidth
1245 * functions.
1246 */
1247 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1248 }
1249 return ret;
1250}
1251
1252/*
1253 * non-error returns are a promise to giveback() the urb later
1254 * we drop ownership so next owner (or urb unlink) can get it
1255 */
1256int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1257{
1258 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1259 struct xhci_td *buffer;
1260 unsigned long flags;
1261 int ret = 0;
1262 unsigned int slot_id, ep_index;
1263 struct urb_priv *urb_priv;
1264 int size, i;
1265
1266 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1267 true, true, __func__) <= 0)
1268 return -EINVAL;
1269
1270 slot_id = urb->dev->slot_id;
1271 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1272
1273 if (!HCD_HW_ACCESSIBLE(hcd)) {
1274 if (!in_interrupt())
1275 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1276 ret = -ESHUTDOWN;
1277 goto exit;
1278 }
1279
1280 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1281 size = urb->number_of_packets;
1282 else
1283 size = 1;
1284
1285 urb_priv = kzalloc(sizeof(struct urb_priv) +
1286 size * sizeof(struct xhci_td *), mem_flags);
1287 if (!urb_priv)
1288 return -ENOMEM;
1289
1290 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1291 if (!buffer) {
1292 kfree(urb_priv);
1293 return -ENOMEM;
1294 }
1295
1296 for (i = 0; i < size; i++) {
1297 urb_priv->td[i] = buffer;
1298 buffer++;
1299 }
1300
1301 urb_priv->length = size;
1302 urb_priv->td_cnt = 0;
1303 urb->hcpriv = urb_priv;
1304
1305 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1306 /* Check to see if the max packet size for the default control
1307 * endpoint changed during FS device enumeration
1308 */
1309 if (urb->dev->speed == USB_SPEED_FULL) {
1310 ret = xhci_check_maxpacket(xhci, slot_id,
1311 ep_index, urb);
1312 if (ret < 0) {
1313 xhci_urb_free_priv(xhci, urb_priv);
1314 urb->hcpriv = NULL;
1315 return ret;
1316 }
1317 }
1318
1319 /* We have a spinlock and interrupts disabled, so we must pass
1320 * atomic context to this function, which may allocate memory.
1321 */
1322 spin_lock_irqsave(&xhci->lock, flags);
1323 if (xhci->xhc_state & XHCI_STATE_DYING)
1324 goto dying;
1325 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1326 slot_id, ep_index);
1327 if (ret)
1328 goto free_priv;
1329 spin_unlock_irqrestore(&xhci->lock, flags);
1330 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1331 spin_lock_irqsave(&xhci->lock, flags);
1332 if (xhci->xhc_state & XHCI_STATE_DYING)
1333 goto dying;
1334 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1335 EP_GETTING_STREAMS) {
1336 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1337 "is transitioning to using streams.\n");
1338 ret = -EINVAL;
1339 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1340 EP_GETTING_NO_STREAMS) {
1341 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1342 "is transitioning to "
1343 "not having streams.\n");
1344 ret = -EINVAL;
1345 } else {
1346 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1347 slot_id, ep_index);
1348 }
1349 if (ret)
1350 goto free_priv;
1351 spin_unlock_irqrestore(&xhci->lock, flags);
1352 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1353 spin_lock_irqsave(&xhci->lock, flags);
1354 if (xhci->xhc_state & XHCI_STATE_DYING)
1355 goto dying;
1356 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1357 slot_id, ep_index);
1358 if (ret)
1359 goto free_priv;
1360 spin_unlock_irqrestore(&xhci->lock, flags);
1361 } else {
1362 spin_lock_irqsave(&xhci->lock, flags);
1363 if (xhci->xhc_state & XHCI_STATE_DYING)
1364 goto dying;
1365 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1366 slot_id, ep_index);
1367 if (ret)
1368 goto free_priv;
1369 spin_unlock_irqrestore(&xhci->lock, flags);
1370 }
1371exit:
1372 return ret;
1373dying:
1374 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1375 "non-responsive xHCI host.\n",
1376 urb->ep->desc.bEndpointAddress, urb);
1377 ret = -ESHUTDOWN;
1378free_priv:
1379 xhci_urb_free_priv(xhci, urb_priv);
1380 urb->hcpriv = NULL;
1381 spin_unlock_irqrestore(&xhci->lock, flags);
1382 return ret;
1383}
1384
1385/* Get the right ring for the given URB.
1386 * If the endpoint supports streams, boundary check the URB's stream ID.
1387 * If the endpoint doesn't support streams, return the singular endpoint ring.
1388 */
1389static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1390 struct urb *urb)
1391{
1392 unsigned int slot_id;
1393 unsigned int ep_index;
1394 unsigned int stream_id;
1395 struct xhci_virt_ep *ep;
1396
1397 slot_id = urb->dev->slot_id;
1398 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1399 stream_id = urb->stream_id;
1400 ep = &xhci->devs[slot_id]->eps[ep_index];
1401 /* Common case: no streams */
1402 if (!(ep->ep_state & EP_HAS_STREAMS))
1403 return ep->ring;
1404
1405 if (stream_id == 0) {
1406 xhci_warn(xhci,
1407 "WARN: Slot ID %u, ep index %u has streams, "
1408 "but URB has no stream ID.\n",
1409 slot_id, ep_index);
1410 return NULL;
1411 }
1412
1413 if (stream_id < ep->stream_info->num_streams)
1414 return ep->stream_info->stream_rings[stream_id];
1415
1416 xhci_warn(xhci,
1417 "WARN: Slot ID %u, ep index %u has "
1418 "stream IDs 1 to %u allocated, "
1419 "but stream ID %u is requested.\n",
1420 slot_id, ep_index,
1421 ep->stream_info->num_streams - 1,
1422 stream_id);
1423 return NULL;
1424}
1425
1426/*
1427 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1428 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1429 * should pick up where it left off in the TD, unless a Set Transfer Ring
1430 * Dequeue Pointer is issued.
1431 *
1432 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1433 * the ring. Since the ring is a contiguous structure, they can't be physically
1434 * removed. Instead, there are two options:
1435 *
1436 * 1) If the HC is in the middle of processing the URB to be canceled, we
1437 * simply move the ring's dequeue pointer past those TRBs using the Set
1438 * Transfer Ring Dequeue Pointer command. This will be the common case,
1439 * when drivers timeout on the last submitted URB and attempt to cancel.
1440 *
1441 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1442 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1443 * HC will need to invalidate the any TRBs it has cached after the stop
1444 * endpoint command, as noted in the xHCI 0.95 errata.
1445 *
1446 * 3) The TD may have completed by the time the Stop Endpoint Command
1447 * completes, so software needs to handle that case too.
1448 *
1449 * This function should protect against the TD enqueueing code ringing the
1450 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1451 * It also needs to account for multiple cancellations on happening at the same
1452 * time for the same endpoint.
1453 *
1454 * Note that this function can be called in any context, or so says
1455 * usb_hcd_unlink_urb()
1456 */
1457int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1458{
1459 unsigned long flags;
1460 int ret, i;
1461 u32 temp;
1462 struct xhci_hcd *xhci;
1463 struct urb_priv *urb_priv;
1464 struct xhci_td *td;
1465 unsigned int ep_index;
1466 struct xhci_ring *ep_ring;
1467 struct xhci_virt_ep *ep;
1468
1469 xhci = hcd_to_xhci(hcd);
1470 spin_lock_irqsave(&xhci->lock, flags);
1471 /* Make sure the URB hasn't completed or been unlinked already */
1472 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1473 if (ret || !urb->hcpriv)
1474 goto done;
1475 temp = readl(&xhci->op_regs->status);
1476 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1477 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1478 "HW died, freeing TD.");
1479 urb_priv = urb->hcpriv;
1480 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1481 td = urb_priv->td[i];
1482 if (!list_empty(&td->td_list))
1483 list_del_init(&td->td_list);
1484 if (!list_empty(&td->cancelled_td_list))
1485 list_del_init(&td->cancelled_td_list);
1486 }
1487
1488 usb_hcd_unlink_urb_from_ep(hcd, urb);
1489 spin_unlock_irqrestore(&xhci->lock, flags);
1490 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1491 xhci_urb_free_priv(xhci, urb_priv);
1492 return ret;
1493 }
1494 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1495 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1496 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1497 "Ep 0x%x: URB %p to be canceled on "
1498 "non-responsive xHCI host.",
1499 urb->ep->desc.bEndpointAddress, urb);
1500 /* Let the stop endpoint command watchdog timer (which set this
1501 * state) finish cleaning up the endpoint TD lists. We must
1502 * have caught it in the middle of dropping a lock and giving
1503 * back an URB.
1504 */
1505 goto done;
1506 }
1507
1508 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1509 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1510 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1511 if (!ep_ring) {
1512 ret = -EINVAL;
1513 goto done;
1514 }
1515
1516 urb_priv = urb->hcpriv;
1517 i = urb_priv->td_cnt;
1518 if (i < urb_priv->length)
1519 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1520 "Cancel URB %p, dev %s, ep 0x%x, "
1521 "starting at offset 0x%llx",
1522 urb, urb->dev->devpath,
1523 urb->ep->desc.bEndpointAddress,
1524 (unsigned long long) xhci_trb_virt_to_dma(
1525 urb_priv->td[i]->start_seg,
1526 urb_priv->td[i]->first_trb));
1527
1528 for (; i < urb_priv->length; i++) {
1529 td = urb_priv->td[i];
1530 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1531 }
1532
1533 /* Queue a stop endpoint command, but only if this is
1534 * the first cancellation to be handled.
1535 */
1536 if (!(ep->ep_state & EP_HALT_PENDING)) {
1537 ep->ep_state |= EP_HALT_PENDING;
1538 ep->stop_cmds_pending++;
1539 ep->stop_cmd_timer.expires = jiffies +
1540 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1541 add_timer(&ep->stop_cmd_timer);
1542 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1543 xhci_ring_cmd_db(xhci);
1544 }
1545done:
1546 spin_unlock_irqrestore(&xhci->lock, flags);
1547 return ret;
1548}
1549
1550/* Drop an endpoint from a new bandwidth configuration for this device.
1551 * Only one call to this function is allowed per endpoint before
1552 * check_bandwidth() or reset_bandwidth() must be called.
1553 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1554 * add the endpoint to the schedule with possibly new parameters denoted by a
1555 * different endpoint descriptor in usb_host_endpoint.
1556 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1557 * not allowed.
1558 *
1559 * The USB core will not allow URBs to be queued to an endpoint that is being
1560 * disabled, so there's no need for mutual exclusion to protect
1561 * the xhci->devs[slot_id] structure.
1562 */
1563int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1564 struct usb_host_endpoint *ep)
1565{
1566 struct xhci_hcd *xhci;
1567 struct xhci_container_ctx *in_ctx, *out_ctx;
1568 struct xhci_input_control_ctx *ctrl_ctx;
1569 struct xhci_slot_ctx *slot_ctx;
1570 unsigned int last_ctx;
1571 unsigned int ep_index;
1572 struct xhci_ep_ctx *ep_ctx;
1573 u32 drop_flag;
1574 u32 new_add_flags, new_drop_flags, new_slot_info;
1575 int ret;
1576
1577 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1578 if (ret <= 0)
1579 return ret;
1580 xhci = hcd_to_xhci(hcd);
1581 if (xhci->xhc_state & XHCI_STATE_DYING)
1582 return -ENODEV;
1583
1584 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1585 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1586 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1587 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1588 __func__, drop_flag);
1589 return 0;
1590 }
1591
1592 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1593 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1594 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1595 if (!ctrl_ctx) {
1596 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1597 __func__);
1598 return 0;
1599 }
1600
1601 ep_index = xhci_get_endpoint_index(&ep->desc);
1602 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1603 /* If the HC already knows the endpoint is disabled,
1604 * or the HCD has noted it is disabled, ignore this request
1605 */
1606 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1607 cpu_to_le32(EP_STATE_DISABLED)) ||
1608 le32_to_cpu(ctrl_ctx->drop_flags) &
1609 xhci_get_endpoint_flag(&ep->desc)) {
1610 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1611 __func__, ep);
1612 return 0;
1613 }
1614
1615 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1616 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1617
1618 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1619 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1620
1621 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1622 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1623 /* Update the last valid endpoint context, if we deleted the last one */
1624 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1625 LAST_CTX(last_ctx)) {
1626 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1627 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1628 }
1629 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1630
1631 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1632
1633 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1634 (unsigned int) ep->desc.bEndpointAddress,
1635 udev->slot_id,
1636 (unsigned int) new_drop_flags,
1637 (unsigned int) new_add_flags,
1638 (unsigned int) new_slot_info);
1639 return 0;
1640}
1641
1642/* Add an endpoint to a new possible bandwidth configuration for this device.
1643 * Only one call to this function is allowed per endpoint before
1644 * check_bandwidth() or reset_bandwidth() must be called.
1645 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1646 * add the endpoint to the schedule with possibly new parameters denoted by a
1647 * different endpoint descriptor in usb_host_endpoint.
1648 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1649 * not allowed.
1650 *
1651 * The USB core will not allow URBs to be queued to an endpoint until the
1652 * configuration or alt setting is installed in the device, so there's no need
1653 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1654 */
1655int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1656 struct usb_host_endpoint *ep)
1657{
1658 struct xhci_hcd *xhci;
1659 struct xhci_container_ctx *in_ctx, *out_ctx;
1660 unsigned int ep_index;
1661 struct xhci_slot_ctx *slot_ctx;
1662 struct xhci_input_control_ctx *ctrl_ctx;
1663 u32 added_ctxs;
1664 unsigned int last_ctx;
1665 u32 new_add_flags, new_drop_flags, new_slot_info;
1666 struct xhci_virt_device *virt_dev;
1667 int ret = 0;
1668
1669 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1670 if (ret <= 0) {
1671 /* So we won't queue a reset ep command for a root hub */
1672 ep->hcpriv = NULL;
1673 return ret;
1674 }
1675 xhci = hcd_to_xhci(hcd);
1676 if (xhci->xhc_state & XHCI_STATE_DYING)
1677 return -ENODEV;
1678
1679 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1680 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1681 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1682 /* FIXME when we have to issue an evaluate endpoint command to
1683 * deal with ep0 max packet size changing once we get the
1684 * descriptors
1685 */
1686 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1687 __func__, added_ctxs);
1688 return 0;
1689 }
1690
1691 virt_dev = xhci->devs[udev->slot_id];
1692 in_ctx = virt_dev->in_ctx;
1693 out_ctx = virt_dev->out_ctx;
1694 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1695 if (!ctrl_ctx) {
1696 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1697 __func__);
1698 return 0;
1699 }
1700
1701 ep_index = xhci_get_endpoint_index(&ep->desc);
1702 /* If this endpoint is already in use, and the upper layers are trying
1703 * to add it again without dropping it, reject the addition.
