Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Red Hat, Inc.
   4 *
   5 * Author: Mikulas Patocka <mpatocka@redhat.com>
   6 *
   7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
   8 *
   9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
  10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
  11 * hash device. Setting this greatly improves performance when data and hash
  12 * are on the same disk on different partitions on devices with poor random
  13 * access behavior.
  14 */
  15
  16#include "dm-verity.h"
  17#include "dm-verity-fec.h"
  18#include "dm-verity-verify-sig.h"
 
  19#include <linux/module.h>
  20#include <linux/reboot.h>
  21#include <linux/scatterlist.h>
  22#include <linux/string.h>
  23#include <linux/jump_label.h>
  24
  25#define DM_MSG_PREFIX			"verity"
  26
  27#define DM_VERITY_ENV_LENGTH		42
  28#define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
  29
  30#define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
  31
  32#define DM_VERITY_MAX_CORRUPTED_ERRS	100
  33
  34#define DM_VERITY_OPT_LOGGING		"ignore_corruption"
  35#define DM_VERITY_OPT_RESTART		"restart_on_corruption"
  36#define DM_VERITY_OPT_PANIC		"panic_on_corruption"
  37#define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
  38#define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
  39#define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
  40
  41#define DM_VERITY_OPTS_MAX		(4 + DM_VERITY_OPTS_FEC + \
  42					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
  43
  44static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
  45
  46module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
  47
  48static DEFINE_STATIC_KEY_FALSE(use_tasklet_enabled);
  49
  50struct dm_verity_prefetch_work {
  51	struct work_struct work;
  52	struct dm_verity *v;
 
  53	sector_t block;
  54	unsigned n_blocks;
  55};
  56
  57/*
  58 * Auxiliary structure appended to each dm-bufio buffer. If the value
  59 * hash_verified is nonzero, hash of the block has been verified.
  60 *
  61 * The variable hash_verified is set to 0 when allocating the buffer, then
  62 * it can be changed to 1 and it is never reset to 0 again.
  63 *
  64 * There is no lock around this value, a race condition can at worst cause
  65 * that multiple processes verify the hash of the same buffer simultaneously
  66 * and write 1 to hash_verified simultaneously.
  67 * This condition is harmless, so we don't need locking.
  68 */
  69struct buffer_aux {
  70	int hash_verified;
  71};
  72
  73/*
  74 * Initialize struct buffer_aux for a freshly created buffer.
  75 */
  76static void dm_bufio_alloc_callback(struct dm_buffer *buf)
  77{
  78	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
  79
  80	aux->hash_verified = 0;
  81}
  82
  83/*
  84 * Translate input sector number to the sector number on the target device.
  85 */
  86static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
  87{
  88	return v->data_start + dm_target_offset(v->ti, bi_sector);
  89}
  90
  91/*
  92 * Return hash position of a specified block at a specified tree level
  93 * (0 is the lowest level).
  94 * The lowest "hash_per_block_bits"-bits of the result denote hash position
  95 * inside a hash block. The remaining bits denote location of the hash block.
  96 */
  97static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
  98					 int level)
  99{
 100	return block >> (level * v->hash_per_block_bits);
 101}
 102
 103static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
 104				const u8 *data, size_t len,
 105				struct crypto_wait *wait)
 106{
 107	struct scatterlist sg;
 108
 109	if (likely(!is_vmalloc_addr(data))) {
 110		sg_init_one(&sg, data, len);
 111		ahash_request_set_crypt(req, &sg, NULL, len);
 112		return crypto_wait_req(crypto_ahash_update(req), wait);
 113	} else {
 114		do {
 115			int r;
 116			size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
 117			flush_kernel_vmap_range((void *)data, this_step);
 118			sg_init_table(&sg, 1);
 119			sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
 120			ahash_request_set_crypt(req, &sg, NULL, this_step);
 121			r = crypto_wait_req(crypto_ahash_update(req), wait);
 122			if (unlikely(r))
 123				return r;
 124			data += this_step;
 125			len -= this_step;
 126		} while (len);
 127		return 0;
 128	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129}
 130
 131/*
 132 * Wrapper for crypto_ahash_init, which handles verity salting.
 133 */
 134static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
 135				struct crypto_wait *wait)
 136{
 137	int r;
 138
 139	ahash_request_set_tfm(req, v->tfm);
 140	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
 141					CRYPTO_TFM_REQ_MAY_BACKLOG,
 142					crypto_req_done, (void *)wait);
 143	crypto_init_wait(wait);
 144
 145	r = crypto_wait_req(crypto_ahash_init(req), wait);
 146
 147	if (unlikely(r < 0)) {
 148		DMERR("crypto_ahash_init failed: %d", r);
 
 149		return r;
 150	}
 151
 152	if (likely(v->salt_size && (v->version >= 1)))
 153		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 154
 155	return r;
 156}
 157
 158static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
 159			     u8 *digest, struct crypto_wait *wait)
 160{
 161	int r;
 162
 163	if (unlikely(v->salt_size && (!v->version))) {
 164		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 165
 166		if (r < 0) {
 167			DMERR("verity_hash_final failed updating salt: %d", r);
 168			goto out;
 169		}
 170	}
 171
 172	ahash_request_set_crypt(req, NULL, digest, 0);
 173	r = crypto_wait_req(crypto_ahash_final(req), wait);
 174out:
 175	return r;
 176}
 177
 178int verity_hash(struct dm_verity *v, struct ahash_request *req,
 179		const u8 *data, size_t len, u8 *digest)
 180{
 181	int r;
 182	struct crypto_wait wait;
 183
 184	r = verity_hash_init(v, req, &wait);
 185	if (unlikely(r < 0))
 186		goto out;
 187
 188	r = verity_hash_update(v, req, data, len, &wait);
 189	if (unlikely(r < 0))
 190		goto out;
 191
 192	r = verity_hash_final(v, req, digest, &wait);
 193
 194out:
 195	return r;
 196}
 197
 198static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
 199				 sector_t *hash_block, unsigned *offset)
 200{
 201	sector_t position = verity_position_at_level(v, block, level);
 202	unsigned idx;
 203
 204	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
 205
 206	if (!offset)
 207		return;
 208
 209	idx = position & ((1 << v->hash_per_block_bits) - 1);
 210	if (!v->version)
 211		*offset = idx * v->digest_size;
 212	else
 213		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
 214}
 215
 216/*
 217 * Handle verification errors.
 218 */
 219static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
 220			     unsigned long long block)
 221{
 222	char verity_env[DM_VERITY_ENV_LENGTH];
 223	char *envp[] = { verity_env, NULL };
 224	const char *type_str = "";
 225	struct mapped_device *md = dm_table_get_md(v->ti->table);
 226
 227	/* Corruption should be visible in device status in all modes */
 228	v->hash_failed = true;
 229
 230	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
 231		goto out;
 232
 233	v->corrupted_errs++;
 234
 235	switch (type) {
 236	case DM_VERITY_BLOCK_TYPE_DATA:
 237		type_str = "data";
 238		break;
 239	case DM_VERITY_BLOCK_TYPE_METADATA:
 240		type_str = "metadata";
 241		break;
 242	default:
 243		BUG();
 244	}
 245
 246	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
 247		    type_str, block);
 248
 249	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
 250		DMERR("%s: reached maximum errors", v->data_dev->name);
 
 
 251
 252	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
 253		DM_VERITY_ENV_VAR_NAME, type, block);
 254
 255	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
 256
 257out:
 258	if (v->mode == DM_VERITY_MODE_LOGGING)
 259		return 0;
 260
 261	if (v->mode == DM_VERITY_MODE_RESTART)
 262		kernel_restart("dm-verity device corrupted");
 263
 264	if (v->mode == DM_VERITY_MODE_PANIC)
 265		panic("dm-verity device corrupted");
 266
 267	return 1;
 268}
 269
 270/*
 271 * Verify hash of a metadata block pertaining to the specified data block
 272 * ("block" argument) at a specified level ("level" argument).
 273 *
 274 * On successful return, verity_io_want_digest(v, io) contains the hash value
 275 * for a lower tree level or for the data block (if we're at the lowest level).
 276 *
 277 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
 278 * If "skip_unverified" is false, unverified buffer is hashed and verified
 279 * against current value of verity_io_want_digest(v, io).
 280 */
 281static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
 282			       sector_t block, int level, bool skip_unverified,
 283			       u8 *want_digest)
 284{
 285	struct dm_buffer *buf;
 286	struct buffer_aux *aux;
 287	u8 *data;
 288	int r;
 289	sector_t hash_block;
 290	unsigned offset;
 
 291
 292	verity_hash_at_level(v, block, level, &hash_block, &offset);
 293
 294	if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
 295		data = dm_bufio_get(v->bufio, hash_block, &buf);
 296		if (data == NULL) {
 297			/*
 298			 * In tasklet and the hash was not in the bufio cache.
 299			 * Return early and resume execution from a work-queue
 300			 * to read the hash from disk.
 301			 */
 302			return -EAGAIN;
 303		}
 304	} else
 305		data = dm_bufio_read(v->bufio, hash_block, &buf);
 
 
 306
 307	if (IS_ERR(data))
 308		return PTR_ERR(data);
 309
 310	aux = dm_bufio_get_aux_data(buf);
 311
 312	if (!aux->hash_verified) {
 313		if (skip_unverified) {
 314			r = 1;
 315			goto release_ret_r;
 316		}
 317
 318		r = verity_hash(v, verity_io_hash_req(v, io),
 319				data, 1 << v->hash_dev_block_bits,
 320				verity_io_real_digest(v, io));
 321		if (unlikely(r < 0))
 322			goto release_ret_r;
 323
 324		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
 325				  v->digest_size) == 0))
 326			aux->hash_verified = 1;
 327		else if (static_branch_unlikely(&use_tasklet_enabled) &&
 328			 io->in_tasklet) {
 329			/*
 330			 * Error handling code (FEC included) cannot be run in a
 331			 * tasklet since it may sleep, so fallback to work-queue.
 332			 */
 333			r = -EAGAIN;
 334			goto release_ret_r;
 335		}
 336		else if (verity_fec_decode(v, io,
 337					   DM_VERITY_BLOCK_TYPE_METADATA,
 338					   hash_block, data, NULL) == 0)
 339			aux->hash_verified = 1;
 340		else if (verity_handle_err(v,
 341					   DM_VERITY_BLOCK_TYPE_METADATA,
 342					   hash_block)) {
 
 
 
 
 
