Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/pci.h>
  12#include <linux/iopoll.h>
  13#include <linux/irq.h>
  14#include <linux/log2.h>
  15#include <linux/module.h>
  16#include <linux/moduleparam.h>
  17#include <linux/slab.h>
  18#include <linux/dmi.h>
  19#include <linux/dma-mapping.h>
  20
  21#include "xhci.h"
  22#include "xhci-trace.h"
  23#include "xhci-debugfs.h"
  24#include "xhci-dbgcap.h"
  25
  26#define DRIVER_AUTHOR "Sarah Sharp"
  27#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  28
  29#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  30
  31/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  32static int link_quirk;
  33module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  34MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  35
  36static unsigned long long quirks;
  37module_param(quirks, ullong, S_IRUGO);
  38MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  39
  40static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
  41{
  42	struct xhci_segment *seg = ring->first_seg;
  43
  44	if (!td || !td->start_seg)
  45		return false;
  46	do {
  47		if (seg == td->start_seg)
  48			return true;
  49		seg = seg->next;
  50	} while (seg && seg != ring->first_seg);
  51
  52	return false;
  53}
  54
  55/*
  56 * xhci_handshake - spin reading hc until handshake completes or fails
  57 * @ptr: address of hc register to be read
  58 * @mask: bits to look at in result of read
  59 * @done: value of those bits when handshake succeeds
  60 * @usec: timeout in microseconds
  61 *
  62 * Returns negative errno, or zero on success
  63 *
  64 * Success happens when the "mask" bits have the specified value (hardware
  65 * handshake done).  There are two failure modes:  "usec" have passed (major
  66 * hardware flakeout), or the register reads as all-ones (hardware removed).
  67 */
  68int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
 
  69{
  70	u32	result;
  71	int	ret;
  72
  73	ret = readl_poll_timeout_atomic(ptr, result,
  74					(result & mask) == done ||
  75					result == U32_MAX,
  76					1, timeout_us);
  77	if (result == U32_MAX)		/* card removed */
  78		return -ENODEV;
  79
  80	return ret;
 
 
 
 
 
 
 
 
 
 
  81}
  82
  83/*
  84 * Disable interrupts and begin the xHCI halting process.
  85 */
  86void xhci_quiesce(struct xhci_hcd *xhci)
  87{
  88	u32 halted;
  89	u32 cmd;
  90	u32 mask;
  91
  92	mask = ~(XHCI_IRQS);
  93	halted = readl(&xhci->op_regs->status) & STS_HALT;
  94	if (!halted)
  95		mask &= ~CMD_RUN;
  96
  97	cmd = readl(&xhci->op_regs->command);
  98	cmd &= mask;
  99	writel(cmd, &xhci->op_regs->command);
 100}
 101
 102/*
 103 * Force HC into halt state.
 104 *
 105 * Disable any IRQs and clear the run/stop bit.
 106 * HC will complete any current and actively pipelined transactions, and
 107 * should halt within 16 ms of the run/stop bit being cleared.
 108 * Read HC Halted bit in the status register to see when the HC is finished.
 109 */
 110int xhci_halt(struct xhci_hcd *xhci)
 111{
 112	int ret;
 113
 114	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 115	xhci_quiesce(xhci);
 116
 117	ret = xhci_handshake(&xhci->op_regs->status,
 118			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 119	if (ret) {
 120		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 121		return ret;
 122	}
 123
 124	xhci->xhc_state |= XHCI_STATE_HALTED;
 125	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 126
 127	return ret;
 128}
 129
 130/*
 131 * Set the run bit and wait for the host to be running.
 132 */
 133int xhci_start(struct xhci_hcd *xhci)
 134{
 135	u32 temp;
 136	int ret;
 137
 138	temp = readl(&xhci->op_regs->command);
 139	temp |= (CMD_RUN);
 140	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 141			temp);
 142	writel(temp, &xhci->op_regs->command);
 143
 144	/*
 145	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 146	 * running.
 147	 */
 148	ret = xhci_handshake(&xhci->op_regs->status,
 149			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 150	if (ret == -ETIMEDOUT)
 151		xhci_err(xhci, "Host took too long to start, "
 152				"waited %u microseconds.\n",
 153				XHCI_MAX_HALT_USEC);
 154	if (!ret) {
 155		/* clear state flags. Including dying, halted or removing */
 156		xhci->xhc_state = 0;
 157		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
 158	}
 159
 160	return ret;
 161}
 162
 163/*
 164 * Reset a halted HC.
 165 *
 166 * This resets pipelines, timers, counters, state machines, etc.
 167 * Transactions will be terminated immediately, and operational registers
 168 * will be set to their defaults.
 169 */
 170int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
 171{
 172	u32 command;
 173	u32 state;
 174	int ret;
 175
 176	state = readl(&xhci->op_regs->status);
 177
 178	if (state == ~(u32)0) {
 179		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 180		return -ENODEV;
 181	}
 182
 
 183	if ((state & STS_HALT) == 0) {
 184		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 185		return 0;
 186	}
 187
 188	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 189	command = readl(&xhci->op_regs->command);
 190	command |= CMD_RESET;
 191	writel(command, &xhci->op_regs->command);
 192
 193	/* Existing Intel xHCI controllers require a delay of 1 mS,
 194	 * after setting the CMD_RESET bit, and before accessing any
 195	 * HC registers. This allows the HC to complete the
 196	 * reset operation and be ready for HC register access.
 197	 * Without this delay, the subsequent HC register access,
 198	 * may result in a system hang very rarely.
 199	 */
 200	if (xhci->quirks & XHCI_INTEL_HOST)
 201		udelay(1000);
 202
 203	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
 
 204	if (ret)
 205		return ret;
 206
 207	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
 208		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
 209
 210	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 211			 "Wait for controller to be ready for doorbell rings");
 212	/*
 213	 * xHCI cannot write to any doorbells or operational registers other
 214	 * than status until the "Controller Not Ready" flag is cleared.
 215	 */
 216	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
 
 217
 218	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
 219	xhci->usb2_rhub.bus_state.suspended_ports = 0;
 220	xhci->usb2_rhub.bus_state.resuming_ports = 0;
 221	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
 222	xhci->usb3_rhub.bus_state.suspended_ports = 0;
 223	xhci->usb3_rhub.bus_state.resuming_ports = 0;
 224
 225	return ret;
 226}
 227
 228static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
 
 229{
 230	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 231	int err, i;
 232	u64 val;
 233	u32 intrs;
 234
 235	/*
 236	 * Some Renesas controllers get into a weird state if they are
 237	 * reset while programmed with 64bit addresses (they will preserve
 238	 * the top half of the address in internal, non visible
 239	 * registers). You end up with half the address coming from the
 240	 * kernel, and the other half coming from the firmware. Also,
 241	 * changing the programming leads to extra accesses even if the
 242	 * controller is supposed to be halted. The controller ends up with
 243	 * a fatal fault, and is then ripe for being properly reset.
 244	 *
 245	 * Special care is taken to only apply this if the device is behind
 246	 * an iommu. Doing anything when there is no iommu is definitely
 247	 * unsafe...
 248	 */
 249	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
 250		return;
 251
 252	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
 
 253
 254	/* Clear HSEIE so that faults do not get signaled */
 255	val = readl(&xhci->op_regs->command);
 256	val &= ~CMD_HSEIE;
 257	writel(val, &xhci->op_regs->command);
 258
 259	/* Clear HSE (aka FATAL) */
 260	val = readl(&xhci->op_regs->status);
 261	val |= STS_FATAL;
 262	writel(val, &xhci->op_regs->status);
 263
 264	/* Now zero the registers, and brace for impact */
 265	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 266	if (upper_32_bits(val))
 267		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
 268	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 269	if (upper_32_bits(val))
 270		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 271
 272	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
 273		      ARRAY_SIZE(xhci->run_regs->ir_set));
 274
 275	for (i = 0; i < intrs; i++) {
 276		struct xhci_intr_reg __iomem *ir;
 277
 278		ir = &xhci->run_regs->ir_set[i];
 279		val = xhci_read_64(xhci, &ir->erst_base);
 280		if (upper_32_bits(val))
 281			xhci_write_64(xhci, 0, &ir->erst_base);
 282		val= xhci_read_64(xhci, &ir->erst_dequeue);
 283		if (upper_32_bits(val))
 284			xhci_write_64(xhci, 0, &ir->erst_dequeue);
 285	}
 286
 287	/* Wait for the fault to appear. It will be cleared on reset */
 288	err = xhci_handshake(&xhci->op_regs->status,
 289			     STS_FATAL, STS_FATAL,
 290			     XHCI_MAX_HALT_USEC);
 291	if (!err)
 292		xhci_info(xhci, "Fault detected\n");
 293}
 294
 295#ifdef CONFIG_USB_PCI
 296/*
 297 * Set up MSI
 298 */
 299static int xhci_setup_msi(struct xhci_hcd *xhci)
 300{
 301	int ret;
 302	/*
 303	 * TODO:Check with MSI Soc for sysdev
 304	 */
 305	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 306
 307	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
 308	if (ret < 0) {
 309		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 310				"failed to allocate MSI entry");
 311		return ret;
 312	}
 313
 314	ret = request_irq(pdev->irq, xhci_msi_irq,
 315				0, "xhci_hcd", xhci_to_hcd(xhci));
 316	if (ret) {
 317		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 318				"disable MSI interrupt");
 319		pci_free_irq_vectors(pdev);
 320	}
 321
 322	return ret;
 323}
 324
 325/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326 * Set up MSI-X
 327 */
 328static int xhci_setup_msix(struct xhci_hcd *xhci)
 329{
 330	int i, ret;
 331	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 332	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 333
 334	/*
 335	 * calculate number of msi-x vectors supported.
 336	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 337	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 338	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 339	 *   Add additional 1 vector to ensure always available interrupt.
 340	 */
 341	xhci->msix_count = min(num_online_cpus() + 1,
 342				HCS_MAX_INTRS(xhci->hcs_params1));
 343
 344	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
 345			PCI_IRQ_MSIX);
 346	if (ret < 0) {
 347		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 348				"Failed to enable MSI-X");
 349		return ret;
 350	}
 351
 352	for (i = 0; i < xhci->msix_count; i++) {
 353		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
 354				"xhci_hcd", xhci_to_hcd(xhci));
 
 
 
 
 
 
 
 
 
 
 
 
 355		if (ret)
 356			goto disable_msix;
 357	}
 358
 359	hcd->msix_enabled = 1;
 360	return ret;
 361
 362disable_msix:
 363	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 364	while (--i >= 0)
 365		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 366	pci_free_irq_vectors(pdev);
 
 
 367	return ret;
 368}
 369
 370/* Free any IRQs and disable MSI-X */
 371static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 372{
 373	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 374	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 375
 376	if (xhci->quirks & XHCI_PLAT)
 377		return;
 378
 379	/* return if using legacy interrupt */
 380	if (hcd->irq > 0)
 381		return;
 382
 383	if (hcd->msix_enabled) {
 384		int i;
 385
 386		for (i = 0; i < xhci->msix_count; i++)
 387			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 
 
 388	} else {
 389		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
 390	}
 391
 392	pci_free_irq_vectors(pdev);
 393	hcd->msix_enabled = 0;
 
 394}
 395
 396static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 397{
 398	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 399
 400	if (hcd->msix_enabled) {
 401		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 402		int i;
 403
 
 404		for (i = 0; i < xhci->msix_count; i++)
 405			synchronize_irq(pci_irq_vector(pdev, i));
 406	}
 407}
 408
 409static int xhci_try_enable_msi(struct usb_hcd *hcd)
 410{
 411	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 412	struct pci_dev  *pdev;
 413	int ret;
 414
 415	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 416	if (xhci->quirks & XHCI_PLAT)
 417		return 0;
 418
 419	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 420	/*
 421	 * Some Fresco Logic host controllers advertise MSI, but fail to
 422	 * generate interrupts.  Don't even try to enable MSI.
 423	 */
 424	if (xhci->quirks & XHCI_BROKEN_MSI)
 425		goto legacy_irq;
 426
 427	/* unregister the legacy interrupt */
 428	if (hcd->irq)
 429		free_irq(hcd->irq, hcd);
 430	hcd->irq = 0;
 431
 432	ret = xhci_setup_msix(xhci);
 433	if (ret)
 434		/* fall back to msi*/
 435		ret = xhci_setup_msi(xhci);
 436
 437	if (!ret) {
 438		hcd->msi_enabled = 1;
 439		return 0;
 440	}
 441
 442	if (!pdev->irq) {
 443		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 444		return -EINVAL;
 445	}
 446
 447 legacy_irq:
 448	if (!strlen(hcd->irq_descr))
 449		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 450			 hcd->driver->description, hcd->self.busnum);
 451
 452	/* fall back to legacy interrupt*/
 453	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 454			hcd->irq_descr, hcd);
 455	if (ret) {
 456		xhci_err(xhci, "request interrupt %d failed\n",
 457				pdev->irq);
 458		return ret;
 459	}
 460	hcd->irq = pdev->irq;
 461	return 0;
 462}
 463
 464#else
 465
 466static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 467{
 468	return 0;
 469}
 470
 471static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 472{
 473}
 474
 475static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 476{
 477}
 478
 479#endif
 480
 481static void compliance_mode_recovery(struct timer_list *t)
 482{
 483	struct xhci_hcd *xhci;
 484	struct usb_hcd *hcd;
 485	struct xhci_hub *rhub;
 486	u32 temp;
 487	int i;
 488
 489	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
 490	rhub = &xhci->usb3_rhub;
 491	hcd = rhub->hcd;
 492
 493	if (!hcd)
 494		return;
 495
 496	for (i = 0; i < rhub->num_ports; i++) {
 497		temp = readl(rhub->ports[i]->addr);
 498		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 499			/*
 500			 * Compliance Mode Detected. Letting USB Core
 501			 * handle the Warm Reset
 502			 */
 503			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 504					"Compliance mode detected->port %d",
 505					i + 1);
 506			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 507					"Attempting compliance mode recovery");
 508
 509			if (hcd->state == HC_STATE_SUSPENDED)
 510				usb_hcd_resume_root_hub(hcd);
 511
 512			usb_hcd_poll_rh_status(hcd);
 513		}
 514	}
 515
 516	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
 517		mod_timer(&xhci->comp_mode_recovery_timer,
 518			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 519}
 520
 521/*
 522 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 523 * that causes ports behind that hardware to enter compliance mode sometimes.
 524 * The quirk creates a timer that polls every 2 seconds the link state of
 525 * each host controller's port and recovers it by issuing a Warm reset
 526 * if Compliance mode is detected, otherwise the port will become "dead" (no
 527 * device connections or disconnections will be detected anymore). Becasue no
 528 * status event is generated when entering compliance mode (per xhci spec),
 529 * this quirk is needed on systems that have the failing hardware installed.
 530 */
 531static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 532{
 533	xhci->port_status_u0 = 0;
 534	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
 535		    0);
 
 
 536	xhci->comp_mode_recovery_timer.expires = jiffies +
 537			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 538
 
 
 539	add_timer(&xhci->comp_mode_recovery_timer);
 540	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 541			"Compliance mode recovery timer initialized");
 542}
 543
 544/*
 545 * This function identifies the systems that have installed the SN65LVPE502CP
 546 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 547 * Systems:
 548 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 549 */
 550static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 551{
 552	const char *dmi_product_name, *dmi_sys_vendor;
 553
 554	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 555	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 556	if (!dmi_product_name || !dmi_sys_vendor)
 557		return false;
 558
 559	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 560		return false;
 561
 562	if (strstr(dmi_product_name, "Z420") ||
 563			strstr(dmi_product_name, "Z620") ||
 564			strstr(dmi_product_name, "Z820") ||
 565			strstr(dmi_product_name, "Z1 Workstation"))
 566		return true;
 567
 568	return false;
 569}
 570
 571static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 572{
 573	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
 574}
 575
 576
 577/*
 578 * Initialize memory for HCD and xHC (one-time init).
 579 *
 580 * Program the PAGESIZE register, initialize the device context array, create
 581 * device contexts (?), set up a command ring segment (or two?), create event
 582 * ring (one for now).
 583 */
 584static int xhci_init(struct usb_hcd *hcd)
 585{
 586	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 587	int retval;
 588
 589	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 590	spin_lock_init(&xhci->lock);
 591	if (xhci->hci_version == 0x95 && link_quirk) {
 592		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 593				"QUIRK: Not clearing Link TRB chain bits.");
 594		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 595	} else {
 596		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 597				"xHCI doesn't need link TRB QUIRK");
 598	}
 599	retval = xhci_mem_init(xhci, GFP_KERNEL);
 600	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 601
 602	/* Initializing Compliance Mode Recovery Data If Needed */
 603	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 604		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 605		compliance_mode_recovery_timer_init(xhci);
 606	}
 607
 608	return retval;
 609}
 610
 611/*-------------------------------------------------------------------------*/
 612
 613
 614static int xhci_run_finished(struct xhci_hcd *xhci)
 
 615{
 616	unsigned long	flags;
 617	u32		temp;
 
 
 
 
 
 618
 619	/*
 620	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
 621	 * Protect the short window before host is running with a lock
 622	 */
 623	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
 
 
 624
 625	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
 626	temp = readl(&xhci->op_regs->command);
 627	temp |= (CMD_EIE);
 628	writel(temp, &xhci->op_regs->command);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629
 630	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
 631	temp = readl(&xhci->ir_set->irq_pending);
 632	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 
 
 
 633
 
 
 634	if (xhci_start(xhci)) {
 635		xhci_halt(xhci);
 636		spin_unlock_irqrestore(&xhci->lock, flags);
 637		return -ENODEV;
 638	}
 639
 640	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 641
 642	if (xhci->quirks & XHCI_NEC_HOST)
 643		xhci_ring_cmd_db(xhci);
 644
 645	spin_unlock_irqrestore(&xhci->lock, flags);
 646
 647	return 0;
 648}
 649
 650/*
 651 * Start the HC after it was halted.
 652 *
 653 * This function is called by the USB core when the HC driver is added.
 654 * Its opposite is xhci_stop().
 655 *
 656 * xhci_init() must be called once before this function can be called.
 657 * Reset the HC, enable device slot contexts, program DCBAAP, and
 658 * set command ring pointer and event ring pointer.
 659 *
 660 * Setup MSI-X vectors and enable interrupts.
 661 */
 662int xhci_run(struct usb_hcd *hcd)
 663{
 664	u32 temp;
 665	u64 temp_64;
 666	int ret;
 667	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 668
 669	/* Start the xHCI host controller running only after the USB 2.0 roothub
 670	 * is setup.
 671	 */
 672
 673	hcd->uses_new_polling = 1;
 674	if (!usb_hcd_is_primary_hcd(hcd))
 675		return xhci_run_finished(xhci);
 676
 677	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 678
 679	ret = xhci_try_enable_msi(hcd);
 680	if (ret)
 681		return ret;
 682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 684	temp_64 &= ~ERST_PTR_MASK;
 685	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 686			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 687
 688	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 689			"// Set the interrupt modulation register");
 690	temp = readl(&xhci->ir_set->irq_control);
 691	temp &= ~ER_IRQ_INTERVAL_MASK;
 692	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
 693	writel(temp, &xhci->ir_set->irq_control);
 694
 695	if (xhci->quirks & XHCI_NEC_HOST) {
 696		struct xhci_command *command;
 
 
 
 
 697
 698		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
 699		if (!command)
 700			return -ENOMEM;
 
 
 
 701
 702		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 
 703				TRB_TYPE(TRB_NEC_GET_FW));
 704		if (ret)
 705			xhci_free_command(xhci, command);
 706	}
 707	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 708			"Finished %s for main hcd", __func__);
 709
 710	xhci_create_dbc_dev(xhci);
 711
 712	xhci_debugfs_init(xhci);
 
 
 713
 714	if (xhci_has_one_roothub(xhci))
 715		return xhci_run_finished(xhci);
 
 716
 717	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
 
 718
 719	return 0;
 
 
 
 
 
 720}
 721EXPORT_SYMBOL_GPL(xhci_run);
 722
 723/*
 724 * Stop xHCI driver.
 725 *
 726 * This function is called by the USB core when the HC driver is removed.
 727 * Its opposite is xhci_run().
 728 *
 729 * Disable device contexts, disable IRQs, and quiesce the HC.
 730 * Reset the HC, finish any completed transactions, and cleanup memory.
 731 */
 732static void xhci_stop(struct usb_hcd *hcd)
 733{
 734	u32 temp;
 735	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 736
 737	mutex_lock(&xhci->mutex);
 738
 739	/* Only halt host and free memory after both hcds are removed */
 740	if (!usb_hcd_is_primary_hcd(hcd)) {
 741		mutex_unlock(&xhci->mutex);
 742		return;
 743	}
 744
 745	xhci_remove_dbc_dev(xhci);
 746
 747	spin_lock_irq(&xhci->lock);
 748	xhci->xhc_state |= XHCI_STATE_HALTED;
 749	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 
 750	xhci_halt(xhci);
 751	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
 752	spin_unlock_irq(&xhci->lock);
 753
 754	xhci_cleanup_msix(xhci);
 755
 
 
 
 
 
 
 756	/* Deleting Compliance Mode Recovery Timer */
 757	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 758			(!(xhci_all_ports_seen_u0(xhci)))) {
 759		del_timer_sync(&xhci->comp_mode_recovery_timer);
 760		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 761				"%s: compliance mode recovery timer deleted",
 762				__func__);
 763	}
 764
 765	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 766		usb_amd_dev_put();
 767
 768	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 769			"// Disabling event ring interrupts");
 770	temp = readl(&xhci->op_regs->status);
 771	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
 772	temp = readl(&xhci->ir_set->irq_pending);
 773	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 
 774
 775	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 776	xhci_mem_cleanup(xhci);
 777	xhci_debugfs_exit(xhci);
 778	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 779			"xhci_stop completed - status = %x",
 780			readl(&xhci->op_regs->status));
 781	mutex_unlock(&xhci->mutex);
 782}
 783
 784/*
 785 * Shutdown HC (not bus-specific)
 786 *
 787 * This is called when the machine is rebooting or halting.  We assume that the
 788 * machine will be powered off, and the HC's internal state will be reset.
 789 * Don't bother to free memory.
 790 *
 791 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 792 */
 793void xhci_shutdown(struct usb_hcd *hcd)
 794{
 795	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 796
 797	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 798		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
 799
 800	/* Don't poll the roothubs after shutdown. */
 801	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
 802			__func__, hcd->self.busnum);
 803	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 804	del_timer_sync(&hcd->rh_timer);
 805
 806	if (xhci->shared_hcd) {
 807		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 808		del_timer_sync(&xhci->shared_hcd->rh_timer);
 809	}
 810
 811	spin_lock_irq(&xhci->lock);
 812	xhci_halt(xhci);
 813
 814	/*
 815	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
 816	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
 817	 */
 818	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
 819	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
 820		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
 821
 822	spin_unlock_irq(&xhci->lock);
 823
 824	xhci_cleanup_msix(xhci);
 825
 826	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 827			"xhci_shutdown completed - status = %x",
 828			readl(&xhci->op_regs->status));
 829}
 830EXPORT_SYMBOL_GPL(xhci_shutdown);
 831
 832#ifdef CONFIG_PM
 833static void xhci_save_registers(struct xhci_hcd *xhci)
 834{
 835	xhci->s3.command = readl(&xhci->op_regs->command);
 836	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 837	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 838	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 839	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 840	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 841	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 842	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 843	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 844}
 845
 846static void xhci_restore_registers(struct xhci_hcd *xhci)
 847{
 848	writel(xhci->s3.command, &xhci->op_regs->command);
 849	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 850	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 851	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 852	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 853	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 854	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 855	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 856	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 857}
 858
 859static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 860{
 861	u64	val_64;
 862
 863	/* step 2: initialize command ring buffer */
 864	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 865	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 866		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 867				      xhci->cmd_ring->dequeue) &
 868		 (u64) ~CMD_RING_RSVD_BITS) |
 869		xhci->cmd_ring->cycle_state;
 870	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 871			"// Setting command ring address to 0x%llx",
 872			(long unsigned long) val_64);
 873	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 874}
 875
 876/*
 877 * The whole command ring must be cleared to zero when we suspend the host.
 878 *
 879 * The host doesn't save the command ring pointer in the suspend well, so we
 880 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 881 * aligned, because of the reserved bits in the command ring dequeue pointer
 882 * register.  Therefore, we can't just set the dequeue pointer back in the
 883 * middle of the ring (TRBs are 16-byte aligned).
 884 */
 885static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 886{
 887	struct xhci_ring *ring;
 888	struct xhci_segment *seg;
 889
 890	ring = xhci->cmd_ring;
 891	seg = ring->deq_seg;
 892	do {
 893		memset(seg->trbs, 0,
 894			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 895		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 896			cpu_to_le32(~TRB_CYCLE);
 897		seg = seg->next;
 898	} while (seg != ring->deq_seg);
 899
 900	/* Reset the software enqueue and dequeue pointers */
 901	ring->deq_seg = ring->first_seg;
 902	ring->dequeue = ring->first_seg->trbs;
 903	ring->enq_seg = ring->deq_seg;
 904	ring->enqueue = ring->dequeue;
 905
 906	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 907	/*
 908	 * Ring is now zeroed, so the HW should look for change of ownership
 909	 * when the cycle bit is set to 1.
 910	 */
 911	ring->cycle_state = 1;
 912
 913	/*
 914	 * Reset the hardware dequeue pointer.
 915	 * Yes, this will need to be re-written after resume, but we're paranoid
 916	 * and want to make sure the hardware doesn't access bogus memory
 917	 * because, say, the BIOS or an SMI started the host without changing
 918	 * the command ring pointers.
 919	 */
 920	xhci_set_cmd_ring_deq(xhci);
 921}
 922
 923/*
 924 * Disable port wake bits if do_wakeup is not set.
 925 *
 926 * Also clear a possible internal port wake state left hanging for ports that
 927 * detected termination but never successfully enumerated (trained to 0U).
 928 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
 929 * at enumeration clears this wake, force one here as well for unconnected ports
 930 */
 931
 932static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
 933				       struct xhci_hub *rhub,
 934				       bool do_wakeup)
 935{
 936	unsigned long flags;
 937	u32 t1, t2, portsc;
 938	int i;
 939
 940	spin_lock_irqsave(&xhci->lock, flags);
 941
 942	for (i = 0; i < rhub->num_ports; i++) {
 943		portsc = readl(rhub->ports[i]->addr);
 944		t1 = xhci_port_state_to_neutral(portsc);
 945		t2 = t1;
 946
 947		/* clear wake bits if do_wake is not set */
 948		if (!do_wakeup)
 949			t2 &= ~PORT_WAKE_BITS;
 950
 951		/* Don't touch csc bit if connected or connect change is set */
 952		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
 953			t2 |= PORT_CSC;
 954
 955		if (t1 != t2) {
 956			writel(t2, rhub->ports[i]->addr);
 957			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
 958				 rhub->hcd->self.busnum, i + 1, portsc, t2);
 959		}
 960	}
 961	spin_unlock_irqrestore(&xhci->lock, flags);
 962}
 963
 964static bool xhci_pending_portevent(struct xhci_hcd *xhci)
 965{
 966	struct xhci_port	**ports;
 967	int			port_index;
 968	u32			status;
 969	u32			portsc;
 970
 971	status = readl(&xhci->op_regs->status);
 972	if (status & STS_EINT)
 973		return true;
 974	/*
 975	 * Checking STS_EINT is not enough as there is a lag between a change
 976	 * bit being set and the Port Status Change Event that it generated
 977	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
 978	 */
 979
 980	port_index = xhci->usb2_rhub.num_ports;
 981	ports = xhci->usb2_rhub.ports;
 982	while (port_index--) {
 983		portsc = readl(ports[port_index]->addr);
 984		if (portsc & PORT_CHANGE_MASK ||
 985		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 986			return true;
 987	}
 988	port_index = xhci->usb3_rhub.num_ports;
 989	ports = xhci->usb3_rhub.ports;
 990	while (port_index--) {
 991		portsc = readl(ports[port_index]->addr);
 992		if (portsc & PORT_CHANGE_MASK ||
 993		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 994			return true;
 995	}
 996	return false;
 997}
 998
 999/*
1000 * Stop HC (not bus-specific)
1001 *
1002 * This is called when the machine transition into S3/S4 mode.
1003 *
1004 */
1005int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
1006{
1007	int			rc = 0;
1008	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
1009	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1010	u32			command;
1011	u32			res;
1012
1013	if (!hcd->state)
1014		return 0;
1015
1016	if (hcd->state != HC_STATE_SUSPENDED ||
1017	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
1018		return -EINVAL;
1019
1020	/* Clear root port wake on bits if wakeup not allowed. */
1021	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1022	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1023
1024	if (!HCD_HW_ACCESSIBLE(hcd))
1025		return 0;
1026
1027	xhci_dbc_suspend(xhci);
1028
1029	/* Don't poll the roothubs on bus suspend. */
1030	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1031		 __func__, hcd->self.busnum);
1032	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1033	del_timer_sync(&hcd->rh_timer);
1034	if (xhci->shared_hcd) {
1035		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1036		del_timer_sync(&xhci->shared_hcd->rh_timer);
1037	}
1038
1039	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1040		usleep_range(1000, 1500);
1041
1042	spin_lock_irq(&xhci->lock);
1043	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1044	if (xhci->shared_hcd)
1045		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1046	/* step 1: stop endpoint */
1047	/* skipped assuming that port suspend has done */
1048
1049	/* step 2: clear Run/Stop bit */
1050	command = readl(&xhci->op_regs->command);
1051	command &= ~CMD_RUN;
1052	writel(command, &xhci->op_regs->command);
1053
1054	/* Some chips from Fresco Logic need an extraordinary delay */
1055	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1056
1057	if (xhci_handshake(&xhci->op_regs->status,
1058		      STS_HALT, STS_HALT, delay)) {
1059		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1060		spin_unlock_irq(&xhci->lock);
1061		return -ETIMEDOUT;
1062	}
1063	xhci_clear_command_ring(xhci);
1064
1065	/* step 3: save registers */
1066	xhci_save_registers(xhci);
1067
1068	/* step 4: set CSS flag */
1069	command = readl(&xhci->op_regs->command);
1070	command |= CMD_CSS;
1071	writel(command, &xhci->op_regs->command);
1072	xhci->broken_suspend = 0;
1073	if (xhci_handshake(&xhci->op_regs->status,
1074				STS_SAVE, 0, 20 * 1000)) {
1075	/*
1076	 * AMD SNPS xHC 3.0 occasionally does not clear the
1077	 * SSS bit of USBSTS and when driver tries to poll
1078	 * to see if the xHC clears BIT(8) which never happens
1079	 * and driver assumes that controller is not responding
1080	 * and times out. To workaround this, its good to check
1081	 * if SRE and HCE bits are not set (as per xhci
1082	 * Section 5.4.2) and bypass the timeout.
1083	 */
1084		res = readl(&xhci->op_regs->status);
1085		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1086		    (((res & STS_SRE) == 0) &&
1087				((res & STS_HCE) == 0))) {
1088			xhci->broken_suspend = 1;
1089		} else {
1090			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1091			spin_unlock_irq(&xhci->lock);
1092			return -ETIMEDOUT;
1093		}
1094	}
1095	spin_unlock_irq(&xhci->lock);
1096
1097	/*
1098	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1099	 * is about to be suspended.
1100	 */
1101	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1102			(!(xhci_all_ports_seen_u0(xhci)))) {
1103		del_timer_sync(&xhci->comp_mode_recovery_timer);
1104		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1105				"%s: compliance mode recovery timer deleted",
1106				__func__);
1107	}
1108
1109	/* step 5: remove core well power */
1110	/* synchronize irq when using MSI-X */
1111	xhci_msix_sync_irqs(xhci);
1112
1113	return rc;
1114}
1115EXPORT_SYMBOL_GPL(xhci_suspend);
1116
1117/*
1118 * start xHC (not bus-specific)
1119 *
1120 * This is called when the machine transition from S3/S4 mode.
1121 *
1122 */
1123int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1124{
1125	u32			command, temp = 0;
1126	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 
1127	int			retval = 0;
1128	bool			comp_timer_running = false;
1129	bool			pending_portevent = false;
1130	bool			reinit_xhc = false;
1131
1132	if (!hcd->state)
1133		return 0;
1134
1135	/* Wait a bit if either of the roothubs need to settle from the
1136	 * transition into bus suspend.
1137	 */
1138
1139	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1140	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1141		msleep(100);
1142
1143	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1144	if (xhci->shared_hcd)
1145		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1146
1147	spin_lock_irq(&xhci->lock);
 
 
1148
1149	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1150		reinit_xhc = true;
1151
1152	if (!reinit_xhc) {
1153		/*
1154		 * Some controllers might lose power during suspend, so wait
1155		 * for controller not ready bit to clear, just as in xHC init.
1156		 */
1157		retval = xhci_handshake(&xhci->op_regs->status,
1158					STS_CNR, 0, 10 * 1000 * 1000);
1159		if (retval) {
1160			xhci_warn(xhci, "Controller not ready at resume %d\n",
1161				  retval);
1162			spin_unlock_irq(&xhci->lock);
1163			return retval;
1164		}
1165		/* step 1: restore register */
1166		xhci_restore_registers(xhci);
1167		/* step 2: initialize command ring buffer */
1168		xhci_set_cmd_ring_deq(xhci);
1169		/* step 3: restore state and start state*/
1170		/* step 3: set CRS flag */
1171		command = readl(&xhci->op_regs->command);
1172		command |= CMD_CRS;
1173		writel(command, &xhci->op_regs->command);
1174		/*
1175		 * Some controllers take up to 55+ ms to complete the controller
1176		 * restore so setting the timeout to 100ms. Xhci specification
1177		 * doesn't mention any timeout value.
1178		 */
1179		if (xhci_handshake(&xhci->op_regs->status,
1180			      STS_RESTORE, 0, 100 * 1000)) {
1181			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1182			spin_unlock_irq(&xhci->lock);
1183			return -ETIMEDOUT;
1184		}
 
1185	}
1186
1187	temp = readl(&xhci->op_regs->status);
1188
1189	/* re-initialize the HC on Restore Error, or Host Controller Error */
1190	if (temp & (STS_SRE | STS_HCE)) {
1191		reinit_xhc = true;
1192		if (!xhci->broken_suspend)
1193			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1194	}
1195
1196	if (reinit_xhc) {
1197		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1198				!(xhci_all_ports_seen_u0(xhci))) {
1199			del_timer_sync(&xhci->comp_mode_recovery_timer);
1200			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1201				"Compliance Mode Recovery Timer deleted!");
1202		}
1203
1204		/* Let the USB core know _both_ roothubs lost power. */
1205		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1206		if (xhci->shared_hcd)
1207			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1208
1209		xhci_dbg(xhci, "Stop HCD\n");
1210		xhci_halt(xhci);
1211		xhci_zero_64b_regs(xhci);
1212		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1213		spin_unlock_irq(&xhci->lock);
1214		if (retval)
1215			return retval;
1216		xhci_cleanup_msix(xhci);
1217
 
 
 
 
 
 
1218		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1219		temp = readl(&xhci->op_regs->status);
1220		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1221		temp = readl(&xhci->ir_set->irq_pending);
1222		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 
 
1223
1224		xhci_dbg(xhci, "cleaning up memory\n");
1225		xhci_mem_cleanup(xhci);
1226		xhci_debugfs_exit(xhci);
1227		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1228			    readl(&xhci->op_regs->status));
1229
1230		/* USB core calls the PCI reinit and start functions twice:
1231		 * first with the primary HCD, and then with the secondary HCD.
1232		 * If we don't do the same, the host will never be started.
1233		 */
 
 
 
 
 
1234		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1235		retval = xhci_init(hcd);
1236		if (retval)
1237			return retval;
1238		comp_timer_running = true;
1239
1240		xhci_dbg(xhci, "Start the primary HCD\n");
1241		retval = xhci_run(hcd);
1242		if (!retval && xhci->shared_hcd) {
1243			xhci_dbg(xhci, "Start the secondary HCD\n");
1244			retval = xhci_run(xhci->shared_hcd);
1245		}
1246
1247		hcd->state = HC_STATE_SUSPENDED;
1248		if (xhci->shared_hcd)
1249			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1250		goto done;
1251	}
1252
1253	/* step 4: set Run/Stop bit */
1254	command = readl(&xhci->op_regs->command);
1255	command |= CMD_RUN;
1256	writel(command, &xhci->op_regs->command);
1257	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1258		  0, 250 * 1000);
1259
1260	/* step 5: walk topology and initialize portsc,
1261	 * portpmsc and portli
1262	 */
1263	/* this is done in bus_resume */
1264
1265	/* step 6: restart each of the previously
1266	 * Running endpoints by ringing their doorbells
1267	 */
1268
1269	spin_unlock_irq(&xhci->lock);
1270
1271	xhci_dbc_resume(xhci);
1272
1273 done:
1274	if (retval == 0) {
1275		/*
1276		 * Resume roothubs only if there are pending events.
1277		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1278		 * the first wake signalling failed, give it that chance.
1279		 */
1280		pending_portevent = xhci_pending_portevent(xhci);
1281		if (!pending_portevent) {
1282			msleep(120);
1283			pending_portevent = xhci_pending_portevent(xhci);
1284		}
1285
1286		if (pending_portevent) {
1287			if (xhci->shared_hcd)
1288				usb_hcd_resume_root_hub(xhci->shared_hcd);
1289			usb_hcd_resume_root_hub(hcd);
1290		}
1291	}
 
1292	/*
1293	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1294	 * be re-initialized Always after a system resume. Ports are subject
1295	 * to suffer the Compliance Mode issue again. It doesn't matter if
1296	 * ports have entered previously to U0 before system's suspension.
1297	 */
1298	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1299		compliance_mode_recovery_timer_init(xhci);
1300
1301	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1302		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1303
1304	/* Re-enable port polling. */
1305	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1306		 __func__, hcd->self.busnum);
1307	if (xhci->shared_hcd) {
1308		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1309		usb_hcd_poll_rh_status(xhci->shared_hcd);
1310	}
1311	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1312	usb_hcd_poll_rh_status(hcd);
1313
1314	return retval;
1315}
1316EXPORT_SYMBOL_GPL(xhci_resume);
1317#endif	/* CONFIG_PM */
1318
1319/*-------------------------------------------------------------------------*/
1320
1321static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1322{
1323	void *temp;
1324	int ret = 0;
1325	unsigned int buf_len;
1326	enum dma_data_direction dir;
1327
1328	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1329	buf_len = urb->transfer_buffer_length;
1330
1331	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1332			    dev_to_node(hcd->self.sysdev));
1333
1334	if (usb_urb_dir_out(urb))
1335		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1336				   temp, buf_len, 0);
1337
1338	urb->transfer_buffer = temp;
1339	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1340					   urb->transfer_buffer,
1341					   urb->transfer_buffer_length,
1342					   dir);
1343
1344	if (dma_mapping_error(hcd->self.sysdev,
1345			      urb->transfer_dma)) {
1346		ret = -EAGAIN;
1347		kfree(temp);
1348	} else {
1349		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1350	}
1351
1352	return ret;
1353}
1354
1355static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1356					  struct urb *urb)
1357{
1358	bool ret = false;
1359	unsigned int i;
1360	unsigned int len = 0;
1361	unsigned int trb_size;
1362	unsigned int max_pkt;
1363	struct scatterlist *sg;
1364	struct scatterlist *tail_sg;
1365
1366	tail_sg = urb->sg;
1367	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1368
1369	if (!urb->num_sgs)
1370		return ret;
1371
1372	if (urb->dev->speed >= USB_SPEED_SUPER)
1373		trb_size = TRB_CACHE_SIZE_SS;
1374	else
1375		trb_size = TRB_CACHE_SIZE_HS;
1376
1377	if (urb->transfer_buffer_length != 0 &&
1378	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1379		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1380			len = len + sg->length;
1381			if (i > trb_size - 2) {
1382				len = len - tail_sg->length;
1383				if (len < max_pkt) {
1384					ret = true;
1385					break;
1386				}
1387
1388				tail_sg = sg_next(tail_sg);
1389			}
1390		}
1391	}
1392	return ret;
1393}
1394
1395static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1396{
1397	unsigned int len;
1398	unsigned int buf_len;
1399	enum dma_data_direction dir;
1400
1401	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1402
1403	buf_len = urb->transfer_buffer_length;
1404
1405	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1406	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1407		dma_unmap_single(hcd->self.sysdev,
1408				 urb->transfer_dma,
1409				 urb->transfer_buffer_length,
1410				 dir);
1411
1412	if (usb_urb_dir_in(urb)) {
1413		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1414					   urb->transfer_buffer,
1415					   buf_len,
1416					   0);
1417		if (len != buf_len) {
1418			xhci_dbg(hcd_to_xhci(hcd),
1419				 "Copy from tmp buf to urb sg list failed\n");
1420			urb->actual_length = len;
1421		}
1422	}
1423	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1424	kfree(urb->transfer_buffer);
1425	urb->transfer_buffer = NULL;
1426}
1427
1428/*
1429 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1430 * we'll copy the actual data into the TRB address register. This is limited to
1431 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1432 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1433 */
1434static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1435				gfp_t mem_flags)
1436{
1437	struct xhci_hcd *xhci;
1438
1439	xhci = hcd_to_xhci(hcd);
1440
1441	if (xhci_urb_suitable_for_idt(urb))
1442		return 0;
1443
1444	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1445		if (xhci_urb_temp_buffer_required(hcd, urb))
1446			return xhci_map_temp_buffer(hcd, urb);
1447	}
1448	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1449}
1450
1451static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1452{
1453	struct xhci_hcd *xhci;
1454	bool unmap_temp_buf = false;
1455
1456	xhci = hcd_to_xhci(hcd);
1457
1458	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1459		unmap_temp_buf = true;
1460
1461	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1462		xhci_unmap_temp_buf(hcd, urb);
1463	else
1464		usb_hcd_unmap_urb_for_dma(hcd, urb);
1465}
1466
1467/**
1468 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1469 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1470 * value to right shift 1 for the bitmask.
1471 *
1472 * Index  = (epnum * 2) + direction - 1,
1473 * where direction = 0 for OUT, 1 for IN.
1474 * For control endpoints, the IN index is used (OUT index is unused), so
1475 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1476 */
1477unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1478{
1479	unsigned int index;
1480	if (usb_endpoint_xfer_control(desc))
1481		index = (unsigned int) (usb_endpoint_num(desc)*2);
1482	else
1483		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1484			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1485	return index;
1486}
1487EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1488
1489/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1490 * address from the XHCI endpoint index.
 
