Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Red Hat, Inc.
   4 *
   5 * Author: Mikulas Patocka <mpatocka@redhat.com>
   6 *
   7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
   8 *
   9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
  10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
  11 * hash device. Setting this greatly improves performance when data and hash
  12 * are on the same disk on different partitions on devices with poor random
  13 * access behavior.
  14 */
  15
  16#include "dm-verity.h"
  17#include "dm-verity-fec.h"
  18#include "dm-verity-verify-sig.h"
  19#include <linux/module.h>
  20#include <linux/reboot.h>
  21#include <linux/scatterlist.h>
  22#include <linux/string.h>
  23#include <linux/jump_label.h>
  24
  25#define DM_MSG_PREFIX			"verity"
  26
  27#define DM_VERITY_ENV_LENGTH		42
  28#define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
  29
  30#define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
  31
  32#define DM_VERITY_MAX_CORRUPTED_ERRS	100
  33
  34#define DM_VERITY_OPT_LOGGING		"ignore_corruption"
  35#define DM_VERITY_OPT_RESTART		"restart_on_corruption"
  36#define DM_VERITY_OPT_PANIC		"panic_on_corruption"
  37#define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
  38#define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
  39#define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
  40
  41#define DM_VERITY_OPTS_MAX		(4 + DM_VERITY_OPTS_FEC + \
  42					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
  43
  44static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
  45
  46module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
  47
  48static DEFINE_STATIC_KEY_FALSE(use_tasklet_enabled);
  49
  50struct dm_verity_prefetch_work {
  51	struct work_struct work;
  52	struct dm_verity *v;
  53	sector_t block;
  54	unsigned n_blocks;
  55};
  56
  57/*
  58 * Auxiliary structure appended to each dm-bufio buffer. If the value
  59 * hash_verified is nonzero, hash of the block has been verified.
  60 *
  61 * The variable hash_verified is set to 0 when allocating the buffer, then
  62 * it can be changed to 1 and it is never reset to 0 again.
  63 *
  64 * There is no lock around this value, a race condition can at worst cause
  65 * that multiple processes verify the hash of the same buffer simultaneously
  66 * and write 1 to hash_verified simultaneously.
  67 * This condition is harmless, so we don't need locking.
  68 */
  69struct buffer_aux {
  70	int hash_verified;
  71};
  72
  73/*
  74 * Initialize struct buffer_aux for a freshly created buffer.
  75 */
  76static void dm_bufio_alloc_callback(struct dm_buffer *buf)
  77{
  78	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
  79
  80	aux->hash_verified = 0;
  81}
  82
  83/*
  84 * Translate input sector number to the sector number on the target device.
  85 */
  86static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
  87{
  88	return v->data_start + dm_target_offset(v->ti, bi_sector);
  89}
  90
  91/*
  92 * Return hash position of a specified block at a specified tree level
  93 * (0 is the lowest level).
  94 * The lowest "hash_per_block_bits"-bits of the result denote hash position
  95 * inside a hash block. The remaining bits denote location of the hash block.
  96 */
  97static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
  98					 int level)
  99{
 100	return block >> (level * v->hash_per_block_bits);
 101}
 102
 103static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
 104				const u8 *data, size_t len,
 105				struct crypto_wait *wait)
 106{
 107	struct scatterlist sg;
 108
 109	if (likely(!is_vmalloc_addr(data))) {
 110		sg_init_one(&sg, data, len);
 111		ahash_request_set_crypt(req, &sg, NULL, len);
 112		return crypto_wait_req(crypto_ahash_update(req), wait);
 113	} else {
 114		do {
 115			int r;
 116			size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
 117			flush_kernel_vmap_range((void *)data, this_step);
 118			sg_init_table(&sg, 1);
 119			sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
 120			ahash_request_set_crypt(req, &sg, NULL, this_step);
 121			r = crypto_wait_req(crypto_ahash_update(req), wait);
 122			if (unlikely(r))
 123				return r;
 124			data += this_step;
 125			len -= this_step;
 126		} while (len);
 127		return 0;
 128	}
 129}
 130
 131/*
 132 * Wrapper for crypto_ahash_init, which handles verity salting.
 133 */
 134static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
 135				struct crypto_wait *wait)
 136{
 137	int r;
 138
 139	ahash_request_set_tfm(req, v->tfm);
 140	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
 141					CRYPTO_TFM_REQ_MAY_BACKLOG,
 142					crypto_req_done, (void *)wait);
 143	crypto_init_wait(wait);
 144
 145	r = crypto_wait_req(crypto_ahash_init(req), wait);
 146
 147	if (unlikely(r < 0)) {
 148		DMERR("crypto_ahash_init failed: %d", r);
 149		return r;
 150	}
 151
 152	if (likely(v->salt_size && (v->version >= 1)))
 153		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 154
 155	return r;
 156}
 157
 158static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
 159			     u8 *digest, struct crypto_wait *wait)
 160{
 161	int r;
 162
 163	if (unlikely(v->salt_size && (!v->version))) {
 164		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 165
 166		if (r < 0) {
 167			DMERR("verity_hash_final failed updating salt: %d", r);
 168			goto out;
 169		}
 170	}
 171
 172	ahash_request_set_crypt(req, NULL, digest, 0);
 173	r = crypto_wait_req(crypto_ahash_final(req), wait);
 174out:
 175	return r;
 176}
 177
 178int verity_hash(struct dm_verity *v, struct ahash_request *req,
 179		const u8 *data, size_t len, u8 *digest)
 180{
 181	int r;
 182	struct crypto_wait wait;
 183
 184	r = verity_hash_init(v, req, &wait);
 185	if (unlikely(r < 0))
 186		goto out;
 187
 188	r = verity_hash_update(v, req, data, len, &wait);
 189	if (unlikely(r < 0))
 190		goto out;
 191
 192	r = verity_hash_final(v, req, digest, &wait);
 193
 194out:
 195	return r;
 196}
 197
 198static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
 199				 sector_t *hash_block, unsigned *offset)
 200{
 201	sector_t position = verity_position_at_level(v, block, level);
 202	unsigned idx;
 203
 204	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
 205
 206	if (!offset)
 207		return;
 208
 209	idx = position & ((1 << v->hash_per_block_bits) - 1);
 210	if (!v->version)
 211		*offset = idx * v->digest_size;
 212	else
 213		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
 214}
 215
 216/*
 217 * Handle verification errors.
 218 */
 219static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
 220			     unsigned long long block)
 221{
 222	char verity_env[DM_VERITY_ENV_LENGTH];
 223	char *envp[] = { verity_env, NULL };
 224	const char *type_str = "";
 225	struct mapped_device *md = dm_table_get_md(v->ti->table);
 226
 227	/* Corruption should be visible in device status in all modes */
 228	v->hash_failed = true;
 229
 230	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
 231		goto out;
 232
 233	v->corrupted_errs++;
 234
 235	switch (type) {
 236	case DM_VERITY_BLOCK_TYPE_DATA:
 237		type_str = "data";
 238		break;
 239	case DM_VERITY_BLOCK_TYPE_METADATA:
 240		type_str = "metadata";
 241		break;
 242	default:
 243		BUG();
 244	}
 245
 246	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
 247		    type_str, block);
 248
 249	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
 250		DMERR("%s: reached maximum errors", v->data_dev->name);
 251
 252	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
 253		DM_VERITY_ENV_VAR_NAME, type, block);
 254
 255	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
 256
 257out:
 258	if (v->mode == DM_VERITY_MODE_LOGGING)
 259		return 0;
 260
 261	if (v->mode == DM_VERITY_MODE_RESTART)
 262		kernel_restart("dm-verity device corrupted");
 263
 264	if (v->mode == DM_VERITY_MODE_PANIC)
 265		panic("dm-verity device corrupted");
 266
 267	return 1;
 268}
 269
 270/*
 271 * Verify hash of a metadata block pertaining to the specified data block
 272 * ("block" argument) at a specified level ("level" argument).
 273 *
 274 * On successful return, verity_io_want_digest(v, io) contains the hash value
 275 * for a lower tree level or for the data block (if we're at the lowest level).
 276 *
 277 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
 278 * If "skip_unverified" is false, unverified buffer is hashed and verified
 279 * against current value of verity_io_want_digest(v, io).
 280 */
 281static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
 282			       sector_t block, int level, bool skip_unverified,
 283			       u8 *want_digest)
 284{
 285	struct dm_buffer *buf;
 286	struct buffer_aux *aux;
 287	u8 *data;
 288	int r;
 289	sector_t hash_block;
 290	unsigned offset;
 291
 292	verity_hash_at_level(v, block, level, &hash_block, &offset);
 293
 294	if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
 295		data = dm_bufio_get(v->bufio, hash_block, &buf);
 296		if (data == NULL) {
 297			/*
 298			 * In tasklet and the hash was not in the bufio cache.
 299			 * Return early and resume execution from a work-queue
 300			 * to read the hash from disk.
 301			 */
 302			return -EAGAIN;
 303		}
 304	} else
 305		data = dm_bufio_read(v->bufio, hash_block, &buf);
 306
 307	if (IS_ERR(data))
 308		return PTR_ERR(data);
 309
 310	aux = dm_bufio_get_aux_data(buf);
 311
 312	if (!aux->hash_verified) {
 313		if (skip_unverified) {
 314			r = 1;
 315			goto release_ret_r;
 316		}
 317
 318		r = verity_hash(v, verity_io_hash_req(v, io),
 319				data, 1 << v->hash_dev_block_bits,
 320				verity_io_real_digest(v, io));
 321		if (unlikely(r < 0))
 322			goto release_ret_r;
 323
 324		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
 325				  v->digest_size) == 0))
 326			aux->hash_verified = 1;
 327		else if (static_branch_unlikely(&use_tasklet_enabled) &&
 328			 io->in_tasklet) {
 329			/*
 330			 * Error handling code (FEC included) cannot be run in a
 331			 * tasklet since it may sleep, so fallback to work-queue.
 332			 */
 333			r = -EAGAIN;
 334			goto release_ret_r;
 335		}
 336		else if (verity_fec_decode(v, io,
 337					   DM_VERITY_BLOCK_TYPE_METADATA,
 338					   hash_block, data, NULL) == 0)
 339			aux->hash_verified = 1;
 340		else if (verity_handle_err(v,
 341					   DM_VERITY_BLOCK_TYPE_METADATA,
 342					   hash_block)) {
 343			r = -EIO;
 344			goto release_ret_r;
 345		}
 346	}
 347
 348	data += offset;
 349	memcpy(want_digest, data, v->digest_size);
 350	r = 0;
 351
 352release_ret_r:
 353	dm_bufio_release(buf);
 354	return r;
 355}
 356
 357/*
 358 * Find a hash for a given block, write it to digest and verify the integrity
 359 * of the hash tree if necessary.
 360 */
 361int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
 362			  sector_t block, u8 *digest, bool *is_zero)
 363{
 364	int r = 0, i;
 365
 366	if (likely(v->levels)) {
 367		/*
 368		 * First, we try to get the requested hash for
 369		 * the current block. If the hash block itself is
 370		 * verified, zero is returned. If it isn't, this
 371		 * function returns 1 and we fall back to whole
 372		 * chain verification.
 373		 */
 374		r = verity_verify_level(v, io, block, 0, true, digest);
 375		if (likely(r <= 0))
 376			goto out;
 377	}
 378
 379	memcpy(digest, v->root_digest, v->digest_size);
 380
 381	for (i = v->levels - 1; i >= 0; i--) {
 382		r = verity_verify_level(v, io, block, i, false, digest);
 383		if (unlikely(r))
 384			goto out;
 385	}
 386out:
 387	if (!r && v->zero_digest)
 388		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
 389	else
 390		*is_zero = false;
 391
 392	return r;
 393}
 394
 395/*
 396 * Calculates the digest for the given bio
 397 */
 398static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
 399			       struct bvec_iter *iter, struct crypto_wait *wait)
 400{
 401	unsigned int todo = 1 << v->data_dev_block_bits;
 402	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 403	struct scatterlist sg;
 404	struct ahash_request *req = verity_io_hash_req(v, io);
 405
 406	do {
 407		int r;
 408		unsigned int len;
 409		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 410
 411		sg_init_table(&sg, 1);
 412
 413		len = bv.bv_len;
 414
 415		if (likely(len >= todo))
 416			len = todo;
 417		/*
 418		 * Operating on a single page at a time looks suboptimal
 419		 * until you consider the typical block size is 4,096B.
 420		 * Going through this loops twice should be very rare.
 421		 */
 422		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
 423		ahash_request_set_crypt(req, &sg, NULL, len);
 424		r = crypto_wait_req(crypto_ahash_update(req), wait);
 425
 426		if (unlikely(r < 0)) {
 427			DMERR("verity_for_io_block crypto op failed: %d", r);
 428			return r;
 429		}
 430
 431		bio_advance_iter(bio, iter, len);
 432		todo -= len;
 433	} while (todo);
 434
 435	return 0;
 436}
 437
 438/*
 439 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
 440 * starting from iter.
 441 */
 442int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
 443			struct bvec_iter *iter,
 444			int (*process)(struct dm_verity *v,
 445				       struct dm_verity_io *io, u8 *data,
 446				       size_t len))
 447{
 448	unsigned todo = 1 << v->data_dev_block_bits;
 449	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 450
 451	do {
 452		int r;
 453		u8 *page;
 454		unsigned len;
 455		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 456
 457		page = bvec_kmap_local(&bv);
 458		len = bv.bv_len;
 459
 460		if (likely(len >= todo))
 461			len = todo;
 462
 463		r = process(v, io, page, len);
 464		kunmap_local(page);
 465
 466		if (r < 0)
 467			return r;
 468
 469		bio_advance_iter(bio, iter, len);
 470		todo -= len;
 471	} while (todo);
 472
 473	return 0;
 474}
 475
 476static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
 477			  u8 *data, size_t len)
 478{
 479	memset(data, 0, len);
 480	return 0;
 481}
 482
 483/*
 484 * Moves the bio iter one data block forward.
 485 */
 486static inline void verity_bv_skip_block(struct dm_verity *v,
 487					struct dm_verity_io *io,
 488					struct bvec_iter *iter)
 489{
 490	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 491
 492	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
 493}
 494
 495/*
 496 * Verify one "dm_verity_io" structure.
 497 */
 498static int verity_verify_io(struct dm_verity_io *io)
 499{
 500	bool is_zero;
 501	struct dm_verity *v = io->v;
 502#if defined(CONFIG_DM_VERITY_FEC)
 503	struct bvec_iter start;
 504#endif
 505	struct bvec_iter iter_copy;
 506	struct bvec_iter *iter;
 507	struct crypto_wait wait;
 508	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 509	unsigned int b;
 510
 511	if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
 512		/*
 513		 * Copy the iterator in case we need to restart
 514		 * verification in a work-queue.
 515		 */
 516		iter_copy = io->iter;
 517		iter = &iter_copy;
 518	} else
 519		iter = &io->iter;
 520
 521	for (b = 0; b < io->n_blocks; b++) {
 522		int r;
 523		sector_t cur_block = io->block + b;
 524		struct ahash_request *req = verity_io_hash_req(v, io);
 525
 526		if (v->validated_blocks &&
 527		    likely(test_bit(cur_block, v->validated_blocks))) {
 528			verity_bv_skip_block(v, io, iter);
 529			continue;
 530		}
 531
 532		r = verity_hash_for_block(v, io, cur_block,
 533					  verity_io_want_digest(v, io),
 534					  &is_zero);
 535		if (unlikely(r < 0))
 536			return r;
 537
 538		if (is_zero) {
 539			/*
 540			 * If we expect a zero block, don't validate, just
 541			 * return zeros.
 542			 */
 543			r = verity_for_bv_block(v, io, iter,
 544						verity_bv_zero);
 545			if (unlikely(r < 0))
 546				return r;
 547
 548			continue;
 549		}
 550
 551		r = verity_hash_init(v, req, &wait);
 552		if (unlikely(r < 0))
 553			return r;
 554
 555#if defined(CONFIG_DM_VERITY_FEC)
 556		if (verity_fec_is_enabled(v))
 557			start = *iter;
 558#endif
 559		r = verity_for_io_block(v, io, iter, &wait);
 560		if (unlikely(r < 0))
 561			return r;
 562
 563		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
 564					&wait);
 565		if (unlikely(r < 0))
 566			return r;
 567
 568		if (likely(memcmp(verity_io_real_digest(v, io),
 569				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
 570			if (v->validated_blocks)
 571				set_bit(cur_block, v->validated_blocks);
 572			continue;
 573		} else if (static_branch_unlikely(&use_tasklet_enabled) &&
 574			   io->in_tasklet) {
 575			/*
 576			 * Error handling code (FEC included) cannot be run in a
 577			 * tasklet since it may sleep, so fallback to work-queue.
 578			 */
 579			return -EAGAIN;
 580#if defined(CONFIG_DM_VERITY_FEC)
 581		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
 582					     cur_block, NULL, &start) == 0) {
 583			continue;
 584#endif
 585		} else {
 586			if (bio->bi_status) {
 587				/*
 588				 * Error correction failed; Just return error
 589				 */
 590				return -EIO;
 591			}
 592			if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
 593					      cur_block))
 594				return -EIO;
 595		}
 