 343			r = -EIO;
 344			goto release_ret_r;
 345		}
 346	}
 347
 348	data += offset;
 349	memcpy(want_digest, data, v->digest_size);
 350	r = 0;
 351
 352release_ret_r:
 353	dm_bufio_release(buf);
 354	return r;
 355}
 356
 357/*
 358 * Find a hash for a given block, write it to digest and verify the integrity
 359 * of the hash tree if necessary.
 360 */
 361int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
 362			  sector_t block, u8 *digest, bool *is_zero)
 363{
 364	int r = 0, i;
 365
 366	if (likely(v->levels)) {
 367		/*
 368		 * First, we try to get the requested hash for
 369		 * the current block. If the hash block itself is
 370		 * verified, zero is returned. If it isn't, this
 371		 * function returns 1 and we fall back to whole
 372		 * chain verification.
 373		 */
 374		r = verity_verify_level(v, io, block, 0, true, digest);
 375		if (likely(r <= 0))
 376			goto out;
 377	}
 378
 379	memcpy(digest, v->root_digest, v->digest_size);
 380
 381	for (i = v->levels - 1; i >= 0; i--) {
 382		r = verity_verify_level(v, io, block, i, false, digest);
 383		if (unlikely(r))
 384			goto out;
 385	}
 386out:
 387	if (!r && v->zero_digest)
 388		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
 389	else
 390		*is_zero = false;
 391
 392	return r;
 393}
 394
 395/*
 396 * Calculates the digest for the given bio
 397 */
 398static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
 399			       struct bvec_iter *iter, struct crypto_wait *wait)
 400{
 401	unsigned int todo = 1 << v->data_dev_block_bits;
 402	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 403	struct scatterlist sg;
 404	struct ahash_request *req = verity_io_hash_req(v, io);
 405
 406	do {
 407		int r;
 408		unsigned int len;
 409		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 410
 411		sg_init_table(&sg, 1);
 412
 413		len = bv.bv_len;
 414
 415		if (likely(len >= todo))
 416			len = todo;
 417		/*
 418		 * Operating on a single page at a time looks suboptimal
 419		 * until you consider the typical block size is 4,096B.
 420		 * Going through this loops twice should be very rare.
 421		 */
 422		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
 423		ahash_request_set_crypt(req, &sg, NULL, len);
 424		r = crypto_wait_req(crypto_ahash_update(req), wait);
 425
 426		if (unlikely(r < 0)) {
 427			DMERR("verity_for_io_block crypto op failed: %d", r);
 428			return r;
 429		}
 430
 431		bio_advance_iter(bio, iter, len);
 432		todo -= len;
 433	} while (todo);
 434
 435	return 0;
 436}
 437
 438/*
 439 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
 440 * starting from iter.
 441 */
 442int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
 443			struct bvec_iter *iter,
 444			int (*process)(struct dm_verity *v,
 445				       struct dm_verity_io *io, u8 *data,
 446				       size_t len))
 447{
 448	unsigned todo = 1 << v->data_dev_block_bits;
 449	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 450
 451	do {
 452		int r;
 453		u8 *page;
 454		unsigned len;
 455		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 456
 457		page = bvec_kmap_local(&bv);
 458		len = bv.bv_len;
 459
 460		if (likely(len >= todo))
 461			len = todo;
 462
 463		r = process(v, io, page, len);
 464		kunmap_local(page);
 465
 466		if (r < 0)
 467			return r;
 468
 469		bio_advance_iter(bio, iter, len);
 470		todo -= len;
 471	} while (todo);
 472
 473	return 0;
 474}
 475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
 477			  u8 *data, size_t len)
 478{
 479	memset(data, 0, len);
 480	return 0;
 481}
 482
 483/*
 484 * Moves the bio iter one data block forward.
 485 */
 486static inline void verity_bv_skip_block(struct dm_verity *v,
 487					struct dm_verity_io *io,
 488					struct bvec_iter *iter)
 489{
 490	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 491
 492	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
 493}
 494
 495/*
 496 * Verify one "dm_verity_io" structure.
 497 */
 498static int verity_verify_io(struct dm_verity_io *io)
 499{
 500	bool is_zero;
 501	struct dm_verity *v = io->v;
 502#if defined(CONFIG_DM_VERITY_FEC)
 503	struct bvec_iter start;
 504#endif
 505	struct bvec_iter iter_copy;
 506	struct bvec_iter *iter;
 507	struct crypto_wait wait;
 508	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 509	unsigned int b;
 510
 511	if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
 512		/*
 513		 * Copy the iterator in case we need to restart
 514		 * verification in a work-queue.
 515		 */
 516		iter_copy = io->iter;
 517		iter = &iter_copy;
 518	} else
 519		iter = &io->iter;
 520
 521	for (b = 0; b < io->n_blocks; b++) {
 522		int r;
 523		sector_t cur_block = io->block + b;
 524		struct ahash_request *req = verity_io_hash_req(v, io);
 525
 526		if (v->validated_blocks &&
 527		    likely(test_bit(cur_block, v->validated_blocks))) {
 528			verity_bv_skip_block(v, io, iter);
 529			continue;
 530		}
 531
 532		r = verity_hash_for_block(v, io, cur_block,
 533					  verity_io_want_digest(v, io),
 534					  &is_zero);
 535		if (unlikely(r < 0))
 536			return r;
 537
 538		if (is_zero) {
 539			/*
 540			 * If we expect a zero block, don't validate, just
 541			 * return zeros.
 542			 */
 543			r = verity_for_bv_block(v, io, iter,
 544						verity_bv_zero);
 545			if (unlikely(r < 0))
 546				return r;
 547
 548			continue;
 549		}
 550
 551		r = verity_hash_init(v, req, &wait);
 552		if (unlikely(r < 0))
 553			return r;
 554
 555#if defined(CONFIG_DM_VERITY_FEC)
 556		if (verity_fec_is_enabled(v))
 557			start = *iter;
 558#endif
 559		r = verity_for_io_block(v, io, iter, &wait);
 560		if (unlikely(r < 0))
 561			return r;
 562
 563		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
 564					&wait);
 565		if (unlikely(r < 0))
 566			return r;
 567
 568		if (likely(memcmp(verity_io_real_digest(v, io),
 569				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
 570			if (v->validated_blocks)
 571				set_bit(cur_block, v->validated_blocks);
 572			continue;
 573		} else if (static_branch_unlikely(&use_tasklet_enabled) &&
 574			   io->in_tasklet) {
 575			/*
 576			 * Error handling code (FEC included) cannot be run in a
 577			 * tasklet since it may sleep, so fallback to work-queue.
 578			 */
 579			return -EAGAIN;
 
 
 
 
 580#if defined(CONFIG_DM_VERITY_FEC)
 581		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
 582					     cur_block, NULL, &start) == 0) {
 583			continue;
 584#endif
 585		} else {
 586			if (bio->bi_status) {
 587				/*
 588				 * Error correction failed; Just return error
 589				 */
 590				return -EIO;
 591			}
 592			if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
 593					      cur_block))
 
 
 594				return -EIO;
 
 595		}
 596	}
 597
 598	return 0;
 599}
 600
 601/*
 602 * Skip verity work in response to I/O error when system is shutting down.
 603 */
 604static inline bool verity_is_system_shutting_down(void)
 605{
 606	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
 607		|| system_state == SYSTEM_RESTART;
 608}
 609
 610/*
 611 * End one "io" structure with a given error.
 612 */
 613static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
 614{
 615	struct dm_verity *v = io->v;
 616	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 617
 618	bio->bi_end_io = io->orig_bi_end_io;
 619	bio->bi_status = status;
 620
 621	if (!static_branch_unlikely(&use_tasklet_enabled) || !io->in_tasklet)
 622		verity_fec_finish_io(io);
 623
 624	bio_endio(bio);
 625}
 626
 627static void verity_work(struct work_struct *w)
 628{
 629	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
 630
 631	io->in_tasklet = false;
 632
 633	verity_fec_init_io(io);
 634	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
 635}
 636
 637static void verity_tasklet(unsigned long data)
 638{
 639	struct dm_verity_io *io = (struct dm_verity_io *)data;
 640	int err;
 641
 642	io->in_tasklet = true;
 643	err = verity_verify_io(io);
 644	if (err == -EAGAIN) {
 645		/* fallback to retrying with work-queue */
 646		INIT_WORK(&io->work, verity_work);
 647		queue_work(io->v->verify_wq, &io->work);
 648		return;
 649	}
 650
 651	verity_finish_io(io, errno_to_blk_status(err));
 652}
 653
 654static void verity_end_io(struct bio *bio)
 655{
 656	struct dm_verity_io *io = bio->bi_private;
 657
 658	if (bio->bi_status &&
 659	    (!verity_fec_is_enabled(io->v) || verity_is_system_shutting_down())) {
 
 
 660		verity_finish_io(io, bio->bi_status);
 661		return;
 662	}
 663
 664	if (static_branch_unlikely(&use_tasklet_enabled) && io->v->use_tasklet) {
 665		tasklet_init(&io->tasklet, verity_tasklet, (unsigned long)io);
 666		tasklet_schedule(&io->tasklet);
 667	} else {
 668		INIT_WORK(&io->work, verity_work);
 669		queue_work(io->v->verify_wq, &io->work);
 670	}
 671}
 672
 673/*
 674 * Prefetch buffers for the specified io.
 675 * The root buffer is not prefetched, it is assumed that it will be cached
 676 * all the time.
 677 */
 678static void verity_prefetch_io(struct work_struct *work)
 679{
 680	struct dm_verity_prefetch_work *pw =
 681		container_of(work, struct dm_verity_prefetch_work, work);
 682	struct dm_verity *v = pw->v;
 683	int i;
 684
 685	for (i = v->levels - 2; i >= 0; i--) {
 686		sector_t hash_block_start;
 687		sector_t hash_block_end;
 
 688		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
 689		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
 
 690		if (!i) {
 691			unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
 692
 693			cluster >>= v->data_dev_block_bits;
 694			if (unlikely(!cluster))
 695				goto no_prefetch_cluster;
 696
 697			if (unlikely(cluster & (cluster - 1)))
 698				cluster = 1 << __fls(cluster);
 699
 700			hash_block_start &= ~(sector_t)(cluster - 1);
 701			hash_block_end |= cluster - 1;
 702			if (unlikely(hash_block_end >= v->hash_blocks))
 703				hash_block_end = v->hash_blocks - 1;
 704		}
 705no_prefetch_cluster:
 706		dm_bufio_prefetch(v->bufio, hash_block_start,
 707				  hash_block_end - hash_block_start + 1);
 
 708	}
 709
 710	kfree(pw);
 711}
 712
 713static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
 
 714{
 715	sector_t block = io->block;
 716	unsigned int n_blocks = io->n_blocks;
 717	struct dm_verity_prefetch_work *pw;
 718
 719	if (v->validated_blocks) {
 720		while (n_blocks && test_bit(block, v->validated_blocks)) {
 721			block++;
 722			n_blocks--;
 723		}
 724		while (n_blocks && test_bit(block + n_blocks - 1,
 725					    v->validated_blocks))
 726			n_blocks--;
 727		if (!n_blocks)
 728			return;
 729	}
 730
 731	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
 732		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 733
 734	if (!pw)
 735		return;
 736
 737	INIT_WORK(&pw->work, verity_prefetch_io);
 738	pw->v = v;
 739	pw->block = block;
 740	pw->n_blocks = n_blocks;
 
 741	queue_work(v->verify_wq, &pw->work);
 742}
 743
 744/*
 745 * Bio map function. It allocates dm_verity_io structure and bio vector and
 746 * fills them. Then it issues prefetches and the I/O.
 747 */
 748static int verity_map(struct dm_target *ti, struct bio *bio)
 749{
 750	struct dm_verity *v = ti->private;
 751	struct dm_verity_io *io;
 752
 753	bio_set_dev(bio, v->data_dev->bdev);
 754	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
 755
 756	if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
 757	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
 758		DMERR_LIMIT("unaligned io");
 759		return DM_MAPIO_KILL;
 760	}
 761
 762	if (bio_end_sector(bio) >>
 763	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
 764		DMERR_LIMIT("io out of range");
 765		return DM_MAPIO_KILL;
 766	}
 767
 768	if (bio_data_dir(bio) == WRITE)
 769		return DM_MAPIO_KILL;
 770
 771	io = dm_per_bio_data(bio, ti->per_io_data_size);
 772	io->v = v;
 773	io->orig_bi_end_io = bio->bi_end_io;
 774	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
 775	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
 776
 777	bio->bi_end_io = verity_end_io;
 778	bio->bi_private = io;
 779	io->iter = bio->bi_iter;
 780
 781	verity_submit_prefetch(v, io);
 