1491 */
1492static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1493{
1494	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1495	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1496	return direction | number;
1497}
1498
1499/* Find the flag for this endpoint (for use in the control context).  Use the
1500 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1501 * bit 1, etc.
1502 */
1503static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1504{
1505	return 1 << (xhci_get_endpoint_index(desc) + 1);
1506}
1507
1508/* Compute the last valid endpoint context index.  Basically, this is the
1509 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1510 * we find the most significant bit set in the added contexts flags.
1511 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1512 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1513 */
1514unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1515{
1516	return fls(added_ctxs) - 1;
1517}
1518
1519/* Returns 1 if the arguments are OK;
1520 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1521 */
1522static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1523		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1524		const char *func) {
1525	struct xhci_hcd	*xhci;
1526	struct xhci_virt_device	*virt_dev;
1527
1528	if (!hcd || (check_ep && !ep) || !udev) {
1529		pr_debug("xHCI %s called with invalid args\n", func);
 
1530		return -EINVAL;
1531	}
1532	if (!udev->parent) {
1533		pr_debug("xHCI %s called for root hub\n", func);
 
1534		return 0;
1535	}
1536
1537	xhci = hcd_to_xhci(hcd);
 
 
 
1538	if (check_virt_dev) {
1539		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1540			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1541					func);
1542			return -EINVAL;
1543		}
1544
1545		virt_dev = xhci->devs[udev->slot_id];
1546		if (virt_dev->udev != udev) {
1547			xhci_dbg(xhci, "xHCI %s called with udev and "
1548					  "virt_dev does not match\n", func);
1549			return -EINVAL;
1550		}
1551	}
1552
1553	if (xhci->xhc_state & XHCI_STATE_HALTED)
1554		return -ENODEV;
1555
1556	return 1;
1557}
1558
1559static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1560		struct usb_device *udev, struct xhci_command *command,
1561		bool ctx_change, bool must_succeed);
1562
1563/*
1564 * Full speed devices may have a max packet size greater than 8 bytes, but the
1565 * USB core doesn't know that until it reads the first 8 bytes of the
1566 * descriptor.  If the usb_device's max packet size changes after that point,
1567 * we need to issue an evaluate context command and wait on it.
1568 */
1569static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1570		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1571{
 
1572	struct xhci_container_ctx *out_ctx;
1573	struct xhci_input_control_ctx *ctrl_ctx;
1574	struct xhci_ep_ctx *ep_ctx;
1575	struct xhci_command *command;
1576	int max_packet_size;
1577	int hw_max_packet_size;
1578	int ret = 0;
1579
1580	out_ctx = xhci->devs[slot_id]->out_ctx;
1581	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1582	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1583	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1584	if (hw_max_packet_size != max_packet_size) {
1585		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1586				"Max Packet Size for ep 0 changed.");
1587		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1588				"Max packet size in usb_device = %d",
1589				max_packet_size);
1590		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1591				"Max packet size in xHCI HW = %d",
1592				hw_max_packet_size);
1593		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1594				"Issuing evaluate context command.");
1595
1596		/* Set up the input context flags for the command */
1597		/* FIXME: This won't work if a non-default control endpoint
1598		 * changes max packet sizes.
1599		 */
1600
1601		command = xhci_alloc_command(xhci, true, mem_flags);
1602		if (!command)
1603			return -ENOMEM;
1604
1605		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1606		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1607		if (!ctrl_ctx) {
1608			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1609					__func__);
1610			ret = -ENOMEM;
1611			goto command_cleanup;
1612		}
1613		/* Set up the modified control endpoint 0 */
1614		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1615				xhci->devs[slot_id]->out_ctx, ep_index);
1616
1617		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1618		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1619		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1620		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1621
 
 
 
 
 
1622		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1623		ctrl_ctx->drop_flags = 0;
1624
1625		ret = xhci_configure_endpoint(xhci, urb->dev, command,
 
 
 
 
 
1626				true, false);
1627
1628		/* Clean up the input context for later use by bandwidth
1629		 * functions.
1630		 */
1631		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1632command_cleanup:
1633		kfree(command->completion);
1634		kfree(command);
1635	}
1636	return ret;
1637}
1638
1639/*
1640 * non-error returns are a promise to giveback() the urb later
1641 * we drop ownership so next owner (or urb unlink) can get it
1642 */
1643static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1644{
1645	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
1646	unsigned long flags;
1647	int ret = 0;
1648	unsigned int slot_id, ep_index;
1649	unsigned int *ep_state;
1650	struct urb_priv	*urb_priv;
1651	int num_tds;
1652
1653	if (!urb)
 
1654		return -EINVAL;
1655	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1656					true, true, __func__);
1657	if (ret <= 0)
1658		return ret ? ret : -EINVAL;
1659
1660	slot_id = urb->dev->slot_id;
1661	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1662	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1663
1664	if (!HCD_HW_ACCESSIBLE(hcd))
1665		return -ESHUTDOWN;
1666
1667	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1668		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1669		return -ENODEV;
 
 
1670	}
1671
1672	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1673		num_tds = urb->number_of_packets;
1674	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1675	    urb->transfer_buffer_length > 0 &&
1676	    urb->transfer_flags & URB_ZERO_PACKET &&
1677	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1678		num_tds = 2;
1679	else
1680		num_tds = 1;
1681
1682	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
 
1683	if (!urb_priv)
1684		return -ENOMEM;
1685
1686	urb_priv->num_tds = num_tds;
1687	urb_priv->num_tds_done = 0;
1688	urb->hcpriv = urb_priv;
 
 
1689
1690	trace_xhci_urb_enqueue(urb);
 
 
 
 
 
 
 
1691
1692	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1693		/* Check to see if the max packet size for the default control
1694		 * endpoint changed during FS device enumeration
1695		 */
1696		if (urb->dev->speed == USB_SPEED_FULL) {
1697			ret = xhci_check_maxpacket(xhci, slot_id,
1698					ep_index, urb, mem_flags);
1699			if (ret < 0) {
1700				xhci_urb_free_priv(urb_priv);
1701				urb->hcpriv = NULL;
1702				return ret;
1703			}
1704		}
1705	}
1706
1707	spin_lock_irqsave(&xhci->lock, flags);
1708
1709	if (xhci->xhc_state & XHCI_STATE_DYING) {
1710		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1711			 urb->ep->desc.bEndpointAddress, urb);
1712		ret = -ESHUTDOWN;
1713		goto free_priv;
1714	}
1715	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1716		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1717			  *ep_state);
1718		ret = -EINVAL;
1719		goto free_priv;
1720	}
1721	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1722		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1723		ret = -EINVAL;
1724		goto free_priv;
1725	}
1726
1727	switch (usb_endpoint_type(&urb->ep->desc)) {
1728
1729	case USB_ENDPOINT_XFER_CONTROL:
1730		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1731					 slot_id, ep_index);
1732		break;
1733	case USB_ENDPOINT_XFER_BULK:
1734		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1735					 slot_id, ep_index);
1736		break;
1737	case USB_ENDPOINT_XFER_INT:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1738		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1739				slot_id, ep_index);
1740		break;
1741	case USB_ENDPOINT_XFER_ISOC:
 
 
 
 
 
1742		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1743				slot_id, ep_index);
 
 
 
1744	}
1745
1746	if (ret) {
 
 
 
 
 
1747free_priv:
1748		xhci_urb_free_priv(urb_priv);
1749		urb->hcpriv = NULL;
1750	}
1751	spin_unlock_irqrestore(&xhci->lock, flags);
1752	return ret;
1753}
1754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755/*
1756 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1757 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1758 * should pick up where it left off in the TD, unless a Set Transfer Ring
1759 * Dequeue Pointer is issued.
1760 *
1761 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1762 * the ring.  Since the ring is a contiguous structure, they can't be physically
1763 * removed.  Instead, there are two options:
1764 *
1765 *  1) If the HC is in the middle of processing the URB to be canceled, we
1766 *     simply move the ring's dequeue pointer past those TRBs using the Set
1767 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1768 *     when drivers timeout on the last submitted URB and attempt to cancel.
1769 *
1770 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1771 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1772 *     HC will need to invalidate the any TRBs it has cached after the stop
1773 *     endpoint command, as noted in the xHCI 0.95 errata.
1774 *
1775 *  3) The TD may have completed by the time the Stop Endpoint Command
1776 *     completes, so software needs to handle that case too.
1777 *
1778 * This function should protect against the TD enqueueing code ringing the
1779 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1780 * It also needs to account for multiple cancellations on happening at the same
1781 * time for the same endpoint.
1782 *
1783 * Note that this function can be called in any context, or so says
1784 * usb_hcd_unlink_urb()
1785 */
1786static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1787{
1788	unsigned long flags;
1789	int ret, i;
1790	u32 temp;
1791	struct xhci_hcd *xhci;
1792	struct urb_priv	*urb_priv;
1793	struct xhci_td *td;
1794	unsigned int ep_index;
1795	struct xhci_ring *ep_ring;
1796	struct xhci_virt_ep *ep;
1797	struct xhci_command *command;
1798	struct xhci_virt_device *vdev;
1799
1800	xhci = hcd_to_xhci(hcd);
1801	spin_lock_irqsave(&xhci->lock, flags);
1802
1803	trace_xhci_urb_dequeue(urb);
1804
1805	/* Make sure the URB hasn't completed or been unlinked already */
1806	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1807	if (ret)
1808		goto done;
1809
1810	/* give back URB now if we can't queue it for cancel */
1811	vdev = xhci->devs[urb->dev->slot_id];
1812	urb_priv = urb->hcpriv;
1813	if (!vdev || !urb_priv)
1814		goto err_giveback;
1815
1816	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1817	ep = &vdev->eps[ep_index];
1818	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1819	if (!ep || !ep_ring)
1820		goto err_giveback;
1821
1822	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1823	temp = readl(&xhci->op_regs->status);
1824	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1825		xhci_hc_died(xhci);
1826		goto done;
1827	}
1828
1829	/*
1830	 * check ring is not re-allocated since URB was enqueued. If it is, then
1831	 * make sure none of the ring related pointers in this URB private data
1832	 * are touched, such as td_list, otherwise we overwrite freed data
1833	 */
1834	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1835		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1836		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1837			td = &urb_priv->td[i];
1838			if (!list_empty(&td->cancelled_td_list))
1839				list_del_init(&td->cancelled_td_list);
1840		}
1841		goto err_giveback;
1842	}
1843
1844	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1845		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1846				"HC halted, freeing TD manually.");
1847		for (i = urb_priv->num_tds_done;
1848		     i < urb_priv->num_tds;
1849		     i++) {
1850			td = &urb_priv->td[i];
1851			if (!list_empty(&td->td_list))
1852				list_del_init(&td->td_list);
1853			if (!list_empty(&td->cancelled_td_list))
1854				list_del_init(&td->cancelled_td_list);
1855		}
1856		goto err_giveback;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857	}
1858
1859	i = urb_priv->num_tds_done;
1860	if (i < urb_priv->num_tds)
1861		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1862				"Cancel URB %p, dev %s, ep 0x%x, "
1863				"starting at offset 0x%llx",
 
 
 
 
 
 
 
 
1864				urb, urb->dev->devpath,
1865				urb->ep->desc.bEndpointAddress,
1866				(unsigned long long) xhci_trb_virt_to_dma(
1867					urb_priv->td[i].start_seg,
1868					urb_priv->td[i].first_trb));
1869
1870	for (; i < urb_priv->num_tds; i++) {
1871		td = &urb_priv->td[i];
1872		/* TD can already be on cancelled list if ep halted on it */
1873		if (list_empty(&td->cancelled_td_list)) {
1874			td->cancel_status = TD_DIRTY;
1875			list_add_tail(&td->cancelled_td_list,
1876				      &ep->cancelled_td_list);
1877		}
1878	}
1879
1880	/* Queue a stop endpoint command, but only if this is
1881	 * the first cancellation to be handled.
1882	 */
1883	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1884		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1885		if (!command) {
1886			ret = -ENOMEM;
1887			goto done;
1888		}
1889		ep->ep_state |= EP_STOP_CMD_PENDING;
1890		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1891					 ep_index, 0);
1892		xhci_ring_cmd_db(xhci);
1893	}
1894done:
1895	spin_unlock_irqrestore(&xhci->lock, flags);
1896	return ret;
1897
1898err_giveback:
1899	if (urb_priv)
1900		xhci_urb_free_priv(urb_priv);
1901	usb_hcd_unlink_urb_from_ep(hcd, urb);
1902	spin_unlock_irqrestore(&xhci->lock, flags);
1903	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1904	return ret;
1905}
1906
1907/* Drop an endpoint from a new bandwidth configuration for this device.
1908 * Only one call to this function is allowed per endpoint before
1909 * check_bandwidth() or reset_bandwidth() must be called.
1910 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1911 * add the endpoint to the schedule with possibly new parameters denoted by a
1912 * different endpoint descriptor in usb_host_endpoint.
1913 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1914 * not allowed.
1915 *
1916 * The USB core will not allow URBs to be queued to an endpoint that is being
1917 * disabled, so there's no need for mutual exclusion to protect
1918 * the xhci->devs[slot_id] structure.
1919 */
1920int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1921		       struct usb_host_endpoint *ep)
1922{
1923	struct xhci_hcd *xhci;
1924	struct xhci_container_ctx *in_ctx, *out_ctx;
1925	struct xhci_input_control_ctx *ctrl_ctx;
 
 
1926	unsigned int ep_index;
1927	struct xhci_ep_ctx *ep_ctx;
1928	u32 drop_flag;
1929	u32 new_add_flags, new_drop_flags;
1930	int ret;
1931
1932	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1933	if (ret <= 0)
1934		return ret;
1935	xhci = hcd_to_xhci(hcd);
1936	if (xhci->xhc_state & XHCI_STATE_DYING)
1937		return -ENODEV;
1938
1939	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1940	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1941	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1942		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1943				__func__, drop_flag);
1944		return 0;
1945	}
1946
1947	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1948	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1949	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1950	if (!ctrl_ctx) {
1951		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1952				__func__);
1953		return 0;
1954	}
1955
1956	ep_index = xhci_get_endpoint_index(&ep->desc);
1957	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1958	/* If the HC already knows the endpoint is disabled,
1959	 * or the HCD has noted it is disabled, ignore this request
1960	 */
1961	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
 
1962	    le32_to_cpu(ctrl_ctx->drop_flags) &
1963	    xhci_get_endpoint_flag(&ep->desc)) {
1964		/* Do not warn when called after a usb_device_reset */
1965		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1966			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1967				  __func__, ep);
1968		return 0;
1969	}
1970
1971	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1972	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1973
1974	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1975	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1976
1977	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
 
 
 
 
 
 
 
 
1978
1979	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1980
1981	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1982			(unsigned int) ep->desc.bEndpointAddress,
1983			udev->slot_id,
1984			(unsigned int) new_drop_flags,
1985			(unsigned int) new_add_flags);
 
1986	return 0;
1987}
1988EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1989
1990/* Add an endpoint to a new possible bandwidth configuration for this device.
1991 * Only one call to this function is allowed per endpoint before
1992 * check_bandwidth() or reset_bandwidth() must be called.
1993 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1994 * add the endpoint to the schedule with possibly new parameters denoted by a
1995 * different endpoint descriptor in usb_host_endpoint.
1996 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1997 * not allowed.
1998 *
1999 * The USB core will not allow URBs to be queued to an endpoint until the
2000 * configuration or alt setting is installed in the device, so there's no need
2001 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
2002 */
2003int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
2004		      struct usb_host_endpoint *ep)
2005{
2006	struct xhci_hcd *xhci;
2007	struct xhci_container_ctx *in_ctx;
2008	unsigned int ep_index;
2009	struct xhci_input_control_ctx *ctrl_ctx;
2010	struct xhci_ep_ctx *ep_ctx;
 
 
2011	u32 added_ctxs;
2012	u32 new_add_flags, new_drop_flags;
 
2013	struct xhci_virt_device *virt_dev;
2014	int ret = 0;
2015
2016	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
2017	if (ret <= 0) {
2018		/* So we won't queue a reset ep command for a root hub */
2019		ep->hcpriv = NULL;
2020		return ret;
2021	}
2022	xhci = hcd_to_xhci(hcd);
2023	if (xhci->xhc_state & XHCI_STATE_DYING)
2024		return -ENODEV;
2025
2026	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
 
2027	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
2028		/* FIXME when we have to issue an evaluate endpoint command to
2029		 * deal with ep0 max packet size changing once we get the
2030		 * descriptors
2031		 */
2032		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
2033				__func__, added_ctxs);
2034		return 0;
2035	}
2036
2037	virt_dev = xhci->devs[udev->slot_id];
2038	in_ctx = virt_dev->in_ctx;
2039	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2040	if (!ctrl_ctx) {
2041		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2042				__func__);
2043		return 0;
2044	}
2045
2046	ep_index = xhci_get_endpoint_index(&ep->desc);
 
 
2047	/* If this endpoint is already in use, and the upper layers are trying
2048	 * to add it again without dropping it, reject the addition.
2049	 */
2050	if (virt_dev->eps[ep_index].ring &&
2051			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
 
2052		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2053				"without dropping it.\n",
2054				(unsigned int) ep->desc.bEndpointAddress);
2055		return -EINVAL;
2056	}
2057
2058	/* If the HCD has already noted the endpoint is enabled,
2059	 * ignore this request.
2060	 */
2061	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
 
2062		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2063				__func__, ep);
2064		return 0;
2065	}
2066
2067	/*
2068	 * Configuration and alternate setting changes must be done in
2069	 * process context, not interrupt context (or so documenation
2070	 * for usb_set_interface() and usb_set_configuration() claim).
2071	 */
2072	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2073		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2074				__func__, ep->desc.bEndpointAddress);
2075		return -ENOMEM;
2076	}
2077
2078	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2079	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2080
2081	/* If xhci_endpoint_disable() was called for this endpoint, but the
2082	 * xHC hasn't been notified yet through the check_bandwidth() call,
2083	 * this re-adds a new state for the endpoint from the new endpoint
2084	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2085	 * drop flags alone.
2086	 */
2087	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2088
 
 
 
 
 
 
 
 
 
2089	/* Store the usb_device pointer for later use */
2090	ep->hcpriv = udev;
2091
2092	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2093	trace_xhci_add_endpoint(ep_ctx);
2094
2095	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2096			(unsigned int) ep->desc.bEndpointAddress,
2097			udev->slot_id,
2098			(unsigned int) new_drop_flags,
2099			(unsigned int) new_add_flags);
 
2100	return 0;
2101}
2102EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2103
2104static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2105{
2106	struct xhci_input_control_ctx *ctrl_ctx;
2107	struct xhci_ep_ctx *ep_ctx;
2108	struct xhci_slot_ctx *slot_ctx;
2109	int i;
2110
2111	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2112	if (!ctrl_ctx) {
2113		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2114				__func__);
2115		return;
2116	}
2117
2118	/* When a device's add flag and drop flag are zero, any subsequent
2119	 * configure endpoint command will leave that endpoint's state
2120	 * untouched.  Make sure we don't leave any old state in the input
2121	 * endpoint contexts.
2122	 */
 
2123	ctrl_ctx->drop_flags = 0;
2124	ctrl_ctx->add_flags = 0;
2125	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2126	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2127	/* Endpoint 0 is always valid */
2128	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2129	for (i = 1; i < 31; i++) {
2130		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2131		ep_ctx->ep_info = 0;
2132		ep_ctx->ep_info2 = 0;
2133		ep_ctx->deq = 0;
2134		ep_ctx->tx_info = 0;
2135	}
2136}
2137
2138static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2139		struct usb_device *udev, u32 *cmd_status)
2140{
2141	int ret;
2142
2143	switch (*cmd_status) {
2144	case COMP_COMMAND_ABORTED:
2145	case COMP_COMMAND_RING_STOPPED:
2146		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2147		ret = -ETIME;
2148		break;
2149	case COMP_RESOURCE_ERROR:
2150		dev_warn(&udev->dev,
2151			 "Not enough host controller resources for new device state.\n");
2152		ret = -ENOMEM;
2153		/* FIXME: can we allocate more resources for the HC? */
2154		break;
2155	case COMP_BANDWIDTH_ERROR:
2156	case COMP_SECONDARY_BANDWIDTH_ERROR:
2157		dev_warn(&udev->dev,
2158			 "Not enough bandwidth for new device state.\n");
2159		ret = -ENOSPC;
2160		/* FIXME: can we go back to the old state? */
2161		break;
2162	case COMP_TRB_ERROR:
2163		/* the HCD set up something wrong */
2164		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2165				"add flag = 1, "
2166				"and endpoint is not disabled.\n");
2167		ret = -EINVAL;
2168		break;
2169	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2170		dev_warn(&udev->dev,
2171			 "ERROR: Incompatible device for endpoint configure command.\n");
2172		ret = -ENODEV;
2173		break;
2174	case COMP_SUCCESS:
2175		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2176				"Successful Endpoint Configure command");
2177		ret = 0;
2178		break;
2179	default:
2180		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2181				*cmd_status);
2182		ret = -EINVAL;
2183		break;
2184	}
2185	return ret;
2186}
2187
2188static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2189		struct usb_device *udev, u32 *cmd_status)
2190{
2191	int ret;
 
2192
2193	switch (*cmd_status) {
2194	case COMP_COMMAND_ABORTED:
2195	case COMP_COMMAND_RING_STOPPED:
2196		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2197		ret = -ETIME;
2198		break;
2199	case COMP_PARAMETER_ERROR:
2200		dev_warn(&udev->dev,
2201			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2202		ret = -EINVAL;
2203		break;
2204	case COMP_SLOT_NOT_ENABLED_ERROR:
2205		dev_warn(&udev->dev,
2206			"WARN: slot not enabled for evaluate context command.\n");
 
 
 
 
2207		ret = -EINVAL;
2208		break;
2209	case COMP_CONTEXT_STATE_ERROR:
2210		dev_warn(&udev->dev,
2211			"WARN: invalid context state for evaluate context command.\n");
2212		ret = -EINVAL;
2213		break;
2214	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2215		dev_warn(&udev->dev,
2216			"ERROR: Incompatible device for evaluate context command.\n");
2217		ret = -ENODEV;
2218		break;
2219	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2220		/* Max Exit Latency too large error */
2221		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2222		ret = -EINVAL;
2223		break;
2224	case COMP_SUCCESS:
2225		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2226				"Successful evaluate context command");
2227		ret = 0;
2228		break;
2229	default:
2230		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2231			*cmd_status);
2232		ret = -EINVAL;
2233		break;
2234	}
2235	return ret;
2236}
2237
2238static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2239		struct xhci_input_control_ctx *ctrl_ctx)
2240{
 
2241	u32 valid_add_flags;
2242	u32 valid_drop_flags;
2243
 
2244	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2245	 * (bit 1).  The default control endpoint is added during the Address
2246	 * Device command and is never removed until the slot is disabled.
2247	 */
2248	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2249	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2250
2251	/* Use hweight32 to count the number of ones in the add flags, or
2252	 * number of endpoints added.  Don't count endpoints that are changed
2253	 * (both added and dropped).
2254	 */
2255	return hweight32(valid_add_flags) -
2256		hweight32(valid_add_flags & valid_drop_flags);
2257}
2258
2259static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2260		struct xhci_input_control_ctx *ctrl_ctx)
2261{
 
2262	u32 valid_add_flags;
2263	u32 valid_drop_flags;
2264
2265	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2266	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
 
2267
2268	return hweight32(valid_drop_flags) -
2269		hweight32(valid_add_flags & valid_drop_flags);
2270}
2271
2272/*
2273 * We need to reserve the new number of endpoints before the configure endpoint
2274 * command completes.  We can't subtract the dropped endpoints from the number
2275 * of active endpoints until the command completes because we can oversubscribe
2276 * the host in this case:
2277 *
2278 *  - the first configure endpoint command drops more endpoints than it adds
2279 *  - a second configure endpoint command that adds more endpoints is queued
2280 *  - the first configure endpoint command fails, so the config is unchanged
2281 *  - the second command may succeed, even though there isn't enough resources
2282 *
2283 * Must be called with xhci->lock held.
2284 */
2285static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2286		struct xhci_input_control_ctx *ctrl_ctx)
2287{
2288	u32 added_eps;
2289
2290	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2291	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2292		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2293				"Not enough ep ctxs: "
2294				"%u active, need to add %u, limit is %u.",
2295				xhci->num_active_eps, added_eps,
2296				xhci->limit_active_eps);
2297		return -ENOMEM;
2298	}
2299	xhci->num_active_eps += added_eps;
2300	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2301			"Adding %u ep ctxs, %u now active.", added_eps,
2302			xhci->num_active_eps);
2303	return 0;
2304}
2305
2306/*
2307 * The configure endpoint was failed by the xHC for some other reason, so we
2308 * need to revert the resources that failed configuration would have used.
2309 *
2310 * Must be called with xhci->lock held.
2311 */
2312static void xhci_free_host_resources(struct xhci_hcd *xhci,
2313		struct xhci_input_control_ctx *ctrl_ctx)
2314{
2315	u32 num_failed_eps;
2316
2317	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2318	xhci->num_active_eps -= num_failed_eps;
2319	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2320			"Removing %u failed ep ctxs, %u now active.",
2321			num_failed_eps,
2322			xhci->num_active_eps);
2323}
2324
2325/*
2326 * Now that the command has completed, clean up the active endpoint count by
2327 * subtracting out the endpoints that were dropped (but not changed).
2328 *
2329 * Must be called with xhci->lock held.
2330 */
2331static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2332		struct xhci_input_control_ctx *ctrl_ctx)
2333{
2334	u32 num_dropped_eps;
2335
2336	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2337	xhci->num_active_eps -= num_dropped_eps;
2338	if (num_dropped_eps)
2339		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2340				"Removing %u dropped ep ctxs, %u now active.",
2341				num_dropped_eps,
2342				xhci->num_active_eps);
2343}
2344
2345static unsigned int xhci_get_block_size(struct usb_device *udev)
2346{
2347	switch (udev->speed) {
2348	case USB_SPEED_LOW:
2349	case USB_SPEED_FULL:
2350		return FS_BLOCK;
2351	case USB_SPEED_HIGH:
2352		return HS_BLOCK;
2353	case USB_SPEED_SUPER:
2354	case USB_SPEED_SUPER_PLUS:
2355		return SS_BLOCK;
2356	case USB_SPEED_UNKNOWN:
2357	case USB_SPEED_WIRELESS:
2358	default:
2359		/* Should never happen */
2360		return 1;
2361	}
2362}
2363
2364static unsigned int
2365xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2366{
2367	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2368		return LS_OVERHEAD;
2369	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2370		return FS_OVERHEAD;
2371	return HS_OVERHEAD;
2372}
2373
2374/* If we are changing a LS/FS device under a HS hub,
2375 * make sure (if we are activating a new TT) that the HS bus has enough
2376 * bandwidth for this new TT.
2377 */
2378static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2379		struct xhci_virt_device *virt_dev,
2380		int old_active_eps)
2381{
2382	struct xhci_interval_bw_table *bw_table;
2383	struct xhci_tt_bw_info *tt_info;
2384
2385	/* Find the bandwidth table for the root port this TT is attached to. */
2386	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2387	tt_info = virt_dev->tt_info;
2388	/* If this TT already had active endpoints, the bandwidth for this TT
2389	 * has already been added.  Removing all periodic endpoints (and thus
2390	 * making the TT enactive) will only decrease the bandwidth used.
2391	 */
2392	if (old_active_eps)
2393		return 0;
2394	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2395		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2396			return -ENOMEM;
2397		return 0;
2398	}
2399	/* Not sure why we would have no new active endpoints...
2400	 *
2401	 * Maybe because of an Evaluate Context change for a hub update or a
2402	 * control endpoint 0 max packet size change?
2403	 * FIXME: skip the bandwidth calculation in that case.
2404	 */
2405	return 0;
2406}
2407
2408static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2409		struct xhci_virt_device *virt_dev)
2410{
2411	unsigned int bw_reserved;
2412
2413	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2414	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2415		return -ENOMEM;
2416
2417	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2418	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2419		return -ENOMEM;
2420
2421	return 0;
2422}
2423
2424/*
2425 * This algorithm is a very conservative estimate of the worst-case scheduling
2426 * scenario for any one interval.  The hardware dynamically schedules the
2427 * packets, so we can't tell which microframe could be the limiting factor in
2428 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2429 *
2430 * Obviously, we can't solve an NP complete problem to find the minimum worst
2431 * case scenario.  Instead, we come up with an estimate that is no less than
2432 * the worst case bandwidth used for any one microframe, but may be an
2433 * over-estimate.
2434 *
2435 * We walk the requirements for each endpoint by interval, starting with the
2436 * smallest interval, and place packets in the schedule where there is only one
2437 * possible way to schedule packets for that interval.  In order to simplify
2438 * this algorithm, we record the largest max packet size for each interval, and
2439 * assume all packets will be that size.
2440 *
2441 * For interval 0, we obviously must schedule all packets for each interval.
2442 * The bandwidth for interval 0 is just the amount of data to be transmitted
2443 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2444 * the number of packets).
2445 *
2446 * For interval 1, we have two possible microframes to schedule those packets
2447 * in.  For this algorithm, if we can schedule the same number of packets for
2448 * each possible scheduling opportunity (each microframe), we will do so.  The
2449 * remaining number of packets will be saved to be transmitted in the gaps in
2450 * the next interval's scheduling sequence.
2451 *
2452 * As we move those remaining packets to be scheduled with interval 2 packets,
2453 * we have to double the number of remaining packets to transmit.  This is
2454 * because the intervals are actually powers of 2, and we would be transmitting
2455 * the previous interval's packets twice in this interval.  We also have to be
2456 * sure that when we look at the largest max packet size for this interval, we
2457 * also look at the largest max packet size for the remaining packets and take
2458 * the greater of the two.
2459 *
2460 * The algorithm continues to evenly distribute packets in each scheduling
2461 * opportunity, and push the remaining packets out, until we get to the last
2462 * interval.  Then those packets and their associated overhead are just added
2463 * to the bandwidth used.
2464 */
2465static int xhci_check_bw_table(struct xhci_hcd *xhci,
2466		struct xhci_virt_device *virt_dev,
2467		int old_active_eps)
2468{
2469	unsigned int bw_reserved;
2470	unsigned int max_bandwidth;
2471	unsigned int bw_used;
2472	unsigned int block_size;
2473	struct xhci_interval_bw_table *bw_table;
2474	unsigned int packet_size = 0;
2475	unsigned int overhead = 0;
2476	unsigned int packets_transmitted = 0;
2477	unsigned int packets_remaining = 0;
2478	unsigned int i;
2479
2480	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2481		return xhci_check_ss_bw(xhci, virt_dev);
2482
2483	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2484		max_bandwidth = HS_BW_LIMIT;
2485		/* Convert percent of bus BW reserved to blocks reserved */
2486		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2487	} else {
2488		max_bandwidth = FS_BW_LIMIT;
2489		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2490	}
2491
2492	bw_table = virt_dev->bw_table;
2493	/* We need to translate the max packet size and max ESIT payloads into
2494	 * the units the hardware uses.
2495	 */
2496	block_size = xhci_get_block_size(virt_dev->udev);
2497
2498	/* If we are manipulating a LS/FS device under a HS hub, double check
2499	 * that the HS bus has enough bandwidth if we are activing a new TT.
2500	 */
2501	if (virt_dev->tt_info) {
2502		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2503				"Recalculating BW for rootport %u",
2504				virt_dev->real_port);
2505		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2506			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2507					"newly activated TT.\n");
2508			return -ENOMEM;
2509		}
2510		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2511				"Recalculating BW for TT slot %u port %u",
2512				virt_dev->tt_info->slot_id,
2513				virt_dev->tt_info->ttport);
2514	} else {
2515		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2516				"Recalculating BW for rootport %u",
2517				virt_dev->real_port);
2518	}
2519
2520	/* Add in how much bandwidth will be used for interval zero, or the
2521	 * rounded max ESIT payload + number of packets * largest overhead.
2522	 */
2523	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2524		bw_table->interval_bw[0].num_packets *
2525		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2526
2527	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2528		unsigned int bw_added;
2529		unsigned int largest_mps;
2530		unsigned int interval_overhead;
2531
2532		/*
2533		 * How many packets could we transmit in this interval?
2534		 * If packets didn't fit in the previous interval, we will need
2535		 * to transmit that many packets twice within this interval.
2536		 */
2537		packets_remaining = 2 * packets_remaining +
2538			bw_table->interval_bw[i].num_packets;
2539
2540		/* Find the largest max packet size of this or the previous
2541		 * interval.
2542		 */
2543		if (list_empty(&bw_table->interval_bw[i].endpoints))
2544			largest_mps = 0;
2545		else {
2546			struct xhci_virt_ep *virt_ep;
2547			struct list_head *ep_entry;
2548
2549			ep_entry = bw_table->interval_bw[i].endpoints.next;
2550			virt_ep = list_entry(ep_entry,
2551					struct xhci_virt_ep, bw_endpoint_list);
2552			/* Convert to blocks, rounding up */
2553			largest_mps = DIV_ROUND_UP(
2554					virt_ep->bw_info.max_packet_size,
2555					block_size);
2556		}
2557		if (largest_mps > packet_size)
2558			packet_size = largest_mps;
2559
2560		/* Use the larger overhead of this or the previous interval. */
2561		interval_overhead = xhci_get_largest_overhead(
2562				&bw_table->interval_bw[i]);
2563		if (interval_overhead > overhead)
2564			overhead = interval_overhead;
2565
2566		/* How many packets can we evenly distribute across
2567		 * (1 << (i + 1)) possible scheduling opportunities?
2568		 */
2569		packets_transmitted = packets_remaining >> (i + 1);
2570
2571		/* Add in the bandwidth used for those scheduled packets */
2572		bw_added = packets_transmitted * (overhead + packet_size);
2573
2574		/* How many packets do we have remaining to transmit? */
2575		packets_remaining = packets_remaining % (1 << (i + 1));
2576
2577		/* What largest max packet size should those packets have? */
2578		/* If we've transmitted all packets, don't carry over the
2579		 * largest packet size.
2580		 */
2581		if (packets_remaining == 0) {
2582			packet_size = 0;
2583			overhead = 0;
2584		} else if (packets_transmitted > 0) {
2585			/* Otherwise if we do have remaining packets, and we've
2586			 * scheduled some packets in this interval, take the
2587			 * largest max packet size from endpoints with this
2588			 * interval.
2589			 */
2590			packet_size = largest_mps;
2591			overhead = interval_overhead;
2592		}
2593		/* Otherwise carry over packet_size and overhead from the last
2594		 * time we had a remainder.
2595		 */
2596		bw_used += bw_added;
2597		if (bw_used > max_bandwidth) {
2598			xhci_warn(xhci, "Not enough bandwidth. "
2599					"Proposed: %u, Max: %u\n",
2600				bw_used, max_bandwidth);
2601			return -ENOMEM;
2602		}
2603	}
2604	/*
2605	 * Ok, we know we have some packets left over after even-handedly
2606	 * scheduling interval 15.  We don't know which microframes they will
2607	 * fit into, so we over-schedule and say they will be scheduled every
2608	 * microframe.
2609	 */
2610	if (packets_remaining > 0)
2611		bw_used += overhead + packet_size;
2612
2613	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2614		unsigned int port_index = virt_dev->real_port - 1;
2615
2616		/* OK, we're manipulating a HS device attached to a
2617		 * root port bandwidth domain.  Include the number of active TTs
2618		 * in the bandwidth used.
2619		 */
2620		bw_used += TT_HS_OVERHEAD *
2621			xhci->rh_bw[port_index].num_active_tts;
2622	}
2623
2624	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2625		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2626		"Available: %u " "percent",
2627		bw_used, max_bandwidth, bw_reserved,
2628		(max_bandwidth - bw_used - bw_reserved) * 100 /
2629		max_bandwidth);
2630
2631	bw_used += bw_reserved;
2632	if (bw_used > max_bandwidth) {
2633		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2634				bw_used, max_bandwidth);
2635		return -ENOMEM;
2636	}
2637
2638	bw_table->bw_used = bw_used;
2639	return 0;
2640}
2641
2642static bool xhci_is_async_ep(unsigned int ep_type)
2643{
2644	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2645					ep_type != ISOC_IN_EP &&
2646					ep_type != INT_IN_EP);
2647}
2648
2649static bool xhci_is_sync_in_ep(unsigned int ep_type)
2650{
2651	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2652}
2653
2654static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2655{
2656	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2657
2658	if (ep_bw->ep_interval == 0)
2659		return SS_OVERHEAD_BURST +
2660			(ep_bw->mult * ep_bw->num_packets *
2661					(SS_OVERHEAD + mps));
2662	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2663				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2664				1 << ep_bw->ep_interval);
2665
2666}
2667
2668static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2669		struct xhci_bw_info *ep_bw,
2670		struct xhci_interval_bw_table *bw_table,
2671		struct usb_device *udev,
2672		struct xhci_virt_ep *virt_ep,
2673		struct xhci_tt_bw_info *tt_info)
2674{
2675	struct xhci_interval_bw	*interval_bw;
2676	int normalized_interval;
2677
2678	if (xhci_is_async_ep(ep_bw->type))
2679		return;
2680
2681	if (udev->speed >= USB_SPEED_SUPER) {
2682		if (xhci_is_sync_in_ep(ep_bw->type))
2683			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2684				xhci_get_ss_bw_consumed(ep_bw);
2685		else
2686			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2687				xhci_get_ss_bw_consumed(ep_bw);
2688		return;
2689	}
2690
2691	/* SuperSpeed endpoints never get added to intervals in the table, so
2692	 * this check is only valid for HS/FS/LS devices.
2693	 */
2694	if (list_empty(&virt_ep->bw_endpoint_list))
2695		return;
2696	/* For LS/FS devices, we need to translate the interval expressed in
2697	 * microframes to frames.
2698	 */
2699	if (udev->speed == USB_SPEED_HIGH)
2700		normalized_interval = ep_bw->ep_interval;
2701	else
2702		normalized_interval = ep_bw->ep_interval - 3;
2703
2704	if (normalized_interval == 0)
2705		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2706	interval_bw = &bw_table->interval_bw[normalized_interval];
2707	interval_bw->num_packets -= ep_bw->num_packets;
2708	switch (udev->speed) {
2709	case USB_SPEED_LOW:
2710		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2711		break;
2712	case USB_SPEED_FULL:
2713		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2714		break;
2715	case USB_SPEED_HIGH:
2716		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2717		break;
2718	case USB_SPEED_SUPER:
2719	case USB_SPEED_SUPER_PLUS:
2720	case USB_SPEED_UNKNOWN:
2721	case USB_SPEED_WIRELESS:
2722		/* Should never happen because only LS/FS/HS endpoints will get
2723		 * added to the endpoint list.
2724		 */
2725		return;
2726	}
2727	if (tt_info)
2728		tt_info->active_eps -= 1;
2729	list_del_init(&virt_ep->bw_endpoint_list);
2730}
2731
2732static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2733		struct xhci_bw_info *ep_bw,
2734		struct xhci_interval_bw_table *bw_table,
2735		struct usb_device *udev,
2736		struct xhci_virt_ep *virt_ep,
2737		struct xhci_tt_bw_info *tt_info)
2738{
2739	struct xhci_interval_bw	*interval_bw;
2740	struct xhci_virt_ep *smaller_ep;
2741	int normalized_interval;
2742
2743	if (xhci_is_async_ep(ep_bw->type))
2744		return;
2745
2746	if (udev->speed == USB_SPEED_SUPER) {
2747		if (xhci_is_sync_in_ep(ep_bw->type))
2748			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2749				xhci_get_ss_bw_consumed(ep_bw);
2750		else
2751			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2752				xhci_get_ss_bw_consumed(ep_bw);
2753		return;
2754	}
2755
2756	/* For LS/FS devices, we need to translate the interval expressed in
2757	 * microframes to frames.
2758	 */
2759	if (udev->speed == USB_SPEED_HIGH)
2760		normalized_interval = ep_bw->ep_interval;
2761	else
2762		normalized_interval = ep_bw->ep_interval - 3;
2763
2764	if (normalized_interval == 0)
2765		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2766	interval_bw = &bw_table->interval_bw[normalized_interval];
2767	interval_bw->num_packets += ep_bw->num_packets;
2768	switch (udev->speed) {
2769	case USB_SPEED_LOW:
2770		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2771		break;
2772	case USB_SPEED_FULL:
2773		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2774		break;
2775	case USB_SPEED_HIGH:
2776		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2777		break;
2778	case USB_SPEED_SUPER:
2779	case USB_SPEED_SUPER_PLUS:
2780	case USB_SPEED_UNKNOWN:
2781	case USB_SPEED_WIRELESS:
2782		/* Should never happen because only LS/FS/HS endpoints will get
2783		 * added to the endpoint list.
2784		 */
2785		return;
2786	}
2787
2788	if (tt_info)
2789		tt_info->active_eps += 1;
2790	/* Insert the endpoint into the list, largest max packet size first. */
2791	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2792			bw_endpoint_list) {
2793		if (ep_bw->max_packet_size >=
2794				smaller_ep->bw_info.max_packet_size) {
2795			/* Add the new ep before the smaller endpoint */
2796			list_add_tail(&virt_ep->bw_endpoint_list,
2797					&smaller_ep->bw_endpoint_list);
2798			return;
2799		}
2800	}
2801	/* Add the new endpoint at the end of the list. */
2802	list_add_tail(&virt_ep->bw_endpoint_list,
2803			&interval_bw->endpoints);
2804}
2805
2806void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2807		struct xhci_virt_device *virt_dev,
2808		int old_active_eps)
2809{
2810	struct xhci_root_port_bw_info *rh_bw_info;
2811	if (!virt_dev->tt_info)
2812		return;
2813
2814	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2815	if (old_active_eps == 0 &&
2816				virt_dev->tt_info->active_eps != 0) {
2817		rh_bw_info->num_active_tts += 1;
2818		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2819	} else if (old_active_eps != 0 &&
2820				virt_dev->tt_info->active_eps == 0) {
2821		rh_bw_info->num_active_tts -= 1;
2822		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2823	}
2824}
2825
2826static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2827		struct xhci_virt_device *virt_dev,
2828		struct xhci_container_ctx *in_ctx)
2829{
2830	struct xhci_bw_info ep_bw_info[31];
2831	int i;
2832	struct xhci_input_control_ctx *ctrl_ctx;
2833	int old_active_eps = 0;
2834
2835	if (virt_dev->tt_info)
2836		old_active_eps = virt_dev->tt_info->active_eps;
2837
2838	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2839	if (!ctrl_ctx) {
2840		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2841				__func__);
2842		return -ENOMEM;
2843	}
2844
2845	for (i = 0; i < 31; i++) {
2846		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2847			continue;
2848
2849		/* Make a copy of the BW info in case we need to revert this */
2850		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2851				sizeof(ep_bw_info[i]));
2852		/* Drop the endpoint from the interval table if the endpoint is
2853		 * being dropped or changed.
2854		 */
2855		if (EP_IS_DROPPED(ctrl_ctx, i))
2856			xhci_drop_ep_from_interval_table(xhci,
2857					&virt_dev->eps[i].bw_info,
2858					virt_dev->bw_table,
2859					virt_dev->udev,
2860					&virt_dev->eps[i],
2861					virt_dev->tt_info);
2862	}
2863	/* Overwrite the information stored in the endpoints' bw_info */
2864	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2865	for (i = 0; i < 31; i++) {
2866		/* Add any changed or added endpoints to the interval table */
2867		if (EP_IS_ADDED(ctrl_ctx, i))
2868			xhci_add_ep_to_interval_table(xhci,
2869					&virt_dev->eps[i].bw_info,
2870					virt_dev->bw_table,
2871					virt_dev->udev,
2872					&virt_dev->eps[i],
2873					virt_dev->tt_info);
2874	}
2875
2876	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2877		/* Ok, this fits in the bandwidth we have.
2878		 * Update the number of active TTs.
2879		 */
2880		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2881		return 0;
2882	}
2883
2884	/* We don't have enough bandwidth for this, revert the stored info. */
2885	for (i = 0; i < 31; i++) {
2886		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2887			continue;
2888
2889		/* Drop the new copies of any added or changed endpoints from
2890		 * the interval table.
2891		 */
2892		if (EP_IS_ADDED(ctrl_ctx, i)) {
2893			xhci_drop_ep_from_interval_table(xhci,
2894					&virt_dev->eps[i].bw_info,
2895					virt_dev->bw_table,
2896					virt_dev->udev,
2897					&virt_dev->eps[i],
2898					virt_dev->tt_info);
2899		}
2900		/* Revert the endpoint back to its old information */
2901		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2902				sizeof(ep_bw_info[i]));
2903		/* Add any changed or dropped endpoints back into the table */
2904		if (EP_IS_DROPPED(ctrl_ctx, i))
2905			xhci_add_ep_to_interval_table(xhci,
2906					&virt_dev->eps[i].bw_info,
2907					virt_dev->bw_table,
2908					virt_dev->udev,
2909					&virt_dev->eps[i],
2910					virt_dev->tt_info);
2911	}
2912	return -ENOMEM;
2913}
2914
2915
2916/* Issue a configure endpoint command or evaluate context command
2917 * and wait for it to finish.
2918 */
2919static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2920		struct usb_device *udev,
2921		struct xhci_command *command,
2922		bool ctx_change, bool must_succeed)
2923{
2924	int ret;
 