 
 
 
 
 
 596	}
 597
 598	return 0;
 599}
 600
 601/*
 602 * Skip verity work in response to I/O error when system is shutting down.
 603 */
 604static inline bool verity_is_system_shutting_down(void)
 605{
 606	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
 607		|| system_state == SYSTEM_RESTART;
 608}
 609
 610/*
 611 * End one "io" structure with a given error.
 612 */
 613static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
 614{
 615	struct dm_verity *v = io->v;
 616	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 617
 618	bio->bi_end_io = io->orig_bi_end_io;
 619	bio->bi_status = status;
 620
 621	if (!static_branch_unlikely(&use_tasklet_enabled) || !io->in_tasklet)
 622		verity_fec_finish_io(io);
 623
 624	bio_endio(bio);
 625}
 626
 627static void verity_work(struct work_struct *w)
 628{
 629	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
 630
 631	io->in_tasklet = false;
 632
 633	verity_fec_init_io(io);
 634	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
 635}
 636
 637static void verity_tasklet(unsigned long data)
 638{
 639	struct dm_verity_io *io = (struct dm_verity_io *)data;
 640	int err;
 641
 642	io->in_tasklet = true;
 643	err = verity_verify_io(io);
 644	if (err == -EAGAIN) {
 645		/* fallback to retrying with work-queue */
 646		INIT_WORK(&io->work, verity_work);
 647		queue_work(io->v->verify_wq, &io->work);
 648		return;
 649	}
 650
 651	verity_finish_io(io, errno_to_blk_status(err));
 652}
 653
 654static void verity_end_io(struct bio *bio)
 655{
 656	struct dm_verity_io *io = bio->bi_private;
 657
 658	if (bio->bi_status &&
 659	    (!verity_fec_is_enabled(io->v) || verity_is_system_shutting_down())) {
 660		verity_finish_io(io, bio->bi_status);
 661		return;
 662	}
 663
 664	if (static_branch_unlikely(&use_tasklet_enabled) && io->v->use_tasklet) {
 665		tasklet_init(&io->tasklet, verity_tasklet, (unsigned long)io);
 666		tasklet_schedule(&io->tasklet);
 667	} else {
 668		INIT_WORK(&io->work, verity_work);
 669		queue_work(io->v->verify_wq, &io->work);
 670	}
 671}
 672
 673/*
 674 * Prefetch buffers for the specified io.
 675 * The root buffer is not prefetched, it is assumed that it will be cached
 676 * all the time.
 677 */
 678static void verity_prefetch_io(struct work_struct *work)
 679{
 680	struct dm_verity_prefetch_work *pw =
 681		container_of(work, struct dm_verity_prefetch_work, work);
 682	struct dm_verity *v = pw->v;
 683	int i;
 684
 685	for (i = v->levels - 2; i >= 0; i--) {
 686		sector_t hash_block_start;
 687		sector_t hash_block_end;
 688		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
 689		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
 690		if (!i) {
 691			unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
 692
 693			cluster >>= v->data_dev_block_bits;
 694			if (unlikely(!cluster))
 695				goto no_prefetch_cluster;
 696
 697			if (unlikely(cluster & (cluster - 1)))
 698				cluster = 1 << __fls(cluster);
 699
 700			hash_block_start &= ~(sector_t)(cluster - 1);
 701			hash_block_end |= cluster - 1;
 702			if (unlikely(hash_block_end >= v->hash_blocks))
 703				hash_block_end = v->hash_blocks - 1;
 704		}
 705no_prefetch_cluster:
 706		dm_bufio_prefetch(v->bufio, hash_block_start,
 707				  hash_block_end - hash_block_start + 1);
 708	}
 709
 710	kfree(pw);
 711}
 712
 713static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
 714{
 715	sector_t block = io->block;
 716	unsigned int n_blocks = io->n_blocks;
 717	struct dm_verity_prefetch_work *pw;
 718
 719	if (v->validated_blocks) {
 720		while (n_blocks && test_bit(block, v->validated_blocks)) {
 721			block++;
 722			n_blocks--;
 723		}
 724		while (n_blocks && test_bit(block + n_blocks - 1,
 725					    v->validated_blocks))
 726			n_blocks--;
 727		if (!n_blocks)
 728			return;
 729	}
 730
 731	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
 732		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 733
 734	if (!pw)
 735		return;
 736
 737	INIT_WORK(&pw->work, verity_prefetch_io);
 738	pw->v = v;
 739	pw->block = block;
 740	pw->n_blocks = n_blocks;
 741	queue_work(v->verify_wq, &pw->work);
 742}
 743
 744/*
 745 * Bio map function. It allocates dm_verity_io structure and bio vector and
 746 * fills them. Then it issues prefetches and the I/O.
 747 */
 748static int verity_map(struct dm_target *ti, struct bio *bio)
 749{
 750	struct dm_verity *v = ti->private;
 751	struct dm_verity_io *io;
 752
 753	bio_set_dev(bio, v->data_dev->bdev);
 754	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
 755
 756	if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
 757	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
 758		DMERR_LIMIT("unaligned io");
 759		return DM_MAPIO_KILL;
 760	}
 761
 762	if (bio_end_sector(bio) >>
 763	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
 764		DMERR_LIMIT("io out of range");
 765		return DM_MAPIO_KILL;
 766	}
 767
 768	if (bio_data_dir(bio) == WRITE)
 769		return DM_MAPIO_KILL;
 770
 771	io = dm_per_bio_data(bio, ti->per_io_data_size);
 772	io->v = v;
 773	io->orig_bi_end_io = bio->bi_end_io;
 774	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
 775	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
 776
 777	bio->bi_end_io = verity_end_io;
 778	bio->bi_private = io;
 779	io->iter = bio->bi_iter;
 780
 