1704 */
1705 if (virt_dev->eps[ep_index].ring &&
1706 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1707 xhci_get_endpoint_flag(&ep->desc))) {
1708 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1709 "without dropping it.\n",
1710 (unsigned int) ep->desc.bEndpointAddress);
1711 return -EINVAL;
1712 }
1713
1714 /* If the HCD has already noted the endpoint is enabled,
1715 * ignore this request.
1716 */
1717 if (le32_to_cpu(ctrl_ctx->add_flags) &
1718 xhci_get_endpoint_flag(&ep->desc)) {
1719 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1720 __func__, ep);
1721 return 0;
1722 }
1723
1724 /*
1725 * Configuration and alternate setting changes must be done in
1726 * process context, not interrupt context (or so documenation
1727 * for usb_set_interface() and usb_set_configuration() claim).
1728 */
1729 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1730 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1731 __func__, ep->desc.bEndpointAddress);
1732 return -ENOMEM;
1733 }
1734
1735 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1736 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1737
1738 /* If xhci_endpoint_disable() was called for this endpoint, but the
1739 * xHC hasn't been notified yet through the check_bandwidth() call,
1740 * this re-adds a new state for the endpoint from the new endpoint
1741 * descriptors. We must drop and re-add this endpoint, so we leave the
1742 * drop flags alone.
1743 */
1744 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1745
1746 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1747 /* Update the last valid endpoint context, if we just added one past */
1748 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1749 LAST_CTX(last_ctx)) {
1750 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1751 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1752 }
1753 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1754
1755 /* Store the usb_device pointer for later use */
1756 ep->hcpriv = udev;
1757
1758 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1759 (unsigned int) ep->desc.bEndpointAddress,
1760 udev->slot_id,
1761 (unsigned int) new_drop_flags,
1762 (unsigned int) new_add_flags,
1763 (unsigned int) new_slot_info);
1764 return 0;
1765}
1766
1767static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1768{
1769 struct xhci_input_control_ctx *ctrl_ctx;
1770 struct xhci_ep_ctx *ep_ctx;
1771 struct xhci_slot_ctx *slot_ctx;
1772 int i;
1773
1774 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1775 if (!ctrl_ctx) {
1776 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1777 __func__);
1778 return;
1779 }
1780
1781 /* When a device's add flag and drop flag are zero, any subsequent
1782 * configure endpoint command will leave that endpoint's state
1783 * untouched. Make sure we don't leave any old state in the input
1784 * endpoint contexts.
1785 */
1786 ctrl_ctx->drop_flags = 0;
1787 ctrl_ctx->add_flags = 0;
1788 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1789 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1790 /* Endpoint 0 is always valid */
1791 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1792 for (i = 1; i < 31; ++i) {
1793 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1794 ep_ctx->ep_info = 0;
1795 ep_ctx->ep_info2 = 0;
1796 ep_ctx->deq = 0;
1797 ep_ctx->tx_info = 0;
1798 }
1799}
1800
1801static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1802 struct usb_device *udev, u32 *cmd_status)
1803{
1804 int ret;
1805
1806 switch (*cmd_status) {
1807 case COMP_ENOMEM:
1808 dev_warn(&udev->dev, "Not enough host controller resources "
1809 "for new device state.\n");
1810 ret = -ENOMEM;
1811 /* FIXME: can we allocate more resources for the HC? */
1812 break;
1813 case COMP_BW_ERR:
1814 case COMP_2ND_BW_ERR:
1815 dev_warn(&udev->dev, "Not enough bandwidth "
1816 "for new device state.\n");
1817 ret = -ENOSPC;
1818 /* FIXME: can we go back to the old state? */
1819 break;
1820 case COMP_TRB_ERR:
1821 /* the HCD set up something wrong */
1822 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1823 "add flag = 1, "
1824 "and endpoint is not disabled.\n");
1825 ret = -EINVAL;
1826 break;
1827 case COMP_DEV_ERR:
1828 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1829 "configure command.\n");
1830 ret = -ENODEV;
1831 break;
1832 case COMP_SUCCESS:
1833 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1834 "Successful Endpoint Configure command");
1835 ret = 0;
1836 break;
1837 default:
1838 xhci_err(xhci, "ERROR: unexpected command completion "
1839 "code 0x%x.\n", *cmd_status);
1840 ret = -EINVAL;
1841 break;
1842 }
1843 return ret;
1844}
1845
1846static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1847 struct usb_device *udev, u32 *cmd_status)
1848{
1849 int ret;
1850 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1851
1852 switch (*cmd_status) {
1853 case COMP_EINVAL:
1854 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1855 "context command.\n");
1856 ret = -EINVAL;
1857 break;
1858 case COMP_EBADSLT:
1859 dev_warn(&udev->dev, "WARN: slot not enabled for"
1860 "evaluate context command.\n");
1861 ret = -EINVAL;
1862 break;
1863 case COMP_CTX_STATE:
1864 dev_warn(&udev->dev, "WARN: invalid context state for "
1865 "evaluate context command.\n");
1866 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1867 ret = -EINVAL;
1868 break;
1869 case COMP_DEV_ERR:
1870 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1871 "context command.\n");
1872 ret = -ENODEV;
1873 break;
1874 case COMP_MEL_ERR:
1875 /* Max Exit Latency too large error */
1876 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1877 ret = -EINVAL;
1878 break;
1879 case COMP_SUCCESS:
1880 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1881 "Successful evaluate context command");
1882 ret = 0;
1883 break;
1884 default:
1885 xhci_err(xhci, "ERROR: unexpected command completion "
1886 "code 0x%x.\n", *cmd_status);
1887 ret = -EINVAL;
1888 break;
1889 }
1890 return ret;
1891}
1892
1893static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1894 struct xhci_input_control_ctx *ctrl_ctx)
1895{
1896 u32 valid_add_flags;
1897 u32 valid_drop_flags;
1898
1899 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1900 * (bit 1). The default control endpoint is added during the Address
1901 * Device command and is never removed until the slot is disabled.
1902 */
1903 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1904 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1905
1906 /* Use hweight32 to count the number of ones in the add flags, or
1907 * number of endpoints added. Don't count endpoints that are changed
1908 * (both added and dropped).
1909 */
1910 return hweight32(valid_add_flags) -
1911 hweight32(valid_add_flags & valid_drop_flags);
1912}
1913
1914static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1915 struct xhci_input_control_ctx *ctrl_ctx)
1916{
1917 u32 valid_add_flags;
1918 u32 valid_drop_flags;
1919
1920 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1921 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1922
1923 return hweight32(valid_drop_flags) -
1924 hweight32(valid_add_flags & valid_drop_flags);
1925}
1926
1927/*
1928 * We need to reserve the new number of endpoints before the configure endpoint
1929 * command completes. We can't subtract the dropped endpoints from the number
1930 * of active endpoints until the command completes because we can oversubscribe
1931 * the host in this case:
1932 *
1933 * - the first configure endpoint command drops more endpoints than it adds
1934 * - a second configure endpoint command that adds more endpoints is queued
1935 * - the first configure endpoint command fails, so the config is unchanged
1936 * - the second command may succeed, even though there isn't enough resources
1937 *
1938 * Must be called with xhci->lock held.
1939 */
1940static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1941 struct xhci_input_control_ctx *ctrl_ctx)
1942{
1943 u32 added_eps;
1944
1945 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1946 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1947 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1948 "Not enough ep ctxs: "
1949 "%u active, need to add %u, limit is %u.",
1950 xhci->num_active_eps, added_eps,
1951 xhci->limit_active_eps);
1952 return -ENOMEM;
1953 }
1954 xhci->num_active_eps += added_eps;
1955 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1956 "Adding %u ep ctxs, %u now active.", added_eps,
1957 xhci->num_active_eps);
1958 return 0;
1959}
1960
1961/*
1962 * The configure endpoint was failed by the xHC for some other reason, so we
1963 * need to revert the resources that failed configuration would have used.
1964 *
1965 * Must be called with xhci->lock held.
1966 */
1967static void xhci_free_host_resources(struct xhci_hcd *xhci,
1968 struct xhci_input_control_ctx *ctrl_ctx)
1969{
1970 u32 num_failed_eps;
1971
1972 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1973 xhci->num_active_eps -= num_failed_eps;
1974 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1975 "Removing %u failed ep ctxs, %u now active.",
1976 num_failed_eps,
1977 xhci->num_active_eps);
1978}
1979
1980/*
1981 * Now that the command has completed, clean up the active endpoint count by
1982 * subtracting out the endpoints that were dropped (but not changed).
1983 *
1984 * Must be called with xhci->lock held.
1985 */
1986static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1987 struct xhci_input_control_ctx *ctrl_ctx)
1988{
1989 u32 num_dropped_eps;
1990
1991 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1992 xhci->num_active_eps -= num_dropped_eps;
1993 if (num_dropped_eps)
1994 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1995 "Removing %u dropped ep ctxs, %u now active.",
1996 num_dropped_eps,
1997 xhci->num_active_eps);
1998}
1999
2000static unsigned int xhci_get_block_size(struct usb_device *udev)
2001{
2002 switch (udev->speed) {
2003 case USB_SPEED_LOW:
2004 case USB_SPEED_FULL:
2005 return FS_BLOCK;
2006 case USB_SPEED_HIGH:
2007 return HS_BLOCK;
2008 case USB_SPEED_SUPER:
2009 return SS_BLOCK;
2010 case USB_SPEED_UNKNOWN:
2011 case USB_SPEED_WIRELESS:
2012 default:
2013 /* Should never happen */
2014 return 1;
2015 }
2016}
2017
2018static unsigned int
2019xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2020{
2021 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2022 return LS_OVERHEAD;
2023 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2024 return FS_OVERHEAD;
2025 return HS_OVERHEAD;
2026}
2027
2028/* If we are changing a LS/FS device under a HS hub,
2029 * make sure (if we are activating a new TT) that the HS bus has enough
2030 * bandwidth for this new TT.
2031 */
2032static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2033 struct xhci_virt_device *virt_dev,
2034 int old_active_eps)
2035{
2036 struct xhci_interval_bw_table *bw_table;
2037 struct xhci_tt_bw_info *tt_info;
2038
2039 /* Find the bandwidth table for the root port this TT is attached to. */
2040 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2041 tt_info = virt_dev->tt_info;
2042 /* If this TT already had active endpoints, the bandwidth for this TT
2043 * has already been added. Removing all periodic endpoints (and thus
2044 * making the TT enactive) will only decrease the bandwidth used.
2045 */
2046 if (old_active_eps)
2047 return 0;
2048 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2049 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2050 return -ENOMEM;
2051 return 0;
2052 }
2053 /* Not sure why we would have no new active endpoints...
2054 *
2055 * Maybe because of an Evaluate Context change for a hub update or a
2056 * control endpoint 0 max packet size change?
2057 * FIXME: skip the bandwidth calculation in that case.
2058 */
2059 return 0;
2060}
2061
2062static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2063 struct xhci_virt_device *virt_dev)
2064{
2065 unsigned int bw_reserved;
2066
2067 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2068 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2069 return -ENOMEM;
2070
2071 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2072 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2073 return -ENOMEM;
2074
2075 return 0;
2076}
2077
2078/*
2079 * This algorithm is a very conservative estimate of the worst-case scheduling
2080 * scenario for any one interval. The hardware dynamically schedules the
2081 * packets, so we can't tell which microframe could be the limiting factor in
2082 * the bandwidth scheduling. This only takes into account periodic endpoints.
2083 *
2084 * Obviously, we can't solve an NP complete problem to find the minimum worst
2085 * case scenario. Instead, we come up with an estimate that is no less than
2086 * the worst case bandwidth used for any one microframe, but may be an
2087 * over-estimate.
2088 *
2089 * We walk the requirements for each endpoint by interval, starting with the
2090 * smallest interval, and place packets in the schedule where there is only one
2091 * possible way to schedule packets for that interval. In order to simplify
2092 * this algorithm, we record the largest max packet size for each interval, and
2093 * assume all packets will be that size.
2094 *
2095 * For interval 0, we obviously must schedule all packets for each interval.
2096 * The bandwidth for interval 0 is just the amount of data to be transmitted
2097 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2098 * the number of packets).
2099 *
2100 * For interval 1, we have two possible microframes to schedule those packets
2101 * in. For this algorithm, if we can schedule the same number of packets for
2102 * each possible scheduling opportunity (each microframe), we will do so. The
2103 * remaining number of packets will be saved to be transmitted in the gaps in
2104 * the next interval's scheduling sequence.
2105 *
2106 * As we move those remaining packets to be scheduled with interval 2 packets,
2107 * we have to double the number of remaining packets to transmit. This is
2108 * because the intervals are actually powers of 2, and we would be transmitting
2109 * the previous interval's packets twice in this interval. We also have to be
2110 * sure that when we look at the largest max packet size for this interval, we
2111 * also look at the largest max packet size for the remaining packets and take
2112 * the greater of the two.
2113 *
2114 * The algorithm continues to evenly distribute packets in each scheduling
2115 * opportunity, and push the remaining packets out, until we get to the last
2116 * interval. Then those packets and their associated overhead are just added
2117 * to the bandwidth used.
