Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 Red Hat, Inc.
4 *
5 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 *
7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8 *
9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11 * hash device. Setting this greatly improves performance when data and hash
12 * are on the same disk on different partitions on devices with poor random
13 * access behavior.
14 */
15
16#include "dm-verity.h"
17#include "dm-verity-fec.h"
18#include "dm-verity-verify-sig.h"
19#include <linux/module.h>
20#include <linux/reboot.h>
21#include <linux/scatterlist.h>
22#include <linux/string.h>
23#include <linux/jump_label.h>
24
25#define DM_MSG_PREFIX "verity"
26
27#define DM_VERITY_ENV_LENGTH 42
28#define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR"
29
30#define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
31
32#define DM_VERITY_MAX_CORRUPTED_ERRS 100
33
34#define DM_VERITY_OPT_LOGGING "ignore_corruption"
35#define DM_VERITY_OPT_RESTART "restart_on_corruption"
36#define DM_VERITY_OPT_PANIC "panic_on_corruption"
37#define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks"
38#define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once"
39#define DM_VERITY_OPT_TASKLET_VERIFY "try_verify_in_tasklet"
40
41#define DM_VERITY_OPTS_MAX (4 + DM_VERITY_OPTS_FEC + \
42 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
43
44static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
45
46module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
47
48static DEFINE_STATIC_KEY_FALSE(use_tasklet_enabled);
49
50struct dm_verity_prefetch_work {
51 struct work_struct work;
52 struct dm_verity *v;
53 sector_t block;
54 unsigned n_blocks;
55};
56
57/*
58 * Auxiliary structure appended to each dm-bufio buffer. If the value
59 * hash_verified is nonzero, hash of the block has been verified.
60 *
61 * The variable hash_verified is set to 0 when allocating the buffer, then
62 * it can be changed to 1 and it is never reset to 0 again.
63 *
64 * There is no lock around this value, a race condition can at worst cause
65 * that multiple processes verify the hash of the same buffer simultaneously
66 * and write 1 to hash_verified simultaneously.
67 * This condition is harmless, so we don't need locking.
68 */
69struct buffer_aux {
70 int hash_verified;
71};
72
73/*
74 * Initialize struct buffer_aux for a freshly created buffer.
75 */
76static void dm_bufio_alloc_callback(struct dm_buffer *buf)
77{
78 struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
79
80 aux->hash_verified = 0;
81}
82
83/*
84 * Translate input sector number to the sector number on the target device.
85 */
86static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
87{
88 return v->data_start + dm_target_offset(v->ti, bi_sector);
89}
90
91/*
92 * Return hash position of a specified block at a specified tree level
93 * (0 is the lowest level).
94 * The lowest "hash_per_block_bits"-bits of the result denote hash position
95 * inside a hash block. The remaining bits denote location of the hash block.
96 */
97static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
98 int level)
99{
100 return block >> (level * v->hash_per_block_bits);
101}
102
103static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
104 const u8 *data, size_t len,
105 struct crypto_wait *wait)
106{
107 struct scatterlist sg;
108
109 if (likely(!is_vmalloc_addr(data))) {
110 sg_init_one(&sg, data, len);
111 ahash_request_set_crypt(req, &sg, NULL, len);
112 return crypto_wait_req(crypto_ahash_update(req), wait);
113 } else {
114 do {
115 int r;
116 size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
117 flush_kernel_vmap_range((void *)data, this_step);
118 sg_init_table(&sg, 1);
119 sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
120 ahash_request_set_crypt(req, &sg, NULL, this_step);
121 r = crypto_wait_req(crypto_ahash_update(req), wait);
122 if (unlikely(r))
123 return r;
124 data += this_step;
125 len -= this_step;
126 } while (len);
127 return 0;
128 }
129}
130
131/*
132 * Wrapper for crypto_ahash_init, which handles verity salting.
133 */
134static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
135 struct crypto_wait *wait)
136{
137 int r;
138
139 ahash_request_set_tfm(req, v->tfm);
140 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
141 CRYPTO_TFM_REQ_MAY_BACKLOG,
142 crypto_req_done, (void *)wait);
143 crypto_init_wait(wait);
144
145 r = crypto_wait_req(crypto_ahash_init(req), wait);
146
147 if (unlikely(r < 0)) {
148 DMERR("crypto_ahash_init failed: %d", r);
149 return r;
150 }
151
152 if (likely(v->salt_size && (v->version >= 1)))
153 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
154
155 return r;
156}
157
158static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
159 u8 *digest, struct crypto_wait *wait)
160{
161 int r;
162
163 if (unlikely(v->salt_size && (!v->version))) {
164 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
165
166 if (r < 0) {
167 DMERR("verity_hash_final failed updating salt: %d", r);
168 goto out;
169 }
170 }
171
172 ahash_request_set_crypt(req, NULL, digest, 0);
173 r = crypto_wait_req(crypto_ahash_final(req), wait);
174out:
175 return r;
176}
177
178int verity_hash(struct dm_verity *v, struct ahash_request *req,
179 const u8 *data, size_t len, u8 *digest)
180{
181 int r;
182 struct crypto_wait wait;
183
184 r = verity_hash_init(v, req, &wait);
185 if (unlikely(r < 0))
186 goto out;
187
188 r = verity_hash_update(v, req, data, len, &wait);
189 if (unlikely(r < 0))
190 goto out;
191
192 r = verity_hash_final(v, req, digest, &wait);
193
194out:
195 return r;
196}
197
198static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
199 sector_t *hash_block, unsigned *offset)
200{
201 sector_t position = verity_position_at_level(v, block, level);
202 unsigned idx;
203
204 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
205
206 if (!offset)
207 return;
208
209 idx = position & ((1 << v->hash_per_block_bits) - 1);
210 if (!v->version)
211 *offset = idx * v->digest_size;
212 else
213 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
214}
215
216/*
217 * Handle verification errors.
218 */
219static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
220 unsigned long long block)
221{
222 char verity_env[DM_VERITY_ENV_LENGTH];
223 char *envp[] = { verity_env, NULL };
224 const char *type_str = "";
225 struct mapped_device *md = dm_table_get_md(v->ti->table);
226
227 /* Corruption should be visible in device status in all modes */
228 v->hash_failed = true;
229
230 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
231 goto out;
232
233 v->corrupted_errs++;
234
235 switch (type) {
236 case DM_VERITY_BLOCK_TYPE_DATA:
237 type_str = "data";
238 break;
239 case DM_VERITY_BLOCK_TYPE_METADATA:
240 type_str = "metadata";
241 break;
242 default:
243 BUG();
244 }
245
246 DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
247 type_str, block);
248
249 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
250 DMERR("%s: reached maximum errors", v->data_dev->name);
251
252 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
253 DM_VERITY_ENV_VAR_NAME, type, block);
254
255 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
256
257out:
258 if (v->mode == DM_VERITY_MODE_LOGGING)
259 return 0;
260
261 if (v->mode == DM_VERITY_MODE_RESTART)
262 kernel_restart("dm-verity device corrupted");
263
264 if (v->mode == DM_VERITY_MODE_PANIC)
265 panic("dm-verity device corrupted");
266
267 return 1;
268}
269
270/*
271 * Verify hash of a metadata block pertaining to the specified data block
272 * ("block" argument) at a specified level ("level" argument).
273 *
274 * On successful return, verity_io_want_digest(v, io) contains the hash value
275 * for a lower tree level or for the data block (if we're at the lowest level).
276 *
277 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
278 * If "skip_unverified" is false, unverified buffer is hashed and verified
279 * against current value of verity_io_want_digest(v, io).
280 */
281static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
282 sector_t block, int level, bool skip_unverified,
283 u8 *want_digest)
284{
285 struct dm_buffer *buf;
286 struct buffer_aux *aux;
287 u8 *data;
288 int r;
289 sector_t hash_block;
290 unsigned offset;
291
292 verity_hash_at_level(v, block, level, &hash_block, &offset);
293
294 if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
295 data = dm_bufio_get(v->bufio, hash_block, &buf);
296 if (data == NULL) {
297 /*
298 * In tasklet and the hash was not in the bufio cache.
299 * Return early and resume execution from a work-queue
300 * to read the hash from disk.
301 */
302 return -EAGAIN;
303 }
304 } else
305 data = dm_bufio_read(v->bufio, hash_block, &buf);
306
307 if (IS_ERR(data))
308 return PTR_ERR(data);
309
310 aux = dm_bufio_get_aux_data(buf);
311
312 if (!aux->hash_verified) {
313 if (skip_unverified) {
314 r = 1;
315 goto release_ret_r;
316 }
317
318 r = verity_hash(v, verity_io_hash_req(v, io),
319 data, 1 << v->hash_dev_block_bits,
320 verity_io_real_digest(v, io));
321 if (unlikely(r < 0))
322 goto release_ret_r;
323
324 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
325 v->digest_size) == 0))
326 aux->hash_verified = 1;
327 else if (static_branch_unlikely(&use_tasklet_enabled) &&
328 io->in_tasklet) {
329 /*
330 * Error handling code (FEC included) cannot be run in a
331 * tasklet since it may sleep, so fallback to work-queue.
332 */
333 r = -EAGAIN;
334 goto release_ret_r;
335 }
336 else if (verity_fec_decode(v, io,
337 DM_VERITY_BLOCK_TYPE_METADATA,
338 hash_block, data, NULL) == 0)
339 aux->hash_verified = 1;
340 else if (verity_handle_err(v,
341 DM_VERITY_BLOCK_TYPE_METADATA,
342 hash_block)) {
343 r = -EIO;
344 goto release_ret_r;
345 }
346 }
347
348 data += offset;
349 memcpy(want_digest, data, v->digest_size);
350 r = 0;
351
352release_ret_r:
353 dm_bufio_release(buf);
354 return r;
355}
356
357/*
358 * Find a hash for a given block, write it to digest and verify the integrity
359 * of the hash tree if necessary.