 
 781	verity_submit_prefetch(v, io);
 782
 783	submit_bio_noacct(bio);
 784
 785	return DM_MAPIO_SUBMITTED;
 786}
 787
 788/*
 789 * Status: V (valid) or C (corruption found)
 790 */
 791static void verity_status(struct dm_target *ti, status_type_t type,
 792			  unsigned status_flags, char *result, unsigned maxlen)
 793{
 794	struct dm_verity *v = ti->private;
 795	unsigned args = 0;
 796	unsigned sz = 0;
 797	unsigned x;
 798
 799	switch (type) {
 800	case STATUSTYPE_INFO:
 801		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
 802		break;
 803	case STATUSTYPE_TABLE:
 804		DMEMIT("%u %s %s %u %u %llu %llu %s ",
 805			v->version,
 806			v->data_dev->name,
 807			v->hash_dev->name,
 808			1 << v->data_dev_block_bits,
 809			1 << v->hash_dev_block_bits,
 810			(unsigned long long)v->data_blocks,
 811			(unsigned long long)v->hash_start,
 812			v->alg_name
 813			);
 814		for (x = 0; x < v->digest_size; x++)
 815			DMEMIT("%02x", v->root_digest[x]);
 816		DMEMIT(" ");
 817		if (!v->salt_size)
 818			DMEMIT("-");
 819		else
 820			for (x = 0; x < v->salt_size; x++)
 821				DMEMIT("%02x", v->salt[x]);
 822		if (v->mode != DM_VERITY_MODE_EIO)
 823			args++;
 824		if (verity_fec_is_enabled(v))
 825			args += DM_VERITY_OPTS_FEC;
 826		if (v->zero_digest)
 827			args++;
 828		if (v->validated_blocks)
 829			args++;
 830		if (v->use_tasklet)
 831			args++;
 832		if (v->signature_key_desc)
 833			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
 834		if (!args)
 835			return;
 836		DMEMIT(" %u", args);
 837		if (v->mode != DM_VERITY_MODE_EIO) {
 838			DMEMIT(" ");
 839			switch (v->mode) {
 840			case DM_VERITY_MODE_LOGGING:
 841				DMEMIT(DM_VERITY_OPT_LOGGING);
 842				break;
 843			case DM_VERITY_MODE_RESTART:
 844				DMEMIT(DM_VERITY_OPT_RESTART);
 845				break;
 846			case DM_VERITY_MODE_PANIC:
 847				DMEMIT(DM_VERITY_OPT_PANIC);
 848				break;
 849			default:
 850				BUG();
 851			}
 852		}
 853		if (v->zero_digest)
 854			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
 855		if (v->validated_blocks)
 856			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
 857		if (v->use_tasklet)
 858			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
 859		sz = verity_fec_status_table(v, sz, result, maxlen);
 860		if (v->signature_key_desc)
 861			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
 862				" %s", v->signature_key_desc);
 863		break;
 864
 865	case STATUSTYPE_IMA:
 866		DMEMIT_TARGET_NAME_VERSION(ti->type);
 867		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
 868		DMEMIT(",verity_version=%u", v->version);
 869		DMEMIT(",data_device_name=%s", v->data_dev->name);
 870		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
 871		DMEMIT(",verity_algorithm=%s", v->alg_name);
 872
 873		DMEMIT(",root_digest=");
 874		for (x = 0; x < v->digest_size; x++)
 875			DMEMIT("%02x", v->root_digest[x]);
 876
 877		DMEMIT(",salt=");
 878		if (!v->salt_size)
 879			DMEMIT("-");
 880		else
 881			for (x = 0; x < v->salt_size; x++)
 882				DMEMIT("%02x", v->salt[x]);
 883
 884		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
 885		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
 886		if (v->signature_key_desc)
 887			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
 888
 889		if (v->mode != DM_VERITY_MODE_EIO) {
 890			DMEMIT(",verity_mode=");
 891			switch (v->mode) {
 892			case DM_VERITY_MODE_LOGGING:
 893				DMEMIT(DM_VERITY_OPT_LOGGING);
 894				break;
 895			case DM_VERITY_MODE_RESTART:
 896				DMEMIT(DM_VERITY_OPT_RESTART);
 897				break;
 898			case DM_VERITY_MODE_PANIC:
 899				DMEMIT(DM_VERITY_OPT_PANIC);
 900				break;
 901			default:
 902				DMEMIT("invalid");
 903			}
 904		}
 905		DMEMIT(";");
 906		break;
 907	}
 908}
 909
 910static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
 911{
 912	struct dm_verity *v = ti->private;
 913
 914	*bdev = v->data_dev->bdev;
 915
 916	if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
 
 917		return 1;
 918	return 0;
 919}
 920
 921static int verity_iterate_devices(struct dm_target *ti,
 922				  iterate_devices_callout_fn fn, void *data)
 923{
 924	struct dm_verity *v = ti->private;
 925
 926	return fn(ti, v->data_dev, v->data_start, ti->len, data);
 927}
 928
 929static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
 930{
 931	struct dm_verity *v = ti->private;
 932
 933	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
 934		limits->logical_block_size = 1 << v->data_dev_block_bits;
 935
 936	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
 937		limits->physical_block_size = 1 << v->data_dev_block_bits;
 938
 939	blk_limits_io_min(limits, limits->logical_block_size);
 940}
 941
 942static void verity_dtr(struct dm_target *ti)
 943{
 944	struct dm_verity *v = ti->private;
 945
 946	if (v->verify_wq)
 947		destroy_workqueue(v->verify_wq);
 948
 949	if (v->bufio)
 950		dm_bufio_client_destroy(v->bufio);
 951
 952	kvfree(v->validated_blocks);
 953	kfree(v->salt);
 954	kfree(v->root_digest);
 955	kfree(v->zero_digest);
 956
 957	if (v->tfm)
 958		crypto_free_ahash(v->tfm);
 959
 960	kfree(v->alg_name);
 961
 962	if (v->hash_dev)
 963		dm_put_device(ti, v->hash_dev);
 964
 965	if (v->data_dev)
 966		dm_put_device(ti, v->data_dev);
 967
 968	verity_fec_dtr(v);
 969
 970	kfree(v->signature_key_desc);
 971
 972	if (v->use_tasklet)
 973		static_branch_dec(&use_tasklet_enabled);
 974
 975	kfree(v);
 976}
 977
 978static int verity_alloc_most_once(struct dm_verity *v)
 979{
 980	struct dm_target *ti = v->ti;
 981
 982	/* the bitset can only handle INT_MAX blocks */
 983	if (v->data_blocks > INT_MAX) {
 984		ti->error = "device too large to use check_at_most_once";
 985		return -E2BIG;
 986	}
 987
 988	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
 989				       sizeof(unsigned long),
 990				       GFP_KERNEL);
 991	if (!v->validated_blocks) {
 992		ti->error = "failed to allocate bitset for check_at_most_once";
 993		return -ENOMEM;
 994	}
 995
 996	return 0;
 997}
 998
 999static int verity_alloc_zero_digest(struct dm_verity *v)
1000{
1001	int r = -ENOMEM;
1002	struct ahash_request *req;
1003	u8 *zero_data;
1004
1005	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1006
1007	if (!v->zero_digest)
1008		return r;
1009
1010	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
1011
1012	if (!req)
1013		return r; /* verity_dtr will free zero_digest */
1014
1015	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1016
1017	if (!zero_data)
1018		goto out;
1019
1020	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
1021			v->zero_digest);
1022
1023out:
1024	kfree(req);
1025	kfree(zero_data);
1026
1027	return r;
1028}
1029
1030static inline bool verity_is_verity_mode(const char *arg_name)
1031{
1032	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1033		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1034		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1035}
1036
1037static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1038{
1039	if (v->mode)
1040		return -EINVAL;
1041
1042	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1043		v->mode = DM_VERITY_MODE_LOGGING;
1044	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1045		v->mode = DM_VERITY_MODE_RESTART;
1046	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1047		v->mode = DM_VERITY_MODE_PANIC;
1048
1049	return 0;
1050}
1051
1052static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1053				 struct dm_verity_sig_opts *verify_args,
1054				 bool only_modifier_opts)
1055{
1056	int r = 0;
1057	unsigned argc;
1058	struct dm_target *ti = v->ti;
1059	const char *arg_name;
1060
1061	static const struct dm_arg _args[] = {
1062		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1063	};
1064
1065	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1066	if (r)
1067		return -EINVAL;
1068
1069	if (!argc)
1070		return 0;
1071
1072	do {
1073		arg_name = dm_shift_arg(as);
1074		argc--;
1075
1076		if (verity_is_verity_mode(arg_name)) {
1077			if (only_modifier_opts)
1078				continue;
1079			r = verity_parse_verity_mode(v, arg_name);
1080			if (r) {
1081				ti->error = "Conflicting error handling parameters";
1082				return r;
1083			}
 