2118 */
2119static int xhci_check_bw_table(struct xhci_hcd *xhci,
2120 struct xhci_virt_device *virt_dev,
2121 int old_active_eps)
2122{
2123 unsigned int bw_reserved;
2124 unsigned int max_bandwidth;
2125 unsigned int bw_used;
2126 unsigned int block_size;
2127 struct xhci_interval_bw_table *bw_table;
2128 unsigned int packet_size = 0;
2129 unsigned int overhead = 0;
2130 unsigned int packets_transmitted = 0;
2131 unsigned int packets_remaining = 0;
2132 unsigned int i;
2133
2134 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2135 return xhci_check_ss_bw(xhci, virt_dev);
2136
2137 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2138 max_bandwidth = HS_BW_LIMIT;
2139 /* Convert percent of bus BW reserved to blocks reserved */
2140 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2141 } else {
2142 max_bandwidth = FS_BW_LIMIT;
2143 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2144 }
2145
2146 bw_table = virt_dev->bw_table;
2147 /* We need to translate the max packet size and max ESIT payloads into
2148 * the units the hardware uses.
2149 */
2150 block_size = xhci_get_block_size(virt_dev->udev);
2151
2152 /* If we are manipulating a LS/FS device under a HS hub, double check
2153 * that the HS bus has enough bandwidth if we are activing a new TT.
2154 */
2155 if (virt_dev->tt_info) {
2156 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2157 "Recalculating BW for rootport %u",
2158 virt_dev->real_port);
2159 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2160 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2161 "newly activated TT.\n");
2162 return -ENOMEM;
2163 }
2164 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2165 "Recalculating BW for TT slot %u port %u",
2166 virt_dev->tt_info->slot_id,
2167 virt_dev->tt_info->ttport);
2168 } else {
2169 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2170 "Recalculating BW for rootport %u",
2171 virt_dev->real_port);
2172 }
2173
2174 /* Add in how much bandwidth will be used for interval zero, or the
2175 * rounded max ESIT payload + number of packets * largest overhead.
2176 */
2177 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2178 bw_table->interval_bw[0].num_packets *
2179 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2180
2181 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2182 unsigned int bw_added;
2183 unsigned int largest_mps;
2184 unsigned int interval_overhead;
2185
2186 /*
2187 * How many packets could we transmit in this interval?
2188 * If packets didn't fit in the previous interval, we will need
2189 * to transmit that many packets twice within this interval.
2190 */
2191 packets_remaining = 2 * packets_remaining +
2192 bw_table->interval_bw[i].num_packets;
2193
2194 /* Find the largest max packet size of this or the previous
2195 * interval.
2196 */
2197 if (list_empty(&bw_table->interval_bw[i].endpoints))
2198 largest_mps = 0;
2199 else {
2200 struct xhci_virt_ep *virt_ep;
2201 struct list_head *ep_entry;
2202
2203 ep_entry = bw_table->interval_bw[i].endpoints.next;
2204 virt_ep = list_entry(ep_entry,
2205 struct xhci_virt_ep, bw_endpoint_list);
2206 /* Convert to blocks, rounding up */
2207 largest_mps = DIV_ROUND_UP(
2208 virt_ep->bw_info.max_packet_size,
2209 block_size);
2210 }
2211 if (largest_mps > packet_size)
2212 packet_size = largest_mps;
2213
2214 /* Use the larger overhead of this or the previous interval. */
2215 interval_overhead = xhci_get_largest_overhead(
2216 &bw_table->interval_bw[i]);
2217 if (interval_overhead > overhead)
2218 overhead = interval_overhead;
2219
2220 /* How many packets can we evenly distribute across
2221 * (1 << (i + 1)) possible scheduling opportunities?
2222 */
2223 packets_transmitted = packets_remaining >> (i + 1);
2224
2225 /* Add in the bandwidth used for those scheduled packets */
2226 bw_added = packets_transmitted * (overhead + packet_size);
2227
2228 /* How many packets do we have remaining to transmit? */
2229 packets_remaining = packets_remaining % (1 << (i + 1));
2230
2231 /* What largest max packet size should those packets have? */
2232 /* If we've transmitted all packets, don't carry over the
2233 * largest packet size.
2234 */
2235 if (packets_remaining == 0) {
2236 packet_size = 0;
2237 overhead = 0;
2238 } else if (packets_transmitted > 0) {
2239 /* Otherwise if we do have remaining packets, and we've
2240 * scheduled some packets in this interval, take the
2241 * largest max packet size from endpoints with this
2242 * interval.
2243 */
2244 packet_size = largest_mps;
2245 overhead = interval_overhead;
2246 }
2247 /* Otherwise carry over packet_size and overhead from the last
2248 * time we had a remainder.
2249 */
2250 bw_used += bw_added;
2251 if (bw_used > max_bandwidth) {
2252 xhci_warn(xhci, "Not enough bandwidth. "
2253 "Proposed: %u, Max: %u\n",
2254 bw_used, max_bandwidth);
2255 return -ENOMEM;
2256 }
2257 }
2258 /*
2259 * Ok, we know we have some packets left over after even-handedly
2260 * scheduling interval 15. We don't know which microframes they will
2261 * fit into, so we over-schedule and say they will be scheduled every
2262 * microframe.
2263 */
2264 if (packets_remaining > 0)
2265 bw_used += overhead + packet_size;
2266
2267 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2268 unsigned int port_index = virt_dev->real_port - 1;
2269
2270 /* OK, we're manipulating a HS device attached to a
2271 * root port bandwidth domain. Include the number of active TTs
2272 * in the bandwidth used.
2273 */
2274 bw_used += TT_HS_OVERHEAD *
2275 xhci->rh_bw[port_index].num_active_tts;
2276 }
2277
2278 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2279 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2280 "Available: %u " "percent",
2281 bw_used, max_bandwidth, bw_reserved,
2282 (max_bandwidth - bw_used - bw_reserved) * 100 /
2283 max_bandwidth);
2284
2285 bw_used += bw_reserved;
2286 if (bw_used > max_bandwidth) {
2287 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2288 bw_used, max_bandwidth);
2289 return -ENOMEM;
2290 }
2291
2292 bw_table->bw_used = bw_used;
2293 return 0;
2294}
2295
2296static bool xhci_is_async_ep(unsigned int ep_type)
2297{
2298 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2299 ep_type != ISOC_IN_EP &&
2300 ep_type != INT_IN_EP);
2301}
2302
2303static bool xhci_is_sync_in_ep(unsigned int ep_type)
2304{
2305 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2306}
2307
2308static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2309{
2310 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2311
2312 if (ep_bw->ep_interval == 0)
2313 return SS_OVERHEAD_BURST +
2314 (ep_bw->mult * ep_bw->num_packets *
2315 (SS_OVERHEAD + mps));
2316 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2317 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2318 1 << ep_bw->ep_interval);
2319
2320}
2321
2322void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2323 struct xhci_bw_info *ep_bw,
2324 struct xhci_interval_bw_table *bw_table,
2325 struct usb_device *udev,
2326 struct xhci_virt_ep *virt_ep,
2327 struct xhci_tt_bw_info *tt_info)
2328{
2329 struct xhci_interval_bw *interval_bw;
2330 int normalized_interval;
2331
2332 if (xhci_is_async_ep(ep_bw->type))
2333 return;
2334
2335 if (udev->speed == USB_SPEED_SUPER) {
2336 if (xhci_is_sync_in_ep(ep_bw->type))
2337 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2338 xhci_get_ss_bw_consumed(ep_bw);
2339 else
2340 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2341 xhci_get_ss_bw_consumed(ep_bw);
2342 return;
2343 }
2344
2345 /* SuperSpeed endpoints never get added to intervals in the table, so
2346 * this check is only valid for HS/FS/LS devices.
2347 */
2348 if (list_empty(&virt_ep->bw_endpoint_list))
2349 return;
2350 /* For LS/FS devices, we need to translate the interval expressed in
2351 * microframes to frames.
2352 */
2353 if (udev->speed == USB_SPEED_HIGH)
2354 normalized_interval = ep_bw->ep_interval;
2355 else
2356 normalized_interval = ep_bw->ep_interval - 3;
2357
2358 if (normalized_interval == 0)
2359 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2360 interval_bw = &bw_table->interval_bw[normalized_interval];
2361 interval_bw->num_packets -= ep_bw->num_packets;
2362 switch (udev->speed) {
2363 case USB_SPEED_LOW:
2364 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2365 break;
2366 case USB_SPEED_FULL:
2367 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2368 break;
2369 case USB_SPEED_HIGH:
2370 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2371 break;
2372 case USB_SPEED_SUPER:
2373 case USB_SPEED_UNKNOWN:
2374 case USB_SPEED_WIRELESS:
2375 /* Should never happen because only LS/FS/HS endpoints will get
2376 * added to the endpoint list.
2377 */
2378 return;
2379 }
2380 if (tt_info)
2381 tt_info->active_eps -= 1;
2382 list_del_init(&virt_ep->bw_endpoint_list);
2383}
2384
2385static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2386 struct xhci_bw_info *ep_bw,
2387 struct xhci_interval_bw_table *bw_table,
2388 struct usb_device *udev,
2389 struct xhci_virt_ep *virt_ep,
2390 struct xhci_tt_bw_info *tt_info)
2391{
2392 struct xhci_interval_bw *interval_bw;
2393 struct xhci_virt_ep *smaller_ep;
2394 int normalized_interval;
2395
2396 if (xhci_is_async_ep(ep_bw->type))
2397 return;
2398
2399 if (udev->speed == USB_SPEED_SUPER) {
2400 if (xhci_is_sync_in_ep(ep_bw->type))
2401 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2402 xhci_get_ss_bw_consumed(ep_bw);
2403 else
2404 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2405 xhci_get_ss_bw_consumed(ep_bw);
2406 return;
2407 }
2408
2409 /* For LS/FS devices, we need to translate the interval expressed in
2410 * microframes to frames.
2411 */
2412 if (udev->speed == USB_SPEED_HIGH)
2413 normalized_interval = ep_bw->ep_interval;
2414 else
2415 normalized_interval = ep_bw->ep_interval - 3;
2416
2417 if (normalized_interval == 0)
2418 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2419 interval_bw = &bw_table->interval_bw[normalized_interval];
2420 interval_bw->num_packets += ep_bw->num_packets;
2421 switch (udev->speed) {
2422 case USB_SPEED_LOW:
2423 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2424 break;
2425 case USB_SPEED_FULL:
2426 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2427 break;
2428 case USB_SPEED_HIGH:
2429 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2430 break;
2431 case USB_SPEED_SUPER:
2432 case USB_SPEED_UNKNOWN:
2433 case USB_SPEED_WIRELESS:
2434 /* Should never happen because only LS/FS/HS endpoints will get
2435 * added to the endpoint list.
2436 */
2437 return;
2438 }
2439
2440 if (tt_info)
2441 tt_info->active_eps += 1;
2442 /* Insert the endpoint into the list, largest max packet size first. */
2443 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2444 bw_endpoint_list) {
2445 if (ep_bw->max_packet_size >=
2446 smaller_ep->bw_info.max_packet_size) {
2447 /* Add the new ep before the smaller endpoint */
2448 list_add_tail(&virt_ep->bw_endpoint_list,
2449 &smaller_ep->bw_endpoint_list);
2450 return;
2451 }
2452 }
2453 /* Add the new endpoint at the end of the list. */
2454 list_add_tail(&virt_ep->bw_endpoint_list,
2455 &interval_bw->endpoints);
2456}
2457
2458void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2459 struct xhci_virt_device *virt_dev,
2460 int old_active_eps)
2461{
2462 struct xhci_root_port_bw_info *rh_bw_info;
2463 if (!virt_dev->tt_info)
2464 return;
2465
2466 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2467 if (old_active_eps == 0 &&
2468 virt_dev->tt_info->active_eps != 0) {
2469 rh_bw_info->num_active_tts += 1;
2470 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2471 } else if (old_active_eps != 0 &&
2472 virt_dev->tt_info->active_eps == 0) {
2473 rh_bw_info->num_active_tts -= 1;
2474 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2475 }
2476}
2477
2478static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2479 struct xhci_virt_device *virt_dev,
2480 struct xhci_container_ctx *in_ctx)
2481{
2482 struct xhci_bw_info ep_bw_info[31];
2483 int i;
2484 struct xhci_input_control_ctx *ctrl_ctx;
2485 int old_active_eps = 0;
2486
2487 if (virt_dev->tt_info)
2488 old_active_eps = virt_dev->tt_info->active_eps;
2489
2490 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2491 if (!ctrl_ctx) {
2492 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2493 __func__);
2494 return -ENOMEM;
2495 }
2496
2497 for (i = 0; i < 31; i++) {
2498 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2499 continue;
2500
2501 /* Make a copy of the BW info in case we need to revert this */
2502 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2503 sizeof(ep_bw_info[i]));
2504 /* Drop the endpoint from the interval table if the endpoint is
2505 * being dropped or changed.
2506 */
2507 if (EP_IS_DROPPED(ctrl_ctx, i))
2508 xhci_drop_ep_from_interval_table(xhci,
2509 &virt_dev->eps[i].bw_info,
2510 virt_dev->bw_table,
2511 virt_dev->udev,
2512 &virt_dev->eps[i],
2513 virt_dev->tt_info);
2514 }
2515 /* Overwrite the information stored in the endpoints' bw_info */
2516 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2517 for (i = 0; i < 31; i++) {
2518 /* Add any changed or added endpoints to the interval table */
2519 if (EP_IS_ADDED(ctrl_ctx, i))
2520 xhci_add_ep_to_interval_table(xhci,
2521 &virt_dev->eps[i].bw_info,
2522 virt_dev->bw_table,
2523 virt_dev->udev,
2524 &virt_dev->eps[i],
2525 virt_dev->tt_info);
2526 }
2527
2528 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2529 /* Ok, this fits in the bandwidth we have.
2530 * Update the number of active TTs.
2531 */
2532 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2533 return 0;
2534 }
2535
2536 /* We don't have enough bandwidth for this, revert the stored info. */
2537 for (i = 0; i < 31; i++) {
2538 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2539 continue;
2540
2541 /* Drop the new copies of any added or changed endpoints from
2542 * the interval table.