360 */
361int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
362 sector_t block, u8 *digest, bool *is_zero)
363{
364 int r = 0, i;
365
366 if (likely(v->levels)) {
367 /*
368 * First, we try to get the requested hash for
369 * the current block. If the hash block itself is
370 * verified, zero is returned. If it isn't, this
371 * function returns 1 and we fall back to whole
372 * chain verification.
373 */
374 r = verity_verify_level(v, io, block, 0, true, digest);
375 if (likely(r <= 0))
376 goto out;
377 }
378
379 memcpy(digest, v->root_digest, v->digest_size);
380
381 for (i = v->levels - 1; i >= 0; i--) {
382 r = verity_verify_level(v, io, block, i, false, digest);
383 if (unlikely(r))
384 goto out;
385 }
386out:
387 if (!r && v->zero_digest)
388 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
389 else
390 *is_zero = false;
391
392 return r;
393}
394
395/*
396 * Calculates the digest for the given bio
397 */
398static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
399 struct bvec_iter *iter, struct crypto_wait *wait)
400{
401 unsigned int todo = 1 << v->data_dev_block_bits;
402 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
403 struct scatterlist sg;
404 struct ahash_request *req = verity_io_hash_req(v, io);
405
406 do {
407 int r;
408 unsigned int len;
409 struct bio_vec bv = bio_iter_iovec(bio, *iter);
410
411 sg_init_table(&sg, 1);
412
413 len = bv.bv_len;
414
415 if (likely(len >= todo))
416 len = todo;
417 /*
418 * Operating on a single page at a time looks suboptimal
419 * until you consider the typical block size is 4,096B.
420 * Going through this loops twice should be very rare.
421 */
422 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
423 ahash_request_set_crypt(req, &sg, NULL, len);
424 r = crypto_wait_req(crypto_ahash_update(req), wait);
425
426 if (unlikely(r < 0)) {
427 DMERR("verity_for_io_block crypto op failed: %d", r);
428 return r;
429 }
430
431 bio_advance_iter(bio, iter, len);
432 todo -= len;
433 } while (todo);
434
435 return 0;
436}
437
438/*
439 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
440 * starting from iter.
441 */
442int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
443 struct bvec_iter *iter,
444 int (*process)(struct dm_verity *v,
445 struct dm_verity_io *io, u8 *data,
446 size_t len))
447{
448 unsigned todo = 1 << v->data_dev_block_bits;
449 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
450
451 do {
452 int r;
453 u8 *page;
454 unsigned len;
455 struct bio_vec bv = bio_iter_iovec(bio, *iter);
456
457 page = bvec_kmap_local(&bv);
458 len = bv.bv_len;
459
460 if (likely(len >= todo))
461 len = todo;
462
463 r = process(v, io, page, len);
464 kunmap_local(page);
465
466 if (r < 0)
467 return r;
468
469 bio_advance_iter(bio, iter, len);
470 todo -= len;
471 } while (todo);
472
473 return 0;
474}
475
476static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
477 u8 *data, size_t len)
478{
479 memset(data, 0, len);
480 return 0;
481}
482
483/*
484 * Moves the bio iter one data block forward.
485 */
486static inline void verity_bv_skip_block(struct dm_verity *v,
487 struct dm_verity_io *io,
488 struct bvec_iter *iter)
489{
490 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
491
492 bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
493}
494
495/*
496 * Verify one "dm_verity_io" structure.
497 */
498static int verity_verify_io(struct dm_verity_io *io)
499{
500 bool is_zero;
501 struct dm_verity *v = io->v;
502#if defined(CONFIG_DM_VERITY_FEC)
503 struct bvec_iter start;
504#endif
505 struct bvec_iter iter_copy;
506 struct bvec_iter *iter;
507 struct crypto_wait wait;
508 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
509 unsigned int b;
510
511 if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
512 /*
513 * Copy the iterator in case we need to restart
514 * verification in a work-queue.
515 */
516 iter_copy = io->iter;
517 iter = &iter_copy;
518 } else
519 iter = &io->iter;
520
521 for (b = 0; b < io->n_blocks; b++) {
522 int r;
523 sector_t cur_block = io->block + b;
524 struct ahash_request *req = verity_io_hash_req(v, io);
525
526 if (v->validated_blocks &&
527 likely(test_bit(cur_block, v->validated_blocks))) {
528 verity_bv_skip_block(v, io, iter);
529 continue;
530 }
531
532 r = verity_hash_for_block(v, io, cur_block,
533 verity_io_want_digest(v, io),
534 &is_zero);
535 if (unlikely(r < 0))
536 return r;
537
538 if (is_zero) {
539 /*
540 * If we expect a zero block, don't validate, just
541 * return zeros.
542 */
543 r = verity_for_bv_block(v, io, iter,
544 verity_bv_zero);
545 if (unlikely(r < 0))
546 return r;
547
548 continue;
549 }
550
551 r = verity_hash_init(v, req, &wait);
552 if (unlikely(r < 0))
553 return r;
554
555#if defined(CONFIG_DM_VERITY_FEC)
556 if (verity_fec_is_enabled(v))
557 start = *iter;
558#endif
559 r = verity_for_io_block(v, io, iter, &wait);
560 if (unlikely(r < 0))
561 return r;
562
563 r = verity_hash_final(v, req, verity_io_real_digest(v, io),
564 &wait);
565 if (unlikely(r < 0))
566 return r;
567
568 if (likely(memcmp(verity_io_real_digest(v, io),
569 verity_io_want_digest(v, io), v->digest_size) == 0)) {
570 if (v->validated_blocks)
571 set_bit(cur_block, v->validated_blocks);
572 continue;
573 } else if (static_branch_unlikely(&use_tasklet_enabled) &&
574 io->in_tasklet) {
575 /*
576 * Error handling code (FEC included) cannot be run in a
577 * tasklet since it may sleep, so fallback to work-queue.
578 */
579 return -EAGAIN;
580#if defined(CONFIG_DM_VERITY_FEC)
581 } else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
582 cur_block, NULL, &start) == 0) {
583 continue;
584#endif
585 } else {
586 if (bio->bi_status) {
587 /*
588 * Error correction failed; Just return error
589 */
590 return -EIO;
591 }
592 if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
593 cur_block))
594 return -EIO;
595 }
596 }
597
598 return 0;
599}
600
601/*
602 * Skip verity work in response to I/O error when system is shutting down.
603 */
604static inline bool verity_is_system_shutting_down(void)
605{
606 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
607 || system_state == SYSTEM_RESTART;
608}
609
610/*
611 * End one "io" structure with a given error.
612 */
613static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
614{
615 struct dm_verity *v = io->v;
616 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
617
618 bio->bi_end_io = io->orig_bi_end_io;
619 bio->bi_status = status;
620
621 if (!static_branch_unlikely(&use_tasklet_enabled) || !io->in_tasklet)
622 verity_fec_finish_io(io);
623
624 bio_endio(bio);
625}
626
627static void verity_work(struct work_struct *w)
628{
629 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
630
631 io->in_tasklet = false;
632
633 verity_fec_init_io(io);
634 verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
635}
636
637static void verity_tasklet(unsigned long data)
638{
639 struct dm_verity_io *io = (struct dm_verity_io *)data;
640 int err;
641
642 io->in_tasklet = true;
643 err = verity_verify_io(io);
644 if (err == -EAGAIN) {
645 /* fallback to retrying with work-queue */
646 INIT_WORK(&io->work, verity_work);
647 queue_work(io->v->verify_wq, &io->work);
648 return;
649 }
650
651 verity_finish_io(io, errno_to_blk_status(err));
652}
653
654static void verity_end_io(struct bio *bio)
655{
656 struct dm_verity_io *io = bio->bi_private;
657
658 if (bio->bi_status &&
659 (!verity_fec_is_enabled(io->v) || verity_is_system_shutting_down())) {
660 verity_finish_io(io, bio->bi_status);
661 return;
662 }
663
664 if (static_branch_unlikely(&use_tasklet_enabled) && io->v->use_tasklet) {
665 tasklet_init(&io->tasklet, verity_tasklet, (unsigned long)io);
666 tasklet_schedule(&io->tasklet);
667 } else {
668 INIT_WORK(&io->work, verity_work);
669 queue_work(io->v->verify_wq, &io->work);
670 }
671}
672
673/*
674 * Prefetch buffers for the specified io.
675 * The root buffer is not prefetched, it is assumed that it will be cached
676 * all the time.
677 */
678static void verity_prefetch_io(struct work_struct *work)
679{
680 struct dm_verity_prefetch_work *pw =
681 container_of(work, struct dm_verity_prefetch_work, work);
682 struct dm_verity *v = pw->v;
683 int i;
684
685 for (i = v->levels - 2; i >= 0; i--) {
686 sector_t hash_block_start;
687 sector_t hash_block_end;
688 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
689 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
690 if (!i) {
691 unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
692
693 cluster >>= v->data_dev_block_bits;
694 if (unlikely(!cluster))
695 goto no_prefetch_cluster;
696
697 if (unlikely(cluster & (cluster - 1)))
698 cluster = 1 << __fls(cluster);
699
700 hash_block_start &= ~(sector_t)(cluster - 1);
701 hash_block_end |= cluster - 1;
702 if (unlikely(hash_block_end >= v->hash_blocks))
703 hash_block_end = v->hash_blocks - 1;
704 }
705no_prefetch_cluster:
706 dm_bufio_prefetch(v->bufio, hash_block_start,
707 hash_block_end - hash_block_start + 1);
708 }
709
710 kfree(pw);
711}
712
713static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
714{
715 sector_t block = io->block;
716 unsigned int n_blocks = io->n_blocks;
717 struct dm_verity_prefetch_work *pw;
718
719 if (v->validated_blocks) {
720 while (n_blocks && test_bit(block, v->validated_blocks)) {
721 block++;
722 n_blocks--;
723 }
724 while (n_blocks && test_bit(block + n_blocks - 1,
725 v->validated_blocks))
726 n_blocks--;
727 if (!n_blocks)
728 return;
729 }
730
731 pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
732 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
733
734 if (!pw)
735 return;
736
737 INIT_WORK(&pw->work, verity_prefetch_io);
738 pw->v = v;
739 pw->block = block;
740 pw->n_blocks = n_blocks;
741 queue_work(v->verify_wq, &pw->work);
742}
743
744/*
745 * Bio map function. It allocates dm_verity_io structure and bio vector and
746 * fills them. Then it issues prefetches and the I/O.