2925	unsigned long flags;
2926	struct xhci_input_control_ctx *ctrl_ctx;
 
 
2927	struct xhci_virt_device *virt_dev;
2928	struct xhci_slot_ctx *slot_ctx;
2929
2930	if (!command)
2931		return -EINVAL;
2932
2933	spin_lock_irqsave(&xhci->lock, flags);
2934
2935	if (xhci->xhc_state & XHCI_STATE_DYING) {
2936		spin_unlock_irqrestore(&xhci->lock, flags);
2937		return -ESHUTDOWN;
2938	}
2939
2940	virt_dev = xhci->devs[udev->slot_id];
2941
2942	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2943	if (!ctrl_ctx) {
2944		spin_unlock_irqrestore(&xhci->lock, flags);
2945		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2946				__func__);
2947		return -ENOMEM;
2948	}
2949
2950	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2951			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2952		spin_unlock_irqrestore(&xhci->lock, flags);
2953		xhci_warn(xhci, "Not enough host resources, "
2954				"active endpoint contexts = %u\n",
2955				xhci->num_active_eps);
2956		return -ENOMEM;
2957	}
2958	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2959	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2960		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2961			xhci_free_host_resources(xhci, ctrl_ctx);
2962		spin_unlock_irqrestore(&xhci->lock, flags);
2963		xhci_warn(xhci, "Not enough bandwidth\n");
2964		return -ENOMEM;
2965	}
2966
2967	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
 
 
 
 
 
 
 
 
 
 
2968
2969	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2970	trace_xhci_configure_endpoint(slot_ctx);
 
 
 
 
2971
 
2972	if (!ctx_change)
2973		ret = xhci_queue_configure_endpoint(xhci, command,
2974				command->in_ctx->dma,
2975				udev->slot_id, must_succeed);
2976	else
2977		ret = xhci_queue_evaluate_context(xhci, command,
2978				command->in_ctx->dma,
2979				udev->slot_id, must_succeed);
2980	if (ret < 0) {
 
 
2981		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2982			xhci_free_host_resources(xhci, ctrl_ctx);
2983		spin_unlock_irqrestore(&xhci->lock, flags);
2984		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2985				"FIXME allocate a new ring segment");
2986		return -ENOMEM;
2987	}
2988	xhci_ring_cmd_db(xhci);
2989	spin_unlock_irqrestore(&xhci->lock, flags);
2990
2991	/* Wait for the configure endpoint command to complete */
2992	wait_for_completion(command->completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2993
2994	if (!ctx_change)
2995		ret = xhci_configure_endpoint_result(xhci, udev,
2996						     &command->status);
2997	else
2998		ret = xhci_evaluate_context_result(xhci, udev,
2999						   &command->status);
3000
3001	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3002		spin_lock_irqsave(&xhci->lock, flags);
3003		/* If the command failed, remove the reserved resources.
3004		 * Otherwise, clean up the estimate to include dropped eps.
3005		 */
3006		if (ret)
3007			xhci_free_host_resources(xhci, ctrl_ctx);
3008		else
3009			xhci_finish_resource_reservation(xhci, ctrl_ctx);
3010		spin_unlock_irqrestore(&xhci->lock, flags);
3011	}
3012	return ret;
3013}
3014
3015static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
3016	struct xhci_virt_device *vdev, int i)
3017{
3018	struct xhci_virt_ep *ep = &vdev->eps[i];
3019
3020	if (ep->ep_state & EP_HAS_STREAMS) {
3021		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
3022				xhci_get_endpoint_address(i));
3023		xhci_free_stream_info(xhci, ep->stream_info);
3024		ep->stream_info = NULL;
3025		ep->ep_state &= ~EP_HAS_STREAMS;
3026	}
3027}
3028
3029/* Called after one or more calls to xhci_add_endpoint() or
3030 * xhci_drop_endpoint().  If this call fails, the USB core is expected
3031 * to call xhci_reset_bandwidth().
3032 *
3033 * Since we are in the middle of changing either configuration or
3034 * installing a new alt setting, the USB core won't allow URBs to be
3035 * enqueued for any endpoint on the old config or interface.  Nothing
3036 * else should be touching the xhci->devs[slot_id] structure, so we
3037 * don't need to take the xhci->lock for manipulating that.
3038 */
3039int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3040{
3041	int i;
3042	int ret = 0;
3043	struct xhci_hcd *xhci;
3044	struct xhci_virt_device	*virt_dev;
3045	struct xhci_input_control_ctx *ctrl_ctx;
3046	struct xhci_slot_ctx *slot_ctx;
3047	struct xhci_command *command;
3048
3049	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3050	if (ret <= 0)
3051		return ret;
3052	xhci = hcd_to_xhci(hcd);
3053	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3054		(xhci->xhc_state & XHCI_STATE_REMOVING))
3055		return -ENODEV;
3056
3057	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3058	virt_dev = xhci->devs[udev->slot_id];
3059
3060	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3061	if (!command)
3062		return -ENOMEM;
3063
3064	command->in_ctx = virt_dev->in_ctx;
3065
3066	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3067	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3068	if (!ctrl_ctx) {
3069		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3070				__func__);
3071		ret = -ENOMEM;
3072		goto command_cleanup;
3073	}
3074	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3075	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3076	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3077
3078	/* Don't issue the command if there's no endpoints to update. */
3079	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3080	    ctrl_ctx->drop_flags == 0) {
3081		ret = 0;
3082		goto command_cleanup;
3083	}
3084	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3085	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3086	for (i = 31; i >= 1; i--) {
3087		__le32 le32 = cpu_to_le32(BIT(i));
3088
3089		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3090		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3091			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3092			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3093			break;
3094		}
3095	}
3096
3097	ret = xhci_configure_endpoint(xhci, udev, command,
3098			false, false);
3099	if (ret)
3100		/* Callee should call reset_bandwidth() */
3101		goto command_cleanup;
 
 
 
 
 
3102
3103	/* Free any rings that were dropped, but not changed. */
3104	for (i = 1; i < 31; i++) {
3105		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3106		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3107			xhci_free_endpoint_ring(xhci, virt_dev, i);
3108			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3109		}
3110	}
3111	xhci_zero_in_ctx(xhci, virt_dev);
3112	/*
3113	 * Install any rings for completely new endpoints or changed endpoints,
3114	 * and free any old rings from changed endpoints.
3115	 */
3116	for (i = 1; i < 31; i++) {
3117		if (!virt_dev->eps[i].new_ring)
3118			continue;
3119		/* Only free the old ring if it exists.
3120		 * It may not if this is the first add of an endpoint.
3121		 */
3122		if (virt_dev->eps[i].ring) {
3123			xhci_free_endpoint_ring(xhci, virt_dev, i);
3124		}
3125		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3126		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3127		virt_dev->eps[i].new_ring = NULL;
3128		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3129	}
3130command_cleanup:
3131	kfree(command->completion);
3132	kfree(command);
3133
3134	return ret;
3135}
3136EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3137
3138void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3139{
3140	struct xhci_hcd *xhci;
3141	struct xhci_virt_device	*virt_dev;
3142	int i, ret;
3143
3144	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3145	if (ret <= 0)
3146		return;
3147	xhci = hcd_to_xhci(hcd);
3148
3149	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3150	virt_dev = xhci->devs[udev->slot_id];
3151	/* Free any rings allocated for added endpoints */
3152	for (i = 0; i < 31; i++) {
3153		if (virt_dev->eps[i].new_ring) {
3154			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3155			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3156			virt_dev->eps[i].new_ring = NULL;
3157		}
3158	}
3159	xhci_zero_in_ctx(xhci, virt_dev);
3160}
3161EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3162
3163static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3164		struct xhci_container_ctx *in_ctx,
3165		struct xhci_container_ctx *out_ctx,
3166		struct xhci_input_control_ctx *ctrl_ctx,
3167		u32 add_flags, u32 drop_flags)
3168{
 
 
3169	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3170	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3171	xhci_slot_copy(xhci, in_ctx, out_ctx);
3172	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
 
 
 
3173}
3174
3175static void xhci_endpoint_disable(struct usb_hcd *hcd,
3176				  struct usb_host_endpoint *host_ep)
 
3177{
3178	struct xhci_hcd		*xhci;
3179	struct xhci_virt_device	*vdev;
3180	struct xhci_virt_ep	*ep;
3181	struct usb_device	*udev;
3182	unsigned long		flags;
3183	unsigned int		ep_index;
3184
3185	xhci = hcd_to_xhci(hcd);
3186rescan:
3187	spin_lock_irqsave(&xhci->lock, flags);
3188
3189	udev = (struct usb_device *)host_ep->hcpriv;
3190	if (!udev || !udev->slot_id)
3191		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
3192
3193	vdev = xhci->devs[udev->slot_id];
3194	if (!vdev)
3195		goto done;
 
3196
3197	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3198	ep = &vdev->eps[ep_index];
 
 
 
3199
3200	/* wait for hub_tt_work to finish clearing hub TT */
3201	if (ep->ep_state & EP_CLEARING_TT) {
3202		spin_unlock_irqrestore(&xhci->lock, flags);
3203		schedule_timeout_uninterruptible(1);
3204		goto rescan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3205	}
3206
3207	if (ep->ep_state)
3208		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3209			 ep->ep_state);
3210done:
3211	host_ep->hcpriv = NULL;
3212	spin_unlock_irqrestore(&xhci->lock, flags);
3213}
3214
3215/*
3216 * Called after usb core issues a clear halt control message.
3217 * The host side of the halt should already be cleared by a reset endpoint
3218 * command issued when the STALL event was received.
3219 *
3220 * The reset endpoint command may only be issued to endpoints in the halted
3221 * state. For software that wishes to reset the data toggle or sequence number
3222 * of an endpoint that isn't in the halted state this function will issue a
3223 * configure endpoint command with the Drop and Add bits set for the target
3224 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3225 */
3226
3227static void xhci_endpoint_reset(struct usb_hcd *hcd,
3228		struct usb_host_endpoint *host_ep)
3229{
3230	struct xhci_hcd *xhci;
3231	struct usb_device *udev;
3232	struct xhci_virt_device *vdev;
3233	struct xhci_virt_ep *ep;
3234	struct xhci_input_control_ctx *ctrl_ctx;
3235	struct xhci_command *stop_cmd, *cfg_cmd;
3236	unsigned int ep_index;
3237	unsigned long flags;
3238	u32 ep_flag;
3239	int err;
3240
3241	xhci = hcd_to_xhci(hcd);
3242	if (!host_ep->hcpriv)
3243		return;
3244	udev = (struct usb_device *) host_ep->hcpriv;
3245	vdev = xhci->devs[udev->slot_id];
3246
3247	/*
3248	 * vdev may be lost due to xHC restore error and re-initialization
3249	 * during S3/S4 resume. A new vdev will be allocated later by
3250	 * xhci_discover_or_reset_device()
3251	 */
3252	if (!udev->slot_id || !vdev)
3253		return;
3254	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3255	ep = &vdev->eps[ep_index];
3256
3257	/* Bail out if toggle is already being cleared by a endpoint reset */
3258	spin_lock_irqsave(&xhci->lock, flags);
3259	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3260		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3261		spin_unlock_irqrestore(&xhci->lock, flags);
3262		return;
3263	}
3264	spin_unlock_irqrestore(&xhci->lock, flags);
3265	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3266	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3267	    usb_endpoint_xfer_isoc(&host_ep->desc))
3268		return;
 
3269
3270	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3271
3272	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3273		return;
3274
3275	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3276	if (!stop_cmd)
3277		return;
3278
3279	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3280	if (!cfg_cmd)
3281		goto cleanup;
3282
3283	spin_lock_irqsave(&xhci->lock, flags);
3284
3285	/* block queuing new trbs and ringing ep doorbell */
3286	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3287
3288	/*
3289	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3290	 * Driver is required to synchronously cancel all transfer request.
3291	 * Stop the endpoint to force xHC to update the output context
3292	 */
3293
3294	if (!list_empty(&ep->ring->td_list)) {
3295		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3296		spin_unlock_irqrestore(&xhci->lock, flags);
3297		xhci_free_command(xhci, cfg_cmd);
3298		goto cleanup;
3299	}
3300
3301	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3302					ep_index, 0);
3303	if (err < 0) {
3304		spin_unlock_irqrestore(&xhci->lock, flags);
3305		xhci_free_command(xhci, cfg_cmd);
3306		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3307				__func__, err);
3308		goto cleanup;
3309	}
3310
3311	xhci_ring_cmd_db(xhci);
3312	spin_unlock_irqrestore(&xhci->lock, flags);
3313
3314	wait_for_completion(stop_cmd->completion);
3315
3316	spin_lock_irqsave(&xhci->lock, flags);
3317
3318	/* config ep command clears toggle if add and drop ep flags are set */
3319	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3320	if (!ctrl_ctx) {
3321		spin_unlock_irqrestore(&xhci->lock, flags);
3322		xhci_free_command(xhci, cfg_cmd);
3323		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3324				__func__);
3325		goto cleanup;
3326	}
3327
3328	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3329					   ctrl_ctx, ep_flag, ep_flag);
3330	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3331
3332	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3333				      udev->slot_id, false);
3334	if (err < 0) {
3335		spin_unlock_irqrestore(&xhci->lock, flags);
3336		xhci_free_command(xhci, cfg_cmd);
3337		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3338				__func__, err);
3339		goto cleanup;
3340	}
3341
3342	xhci_ring_cmd_db(xhci);
 
3343	spin_unlock_irqrestore(&xhci->lock, flags);
3344
3345	wait_for_completion(cfg_cmd->completion);
3346
3347	xhci_free_command(xhci, cfg_cmd);
3348cleanup:
3349	xhci_free_command(xhci, stop_cmd);
3350	spin_lock_irqsave(&xhci->lock, flags);
3351	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3352		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3353	spin_unlock_irqrestore(&xhci->lock, flags);
3354}
3355
3356static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3357		struct usb_device *udev, struct usb_host_endpoint *ep,
3358		unsigned int slot_id)
3359{
3360	int ret;
3361	unsigned int ep_index;
3362	unsigned int ep_state;
3363
3364	if (!ep)
3365		return -EINVAL;
3366	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3367	if (ret <= 0)
3368		return ret ? ret : -EINVAL;
3369	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3370		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3371				" descriptor for ep 0x%x does not support streams\n",
3372				ep->desc.bEndpointAddress);
3373		return -EINVAL;
3374	}
3375
3376	ep_index = xhci_get_endpoint_index(&ep->desc);
3377	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3378	if (ep_state & EP_HAS_STREAMS ||
3379			ep_state & EP_GETTING_STREAMS) {
3380		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3381				"already has streams set up.\n",
3382				ep->desc.bEndpointAddress);
3383		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3384				"dynamic stream context array reallocation.\n");
3385		return -EINVAL;
3386	}
3387	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3388		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3389				"endpoint 0x%x; URBs are pending.\n",
3390				ep->desc.bEndpointAddress);
3391		return -EINVAL;
3392	}
3393	return 0;
3394}
3395
3396static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3397		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3398{
3399	unsigned int max_streams;
3400
3401	/* The stream context array size must be a power of two */
3402	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3403	/*
3404	 * Find out how many primary stream array entries the host controller
3405	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3406	 * level page entries), but that's an optional feature for xHCI host
3407	 * controllers. xHCs must support at least 4 stream IDs.
3408	 */
3409	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3410	if (*num_stream_ctxs > max_streams) {
3411		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3412				max_streams);
3413		*num_stream_ctxs = max_streams;
3414		*num_streams = max_streams;
3415	}
3416}
3417
3418/* Returns an error code if one of the endpoint already has streams.
3419 * This does not change any data structures, it only checks and gathers
3420 * information.
3421 */
3422static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3423		struct usb_device *udev,
3424		struct usb_host_endpoint **eps, unsigned int num_eps,
3425		unsigned int *num_streams, u32 *changed_ep_bitmask)
3426{
3427	unsigned int max_streams;
3428	unsigned int endpoint_flag;
3429	int i;
3430	int ret;
3431
3432	for (i = 0; i < num_eps; i++) {
3433		ret = xhci_check_streams_endpoint(xhci, udev,
3434				eps[i], udev->slot_id);
3435		if (ret < 0)
3436			return ret;
3437
3438		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3439		if (max_streams < (*num_streams - 1)) {
3440			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3441					eps[i]->desc.bEndpointAddress,
3442					max_streams);
3443			*num_streams = max_streams+1;
3444		}
3445
3446		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3447		if (*changed_ep_bitmask & endpoint_flag)
3448			return -EINVAL;
3449		*changed_ep_bitmask |= endpoint_flag;
3450	}
3451	return 0;
3452}
3453
3454static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3455		struct usb_device *udev,
3456		struct usb_host_endpoint **eps, unsigned int num_eps)
3457{
3458	u32 changed_ep_bitmask = 0;
3459	unsigned int slot_id;
3460	unsigned int ep_index;
3461	unsigned int ep_state;
3462	int i;
3463
3464	slot_id = udev->slot_id;
3465	if (!xhci->devs[slot_id])
3466		return 0;
3467
3468	for (i = 0; i < num_eps; i++) {
3469		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3470		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3471		/* Are streams already being freed for the endpoint? */
3472		if (ep_state & EP_GETTING_NO_STREAMS) {
3473			xhci_warn(xhci, "WARN Can't disable streams for "
3474					"endpoint 0x%x, "
3475					"streams are being disabled already\n",
3476					eps[i]->desc.bEndpointAddress);
3477			return 0;
3478		}
3479		/* Are there actually any streams to free? */
3480		if (!(ep_state & EP_HAS_STREAMS) &&
3481				!(ep_state & EP_GETTING_STREAMS)) {
3482			xhci_warn(xhci, "WARN Can't disable streams for "
3483					"endpoint 0x%x, "
3484					"streams are already disabled!\n",
3485					eps[i]->desc.bEndpointAddress);
3486			xhci_warn(xhci, "WARN xhci_free_streams() called "
3487					"with non-streams endpoint\n");
3488			return 0;
3489		}
3490		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3491	}
3492	return changed_ep_bitmask;
3493}
3494
3495/*
3496 * The USB device drivers use this function (through the HCD interface in USB
3497 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3498 * coordinate mass storage command queueing across multiple endpoints (basically
3499 * a stream ID == a task ID).
3500 *
3501 * Setting up streams involves allocating the same size stream context array
3502 * for each endpoint and issuing a configure endpoint command for all endpoints.
3503 *
3504 * Don't allow the call to succeed if one endpoint only supports one stream
3505 * (which means it doesn't support streams at all).
3506 *
3507 * Drivers may get less stream IDs than they asked for, if the host controller
3508 * hardware or endpoints claim they can't support the number of requested
3509 * stream IDs.
3510 */
3511static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3512		struct usb_host_endpoint **eps, unsigned int num_eps,
3513		unsigned int num_streams, gfp_t mem_flags)
3514{
3515	int i, ret;
3516	struct xhci_hcd *xhci;
3517	struct xhci_virt_device *vdev;
3518	struct xhci_command *config_cmd;
3519	struct xhci_input_control_ctx *ctrl_ctx;
3520	unsigned int ep_index;
3521	unsigned int num_stream_ctxs;
3522	unsigned int max_packet;
3523	unsigned long flags;
3524	u32 changed_ep_bitmask = 0;
3525
3526	if (!eps)
3527		return -EINVAL;
3528
3529	/* Add one to the number of streams requested to account for
3530	 * stream 0 that is reserved for xHCI usage.
3531	 */
3532	num_streams += 1;
3533	xhci = hcd_to_xhci(hcd);
3534	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3535			num_streams);
3536
3537	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3538	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3539			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3540		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3541		return -ENOSYS;
3542	}
3543
3544	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3545	if (!config_cmd)
3546		return -ENOMEM;
3547
3548	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3549	if (!ctrl_ctx) {
3550		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3551				__func__);
3552		xhci_free_command(xhci, config_cmd);
3553		return -ENOMEM;
3554	}
3555
3556	/* Check to make sure all endpoints are not already configured for
3557	 * streams.  While we're at it, find the maximum number of streams that
3558	 * all the endpoints will support and check for duplicate endpoints.
3559	 */
3560	spin_lock_irqsave(&xhci->lock, flags);
3561	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3562			num_eps, &num_streams, &changed_ep_bitmask);
3563	if (ret < 0) {
3564		xhci_free_command(xhci, config_cmd);
3565		spin_unlock_irqrestore(&xhci->lock, flags);
3566		return ret;
3567	}
3568	if (num_streams <= 1) {
3569		xhci_warn(xhci, "WARN: endpoints can't handle "
3570				"more than one stream.\n");
3571		xhci_free_command(xhci, config_cmd);
3572		spin_unlock_irqrestore(&xhci->lock, flags);
3573		return -EINVAL;
3574	}
3575	vdev = xhci->devs[udev->slot_id];
3576	/* Mark each endpoint as being in transition, so
3577	 * xhci_urb_enqueue() will reject all URBs.
3578	 */
3579	for (i = 0; i < num_eps; i++) {
3580		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3581		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3582	}
3583	spin_unlock_irqrestore(&xhci->lock, flags);
3584
3585	/* Setup internal data structures and allocate HW data structures for
3586	 * streams (but don't install the HW structures in the input context
3587	 * until we're sure all memory allocation succeeded).
3588	 */
3589	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3590	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3591			num_stream_ctxs, num_streams);
3592
3593	for (i = 0; i < num_eps; i++) {
3594		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3595		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3596		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3597				num_stream_ctxs,
3598				num_streams,
3599				max_packet, mem_flags);
3600		if (!vdev->eps[ep_index].stream_info)
3601			goto cleanup;
3602		/* Set maxPstreams in endpoint context and update deq ptr to
3603		 * point to stream context array. FIXME
3604		 */
3605	}
3606
3607	/* Set up the input context for a configure endpoint command. */
3608	for (i = 0; i < num_eps; i++) {
3609		struct xhci_ep_ctx *ep_ctx;
3610
3611		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3612		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3613
3614		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3615				vdev->out_ctx, ep_index);
3616		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3617				vdev->eps[ep_index].stream_info);
3618	}
3619	/* Tell the HW to drop its old copy of the endpoint context info
3620	 * and add the updated copy from the input context.
3621	 */
3622	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3623			vdev->out_ctx, ctrl_ctx,
3624			changed_ep_bitmask, changed_ep_bitmask);
3625
3626	/* Issue and wait for the configure endpoint command */
3627	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3628			false, false);
3629
3630	/* xHC rejected the configure endpoint command for some reason, so we
3631	 * leave the old ring intact and free our internal streams data
3632	 * structure.
3633	 */
3634	if (ret < 0)
3635		goto cleanup;
3636
3637	spin_lock_irqsave(&xhci->lock, flags);
3638	for (i = 0; i < num_eps; i++) {
3639		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3640		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3641		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3642			 udev->slot_id, ep_index);
3643		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3644	}
3645	xhci_free_command(xhci, config_cmd);
3646	spin_unlock_irqrestore(&xhci->lock, flags);
3647
3648	for (i = 0; i < num_eps; i++) {
3649		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3650		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3651	}
3652	/* Subtract 1 for stream 0, which drivers can't use */
3653	return num_streams - 1;
3654
3655cleanup:
3656	/* If it didn't work, free the streams! */
3657	for (i = 0; i < num_eps; i++) {
3658		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3659		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3660		vdev->eps[ep_index].stream_info = NULL;
3661		/* FIXME Unset maxPstreams in endpoint context and
3662		 * update deq ptr to point to normal string ring.
3663		 */
3664		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3665		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3666		xhci_endpoint_zero(xhci, vdev, eps[i]);
3667	}
3668	xhci_free_command(xhci, config_cmd);
3669	return -ENOMEM;
3670}
3671
3672/* Transition the endpoint from using streams to being a "normal" endpoint
3673 * without streams.
3674 *
3675 * Modify the endpoint context state, submit a configure endpoint command,
3676 * and free all endpoint rings for streams if that completes successfully.
3677 */
3678static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3679		struct usb_host_endpoint **eps, unsigned int num_eps,
3680		gfp_t mem_flags)
3681{
3682	int i, ret;
3683	struct xhci_hcd *xhci;
3684	struct xhci_virt_device *vdev;
3685	struct xhci_command *command;
3686	struct xhci_input_control_ctx *ctrl_ctx;
3687	unsigned int ep_index;
3688	unsigned long flags;
3689	u32 changed_ep_bitmask;
3690
3691	xhci = hcd_to_xhci(hcd);
3692	vdev = xhci->devs[udev->slot_id];
3693
3694	/* Set up a configure endpoint command to remove the streams rings */
3695	spin_lock_irqsave(&xhci->lock, flags);
3696	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3697			udev, eps, num_eps);
3698	if (changed_ep_bitmask == 0) {
3699		spin_unlock_irqrestore(&xhci->lock, flags);
3700		return -EINVAL;
3701	}
3702
3703	/* Use the xhci_command structure from the first endpoint.  We may have
3704	 * allocated too many, but the driver may call xhci_free_streams() for
3705	 * each endpoint it grouped into one call to xhci_alloc_streams().
3706	 */
3707	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3708	command = vdev->eps[ep_index].stream_info->free_streams_command;
3709	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3710	if (!ctrl_ctx) {
3711		spin_unlock_irqrestore(&xhci->lock, flags);
3712		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3713				__func__);
3714		return -EINVAL;
3715	}
3716
3717	for (i = 0; i < num_eps; i++) {
3718		struct xhci_ep_ctx *ep_ctx;
3719
3720		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3721		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3722		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3723			EP_GETTING_NO_STREAMS;
3724
3725		xhci_endpoint_copy(xhci, command->in_ctx,
3726				vdev->out_ctx, ep_index);
3727		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3728				&vdev->eps[ep_index]);
3729	}
3730	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3731			vdev->out_ctx, ctrl_ctx,
3732			changed_ep_bitmask, changed_ep_bitmask);
3733	spin_unlock_irqrestore(&xhci->lock, flags);
3734
3735	/* Issue and wait for the configure endpoint command,
3736	 * which must succeed.
3737	 */
3738	ret = xhci_configure_endpoint(xhci, udev, command,
3739			false, true);
3740
3741	/* xHC rejected the configure endpoint command for some reason, so we
3742	 * leave the streams rings intact.
3743	 */
3744	if (ret < 0)
3745		return ret;
3746
3747	spin_lock_irqsave(&xhci->lock, flags);
3748	for (i = 0; i < num_eps; i++) {
3749		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3750		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3751		vdev->eps[ep_index].stream_info = NULL;
3752		/* FIXME Unset maxPstreams in endpoint context and
3753		 * update deq ptr to point to normal string ring.
3754		 */
3755		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3756		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3757	}
3758	spin_unlock_irqrestore(&xhci->lock, flags);
3759
3760	return 0;
3761}
3762
3763/*
3764 * Deletes endpoint resources for endpoints that were active before a Reset
3765 * Device command, or a Disable Slot command.  The Reset Device command leaves
3766 * the control endpoint intact, whereas the Disable Slot command deletes it.
3767 *
3768 * Must be called with xhci->lock held.
3769 */
3770void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3771	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3772{
3773	int i;
3774	unsigned int num_dropped_eps = 0;
3775	unsigned int drop_flags = 0;
3776
3777	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3778		if (virt_dev->eps[i].ring) {
3779			drop_flags |= 1 << i;
3780			num_dropped_eps++;
3781		}
3782	}
3783	xhci->num_active_eps -= num_dropped_eps;
3784	if (num_dropped_eps)
3785		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3786				"Dropped %u ep ctxs, flags = 0x%x, "
3787				"%u now active.",
3788				num_dropped_eps, drop_flags,
3789				xhci->num_active_eps);
3790}
3791
3792/*
3793 * This submits a Reset Device Command, which will set the device state to 0,
3794 * set the device address to 0, and disable all the endpoints except the default
3795 * control endpoint.  The USB core should come back and call
3796 * xhci_address_device(), and then re-set up the configuration.  If this is
3797 * called because of a usb_reset_and_verify_device(), then the old alternate
3798 * settings will be re-installed through the normal bandwidth allocation
3799 * functions.
3800 *
3801 * Wait for the Reset Device command to finish.  Remove all structures
3802 * associated with the endpoints that were disabled.  Clear the input device
3803 * structure? Reset the control endpoint 0 max packet size?
3804 *
3805 * If the virt_dev to be reset does not exist or does not match the udev,
3806 * it means the device is lost, possibly due to the xHC restore error and
3807 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3808 * re-allocate the device.
3809 */
3810static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3811		struct usb_device *udev)
3812{
3813	int ret, i;
3814	unsigned long flags;
3815	struct xhci_hcd *xhci;
3816	unsigned int slot_id;
3817	struct xhci_virt_device *virt_dev;
3818	struct xhci_command *reset_device_cmd;
 
 
3819	struct xhci_slot_ctx *slot_ctx;
3820	int old_active_eps = 0;
3821
3822	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3823	if (ret <= 0)
3824		return ret;
3825	xhci = hcd_to_xhci(hcd);
3826	slot_id = udev->slot_id;
3827	virt_dev = xhci->devs[slot_id];
3828	if (!virt_dev) {
3829		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3830				"not exist. Re-allocate the device\n", slot_id);
3831		ret = xhci_alloc_dev(hcd, udev);
3832		if (ret == 1)
3833			return 0;
3834		else
3835			return -EINVAL;
3836	}
3837
3838	if (virt_dev->tt_info)
3839		old_active_eps = virt_dev->tt_info->active_eps;
3840
3841	if (virt_dev->udev != udev) {
3842		/* If the virt_dev and the udev does not match, this virt_dev
3843		 * may belong to another udev.
3844		 * Re-allocate the device.
3845		 */
3846		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3847				"not match the udev. Re-allocate the device\n",
3848				slot_id);
3849		ret = xhci_alloc_dev(hcd, udev);
3850		if (ret == 1)
3851			return 0;
3852		else
3853			return -EINVAL;
3854	}
3855
3856	/* If device is not setup, there is no point in resetting it */
3857	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3858	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3859						SLOT_STATE_DISABLED)
3860		return 0;
3861
3862	trace_xhci_discover_or_reset_device(slot_ctx);
3863
3864	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3865	/* Allocate the command structure that holds the struct completion.
3866	 * Assume we're in process context, since the normal device reset
3867	 * process has to wait for the device anyway.  Storage devices are
3868	 * reset as part of error handling, so use GFP_NOIO instead of
3869	 * GFP_KERNEL.
3870	 */
3871	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3872	if (!reset_device_cmd) {
3873		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3874		return -ENOMEM;
3875	}
3876
3877	/* Attempt to submit the Reset Device command to the command ring */
3878	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
 