2543 */
2544 if (EP_IS_ADDED(ctrl_ctx, i)) {
2545 xhci_drop_ep_from_interval_table(xhci,
2546 &virt_dev->eps[i].bw_info,
2547 virt_dev->bw_table,
2548 virt_dev->udev,
2549 &virt_dev->eps[i],
2550 virt_dev->tt_info);
2551 }
2552 /* Revert the endpoint back to its old information */
2553 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2554 sizeof(ep_bw_info[i]));
2555 /* Add any changed or dropped endpoints back into the table */
2556 if (EP_IS_DROPPED(ctrl_ctx, i))
2557 xhci_add_ep_to_interval_table(xhci,
2558 &virt_dev->eps[i].bw_info,
2559 virt_dev->bw_table,
2560 virt_dev->udev,
2561 &virt_dev->eps[i],
2562 virt_dev->tt_info);
2563 }
2564 return -ENOMEM;
2565}
2566
2567
2568/* Issue a configure endpoint command or evaluate context command
2569 * and wait for it to finish.
2570 */
2571static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2572 struct usb_device *udev,
2573 struct xhci_command *command,
2574 bool ctx_change, bool must_succeed)
2575{
2576 int ret;
2577 int timeleft;
2578 unsigned long flags;
2579 struct xhci_container_ctx *in_ctx;
2580 struct xhci_input_control_ctx *ctrl_ctx;
2581 struct completion *cmd_completion;
2582 u32 *cmd_status;
2583 struct xhci_virt_device *virt_dev;
2584 union xhci_trb *cmd_trb;
2585
2586 spin_lock_irqsave(&xhci->lock, flags);
2587 virt_dev = xhci->devs[udev->slot_id];
2588
2589 if (command)
2590 in_ctx = command->in_ctx;
2591 else
2592 in_ctx = virt_dev->in_ctx;
2593 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2594 if (!ctrl_ctx) {
2595 spin_unlock_irqrestore(&xhci->lock, flags);
2596 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2597 __func__);
2598 return -ENOMEM;
2599 }
2600
2601 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2602 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2603 spin_unlock_irqrestore(&xhci->lock, flags);
2604 xhci_warn(xhci, "Not enough host resources, "
2605 "active endpoint contexts = %u\n",
2606 xhci->num_active_eps);
2607 return -ENOMEM;
2608 }
2609 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2610 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2611 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2612 xhci_free_host_resources(xhci, ctrl_ctx);
2613 spin_unlock_irqrestore(&xhci->lock, flags);
2614 xhci_warn(xhci, "Not enough bandwidth\n");
2615 return -ENOMEM;
2616 }
2617
2618 if (command) {
2619 cmd_completion = command->completion;
2620 cmd_status = &command->status;
2621 command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2622 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2623 } else {
2624 cmd_completion = &virt_dev->cmd_completion;
2625 cmd_status = &virt_dev->cmd_status;
2626 }
2627 init_completion(cmd_completion);
2628
2629 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2630 if (!ctx_change)
2631 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2632 udev->slot_id, must_succeed);
2633 else
2634 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2635 udev->slot_id, must_succeed);
2636 if (ret < 0) {
2637 if (command)
2638 list_del(&command->cmd_list);
2639 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2640 xhci_free_host_resources(xhci, ctrl_ctx);
2641 spin_unlock_irqrestore(&xhci->lock, flags);
2642 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2643 "FIXME allocate a new ring segment");
2644 return -ENOMEM;
2645 }
2646 xhci_ring_cmd_db(xhci);
2647 spin_unlock_irqrestore(&xhci->lock, flags);
2648
2649 /* Wait for the configure endpoint command to complete */
2650 timeleft = wait_for_completion_interruptible_timeout(
2651 cmd_completion,
2652 XHCI_CMD_DEFAULT_TIMEOUT);
2653 if (timeleft <= 0) {
2654 xhci_warn(xhci, "%s while waiting for %s command\n",
2655 timeleft == 0 ? "Timeout" : "Signal",
2656 ctx_change == 0 ?
2657 "configure endpoint" :
2658 "evaluate context");
2659 /* cancel the configure endpoint command */
2660 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2661 if (ret < 0)
2662 return ret;
2663 return -ETIME;
2664 }
2665
2666 if (!ctx_change)
2667 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2668 else
2669 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2670
2671 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2672 spin_lock_irqsave(&xhci->lock, flags);
2673 /* If the command failed, remove the reserved resources.
2674 * Otherwise, clean up the estimate to include dropped eps.
2675 */
2676 if (ret)
2677 xhci_free_host_resources(xhci, ctrl_ctx);
2678 else
2679 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2680 spin_unlock_irqrestore(&xhci->lock, flags);
2681 }
2682 return ret;
2683}
2684
2685static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2686 struct xhci_virt_device *vdev, int i)
2687{
2688 struct xhci_virt_ep *ep = &vdev->eps[i];
2689
2690 if (ep->ep_state & EP_HAS_STREAMS) {
2691 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2692 xhci_get_endpoint_address(i));
2693 xhci_free_stream_info(xhci, ep->stream_info);
2694 ep->stream_info = NULL;
2695 ep->ep_state &= ~EP_HAS_STREAMS;
2696 }
2697}
2698
2699/* Called after one or more calls to xhci_add_endpoint() or
2700 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2701 * to call xhci_reset_bandwidth().
2702 *
2703 * Since we are in the middle of changing either configuration or
2704 * installing a new alt setting, the USB core won't allow URBs to be
2705 * enqueued for any endpoint on the old config or interface. Nothing
2706 * else should be touching the xhci->devs[slot_id] structure, so we
2707 * don't need to take the xhci->lock for manipulating that.
2708 */
2709int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2710{
2711 int i;
2712 int ret = 0;
2713 struct xhci_hcd *xhci;
2714 struct xhci_virt_device *virt_dev;
2715 struct xhci_input_control_ctx *ctrl_ctx;
2716 struct xhci_slot_ctx *slot_ctx;
2717
2718 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2719 if (ret <= 0)
2720 return ret;
2721 xhci = hcd_to_xhci(hcd);
2722 if (xhci->xhc_state & XHCI_STATE_DYING)
2723 return -ENODEV;
2724
2725 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2726 virt_dev = xhci->devs[udev->slot_id];
2727
2728 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2729 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2730 if (!ctrl_ctx) {
2731 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2732 __func__);
2733 return -ENOMEM;
2734 }
2735 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2736 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2737 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2738
2739 /* Don't issue the command if there's no endpoints to update. */
2740 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2741 ctrl_ctx->drop_flags == 0)
2742 return 0;
2743
2744 xhci_dbg(xhci, "New Input Control Context:\n");
2745 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2746 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2747 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2748
2749 ret = xhci_configure_endpoint(xhci, udev, NULL,
2750 false, false);
2751 if (ret) {
2752 /* Callee should call reset_bandwidth() */
2753 return ret;
2754 }
2755
2756 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2757 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2758 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2759
2760 /* Free any rings that were dropped, but not changed. */
2761 for (i = 1; i < 31; ++i) {
2762 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2763 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2764 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2765 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2766 }
2767 }
2768 xhci_zero_in_ctx(xhci, virt_dev);
2769 /*
2770 * Install any rings for completely new endpoints or changed endpoints,
2771 * and free or cache any old rings from changed endpoints.
2772 */
2773 for (i = 1; i < 31; ++i) {
2774 if (!virt_dev->eps[i].new_ring)
2775 continue;
2776 /* Only cache or free the old ring if it exists.
2777 * It may not if this is the first add of an endpoint.
2778 */
2779 if (virt_dev->eps[i].ring) {
2780 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2781 }
2782 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2783 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2784 virt_dev->eps[i].new_ring = NULL;
2785 }
2786
2787 return ret;
2788}
2789
2790void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2791{
2792 struct xhci_hcd *xhci;
2793 struct xhci_virt_device *virt_dev;
2794 int i, ret;
2795
2796 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2797 if (ret <= 0)
2798 return;
2799 xhci = hcd_to_xhci(hcd);
2800
2801 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2802 virt_dev = xhci->devs[udev->slot_id];
2803 /* Free any rings allocated for added endpoints */
2804 for (i = 0; i < 31; ++i) {
2805 if (virt_dev->eps[i].new_ring) {
2806 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2807 virt_dev->eps[i].new_ring = NULL;
2808 }
2809 }
2810 xhci_zero_in_ctx(xhci, virt_dev);
2811}
2812
2813static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2814 struct xhci_container_ctx *in_ctx,
2815 struct xhci_container_ctx *out_ctx,
2816 struct xhci_input_control_ctx *ctrl_ctx,
2817 u32 add_flags, u32 drop_flags)
2818{
2819 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2820 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2821 xhci_slot_copy(xhci, in_ctx, out_ctx);
2822 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2823
2824 xhci_dbg(xhci, "Input Context:\n");
2825 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2826}
2827
2828static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2829 unsigned int slot_id, unsigned int ep_index,
2830 struct xhci_dequeue_state *deq_state)
2831{
2832 struct xhci_input_control_ctx *ctrl_ctx;
2833 struct xhci_container_ctx *in_ctx;
2834 struct xhci_ep_ctx *ep_ctx;
2835 u32 added_ctxs;
2836 dma_addr_t addr;
2837
2838 in_ctx = xhci->devs[slot_id]->in_ctx;
2839 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2840 if (!ctrl_ctx) {
2841 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2842 __func__);
2843 return;
2844 }
2845
2846 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2847 xhci->devs[slot_id]->out_ctx, ep_index);
2848 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2849 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2850 deq_state->new_deq_ptr);
2851 if (addr == 0) {
2852 xhci_warn(xhci, "WARN Cannot submit config ep after "
2853 "reset ep command\n");
2854 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2855 deq_state->new_deq_seg,
2856 deq_state->new_deq_ptr);
2857 return;
2858 }
2859 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2860
2861 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2862 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2863 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2864 added_ctxs, added_ctxs);
2865}
2866
2867void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2868 struct usb_device *udev, unsigned int ep_index)
2869{
2870 struct xhci_dequeue_state deq_state;
2871 struct xhci_virt_ep *ep;
2872
2873 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2874 "Cleaning up stalled endpoint ring");
2875 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2876 /* We need to move the HW's dequeue pointer past this TD,
2877 * or it will attempt to resend it on the next doorbell ring.
2878 */
2879 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2880 ep_index, ep->stopped_stream, ep->stopped_td,
2881 &deq_state);
2882
2883 /* HW with the reset endpoint quirk will use the saved dequeue state to
2884 * issue a configure endpoint command later.
2885 */
2886 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2887 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2888 "Queueing new dequeue state");
2889 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2890 ep_index, ep->stopped_stream, &deq_state);
2891 } else {
2892 /* Better hope no one uses the input context between now and the
2893 * reset endpoint completion!
2894 * XXX: No idea how this hardware will react when stream rings
2895 * are enabled.
2896 */
2897 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2898 "Setting up input context for "
2899 "configure endpoint command");
2900 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2901 ep_index, &deq_state);
2902 }
2903}
2904
2905/* Deal with stalled endpoints. The core should have sent the control message
2906 * to clear the halt condition. However, we need to make the xHCI hardware
2907 * reset its sequence number, since a device will expect a sequence number of
2908 * zero after the halt condition is cleared.
2909 * Context: in_interrupt
2910 */
2911void xhci_endpoint_reset(struct usb_hcd *hcd,
2912 struct usb_host_endpoint *ep)
2913{
2914 struct xhci_hcd *xhci;
2915 struct usb_device *udev;
2916 unsigned int ep_index;
2917 unsigned long flags;
2918 int ret;
2919 struct xhci_virt_ep *virt_ep;
2920
2921 xhci = hcd_to_xhci(hcd);
2922 udev = (struct usb_device *) ep->hcpriv;
2923 /* Called with a root hub endpoint (or an endpoint that wasn't added
2924 * with xhci_add_endpoint()
2925 */
2926 if (!ep->hcpriv)
2927 return;
2928 ep_index = xhci_get_endpoint_index(&ep->desc);
2929 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2930 if (!virt_ep->stopped_td) {
2931 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2932 "Endpoint 0x%x not halted, refusing to reset.",
2933 ep->desc.bEndpointAddress);
2934 return;
2935 }
2936 if (usb_endpoint_xfer_control(&ep->desc)) {
2937 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2938 "Control endpoint stall already handled.");
2939 return;
2940 }
2941
2942 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2943 "Queueing reset endpoint command");
2944 spin_lock_irqsave(&xhci->lock, flags);
2945 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2946 /*
2947 * Can't change the ring dequeue pointer until it's transitioned to the
2948 * stopped state, which is only upon a successful reset endpoint
2949 * command. Better hope that last command worked!
2950 */
2951 if (!ret) {
2952 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2953 kfree(virt_ep->stopped_td);
2954 xhci_ring_cmd_db(xhci);
2955 }
2956 virt_ep->stopped_td = NULL;
2957 virt_ep->stopped_stream = 0;
2958 spin_unlock_irqrestore(&xhci->lock, flags);
2959
2960 if (ret)
2961 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2962}
2963
2964static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2965 struct usb_device *udev, struct usb_host_endpoint *ep,
2966 unsigned int slot_id)
2967{
2968 int ret;
2969 unsigned int ep_index;
2970 unsigned int ep_state;
2971
2972 if (!ep)
2973 return -EINVAL;
2974 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2975 if (ret <= 0)
2976 return -EINVAL;
2977 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2978 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2979 " descriptor for ep 0x%x does not support streams\n",
2980 ep->desc.bEndpointAddress);
2981 return -EINVAL;
2982 }
2983
2984 ep_index = xhci_get_endpoint_index(&ep->desc);
2985 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2986 if (ep_state & EP_HAS_STREAMS ||
2987 ep_state & EP_GETTING_STREAMS) {
2988 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2989 "already has streams set up.\n",
2990 ep->desc.bEndpointAddress);
2991 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2992 "dynamic stream context array reallocation.\n");
2993 return -EINVAL;
2994 }
2995 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2996 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2997 "endpoint 0x%x; URBs are pending.\n",
2998 ep->desc.bEndpointAddress);
2999 return -EINVAL;
3000 }
3001 return 0;
3002}
3003
3004static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3005 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3006{
3007 unsigned int max_streams;
3008
3009 /* The stream context array size must be a power of two */
3010 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3011 /*
3012 * Find out how many primary stream array entries the host controller
3013 * supports. Later we may use secondary stream arrays (similar to 2nd
3014 * level page entries), but that's an optional feature for xHCI host
3015 * controllers. xHCs must support at least 4 stream IDs.