747 */
748static int verity_map(struct dm_target *ti, struct bio *bio)
749{
750 struct dm_verity *v = ti->private;
751 struct dm_verity_io *io;
752
753 bio_set_dev(bio, v->data_dev->bdev);
754 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
755
756 if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
757 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
758 DMERR_LIMIT("unaligned io");
759 return DM_MAPIO_KILL;
760 }
761
762 if (bio_end_sector(bio) >>
763 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
764 DMERR_LIMIT("io out of range");
765 return DM_MAPIO_KILL;
766 }
767
768 if (bio_data_dir(bio) == WRITE)
769 return DM_MAPIO_KILL;
770
771 io = dm_per_bio_data(bio, ti->per_io_data_size);
772 io->v = v;
773 io->orig_bi_end_io = bio->bi_end_io;
774 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
775 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
776
777 bio->bi_end_io = verity_end_io;
778 bio->bi_private = io;
779 io->iter = bio->bi_iter;
780
781 verity_submit_prefetch(v, io);
782
783 submit_bio_noacct(bio);
784
785 return DM_MAPIO_SUBMITTED;
786}
787
788/*
789 * Status: V (valid) or C (corruption found)
790 */
791static void verity_status(struct dm_target *ti, status_type_t type,
792 unsigned status_flags, char *result, unsigned maxlen)
793{
794 struct dm_verity *v = ti->private;
795 unsigned args = 0;
796 unsigned sz = 0;
797 unsigned x;
798
799 switch (type) {
800 case STATUSTYPE_INFO:
801 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
802 break;
803 case STATUSTYPE_TABLE:
804 DMEMIT("%u %s %s %u %u %llu %llu %s ",
805 v->version,
806 v->data_dev->name,
807 v->hash_dev->name,
808 1 << v->data_dev_block_bits,
809 1 << v->hash_dev_block_bits,
810 (unsigned long long)v->data_blocks,
811 (unsigned long long)v->hash_start,
812 v->alg_name
813 );
814 for (x = 0; x < v->digest_size; x++)
815 DMEMIT("%02x", v->root_digest[x]);
816 DMEMIT(" ");
817 if (!v->salt_size)
818 DMEMIT("-");
819 else
820 for (x = 0; x < v->salt_size; x++)
821 DMEMIT("%02x", v->salt[x]);
822 if (v->mode != DM_VERITY_MODE_EIO)
823 args++;
824 if (verity_fec_is_enabled(v))
825 args += DM_VERITY_OPTS_FEC;
826 if (v->zero_digest)
827 args++;
828 if (v->validated_blocks)
829 args++;
830 if (v->use_tasklet)
831 args++;
832 if (v->signature_key_desc)
833 args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
834 if (!args)
835 return;
836 DMEMIT(" %u", args);
837 if (v->mode != DM_VERITY_MODE_EIO) {
838 DMEMIT(" ");
839 switch (v->mode) {
840 case DM_VERITY_MODE_LOGGING:
841 DMEMIT(DM_VERITY_OPT_LOGGING);
842 break;
843 case DM_VERITY_MODE_RESTART:
844 DMEMIT(DM_VERITY_OPT_RESTART);
845 break;
846 case DM_VERITY_MODE_PANIC:
847 DMEMIT(DM_VERITY_OPT_PANIC);
848 break;
849 default:
850 BUG();
851 }
852 }
853 if (v->zero_digest)
854 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
855 if (v->validated_blocks)
856 DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
857 if (v->use_tasklet)
858 DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
859 sz = verity_fec_status_table(v, sz, result, maxlen);
860 if (v->signature_key_desc)
861 DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
862 " %s", v->signature_key_desc);
863 break;
864
865 case STATUSTYPE_IMA:
866 DMEMIT_TARGET_NAME_VERSION(ti->type);
867 DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
868 DMEMIT(",verity_version=%u", v->version);
869 DMEMIT(",data_device_name=%s", v->data_dev->name);
870 DMEMIT(",hash_device_name=%s", v->hash_dev->name);
871 DMEMIT(",verity_algorithm=%s", v->alg_name);
872
873 DMEMIT(",root_digest=");
874 for (x = 0; x < v->digest_size; x++)
875 DMEMIT("%02x", v->root_digest[x]);
876
877 DMEMIT(",salt=");
878 if (!v->salt_size)
879 DMEMIT("-");
880 else
881 for (x = 0; x < v->salt_size; x++)
882 DMEMIT("%02x", v->salt[x]);
883
884 DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
885 DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
886 if (v->signature_key_desc)
887 DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
888
889 if (v->mode != DM_VERITY_MODE_EIO) {
890 DMEMIT(",verity_mode=");
891 switch (v->mode) {
892 case DM_VERITY_MODE_LOGGING:
893 DMEMIT(DM_VERITY_OPT_LOGGING);
894 break;
895 case DM_VERITY_MODE_RESTART:
896 DMEMIT(DM_VERITY_OPT_RESTART);
897 break;
898 case DM_VERITY_MODE_PANIC:
899 DMEMIT(DM_VERITY_OPT_PANIC);
900 break;
901 default:
902 DMEMIT("invalid");
903 }
904 }
905 DMEMIT(";");
906 break;
907 }
908}
909
910static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
911{
912 struct dm_verity *v = ti->private;
913
914 *bdev = v->data_dev->bdev;
915
916 if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
917 return 1;
918 return 0;
919}
920
921static int verity_iterate_devices(struct dm_target *ti,
922 iterate_devices_callout_fn fn, void *data)
923{
924 struct dm_verity *v = ti->private;
925
926 return fn(ti, v->data_dev, v->data_start, ti->len, data);
927}
928
929static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
930{
931 struct dm_verity *v = ti->private;
932
933 if (limits->logical_block_size < 1 << v->data_dev_block_bits)
934 limits->logical_block_size = 1 << v->data_dev_block_bits;
935
936 if (limits->physical_block_size < 1 << v->data_dev_block_bits)
937 limits->physical_block_size = 1 << v->data_dev_block_bits;
938
939 blk_limits_io_min(limits, limits->logical_block_size);
940}
941
942static void verity_dtr(struct dm_target *ti)
943{
944 struct dm_verity *v = ti->private;
945
946 if (v->verify_wq)
947 destroy_workqueue(v->verify_wq);
948
949 if (v->bufio)
950 dm_bufio_client_destroy(v->bufio);
951
952 kvfree(v->validated_blocks);
953 kfree(v->salt);
954 kfree(v->root_digest);
955 kfree(v->zero_digest);
956
957 if (v->tfm)
958 crypto_free_ahash(v->tfm);
959
960 kfree(v->alg_name);
961
962 if (v->hash_dev)
963 dm_put_device(ti, v->hash_dev);
964
965 if (v->data_dev)
966 dm_put_device(ti, v->data_dev);
967
968 verity_fec_dtr(v);
969
970 kfree(v->signature_key_desc);
971
972 if (v->use_tasklet)
973 static_branch_dec(&use_tasklet_enabled);
974
975 kfree(v);
976}
977
978static int verity_alloc_most_once(struct dm_verity *v)
979{
980 struct dm_target *ti = v->ti;
981
982 /* the bitset can only handle INT_MAX blocks */
983 if (v->data_blocks > INT_MAX) {
984 ti->error = "device too large to use check_at_most_once";
985 return -E2BIG;
986 }
987
988 v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
989 sizeof(unsigned long),
990 GFP_KERNEL);
991 if (!v->validated_blocks) {
992 ti->error = "failed to allocate bitset for check_at_most_once";
993 return -ENOMEM;
994 }
995
996 return 0;
997}
998
999static int verity_alloc_zero_digest(struct dm_verity *v)
1000{
1001 int r = -ENOMEM;
1002 struct ahash_request *req;
1003 u8 *zero_data;
1004
1005 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1006
1007 if (!v->zero_digest)
1008 return r;
1009
1010 req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
1011
1012 if (!req)
1013 return r; /* verity_dtr will free zero_digest */
1014
1015 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1016
1017 if (!zero_data)
1018 goto out;
1019
1020 r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
1021 v->zero_digest);
1022
1023out:
1024 kfree(req);
1025 kfree(zero_data);
1026
1027 return r;
1028}
1029
1030static inline bool verity_is_verity_mode(const char *arg_name)
1031{
1032 return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1033 !strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1034 !strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1035}
1036
1037static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1038{
1039 if (v->mode)
1040 return -EINVAL;
1041
1042 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1043 v->mode = DM_VERITY_MODE_LOGGING;
1044 else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1045 v->mode = DM_VERITY_MODE_RESTART;
1046 else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1047 v->mode = DM_VERITY_MODE_PANIC;
1048
1049 return 0;
1050}
1051
1052static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1053 struct dm_verity_sig_opts *verify_args,
1054 bool only_modifier_opts)
1055{
1056 int r = 0;
1057 unsigned argc;
1058 struct dm_target *ti = v->ti;
1059 const char *arg_name;
1060
1061 static const struct dm_arg _args[] = {
1062 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1063 };
1064
1065 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1066 if (r)
1067 return -EINVAL;
1068
1069 if (!argc)
1070 return 0;
1071
1072 do {
1073 arg_name = dm_shift_arg(as);
1074 argc--;
1075
1076 if (verity_is_verity_mode(arg_name)) {
1077 if (only_modifier_opts)
1078 continue;
1079 r = verity_parse_verity_mode(v, arg_name);
1080 if (r) {
1081 ti->error = "Conflicting error handling parameters";
1082 return r;
1083 }
1084 continue;
1085
1086 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1087 if (only_modifier_opts)
1088 continue;
1089 r = verity_alloc_zero_digest(v);
1090 if (r) {
1091 ti->error = "Cannot allocate zero digest";
1092 return r;
1093 }
1094 continue;
1095
1096 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1097 if (only_modifier_opts)
1098 continue;
1099 r = verity_alloc_most_once(v);
1100 if (r)
1101 return r;
1102 continue;
1103
1104 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1105 v->use_tasklet = true;
1106 static_branch_inc(&use_tasklet_enabled);
1107 continue;
1108
1109 } else if (verity_is_fec_opt_arg(arg_name)) {
1110 if (only_modifier_opts)
1111 continue;
1112 r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1113 if (r)
1114 return r;
1115 continue;
1116
1117 } else if (verity_verify_is_sig_opt_arg(arg_name)) {
1118 if (only_modifier_opts)
1119 continue;
1120 r = verity_verify_sig_parse_opt_args(as, v,
1121 verify_args,
1122 &argc, arg_name);
1123 if (r)
1124 return r;
1125 continue;
1126
1127 } else if (only_modifier_opts) {
1128 /*
1129 * Ignore unrecognized opt, could easily be an extra
1130 * argument to an option whose parsing was skipped.