 
1084			continue;
1085
1086		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1087			if (only_modifier_opts)
1088				continue;
1089			r = verity_alloc_zero_digest(v);
1090			if (r) {
1091				ti->error = "Cannot allocate zero digest";
1092				return r;
1093			}
1094			continue;
1095
1096		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1097			if (only_modifier_opts)
1098				continue;
1099			r = verity_alloc_most_once(v);
1100			if (r)
1101				return r;
1102			continue;
1103
1104		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1105			v->use_tasklet = true;
1106			static_branch_inc(&use_tasklet_enabled);
1107			continue;
1108
1109		} else if (verity_is_fec_opt_arg(arg_name)) {
1110			if (only_modifier_opts)
1111				continue;
1112			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1113			if (r)
1114				return r;
1115			continue;
1116
1117		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1118			if (only_modifier_opts)
1119				continue;
1120			r = verity_verify_sig_parse_opt_args(as, v,
1121							     verify_args,
1122							     &argc, arg_name);
1123			if (r)
1124				return r;
1125			continue;
1126
1127		} else if (only_modifier_opts) {
1128			/*
1129			 * Ignore unrecognized opt, could easily be an extra
1130			 * argument to an option whose parsing was skipped.
1131			 * Normal parsing (@only_modifier_opts=false) will
1132			 * properly parse all options (and their extra args).
1133			 */
1134			continue;
1135		}
1136
1137		DMERR("Unrecognized verity feature request: %s", arg_name);
1138		ti->error = "Unrecognized verity feature request";
1139		return -EINVAL;
1140	} while (argc && !r);
1141
1142	return r;
1143}
1144
1145/*
1146 * Target parameters:
1147 *	<version>	The current format is version 1.
1148 *			Vsn 0 is compatible with original Chromium OS releases.
1149 *	<data device>
1150 *	<hash device>
1151 *	<data block size>
1152 *	<hash block size>
1153 *	<the number of data blocks>
1154 *	<hash start block>
1155 *	<algorithm>
1156 *	<digest>
1157 *	<salt>		Hex string or "-" if no salt.
1158 */
1159static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
1160{
1161	struct dm_verity *v;
1162	struct dm_verity_sig_opts verify_args = {0};
1163	struct dm_arg_set as;
1164	unsigned int num;
1165	unsigned int wq_flags;
1166	unsigned long long num_ll;
1167	int r;
1168	int i;
1169	sector_t hash_position;
1170	char dummy;
1171	char *root_hash_digest_to_validate;
1172
1173	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1174	if (!v) {
1175		ti->error = "Cannot allocate verity structure";
1176		return -ENOMEM;
1177	}
1178	ti->private = v;
1179	v->ti = ti;
1180
1181	r = verity_fec_ctr_alloc(v);
1182	if (r)
1183		goto bad;
1184
1185	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
1186		ti->error = "Device must be readonly";
1187		r = -EINVAL;
1188		goto bad;
1189	}
1190
1191	if (argc < 10) {
1192		ti->error = "Not enough arguments";
1193		r = -EINVAL;
1194		goto bad;
1195	}
1196
1197	/* Parse optional parameters that modify primary args */
1198	if (argc > 10) {
1199		as.argc = argc - 10;
1200		as.argv = argv + 10;
1201		r = verity_parse_opt_args(&as, v, &verify_args, true);
1202		if (r < 0)
1203			goto bad;
1204	}
1205
1206	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1207	    num > 1) {
1208		ti->error = "Invalid version";
1209		r = -EINVAL;
1210		goto bad;
1211	}
1212	v->version = num;
1213
1214	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
1215	if (r) {
1216		ti->error = "Data device lookup failed";
1217		goto bad;
1218	}
1219
1220	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
1221	if (r) {
1222		ti->error = "Hash device lookup failed";
1223		goto bad;
1224	}
1225
1226	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1227	    !num || (num & (num - 1)) ||
1228	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1229	    num > PAGE_SIZE) {
1230		ti->error = "Invalid data device block size";
1231		r = -EINVAL;
1232		goto bad;
1233	}
1234	v->data_dev_block_bits = __ffs(num);
1235
1236	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1237	    !num || (num & (num - 1)) ||
1238	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1239	    num > INT_MAX) {
1240		ti->error = "Invalid hash device block size";
1241		r = -EINVAL;
1242		goto bad;
1243	}
1244	v->hash_dev_block_bits = __ffs(num);
1245
1246	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1247	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1248	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1249		ti->error = "Invalid data blocks";
1250		r = -EINVAL;
1251		goto bad;
1252	}
1253	v->data_blocks = num_ll;
1254
1255	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1256		ti->error = "Data device is too small";
1257		r = -EINVAL;
1258		goto bad;
1259	}
1260
1261	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1262	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1263	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1264		ti->error = "Invalid hash start";
1265		r = -EINVAL;
1266		goto bad;
1267	}
1268	v->hash_start = num_ll;
1269
1270	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1271	if (!v->alg_name) {
1272		ti->error = "Cannot allocate algorithm name";
1273		r = -ENOMEM;
1274		goto bad;
1275	}
1276
1277	v->tfm = crypto_alloc_ahash(v->alg_name, 0,
1278				    v->use_tasklet ? CRYPTO_ALG_ASYNC : 0);
1279	if (IS_ERR(v->tfm)) {
1280		ti->error = "Cannot initialize hash function";
1281		r = PTR_ERR(v->tfm);
1282		v->tfm = NULL;
1283		goto bad;
1284	}
1285
1286	/*
1287	 * dm-verity performance can vary greatly depending on which hash
1288	 * algorithm implementation is used.  Help people debug performance
1289	 * problems by logging the ->cra_driver_name.
1290	 */
1291	DMINFO("%s using implementation \"%s\"", v->alg_name,
1292	       crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1293
1294	v->digest_size = crypto_ahash_digestsize(v->tfm);
1295	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1296		ti->error = "Digest size too big";
1297		r = -EINVAL;
1298		goto bad;
1299	}
1300	v->ahash_reqsize = sizeof(struct ahash_request) +
1301		crypto_ahash_reqsize(v->tfm);
1302
1303	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1304	if (!v->root_digest) {
1305		ti->error = "Cannot allocate root digest";
1306		r = -ENOMEM;
1307		goto bad;
1308	}
1309	if (strlen(argv[8]) != v->digest_size * 2 ||
1310	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1311		ti->error = "Invalid root digest";
1312		r = -EINVAL;
1313		goto bad;
1314	}
1315	root_hash_digest_to_validate = argv[8];
1316
1317	if (strcmp(argv[9], "-")) {
1318		v->salt_size = strlen(argv[9]) / 2;
1319		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1320		if (!v->salt) {
1321			ti->error = "Cannot allocate salt";
1322			r = -ENOMEM;
1323			goto bad;
1324		}
1325		if (strlen(argv[9]) != v->salt_size * 2 ||
1326		    hex2bin(v->salt, argv[9], v->salt_size)) {
1327			ti->error = "Invalid salt";
1328			r = -EINVAL;
1329			goto bad;
1330		}
1331	}
1332
1333	argv += 10;
1334	argc -= 10;
1335
1336	/* Optional parameters */
1337	if (argc) {
1338		as.argc = argc;
1339		as.argv = argv;
1340		r = verity_parse_opt_args(&as, v, &verify_args, false);
 