 
3879
3880	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
 
3881	if (ret) {
3882		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
 
3883		spin_unlock_irqrestore(&xhci->lock, flags);
3884		goto command_cleanup;
3885	}
3886	xhci_ring_cmd_db(xhci);
3887	spin_unlock_irqrestore(&xhci->lock, flags);
3888
3889	/* Wait for the Reset Device command to finish */
3890	wait_for_completion(reset_device_cmd->completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3891
3892	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3893	 * unless we tried to reset a slot ID that wasn't enabled,
3894	 * or the device wasn't in the addressed or configured state.
3895	 */
3896	ret = reset_device_cmd->status;
3897	switch (ret) {
3898	case COMP_COMMAND_ABORTED:
3899	case COMP_COMMAND_RING_STOPPED:
3900		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3901		ret = -ETIME;
3902		goto command_cleanup;
3903	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3904	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3905		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3906				slot_id,
3907				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3908		xhci_dbg(xhci, "Not freeing device rings.\n");
3909		/* Don't treat this as an error.  May change my mind later. */
3910		ret = 0;
3911		goto command_cleanup;
3912	case COMP_SUCCESS:
3913		xhci_dbg(xhci, "Successful reset device command.\n");
3914		break;
3915	default:
3916		if (xhci_is_vendor_info_code(xhci, ret))
3917			break;
3918		xhci_warn(xhci, "Unknown completion code %u for "
3919				"reset device command.\n", ret);
3920		ret = -EINVAL;
3921		goto command_cleanup;
3922	}
3923
3924	/* Free up host controller endpoint resources */
3925	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3926		spin_lock_irqsave(&xhci->lock, flags);
3927		/* Don't delete the default control endpoint resources */
3928		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3929		spin_unlock_irqrestore(&xhci->lock, flags);
3930	}
3931
3932	/* Everything but endpoint 0 is disabled, so free the rings. */
3933	for (i = 1; i < 31; i++) {
 
3934		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3935
3936		if (ep->ep_state & EP_HAS_STREAMS) {
3937			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3938					xhci_get_endpoint_address(i));
3939			xhci_free_stream_info(xhci, ep->stream_info);
3940			ep->stream_info = NULL;
3941			ep->ep_state &= ~EP_HAS_STREAMS;
3942		}
3943
3944		if (ep->ring) {
3945			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3946			xhci_free_endpoint_ring(xhci, virt_dev, i);
3947		}
3948		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3949			xhci_drop_ep_from_interval_table(xhci,
3950					&virt_dev->eps[i].bw_info,
3951					virt_dev->bw_table,
3952					udev,
3953					&virt_dev->eps[i],
3954					virt_dev->tt_info);
3955		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3956	}
3957	/* If necessary, update the number of active TTs on this root port */
3958	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3959	virt_dev->flags = 0;
 
 
3960	ret = 0;
3961
3962command_cleanup:
3963	xhci_free_command(xhci, reset_device_cmd);
3964	return ret;
3965}
3966
3967/*
3968 * At this point, the struct usb_device is about to go away, the device has
3969 * disconnected, and all traffic has been stopped and the endpoints have been
3970 * disabled.  Free any HC data structures associated with that device.
3971 */
3972static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3973{
3974	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3975	struct xhci_virt_device *virt_dev;
3976	struct xhci_slot_ctx *slot_ctx;
3977	unsigned long flags;
 
3978	int i, ret;
3979
3980	/*
3981	 * We called pm_runtime_get_noresume when the device was attached.
3982	 * Decrement the counter here to allow controller to runtime suspend
3983	 * if no devices remain.
3984	 */
3985	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3986		pm_runtime_put_noidle(hcd->self.controller);
3987
3988	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3989	/* If the host is halted due to driver unload, we still need to free the
3990	 * device.
3991	 */
3992	if (ret <= 0 && ret != -ENODEV)
3993		return;
3994
3995	virt_dev = xhci->devs[udev->slot_id];
3996	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3997	trace_xhci_free_dev(slot_ctx);
3998
3999	/* Stop any wayward timer functions (which may grab the lock) */
4000	for (i = 0; i < 31; i++)
4001		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
4002	virt_dev->udev = NULL;
4003	xhci_disable_slot(xhci, udev->slot_id);
4004
4005	spin_lock_irqsave(&xhci->lock, flags);
4006	xhci_free_virt_device(xhci, udev->slot_id);
4007	spin_unlock_irqrestore(&xhci->lock, flags);
4008
4009}
4010
4011int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
4012{
4013	struct xhci_command *command;
4014	unsigned long flags;
4015	u32 state;
4016	int ret;
4017
4018	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4019	if (!command)
4020		return -ENOMEM;
4021
4022	xhci_debugfs_remove_slot(xhci, slot_id);
 
 
 
4023
4024	spin_lock_irqsave(&xhci->lock, flags);
4025	/* Don't disable the slot if the host controller is dead. */
4026	state = readl(&xhci->op_regs->status);
4027	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4028			(xhci->xhc_state & XHCI_STATE_HALTED)) {
 
4029		spin_unlock_irqrestore(&xhci->lock, flags);
4030		kfree(command);
4031		return -ENODEV;
4032	}
4033
4034	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4035				slot_id);
4036	if (ret) {
4037		spin_unlock_irqrestore(&xhci->lock, flags);
4038		kfree(command);
4039		return ret;
4040	}
4041	xhci_ring_cmd_db(xhci);
4042	spin_unlock_irqrestore(&xhci->lock, flags);
4043
4044	wait_for_completion(command->completion);
4045
4046	if (command->status != COMP_SUCCESS)
4047		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4048			  slot_id, command->status);
4049
4050	xhci_free_command(xhci, command);
4051
4052	return 0;
4053}
4054
4055/*
4056 * Checks if we have enough host controller resources for the default control
4057 * endpoint.
4058 *
4059 * Must be called with xhci->lock held.
4060 */
4061static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4062{
4063	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4064		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4065				"Not enough ep ctxs: "
4066				"%u active, need to add 1, limit is %u.",
4067				xhci->num_active_eps, xhci->limit_active_eps);
4068		return -ENOMEM;
4069	}
4070	xhci->num_active_eps += 1;
4071	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4072			"Adding 1 ep ctx, %u now active.",
4073			xhci->num_active_eps);
4074	return 0;
4075}
4076
4077
4078/*
4079 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4080 * timed out, or allocating memory failed.  Returns 1 on success.
4081 */
4082int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4083{
4084	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4085	struct xhci_virt_device *vdev;
4086	struct xhci_slot_ctx *slot_ctx;
4087	unsigned long flags;
4088	int ret, slot_id;
4089	struct xhci_command *command;
4090
4091	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4092	if (!command)
4093		return 0;
4094
4095	spin_lock_irqsave(&xhci->lock, flags);
4096	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
 
4097	if (ret) {
4098		spin_unlock_irqrestore(&xhci->lock, flags);
4099		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4100		xhci_free_command(xhci, command);
4101		return 0;
4102	}
4103	xhci_ring_cmd_db(xhci);
4104	spin_unlock_irqrestore(&xhci->lock, flags);
4105
4106	wait_for_completion(command->completion);
4107	slot_id = command->slot_id;
 
 
 
 
 
 
 
4108
4109	if (!slot_id || command->status != COMP_SUCCESS) {
4110		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4111			 xhci_trb_comp_code_string(command->status));
4112		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4113				HCS_MAX_SLOTS(
4114					readl(&xhci->cap_regs->hcs_params1)));
4115		xhci_free_command(xhci, command);
4116		return 0;
4117	}
4118
4119	xhci_free_command(xhci, command);
4120
4121	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4122		spin_lock_irqsave(&xhci->lock, flags);
4123		ret = xhci_reserve_host_control_ep_resources(xhci);
4124		if (ret) {
4125			spin_unlock_irqrestore(&xhci->lock, flags);
4126			xhci_warn(xhci, "Not enough host resources, "
4127					"active endpoint contexts = %u\n",
4128					xhci->num_active_eps);
4129			goto disable_slot;
4130		}
4131		spin_unlock_irqrestore(&xhci->lock, flags);
4132	}
4133	/* Use GFP_NOIO, since this function can be called from
4134	 * xhci_discover_or_reset_device(), which may be called as part of
4135	 * mass storage driver error handling.
4136	 */
4137	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4138		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4139		goto disable_slot;
4140	}
4141	vdev = xhci->devs[slot_id];
4142	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4143	trace_xhci_alloc_dev(slot_ctx);
4144
4145	udev->slot_id = slot_id;
4146
4147	xhci_debugfs_create_slot(xhci, slot_id);
4148
4149	/*
4150	 * If resetting upon resume, we can't put the controller into runtime
4151	 * suspend if there is a device attached.
4152	 */
4153	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4154		pm_runtime_get_noresume(hcd->self.controller);
4155
4156	/* Is this a LS or FS device under a HS hub? */
4157	/* Hub or peripherial? */
4158	return 1;
4159
4160disable_slot:
4161	xhci_disable_slot(xhci, udev->slot_id);
4162	xhci_free_virt_device(xhci, udev->slot_id);
4163
 
 
4164	return 0;
4165}
4166
4167/*
4168 * Issue an Address Device command and optionally send a corresponding
4169 * SetAddress request to the device.
 
 
 
 
 
4170 */
4171static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4172			     enum xhci_setup_dev setup)
4173{
4174	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4175	unsigned long flags;
 
4176	struct xhci_virt_device *virt_dev;
4177	int ret = 0;
4178	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4179	struct xhci_slot_ctx *slot_ctx;
4180	struct xhci_input_control_ctx *ctrl_ctx;
4181	u64 temp_64;
4182	struct xhci_command *command = NULL;
4183
4184	mutex_lock(&xhci->mutex);
4185
4186	if (xhci->xhc_state) {	/* dying, removing or halted */
4187		ret = -ESHUTDOWN;
4188		goto out;
4189	}
4190
4191	if (!udev->slot_id) {
4192		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4193				"Bad Slot ID %d", udev->slot_id);
4194		ret = -EINVAL;
4195		goto out;
4196	}
4197
4198	virt_dev = xhci->devs[udev->slot_id];
4199
4200	if (WARN_ON(!virt_dev)) {
4201		/*
4202		 * In plug/unplug torture test with an NEC controller,
4203		 * a zero-dereference was observed once due to virt_dev = 0.
4204		 * Print useful debug rather than crash if it is observed again!
4205		 */
4206		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4207			udev->slot_id);
4208		ret = -EINVAL;
4209		goto out;
4210	}
4211	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4212	trace_xhci_setup_device_slot(slot_ctx);
4213
4214	if (setup == SETUP_CONTEXT_ONLY) {
4215		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4216		    SLOT_STATE_DEFAULT) {
4217			xhci_dbg(xhci, "Slot already in default state\n");
4218			goto out;
4219		}
4220	}
4221
4222	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4223	if (!command) {
4224		ret = -ENOMEM;
4225		goto out;
4226	}
4227
4228	command->in_ctx = virt_dev->in_ctx;
4229
4230	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4231	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4232	if (!ctrl_ctx) {
4233		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4234				__func__);
4235		ret = -EINVAL;
4236		goto out;
4237	}
4238	/*
4239	 * If this is the first Set Address since device plug-in or
4240	 * virt_device realloaction after a resume with an xHCI power loss,
4241	 * then set up the slot context.
4242	 */
4243	if (!slot_ctx->dev_info)
4244		xhci_setup_addressable_virt_dev(xhci, udev);
4245	/* Otherwise, update the control endpoint ring enqueue pointer. */
4246	else
4247		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
 
4248	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4249	ctrl_ctx->drop_flags = 0;
4250
4251	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4252				le32_to_cpu(slot_ctx->dev_info) >> 27);
4253
4254	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4255	spin_lock_irqsave(&xhci->lock, flags);
4256	trace_xhci_setup_device(virt_dev);
4257	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4258					udev->slot_id, setup);
4259	if (ret) {
4260		spin_unlock_irqrestore(&xhci->lock, flags);
4261		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4262				"FIXME: allocate a command ring segment");
4263		goto out;
4264	}
4265	xhci_ring_cmd_db(xhci);
4266	spin_unlock_irqrestore(&xhci->lock, flags);
4267
4268	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4269	wait_for_completion(command->completion);
4270
4271	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4272	 * the SetAddress() "recovery interval" required by USB and aborting the
4273	 * command on a timeout.
4274	 */
4275	switch (command->status) {
4276	case COMP_COMMAND_ABORTED:
4277	case COMP_COMMAND_RING_STOPPED:
4278		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4279		ret = -ETIME;
4280		break;
4281	case COMP_CONTEXT_STATE_ERROR:
4282	case COMP_SLOT_NOT_ENABLED_ERROR:
4283		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4284			 act, udev->slot_id);
 
 
 
 
 
4285		ret = -EINVAL;
4286		break;
4287	case COMP_USB_TRANSACTION_ERROR:
4288		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4289
4290		mutex_unlock(&xhci->mutex);
4291		ret = xhci_disable_slot(xhci, udev->slot_id);
4292		xhci_free_virt_device(xhci, udev->slot_id);
4293		if (!ret)
4294			xhci_alloc_dev(hcd, udev);
4295		kfree(command->completion);
4296		kfree(command);
4297		return -EPROTO;
4298	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4299		dev_warn(&udev->dev,
4300			 "ERROR: Incompatible device for setup %s command\n", act);
4301		ret = -ENODEV;
4302		break;
4303	case COMP_SUCCESS:
4304		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4305			       "Successful setup %s command", act);
4306		break;
4307	default:
4308		xhci_err(xhci,
4309			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4310			 act, command->status);
4311		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4312		ret = -EINVAL;
4313		break;
4314	}
4315	if (ret)
4316		goto out;
 
4317	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4318	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4319			"Op regs DCBAA ptr = %#016llx", temp_64);
4320	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4321		"Slot ID %d dcbaa entry @%p = %#016llx",
4322		udev->slot_id,
4323		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4324		(unsigned long long)
4325		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4326	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4327			"Output Context DMA address = %#08llx",
4328			(unsigned long long)virt_dev->out_ctx->dma);
4329	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4330				le32_to_cpu(slot_ctx->dev_info) >> 27);
 
 
4331	/*
4332	 * USB core uses address 1 for the roothubs, so we add one to the
4333	 * address given back to us by the HC.
4334	 */
4335	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4336				le32_to_cpu(slot_ctx->dev_info) >> 27);
 
 
 
4337	/* Zero the input context control for later use */
4338	ctrl_ctx->add_flags = 0;
4339	ctrl_ctx->drop_flags = 0;
4340	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4341	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4342
4343	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4344		       "Internal device address = %d",
4345		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4346out:
4347	mutex_unlock(&xhci->mutex);
4348	if (command) {
4349		kfree(command->completion);
4350		kfree(command);
4351	}
4352	return ret;
4353}
4354
4355static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4356{
4357	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4358}
4359
4360static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4361{
4362	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4363}
4364
4365/*
4366 * Transfer the port index into real index in the HW port status
4367 * registers. Caculate offset between the port's PORTSC register
4368 * and port status base. Divide the number of per port register
4369 * to get the real index. The raw port number bases 1.
4370 */
4371int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4372{
4373	struct xhci_hub *rhub;
4374
4375	rhub = xhci_get_rhub(hcd);
4376	return rhub->ports[port1 - 1]->hw_portnum + 1;
4377}
4378
4379/*
4380 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4381 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4382 */
4383static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4384			struct usb_device *udev, u16 max_exit_latency)
4385{
4386	struct xhci_virt_device *virt_dev;
4387	struct xhci_command *command;
4388	struct xhci_input_control_ctx *ctrl_ctx;
4389	struct xhci_slot_ctx *slot_ctx;
4390	unsigned long flags;
4391	int ret;
4392
4393	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4394	if (!command)
4395		return -ENOMEM;
4396
4397	spin_lock_irqsave(&xhci->lock, flags);
4398
4399	virt_dev = xhci->devs[udev->slot_id];
4400
4401	/*
4402	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4403	 * xHC was re-initialized. Exit latency will be set later after
4404	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4405	 */
4406
4407	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4408		spin_unlock_irqrestore(&xhci->lock, flags);
4409		return 0;
4410	}
4411
4412	/* Attempt to issue an Evaluate Context command to change the MEL. */
4413	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4414	if (!ctrl_ctx) {
4415		spin_unlock_irqrestore(&xhci->lock, flags);
4416		xhci_free_command(xhci, command);
4417		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4418				__func__);
4419		return -ENOMEM;
4420	}
4421
4422	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4423	spin_unlock_irqrestore(&xhci->lock, flags);
4424
4425	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4426	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4427	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4428	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4429	slot_ctx->dev_state = 0;
4430
4431	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4432			"Set up evaluate context for LPM MEL change.");
4433
4434	/* Issue and wait for the evaluate context command. */
4435	ret = xhci_configure_endpoint(xhci, udev, command,
4436			true, true);
4437
4438	if (!ret) {
4439		spin_lock_irqsave(&xhci->lock, flags);
4440		virt_dev->current_mel = max_exit_latency;
4441		spin_unlock_irqrestore(&xhci->lock, flags);
4442	}
4443
4444	xhci_free_command(xhci, command);
4445
4446	return ret;
4447}
4448
4449#ifdef CONFIG_PM
4450
4451/* BESL to HIRD Encoding array for USB2 LPM */
4452static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4453	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4454
4455/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4456static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4457					struct usb_device *udev)
4458{
4459	int u2del, besl, besl_host;
4460	int besl_device = 0;
4461	u32 field;
4462
4463	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4464	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4465
4466	if (field & USB_BESL_SUPPORT) {
4467		for (besl_host = 0; besl_host < 16; besl_host++) {
4468			if (xhci_besl_encoding[besl_host] >= u2del)
4469				break;
4470		}
4471		/* Use baseline BESL value as default */
4472		if (field & USB_BESL_BASELINE_VALID)
4473			besl_device = USB_GET_BESL_BASELINE(field);
4474		else if (field & USB_BESL_DEEP_VALID)
4475			besl_device = USB_GET_BESL_DEEP(field);
4476	} else {
4477		if (u2del <= 50)
4478			besl_host = 0;
4479		else
4480			besl_host = (u2del - 51) / 75 + 1;
4481	}
4482
4483	besl = besl_host + besl_device;
4484	if (besl > 15)
4485		besl = 15;
4486
4487	return besl;
4488}
4489
4490/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4491static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4492{
4493	u32 field;
4494	int l1;
4495	int besld = 0;
4496	int hirdm = 0;
 
 
 
 
 
4497
4498	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4499
4500	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4501	l1 = udev->l1_params.timeout / 256;
4502
4503	/* device has preferred BESLD */
4504	if (field & USB_BESL_DEEP_VALID) {
4505		besld = USB_GET_BESL_DEEP(field);
4506		hirdm = 1;
 
 
 
 
 
4507	}
4508
4509	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4510}
4511
4512static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4513			struct usb_device *udev, int enable)
4514{
4515	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4516	struct xhci_port **ports;
4517	__le32 __iomem	*pm_addr, *hlpm_addr;
4518	u32		pm_val, hlpm_val, field;
4519	unsigned int	port_num;
4520	unsigned long	flags;
4521	int		hird, exit_latency;
4522	int		ret;
4523
4524	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4525		return -EPERM;
4526
4527	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4528			!udev->lpm_capable)
4529		return -EPERM;
4530
4531	if (!udev->parent || udev->parent->parent ||
4532			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4533		return -EPERM;
4534
4535	if (udev->usb2_hw_lpm_capable != 1)
4536		return -EPERM;
4537
4538	spin_lock_irqsave(&xhci->lock, flags);
4539
4540	ports = xhci->usb2_rhub.ports;
4541	port_num = udev->portnum - 1;
4542	pm_addr = ports[port_num]->addr + PORTPMSC;
4543	pm_val = readl(pm_addr);
4544	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4545
4546	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4547			enable ? "enable" : "disable", port_num + 1);
4548
4549	if (enable) {
4550		/* Host supports BESL timeout instead of HIRD */
4551		if (udev->usb2_hw_lpm_besl_capable) {
4552			/* if device doesn't have a preferred BESL value use a
4553			 * default one which works with mixed HIRD and BESL
4554			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4555			 */
4556			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4557			if ((field & USB_BESL_SUPPORT) &&
4558			    (field & USB_BESL_BASELINE_VALID))
4559				hird = USB_GET_BESL_BASELINE(field);
4560			else
4561				hird = udev->l1_params.besl;
4562
4563			exit_latency = xhci_besl_encoding[hird];
4564			spin_unlock_irqrestore(&xhci->lock, flags);
4565
4566			ret = xhci_change_max_exit_latency(xhci, udev,
4567							   exit_latency);
4568			if (ret < 0)
4569				return ret;
4570			spin_lock_irqsave(&xhci->lock, flags);
4571
4572			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4573			writel(hlpm_val, hlpm_addr);
4574			/* flush write */
4575			readl(hlpm_addr);
4576		} else {
4577			hird = xhci_calculate_hird_besl(xhci, udev);
4578		}
4579
4580		pm_val &= ~PORT_HIRD_MASK;
4581		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4582		writel(pm_val, pm_addr);
4583		pm_val = readl(pm_addr);
4584		pm_val |= PORT_HLE;
4585		writel(pm_val, pm_addr);
4586		/* flush write */
4587		readl(pm_addr);
4588	} else {
4589		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4590		writel(pm_val, pm_addr);
4591		/* flush write */
4592		readl(pm_addr);
4593		if (udev->usb2_hw_lpm_besl_capable) {
4594			spin_unlock_irqrestore(&xhci->lock, flags);
4595			xhci_change_max_exit_latency(xhci, udev, 0);
4596			readl_poll_timeout(ports[port_num]->addr, pm_val,
4597					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4598					   100, 10000);
4599			return 0;
4600		}
4601	}
4602
4603	spin_unlock_irqrestore(&xhci->lock, flags);
4604	return 0;
4605}
4606
4607/* check if a usb2 port supports a given extened capability protocol
4608 * only USB2 ports extended protocol capability values are cached.
4609 * Return 1 if capability is supported
4610 */
4611static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4612					   unsigned capability)
4613{
4614	u32 port_offset, port_count;
4615	int i;
4616
4617	for (i = 0; i < xhci->num_ext_caps; i++) {
4618		if (xhci->ext_caps[i] & capability) {
4619			/* port offsets starts at 1 */
4620			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4621			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4622			if (port >= port_offset &&
4623			    port < port_offset + port_count)
4624				return 1;
4625		}
4626	}
 
4627	return 0;
4628}
4629
4630static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4631{
4632	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4633	int		portnum = udev->portnum - 1;
4634
4635	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4636		return 0;
4637
4638	/* we only support lpm for non-hub device connected to root hub yet */
4639	if (!udev->parent || udev->parent->parent ||
4640			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4641		return 0;
4642
4643	if (xhci->hw_lpm_support == 1 &&
4644			xhci_check_usb2_port_capability(
4645				xhci, portnum, XHCI_HLC)) {
4646		udev->usb2_hw_lpm_capable = 1;
4647		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4648		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4649		if (xhci_check_usb2_port_capability(xhci, portnum,
4650					XHCI_BLC))
4651			udev->usb2_hw_lpm_besl_capable = 1;
4652	}
4653
 
 
4654	return 0;
4655}
4656
 
 
4657/*---------------------- USB 3.0 Link PM functions ------------------------*/
4658
 
4659/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4660static unsigned long long xhci_service_interval_to_ns(
4661		struct usb_endpoint_descriptor *desc)
4662{
4663	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4664}
4665
4666static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4667		enum usb3_link_state state)
4668{
4669	unsigned long long sel;
4670	unsigned long long pel;
4671	unsigned int max_sel_pel;
4672	char *state_name;
4673
4674	switch (state) {
4675	case USB3_LPM_U1:
4676		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4677		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4678		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4679		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4680		state_name = "U1";
4681		break;
4682	case USB3_LPM_U2:
4683		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4684		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4685		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4686		state_name = "U2";
4687		break;
4688	default:
4689		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4690				__func__);
4691		return USB3_LPM_DISABLED;
4692	}
4693
4694	if (sel <= max_sel_pel && pel <= max_sel_pel)
4695		return USB3_LPM_DEVICE_INITIATED;
4696
4697	if (sel > max_sel_pel)
4698		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4699				"due to long SEL %llu ms\n",
4700				state_name, sel);
4701	else
4702		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4703				"due to long PEL %llu ms\n",
4704				state_name, pel);
4705	return USB3_LPM_DISABLED;
4706}
4707
4708/* The U1 timeout should be the maximum of the following values:
 
4709 *  - For control endpoints, U1 system exit latency (SEL) * 3
4710 *  - For bulk endpoints, U1 SEL * 5
4711 *  - For interrupt endpoints:
4712 *    - Notification EPs, U1 SEL * 3
4713 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4714 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4715 */
4716static unsigned long long xhci_calculate_intel_u1_timeout(
4717		struct usb_device *udev,
4718		struct usb_endpoint_descriptor *desc)
4719{
4720	unsigned long long timeout_ns;
4721	int ep_type;
4722	int intr_type;
4723
4724	ep_type = usb_endpoint_type(desc);
4725	switch (ep_type) {
4726	case USB_ENDPOINT_XFER_CONTROL:
4727		timeout_ns = udev->u1_params.sel * 3;
4728		break;
4729	case USB_ENDPOINT_XFER_BULK:
4730		timeout_ns = udev->u1_params.sel * 5;
4731		break;
4732	case USB_ENDPOINT_XFER_INT:
4733		intr_type = usb_endpoint_interrupt_type(desc);
4734		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4735			timeout_ns = udev->u1_params.sel * 3;
4736			break;
4737		}
4738		/* Otherwise the calculation is the same as isoc eps */
4739		fallthrough;
4740	case USB_ENDPOINT_XFER_ISOC:
4741		timeout_ns = xhci_service_interval_to_ns(desc);
4742		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4743		if (timeout_ns < udev->u1_params.sel * 2)
4744			timeout_ns = udev->u1_params.sel * 2;
4745		break;
4746	default:
4747		return 0;
4748	}
4749
4750	return timeout_ns;
4751}
4752
4753/* Returns the hub-encoded U1 timeout value. */
4754static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4755		struct usb_device *udev,
4756		struct usb_endpoint_descriptor *desc)
4757{
4758	unsigned long long timeout_ns;
4759
4760	/* Prevent U1 if service interval is shorter than U1 exit latency */
4761	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4762		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4763			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4764			return USB3_LPM_DISABLED;
4765		}
4766	}
4767
4768	if (xhci->quirks & XHCI_INTEL_HOST)
4769		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4770	else
4771		timeout_ns = udev->u1_params.sel;
4772
4773	/* The U1 timeout is encoded in 1us intervals.
4774	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4775	 */
4776	if (timeout_ns == USB3_LPM_DISABLED)
4777		timeout_ns = 1;
4778	else
4779		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4780
4781	/* If the necessary timeout value is bigger than what we can set in the
4782	 * USB 3.0 hub, we have to disable hub-initiated U1.
4783	 */
4784	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4785		return timeout_ns;
4786	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4787			"due to long timeout %llu ms\n", timeout_ns);
4788	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4789}
4790
4791/* The U2 timeout should be the maximum of:
 
4792 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4793 *  - largest bInterval of any active periodic endpoint (to avoid going
4794 *    into lower power link states between intervals).
4795 *  - the U2 Exit Latency of the device
4796 */
4797static unsigned long long xhci_calculate_intel_u2_timeout(
4798		struct usb_device *udev,
4799		struct usb_endpoint_descriptor *desc)
4800{
4801	unsigned long long timeout_ns;
4802	unsigned long long u2_del_ns;
4803
4804	timeout_ns = 10 * 1000 * 1000;
4805
4806	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4807			(xhci_service_interval_to_ns(desc) > timeout_ns))
4808		timeout_ns = xhci_service_interval_to_ns(desc);
4809
4810	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4811	if (u2_del_ns > timeout_ns)
4812		timeout_ns = u2_del_ns;
4813
4814	return timeout_ns;
4815}
4816
4817/* Returns the hub-encoded U2 timeout value. */
4818static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4819		struct usb_device *udev,
4820		struct usb_endpoint_descriptor *desc)
4821{
4822	unsigned long long timeout_ns;
4823
4824	/* Prevent U2 if service interval is shorter than U2 exit latency */
4825	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4826		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4827			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4828			return USB3_LPM_DISABLED;
4829		}
4830	}
4831
4832	if (xhci->quirks & XHCI_INTEL_HOST)
4833		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4834	else
4835		timeout_ns = udev->u2_params.sel;
4836
4837	/* The U2 timeout is encoded in 256us intervals */
4838	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4839	/* If the necessary timeout value is bigger than what we can set in the
4840	 * USB 3.0 hub, we have to disable hub-initiated U2.
4841	 */
4842	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4843		return timeout_ns;
4844	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4845			"due to long timeout %llu ms\n", timeout_ns);
4846	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4847}
4848
4849static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4850		struct usb_device *udev,
4851		struct usb_endpoint_descriptor *desc,
4852		enum usb3_link_state state,
4853		u16 *timeout)
4854{
4855	if (state == USB3_LPM_U1)
4856		return xhci_calculate_u1_timeout(xhci, udev, desc);
4857	else if (state == USB3_LPM_U2)
4858		return xhci_calculate_u2_timeout(xhci, udev, desc);
 
 
 
4859
4860	return USB3_LPM_DISABLED;
4861}
4862
4863static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4864		struct usb_device *udev,
4865		struct usb_endpoint_descriptor *desc,
4866		enum usb3_link_state state,
4867		u16 *timeout)
4868{
4869	u16 alt_timeout;
4870
4871	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4872		desc, state, timeout);
4873
4874	/* If we found we can't enable hub-initiated LPM, and
4875	 * the U1 or U2 exit latency was too high to allow
4876	 * device-initiated LPM as well, then we will disable LPM
4877	 * for this device, so stop searching any further.
4878	 */
4879	if (alt_timeout == USB3_LPM_DISABLED) {
 
4880		*timeout = alt_timeout;
4881		return -E2BIG;
4882	}
4883	if (alt_timeout > *timeout)
4884		*timeout = alt_timeout;
4885	return 0;
4886}
4887
4888static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4889		struct usb_device *udev,
4890		struct usb_host_interface *alt,
4891		enum usb3_link_state state,
4892		u16 *timeout)
4893{
4894	int j;
4895
4896	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4897		if (xhci_update_timeout_for_endpoint(xhci, udev,
4898					&alt->endpoint[j].desc, state, timeout))
4899			return -E2BIG;
 
4900	}
4901	return 0;
4902}
4903
4904static int xhci_check_intel_tier_policy(struct usb_device *udev,
4905		enum usb3_link_state state)
4906{
4907	struct usb_device *parent;
4908	unsigned int num_hubs;
4909
 
 
 
4910	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4911	for (parent = udev->parent, num_hubs = 0; parent->parent;
4912			parent = parent->parent)
4913		num_hubs++;
4914
4915	if (num_hubs < 2)
4916		return 0;
4917
4918	dev_dbg(&udev->dev, "Disabling U1/U2 link state for device"
4919			" below second-tier hub.\n");
4920	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4921			"to decrease power consumption.\n");
4922	return -E2BIG;
4923}
4924
4925static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4926		struct usb_device *udev,
4927		enum usb3_link_state state)
4928{
4929	if (xhci->quirks & XHCI_INTEL_HOST)
4930		return xhci_check_intel_tier_policy(udev, state);
4931	else
4932		return 0;
4933}
4934
4935/* Returns the U1 or U2 timeout that should be enabled.
4936 * If the tier check or timeout setting functions return with a non-zero exit
4937 * code, that means the timeout value has been finalized and we shouldn't look
4938 * at any more endpoints.
4939 */
4940static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4941			struct usb_device *udev, enum usb3_link_state state)
4942{
4943	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4944	struct usb_host_config *config;
4945	char *state_name;
4946	int i;
4947	u16 timeout = USB3_LPM_DISABLED;
4948
4949	if (state == USB3_LPM_U1)
4950		state_name = "U1";
4951	else if (state == USB3_LPM_U2)
4952		state_name = "U2";
4953	else {
4954		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4955				state);
4956		return timeout;
4957	}
4958
 
 
 
4959	/* Gather some information about the currently installed configuration
4960	 * and alternate interface settings.
4961	 */
4962	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4963			state, &timeout))
4964		return timeout;
4965
4966	config = udev->actconfig;
4967	if (!config)
4968		return timeout;
4969
4970	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4971		struct usb_driver *driver;
4972		struct usb_interface *intf = config->interface[i];
4973
4974		if (!intf)
4975			continue;
4976
4977		/* Check if any currently bound drivers want hub-initiated LPM
4978		 * disabled.
4979		 */
4980		if (intf->dev.driver) {
4981			driver = to_usb_driver(intf->dev.driver);
4982			if (driver && driver->disable_hub_initiated_lpm) {
4983				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4984					state_name, driver->name);
4985				timeout = xhci_get_timeout_no_hub_lpm(udev,
4986								      state);
4987				if (timeout == USB3_LPM_DISABLED)
4988					return timeout;
4989			}
4990		}
4991
4992		/* Not sure how this could happen... */
4993		if (!intf->cur_altsetting)
4994			continue;
4995
4996		if (xhci_update_timeout_for_interface(xhci, udev,
4997					intf->cur_altsetting,
4998					state, &timeout))
4999			return timeout;
5000	}
5001	return timeout;
5002}
5003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5004static int calculate_max_exit_latency(struct usb_device *udev,
5005		enum usb3_link_state state_changed,
5006		u16 hub_encoded_timeout)
5007{
5008	unsigned long long u1_mel_us = 0;
5009	unsigned long long u2_mel_us = 0;
5010	unsigned long long mel_us = 0;
5011	bool disabling_u1;
5012	bool disabling_u2;
5013	bool enabling_u1;
5014	bool enabling_u2;
5015
5016	disabling_u1 = (state_changed == USB3_LPM_U1 &&
5017			hub_encoded_timeout == USB3_LPM_DISABLED);
5018	disabling_u2 = (state_changed == USB3_LPM_U2 &&
5019			hub_encoded_timeout == USB3_LPM_DISABLED);
5020
5021	enabling_u1 = (state_changed == USB3_LPM_U1 &&
5022			hub_encoded_timeout != USB3_LPM_DISABLED);
5023	enabling_u2 = (state_changed == USB3_LPM_U2 &&
5024			hub_encoded_timeout != USB3_LPM_DISABLED);
5025
5026	/* If U1 was already enabled and we're not disabling it,
5027	 * or we're going to enable U1, account for the U1 max exit latency.
5028	 */
5029	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
5030			enabling_u1)
5031		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5032	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5033			enabling_u2)
5034		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5035
5036	mel_us = max(u1_mel_us, u2_mel_us);
5037
 
 
5038	/* xHCI host controller max exit latency field is only 16 bits wide. */
5039	if (mel_us > MAX_EXIT) {
5040		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5041				"is too big.\n", mel_us);
5042		return -E2BIG;
5043	}
5044	return mel_us;
5045}
5046
5047/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5048static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5049			struct usb_device *udev, enum usb3_link_state state)
5050{
5051	struct xhci_hcd	*xhci;
5052	struct xhci_port *port;
5053	u16 hub_encoded_timeout;
5054	int mel;
5055	int ret;
5056
5057	xhci = hcd_to_xhci(hcd);
5058	/* The LPM timeout values are pretty host-controller specific, so don't
5059	 * enable hub-initiated timeouts unless the vendor has provided
5060	 * information about their timeout algorithm.
5061	 */
5062	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5063			!xhci->devs[udev->slot_id])
5064		return USB3_LPM_DISABLED;
5065
5066	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5067		return USB3_LPM_DISABLED;
5068
5069	/* If connected to root port then check port can handle lpm */
5070	if (udev->parent && !udev->parent->parent) {
5071		port = xhci->usb3_rhub.ports[udev->portnum - 1];
5072		if (port->lpm_incapable)
5073			return USB3_LPM_DISABLED;
5074	}
5075
5076	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5077	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5078	if (mel < 0) {
5079		/* Max Exit Latency is too big, disable LPM. */
5080		hub_encoded_timeout = USB3_LPM_DISABLED;
5081		mel = 0;
5082	}
5083
5084	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5085	if (ret)
5086		return ret;
5087	return hub_encoded_timeout;
5088}
5089
5090static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5091			struct usb_device *udev, enum usb3_link_state state)
5092{
5093	struct xhci_hcd	*xhci;
5094	u16 mel;
 
5095
5096	xhci = hcd_to_xhci(hcd);
5097	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5098			!xhci->devs[udev->slot_id])
5099		return 0;
5100
5101	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5102	return xhci_change_max_exit_latency(xhci, udev, mel);
5103}
5104#else /* CONFIG_PM */
5105
5106static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5107				struct usb_device *udev, int enable)
5108{
5109	return 0;
5110}
5111
5112static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5113{
5114	return 0;
5115}
 
5116
5117static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5118			struct usb_device *udev, enum usb3_link_state state)
5119{
5120	return USB3_LPM_DISABLED;
5121}
5122
5123static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5124			struct usb_device *udev, enum usb3_link_state state)
5125{
5126	return 0;
5127}
5128#endif	/* CONFIG_PM */
5129
5130/*-------------------------------------------------------------------------*/
5131
5132/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5133 * internal data structures for the device.
5134 */
5135int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5136			struct usb_tt *tt, gfp_t mem_flags)
5137{
5138	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5139	struct xhci_virt_device *vdev;
5140	struct xhci_command *config_cmd;
5141	struct xhci_input_control_ctx *ctrl_ctx;
5142	struct xhci_slot_ctx *slot_ctx;
5143	unsigned long flags;
5144	unsigned think_time;
5145	int ret;
5146
5147	/* Ignore root hubs */
5148	if (!hdev->parent)
5149		return 0;
5150
5151	vdev = xhci->devs[hdev->slot_id];
5152	if (!vdev) {
5153		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5154		return -EINVAL;
5155	}
5156
5157	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5158	if (!config_cmd)
5159		return -ENOMEM;
5160
5161	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5162	if (!ctrl_ctx) {
5163		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5164				__func__);
5165		xhci_free_command(xhci, config_cmd);
5166		return -ENOMEM;
5167	}
5168
5169	spin_lock_irqsave(&xhci->lock, flags);
5170	if (hdev->speed == USB_SPEED_HIGH &&
5171			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5172		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5173		xhci_free_command(xhci, config_cmd);
5174		spin_unlock_irqrestore(&xhci->lock, flags);
5175		return -ENOMEM;
5176	}
5177
5178	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
 
5179	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5180	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5181	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5182	/*
5183	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5184	 * but it may be already set to 1 when setup an xHCI virtual
5185	 * device, so clear it anyway.
5186	 */
5187	if (tt->multi)
5188		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5189	else if (hdev->speed == USB_SPEED_FULL)
5190		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5191
5192	if (xhci->hci_version > 0x95) {
5193		xhci_dbg(xhci, "xHCI version %x needs hub "
5194				"TT think time and number of ports\n",
5195				(unsigned int) xhci->hci_version);
5196		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5197		/* Set TT think time - convert from ns to FS bit times.
5198		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5199		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5200		 *
5201		 * xHCI 1.0: this field shall be 0 if the device is not a
5202		 * High-spped hub.
5203		 */
5204		think_time = tt->think_time;
5205		if (think_time != 0)
5206			think_time = (think_time / 666) - 1;
5207		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5208			slot_ctx->tt_info |=
5209				cpu_to_le32(TT_THINK_TIME(think_time));
5210	} else {
5211		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5212				"TT think time or number of ports\n",
5213				(unsigned int) xhci->hci_version);
5214	}
5215	slot_ctx->dev_state = 0;
5216	spin_unlock_irqrestore(&xhci->lock, flags);
5217
5218	xhci_dbg(xhci, "Set up %s for hub device.\n",
5219			(xhci->hci_version > 0x95) ?
5220			"configure endpoint" : "evaluate context");
 