1131 * Normal parsing (@only_modifier_opts=false) will
1132 * properly parse all options (and their extra args).
1133 */
1134 continue;
1135 }
1136
1137 DMERR("Unrecognized verity feature request: %s", arg_name);
1138 ti->error = "Unrecognized verity feature request";
1139 return -EINVAL;
1140 } while (argc && !r);
1141
1142 return r;
1143}
1144
1145/*
1146 * Target parameters:
1147 * <version> The current format is version 1.
1148 * Vsn 0 is compatible with original Chromium OS releases.
1149 * <data device>
1150 * <hash device>
1151 * <data block size>
1152 * <hash block size>
1153 * <the number of data blocks>
1154 * <hash start block>
1155 * <algorithm>
1156 * <digest>
1157 * <salt> Hex string or "-" if no salt.
1158 */
1159static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
1160{
1161 struct dm_verity *v;
1162 struct dm_verity_sig_opts verify_args = {0};
1163 struct dm_arg_set as;
1164 unsigned int num;
1165 unsigned int wq_flags;
1166 unsigned long long num_ll;
1167 int r;
1168 int i;
1169 sector_t hash_position;
1170 char dummy;
1171 char *root_hash_digest_to_validate;
1172
1173 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1174 if (!v) {
1175 ti->error = "Cannot allocate verity structure";
1176 return -ENOMEM;
1177 }
1178 ti->private = v;
1179 v->ti = ti;
1180
1181 r = verity_fec_ctr_alloc(v);
1182 if (r)
1183 goto bad;
1184
1185 if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
1186 ti->error = "Device must be readonly";
1187 r = -EINVAL;
1188 goto bad;
1189 }
1190
1191 if (argc < 10) {
1192 ti->error = "Not enough arguments";
1193 r = -EINVAL;
1194 goto bad;
1195 }
1196
1197 /* Parse optional parameters that modify primary args */
1198 if (argc > 10) {
1199 as.argc = argc - 10;
1200 as.argv = argv + 10;
1201 r = verity_parse_opt_args(&as, v, &verify_args, true);
1202 if (r < 0)
1203 goto bad;
1204 }
1205
1206 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1207 num > 1) {
1208 ti->error = "Invalid version";
1209 r = -EINVAL;
1210 goto bad;
1211 }
1212 v->version = num;
1213
1214 r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
1215 if (r) {
1216 ti->error = "Data device lookup failed";
1217 goto bad;
1218 }
1219
1220 r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
1221 if (r) {
1222 ti->error = "Hash device lookup failed";
1223 goto bad;
1224 }
1225
1226 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1227 !num || (num & (num - 1)) ||
1228 num < bdev_logical_block_size(v->data_dev->bdev) ||
1229 num > PAGE_SIZE) {
1230 ti->error = "Invalid data device block size";
1231 r = -EINVAL;
1232 goto bad;
1233 }
1234 v->data_dev_block_bits = __ffs(num);
1235
1236 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1237 !num || (num & (num - 1)) ||
1238 num < bdev_logical_block_size(v->hash_dev->bdev) ||
1239 num > INT_MAX) {
1240 ti->error = "Invalid hash device block size";
1241 r = -EINVAL;
1242 goto bad;
1243 }
1244 v->hash_dev_block_bits = __ffs(num);
1245
1246 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1247 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1248 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1249 ti->error = "Invalid data blocks";
1250 r = -EINVAL;
1251 goto bad;
1252 }
1253 v->data_blocks = num_ll;
1254
1255 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1256 ti->error = "Data device is too small";
1257 r = -EINVAL;
1258 goto bad;
1259 }
1260
1261 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1262 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1263 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1264 ti->error = "Invalid hash start";
1265 r = -EINVAL;
1266 goto bad;
1267 }
1268 v->hash_start = num_ll;
1269
1270 v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1271 if (!v->alg_name) {
1272 ti->error = "Cannot allocate algorithm name";
1273 r = -ENOMEM;
1274 goto bad;
1275 }
1276
1277 v->tfm = crypto_alloc_ahash(v->alg_name, 0,
1278 v->use_tasklet ? CRYPTO_ALG_ASYNC : 0);
1279 if (IS_ERR(v->tfm)) {
1280 ti->error = "Cannot initialize hash function";
1281 r = PTR_ERR(v->tfm);
1282 v->tfm = NULL;
1283 goto bad;
1284 }
1285
1286 /*
1287 * dm-verity performance can vary greatly depending on which hash
1288 * algorithm implementation is used. Help people debug performance
1289 * problems by logging the ->cra_driver_name.
1290 */
1291 DMINFO("%s using implementation \"%s\"", v->alg_name,
1292 crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1293
1294 v->digest_size = crypto_ahash_digestsize(v->tfm);
1295 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1296 ti->error = "Digest size too big";
1297 r = -EINVAL;
1298 goto bad;
1299 }
1300 v->ahash_reqsize = sizeof(struct ahash_request) +
1301 crypto_ahash_reqsize(v->tfm);
1302
1303 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1304 if (!v->root_digest) {
1305 ti->error = "Cannot allocate root digest";
1306 r = -ENOMEM;
1307 goto bad;
1308 }
1309 if (strlen(argv[8]) != v->digest_size * 2 ||
1310 hex2bin(v->root_digest, argv[8], v->digest_size)) {
1311 ti->error = "Invalid root digest";
1312 r = -EINVAL;
1313 goto bad;
1314 }
1315 root_hash_digest_to_validate = argv[8];
1316
1317 if (strcmp(argv[9], "-")) {
1318 v->salt_size = strlen(argv[9]) / 2;
1319 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1320 if (!v->salt) {
1321 ti->error = "Cannot allocate salt";
1322 r = -ENOMEM;
1323 goto bad;
1324 }
1325 if (strlen(argv[9]) != v->salt_size * 2 ||
1326 hex2bin(v->salt, argv[9], v->salt_size)) {
1327 ti->error = "Invalid salt";
1328 r = -EINVAL;
1329 goto bad;
1330 }
1331 }
1332
1333 argv += 10;
1334 argc -= 10;
1335
1336 /* Optional parameters */
1337 if (argc) {
1338 as.argc = argc;
1339 as.argv = argv;
1340 r = verity_parse_opt_args(&as, v, &verify_args, false);
1341 if (r < 0)
1342 goto bad;
1343 }
1344
1345 /* Root hash signature is a optional parameter*/
1346 r = verity_verify_root_hash(root_hash_digest_to_validate,
1347 strlen(root_hash_digest_to_validate),
1348 verify_args.sig,
1349 verify_args.sig_size);
1350 if (r < 0) {
1351 ti->error = "Root hash verification failed";
1352 goto bad;
1353 }
1354 v->hash_per_block_bits =
1355 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1356
1357 v->levels = 0;
1358 if (v->data_blocks)
1359 while (v->hash_per_block_bits * v->levels < 64 &&
1360 (unsigned long long)(v->data_blocks - 1) >>
1361 (v->hash_per_block_bits * v->levels))
1362 v->levels++;
1363
1364 if (v->levels > DM_VERITY_MAX_LEVELS) {
1365 ti->error = "Too many tree levels";
1366 r = -E2BIG;
1367 goto bad;
1368 }
1369
1370 hash_position = v->hash_start;
1371 for (i = v->levels - 1; i >= 0; i--) {
1372 sector_t s;
1373 v->hash_level_block[i] = hash_position;
1374 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1375 >> ((i + 1) * v->hash_per_block_bits);
1376 if (hash_position + s < hash_position) {
1377 ti->error = "Hash device offset overflow";
1378 r = -E2BIG;
1379 goto bad;
1380 }
1381 hash_position += s;
1382 }
1383 v->hash_blocks = hash_position;
1384
1385 v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1386 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1387 dm_bufio_alloc_callback, NULL,
1388 v->use_tasklet ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1389 if (IS_ERR(v->bufio)) {
1390 ti->error = "Cannot initialize dm-bufio";
1391 r = PTR_ERR(v->bufio);
1392 v->bufio = NULL;
1393 goto bad;
1394 }
1395
1396 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1397 ti->error = "Hash device is too small";
1398 r = -E2BIG;
1399 goto bad;
1400 }
1401
1402 /* WQ_UNBOUND greatly improves performance when running on ramdisk */
1403 wq_flags = WQ_MEM_RECLAIM | WQ_UNBOUND;
1404 /*
1405 * Using WQ_HIGHPRI improves throughput and completion latency by
1406 * reducing wait times when reading from a dm-verity device.