1341		if (r < 0)
1342			goto bad;
1343	}
1344
1345	/* Root hash signature is  a optional parameter*/
1346	r = verity_verify_root_hash(root_hash_digest_to_validate,
1347				    strlen(root_hash_digest_to_validate),
1348				    verify_args.sig,
1349				    verify_args.sig_size);
1350	if (r < 0) {
1351		ti->error = "Root hash verification failed";
1352		goto bad;
1353	}
1354	v->hash_per_block_bits =
1355		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1356
1357	v->levels = 0;
1358	if (v->data_blocks)
1359		while (v->hash_per_block_bits * v->levels < 64 &&
1360		       (unsigned long long)(v->data_blocks - 1) >>
1361		       (v->hash_per_block_bits * v->levels))
1362			v->levels++;
1363
1364	if (v->levels > DM_VERITY_MAX_LEVELS) {
1365		ti->error = "Too many tree levels";
1366		r = -E2BIG;
1367		goto bad;
1368	}
1369
1370	hash_position = v->hash_start;
1371	for (i = v->levels - 1; i >= 0; i--) {
1372		sector_t s;
1373		v->hash_level_block[i] = hash_position;
1374		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1375					>> ((i + 1) * v->hash_per_block_bits);
1376		if (hash_position + s < hash_position) {
1377			ti->error = "Hash device offset overflow";
1378			r = -E2BIG;
1379			goto bad;
1380		}
1381		hash_position += s;
1382	}
1383	v->hash_blocks = hash_position;
1384
1385	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1386		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1387		dm_bufio_alloc_callback, NULL,
1388		v->use_tasklet ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1389	if (IS_ERR(v->bufio)) {
1390		ti->error = "Cannot initialize dm-bufio";
1391		r = PTR_ERR(v->bufio);
1392		v->bufio = NULL;
1393		goto bad;
1394	}
1395
1396	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1397		ti->error = "Hash device is too small";
1398		r = -E2BIG;
1399		goto bad;
1400	}
1401
1402	/* WQ_UNBOUND greatly improves performance when running on ramdisk */
1403	wq_flags = WQ_MEM_RECLAIM | WQ_UNBOUND;
1404	/*
1405	 * Using WQ_HIGHPRI improves throughput and completion latency by
1406	 * reducing wait times when reading from a dm-verity device.
1407	 *
1408	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1409	 * allows verify_wq to preempt softirq since verification in tasklet
1410	 * will fall-back to using it for error handling (or if the bufio cache
1411	 * doesn't have required hashes).
1412	 */
1413	wq_flags |= WQ_HIGHPRI;
1414	v->verify_wq = alloc_workqueue("kverityd", wq_flags, num_online_cpus());
1415	if (!v->verify_wq) {
1416		ti->error = "Cannot allocate workqueue";
1417		r = -ENOMEM;
1418		goto bad;
1419	}
1420
1421	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1422				v->ahash_reqsize + v->digest_size * 2;
1423
1424	r = verity_fec_ctr(v);
1425	if (r)
1426		goto bad;
1427
1428	ti->per_io_data_size = roundup(ti->per_io_data_size,
1429				       __alignof__(struct dm_verity_io));
1430
1431	verity_verify_sig_opts_cleanup(&verify_args);
1432
1433	return 0;
1434
1435bad:
1436
1437	verity_verify_sig_opts_cleanup(&verify_args);
1438	verity_dtr(ti);
1439
1440	return r;
1441}
1442
1443/*
1444 * Check whether a DM target is a verity target.
1445 */
1446bool dm_is_verity_target(struct dm_target *ti)
1447{
1448	return ti->type->module == THIS_MODULE;
1449}
1450
1451/*
1452 * Get the verity mode (error behavior) of a verity target.
1453 *
1454 * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1455 * target.
1456 */
1457int dm_verity_get_mode(struct dm_target *ti)
1458{
1459	struct dm_verity *v = ti->private;
1460
1461	if (!dm_is_verity_target(ti))
1462		return -EINVAL;
1463
1464	return v->mode;
1465}
1466
1467/*
1468 * Get the root digest of a verity target.
1469 *
1470 * Returns a copy of the root digest, the caller is responsible for
1471 * freeing the memory of the digest.
1472 */
1473int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1474{
1475	struct dm_verity *v = ti->private;
1476
1477	if (!dm_is_verity_target(ti))
1478		return -EINVAL;
1479
1480	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1481	if (*root_digest == NULL)
1482		return -ENOMEM;
1483
1484	*digest_size = v->digest_size;
1485
1486	return 0;
1487}
1488
1489static struct target_type verity_target = {
1490	.name		= "verity",
1491	.features	= DM_TARGET_IMMUTABLE,
1492	.version	= {1, 9, 0},
1493	.module		= THIS_MODULE,
1494	.ctr		= verity_ctr,
1495	.dtr		= verity_dtr,
1496	.map		= verity_map,
1497	.status		= verity_status,
1498	.prepare_ioctl	= verity_prepare_ioctl,
1499	.iterate_devices = verity_iterate_devices,
1500	.io_hints	= verity_io_hints,
1501};
1502
1503static int __init dm_verity_init(void)
1504{
1505	int r;
1506
1507	r = dm_register_target(&verity_target);
1508	if (r < 0)
1509		DMERR("register failed %d", r);
1510
1511	return r;
1512}
1513
1514static void __exit dm_verity_exit(void)
1515{
1516	dm_unregister_target(&verity_target);
1517}
1518
1519module_init(dm_verity_init);
1520module_exit(dm_verity_exit);
1521
1522MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1523MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1524MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1525MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1526MODULE_LICENSE("GPL");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Red Hat, Inc.
   4 *
   5 * Author: Mikulas Patocka <mpatocka@redhat.com>
   6 *
   7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
   8 *
   9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
  10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
  11 * hash device. Setting this greatly improves performance when data and hash
  12 * are on the same disk on different partitions on devices with poor random
  13 * access behavior.
  14 */
  15
  16#include "dm-verity.h"
  17#include "dm-verity-fec.h"
  18#include "dm-verity-verify-sig.h"
  19#include <linux/module.h>
  20#include <linux/reboot.h>
 
 
 
  21
  22#define DM_MSG_PREFIX			"verity"
  23
  24#define DM_VERITY_ENV_LENGTH		42
  25#define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
  26
  27#define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
  28
  29#define DM_VERITY_MAX_CORRUPTED_ERRS	100
  30
  31#define DM_VERITY_OPT_LOGGING		"ignore_corruption"
  32#define DM_VERITY_OPT_RESTART		"restart_on_corruption"
  33#define DM_VERITY_OPT_PANIC		"panic_on_corruption"
  34#define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
  35#define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
 
  36
  37#define DM_VERITY_OPTS_MAX		(2 + DM_VERITY_OPTS_FEC + \
  38					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
  39
  40static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
  41
  42module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
  43
 
 
  44struct dm_verity_prefetch_work {
  45	struct work_struct work;
  46	struct dm_verity *v;
  47	sector_t block;
  48	unsigned n_blocks;
  49};
  50
  51/*
  52 * Auxiliary structure appended to each dm-bufio buffer. If the value
  53 * hash_verified is nonzero, hash of the block has been verified.
  54 *
  55 * The variable hash_verified is set to 0 when allocating the buffer, then
  56 * it can be changed to 1 and it is never reset to 0 again.
  57 *
  58 * There is no lock around this value, a race condition can at worst cause
  59 * that multiple processes verify the hash of the same buffer simultaneously
  60 * and write 1 to hash_verified simultaneously.
  61 * This condition is harmless, so we don't need locking.
  62 */
  63struct buffer_aux {
  64	int hash_verified;
  65};
  66
  67/*
  68 * Initialize struct buffer_aux for a freshly created buffer.
  69 */
  70static void dm_bufio_alloc_callback(struct dm_buffer *buf)
  71{
  72	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
  73
  74	aux->hash_verified = 0;
  75}
  76
  77/*
  78 * Translate input sector number to the sector number on the target device.
  79 */
  80static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
  81{
  82	return v->data_start + dm_target_offset(v->ti, bi_sector);
  83}
  84
  85/*
  86 * Return hash position of a specified block at a specified tree level
  87 * (0 is the lowest level).
  88 * The lowest "hash_per_block_bits"-bits of the result denote hash position
  89 * inside a hash block. The remaining bits denote location of the hash block.
  90 */
  91static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
  92					 int level)
  93{
  94	return block >> (level * v->hash_per_block_bits);
  95}
  96
  97static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
  98				const u8 *data, size_t len,
  99				struct crypto_wait *wait)
 100{
 101	struct scatterlist sg;
 102
 103	if (likely(!is_vmalloc_addr(data))) {
 104		sg_init_one(&sg, data, len);
 105		ahash_request_set_crypt(req, &sg, NULL, len);
 106		return crypto_wait_req(crypto_ahash_update(req), wait);
 107	} else {
 108		do {
 109			int r;
 110			size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
 111			flush_kernel_vmap_range((void *)data, this_step);
 112			sg_init_table(&sg, 1);
 113			sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
 114			ahash_request_set_crypt(req, &sg, NULL, this_step);
 115			r = crypto_wait_req(crypto_ahash_update(req), wait);
 116			if (unlikely(r))
 117				return r;
 118			data += this_step;
 119			len -= this_step;
 120		} while (len);
 121		return 0;
 122	}
 123}
 124
 125/*
 126 * Wrapper for crypto_ahash_init, which handles verity salting.
 127 */
 128static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
 129				struct crypto_wait *wait)
 130{
 131	int r;
 132
 133	ahash_request_set_tfm(req, v->tfm);
 134	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
 135					CRYPTO_TFM_REQ_MAY_BACKLOG,
 136					crypto_req_done, (void *)wait);
 137	crypto_init_wait(wait);
 138
 139	r = crypto_wait_req(crypto_ahash_init(req), wait);
 140
 141	if (unlikely(r < 0)) {
 142		DMERR("crypto_ahash_init failed: %d", r);
 143		return r;
 144	}
 145
 146	if (likely(v->salt_size && (v->version >= 1)))
 147		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 148
 149	return r;
 150}
 151
 152static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
 153			     u8 *digest, struct crypto_wait *wait)
 154{
 155	int r;
 156
 157	if (unlikely(v->salt_size && (!v->version))) {
 158		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
 159
 160		if (r < 0) {
 161			DMERR("verity_hash_final failed updating salt: %d", r);
 162			goto out;
 163		}
 164	}
 165
 166	ahash_request_set_crypt(req, NULL, digest, 0);
 167	r = crypto_wait_req(crypto_ahash_final(req), wait);
 168out:
 169	return r;
 170}
 171
 172int verity_hash(struct dm_verity *v, struct ahash_request *req,
 173		const u8 *data, size_t len, u8 *digest)
 174{
 175	int r;
 176	struct crypto_wait wait;
 177
 178	r = verity_hash_init(v, req, &wait);
 179	if (unlikely(r < 0))
 180		goto out;
 181
 182	r = verity_hash_update(v, req, data, len, &wait);
 183	if (unlikely(r < 0))
 184		goto out;
 185
 186	r = verity_hash_final(v, req, digest, &wait);
 187
 188out:
 189	return r;
 190}
 191
 192static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
 193				 sector_t *hash_block, unsigned *offset)
 194{
 195	sector_t position = verity_position_at_level(v, block, level);
 196	unsigned idx;
 197
 198	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
 199
 200	if (!offset)
 201		return;
 202
 203	idx = position & ((1 << v->hash_per_block_bits) - 1);
 204	if (!v->version)
 205		*offset = idx * v->digest_size;
 206	else
 207		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
 208}
 209
 210/*
 211 * Handle verification errors.
 212 */
 213static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
 214			     unsigned long long block)
 215{
 216	char verity_env[DM_VERITY_ENV_LENGTH];
 217	char *envp[] = { verity_env, NULL };
 218	const char *type_str = "";
 219	struct mapped_device *md = dm_table_get_md(v->ti->table);
 220
 221	/* Corruption should be visible in device status in all modes */
 222	v->hash_failed = 1;
 223
 224	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
 225		goto out;
 226
 227	v->corrupted_errs++;
 228
 229	switch (type) {
 230	case DM_VERITY_BLOCK_TYPE_DATA:
 231		type_str = "data";
 232		break;
 233	case DM_VERITY_BLOCK_TYPE_METADATA:
 234		type_str = "metadata";
 235		break;
 236	default:
 237		BUG();
 238	}
 239
 240	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
 241		    type_str, block);
 242
 243	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
 244		DMERR("%s: reached maximum errors", v->data_dev->name);
 245
 246	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
 247		DM_VERITY_ENV_VAR_NAME, type, block);
 248
 249	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
 250
 251out:
 252	if (v->mode == DM_VERITY_MODE_LOGGING)
 253		return 0;
 254
 255	if (v->mode == DM_VERITY_MODE_RESTART)
 256		kernel_restart("dm-verity device corrupted");
 257
 258	if (v->mode == DM_VERITY_MODE_PANIC)
 259		panic("dm-verity device corrupted");
 260
 261	return 1;
 262}
 263
 264/*
 265 * Verify hash of a metadata block pertaining to the specified data block
 266 * ("block" argument) at a specified level ("level" argument).
 267 *
 268 * On successful return, verity_io_want_digest(v, io) contains the hash value
 269 * for a lower tree level or for the data block (if we're at the lowest level).
 270 *
 271 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
 272 * If "skip_unverified" is false, unverified buffer is hashed and verified
 273 * against current value of verity_io_want_digest(v, io).
 274 */
 275static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
 276			       sector_t block, int level, bool skip_unverified,
 277			       u8 *want_digest)
 278{
 279	struct dm_buffer *buf;
 280	struct buffer_aux *aux;
 281	u8 *data;
 282	int r;
 283	sector_t hash_block;
 284	unsigned offset;
 285
 286	verity_hash_at_level(v, block, level, &hash_block, &offset);
 287
 288	data = dm_bufio_read(v->bufio, hash_block, &buf);
 