 
5221
5222	/* Issue and wait for the configure endpoint or
5223	 * evaluate context command.
5224	 */
5225	if (xhci->hci_version > 0x95)
5226		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5227				false, false);
5228	else
5229		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5230				true, false);
5231
 
 
 
5232	xhci_free_command(xhci, config_cmd);
5233	return ret;
5234}
5235EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5236
5237static int xhci_get_frame(struct usb_hcd *hcd)
5238{
5239	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5240	/* EHCI mods by the periodic size.  Why? */
5241	return readl(&xhci->run_regs->microframe_index) >> 3;
5242}
5243
5244static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5245{
5246	xhci->usb2_rhub.hcd = hcd;
5247	hcd->speed = HCD_USB2;
5248	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5249	/*
5250	 * USB 2.0 roothub under xHCI has an integrated TT,
5251	 * (rate matching hub) as opposed to having an OHCI/UHCI
5252	 * companion controller.
5253	 */
5254	hcd->has_tt = 1;
5255}
5256
5257static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5258{
5259	unsigned int minor_rev;
5260
5261	/*
5262	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5263	 * should return 0x31 for sbrn, or that the minor revision
5264	 * is a two digit BCD containig minor and sub-minor numbers.
5265	 * This was later clarified in xHCI 1.2.
5266	 *
5267	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5268	 * minor revision set to 0x1 instead of 0x10.
5269	 */
5270	if (xhci->usb3_rhub.min_rev == 0x1)
5271		minor_rev = 1;
5272	else
5273		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5274
5275	switch (minor_rev) {
5276	case 2:
5277		hcd->speed = HCD_USB32;
5278		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5279		hcd->self.root_hub->rx_lanes = 2;
5280		hcd->self.root_hub->tx_lanes = 2;
5281		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5282		break;
5283	case 1:
5284		hcd->speed = HCD_USB31;
5285		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5286		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5287		break;
5288	}
5289	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5290		  minor_rev, minor_rev ? "Enhanced " : "");
5291
5292	xhci->usb3_rhub.hcd = hcd;
5293}
5294
5295int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5296{
5297	struct xhci_hcd		*xhci;
5298	/*
5299	 * TODO: Check with DWC3 clients for sysdev according to
5300	 * quirks
5301	 */
5302	struct device		*dev = hcd->self.sysdev;
5303	int			retval;
 
5304
5305	/* Accept arbitrarily long scatter-gather lists */
5306	hcd->self.sg_tablesize = ~0;
5307
5308	/* support to build packet from discontinuous buffers */
5309	hcd->self.no_sg_constraint = 1;
5310
5311	/* XHCI controllers don't stop the ep queue on short packets :| */
5312	hcd->self.no_stop_on_short = 1;
5313
5314	xhci = hcd_to_xhci(hcd);
5315
5316	if (!usb_hcd_is_primary_hcd(hcd)) {
5317		xhci_hcd_init_usb3_data(xhci, hcd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5318		return 0;
5319	}
5320
5321	mutex_init(&xhci->mutex);
5322	xhci->main_hcd = hcd;
5323	xhci->cap_regs = hcd->regs;
5324	xhci->op_regs = hcd->regs +
5325		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5326	xhci->run_regs = hcd->regs +
5327		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5328	/* Cache read-only capability registers */
5329	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5330	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5331	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5332	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5333	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5334	if (xhci->hci_version > 0x100)
5335		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5336
5337	xhci->quirks |= quirks;
5338
5339	get_quirks(dev, xhci);
5340
5341	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5342	 * success event after a short transfer. This quirk will ignore such
5343	 * spurious event.
5344	 */
5345	if (xhci->hci_version > 0x96)
5346		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5347
5348	/* Make sure the HC is halted. */
5349	retval = xhci_halt(xhci);
5350	if (retval)
5351		return retval;
5352
5353	xhci_zero_64b_regs(xhci);
5354
5355	xhci_dbg(xhci, "Resetting HCD\n");
5356	/* Reset the internal HC memory state and registers. */
5357	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5358	if (retval)
5359		return retval;
5360	xhci_dbg(xhci, "Reset complete\n");
5361
5362	/*
5363	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5364	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5365	 * address memory pointers actually. So, this driver clears the AC64
5366	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5367	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5368	 */
5369	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5370		xhci->hcc_params &= ~BIT(0);
5371
5372	/* Set dma_mask and coherent_dma_mask to 64-bits,
5373	 * if xHC supports 64-bit addressing */
5374	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5375			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5376		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5377		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5378	} else {
5379		/*
5380		 * This is to avoid error in cases where a 32-bit USB
5381		 * controller is used on a 64-bit capable system.
5382		 */
5383		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5384		if (retval)
5385			return retval;
5386		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5387		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5388	}
5389
5390	xhci_dbg(xhci, "Calling HCD init\n");
5391	/* Initialize HCD and host controller data structures. */
5392	retval = xhci_init(hcd);
5393	if (retval)
5394		return retval;
5395	xhci_dbg(xhci, "Called HCD init\n");
5396
5397	if (xhci_hcd_is_usb3(hcd))
5398		xhci_hcd_init_usb3_data(xhci, hcd);
5399	else
5400		xhci_hcd_init_usb2_data(xhci, hcd);
5401
5402	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5403		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5404
5405	return 0;
 
 
 
5406}
5407EXPORT_SYMBOL_GPL(xhci_gen_setup);
5408
5409static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5410		struct usb_host_endpoint *ep)
5411{
5412	struct xhci_hcd *xhci;
5413	struct usb_device *udev;
5414	unsigned int slot_id;
5415	unsigned int ep_index;
5416	unsigned long flags;
5417
5418	xhci = hcd_to_xhci(hcd);
5419
5420	spin_lock_irqsave(&xhci->lock, flags);
5421	udev = (struct usb_device *)ep->hcpriv;
5422	slot_id = udev->slot_id;
5423	ep_index = xhci_get_endpoint_index(&ep->desc);
5424
5425	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5426	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5427	spin_unlock_irqrestore(&xhci->lock, flags);
5428}
5429
5430static const struct hc_driver xhci_hc_driver = {
5431	.description =		"xhci-hcd",
5432	.product_desc =		"xHCI Host Controller",
5433	.hcd_priv_size =	sizeof(struct xhci_hcd),
5434
5435	/*
5436	 * generic hardware linkage
5437	 */
5438	.irq =			xhci_irq,
5439	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5440				HCD_BH,
5441
5442	/*
5443	 * basic lifecycle operations
5444	 */
5445	.reset =		NULL, /* set in xhci_init_driver() */
5446	.start =		xhci_run,
5447	.stop =			xhci_stop,
5448	.shutdown =		xhci_shutdown,
5449
5450	/*
5451	 * managing i/o requests and associated device resources
5452	 */
5453	.map_urb_for_dma =      xhci_map_urb_for_dma,
5454	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5455	.urb_enqueue =		xhci_urb_enqueue,
5456	.urb_dequeue =		xhci_urb_dequeue,
5457	.alloc_dev =		xhci_alloc_dev,
5458	.free_dev =		xhci_free_dev,
5459	.alloc_streams =	xhci_alloc_streams,
5460	.free_streams =		xhci_free_streams,
5461	.add_endpoint =		xhci_add_endpoint,
5462	.drop_endpoint =	xhci_drop_endpoint,
5463	.endpoint_disable =	xhci_endpoint_disable,
5464	.endpoint_reset =	xhci_endpoint_reset,
5465	.check_bandwidth =	xhci_check_bandwidth,
5466	.reset_bandwidth =	xhci_reset_bandwidth,
5467	.address_device =	xhci_address_device,
5468	.enable_device =	xhci_enable_device,
5469	.update_hub_device =	xhci_update_hub_device,
5470	.reset_device =		xhci_discover_or_reset_device,
5471
5472	/*
5473	 * scheduling support
5474	 */
5475	.get_frame_number =	xhci_get_frame,
5476
5477	/*
5478	 * root hub support
5479	 */
5480	.hub_control =		xhci_hub_control,
5481	.hub_status_data =	xhci_hub_status_data,
5482	.bus_suspend =		xhci_bus_suspend,
5483	.bus_resume =		xhci_bus_resume,
5484	.get_resuming_ports =	xhci_get_resuming_ports,
5485
5486	/*
5487	 * call back when device connected and addressed
5488	 */
5489	.update_device =        xhci_update_device,
5490	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5491	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5492	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5493	.find_raw_port_number =	xhci_find_raw_port_number,
5494	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5495};
5496
5497void xhci_init_driver(struct hc_driver *drv,
5498		      const struct xhci_driver_overrides *over)
5499{
5500	BUG_ON(!over);
5501
5502	/* Copy the generic table to drv then apply the overrides */
5503	*drv = xhci_hc_driver;
5504
5505	if (over) {
5506		drv->hcd_priv_size += over->extra_priv_size;
5507		if (over->reset)
5508			drv->reset = over->reset;
5509		if (over->start)
5510			drv->start = over->start;
5511		if (over->add_endpoint)
5512			drv->add_endpoint = over->add_endpoint;
5513		if (over->drop_endpoint)
5514			drv->drop_endpoint = over->drop_endpoint;
5515		if (over->check_bandwidth)
5516			drv->check_bandwidth = over->check_bandwidth;
5517		if (over->reset_bandwidth)
5518			drv->reset_bandwidth = over->reset_bandwidth;
5519		if (over->update_hub_device)
5520			drv->update_hub_device = over->update_hub_device;
5521	}
5522}
5523EXPORT_SYMBOL_GPL(xhci_init_driver);
5524
5525MODULE_DESCRIPTION(DRIVER_DESC);
5526MODULE_AUTHOR(DRIVER_AUTHOR);
5527MODULE_LICENSE("GPL");
5528
5529static int __init xhci_hcd_init(void)
5530{
 
 
 
 
 
 
 
 
 
 
 
 
5531	/*
5532	 * Check the compiler generated sizes of structures that must be laid
5533	 * out in specific ways for hardware access.
5534	 */
5535	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5536	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5537	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5538	/* xhci_device_control has eight fields, and also
5539	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5540	 */
5541	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5542	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5543	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5544	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5545	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5546	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5547	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5548
5549	if (usb_disabled())
5550		return -ENODEV;
5551
5552	xhci_debugfs_create_root();
5553	xhci_dbc_init();
5554
5555	return 0;
 
 
 
5556}
 
5557
5558/*
5559 * If an init function is provided, an exit function must also be provided
5560 * to allow module unload.
5561 */
5562static void __exit xhci_hcd_fini(void)
5563{
5564	xhci_debugfs_remove_root();
5565	xhci_dbc_exit();
5566}
5567
5568module_init(xhci_hcd_init);
5569module_exit(xhci_hcd_fini);
v3.5.6
 
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/pci.h>
 
  24#include <linux/irq.h>
  25#include <linux/log2.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/slab.h>
  29#include <linux/dmi.h>
 
  30
  31#include "xhci.h"
 
 
 
  32
  33#define DRIVER_AUTHOR "Sarah Sharp"
  34#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  35
 
 
  36/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  37static int link_quirk;
  38module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  39MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  40
  41/* TODO: copied from ehci-hcd.c - can this be refactored? */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42/*
  43 * handshake - spin reading hc until handshake completes or fails
  44 * @ptr: address of hc register to be read
  45 * @mask: bits to look at in result of read
  46 * @done: value of those bits when handshake succeeds
  47 * @usec: timeout in microseconds
  48 *
  49 * Returns negative errno, or zero on success
  50 *
  51 * Success happens when the "mask" bits have the specified value (hardware
  52 * handshake done).  There are two failure modes:  "usec" have passed (major
  53 * hardware flakeout), or the register reads as all-ones (hardware removed).
  54 */
  55int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  56		      u32 mask, u32 done, int usec)
  57{
  58	u32	result;
 
 
 
 
 
 
 
 
  59
  60	do {
  61		result = xhci_readl(xhci, ptr);
  62		if (result == ~(u32)0)		/* card removed */
  63			return -ENODEV;
  64		result &= mask;
  65		if (result == done)
  66			return 0;
  67		udelay(1);
  68		usec--;
  69	} while (usec > 0);
  70	return -ETIMEDOUT;
  71}
  72
  73/*
  74 * Disable interrupts and begin the xHCI halting process.
  75 */
  76void xhci_quiesce(struct xhci_hcd *xhci)
  77{
  78	u32 halted;
  79	u32 cmd;
  80	u32 mask;
  81
  82	mask = ~(XHCI_IRQS);
  83	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
  84	if (!halted)
  85		mask &= ~CMD_RUN;
  86
  87	cmd = xhci_readl(xhci, &xhci->op_regs->command);
  88	cmd &= mask;
  89	xhci_writel(xhci, cmd, &xhci->op_regs->command);
  90}
  91
  92/*
  93 * Force HC into halt state.
  94 *
  95 * Disable any IRQs and clear the run/stop bit.
  96 * HC will complete any current and actively pipelined transactions, and
  97 * should halt within 16 ms of the run/stop bit being cleared.
  98 * Read HC Halted bit in the status register to see when the HC is finished.
  99 */
 100int xhci_halt(struct xhci_hcd *xhci)
 101{
 102	int ret;
 103	xhci_dbg(xhci, "// Halt the HC\n");
 
 104	xhci_quiesce(xhci);
 105
 106	ret = handshake(xhci, &xhci->op_regs->status,
 107			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 108	if (!ret) {
 109		xhci->xhc_state |= XHCI_STATE_HALTED;
 110		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 111	} else
 112		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
 113				XHCI_MAX_HALT_USEC);
 
 
 114	return ret;
 115}
 116
 117/*
 118 * Set the run bit and wait for the host to be running.
 119 */
 120static int xhci_start(struct xhci_hcd *xhci)
 121{
 122	u32 temp;
 123	int ret;
 124
 125	temp = xhci_readl(xhci, &xhci->op_regs->command);
 126	temp |= (CMD_RUN);
 127	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
 128			temp);
 129	xhci_writel(xhci, temp, &xhci->op_regs->command);
 130
 131	/*
 132	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 133	 * running.
 134	 */
 135	ret = handshake(xhci, &xhci->op_regs->status,
 136			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 137	if (ret == -ETIMEDOUT)
 138		xhci_err(xhci, "Host took too long to start, "
 139				"waited %u microseconds.\n",
 140				XHCI_MAX_HALT_USEC);
 141	if (!ret)
 142		xhci->xhc_state &= ~XHCI_STATE_HALTED;
 
 
 
 
 143	return ret;
 144}
 145
 146/*
 147 * Reset a halted HC.
 148 *
 149 * This resets pipelines, timers, counters, state machines, etc.
 150 * Transactions will be terminated immediately, and operational registers
 151 * will be set to their defaults.
 152 */
 153int xhci_reset(struct xhci_hcd *xhci)
 154{
 155	u32 command;
 156	u32 state;
 157	int ret, i;
 
 
 
 
 
 
 
 158
 159	state = xhci_readl(xhci, &xhci->op_regs->status);
 160	if ((state & STS_HALT) == 0) {
 161		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 162		return 0;
 163	}
 164
 165	xhci_dbg(xhci, "// Reset the HC\n");
 166	command = xhci_readl(xhci, &xhci->op_regs->command);
 167	command |= CMD_RESET;
 168	xhci_writel(xhci, command, &xhci->op_regs->command);
 
 
 
 
 
 
 
 
 
 
 169
 170	ret = handshake(xhci, &xhci->op_regs->command,
 171			CMD_RESET, 0, 10 * 1000 * 1000);
 172	if (ret)
 173		return ret;
 174
 175	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
 
 
 
 
 176	/*
 177	 * xHCI cannot write to any doorbells or operational registers other
 178	 * than status until the "Controller Not Ready" flag is cleared.
 179	 */
 180	ret = handshake(xhci, &xhci->op_regs->status,
 181			STS_CNR, 0, 10 * 1000 * 1000);
 182
 183	for (i = 0; i < 2; ++i) {
 184		xhci->bus_state[i].port_c_suspend = 0;
 185		xhci->bus_state[i].suspended_ports = 0;
 186		xhci->bus_state[i].resuming_ports = 0;
 187	}
 
 188
 189	return ret;
 190}
 191
 192#ifdef CONFIG_PCI
 193static int xhci_free_msi(struct xhci_hcd *xhci)
 194{
 195	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196
 197	if (!xhci->msix_entries)
 198		return -EINVAL;
 199
 200	for (i = 0; i < xhci->msix_count; i++)
 201		if (xhci->msix_entries[i].vector)
 202			free_irq(xhci->msix_entries[i].vector,
 203					xhci_to_hcd(xhci));
 204	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205}
 206
 
 207/*
 208 * Set up MSI
 209 */
 210static int xhci_setup_msi(struct xhci_hcd *xhci)
 211{
 212	int ret;
 
 
 
 213	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 214
 215	ret = pci_enable_msi(pdev);
 216	if (ret) {
 217		xhci_dbg(xhci, "failed to allocate MSI entry\n");
 
 218		return ret;
 219	}
 220
 221	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
 222				0, "xhci_hcd", xhci_to_hcd(xhci));
 223	if (ret) {
 224		xhci_dbg(xhci, "disable MSI interrupt\n");
 225		pci_disable_msi(pdev);
 
 226	}
 227
 228	return ret;
 229}
 230
 231/*
 232 * Free IRQs
 233 * free all IRQs request
 234 */
 235static void xhci_free_irq(struct xhci_hcd *xhci)
 236{
 237	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 238	int ret;
 239
 240	/* return if using legacy interrupt */
 241	if (xhci_to_hcd(xhci)->irq > 0)
 242		return;
 243
 244	ret = xhci_free_msi(xhci);
 245	if (!ret)
 246		return;
 247	if (pdev->irq > 0)
 248		free_irq(pdev->irq, xhci_to_hcd(xhci));
 249
 250	return;
 251}
 252
 253/*
 254 * Set up MSI-X
 255 */
 256static int xhci_setup_msix(struct xhci_hcd *xhci)
 257{
 258	int i, ret = 0;
 259	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 260	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 261
 262	/*
 263	 * calculate number of msi-x vectors supported.
 264	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 265	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 266	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 267	 *   Add additional 1 vector to ensure always available interrupt.
 268	 */
 269	xhci->msix_count = min(num_online_cpus() + 1,
 270				HCS_MAX_INTRS(xhci->hcs_params1));
 271
 272	xhci->msix_entries =
 273		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
 274				GFP_KERNEL);
 275	if (!xhci->msix_entries) {
 276		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
 277		return -ENOMEM;
 278	}
 279
 280	for (i = 0; i < xhci->msix_count; i++) {
 281		xhci->msix_entries[i].entry = i;
 282		xhci->msix_entries[i].vector = 0;
 283	}
 284
 285	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
 286	if (ret) {
 287		xhci_dbg(xhci, "Failed to enable MSI-X\n");
 288		goto free_entries;
 289	}
 290
 291	for (i = 0; i < xhci->msix_count; i++) {
 292		ret = request_irq(xhci->msix_entries[i].vector,
 293				(irq_handler_t)xhci_msi_irq,
 294				0, "xhci_hcd", xhci_to_hcd(xhci));
 295		if (ret)
 296			goto disable_msix;
 297	}
 298
 299	hcd->msix_enabled = 1;
 300	return ret;
 301
 302disable_msix:
 303	xhci_dbg(xhci, "disable MSI-X interrupt\n");
 304	xhci_free_irq(xhci);
 305	pci_disable_msix(pdev);
 306free_entries:
 307	kfree(xhci->msix_entries);
 308	xhci->msix_entries = NULL;
 309	return ret;
 310}
 311
 312/* Free any IRQs and disable MSI-X */
 313static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 314{
 315	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 316	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 317
 318	xhci_free_irq(xhci);
 
 
 
 
 
 
 
 
 319
 320	if (xhci->msix_entries) {
 321		pci_disable_msix(pdev);
 322		kfree(xhci->msix_entries);
 323		xhci->msix_entries = NULL;
 324	} else {
 325		pci_disable_msi(pdev);
 326	}
 327
 
 328	hcd->msix_enabled = 0;
 329	return;
 330}
 331
 332static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 333{
 334	int i;
 
 
 
 
 335
 336	if (xhci->msix_entries) {
 337		for (i = 0; i < xhci->msix_count; i++)
 338			synchronize_irq(xhci->msix_entries[i].vector);
 339	}
 340}
 341
 342static int xhci_try_enable_msi(struct usb_hcd *hcd)
 343{
 344	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 345	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 346	int ret;
 347
 
 
 
 
 
 348	/*
 349	 * Some Fresco Logic host controllers advertise MSI, but fail to
 350	 * generate interrupts.  Don't even try to enable MSI.
 351	 */
 352	if (xhci->quirks & XHCI_BROKEN_MSI)
 353		return 0;
 354
 355	/* unregister the legacy interrupt */
 356	if (hcd->irq)
 357		free_irq(hcd->irq, hcd);
 358	hcd->irq = 0;
 359
 360	ret = xhci_setup_msix(xhci);
 361	if (ret)
 362		/* fall back to msi*/
 363		ret = xhci_setup_msi(xhci);
 364
 365	if (!ret)
 366		/* hcd->irq is 0, we have MSI */
 367		return 0;
 
 368
 369	if (!pdev->irq) {
 370		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 371		return -EINVAL;
 372	}
 373
 
 
 
 
 
 374	/* fall back to legacy interrupt*/
 375	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 376			hcd->irq_descr, hcd);
 377	if (ret) {
 378		xhci_err(xhci, "request interrupt %d failed\n",
 379				pdev->irq);
 380		return ret;
 381	}
 382	hcd->irq = pdev->irq;
 383	return 0;
 384}
 385
 386#else
 387
 388static int xhci_try_enable_msi(struct usb_hcd *hcd)
 389{
 390	return 0;
 391}
 392
 393static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 394{
 395}
 396
 397static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 398{
 399}
 400
 401#endif
 402
 403static void compliance_mode_recovery(unsigned long arg)
 404{
 405	struct xhci_hcd *xhci;
 406	struct usb_hcd *hcd;
 
 407	u32 temp;
 408	int i;
 409
 410	xhci = (struct xhci_hcd *)arg;
 
 
 411
 412	for (i = 0; i < xhci->num_usb3_ports; i++) {
 413		temp = xhci_readl(xhci, xhci->usb3_ports[i]);
 
 
 
 414		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 415			/*
 416			 * Compliance Mode Detected. Letting USB Core
 417			 * handle the Warm Reset
 418			 */
 419			xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
 
 420					i + 1);
 421			xhci_dbg(xhci, "Attempting Recovery routine!\n");
 422			hcd = xhci->shared_hcd;
 423
 424			if (hcd->state == HC_STATE_SUSPENDED)
 425				usb_hcd_resume_root_hub(hcd);
 426
 427			usb_hcd_poll_rh_status(hcd);
 428		}
 429	}
 430
 431	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
 432		mod_timer(&xhci->comp_mode_recovery_timer,
 433			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 434}
 435
 436/*
 437 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 438 * that causes ports behind that hardware to enter compliance mode sometimes.
 439 * The quirk creates a timer that polls every 2 seconds the link state of
 440 * each host controller's port and recovers it by issuing a Warm reset
 441 * if Compliance mode is detected, otherwise the port will become "dead" (no
 442 * device connections or disconnections will be detected anymore). Becasue no
 443 * status event is generated when entering compliance mode (per xhci spec),
 444 * this quirk is needed on systems that have the failing hardware installed.
 445 */
 446static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 447{
 448	xhci->port_status_u0 = 0;
 449	init_timer(&xhci->comp_mode_recovery_timer);
 450
 451	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
 452	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
 453	xhci->comp_mode_recovery_timer.expires = jiffies +
 454			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 455
 456	set_timer_slack(&xhci->comp_mode_recovery_timer,
 457			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 458	add_timer(&xhci->comp_mode_recovery_timer);
 459	xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
 
 460}
 461
 462/*
 463 * This function identifies the systems that have installed the SN65LVPE502CP
 464 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 465 * Systems:
 466 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 467 */
 468static bool compliance_mode_recovery_timer_quirk_check(void)
 469{
 470	const char *dmi_product_name, *dmi_sys_vendor;
 471
 472	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 473	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 474	if (!dmi_product_name || !dmi_sys_vendor)
 475		return false;
 476
 477	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 478		return false;
 479
 480	if (strstr(dmi_product_name, "Z420") ||
 481			strstr(dmi_product_name, "Z620") ||
 482			strstr(dmi_product_name, "Z820"))
 
 483		return true;
 484
 485	return false;
 486}
 487
 488static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 489{
 490	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
 491}
 492
 493
 494/*
 495 * Initialize memory for HCD and xHC (one-time init).
 496 *
 497 * Program the PAGESIZE register, initialize the device context array, create
 498 * device contexts (?), set up a command ring segment (or two?), create event
 499 * ring (one for now).
 500 */
 501int xhci_init(struct usb_hcd *hcd)
 502{
 503	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 504	int retval = 0;
 505
 506	xhci_dbg(xhci, "xhci_init\n");
 507	spin_lock_init(&xhci->lock);
 508	if (xhci->hci_version == 0x95 && link_quirk) {
 509		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
 
 510		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 511	} else {
 512		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
 
 513	}
 514	retval = xhci_mem_init(xhci, GFP_KERNEL);
 515	xhci_dbg(xhci, "Finished xhci_init\n");
 516
 517	/* Initializing Compliance Mode Recovery Data If Needed */
 518	if (compliance_mode_recovery_timer_quirk_check()) {
 519		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 520		compliance_mode_recovery_timer_init(xhci);
 521	}
 522
 523	return retval;
 524}
 525
 526/*-------------------------------------------------------------------------*/
 527
 528
 529#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 530static void xhci_event_ring_work(unsigned long arg)
 531{
 532	unsigned long flags;
 533	int temp;
 534	u64 temp_64;
 535	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
 536	int i, j;
 537
 538	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
 539
 
 
 
 
 540	spin_lock_irqsave(&xhci->lock, flags);
 541	temp = xhci_readl(xhci, &xhci->op_regs->status);
 542	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
 543	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
 544			(xhci->xhc_state & XHCI_STATE_HALTED)) {
 545		xhci_dbg(xhci, "HW died, polling stopped.\n");
 546		spin_unlock_irqrestore(&xhci->lock, flags);
 547		return;
 548	}
 549
 550	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 551	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
 552	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
 553	xhci->error_bitmask = 0;
 554	xhci_dbg(xhci, "Event ring:\n");
 555	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
 556	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 557	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 558	temp_64 &= ~ERST_PTR_MASK;
 559	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 560	xhci_dbg(xhci, "Command ring:\n");
 561	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
 562	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 563	xhci_dbg_cmd_ptrs(xhci);
 564	for (i = 0; i < MAX_HC_SLOTS; ++i) {
 565		if (!xhci->devs[i])
 566			continue;
 567		for (j = 0; j < 31; ++j) {
 568			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
 569		}
 570	}
 571	spin_unlock_irqrestore(&xhci->lock, flags);
 572
 573	if (!xhci->zombie)
 574		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
 575	else
 576		xhci_dbg(xhci, "Quit polling the event ring.\n");
 577}
 578#endif
 579
 580static int xhci_run_finished(struct xhci_hcd *xhci)
 581{
 582	if (xhci_start(xhci)) {
 583		xhci_halt(xhci);
 
 584		return -ENODEV;
 585	}
 586	xhci->shared_hcd->state = HC_STATE_RUNNING;
 587	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 588
 589	if (xhci->quirks & XHCI_NEC_HOST)
 590		xhci_ring_cmd_db(xhci);
 591
 592	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
 
 593	return 0;
 594}
 595
 596/*
 597 * Start the HC after it was halted.
 598 *
 599 * This function is called by the USB core when the HC driver is added.
 600 * Its opposite is xhci_stop().
 601 *
 602 * xhci_init() must be called once before this function can be called.
 603 * Reset the HC, enable device slot contexts, program DCBAAP, and
 604 * set command ring pointer and event ring pointer.
 605 *
 606 * Setup MSI-X vectors and enable interrupts.
 607 */
 608int xhci_run(struct usb_hcd *hcd)
 609{
 610	u32 temp;
 611	u64 temp_64;
 612	int ret;
 613	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 614
 615	/* Start the xHCI host controller running only after the USB 2.0 roothub
 616	 * is setup.
 617	 */
 618
 619	hcd->uses_new_polling = 1;
 620	if (!usb_hcd_is_primary_hcd(hcd))
 621		return xhci_run_finished(xhci);
 622
 623	xhci_dbg(xhci, "xhci_run\n");
 624
 625	ret = xhci_try_enable_msi(hcd);
 626	if (ret)
 627		return ret;
 628
 629#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 630	init_timer(&xhci->event_ring_timer);
 631	xhci->event_ring_timer.data = (unsigned long) xhci;
 632	xhci->event_ring_timer.function = xhci_event_ring_work;
 633	/* Poll the event ring */
 634	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
 635	xhci->zombie = 0;
 636	xhci_dbg(xhci, "Setting event ring polling timer\n");
 637	add_timer(&xhci->event_ring_timer);
 638#endif
 639
 640	xhci_dbg(xhci, "Command ring memory map follows:\n");
 641	xhci_debug_ring(xhci, xhci->cmd_ring);
 642	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 643	xhci_dbg_cmd_ptrs(xhci);
 644
 645	xhci_dbg(xhci, "ERST memory map follows:\n");
 646	xhci_dbg_erst(xhci, &xhci->erst);
 647	xhci_dbg(xhci, "Event ring:\n");
 648	xhci_debug_ring(xhci, xhci->event_ring);
 649	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 650	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 651	temp_64 &= ~ERST_PTR_MASK;
 652	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 
 653
 654	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
 655	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
 
 656	temp &= ~ER_IRQ_INTERVAL_MASK;
 657	temp |= (u32) 160;
 658	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
 659
 660	/* Set the HCD state before we enable the irqs */
 661	temp = xhci_readl(xhci, &xhci->op_regs->command);
 662	temp |= (CMD_EIE);
 663	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
 664			temp);
 665	xhci_writel(xhci, temp, &xhci->op_regs->command);
 666
 667	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 668	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
 669			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 670	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
 671			&xhci->ir_set->irq_pending);
 672	xhci_print_ir_set(xhci, 0);
 673
 674	if (xhci->quirks & XHCI_NEC_HOST)
 675		xhci_queue_vendor_command(xhci, 0, 0, 0,
 676				TRB_TYPE(TRB_NEC_GET_FW));
 
 
 
 
 
 
 
 677
 678	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
 679	return 0;
 680}
 681
 682static void xhci_only_stop_hcd(struct usb_hcd *hcd)
 683{
 684	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 685
 686	spin_lock_irq(&xhci->lock);
 687	xhci_halt(xhci);
 688
 689	/* The shared_hcd is going to be deallocated shortly (the USB core only
 690	 * calls this function when allocation fails in usb_add_hcd(), or
 691	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
 692	 */
 693	xhci->shared_hcd = NULL;
 694	spin_unlock_irq(&xhci->lock);
 695}
 
 696
 697/*
 698 * Stop xHCI driver.
 699 *
 700 * This function is called by the USB core when the HC driver is removed.
 701 * Its opposite is xhci_run().
 702 *
 703 * Disable device contexts, disable IRQs, and quiesce the HC.
 704 * Reset the HC, finish any completed transactions, and cleanup memory.
 705 */
 706void xhci_stop(struct usb_hcd *hcd)
 707{
 708	u32 temp;
 709	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 710
 
 
 
 711	if (!usb_hcd_is_primary_hcd(hcd)) {
 712		xhci_only_stop_hcd(xhci->shared_hcd);
 713		return;
 714	}
 715
 
 
 716	spin_lock_irq(&xhci->lock);
 717	/* Make sure the xHC is halted for a USB3 roothub
 718	 * (xhci_stop() could be called as part of failed init).
 719	 */
 720	xhci_halt(xhci);
 721	xhci_reset(xhci);
 722	spin_unlock_irq(&xhci->lock);
 723
 724	xhci_cleanup_msix(xhci);
 725
 726#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 727	/* Tell the event ring poll function not to reschedule */
 728	xhci->zombie = 1;
 729	del_timer_sync(&xhci->event_ring_timer);
 730#endif
 731
 732	/* Deleting Compliance Mode Recovery Timer */
 733	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 734			(!(xhci_all_ports_seen_u0(xhci))))
 735		del_timer_sync(&xhci->comp_mode_recovery_timer);
 
 
 
 
 736
 737	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 738		usb_amd_dev_put();
 739
 740	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 741	temp = xhci_readl(xhci, &xhci->op_regs->status);
 742	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
 743	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 744	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
 745			&xhci->ir_set->irq_pending);
 746	xhci_print_ir_set(xhci, 0);
 747
 748	xhci_dbg(xhci, "cleaning up memory\n");
 749	xhci_mem_cleanup(xhci);
 750	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
 751		    xhci_readl(xhci, &xhci->op_regs->status));
 
 
 
 752}
 753
 754/*
 755 * Shutdown HC (not bus-specific)
 756 *
 757 * This is called when the machine is rebooting or halting.  We assume that the
 758 * machine will be powered off, and the HC's internal state will be reset.
 759 * Don't bother to free memory.
 760 *
 761 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 762 */
 763void xhci_shutdown(struct usb_hcd *hcd)
 764{
 765	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 766
 767	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 768		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
 
 
 
 
 
 
 
 
 
 
 
 769
 770	spin_lock_irq(&xhci->lock);
 771	xhci_halt(xhci);
 
 
 
 
 
 
 
 
 
 772	spin_unlock_irq(&xhci->lock);
 773
 774	xhci_cleanup_msix(xhci);
 775
 776	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
 777		    xhci_readl(xhci, &xhci->op_regs->status));
 
 778}
 
 779
 780#ifdef CONFIG_PM
 781static void xhci_save_registers(struct xhci_hcd *xhci)
 782{
 783	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
 784	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
 785	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 786	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
 787	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
 788	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 789	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 790	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 791	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
 792}
 793
 794static void xhci_restore_registers(struct xhci_hcd *xhci)
 795{
 796	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
 797	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 798	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 799	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
 800	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
 801	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 802	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 803	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 804	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
 805}
 806
 807static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 808{
 809	u64	val_64;
 810
 811	/* step 2: initialize command ring buffer */
 812	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 813	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 814		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 815				      xhci->cmd_ring->dequeue) &
 816		 (u64) ~CMD_RING_RSVD_BITS) |
 817		xhci->cmd_ring->cycle_state;
 818	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
 
 819			(long unsigned long) val_64);
 820	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 821}
 822
 823/*
 824 * The whole command ring must be cleared to zero when we suspend the host.
 825 *
 826 * The host doesn't save the command ring pointer in the suspend well, so we
 827 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 828 * aligned, because of the reserved bits in the command ring dequeue pointer
 829 * register.  Therefore, we can't just set the dequeue pointer back in the
 830 * middle of the ring (TRBs are 16-byte aligned).
 831 */
 832static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 833{
 834	struct xhci_ring *ring;
 835	struct xhci_segment *seg;
 836
 837	ring = xhci->cmd_ring;
 838	seg = ring->deq_seg;
 839	do {
 840		memset(seg->trbs, 0,
 841			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 842		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 843			cpu_to_le32(~TRB_CYCLE);
 844		seg = seg->next;
 845	} while (seg != ring->deq_seg);
 846
 847	/* Reset the software enqueue and dequeue pointers */
 848	ring->deq_seg = ring->first_seg;
 849	ring->dequeue = ring->first_seg->trbs;
 850	ring->enq_seg = ring->deq_seg;
 851	ring->enqueue = ring->dequeue;
 852
 853	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 854	/*
 855	 * Ring is now zeroed, so the HW should look for change of ownership
 856	 * when the cycle bit is set to 1.
 857	 */
 858	ring->cycle_state = 1;
 859
 860	/*
 861	 * Reset the hardware dequeue pointer.
 862	 * Yes, this will need to be re-written after resume, but we're paranoid
 863	 * and want to make sure the hardware doesn't access bogus memory
 864	 * because, say, the BIOS or an SMI started the host without changing
 865	 * the command ring pointers.
 866	 */
 867	xhci_set_cmd_ring_deq(xhci);
 868}
 869
 870/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871 * Stop HC (not bus-specific)
 872 *
 873 * This is called when the machine transition into S3/S4 mode.
 874 *
 875 */
 876int xhci_suspend(struct xhci_hcd *xhci)
 877{
 878	int			rc = 0;
 
 879	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 880	u32			command;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 881
 882	spin_lock_irq(&xhci->lock);
 883	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 884	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 
 885	/* step 1: stop endpoint */
 886	/* skipped assuming that port suspend has done */
 887
 888	/* step 2: clear Run/Stop bit */
 889	command = xhci_readl(xhci, &xhci->op_regs->command);
 890	command &= ~CMD_RUN;
 891	xhci_writel(xhci, command, &xhci->op_regs->command);
 892	if (handshake(xhci, &xhci->op_regs->status,
 893		      STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
 
 
 
 
 894		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 895		spin_unlock_irq(&xhci->lock);
 896		return -ETIMEDOUT;
 897	}
 898	xhci_clear_command_ring(xhci);
 899
 900	/* step 3: save registers */
 901	xhci_save_registers(xhci);
 902
 903	/* step 4: set CSS flag */
 904	command = xhci_readl(xhci, &xhci->op_regs->command);
 905	command |= CMD_CSS;
 906	xhci_writel(xhci, command, &xhci->op_regs->command);
 907	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
 908		xhci_warn(xhci, "WARN: xHC save state timeout\n");
 909		spin_unlock_irq(&xhci->lock);
 910		return -ETIMEDOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911	}
 912	spin_unlock_irq(&xhci->lock);
 913
 914	/*
 915	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 916	 * is about to be suspended.
 917	 */
 918	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 919			(!(xhci_all_ports_seen_u0(xhci)))) {
 920		del_timer_sync(&xhci->comp_mode_recovery_timer);
 921		xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
 
 
 922	}
 923
 924	/* step 5: remove core well power */
 925	/* synchronize irq when using MSI-X */
 926	xhci_msix_sync_irqs(xhci);
 927
 928	return rc;
 929}
 
 930
 931/*
 932 * start xHC (not bus-specific)
 933 *
 934 * This is called when the machine transition from S3/S4 mode.
 935 *
 936 */
 937int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 938{
 939	u32			command, temp = 0;
 940	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 941	struct usb_hcd		*secondary_hcd;
 942	int			retval = 0;
 
 
 
 
 
 
 943
 944	/* Wait a bit if either of the roothubs need to settle from the
 945	 * transition into bus suspend.
 946	 */
 947	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
 948			time_before(jiffies,
 949				xhci->bus_state[1].next_statechange))
 950		msleep(100);
 951
 952	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 953	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 
 954
 955	spin_lock_irq(&xhci->lock);
 956	if (xhci->quirks & XHCI_RESET_ON_RESUME)
 957		hibernated = true;
 958
 959	if (!hibernated) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960		/* step 1: restore register */
 961		xhci_restore_registers(xhci);
 962		/* step 2: initialize command ring buffer */
 963		xhci_set_cmd_ring_deq(xhci);
 964		/* step 3: restore state and start state*/
 965		/* step 3: set CRS flag */
 966		command = xhci_readl(xhci, &xhci->op_regs->command);
 967		command |= CMD_CRS;
 968		xhci_writel(xhci, command, &xhci->op_regs->command);
 969		if (handshake(xhci, &xhci->op_regs->status,
 970			      STS_RESTORE, 0, 10 * 1000)) {
 
 
 