 
 782
 783	submit_bio_noacct(bio);
 784
 785	return DM_MAPIO_SUBMITTED;
 786}
 787
 788/*
 789 * Status: V (valid) or C (corruption found)
 790 */
 791static void verity_status(struct dm_target *ti, status_type_t type,
 792			  unsigned status_flags, char *result, unsigned maxlen)
 793{
 794	struct dm_verity *v = ti->private;
 795	unsigned args = 0;
 796	unsigned sz = 0;
 797	unsigned x;
 798
 799	switch (type) {
 800	case STATUSTYPE_INFO:
 801		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
 802		break;
 803	case STATUSTYPE_TABLE:
 804		DMEMIT("%u %s %s %u %u %llu %llu %s ",
 805			v->version,
 806			v->data_dev->name,
 807			v->hash_dev->name,
 808			1 << v->data_dev_block_bits,
 809			1 << v->hash_dev_block_bits,
 810			(unsigned long long)v->data_blocks,
 811			(unsigned long long)v->hash_start,
 812			v->alg_name
 813			);
 814		for (x = 0; x < v->digest_size; x++)
 815			DMEMIT("%02x", v->root_digest[x]);
 816		DMEMIT(" ");
 817		if (!v->salt_size)
 818			DMEMIT("-");
 819		else
 820			for (x = 0; x < v->salt_size; x++)
 821				DMEMIT("%02x", v->salt[x]);
 822		if (v->mode != DM_VERITY_MODE_EIO)
 823			args++;
 824		if (verity_fec_is_enabled(v))
 825			args += DM_VERITY_OPTS_FEC;
 826		if (v->zero_digest)
 827			args++;
 828		if (v->validated_blocks)
 829			args++;
 830		if (v->use_tasklet)
 831			args++;
 832		if (v->signature_key_desc)
 833			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
 834		if (!args)
 835			return;
 836		DMEMIT(" %u", args);
 837		if (v->mode != DM_VERITY_MODE_EIO) {
 838			DMEMIT(" ");
 839			switch (v->mode) {
 840			case DM_VERITY_MODE_LOGGING:
 841				DMEMIT(DM_VERITY_OPT_LOGGING);
 842				break;
 843			case DM_VERITY_MODE_RESTART:
 844				DMEMIT(DM_VERITY_OPT_RESTART);
 845				break;
 846			case DM_VERITY_MODE_PANIC:
 847				DMEMIT(DM_VERITY_OPT_PANIC);
 848				break;
 849			default:
 850				BUG();
 851			}
 852		}
 853		if (v->zero_digest)
 854			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
 855		if (v->validated_blocks)
 856			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
 857		if (v->use_tasklet)
 858			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
 859		sz = verity_fec_status_table(v, sz, result, maxlen);
 860		if (v->signature_key_desc)
 861			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
 862				" %s", v->signature_key_desc);
 863		break;
 864
 865	case STATUSTYPE_IMA:
 866		DMEMIT_TARGET_NAME_VERSION(ti->type);
 867		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
 868		DMEMIT(",verity_version=%u", v->version);
 869		DMEMIT(",data_device_name=%s", v->data_dev->name);
 870		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
 871		DMEMIT(",verity_algorithm=%s", v->alg_name);
 872
 873		DMEMIT(",root_digest=");
 874		for (x = 0; x < v->digest_size; x++)
 875			DMEMIT("%02x", v->root_digest[x]);
 876
 877		DMEMIT(",salt=");
 878		if (!v->salt_size)
 879			DMEMIT("-");
 880		else
 881			for (x = 0; x < v->salt_size; x++)
 882				DMEMIT("%02x", v->salt[x]);
 883
 884		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
 885		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
 886		if (v->signature_key_desc)
 887			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
 888
 889		if (v->mode != DM_VERITY_MODE_EIO) {
 890			DMEMIT(",verity_mode=");
 891			switch (v->mode) {
 892			case DM_VERITY_MODE_LOGGING:
 893				DMEMIT(DM_VERITY_OPT_LOGGING);
 894				break;
 895			case DM_VERITY_MODE_RESTART:
 896				DMEMIT(DM_VERITY_OPT_RESTART);
 897				break;
 898			case DM_VERITY_MODE_PANIC:
 899				DMEMIT(DM_VERITY_OPT_PANIC);
 900				break;
 901			default:
 902				DMEMIT("invalid");
 903			}
 904		}
 905		DMEMIT(";");
 906		break;
 907	}
 908}
 909
 910static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
 911{
 912	struct dm_verity *v = ti->private;
 913
 914	*bdev = v->data_dev->bdev;
 915
 916	if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
 917		return 1;
 918	return 0;
 919}
 920
 921static int verity_iterate_devices(struct dm_target *ti,
 922				  iterate_devices_callout_fn fn, void *data)
 923{
 924	struct dm_verity *v = ti->private;
 925
 926	return fn(ti, v->data_dev, v->data_start, ti->len, data);
 927}
 928
 929static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
 930{
 931	struct dm_verity *v = ti->private;
 932
 933	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
 934		limits->logical_block_size = 1 << v->data_dev_block_bits;
 935
 936	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
 937		limits->physical_block_size = 1 << v->data_dev_block_bits;
 938
 939	blk_limits_io_min(limits, limits->logical_block_size);
 940}
 941
 942static void verity_dtr(struct dm_target *ti)
 943{
 944	struct dm_verity *v = ti->private;
 945
 946	if (v->verify_wq)
 947		destroy_workqueue(v->verify_wq);
 948
 
 
 
 
 949	if (v->bufio)
 950		dm_bufio_client_destroy(v->bufio);
 951
 952	kvfree(v->validated_blocks);
 953	kfree(v->salt);
 954	kfree(v->root_digest);
 955	kfree(v->zero_digest);
 956
 957	if (v->tfm)
 958		crypto_free_ahash(v->tfm);
 959
 960	kfree(v->alg_name);
 961
 962	if (v->hash_dev)
 963		dm_put_device(ti, v->hash_dev);
 964
 965	if (v->data_dev)
 966		dm_put_device(ti, v->data_dev);
 967
 968	verity_fec_dtr(v);
 969
 970	kfree(v->signature_key_desc);
 971
 972	if (v->use_tasklet)
 973		static_branch_dec(&use_tasklet_enabled);
 974
 975	kfree(v);
 