 
 
 
 
 
 
 
 
 
 
 
 289	if (IS_ERR(data))
 290		return PTR_ERR(data);
 291
 292	aux = dm_bufio_get_aux_data(buf);
 293
 294	if (!aux->hash_verified) {
 295		if (skip_unverified) {
 296			r = 1;
 297			goto release_ret_r;
 298		}
 299
 300		r = verity_hash(v, verity_io_hash_req(v, io),
 301				data, 1 << v->hash_dev_block_bits,
 302				verity_io_real_digest(v, io));
 303		if (unlikely(r < 0))
 304			goto release_ret_r;
 305
 306		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
 307				  v->digest_size) == 0))
 308			aux->hash_verified = 1;
 
 
 
 
 
 
 
 
 
 309		else if (verity_fec_decode(v, io,
 310					   DM_VERITY_BLOCK_TYPE_METADATA,
 311					   hash_block, data, NULL) == 0)
 312			aux->hash_verified = 1;
 313		else if (verity_handle_err(v,
 314					   DM_VERITY_BLOCK_TYPE_METADATA,
 315					   hash_block)) {
 316			r = -EIO;
 317			goto release_ret_r;
 318		}
 319	}
 320
 321	data += offset;
 322	memcpy(want_digest, data, v->digest_size);
 323	r = 0;
 324
 325release_ret_r:
 326	dm_bufio_release(buf);
 327	return r;
 328}
 329
 330/*
 331 * Find a hash for a given block, write it to digest and verify the integrity
 332 * of the hash tree if necessary.
 333 */
 334int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
 335			  sector_t block, u8 *digest, bool *is_zero)
 336{
 337	int r = 0, i;
 338
 339	if (likely(v->levels)) {
 340		/*
 341		 * First, we try to get the requested hash for
 342		 * the current block. If the hash block itself is
 343		 * verified, zero is returned. If it isn't, this
 344		 * function returns 1 and we fall back to whole
 345		 * chain verification.
 346		 */
 347		r = verity_verify_level(v, io, block, 0, true, digest);
 348		if (likely(r <= 0))
 349			goto out;
 350	}
 351
 352	memcpy(digest, v->root_digest, v->digest_size);
 353
 354	for (i = v->levels - 1; i >= 0; i--) {
 355		r = verity_verify_level(v, io, block, i, false, digest);
 356		if (unlikely(r))
 357			goto out;
 358	}
 359out:
 360	if (!r && v->zero_digest)
 361		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
 362	else
 363		*is_zero = false;
 364
 365	return r;
 366}
 367
 368/*
 369 * Calculates the digest for the given bio
 370 */
 371static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
 372			       struct bvec_iter *iter, struct crypto_wait *wait)
 373{
 374	unsigned int todo = 1 << v->data_dev_block_bits;
 375	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 376	struct scatterlist sg;
 377	struct ahash_request *req = verity_io_hash_req(v, io);
 378
 379	do {
 380		int r;
 381		unsigned int len;
 382		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 383
 384		sg_init_table(&sg, 1);
 385
 386		len = bv.bv_len;
 387
 388		if (likely(len >= todo))
 389			len = todo;
 390		/*
 391		 * Operating on a single page at a time looks suboptimal
 392		 * until you consider the typical block size is 4,096B.
 393		 * Going through this loops twice should be very rare.
 394		 */
 395		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
 396		ahash_request_set_crypt(req, &sg, NULL, len);
 397		r = crypto_wait_req(crypto_ahash_update(req), wait);
 398
 399		if (unlikely(r < 0)) {
 400			DMERR("verity_for_io_block crypto op failed: %d", r);
 401			return r;
 402		}
 403
 404		bio_advance_iter(bio, iter, len);
 405		todo -= len;
 406	} while (todo);
 407
 408	return 0;
 409}
 410
 411/*
 412 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
 413 * starting from iter.
 414 */
 415int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
 416			struct bvec_iter *iter,
 417			int (*process)(struct dm_verity *v,
 418				       struct dm_verity_io *io, u8 *data,
 419				       size_t len))
 420{
 421	unsigned todo = 1 << v->data_dev_block_bits;
 422	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 423
 424	do {
 425		int r;
 426		u8 *page;
 427		unsigned len;
 428		struct bio_vec bv = bio_iter_iovec(bio, *iter);
 429
 430		page = kmap_atomic(bv.bv_page);
 431		len = bv.bv_len;
 432
 433		if (likely(len >= todo))
 434			len = todo;
 435
 436		r = process(v, io, page + bv.bv_offset, len);
 437		kunmap_atomic(page);
 438
 439		if (r < 0)
 440			return r;
 441
 442		bio_advance_iter(bio, iter, len);
 443		todo -= len;
 444	} while (todo);
 445
 446	return 0;
 447}
 448
 449static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
 450			  u8 *data, size_t len)
 451{
 452	memset(data, 0, len);
 453	return 0;
 454}
 455
 456/*
 457 * Moves the bio iter one data block forward.
 458 */
 459static inline void verity_bv_skip_block(struct dm_verity *v,
 460					struct dm_verity_io *io,
 461					struct bvec_iter *iter)
 462{
 463	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 464
 465	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
 466}
 467
 468/*
 469 * Verify one "dm_verity_io" structure.
 470 */
 471static int verity_verify_io(struct dm_verity_io *io)
 472{
 473	bool is_zero;
 474	struct dm_verity *v = io->v;
 
 475	struct bvec_iter start;
 476	unsigned b;
 
 
 477	struct crypto_wait wait;
 
 
 
 
 
 
 
 
 
 
 
 
 478
 479	for (b = 0; b < io->n_blocks; b++) {
 480		int r;
 481		sector_t cur_block = io->block + b;
 482		struct ahash_request *req = verity_io_hash_req(v, io);
 483
 484		if (v->validated_blocks &&
 485		    likely(test_bit(cur_block, v->validated_blocks))) {
 486			verity_bv_skip_block(v, io, &io->iter);
 487			continue;
 488		}
 489
 490		r = verity_hash_for_block(v, io, cur_block,
 491					  verity_io_want_digest(v, io),
 492					  &is_zero);
 493		if (unlikely(r < 0))
 494			return r;
 495
 496		if (is_zero) {
 497			/*
 498			 * If we expect a zero block, don't validate, just
 499			 * return zeros.
 500			 */
 501			r = verity_for_bv_block(v, io, &io->iter,
 502						verity_bv_zero);
 503			if (unlikely(r < 0))
 504				return r;
 505
 506			continue;
 507		}
 508
 509		r = verity_hash_init(v, req, &wait);
 510		if (unlikely(r < 0))
 511			return r;
 512
 513		start = io->iter;
 514		r = verity_for_io_block(v, io, &io->iter, &wait);
 
 
 
 515		if (unlikely(r < 0))
 516			return r;
 517
 518		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
 519					&wait);
 520		if (unlikely(r < 0))
 521			return r;
 522
 523		if (likely(memcmp(verity_io_real_digest(v, io),
 524				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
 525			if (v->validated_blocks)
 526				set_bit(cur_block, v->validated_blocks);
 527			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528		}
 529		else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
 530					   cur_block, NULL, &start) == 0)
 531			continue;
 532		else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
 533					   cur_block))
 534			return -EIO;
 535	}
 536
 537	return 0;
 538}
 539
 540/*
 
 
 
 
 
 
 
 
 
 541 * End one "io" structure with a given error.
 542 */
 543static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
 544{
 545	struct dm_verity *v = io->v;
 546	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
 547
 548	bio->bi_end_io = io->orig_bi_end_io;
 549	bio->bi_status = status;
 550
 551	verity_fec_finish_io(io);
 
 552
 553	bio_endio(bio);
 554}
 555
 556static void verity_work(struct work_struct *w)
 557{
 558	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
 559
 
 
 
 560	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
 561}
 562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563static void verity_end_io(struct bio *bio)
 564{
 565	struct dm_verity_io *io = bio->bi_private;
 566
 567	if (bio->bi_status && !verity_fec_is_enabled(io->v)) {
 