 
 
 971			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
 972			spin_unlock_irq(&xhci->lock);
 973			return -ETIMEDOUT;
 974		}
 975		temp = xhci_readl(xhci, &xhci->op_regs->status);
 976	}
 977
 978	/* If restore operation fails, re-initialize the HC during resume */
 979	if ((temp & STS_SRE) || hibernated) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980		/* Let the USB core know _both_ roothubs lost power. */
 981		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
 982		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
 
 983
 984		xhci_dbg(xhci, "Stop HCD\n");
 985		xhci_halt(xhci);
 986		xhci_reset(xhci);
 
 987		spin_unlock_irq(&xhci->lock);
 
 
 988		xhci_cleanup_msix(xhci);
 989
 990#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 991		/* Tell the event ring poll function not to reschedule */
 992		xhci->zombie = 1;
 993		del_timer_sync(&xhci->event_ring_timer);
 994#endif
 995
 996		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 997		temp = xhci_readl(xhci, &xhci->op_regs->status);
 998		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
 999		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1000		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1001				&xhci->ir_set->irq_pending);
1002		xhci_print_ir_set(xhci, 0);
1003
1004		xhci_dbg(xhci, "cleaning up memory\n");
1005		xhci_mem_cleanup(xhci);
 
1006		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1007			    xhci_readl(xhci, &xhci->op_regs->status));
1008
1009		/* USB core calls the PCI reinit and start functions twice:
1010		 * first with the primary HCD, and then with the secondary HCD.
1011		 * If we don't do the same, the host will never be started.
1012		 */
1013		if (!usb_hcd_is_primary_hcd(hcd))
1014			secondary_hcd = hcd;
1015		else
1016			secondary_hcd = xhci->shared_hcd;
1017
1018		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1019		retval = xhci_init(hcd->primary_hcd);
1020		if (retval)
1021			return retval;
 
 
1022		xhci_dbg(xhci, "Start the primary HCD\n");
1023		retval = xhci_run(hcd->primary_hcd);
1024		if (!retval) {
1025			xhci_dbg(xhci, "Start the secondary HCD\n");
1026			retval = xhci_run(secondary_hcd);
1027		}
 
1028		hcd->state = HC_STATE_SUSPENDED;
1029		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
 
1030		goto done;
1031	}
1032
1033	/* step 4: set Run/Stop bit */
1034	command = xhci_readl(xhci, &xhci->op_regs->command);
1035	command |= CMD_RUN;
1036	xhci_writel(xhci, command, &xhci->op_regs->command);
1037	handshake(xhci, &xhci->op_regs->status, STS_HALT,
1038		  0, 250 * 1000);
1039
1040	/* step 5: walk topology and initialize portsc,
1041	 * portpmsc and portli
1042	 */
1043	/* this is done in bus_resume */
1044
1045	/* step 6: restart each of the previously
1046	 * Running endpoints by ringing their doorbells
1047	 */
1048
1049	spin_unlock_irq(&xhci->lock);
1050
 
 
1051 done:
1052	if (retval == 0) {
1053		usb_hcd_resume_root_hub(hcd);
1054		usb_hcd_resume_root_hub(xhci->shared_hcd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055	}
1056
1057	/*
1058	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1059	 * be re-initialized Always after a system resume. Ports are subject
1060	 * to suffer the Compliance Mode issue again. It doesn't matter if
1061	 * ports have entered previously to U0 before system's suspension.
1062	 */
1063	if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1064		compliance_mode_recovery_timer_init(xhci);
1065
 
 
 
 
 
 
 
 
 
 
 
 
 
1066	return retval;
1067}
 
1068#endif	/* CONFIG_PM */
1069
1070/*-------------------------------------------------------------------------*/
1071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072/**
1073 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1074 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1075 * value to right shift 1 for the bitmask.
1076 *
1077 * Index  = (epnum * 2) + direction - 1,
1078 * where direction = 0 for OUT, 1 for IN.
1079 * For control endpoints, the IN index is used (OUT index is unused), so
1080 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1081 */
1082unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1083{
1084	unsigned int index;
1085	if (usb_endpoint_xfer_control(desc))
1086		index = (unsigned int) (usb_endpoint_num(desc)*2);
1087	else
1088		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1089			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1090	return index;
1091}
 
1092
1093/* Find the flag for this endpoint (for use in the control context).  Use the
1094 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1095 * bit 1, etc.
1096 */
1097unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1098{
1099	return 1 << (xhci_get_endpoint_index(desc) + 1);
 
 
1100}
1101
1102/* Find the flag for this endpoint (for use in the control context).  Use the
1103 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1104 * bit 1, etc.
1105 */
1106unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1107{
1108	return 1 << (ep_index + 1);
1109}
1110
1111/* Compute the last valid endpoint context index.  Basically, this is the
1112 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1113 * we find the most significant bit set in the added contexts flags.
1114 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1115 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1116 */
1117unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1118{
1119	return fls(added_ctxs) - 1;
1120}
1121
1122/* Returns 1 if the arguments are OK;
1123 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1124 */
1125static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1126		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1127		const char *func) {
1128	struct xhci_hcd	*xhci;
1129	struct xhci_virt_device	*virt_dev;
1130
1131	if (!hcd || (check_ep && !ep) || !udev) {
1132		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1133				func);
1134		return -EINVAL;
1135	}
1136	if (!udev->parent) {
1137		printk(KERN_DEBUG "xHCI %s called for root hub\n",
1138				func);
1139		return 0;
1140	}
1141
1142	xhci = hcd_to_xhci(hcd);
1143	if (xhci->xhc_state & XHCI_STATE_HALTED)
1144		return -ENODEV;
1145
1146	if (check_virt_dev) {
1147		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1148			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1149						"device\n", func);
1150			return -EINVAL;
1151		}
1152
1153		virt_dev = xhci->devs[udev->slot_id];
1154		if (virt_dev->udev != udev) {
1155			printk(KERN_DEBUG "xHCI %s called with udev and "
1156					  "virt_dev does not match\n", func);
1157			return -EINVAL;
1158		}
1159	}
1160
 
 
 
1161	return 1;
1162}
1163
1164static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1165		struct usb_device *udev, struct xhci_command *command,
1166		bool ctx_change, bool must_succeed);
1167
1168/*
1169 * Full speed devices may have a max packet size greater than 8 bytes, but the
1170 * USB core doesn't know that until it reads the first 8 bytes of the
1171 * descriptor.  If the usb_device's max packet size changes after that point,
1172 * we need to issue an evaluate context command and wait on it.
1173 */
1174static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1175		unsigned int ep_index, struct urb *urb)
1176{
1177	struct xhci_container_ctx *in_ctx;
1178	struct xhci_container_ctx *out_ctx;
1179	struct xhci_input_control_ctx *ctrl_ctx;
1180	struct xhci_ep_ctx *ep_ctx;
 
1181	int max_packet_size;
1182	int hw_max_packet_size;
1183	int ret = 0;
1184
1185	out_ctx = xhci->devs[slot_id]->out_ctx;
1186	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1187	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1188	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1189	if (hw_max_packet_size != max_packet_size) {
1190		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1191		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
 
 
1192				max_packet_size);
1193		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
 
1194				hw_max_packet_size);
1195		xhci_dbg(xhci, "Issuing evaluate context command.\n");
 
1196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1197		/* Set up the modified control endpoint 0 */
1198		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1199				xhci->devs[slot_id]->out_ctx, ep_index);
1200		in_ctx = xhci->devs[slot_id]->in_ctx;
1201		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
 
1202		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1203		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1204
1205		/* Set up the input context flags for the command */
1206		/* FIXME: This won't work if a non-default control endpoint
1207		 * changes max packet sizes.
1208		 */
1209		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1210		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1211		ctrl_ctx->drop_flags = 0;
1212
1213		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1214		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1215		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1216		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1217
1218		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1219				true, false);
1220
1221		/* Clean up the input context for later use by bandwidth
1222		 * functions.
1223		 */
1224		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
 
 
 
1225	}
1226	return ret;
1227}
1228
1229/*
1230 * non-error returns are a promise to giveback() the urb later
1231 * we drop ownership so next owner (or urb unlink) can get it
1232 */
1233int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1234{
1235	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1236	struct xhci_td *buffer;
1237	unsigned long flags;
1238	int ret = 0;
1239	unsigned int slot_id, ep_index;
 
1240	struct urb_priv	*urb_priv;
1241	int size, i;
1242
1243	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1244					true, true, __func__) <= 0)
1245		return -EINVAL;
 
 
 
 
1246
1247	slot_id = urb->dev->slot_id;
1248	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
 
 
 
 
1249
1250	if (!HCD_HW_ACCESSIBLE(hcd)) {
1251		if (!in_interrupt())
1252			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1253		ret = -ESHUTDOWN;
1254		goto exit;
1255	}
1256
1257	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1258		size = urb->number_of_packets;
 
 
 
 
 
1259	else
1260		size = 1;
1261
1262	urb_priv = kzalloc(sizeof(struct urb_priv) +
1263				  size * sizeof(struct xhci_td *), mem_flags);
1264	if (!urb_priv)
1265		return -ENOMEM;
1266
1267	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1268	if (!buffer) {
1269		kfree(urb_priv);
1270		return -ENOMEM;
1271	}
1272
1273	for (i = 0; i < size; i++) {
1274		urb_priv->td[i] = buffer;
1275		buffer++;
1276	}
1277
1278	urb_priv->length = size;
1279	urb_priv->td_cnt = 0;
1280	urb->hcpriv = urb_priv;
1281
1282	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1283		/* Check to see if the max packet size for the default control
1284		 * endpoint changed during FS device enumeration
1285		 */
1286		if (urb->dev->speed == USB_SPEED_FULL) {
1287			ret = xhci_check_maxpacket(xhci, slot_id,
1288					ep_index, urb);
1289			if (ret < 0) {
1290				xhci_urb_free_priv(xhci, urb_priv);
1291				urb->hcpriv = NULL;
1292				return ret;
1293			}
1294		}
 
 
 
1295
1296		/* We have a spinlock and interrupts disabled, so we must pass
1297		 * atomic context to this function, which may allocate memory.
1298		 */
1299		spin_lock_irqsave(&xhci->lock, flags);
1300		if (xhci->xhc_state & XHCI_STATE_DYING)
1301			goto dying;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1302		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1303				slot_id, ep_index);
1304		if (ret)
1305			goto free_priv;
1306		spin_unlock_irqrestore(&xhci->lock, flags);
1307	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1308		spin_lock_irqsave(&xhci->lock, flags);
1309		if (xhci->xhc_state & XHCI_STATE_DYING)
1310			goto dying;
1311		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1312				EP_GETTING_STREAMS) {
1313			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1314					"is transitioning to using streams.\n");
1315			ret = -EINVAL;
1316		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1317				EP_GETTING_NO_STREAMS) {
1318			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1319					"is transitioning to "
1320					"not having streams.\n");
1321			ret = -EINVAL;
1322		} else {
1323			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1324					slot_id, ep_index);
1325		}
1326		if (ret)
1327			goto free_priv;
1328		spin_unlock_irqrestore(&xhci->lock, flags);
1329	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1330		spin_lock_irqsave(&xhci->lock, flags);
1331		if (xhci->xhc_state & XHCI_STATE_DYING)
1332			goto dying;
1333		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1334				slot_id, ep_index);
1335		if (ret)
1336			goto free_priv;
1337		spin_unlock_irqrestore(&xhci->lock, flags);
1338	} else {
1339		spin_lock_irqsave(&xhci->lock, flags);
1340		if (xhci->xhc_state & XHCI_STATE_DYING)
1341			goto dying;
1342		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1343				slot_id, ep_index);
1344		if (ret)
1345			goto free_priv;
1346		spin_unlock_irqrestore(&xhci->lock, flags);
1347	}
1348exit:
1349	return ret;
1350dying:
1351	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1352			"non-responsive xHCI host.\n",
1353			urb->ep->desc.bEndpointAddress, urb);
1354	ret = -ESHUTDOWN;
1355free_priv:
1356	xhci_urb_free_priv(xhci, urb_priv);
1357	urb->hcpriv = NULL;
 
1358	spin_unlock_irqrestore(&xhci->lock, flags);
1359	return ret;
1360}
1361
1362/* Get the right ring for the given URB.
1363 * If the endpoint supports streams, boundary check the URB's stream ID.
1364 * If the endpoint doesn't support streams, return the singular endpoint ring.
1365 */
1366static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1367		struct urb *urb)
1368{
1369	unsigned int slot_id;
1370	unsigned int ep_index;
1371	unsigned int stream_id;
1372	struct xhci_virt_ep *ep;
1373
1374	slot_id = urb->dev->slot_id;
1375	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1376	stream_id = urb->stream_id;
1377	ep = &xhci->devs[slot_id]->eps[ep_index];
1378	/* Common case: no streams */
1379	if (!(ep->ep_state & EP_HAS_STREAMS))
1380		return ep->ring;
1381
1382	if (stream_id == 0) {
1383		xhci_warn(xhci,
1384				"WARN: Slot ID %u, ep index %u has streams, "
1385				"but URB has no stream ID.\n",
1386				slot_id, ep_index);
1387		return NULL;
1388	}
1389
1390	if (stream_id < ep->stream_info->num_streams)
1391		return ep->stream_info->stream_rings[stream_id];
1392
1393	xhci_warn(xhci,
1394			"WARN: Slot ID %u, ep index %u has "
1395			"stream IDs 1 to %u allocated, "
1396			"but stream ID %u is requested.\n",
1397			slot_id, ep_index,
1398			ep->stream_info->num_streams - 1,
1399			stream_id);
1400	return NULL;
1401}
1402
1403/*
1404 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1405 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1406 * should pick up where it left off in the TD, unless a Set Transfer Ring
1407 * Dequeue Pointer is issued.
1408 *
1409 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1410 * the ring.  Since the ring is a contiguous structure, they can't be physically
1411 * removed.  Instead, there are two options:
1412 *
1413 *  1) If the HC is in the middle of processing the URB to be canceled, we
1414 *     simply move the ring's dequeue pointer past those TRBs using the Set
1415 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1416 *     when drivers timeout on the last submitted URB and attempt to cancel.
1417 *
1418 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1419 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1420 *     HC will need to invalidate the any TRBs it has cached after the stop
1421 *     endpoint command, as noted in the xHCI 0.95 errata.
1422 *
1423 *  3) The TD may have completed by the time the Stop Endpoint Command
1424 *     completes, so software needs to handle that case too.
1425 *
1426 * This function should protect against the TD enqueueing code ringing the
1427 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1428 * It also needs to account for multiple cancellations on happening at the same
1429 * time for the same endpoint.
1430 *
1431 * Note that this function can be called in any context, or so says
1432 * usb_hcd_unlink_urb()
1433 */
1434int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1435{
1436	unsigned long flags;
1437	int ret, i;
1438	u32 temp;
1439	struct xhci_hcd *xhci;
1440	struct urb_priv	*urb_priv;
1441	struct xhci_td *td;
1442	unsigned int ep_index;
1443	struct xhci_ring *ep_ring;
1444	struct xhci_virt_ep *ep;
 
 
1445
1446	xhci = hcd_to_xhci(hcd);
1447	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
1448	/* Make sure the URB hasn't completed or been unlinked already */
1449	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1450	if (ret || !urb->hcpriv)
1451		goto done;
1452	temp = xhci_readl(xhci, &xhci->op_regs->status);
1453	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1454		xhci_dbg(xhci, "HW died, freeing TD.\n");
1455		urb_priv = urb->hcpriv;
1456		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1457			td = urb_priv->td[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458			if (!list_empty(&td->td_list))
1459				list_del_init(&td->td_list);
1460			if (!list_empty(&td->cancelled_td_list))
1461				list_del_init(&td->cancelled_td_list);
1462		}
1463
1464		usb_hcd_unlink_urb_from_ep(hcd, urb);
1465		spin_unlock_irqrestore(&xhci->lock, flags);
1466		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1467		xhci_urb_free_priv(xhci, urb_priv);
1468		return ret;
1469	}
1470	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1471			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1472		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1473				"non-responsive xHCI host.\n",
1474				urb->ep->desc.bEndpointAddress, urb);
1475		/* Let the stop endpoint command watchdog timer (which set this
1476		 * state) finish cleaning up the endpoint TD lists.  We must
1477		 * have caught it in the middle of dropping a lock and giving
1478		 * back an URB.
1479		 */
1480		goto done;
1481	}
1482
1483	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1484	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1485	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1486	if (!ep_ring) {
1487		ret = -EINVAL;
1488		goto done;
1489	}
1490
1491	urb_priv = urb->hcpriv;
1492	i = urb_priv->td_cnt;
1493	if (i < urb_priv->length)
1494		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1495				"starting at offset 0x%llx\n",
1496				urb, urb->dev->devpath,
1497				urb->ep->desc.bEndpointAddress,
1498				(unsigned long long) xhci_trb_virt_to_dma(
1499					urb_priv->td[i]->start_seg,
1500					urb_priv->td[i]->first_trb));
1501
1502	for (; i < urb_priv->length; i++) {
1503		td = urb_priv->td[i];
1504		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
 
 
 
 
 
1505	}
1506
1507	/* Queue a stop endpoint command, but only if this is
1508	 * the first cancellation to be handled.
1509	 */
1510	if (!(ep->ep_state & EP_HALT_PENDING)) {
1511		ep->ep_state |= EP_HALT_PENDING;
1512		ep->stop_cmds_pending++;
1513		ep->stop_cmd_timer.expires = jiffies +
1514			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1515		add_timer(&ep->stop_cmd_timer);
1516		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
 
 
1517		xhci_ring_cmd_db(xhci);
1518	}
1519done:
1520	spin_unlock_irqrestore(&xhci->lock, flags);
1521	return ret;
 
 
 
 
 
 
 
 
1522}
1523
1524/* Drop an endpoint from a new bandwidth configuration for this device.
1525 * Only one call to this function is allowed per endpoint before
1526 * check_bandwidth() or reset_bandwidth() must be called.
1527 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1528 * add the endpoint to the schedule with possibly new parameters denoted by a
1529 * different endpoint descriptor in usb_host_endpoint.
1530 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1531 * not allowed.
1532 *
1533 * The USB core will not allow URBs to be queued to an endpoint that is being
1534 * disabled, so there's no need for mutual exclusion to protect
1535 * the xhci->devs[slot_id] structure.
1536 */
1537int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1538		struct usb_host_endpoint *ep)
1539{
1540	struct xhci_hcd *xhci;
1541	struct xhci_container_ctx *in_ctx, *out_ctx;
1542	struct xhci_input_control_ctx *ctrl_ctx;
1543	struct xhci_slot_ctx *slot_ctx;
1544	unsigned int last_ctx;
1545	unsigned int ep_index;
1546	struct xhci_ep_ctx *ep_ctx;
1547	u32 drop_flag;
1548	u32 new_add_flags, new_drop_flags, new_slot_info;
1549	int ret;
1550
1551	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1552	if (ret <= 0)
1553		return ret;
1554	xhci = hcd_to_xhci(hcd);
1555	if (xhci->xhc_state & XHCI_STATE_DYING)
1556		return -ENODEV;
1557
1558	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1559	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1560	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1561		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1562				__func__, drop_flag);
1563		return 0;
1564	}
1565
1566	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1567	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1568	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
 
 
 
 
 
 
1569	ep_index = xhci_get_endpoint_index(&ep->desc);
1570	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1571	/* If the HC already knows the endpoint is disabled,
1572	 * or the HCD has noted it is disabled, ignore this request
1573	 */
1574	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1575	     cpu_to_le32(EP_STATE_DISABLED)) ||
1576	    le32_to_cpu(ctrl_ctx->drop_flags) &
1577	    xhci_get_endpoint_flag(&ep->desc)) {
1578		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1579				__func__, ep);
 
 
1580		return 0;
1581	}
1582
1583	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1584	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1585
1586	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1587	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1588
1589	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1590	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1591	/* Update the last valid endpoint context, if we deleted the last one */
1592	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1593	    LAST_CTX(last_ctx)) {
1594		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1595		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1596	}
1597	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1598
1599	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1600
1601	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1602			(unsigned int) ep->desc.bEndpointAddress,
1603			udev->slot_id,
1604			(unsigned int) new_drop_flags,
1605			(unsigned int) new_add_flags,
1606			(unsigned int) new_slot_info);
1607	return 0;
1608}
 
1609
1610/* Add an endpoint to a new possible bandwidth configuration for this device.
1611 * Only one call to this function is allowed per endpoint before
1612 * check_bandwidth() or reset_bandwidth() must be called.
1613 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1614 * add the endpoint to the schedule with possibly new parameters denoted by a
1615 * different endpoint descriptor in usb_host_endpoint.
1616 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1617 * not allowed.
1618 *
1619 * The USB core will not allow URBs to be queued to an endpoint until the
1620 * configuration or alt setting is installed in the device, so there's no need
1621 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1622 */
1623int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1624		struct usb_host_endpoint *ep)
1625{
1626	struct xhci_hcd *xhci;
1627	struct xhci_container_ctx *in_ctx, *out_ctx;
1628	unsigned int ep_index;
 
1629	struct xhci_ep_ctx *ep_ctx;
1630	struct xhci_slot_ctx *slot_ctx;
1631	struct xhci_input_control_ctx *ctrl_ctx;
1632	u32 added_ctxs;
1633	unsigned int last_ctx;
1634	u32 new_add_flags, new_drop_flags, new_slot_info;
1635	struct xhci_virt_device *virt_dev;
1636	int ret = 0;
1637
1638	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1639	if (ret <= 0) {
1640		/* So we won't queue a reset ep command for a root hub */
1641		ep->hcpriv = NULL;
1642		return ret;
1643	}
1644	xhci = hcd_to_xhci(hcd);
1645	if (xhci->xhc_state & XHCI_STATE_DYING)
1646		return -ENODEV;
1647
1648	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1649	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1650	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1651		/* FIXME when we have to issue an evaluate endpoint command to
1652		 * deal with ep0 max packet size changing once we get the
1653		 * descriptors
1654		 */
1655		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1656				__func__, added_ctxs);
1657		return 0;
1658	}
1659
1660	virt_dev = xhci->devs[udev->slot_id];
1661	in_ctx = virt_dev->in_ctx;
1662	out_ctx = virt_dev->out_ctx;
1663	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
 
 
 
 
 
1664	ep_index = xhci_get_endpoint_index(&ep->desc);
1665	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1666
1667	/* If this endpoint is already in use, and the upper layers are trying
1668	 * to add it again without dropping it, reject the addition.
1669	 */
1670	if (virt_dev->eps[ep_index].ring &&
1671			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1672				xhci_get_endpoint_flag(&ep->desc))) {
1673		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1674				"without dropping it.\n",
1675				(unsigned int) ep->desc.bEndpointAddress);
1676		return -EINVAL;
1677	}
1678
1679	/* If the HCD has already noted the endpoint is enabled,
1680	 * ignore this request.
1681	 */
1682	if (le32_to_cpu(ctrl_ctx->add_flags) &
1683	    xhci_get_endpoint_flag(&ep->desc)) {
1684		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1685				__func__, ep);
1686		return 0;
1687	}
1688
1689	/*
1690	 * Configuration and alternate setting changes must be done in
1691	 * process context, not interrupt context (or so documenation
1692	 * for usb_set_interface() and usb_set_configuration() claim).
1693	 */
1694	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1695		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1696				__func__, ep->desc.bEndpointAddress);
1697		return -ENOMEM;
1698	}
1699
1700	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1701	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1702
1703	/* If xhci_endpoint_disable() was called for this endpoint, but the
1704	 * xHC hasn't been notified yet through the check_bandwidth() call,
1705	 * this re-adds a new state for the endpoint from the new endpoint
1706	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1707	 * drop flags alone.
1708	 */
1709	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1710
1711	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1712	/* Update the last valid endpoint context, if we just added one past */
1713	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1714	    LAST_CTX(last_ctx)) {
1715		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1716		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1717	}
1718	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1719
1720	/* Store the usb_device pointer for later use */
1721	ep->hcpriv = udev;
1722
1723	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
 
 
 
1724			(unsigned int) ep->desc.bEndpointAddress,
1725			udev->slot_id,
1726			(unsigned int) new_drop_flags,
1727			(unsigned int) new_add_flags,
1728			(unsigned int) new_slot_info);
1729	return 0;
1730}
 
1731
1732static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1733{
1734	struct xhci_input_control_ctx *ctrl_ctx;
1735	struct xhci_ep_ctx *ep_ctx;
1736	struct xhci_slot_ctx *slot_ctx;
1737	int i;
1738
 
 
 
 
 
 
 
1739	/* When a device's add flag and drop flag are zero, any subsequent
1740	 * configure endpoint command will leave that endpoint's state
1741	 * untouched.  Make sure we don't leave any old state in the input
1742	 * endpoint contexts.
1743	 */
1744	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1745	ctrl_ctx->drop_flags = 0;
1746	ctrl_ctx->add_flags = 0;
1747	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1748	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1749	/* Endpoint 0 is always valid */
1750	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1751	for (i = 1; i < 31; ++i) {
1752		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1753		ep_ctx->ep_info = 0;
1754		ep_ctx->ep_info2 = 0;
1755		ep_ctx->deq = 0;
1756		ep_ctx->tx_info = 0;
1757	}
1758}
1759
1760static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1761		struct usb_device *udev, u32 *cmd_status)
1762{
1763	int ret;
1764
1765	switch (*cmd_status) {
1766	case COMP_ENOMEM:
1767		dev_warn(&udev->dev, "Not enough host controller resources "
1768				"for new device state.\n");
 
 
 
 
 
1769		ret = -ENOMEM;
1770		/* FIXME: can we allocate more resources for the HC? */
1771		break;
1772	case COMP_BW_ERR:
1773	case COMP_2ND_BW_ERR:
1774		dev_warn(&udev->dev, "Not enough bandwidth "
1775				"for new device state.\n");
1776		ret = -ENOSPC;
1777		/* FIXME: can we go back to the old state? */
1778		break;
1779	case COMP_TRB_ERR:
1780		/* the HCD set up something wrong */
1781		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1782				"add flag = 1, "
1783				"and endpoint is not disabled.\n");
1784		ret = -EINVAL;
1785		break;
1786	case COMP_DEV_ERR:
1787		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1788				"configure command.\n");
1789		ret = -ENODEV;
1790		break;
1791	case COMP_SUCCESS:
1792		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
 
1793		ret = 0;
1794		break;
1795	default:
1796		xhci_err(xhci, "ERROR: unexpected command completion "
1797				"code 0x%x.\n", *cmd_status);
1798		ret = -EINVAL;
1799		break;
1800	}
1801	return ret;
1802}
1803
1804static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1805		struct usb_device *udev, u32 *cmd_status)
1806{
1807	int ret;
1808	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1809
1810	switch (*cmd_status) {
1811	case COMP_EINVAL:
1812		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1813				"context command.\n");
 
 
 
 
 
1814		ret = -EINVAL;
1815		break;
1816	case COMP_EBADSLT:
1817		dev_warn(&udev->dev, "WARN: slot not enabled for"
1818				"evaluate context command.\n");
1819	case COMP_CTX_STATE:
1820		dev_warn(&udev->dev, "WARN: invalid context state for "
1821				"evaluate context command.\n");
1822		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1823		ret = -EINVAL;
1824		break;
1825	case COMP_DEV_ERR:
1826		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1827				"context command.\n");
 
 
 
 
 
1828		ret = -ENODEV;
1829		break;
1830	case COMP_MEL_ERR:
1831		/* Max Exit Latency too large error */
1832		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1833		ret = -EINVAL;
1834		break;
1835	case COMP_SUCCESS:
1836		dev_dbg(&udev->dev, "Successful evaluate context command\n");
 
1837		ret = 0;
1838		break;
1839	default:
1840		xhci_err(xhci, "ERROR: unexpected command completion "
1841				"code 0x%x.\n", *cmd_status);
1842		ret = -EINVAL;
1843		break;
1844	}
1845	return ret;
1846}
1847
1848static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1849		struct xhci_container_ctx *in_ctx)
1850{
1851	struct xhci_input_control_ctx *ctrl_ctx;
1852	u32 valid_add_flags;
1853	u32 valid_drop_flags;
1854
1855	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1856	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1857	 * (bit 1).  The default control endpoint is added during the Address
1858	 * Device command and is never removed until the slot is disabled.
1859	 */
1860	valid_add_flags = ctrl_ctx->add_flags >> 2;
1861	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1862
1863	/* Use hweight32 to count the number of ones in the add flags, or
1864	 * number of endpoints added.  Don't count endpoints that are changed
1865	 * (both added and dropped).
1866	 */
1867	return hweight32(valid_add_flags) -
1868		hweight32(valid_add_flags & valid_drop_flags);
1869}
1870
1871static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1872		struct xhci_container_ctx *in_ctx)
1873{
1874	struct xhci_input_control_ctx *ctrl_ctx;
1875	u32 valid_add_flags;
1876	u32 valid_drop_flags;
1877
1878	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1879	valid_add_flags = ctrl_ctx->add_flags >> 2;
1880	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1881
1882	return hweight32(valid_drop_flags) -
1883		hweight32(valid_add_flags & valid_drop_flags);
1884}
1885
1886/*
1887 * We need to reserve the new number of endpoints before the configure endpoint
1888 * command completes.  We can't subtract the dropped endpoints from the number
1889 * of active endpoints until the command completes because we can oversubscribe
1890 * the host in this case:
1891 *
1892 *  - the first configure endpoint command drops more endpoints than it adds
1893 *  - a second configure endpoint command that adds more endpoints is queued
1894 *  - the first configure endpoint command fails, so the config is unchanged
1895 *  - the second command may succeed, even though there isn't enough resources
1896 *
1897 * Must be called with xhci->lock held.
1898 */
1899static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1900		struct xhci_container_ctx *in_ctx)
1901{
1902	u32 added_eps;
1903
1904	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1905	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1906		xhci_dbg(xhci, "Not enough ep ctxs: "
1907				"%u active, need to add %u, limit is %u.\n",
 
1908				xhci->num_active_eps, added_eps,
1909				xhci->limit_active_eps);
1910		return -ENOMEM;
1911	}
1912	xhci->num_active_eps += added_eps;
1913	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
 
1914			xhci->num_active_eps);
1915	return 0;
1916}
1917
1918/*
1919 * The configure endpoint was failed by the xHC for some other reason, so we
1920 * need to revert the resources that failed configuration would have used.
1921 *
1922 * Must be called with xhci->lock held.
1923 */
1924static void xhci_free_host_resources(struct xhci_hcd *xhci,
1925		struct xhci_container_ctx *in_ctx)
1926{
1927	u32 num_failed_eps;
1928
1929	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1930	xhci->num_active_eps -= num_failed_eps;
1931	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
 
1932			num_failed_eps,
1933			xhci->num_active_eps);
1934}
1935
1936/*
1937 * Now that the command has completed, clean up the active endpoint count by
1938 * subtracting out the endpoints that were dropped (but not changed).
1939 *
1940 * Must be called with xhci->lock held.
1941 */
1942static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1943		struct xhci_container_ctx *in_ctx)
1944{
1945	u32 num_dropped_eps;
1946
1947	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1948	xhci->num_active_eps -= num_dropped_eps;
1949	if (num_dropped_eps)
1950		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
 
1951				num_dropped_eps,
1952				xhci->num_active_eps);
1953}
1954
1955unsigned int xhci_get_block_size(struct usb_device *udev)
1956{
1957	switch (udev->speed) {
1958	case USB_SPEED_LOW:
1959	case USB_SPEED_FULL:
1960		return FS_BLOCK;
1961	case USB_SPEED_HIGH:
1962		return HS_BLOCK;
1963	case USB_SPEED_SUPER:
 
1964		return SS_BLOCK;
1965	case USB_SPEED_UNKNOWN:
1966	case USB_SPEED_WIRELESS:
1967	default:
1968		/* Should never happen */
1969		return 1;
1970	}
1971}
1972
1973unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
 
1974{
1975	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1976		return LS_OVERHEAD;
1977	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1978		return FS_OVERHEAD;
1979	return HS_OVERHEAD;
1980}
1981
1982/* If we are changing a LS/FS device under a HS hub,
1983 * make sure (if we are activating a new TT) that the HS bus has enough
1984 * bandwidth for this new TT.
1985 */
1986static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1987		struct xhci_virt_device *virt_dev,
1988		int old_active_eps)
1989{
1990	struct xhci_interval_bw_table *bw_table;
1991	struct xhci_tt_bw_info *tt_info;
1992
1993	/* Find the bandwidth table for the root port this TT is attached to. */
1994	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1995	tt_info = virt_dev->tt_info;
1996	/* If this TT already had active endpoints, the bandwidth for this TT
1997	 * has already been added.  Removing all periodic endpoints (and thus
1998	 * making the TT enactive) will only decrease the bandwidth used.
1999	 */
2000	if (old_active_eps)
2001		return 0;
2002	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2003		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2004			return -ENOMEM;
2005		return 0;
2006	}
2007	/* Not sure why we would have no new active endpoints...
2008	 *
2009	 * Maybe because of an Evaluate Context change for a hub update or a
2010	 * control endpoint 0 max packet size change?
2011	 * FIXME: skip the bandwidth calculation in that case.
2012	 */
2013	return 0;
2014}
2015
2016static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2017		struct xhci_virt_device *virt_dev)
2018{
2019	unsigned int bw_reserved;
2020
2021	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2022	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2023		return -ENOMEM;
2024
2025	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2026	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2027		return -ENOMEM;
2028
2029	return 0;
2030}
2031
2032/*
2033 * This algorithm is a very conservative estimate of the worst-case scheduling
2034 * scenario for any one interval.  The hardware dynamically schedules the
2035 * packets, so we can't tell which microframe could be the limiting factor in
2036 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2037 *
2038 * Obviously, we can't solve an NP complete problem to find the minimum worst
2039 * case scenario.  Instead, we come up with an estimate that is no less than
2040 * the worst case bandwidth used for any one microframe, but may be an
2041 * over-estimate.
2042 *
2043 * We walk the requirements for each endpoint by interval, starting with the
2044 * smallest interval, and place packets in the schedule where there is only one
2045 * possible way to schedule packets for that interval.  In order to simplify
2046 * this algorithm, we record the largest max packet size for each interval, and
2047 * assume all packets will be that size.
2048 *
2049 * For interval 0, we obviously must schedule all packets for each interval.
2050 * The bandwidth for interval 0 is just the amount of data to be transmitted
2051 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2052 * the number of packets).
2053 *
2054 * For interval 1, we have two possible microframes to schedule those packets
2055 * in.  For this algorithm, if we can schedule the same number of packets for
2056 * each possible scheduling opportunity (each microframe), we will do so.  The
2057 * remaining number of packets will be saved to be transmitted in the gaps in
2058 * the next interval's scheduling sequence.
2059 *
2060 * As we move those remaining packets to be scheduled with interval 2 packets,
2061 * we have to double the number of remaining packets to transmit.  This is
2062 * because the intervals are actually powers of 2, and we would be transmitting
2063 * the previous interval's packets twice in this interval.  We also have to be
2064 * sure that when we look at the largest max packet size for this interval, we
2065 * also look at the largest max packet size for the remaining packets and take
2066 * the greater of the two.
2067 *
2068 * The algorithm continues to evenly distribute packets in each scheduling
2069 * opportunity, and push the remaining packets out, until we get to the last
2070 * interval.  Then those packets and their associated overhead are just added
2071 * to the bandwidth used.
2072 */
2073static int xhci_check_bw_table(struct xhci_hcd *xhci,
2074		struct xhci_virt_device *virt_dev,
2075		int old_active_eps)
2076{
2077	unsigned int bw_reserved;
2078	unsigned int max_bandwidth;
2079	unsigned int bw_used;
2080	unsigned int block_size;
2081	struct xhci_interval_bw_table *bw_table;
2082	unsigned int packet_size = 0;
2083	unsigned int overhead = 0;
2084	unsigned int packets_transmitted = 0;
2085	unsigned int packets_remaining = 0;
2086	unsigned int i;
2087
2088	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2089		return xhci_check_ss_bw(xhci, virt_dev);
2090
2091	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2092		max_bandwidth = HS_BW_LIMIT;
2093		/* Convert percent of bus BW reserved to blocks reserved */
2094		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2095	} else {
2096		max_bandwidth = FS_BW_LIMIT;
2097		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2098	}
2099
2100	bw_table = virt_dev->bw_table;
2101	/* We need to translate the max packet size and max ESIT payloads into
2102	 * the units the hardware uses.
2103	 */
2104	block_size = xhci_get_block_size(virt_dev->udev);
2105
2106	/* If we are manipulating a LS/FS device under a HS hub, double check
2107	 * that the HS bus has enough bandwidth if we are activing a new TT.
2108	 */
2109	if (virt_dev->tt_info) {
2110		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
 
2111				virt_dev->real_port);
2112		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2113			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2114					"newly activated TT.\n");
2115			return -ENOMEM;
2116		}
2117		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
 
2118				virt_dev->tt_info->slot_id,
2119				virt_dev->tt_info->ttport);
2120	} else {
2121		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
 
2122				virt_dev->real_port);
2123	}
2124
2125	/* Add in how much bandwidth will be used for interval zero, or the
2126	 * rounded max ESIT payload + number of packets * largest overhead.
2127	 */
2128	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2129		bw_table->interval_bw[0].num_packets *
2130		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2131
2132	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2133		unsigned int bw_added;
2134		unsigned int largest_mps;
2135		unsigned int interval_overhead;
2136
2137		/*
2138		 * How many packets could we transmit in this interval?
2139		 * If packets didn't fit in the previous interval, we will need
2140		 * to transmit that many packets twice within this interval.
2141		 */
2142		packets_remaining = 2 * packets_remaining +
2143			bw_table->interval_bw[i].num_packets;
2144
2145		/* Find the largest max packet size of this or the previous
2146		 * interval.
2147		 */
2148		if (list_empty(&bw_table->interval_bw[i].endpoints))
2149			largest_mps = 0;
2150		else {
2151			struct xhci_virt_ep *virt_ep;
2152			struct list_head *ep_entry;
2153
2154			ep_entry = bw_table->interval_bw[i].endpoints.next;
2155			virt_ep = list_entry(ep_entry,
2156					struct xhci_virt_ep, bw_endpoint_list);
2157			/* Convert to blocks, rounding up */
2158			largest_mps = DIV_ROUND_UP(
2159					virt_ep->bw_info.max_packet_size,
2160					block_size);
2161		}
2162		if (largest_mps > packet_size)
2163			packet_size = largest_mps;
2164
2165		/* Use the larger overhead of this or the previous interval. */
2166		interval_overhead = xhci_get_largest_overhead(
2167				&bw_table->interval_bw[i]);
2168		if (interval_overhead > overhead)
2169			overhead = interval_overhead;
2170
2171		/* How many packets can we evenly distribute across
2172		 * (1 << (i + 1)) possible scheduling opportunities?
2173		 */
2174		packets_transmitted = packets_remaining >> (i + 1);
2175
2176		/* Add in the bandwidth used for those scheduled packets */
2177		bw_added = packets_transmitted * (overhead + packet_size);
2178
2179		/* How many packets do we have remaining to transmit? */
2180		packets_remaining = packets_remaining % (1 << (i + 1));
2181
2182		/* What largest max packet size should those packets have? */
2183		/* If we've transmitted all packets, don't carry over the
2184		 * largest packet size.
2185		 */
2186		if (packets_remaining == 0) {
2187			packet_size = 0;
2188			overhead = 0;
2189		} else if (packets_transmitted > 0) {
2190			/* Otherwise if we do have remaining packets, and we've
2191			 * scheduled some packets in this interval, take the
2192			 * largest max packet size from endpoints with this
2193			 * interval.
2194			 */
2195			packet_size = largest_mps;
2196			overhead = interval_overhead;
2197		}
2198		/* Otherwise carry over packet_size and overhead from the last
2199		 * time we had a remainder.
2200		 */
2201		bw_used += bw_added;
2202		if (bw_used > max_bandwidth) {
2203			xhci_warn(xhci, "Not enough bandwidth. "
2204					"Proposed: %u, Max: %u\n",
2205				bw_used, max_bandwidth);
2206			return -ENOMEM;
2207		}
2208	}
2209	/*
2210	 * Ok, we know we have some packets left over after even-handedly
2211	 * scheduling interval 15.  We don't know which microframes they will
2212	 * fit into, so we over-schedule and say they will be scheduled every
2213	 * microframe.
2214	 */
2215	if (packets_remaining > 0)
2216		bw_used += overhead + packet_size;
2217
2218	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2219		unsigned int port_index = virt_dev->real_port - 1;
2220
2221		/* OK, we're manipulating a HS device attached to a
2222		 * root port bandwidth domain.  Include the number of active TTs
2223		 * in the bandwidth used.
2224		 */
2225		bw_used += TT_HS_OVERHEAD *
2226			xhci->rh_bw[port_index].num_active_tts;
2227	}
2228
2229	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2230		"Available: %u " "percent\n",
 