 
 976}
 977
 978static int verity_alloc_most_once(struct dm_verity *v)
 979{
 980	struct dm_target *ti = v->ti;
 981
 982	/* the bitset can only handle INT_MAX blocks */
 983	if (v->data_blocks > INT_MAX) {
 984		ti->error = "device too large to use check_at_most_once";
 985		return -E2BIG;
 986	}
 987
 988	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
 989				       sizeof(unsigned long),
 990				       GFP_KERNEL);
 991	if (!v->validated_blocks) {
 992		ti->error = "failed to allocate bitset for check_at_most_once";
 993		return -ENOMEM;
 994	}
 995
 996	return 0;
 997}
 998
 999static int verity_alloc_zero_digest(struct dm_verity *v)
1000{
1001	int r = -ENOMEM;
1002	struct ahash_request *req;
1003	u8 *zero_data;
1004
1005	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1006
1007	if (!v->zero_digest)
1008		return r;
1009
1010	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
1011
1012	if (!req)
1013		return r; /* verity_dtr will free zero_digest */
1014
1015	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1016
1017	if (!zero_data)
1018		goto out;
1019
1020	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
1021			v->zero_digest);
1022
1023out:
1024	kfree(req);
1025	kfree(zero_data);
1026
1027	return r;
1028}
1029
1030static inline bool verity_is_verity_mode(const char *arg_name)
1031{
1032	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1033		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1034		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1035}
1036
1037static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1038{
1039	if (v->mode)
1040		return -EINVAL;
1041
1042	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1043		v->mode = DM_VERITY_MODE_LOGGING;
1044	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1045		v->mode = DM_VERITY_MODE_RESTART;
1046	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1047		v->mode = DM_VERITY_MODE_PANIC;
1048
1049	return 0;
1050}
1051
1052static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1053				 struct dm_verity_sig_opts *verify_args,
1054				 bool only_modifier_opts)
1055{
1056	int r = 0;
1057	unsigned argc;
1058	struct dm_target *ti = v->ti;
1059	const char *arg_name;
1060
1061	static const struct dm_arg _args[] = {
1062		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1063	};
1064
1065	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1066	if (r)
1067		return -EINVAL;
1068
1069	if (!argc)
1070		return 0;
1071
1072	do {
1073		arg_name = dm_shift_arg(as);
1074		argc--;
1075
1076		if (verity_is_verity_mode(arg_name)) {
1077			if (only_modifier_opts)
1078				continue;
1079			r = verity_parse_verity_mode(v, arg_name);
1080			if (r) {
1081				ti->error = "Conflicting error handling parameters";
1082				return r;
1083			}
1084			continue;
1085
1086		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1087			if (only_modifier_opts)
1088				continue;
1089			r = verity_alloc_zero_digest(v);
1090			if (r) {
1091				ti->error = "Cannot allocate zero digest";
1092				return r;
1093			}
1094			continue;
1095
1096		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1097			if (only_modifier_opts)
1098				continue;
1099			r = verity_alloc_most_once(v);
1100			if (r)
1101				return r;
1102			continue;
1103
1104		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1105			v->use_tasklet = true;
1106			static_branch_inc(&use_tasklet_enabled);
1107			continue;
1108
1109		} else if (verity_is_fec_opt_arg(arg_name)) {
1110			if (only_modifier_opts)
1111				continue;
1112			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1113			if (r)
1114				return r;
1115			continue;
1116
1117		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1118			if (only_modifier_opts)
1119				continue;
1120			r = verity_verify_sig_parse_opt_args(as, v,
1121							     verify_args,
1122							     &argc, arg_name);
1123			if (r)
1124				return r;
1125			continue;
1126
1127		} else if (only_modifier_opts) {
1128			/*
1129			 * Ignore unrecognized opt, could easily be an extra
1130			 * argument to an option whose parsing was skipped.
1131			 * Normal parsing (@only_modifier_opts=false) will
1132			 * properly parse all options (and their extra args).
1133			 */
1134			continue;
1135		}
1136
1137		DMERR("Unrecognized verity feature request: %s", arg_name);
1138		ti->error = "Unrecognized verity feature request";
1139		return -EINVAL;
1140	} while (argc && !r);
1141
1142	return r;
1143}
1144
1145/*
1146 * Target parameters:
1147 *	<version>	The current format is version 1.
1148 *			Vsn 0 is compatible with original Chromium OS releases.
1149 *	<data device>
1150 *	<hash device>
1151 *	<data block size>
1152 *	<hash block size>
1153 *	<the number of data blocks>
1154 *	<hash start block>
1155 *	<algorithm>
1156 *	<digest>
1157 *	<salt>		Hex string or "-" if no salt.
1158 */
1159static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
1160{
1161	struct dm_verity *v;
1162	struct dm_verity_sig_opts verify_args = {0};
1163	struct dm_arg_set as;
1164	unsigned int num;
1165	unsigned int wq_flags;
1166	unsigned long long num_ll;
1167	int r;
1168	int i;
1169	sector_t hash_position;
1170	char dummy;
1171	char *root_hash_digest_to_validate;
1172
1173	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1174	if (!v) {
1175		ti->error = "Cannot allocate verity structure";
1176		return -ENOMEM;
1177	}
1178	ti->private = v;
1179	v->ti = ti;
1180
1181	r = verity_fec_ctr_alloc(v);
1182	if (r)
1183		goto bad;
1184
1185	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
1186		ti->error = "Device must be readonly";
1187		r = -EINVAL;
1188		goto bad;
1189	}
1190
1191	if (argc < 10) {
1192		ti->error = "Not enough arguments";
1193		r = -EINVAL;
1194		goto bad;
1195	}
1196
1197	/* Parse optional parameters that modify primary args */
1198	if (argc > 10) {
1199		as.argc = argc - 10;
1200		as.argv = argv + 10;
1201		r = verity_parse_opt_args(&as, v, &verify_args, true);
1202		if (r < 0)
1203			goto bad;
1204	}
1205
1206	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1207	    num > 1) {
1208		ti->error = "Invalid version";
1209		r = -EINVAL;
1210		goto bad;
1211	}
1212	v->version = num;
1213
1214	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
1215	if (r) {
1216		ti->error = "Data device lookup failed";
1217		goto bad;
1218	}
1219
1220	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
1221	if (r) {
1222		ti->error = "Hash device lookup failed";
1223		goto bad;
1224	}
1225
1226	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1227	    !num || (num & (num - 1)) ||
1228	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1229	    num > PAGE_SIZE) {
1230		ti->error = "Invalid data device block size";
1231		r = -EINVAL;
1232		goto bad;
1233	}
1234	v->data_dev_block_bits = __ffs(num);
1235
1236	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1237	    !num || (num & (num - 1)) ||
1238	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1239	    num > INT_MAX) {
1240		ti->error = "Invalid hash device block size";
1241		r = -EINVAL;
1242		goto bad;
1243	}
1244	v->hash_dev_block_bits = __ffs(num);
1245
1246	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1247	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1248	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1249		ti->error = "Invalid data blocks";
1250		r = -EINVAL;
1251		goto bad;
1252	}
1253	v->data_blocks = num_ll;
1254
1255	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1256		ti->error = "Data device is too small";
1257		r = -EINVAL;
1258		goto bad;
1259	}
1260
1261	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1262	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1263	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1264		ti->error = "Invalid hash start";
1265		r = -EINVAL;
1266		goto bad;
1267	}
1268	v->hash_start = num_ll;
1269
1270	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1271	if (!v->alg_name) {
1272		ti->error = "Cannot allocate algorithm name";
1273		r = -ENOMEM;
1274		goto bad;
1275	}
1276
1277	v->tfm = crypto_alloc_ahash(v->alg_name, 0,
1278				    v->use_tasklet ? CRYPTO_ALG_ASYNC : 0);
1279	if (IS_ERR(v->tfm)) {
1280		ti->error = "Cannot initialize hash function";
1281		r = PTR_ERR(v->tfm);
1282		v->tfm = NULL;
1283		goto bad;
1284	}
1285
1286	/*
1287	 * dm-verity performance can vary greatly depending on which hash
1288	 * algorithm implementation is used.  Help people debug performance
1289	 * problems by logging the ->cra_driver_name.
1290	 */
1291	DMINFO("%s using implementation \"%s\"", v->alg_name,
1292	       crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1293
1294	v->digest_size = crypto_ahash_digestsize(v->tfm);
1295	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1296		ti->error = "Digest size too big";
1297		r = -EINVAL;
1298		goto bad;
1299	}
1300	v->ahash_reqsize = sizeof(struct ahash_request) +
1301		crypto_ahash_reqsize(v->tfm);
1302
1303	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1304	if (!v->root_digest) {
1305		ti->error = "Cannot allocate root digest";
1306		r = -ENOMEM;
1307		goto bad;
1308	}
1309	if (strlen(argv[8]) != v->digest_size * 2 ||
1310	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1311		ti->error = "Invalid root digest";
1312		r = -EINVAL;
1313		goto bad;
1314	}
1315	root_hash_digest_to_validate = argv[8];
1316
1317	if (strcmp(argv[9], "-")) {
1318		v->salt_size = strlen(argv[9]) / 2;
1319		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1320		if (!v->salt) {
1321			ti->error = "Cannot allocate salt";
1322			r = -ENOMEM;
1323			goto bad;
1324		}
1325		if (strlen(argv[9]) != v->salt_size * 2 ||
1326		    hex2bin(v->salt, argv[9], v->salt_size)) {
1327			ti->error = "Invalid salt";
1328			r = -EINVAL;
1329			goto bad;
1330		}
1331	}
1332
1333	argv += 10;
1334	argc -= 10;
1335
1336	/* Optional parameters */
1337	if (argc) {
1338		as.argc = argc;
1339		as.argv = argv;
1340		r = verity_parse_opt_args(&as, v, &verify_args, false);
1341		if (r < 0)
1342			goto bad;
1343	}
1344
1345	/* Root hash signature is  a optional parameter*/
1346	r = verity_verify_root_hash(root_hash_digest_to_validate,
1347				    strlen(root_hash_digest_to_validate),
1348				    verify_args.sig,
1349				    verify_args.sig_size);
1350	if (r < 0) {
1351		ti->error = "Root hash verification failed";
1352		goto bad;
1353	}
1354	v->hash_per_block_bits =
1355		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1356
1357	v->levels = 0;
1358	if (v->data_blocks)
1359		while (v->hash_per_block_bits * v->levels < 64 &&
1360		       (unsigned long long)(v->data_blocks - 1) >>
1361		       (v->hash_per_block_bits * v->levels))
1362			v->levels++;
1363
1364	if (v->levels > DM_VERITY_MAX_LEVELS) {
1365		ti->error = "Too many tree levels";
1366		r = -E2BIG;
1367		goto bad;
1368	}
1369
1370	hash_position = v->hash_start;
1371	for (i = v->levels - 1; i >= 0; i--) {
1372		sector_t s;
 
1373		v->hash_level_block[i] = hash_position;
1374		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1375					>> ((i + 1) * v->hash_per_block_bits);
1376		if (hash_position + s < hash_position) {
1377			ti->error = "Hash device offset overflow";
1378			r = -E2BIG;
1379			goto bad;
1380		}
1381		hash_position += s;
1382	}
1383	v->hash_blocks = hash_position;
1384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1386		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1387		dm_bufio_alloc_callback, NULL,
1388		v->use_tasklet ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1389	if (IS_ERR(v->bufio)) {
1390		ti->error = "Cannot initialize dm-bufio";
1391		r = PTR_ERR(v->bufio);
1392		v->bufio = NULL;
1393		goto bad;
1394	}
1395
1396	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1397		ti->error = "Hash device is too small";
1398		r = -E2BIG;
1399		goto bad;
1400	}
1401
1402	/* WQ_UNBOUND greatly improves performance when running on ramdisk */
1403	wq_flags = WQ_MEM_RECLAIM | WQ_UNBOUND;
1404	/*
1405	 * Using WQ_HIGHPRI improves throughput and completion latency by
1406	 * reducing wait times when reading from a dm-verity device.
1407	 *
1408	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1409	 * allows verify_wq to preempt softirq since verification in tasklet
1410	 * will fall-back to using it for error handling (or if the bufio cache
1411	 * doesn't have required hashes).
1412	 */
1413	wq_flags |= WQ_HIGHPRI;
1414	v->verify_wq = alloc_workqueue("kverityd", wq_flags, num_online_cpus());
1415	if (!v->verify_wq) {
1416		ti->error = "Cannot allocate workqueue";
1417		r = -ENOMEM;
1418		goto bad;
1419	}
1420
1421	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1422				v->ahash_reqsize + v->digest_size * 2;
1423
1424	r = verity_fec_ctr(v);
1425	if (r)
1426		goto bad;
1427
1428	ti->per_io_data_size = roundup(ti->per_io_data_size,
1429				       __alignof__(struct dm_verity_io));
1430
1431	verity_verify_sig_opts_cleanup(&verify_args);
1432
 
 
1433	return 0;
1434
1435bad:
1436
1437	verity_verify_sig_opts_cleanup(&verify_args);
 