1407 *
1408 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1409 * allows verify_wq to preempt softirq since verification in tasklet
1410 * will fall-back to using it for error handling (or if the bufio cache
1411 * doesn't have required hashes).
1412 */
1413 wq_flags |= WQ_HIGHPRI;
1414 v->verify_wq = alloc_workqueue("kverityd", wq_flags, num_online_cpus());
1415 if (!v->verify_wq) {
1416 ti->error = "Cannot allocate workqueue";
1417 r = -ENOMEM;
1418 goto bad;
1419 }
1420
1421 ti->per_io_data_size = sizeof(struct dm_verity_io) +
1422 v->ahash_reqsize + v->digest_size * 2;
1423
1424 r = verity_fec_ctr(v);
1425 if (r)
1426 goto bad;
1427
1428 ti->per_io_data_size = roundup(ti->per_io_data_size,
1429 __alignof__(struct dm_verity_io));
1430
1431 verity_verify_sig_opts_cleanup(&verify_args);
1432
1433 return 0;
1434
1435bad:
1436
1437 verity_verify_sig_opts_cleanup(&verify_args);
1438 verity_dtr(ti);
1439
1440 return r;
1441}
1442
1443/*
1444 * Check whether a DM target is a verity target.
1445 */
1446bool dm_is_verity_target(struct dm_target *ti)
1447{
1448 return ti->type->module == THIS_MODULE;
1449}
1450
1451/*
1452 * Get the verity mode (error behavior) of a verity target.
1453 *
1454 * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1455 * target.
1456 */
1457int dm_verity_get_mode(struct dm_target *ti)
1458{
1459 struct dm_verity *v = ti->private;
1460
1461 if (!dm_is_verity_target(ti))
1462 return -EINVAL;
1463
1464 return v->mode;
1465}
1466
1467/*
1468 * Get the root digest of a verity target.
1469 *
1470 * Returns a copy of the root digest, the caller is responsible for
1471 * freeing the memory of the digest.
1472 */
1473int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1474{
1475 struct dm_verity *v = ti->private;
1476
1477 if (!dm_is_verity_target(ti))
1478 return -EINVAL;
1479
1480 *root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1481 if (*root_digest == NULL)
1482 return -ENOMEM;
1483
1484 *digest_size = v->digest_size;
1485
1486 return 0;
1487}
1488
1489static struct target_type verity_target = {
1490 .name = "verity",
1491 .features = DM_TARGET_IMMUTABLE,
1492 .version = {1, 9, 0},
1493 .module = THIS_MODULE,
1494 .ctr = verity_ctr,
1495 .dtr = verity_dtr,
1496 .map = verity_map,
1497 .status = verity_status,
1498 .prepare_ioctl = verity_prepare_ioctl,
1499 .iterate_devices = verity_iterate_devices,
1500 .io_hints = verity_io_hints,
1501};
1502
1503static int __init dm_verity_init(void)
1504{
1505 int r;
1506
1507 r = dm_register_target(&verity_target);
1508 if (r < 0)
1509 DMERR("register failed %d", r);
1510
1511 return r;
1512}
1513
1514static void __exit dm_verity_exit(void)
1515{
1516 dm_unregister_target(&verity_target);
1517}
1518
1519module_init(dm_verity_init);
1520module_exit(dm_verity_exit);
1521
1522MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1523MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1524MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1525MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1526MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 Red Hat, Inc.
4 *
5 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 *
7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8 *
9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11 * hash device. Setting this greatly improves performance when data and hash
12 * are on the same disk on different partitions on devices with poor random
13 * access behavior.
14 */
15
16#include "dm-verity.h"
17#include "dm-verity-fec.h"
18#include "dm-verity-verify-sig.h"
19#include <linux/module.h>
20#include <linux/reboot.h>
21
22#define DM_MSG_PREFIX "verity"
23
24#define DM_VERITY_ENV_LENGTH 42
25#define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR"
26
27#define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
28
29#define DM_VERITY_MAX_CORRUPTED_ERRS 100
30
31#define DM_VERITY_OPT_LOGGING "ignore_corruption"
32#define DM_VERITY_OPT_RESTART "restart_on_corruption"
33#define DM_VERITY_OPT_PANIC "panic_on_corruption"
34#define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks"
35#define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once"
36
37#define DM_VERITY_OPTS_MAX (3 + DM_VERITY_OPTS_FEC + \
38 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
39
40static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
41
42module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
43
44struct dm_verity_prefetch_work {
45 struct work_struct work;
46 struct dm_verity *v;
47 sector_t block;
48 unsigned n_blocks;
49};
50
51/*
52 * Auxiliary structure appended to each dm-bufio buffer. If the value
53 * hash_verified is nonzero, hash of the block has been verified.
54 *
55 * The variable hash_verified is set to 0 when allocating the buffer, then
56 * it can be changed to 1 and it is never reset to 0 again.
57 *
58 * There is no lock around this value, a race condition can at worst cause
59 * that multiple processes verify the hash of the same buffer simultaneously
60 * and write 1 to hash_verified simultaneously.
61 * This condition is harmless, so we don't need locking.
62 */
63struct buffer_aux {
64 int hash_verified;
65};
66
67/*
68 * Initialize struct buffer_aux for a freshly created buffer.
69 */
70static void dm_bufio_alloc_callback(struct dm_buffer *buf)
71{
72 struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
73
74 aux->hash_verified = 0;
75}
76
77/*
78 * Translate input sector number to the sector number on the target device.
79 */
80static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
81{
82 return v->data_start + dm_target_offset(v->ti, bi_sector);
83}
84
85/*
86 * Return hash position of a specified block at a specified tree level
87 * (0 is the lowest level).
88 * The lowest "hash_per_block_bits"-bits of the result denote hash position
89 * inside a hash block. The remaining bits denote location of the hash block.
90 */
91static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
92 int level)
93{
94 return block >> (level * v->hash_per_block_bits);
95}
96
97static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
98 const u8 *data, size_t len,
99 struct crypto_wait *wait)
100{
101 struct scatterlist sg;
102
103 if (likely(!is_vmalloc_addr(data))) {
104 sg_init_one(&sg, data, len);
105 ahash_request_set_crypt(req, &sg, NULL, len);
106 return crypto_wait_req(crypto_ahash_update(req), wait);
107 } else {
108 do {
109 int r;
110 size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
111 flush_kernel_vmap_range((void *)data, this_step);
112 sg_init_table(&sg, 1);
113 sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
114 ahash_request_set_crypt(req, &sg, NULL, this_step);
115 r = crypto_wait_req(crypto_ahash_update(req), wait);
116 if (unlikely(r))
117 return r;
118 data += this_step;
119 len -= this_step;
120 } while (len);
121 return 0;
122 }
123}
124
125/*
126 * Wrapper for crypto_ahash_init, which handles verity salting.
127 */
128static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
129 struct crypto_wait *wait)
130{
131 int r;
132
133 ahash_request_set_tfm(req, v->tfm);
134 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
135 CRYPTO_TFM_REQ_MAY_BACKLOG,
136 crypto_req_done, (void *)wait);
137 crypto_init_wait(wait);
138
139 r = crypto_wait_req(crypto_ahash_init(req), wait);
140
141 if (unlikely(r < 0)) {
142 DMERR("crypto_ahash_init failed: %d", r);
143 return r;
144 }
145
146 if (likely(v->salt_size && (v->version >= 1)))
147 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
148
149 return r;
150}
151
152static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
153 u8 *digest, struct crypto_wait *wait)
154{
155 int r;
156
157 if (unlikely(v->salt_size && (!v->version))) {
158 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
159
160 if (r < 0) {
161 DMERR("verity_hash_final failed updating salt: %d", r);
162 goto out;
163 }
164 }
165
166 ahash_request_set_crypt(req, NULL, digest, 0);
167 r = crypto_wait_req(crypto_ahash_final(req), wait);
168out:
169 return r;
170}
171
172int verity_hash(struct dm_verity *v, struct ahash_request *req,
173 const u8 *data, size_t len, u8 *digest)
174{
175 int r;
176 struct crypto_wait wait;
177
178 r = verity_hash_init(v, req, &wait);
179 if (unlikely(r < 0))
180 goto out;
181
182 r = verity_hash_update(v, req, data, len, &wait);
183 if (unlikely(r < 0))
184 goto out;
185
186 r = verity_hash_final(v, req, digest, &wait);
187
188out:
189 return r;
190}
191
192static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
193 sector_t *hash_block, unsigned *offset)
194{
195 sector_t position = verity_position_at_level(v, block, level);
196 unsigned idx;
197
198 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
199
200 if (!offset)
201 return;
202
203 idx = position & ((1 << v->hash_per_block_bits) - 1);
204 if (!v->version)
205 *offset = idx * v->digest_size;
206 else
207 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
208}
209
210/*
211 * Handle verification errors.