2231		bw_used, max_bandwidth, bw_reserved,
2232		(max_bandwidth - bw_used - bw_reserved) * 100 /
2233		max_bandwidth);
2234
2235	bw_used += bw_reserved;
2236	if (bw_used > max_bandwidth) {
2237		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2238				bw_used, max_bandwidth);
2239		return -ENOMEM;
2240	}
2241
2242	bw_table->bw_used = bw_used;
2243	return 0;
2244}
2245
2246static bool xhci_is_async_ep(unsigned int ep_type)
2247{
2248	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2249					ep_type != ISOC_IN_EP &&
2250					ep_type != INT_IN_EP);
2251}
2252
2253static bool xhci_is_sync_in_ep(unsigned int ep_type)
2254{
2255	return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2256}
2257
2258static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2259{
2260	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2261
2262	if (ep_bw->ep_interval == 0)
2263		return SS_OVERHEAD_BURST +
2264			(ep_bw->mult * ep_bw->num_packets *
2265					(SS_OVERHEAD + mps));
2266	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2267				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2268				1 << ep_bw->ep_interval);
2269
2270}
2271
2272void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2273		struct xhci_bw_info *ep_bw,
2274		struct xhci_interval_bw_table *bw_table,
2275		struct usb_device *udev,
2276		struct xhci_virt_ep *virt_ep,
2277		struct xhci_tt_bw_info *tt_info)
2278{
2279	struct xhci_interval_bw	*interval_bw;
2280	int normalized_interval;
2281
2282	if (xhci_is_async_ep(ep_bw->type))
2283		return;
2284
2285	if (udev->speed == USB_SPEED_SUPER) {
2286		if (xhci_is_sync_in_ep(ep_bw->type))
2287			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2288				xhci_get_ss_bw_consumed(ep_bw);
2289		else
2290			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2291				xhci_get_ss_bw_consumed(ep_bw);
2292		return;
2293	}
2294
2295	/* SuperSpeed endpoints never get added to intervals in the table, so
2296	 * this check is only valid for HS/FS/LS devices.
2297	 */
2298	if (list_empty(&virt_ep->bw_endpoint_list))
2299		return;
2300	/* For LS/FS devices, we need to translate the interval expressed in
2301	 * microframes to frames.
2302	 */
2303	if (udev->speed == USB_SPEED_HIGH)
2304		normalized_interval = ep_bw->ep_interval;
2305	else
2306		normalized_interval = ep_bw->ep_interval - 3;
2307
2308	if (normalized_interval == 0)
2309		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2310	interval_bw = &bw_table->interval_bw[normalized_interval];
2311	interval_bw->num_packets -= ep_bw->num_packets;
2312	switch (udev->speed) {
2313	case USB_SPEED_LOW:
2314		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2315		break;
2316	case USB_SPEED_FULL:
2317		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2318		break;
2319	case USB_SPEED_HIGH:
2320		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2321		break;
2322	case USB_SPEED_SUPER:
 
2323	case USB_SPEED_UNKNOWN:
2324	case USB_SPEED_WIRELESS:
2325		/* Should never happen because only LS/FS/HS endpoints will get
2326		 * added to the endpoint list.
2327		 */
2328		return;
2329	}
2330	if (tt_info)
2331		tt_info->active_eps -= 1;
2332	list_del_init(&virt_ep->bw_endpoint_list);
2333}
2334
2335static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2336		struct xhci_bw_info *ep_bw,
2337		struct xhci_interval_bw_table *bw_table,
2338		struct usb_device *udev,
2339		struct xhci_virt_ep *virt_ep,
2340		struct xhci_tt_bw_info *tt_info)
2341{
2342	struct xhci_interval_bw	*interval_bw;
2343	struct xhci_virt_ep *smaller_ep;
2344	int normalized_interval;
2345
2346	if (xhci_is_async_ep(ep_bw->type))
2347		return;
2348
2349	if (udev->speed == USB_SPEED_SUPER) {
2350		if (xhci_is_sync_in_ep(ep_bw->type))
2351			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2352				xhci_get_ss_bw_consumed(ep_bw);
2353		else
2354			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2355				xhci_get_ss_bw_consumed(ep_bw);
2356		return;
2357	}
2358
2359	/* For LS/FS devices, we need to translate the interval expressed in
2360	 * microframes to frames.
2361	 */
2362	if (udev->speed == USB_SPEED_HIGH)
2363		normalized_interval = ep_bw->ep_interval;
2364	else
2365		normalized_interval = ep_bw->ep_interval - 3;
2366
2367	if (normalized_interval == 0)
2368		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2369	interval_bw = &bw_table->interval_bw[normalized_interval];
2370	interval_bw->num_packets += ep_bw->num_packets;
2371	switch (udev->speed) {
2372	case USB_SPEED_LOW:
2373		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2374		break;
2375	case USB_SPEED_FULL:
2376		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2377		break;
2378	case USB_SPEED_HIGH:
2379		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2380		break;
2381	case USB_SPEED_SUPER:
 
2382	case USB_SPEED_UNKNOWN:
2383	case USB_SPEED_WIRELESS:
2384		/* Should never happen because only LS/FS/HS endpoints will get
2385		 * added to the endpoint list.
2386		 */
2387		return;
2388	}
2389
2390	if (tt_info)
2391		tt_info->active_eps += 1;
2392	/* Insert the endpoint into the list, largest max packet size first. */
2393	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2394			bw_endpoint_list) {
2395		if (ep_bw->max_packet_size >=
2396				smaller_ep->bw_info.max_packet_size) {
2397			/* Add the new ep before the smaller endpoint */
2398			list_add_tail(&virt_ep->bw_endpoint_list,
2399					&smaller_ep->bw_endpoint_list);
2400			return;
2401		}
2402	}
2403	/* Add the new endpoint at the end of the list. */
2404	list_add_tail(&virt_ep->bw_endpoint_list,
2405			&interval_bw->endpoints);
2406}
2407
2408void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2409		struct xhci_virt_device *virt_dev,
2410		int old_active_eps)
2411{
2412	struct xhci_root_port_bw_info *rh_bw_info;
2413	if (!virt_dev->tt_info)
2414		return;
2415
2416	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2417	if (old_active_eps == 0 &&
2418				virt_dev->tt_info->active_eps != 0) {
2419		rh_bw_info->num_active_tts += 1;
2420		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2421	} else if (old_active_eps != 0 &&
2422				virt_dev->tt_info->active_eps == 0) {
2423		rh_bw_info->num_active_tts -= 1;
2424		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2425	}
2426}
2427
2428static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2429		struct xhci_virt_device *virt_dev,
2430		struct xhci_container_ctx *in_ctx)
2431{
2432	struct xhci_bw_info ep_bw_info[31];
2433	int i;
2434	struct xhci_input_control_ctx *ctrl_ctx;
2435	int old_active_eps = 0;
2436
2437	if (virt_dev->tt_info)
2438		old_active_eps = virt_dev->tt_info->active_eps;
2439
2440	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
 
 
 
 
 
2441
2442	for (i = 0; i < 31; i++) {
2443		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2444			continue;
2445
2446		/* Make a copy of the BW info in case we need to revert this */
2447		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2448				sizeof(ep_bw_info[i]));
2449		/* Drop the endpoint from the interval table if the endpoint is
2450		 * being dropped or changed.
2451		 */
2452		if (EP_IS_DROPPED(ctrl_ctx, i))
2453			xhci_drop_ep_from_interval_table(xhci,
2454					&virt_dev->eps[i].bw_info,
2455					virt_dev->bw_table,
2456					virt_dev->udev,
2457					&virt_dev->eps[i],
2458					virt_dev->tt_info);
2459	}
2460	/* Overwrite the information stored in the endpoints' bw_info */
2461	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2462	for (i = 0; i < 31; i++) {
2463		/* Add any changed or added endpoints to the interval table */
2464		if (EP_IS_ADDED(ctrl_ctx, i))
2465			xhci_add_ep_to_interval_table(xhci,
2466					&virt_dev->eps[i].bw_info,
2467					virt_dev->bw_table,
2468					virt_dev->udev,
2469					&virt_dev->eps[i],
2470					virt_dev->tt_info);
2471	}
2472
2473	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2474		/* Ok, this fits in the bandwidth we have.
2475		 * Update the number of active TTs.
2476		 */
2477		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2478		return 0;
2479	}
2480
2481	/* We don't have enough bandwidth for this, revert the stored info. */
2482	for (i = 0; i < 31; i++) {
2483		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2484			continue;
2485
2486		/* Drop the new copies of any added or changed endpoints from
2487		 * the interval table.
2488		 */
2489		if (EP_IS_ADDED(ctrl_ctx, i)) {
2490			xhci_drop_ep_from_interval_table(xhci,
2491					&virt_dev->eps[i].bw_info,
2492					virt_dev->bw_table,
2493					virt_dev->udev,
2494					&virt_dev->eps[i],
2495					virt_dev->tt_info);
2496		}
2497		/* Revert the endpoint back to its old information */
2498		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2499				sizeof(ep_bw_info[i]));
2500		/* Add any changed or dropped endpoints back into the table */
2501		if (EP_IS_DROPPED(ctrl_ctx, i))
2502			xhci_add_ep_to_interval_table(xhci,
2503					&virt_dev->eps[i].bw_info,
2504					virt_dev->bw_table,
2505					virt_dev->udev,
2506					&virt_dev->eps[i],
2507					virt_dev->tt_info);
2508	}
2509	return -ENOMEM;
2510}
2511
2512
2513/* Issue a configure endpoint command or evaluate context command
2514 * and wait for it to finish.
2515 */
2516static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2517		struct usb_device *udev,
2518		struct xhci_command *command,
2519		bool ctx_change, bool must_succeed)
2520{
2521	int ret;
2522	int timeleft;
2523	unsigned long flags;
2524	struct xhci_container_ctx *in_ctx;
2525	struct completion *cmd_completion;
2526	u32 *cmd_status;
2527	struct xhci_virt_device *virt_dev;
2528	union xhci_trb *cmd_trb;
 
 
 
2529
2530	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
2531	virt_dev = xhci->devs[udev->slot_id];
2532
2533	if (command)
2534		in_ctx = command->in_ctx;
2535	else
2536		in_ctx = virt_dev->in_ctx;
 
 
 
2537
2538	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2539			xhci_reserve_host_resources(xhci, in_ctx)) {
2540		spin_unlock_irqrestore(&xhci->lock, flags);
2541		xhci_warn(xhci, "Not enough host resources, "
2542				"active endpoint contexts = %u\n",
2543				xhci->num_active_eps);
2544		return -ENOMEM;
2545	}
2546	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2547			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2548		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2549			xhci_free_host_resources(xhci, in_ctx);
2550		spin_unlock_irqrestore(&xhci->lock, flags);
2551		xhci_warn(xhci, "Not enough bandwidth\n");
2552		return -ENOMEM;
2553	}
2554
2555	if (command) {
2556		cmd_completion = command->completion;
2557		cmd_status = &command->status;
2558		command->command_trb = xhci->cmd_ring->enqueue;
2559
2560		/* Enqueue pointer can be left pointing to the link TRB,
2561		 * we must handle that
2562		 */
2563		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2564			command->command_trb =
2565				xhci->cmd_ring->enq_seg->next->trbs;
2566
2567		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2568	} else {
2569		cmd_completion = &virt_dev->cmd_completion;
2570		cmd_status = &virt_dev->cmd_status;
2571	}
2572	init_completion(cmd_completion);
2573
2574	cmd_trb = xhci->cmd_ring->dequeue;
2575	if (!ctx_change)
2576		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
 
2577				udev->slot_id, must_succeed);
2578	else
2579		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
 
2580				udev->slot_id, must_succeed);
2581	if (ret < 0) {
2582		if (command)
2583			list_del(&command->cmd_list);
2584		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2585			xhci_free_host_resources(xhci, in_ctx);
2586		spin_unlock_irqrestore(&xhci->lock, flags);
2587		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
 
2588		return -ENOMEM;
2589	}
2590	xhci_ring_cmd_db(xhci);
2591	spin_unlock_irqrestore(&xhci->lock, flags);
2592
2593	/* Wait for the configure endpoint command to complete */
2594	timeleft = wait_for_completion_interruptible_timeout(
2595			cmd_completion,
2596			XHCI_CMD_DEFAULT_TIMEOUT);
2597	if (timeleft <= 0) {
2598		xhci_warn(xhci, "%s while waiting for %s command\n",
2599				timeleft == 0 ? "Timeout" : "Signal",
2600				ctx_change == 0 ?
2601					"configure endpoint" :
2602					"evaluate context");
2603		/* cancel the configure endpoint command */
2604		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2605		if (ret < 0)
2606			return ret;
2607		return -ETIME;
2608	}
2609
2610	if (!ctx_change)
2611		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
 
2612	else
2613		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
 
2614
2615	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2616		spin_lock_irqsave(&xhci->lock, flags);
2617		/* If the command failed, remove the reserved resources.
2618		 * Otherwise, clean up the estimate to include dropped eps.
2619		 */
2620		if (ret)
2621			xhci_free_host_resources(xhci, in_ctx);
2622		else
2623			xhci_finish_resource_reservation(xhci, in_ctx);
2624		spin_unlock_irqrestore(&xhci->lock, flags);
2625	}
2626	return ret;
2627}
2628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2629/* Called after one or more calls to xhci_add_endpoint() or
2630 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2631 * to call xhci_reset_bandwidth().
2632 *
2633 * Since we are in the middle of changing either configuration or
2634 * installing a new alt setting, the USB core won't allow URBs to be
2635 * enqueued for any endpoint on the old config or interface.  Nothing
2636 * else should be touching the xhci->devs[slot_id] structure, so we
2637 * don't need to take the xhci->lock for manipulating that.
2638 */
2639int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2640{
2641	int i;
2642	int ret = 0;
2643	struct xhci_hcd *xhci;
2644	struct xhci_virt_device	*virt_dev;
2645	struct xhci_input_control_ctx *ctrl_ctx;
2646	struct xhci_slot_ctx *slot_ctx;
 
2647
2648	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2649	if (ret <= 0)
2650		return ret;
2651	xhci = hcd_to_xhci(hcd);
2652	if (xhci->xhc_state & XHCI_STATE_DYING)
 
2653		return -ENODEV;
2654
2655	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2656	virt_dev = xhci->devs[udev->slot_id];
2657
 
 
 
 
 
 
2658	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2659	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
 
 
 
 
 
 
2660	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2661	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2662	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2663
2664	/* Don't issue the command if there's no endpoints to update. */
2665	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2666			ctrl_ctx->drop_flags == 0)
2667		return 0;
 
 
 
 
 
 
2668
2669	xhci_dbg(xhci, "New Input Control Context:\n");
2670	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2671	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2672		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
 
 
 
2673
2674	ret = xhci_configure_endpoint(xhci, udev, NULL,
2675			false, false);
2676	if (ret) {
2677		/* Callee should call reset_bandwidth() */
2678		return ret;
2679	}
2680
2681	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2682	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2683		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2684
2685	/* Free any rings that were dropped, but not changed. */
2686	for (i = 1; i < 31; ++i) {
2687		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2688		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2689			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
 
 
2690	}
2691	xhci_zero_in_ctx(xhci, virt_dev);
2692	/*
2693	 * Install any rings for completely new endpoints or changed endpoints,
2694	 * and free or cache any old rings from changed endpoints.
2695	 */
2696	for (i = 1; i < 31; ++i) {
2697		if (!virt_dev->eps[i].new_ring)
2698			continue;
2699		/* Only cache or free the old ring if it exists.
2700		 * It may not if this is the first add of an endpoint.
2701		 */
2702		if (virt_dev->eps[i].ring) {
2703			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2704		}
 
2705		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2706		virt_dev->eps[i].new_ring = NULL;
 
2707	}
 
 
 
2708
2709	return ret;
2710}
 
2711
2712void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2713{
2714	struct xhci_hcd *xhci;
2715	struct xhci_virt_device	*virt_dev;
2716	int i, ret;
2717
2718	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2719	if (ret <= 0)
2720		return;
2721	xhci = hcd_to_xhci(hcd);
2722
2723	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2724	virt_dev = xhci->devs[udev->slot_id];
2725	/* Free any rings allocated for added endpoints */
2726	for (i = 0; i < 31; ++i) {
2727		if (virt_dev->eps[i].new_ring) {
 
2728			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2729			virt_dev->eps[i].new_ring = NULL;
2730		}
2731	}
2732	xhci_zero_in_ctx(xhci, virt_dev);
2733}
 
2734
2735static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2736		struct xhci_container_ctx *in_ctx,
2737		struct xhci_container_ctx *out_ctx,
 
2738		u32 add_flags, u32 drop_flags)
2739{
2740	struct xhci_input_control_ctx *ctrl_ctx;
2741	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2742	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2743	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2744	xhci_slot_copy(xhci, in_ctx, out_ctx);
2745	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2746
2747	xhci_dbg(xhci, "Input Context:\n");
2748	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2749}
2750
2751static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2752		unsigned int slot_id, unsigned int ep_index,
2753		struct xhci_dequeue_state *deq_state)
2754{
2755	struct xhci_container_ctx *in_ctx;
2756	struct xhci_ep_ctx *ep_ctx;
2757	u32 added_ctxs;
2758	dma_addr_t addr;
 
 
 
 
 
 
2759
2760	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2761			xhci->devs[slot_id]->out_ctx, ep_index);
2762	in_ctx = xhci->devs[slot_id]->in_ctx;
2763	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2764	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2765			deq_state->new_deq_ptr);
2766	if (addr == 0) {
2767		xhci_warn(xhci, "WARN Cannot submit config ep after "
2768				"reset ep command\n");
2769		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2770				deq_state->new_deq_seg,
2771				deq_state->new_deq_ptr);
2772		return;
2773	}
2774	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2775
2776	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2777	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2778			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2779}
2780
2781void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2782		struct usb_device *udev, unsigned int ep_index)
2783{
2784	struct xhci_dequeue_state deq_state;
2785	struct xhci_virt_ep *ep;
2786
2787	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2788	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2789	/* We need to move the HW's dequeue pointer past this TD,
2790	 * or it will attempt to resend it on the next doorbell ring.
2791	 */
2792	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2793			ep_index, ep->stopped_stream, ep->stopped_td,
2794			&deq_state);
2795
2796	/* HW with the reset endpoint quirk will use the saved dequeue state to
2797	 * issue a configure endpoint command later.
2798	 */
2799	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2800		xhci_dbg(xhci, "Queueing new dequeue state\n");
2801		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2802				ep_index, ep->stopped_stream, &deq_state);
2803	} else {
2804		/* Better hope no one uses the input context between now and the
2805		 * reset endpoint completion!
2806		 * XXX: No idea how this hardware will react when stream rings
2807		 * are enabled.
2808		 */
2809		xhci_dbg(xhci, "Setting up input context for "
2810				"configure endpoint command\n");
2811		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2812				ep_index, &deq_state);
2813	}
 
 
 
 
 
 
 
2814}
2815
2816/* Deal with stalled endpoints.  The core should have sent the control message
2817 * to clear the halt condition.  However, we need to make the xHCI hardware
2818 * reset its sequence number, since a device will expect a sequence number of
2819 * zero after the halt condition is cleared.
2820 * Context: in_interrupt
 
 
 
 
 
2821 */
2822void xhci_endpoint_reset(struct usb_hcd *hcd,
2823		struct usb_host_endpoint *ep)
 
2824{
2825	struct xhci_hcd *xhci;
2826	struct usb_device *udev;
 
 
 
 
2827	unsigned int ep_index;
2828	unsigned long flags;
2829	int ret;
2830	struct xhci_virt_ep *virt_ep;
2831
2832	xhci = hcd_to_xhci(hcd);
2833	udev = (struct usb_device *) ep->hcpriv;
2834	/* Called with a root hub endpoint (or an endpoint that wasn't added
2835	 * with xhci_add_endpoint()
 
 
 
 
 
 
2836	 */
2837	if (!ep->hcpriv)
2838		return;
2839	ep_index = xhci_get_endpoint_index(&ep->desc);
2840	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2841	if (!virt_ep->stopped_td) {
2842		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2843				ep->desc.bEndpointAddress);
 
 
 
2844		return;
2845	}
2846	if (usb_endpoint_xfer_control(&ep->desc)) {
2847		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
 
 
2848		return;
2849	}
2850
2851	xhci_dbg(xhci, "Queueing reset endpoint command\n");
 
 
 
 
 
 
 
 
 
 
 
 
2852	spin_lock_irqsave(&xhci->lock, flags);
2853	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
 
 
 
2854	/*
2855	 * Can't change the ring dequeue pointer until it's transitioned to the
2856	 * stopped state, which is only upon a successful reset endpoint
2857	 * command.  Better hope that last command worked!
2858	 */
2859	if (!ret) {
2860		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2861		kfree(virt_ep->stopped_td);
2862		xhci_ring_cmd_db(xhci);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863	}
2864	virt_ep->stopped_td = NULL;
2865	virt_ep->stopped_trb = NULL;
2866	virt_ep->stopped_stream = 0;
2867	spin_unlock_irqrestore(&xhci->lock, flags);
2868
2869	if (ret)
2870		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
 
 
 
 
 
 
 
2871}
2872
2873static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2874		struct usb_device *udev, struct usb_host_endpoint *ep,
2875		unsigned int slot_id)
2876{
2877	int ret;
2878	unsigned int ep_index;
2879	unsigned int ep_state;
2880
2881	if (!ep)
2882		return -EINVAL;
2883	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2884	if (ret <= 0)
2885		return -EINVAL;
2886	if (ep->ss_ep_comp.bmAttributes == 0) {
2887		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2888				" descriptor for ep 0x%x does not support streams\n",
2889				ep->desc.bEndpointAddress);
2890		return -EINVAL;
2891	}
2892
2893	ep_index = xhci_get_endpoint_index(&ep->desc);
2894	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2895	if (ep_state & EP_HAS_STREAMS ||
2896			ep_state & EP_GETTING_STREAMS) {
2897		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2898				"already has streams set up.\n",
2899				ep->desc.bEndpointAddress);
2900		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2901				"dynamic stream context array reallocation.\n");
2902		return -EINVAL;
2903	}
2904	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2905		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2906				"endpoint 0x%x; URBs are pending.\n",
2907				ep->desc.bEndpointAddress);
2908		return -EINVAL;
2909	}
2910	return 0;
2911}
2912
2913static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2914		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2915{
2916	unsigned int max_streams;
2917
2918	/* The stream context array size must be a power of two */
2919	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2920	/*
2921	 * Find out how many primary stream array entries the host controller
2922	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2923	 * level page entries), but that's an optional feature for xHCI host
2924	 * controllers. xHCs must support at least 4 stream IDs.
2925	 */
2926	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2927	if (*num_stream_ctxs > max_streams) {
2928		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2929				max_streams);
2930		*num_stream_ctxs = max_streams;
2931		*num_streams = max_streams;
2932	}
2933}
2934
2935/* Returns an error code if one of the endpoint already has streams.
2936 * This does not change any data structures, it only checks and gathers
2937 * information.
2938 */
2939static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2940		struct usb_device *udev,
2941		struct usb_host_endpoint **eps, unsigned int num_eps,
2942		unsigned int *num_streams, u32 *changed_ep_bitmask)
2943{
2944	unsigned int max_streams;
2945	unsigned int endpoint_flag;
2946	int i;
2947	int ret;
2948
2949	for (i = 0; i < num_eps; i++) {
2950		ret = xhci_check_streams_endpoint(xhci, udev,
2951				eps[i], udev->slot_id);
2952		if (ret < 0)
2953			return ret;
2954
2955		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2956		if (max_streams < (*num_streams - 1)) {
2957			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2958					eps[i]->desc.bEndpointAddress,
2959					max_streams);
2960			*num_streams = max_streams+1;
2961		}
2962
2963		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2964		if (*changed_ep_bitmask & endpoint_flag)
2965			return -EINVAL;
2966		*changed_ep_bitmask |= endpoint_flag;
2967	}
2968	return 0;
2969}
2970
2971static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2972		struct usb_device *udev,
2973		struct usb_host_endpoint **eps, unsigned int num_eps)
2974{
2975	u32 changed_ep_bitmask = 0;
2976	unsigned int slot_id;
2977	unsigned int ep_index;
2978	unsigned int ep_state;
2979	int i;
2980
2981	slot_id = udev->slot_id;
2982	if (!xhci->devs[slot_id])
2983		return 0;
2984
2985	for (i = 0; i < num_eps; i++) {
2986		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2987		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2988		/* Are streams already being freed for the endpoint? */
2989		if (ep_state & EP_GETTING_NO_STREAMS) {
2990			xhci_warn(xhci, "WARN Can't disable streams for "
2991					"endpoint 0x%x\n, "
2992					"streams are being disabled already.",
2993					eps[i]->desc.bEndpointAddress);
2994			return 0;
2995		}
2996		/* Are there actually any streams to free? */
2997		if (!(ep_state & EP_HAS_STREAMS) &&
2998				!(ep_state & EP_GETTING_STREAMS)) {
2999			xhci_warn(xhci, "WARN Can't disable streams for "
3000					"endpoint 0x%x\n, "
3001					"streams are already disabled!",
3002					eps[i]->desc.bEndpointAddress);
3003			xhci_warn(xhci, "WARN xhci_free_streams() called "
3004					"with non-streams endpoint\n");
3005			return 0;
3006		}
3007		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3008	}
3009	return changed_ep_bitmask;
3010}
3011
3012/*
3013 * The USB device drivers use this function (though the HCD interface in USB
3014 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3015 * coordinate mass storage command queueing across multiple endpoints (basically
3016 * a stream ID == a task ID).
3017 *
3018 * Setting up streams involves allocating the same size stream context array
3019 * for each endpoint and issuing a configure endpoint command for all endpoints.
3020 *
3021 * Don't allow the call to succeed if one endpoint only supports one stream
3022 * (which means it doesn't support streams at all).
3023 *
3024 * Drivers may get less stream IDs than they asked for, if the host controller
3025 * hardware or endpoints claim they can't support the number of requested
3026 * stream IDs.
3027 */
3028int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3029		struct usb_host_endpoint **eps, unsigned int num_eps,
3030		unsigned int num_streams, gfp_t mem_flags)
3031{
3032	int i, ret;
3033	struct xhci_hcd *xhci;
3034	struct xhci_virt_device *vdev;
3035	struct xhci_command *config_cmd;
 
3036	unsigned int ep_index;
3037	unsigned int num_stream_ctxs;
 
3038	unsigned long flags;
3039	u32 changed_ep_bitmask = 0;
3040
3041	if (!eps)
3042		return -EINVAL;
3043
3044	/* Add one to the number of streams requested to account for
3045	 * stream 0 that is reserved for xHCI usage.
3046	 */
3047	num_streams += 1;
3048	xhci = hcd_to_xhci(hcd);
3049	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3050			num_streams);
3051
3052	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3053	if (!config_cmd) {
3054		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
3055		return -ENOMEM;
3056	}
3057
3058	/* Check to make sure all endpoints are not already configured for
3059	 * streams.  While we're at it, find the maximum number of streams that
3060	 * all the endpoints will support and check for duplicate endpoints.
3061	 */
3062	spin_lock_irqsave(&xhci->lock, flags);
3063	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3064			num_eps, &num_streams, &changed_ep_bitmask);
3065	if (ret < 0) {
3066		xhci_free_command(xhci, config_cmd);
3067		spin_unlock_irqrestore(&xhci->lock, flags);
3068		return ret;
3069	}
3070	if (num_streams <= 1) {
3071		xhci_warn(xhci, "WARN: endpoints can't handle "
3072				"more than one stream.\n");
3073		xhci_free_command(xhci, config_cmd);
3074		spin_unlock_irqrestore(&xhci->lock, flags);
3075		return -EINVAL;
3076	}
3077	vdev = xhci->devs[udev->slot_id];
3078	/* Mark each endpoint as being in transition, so
3079	 * xhci_urb_enqueue() will reject all URBs.
3080	 */
3081	for (i = 0; i < num_eps; i++) {
3082		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3083		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3084	}
3085	spin_unlock_irqrestore(&xhci->lock, flags);
3086
3087	/* Setup internal data structures and allocate HW data structures for
3088	 * streams (but don't install the HW structures in the input context
3089	 * until we're sure all memory allocation succeeded).
3090	 */
3091	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3092	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3093			num_stream_ctxs, num_streams);
3094
3095	for (i = 0; i < num_eps; i++) {
3096		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
 
3097		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3098				num_stream_ctxs,
3099				num_streams, mem_flags);
 
3100		if (!vdev->eps[ep_index].stream_info)
3101			goto cleanup;
3102		/* Set maxPstreams in endpoint context and update deq ptr to
3103		 * point to stream context array. FIXME
3104		 */
3105	}
3106
3107	/* Set up the input context for a configure endpoint command. */
3108	for (i = 0; i < num_eps; i++) {
3109		struct xhci_ep_ctx *ep_ctx;
3110
3111		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3112		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3113
3114		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3115				vdev->out_ctx, ep_index);
3116		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3117				vdev->eps[ep_index].stream_info);
3118	}
3119	/* Tell the HW to drop its old copy of the endpoint context info
3120	 * and add the updated copy from the input context.
3121	 */
3122	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3123			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
 
3124
3125	/* Issue and wait for the configure endpoint command */
3126	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3127			false, false);
3128
3129	/* xHC rejected the configure endpoint command for some reason, so we
3130	 * leave the old ring intact and free our internal streams data
3131	 * structure.
3132	 */
3133	if (ret < 0)
3134		goto cleanup;
3135
3136	spin_lock_irqsave(&xhci->lock, flags);
3137	for (i = 0; i < num_eps; i++) {
3138		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3139		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3140		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3141			 udev->slot_id, ep_index);
3142		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3143	}
3144	xhci_free_command(xhci, config_cmd);
3145	spin_unlock_irqrestore(&xhci->lock, flags);
3146
 
 
 
 
3147	/* Subtract 1 for stream 0, which drivers can't use */
3148	return num_streams - 1;
3149
3150cleanup:
3151	/* If it didn't work, free the streams! */
3152	for (i = 0; i < num_eps; i++) {
3153		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3154		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3155		vdev->eps[ep_index].stream_info = NULL;
3156		/* FIXME Unset maxPstreams in endpoint context and
3157		 * update deq ptr to point to normal string ring.
3158		 */
3159		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3160		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3161		xhci_endpoint_zero(xhci, vdev, eps[i]);
3162	}
3163	xhci_free_command(xhci, config_cmd);
3164	return -ENOMEM;
3165}
3166
3167/* Transition the endpoint from using streams to being a "normal" endpoint
3168 * without streams.
3169 *
3170 * Modify the endpoint context state, submit a configure endpoint command,
3171 * and free all endpoint rings for streams if that completes successfully.
3172 */
3173int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3174		struct usb_host_endpoint **eps, unsigned int num_eps,
3175		gfp_t mem_flags)
3176{
3177	int i, ret;
3178	struct xhci_hcd *xhci;
3179	struct xhci_virt_device *vdev;
3180	struct xhci_command *command;
 
3181	unsigned int ep_index;
3182	unsigned long flags;
3183	u32 changed_ep_bitmask;
3184
3185	xhci = hcd_to_xhci(hcd);
3186	vdev = xhci->devs[udev->slot_id];
3187
3188	/* Set up a configure endpoint command to remove the streams rings */
3189	spin_lock_irqsave(&xhci->lock, flags);
3190	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3191			udev, eps, num_eps);
3192	if (changed_ep_bitmask == 0) {
3193		spin_unlock_irqrestore(&xhci->lock, flags);
3194		return -EINVAL;
3195	}
3196
3197	/* Use the xhci_command structure from the first endpoint.  We may have
3198	 * allocated too many, but the driver may call xhci_free_streams() for
3199	 * each endpoint it grouped into one call to xhci_alloc_streams().
3200	 */
3201	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3202	command = vdev->eps[ep_index].stream_info->free_streams_command;
 
 
 
 
 
 
 
 
3203	for (i = 0; i < num_eps; i++) {
3204		struct xhci_ep_ctx *ep_ctx;
3205
3206		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3207		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3208		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3209			EP_GETTING_NO_STREAMS;
3210
3211		xhci_endpoint_copy(xhci, command->in_ctx,
3212				vdev->out_ctx, ep_index);
3213		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3214				&vdev->eps[ep_index]);
3215	}
3216	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3217			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
 
3218	spin_unlock_irqrestore(&xhci->lock, flags);
3219
3220	/* Issue and wait for the configure endpoint command,
3221	 * which must succeed.
3222	 */
3223	ret = xhci_configure_endpoint(xhci, udev, command,
3224			false, true);
3225
3226	/* xHC rejected the configure endpoint command for some reason, so we
3227	 * leave the streams rings intact.
3228	 */
3229	if (ret < 0)
3230		return ret;
3231
3232	spin_lock_irqsave(&xhci->lock, flags);
3233	for (i = 0; i < num_eps; i++) {
3234		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3235		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3236		vdev->eps[ep_index].stream_info = NULL;
3237		/* FIXME Unset maxPstreams in endpoint context and
3238		 * update deq ptr to point to normal string ring.
3239		 */
3240		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3241		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3242	}
3243	spin_unlock_irqrestore(&xhci->lock, flags);
3244
3245	return 0;
3246}
3247
3248/*
3249 * Deletes endpoint resources for endpoints that were active before a Reset
3250 * Device command, or a Disable Slot command.  The Reset Device command leaves
3251 * the control endpoint intact, whereas the Disable Slot command deletes it.
3252 *
3253 * Must be called with xhci->lock held.
3254 */
3255void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3256	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3257{
3258	int i;
3259	unsigned int num_dropped_eps = 0;
3260	unsigned int drop_flags = 0;
3261
3262	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3263		if (virt_dev->eps[i].ring) {
3264			drop_flags |= 1 << i;
3265			num_dropped_eps++;
3266		}
3267	}
3268	xhci->num_active_eps -= num_dropped_eps;
3269	if (num_dropped_eps)
3270		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3271				"%u now active.\n",
 
3272				num_dropped_eps, drop_flags,
3273				xhci->num_active_eps);
3274}
3275
3276/*
3277 * This submits a Reset Device Command, which will set the device state to 0,
3278 * set the device address to 0, and disable all the endpoints except the default
3279 * control endpoint.  The USB core should come back and call
3280 * xhci_address_device(), and then re-set up the configuration.  If this is
3281 * called because of a usb_reset_and_verify_device(), then the old alternate
3282 * settings will be re-installed through the normal bandwidth allocation
3283 * functions.
3284 *
3285 * Wait for the Reset Device command to finish.  Remove all structures
3286 * associated with the endpoints that were disabled.  Clear the input device
3287 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3288 *
3289 * If the virt_dev to be reset does not exist or does not match the udev,
3290 * it means the device is lost, possibly due to the xHC restore error and
3291 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3292 * re-allocate the device.
3293 */
3294int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
 
3295{
3296	int ret, i;
3297	unsigned long flags;
3298	struct xhci_hcd *xhci;
3299	unsigned int slot_id;
3300	struct xhci_virt_device *virt_dev;
3301	struct xhci_command *reset_device_cmd;
3302	int timeleft;
3303	int last_freed_endpoint;
3304	struct xhci_slot_ctx *slot_ctx;
3305	int old_active_eps = 0;
3306
3307	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3308	if (ret <= 0)
3309		return ret;
3310	xhci = hcd_to_xhci(hcd);
3311	slot_id = udev->slot_id;
3312	virt_dev = xhci->devs[slot_id];
3313	if (!virt_dev) {
3314		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3315				"not exist. Re-allocate the device\n", slot_id);
3316		ret = xhci_alloc_dev(hcd, udev);
3317		if (ret == 1)
3318			return 0;
3319		else
3320			return -EINVAL;
3321	}
3322
 
 
 
3323	if (virt_dev->udev != udev) {
3324		/* If the virt_dev and the udev does not match, this virt_dev
3325		 * may belong to another udev.
3326		 * Re-allocate the device.
3327		 */
3328		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3329				"not match the udev. Re-allocate the device\n",
3330				slot_id);
3331		ret = xhci_alloc_dev(hcd, udev);
3332		if (ret == 1)
3333			return 0;
3334		else
3335			return -EINVAL;
3336	}
3337
3338	/* If device is not setup, there is no point in resetting it */
3339	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3340	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3341						SLOT_STATE_DISABLED)
3342		return 0;
3343
 
 
3344	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3345	/* Allocate the command structure that holds the struct completion.
3346	 * Assume we're in process context, since the normal device reset
3347	 * process has to wait for the device anyway.  Storage devices are
3348	 * reset as part of error handling, so use GFP_NOIO instead of
3349	 * GFP_KERNEL.
3350	 */
3351	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3352	if (!reset_device_cmd) {
3353		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3354		return -ENOMEM;
3355	}
3356
3357	/* Attempt to submit the Reset Device command to the command ring */
3358	spin_lock_irqsave(&xhci->lock, flags);
3359	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3360
3361	/* Enqueue pointer can be left pointing to the link TRB,
3362	 * we must handle that
3363	 */
3364	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3365		reset_device_cmd->command_trb =
3366			xhci->cmd_ring->enq_seg->next->trbs;
3367
3368	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3369	ret = xhci_queue_reset_device(xhci, slot_id);
3370	if (ret) {
3371		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3372		list_del(&reset_device_cmd->cmd_list);
3373		spin_unlock_irqrestore(&xhci->lock, flags);
3374		goto command_cleanup;
3375	}
3376	xhci_ring_cmd_db(xhci);
3377	spin_unlock_irqrestore(&xhci->lock, flags);
3378
3379	/* Wait for the Reset Device command to finish */
3380	timeleft = wait_for_completion_interruptible_timeout(
3381			reset_device_cmd->completion,
3382			USB_CTRL_SET_TIMEOUT);
3383	if (timeleft <= 0) {
3384		xhci_warn(xhci, "%s while waiting for reset device command\n",
3385				timeleft == 0 ? "Timeout" : "Signal");
3386		spin_lock_irqsave(&xhci->lock, flags);
3387		/* The timeout might have raced with the event ring handler, so
3388		 * only delete from the list if the item isn't poisoned.
3389		 */
3390		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3391			list_del(&reset_device_cmd->cmd_list);
3392		spin_unlock_irqrestore(&xhci->lock, flags);
3393		ret = -ETIME;
3394		goto command_cleanup;
3395	}
3396
3397	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3398	 * unless we tried to reset a slot ID that wasn't enabled,
3399	 * or the device wasn't in the addressed or configured state.
3400	 */
3401	ret = reset_device_cmd->status;
3402	switch (ret) {
3403	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3404	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3405		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
 