3016 */
3017 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3018 if (*num_stream_ctxs > max_streams) {
3019 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3020 max_streams);
3021 *num_stream_ctxs = max_streams;
3022 *num_streams = max_streams;
3023 }
3024}
3025
3026/* Returns an error code if one of the endpoint already has streams.
3027 * This does not change any data structures, it only checks and gathers
3028 * information.
3029 */
3030static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3031 struct usb_device *udev,
3032 struct usb_host_endpoint **eps, unsigned int num_eps,
3033 unsigned int *num_streams, u32 *changed_ep_bitmask)
3034{
3035 unsigned int max_streams;
3036 unsigned int endpoint_flag;
3037 int i;
3038 int ret;
3039
3040 for (i = 0; i < num_eps; i++) {
3041 ret = xhci_check_streams_endpoint(xhci, udev,
3042 eps[i], udev->slot_id);
3043 if (ret < 0)
3044 return ret;
3045
3046 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3047 if (max_streams < (*num_streams - 1)) {
3048 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3049 eps[i]->desc.bEndpointAddress,
3050 max_streams);
3051 *num_streams = max_streams+1;
3052 }
3053
3054 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3055 if (*changed_ep_bitmask & endpoint_flag)
3056 return -EINVAL;
3057 *changed_ep_bitmask |= endpoint_flag;
3058 }
3059 return 0;
3060}
3061
3062static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3063 struct usb_device *udev,
3064 struct usb_host_endpoint **eps, unsigned int num_eps)
3065{
3066 u32 changed_ep_bitmask = 0;
3067 unsigned int slot_id;
3068 unsigned int ep_index;
3069 unsigned int ep_state;
3070 int i;
3071
3072 slot_id = udev->slot_id;
3073 if (!xhci->devs[slot_id])
3074 return 0;
3075
3076 for (i = 0; i < num_eps; i++) {
3077 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3078 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3079 /* Are streams already being freed for the endpoint? */
3080 if (ep_state & EP_GETTING_NO_STREAMS) {
3081 xhci_warn(xhci, "WARN Can't disable streams for "
3082 "endpoint 0x%x, "
3083 "streams are being disabled already\n",
3084 eps[i]->desc.bEndpointAddress);
3085 return 0;
3086 }
3087 /* Are there actually any streams to free? */
3088 if (!(ep_state & EP_HAS_STREAMS) &&
3089 !(ep_state & EP_GETTING_STREAMS)) {
3090 xhci_warn(xhci, "WARN Can't disable streams for "
3091 "endpoint 0x%x, "
3092 "streams are already disabled!\n",
3093 eps[i]->desc.bEndpointAddress);
3094 xhci_warn(xhci, "WARN xhci_free_streams() called "
3095 "with non-streams endpoint\n");
3096 return 0;
3097 }
3098 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3099 }
3100 return changed_ep_bitmask;
3101}
3102
3103/*
3104 * The USB device drivers use this function (though the HCD interface in USB
3105 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3106 * coordinate mass storage command queueing across multiple endpoints (basically
3107 * a stream ID == a task ID).
3108 *
3109 * Setting up streams involves allocating the same size stream context array
3110 * for each endpoint and issuing a configure endpoint command for all endpoints.
3111 *
3112 * Don't allow the call to succeed if one endpoint only supports one stream
3113 * (which means it doesn't support streams at all).
3114 *
3115 * Drivers may get less stream IDs than they asked for, if the host controller
3116 * hardware or endpoints claim they can't support the number of requested
3117 * stream IDs.
3118 */
3119int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3120 struct usb_host_endpoint **eps, unsigned int num_eps,
3121 unsigned int num_streams, gfp_t mem_flags)
3122{
3123 int i, ret;
3124 struct xhci_hcd *xhci;
3125 struct xhci_virt_device *vdev;
3126 struct xhci_command *config_cmd;
3127 struct xhci_input_control_ctx *ctrl_ctx;
3128 unsigned int ep_index;
3129 unsigned int num_stream_ctxs;
3130 unsigned long flags;
3131 u32 changed_ep_bitmask = 0;
3132
3133 if (!eps)
3134 return -EINVAL;
3135
3136 /* Add one to the number of streams requested to account for
3137 * stream 0 that is reserved for xHCI usage.
3138 */
3139 num_streams += 1;
3140 xhci = hcd_to_xhci(hcd);
3141 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3142 num_streams);
3143
3144 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3145 if (HCC_MAX_PSA(xhci->hcc_params) < 4) {
3146 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3147 return -ENOSYS;
3148 }
3149
3150 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3151 if (!config_cmd) {
3152 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3153 return -ENOMEM;
3154 }
3155 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3156 if (!ctrl_ctx) {
3157 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3158 __func__);
3159 xhci_free_command(xhci, config_cmd);
3160 return -ENOMEM;
3161 }
3162
3163 /* Check to make sure all endpoints are not already configured for
3164 * streams. While we're at it, find the maximum number of streams that
3165 * all the endpoints will support and check for duplicate endpoints.
3166 */
3167 spin_lock_irqsave(&xhci->lock, flags);
3168 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3169 num_eps, &num_streams, &changed_ep_bitmask);
3170 if (ret < 0) {
3171 xhci_free_command(xhci, config_cmd);
3172 spin_unlock_irqrestore(&xhci->lock, flags);
3173 return ret;
3174 }
3175 if (num_streams <= 1) {
3176 xhci_warn(xhci, "WARN: endpoints can't handle "
3177 "more than one stream.\n");
3178 xhci_free_command(xhci, config_cmd);
3179 spin_unlock_irqrestore(&xhci->lock, flags);
3180 return -EINVAL;
3181 }
3182 vdev = xhci->devs[udev->slot_id];
3183 /* Mark each endpoint as being in transition, so
3184 * xhci_urb_enqueue() will reject all URBs.
3185 */
3186 for (i = 0; i < num_eps; i++) {
3187 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3188 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3189 }
3190 spin_unlock_irqrestore(&xhci->lock, flags);
3191
3192 /* Setup internal data structures and allocate HW data structures for
3193 * streams (but don't install the HW structures in the input context
3194 * until we're sure all memory allocation succeeded).
3195 */
3196 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3197 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3198 num_stream_ctxs, num_streams);
3199
3200 for (i = 0; i < num_eps; i++) {
3201 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3202 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3203 num_stream_ctxs,
3204 num_streams, mem_flags);
3205 if (!vdev->eps[ep_index].stream_info)
3206 goto cleanup;
3207 /* Set maxPstreams in endpoint context and update deq ptr to
3208 * point to stream context array. FIXME
3209 */
3210 }
3211
3212 /* Set up the input context for a configure endpoint command. */
3213 for (i = 0; i < num_eps; i++) {
3214 struct xhci_ep_ctx *ep_ctx;
3215
3216 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3217 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3218
3219 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3220 vdev->out_ctx, ep_index);
3221 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3222 vdev->eps[ep_index].stream_info);
3223 }
3224 /* Tell the HW to drop its old copy of the endpoint context info
3225 * and add the updated copy from the input context.
3226 */
3227 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3228 vdev->out_ctx, ctrl_ctx,
3229 changed_ep_bitmask, changed_ep_bitmask);
3230
3231 /* Issue and wait for the configure endpoint command */
3232 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3233 false, false);
3234
3235 /* xHC rejected the configure endpoint command for some reason, so we
3236 * leave the old ring intact and free our internal streams data
3237 * structure.
3238 */
3239 if (ret < 0)
3240 goto cleanup;
3241
3242 spin_lock_irqsave(&xhci->lock, flags);
3243 for (i = 0; i < num_eps; i++) {
3244 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3245 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3246 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3247 udev->slot_id, ep_index);
3248 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3249 }
3250 xhci_free_command(xhci, config_cmd);
3251 spin_unlock_irqrestore(&xhci->lock, flags);
3252
3253 /* Subtract 1 for stream 0, which drivers can't use */
3254 return num_streams - 1;
3255
3256cleanup:
3257 /* If it didn't work, free the streams! */
3258 for (i = 0; i < num_eps; i++) {
3259 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3260 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3261 vdev->eps[ep_index].stream_info = NULL;
3262 /* FIXME Unset maxPstreams in endpoint context and
3263 * update deq ptr to point to normal string ring.
3264 */
3265 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3266 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3267 xhci_endpoint_zero(xhci, vdev, eps[i]);
3268 }
3269 xhci_free_command(xhci, config_cmd);
3270 return -ENOMEM;
3271}
3272
3273/* Transition the endpoint from using streams to being a "normal" endpoint
3274 * without streams.
3275 *
3276 * Modify the endpoint context state, submit a configure endpoint command,
3277 * and free all endpoint rings for streams if that completes successfully.
3278 */
3279int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3280 struct usb_host_endpoint **eps, unsigned int num_eps,
3281 gfp_t mem_flags)
3282{
3283 int i, ret;
3284 struct xhci_hcd *xhci;
3285 struct xhci_virt_device *vdev;
3286 struct xhci_command *command;
3287 struct xhci_input_control_ctx *ctrl_ctx;
3288 unsigned int ep_index;
3289 unsigned long flags;
3290 u32 changed_ep_bitmask;
3291
3292 xhci = hcd_to_xhci(hcd);
3293 vdev = xhci->devs[udev->slot_id];
3294
3295 /* Set up a configure endpoint command to remove the streams rings */
3296 spin_lock_irqsave(&xhci->lock, flags);
3297 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3298 udev, eps, num_eps);
3299 if (changed_ep_bitmask == 0) {
3300 spin_unlock_irqrestore(&xhci->lock, flags);
3301 return -EINVAL;
3302 }
3303
3304 /* Use the xhci_command structure from the first endpoint. We may have
3305 * allocated too many, but the driver may call xhci_free_streams() for
3306 * each endpoint it grouped into one call to xhci_alloc_streams().
3307 */
3308 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3309 command = vdev->eps[ep_index].stream_info->free_streams_command;
3310 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3311 if (!ctrl_ctx) {
3312 spin_unlock_irqrestore(&xhci->lock, flags);
3313 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3314 __func__);
3315 return -EINVAL;
3316 }
3317
3318 for (i = 0; i < num_eps; i++) {
3319 struct xhci_ep_ctx *ep_ctx;
3320
3321 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3322 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3323 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3324 EP_GETTING_NO_STREAMS;
3325
3326 xhci_endpoint_copy(xhci, command->in_ctx,
3327 vdev->out_ctx, ep_index);
3328 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3329 &vdev->eps[ep_index]);
3330 }
3331 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3332 vdev->out_ctx, ctrl_ctx,
3333 changed_ep_bitmask, changed_ep_bitmask);
3334 spin_unlock_irqrestore(&xhci->lock, flags);
3335
3336 /* Issue and wait for the configure endpoint command,
3337 * which must succeed.
3338 */
3339 ret = xhci_configure_endpoint(xhci, udev, command,
3340 false, true);
3341
3342 /* xHC rejected the configure endpoint command for some reason, so we
3343 * leave the streams rings intact.
3344 */
3345 if (ret < 0)
3346 return ret;
3347
3348 spin_lock_irqsave(&xhci->lock, flags);
3349 for (i = 0; i < num_eps; i++) {
3350 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3351 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3352 vdev->eps[ep_index].stream_info = NULL;
3353 /* FIXME Unset maxPstreams in endpoint context and
3354 * update deq ptr to point to normal string ring.
3355 */
3356 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3357 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3358 }
3359 spin_unlock_irqrestore(&xhci->lock, flags);
3360
3361 return 0;
3362}
3363
3364/*
3365 * Deletes endpoint resources for endpoints that were active before a Reset
3366 * Device command, or a Disable Slot command. The Reset Device command leaves
3367 * the control endpoint intact, whereas the Disable Slot command deletes it.
3368 *
3369 * Must be called with xhci->lock held.
3370 */
3371void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3372 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3373{
3374 int i;
3375 unsigned int num_dropped_eps = 0;
3376 unsigned int drop_flags = 0;
3377
3378 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3379 if (virt_dev->eps[i].ring) {
3380 drop_flags |= 1 << i;
3381 num_dropped_eps++;
3382 }
3383 }
3384 xhci->num_active_eps -= num_dropped_eps;
3385 if (num_dropped_eps)
3386 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3387 "Dropped %u ep ctxs, flags = 0x%x, "
3388 "%u now active.",
3389 num_dropped_eps, drop_flags,
3390 xhci->num_active_eps);
3391}
3392
3393/*
3394 * This submits a Reset Device Command, which will set the device state to 0,
3395 * set the device address to 0, and disable all the endpoints except the default
3396 * control endpoint. The USB core should come back and call
3397 * xhci_address_device(), and then re-set up the configuration. If this is
3398 * called because of a usb_reset_and_verify_device(), then the old alternate
3399 * settings will be re-installed through the normal bandwidth allocation
3400 * functions.
3401 *
3402 * Wait for the Reset Device command to finish. Remove all structures
3403 * associated with the endpoints that were disabled. Clear the input device
3404 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3405 *
3406 * If the virt_dev to be reset does not exist or does not match the udev,
3407 * it means the device is lost, possibly due to the xHC restore error and
3408 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3409 * re-allocate the device.
3410 */
3411int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3412{
3413 int ret, i;
3414 unsigned long flags;
3415 struct xhci_hcd *xhci;
3416 unsigned int slot_id;
3417 struct xhci_virt_device *virt_dev;
3418 struct xhci_command *reset_device_cmd;
3419 int timeleft;
3420 int last_freed_endpoint;
3421 struct xhci_slot_ctx *slot_ctx;
3422 int old_active_eps = 0;
3423
3424 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3425 if (ret <= 0)
3426 return ret;
3427 xhci = hcd_to_xhci(hcd);
3428 slot_id = udev->slot_id;
3429 virt_dev = xhci->devs[slot_id];
3430 if (!virt_dev) {
3431 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3432 "not exist. Re-allocate the device\n", slot_id);
3433 ret = xhci_alloc_dev(hcd, udev);
3434 if (ret == 1)
3435 return 0;
3436 else
3437 return -EINVAL;
3438 }
3439
3440 if (virt_dev->udev != udev) {
3441 /* If the virt_dev and the udev does not match, this virt_dev
3442 * may belong to another udev.
3443 * Re-allocate the device.