212 */
213static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
214 unsigned long long block)
215{
216 char verity_env[DM_VERITY_ENV_LENGTH];
217 char *envp[] = { verity_env, NULL };
218 const char *type_str = "";
219 struct mapped_device *md = dm_table_get_md(v->ti->table);
220
221 /* Corruption should be visible in device status in all modes */
222 v->hash_failed = 1;
223
224 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
225 goto out;
226
227 v->corrupted_errs++;
228
229 switch (type) {
230 case DM_VERITY_BLOCK_TYPE_DATA:
231 type_str = "data";
232 break;
233 case DM_VERITY_BLOCK_TYPE_METADATA:
234 type_str = "metadata";
235 break;
236 default:
237 BUG();
238 }
239
240 DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
241 type_str, block);
242
243 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
244 DMERR("%s: reached maximum errors", v->data_dev->name);
245
246 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
247 DM_VERITY_ENV_VAR_NAME, type, block);
248
249 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
250
251out:
252 if (v->mode == DM_VERITY_MODE_LOGGING)
253 return 0;
254
255 if (v->mode == DM_VERITY_MODE_RESTART)
256 kernel_restart("dm-verity device corrupted");
257
258 if (v->mode == DM_VERITY_MODE_PANIC)
259 panic("dm-verity device corrupted");
260
261 return 1;
262}
263
264/*
265 * Verify hash of a metadata block pertaining to the specified data block
266 * ("block" argument) at a specified level ("level" argument).
267 *
268 * On successful return, verity_io_want_digest(v, io) contains the hash value
269 * for a lower tree level or for the data block (if we're at the lowest level).
270 *
271 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
272 * If "skip_unverified" is false, unverified buffer is hashed and verified
273 * against current value of verity_io_want_digest(v, io).
274 */
275static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
276 sector_t block, int level, bool skip_unverified,
277 u8 *want_digest)
278{
279 struct dm_buffer *buf;
280 struct buffer_aux *aux;
281 u8 *data;
282 int r;
283 sector_t hash_block;
284 unsigned offset;
285
286 verity_hash_at_level(v, block, level, &hash_block, &offset);
287
288 data = dm_bufio_read(v->bufio, hash_block, &buf);
289 if (IS_ERR(data))
290 return PTR_ERR(data);
291
292 aux = dm_bufio_get_aux_data(buf);
293
294 if (!aux->hash_verified) {
295 if (skip_unverified) {
296 r = 1;
297 goto release_ret_r;
298 }
299
300 r = verity_hash(v, verity_io_hash_req(v, io),
301 data, 1 << v->hash_dev_block_bits,
302 verity_io_real_digest(v, io));
303 if (unlikely(r < 0))
304 goto release_ret_r;
305
306 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
307 v->digest_size) == 0))
308 aux->hash_verified = 1;
309 else if (verity_fec_decode(v, io,
310 DM_VERITY_BLOCK_TYPE_METADATA,
311 hash_block, data, NULL) == 0)
312 aux->hash_verified = 1;
313 else if (verity_handle_err(v,
314 DM_VERITY_BLOCK_TYPE_METADATA,
315 hash_block)) {
316 r = -EIO;
317 goto release_ret_r;
318 }
319 }
320
321 data += offset;
322 memcpy(want_digest, data, v->digest_size);
323 r = 0;
324
325release_ret_r:
326 dm_bufio_release(buf);
327 return r;
328}
329
330/*
331 * Find a hash for a given block, write it to digest and verify the integrity
332 * of the hash tree if necessary.
333 */
334int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
335 sector_t block, u8 *digest, bool *is_zero)
336{
337 int r = 0, i;
338
339 if (likely(v->levels)) {
340 /*
341 * First, we try to get the requested hash for
342 * the current block. If the hash block itself is
343 * verified, zero is returned. If it isn't, this
344 * function returns 1 and we fall back to whole
345 * chain verification.
346 */
347 r = verity_verify_level(v, io, block, 0, true, digest);
348 if (likely(r <= 0))
349 goto out;
350 }
351
352 memcpy(digest, v->root_digest, v->digest_size);
353
354 for (i = v->levels - 1; i >= 0; i--) {
355 r = verity_verify_level(v, io, block, i, false, digest);
356 if (unlikely(r))
357 goto out;
358 }
359out:
360 if (!r && v->zero_digest)
361 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
362 else
363 *is_zero = false;
364
365 return r;
366}
367
368/*
369 * Calculates the digest for the given bio
370 */
371static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
372 struct bvec_iter *iter, struct crypto_wait *wait)
373{
374 unsigned int todo = 1 << v->data_dev_block_bits;
375 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
376 struct scatterlist sg;
377 struct ahash_request *req = verity_io_hash_req(v, io);
378
379 do {
380 int r;
381 unsigned int len;
382 struct bio_vec bv = bio_iter_iovec(bio, *iter);
383
384 sg_init_table(&sg, 1);
385
386 len = bv.bv_len;
387
388 if (likely(len >= todo))
389 len = todo;
390 /*
391 * Operating on a single page at a time looks suboptimal
392 * until you consider the typical block size is 4,096B.
393 * Going through this loops twice should be very rare.
394 */
395 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
396 ahash_request_set_crypt(req, &sg, NULL, len);
397 r = crypto_wait_req(crypto_ahash_update(req), wait);
398
399 if (unlikely(r < 0)) {
400 DMERR("verity_for_io_block crypto op failed: %d", r);
401 return r;
402 }
403
404 bio_advance_iter(bio, iter, len);
405 todo -= len;
406 } while (todo);
407
408 return 0;
409}
410
411/*
412 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
413 * starting from iter.
414 */
415int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
416 struct bvec_iter *iter,
417 int (*process)(struct dm_verity *v,
418 struct dm_verity_io *io, u8 *data,
419 size_t len))
420{
421 unsigned todo = 1 << v->data_dev_block_bits;
422 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
423
424 do {
425 int r;
426 u8 *page;
427 unsigned len;
428 struct bio_vec bv = bio_iter_iovec(bio, *iter);
429
430 page = kmap_atomic(bv.bv_page);
431 len = bv.bv_len;
432
433 if (likely(len >= todo))
434 len = todo;
435
436 r = process(v, io, page + bv.bv_offset, len);
437 kunmap_atomic(page);
438
439 if (r < 0)
440 return r;
441
442 bio_advance_iter(bio, iter, len);
443 todo -= len;
444 } while (todo);
445
446 return 0;
447}
448
449static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
450 u8 *data, size_t len)
451{
452 memset(data, 0, len);
453 return 0;
454}
455
456/*
457 * Moves the bio iter one data block forward.
458 */
459static inline void verity_bv_skip_block(struct dm_verity *v,
460 struct dm_verity_io *io,
461 struct bvec_iter *iter)
462{
463 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
464
465 bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
466}
467
468/*
469 * Verify one "dm_verity_io" structure.
470 */
471static int verity_verify_io(struct dm_verity_io *io)
472{
473 bool is_zero;
474 struct dm_verity *v = io->v;
475 struct bvec_iter start;
476 unsigned b;
477 struct crypto_wait wait;
478
479 for (b = 0; b < io->n_blocks; b++) {
480 int r;
481 sector_t cur_block = io->block + b;
482 struct ahash_request *req = verity_io_hash_req(v, io);
483
484 if (v->validated_blocks &&
485 likely(test_bit(cur_block, v->validated_blocks))) {
486 verity_bv_skip_block(v, io, &io->iter);
487 continue;
488 }
489
490 r = verity_hash_for_block(v, io, cur_block,
491 verity_io_want_digest(v, io),
492 &is_zero);
493 if (unlikely(r < 0))
494 return r;
495
496 if (is_zero) {
497 /*
498 * If we expect a zero block, don't validate, just
499 * return zeros.
500 */
501 r = verity_for_bv_block(v, io, &io->iter,
502 verity_bv_zero);
503 if (unlikely(r < 0))
504 return r;
505
506 continue;
507 }
508
509 r = verity_hash_init(v, req, &wait);
510 if (unlikely(r < 0))
511 return r;
512
513 start = io->iter;
514 r = verity_for_io_block(v, io, &io->iter, &wait);
515 if (unlikely(r < 0))
516 return r;
517
518 r = verity_hash_final(v, req, verity_io_real_digest(v, io),
519 &wait);
520 if (unlikely(r < 0))
521 return r;
522
523 if (likely(memcmp(verity_io_real_digest(v, io),
524 verity_io_want_digest(v, io), v->digest_size) == 0)) {
525 if (v->validated_blocks)
526 set_bit(cur_block, v->validated_blocks);
527 continue;
528 }
529 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
530 cur_block, NULL, &start) == 0)
531 continue;
532 else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
533 cur_block))
534 return -EIO;
535 }
536
537 return 0;
538}
539
540/*
541 * Skip verity work in response to I/O error when system is shutting down.
542 */
543static inline bool verity_is_system_shutting_down(void)
544{
545 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
546 || system_state == SYSTEM_RESTART;
547}
548
549/*
550 * End one "io" structure with a given error.
551 */
552static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
553{
554 struct dm_verity *v = io->v;
555 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
556
557 bio->bi_end_io = io->orig_bi_end_io;
558 bio->bi_status = status;
559
560 verity_fec_finish_io(io);
561
562 bio_endio(bio);
563}
564
565static void verity_work(struct work_struct *w)
566{
567 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
568
569 verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
570}
571
572static void verity_end_io(struct bio *bio)
573{
574 struct dm_verity_io *io = bio->bi_private;
575
576 if (bio->bi_status &&
577 (!verity_fec_is_enabled(io->v) || verity_is_system_shutting_down())) {
578 verity_finish_io(io, bio->bi_status);
579 return;
580 }
581
582 INIT_WORK(&io->work, verity_work);
583 queue_work(io->v->verify_wq, &io->work);
584}
585
586/*
587 * Prefetch buffers for the specified io.
588 * The root buffer is not prefetched, it is assumed that it will be cached
589 * all the time.