1438	verity_dtr(ti);
1439
1440	return r;
1441}
1442
1443/*
1444 * Check whether a DM target is a verity target.
1445 */
1446bool dm_is_verity_target(struct dm_target *ti)
1447{
1448	return ti->type->module == THIS_MODULE;
1449}
1450
1451/*
1452 * Get the verity mode (error behavior) of a verity target.
1453 *
1454 * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1455 * target.
1456 */
1457int dm_verity_get_mode(struct dm_target *ti)
1458{
1459	struct dm_verity *v = ti->private;
1460
1461	if (!dm_is_verity_target(ti))
1462		return -EINVAL;
1463
1464	return v->mode;
1465}
1466
1467/*
1468 * Get the root digest of a verity target.
1469 *
1470 * Returns a copy of the root digest, the caller is responsible for
1471 * freeing the memory of the digest.
1472 */
1473int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1474{
1475	struct dm_verity *v = ti->private;
1476
1477	if (!dm_is_verity_target(ti))
1478		return -EINVAL;
1479
1480	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1481	if (*root_digest == NULL)
1482		return -ENOMEM;
1483
1484	*digest_size = v->digest_size;
1485
1486	return 0;
1487}
1488
1489static struct target_type verity_target = {
1490	.name		= "verity",
1491	.features	= DM_TARGET_IMMUTABLE,
1492	.version	= {1, 9, 0},
1493	.module		= THIS_MODULE,
1494	.ctr		= verity_ctr,
1495	.dtr		= verity_dtr,
1496	.map		= verity_map,
1497	.status		= verity_status,
1498	.prepare_ioctl	= verity_prepare_ioctl,
1499	.iterate_devices = verity_iterate_devices,
1500	.io_hints	= verity_io_hints,
1501};
1502
1503static int __init dm_verity_init(void)
1504{
1505	int r;
1506
1507	r = dm_register_target(&verity_target);
1508	if (r < 0)
1509		DMERR("register failed %d", r);
1510
1511	return r;
1512}
1513
1514static void __exit dm_verity_exit(void)
1515{
1516	dm_unregister_target(&verity_target);
1517}
1518
1519module_init(dm_verity_init);
1520module_exit(dm_verity_exit);
1521
1522MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1523MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1524MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1525MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1526MODULE_LICENSE("GPL");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Red Hat, Inc.
   4 *
   5 * Author: Mikulas Patocka <mpatocka@redhat.com>
   6 *
   7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
   8 *
   9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
  10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
  11 * hash device. Setting this greatly improves performance when data and hash
  12 * are on the same disk on different partitions on devices with poor random
  13 * access behavior.
  14 */
  15
  16#include "dm-verity.h"
  17#include "dm-verity-fec.h"
  18#include "dm-verity-verify-sig.h"
  19#include "dm-audit.h"
  20#include <linux/module.h>
  21#include <linux/reboot.h>
  22#include <linux/scatterlist.h>
  23#include <linux/string.h>
  24#include <linux/jump_label.h>
  25
  26#define DM_MSG_PREFIX			"verity"
  27
  28#define DM_VERITY_ENV_LENGTH		42
  29#define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
  30
  31#define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
  32
  33#define DM_VERITY_MAX_CORRUPTED_ERRS	100
  34
  35#define DM_VERITY_OPT_LOGGING		"ignore_corruption"
  36#define DM_VERITY_OPT_RESTART		"restart_on_corruption"
  37#define DM_VERITY_OPT_PANIC		"panic_on_corruption"
  38#define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
  39#define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
  40#define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
  41
  42#define DM_VERITY_OPTS_MAX		(4 + DM_VERITY_OPTS_FEC + \
  43					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
  44
  45static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
  46
  47module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
  48
  49static DEFINE_STATIC_KEY_FALSE(use_bh_wq_enabled);
  50
  51struct dm_verity_prefetch_work {
  52	struct work_struct work;
  53	struct dm_verity *v;
  54	unsigned short ioprio;
  55	sector_t block;
  56	unsigned int n_blocks;
  57};
  58
  59/*
  60 * Auxiliary structure appended to each dm-bufio buffer. If the value
  61 * hash_verified is nonzero, hash of the block has been verified.
  62 *
  63 * The variable hash_verified is set to 0 when allocating the buffer, then
  64 * it can be changed to 1 and it is never reset to 0 again.
  65 *
  66 * There is no lock around this value, a race condition can at worst cause
  67 * that multiple processes verify the hash of the same buffer simultaneously
  68 * and write 1 to hash_verified simultaneously.
  69 * This condition is harmless, so we don't need locking.
  70 */
  71struct buffer_aux {
  72	int hash_verified;
  73};
  74
  75/*
  76 * Initialize struct buffer_aux for a freshly created buffer.
  77 */
  78static void dm_bufio_alloc_callback(struct dm_buffer *buf)
  79{
  80	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
  81
  82	aux->hash_verified = 0;
  83}
  84
  85/*
  86 * Translate input sector number to the sector number on the target device.
  87 */
  88static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
  89{
  90	return v->data_start + dm_target_offset(v->ti, bi_sector);
  91}
  92
  93/*
  94 * Return hash position of a specified block at a specified tree level
  95 * (0 is the lowest level).
  96 * The lowest "hash_per_block_bits"-bits of the result denote hash position
  97 * inside a hash block. The remaining bits denote location of the hash block.
  98 */
  99static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
 100					 int level)
 101{
 102	return block >> (level * v->hash_per_block_bits);
 103}
 104
 105static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
 106				const u8 *data, size_t len,
 107				struct crypto_wait *wait)
 108{
 109	struct scatterlist sg;
 110
 111	if (likely(!is_vmalloc_addr(data))) {
 112		sg_init_one(&sg, data, len);
 113		ahash_request_set_crypt(req, &sg, NULL, len);
 114		return crypto_wait_req(crypto_ahash_update(req), wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115	}
 116
 117	do {
 118		int r;
 119		size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
 120
 121		flush_kernel_vmap_range((void *)data, this_step);
 122		sg_init_table(&sg, 1);
 123		sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
 124		ahash_request_set_crypt(req, &sg, NULL, this_step);
 125		r = crypto_wait_req(crypto_ahash_update(req), wait);
 126		if (unlikely(r))
 127			return r;
 128		data += this_step;
 129		len -= this_step;
 130	} while (len);
 131
 132	return 0;
 133}
 134
 135/*
 136 * Wrapper for crypto_ahash_init, which handles verity salting.
 137 */
 138static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
 139				struct crypto_wait *wait, bool may_sleep)
 140{
 141	int r;
 142
 143	ahash_request_set_tfm(req, v->tfm);
 144	ahash_request_set_callback(req,
 145		may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0,
 146		crypto_req_done, (void *)wait);
 147	crypto_init_wait(wait);
 148
 149	r = crypto_wait_req(crypto_ahash_init(req), wait);
 150
 151	if (unlikely(r < 0)) {
 152		if (r != -ENOMEM)
 153			DMERR("crypto_ahash_init failed: %d", r);
 154		return r;
 155	}
 156
 157	if (likely(v->salt_size && (v->version >= 1)))
 158		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 159
 160	return r;
 161}
 162
 163static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
 164			     u8 *digest, struct crypto_wait *wait)
 165{
 166	int r;
 167
 168	if (unlikely(v->salt_size && (!v->version))) {
 169		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 170
 171		if (r < 0) {
 172			DMERR("%s failed updating salt: %d", __func__, r);
 173			goto out;
 174		}
 175	}
 176
 177	ahash_request_set_crypt(req, NULL, digest, 0);
 178	r = crypto_wait_req(crypto_ahash_final(req), wait);
 179out:
 180	return r;
 181}
 182
 183int verity_hash(struct dm_verity *v, struct ahash_request *req,
 184		const u8 *data, size_t len, u8 *digest, bool may_sleep)
 185{
 186	int r;
 187	struct crypto_wait wait;
 188
 189	r = verity_hash_init(v, req, &wait, may_sleep);
 190	if (unlikely(r < 0))
 191		goto out;
 192
 193	r = verity_hash_update(v, req, data, len, &wait);
 194	if (unlikely(r < 0))
 195		goto out;
 196
 197	r = verity_hash_final(v, req, digest, &wait);
 198
 199out:
 200	return r;
 201}
 202
 203static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
 204				 sector_t *hash_block, unsigned int *offset)
 205{
 206	sector_t position = verity_position_at_level(v, block, level);
 207	unsigned int idx;
 208
 209	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
 210
 211	if (!offset)
 212		return;
 213
 214	idx = position & ((1 << v->hash_per_block_bits) - 1);
 215	if (!v->version)
 216		*offset = idx * v->digest_size;
 217	else
 218		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
 219}
 220
 221/*
 222 * Handle verification errors.
 223 */
 224static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
 225			     unsigned long long block)
 226{
 227	char verity_env[DM_VERITY_ENV_LENGTH];
 228	char *envp[] = { verity_env, NULL };
 229	const char *type_str = "";
 230	struct mapped_device *md = dm_table_get_md(v->ti->table);
 231
 232	/* Corruption should be visible in device status in all modes */
 233	v->hash_failed = true;
 234
 235	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
 236		goto out;
 237
 238	v->corrupted_errs++;
 239
 240	switch (type) {
 241	case DM_VERITY_BLOCK_TYPE_DATA:
 242		type_str = "data";
 243		break;
 244	case DM_VERITY_BLOCK_TYPE_METADATA:
 245		type_str = "metadata";
 246		break;
 247	default:
 248		BUG();
 249	}
 250
 251	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
 252		    type_str, block);
 253
 254	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) {
 255		DMERR("%s: reached maximum errors", v->data_dev->name);
 256		dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0);
 257	}
 258
 259	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
 260		DM_VERITY_ENV_VAR_NAME, type, block);
 261
 262	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
 263
 264out:
 265	if (v->mode == DM_VERITY_MODE_LOGGING)
 266		return 0;
 267
 268	if (v->mode == DM_VERITY_MODE_RESTART)
 269		kernel_restart("dm-verity device corrupted");
 270
 271	if (v->mode == DM_VERITY_MODE_PANIC)
 272		panic("dm-verity device corrupted");
 273
 274	return 1;
 275}
 276
 277/*
 278 * Verify hash of a metadata block pertaining to the specified data block
 279 * ("block" argument) at a specified level ("level" argument).
 280 *
 281 * On successful return, verity_io_want_digest(v, io) contains the hash value
 282 * for a lower tree level or for the data block (if we're at the lowest level).
 283 *
 284 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
 285 * If "skip_unverified" is false, unverified buffer is hashed and verified
 286 * against current value of verity_io_want_digest(v, io).
 287 */
 288static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
 289			       sector_t block, int level, bool skip_unverified,
 290			       u8 *want_digest)
 291{
 292	struct dm_buffer *buf;
 293	struct buffer_aux *aux;
 294	u8 *data;
 295	int r;
 296	sector_t hash_block;
 297	unsigned int offset;
 298	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 299
 300	verity_hash_at_level(v, block, level, &hash_block, &offset);
 301
 302	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
 303		data = dm_bufio_get(v->bufio, hash_block, &buf);
 304		if (data == NULL) {
 305			/*
 306			 * In tasklet and the hash was not in the bufio cache.
 307			 * Return early and resume execution from a work-queue
 308			 * to read the hash from disk.
 309			 */
 310			return -EAGAIN;
 311		}
 312	} else {
 313		data = dm_bufio_read_with_ioprio(v->bufio, hash_block,
 314						&buf, bio_prio(bio));
 315	}
 316
 317	if (IS_ERR(data))
 318		return PTR_ERR(data);
 319
 320	aux = dm_bufio_get_aux_data(buf);
 321
 322	if (!aux->hash_verified) {
 323		if (skip_unverified) {
 324			r = 1;
 325			goto release_ret_r;
 326		}
 327
 328		r = verity_hash(v, verity_io_hash_req(v, io),
 329				data, 1 << v->hash_dev_block_bits,
 330				verity_io_real_digest(v, io), !io->in_bh);
 331		if (unlikely(r < 0))
 332			goto release_ret_r;
 333
 334		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
 335				  v->digest_size) == 0))
 336			aux->hash_verified = 1;
 337		else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
 
 338			/*
 339			 * Error handling code (FEC included) cannot be run in a
 340			 * tasklet since it may sleep, so fallback to work-queue.
 341			 */
 342			r = -EAGAIN;
 343			goto release_ret_r;
 344		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
 345					     hash_block, data, NULL) == 0)
 