3444 */
3445 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3446 "not match the udev. Re-allocate the device\n",
3447 slot_id);
3448 ret = xhci_alloc_dev(hcd, udev);
3449 if (ret == 1)
3450 return 0;
3451 else
3452 return -EINVAL;
3453 }
3454
3455 /* If device is not setup, there is no point in resetting it */
3456 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3457 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3458 SLOT_STATE_DISABLED)
3459 return 0;
3460
3461 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3462 /* Allocate the command structure that holds the struct completion.
3463 * Assume we're in process context, since the normal device reset
3464 * process has to wait for the device anyway. Storage devices are
3465 * reset as part of error handling, so use GFP_NOIO instead of
3466 * GFP_KERNEL.
3467 */
3468 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3469 if (!reset_device_cmd) {
3470 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3471 return -ENOMEM;
3472 }
3473
3474 /* Attempt to submit the Reset Device command to the command ring */
3475 spin_lock_irqsave(&xhci->lock, flags);
3476 reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3477
3478 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3479 ret = xhci_queue_reset_device(xhci, slot_id);
3480 if (ret) {
3481 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3482 list_del(&reset_device_cmd->cmd_list);
3483 spin_unlock_irqrestore(&xhci->lock, flags);
3484 goto command_cleanup;
3485 }
3486 xhci_ring_cmd_db(xhci);
3487 spin_unlock_irqrestore(&xhci->lock, flags);
3488
3489 /* Wait for the Reset Device command to finish */
3490 timeleft = wait_for_completion_interruptible_timeout(
3491 reset_device_cmd->completion,
3492 XHCI_CMD_DEFAULT_TIMEOUT);
3493 if (timeleft <= 0) {
3494 xhci_warn(xhci, "%s while waiting for reset device command\n",
3495 timeleft == 0 ? "Timeout" : "Signal");
3496 spin_lock_irqsave(&xhci->lock, flags);
3497 /* The timeout might have raced with the event ring handler, so
3498 * only delete from the list if the item isn't poisoned.
3499 */
3500 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3501 list_del(&reset_device_cmd->cmd_list);
3502 spin_unlock_irqrestore(&xhci->lock, flags);
3503 ret = -ETIME;
3504 goto command_cleanup;
3505 }
3506
3507 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3508 * unless we tried to reset a slot ID that wasn't enabled,
3509 * or the device wasn't in the addressed or configured state.
3510 */
3511 ret = reset_device_cmd->status;
3512 switch (ret) {
3513 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3514 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3515 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3516 slot_id,
3517 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3518 xhci_dbg(xhci, "Not freeing device rings.\n");
3519 /* Don't treat this as an error. May change my mind later. */
3520 ret = 0;
3521 goto command_cleanup;
3522 case COMP_SUCCESS:
3523 xhci_dbg(xhci, "Successful reset device command.\n");
3524 break;
3525 default:
3526 if (xhci_is_vendor_info_code(xhci, ret))
3527 break;
3528 xhci_warn(xhci, "Unknown completion code %u for "
3529 "reset device command.\n", ret);
3530 ret = -EINVAL;
3531 goto command_cleanup;
3532 }
3533
3534 /* Free up host controller endpoint resources */
3535 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3536 spin_lock_irqsave(&xhci->lock, flags);
3537 /* Don't delete the default control endpoint resources */
3538 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3539 spin_unlock_irqrestore(&xhci->lock, flags);
3540 }
3541
3542 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3543 last_freed_endpoint = 1;
3544 for (i = 1; i < 31; ++i) {
3545 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3546
3547 if (ep->ep_state & EP_HAS_STREAMS) {
3548 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3549 xhci_get_endpoint_address(i));
3550 xhci_free_stream_info(xhci, ep->stream_info);
3551 ep->stream_info = NULL;
3552 ep->ep_state &= ~EP_HAS_STREAMS;
3553 }
3554
3555 if (ep->ring) {
3556 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3557 last_freed_endpoint = i;
3558 }
3559 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3560 xhci_drop_ep_from_interval_table(xhci,
3561 &virt_dev->eps[i].bw_info,
3562 virt_dev->bw_table,
3563 udev,
3564 &virt_dev->eps[i],
3565 virt_dev->tt_info);
3566 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3567 }
3568 /* If necessary, update the number of active TTs on this root port */
3569 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3570
3571 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3572 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3573 ret = 0;
3574
3575command_cleanup:
3576 xhci_free_command(xhci, reset_device_cmd);
3577 return ret;
3578}
3579
3580/*
3581 * At this point, the struct usb_device is about to go away, the device has
3582 * disconnected, and all traffic has been stopped and the endpoints have been
3583 * disabled. Free any HC data structures associated with that device.
3584 */
3585void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3586{
3587 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3588 struct xhci_virt_device *virt_dev;
3589 unsigned long flags;
3590 u32 state;
3591 int i, ret;
3592
3593#ifndef CONFIG_USB_DEFAULT_PERSIST
3594 /*
3595 * We called pm_runtime_get_noresume when the device was attached.
3596 * Decrement the counter here to allow controller to runtime suspend
3597 * if no devices remain.
3598 */
3599 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3600 pm_runtime_put_noidle(hcd->self.controller);
3601#endif
3602
3603 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3604 /* If the host is halted due to driver unload, we still need to free the
3605 * device.
3606 */
3607 if (ret <= 0 && ret != -ENODEV)
3608 return;
3609
3610 virt_dev = xhci->devs[udev->slot_id];
3611
3612 /* Stop any wayward timer functions (which may grab the lock) */
3613 for (i = 0; i < 31; ++i) {
3614 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3615 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3616 }
3617
3618 spin_lock_irqsave(&xhci->lock, flags);
3619 /* Don't disable the slot if the host controller is dead. */
3620 state = readl(&xhci->op_regs->status);
3621 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3622 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3623 xhci_free_virt_device(xhci, udev->slot_id);
3624 spin_unlock_irqrestore(&xhci->lock, flags);
3625 return;
3626 }
3627
3628 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3629 spin_unlock_irqrestore(&xhci->lock, flags);
3630 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3631 return;
3632 }
3633 xhci_ring_cmd_db(xhci);
3634 spin_unlock_irqrestore(&xhci->lock, flags);
3635 /*
3636 * Event command completion handler will free any data structures
3637 * associated with the slot. XXX Can free sleep?
3638 */
3639}
3640
3641/*
3642 * Checks if we have enough host controller resources for the default control
3643 * endpoint.
3644 *
3645 * Must be called with xhci->lock held.
3646 */
3647static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3648{
3649 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3650 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3651 "Not enough ep ctxs: "
3652 "%u active, need to add 1, limit is %u.",
3653 xhci->num_active_eps, xhci->limit_active_eps);
3654 return -ENOMEM;
3655 }
3656 xhci->num_active_eps += 1;
3657 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3658 "Adding 1 ep ctx, %u now active.",
3659 xhci->num_active_eps);
3660 return 0;
3661}
3662
3663
3664/*
3665 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3666 * timed out, or allocating memory failed. Returns 1 on success.
3667 */
3668int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3669{
3670 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3671 unsigned long flags;
3672 int timeleft;
3673 int ret;
3674 union xhci_trb *cmd_trb;
3675
3676 spin_lock_irqsave(&xhci->lock, flags);
3677 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3678 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3679 if (ret) {
3680 spin_unlock_irqrestore(&xhci->lock, flags);
3681 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3682 return 0;
3683 }
3684 xhci_ring_cmd_db(xhci);
3685 spin_unlock_irqrestore(&xhci->lock, flags);
3686
3687 /* XXX: how much time for xHC slot assignment? */
3688 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3689 XHCI_CMD_DEFAULT_TIMEOUT);
3690 if (timeleft <= 0) {
3691 xhci_warn(xhci, "%s while waiting for a slot\n",
3692 timeleft == 0 ? "Timeout" : "Signal");
3693 /* cancel the enable slot request */
3694 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3695 }
3696
3697 if (!xhci->slot_id) {
3698 xhci_err(xhci, "Error while assigning device slot ID\n");
3699 return 0;
3700 }
3701
3702 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3703 spin_lock_irqsave(&xhci->lock, flags);
3704 ret = xhci_reserve_host_control_ep_resources(xhci);
3705 if (ret) {
3706 spin_unlock_irqrestore(&xhci->lock, flags);
3707 xhci_warn(xhci, "Not enough host resources, "
3708 "active endpoint contexts = %u\n",
3709 xhci->num_active_eps);
3710 goto disable_slot;
3711 }
3712 spin_unlock_irqrestore(&xhci->lock, flags);
3713 }
3714 /* Use GFP_NOIO, since this function can be called from
3715 * xhci_discover_or_reset_device(), which may be called as part of
3716 * mass storage driver error handling.
3717 */
3718 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3719 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3720 goto disable_slot;
3721 }
3722 udev->slot_id = xhci->slot_id;
3723
3724#ifndef CONFIG_USB_DEFAULT_PERSIST
3725 /*
3726 * If resetting upon resume, we can't put the controller into runtime
3727 * suspend if there is a device attached.
3728 */
3729 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3730 pm_runtime_get_noresume(hcd->self.controller);
3731#endif
3732
3733 /* Is this a LS or FS device under a HS hub? */
3734 /* Hub or peripherial? */
3735 return 1;
3736
3737disable_slot:
3738 /* Disable slot, if we can do it without mem alloc */
3739 spin_lock_irqsave(&xhci->lock, flags);
3740 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3741 xhci_ring_cmd_db(xhci);
3742 spin_unlock_irqrestore(&xhci->lock, flags);
3743 return 0;
3744}
3745
3746/*
3747 * Issue an Address Device command and optionally send a corresponding
3748 * SetAddress request to the device.
3749 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3750 * we should only issue and wait on one address command at the same time.
3751 */
3752static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3753 enum xhci_setup_dev setup)
3754{
3755 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3756 unsigned long flags;
3757 int timeleft;
3758 struct xhci_virt_device *virt_dev;
3759 int ret = 0;
3760 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3761 struct xhci_slot_ctx *slot_ctx;
3762 struct xhci_input_control_ctx *ctrl_ctx;
3763 u64 temp_64;
3764 union xhci_trb *cmd_trb;
3765
3766 if (!udev->slot_id) {
3767 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3768 "Bad Slot ID %d", udev->slot_id);
3769 return -EINVAL;
3770 }
3771
3772 virt_dev = xhci->devs[udev->slot_id];
3773
3774 if (WARN_ON(!virt_dev)) {
3775 /*
3776 * In plug/unplug torture test with an NEC controller,
3777 * a zero-dereference was observed once due to virt_dev = 0.
3778 * Print useful debug rather than crash if it is observed again!
3779 */
3780 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3781 udev->slot_id);
3782 return -EINVAL;
3783 }
3784
3785 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3786 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3787 if (!ctrl_ctx) {
3788 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3789 __func__);
3790 return -EINVAL;
3791 }
3792 /*
3793 * If this is the first Set Address since device plug-in or
3794 * virt_device realloaction after a resume with an xHCI power loss,
3795 * then set up the slot context.
3796 */
3797 if (!slot_ctx->dev_info)
3798 xhci_setup_addressable_virt_dev(xhci, udev);
3799 /* Otherwise, update the control endpoint ring enqueue pointer. */
3800 else
3801 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3802 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3803 ctrl_ctx->drop_flags = 0;
3804
3805 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3806 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3807 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3808 le32_to_cpu(slot_ctx->dev_info) >> 27);
3809
3810 spin_lock_irqsave(&xhci->lock, flags);
3811 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3812 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3813 udev->slot_id, setup);
3814 if (ret) {
3815 spin_unlock_irqrestore(&xhci->lock, flags);
3816 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3817 "FIXME: allocate a command ring segment");
3818 return ret;
3819 }
3820 xhci_ring_cmd_db(xhci);
3821 spin_unlock_irqrestore(&xhci->lock, flags);
3822
3823 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3824 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3825 XHCI_CMD_DEFAULT_TIMEOUT);
3826 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3827 * the SetAddress() "recovery interval" required by USB and aborting the
3828 * command on a timeout.
3829 */
3830 if (timeleft <= 0) {
3831 xhci_warn(xhci, "%s while waiting for setup %s command\n",
3832 timeleft == 0 ? "Timeout" : "Signal", act);
3833 /* cancel the address device command */
3834 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3835 if (ret < 0)
3836 return ret;
3837 return -ETIME;
3838 }
3839
3840 switch (virt_dev->cmd_status) {
3841 case COMP_CTX_STATE:
3842 case COMP_EBADSLT:
3843 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3844 act, udev->slot_id);
3845 ret = -EINVAL;
3846 break;
3847 case COMP_TX_ERR:
3848 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3849 ret = -EPROTO;
3850 break;
3851 case COMP_DEV_ERR:
3852 dev_warn(&udev->dev,
3853 "ERROR: Incompatible device for setup %s command\n", act);
3854 ret = -ENODEV;
3855 break;
3856 case COMP_SUCCESS:
3857 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3858 "Successful setup %s command", act);
3859 break;
3860 default:
3861 xhci_err(xhci,
3862 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3863 act, virt_dev->cmd_status);
3864 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3865 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3866 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3867 ret = -EINVAL;
3868 break;
3869 }
3870 if (ret) {
3871 return ret;
3872 }
3873 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3874 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3875 "Op regs DCBAA ptr = %#016llx", temp_64);
3876 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3877 "Slot ID %d dcbaa entry @%p = %#016llx",
3878 udev->slot_id,
3879 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3880 (unsigned long long)
3881 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3882 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3883 "Output Context DMA address = %#08llx",
3884 (unsigned long long)virt_dev->out_ctx->dma);
3885 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3886 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3887 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3888 le32_to_cpu(slot_ctx->dev_info) >> 27);
3889 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3890 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3891 /*
3892 * USB core uses address 1 for the roothubs, so we add one to the
3893 * address given back to us by the HC.
3894 */
3895 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3896 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3897 le32_to_cpu(slot_ctx->dev_info) >> 27);
3898 /* Zero the input context control for later use */
3899 ctrl_ctx->add_flags = 0;
3900 ctrl_ctx->drop_flags = 0;
3901
3902 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3903 "Internal device address = %d",
3904 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3905
3906 return 0;
3907}
3908
3909int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3910{
3911 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3912}
3913
3914int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3915{
3916 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3917}
3918
3919/*
3920 * Transfer the port index into real index in the HW port status
3921 * registers. Caculate offset between the port's PORTSC register
3922 * and port status base. Divide the number of per port register
3923 * to get the real index. The raw port number bases 1.