 
 
 
 
3406				slot_id,
3407				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3408		xhci_info(xhci, "Not freeing device rings.\n");
3409		/* Don't treat this as an error.  May change my mind later. */
3410		ret = 0;
3411		goto command_cleanup;
3412	case COMP_SUCCESS:
3413		xhci_dbg(xhci, "Successful reset device command.\n");
3414		break;
3415	default:
3416		if (xhci_is_vendor_info_code(xhci, ret))
3417			break;
3418		xhci_warn(xhci, "Unknown completion code %u for "
3419				"reset device command.\n", ret);
3420		ret = -EINVAL;
3421		goto command_cleanup;
3422	}
3423
3424	/* Free up host controller endpoint resources */
3425	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3426		spin_lock_irqsave(&xhci->lock, flags);
3427		/* Don't delete the default control endpoint resources */
3428		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3429		spin_unlock_irqrestore(&xhci->lock, flags);
3430	}
3431
3432	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3433	last_freed_endpoint = 1;
3434	for (i = 1; i < 31; ++i) {
3435		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3436
3437		if (ep->ep_state & EP_HAS_STREAMS) {
 
 
3438			xhci_free_stream_info(xhci, ep->stream_info);
3439			ep->stream_info = NULL;
3440			ep->ep_state &= ~EP_HAS_STREAMS;
3441		}
3442
3443		if (ep->ring) {
3444			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3445			last_freed_endpoint = i;
3446		}
3447		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3448			xhci_drop_ep_from_interval_table(xhci,
3449					&virt_dev->eps[i].bw_info,
3450					virt_dev->bw_table,
3451					udev,
3452					&virt_dev->eps[i],
3453					virt_dev->tt_info);
3454		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3455	}
3456	/* If necessary, update the number of active TTs on this root port */
3457	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3458
3459	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3460	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3461	ret = 0;
3462
3463command_cleanup:
3464	xhci_free_command(xhci, reset_device_cmd);
3465	return ret;
3466}
3467
3468/*
3469 * At this point, the struct usb_device is about to go away, the device has
3470 * disconnected, and all traffic has been stopped and the endpoints have been
3471 * disabled.  Free any HC data structures associated with that device.
3472 */
3473void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3474{
3475	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3476	struct xhci_virt_device *virt_dev;
 
3477	unsigned long flags;
3478	u32 state;
3479	int i, ret;
3480
 
 
 
 
 
 
 
 
3481	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3482	/* If the host is halted due to driver unload, we still need to free the
3483	 * device.
3484	 */
3485	if (ret <= 0 && ret != -ENODEV)
3486		return;
3487
3488	virt_dev = xhci->devs[udev->slot_id];
 
 
3489
3490	/* Stop any wayward timer functions (which may grab the lock) */
3491	for (i = 0; i < 31; ++i) {
3492		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3493		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3494	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3495
3496	if (udev->usb2_hw_lpm_enabled) {
3497		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3498		udev->usb2_hw_lpm_enabled = 0;
3499	}
3500
3501	spin_lock_irqsave(&xhci->lock, flags);
3502	/* Don't disable the slot if the host controller is dead. */
3503	state = xhci_readl(xhci, &xhci->op_regs->status);
3504	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3505			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3506		xhci_free_virt_device(xhci, udev->slot_id);
3507		spin_unlock_irqrestore(&xhci->lock, flags);
3508		return;
 
3509	}
3510
3511	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
 
 
3512		spin_unlock_irqrestore(&xhci->lock, flags);
3513		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3514		return;
3515	}
3516	xhci_ring_cmd_db(xhci);
3517	spin_unlock_irqrestore(&xhci->lock, flags);
3518	/*
3519	 * Event command completion handler will free any data structures
3520	 * associated with the slot.  XXX Can free sleep?
3521	 */
 
 
 
 
 
 
3522}
3523
3524/*
3525 * Checks if we have enough host controller resources for the default control
3526 * endpoint.
3527 *
3528 * Must be called with xhci->lock held.
3529 */
3530static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3531{
3532	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3533		xhci_dbg(xhci, "Not enough ep ctxs: "
3534				"%u active, need to add 1, limit is %u.\n",
 
3535				xhci->num_active_eps, xhci->limit_active_eps);
3536		return -ENOMEM;
3537	}
3538	xhci->num_active_eps += 1;
3539	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
 
3540			xhci->num_active_eps);
3541	return 0;
3542}
3543
3544
3545/*
3546 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3547 * timed out, or allocating memory failed.  Returns 1 on success.
3548 */
3549int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3550{
3551	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
 
3552	unsigned long flags;
3553	int timeleft;
3554	int ret;
3555	union xhci_trb *cmd_trb;
 
 
 
3556
3557	spin_lock_irqsave(&xhci->lock, flags);
3558	cmd_trb = xhci->cmd_ring->dequeue;
3559	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3560	if (ret) {
3561		spin_unlock_irqrestore(&xhci->lock, flags);
3562		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
 
3563		return 0;
3564	}
3565	xhci_ring_cmd_db(xhci);
3566	spin_unlock_irqrestore(&xhci->lock, flags);
3567
3568	/* XXX: how much time for xHC slot assignment? */
3569	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3570			XHCI_CMD_DEFAULT_TIMEOUT);
3571	if (timeleft <= 0) {
3572		xhci_warn(xhci, "%s while waiting for a slot\n",
3573				timeleft == 0 ? "Timeout" : "Signal");
3574		/* cancel the enable slot request */
3575		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3576	}
3577
3578	if (!xhci->slot_id) {
3579		xhci_err(xhci, "Error while assigning device slot ID\n");
 
 
 
 
 
3580		return 0;
3581	}
3582
 
 
3583	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3584		spin_lock_irqsave(&xhci->lock, flags);
3585		ret = xhci_reserve_host_control_ep_resources(xhci);
3586		if (ret) {
3587			spin_unlock_irqrestore(&xhci->lock, flags);
3588			xhci_warn(xhci, "Not enough host resources, "
3589					"active endpoint contexts = %u\n",
3590					xhci->num_active_eps);
3591			goto disable_slot;
3592		}
3593		spin_unlock_irqrestore(&xhci->lock, flags);
3594	}
3595	/* Use GFP_NOIO, since this function can be called from
3596	 * xhci_discover_or_reset_device(), which may be called as part of
3597	 * mass storage driver error handling.
3598	 */
3599	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3600		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3601		goto disable_slot;
3602	}
3603	udev->slot_id = xhci->slot_id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3604	/* Is this a LS or FS device under a HS hub? */
3605	/* Hub or peripherial? */
3606	return 1;
3607
3608disable_slot:
3609	/* Disable slot, if we can do it without mem alloc */
3610	spin_lock_irqsave(&xhci->lock, flags);
3611	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3612		xhci_ring_cmd_db(xhci);
3613	spin_unlock_irqrestore(&xhci->lock, flags);
3614	return 0;
3615}
3616
3617/*
3618 * Issue an Address Device command (which will issue a SetAddress request to
3619 * the device).
3620 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3621 * we should only issue and wait on one address command at the same time.
3622 *
3623 * We add one to the device address issued by the hardware because the USB core
3624 * uses address 1 for the root hubs (even though they're not really devices).
3625 */
3626int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
 
3627{
 
3628	unsigned long flags;
3629	int timeleft;
3630	struct xhci_virt_device *virt_dev;
3631	int ret = 0;
3632	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3633	struct xhci_slot_ctx *slot_ctx;
3634	struct xhci_input_control_ctx *ctrl_ctx;
3635	u64 temp_64;
3636	union xhci_trb *cmd_trb;
 
 
 
 
 
 
 
3637
3638	if (!udev->slot_id) {
3639		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3640		return -EINVAL;
 
 
3641	}
3642
3643	virt_dev = xhci->devs[udev->slot_id];
3644
3645	if (WARN_ON(!virt_dev)) {
3646		/*
3647		 * In plug/unplug torture test with an NEC controller,
3648		 * a zero-dereference was observed once due to virt_dev = 0.
3649		 * Print useful debug rather than crash if it is observed again!
3650		 */
3651		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3652			udev->slot_id);
3653		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3654	}
3655
 
 
3656	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
 
 
 
 
 
 
 
3657	/*
3658	 * If this is the first Set Address since device plug-in or
3659	 * virt_device realloaction after a resume with an xHCI power loss,
3660	 * then set up the slot context.
3661	 */
3662	if (!slot_ctx->dev_info)
3663		xhci_setup_addressable_virt_dev(xhci, udev);
3664	/* Otherwise, update the control endpoint ring enqueue pointer. */
3665	else
3666		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3667	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3668	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3669	ctrl_ctx->drop_flags = 0;
3670
3671	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3672	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3673
 
3674	spin_lock_irqsave(&xhci->lock, flags);
3675	cmd_trb = xhci->cmd_ring->dequeue;
3676	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3677					udev->slot_id);
3678	if (ret) {
3679		spin_unlock_irqrestore(&xhci->lock, flags);
3680		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3681		return ret;
 
3682	}
3683	xhci_ring_cmd_db(xhci);
3684	spin_unlock_irqrestore(&xhci->lock, flags);
3685
3686	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3687	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3688			XHCI_CMD_DEFAULT_TIMEOUT);
3689	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3690	 * the SetAddress() "recovery interval" required by USB and aborting the
3691	 * command on a timeout.
3692	 */
3693	if (timeleft <= 0) {
3694		xhci_warn(xhci, "%s while waiting for address device command\n",
3695				timeleft == 0 ? "Timeout" : "Signal");
3696		/* cancel the address device command */
3697		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3698		if (ret < 0)
3699			return ret;
3700		return -ETIME;
3701	}
3702
3703	switch (virt_dev->cmd_status) {
3704	case COMP_CTX_STATE:
3705	case COMP_EBADSLT:
3706		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3707				udev->slot_id);
3708		ret = -EINVAL;
3709		break;
3710	case COMP_TX_ERR:
3711		dev_warn(&udev->dev, "Device not responding to set address.\n");
3712		ret = -EPROTO;
3713		break;
3714	case COMP_DEV_ERR:
3715		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3716				"device command.\n");
 
 
 
 
 
 
 
3717		ret = -ENODEV;
3718		break;
3719	case COMP_SUCCESS:
3720		xhci_dbg(xhci, "Successful Address Device command\n");
 
3721		break;
3722	default:
3723		xhci_err(xhci, "ERROR: unexpected command completion "
3724				"code 0x%x.\n", virt_dev->cmd_status);
3725		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3726		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3727		ret = -EINVAL;
3728		break;
3729	}
3730	if (ret) {
3731		return ret;
3732	}
3733	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3734	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3735	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3736		 udev->slot_id,
3737		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3738		 (unsigned long long)
3739		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3740	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
 
 
 
3741			(unsigned long long)virt_dev->out_ctx->dma);
3742	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3743	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3744	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3745	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3746	/*
3747	 * USB core uses address 1 for the roothubs, so we add one to the
3748	 * address given back to us by the HC.
3749	 */
3750	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3751	/* Use kernel assigned address for devices; store xHC assigned
3752	 * address locally. */
3753	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3754		+ 1;
3755	/* Zero the input context control for later use */
3756	ctrl_ctx->add_flags = 0;
3757	ctrl_ctx->drop_flags = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3758
3759	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
 
 
 
 
 
 
 
 
 
 
 
 
 
3760
3761	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3762}
3763
3764#ifdef CONFIG_USB_SUSPEND
3765
3766/* BESL to HIRD Encoding array for USB2 LPM */
3767static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3768	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3769
3770/* Calculate HIRD/BESL for USB2 PORTPMSC*/
3771static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3772					struct usb_device *udev)
3773{
3774	int u2del, besl, besl_host;
3775	int besl_device = 0;
3776	u32 field;
3777
3778	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3779	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3780
3781	if (field & USB_BESL_SUPPORT) {
3782		for (besl_host = 0; besl_host < 16; besl_host++) {
3783			if (xhci_besl_encoding[besl_host] >= u2del)
3784				break;
3785		}
3786		/* Use baseline BESL value as default */
3787		if (field & USB_BESL_BASELINE_VALID)
3788			besl_device = USB_GET_BESL_BASELINE(field);
3789		else if (field & USB_BESL_DEEP_VALID)
3790			besl_device = USB_GET_BESL_DEEP(field);
3791	} else {
3792		if (u2del <= 50)
3793			besl_host = 0;
3794		else
3795			besl_host = (u2del - 51) / 75 + 1;
3796	}
3797
3798	besl = besl_host + besl_device;
3799	if (besl > 15)
3800		besl = 15;
3801
3802	return besl;
3803}
3804
3805static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3806					struct usb_device *udev)
3807{
3808	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3809	struct dev_info	*dev_info;
3810	__le32 __iomem	**port_array;
3811	__le32 __iomem	*addr, *pm_addr;
3812	u32		temp, dev_id;
3813	unsigned int	port_num;
3814	unsigned long	flags;
3815	int		hird;
3816	int		ret;
3817
3818	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3819			!udev->lpm_capable)
3820		return -EINVAL;
3821
3822	/* we only support lpm for non-hub device connected to root hub yet */
3823	if (!udev->parent || udev->parent->parent ||
3824			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3825		return -EINVAL;
3826
3827	spin_lock_irqsave(&xhci->lock, flags);
3828
3829	/* Look for devices in lpm_failed_devs list */
3830	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3831			le16_to_cpu(udev->descriptor.idProduct);
3832	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3833		if (dev_info->dev_id == dev_id) {
3834			ret = -EINVAL;
3835			goto finish;
3836		}
3837	}
3838
3839	port_array = xhci->usb2_ports;
3840	port_num = udev->portnum - 1;
3841
3842	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3843		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3844		ret = -EINVAL;
3845		goto finish;
3846	}
3847
3848	/*
3849	 * Test USB 2.0 software LPM.
3850	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3851	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3852	 * in the June 2011 errata release.
3853	 */
3854	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3855	/*
3856	 * Set L1 Device Slot and HIRD/BESL.
3857	 * Check device's USB 2.0 extension descriptor to determine whether
3858	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3859	 */
3860	pm_addr = port_array[port_num] + 1;
3861	hird = xhci_calculate_hird_besl(xhci, udev);
3862	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3863	xhci_writel(xhci, temp, pm_addr);
3864
3865	/* Set port link state to U2(L1) */
3866	addr = port_array[port_num];
3867	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3868
3869	/* wait for ACK */
3870	spin_unlock_irqrestore(&xhci->lock, flags);
3871	msleep(10);
3872	spin_lock_irqsave(&xhci->lock, flags);
3873
3874	/* Check L1 Status */
3875	ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3876	if (ret != -ETIMEDOUT) {
3877		/* enter L1 successfully */
3878		temp = xhci_readl(xhci, addr);
3879		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3880				port_num, temp);
3881		ret = 0;
3882	} else {
3883		temp = xhci_readl(xhci, pm_addr);
3884		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3885				port_num, temp & PORT_L1S_MASK);
3886		ret = -EINVAL;
3887	}
3888
3889	/* Resume the port */
3890	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3891
3892	spin_unlock_irqrestore(&xhci->lock, flags);
3893	msleep(10);
3894	spin_lock_irqsave(&xhci->lock, flags);
3895
3896	/* Clear PLC */
3897	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3898
3899	/* Check PORTSC to make sure the device is in the right state */
3900	if (!ret) {
3901		temp = xhci_readl(xhci, addr);
3902		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3903		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3904				(temp & PORT_PLS_MASK) != XDEV_U0) {
3905			xhci_dbg(xhci, "port L1 resume fail\n");
3906			ret = -EINVAL;
3907		}
3908	}
3909
3910	if (ret) {
3911		/* Insert dev to lpm_failed_devs list */
3912		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3913				"re-enumerate\n");
3914		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3915		if (!dev_info) {
3916			ret = -ENOMEM;
3917			goto finish;
3918		}
3919		dev_info->dev_id = dev_id;
3920		INIT_LIST_HEAD(&dev_info->list);
3921		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3922	} else {
3923		xhci_ring_device(xhci, udev->slot_id);
3924	}
3925
3926finish:
3927	spin_unlock_irqrestore(&xhci->lock, flags);
3928	return ret;
3929}
3930
3931int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3932			struct usb_device *udev, int enable)
3933{
3934	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3935	__le32 __iomem	**port_array;
3936	__le32 __iomem	*pm_addr;
3937	u32		temp;
3938	unsigned int	port_num;
3939	unsigned long	flags;
3940	int		hird;
 
3941
3942	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
 
 
 
3943			!udev->lpm_capable)
3944		return -EPERM;
3945
3946	if (!udev->parent || udev->parent->parent ||
3947			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3948		return -EPERM;
3949
3950	if (udev->usb2_hw_lpm_capable != 1)
3951		return -EPERM;
3952
3953	spin_lock_irqsave(&xhci->lock, flags);
3954
3955	port_array = xhci->usb2_ports;
3956	port_num = udev->portnum - 1;
3957	pm_addr = port_array[port_num] + 1;
3958	temp = xhci_readl(xhci, pm_addr);
 
3959
3960	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3961			enable ? "enable" : "disable", port_num);
3962
3963	hird = xhci_calculate_hird_besl(xhci, udev);
 
 
 
 
 
 
 
 
 
 
 
 
3964
3965	if (enable) {
3966		temp &= ~PORT_HIRD_MASK;
3967		temp |= PORT_HIRD(hird) | PORT_RWE;
3968		xhci_writel(xhci, temp, pm_addr);
3969		temp = xhci_readl(xhci, pm_addr);
3970		temp |= PORT_HLE;
3971		xhci_writel(xhci, temp, pm_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3972	} else {
3973		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3974		xhci_writel(xhci, temp, pm_addr);
 
 
 
 
 
 
 
 
 
 
3975	}
3976
3977	spin_unlock_irqrestore(&xhci->lock, flags);
3978	return 0;
3979}
3980
3981int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
 
 
 
 
 
3982{
3983	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3984	int		ret;
3985
3986	ret = xhci_usb2_software_lpm_test(hcd, udev);
3987	if (!ret) {
3988		xhci_dbg(xhci, "software LPM test succeed\n");
3989		if (xhci->hw_lpm_support == 1) {
3990			udev->usb2_hw_lpm_capable = 1;
3991			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3992			if (!ret)
3993				udev->usb2_hw_lpm_enabled = 1;
3994		}
3995	}
3996
3997	return 0;
3998}
3999
4000#else
 
 
 
 
 
 
 
 
 
 
 
4001
4002int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4003				struct usb_device *udev, int enable)
4004{
4005	return 0;
4006}
 
 
 
 
 
4007
4008int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4009{
4010	return 0;
4011}
4012
4013#endif /* CONFIG_USB_SUSPEND */
4014
4015/*---------------------- USB 3.0 Link PM functions ------------------------*/
4016
4017#ifdef CONFIG_PM
4018/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4019static unsigned long long xhci_service_interval_to_ns(
4020		struct usb_endpoint_descriptor *desc)
4021{
4022	return (1 << (desc->bInterval - 1)) * 125 * 1000;
4023}
4024
4025static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4026		enum usb3_link_state state)
4027{
4028	unsigned long long sel;
4029	unsigned long long pel;
4030	unsigned int max_sel_pel;
4031	char *state_name;
4032
4033	switch (state) {
4034	case USB3_LPM_U1:
4035		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4036		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4037		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4038		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4039		state_name = "U1";
4040		break;
4041	case USB3_LPM_U2:
4042		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4043		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4044		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4045		state_name = "U2";
4046		break;
4047	default:
4048		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4049				__func__);
4050		return USB3_LPM_DISABLED;
4051	}
4052
4053	if (sel <= max_sel_pel && pel <= max_sel_pel)
4054		return USB3_LPM_DEVICE_INITIATED;
4055
4056	if (sel > max_sel_pel)
4057		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4058				"due to long SEL %llu ms\n",
4059				state_name, sel);
4060	else
4061		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4062				"due to long PEL %llu\n ms",
4063				state_name, pel);
4064	return USB3_LPM_DISABLED;
4065}
4066
4067/* Returns the hub-encoded U1 timeout value.
4068 * The U1 timeout should be the maximum of the following values:
4069 *  - For control endpoints, U1 system exit latency (SEL) * 3
4070 *  - For bulk endpoints, U1 SEL * 5
4071 *  - For interrupt endpoints:
4072 *    - Notification EPs, U1 SEL * 3
4073 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4074 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4075 */
4076static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
 
4077		struct usb_endpoint_descriptor *desc)
4078{
4079	unsigned long long timeout_ns;
4080	int ep_type;
4081	int intr_type;
4082
4083	ep_type = usb_endpoint_type(desc);
4084	switch (ep_type) {
4085	case USB_ENDPOINT_XFER_CONTROL:
4086		timeout_ns = udev->u1_params.sel * 3;
4087		break;
4088	case USB_ENDPOINT_XFER_BULK:
4089		timeout_ns = udev->u1_params.sel * 5;
4090		break;
4091	case USB_ENDPOINT_XFER_INT:
4092		intr_type = usb_endpoint_interrupt_type(desc);
4093		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4094			timeout_ns = udev->u1_params.sel * 3;
4095			break;
4096		}
4097		/* Otherwise the calculation is the same as isoc eps */
 
4098	case USB_ENDPOINT_XFER_ISOC:
4099		timeout_ns = xhci_service_interval_to_ns(desc);
4100		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4101		if (timeout_ns < udev->u1_params.sel * 2)
4102			timeout_ns = udev->u1_params.sel * 2;
4103		break;
4104	default:
4105		return 0;
4106	}
4107
4108	/* The U1 timeout is encoded in 1us intervals. */
4109	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4110	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4111	if (timeout_ns == USB3_LPM_DISABLED)
4112		timeout_ns++;
 
 
4113
4114	/* If the necessary timeout value is bigger than what we can set in the
4115	 * USB 3.0 hub, we have to disable hub-initiated U1.
4116	 */
4117	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4118		return timeout_ns;
4119	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4120			"due to long timeout %llu ms\n", timeout_ns);
4121	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4122}
4123
4124/* Returns the hub-encoded U2 timeout value.
4125 * The U2 timeout should be the maximum of:
4126 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4127 *  - largest bInterval of any active periodic endpoint (to avoid going
4128 *    into lower power link states between intervals).
4129 *  - the U2 Exit Latency of the device
4130 */
4131static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
 
4132		struct usb_endpoint_descriptor *desc)
4133{
4134	unsigned long long timeout_ns;
4135	unsigned long long u2_del_ns;
4136
4137	timeout_ns = 10 * 1000 * 1000;
4138
4139	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4140			(xhci_service_interval_to_ns(desc) > timeout_ns))
4141		timeout_ns = xhci_service_interval_to_ns(desc);
4142
4143	u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
4144	if (u2_del_ns > timeout_ns)
4145		timeout_ns = u2_del_ns;
4146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4147	/* The U2 timeout is encoded in 256us intervals */
4148	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4149	/* If the necessary timeout value is bigger than what we can set in the
4150	 * USB 3.0 hub, we have to disable hub-initiated U2.
4151	 */
4152	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4153		return timeout_ns;
4154	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4155			"due to long timeout %llu ms\n", timeout_ns);
4156	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4157}
4158
4159static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4160		struct usb_device *udev,
4161		struct usb_endpoint_descriptor *desc,
4162		enum usb3_link_state state,
4163		u16 *timeout)
4164{
4165	if (state == USB3_LPM_U1) {
4166		if (xhci->quirks & XHCI_INTEL_HOST)
4167			return xhci_calculate_intel_u1_timeout(udev, desc);
4168	} else {
4169		if (xhci->quirks & XHCI_INTEL_HOST)
4170			return xhci_calculate_intel_u2_timeout(udev, desc);
4171	}
4172
4173	return USB3_LPM_DISABLED;
4174}
4175
4176static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4177		struct usb_device *udev,
4178		struct usb_endpoint_descriptor *desc,
4179		enum usb3_link_state state,
4180		u16 *timeout)
4181{
4182	u16 alt_timeout;
4183
4184	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4185		desc, state, timeout);
4186
4187	/* If we found we can't enable hub-initiated LPM, or
4188	 * the U1 or U2 exit latency was too high to allow
4189	 * device-initiated LPM as well, just stop searching.
 
4190	 */
4191	if (alt_timeout == USB3_LPM_DISABLED ||
4192			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4193		*timeout = alt_timeout;
4194		return -E2BIG;
4195	}
4196	if (alt_timeout > *timeout)
4197		*timeout = alt_timeout;
4198	return 0;
4199}
4200
4201static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4202		struct usb_device *udev,
4203		struct usb_host_interface *alt,
4204		enum usb3_link_state state,
4205		u16 *timeout)
4206{
4207	int j;
4208
4209	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4210		if (xhci_update_timeout_for_endpoint(xhci, udev,
4211					&alt->endpoint[j].desc, state, timeout))
4212			return -E2BIG;
4213		continue;
4214	}
4215	return 0;
4216}
4217
4218static int xhci_check_intel_tier_policy(struct usb_device *udev,
4219		enum usb3_link_state state)
4220{
4221	struct usb_device *parent;
4222	unsigned int num_hubs;
4223
4224	if (state == USB3_LPM_U2)
4225		return 0;
4226
4227	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4228	for (parent = udev->parent, num_hubs = 0; parent->parent;
4229			parent = parent->parent)
4230		num_hubs++;
4231
4232	if (num_hubs < 2)
4233		return 0;
4234
4235	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4236			" below second-tier hub.\n");
4237	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4238			"to decrease power consumption.\n");
4239	return -E2BIG;
4240}
4241
4242static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4243		struct usb_device *udev,
4244		enum usb3_link_state state)
4245{
4246	if (xhci->quirks & XHCI_INTEL_HOST)
4247		return xhci_check_intel_tier_policy(udev, state);
4248	return -EINVAL;
 
4249}
4250
4251/* Returns the U1 or U2 timeout that should be enabled.
4252 * If the tier check or timeout setting functions return with a non-zero exit
4253 * code, that means the timeout value has been finalized and we shouldn't look
4254 * at any more endpoints.
4255 */
4256static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4257			struct usb_device *udev, enum usb3_link_state state)
4258{
4259	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4260	struct usb_host_config *config;
4261	char *state_name;
4262	int i;
4263	u16 timeout = USB3_LPM_DISABLED;
4264
4265	if (state == USB3_LPM_U1)
4266		state_name = "U1";
4267	else if (state == USB3_LPM_U2)
4268		state_name = "U2";
4269	else {
4270		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4271				state);
4272		return timeout;
4273	}
4274
4275	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4276		return timeout;
4277
4278	/* Gather some information about the currently installed configuration
4279	 * and alternate interface settings.
4280	 */
4281	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4282			state, &timeout))
4283		return timeout;
4284
4285	config = udev->actconfig;
4286	if (!config)
4287		return timeout;
4288
4289	for (i = 0; i < USB_MAXINTERFACES; i++) {
4290		struct usb_driver *driver;
4291		struct usb_interface *intf = config->interface[i];
4292
4293		if (!intf)
4294			continue;
4295
4296		/* Check if any currently bound drivers want hub-initiated LPM
4297		 * disabled.
4298		 */
4299		if (intf->dev.driver) {
4300			driver = to_usb_driver(intf->dev.driver);
4301			if (driver && driver->disable_hub_initiated_lpm) {
4302				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4303						"at request of driver %s\n",
4304						state_name, driver->name);
4305				return xhci_get_timeout_no_hub_lpm(udev, state);
 
 
4306			}
4307		}
4308
4309		/* Not sure how this could happen... */
4310		if (!intf->cur_altsetting)
4311			continue;
4312
4313		if (xhci_update_timeout_for_interface(xhci, udev,
4314					intf->cur_altsetting,
4315					state, &timeout))
4316			return timeout;
4317	}
4318	return timeout;
4319}
4320
4321/*
4322 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4323 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4324 */
4325static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4326			struct usb_device *udev, u16 max_exit_latency)
4327{
4328	struct xhci_virt_device *virt_dev;
4329	struct xhci_command *command;
4330	struct xhci_input_control_ctx *ctrl_ctx;
4331	struct xhci_slot_ctx *slot_ctx;
4332	unsigned long flags;
4333	int ret;
4334
4335	spin_lock_irqsave(&xhci->lock, flags);
4336	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4337		spin_unlock_irqrestore(&xhci->lock, flags);
4338		return 0;
4339	}
4340
4341	/* Attempt to issue an Evaluate Context command to change the MEL. */
4342	virt_dev = xhci->devs[udev->slot_id];
4343	command = xhci->lpm_command;
4344	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4345	spin_unlock_irqrestore(&xhci->lock, flags);
4346
4347	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4348	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4349	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4350	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4351	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4352
4353	xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4354	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4355	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4356
4357	/* Issue and wait for the evaluate context command. */
4358	ret = xhci_configure_endpoint(xhci, udev, command,
4359			true, true);
4360	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4361	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4362
4363	if (!ret) {
4364		spin_lock_irqsave(&xhci->lock, flags);
4365		virt_dev->current_mel = max_exit_latency;
4366		spin_unlock_irqrestore(&xhci->lock, flags);
4367	}
4368	return ret;
4369}
4370
4371static int calculate_max_exit_latency(struct usb_device *udev,
4372		enum usb3_link_state state_changed,
4373		u16 hub_encoded_timeout)
4374{
4375	unsigned long long u1_mel_us = 0;
4376	unsigned long long u2_mel_us = 0;
4377	unsigned long long mel_us = 0;
4378	bool disabling_u1;
4379	bool disabling_u2;
4380	bool enabling_u1;
4381	bool enabling_u2;
4382
4383	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4384			hub_encoded_timeout == USB3_LPM_DISABLED);
4385	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4386			hub_encoded_timeout == USB3_LPM_DISABLED);
4387
4388	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4389			hub_encoded_timeout != USB3_LPM_DISABLED);
4390	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4391			hub_encoded_timeout != USB3_LPM_DISABLED);
4392
4393	/* If U1 was already enabled and we're not disabling it,
4394	 * or we're going to enable U1, account for the U1 max exit latency.
4395	 */
4396	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4397			enabling_u1)
4398		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4399	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4400			enabling_u2)
4401		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4402
4403	if (u1_mel_us > u2_mel_us)
4404		mel_us = u1_mel_us;
4405	else
4406		mel_us = u2_mel_us;
4407	/* xHCI host controller max exit latency field is only 16 bits wide. */
4408	if (mel_us > MAX_EXIT) {
4409		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4410				"is too big.\n", mel_us);
4411		return -E2BIG;
4412	}
4413	return mel_us;
4414}
4415
4416/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4417int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4418			struct usb_device *udev, enum usb3_link_state state)
4419{
4420	struct xhci_hcd	*xhci;
 
4421	u16 hub_encoded_timeout;
4422	int mel;
4423	int ret;
4424
4425	xhci = hcd_to_xhci(hcd);
4426	/* The LPM timeout values are pretty host-controller specific, so don't
4427	 * enable hub-initiated timeouts unless the vendor has provided
4428	 * information about their timeout algorithm.
4429	 */
4430	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4431			!xhci->devs[udev->slot_id])
4432		return USB3_LPM_DISABLED;
4433
 
 
 
 
 
 
 
 
 
 
4434	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4435	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4436	if (mel < 0) {
4437		/* Max Exit Latency is too big, disable LPM. */
4438		hub_encoded_timeout = USB3_LPM_DISABLED;
4439		mel = 0;
4440	}
4441
4442	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4443	if (ret)
4444		return ret;
4445	return hub_encoded_timeout;
4446}
4447
4448int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4449			struct usb_device *udev, enum usb3_link_state state)
4450{
4451	struct xhci_hcd	*xhci;
4452	u16 mel;
4453	int ret;
4454
4455	xhci = hcd_to_xhci(hcd);
4456	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4457			!xhci->devs[udev->slot_id])
4458		return 0;
4459
4460	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4461	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4462	if (ret)
4463		return ret;
 
 
 
 
 
 
 
 
 
4464	return 0;
4465}
4466#else /* CONFIG_PM */
4467
4468int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4469			struct usb_device *udev, enum usb3_link_state state)
4470{
4471	return USB3_LPM_DISABLED;
4472}
4473
4474int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4475			struct usb_device *udev, enum usb3_link_state state)
4476{
4477	return 0;
4478}
4479#endif	/* CONFIG_PM */
4480
4481/*-------------------------------------------------------------------------*/
4482
4483/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4484 * internal data structures for the device.
4485 */
4486int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4487			struct usb_tt *tt, gfp_t mem_flags)
4488{
4489	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4490	struct xhci_virt_device *vdev;
4491	struct xhci_command *config_cmd;
4492	struct xhci_input_control_ctx *ctrl_ctx;
4493	struct xhci_slot_ctx *slot_ctx;
4494	unsigned long flags;
4495	unsigned think_time;
4496	int ret;
4497
4498	/* Ignore root hubs */
4499	if (!hdev->parent)
4500		return 0;
4501
4502	vdev = xhci->devs[hdev->slot_id];
4503	if (!vdev) {
4504		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4505		return -EINVAL;
4506	}
4507	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4508	if (!config_cmd) {
4509		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
 
 
 
 
 
 
 
4510		return -ENOMEM;
4511	}
4512
4513	spin_lock_irqsave(&xhci->lock, flags);
4514	if (hdev->speed == USB_SPEED_HIGH &&
4515			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4516		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4517		xhci_free_command(xhci, config_cmd);
4518		spin_unlock_irqrestore(&xhci->lock, flags);
4519		return -ENOMEM;
4520	}
4521
4522	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4523	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4524	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4525	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4526	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
 
 
 
 
 
4527	if (tt->multi)
4528		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
 
 
 
4529	if (xhci->hci_version > 0x95) {
4530		xhci_dbg(xhci, "xHCI version %x needs hub "
4531				"TT think time and number of ports\n",
4532				(unsigned int) xhci->hci_version);
4533		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4534		/* Set TT think time - convert from ns to FS bit times.
4535		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4536		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4537		 *
4538		 * xHCI 1.0: this field shall be 0 if the device is not a
4539		 * High-spped hub.
4540		 */
4541		think_time = tt->think_time;
4542		if (think_time != 0)
4543			think_time = (think_time / 666) - 1;
4544		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4545			slot_ctx->tt_info |=
4546				cpu_to_le32(TT_THINK_TIME(think_time));
4547	} else {
4548		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4549				"TT think time or number of ports\n",
4550				(unsigned int) xhci->hci_version);
4551	}
4552	slot_ctx->dev_state = 0;
4553	spin_unlock_irqrestore(&xhci->lock, flags);
4554
4555	xhci_dbg(xhci, "Set up %s for hub device.\n",
4556			(xhci->hci_version > 0x95) ?
4557			"configure endpoint" : "evaluate context");
4558	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4559	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4560
4561	/* Issue and wait for the configure endpoint or
4562	 * evaluate context command.
4563	 */
4564	if (xhci->hci_version > 0x95)
4565		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4566				false, false);
4567	else
4568		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4569				true, false);
4570
4571	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4572	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4573
4574	xhci_free_command(xhci, config_cmd);
4575	return ret;
4576}
 
4577
4578int xhci_get_frame(struct usb_hcd *hcd)
4579{
4580	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4581	/* EHCI mods by the periodic size.  Why? */
4582	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4583}
4584
4585int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4586{
4587	struct xhci_hcd		*xhci;
4588	struct device		*dev = hcd->self.controller;
 
 
 
 
4589	int			retval;
4590	u32			temp;
4591
4592	/* Accept arbitrarily long scatter-gather lists */
4593	hcd->self.sg_tablesize = ~0;
4594
4595	if (usb_hcd_is_primary_hcd(hcd)) {
4596		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4597		if (!xhci)
4598			return -ENOMEM;
4599		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4600		xhci->main_hcd = hcd;
4601		/* Mark the first roothub as being USB 2.0.
4602		 * The xHCI driver will register the USB 3.0 roothub.
4603		 */
4604		hcd->speed = HCD_USB2;
4605		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4606		/*
4607		 * USB 2.0 roothub under xHCI has an integrated TT,
4608		 * (rate matching hub) as opposed to having an OHCI/UHCI
4609		 * companion controller.
4610		 */
4611		hcd->has_tt = 1;
4612	} else {
4613		/* xHCI private pointer was set in xhci_pci_probe for the second
4614		 * registered roothub.
4615		 */
4616		xhci = hcd_to_xhci(hcd);
4617		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4618		if (HCC_64BIT_ADDR(temp)) {
4619			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4620			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4621		} else {
4622			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4623		}
4624		return 0;
4625	}
4626
 
 
4627	xhci->cap_regs = hcd->regs;
4628	xhci->op_regs = hcd->regs +
4629		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4630	xhci->run_regs = hcd->regs +
4631		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4632	/* Cache read-only capability registers */
4633	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4634	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4635	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4636	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4637	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4638	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4639	xhci_print_registers(xhci);
 
 
4640
4641	get_quirks(dev, xhci);
4642
 
 
 
 
 
 
 
4643	/* Make sure the HC is halted. */
4644	retval = xhci_halt(xhci);
4645	if (retval)
4646		goto error;
 
 
4647
4648	xhci_dbg(xhci, "Resetting HCD\n");
4649	/* Reset the internal HC memory state and registers. */
4650	retval = xhci_reset(xhci);
4651	if (retval)
4652		goto error;
4653	xhci_dbg(xhci, "Reset complete\n");
4654
4655	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4656	if (HCC_64BIT_ADDR(temp)) {
 
 
 
 
 
 
 
 
 
 
 
 
4657		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4658		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4659	} else {
4660		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
 
 
 
 
 
 
 
 
4661	}
4662
4663	xhci_dbg(xhci, "Calling HCD init\n");
4664	/* Initialize HCD and host controller data structures. */
4665	retval = xhci_init(hcd);
4666	if (retval)
4667		goto error;
4668	xhci_dbg(xhci, "Called HCD init\n");
 
 
 
 
 
 
 
 
 
4669	return 0;
4670error:
4671	kfree(xhci);
4672	return retval;
4673}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4674
4675MODULE_DESCRIPTION(DRIVER_DESC);
4676MODULE_AUTHOR(DRIVER_AUTHOR);
4677MODULE_LICENSE("GPL");
4678
4679static int __init xhci_hcd_init(void)
4680{
4681	int retval;
4682
4683	retval = xhci_register_pci();
4684	if (retval < 0) {
4685		printk(KERN_DEBUG "Problem registering PCI driver.");
4686		return retval;
4687	}
4688	retval = xhci_register_plat();
4689	if (retval < 0) {
4690		printk(KERN_DEBUG "Problem registering platform driver.");
4691		goto unreg_pci;
4692	}
4693	/*
4694	 * Check the compiler generated sizes of structures that must be laid
4695	 * out in specific ways for hardware access.
4696	 */
4697	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4698	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4699	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4700	/* xhci_device_control has eight fields, and also
4701	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4702	 */
4703	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4704	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4705	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4706	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4707	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4708	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4709	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
 
 
 
 
 
 
 
4710	return 0;
4711unreg_pci:
4712	xhci_unregister_pci();
4713	return retval;
4714}
4715module_init(xhci_hcd_init);
4716
4717static void __exit xhci_hcd_cleanup(void)
 
 
 
 
4718{
4719	xhci_unregister_pci();
4720	xhci_unregister_plat();
4721}
4722module_exit(xhci_hcd_cleanup);