 
 346			aux->hash_verified = 1;
 347		else if (verity_handle_err(v,
 348					   DM_VERITY_BLOCK_TYPE_METADATA,
 349					   hash_block)) {
 350			struct bio *bio =
 351				dm_bio_from_per_bio_data(io,
 352							 v->ti->per_io_data_size);
 353			dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio,
 354					 block, 0);
 355			r = -EIO;
 356			goto release_ret_r;
 357		}
 358	}
 359
 360	data += offset;
 361	memcpy(want_digest, data, v->digest_size);
 362	r = 0;
 363
 364release_ret_r:
 365	dm_bufio_release(buf);
 366	return r;
 367}
 368
 369/*
 370 * Find a hash for a given block, write it to digest and verify the integrity
 371 * of the hash tree if necessary.
 372 */
 373int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
 374			  sector_t block, u8 *digest, bool *is_zero)
 375{
 376	int r = 0, i;
 377
 378	if (likely(v->levels)) {
 379		/*
 380		 * First, we try to get the requested hash for
 381		 * the current block. If the hash block itself is
 382		 * verified, zero is returned. If it isn't, this
 383		 * function returns 1 and we fall back to whole
 384		 * chain verification.
 385		 */
 386		r = verity_verify_level(v, io, block, 0, true, digest);
 387		if (likely(r <= 0))
 388			goto out;
 389	}
 390
 391	memcpy(digest, v->root_digest, v->digest_size);
 392
 393	for (i = v->levels - 1; i >= 0; i--) {
 394		r = verity_verify_level(v, io, block, i, false, digest);
 395		if (unlikely(r))
 396			goto out;
 397	}
 398out:
 399	if (!r && v->zero_digest)
 400		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
 401	else
 402		*is_zero = false;
 403
 404	return r;
 405}
 406
 407/*
 408 * Calculates the digest for the given bio
 409 */
 410static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
 411			       struct bvec_iter *iter, struct crypto_wait *wait)
 412{
 413	unsigned int todo = 1 << v->data_dev_block_bits;
 414	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 415	struct scatterlist sg;
 416	struct ahash_request *req = verity_io_hash_req(v, io);
 417
 418	do {
 419		int r;
 420		unsigned int len;
 421		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 422
 423		sg_init_table(&sg, 1);
 424
 425		len = bv.bv_len;
 426
 427		if (likely(len >= todo))
 428			len = todo;
 429		/*
 430		 * Operating on a single page at a time looks suboptimal
 431		 * until you consider the typical block size is 4,096B.
 432		 * Going through this loops twice should be very rare.
 433		 */
 434		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
 435		ahash_request_set_crypt(req, &sg, NULL, len);
 436		r = crypto_wait_req(crypto_ahash_update(req), wait);
 437
 438		if (unlikely(r < 0)) {
 439			DMERR("%s crypto op failed: %d", __func__, r);
 440			return r;
 441		}
 442
 443		bio_advance_iter(bio, iter, len);
 444		todo -= len;
 445	} while (todo);
 446
 447	return 0;
 448}
 449
 450/*
 451 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
 452 * starting from iter.
 453 */
 454int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
 455			struct bvec_iter *iter,
 456			int (*process)(struct dm_verity *v,
 457				       struct dm_verity_io *io, u8 *data,
 458				       size_t len))
 459{
 460	unsigned int todo = 1 << v->data_dev_block_bits;
 461	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 462
 463	do {
 464		int r;
 465		u8 *page;
 466		unsigned int len;
 467		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 468
 469		page = bvec_kmap_local(&bv);
 470		len = bv.bv_len;
 471
 472		if (likely(len >= todo))
 473			len = todo;
 474
 475		r = process(v, io, page, len);
 476		kunmap_local(page);
 477
 478		if (r < 0)
 479			return r;
 480
 481		bio_advance_iter(bio, iter, len);
 482		todo -= len;
 483	} while (todo);
 484
 485	return 0;
 486}
 487
 488static int verity_recheck_copy(struct dm_verity *v, struct dm_verity_io *io,
 489			       u8 *data, size_t len)
 490{
 491	memcpy(data, io->recheck_buffer, len);
 492	io->recheck_buffer += len;
 493
 494	return 0;
 495}
 496
 497static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
 498				   struct bvec_iter start, sector_t cur_block)
 499{
 500	struct page *page;
 501	void *buffer;
 502	int r;
 503	struct dm_io_request io_req;
 504	struct dm_io_region io_loc;
 505
 506	page = mempool_alloc(&v->recheck_pool, GFP_NOIO);
 507	buffer = page_to_virt(page);
 508
 509	io_req.bi_opf = REQ_OP_READ;
 510	io_req.mem.type = DM_IO_KMEM;
 511	io_req.mem.ptr.addr = buffer;
 512	io_req.notify.fn = NULL;
 513	io_req.client = v->io;
 514	io_loc.bdev = v->data_dev->bdev;
 515	io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
 516	io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
 517	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
 518	if (unlikely(r))
 519		goto free_ret;
 520
 521	r = verity_hash(v, verity_io_hash_req(v, io), buffer,
 522			1 << v->data_dev_block_bits,
 523			verity_io_real_digest(v, io), true);
 524	if (unlikely(r))
 525		goto free_ret;
 526
 527	if (memcmp(verity_io_real_digest(v, io),
 528		   verity_io_want_digest(v, io), v->digest_size)) {
 529		r = -EIO;
 530		goto free_ret;
 531	}
 532
 533	io->recheck_buffer = buffer;
 534	r = verity_for_bv_block(v, io, &start, verity_recheck_copy);
 535	if (unlikely(r))
 536		goto free_ret;
 537
 538	r = 0;
 539free_ret:
 540	mempool_free(page, &v->recheck_pool);
 541
 542	return r;
 543}
 544
 545static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
 546			  u8 *data, size_t len)
 547{
 548	memset(data, 0, len);
 549	return 0;
 550}
 551
 552/*
 553 * Moves the bio iter one data block forward.
 554 */
 555static inline void verity_bv_skip_block(struct dm_verity *v,
 556					struct dm_verity_io *io,
 557					struct bvec_iter *iter)
 558{
 559	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 560
 561	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
 562}
 563
 564/*
 565 * Verify one "dm_verity_io" structure.
 566 */
 567static int verity_verify_io(struct dm_verity_io *io)
 568{
 569	bool is_zero;
 570	struct dm_verity *v = io->v;
 
 571	struct bvec_iter start;
 
 572	struct bvec_iter iter_copy;
 573	struct bvec_iter *iter;
 574	struct crypto_wait wait;
 575	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 576	unsigned int b;
 577
 578	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
 579		/*
 580		 * Copy the iterator in case we need to restart
 581		 * verification in a work-queue.
 582		 */
 583		iter_copy = io->iter;
 584		iter = &iter_copy;
 585	} else
 586		iter = &io->iter;
 587
 588	for (b = 0; b < io->n_blocks; b++) {
 589		int r;
 590		sector_t cur_block = io->block + b;
 591		struct ahash_request *req = verity_io_hash_req(v, io);
 592
 593		if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
 594		    likely(test_bit(cur_block, v->validated_blocks))) {
 595			verity_bv_skip_block(v, io, iter);
 596			continue;
 597		}
 598
 599		r = verity_hash_for_block(v, io, cur_block,
 600					  verity_io_want_digest(v, io),
 601					  &is_zero);
 602		if (unlikely(r < 0))
 603			return r;
 604
 605		if (is_zero) {
 606			/*
 607			 * If we expect a zero block, don't validate, just
 608			 * return zeros.
 609			 */
 610			r = verity_for_bv_block(v, io, iter,
 611						verity_bv_zero);
 612			if (unlikely(r < 0))
 613				return r;
 614
 615			continue;
 616		}
 617
 618		r = verity_hash_init(v, req, &wait, !io->in_bh);
 619		if (unlikely(r < 0))
 620			return r;
 621
 622		start = *iter;
 
 
 
 623		r = verity_for_io_block(v, io, iter, &wait);
 624		if (unlikely(r < 0))
 625			return r;
 626
 627		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
 628					&wait);
 629		if (unlikely(r < 0))
 630			return r;
 631
 632		if (likely(memcmp(verity_io_real_digest(v, io),
 633				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
 634			if (v->validated_blocks)
 635				set_bit(cur_block, v->validated_blocks);
 636			continue;
 637		} else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
 
 638			/*
 639			 * Error handling code (FEC included) cannot be run in a
 640			 * tasklet since it may sleep, so fallback to work-queue.
 641			 */
 642			return -EAGAIN;
 643		} else if (verity_recheck(v, io, start, cur_block) == 0) {
 644			if (v->validated_blocks)
 645				set_bit(cur_block, v->validated_blocks);
 646			continue;
 647#if defined(CONFIG_DM_VERITY_FEC)
 648		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
 649					     cur_block, NULL, &start) == 0) {
 650			continue;
 651#endif
 652		} else {
 653			if (bio->bi_status) {
 654				/*
 655				 * Error correction failed; Just return error
 656				 */
 657				return -EIO;
 658			}
 659			if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
 660					      cur_block)) {
 661				dm_audit_log_bio(DM_MSG_PREFIX, "verify-data",
 662						 bio, cur_block, 0);
 663				return -EIO;
 664			}
 665		}
 666	}
 667
 668	return 0;
 669}
 670
 671/*
 672 * Skip verity work in response to I/O error when system is shutting down.
 673 */
 674static inline bool verity_is_system_shutting_down(void)
 675{
 676	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
 677		|| system_state == SYSTEM_RESTART;
 678}
 679
 680/*
 681 * End one "io" structure with a given error.
 682 */
 683static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
 684{
 685	struct dm_verity *v = io->v;
 686	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 687
 688	bio->bi_end_io = io->orig_bi_end_io;
 689	bio->bi_status = status;
 690
 691	if (!static_branch_unlikely(&use_bh_wq_enabled) || !io->in_bh)
 692		verity_fec_finish_io(io);
 693
 694	bio_endio(bio);
 695}
 696
 697static void verity_work(struct work_struct *w)
 698{
 699	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
 700
 701	io->in_bh = false;
 702
 