3924 */
3925int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3926{
3927 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3928 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3929 __le32 __iomem *addr;
3930 int raw_port;
3931
3932 if (hcd->speed != HCD_USB3)
3933 addr = xhci->usb2_ports[port1 - 1];
3934 else
3935 addr = xhci->usb3_ports[port1 - 1];
3936
3937 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3938 return raw_port;
3939}
3940
3941/*
3942 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3943 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3944 */
3945static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3946 struct usb_device *udev, u16 max_exit_latency)
3947{
3948 struct xhci_virt_device *virt_dev;
3949 struct xhci_command *command;
3950 struct xhci_input_control_ctx *ctrl_ctx;
3951 struct xhci_slot_ctx *slot_ctx;
3952 unsigned long flags;
3953 int ret;
3954
3955 spin_lock_irqsave(&xhci->lock, flags);
3956 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3957 spin_unlock_irqrestore(&xhci->lock, flags);
3958 return 0;
3959 }
3960
3961 /* Attempt to issue an Evaluate Context command to change the MEL. */
3962 virt_dev = xhci->devs[udev->slot_id];
3963 command = xhci->lpm_command;
3964 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3965 if (!ctrl_ctx) {
3966 spin_unlock_irqrestore(&xhci->lock, flags);
3967 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3968 __func__);
3969 return -ENOMEM;
3970 }
3971
3972 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3973 spin_unlock_irqrestore(&xhci->lock, flags);
3974
3975 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3976 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3977 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3978 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3979
3980 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3981 "Set up evaluate context for LPM MEL change.");
3982 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3983 xhci_dbg_ctx(xhci, command->in_ctx, 0);
3984
3985 /* Issue and wait for the evaluate context command. */
3986 ret = xhci_configure_endpoint(xhci, udev, command,
3987 true, true);
3988 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3989 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3990
3991 if (!ret) {
3992 spin_lock_irqsave(&xhci->lock, flags);
3993 virt_dev->current_mel = max_exit_latency;
3994 spin_unlock_irqrestore(&xhci->lock, flags);
3995 }
3996 return ret;
3997}
3998
3999#ifdef CONFIG_PM_RUNTIME
4000
4001/* BESL to HIRD Encoding array for USB2 LPM */
4002static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4003 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4004
4005/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4006static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4007 struct usb_device *udev)
4008{
4009 int u2del, besl, besl_host;
4010 int besl_device = 0;
4011 u32 field;
4012
4013 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4014 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4015
4016 if (field & USB_BESL_SUPPORT) {
4017 for (besl_host = 0; besl_host < 16; besl_host++) {
4018 if (xhci_besl_encoding[besl_host] >= u2del)
4019 break;
4020 }
4021 /* Use baseline BESL value as default */
4022 if (field & USB_BESL_BASELINE_VALID)
4023 besl_device = USB_GET_BESL_BASELINE(field);
4024 else if (field & USB_BESL_DEEP_VALID)
4025 besl_device = USB_GET_BESL_DEEP(field);
4026 } else {
4027 if (u2del <= 50)
4028 besl_host = 0;
4029 else
4030 besl_host = (u2del - 51) / 75 + 1;
4031 }
4032
4033 besl = besl_host + besl_device;
4034 if (besl > 15)
4035 besl = 15;
4036
4037 return besl;
4038}
4039
4040/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4041static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4042{
4043 u32 field;
4044 int l1;
4045 int besld = 0;
4046 int hirdm = 0;
4047
4048 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4049
4050 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4051 l1 = udev->l1_params.timeout / 256;
4052
4053 /* device has preferred BESLD */
4054 if (field & USB_BESL_DEEP_VALID) {
4055 besld = USB_GET_BESL_DEEP(field);
4056 hirdm = 1;
4057 }
4058
4059 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4060}
4061
4062int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4063 struct usb_device *udev, int enable)
4064{
4065 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4066 __le32 __iomem **port_array;
4067 __le32 __iomem *pm_addr, *hlpm_addr;
4068 u32 pm_val, hlpm_val, field;
4069 unsigned int port_num;
4070 unsigned long flags;
4071 int hird, exit_latency;
4072 int ret;
4073
4074 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4075 !udev->lpm_capable)
4076 return -EPERM;
4077
4078 if (!udev->parent || udev->parent->parent ||
4079 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4080 return -EPERM;
4081
4082 if (udev->usb2_hw_lpm_capable != 1)
4083 return -EPERM;
4084
4085 spin_lock_irqsave(&xhci->lock, flags);
4086
4087 port_array = xhci->usb2_ports;
4088 port_num = udev->portnum - 1;
4089 pm_addr = port_array[port_num] + PORTPMSC;
4090 pm_val = readl(pm_addr);
4091 hlpm_addr = port_array[port_num] + PORTHLPMC;
4092 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4093
4094 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4095 enable ? "enable" : "disable", port_num);
4096
4097 if (enable) {
4098 /* Host supports BESL timeout instead of HIRD */
4099 if (udev->usb2_hw_lpm_besl_capable) {
4100 /* if device doesn't have a preferred BESL value use a
4101 * default one which works with mixed HIRD and BESL
4102 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4103 */
4104 if ((field & USB_BESL_SUPPORT) &&
4105 (field & USB_BESL_BASELINE_VALID))
4106 hird = USB_GET_BESL_BASELINE(field);
4107 else
4108 hird = udev->l1_params.besl;
4109
4110 exit_latency = xhci_besl_encoding[hird];
4111 spin_unlock_irqrestore(&xhci->lock, flags);
4112
4113 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4114 * input context for link powermanagement evaluate
4115 * context commands. It is protected by hcd->bandwidth
4116 * mutex and is shared by all devices. We need to set
4117 * the max ext latency in USB 2 BESL LPM as well, so
4118 * use the same mutex and xhci_change_max_exit_latency()
4119 */
4120 mutex_lock(hcd->bandwidth_mutex);
4121 ret = xhci_change_max_exit_latency(xhci, udev,
4122 exit_latency);
4123 mutex_unlock(hcd->bandwidth_mutex);
4124
4125 if (ret < 0)
4126 return ret;
4127 spin_lock_irqsave(&xhci->lock, flags);
4128
4129 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4130 writel(hlpm_val, hlpm_addr);
4131 /* flush write */
4132 readl(hlpm_addr);
4133 } else {
4134 hird = xhci_calculate_hird_besl(xhci, udev);
4135 }
4136
4137 pm_val &= ~PORT_HIRD_MASK;
4138 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4139 writel(pm_val, pm_addr);
4140 pm_val = readl(pm_addr);
4141 pm_val |= PORT_HLE;
4142 writel(pm_val, pm_addr);
4143 /* flush write */
4144 readl(pm_addr);
4145 } else {
4146 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4147 writel(pm_val, pm_addr);
4148 /* flush write */
4149 readl(pm_addr);
4150 if (udev->usb2_hw_lpm_besl_capable) {
4151 spin_unlock_irqrestore(&xhci->lock, flags);
4152 mutex_lock(hcd->bandwidth_mutex);
4153 xhci_change_max_exit_latency(xhci, udev, 0);
4154 mutex_unlock(hcd->bandwidth_mutex);
4155 return 0;
4156 }
4157 }
4158
4159 spin_unlock_irqrestore(&xhci->lock, flags);
4160 return 0;
4161}
4162
4163/* check if a usb2 port supports a given extened capability protocol
4164 * only USB2 ports extended protocol capability values are cached.
4165 * Return 1 if capability is supported
4166 */
4167static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4168 unsigned capability)
4169{
4170 u32 port_offset, port_count;
4171 int i;
4172
4173 for (i = 0; i < xhci->num_ext_caps; i++) {
4174 if (xhci->ext_caps[i] & capability) {
4175 /* port offsets starts at 1 */
4176 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4177 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4178 if (port >= port_offset &&
4179 port < port_offset + port_count)
4180 return 1;
4181 }
4182 }
4183 return 0;
4184}
4185
4186int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4187{
4188 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4189 int portnum = udev->portnum - 1;
4190
4191 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4192 !udev->lpm_capable)
4193 return 0;
4194
4195 /* we only support lpm for non-hub device connected to root hub yet */
4196 if (!udev->parent || udev->parent->parent ||
4197 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4198 return 0;
4199
4200 if (xhci->hw_lpm_support == 1 &&
4201 xhci_check_usb2_port_capability(
4202 xhci, portnum, XHCI_HLC)) {
4203 udev->usb2_hw_lpm_capable = 1;
4204 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4205 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4206 if (xhci_check_usb2_port_capability(xhci, portnum,
4207 XHCI_BLC))
4208 udev->usb2_hw_lpm_besl_capable = 1;
4209 }
4210
4211 return 0;
4212}
4213
4214#else
4215
4216int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4217 struct usb_device *udev, int enable)
4218{
4219 return 0;
4220}
4221
4222int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4223{
4224 return 0;
4225}
4226
4227#endif /* CONFIG_PM_RUNTIME */
4228
4229/*---------------------- USB 3.0 Link PM functions ------------------------*/
4230
4231#ifdef CONFIG_PM
4232/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4233static unsigned long long xhci_service_interval_to_ns(
4234 struct usb_endpoint_descriptor *desc)
4235{
4236 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4237}
4238
4239static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4240 enum usb3_link_state state)
4241{
4242 unsigned long long sel;
4243 unsigned long long pel;
4244 unsigned int max_sel_pel;
4245 char *state_name;
4246
4247 switch (state) {
4248 case USB3_LPM_U1:
4249 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4250 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4251 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4252 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4253 state_name = "U1";
4254 break;
4255 case USB3_LPM_U2:
4256 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4257 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4258 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4259 state_name = "U2";
4260 break;
4261 default:
4262 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4263 __func__);
4264 return USB3_LPM_DISABLED;
4265 }
4266
4267 if (sel <= max_sel_pel && pel <= max_sel_pel)
4268 return USB3_LPM_DEVICE_INITIATED;
4269
4270 if (sel > max_sel_pel)
4271 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4272 "due to long SEL %llu ms\n",
4273 state_name, sel);
4274 else
4275 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4276 "due to long PEL %llu ms\n",
4277 state_name, pel);
4278 return USB3_LPM_DISABLED;
4279}
4280
4281/* Returns the hub-encoded U1 timeout value.
4282 * The U1 timeout should be the maximum of the following values:
4283 * - For control endpoints, U1 system exit latency (SEL) * 3
4284 * - For bulk endpoints, U1 SEL * 5
4285 * - For interrupt endpoints:
4286 * - Notification EPs, U1 SEL * 3
4287 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4288 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4289 */
4290static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4291 struct usb_endpoint_descriptor *desc)
4292{
4293 unsigned long long timeout_ns;
4294 int ep_type;
4295 int intr_type;
4296
4297 ep_type = usb_endpoint_type(desc);
4298 switch (ep_type) {
4299 case USB_ENDPOINT_XFER_CONTROL:
4300 timeout_ns = udev->u1_params.sel * 3;
4301 break;
4302 case USB_ENDPOINT_XFER_BULK:
4303 timeout_ns = udev->u1_params.sel * 5;
4304 break;
4305 case USB_ENDPOINT_XFER_INT:
4306 intr_type = usb_endpoint_interrupt_type(desc);
4307 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4308 timeout_ns = udev->u1_params.sel * 3;
4309 break;
4310 }
4311 /* Otherwise the calculation is the same as isoc eps */
4312 case USB_ENDPOINT_XFER_ISOC:
4313 timeout_ns = xhci_service_interval_to_ns(desc);
4314 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4315 if (timeout_ns < udev->u1_params.sel * 2)
4316 timeout_ns = udev->u1_params.sel * 2;
4317 break;
4318 default:
4319 return 0;
4320 }
4321
4322 /* The U1 timeout is encoded in 1us intervals. */
4323 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4324 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4325 if (timeout_ns == USB3_LPM_DISABLED)
4326 timeout_ns++;
4327
4328 /* If the necessary timeout value is bigger than what we can set in the
4329 * USB 3.0 hub, we have to disable hub-initiated U1.
4330 */
4331 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4332 return timeout_ns;
4333 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4334 "due to long timeout %llu ms\n", timeout_ns);
4335 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4336}
4337
4338/* Returns the hub-encoded U2 timeout value.
4339 * The U2 timeout should be the maximum of:
4340 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4341 * - largest bInterval of any active periodic endpoint (to avoid going
4342 * into lower power link states between intervals).
4343 * - the U2 Exit Latency of the device
4344 */
4345static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4346 struct usb_endpoint_descriptor *desc)
4347{
4348 unsigned long long timeout_ns;
4349 unsigned long long u2_del_ns;
4350
4351 timeout_ns = 10 * 1000 * 1000;
4352
4353 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4354 (xhci_service_interval_to_ns(desc) > timeout_ns))
4355 timeout_ns = xhci_service_interval_to_ns(desc);
4356
4357 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4358 if (u2_del_ns > timeout_ns)
4359 timeout_ns = u2_del_ns;
4360
4361 /* The U2 timeout is encoded in 256us intervals */
4362 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4363 /* If the necessary timeout value is bigger than what we can set in the
4364 * USB 3.0 hub, we have to disable hub-initiated U2.
4365 */
4366 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4367 return timeout_ns;
4368 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4369 "due to long timeout %llu ms\n", timeout_ns);
4370 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4371}
4372
4373static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4374 struct usb_device *udev,
4375 struct usb_endpoint_descriptor *desc,
4376 enum usb3_link_state state,
4377 u16 *timeout)
4378{
4379 if (state == USB3_LPM_U1) {
4380 if (xhci->quirks & XHCI_INTEL_HOST)
4381 return xhci_calculate_intel_u1_timeout(udev, desc);
4382 } else {
4383 if (xhci->quirks & XHCI_INTEL_HOST)
4384 return xhci_calculate_intel_u2_timeout(udev, desc);
4385 }
4386
4387 return USB3_LPM_DISABLED;
4388}
4389
4390static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4391 struct usb_device *udev,
4392 struct usb_endpoint_descriptor *desc,
4393 enum usb3_link_state state,
4394 u16 *timeout)
4395{
4396 u16 alt_timeout;
4397
4398 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4399 desc, state, timeout);
4400
4401 /* If we found we can't enable hub-initiated LPM, or
4402 * the U1 or U2 exit latency was too high to allow
4403 * device-initiated LPM as well, just stop searching.