 568		verity_finish_io(io, bio->bi_status);
 569		return;
 570	}
 571
 572	INIT_WORK(&io->work, verity_work);
 573	queue_work(io->v->verify_wq, &io->work);
 
 
 
 
 
 574}
 575
 576/*
 577 * Prefetch buffers for the specified io.
 578 * The root buffer is not prefetched, it is assumed that it will be cached
 579 * all the time.
 580 */
 581static void verity_prefetch_io(struct work_struct *work)
 582{
 583	struct dm_verity_prefetch_work *pw =
 584		container_of(work, struct dm_verity_prefetch_work, work);
 585	struct dm_verity *v = pw->v;
 586	int i;
 587
 588	for (i = v->levels - 2; i >= 0; i--) {
 589		sector_t hash_block_start;
 590		sector_t hash_block_end;
 591		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
 592		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
 593		if (!i) {
 594			unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
 595
 596			cluster >>= v->data_dev_block_bits;
 597			if (unlikely(!cluster))
 598				goto no_prefetch_cluster;
 599
 600			if (unlikely(cluster & (cluster - 1)))
 601				cluster = 1 << __fls(cluster);
 602
 603			hash_block_start &= ~(sector_t)(cluster - 1);
 604			hash_block_end |= cluster - 1;
 605			if (unlikely(hash_block_end >= v->hash_blocks))
 606				hash_block_end = v->hash_blocks - 1;
 607		}
 608no_prefetch_cluster:
 609		dm_bufio_prefetch(v->bufio, hash_block_start,
 610				  hash_block_end - hash_block_start + 1);
 611	}
 612
 613	kfree(pw);
 614}
 615
 616static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
 617{
 618	sector_t block = io->block;
 619	unsigned int n_blocks = io->n_blocks;
 620	struct dm_verity_prefetch_work *pw;
 621
 622	if (v->validated_blocks) {
 623		while (n_blocks && test_bit(block, v->validated_blocks)) {
 624			block++;
 625			n_blocks--;
 626		}
 627		while (n_blocks && test_bit(block + n_blocks - 1,
 628					    v->validated_blocks))
 629			n_blocks--;
 630		if (!n_blocks)
 631			return;
 632	}
 633
 634	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
 635		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 636
 637	if (!pw)
 638		return;
 639
 640	INIT_WORK(&pw->work, verity_prefetch_io);
 641	pw->v = v;
 642	pw->block = block;
 643	pw->n_blocks = n_blocks;
 644	queue_work(v->verify_wq, &pw->work);
 645}
 646
 647/*
 648 * Bio map function. It allocates dm_verity_io structure and bio vector and
 649 * fills them. Then it issues prefetches and the I/O.
 650 */
 651static int verity_map(struct dm_target *ti, struct bio *bio)
 652{
 653	struct dm_verity *v = ti->private;
 654	struct dm_verity_io *io;
 655
 656	bio_set_dev(bio, v->data_dev->bdev);
 657	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
 658
 659	if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
 660	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
 661		DMERR_LIMIT("unaligned io");
 662		return DM_MAPIO_KILL;
 663	}
 664
 665	if (bio_end_sector(bio) >>
 666	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
 667		DMERR_LIMIT("io out of range");
 668		return DM_MAPIO_KILL;
 669	}
 670
 671	if (bio_data_dir(bio) == WRITE)
 672		return DM_MAPIO_KILL;
 673
 674	io = dm_per_bio_data(bio, ti->per_io_data_size);
 675	io->v = v;
 676	io->orig_bi_end_io = bio->bi_end_io;
 677	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
 678	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
 679
 680	bio->bi_end_io = verity_end_io;
 681	bio->bi_private = io;
 682	io->iter = bio->bi_iter;
 683
 684	verity_fec_init_io(io);
 685
 686	verity_submit_prefetch(v, io);
 687
 688	submit_bio_noacct(bio);
 689
 690	return DM_MAPIO_SUBMITTED;
 691}
 692
 693/*
 694 * Status: V (valid) or C (corruption found)
 695 */
 696static void verity_status(struct dm_target *ti, status_type_t type,
 697			  unsigned status_flags, char *result, unsigned maxlen)
 698{
 699	struct dm_verity *v = ti->private;
 700	unsigned args = 0;
 701	unsigned sz = 0;
 702	unsigned x;
 703
 704	switch (type) {
 705	case STATUSTYPE_INFO:
 706		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
 707		break;
 708	case STATUSTYPE_TABLE:
 709		DMEMIT("%u %s %s %u %u %llu %llu %s ",
 710			v->version,
 711			v->data_dev->name,
 712			v->hash_dev->name,
 713			1 << v->data_dev_block_bits,
 714			1 << v->hash_dev_block_bits,
 715			(unsigned long long)v->data_blocks,
 716			(unsigned long long)v->hash_start,
 717			v->alg_name
 718			);
 719		for (x = 0; x < v->digest_size; x++)
 720			DMEMIT("%02x", v->root_digest[x]);
 721		DMEMIT(" ");
 722		if (!v->salt_size)
 723			DMEMIT("-");
 724		else
 725			for (x = 0; x < v->salt_size; x++)
 726				DMEMIT("%02x", v->salt[x]);
 727		if (v->mode != DM_VERITY_MODE_EIO)
 728			args++;
 729		if (verity_fec_is_enabled(v))
 730			args += DM_VERITY_OPTS_FEC;
 731		if (v->zero_digest)
 732			args++;
 733		if (v->validated_blocks)
 734			args++;
 
 
 735		if (v->signature_key_desc)
 736			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
 737		if (!args)
 738			return;
 739		DMEMIT(" %u", args);
 740		if (v->mode != DM_VERITY_MODE_EIO) {
 741			DMEMIT(" ");
 742			switch (v->mode) {
 743			case DM_VERITY_MODE_LOGGING:
 744				DMEMIT(DM_VERITY_OPT_LOGGING);
 745				break;
 746			case DM_VERITY_MODE_RESTART:
 747				DMEMIT(DM_VERITY_OPT_RESTART);
 748				break;
 749			case DM_VERITY_MODE_PANIC:
 750				DMEMIT(DM_VERITY_OPT_PANIC);
 751				break;
 752			default:
 753				BUG();
 754			}
 755		}
 756		if (v->zero_digest)
 757			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
 758		if (v->validated_blocks)
 759			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
 
 
 760		sz = verity_fec_status_table(v, sz, result, maxlen);
 761		if (v->signature_key_desc)
 762			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
 763				" %s", v->signature_key_desc);
 764		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765	}
 766}
 767
 768static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
 769{
 770	struct dm_verity *v = ti->private;
 771
 772	*bdev = v->data_dev->bdev;
 773
 774	if (v->data_start ||
 775	    ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
 776		return 1;
 777	return 0;
 778}
 779
 780static int verity_iterate_devices(struct dm_target *ti,
 781				  iterate_devices_callout_fn fn, void *data)
 782{
 783	struct dm_verity *v = ti->private;
 784
 785	return fn(ti, v->data_dev, v->data_start, ti->len, data);
 786}
 787
 788static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
 789{
 790	struct dm_verity *v = ti->private;
 791
 792	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
 793		limits->logical_block_size = 1 << v->data_dev_block_bits;
 794
 795	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
 796		limits->physical_block_size = 1 << v->data_dev_block_bits;
 797
 798	blk_limits_io_min(limits, limits->logical_block_size);
 799}
 800
 801static void verity_dtr(struct dm_target *ti)
 802{
 803	struct dm_verity *v = ti->private;
 804
 805	if (v->verify_wq)
 806		destroy_workqueue(v->verify_wq);
 807
 808	if (v->bufio)
 809		dm_bufio_client_destroy(v->bufio);
 810
 811	kvfree(v->validated_blocks);
 812	kfree(v->salt);
 813	kfree(v->root_digest);
 814	kfree(v->zero_digest);
 815
 816	if (v->tfm)
 817		crypto_free_ahash(v->tfm);
 818
 819	kfree(v->alg_name);
 820
 821	if (v->hash_dev)
 822		dm_put_device(ti, v->hash_dev);
 823
 824	if (v->data_dev)
 825		dm_put_device(ti, v->data_dev);
 826
 827	verity_fec_dtr(v);
 828
 829	kfree(v->signature_key_desc);
 830
 
 
 
 831	kfree(v);
 832}
 833
 834static int verity_alloc_most_once(struct dm_verity *v)
 835{
 836	struct dm_target *ti = v->ti;
 837
 838	/* the bitset can only handle INT_MAX blocks */
 839	if (v->data_blocks > INT_MAX) {
 840		ti->error = "device too large to use check_at_most_once";
 841		return -E2BIG;
 842	}
 843
 844	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
 845				       sizeof(unsigned long),
 846				       GFP_KERNEL);
 847	if (!v->validated_blocks) {
 848		ti->error = "failed to allocate bitset for check_at_most_once";
 849		return -ENOMEM;
 850	}
 851
 852	return 0;
 853}
 854
 855static int verity_alloc_zero_digest(struct dm_verity *v)
 856{
 857	int r = -ENOMEM;
 858	struct ahash_request *req;
 859	u8 *zero_data;
 860
 861	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
 862
 863	if (!v->zero_digest)
 864		return r;
 865
 866	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
 867
 868	if (!req)
 869		return r; /* verity_dtr will free zero_digest */
 870
 871	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
 872
 873	if (!zero_data)
 874		goto out;
 875
 876	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
 877			v->zero_digest);
 878
 879out:
 880	kfree(req);
 881	kfree(zero_data);
 882
 883	return r;
 884}
 885
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
 887				 struct dm_verity_sig_opts *verify_args)
 
 888{
 889	int r;
 890	unsigned argc;
 891	struct dm_target *ti = v->ti;
 892	const char *arg_name;
 893
 894	static const struct dm_arg _args[] = {
 895		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
 896	};
 897
 898	r = dm_read_arg_group(_args, as, &argc, &ti->error);
 899	if (r)
 900		return -EINVAL;
 901
 902	if (!argc)
 903		return 0;
 904
 905	do {
 906		arg_name = dm_shift_arg(as);
 907		argc--;
 908
 909		if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
 910			v->mode = DM_VERITY_MODE_LOGGING;
 911			continue;
 912
 913		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
 914			v->mode = DM_VERITY_MODE_RESTART;
 915			continue;
 916
 917		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC)) {
 918			v->mode = DM_VERITY_MODE_PANIC;
 919			continue;
 920
 921		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
 