 703	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
 704}
 705
 706static void verity_bh_work(struct work_struct *w)
 707{
 708	struct dm_verity_io *io = container_of(w, struct dm_verity_io, bh_work);
 709	int err;
 710
 711	io->in_bh = true;
 712	err = verity_verify_io(io);
 713	if (err == -EAGAIN || err == -ENOMEM) {
 714		/* fallback to retrying with work-queue */
 715		INIT_WORK(&io->work, verity_work);
 716		queue_work(io->v->verify_wq, &io->work);
 717		return;
 718	}
 719
 720	verity_finish_io(io, errno_to_blk_status(err));
 721}
 722
 723static void verity_end_io(struct bio *bio)
 724{
 725	struct dm_verity_io *io = bio->bi_private;
 726
 727	if (bio->bi_status &&
 728	    (!verity_fec_is_enabled(io->v) ||
 729	     verity_is_system_shutting_down() ||
 730	     (bio->bi_opf & REQ_RAHEAD))) {
 731		verity_finish_io(io, bio->bi_status);
 732		return;
 733	}
 734
 735	if (static_branch_unlikely(&use_bh_wq_enabled) && io->v->use_bh_wq) {
 736		INIT_WORK(&io->bh_work, verity_bh_work);
 737		queue_work(system_bh_wq, &io->bh_work);
 738	} else {
 739		INIT_WORK(&io->work, verity_work);
 740		queue_work(io->v->verify_wq, &io->work);
 741	}
 742}
 743
 744/*
 745 * Prefetch buffers for the specified io.
 746 * The root buffer is not prefetched, it is assumed that it will be cached
 747 * all the time.
 748 */
 749static void verity_prefetch_io(struct work_struct *work)
 750{
 751	struct dm_verity_prefetch_work *pw =
 752		container_of(work, struct dm_verity_prefetch_work, work);
 753	struct dm_verity *v = pw->v;
 754	int i;
 755
 756	for (i = v->levels - 2; i >= 0; i--) {
 757		sector_t hash_block_start;
 758		sector_t hash_block_end;
 759
 760		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
 761		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
 762
 763		if (!i) {
 764			unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
 765
 766			cluster >>= v->data_dev_block_bits;
 767			if (unlikely(!cluster))
 768				goto no_prefetch_cluster;
 769
 770			if (unlikely(cluster & (cluster - 1)))
 771				cluster = 1 << __fls(cluster);
 772
 773			hash_block_start &= ~(sector_t)(cluster - 1);
 774			hash_block_end |= cluster - 1;
 775			if (unlikely(hash_block_end >= v->hash_blocks))
 776				hash_block_end = v->hash_blocks - 1;
 777		}
 778no_prefetch_cluster:
 779		dm_bufio_prefetch_with_ioprio(v->bufio, hash_block_start,
 780					hash_block_end - hash_block_start + 1,
 781					pw->ioprio);
 782	}
 783
 784	kfree(pw);
 785}
 786
 787static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io,
 788				   unsigned short ioprio)
 789{
 790	sector_t block = io->block;
 791	unsigned int n_blocks = io->n_blocks;
 792	struct dm_verity_prefetch_work *pw;
 793
 794	if (v->validated_blocks) {
 795		while (n_blocks && test_bit(block, v->validated_blocks)) {
 796			block++;
 797			n_blocks--;
 798		}
 799		while (n_blocks && test_bit(block + n_blocks - 1,
 800					    v->validated_blocks))
 801			n_blocks--;
 802		if (!n_blocks)
 803			return;
 804	}
 805
 806	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
 807		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 808
 809	if (!pw)
 810		return;
 811
 812	INIT_WORK(&pw->work, verity_prefetch_io);
 813	pw->v = v;
 814	pw->block = block;
 815	pw->n_blocks = n_blocks;
 816	pw->ioprio = ioprio;
 817	queue_work(v->verify_wq, &pw->work);
 818}
 819
 820/*
 821 * Bio map function. It allocates dm_verity_io structure and bio vector and
 822 * fills them. Then it issues prefetches and the I/O.
 823 */
 824static int verity_map(struct dm_target *ti, struct bio *bio)
 825{
 826	struct dm_verity *v = ti->private;
 827	struct dm_verity_io *io;
 828
 829	bio_set_dev(bio, v->data_dev->bdev);
 830	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
 831
 832	if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
 833	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
 834		DMERR_LIMIT("unaligned io");
 835		return DM_MAPIO_KILL;
 836	}
 837
 838	if (bio_end_sector(bio) >>
 839	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
 840		DMERR_LIMIT("io out of range");
 841		return DM_MAPIO_KILL;
 842	}
 843
 844	if (bio_data_dir(bio) == WRITE)
 845		return DM_MAPIO_KILL;
 846
 847	io = dm_per_bio_data(bio, ti->per_io_data_size);
 848	io->v = v;
 849	io->orig_bi_end_io = bio->bi_end_io;
 850	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
 851	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
 852
 853	bio->bi_end_io = verity_end_io;
 854	bio->bi_private = io;
 855	io->iter = bio->bi_iter;
 856
 857	verity_fec_init_io(io);
 858
 859	verity_submit_prefetch(v, io, bio_prio(bio));
 860
 861	submit_bio_noacct(bio);
 862
 863	return DM_MAPIO_SUBMITTED;
 864}
 865
 866/*
 867 * Status: V (valid) or C (corruption found)
 868 */
 869static void verity_status(struct dm_target *ti, status_type_t type,
 870			  unsigned int status_flags, char *result, unsigned int maxlen)
 871{
 872	struct dm_verity *v = ti->private;
 873	unsigned int args = 0;
 874	unsigned int sz = 0;
 875	unsigned int x;
 876
 877	switch (type) {
 878	case STATUSTYPE_INFO:
 879		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
 880		break;
 881	case STATUSTYPE_TABLE:
 882		DMEMIT("%u %s %s %u %u %llu %llu %s ",
 883			v->version,
 884			v->data_dev->name,
 885			v->hash_dev->name,
 886			1 << v->data_dev_block_bits,
 887			1 << v->hash_dev_block_bits,
 888			(unsigned long long)v->data_blocks,
 889			(unsigned long long)v->hash_start,
 890			v->alg_name
 891			);
 892		for (x = 0; x < v->digest_size; x++)
 893			DMEMIT("%02x", v->root_digest[x]);
 894		DMEMIT(" ");
 895		if (!v->salt_size)
 896			DMEMIT("-");
 897		else
 898			for (x = 0; x < v->salt_size; x++)
 899				DMEMIT("%02x", v->salt[x]);
 900		if (v->mode != DM_VERITY_MODE_EIO)
 901			args++;
 902		if (verity_fec_is_enabled(v))
 903			args += DM_VERITY_OPTS_FEC;
 904		if (v->zero_digest)
 905			args++;
 906		if (v->validated_blocks)
 907			args++;
 908		if (v->use_bh_wq)
 909			args++;
 910		if (v->signature_key_desc)
 911			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
 912		if (!args)
 913			return;
 914		DMEMIT(" %u", args);
 915		if (v->mode != DM_VERITY_MODE_EIO) {
 916			DMEMIT(" ");
 917			switch (v->mode) {
 918			case DM_VERITY_MODE_LOGGING:
 919				DMEMIT(DM_VERITY_OPT_LOGGING);
 920				break;
 921			case DM_VERITY_MODE_RESTART:
 922				DMEMIT(DM_VERITY_OPT_RESTART);
 923				break;
 924			case DM_VERITY_MODE_PANIC:
 925				DMEMIT(DM_VERITY_OPT_PANIC);
 926				break;
 927			default:
 928				BUG();
 929			}
 930		}
 931		if (v->zero_digest)
 932			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
 933		if (v->validated_blocks)
 934			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
 935		if (v->use_bh_wq)
 936			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
 937		sz = verity_fec_status_table(v, sz, result, maxlen);
 938		if (v->signature_key_desc)
 939			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
 940				" %s", v->signature_key_desc);
 941		break;
 942
 943	case STATUSTYPE_IMA:
 944		DMEMIT_TARGET_NAME_VERSION(ti->type);
 945		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
 946		DMEMIT(",verity_version=%u", v->version);
 947		DMEMIT(",data_device_name=%s", v->data_dev->name);
 948		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
 949		DMEMIT(",verity_algorithm=%s", v->alg_name);
 950
 951		DMEMIT(",root_digest=");
 952		for (x = 0; x < v->digest_size; x++)
 953			DMEMIT("%02x", v->root_digest[x]);
 954
 955		DMEMIT(",salt=");
 956		if (!v->salt_size)
 957			DMEMIT("-");
 958		else
 959			for (x = 0; x < v->salt_size; x++)
 960				DMEMIT("%02x", v->salt[x]);
 961
 962		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
 963		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
 964		if (v->signature_key_desc)
 965			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
 966
 967		if (v->mode != DM_VERITY_MODE_EIO) {
 968			DMEMIT(",verity_mode=");
 969			switch (v->mode) {
 970			case DM_VERITY_MODE_LOGGING:
 971				DMEMIT(DM_VERITY_OPT_LOGGING);
 972				break;
 973			case DM_VERITY_MODE_RESTART:
 974				DMEMIT(DM_VERITY_OPT_RESTART);
 975				break;
 976			case DM_VERITY_MODE_PANIC:
 977				DMEMIT(DM_VERITY_OPT_PANIC);
 978				break;
 979			default:
 980				DMEMIT("invalid");
 981			}
 982		}
 983		DMEMIT(";");
 984		break;
 985	}
 986}
 987
 988static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
 989{
 990	struct dm_verity *v = ti->private;
 991
 992	*bdev = v->data_dev->bdev;
 993
 994	if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
 995		return 1;
 996	return 0;
 997}
 998
 999static int verity_iterate_devices(struct dm_target *ti,
1000				  iterate_devices_callout_fn fn, void *data)
1001{
1002	struct dm_verity *v = ti->private;
1003
1004	return fn(ti, v->data_dev, v->data_start, ti->len, data);
1005}
1006
1007static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
1008{
1009	struct dm_verity *v = ti->private;
1010
1011	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
1012		limits->logical_block_size = 1 << v->data_dev_block_bits;
1013
1014	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
1015		limits->physical_block_size = 1 << v->data_dev_block_bits;
1016
1017	blk_limits_io_min(limits, limits->logical_block_size);
1018}
1019
1020static void verity_dtr(struct dm_target *ti)
1021{
1022	struct dm_verity *v = ti->private;
1023
1024	if (v->verify_wq)
1025		destroy_workqueue(v->verify_wq);
1026
1027	mempool_exit(&v->recheck_pool);
1028	if (v->io)
1029		dm_io_client_destroy(v->io);
1030
1031	if (v->bufio)
1032		dm_bufio_client_destroy(v->bufio);
1033
1034	kvfree(v->validated_blocks);
1035	kfree(v->salt);
1036	kfree(v->root_digest);
1037	kfree(v->zero_digest);
1038
1039	if (v->tfm)
1040		crypto_free_ahash(v->tfm);
1041
1042	kfree(v->alg_name);
1043
1044	if (v->hash_dev)
1045		dm_put_device(ti, v->hash_dev);
1046
1047	if (v->data_dev)
1048		dm_put_device(ti, v->data_dev);
1049
1050	verity_fec_dtr(v);
1051
1052	kfree(v->signature_key_desc);
1053
1054	if (v->use_bh_wq)
1055		static_branch_dec(&use_bh_wq_enabled);
1056
1057	kfree(v);
1058
1059	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
1060}
1061
1062static int verity_alloc_most_once(struct dm_verity *v)
1063{
1064	struct dm_target *ti = v->ti;
1065
1066	/* the bitset can only handle INT_MAX blocks */
1067	if (v->data_blocks > INT_MAX) {
1068		ti->error = "device too large to use check_at_most_once";
1069		return -E2BIG;
1070	}
1071
1072	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
1073				       sizeof(unsigned long),
1074				       GFP_KERNEL);
1075	if (!v->validated_blocks) {
1076		ti->error = "failed to allocate bitset for check_at_most_once";
1077		return -ENOMEM;
1078	}
1079
1080	return 0;
1081}
1082
1083static int verity_alloc_zero_digest(struct dm_verity *v)
1084{
1085	int r = -ENOMEM;
1086	struct ahash_request *req;
1087	u8 *zero_data;
1088
1089	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1090
1091	if (!v->zero_digest)
1092		return r;
1093
1094	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
1095
1096	if (!req)
1097		return r; /* verity_dtr will free zero_digest */
1098
1099	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1100
1101	if (!zero_data)
1102		goto out;
1103
1104	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
1105			v->zero_digest, true);
1106
1107out:
1108	kfree(req);
1109	kfree(zero_data);
1110
1111	return r;
1112}
1113
1114static inline bool verity_is_verity_mode(const char *arg_name)
1115{
1116	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1117		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1118		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1119}
1120
1121static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1122{
1123	if (v->mode)
1124		return -EINVAL;
1125
1126	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1127		v->mode = DM_VERITY_MODE_LOGGING;
1128	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1129		v->mode = DM_VERITY_MODE_RESTART;
1130	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1131		v->mode = DM_VERITY_MODE_PANIC;
1132
1133	return 0;
1134}
1135
1136static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1137				 struct dm_verity_sig_opts *verify_args,
1138				 bool only_modifier_opts)
1139{
1140	int r = 0;
1141	unsigned int argc;
1142	struct dm_target *ti = v->ti;
1143	const char *arg_name;
1144
1145	static const struct dm_arg _args[] = {
1146		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1147	};
1148
1149	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1150	if (r)
1151		return -EINVAL;
1152
1153	if (!argc)
1154		return 0;
1155
1156	do {
1157		arg_name = dm_shift_arg(as);
1158		argc--;
1159
1160		if (verity_is_verity_mode(arg_name)) {
1161			if (only_modifier_opts)
1162				continue;
1163			r = verity_parse_verity_mode(v, arg_name);
1164			if (r) {
1165				ti->error = "Conflicting error handling parameters";
1166				return r;
1167			}
1168			continue;
1169
1170		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1171			if (only_modifier_opts)
1172				continue;
1173			r = verity_alloc_zero_digest(v);
1174			if (r) {
1175				ti->error = "Cannot allocate zero digest";
1176				return r;
1177			}
1178			continue;
1179
1180		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1181			if (only_modifier_opts)
1182				continue;
1183			r = verity_alloc_most_once(v);
1184			if (r)
1185				return r;
1186			continue;
1187
1188		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1189			v->use_bh_wq = true;
1190			static_branch_inc(&use_bh_wq_enabled);
1191			continue;
1192
1193		} else if (verity_is_fec_opt_arg(arg_name)) {
1194			if (only_modifier_opts)
1195				continue;
1196			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1197			if (r)
1198				return r;
1199			continue;
1200
1201		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1202			if (only_modifier_opts)
1203				continue;
1204			r = verity_verify_sig_parse_opt_args(as, v,
1205							     verify_args,
1206							     &argc, arg_name);
1207			if (r)
1208				return r;
1209			continue;
1210
1211		} else if (only_modifier_opts) {
1212			/*
1213			 * Ignore unrecognized opt, could easily be an extra
1214			 * argument to an option whose parsing was skipped.
1215			 * Normal parsing (@only_modifier_opts=false) will
1216			 * properly parse all options (and their extra args).
1217			 */
1218			continue;
1219		}
1220
1221		DMERR("Unrecognized verity feature request: %s", arg_name);
1222		ti->error = "Unrecognized verity feature request";
1223		return -EINVAL;
1224	} while (argc && !r);
1225
1226	return r;
1227}
1228
1229/*
1230 * Target parameters:
1231 *	<version>	The current format is version 1.
1232 *			Vsn 0 is compatible with original Chromium OS releases.
1233 *	<data device>
1234 *	<hash device>
1235 *	<data block size>
1236 *	<hash block size>
1237 *	<the number of data blocks>
1238 *	<hash start block>
1239 *	<algorithm>
1240 *	<digest>
1241 *	<salt>		Hex string or "-" if no salt.
1242 */
1243static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1244{
1245	struct dm_verity *v;
1246	struct dm_verity_sig_opts verify_args = {0};
1247	struct dm_arg_set as;
1248	unsigned int num;
 