4404 */
4405 if (alt_timeout == USB3_LPM_DISABLED ||
4406 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4407 *timeout = alt_timeout;
4408 return -E2BIG;
4409 }
4410 if (alt_timeout > *timeout)
4411 *timeout = alt_timeout;
4412 return 0;
4413}
4414
4415static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4416 struct usb_device *udev,
4417 struct usb_host_interface *alt,
4418 enum usb3_link_state state,
4419 u16 *timeout)
4420{
4421 int j;
4422
4423 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4424 if (xhci_update_timeout_for_endpoint(xhci, udev,
4425 &alt->endpoint[j].desc, state, timeout))
4426 return -E2BIG;
4427 continue;
4428 }
4429 return 0;
4430}
4431
4432static int xhci_check_intel_tier_policy(struct usb_device *udev,
4433 enum usb3_link_state state)
4434{
4435 struct usb_device *parent;
4436 unsigned int num_hubs;
4437
4438 if (state == USB3_LPM_U2)
4439 return 0;
4440
4441 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4442 for (parent = udev->parent, num_hubs = 0; parent->parent;
4443 parent = parent->parent)
4444 num_hubs++;
4445
4446 if (num_hubs < 2)
4447 return 0;
4448
4449 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4450 " below second-tier hub.\n");
4451 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4452 "to decrease power consumption.\n");
4453 return -E2BIG;
4454}
4455
4456static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4457 struct usb_device *udev,
4458 enum usb3_link_state state)
4459{
4460 if (xhci->quirks & XHCI_INTEL_HOST)
4461 return xhci_check_intel_tier_policy(udev, state);
4462 return -EINVAL;
4463}
4464
4465/* Returns the U1 or U2 timeout that should be enabled.
4466 * If the tier check or timeout setting functions return with a non-zero exit
4467 * code, that means the timeout value has been finalized and we shouldn't look
4468 * at any more endpoints.
4469 */
4470static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4471 struct usb_device *udev, enum usb3_link_state state)
4472{
4473 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4474 struct usb_host_config *config;
4475 char *state_name;
4476 int i;
4477 u16 timeout = USB3_LPM_DISABLED;
4478
4479 if (state == USB3_LPM_U1)
4480 state_name = "U1";
4481 else if (state == USB3_LPM_U2)
4482 state_name = "U2";
4483 else {
4484 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4485 state);
4486 return timeout;
4487 }
4488
4489 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4490 return timeout;
4491
4492 /* Gather some information about the currently installed configuration
4493 * and alternate interface settings.
4494 */
4495 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4496 state, &timeout))
4497 return timeout;
4498
4499 config = udev->actconfig;
4500 if (!config)
4501 return timeout;
4502
4503 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4504 struct usb_driver *driver;
4505 struct usb_interface *intf = config->interface[i];
4506
4507 if (!intf)
4508 continue;
4509
4510 /* Check if any currently bound drivers want hub-initiated LPM
4511 * disabled.
4512 */
4513 if (intf->dev.driver) {
4514 driver = to_usb_driver(intf->dev.driver);
4515 if (driver && driver->disable_hub_initiated_lpm) {
4516 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4517 "at request of driver %s\n",
4518 state_name, driver->name);
4519 return xhci_get_timeout_no_hub_lpm(udev, state);
4520 }
4521 }
4522
4523 /* Not sure how this could happen... */
4524 if (!intf->cur_altsetting)
4525 continue;
4526
4527 if (xhci_update_timeout_for_interface(xhci, udev,
4528 intf->cur_altsetting,
4529 state, &timeout))
4530 return timeout;
4531 }
4532 return timeout;
4533}
4534
4535static int calculate_max_exit_latency(struct usb_device *udev,
4536 enum usb3_link_state state_changed,
4537 u16 hub_encoded_timeout)
4538{
4539 unsigned long long u1_mel_us = 0;
4540 unsigned long long u2_mel_us = 0;
4541 unsigned long long mel_us = 0;
4542 bool disabling_u1;
4543 bool disabling_u2;
4544 bool enabling_u1;
4545 bool enabling_u2;
4546
4547 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4548 hub_encoded_timeout == USB3_LPM_DISABLED);
4549 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4550 hub_encoded_timeout == USB3_LPM_DISABLED);
4551
4552 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4553 hub_encoded_timeout != USB3_LPM_DISABLED);
4554 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4555 hub_encoded_timeout != USB3_LPM_DISABLED);
4556
4557 /* If U1 was already enabled and we're not disabling it,
4558 * or we're going to enable U1, account for the U1 max exit latency.
4559 */
4560 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4561 enabling_u1)
4562 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4563 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4564 enabling_u2)
4565 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4566
4567 if (u1_mel_us > u2_mel_us)
4568 mel_us = u1_mel_us;
4569 else
4570 mel_us = u2_mel_us;
4571 /* xHCI host controller max exit latency field is only 16 bits wide. */
4572 if (mel_us > MAX_EXIT) {
4573 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4574 "is too big.\n", mel_us);
4575 return -E2BIG;
4576 }
4577 return mel_us;
4578}
4579
4580/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4581int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4582 struct usb_device *udev, enum usb3_link_state state)
4583{
4584 struct xhci_hcd *xhci;
4585 u16 hub_encoded_timeout;
4586 int mel;
4587 int ret;
4588
4589 xhci = hcd_to_xhci(hcd);
4590 /* The LPM timeout values are pretty host-controller specific, so don't
4591 * enable hub-initiated timeouts unless the vendor has provided
4592 * information about their timeout algorithm.
4593 */
4594 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4595 !xhci->devs[udev->slot_id])
4596 return USB3_LPM_DISABLED;
4597
4598 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4599 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4600 if (mel < 0) {
4601 /* Max Exit Latency is too big, disable LPM. */
4602 hub_encoded_timeout = USB3_LPM_DISABLED;
4603 mel = 0;
4604 }
4605
4606 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4607 if (ret)
4608 return ret;
4609 return hub_encoded_timeout;
4610}
4611
4612int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4613 struct usb_device *udev, enum usb3_link_state state)
4614{
4615 struct xhci_hcd *xhci;
4616 u16 mel;
4617 int ret;
4618
4619 xhci = hcd_to_xhci(hcd);
4620 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4621 !xhci->devs[udev->slot_id])
4622 return 0;
4623
4624 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4625 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4626 if (ret)
4627 return ret;
4628 return 0;
4629}
4630#else /* CONFIG_PM */
4631
4632int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4633 struct usb_device *udev, enum usb3_link_state state)
4634{
4635 return USB3_LPM_DISABLED;
4636}
4637
4638int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4639 struct usb_device *udev, enum usb3_link_state state)
4640{
4641 return 0;
4642}
4643#endif /* CONFIG_PM */
4644
4645/*-------------------------------------------------------------------------*/
4646
4647/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4648 * internal data structures for the device.
4649 */
4650int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4651 struct usb_tt *tt, gfp_t mem_flags)
4652{
4653 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4654 struct xhci_virt_device *vdev;
4655 struct xhci_command *config_cmd;
4656 struct xhci_input_control_ctx *ctrl_ctx;
4657 struct xhci_slot_ctx *slot_ctx;
4658 unsigned long flags;
4659 unsigned think_time;
4660 int ret;
4661
4662 /* Ignore root hubs */
4663 if (!hdev->parent)
4664 return 0;
4665
4666 vdev = xhci->devs[hdev->slot_id];
4667 if (!vdev) {
4668 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4669 return -EINVAL;
4670 }
4671 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4672 if (!config_cmd) {
4673 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4674 return -ENOMEM;
4675 }
4676 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4677 if (!ctrl_ctx) {
4678 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4679 __func__);
4680 xhci_free_command(xhci, config_cmd);
4681 return -ENOMEM;
4682 }
4683
4684 spin_lock_irqsave(&xhci->lock, flags);
4685 if (hdev->speed == USB_SPEED_HIGH &&
4686 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4687 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4688 xhci_free_command(xhci, config_cmd);
4689 spin_unlock_irqrestore(&xhci->lock, flags);
4690 return -ENOMEM;
4691 }
4692
4693 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4694 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4695 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4696 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4697 if (tt->multi)
4698 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4699 if (xhci->hci_version > 0x95) {
4700 xhci_dbg(xhci, "xHCI version %x needs hub "
4701 "TT think time and number of ports\n",
4702 (unsigned int) xhci->hci_version);
4703 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4704 /* Set TT think time - convert from ns to FS bit times.
4705 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4706 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4707 *
4708 * xHCI 1.0: this field shall be 0 if the device is not a
4709 * High-spped hub.
4710 */
4711 think_time = tt->think_time;
4712 if (think_time != 0)
4713 think_time = (think_time / 666) - 1;
4714 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4715 slot_ctx->tt_info |=
4716 cpu_to_le32(TT_THINK_TIME(think_time));
4717 } else {
4718 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4719 "TT think time or number of ports\n",
4720 (unsigned int) xhci->hci_version);
4721 }
4722 slot_ctx->dev_state = 0;
4723 spin_unlock_irqrestore(&xhci->lock, flags);
4724
4725 xhci_dbg(xhci, "Set up %s for hub device.\n",
4726 (xhci->hci_version > 0x95) ?
4727 "configure endpoint" : "evaluate context");
4728 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4729 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4730
4731 /* Issue and wait for the configure endpoint or
4732 * evaluate context command.
4733 */
4734 if (xhci->hci_version > 0x95)
4735 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4736 false, false);
4737 else
4738 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4739 true, false);
4740
4741 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4742 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4743
4744 xhci_free_command(xhci, config_cmd);
4745 return ret;
4746}
4747
4748int xhci_get_frame(struct usb_hcd *hcd)
4749{
4750 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4751 /* EHCI mods by the periodic size. Why? */
4752 return readl(&xhci->run_regs->microframe_index) >> 3;
4753}
4754
4755int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4756{
4757 struct xhci_hcd *xhci;
4758 struct device *dev = hcd->self.controller;
4759 int retval;
4760
4761 /* Accept arbitrarily long scatter-gather lists */
4762 hcd->self.sg_tablesize = ~0;
4763
4764 /* support to build packet from discontinuous buffers */
4765 hcd->self.no_sg_constraint = 1;
4766
4767 /* XHCI controllers don't stop the ep queue on short packets :| */
4768 hcd->self.no_stop_on_short = 1;
4769
4770 if (usb_hcd_is_primary_hcd(hcd)) {
4771 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4772 if (!xhci)
4773 return -ENOMEM;
4774 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4775 xhci->main_hcd = hcd;
4776 /* Mark the first roothub as being USB 2.0.
4777 * The xHCI driver will register the USB 3.0 roothub.
4778 */
4779 hcd->speed = HCD_USB2;
4780 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4781 /*
4782 * USB 2.0 roothub under xHCI has an integrated TT,
4783 * (rate matching hub) as opposed to having an OHCI/UHCI
4784 * companion controller.
4785 */
4786 hcd->has_tt = 1;
4787 } else {
4788 /* xHCI private pointer was set in xhci_pci_probe for the second
4789 * registered roothub.
4790 */
4791 return 0;
4792 }
4793
4794 xhci->cap_regs = hcd->regs;
4795 xhci->op_regs = hcd->regs +
4796 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4797 xhci->run_regs = hcd->regs +
4798 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4799 /* Cache read-only capability registers */
4800 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4801 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4802 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4803 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4804 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4805 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4806 xhci_print_registers(xhci);
4807
4808 xhci->quirks = quirks;
4809
4810 get_quirks(dev, xhci);
4811
4812 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4813 * success event after a short transfer. This quirk will ignore such
4814 * spurious event.
4815 */
4816 if (xhci->hci_version > 0x96)
4817 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4818
4819 /* Make sure the HC is halted. */
4820 retval = xhci_halt(xhci);
4821 if (retval)
4822 goto error;
4823
4824 xhci_dbg(xhci, "Resetting HCD\n");
4825 /* Reset the internal HC memory state and registers. */
4826 retval = xhci_reset(xhci);
4827 if (retval)
4828 goto error;
4829 xhci_dbg(xhci, "Reset complete\n");
4830
4831 /* Set dma_mask and coherent_dma_mask to 64-bits,
4832 * if xHC supports 64-bit addressing */
4833 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4834 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4835 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4836 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4837 }
4838
4839 xhci_dbg(xhci, "Calling HCD init\n");
4840 /* Initialize HCD and host controller data structures. */
4841 retval = xhci_init(hcd);
4842 if (retval)
4843 goto error;
4844 xhci_dbg(xhci, "Called HCD init\n");
4845 return 0;
4846error:
4847 kfree(xhci);
4848 return retval;
4849}
4850
4851MODULE_DESCRIPTION(DRIVER_DESC);
4852MODULE_AUTHOR(DRIVER_AUTHOR);
4853MODULE_LICENSE("GPL");
4854
4855static int __init xhci_hcd_init(void)
4856{
4857 int retval;
4858
4859 retval = xhci_register_pci();
4860 if (retval < 0) {
4861 pr_debug("Problem registering PCI driver.\n");
4862 return retval;
4863 }
4864 retval = xhci_register_plat();
4865 if (retval < 0) {
4866 pr_debug("Problem registering platform driver.\n");
4867 goto unreg_pci;
4868 }
4869 /*
4870 * Check the compiler generated sizes of structures that must be laid
4871 * out in specific ways for hardware access.
4872 */
4873 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4874 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4875 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4876 /* xhci_device_control has eight fields, and also
4877 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4878 */
4879 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4880 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4881 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4882 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4883 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4884 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4885 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4886 return 0;
4887unreg_pci:
4888 xhci_unregister_pci();
4889 return retval;
4890}
4891module_init(xhci_hcd_init);
4892
4893static void __exit xhci_hcd_cleanup(void)
4894{
4895 xhci_unregister_pci();
4896 xhci_unregister_plat();
4897}
4898module_exit(xhci_hcd_cleanup);