 
 922			r = verity_alloc_zero_digest(v);
 923			if (r) {
 924				ti->error = "Cannot allocate zero digest";
 925				return r;
 926			}
 927			continue;
 928
 929		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
 
 
 930			r = verity_alloc_most_once(v);
 931			if (r)
 932				return r;
 933			continue;
 934
 
 
 
 
 
 935		} else if (verity_is_fec_opt_arg(arg_name)) {
 
 
 936			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
 937			if (r)
 938				return r;
 939			continue;
 
 940		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
 
 
 941			r = verity_verify_sig_parse_opt_args(as, v,
 942							     verify_args,
 943							     &argc, arg_name);
 944			if (r)
 945				return r;
 946			continue;
 947
 
 
 
 
 
 
 
 
 948		}
 949
 
 950		ti->error = "Unrecognized verity feature request";
 951		return -EINVAL;
 952	} while (argc && !r);
 953
 954	return r;
 955}
 956
 957/*
 958 * Target parameters:
 959 *	<version>	The current format is version 1.
 960 *			Vsn 0 is compatible with original Chromium OS releases.
 961 *	<data device>
 962 *	<hash device>
 963 *	<data block size>
 964 *	<hash block size>
 965 *	<the number of data blocks>
 966 *	<hash start block>
 967 *	<algorithm>
 968 *	<digest>
 969 *	<salt>		Hex string or "-" if no salt.
 970 */
 971static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
 972{
 973	struct dm_verity *v;
 974	struct dm_verity_sig_opts verify_args = {0};
 975	struct dm_arg_set as;
 976	unsigned int num;
 
 977	unsigned long long num_ll;
 978	int r;
 979	int i;
 980	sector_t hash_position;
 981	char dummy;
 982	char *root_hash_digest_to_validate;
 983
 984	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
 985	if (!v) {
 986		ti->error = "Cannot allocate verity structure";
 987		return -ENOMEM;
 988	}
 989	ti->private = v;
 990	v->ti = ti;
 991
 992	r = verity_fec_ctr_alloc(v);
 993	if (r)
 994		goto bad;
 995
 996	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
 997		ti->error = "Device must be readonly";
 998		r = -EINVAL;
 999		goto bad;
1000	}
1001
1002	if (argc < 10) {
1003		ti->error = "Not enough arguments";
1004		r = -EINVAL;
1005		goto bad;
1006	}
1007
 
 
 
 
 
 
 
 
 
1008	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1009	    num > 1) {
1010		ti->error = "Invalid version";
1011		r = -EINVAL;
1012		goto bad;
1013	}
1014	v->version = num;
1015
1016	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
1017	if (r) {
1018		ti->error = "Data device lookup failed";
1019		goto bad;
1020	}
1021
1022	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
1023	if (r) {
1024		ti->error = "Hash device lookup failed";
1025		goto bad;
1026	}
1027
1028	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1029	    !num || (num & (num - 1)) ||
1030	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1031	    num > PAGE_SIZE) {
1032		ti->error = "Invalid data device block size";
1033		r = -EINVAL;
1034		goto bad;
1035	}
1036	v->data_dev_block_bits = __ffs(num);
1037
1038	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1039	    !num || (num & (num - 1)) ||
1040	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1041	    num > INT_MAX) {
1042		ti->error = "Invalid hash device block size";
1043		r = -EINVAL;
1044		goto bad;
1045	}
1046	v->hash_dev_block_bits = __ffs(num);
1047
1048	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1049	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1050	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1051		ti->error = "Invalid data blocks";
1052		r = -EINVAL;
1053		goto bad;
1054	}
1055	v->data_blocks = num_ll;
1056
1057	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1058		ti->error = "Data device is too small";
1059		r = -EINVAL;
1060		goto bad;
1061	}
1062
1063	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1064	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1065	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1066		ti->error = "Invalid hash start";
1067		r = -EINVAL;
1068		goto bad;
1069	}
1070	v->hash_start = num_ll;
1071
1072	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1073	if (!v->alg_name) {
1074		ti->error = "Cannot allocate algorithm name";
1075		r = -ENOMEM;
1076		goto bad;
1077	}
1078
1079	v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
 
1080	if (IS_ERR(v->tfm)) {
1081		ti->error = "Cannot initialize hash function";
1082		r = PTR_ERR(v->tfm);
1083		v->tfm = NULL;
1084		goto bad;
1085	}
1086
1087	/*
1088	 * dm-verity performance can vary greatly depending on which hash
1089	 * algorithm implementation is used.  Help people debug performance
1090	 * problems by logging the ->cra_driver_name.
1091	 */
1092	DMINFO("%s using implementation \"%s\"", v->alg_name,
1093	       crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1094
1095	v->digest_size = crypto_ahash_digestsize(v->tfm);
1096	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1097		ti->error = "Digest size too big";
1098		r = -EINVAL;
1099		goto bad;
1100	}
1101	v->ahash_reqsize = sizeof(struct ahash_request) +
1102		crypto_ahash_reqsize(v->tfm);
1103
1104	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1105	if (!v->root_digest) {
1106		ti->error = "Cannot allocate root digest";
1107		r = -ENOMEM;
1108		goto bad;
1109	}
1110	if (strlen(argv[8]) != v->digest_size * 2 ||
1111	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1112		ti->error = "Invalid root digest";
1113		r = -EINVAL;
1114		goto bad;
1115	}
1116	root_hash_digest_to_validate = argv[8];
1117
1118	if (strcmp(argv[9], "-")) {
1119		v->salt_size = strlen(argv[9]) / 2;
1120		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1121		if (!v->salt) {
1122			ti->error = "Cannot allocate salt";
1123			r = -ENOMEM;
1124			goto bad;
1125		}
1126		if (strlen(argv[9]) != v->salt_size * 2 ||
1127		    hex2bin(v->salt, argv[9], v->salt_size)) {
1128			ti->error = "Invalid salt";
1129			r = -EINVAL;
1130			goto bad;
1131		}
1132	}
1133
1134	argv += 10;
1135	argc -= 10;
1136
1137	/* Optional parameters */
1138	if (argc) {
1139		as.argc = argc;
1140		as.argv = argv;
1141
1142		r = verity_parse_opt_args(&as, v, &verify_args);
1143		if (r < 0)
1144			goto bad;
1145	}
1146
1147	/* Root hash signature is  a optional parameter*/
1148	r = verity_verify_root_hash(root_hash_digest_to_validate,
1149				    strlen(root_hash_digest_to_validate),
1150				    verify_args.sig,
1151				    verify_args.sig_size);
1152	if (r < 0) {
1153		ti->error = "Root hash verification failed";
1154		goto bad;
1155	}
1156	v->hash_per_block_bits =
1157		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1158
1159	v->levels = 0;
1160	if (v->data_blocks)
1161		while (v->hash_per_block_bits * v->levels < 64 &&
1162		       (unsigned long long)(v->data_blocks - 1) >>
1163		       (v->hash_per_block_bits * v->levels))
1164			v->levels++;
1165
1166	if (v->levels > DM_VERITY_MAX_LEVELS) {
1167		ti->error = "Too many tree levels";
1168		r = -E2BIG;
1169		goto bad;
1170	}
1171
1172	hash_position = v->hash_start;
1173	for (i = v->levels - 1; i >= 0; i--) {
1174		sector_t s;
1175		v->hash_level_block[i] = hash_position;
1176		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1177					>> ((i + 1) * v->hash_per_block_bits);
1178		if (hash_position + s < hash_position) {
1179			ti->error = "Hash device offset overflow";
1180			r = -E2BIG;
1181			goto bad;
1182		}
1183		hash_position += s;
1184	}
1185	v->hash_blocks = hash_position;
1186
1187	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1188		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1189		dm_bufio_alloc_callback, NULL);
 
1190	if (IS_ERR(v->bufio)) {
1191		ti->error = "Cannot initialize dm-bufio";
1192		r = PTR_ERR(v->bufio);
1193		v->bufio = NULL;
1194		goto bad;
1195	}
1196
1197	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1198		ti->error = "Hash device is too small";
1199		r = -E2BIG;
1200		goto bad;
1201	}
1202
1203	/* WQ_UNBOUND greatly improves performance when running on ramdisk */
1204	v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
 
 
 
 
 
 
 
 
 
 
 
1205	if (!v->verify_wq) {
1206		ti->error = "Cannot allocate workqueue";
1207		r = -ENOMEM;
1208		goto bad;
1209	}
1210
1211	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1212				v->ahash_reqsize + v->digest_size * 2;
1213
1214	r = verity_fec_ctr(v);
1215	if (r)
1216		goto bad;
1217
1218	ti->per_io_data_size = roundup(ti->per_io_data_size,
1219				       __alignof__(struct dm_verity_io));
1220
1221	verity_verify_sig_opts_cleanup(&verify_args);
1222
1223	return 0;
1224
1225bad:
1226
1227	verity_verify_sig_opts_cleanup(&verify_args);
1228	verity_dtr(ti);
1229
1230	return r;
1231}
1232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233static struct target_type verity_target = {
1234	.name		= "verity",
1235	.version	= {1, 7, 0},
 
1236	.module		= THIS_MODULE,
1237	.ctr		= verity_ctr,
1238	.dtr		= verity_dtr,
1239	.map		= verity_map,
1240	.status		= verity_status,
1241	.prepare_ioctl	= verity_prepare_ioctl,
1242	.iterate_devices = verity_iterate_devices,
1243	.io_hints	= verity_io_hints,
1244};
1245
1246static int __init dm_verity_init(void)
1247{
1248	int r;
1249
1250	r = dm_register_target(&verity_target);
1251	if (r < 0)
1252		DMERR("register failed %d", r);
1253
1254	return r;
1255}
1256
1257static void __exit dm_verity_exit(void)
1258{
1259	dm_unregister_target(&verity_target);
1260}
1261
1262module_init(dm_verity_init);
1263module_exit(dm_verity_exit);
1264
1265MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1266MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1267MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1268MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1269MODULE_LICENSE("GPL");