1249	unsigned long long num_ll;
1250	int r;
1251	int i;
1252	sector_t hash_position;
1253	char dummy;
1254	char *root_hash_digest_to_validate;
1255
1256	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1257	if (!v) {
1258		ti->error = "Cannot allocate verity structure";
1259		return -ENOMEM;
1260	}
1261	ti->private = v;
1262	v->ti = ti;
1263
1264	r = verity_fec_ctr_alloc(v);
1265	if (r)
1266		goto bad;
1267
1268	if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) {
1269		ti->error = "Device must be readonly";
1270		r = -EINVAL;
1271		goto bad;
1272	}
1273
1274	if (argc < 10) {
1275		ti->error = "Not enough arguments";
1276		r = -EINVAL;
1277		goto bad;
1278	}
1279
1280	/* Parse optional parameters that modify primary args */
1281	if (argc > 10) {
1282		as.argc = argc - 10;
1283		as.argv = argv + 10;
1284		r = verity_parse_opt_args(&as, v, &verify_args, true);
1285		if (r < 0)
1286			goto bad;
1287	}
1288
1289	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1290	    num > 1) {
1291		ti->error = "Invalid version";
1292		r = -EINVAL;
1293		goto bad;
1294	}
1295	v->version = num;
1296
1297	r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev);
1298	if (r) {
1299		ti->error = "Data device lookup failed";
1300		goto bad;
1301	}
1302
1303	r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev);
1304	if (r) {
1305		ti->error = "Hash device lookup failed";
1306		goto bad;
1307	}
1308
1309	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1310	    !num || (num & (num - 1)) ||
1311	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1312	    num > PAGE_SIZE) {
1313		ti->error = "Invalid data device block size";
1314		r = -EINVAL;
1315		goto bad;
1316	}
1317	v->data_dev_block_bits = __ffs(num);
1318
1319	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1320	    !num || (num & (num - 1)) ||
1321	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1322	    num > INT_MAX) {
1323		ti->error = "Invalid hash device block size";
1324		r = -EINVAL;
1325		goto bad;
1326	}
1327	v->hash_dev_block_bits = __ffs(num);
1328
1329	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1330	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1331	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1332		ti->error = "Invalid data blocks";
1333		r = -EINVAL;
1334		goto bad;
1335	}
1336	v->data_blocks = num_ll;
1337
1338	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1339		ti->error = "Data device is too small";
1340		r = -EINVAL;
1341		goto bad;
1342	}
1343
1344	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1345	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1346	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1347		ti->error = "Invalid hash start";
1348		r = -EINVAL;
1349		goto bad;
1350	}
1351	v->hash_start = num_ll;
1352
1353	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1354	if (!v->alg_name) {
1355		ti->error = "Cannot allocate algorithm name";
1356		r = -ENOMEM;
1357		goto bad;
1358	}
1359
1360	v->tfm = crypto_alloc_ahash(v->alg_name, 0,
1361				    v->use_bh_wq ? CRYPTO_ALG_ASYNC : 0);
1362	if (IS_ERR(v->tfm)) {
1363		ti->error = "Cannot initialize hash function";
1364		r = PTR_ERR(v->tfm);
1365		v->tfm = NULL;
1366		goto bad;
1367	}
1368
1369	/*
1370	 * dm-verity performance can vary greatly depending on which hash
1371	 * algorithm implementation is used.  Help people debug performance
1372	 * problems by logging the ->cra_driver_name.
1373	 */
1374	DMINFO("%s using implementation \"%s\"", v->alg_name,
1375	       crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1376
1377	v->digest_size = crypto_ahash_digestsize(v->tfm);
1378	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1379		ti->error = "Digest size too big";
1380		r = -EINVAL;
1381		goto bad;
1382	}
1383	v->ahash_reqsize = sizeof(struct ahash_request) +
1384		crypto_ahash_reqsize(v->tfm);
1385
1386	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1387	if (!v->root_digest) {
1388		ti->error = "Cannot allocate root digest";
1389		r = -ENOMEM;
1390		goto bad;
1391	}
1392	if (strlen(argv[8]) != v->digest_size * 2 ||
1393	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1394		ti->error = "Invalid root digest";
1395		r = -EINVAL;
1396		goto bad;
1397	}
1398	root_hash_digest_to_validate = argv[8];
1399
1400	if (strcmp(argv[9], "-")) {
1401		v->salt_size = strlen(argv[9]) / 2;
1402		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1403		if (!v->salt) {
1404			ti->error = "Cannot allocate salt";
1405			r = -ENOMEM;
1406			goto bad;
1407		}
1408		if (strlen(argv[9]) != v->salt_size * 2 ||
1409		    hex2bin(v->salt, argv[9], v->salt_size)) {
1410			ti->error = "Invalid salt";
1411			r = -EINVAL;
1412			goto bad;
1413		}
1414	}
1415
1416	argv += 10;
1417	argc -= 10;
1418
1419	/* Optional parameters */
1420	if (argc) {
1421		as.argc = argc;
1422		as.argv = argv;
1423		r = verity_parse_opt_args(&as, v, &verify_args, false);
1424		if (r < 0)
1425			goto bad;
1426	}
1427
1428	/* Root hash signature is  a optional parameter*/
1429	r = verity_verify_root_hash(root_hash_digest_to_validate,
1430				    strlen(root_hash_digest_to_validate),
1431				    verify_args.sig,
1432				    verify_args.sig_size);
1433	if (r < 0) {
1434		ti->error = "Root hash verification failed";
1435		goto bad;
1436	}
1437	v->hash_per_block_bits =
1438		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1439
1440	v->levels = 0;
1441	if (v->data_blocks)
1442		while (v->hash_per_block_bits * v->levels < 64 &&
1443		       (unsigned long long)(v->data_blocks - 1) >>
1444		       (v->hash_per_block_bits * v->levels))
1445			v->levels++;
1446
1447	if (v->levels > DM_VERITY_MAX_LEVELS) {
1448		ti->error = "Too many tree levels";
1449		r = -E2BIG;
1450		goto bad;
1451	}
1452
1453	hash_position = v->hash_start;
1454	for (i = v->levels - 1; i >= 0; i--) {
1455		sector_t s;
1456
1457		v->hash_level_block[i] = hash_position;
1458		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1459					>> ((i + 1) * v->hash_per_block_bits);
1460		if (hash_position + s < hash_position) {
1461			ti->error = "Hash device offset overflow";
1462			r = -E2BIG;
1463			goto bad;
1464		}
1465		hash_position += s;
1466	}
1467	v->hash_blocks = hash_position;
1468
1469	r = mempool_init_page_pool(&v->recheck_pool, 1, 0);
1470	if (unlikely(r)) {
1471		ti->error = "Cannot allocate mempool";
1472		goto bad;
1473	}
1474
1475	v->io = dm_io_client_create();
1476	if (IS_ERR(v->io)) {
1477		r = PTR_ERR(v->io);
1478		v->io = NULL;
1479		ti->error = "Cannot allocate dm io";
1480		goto bad;
1481	}
1482
1483	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1484		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1485		dm_bufio_alloc_callback, NULL,
1486		v->use_bh_wq ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1487	if (IS_ERR(v->bufio)) {
1488		ti->error = "Cannot initialize dm-bufio";
1489		r = PTR_ERR(v->bufio);
1490		v->bufio = NULL;
1491		goto bad;
1492	}
1493
1494	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1495		ti->error = "Hash device is too small";
1496		r = -E2BIG;
1497		goto bad;
1498	}
1499
 
 
1500	/*
1501	 * Using WQ_HIGHPRI improves throughput and completion latency by
1502	 * reducing wait times when reading from a dm-verity device.
1503	 *
1504	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1505	 * allows verify_wq to preempt softirq since verification in BH workqueue
1506	 * will fall-back to using it for error handling (or if the bufio cache
1507	 * doesn't have required hashes).
1508	 */
1509	v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
 
1510	if (!v->verify_wq) {
1511		ti->error = "Cannot allocate workqueue";
1512		r = -ENOMEM;
1513		goto bad;
1514	}
1515
1516	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1517				v->ahash_reqsize + v->digest_size * 2;
1518
1519	r = verity_fec_ctr(v);
1520	if (r)
1521		goto bad;
1522
1523	ti->per_io_data_size = roundup(ti->per_io_data_size,
1524				       __alignof__(struct dm_verity_io));
1525
1526	verity_verify_sig_opts_cleanup(&verify_args);
1527
1528	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
1529
1530	return 0;
1531
1532bad:
1533
1534	verity_verify_sig_opts_cleanup(&verify_args);
1535	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
1536	verity_dtr(ti);
1537
1538	return r;
1539}
1540
1541/*
1542 * Check whether a DM target is a verity target.
1543 */
1544bool dm_is_verity_target(struct dm_target *ti)
1545{
1546	return ti->type->module == THIS_MODULE;
1547}
1548
1549/*
1550 * Get the verity mode (error behavior) of a verity target.
1551 *
1552 * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1553 * target.
1554 */
1555int dm_verity_get_mode(struct dm_target *ti)
1556{
1557	struct dm_verity *v = ti->private;
1558
1559	if (!dm_is_verity_target(ti))
1560		return -EINVAL;
1561
1562	return v->mode;
1563}
1564
1565/*
1566 * Get the root digest of a verity target.
1567 *
1568 * Returns a copy of the root digest, the caller is responsible for
1569 * freeing the memory of the digest.
1570 */
1571int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1572{
1573	struct dm_verity *v = ti->private;
1574
1575	if (!dm_is_verity_target(ti))
1576		return -EINVAL;
1577
1578	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1579	if (*root_digest == NULL)
1580		return -ENOMEM;
1581
1582	*digest_size = v->digest_size;
1583
1584	return 0;
1585}
1586
1587static struct target_type verity_target = {
1588	.name		= "verity",
1589	.features	= DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1590	.version	= {1, 10, 0},
1591	.module		= THIS_MODULE,
1592	.ctr		= verity_ctr,
1593	.dtr		= verity_dtr,
1594	.map		= verity_map,
1595	.status		= verity_status,
1596	.prepare_ioctl	= verity_prepare_ioctl,
1597	.iterate_devices = verity_iterate_devices,
1598	.io_hints	= verity_io_hints,
1599};
1600module_dm(verity);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1601
1602MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1603MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1604MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1605MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1606MODULE_LICENSE("GPL");