590 */
591static void verity_prefetch_io(struct work_struct *work)
592{
593 struct dm_verity_prefetch_work *pw =
594 container_of(work, struct dm_verity_prefetch_work, work);
595 struct dm_verity *v = pw->v;
596 int i;
597
598 for (i = v->levels - 2; i >= 0; i--) {
599 sector_t hash_block_start;
600 sector_t hash_block_end;
601 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
602 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
603 if (!i) {
604 unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
605
606 cluster >>= v->data_dev_block_bits;
607 if (unlikely(!cluster))
608 goto no_prefetch_cluster;
609
610 if (unlikely(cluster & (cluster - 1)))
611 cluster = 1 << __fls(cluster);
612
613 hash_block_start &= ~(sector_t)(cluster - 1);
614 hash_block_end |= cluster - 1;
615 if (unlikely(hash_block_end >= v->hash_blocks))
616 hash_block_end = v->hash_blocks - 1;
617 }
618no_prefetch_cluster:
619 dm_bufio_prefetch(v->bufio, hash_block_start,
620 hash_block_end - hash_block_start + 1);
621 }
622
623 kfree(pw);
624}
625
626static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
627{
628 sector_t block = io->block;
629 unsigned int n_blocks = io->n_blocks;
630 struct dm_verity_prefetch_work *pw;
631
632 if (v->validated_blocks) {
633 while (n_blocks && test_bit(block, v->validated_blocks)) {
634 block++;
635 n_blocks--;
636 }
637 while (n_blocks && test_bit(block + n_blocks - 1,
638 v->validated_blocks))
639 n_blocks--;
640 if (!n_blocks)
641 return;
642 }
643
644 pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
645 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
646
647 if (!pw)
648 return;
649
650 INIT_WORK(&pw->work, verity_prefetch_io);
651 pw->v = v;
652 pw->block = block;
653 pw->n_blocks = n_blocks;
654 queue_work(v->verify_wq, &pw->work);
655}
656
657/*
658 * Bio map function. It allocates dm_verity_io structure and bio vector and
659 * fills them. Then it issues prefetches and the I/O.
660 */
661static int verity_map(struct dm_target *ti, struct bio *bio)
662{
663 struct dm_verity *v = ti->private;
664 struct dm_verity_io *io;
665
666 bio_set_dev(bio, v->data_dev->bdev);
667 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
668
669 if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
670 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
671 DMERR_LIMIT("unaligned io");
672 return DM_MAPIO_KILL;
673 }
674
675 if (bio_end_sector(bio) >>
676 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
677 DMERR_LIMIT("io out of range");
678 return DM_MAPIO_KILL;
679 }
680
681 if (bio_data_dir(bio) == WRITE)
682 return DM_MAPIO_KILL;
683
684 io = dm_per_bio_data(bio, ti->per_io_data_size);
685 io->v = v;
686 io->orig_bi_end_io = bio->bi_end_io;
687 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
688 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
689
690 bio->bi_end_io = verity_end_io;
691 bio->bi_private = io;
692 io->iter = bio->bi_iter;
693
694 verity_fec_init_io(io);
695
696 verity_submit_prefetch(v, io);
697
698 submit_bio_noacct(bio);
699
700 return DM_MAPIO_SUBMITTED;
701}
702
703/*
704 * Status: V (valid) or C (corruption found)
705 */
706static void verity_status(struct dm_target *ti, status_type_t type,
707 unsigned status_flags, char *result, unsigned maxlen)
708{
709 struct dm_verity *v = ti->private;
710 unsigned args = 0;
711 unsigned sz = 0;
712 unsigned x;
713
714 switch (type) {
715 case STATUSTYPE_INFO:
716 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
717 break;
718 case STATUSTYPE_TABLE:
719 DMEMIT("%u %s %s %u %u %llu %llu %s ",
720 v->version,
721 v->data_dev->name,
722 v->hash_dev->name,
723 1 << v->data_dev_block_bits,
724 1 << v->hash_dev_block_bits,
725 (unsigned long long)v->data_blocks,
726 (unsigned long long)v->hash_start,
727 v->alg_name
728 );
729 for (x = 0; x < v->digest_size; x++)
730 DMEMIT("%02x", v->root_digest[x]);
731 DMEMIT(" ");
732 if (!v->salt_size)
733 DMEMIT("-");
734 else
735 for (x = 0; x < v->salt_size; x++)
736 DMEMIT("%02x", v->salt[x]);
737 if (v->mode != DM_VERITY_MODE_EIO)
738 args++;
739 if (verity_fec_is_enabled(v))
740 args += DM_VERITY_OPTS_FEC;
741 if (v->zero_digest)
742 args++;
743 if (v->validated_blocks)
744 args++;
745 if (v->signature_key_desc)
746 args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
747 if (!args)
748 return;
749 DMEMIT(" %u", args);
750 if (v->mode != DM_VERITY_MODE_EIO) {
751 DMEMIT(" ");
752 switch (v->mode) {
753 case DM_VERITY_MODE_LOGGING:
754 DMEMIT(DM_VERITY_OPT_LOGGING);
755 break;
756 case DM_VERITY_MODE_RESTART:
757 DMEMIT(DM_VERITY_OPT_RESTART);
758 break;
759 case DM_VERITY_MODE_PANIC:
760 DMEMIT(DM_VERITY_OPT_PANIC);
761 break;
762 default:
763 BUG();
764 }
765 }
766 if (v->zero_digest)
767 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
768 if (v->validated_blocks)
769 DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
770 sz = verity_fec_status_table(v, sz, result, maxlen);
771 if (v->signature_key_desc)
772 DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
773 " %s", v->signature_key_desc);
774 break;
775 }
776}
777
778static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
779{
780 struct dm_verity *v = ti->private;
781
782 *bdev = v->data_dev->bdev;
783
784 if (v->data_start ||
785 ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
786 return 1;
787 return 0;
788}
789
790static int verity_iterate_devices(struct dm_target *ti,
791 iterate_devices_callout_fn fn, void *data)
792{
793 struct dm_verity *v = ti->private;
794
795 return fn(ti, v->data_dev, v->data_start, ti->len, data);
796}
797
798static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
799{
800 struct dm_verity *v = ti->private;
801
802 if (limits->logical_block_size < 1 << v->data_dev_block_bits)
803 limits->logical_block_size = 1 << v->data_dev_block_bits;
804
805 if (limits->physical_block_size < 1 << v->data_dev_block_bits)
806 limits->physical_block_size = 1 << v->data_dev_block_bits;
807
808 blk_limits_io_min(limits, limits->logical_block_size);
809}
810
811static void verity_dtr(struct dm_target *ti)
812{
813 struct dm_verity *v = ti->private;
814
815 if (v->verify_wq)
816 destroy_workqueue(v->verify_wq);
817
818 if (v->bufio)
819 dm_bufio_client_destroy(v->bufio);
820
821 kvfree(v->validated_blocks);
822 kfree(v->salt);
823 kfree(v->root_digest);
824 kfree(v->zero_digest);
825
826 if (v->tfm)
827 crypto_free_ahash(v->tfm);
828
829 kfree(v->alg_name);
830
831 if (v->hash_dev)
832 dm_put_device(ti, v->hash_dev);
833
834 if (v->data_dev)
835 dm_put_device(ti, v->data_dev);
836
837 verity_fec_dtr(v);
838
839 kfree(v->signature_key_desc);
840
841 kfree(v);
842}
843
844static int verity_alloc_most_once(struct dm_verity *v)
845{
846 struct dm_target *ti = v->ti;
847
848 /* the bitset can only handle INT_MAX blocks */
849 if (v->data_blocks > INT_MAX) {
850 ti->error = "device too large to use check_at_most_once";
851 return -E2BIG;
852 }
853
854 v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
855 sizeof(unsigned long),
856 GFP_KERNEL);
857 if (!v->validated_blocks) {
858 ti->error = "failed to allocate bitset for check_at_most_once";
859 return -ENOMEM;
860 }
861
862 return 0;
863}
864
865static int verity_alloc_zero_digest(struct dm_verity *v)
866{
867 int r = -ENOMEM;
868 struct ahash_request *req;
869 u8 *zero_data;
870
871 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
872
873 if (!v->zero_digest)
874 return r;
875
876 req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
877
878 if (!req)
879 return r; /* verity_dtr will free zero_digest */
880
881 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
882
883 if (!zero_data)
884 goto out;
885
886 r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
887 v->zero_digest);
888
889out:
890 kfree(req);
891 kfree(zero_data);
892
893 return r;
894}
895
896static inline bool verity_is_verity_mode(const char *arg_name)
897{
898 return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
899 !strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
900 !strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
901}
902
903static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
904{
905 if (v->mode)
906 return -EINVAL;
907
908 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
909 v->mode = DM_VERITY_MODE_LOGGING;
910 else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
911 v->mode = DM_VERITY_MODE_RESTART;
912 else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
913 v->mode = DM_VERITY_MODE_PANIC;
914
915 return 0;
916}
917
918static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
919 struct dm_verity_sig_opts *verify_args)
920{
921 int r;
922 unsigned argc;
923 struct dm_target *ti = v->ti;
924 const char *arg_name;
925
926 static const struct dm_arg _args[] = {
927 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
928 };
929
930 r = dm_read_arg_group(_args, as, &argc, &ti->error);
931 if (r)
932 return -EINVAL;
933
934 if (!argc)
935 return 0;
936
937 do {
938 arg_name = dm_shift_arg(as);
939 argc--;
940
941 if (verity_is_verity_mode(arg_name)) {
942 r = verity_parse_verity_mode(v, arg_name);
943 if (r) {
944 ti->error = "Conflicting error handling parameters";
945 return r;
946 }
947 continue;
948
949 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
950 r = verity_alloc_zero_digest(v);
951 if (r) {
952 ti->error = "Cannot allocate zero digest";
953 return r;
954 }
955 continue;
956
957 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
958 r = verity_alloc_most_once(v);
959 if (r)
960 return r;
961 continue;
962
963 } else if (verity_is_fec_opt_arg(arg_name)) {
964 r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
965 if (r)
966 return r;
967 continue;
968 } else if (verity_verify_is_sig_opt_arg(arg_name)) {
969 r = verity_verify_sig_parse_opt_args(as, v,
970 verify_args,
971 &argc, arg_name);
972 if (r)
973 return r;
974 continue;
975
976 }
977
978 ti->error = "Unrecognized verity feature request";
979 return -EINVAL;
980 } while (argc && !r);
981
982 return r;
983}
984
985/*
986 * Target parameters:
987 * <version> The current format is version 1.
988 * Vsn 0 is compatible with original Chromium OS releases.
989 * <data device>
990 * <hash device>
991 * <data block size>
992 * <hash block size>
993 * <the number of data blocks>
994 * <hash start block>
995 * <algorithm>
996 * <digest>
997 * <salt> Hex string or "-" if no salt.
998 */
999static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
1000{
1001 struct dm_verity *v;
1002 struct dm_verity_sig_opts verify_args = {0};
1003 struct dm_arg_set as;
1004 unsigned int num;
1005 unsigned long long num_ll;
1006 int r;
1007 int i;
1008 sector_t hash_position;
1009 char dummy;
1010 char *root_hash_digest_to_validate;
1011
1012 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1013 if (!v) {
1014 ti->error = "Cannot allocate verity structure";
1015 return -ENOMEM;
1016 }
1017 ti->private = v;
1018 v->ti = ti;
1019
1020 r = verity_fec_ctr_alloc(v);
1021 if (r)
1022 goto bad;
1023
1024 if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
1025 ti->error = "Device must be readonly";
1026 r = -EINVAL;
1027 goto bad;
1028 }
1029
1030 if (argc < 10) {
1031 ti->error = "Not enough arguments";
1032 r = -EINVAL;
1033 goto bad;
1034 }
1035
1036 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1037 num > 1) {
1038 ti->error = "Invalid version";
1039 r = -EINVAL;
1040 goto bad;
1041 }
1042 v->version = num;
1043
1044 r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
1045 if (r) {
1046 ti->error = "Data device lookup failed";
1047 goto bad;
1048 }
1049
1050 r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
1051 if (r) {
1052 ti->error = "Hash device lookup failed";
1053 goto bad;
1054 }
1055
1056 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1057 !num || (num & (num - 1)) ||
1058 num < bdev_logical_block_size(v->data_dev->bdev) ||
1059 num > PAGE_SIZE) {
1060 ti->error = "Invalid data device block size";
1061 r = -EINVAL;
1062 goto bad;
1063 }
1064 v->data_dev_block_bits = __ffs(num);
1065
1066 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1067 !num || (num & (num - 1)) ||
1068 num < bdev_logical_block_size(v->hash_dev->bdev) ||
1069 num > INT_MAX) {
1070 ti->error = "Invalid hash device block size";
1071 r = -EINVAL;
1072 goto bad;
1073 }
1074 v->hash_dev_block_bits = __ffs(num);
1075
1076 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1077 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1078 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1079 ti->error = "Invalid data blocks";
1080 r = -EINVAL;
1081 goto bad;
1082 }
1083 v->data_blocks = num_ll;
1084
1085 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1086 ti->error = "Data device is too small";
1087 r = -EINVAL;
1088 goto bad;
1089 }
1090
1091 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1092 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1093 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1094 ti->error = "Invalid hash start";
1095 r = -EINVAL;
1096 goto bad;
1097 }
1098 v->hash_start = num_ll;
1099
1100 v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1101 if (!v->alg_name) {
1102 ti->error = "Cannot allocate algorithm name";
1103 r = -ENOMEM;
1104 goto bad;
1105 }
1106
1107 v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1108 if (IS_ERR(v->tfm)) {
1109 ti->error = "Cannot initialize hash function";
1110 r = PTR_ERR(v->tfm);
1111 v->tfm = NULL;
1112 goto bad;
1113 }
1114
1115 /*
1116 * dm-verity performance can vary greatly depending on which hash
1117 * algorithm implementation is used. Help people debug performance
1118 * problems by logging the ->cra_driver_name.
1119 */
1120 DMINFO("%s using implementation \"%s\"", v->alg_name,
1121 crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1122
1123 v->digest_size = crypto_ahash_digestsize(v->tfm);
1124 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1125 ti->error = "Digest size too big";
1126 r = -EINVAL;
1127 goto bad;
1128 }
1129 v->ahash_reqsize = sizeof(struct ahash_request) +
1130 crypto_ahash_reqsize(v->tfm);
1131
1132 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1133 if (!v->root_digest) {
1134 ti->error = "Cannot allocate root digest";
1135 r = -ENOMEM;
1136 goto bad;
1137 }
1138 if (strlen(argv[8]) != v->digest_size * 2 ||
1139 hex2bin(v->root_digest, argv[8], v->digest_size)) {
1140 ti->error = "Invalid root digest";
1141 r = -EINVAL;
1142 goto bad;
1143 }
1144 root_hash_digest_to_validate = argv[8];
1145
1146 if (strcmp(argv[9], "-")) {
1147 v->salt_size = strlen(argv[9]) / 2;
1148 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1149 if (!v->salt) {
1150 ti->error = "Cannot allocate salt";
1151 r = -ENOMEM;
1152 goto bad;
1153 }
1154 if (strlen(argv[9]) != v->salt_size * 2 ||
1155 hex2bin(v->salt, argv[9], v->salt_size)) {
1156 ti->error = "Invalid salt";
1157 r = -EINVAL;
1158 goto bad;
1159 }
1160 }
1161
1162 argv += 10;
1163 argc -= 10;
1164
1165 /* Optional parameters */
1166 if (argc) {
1167 as.argc = argc;
1168 as.argv = argv;
1169
1170 r = verity_parse_opt_args(&as, v, &verify_args);
1171 if (r < 0)
1172 goto bad;
1173 }
1174
1175 /* Root hash signature is a optional parameter*/
1176 r = verity_verify_root_hash(root_hash_digest_to_validate,
1177 strlen(root_hash_digest_to_validate),
1178 verify_args.sig,
1179 verify_args.sig_size);
1180 if (r < 0) {
1181 ti->error = "Root hash verification failed";
1182 goto bad;
1183 }
1184 v->hash_per_block_bits =
1185 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1186
1187 v->levels = 0;
1188 if (v->data_blocks)
1189 while (v->hash_per_block_bits * v->levels < 64 &&
1190 (unsigned long long)(v->data_blocks - 1) >>
1191 (v->hash_per_block_bits * v->levels))
1192 v->levels++;
1193
1194 if (v->levels > DM_VERITY_MAX_LEVELS) {
1195 ti->error = "Too many tree levels";
1196 r = -E2BIG;
1197 goto bad;
1198 }
1199
1200 hash_position = v->hash_start;
1201 for (i = v->levels - 1; i >= 0; i--) {
1202 sector_t s;
1203 v->hash_level_block[i] = hash_position;
1204 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1205 >> ((i + 1) * v->hash_per_block_bits);
1206 if (hash_position + s < hash_position) {
1207 ti->error = "Hash device offset overflow";
1208 r = -E2BIG;
1209 goto bad;
1210 }
1211 hash_position += s;
1212 }
1213 v->hash_blocks = hash_position;
1214
1215 v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1216 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1217 dm_bufio_alloc_callback, NULL);
1218 if (IS_ERR(v->bufio)) {
1219 ti->error = "Cannot initialize dm-bufio";
1220 r = PTR_ERR(v->bufio);
1221 v->bufio = NULL;
1222 goto bad;
1223 }
1224
1225 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1226 ti->error = "Hash device is too small";
1227 r = -E2BIG;
1228 goto bad;
1229 }
1230
1231 /* WQ_UNBOUND greatly improves performance when running on ramdisk */
1232 v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1233 if (!v->verify_wq) {
1234 ti->error = "Cannot allocate workqueue";
1235 r = -ENOMEM;
1236 goto bad;
1237 }
1238
1239 ti->per_io_data_size = sizeof(struct dm_verity_io) +
1240 v->ahash_reqsize + v->digest_size * 2;
1241
1242 r = verity_fec_ctr(v);
1243 if (r)
1244 goto bad;
1245
1246 ti->per_io_data_size = roundup(ti->per_io_data_size,
1247 __alignof__(struct dm_verity_io));
1248
1249 verity_verify_sig_opts_cleanup(&verify_args);
1250
1251 return 0;
1252
1253bad:
1254
1255 verity_verify_sig_opts_cleanup(&verify_args);
1256 verity_dtr(ti);
1257
1258 return r;
1259}
1260
1261static struct target_type verity_target = {
1262 .name = "verity",
1263 .version = {1, 8, 0},
1264 .module = THIS_MODULE,
1265 .ctr = verity_ctr,
1266 .dtr = verity_dtr,
1267 .map = verity_map,
1268 .status = verity_status,
1269 .prepare_ioctl = verity_prepare_ioctl,
1270 .iterate_devices = verity_iterate_devices,
1271 .io_hints = verity_io_hints,
1272};
1273
1274static int __init dm_verity_init(void)
1275{
1276 int r;
1277
1278 r = dm_register_target(&verity_target);
1279 if (r < 0)
1280 DMERR("register failed %d", r);
1281
1282 return r;
1283}
1284
1285static void __exit dm_verity_exit(void)
1286{
1287 dm_unregister_target(&verity_target);
1288}
1289
1290module_init(dm_verity_init);
1291module_exit(dm_verity_exit);
1292
1293MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1294MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1295MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1296MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1297MODULE_LICENSE("GPL");